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Copper toxicity in the pliysiology and early development of Fucus serratus 

BY Hanne Dalsgaard Nielsen 

Abstract 
Fucus serratus was used in a series of laboratory experiments to study the effects of Cû "̂  

exposure on the early development of zygotes and physiological effects on adults collected 

from Cû "̂  polluted and clean habitats. 

Comparative studies showed that Cu^* tolerance in Fucus is an inherited character. Zygote 

development and growth of embryos and adults during Cu^* exposure indicated that Fucus 

serratus from a Cû "̂  polluted habitat had a higher tolerance limit than material from two 

clean habitats. Furthermore, there was no difference in the tolerance level of zygotes, 

embryos and adults from the same habitat. 

Chlorophyll fluorescence measurements showed that Cu^* affected photosynthetic electron 

transport at PSn, and increased the sensitivity of the alga to saturating light. These effects 

were most pronounced in non-resistant alga. The algae responded to reduced 

photosynthetic efficiency by increased non-photochemical quenching, that was more 

apparent in resistant than in non-resistant algae. 

Copper accumulation and release of organic substances by non-resistant fronds was much 

higher than that of resistant fronds, and the algae may therefore possess different response 

mechanisms to Cû "̂  exposure. The respiratory demand of non-resistant fronds was higher 

and the relative growth rate much lower than that of resistant fronds in the presence of 

Cu^^ 

Cû "̂  affected zygote development in a very selective manner. Initiation of the polar growth 

axis was unaffected whereas there was an inhibitory effect on axis fixation and rhizoid 

elongation. Inhibitory effects on axis fixation resulted in an abnormal cell division pattem 

in the zygotes. The effects of Cu^* on axis fixation were downstream of F-actin 

localisation, which was unaffected, and upstream of localised secretion of fucoidin, which 

was severely inhibited by Cû "̂ . 

By microinjecting the rhizoid cell of germinated zygotes with fluorescent Câ * dye and 

using confocal microscopy, it was determined that l / i M Cû "̂  abolished the apical Câ * 

gradient and disrupted normal Câ ^ signalling dynamics in the rhizoid apex. Furthermore it 

was shown that acute exposure of zygotes to extreme [Cu^^ resulted in a dramatic 

elevation in [Ca^ ]̂cyf 

The observed effects of Cû "̂  on Câ "̂  signalling suggests that Cû "̂  toxicity in Fucus 

serratus, in part, acts through induction of reactive oxygen species and inhibition of Câ * 

conducting ion channels. 
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3.3.1.2. Effects of Cû "̂  on axis formation and fixation 157 

3.3.1.3. F-actin localisation and secretion of fucoidin 162 

3.3.2. Effects of Cu^^ on osmoregulation and embryo growth 166 

3.3.2.1. Osmoregulation 166 

3.3.2.2. Rhizoid elongation and Cû "" tolerance 166 
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3.4.2. Cû "̂  toxicity in early development 192 

3.4.2.1. Axis formation and fixation 192 

3.4.2.2. Localised secretion of fucoidin 193 

3.4.2.3. F-actin localisation 194 

3.4.3. Effects of Cu^* on cytosolic Câ * in the Fucus rhizoid 195 
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Figure 3.20. Câ * gradient at the rhizoid apex 177 

Figure 3.21. Example of effects of Cu^* on the Câ * gradient at the rhizoid apex.. 178 
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Figure 3.24. Effects of Cû "" on sub-apical [Ca^*] 182 
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C H A P T E R 1 

General Introduction 
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Mineral copper has been exploited commercially since prehistoric times and the refined 

form used as a valuable material in many industries. The activity of extracting copper, 

naturally bound in rocks as minerals such as chalcocite (CU2S), cuprite (CuaO), bomite 

(Cu5FeS4) and chalcopyrite (CuFeS2), has resulted in the release of copper into the 

environment mainly as covellite (CuS) and the highly reactive and toxic form, the free 

copper ion, Cu^^ (Atkins, 1989). Concerns about the environmental impact of 

anthropogenic copper pollution have arisen over the last few decades as awareness of the 

potentially toxic effects of copper has increased. Copper contamination of air, soil and 

aquatic environments near metal mines and smelters still occurs, sometimes with 

devastating consequences for the biota (Fernandez et al., 2000; Dahmani-Muller et al., 

2000; Larsen et al., 2001). Much of this contamination can end up in the marine 

environment (Larsen et al., 2001), and effects of copper on marine organisms and 

ecosystems has become of particular interest for environmental researchers. 

Copper is classified as a transition metal alongside nickel, lead, tin, gold, silver, zinc, 

cadmium and mercury which are often toxic (Bryan, 1971). The effect of Cû "*" and other 

toxic metals on biota, however, is dependent on the actual concentration present. Cu^^ is a 

naturally occurring trace metal, found in most waters and soils at very low levels, which 

are essential for plant growth (Marschner, 1995). At limiting concentrations, an increase in 

[Cu "̂̂ ] can have a positive effect on animal and plant growth (Garansson, 1998; Tokamia, 

1999), whereas a further increases above the deficiency level saturate a plant's copper 

requirement, resulting in no further increase in growth. Concentrations of Cû "̂  above 

levels required for growth may cause symptoms of toxicity and ultimately death. 
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1.1. Copper speciation in the marine environment 

1.1.1. Copper complexation 

Free Cu^* is the dominating form of ionic copper in the marine environment, although 

ionic copper may also exist in the more reduced form, Cu"̂  (Sharma and Millero, 1988). 

However, auto-oxidation of Cu"̂  with O2 to form Cû "̂  and O2" in seawater occurs very 

quickly, as the rate constant of the reaction at 25°C and pH 7 is h=2.5 (Sharma and 

Millero, 1988). Consequently, Cu"̂  is usually only of significance under anoxic conditions. 

Cu^* in seawater forms complexes with inorganic and organic ligands. The sum of free and 

complexed Cu^* is termed the total dissolved copper (Cur), and is biologically available 

(Van den Berg, 1984; Allen and Hansen, 1996; Gledhill et al., 1997). Free and complexed 

Cu^^ exists in equilibrium: 

[Cu^-"] + [L] U [CuL] 

where [Cu^" ]̂ is the concentration of free copper, [L] is the concentration of the ligand and 

[CuL] is the concentration of Cu^*-ligand complexes (van den Berg, 1984). The strength of 

a Cu^^-ligand complex can be estimated from the stability constant, pKcuL, of the Cu^^-

ligand equilibrium where high values are equivalent to a strong complex (Van den Berg, 

1984): 

pKcuL = log([CuL]/[Cu2l X [L]) 

The Cu^"^-ligand equilibrium and therefore [Cu^*] are strongly influenced by pH, 

temperature, and salinity (Byrne et al., 1988; Soli and Byme, 1989; Meador, 1991; Lores 

and Pennock, 1998). pH in seawater is mainly governed by bicarbonate (HCO3") and its 

equilibrium with carbon dioxide (CO2) and hydroxide (OH) (CO2 + OH" U H C O 3 ) 

(Madsen and Sand-Jensen, 1991). At 25°C an reduction in pH from 7.6 to 8.3, which 

represents a natural fluctuation in seawater, increased [Cu^" ]̂ three fold from 15% to 5% of 

total dissolved copper (Meador, 1991; Byme et al., 1988). pH of seawater in dense 
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photosynthetic active macrophyte stands may reach values as high as 10 (Madsen and 

sand-Jensen, 1991) at which Cu^^ by large is complexed with ligands. Lowering the 

temperature from 25°C to 5°C resulted in an increase in [Cu^^] to 12% and 32% of 

dissolved copper at pH 8.3 and 7.6, respectively (Byme et al., 1988). 

1.1.2. Inorganic ligands 

Traditionally, the principal inorganic copper ligands in seawater are considered to be 

hydroxyl (OH"), carbonate (CO3"), chloride (CI) and sulphate S04^' (Turner et al., 1981; 

Byme and Miller, 1985; Byme et al., 1988; Soli and Byme, 1989). The total concentration 

of dissolved inorganic copper (Cu'), in seawater can therefore be calculated as: 

[Cu'] = [Cu^̂ ]̂ + [CUCO3] + [Cu(C03)2^1 + [CuOlT] -I- [Cu(OH-)2] + [CuCf] etc. 

The natural inorganic ligands usually occur in m M concentrations in seawater and so are 

often present in excess of Cu "̂̂ . Thus changes in [Cu^" ]̂ can result from small changes in 

the concentration of free inorganic ligands (Allen and Hansen, 1996). pKcuL values 

estimated for the copper-carbonate complexes Cu(C03)2^" and CUCO3 are 8.60-8.92 and 

5.75-6.75 respectively, which are relatively high compared with pKcuL of about 3-4 for 

hydroxide and chloride copper complexes (Turner et al., 1981). The prevailing 

interpretation of these results is, therefore, that the speciation of inorganic copper 

complexes is dominated by carbonate complexation which accounts for -75% of dissolved 

inorganic copper when only carbonates, hydroxides and chloride are taken into account as 

inorganic ligands (Turner et al., 1981; Byme and Miller, 1985; Byme et al., 1988; Soh and 

Byme, 1989). However, it has been suggested that ionic sulphide, HS", is potentially the 

most important inorganic ligand in seawater (Al-Farawati and Van den Berg, 1999). 

Hydrosulphite (H2S) is normally associated with anoxic environments and is assumed to be 

oxidised by O2 in seawater (Millero, 1991). However, a H2S concentration of 0.1 to 2 n M 

has been demonstrated in normal seawater (Elliott et al., 1987), where it is likely to be 
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stabilised by trace metal complexation (Dyrssen, 1988; Al-Farawati and Van den Berg, 

1999). With a pKcu of 12.9 - 14.1, HS" is a very competent copper complexing ligand, 

with the potential to influence the speciation of inorganic copper in marine environments 

in both the absence and presence of organic ligands (Dyrssen, 1988; Al-Farawati and Van 

den Berg, 1999), which have pKcuL values comparable with that of HS" (Moffett and Zika, 

1983; Coale and Bruland, 1988, 1990; Moffett et al., 1990). 

1.1.3. Organic ligands 

A wide range of organic ligands form stable complexes with copper and other trace metals 

(Van den Berg, 1979; Gledhill et at., 1999; Croot et al., 2000; Pandey et al.. 2000). 

Organic ligands can be released from micro-organisms and macroalgae (McKnight and 

Morel, 1979; Gledhill et al., 1999; Croot et al., 2000) or they can originate from the 

degeneration of organic material (Ashley, 1996; Alberts and Filip, 1998; Voelker and 

Kogut, 2001). Two groups of organic ligands, with high pKcuL of about 11-13 (strong 

organic ligands) and low pKcuL of about 5-8 (weak organic ligands) have been identified in 

the marine environment (Moffett and Zika, 1983; Coale and Bruland, 1988, 1990; Moffett 

et al., 1990; Kogut and Voelker, 2001). 

Degeneration of marine and terrestrial organic material is a source of humic acid, a 

heterogeneous group of organic ligands found in the marine environment particularly near 

the coast and in estuarine waters (Ashley, 1996; Alberts and Filip, 1998; Voelker and 

Kogut, 2001; Kogut and Voelker, 2001). Terrestrial humic acid with a pKcuL normally in 

the range of 5.18-5.32 is a well-known contributor of weak organic ligands in aquatic 

systems (Pandey et al., 2000; Kogut and Voelker, 2001). However, humic acid may also 

contribute to the class of strong organic ligands since pKcuL values for humic acid in the 
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region of 10.4-13.2 have been demonstrated (Voelker and Kogut, 2001; Kogut and 

Voelker, 2001). 

Phytoplankton and macroalgae are known to release copper complexing substances, which 

lower the availability of toxic copper species in their surroundings (Anderson and Morel, 

1978; McKnight and Morel, 1979; Moffett et al, 1990; Gledhill et al., 1997, 1999; Croot 

et al., 2000). Secretion of ligands from living algae contribute to the pool of both strong 

and weak organic ligands (Coale and Bruland, 1988; Moffett et al, 1990; Croot et al., 

2000). One group of organism which contributes more than others is the cyanobacterium 

Synechococcus. This can be very sensitive to copper, which may cause a reduction in 

reproductive rates at concentrations as low as 10-100 p M (Sunda and Guillard, 1976; 

Jackson and Morgan, 1978; Brand et al., 1986; Sunda and Huntsman, 1995). This is 

consistent with the evolution of Synechococcus in an anoxic ocean where Cu^* was held at 

a very low level by CuS formation (Brand et al., 1986). In oceanic waters there is a high 

correlation between the vertical profiles of strong organic ligands and chlorophyll. It is 

therefore believed that Synechococcus is a major source of strong organic ligands in the 

world's oceans, potentially controlling oceanic copper speciation in some areas (Moffett 

and Zika, 1983; Coale and Bruland, 1988; Moffett et al., 1990; Moffett and Brand, 1996). 

1.2. Copper distribution in the marine environment 

Naturally occurring background levels of Cû "̂  in marine environments are dependent on 

inputs from rivers, the continents, the atmosphere, hydrothermal venting and sediments via 

particulate and biological material (Klinkhanmier, 1980; Boyle et al., 1985; Saager et al.. 
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1992; Widerlund et al., 1996). Anthropogenic sources also contribute to the input of Cu * 

to aquatic systems (Nriagu and Pacyna, 1988). 

1.2.1. Oceanic copper 

Open oceanic water is largely isolated from terrestrial influence and the distribution of 

many nutrients is governed by biological activity (Hunter et at, 1997). The concentration 

profiles of the major phytoplankton nutrients carbon, nitrogen, phosphate and silica appear 

to be highly correlated with one another and exist at a molecular ratio very similar to the 

phytoplankton nutrient uptake ratio, which is known as the 'Redfield Ratio' (Redfield, 

1958; Brzezinkski, 1995; Tyrell and Law, 1997). The major nutrients become 

simultaneously depleted from the euphotic zone, the upper 100 m or so of surface water, 

by phytoplankton growth (Bruland, 1980; Hecky and Kilham, 1988; Hunter et al., 1997). A 

very steep nutrient concentration gradient occurs through the thermocline and reaches 

background levels of fiM concentrations at about 1,000 m depth where remineralisation of 

nutrients takes place (Bruland, 1980). Essential trace metals in oceanic waters exist at 

nano- to pico-molar concentrations and are orders of magnitudes lower than 

macronutrients (Hunter et al., 1997). However, many trace metals display surface 

depletion and deep-water regeneration, resulting in a high degree of correlation between 

the vertical profiles of some macro- and micro nutrients. There is, for example, a high 

degree of correlation between the profiles of cadmium and phosphate (Bruland, 1980; 

Boyle, 1988; Frew and Hunter, 1992; Saager et al., 1992), and zinc and silica (Saager et 

al., 1992). 

In contrast, the concentration profile of total dissolved copper. CUT, deviates from the 

characteristic nutrient profiles in oceanic waters. Cur does not become entirely depleted 

from surface waters and the concentration of copper in the Northeast Pacific increases 
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linearly with depth (Bruland, 1980; Boyle et al., 1985; Coale and Bruland, 1988, 1990; 

Moffett, 1990; Saager et al., 1992). Bruland (1980) showed that the concentration of total 

dissolved copper increased almost linearly from -0.5 nM at the surface to ~5 n M at about 

4,000 m. Significant increases in the copper concentration can be found in near bottom 

waters with levels up to 10 nM (Klinkhammer, 1980; Shaw et al., 1990; Saager et al., 

1992). Sediment pore water can hold concentrations about 10 fold higher than bottom 

water, and diffusion and up-welling are considered important factors in the oceanic copper 

budget (Moore, 1978; Klinkhammer, 1980; Saager, 1992). 

Deviation of the vertical Cur profile from that of other nutrients may be the result of 

copper distribution being controlled by a combination of the uptake regeneration cycle and 

the high concentration of copper complexing ligands in oceanic surface water (Hunter et 

al., 1997). Phytoplankton uptake of copper tends to lower the concentrations in surface 

waters and correlations between CUT and silica, and Cur and phosphate have been 

demonstrated in some areas (Saager et al., 1992; Sunda and Huntsman, 1995), although 

such correlations tend to break down altogether (Orren and Monteiro, 1985). As much as 

99.7% of Cur in oceanic surface water is bound in strong organic complexes which prevent 

depletion, as complexed copper is largely inaccessible to phytoplankton (Coale and 

Bruland, 1988; Moffett et al., 1990). Due to the complexing properties of the ligands, the 

speciation of copper varies hugely with depth. Coale and Bruland (1988) showed that 

[Cut-] in the Northeast Pacific increased three fold from 0.6 to 1.8 nM as the depth 

increased to 400 m, whereas [Cu "̂̂ ] increased three orders of magnitude from 10"̂ '* to 

10"" M . 

[Cut-] in oceanic waters increases in an inshore direction due to an increasing significance 

of wind-borne (eolian) deposits from the continents, river inflow and diffusion from 
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continental shelf sediment (Boyle et al., 1985; Saager et al., 1992). In the study by Saager 

and co-workers (1992) [Cur] of near shore surface water in the Indian Ocean was about 4 

nM and decreased sharply to -0.5 nM at 500 m depth. Combined with a 5-fold lower 

copper concentration of surface water at offshore stations, the data indicated a strong 

influence of eolian sources (Saager et al., 1992). Similar results have been found for other 

near shore waters. For example, [Cur] of Mediterranean Sea surface water of up to 3.8 n M 

resulted mainly from inflow from local rivers containing concentrations of copper up to 

10-fold higher (Boyle et al., 1980). [Cur] in near shore waters, however, is very 

heterogenous, and huge variations can be found between locations. This is illustrated by 

the [Cur] of up to 39 nM in the surface water of the Irish Sea (Van den Berg, 1984) which 

is 10-fold higher than those reported for the Mediterranean Sea and near shore waters of 

the Indian Ocean (Boyle et al., 1985; Saager et al, 1992). 

1.2.2. Estuarine copper 

Inputs of copper from rivers and sediment often result in [Cur] in estuaries several orders 

of magnitude higher than in oceanic waters. Terrestrial input via rivers is the main source 

of trace metals in many estuaries and the metal concentration in both the water column and 

the sediment usually declines in an offshore direction (Apte et al., 1990; Larsen et al., 

2001). Sediment, however, is also an important source of trace metal to the estuarine water 

column. Trace metals, including copper, are released from sediment by degradation of 

organic matter under aerobic conditions and from the particulate fraction into the pore 

water and overlying bottom water (Widerlund, 1996; O'Leary and Breen, 1998). [Cur] in 

pore water exceeds that of bottom water by a factor of 3-4 and transport usually occurs by 

diffusion and suspension of sediment (Widerlund, 1996). 

10 



Large spatial and temporal variation in [Cuj], which is influenced by water currents, 

salinity, the particle and ligand concentrations and interactions between these parameters, 

can be found within an estuary (Ng et al., 1996; Turner, 1996). Organic ligands within 

estuaries can play a crucial role in copper speciation. Brown algae, which are often 

important primary producers in estuaries, are found amongst the group of ligand releasing 

algae (Ragan et al., 1980; Gledhill et al., 1997). Brown algae are able to release copper-

complexing polyphenols in response to elevated concentrations of copper, and can 

potentially influence the estuarine copper speciation in contaminated areas (Ragan et al., 

1980; Gledhill et al., 1997). 

Tidal fluxes in an estuary cause large variations in salinity, which can vary from 6%o at low 

tide to 26%o at high tide in the Humber Estuary, England (Ng et al., 1996). The solubility 

of copper decreases with increasing salinity and the metal fraction adsorbed to suspended 

particles and in complexation with ligands consequently increases significantly (Ng et al., 

1996, Turner, 1996; Lores and Pennock, 1998). Lores and Pennock (1998) showed that 

approximately 28% of C u t was complexed with organic ligands at a 3%o salinity and 

increased to 60% at 15%o salinity. Furthermore, Ng and co-workers (1996) showed that the 

total trace metal concentration at the mouth of the main channel in the Humber Estuary 

was close to zero at high tide due to dilution factors whereas trace metals could be found in 

jLiM concentrations at low tide. The mechanism underlying the effect of salinity on trace 

metal complexation is poorly understood and complexation of other metals, such as zinc, 

cadmium and chromium, is unaffected by changing salinity above 3%o (Lores and 

Pennock, 1998). As a consequence of salinity-dependent copper complexation 

mechanisms, sediment in suspension and organic ligands can act as both a source of copper 

at low salinity and as a sink for copper at high salinity in estuarine waters. In an estuary the 

input of river water is a source of both freshwater (i.e. low salinity) and organic ligands 
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which may have contrasting effects on [Cu ] . The salinity may be expected to increase 

towards the mouth of the estuary and result in an increase in the proportion of complexed 

Cû "̂ . On the contrary, the concentration of organic ligands may be expected to decrease 

from river inlet towards the mouth of the estuary and could potentially result in a decrease 

in the proportion of complexed Cu "̂̂ . Consequently estuaries naturally have a 

heterogeneous metal distribution but anthropogenic activity can, nevertheless, often be an 

overriding factor, which results in huge differences between estuaries. Average differences 

in the copper concentrations between estuaries can range from a few nM to /xM 

concentrations in the water column, and the sediment copper content can vary from a few 

to several thousand fig g^ sediment (Bryan and Langston, 1992). 

1.2.3. The Fal and Avon Estuaries 

Figure 1.01 shows the location of the Fal Estuary and the Avon Estuary, which are good 

examples of the large differences in copper status to be found in British estuaries as a result 

of mineral exploitation. The Avon Estuary (Figure 1.02) has never been affected by 

mineral exploitation and is considered a 'clean' estuary (Bryan and Langston, 1992), 

whereas the Fal Estuary (Figure 1.03) is heavily contaminated with copper and zinc due to 

anthropogenic activities. Commercial exploitation of mineral sources in South West 

England was at its peak in the 19* century when more than 1,000 mines in the region 

accounted for up to 50% of the world's mineral supply (Dines, 1969). Around 1900 the 

number of mines started to decline rapidly (Dines, 1969) and, by 1983, there were only 

about five working mines left in the region (Bryan and Gibbs, 1983). Today all mining has 

ceased. The formerly most productive mining area in the South West is situated north of 

Falmouth and is drained by the Camon River via Restronguet Creek into the Fal Estuary, 

which has, over the centuries, received vast quantities of copper, zinc and arsenic tailings 

from mining activities (Dines, 1969). Sources of metal contamination include erosion of 
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spoil heaps (Larsen et al., 2001) and flooding of abandoned mines by rainwater, resulting 

in the leaching of metals in acid solution into the drainage water (Marsden and DeWreede, 

2000). Previous mining activity therefore constitutes a serious risk of metal contamination 

years after its termination (Gibb et al., 1996), which is contributed to by diffusion of 

particulate waste from sedimentation in estuaries. Within the Fal Estuary system, 

Restronguet Creek represents the most heavily contaminated location, presently receiving 

copper from mine drainage water and the vast quantities of silt which have filled up the 

creek (Bryan and Gibbs, 1983; Bryan and Langston, 1992 Somerfield et al., 1994). Acidic 

water, pH 4 (Ferryman, 1996), carries about 9 juM Cur into Restronguet Creek (Bryan and 

Hummerstone, 1973). Concentrations of Cur measured at the mouth of the creek show 

large variations during a daily tidal cycle and annually, as illustrated in Figure 1.04. An 

average [Cur] of 200 nM has been measured in the water at Restronguet Creek over the 

last 7 years, which is 20-fold higher than values measured in the Avon and other 'clean' 

estuaries during the same period (Figure 1.05). The status of the Avon Estuary as one of 

the least polluted estuaries in the UK is also illustrated by the total copper content in the 

sediment of 18 / ig g"\ which is 2 to 3 orders of magnitude lower than in Restronguet Creek 

sediment (Bryan and Langston, 1992). 

1.3. Determination of biologically significant copper 

1.3.1. Chemical methods 

The fraction of total dissolved copper (Cur) which. exists as relatively inert forms, 

complexed with strong organic and inorganic ligands, are of less biological significance 

than free Cû "̂  and copper bound to weak ligands. Knowledge of copper speciation is 

therefore relevant when monitoring copper in marine environments (Anderson and Morel, 
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1978; Brand et al., 1986; Moffett and Brand, 1996). Analytical techniques, such as the 

highly sensitive voltammetric stripping methods, are used to determine the chemical 

speciation of Cur and to measurement [Cu^*] (Van den Berg, 1984; Moffett and Zika, 

1987; Sunda and Huntsman, 1991; Donat, 1994; Miller and Bruland, 1994; Compos and 

van den Berg, 1994; Gledhill et al., 1999; Bruland et al., 2000). Voltammetric stripping 

methods can be separated into two different approaches. 'Anodic stripping voltammetry' 

(ASV) is a direct technique for detecting kinetically the labile copper species, which 

usually comprises Cu^^ and inorganic copper complexes. 'Competitive ligand 

equilibration/adsorptive cathodic stripping voltairmietry' (CLE-ACSV), an indirect 

method, measures the electrochemical equilibrium between a naturally occurring organic 

ligand and characterised ligand added to the sample. 

ASV is performed on thin mercury film rotating glassy carbon disk electrodes. Labile 

copper species, Cû "̂  and inorganic ligands, are reduced to atomic Cu forming a 

copper/mercury amalgam on the mercury electrode in response to the negative deposition 

potential (Bruland et at., 2000). After a fixed deposition time, atomic Cu is oxidised 

(stripped) off the mercury electrode by changing its electrical potential to positive. The 

current resulting from oxidation of the copper/mercury amalgam gives a measure for the 

amount of Cu which is dissociated to Cû "̂  (Donat et al., 1994). Organic ligands are usually 

stronger chelating agents than inorganic ligands and electrochemically inactive so long as 

the electrical potential during the deposition step is low enough (Bruland et al., 2000). The 

copper speciation and [Cu^*] can be calculated from [Cur], [L] , and pKcuL of the different 

ligands in the sample. [L] and pKcuL can be calculated from the stripping current. 

In CLE-ACSV, the sample is titrated with copper and a ligand (AL) with known pKcuL is 

added. A L forms complexes with copper (Cu(AL)2) during the establishment of equilibria 
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(competition) with Hgands naturally occurring in the sample (Bruland et al., 2000). 

Ligands conmionly used in competitive equilibrations include salicylaldoxime (Compos 

and van den Berg, 1994), acetylacetonate (Moffett and Zika, 1987), and EDTA (Sunda and 

Huntsman, 1991). After equilibration, the Cu(AL)2 complexes are adsorbed onto a 

hanging-mercury-drop electrode. During the cathodic stripping step, Cu^* in the Cu(AL)2 

complex is reduced to atomic Cu, and the resulting 'reduction current' is a measure for 

[Cu(AL)2]. Complexation of Cu^^ by natural ligands results in a small decrease in the 

analytical signal, and gives an estimate of the strength of the naturally occurring organic 

ligand. As with ASV, the concentration of the different ligands and [Cu "̂̂ ] originally 

occurring in the sample can be calculated from the stripping current. 

1.3.2. Biomonitoring 

Chemical analysis provides a good indication of the concentration of trace metals in the 

environment at the time when a sample is taken. This is, however, not always satisfactory 

when monitoring locations with highly fluctuating metal concentrations. Furthermore, 

chemical analyses do not provide any information on the effects of trace metals upon the 

organisms living within the environment, which are often of more interest than knowledge 

of the exact concentration present. The need to monitor the time-integrated concentration 

of trace metals, and to acquire knowledge of interactions between trace metals and 

organisms living within a particular environment, has resulted in the use of biomonitors 

(Phillips, 1990; Wolfe, 1992; Depledge et al., 1994; Doust et al., 1994; Langston and 

Spence, 1995). 

Biomonitoring is generally defined as measurement of the response of living organisms to 

changes in their environment, which includes additive, synergistic and antagonistic effects, 

and changes in morphology and reproduction (Burton, 1986). Biomonitors are organisms 
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which can be used in qualitative and quantitative analysis of anthropogenicly induced 

environmental changes, and several criteria for such organisms have been described 

(Rainbow and Phillips, 1993; Langston and Spence, 1995): the organism should be 

stationary and representative for a particular environment, geographically widespread, 

allow-year round sampling, and provide sufficient material for analysis. Furthermore, 

correlation should exist between the concentration of metal in the environment and 

accumulation by the organism, which must be relatively tolerant to a range of 

concentrations. 

Species which satisfy the requirements for biomonitoring in the marine environment 

include molluscs (Mostafa and Collins, 1995; O'Leary and Breen, 1997; 1998), some 

species of green algae (Seelinger and Cordazzo, 1982; Say et al., 1990; Wong et al., 1994; 

Muse et al., 1999) and red seaweeds (McLean and Williamson, 1977; Phillips, 1990; 

Malea et al., 1994). However, one of the brown seaweeds, fucoids, however, are 

considered a particularly suitable group of biomonitors. They are hyper-accumulators of 

heavy metals and are highly abundant in the intertidal zone of temperate rocky shores. 

Fucoids are considered to accumulate trace metals in a non-regulatory manner and the 

level of metals in the algae is considered to reflect that of the environment and they have 

been used in numerous monitoring studies (Bryan and Hummerstone, 1973; Fuge and 

James, 1974; Haug et al., 1974; Foster, 1976; Melhuus et al., 1978; Lignell et al., 1982; 

Louma et al., 1982; Bryan, 1983; Scanlan and Wilkinson, 1987; Fosberg et al., 1988; 

Soderlund et al., 1988; Ronnberg et al., 1990; Riget et al., 1995; Gibb et al., 1996; 

Jayasekera and Rossbach, 1996; O'Leary and Breen, 1997; 1998; Stengel and Dring, 

2000). Furthermore, brown seaweeds seem to be particularly resistant to elevated 

concentrations of trace metals and thrive in heavily contaminated locations such as 
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Restronguet Creek where Cu * levels reach toxic concentrations of 200-700 nM (Figure 

1.06). 

1.4. Copper - the essential nutrient 

Copper is an absolute requirement for cellular metabolism and the highly reactive cupric 

ion (Cu "̂̂ ) is an irreplaceable co-factor in various enzymes. In plants, copper tissue levels 

of about 245-400 nmol g"' DW are required for maintenance and growth, whereas during 

periods of deficiency the copper content of leaves may decrease to about 30 nmol g"* DW 

(Droppa et al., 1984; Herbik et al., 1996; Garansson, 1998). In nature copper is usually 

available at suitable concentrations for growth and copper deficiency in plant leaves may 

be a side-effect of iron deficiency (Herbik et al., 1996). For example, tomato plants 

displaying copper deficiency in leaves have been shown to accumulate copper in roots, 

where lack of the iron-binding enzyme, nicotianamine, caused by iron deficiency, results in 

an inability of the plant to mobilise copper from the roots for xylem transport (Herbik et 

al., 1996). The immediate effect of copper deficiency in plants is reduced growth and die-

back of young leaves (Garansson, 1998), whereas at a cellular level copper deficiency 

causes a reduction in copper requiring proteins (Droppa et al., 1984; Herbik et al., 1996; 

Molina-Heredia a/., 2001). 

1.4.1. Copper-requiring proteins 

The cupric ion is employed as a co-factor in various enzymes in both prokaryotic and 

eukaryotic cells. The high redox potential of the Cû "̂ /Cu"̂  ions ensures easy electron 

transfer between these forms, which makes them excellent electron carriers and allows 

them to react directly with molecular oxygen in terminal oxidases (Colman et al., 1978). 
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Figure 1.06. Brown seaweed in Restronguet Creek. Ascophyllum nodosum and Fucus 
spiralis (A). F. serratus, F. vesiculosus and A. nodosum (B), F. serratus (C) 
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Cytochrome c oxidase (COX) is the terminal oxidase in the respiratory electron transport 

chain in prokaryotes and in eukaryotic mitochondria where one Cu^* reacts directly with 

molecular oxygen (Capaldi, 1990; Babcock and Wikstrom, 1992). Eukaryotic COX is a 

large membrane-spanning enzyme composed of 13 subunits of which two bind one Cû "̂  

each (Tsukihara et al., 1996). Subunit I contains two heme complexes and one Cu^^, CUB. 

which is coordinated by three histidine side chains, whereas one histidine and two cysteine 

side chains in subunit U coordinate a second Cu^^, CUA (Capaldi, 1990; Babcock and 

Wikstrom, 1992; Tsukihara, 1996). The heme and copper reaction centres in COX are 

responsible for respiratory reduction of O2 to H2O and capture the energy from this 

reaction to promote proton transport across the inner mitochondrial membrane for ATP 

production (4e' + SH'matrix + 0 2 - ^ 2H2O + 4H ĉytosoi) (Babcock and Wikstrom, 1992). 

During this cyclic reaction, CUA is continuously reduced and oxidised byj receiving 

electrons from cytochrome c, which becomes oxidised, and delivering the electrons to CUB 

in the iron-heme and Cû "*̂  reaction centre of subunit I , where the heme molecule mainly 

serves to stabilise O2. CUB reacts directly with O2 and catalyses its stepwise reduction to 

H2O by a total of 4 electrons received from CUA and 4H* from the mitochondrial lumen 

(Capaldi, 1990; Babcock and Wikstrom, 1992). 

Plastocyanin (PC) is a 10.5 kDa mobile Cu^'^-requiring protein involved in photosynthetic 

electron transport between PSn and PSI in photosynthetic organisms. PC is located on the 

luminal side of the thylakoid membrane and represents up to 50% of chloroplast copper 

(Moore et al., 1988; Marschner, 1995). One Cû "̂  per PCmolecule is coordinated by the 

sulphur atoms in one cysteine and one methionine residue, and two nitrogen atoms from 

two histidine residues in the His87 Cû "̂  complex (Colman et al., 1978; Moore et al., 1988; 

Molina-Heredia et al., 2001). The copper ion changes between the Cu^^ and Cu'̂ -state 

during electron transport. Cû "̂  in the reaction centre of PC is reduced to Cu* upon 
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receiving one electron from the cytochrome bf electron transport complex, and Cu"̂  is 

oxidised back to Cû "* upon delivering the electron to PSI in a cyclic reaction (Colman, 

1978). 

Superoxide dismutase (SOD) is the name given to a group of methallo-proteins, which 

specifically scavenge the toxic superoxide ion (O2") and form part of the general cellular 

protection against reactive oxygen species, which in addition to O2" include HO2 and H2O2 

(Fridovich, 1989). Increased levels of cellular O2'" occur as a by-product of the high oxygen 

turnover in photosynthesis and respiration (Elstner, 1982), and during exposure to high 

UV-B irradiances and elevated concentrations of trace metals (Willekens et al., 1994; 

Buckley, 1994; Luna et al., 1994; Navari-Izzo et al., 1998). High levels of O2" are 

accompained at a cellular level by increased production of SOD (Willekens, 1994). SOD 

comprises MnSOD and FeSOD in prokaryotes and in the eukaryotic mitochondrial and 

peroxisomal matrix (Fridovich, 1989; Bueno et al., 1995), and Cu-Zn-SOD, which is 

unrelated to the other species of SOD occuring primarily in the cytoplasm, chloroplasts, 

and peroxisomes of eukaryotic cells (Kroniger et al., 1992; Bueno et al., 1995; Herbik et 

al., 1996; Richards et al., 1998). A histidine side chain at the active site in Cu-Zn-SOD 

binds one zinc ion, and coordinates one copper ion, which cycles between the Cû "̂  and 

Cu* oxidative states during dismutation of two superoxide ions into hydrogen peroxide and 

molecular oxygen (2O2" + 2H* —> H2O2 + O2) in a two step reaction (Fridovich, 1989). One 

electron is transferred from O2" to Cu^* forming O2 and Cu*. A second O2' acquires one 

electron from Cu* and two protons from other parts of the reaction centre of Cu-Zn-SOD to 

produce H2O2 and Cu^* upon completion of the cycle. Catalase, a heme protein, then 

catalyses conversion of hydrogen peroxide into water and molecular oxygen (Fridovich, 

1989). 
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1.5. Cu^* toxicity 

1.5.1. Cellular copper transport 

Although copper is an essential nutrient, the toxic effects of Cu^* even at relatively low 

concentrations have resulted in a requirement for specialised cellular uptake and transport 

of copper in order to maintain [Cu^*]cyt close to zero (Valentine and Gralla, 1997; Pufahl et 

al., 1997; Rae et al., 1999; Peiia et al., 2000). The Cu^* uptake mechanism has been most 

frequently studied in Saccharomyces cerevisiae (bakers yeast) and it is recognised as a 

model for Cu^* uptake in other eukaryotic organisms (Culotta et al., 1997; Peiia et al., 

2000). Cu^* uptake is initiated by reduction of Cu^* to Cu* by several different plasma 

membrane reductases (Hassett and Kosman, 1995; Georgatsou et al., 1997) followed by 

transport of Cu* across the plasma membrane by the high affinity Cu* transporters, Ctr l 

and Ctr3 (Dancis et al., 1994; Peiia et al., 2000). Subsequently Cu* is transported by 

different specialised Cu* receptor and transport proteins, copper chaperones, which bind 2-

3 Cu^* ions at their reaction centre with two sulphur ions each, and insert Cu^* directly into 

target enzymes (Pufahl et al., 1997; Valentine and Gralla, 1997; Rae et al., 1999). 

Amongst the copper chaperones are Coxl7, which transports Cu^* to the mitochondria for 

incorporation into cytochrome oxidase (Glerum et al., 1996; Beers et al., 1999), and Lys7, 

which targets and incorporates Cu^* directly into cytosolic Cu-Zn-SOD (Rae et al., 1999). 

Only a few of the copper chaperones have so far been identified, with most of the work 

carried out on yeast and human proteins, and little is therefore known about the existence 

of these specialised Cu^* transport proteins in other organisms (Valentine and Gralla, 

1997). However, a protein. Rani, has been identified in Arabidopsis, where it functions to 

deliver Cu^* to ethylene receptor proteins (Hirayama et al., 1999). Rani encoding DNA 

has a sequence homologous to those of yeast and human Cu^* transporting ATP-ase DNA 
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(Hirayama et al., 1999). Furthermore, the high degree of conservation between the yeast 

and human DNA for Cu^* transport proteins (Pufahl et al., 1997) suggests that the copper 

transport mechanism described here is a general feature of eukaryotic Cu^* uptake and 

transport. 

1.5.2. Copper surplus 

During exposure to Cu^* contamination [Cu^*]cyt may rise beyond cellular control and the 

highly toxic properties of Cu^* may have undesirable effects on the biochemistry of a cell 

(Valentine and Gralla, 1997; Rae et al, 1999; Peiia et al., 2000). Reduced growth is 

frequently observed in plants and algae exposed to elevated copper concentrations (Sunda 

and Guillard, 1976; Hophin and Kain, 1978; Chung and Brinkhuis, 1986; Stromgren, 1980; 

De Vos et al., 1992; Sunda and Huntsman, 1995; Andersson and Kautsky, 1996; Bidwell et 

al., 1998; Bond et al., 1999) and may be a consequence of the inhibitory effects on 

photosynthesis (MacDowall, 1949; Ploz, 1991; Jegerschold, 1995). Other physiological 

effects which contribute to the overall condition of plants and algae exposed to toxic 

concentrations of Cu^* include reduced chlorophyll a content, reduced cell division rate 

(Rijstenbil et al., 1994; Ciscato et al., 1997), interference with membrane permeability 

(Sunda and Huntsman, 1983), and formation of free radicals (Luna et al., 1994; Navari-

Izzo et al., 1998). 

1.5.3. Cu^* interactions with sulphydryl groups 

High reactivity between Cu^* and sulphydryl (SH) (Al-Farawati and van den Berg, 1999) 

may result in cytosolic Cu^* reacting directly with enzymes and other proteins. This has 

been illustrated by the interactions between Cu^* and glutathione (Stauber and Florance, 

1986; Rijstenbil et al., 1994). Glutathione, y-Glu-Cys-Gly (GSH), is an antioxidant in 

eukaryotic cells, where it exists at m M concentrations. The -SH group of cysteine cycles 
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between the reduced and the oxidised form. Oxidation of the -SH groups of two GHS 

molecules result in their cross-linking by a disulphur bridge to form the oxidised form of 

glutathione (GSSG). Due to the interactions of the -SH group with Cu^* and other metals, 

GSH serves as a major cytosolic ligand in cellular metal homeostasis, and elevated 

[Cu^*]cyt can potentially deplete the cellular pool of GSH (Stauber and Florance, 1986; 

Rijstenbil et al., 1994). Treating the diatom Nizschia closterum with 2.7 fiM copper for 

24h resulted in a reduction in cellular GSH pool from 3.68 nmol per 10^ cells to 1.68 nmol 

per 10^ cells (Stauber and Florance, 1986). Similar results have been presented by 

Rijstenbil and co-workers (1994), who showed that the cellular GSH pool of 0.9 /xmol g"' 

DW was oxidised completely in the diatom Ditylum brightwellii as the cellular total copper 

concentration increased to 15 nM. The reduction in the cellular pool of GSH in response 

to increasing [Cu^*]cyt, may be the result of the following interaction between Cu^* and 

GSH: 

4 GSH + 2Cu^* -> 2CuSG -h GSSG + 411* 

(Stauber and Florance, 1986; Rijstenbil et al., 1994). Oxidation of enzymatic -SH groups 

by Cu^* and formation of disulphide bridges and CuS complexes, may lead to cross-linking 

of different protein segments and conformational changes with consequent blockage of 

reaction centres and deactivation of enzymes. Inactivation of electron transport through 

photosystem I I (PSII) (Yruela et at., 1993; Scroder et at., 1994; Jegerschold et at., 1995) 

and reduction in ion channel and ATP-ase activity (Viarengo et at., 1996; Klusener et al., 

1997; Demidchik, 2001) are examples of the damaging effects of Cu^* on proteins and 

enzyme activity. 

1.5.4. Cu^*-induced production of reactive oxygen species 

Reactive oxygen species (ROS) occur as natural cellular metabolites but are potentially 

harmful to a cell as they cause lipid peroxidation and membrane damage. The superoxide 
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radical (O2") is formed spontaneously due to the high oxygen turnover in respiratory and 

photosynthetic processes (Elstner, 1982) and scavenging of O2" by superoxide dismutase 

(SOD) results in H2O2 production (Fridovich, 1989). Several experiments have shown that 

Cu^* has the potential to elevate concentrations of ROS (Sandmann and Boger, 1980; Luna 

et al., 1994; Yruela et al., 1996; Navari-Izzo et al, 1998; Teisseire and Guy, 2000). 

Treating wheat seedlings and oat leaves with 10-50 fiM copper resulted in an 100-300% 

increase in stroma and thylakoid SOD activity, indicating Cu^*-induced O2"' production 

(Luna et at., 1994; Navari-Izzo et al., 1998). O2' accumulation during copper exposure 

may result from inhibition of photosynthetic electron transport chains (Sandmann and 

Boger, 1980; Jegerschold et al., 1995; Yrela et al., 1996). In contrast to the results of Yrela 

and co-workers (1996), Navari-Izzo and colleagues (1998) found no effect of Cu^* on 

electron transport, although Cu^* clearly induced O2" production, and the exact mechanism 

of Cu^*-induced O2' production is therefore unclear. Similarly, exposure of duckweed and 

oat leaves to 5-50 [iM Cu^* resulted in an increase in catalase and peroxidase activity of up 

to 240% (Navari-Izzo et al., 1998; Teisseire and Guy, 2000). Catalase and peroxidase are 

both H2O2 scavengers (Fridovich, 1989; Yamasaki et al., 1997) and their increased activity 

may be the result of Cu^*-induced H2O2 production. Different species appear to react 

differently with respect to H2O2 in response to Cu^*. In contrast to other researchers 

(Navari-Izzo et al., 1998; Teisseire and Guy, 2000) Luna and co-workers (1994) found that 

Cu^* exposure resulted in a slight decrease in peroxidase activity. Hence there was either 

no induction of H2O2 production in oat leaves during Cû "*" exposure, production or Cu^* 

caused inhibition of peroxidase activity. 

The evidence presented above suggests that Cu^* has the potential to increase the cellular 

levels of O2" and H2O2 (Luna et al., 1994; Navari-Izzo et al., 1998; Teisseire and Guy, 

2000), which are substrates for the production of the more reactive oxidant, hydroxide 
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radical (HO) (Elstner, 1982). Interactions between O2" and H2O2 generate HO in the 

Haber-Weiss reaction (O2' + H2O2 HO + O2 + HO) , which requires UV radiation or a 

catalyst such as iron and is unlikely to occur spontaneously in biological systems (Elstner, 

1982). By using chloroplasts with a high rate of O2' production, Sandmann and Boger 

(1980) showed that Cu^* had the potential to act as a catalyst for the Haber-Weiss reaction 

during reduction of Cu^* to Cu* especially in the presence of SOD (i.e. H2O2 production). 

Similarly Yruela and co-workers (1996) concluded that O2" formed during Cu^* exposure 

was converted to HO via a Cu^*-catalysed Haber-Weiss reaction. 

1.6. Fucus serratus 

Algae comprise a group of organisms which are defined by having chlorophyll a as their 

primary photosynthetic pigment and by a zygote which never develops into a multicellular 

embryo while still inside the female reproductive tissue (Kristiansen et al., 1981). The 

current classification presents six divisions of algae, the largest being the Chromophycota, 

which in turn contains nine classes including the Phaeophyceae, or brown algae (South and 

Wittick, 1988). The Phaeophyceae comprises about 1500 species, of which the vast 

majority are marine. One of the seven orders is the Fucales, which bears four families, the 

Cystoseiraceae, Sargassaceae, Himanthaliaceae and Fucaceae. Fucaceae include the three 

genera, Pelvetia, Ascophyllum and Fucus. 

Fucus serratus, or serrated wrack, is indigenous to the temperate waters of the North 

Atlantic, where it dominates the lower intertidal zone of rocky shores. It thrives in both 

wave-exposed locations and in sheltered fjords and estuaries (Figure 1.07). The thallus is 

robust and can grow to about one metre in length. The branched, band-like fronds are 
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Figurel.07. Fucus serratus in a wave exposed location, Wembury Beach (A, B), 
and a sheltered location, Avon Estuary (C, D) 
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approximately 2 cm in width and possess an elevated midrib. The serrated edges of the 

fronds have given the species its name. The thallus is a parenchymatic structure growing 

from an apical cell which stimulates division of the surrounding cells. Occasional division 

of the apical cell results in dichotamous branching of the thallus (Kristiansen et al., 1981). 

Fucus serratus is reproductively active all year round although it is most active during the 

colder months (personal observation). It is dioecious and practices external oogamous 

fertihsation (Kristiansen et al., 1981; South and Wittick, 1988). Thalli are always diploid, 

with the gametes being the haploid phase in the life cycle (Kristiansen et al., 1981). 

Reproductive structures, called conceptacles, are located under the epidermis of the apical 

parts of the fronds, the receptacles, where they appear as small nodules. Conceptacles are 

approximately 0.5 cm in diameter and ripe gametes are secreted to the outside via the 

ostiore or pore (Levring, 1952; Miiller and Gassmann, 1985). Mature algae can be sexed 

by the colour of the conseptacles as those of male gametes are bright orange, whereas 

female conceptacles are green. During spermatogenesis the antheridial mother cell 

produces 64 haploid spermatozoids of about 5 / im length through a succession of one 

meiotic and four mitotic divisions of the nucleus and subsequent cell division (Berkaloff 

and Rousseau, 1979). Each spermatozoid has one chloroplast (the eye spot), which is 

bright orange due to the accumulation of carotenoids within it (Callow et ah, 1985), and 

carries two flagella of unequal length (Levring, 1952). The anterior flagellum is much 

shorter than the posterior flagellum and carries membranous extensions believed to play a 

part in egg recognition (Jones et at., 1988), whereas the posterior flagellum is used for 

propulsion (Levring, 1947). Oogenesis yields eight haploid eggs per oogonium through 

one meiotic and one mitotic division of the mother cell followed by cell division. Eggs are 

60-80 /xm in diameter. They are radially symmetrical and consequently possess no polar 

axis (Jaffe, 1958). The nucleus is located centrally in the egg and the organelles are evenly 
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Figure 1.08. Embryo development in Fucus serratus. Fertilised egg (A), polarised egg 12 h 
after fertilisation (AF) (B), 20h AF, shoving the first cell division into thallus (T) and rhizoid 
cells (R) (C), 24h AF, the rhizoid cell into the apical rhizoid (AR) and basal rhizoid (BR) 
cells (D), 48h AF the thallus cell divides into apical (AT) and basal (BT) cells, whereas 
transverse division of the basal rhizoid cell yields the two basal rhizoid cells (BRl and BR2) 
(E), apical hairs (ah) and a rhizoid (r) becomes apparent as cell division continues, and the 
embryo develops the thallus and stipe holdfast of the adult algae (F-K). Reproduced with 
permission from Bouget and co-workers (1998). 
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distributed. Fucoid eggs have no cell wall and are bound only by a plasma membrane 

(Levering, 1952). 

Gametes are released directly into the sea, where fertilisation takes place. Fertilisation 

success declines as water velocity increases, due to quick dilution of gametes (Levitan et 

al., 1992; Lasker et al., 1996) and can be less than 1% (Denny and Shibata, 1989). Fucus 

usually restricts gamete release to periods of water motion below 0.2 ms"*, under which 

condition the fertilisation success can be as high as 95% (Pearson and Brawley, 1996; 

Serrao et al., 1996). Isolation of Fucus from the sea during low tide creates conditions of 

stagnant water depleted of dissolved inorganic carbon, which is favourable for fertilisation 

(Serrao et al., 1996; Pearson and Brawley, 1996; Pearson et al, 1995; 1998). Reproduction 

usually occurs in highly synchronised cycles and mass release of gametes is controlled by 

environmental factors and lunar rhythms which ensure that gamete release coincides with 

the spring tide (Brawley and Johnson, 1992). Immediately after fertilisation, eggs settle on 

the substratum and secrete a cell wall, which initiates attachment of the zygote (Quatrano 

and Stevens, 1976; Hable and Kropf, 1998). Germination of a rhizoid occurs a few hours 

after fertilisation (Hurd, 1920; Jaffe, 1958; Robinson, 1996) and is subsequently followed 

by the first cell division. This asymmetric cell division results in an elongate rhizoid cell, 

which forms the holdfast of the developing alga, and a rounded thallus cell which develops 

into the fronds and stipe of the adult alga (Figure 1.08). 

1.7. Objectives of study 

Although Fucus serratus forms vigorous populations in copper polluted locations such as 

Restronguet Creek, little is known about the effects of copper on the physiology and 
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reproduction of algae and the mechanism of adaptation of tolerant strains. This work sets 

out to investigate the effects of copper on the physiology and early development of F. 

serratus and to establish inter-population differences by including algae from Restronguet 

Creek, Avon Estuary and Wembury Beach in the experiments. 

Chapter 2 of this thesis addresses the effects of copper on the physiology of adult F. 

serratus. The work aims to identify effects of copper on the metabolism of three different 

populations of F. serratus, their mechanism of handling the toxin, and to establish whether 

the physiological responses of the algae to copper are related to the copper status in the 

habitat from which they were acquired. 

Chapter 3 addresses effects of copper on the early development of the F. serratus zygote. 

The work is focused on identifying developmental phases which are affected by copper, 

assessing effects of copper on the growth of germlings, and pinning down the underlying 

physiological processes. 

The context of the results is discussed in the concluding chapter. 
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C H A P T E R 2 

Physiological Responses of Fucus serratus 

to Cu^^ Exposure 
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2.1. Introduction 

The highly reactive properties of Cu * make it an essential nutrient. Cu acts as a co-factor 

in enzymes, which are involved in the major physiological processes respiration and 

photosynthesis as well as dismutation of antioxidants (Babock and Wikstrom, 1992; 

Richards et al., 1998; Molina-Heredia et al., 2001). However, the high reactivity of Cu^* 

may be toxic at elevated cytosolic concentrations. Cu^* has a high affinity for sulfhydryl 

groups (Stauber and Florance, 1986) and may cause cross-Unking of protein segments, 

which in tum could result in conformational changes and deactivation of enzymes 

(Demidchik et al., 1997). When in excess, Cu^* may also catalyse the production of 

reactive oxygen species, which has the ability to cause lipid peroxidation and consequently 

membrane damage (Murphy et al., 1999). Therefore, Cu^* at elevated concentrations has 

the ability to interfere with different metabolic processes and affect the overall condition of 

an organism. 

2.1.1. Effects of Cu^* on algal growth 

Reduced growth rate is probably the most obvious response of algae to Cu^* exposure and 

is manifested as a reduced cell division rate in phytoplankton (Brand et al., 1986; Sunda 

and Huntsman, 1995) and reduced biomass gain of individual macroalgae (Stomgren, 

1980; Bryan and Gibbs, 1983; Newman, 1998). Phytoplankton are generally very sensitive 

to Cu^*, resulting in reduced cell division rates at pM concentrations (Brand et al., 1986; 

Sunda and Huntsman, 1995). The cyanobacterium Synechococcus sp. is more sensitive to 

Cu^* than any other known phytoplankton and [Cu^*]ext above 10 pM resulted in cessation 

of cell division and cell death at exposure to 100 pM [Cu^*]ext (Brand et al., 1986). In 
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comparison, cell division rates in diatoms and coccolithophores, which are more Cu 

tolerant than Synechococcus were reduced at [Cu^*]ext above 0.1-1 nM (Brand et al., 1986; 

Stauber and Florence, 1987; Sunda and Huntsman, 1995). 

Marine macroalgae, including Fucus sp. appear to be more resistant to Cu^* than 

phytoplankton and generally tolerate nM concentrations. In a comparative growth 

experiment, based on increases in length, Stromgren (1980) showed that the relative 

growth rates (RGR) of Fucus serratus and Fucus vesiculosus were unaffected after 10 days 

of exposure to 0.2 /xM total copper whereas, at the same concentration, RGR of Fucus 

spiralis was reduced by 15% compared with controls. As the concentration of total copper 

was increased to 0.4 jxM. the RGR of F. serratus was reduced by 20% after 10 days of 

incubation, whereas the RGR of F. vesiculosus was unaffected until the total copper 

concentration reached 0.8 / i M , which resulted in a 30% reduction in RGR (Stromgren, 

1980). Similar results were presented by Bryan and Gibbs (1983), who found that the RGR 

of F. vesiculosus was reduced by 20% after 13 days of exposure to 0.8 jitM total copper. 

Exposure to 2-5 / i M total copper resulted in weight loss in the different species of Fucus 

studied, which was reflected by a negative RGR (Stromgren, 1980; Bryan and Gibbs, 

1983). The effect of copper on growth of germinated Fucus embryos may be similar to that 

on the adult algae. Rhizoid germination of F. vesiculosus embryos was unaffected by total 

copper up to 0.6 /xM when added just prior to germination (Andersson and Kautsky, 1996) 

and rhizoid elongation of germinated F. spiralis embryos was unaffected by total copper 

concentrations up to 0.2 / i M (Bond et al.,; Gledhill et al., 1999). These results are 

comparable to the tolerance limit for adult Fucus (Stromgren, 1980). The response to 

copper exposure of other species appears similar to that of fucoids. Exposure to 0.8 / i M 

total copper for 8 days resulted in a 25% reduction in RGR in both the filamentous 
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cyanobacteria Lyngbya nigra (Gupta and Arora, 1978) and the red alga Gracilariopsis 

longissima (Newman, 1998). 

2.1.2. Effects of C u ^ on algal respiration 

Information on the effects of Cu^* on respiration in algae is both conflicting and very 

limited (Hopkin and Kain, 1978; Gupta and Arora, 1978; Newman, 1998). Concentrations 

of 0.8 to 20 PLM total copper resulted in an increase in the respiration rate of L . nigra 

within a few days of exposure (Gupta and Arora, 1978). 8 juM total copper had a greater 

effect on respiration than higher and lower concentrations causing a 100% increase 

compared to controls after 4 days of exposure, which subsequently decreased to the 

respiration rate of controls after 8 days (Gupta and Arora, 1978). Other workers failed to 

demonstrate any effect of Cu^* on respiration at concentrations within an environmentally 

relevant range (Hopkin and Kain, 1978; Newman, 1998). Exposure to 1.5 / i M total copper 

for 8 days had no effect on oxygen consumption in G. longissima (Newman, 1998) and 

respiration of Laminaria hyperborea was unaffected by up to 160 / i M total copper, but 

decreased rapidly at higher concentrations (Hopkin and Kain, 1978). However, respiration 

in G. longissima was only measured after 8 days of exposure to Cu^* (Newman, 1998) and, 

considering that the work on L . nigra showed an increase in respiration of up to 100% 

followed by decrease to the level of controls within 8 days of exposure to Cu^* (Gupta and 

Arora, 1978), it is possible that there was an effect of Cu^* on G. longissima, which was 

not detected in the experiment by Newman (1998). Hence, the work on the effects of Cu^* 

on respiration in algae is far from conclusive. On the basis on the available information it 

seems unlikely that Cu^* decreases respiration within ecologically relevant concentrations, 

but whether Cu^* has the ability to increase the respiratory rate of algae is unclear. 
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2.1.3. Effects of C u on photosynthesis 

Cu is widely recognised as a potent inhibitor of photosynthesis in plants and algae 

(MacDowall, 1949; Sandmann and Boger, 1980; Plotz, 1991; Yruela et al, 1991, 1993; 

Schroder et al, 1994; Jegerschold et al, 1995: Kupper et al, 1996). Early work presented 

by MacDowall (1949) showed that treating isolated Swiss chard chloroplasts with 10 |u,M 

CUSO4 resulted in a 50% decrease in the photolysis of H2O in the Hi l l reaction: 2H2O —> 

41T" + O2 + 4e". Similarly, treating fronds of F. vesiculosus with 40 fiM CUSO4 at 18%o 

salinity resulted in a 46% decrease in oxygen evolution within 20 minutes of exposure 

(Plotz, 1991). 

2.1.3.1. Targets for Cu^* in photosynthesis 

Due to the highly reactive properties of Cu^* there are several possible targets for Cu^* in 

photosynthesis. An increase in the cellular total copper content to 15 nM in D. brightwellii 

resulted in a 33% decrease in both photosynthetic oxygen evolution and chlorophyll a 

content (Rijstenbil et al, 1994). The high degree of oxidative damage in Cu^*-treated D. 

brightwellii suggests that reduced photosynthesis may be the result of chlorophyll a 

damage caused by oxidative stress (Rijstenbil et al, 1994). An additional damaging effect 

of Cu^* on chlorophyll may be the ability of Cu^* to substitute for the magnesium ion, 

which is bound in the centre of the chlorophyll molecule (Kupper et al, 1996). Treating 

different species of macrophytes with concentrations of total copper ranging from 0.5 to 20 

jLiM resulted in a cellular Cu-Chl content varying from 8 to 14% of the total chlorophyll 

content and it has been suggested that magnesium substitution may contribute to Cu^*-

induced photoinhibition (Kupper et al, 1996). However, other workers offer an alternative 
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explanation of the inhibitory effects of Cu * on photosynthesis (Yruela et al., 1991, 1993; 

Schroder et al., 1994; Jegerschold et al., 1995). 

Although Cu^* is an essential co-factor in the photosynthetic electron carrier, plastocyanin, 

(Molina-Heredia et al., 2000) inhibition of electron transport in photosystem n (PSII) is 

widely recognised as the major cause of Cu^* toxicity in photosynthesis. Two major targets 

for Cu^* in electron transport in PSn have been identified (Figure 2.01). Cu^* may target 

electron transport in PSH by inhibiting electron transfer from the amino acid tyrosine to the 

primary electron acceptor, the reaction centre chlorophyll, P680 (Schroder et al., 1994; 

Jegerschold et al., 1995) or it may inhibit electron transfer from P680 to the electron 

carrier plastoquinone A (QA) (Yruela et al., 1991, 1993; Jegerschold et al., 1995). 

Concentrations of C U S O 4 up to 100 fiM have been shown to inhibit the oxidation of 

tyrosine and in this way inhibit electron transport to P680 in intact PSn membranes and 

isolated PSn fragments of spinach (Schroder et al., 1994; Jegerschold et al., 1995). 

Exposure of PSn to Cu^* resulted in absorbance changes in P680, which were not observed 

in P680 and QA in the presence of an artificial electron donor. It was thus concluded that 

Cu^* inhibition occurred on the donor side of PSn (Schroder et al., 1994). However, 

Jegerschold and co-workers (1995) showed that Cu^* resulted in the absence of resonance 

signals, which can normally be recorded, from both tyrosine and QA when these molecules 

are changing between different molecular structures. This result indicated that Cu^* 

targeted both tyrosine on the donor side and Q A on the acceptor side of P680. Inhibition of 

electron transport through P680 resulted in radical formation, which may have been 

responsible for the observed degradation of PSn subunits (Jegerschold et al., 1995). 

Exposing sugar beet PSn membranes to 80 /xM CuC^ strongly inhibited oxygen evolution 

(Yruela et al., 1991). By using artificial substitutes for QA as electron acceptors for P680 

and by measuring resonance signals and absorbance changes, it was indicated that the 
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stroma 

Figure 2.01. Two possible targets for Cu^* in inhibition of electron transport through 
photosystem I I . LHC: light harvesting complex, hv: light energy, Mn: manganese 
cluster at the site of H2O reduction, Tyr: tyrosine, P680: chlorophyll reaction centre, 
Q^: plastoquinone A, Q^: plastoquinone B, PQ: mobile plastoquinone, which mediates 
electron transport to photosystem 1. Cu^^ may either inhibit electron transport from 
tyrosine to the reaction centre or from the reaction centre to Q^. Solid arrows show the 
electron path. 
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reduction in oxygen evolution by Cu was caused by inhibition of electron transport 

through Q A (Yruela et al.. 1 9 9 1 , 1993) . The work discussed above suggests that Cu^* has 

the potential to inhibit electron transport through PSn at more than one possible target site 

(Yruela et al., 1 9 9 1 , 1 9 9 3 ; Schroder et at., 1994; Jegerschold et al., 1995) . 

2.1.3.2. Chlorophyll fluorescence 

Effects of Cu^* on the performance of the photosynthetic apparatus can be monitored by 

non-invasive measurements of chlorophyll fluorescence (Ouzounidou et al., 1997; Ciscato 

et al., 1997) . Not all light energy harvested by chlorophyll is used to drive photosynthesis 

and the excess energy is either dissipated as heat or re-emitted as chlorophyll fluorescence 

at - 6 8 5 nm, accounting for 1-2% of the total absorbed light (Krause and Weis, 1 9 9 1 ; 

White and Critchley, 1999; Maxwell and Johnson, 2 0 0 0 ) . The interrelationship between 

the three different fates of harvested light energy provides information about the efficiency 

with which photosynthesis is performed. During photosynthetic electron transport through 

PSn and acceptance by QA of one electron, the PSn reaction centre is 'closed' until the 

electron is passed on from QA to plastoquinone B (QB). AS the proportion of closed 

reaction centres increases relative to the total number of reaction centres, the efficiency of 

light conversion into photosynthesis decreases, resulting in an increase in chlorophyll 

fluorescence. Upon transfer of PSU from dark to light a disproportionate number of 

reaction centres become closed, resulting in increased chlorophyll fluorescence. After a 

few seconds, PSn begins to adapt to the light and the chlorophyll fluorescence decreases 

over several minutes to a steady state level in a process termed 'chlorophyll quenching'. 

During this light adaptation, photosynthetic enzymes are gradually activated and the rate of 

electron transport away from PSII is increased in 'photochemical quenching' (qp) and an 

increasing number of reaction centres become open. Simultaneously, conversion of excess 
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energy into heat becomes more efficient, which results in 'non-photochemical quenching' 

(NPQ). 

Information about non-photochemical quenching, photosynthetic efficiency and other 

related parameters can be acquired by exploiting the interrelationship between the different 

fate of harvested light in a series of fluorescence measurements, as illustrated in the typical 

fluorescence trace shown in Figure 2.02. The light source used to measure fluorescence is a 

modulating beam (MB) and, as the detector only measures wavelengths emitted by 

chlorophyll fluorescence, it allows for measurements in the presence of phptosynthetically 

active radiation (PAR). Upon switching on M B , the minimal fluorescence in the absence of 

PAR, Fo, is measured. Subsequent application of a saturating light pulse (SP) of ms 

duration closes all PSn reaction centres transiently without increasing NPQ and allows 

measurement of the maximum fluorescence in the dark adapted state (Fm) in the absence of 

qp. Application of PAR, provided by an actinic light source (AL), allows for measurement 

of maximum fluorescence in the light (F'm), by application of a saturating ms light flash 

(SP), once steady-state photosynthesis is reached. Minimum fluorescence during steady-

state photosynthesis is termed Ft. Upon switching off A L , the fluorescence level decreases 

immediately to the minimum fluorescence level in the light, F'o. 

Calculation of the proportion of light absorbed by PSn, the quantum yield during steady 

state photosynthesis (Opsn) is based on the difference between F'm and Ft: Opsn = (F'm -

Ft)/ F'm (Genty et al., 1989). The maximum quantum yield of PSn, the quantum yield of 

the dark adapted state, is expressed by: Fy/Fn, = (Fm - Fo)/Fm (Genty et al., 1989). 

Photochemical quenching can be calculated as: qp = (F'm - Ft)/(F'm - F'o) or alternatively 

as: ^psii/(Fv/Fm) (Maxwell and Johnson, 2000). Whereas Opsii expresses the efficiency of 

energy conversion at a given light intensity, qp gives an indication of the proportion of 
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Figure 2.02. Sequence of a typical fluorescence trace. A measuring light is switched on ( t M B ) 
and the zero fluorescence level is measxu-ed (FJ. Application of a saturating light flash (tSP) 
allows measurement of the maximum fluorescence level F^,. A light to drive photosynthesis 
( t A L ) is then applied . After a period of time, another saturating light flash (tSP) allows the 
maximum fluorescence in the light, F'n,, to be measured. The level of fluorescence immediately 
before the saturating flash is termed Fj. Turning off the actinic light ( A L i ) allows measiu-ement 
of zero fluorescence in the light, F'^. Reproduced after Maxwell and Johnson (2000). 
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PSn reaction centres that are open, and Fv/Fn, provides information about the general 

condition of PSn. Fy/Fm is generally expected to be around 0.83 and lower values are an 

indication that PSn is being exposed to stress, such as photoinhibition (Maxwell and 

Johnson, 2000). Non-photochemical quenching can be calculated as: NPQ = (Fm - F'm)/F'm 

(Maxwell and Johnson, 2000). 

2.1.3.3. Non photochemical quenching (NPQ) 

Both reversible non-photochemical quenching (^E) and irreversible non-photochemical 

quenching (^i) may contribute to NPQ. q^, however, is usually considered more important 

than qi (Maxwell and Johnson, 2000). qE is initiated by acidification on the luminar side of 

the thylakoid membrane during high rates of photosynthetic H* transport and large ApH 

across the thylakoid membrane which may occur at photosynthetically saturating 

irradiances (Horton et al., 1996; Ruban and Horton, 1999). Very low lumen pH results in 

activation of de-epoxidase and de-epoxidation of the carotenoids violaxanthin to 

zeaxanthin in the xanthophyll cycle which coincide with thermal dissipation of excess light 

energy, i.e. qE, in several species of flowering plants (Ruban et al., 1993; Niyogi et al., 

1998; Demmig-Adams, 1998; Harker et al., 1999; Ruban and Horton, 1999; Li et al., 2000; 

Ort, 2001). Epoxidation of zeaxanthin restores the violaxanthin pool and completes the 

xanthophyll cycle upon relaxation of qE. Xanthophyll is one of a group of carotenoids in 

the light-harvesting complex of plants and algae (Falkowski and Raven, 1997) which are 

bound to membrane spanning antenna proteins (Horton et al., 1996; L i et al., 2000). 

Conformational changes of xanthophyll binding proteins may also be a requirement for qE 

(Li et al., 2000). Accumulation of zeaxanthin during qE coincides with increased 

absorbance of thylakoid membranes at 505 nm and absorbance changes at 535 nm in 

Arabidopsis and the bromeliad Gusmania monostachia (Ruban et al., 1993; L i et al.. 
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2000). L i and co-workers (2000) showed that Arabidopsis mutants, which lack the antenna 

protein PsbS were unable to perform the absorbance changes at 535 nm as well as qE. This 

finding suggests that the absorbance changes observed for thylakoid membranes at 535 nm 

were caused by conformational changes of the antenna protein PsbS, and that these 

conformational changes are a requirement for qE in addition to low lumen pH and de-

epoxidation of violaxanthin to zeaxanthin (Li et al., 2000). 

The level of qE and de-epoxidation of violaxantin in a plant or algae may reflect adaptation 

to specific environmental conditions (Demmig-Adams, 1998; Harker et al., 1999). 

Demmig-Adams (1998) showed that sun adapted leaves of different plants generally 

contained higher levels of xanthophyll and had higher level of qE than shade adapted 

leaves of the same species. Similarly, violaxanthin is a general constituent of brown algae 

carotenoid (Vershinin and Kamnev, 1996) and xanthophyll cycling may govem non-

photochemical quenching in some algae (Urmacher et al., 1995; Harker et al., 1999; 

Coelho et al., 2001). Harker and co-workers (1999) showed that NPQ of both Pelvetia 

canaliculata and Laminaria saccharina was highly correlated with de-epoxidation of 

violaxanthin to zeaxanthin in both desiccated d and hydrated states of the fronds. However, 

both the xanthophyll pool and NPQ of Pelvetia was 2-fold higher than that of Laminaria, 

and may reflect different adaptation to high irradiances and desiccation in these species 

(Harker et al., 1999). 

2.1.3.4. Chlorophyll fluorescence during Cu^* exposure 

Chlorophyll fluorescence measurement is a useful tool for monitoring the performance of 

PSn during Cu^* exposure (Ouzounidou et al., 1997; Ciscato et al., 1997). <I)psn measured 

at 350 /imol m"̂  s"̂  PAR on maize seedlings grown for 15 days in water culture containing 

80 (iM C U S O 4 was reduced by 33% compared with controls, whereas Fy/Fm was largely 
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unaffected (Ouzounidou et al., 1997). This result suggests that Cu may cause a 

significant decrease in electron transport through PSU (Ouzounidou et al., 1997). In 

contrast there was only a slight effect of Cu^* on both $psn and Fy/Fn, of wheat seedlings 

after 10 days of growth in water culture containing 20 fiM CUSO4 and the efficiency of 

electron transport was therefore unaffected by Cu^* (Ciscato et al., 1997). Furthermore, 

Ciscato and co-workers showed a significant decrease in both Fv and Fm which coincided 

with a >35% decrease in the chlorophyll a content in response to the Cu^* treatment. 

Consequently, reduced photosynthesis in response to Cu^* exposure in wheat seedlings 

may be the result of chlorophyll a breakdown rather than direct inhibitory effect on 

electron transport (Ciscato et al., 1997). 

2.1.4. Mechanisms of Cu^^ resistance in plants and algae 

Exposure of an organism to elevated [Cu^*] may result in physiological damage and even 

death. However, some species have the ability to adapt to and resist high concentrations of 

metal in their natural environment. Resistance to Cu^* can be achieved either by avoidance, 

i.e. protection from external Cu^*, or by tolerance, i.e. coping with effects of internal Cu^* 

in a way which allows the organism to function normally. Tolerance may be based on 

genetic evolution of tolerance genotypes or acquired through acclimation of plastic 

phenotypes (Baker, 1987). 

2.1.4.1. Cu^* resistance 

Different species of seaweed, including the green alga Enteromorpha compressa and 

several species of brown algae, are known for their tendency to resist elevated 

concentrations of metals, including copper (Seelinger and Coradzzo, 1982; Reed and 
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Moffat, 1983; Bryan and Gibbs, 1983; Correa et al., 1996; Marsden and DeWreede, 2000). 

An excellent example of the ability of brown algae to resist extreme [Cu^*]ext is the healthy 

population of Fucus which grows in the heavily Cu^* polluted Restronguet Creek (Chapter 

1). This population has a higher tolerance limit to copper than populations of Fucus from 

unpolluted estuaries. Growth in F. vesiculosus collected from Restronguet Creek was 

reduced by 20% when exposed to 1.5 jiM copper for 22 days, whereas growth of F. 

vesiculosus from an unpolluted estuary was reduced by 85% in response to the same 

treatment (Bryan and Gibbs, 1983). Adaptation to copper toxicity in tolerant strains is 

illustrated by the fertility of Fucus gardneri growing near a copper mine drainage outflow, 

which was not significantly different from that of reference populations (Marsden and 

DeWreede, 2000). 

Similarly, diverse communities of Cu^*-resistant flowering plants such as Calluna vulgaris 

(heather) and Silene vulgaris (bladder campion) are often found on metal polluted soils 

near metal mines and smelters and in mine spoil heaps (Marrs and Bannister, 1978; Baker, 

1987; Monni et al., 2000; van Hoof et al, 2001). Cytosolic chelation of Cu^* with metal-

binding proteins either exclusively in the roots (Rauser and Cuvetto, 1980) or throughout 

the plant (Schat and Kalff, 1992; Monni et al., 2000) is a common tolerance mechanisms in 

Cu^* resistant flowering plants (Murphy and Taiz, 1995; van Hoof et al., 2001). 

Detoxification of Cu^* by accumulation in senescing leaves before shedding may also 

occur, and allows flowering plants to resist high [Cu^*] in the environment (Monni et al., 

2000). 

2.1.4.2. The role of polyphenols 

Polyphenols are a group of organic acids which are found in high concentrations in 

specialised cytoplasmic vesicles, called physodes, within the cells of brown algae (Ragan, 

49 



1979; Smith et al., 1986; Dvessalo and Tuomi, 1989). The metal complexing capacity of 

brown algal polyphenols is very high. Complexation of Cu^* with organic acid occurs by 

the reaction: L - H + Cu^* U L-Cu* + H*, with the stability constants between polyphenols 

and Cu^* in the region of pKcuL = 10.15 - 10.50 (Sueur et al., 1982; Gledhill et al., 1999). 

Hence, pKcuL for polyphenols is slightly lower than pKcuL = 12.8 for the strong organic 

ligands secreted by the hyper sensitive cyanobacterium Synechococcus (Moffett et al., 

1990), but still higher than the pKcuL for ligands secreted by other macroalgae so far tested 

(Sueur et al., 1982; Gledhill et al., 1997). The chelation of divalent metal ions by 

polyphenols probably plays an important role in maintaining the cytoplasmic metal 

concentration below toxic levels during metal exposure in brown algae, either by binding 

metals to polyphenols stored internally in physodes (Smith et al., 1986) and/or to 

polyphenols secreted to the external medium (Sueur et al., 1982; Gledhill et al., 1999). 

Organic ligands such as polyphenols are secreted by brown algae in a concentration 

dependent manner in response to increased levels of metal ions, and have the potential to 

detoxify seawater by complex formation, resulting in changed metal speciation and lower 

concentrations of free metal ions, including Cu^* (Sueur et al., 1982; Gledhill et al., 1997, 

1999). Secretion of Ugands by Ectocarpus siliculosus during 30 days of incubation was 

linearly dependent on an external total copper concentration in the range 0.3 to 5.5 liM. and 

resulted in [Cu^*]ext ranging from 1 to 10 nM (Sueur et al., 1982). In the experiment by 

Sueur and co-workers (1982) there was no renewal of the incubation medium during the 30 

days of the experiment, which may have allowed the algae to saturate the medium with 

ligands without exhausting their reserves. However, other workers (Gledhill et al., 1999) 

have studied the effect of depleting the reserves of algae by continuously renewing the 

culture medium during the course of an experiment. By applying atomic stripping 

voltammetry to artificial seawater medium containing -10 Fucus embryos per ml and 
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external total copper concentrations varying from 20 to 500 nM, it was shown that the 

ligand concentration ([Lig]) increased from -150 nM to -800 n M after 19 days of 

incubation, during which period the medium was renewed 4 times. Embryos exposed to 1 

fiM total copper secreted -500 n M ligands, which was equivalent to [Lig] in treatments 

containing 20-100 nM total copper. However, when exposed to up to 100 nM total copper 

the [Lig] released by the Fucus embryos was sufficient to chelate the [Cu^*], whereas 

embryos were unable to chelate higher concentrations, which resulted in highly decreased 

growth rates of embryos exposed to 500 and 1000 n M total copper (Gledhill et al., 1999). 

Brown algae are thought to accumulate metals including Cu^* and their tissue 

concentrations may reflect the metal concentration in their environment (Bryan and 

Hummerstone, 1973; Stengel and Dring, 2000). The concentration of Cu^* in mature F. 

vesiculosus collected from different estuaries containing total copper concentrations of 3.5, 

4.1, 24, and 660 /xg 1"' was 9, 17, 68, and 301 ptg g ' DW respectively (Bryan and 

Hummerstone, 1973). Similarly, samples of the mature thallus of F. vesiculosus collected 

from the heavily polluted Restronguet Creek (Chapter 1) contained 1450 / ig total copper 

g"* DW, which is two orders of magnitude higher than the 8-10 /ig g"' DW in the same 

species collected from the Looe and Torridge Estuaries, which are considered 'clean' 

locations in terms of Cu^* (Bryan and Gibbs, 1983). Other less dramatic examples of Cu^* 

accumulation in brown algae include an average 30 / ig total copper g"* DW in mature thalli 

of F. serratus from the Bristol Channel between 1972 and 1995 (Martin et al., 1997) and 

140 /ig total copper g"' DW in Ascophyllum nodosum collected from Whiterock in the Irish 

Sea (Stengel and Dring, 2000). The Cu^* content in seaweed tissue is dependent not only 

on the concentration in the surrounding water, but also on the age of the tissue, with less 

accumulation in younger tissue due to shorter exposure time and dilution of the copper 

content of growing tissue (Bryan and Hunmierstone, 1973; Stengel and Dring, 2000). The 
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total copper concentration in growing tips of F. vesiculosus from the Tamar Estuary was 

52 / ig g"\ whereas the concentration in stipe and mature fronds of the same alga was three 

fold higher, 128-149 / ig g"* (Bryan and Hummerstone, 1973). 

The ability of brown algae to accumulate high concentrations of heavy metals may be due, 

in part, to their high polyphenol content. By applying scanning transmission electron 

microscopy and X-ray microprobes to fronds of F. vesiculosus and F. serratus collected 

from the Cu^* polluted Restronguet Creek, Smith and co-workers (1986) showed that Cu^* 

was located mainly in the physodes. No accumulation of Cu^* was found in the outermost 

cell layer, chloroplasts, or the cell walls (Smith et al., 1986). This result is in contrast to the 

findings of Lignell and co-workers (1982) who found that accumulation of cadmium in 

fronds of F. vesiculosus occurred in high concentrations in the physodes as well as the cell 

wall of the outer cell layers. Differences between the capacity of different metals to bind to 

polysaccharides and polyphenols (Ragan et al., 1980) may account for the different degree 

of copper and cadmium accumulation in Fucus cell walls (Lignell et al., 1982; Smith et al., 

1986). However, polyphenols may be an integral component of the fucoid cell wall 

(Schoenwaelder and Clayton, 1998) and it is therefore possible that Cu^* bound to cell wall 

polyphenols was lost during fixation and embedding of the material in the experiment by 

Smith and co-workers (1986). Electron microscopy of newly fertilised zygotes of the 

fucoids Hormosira banksii and Acrocarpia paniculata revealed that the contents of the 

physodes, which accumulated at the cell periphery, were secreted by exocytosis during cell 

wall formation, and that extensive deposition of polyphenols occurred in older walls 

together with other cell wall materials (Schoenwaelder and Clayton, 1998). Given the 

strong tendency for Cu^* and polyphenols to complex (Sueur et al., 1982; Gledhill et al., 

1999) and the presence of polyphenols (Schoenwaelder and Clayton, 1998), it is likely that 
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Cu^* accumulation does occur in the fucoid cell wall, the findings of Smith and co-workers 

(1986) notwithstanding. 

2.1.4.3. The role of metallothionein 

Removal of free metal ions by chelation with intracellular ligands is a major detoxification 

mechanism. In addition to polyphenols one of the principal classes of such metal binding 

ligands in plants and algae are the metallothioneins (Rauser and Cuvetto, 1980; Hamer, 

1986; Schat and Kalff, 1992; Murphy and Taiz, 1995; Morris et al., 1999; van Hoof et al., 

2001). Metallothioneins are a group of low molecular weight cysteine (i.e. -SH) -rich 

cytoplasmic polypeptides with high metal-binding capacities, which form stable complexes 

between -SH groups and metal ions (Grill et al., 1985; Hamer, 1986). There are three 

distinct types of metallothionein: the direct products class-1 and class-2 metallothionein 

genes, and the enzymatically synthesised class-3 metallothionein, the phytochelatins, 

which occur exclusively in plants, algae and yeast (Grill et al., 1985; Rauser, 1990). 

Phytochelatin production is induced in filamentous algae during exposure to metals 

including Cu^* (Pawlik-Skowronska, 2001) and in a range of marine phytoplankton 

(Gekeler et al., 1988; Ahner et al, 1995; Morelli and Scarano, 2001). However, data on 

phytochelatin induction in marine macroalgae in response to metal exposure is limited. 

Exposure of the brown algae Sargassum muticium to 20 fiM Cd(N03)2 for up to 10 days 

resulted in accumulation of phytochelatin at a total concentration of 11.9 /imol, whereas no 

phytochelatin was detected in unexposed algae (Gekeler et al, 1988). In comparison, 

phytochelatin production in the red alga Porphyridium cruentum was 15.6 /imol after 

exposure to 20 / iMCd(N03 )2 whereas the phytochelatin concentration in several species of 

phytoplankton of the class Chlorophyceae ranged from 8.0 to 43.8 /imol SH /xg' protein 
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(Gekeler et al., 1988). Phytochelatin induction may be a response to Cu exposure in 

Fucus, given the above data on other species of algae. 

In flowering plants, both non-tolerant and tolerant strains of Silene cucubalus and S. 

vulgaris produce phytochelatin upon exposure to Cu^* and the threshold for the onset of 

phytochelatin production increases with the level of Cu^* tolerance (Schat and Kalff, 1992; 

De Vos et al., 1992). Phytochelatin production in a non-tolerant strain of 5. cucubalus was 

induced at an external total copper concentration of 0.5 fiM, and reached 25 jiimol SH g ' 

protein at 20 / i M total copper, whereas phytochelatin production in a tolerant strain was 

unaffected at concentrations lower than 40 fiM, which induced a phytochelatin production 

of just 10 /imol SH g ' protein (De Vos et al., 1992). Similar results were presented by 

Schat and Kalff (1992), who showed that both Cu^* non-tolerant and tolerant strains of 

Silene possess the ability to produce phytochelatin once their tolerance limit is reached. 

However, the difference in the onset of phytochelatin production suggests that some 

special property of tolerant strains, other than phytochelatin production, allows them to 

cope with Cu^*. 

Expression of type 2 metallothionein encoding genes (MTI) in tolerant strains may 

determine the tolerance difference (Murphy and Taiz, 1995; van Hoof et al., 2001). In 

plants MT2 were first recognised in the grass Agrostis (Rauser and Curvetto, 1980) and 

have now been demonstrated to exist in Arabidopsis and S. vulgaris (Murphy and Taiz, 

1995; van Hoof et al., 2001). van Hoof and co-workers (2001) showed that MT2 were 

responsible for significantly increasing Cu^* tolerance and that the metallothionein genes 

were transcribed at higher rates in tolerant strains than in non-tolerant strains of S. vulgaris, 

regardless of [Cu^*]. A Cu^*-sensitive strain of yeast would tolerate and grow in up to 5 

m M CUSO4 when transformed with MT2 from Cu^*-tolerant S. vulgaris, whereas when not 
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transformed with MT2, the same strain only tolerated up to 1 m M CUSO4 (van Hoof et al., 

2001). Furthermore, quantitative sequencing showed higher levels of MT2 mRNA were 

found in tolerant than in non-tolerant S. vulgaris, both with and without exposure to 50 fiM 

CUSO4 (van Hoof et al., 2001). The work discussed above suggests that induction of 

phytochelatin production is a general response to Cu^* toxicity in both tolerant and non-

tolerant strains of flowering plants, whereas metallothionein gene transcription occurs 

exclusively in tolerant strains and may be responsible for the different tolerance limits in 

tolerant and non-tolerant strains (van Hoof et al., 2001). 

The induction of a metallothionein gene in response to Cu^* exposure has recently been 

shown in F. serratus and F. vesiculosus (Morris et al., 1999). The Fucus metallothionein 

shows high sequence homology with both vertebrate class-1 and plant class-2 

metallothionein (Morris et al., 1999). Metallothionein gene expression in F. vesiculosus 

exposed to 19 fiM CuCh for 72h was two-fold higher than in control algae (Morris et al., 

1999). Furthermore, the resulting Fucus metallothionein does have the ability to bind 

cadmium but is preferentially a copper-binding protein (Morris et al., 1999). 

Metallothionein genes are highly conserved between animals, plants and fungi (Hamer, 

1986), which suggests that metallothionein may be a determining factor in the 

development of metal tolerance in many biological systems. It is, therefore, not surprising 

that this metallothionein coding gene also occurs in brown algae. However, sequestering of 

Cu^* in brown algae is generally believed to occur by chelation with polyphenols stored in 

vesicles (Smith et al., 1986). Therefore, the role of Fucus metallothionein may be to act as 

a specialised Cu^* transport protein and ensure that [Cu^*]cyt is kept close to zero during 

transport of Cu^* through the cytoplasm to storage vesicles, analogous with the Cu^* 

chaperones, which have been identified in yeast (Beers et al., 1997). 
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2.1.5. Objectives 

Brown algae have the ability to resist high concentrations of Cu and form vigorous 

populations in polluted estuaries such as Restronguet Creek. Tolerant strains of Fucus cope 

very well when exposed to elevated concentrations of Cu^*, whereas growth of non-

tolerant strains can be severely reduced during Cu^* exposure (Bryan and Gibbs, 1983). 

The ability of Fucus to accumulate Cu^* and to form Cu^*-tolerant and non-tolerant 

populations, is widely recognised. However, effects of Cu^* on the physiology of Fucus 

and direct comparative studies on these effects in tolerant and non-tolerant populations are 

very limited. This study aims to determine the effects of Cu^* on relative growth rate, dark 

respiration and photosynthesis of F. serratus, and to establish the effect of Cu^* on 

secretion of organic substances and accumulation of copper, and to characterise the 

different response patterns during Cu^* exposure of copper-tolerant and non-tolerant 

populations. 
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2.2. Material and methods 

2.2.1. Experimental algae 

Individuals of Fucus serratus were collected in September 2000 from three different 

locations with known copper status and transported to the laboratory within 2h in plastic 

bags. Algae collected from Restronguet Creek, which is subject to anthropogenic copper 

pollution, are exposed to a significantly higher copper level in their natural environment 

than algae collected from Wembury Beach and Bantham Quay, which are exposed to very 

low levels of copper (Chapter 1). The algae were cleaned by rubbing and rinsing them 

three times in filtered seawater (FSW). Tips were cut from the fronds approximately 3 cm 

from the apex (apical tips=fronds). Fronds were left to recover from cutting and acclimate 

to laboratory conditions in filtered aerated water from their respective locations to maintain 

their natural copper status. For 3 to 5 days after cutting, the fronds leaked yellow 

substailce. They were considered recovered after 8 days. The water was changed every day 

during the acclimation period during which the fronds were kept at 15°C and 250 fimol m"̂  

s"' photosynthetically active radiation (PAR) provided by fluorescent lamps on a 16/8h 

light/dark cycle. 

2.2.2. The culture medium, Aquil 

Following recovery from cutting, the fronds were incubated in the artificial culture 

medium, Aquil, modified from the original recipe formulated by Morel (Morel et al., 1979; 

Price et al., 1988/89). Aquil was originally developed as a phytoplankton culture medium 
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and lately has been successfully used for culturing microscopic stages of brown 

macroalgae (Bond et al., 1999; Gledhill et al., 1999). In Aquil the concentrations of the 

major salts yielding synthetic ocean water (SOW) correspond closely to the principal 

constituents of natural seawater. The main reason for using Aquil, rather than natural 

seawater supplemented with nutrients and trace metals, was to obtain a medium in which 

the availability of trace metals was known as precisely as possible. Precautions were taken 

to avoid trace metal contamination or unknown decreases of constituent concentrations in 

the medium. A l l flasks, funnels and pipette tips used in preparing the medium and storage 

containers were made from polyethylene, which is largely free from trace metals and 

adsorbs only small amounts of metals. Nano-pure water was always used for stock 

solutions and media, and all chemicals were of analytical grade purity. In order to reduce 

the risk of contamination further, the plasticware was acid washed prior to use by 

submerging it in 3% HCl for 24h and subsequently rinsing it 3 times in nano-pure water. 

Preparation and exchange of medium took place in a class 100 -laminar flow hood. Extra 

precautions, such as microwaving to avoid infection of the culture medium with bacteria, 

were not taken as the main source of such contamination was considered to be the seaweed 

itself. 

Information on the composition and preparation of SOW, the stock solutions of nutrients 

and trace metals, mixing of these to yield Aquil and final total concentrations is 

sununarised Appendix 1. In preparing SOW, complete dilution of the anhydrated salts was 

ensured before adding the hydrated salts. Stock solutions of nutrients (N, P, K, F and Sr) 

and trace metals were prepared individually at 1 x 10^ the final concentration. Each 

solution was added at 1 ml 1"' to SOW to yield Aquil. The pH of Aquil was 8.2, buffered 

by the presence of HCO3" (2.38 mM). No other buffers were added to control the pH, as 

chelating ligands are known to be toxic to some algae and have been found to slightly 
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reduce growth in Fucus zygotes when compared with unchelated medium (Bond et al., 

1999). 

To avoid loss of trace metals due to precipitation, trace metal stocks were prepared in 0.01 

M HCl. In order to reduce the background contamination of trace metals in the N , P and K 

stocks, 1 g of the resin Chelex 100, prepared according to Price et al. (1988/89), was added 

to each solution. The P O 4 was stored in an acid-washed glass bottle since P O 4 is strongly 

adsorbed to polyethylene. Stocks were dark stored for up to three months at 4°C. 

Precautions taken to avoid trace metal contamination or loss in making Aquil were 

considered adequate, as analyses of media by cathodic stripping voltammetry showed 

concentrations within 10% of expected values (Gledhill et al., 1999). 

During experiments, Aquil was enriched with CuS04-5H20 to yield total copper 

concentrations ranging between 0 and 20 fiM. A 2 m M C U S O 4 stock was prepared by 

adding CuS04-5H20 at 0.499 g 1"' to O.OIM HCl. Subsequently the 2 mM stock was 

diluted xlO to yield a 0.2 m M stock. Preparation of copper-enriched Aquil and 

concentrations of total copper and free Cu^* are summarised in Appendix 2. Free Cu^* 

concentrations initially present in Aquil were calculated by applying the total 

concentrations of the Aquil constituents to the chemical equilibrium modelling program 

MINEQL+ (version 3.01) (Westall et at., 1976), which was downloaded from the internet 

(www.agate.net). Copper speciation was calculated based on a temperature of 15°C, the 

temperature at which all experiments took place (Gledhill et al., 1999; Bond et al., 1999) 
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2.2.3. Physiological responses of Fucus to elevated Cu^* 

In order to establish whether the degree of Cu^* resistance in the algae reflected the copper 

status at the location from which they were collected, different physiological responses 

were monitored during 23 days exposure to different [Cu^*]. Fronds were transferred to 

individual beakers containing 100 ml Aquil with [Cu^*] of 0, 42.2, 211, 422, or 844 nM, 

and incubated at 15°C and 250 /imol m'^ s'̂  PAR. The Cu^* treatments chosen were 

representative of the copper levels found in Restronguet Creek (Chapter 1), and within the 

range which has toxic effects on non-tolerant Fucus (Bond et al, 1999). The beakers were 

placed on an orbital shaker to ensure aeration of the medium and facilitate exchange of 

substance between medium and algae. Fucus is known to release metal-complexing ligands 

during exposure to elevated concentrations of metal ions (Gledhill et ah, 1997; 1999). 

During the course of the experiment differences in relative growth rates resulted in 

different sized fronds. Small fronds would consequently be exposed to relatively more 

Cu^* than large fronds in beakers holding the same volume of medium and [Cu^*]. Adding 

Cu^* on a biomass basis would have overcome the differences although this approach was 

not possible in the present experiment. In order to compensate for this, the release of 

ligands, and to maintain supply of nutrients, the medium was changed daily. Measurements 

of physiological conditions of the fronds were carried out after 2, 6, 12, and 23 days of 

incubation unless otherwise stated. One batch of fronds was used for measurements of 

relative growth rate, dark respiration, photosynthesis and final total copper content of 

fronds, whereas another batch was used for quantifying secretion of organic substances and 

measurement of final chlorophyll a content. 
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2.2.3.1. Relative growth rate 

Measurements of relative growth rate (RGR) of fronds were based on fresh weight (FW) 

measurements. Fronds were blotted dry, weighed and RGR was calculated according to the 

equation by Hunt (1982): 

RGR (% d*) = (In (mf) - In (mj) /1) x 100 

where 'mf ' is mass of the frond (g FW) on the day of measurement, 'mi ' is mass of the 

frond (g FW) on the previous day of measurement and ' t ' is time in days between 

measurement of mf and mi. 

2.2.3.2. Dark respiration 

Dark respiration was measured as continuous oxygen consumption in darkness in a closed 

incubation chamber fitted with a Clark-type oxygen electrode (Hansatech Instruments Ltd., 

Norfolk, UK) connected to a data logger (Servogor 220, John Minister Instruments Ltd., 

Austria). The temperature in the chamber was maintained at 15°C by a circulating water 

jacket connected to a thermostatically controlled water bath (Termostirrer 100, 

Gallenkamp, EU). The system was calibrated to oxygen-depleted and atmospherically 

saturated Aquil and the oxygen concentration calculated according to the temperature and 

salinity of the medium (Green and Carrit, 1969). Fronds were dark adapted for 30 minutes 

and subsequently placed in the incubation chamber, in darkness, containing 10 or 15 ml 

Aquil which was stirred by a magnetic bar and contained the respective concentrations of 

Cu^*. Dark respiration (/imol O2 g ' FW min"') was calculated as: 

( 0 2 i - 0 2 f X v ) / ( t x m ) , 

where '02i - 02f' is oxygen consumption (/imol ml"'), 'v ' is volume of incubation medium 

(ml), ' t ' is time (min), and'm' is the mass of the frond (g FW). 
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2.2.3.3. Photosynthesis 

The photosynthetic performance (PS) of the fronds was measured using two different 

methods: chlorophyll fluorescence and oxygen evolution. 

Upon absorbing an electron during photosynthesis, the reaction centre of photosystem n 

(PSn) is in the closed state and cannot absorb more light energy until the electron is passed 

on to the electron carrier, plastoqinone A (QA)- Excess light energy is dispersed as heat or 

emitted as chlorophyll fluorescence. The relationship between the three different fates of 

light energy harvested by chlorophyll can be exploited to estimate photosynthesis on the 

basis of chlorophyll fluorescence measurements. Chlorophyll fluorescence measurements 

were carried out by application of the Rapid Light Curve technique (RLC) (White and 

Critchley, 1999) and use of a modulated Fluorescence Monitoring System (FMS) 

(Hansatech Instruments Ltd., Norfolk, UK). Fronds were placed in a holder at a fixed 

distance from the measuring light and the fluorescence trace of the RLC recording was 

initiated. A 5.5 s far red light (6 /imol m"̂  s"') treatment drained electrons from PSn, and 

ensured its full relaxation. Zero fluorescence (Fo) was measured inunediately afterwards 

and was followed by application of a 0.8 s saturating light pulse (3000 /xmol m"̂  s"' white 

light) and measurement of maximum fluorescence (Fm). Subsequently the actinic light 

source was switched on and the light intensity gradually increased in 13 steps from 17 to 

657 /imol m"̂  s ' PAR, each lasting 30 s. Each step was followed by a saturating light pulse 

of 0.8 s, and simultaneous measurement of maximum fluorescence in the light (F'm), with 

subsequent measurement of steady state fluorescence in the light (Ft). Standard total 

recording time of an RLC trace was 7 minutes. 

The maximum efficiency of PSII (Genty et al., 1989) was calculated as: 

Fv/Fm = (Fn, — Fo)/Fiii, 

and the electron transport rate of PSII, which is equivalent to PS (/imol e'm"^ s"') was 

calculated according to Genty et al. (1989): 
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PS = <I)psii X PAR X 0.42, 

where PAR is the intensity of actinic Hght, '0.42' is a factor which accounts for 

partitioning of Ught energy between PSn and PSI, and 'Opsu' expresses the efficiency of 

PSn photochemistry in the Ught, and is given by: 

^psn = ( F ' m - F t ) / F ' m 

Light response curves were plotted from the resulting data and the photosynthetic affinity 

(a) was calculated by linear regression from photosynthesis at the initial 4 steps of light 

irradiances from 0 to 43 /xmol m"̂  s"'. The photosynthetic capacity (Pmax) was taken as 

photosynthesis at the saturating irradiance of 365 /xmol m"̂  s*. 

Photochemical quenching {qp) at 365 /xmol m'^ s'̂  PAR was calculated: 

qp = Opsii/ (Fv/Fn,) 

and non-photochemical quenching (NPQ) at 365 /xmol m"̂  s"' PAR was calculated: 

NPQ = Fm-F'm/F'm 

PS of the fronds was also estimated from measurements of oxygen evolution, using a 

closed system fitted with a Clark oxygen electrode as described above (section 2.2.3.2.). 

After 23 days of incubation, the maximal photosynthetic capacity Pmax of the fronds was 

measured at a photosynthetically saturating irradiance of 500 /xmol m^ s"' PAR, provided 

by a actinic light source. Red LEDs (Hansatech Instruments Ltd.) which was fitted to the 

incubation chamber. Dark respiration was added to the oxygen evolution measurements to 

yield gross photosynthesis (gross PS) and enable comparison with the results of the 

chlorophyll fluorescence measurements. 

2.2.3.4. Copper content of fronds 

The copper content of fronds was measured initially before the acclimation period and on 

the final day of measurements by Atomic Absorption Spectrophotometry (AAS). The 
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fronds were rinsed thoroughly in nano-pure water, frozen at -5°C and freeze-dried in a 

Super Modulyo freeze-dryer (Edwards, West Sussex, UK). Following freeze drying, the 

fronds were weighed and approximately 0.1 g of freeze dried material was added to 2 ml 

69% NH3 in a 7 ml polyethylene digestion vessel. The material was digested in a CEW 

2000 microwave (CEM Microwave Technology Ltd., Birmingham, UK), the power was 

gradually increased from 3% to 15% during a 35 minutes digestion period, which included 

10 min cooling. Following digestion, the samples were made up to 5 ml volume with nano-

pure water and analysed for copper using a Varian 600 series AAS (Varian Ltd., Surrey, 

UK) in graphite furnace mode. Calibrations were carried out regularly and subtracted from 

the samples. Copper standards were made using a certified copper standard solution 

(Merck Ltd., Lutterworth, UK) acidified to the same pH as the samples with NH3. 

2.2.3.5. Measurements of organic substances 

Fucoids are known to release organic ligands in response to Cu^* exposure which 

effectively lowers [Cu^*] of the surrounding environment (Gledhill et al., 1997; 1999). To 

compensate for this, the growth medium was renewed every day during the 23 day 

incubation period. This procedure also allowed for quantitative analysis of organic 

substances secreted by the fronds over 24h on the different days of measurements. 

Absorbance of three samples was measured by UV-visible spectrophotometry (Gary 13, 

Varian Ltd., Walton-on-Thamse, Surrey, UK) at wavelengths varying from 200 to 900 nm 

at 5 nm intervals, resetting the spectrophotometer with Aquil at each step. It was 

determined that maximum absorbance of the incubation medium was in the UV region of 

the spectrum at around 235 nm (Figure 2.03). The absorbance of all samples was therefore 

measured at this wavelength and calculated as absorbance g ' FW ml ' ' . 
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Figure 2.03. Representative curve of absorbance of the culture medium containing 
organic compounds secreted by Fucus during Cu^^ exposure. Absorbance was 
measured at wavelengths varying from 190 to 900 nm at 5 nm intervals. Clean 
medium was used to reset the spectrophotometer at each step. 
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2.2.3.6. Chlorophyll a content of fronds 

The chlorophyll a content of the fronds was determined at the end of the experiment on 

day 23 by extraction from approximately 50 mg FW material. The material was 

homogenised and extracted in 5 ml ethanol for 3h at room temperature. Subsequently the 

samples were made up to 10 ml and absorbance measured at 665 and 750 nm on a 

spectrophotometer (Gary 13, Varian Ltd., Walton-on-Themse, Surrey, UK). Chlorophyll a 

was calculated as: 

Chi a ifig g • FW) = ((Abs665-Abs75o) x v)/83.4 x m 

where 'Absees' and 'Absyso' are the absorbances at 665 nm and 750 nm (cm"'), 'v ' is the 

volume of ethanol used for extraction (ml), '83.4' is the absorption coefficient of 

chlorophyll a in ethanol (ml /xg"' cm"'), and 'm' is the mass of the extracted material (g) 

(Schiemp et al., 1995). 

2.2.4. Statistical tests 

Statistical tests of the data (Sokal and Rolf, 1981) were carried out using 

STATGRAPfflCS plus 5.0. The small number of replicates (4-5) was considered 

inadequate to carry out analysis of normal distribution and it was therefore assumed that 

the data did apply to this rule for statistical testing (Ricketts, pers. comm.). No test of 

variance homogeneity was carried out although different variability in the data sets would 

increase the probability of accepting a false null hypothesis, i.e. highly variable data is 

more likely to conceal small differences between data sets. This was, however, considered 

acceptable. 
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Where repeated measurements were carried out on the same fronds, analyses of variance of 

data used a repeated measure design, to account for the fact that time was not an 

independent variable. A p=0.01 level of significance was accepted. When significant 

differences between means and interactions between the variables were found at different 

time intervals, further analyses of variance were carried out by one way ANOVA, and 

comparison of individual means by multiple range tests and accepted at a p=0.01 level of 

significance. The p=0.01 level of significance was chosen in order to compensate for 

multiple testing, which increases the probability of rejecting a true null hypothesis. 

Where time was not included in the analysis, data was analysed by two way ANOVA and 

comparison of means and accepted at a p=0.05 level of significance. Data, which were 

distributed logarithmically were log transformed prior to analysis. 
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2.3. Results 

The effect of Cû "̂  on different physiological processes was studied in adult Fucus 

collected from locations with different Cu^* statuses. Apical portions of individuals from a 

population growing in the Cu^"^-polluted Restronguet Creek and from unpolluted sites at 

Bantham Quay and Wembury Beach were incubated for 23 days in the artificial seawater 

medium, Aquil which contained varying [Cû "*̂ ]. Physiological measurements were carried 

out at suitable intervals in order to establish physiological differences between the 

populations during Cu^^ exposure. Segments of adult Fucus grew well in Aquil throughout 

the 23 days of the experiment and the phytoplankton medium appears to be adequate for 

the culture of macroalgae. 

2.3.1. Relative growth rate 

Figure 2.04 shows the effect of Cu^* on relative growth rate (RGR). RGR of Bantham and 

Wembury fronds was more sensitive to Cu^* than RGR of Restronguet fronds. There was a 

pronounced inhibitory effect of Cû "̂  on RGR of Bantham and Wembury fronds throughout 

the experiment, whereas RGR of Restronguet fronds was affected only by the highest 

[Cu "̂̂ ] tested and only towards the end of the experiment. 

Bantham fronds appeared to be losing weight within the first two days of incubation and 

the weight loss was greater in the higher concentrations (Figure 2.04 A). RGR of control 

fronds was 0.7 ± 1.2 % d'\ and RGR of fronds exposed to 211 nM Cû "̂  was -0.7 ± 0.9 % 

d"V This difference was not significant due to the highly variable data (p>0.01). Further 

increase in [Cu^" ]̂ to 844 nM resulted in a significant decrease in RGR to -5.6 ± 1.7 % d'' 
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Figure 2.04. Effect of Cu-̂ ^ on relative growth rate (RGR) calculated from fresh weight 
measurements of Bantham (A), Wembury (B), and Restronguet (C) fronds during 23 days of 
exposure to Cu-^ concentrations varying from 0 to 844 nM. Values represents means ± 1 SD 
(n=5). 
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(p<0.05). After 6 days there was a general increase in RGR. RGR of control fronds was 2.7 

± 1.2 % d"'. RGR of fronds exposed to 211 nM had increased significantly compared with 

day 2 (p<0.01) to 1.7 ± 1.0 % d'\ whereas RGR of fronds exposed to 422 nM Cu^^ was 0.7 

± 1.1 % d ' and significantly lower than RGR of control fronds (p<0.01). The weight loss 

of fronds exposed to 844 n M Cû "̂  had slowed down to 0.0 ± 0.6 % d ' but RGR was still 

significantly lower than RGR of fronds exposed to 0 to 211 n M Cu^* (p<0.01). After 12 

days, RGR of control fronds had increased significandy to 3.3 ± 0.3 % d ' (p<0.01). 

Exposure of fronds to [Cu^^] above 42.2 nM had a significant inhibitory effect on RGR, 

which decreased gradually from 2.0 ± 0.5 % d"' to 0.0 ± 0.5 % d"' as [Cu^""] increased from 

211 to 844 nM (p<0.01). After 23 days, RGR of control fronds was 2.8 ± 0.2 % d"' and 

significantly lower than after 12 days (p<0.01). There was an increasingly inhibitory effect 

of Cu^^ on RGR at concentrations above 211 nM (p<0.01). Similar to the previous days 

RGR of fronds exposed to 844 nM was arrested at -0.2 ± 1.6 % d ' and significantly lower 

than RGR of fronds in all other treatments (p<0.01). 

RGR of Wembury fronds exposed to varying [Cu^" ]̂ was similar to that of Bantham fronds, 

although weight loss over the first two days was only seen at the highest concentration 

(Figure 2.04 B). RGR of control fronds was 2.4 ± 0.8 % d ' during the course of the 

experiment. After 2 days, RGR of fronds exposed to 844 nM Cu^^ was reduced 

significantly compared with all other concentrations to -4.1 ± 2.9 % d"' (p<0.01). After 6 

days, there was an inhibitory effect of Cu^* on RGR at concentrations above 211 nM. RGR 

was reduced significantly to 0.7 ± 0.5 % d"' and -0.2 ± 0.6 % d"' during exposure to 422 

and 844 nM Cu^* respectively. After 12 days at [Cu^" ]̂ above 42.2 nM there was an 

increasingly inhibitory effect on RGR which was -1.0 ± 0.2 % d"' for fronds exposed to 

844 nM (p<0.01). After 23 days, RGR of fronds exposed to 211 nM Cû "" was significantly 

reduced compared with RGR of fronds exposed to 42.2 nM (p<0.01), whereas RGR of 
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fronds exposed to 422 nM had decreased significantly to 2.3 ± 0.4 % d"' (p<0.01) and RGR 

of fronds exposed to 844 nM was -0.6 ± 0.5 % d"' and significantly different from RGR of 

fronds in any other treatment (p<0.01). 

There was less effect of Cu^* on RGR of Restronguet fronds than on Bantham and 

Wembury fronds (Figure 2.04 C). RGR of control fronds was 3.6 ± 0.3 % d ' throughout 

the experiment. After 12 days, RGR of fronds exposed to 422 nM Cu^* was significantly 

lower than RGR of fronds exposed to 42.2 nM Cu^*. RGR of fronds exposed to 844 was 

2.2 ± 0.5 % d"' and lower than in any other treatment (p<0.01). After 23 days RGR of 

fronds exposed to 422 n M Cu^* was significantly lower than RGR of fronds exposed to 

42.2 and 211 nM Cû "" (p<0.01), and RGR of fronds exposed to 844 nM was 1.9 ± 0.6 % d" 

' and significantly lower than RGR of fronds exposed to between 0 and 211 nM Cû "̂  

(p<0.01). 

2.3.2. Dark respiration 

Figure 2.05 shows the effect of Cu^* on dark respiration. Dark respiration of Bantham and 

Wembury fronds was more affected by Cu^^ than dark respiration of Restronguet fronds. 

Initially, dark respiration of Bantham and Wembury fronds increased strongly upon 

exposure to the highest [Cu^" ]̂ tested. In contrast with Bantham and Wembury fronds, dark 

respiration in Restronguet fronds was unaffected by Cû "̂  (p>0.01) (Figure 2.05 C). Rates 

of control fronds remained at about 0.13 ± 0.03 /imol O2 g ' FW min"' throughout the 

experiment (p>0.01). 
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Figure 2.05. Effect of Cu^^ on dark respiration measured as oxygen consumption by Bantham (A), 
Wembury (B), and Restronguet (C) fronds during 23 days of exposure to Cu^* concentrations 
varying from 0 to 844 nM. Values represents means ± 1 SD (n=5). 
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There was a sUght but significant increase in dark respiration of Bantham control fronds 

from 0.10 ± 0.03 /imol Oz g ' FW m i n ' after 2 days, to 0.16 ± 0.04 pimol Oj g"' FW min"' 

after 23 days (Figure 2.05 A) . After 2 days, 844 nM Cu "̂" resulted in a 3-fold increase in 

dark respiration to 0.32 ± 0.12 /imol O2 g"' FW min' ' , which remained significantly higher 

than dark respiration of control fronds after 6 days (p<0.01). After 12 and 23 days, dark 

respiration of fronds exposed to 844 n M Cu^^ had decreased to the level of control fronds 

(p>0.01). After 23 days there was a high variability in the rates of dark respiration of 

fronds exposed to 844 nM Cu^^. 

Dark respiration in Wembury fronds followed a similar pattem to that of Bantham fronds 

(Figure 2.05 B). Throughout the experiment the rate of dark respiration of control fronds 

was 0.09 ± 0.03 /imol O2 g"' FW min"'. After 2 days there was a 3-fold increase in dark 

respiration of fronds exposed to 844 nM Cu^^ to 0.31 ± 0.16 /imol O2 g"' FW m i n ' 

(p<0.01). After 6 days, dark respiration rates of fronds exposed to 844 nM Cû "̂  had 

decreased to 0.15 ± 0.06 /imol O2 g ' FW min"' (p<0.01) and remained at this level until 

the end of the experiment (p>0.01); these rates were significantly higher than those of 

control fronds (p<0.01). 

2.3.3. Chlorophyll fluorescence measurement 

The electron transport rates of FSB (7) of fronds from the three populations were 

calculated on the basis of chlorophyll fluorescence measurements and expressed as the 

gross photosynthetic rate (gross PS) in /imol e" m"^ s"' (see Material and Methods). J was 

plotted as a function of the intensity of actinic light to produce photosynthetic light 
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response curves (Figures 2.06 - 2.08), from which the photosynthetic efficiency (a) and -

capacity (Pmax) were calculated. 

2.3.3.1. a values 

Values of a of fronds are presented in Figure 2.09. In all three populations there was 

significant effects of Cû "*̂  on a and significant interactions between Cû "̂  and time 

(p<0.01). The differences in a did not correlate with [Cu^" ]̂ and, although significant, the 

differences in a were only slight during the whole of the experiment and there were only 

small differences in a between the days of sampling. Overall there are no notable effects of 

Cu^* on a in any of the populations. 

2.3.3.2. PnMx values 

Figure 2.10 A shows that Pmax of Bantham fronds was unaffected by Cû "̂  during the whole 

of the experiment (p>0.01). There was, however, a general effect of time on Pn^x- After 2 

days, Pmax of control fronds was 85.9±7.5 /imol e' m"^ s"' and decreased gradually to 

45.8±4.4 /imol e" m'^ s' after 23 days (p<0.01). 

For Wembury fronds after, 23 days Pmax, of control fronds was 56.6 ± 5.2 /imol e'm'^ s' 

and significantly lower than the average 71.5 ± 7.5 /imol e" m"^ s' on the previous days 

(p<0.01) (Figure 2.10 B). Furthermore, on day 23, Pmax of fronds exposed to 211 to 844 nM 

Cu^^ was significantly lower than that of fronds exposed to 0 and 42.2 nM (p<0.01). 

For Restronguet fronds, the average Pmax of control fronds was 85.0 ± 7.1 /imol e" m''̂  s"' 

throughout the experiment (Figure 2.10 C). After 23 days, Pmax of fronds exposed to 844 

nM Cu^* was 43.3 ± 11.6 /imol e" m'^ s"' and significantly lower than Pmax of fronds in any 

of the other treatments (p<0.01). 
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Figure 2.09. Effects of Cu^^ on photosynthetic efficiency (a) was calculated using chlorophyll 
fluorescence measurements of Bantham (A), Wembury (B), and Restronguet fronds (C). 
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Figure 2.10. Effects of Cu^^ on photosynthetic capacity P̂ ,̂̂  calculated from chlorophyll 
fluorescence measurements of Bantham (A), Wembury (B), and Restronguet fronds (C). 
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2.3.3.3. Fv/F 

There were significant differences in Fy/Fm between treatments and interactions between 

Cu^^ and time in all of the populations tested (p<0.01) (Figure 2.11). However, these 

effects were slight and did not correlate with [Cu^^] and no obvious differences between 

the populations were observed. 

2.3.3.4. Photochemical quenching (gp) 

Some inhibitory effect of Cu^^ on qp was observed for the three populations towards the 

end of the experiment, though no pronounced differences between the populations were 

observed (Figure 2.12). qp values of Bantham control fronds were reduced significantly 

after 23 days compared with the previous days (p<0.01) (Figure 2.12 A). After 12 days, qp 

of fronds exposed to 422 nM Cû "̂  was reduced significantly compared with qp of fronds 

exposed to 0 and 42.2 nM (p<0.01). After 23 days, there was no significant effect on qp of 

fronds exposed to up to 844 nM Cû "̂  (p>0.01), although the data showed a decreasing 

trend in qp with increasing Cu^*. qp of Wembury fronds exposed to 211 to 844 n M Cû "*" 

was reduced significantly compared to qp of fronds exposed to 0 and 42.2 nM Cû "̂  after 

23 days (p<0.01), although there were no significant differences in qp of fronds exposed to 

these concentrations (p>0.01) (Figure 2.12 B). For Restronguet fronds, no significant effect 

on qp was observed for all treatments apart from a reduction in qp at 844 nM Cû "̂  after 23 

days (p<0.01) (Figure 2.12 C). 

2.3.3.5. Non-photochemical quenching (NPQ) 

NPQ increased with time during the experiment for controls in all populations and 

significant effects of Cu^^ were found (p<0.01) (Figure 2.13). These were different for the 

different populations. For Bantham and Wembury fronds, the effect of Cu^^ on NPQ 

occurred 
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mainly at intermediate [Cu^"^], whereas the effect of Cû "*̂  on NPQ of Restronguet fronds 

was more pronounced at the highest [Cu^^]. 

For Bantham fronds after 12 days, NPQ of fronds exposed to 422 n M was significantly 

increased compared with NPQ of fronds exposed to lower [Cu^^] (p<0.01) (Figure 2.13 A) . 

After 23 days there was no significant difference between NPQ of fronds exposed to up to 

844 nM Cu^* and control fronds (p>0.01). However, NPQ of fronds exposed to 422 and 

844 nM Cû "̂  was significantly lower than NPQ of fronds exposed to 42.2 nM (p<0.01). 

A similar trend with different [Cu^^] was also seen in Wembury fronds (Figure 2.13 B). 

After 6 days, NPQ of fronds exposed to 211 and 422 n M Cu^^ was increased significantly 

(p<0.01). However, there was no significant difference in NPQ of fronds exposed to 844 

nM Cû "*̂  and any of the other treatments (p>0.01). After 23 days, NPQ of fronds exposed 

to 211 and 422 nM was increased significantly compared to NPQ of control fronds 

(p<0.01). When [Cu^*] increased to 844 nM NPQ was significantly lower than that of 

fronds exposed to 211 and 422 nM (p<0.01), but not significantly different to NPQ of 

fronds exposed to 0 and 42.2 nM (p>0.01). 

For Restronguet fronds, NPQ increased with experiment time and with increasing [Cu^^] 

after 6, 12 and 23 days (Figure 2.13 C). After 6 days, NPQ of fronds exposed to 844 nM 

Cû "̂  was significantly increased compared with NPQ of fronds in any other treatment 

(p<0.01). After 12 days, [Cu^" ]̂ above 211 nM resulted in significantly increasing NPQ, 

which was 8-fold higher at 844 nM than NPQ of control fronds (p>0.01). After 23 days 

NPQ of fronds exposed to 422 nM was significantly higher than NPQ of control fronds 
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(p<0.01). NPQ of fronds exposed to 844 nM was significantly higher than NPQ of fronds 

in any other treatment and 8-fold higher than NPQ of control fronds (p<0.01). 

2.3.3.6. Values of F'n, and Ft 

There were significant effects of Cu^^on F'm and significant interactions between Cu^^ and 

time (p<0.01) (Figure 2.14). The negative effect of Cu^^ on r m was most pronounced for 

Wembury fronds. The effect of Cu^^ on F'm of Bantham fronds was inconsistent, whereas 

the effect on F'm of Restronguet only occurred at the highest [Cu^^] tested. Negative effects 

of Cu^^ on Ft were observed for all three populations tested, although this effect was more 

pronounced for Wembury than Bantham and Restronguet fronds (Figure 2.15). 

2.3.4. Oxygen evolution 

Gross PS of the fronds was calculated from measurements of oxygen evolution at 

photosynthetically saturating light and dark respiration after 23 days (Figure 2.16). Cû "*̂  

had an inhibitory effect on gross PS of Bantham and Restronguet fronds whereas gross PS 

of Wembury fronds was unaffected. Oxygen evolution of control fronds from the three 

populations ranged from 0.34 ± 0.10 to 0.40 ± 0.08 O2 g"' FW min"' and there were no 

significant differences between them (p>0.01). 

For Bantham fronds [Cu^" ]̂ above 211 nM had an inhibitory effect on gross PS, which 

declined significantly to 0.27 ± 0.04 O2 g"' min' ' in fronds exposed to 422 nM compared 

0.46 ± 0.08 O2 g"' min"' of fronds exposed to 42.2 nM Cu^^ (p<0.01). Gross PS of fronds 

exposed to 422 nM Cû "̂  was not significantly different from gross PS of control fronds 
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Figure 2.14. Effects of Cû "̂  on F'^ measured as chlorophyll fluorescence at a 
photosynthetically saturating light intensity of 365 ^mol m"̂  s'' PAR of Bantham (A), 
Wembury (B), and Restronguet (C) fronds. Fronds were incubated for 23 days in various Cu^^ 
concentrations. Significant differences (p<0.01) in the F'^ values between fronds in two 
treatments within the populations on the different days are indicated by their appropriate 
colour code. Values represents means ± 1 SD (n=5). 
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Figure 2.15. Effect of Cu^^ on Fj at 365 ^mol m^ s'' PAR of Bantham (A), Wembury (B), and 
Restronguet (C) fronds during 23 days of exposure to Cu^^ concenfrations varying from 0 to 
844 nM. Significant differences (p<0.01) in the F, values between fronds in two treatments 
within the populations on the different days are indicated by their appropriate colour code. 
Values represents means ± 1 SD (n=5). 

87 



c 
E 

0.60 

0.40 4 
Ui 

2 0.20 
E 

w 0.00 Q. 
0 42.2 211 422 
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Figure 2.16. Effect of Cu^^ on gross photosynthesis based on oxygen evolution and 
consumption of Bantham ( • ), Wembury, (a ), and Restronguet ( • ) fronds measured at 
a saturating light intensity of 500 nmol m"̂  s"' PAR after 23 days of exposure to various 
Cû "̂  concenfrations. Values represents means ± 1 SD (n=5). 
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and fronds exposed to 211 and 844 nM Cu (p>0.01) though a trend towards decreased 

gross PS with increasing Cu^^ was apparent. For Wembury fronds there was no significant 

effect on gross PS of [Cu^*] up to 844 nM (p>0.01). For Restronguet fronds there was no 

significant effect on gross PS of [Cu^" ]̂ up to 422 nM (p>0.01). Gross PS of fronds exposed 

to 844 nM was reduced significantly to 0.30 ± 0.06 O2 g ' min"' compared to 0.49 ± 0.05 

O2 g"' min"' of fronds exposed to 42.2 n M (p<0.01) but was not significantly different to 

gross PS of control fronds and fronds exposed to 211 and 422 nM (p>0.01). The highly 

variable gross PS of both Bantham and Wembury fronds during exposure to 844 nM Cu^* 

may be an expression of the generally very poor condition of the fronds exposed to this 

concentration. 

During exposure to 42.2 nM Cu^* gross PS of Bantham and Restronguet fronds was 

significantly higher than gross PS of Wembury fronds (p<0.01), whereas PS of Bantham 

and Restronguet fronds was not significantly different at this concentration (p>0.01). 

During exposure to 422 nM Cû "̂  gross PS of Restronguet fronds was significantly higher 

than gross PS of Wembury fronds (p<0.01), whereas gross PS of Bantham fronds was not 

significantly different from gross PS of either Wembury or Restronguet fronds (p>0.01). 

2.3.5. Chlorophyll a content of fronds 

The chlorophyll a content of fronds from the three populations was measured after 23 days 

of exposure to various [Cu^" ]̂ (Figure 2.17). The chlorophyll a content of control fronds 

was 0.32 ± 0.05 to 0.39 ± 0.13 /ig g ' DW and there was no significant difference between 

the three populations (p>0.01). There was no significant effect of [Cu^^] up to 844 nM on 

the chlorophyll a content of Wembury and Restronguet fronds (p>0.01). In Bantham 
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Figure 2.17. Chlorophyll a content of Bantham p ), Wembury (H ), and Restronguet ( I I ) 
fronds after 23 days of incubation in various Cu^^ concenfrations. Values represents 
means ± 1 SD (n=5). 
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fronds the chlorophyll a content was unaffected by [Cu^*] up to 211 n M (p>0.01), but it 

was reduced by about 50% to 18.7±0.08 when exposed to 844 nM Cu "̂" (p<0.01). 

2.3.6. Ligand and copper contents of fronds 

2.3.6.1. Secretion of organic substances 

For Bantham fronds, after 1 day, secretion of organic substances from fronds exposed to 

844 nM was 6.2-fold higher than that of control fronds (p<0.01) (Figure 2.18 A) . After 2 

days secretion had decreased to 3-fold higher than of control fronds (p<0.01) and stayed at 

this level from day 6 until day 23 (p>0.01). 

For Wembury fronds, after 1 day, secretion of fronds exposed to 844 nM Cu^^ was 3.4-fold 

higher than secretion of control fronds (p<0.01) (Figure 2.18 B). After 2 days up until 23 

days, fronds exposed to 844 nM Cu^* continued to secrete 2.1 to 3.6 fold more organic 

substances than control fronds (p<0.01). 

For Restronguet fronds exposed to 844 nM Cû "̂ , secretion was significantly 3-fold higher 

than that of control fronds after 1 day of exposure (p<0.01) (Figure 2.18 C). However, in 

contrast to Bantham and Wembury fronds, secretion of organic substances by Restronguet 

fronds had declined to the level of control fronds after 2 days of incubation (p<0.01). 

Secretion stayed at this level after 6 and 23 days of incubation (p>0.01), but after 12 days 

of exposure to 844 nM Cu^* the fronds secreted 1.9 fold more organic substances than 

control fronds (p<0.01). 
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Figure 2.18. Secretion of organic substances by Bantham (A), Wembury (B), and 
Restronguet (C) fronds over 24 h following 1 to 23 days exposure to Cu^^ 
concentrations varying from 0 to 844 nM. Secretion (absorbance g ' FW frond ml 
was estimated by measuring absorbance of the incubation medium. Relative secretion 
was calculated as 'secretion/secretion of confrol'. Values represents means ± 1 SD 
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Figure 2.19. Pictures of fronds of Fucus after 23 days exposure to Cu^^ concentrations 
varying from 0 to 844 nM. There was a darkening, which was obvious to the naked eye, 
of Bantham (A) and Wembury (B) fronds with increasing concenfrations of Cu^^. There 
was no effect of Cu^^ on the colour of Restronguet fronds. 
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2.3.6.2. Darkening of fronds 

Figure 2.19 shows pictures of the experimental fronds after 23 days of incubation in Aquil 

containing [Cu^^] varying from 0 to 844 nM. Bantham and Wembury fronds exposed to 

844 nM Cu^* and Bantham fronds exposed to 422 nM Cu^^ were clearly darker brown in 

colour than fronds exposed to lower concentrations and control fronds. No apparent colour 

change of Restronguet fronds occurred during the course of the experiment. 

2.3.6.3. Total copper content of fronds 

The total copper contents of fronds were measured initially and after exposure to various 

[Cu "̂̂ ] for 23 days (Figure 2.20 A) . The natural total copper content of Bantham and 

Wembury fronds prior to the experiment was 5.9 ± 1.7 / ig g"' DW and 10.9 ± 2.4 / ig g"' 

DW respectively, which was significantly lower than the natural total copper content of 

Restronguet fronds prior to the experiment (59.2 ± 20.8 /ig g"' DW (p<0.01)). There was a 

significant effect of Cû "̂  on the total copper content of fronds from all three populations 

and significant variation between populations (p<0.01). Bantham fronds were good copper 

accumulators over the whole of the concentration spectrum, whereas the increase in total 

copper content of Restronguet fronds was less pronounced than that of Bantham and 

Wembury fronds. 

The total copper content of Bantham and Wembury control fronds was 6.7 ± 2.81 /ig g"' 

DW and 2.5 ± 0.6 fig g"' DW respectively and significantly different (p<0.01), and 

significantly lower than the total copper content of Restronguet control fronds (24.2 ± 9.8 

fig g ' DW (p<0.01)). At 42.2 and 211 nM the total copper content of Bantham and 

Restronguet fronds was not significantly different (p>0.01) but higher than that of 

Wembury fronds (p<0.01). At 211 n M Cû "̂  the total copper content of Bantham fronds 
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Figure 2.20. Total copper content after 23 days of incubation in Cu^^ concentrations 
ranging from 0 to 844 nM, and background (BG) total copper content of fronds prior 
to the pre-incubation period (A), and total body burden of fronds exposed to 0 to 844 
nM Cû "̂  for 23 days (B). Values represents means ± 1 SD (n=4). 
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was increased 43-fold compared with control fronds whereas the increase in the total 

copper content of Wembury and Restronguet fronds was 10- and 6-fold respectively. When 

exposed to 422 nM Cu^^ the total copper content of Bantham fronds was 696.1 ±38 .3 jUg 

g"' DW which was equivalent to a 103-fold increase and significantly higher than the total 

copper content of Wembury and Restronguet fronds (p<0.01) (282.9 ± 38.3 jiig g"' DW and 

290.4 ± 13.8 /xg g"' DW respectively). The increase in the total copper content of Wembury 

fronds exposed to 422 nM Cû "̂  was equivalent to a 113-fold increase compared with 

control fronds and that of Restronguet fronds to a 12-fold increase. At exposure to 844 nM, 

there was no significant difference in the total copper contents of Wembury and Bantham 

fronds which were 1496.7 ± 238.8 /ig g ' DW and 1662.1 ± 320.9 /xg g ' DW respectively 

(p>0.01), whereas that of Restronguet fronds (923 ± 54.4 fig g ' DW) was significantly 

lower than that of Bantham and Wembury fronds (P<0.01). The total copper content of 

Bantham fronds exposed to 844 nM was equivalent to a 245-fold increase compared with 

control fronds, whereas that of Wembury fronds was equivalent to a 601-fold increase 

compared with control fronds and that of Restronguet fronds to a 38-fold increase. 

2.3.6.4. Total copper burden of fronds 

The total copper body burden of the fronds after 23 days exposure to various [Cu^" ]̂ was 

also calculated as total copper content per frond (~3 cm apical thallus on day 0) (Figure 

2.20 B). The copper burden of Bantham and Wembury control fronds was 0.41 ± 0.52 fig 

frond"' and 0.13 ± 0.03 fig frond"' respectively which was not significantly different 

(p>0.01), but 2-fold higher than the copper burden of Restronguet control fronds (2.0 ± 

0.50 fig frond"' (p>0.01)). At 42.2 nM the copper body burden of Bantham fronds was 

significantly higher than that of Wembury fronds (p<0.01) and lower than that of 

Restronguet fronds (p<0.01). At 211 nM the copper body burden of Bantham and 
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Restronguet fronds was 15.3 ± 0.17 fig frond" and 14.6 ± 0.52 fig frond" respectively and 

not significantly different (p>0.01), but significantly 8.5-fold higher than the copper body 

burden of Wembury fronds which was 1.74 ± 0.042 fig frond:' (p<0.01). At 422 and 844 

nM Cu^^ the total copper body burden was 20.9 ± 6.7 and 46 ± 3.4 fig fronrf' respectively, 

and was not significantly different between the three populations. 
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2.4. Discussion 

Fucus has the ability to develop Cu tolerant and non-tolerant populations dependent on 

the Cu'̂ ^ status in their natural environment. In the present study it was shown that 

Restronguet fronds were more tolerant to Cu^^ exposure than Bantham and Wembury 

fronds, which had the same low tolerance limit. This finding reflected the Cu^^ status in the 

locations from which the algae were collected. The average copper concentration in 

Restronguet Creek was about 0.2 /xM over the past 10 years, and 20-fold higher than the 10 

nM which was average for the Avon Estuary during the same time period (Chapter 1). 

Similarly, Bryan and Gibbs (1983) showed that Restronguet Creek Fucus had a higher 

copper tolerance limit than Fucus from 'clean' estuaries. 

2.4.1. Effects of Cu^* on photosynthesis in Fucus 

2.4.1.1. Effect of Cu^* on the quantum yield of PSII 

The photosynthetic apparatus of Restronguet fronds appeared to be better adapted to 

tolerate prolonged exposure to elevated [Cu^*] than that of Bantham and Wembury fronds. 

The photosynthetic capacity (Pmax) calculated from the quantum yield (^psn) at the 

photosynthetic saturating irradiance of 365 /xmol m'^ s"' PAR of Wembury fronds exposed 

to [Cu "̂̂ ] > 211 nM decreased by about 40% compared with control fronds after 23 days 

(Figure 2.10 B). In comparison, Pmax of Restronguet fronds was only inhibited at 844 nM 

Cu^* which gave a reduction of nearly 50% compared to control fronds (Figure 2.10 C). 

Consequently, photosynthesis of Restronguet fronds had a higher tolerance threshold to 

Cu^* than Wembury fronds. On the other hand, there was no significant difference in Pmax 

of Bantham fronds exposed to 0 to 844 nM Cu^* (Figure 2.10 A). This apparent Cu "̂" 
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tolerance of Bantham fronds may have been caused by general effects of the long 

incubation period on Pmax which was highly reduced in all treatments compare with the 

previous days, and may have offset any effects of Cu^*. 

The negative effect of Cu^* on Opsn and higher tolerance limit of the Restronguet fronds is 

confirmed by calculations of gross photosynthesis (gross PS) based on measurements of 

oxygen evolution (Figure 2.16). Gross PS of Bantham and Restronguet fronds in saturating 

light was reduced after 23 days of exposure to [Cu^^] above 211 and 844 nM. Although 

there was no significant effect of exposure to 844 n M Cu^* on gross PS of either Bantham 

or Wembury fronds, the highly variable data at this concentration suggests that there was 

indeed an effect of Cu^^ on gross PS, which was negative for some fronds. Consequently, 

the oxygen measurements point towards a higher tolerance limit for Restronguet fronds. 

The inhibitory effect of Cu^* on Opsn and oxygen evolution in the present study may be 

caused by inhibition of the electron transport through photosystem n (PSII). It has been 

shown in several experiments that Cû "*" has the potential to inhibit photosynthesis by 

targeting photosynthetic electron transport on either the donor or the receptor side of the 

reaction centre of PSH (Yruela et al, 1991, 1993; Schroder et al, 1994; Jegerschold et al, 

1995). This inhibitory effect would result in a reduction in the efficiency of electron 

transport in PSn and may be the cause of the observed reduction in the quantum yield and 

oxygen evolution. However, there was no consistent effect of Cu^* on the maximum 

quantum yield (Fy/Fm) of dark adapted Fucus, which was constant at about 0.74 for all 

three populations during the 23 days of exposure to up to 844 n M Cu^* (Figure 2.11). 

Similar effects of Cû "̂  on the quantum yield in light and darkness have been demonstrated 

for other species. Opsn of maize seedlings was reduced by up to 70% at saturating 

irradiances after culture in 80JLIM C U S O 4 for 15 days whereas the quantum yield of dark-

adapted leaves (Fy/Fm) was largely unaffected (Ouzounidou et al, 1997). The results in the 
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present study and those by Ouzounidou and co-workers (1997) suggest that Cu may 

inhibit tolerance to high irradiances at the reaction centre in PSn. The inhibitory effects of 

Cû "̂  observed at photosynthetically saturating irradiances may also be the result of 

amplification of photoinhibition. This has been demonstrated previously for other systems, 

where Cu^^ may either cause direct damage to the membrane spanning subunit of PSn, the 

D l protein via increased production of reactive oxygen species (ROS) (Yruela et al., 

1996), or inhibit the repair mechanism of photosynthetically damaged D l protein (Patsikka 

etal, 1998). 

The Restronguet population seems to possess the ability to handle excess light energy 

better than the Bantham and Wembury population. The reduction itl Pmax 

of Restronguet 

fronds exposed to 844 nM Cu^* coincided with an 8-fold increase in non-photochemical 

quenching after 23 days (NPQ) from <0.25 to about 2, and NPQ of fronds exposed to 422 

nM increased 4-fold although there was no effect on Pmax (Figure 2.13 C). A sirmlar 

increase in NPQ occurred after 12 days although the corresponding decrease in Pmax was 

not observed. Similarly, Ouzounidou and co-workers (1997) demonstrated a correlation 

between inhibited photosynthetic energy conversion in maize leaves during Cû "*" exposure 

and increased heat dissipation. The relationship between Pmax and NPQ is usually expected 

during photoinhibition, as any decrease in photosynthetic energy conversion at a constant 

irradiance would normally result in an increase in the proportion of light dissipated as 

thermal energy (Demmig-Adams and Adams, 2000; Maxwell and Johnson, 2000). In 

contrast, Bantham and Wembury fronds were not well adapted to handle the negative 

effects on the photosynthetic apparatus caused by Cû "̂ . There was some indication of 

increase in NPQ of both Bantham and Wembury fronds at 42.2-211 nM Cu^*, which is 

lower than the concentrations, which affected NPQ of Restronguet fronds (Figure 2.13 A 
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and B). This finding indicated that Cu * induced photoinhibition in Bantham and Wembury 

fronds at lower concentrations than those which affected Restronguet fronds. 

NPQ in brown algae is expected to occur mainly as heat dissipation in the xanthophyll 

cycle (Vershinin and Kamnev, 1996; Harker et al, 1999; Coelho et al, 2001), which is 

also considered the main path of NPQ in many flowering plants (Ruban et al, 1993; 

Niyogi et al, 1998; Demmig-Adams, 1998; Ruban and Horton, 1999). The results in the 

present experiment suggest that there is no inhibitory effect of Cû "̂  on the xanthophyll 

cycle, which may even be increased in Restronguet fronds, whereas there are direct 

damaging effects of Cu^^ on the xanthophyll cycle in Bantham and Wembury fronds. The 

rate of NPQ is usually correlated with the size of the xanthophyll pool in the light 

harvesting complex and a high rate of de-epoxidation of violaxanthin to zeaxanthin, and a 

large pool of xanthophyll is one of the features, which distinguish sun-adapted plants and 

brown algae and allows them to have high levels of NPQ compared with shade adapted 

individuals (Demmig-Adams, 1998; Harker et al, 1999). Consequently, the greater 

increase in NPQ of Restronguet fronds may be the result of more resistant xanthophyll 

pool than in Bantham and Wembury fronds. However, there are other features which are 

also determining for high NPQ. The xanthophyll cycle is dependent on conformational 

changes of the membrane-spanning pigment-binding protein, PsbS (Li et al, 2000). 

Furthermore, the onset of the xanthophyll cycle occurs in response to acidification of the 

thylakoid lumen as excess light energy results in large ApH across the thylakoid membrane 

(Horton et al, 1996; Ruban and Horton, 1999). In tum, acidification of lumen is dependent 

on Câ "̂  release from stores at PSn (Krieger and Weis, 1999). Due to the high affinity of 

Cu^^ for polypeptide -SH groups (Stauber and Florance, 1986; Rijstenbill et al, 1994), the 

PsbS protein, as well as the trans-membrane HT-transport and release of Câ "̂  from internal 

stores, are potential targets for Cû "̂  in Fucus NPQ. Cû "̂  has the potential to cause such 
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damage as it is known to inhibit channel-gated Ca release (Kasai and Neher, 1992; 

Osipenko et al., 1992; Klusener et al., 1997), as well as ATPases and other ion transporters 

(Kiss et al., 1991; Viarengo et al., 1996; Amasheh and Weber, 1999; Demidchik et al., 

1997; 2001). 

I propose that Cû "̂  has the ability to reduce the tolerance of Fucus to saturating light. 

Furthermore, Restronguet fronds are better adapted to divert the excess light energy 

through thermal energy conversion in NPQ than Bantham and Wembury fronds. 

Restronguet fronds may be distinguished by a larger xanthophyll pool in the light-

harvesting complex and/or other features, which prevents inhibition of proteins and ion 

transporters underlying the xanthophyll cycle. 

2.4.1.2. Effects of Cu^* on photosynthetic capacity 

The inhibitory effect of Cû "*" on the efficiency with which electrons are transported through 

PSn in Fucus only appeared after prolonged (23 days) exposure. However, Cu^* may cause 

oxidative damage to chlorophyll a which in tum may result in a negative effect on the total 

photosynthetic electron turnover in PSn. In the present experiment such an effect was 

indicated after short-term Cu^* exposure, and was more distinct for Bantham and Wembury 

fronds than for Restronguet fronds (Figure 2.14 and 2.15). F'm and Ft of Bantham and 

Wembury fronds decreased by more than 30% compared with controls in saturating light 

as early as 2 days after exposure to 844 nM Cû "̂ , whereas such effects were only apparent 

for Restronguet fronds after 6 days of exposure. The negative effect of Cû "̂  on F'm and Ft 

coincided with a reduction in the chlorophyll a content, particularly of Bantham fronds, of 

50% from 0.38 to 0.19 fig g ' FW after 23 days exposure to 844 nM Cu^* (Figure 2.17). 

Negative effects of Cû "̂  on the individual fluorescence values which were not reflected in 
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the quantum yield have also been shown for other systems. Exposure of wheat seedlings to 

20 / i M CUSO4 for 10 days resulted in a reduction in Fm and Fy values without causing 

changes to Fy/Fm (Ciscato et ah, 1997). This reduction in Fm and Fy coincided with a 40% 

reduction in the chlorophyll a content (Ciscato et al. 1997). Similarly, Rijstenbil and co

workers (1994) showed a 50% reduction in the chlorophyll a content of diatoms as 

[Cû '̂ ]cyt increased to 15 nM. The observed reduction in the chlorophyll a content may be 

an expression of a general reduction of the protein pool. However, Cû "̂  may target 

chlorophyll a more specifically than other proteins, as the ratios chl a/chl c and chl a/chl b 

were shown to decrease by 33% and 40% respectively during Cu^* exposure in diatoms 

and wheat (Rijstenbil et al. 1994; Ciscato et al, 1997). 

Cû "̂  induced oxidative damage (Luna et al. 1994; Teisseire and Guy, 2000) may be the 

cause of chlorophyll a breakdown in the present and in other studies (Rijstenbil et al. 

1994; Ciscato et al, 1997). Induction of reactive oxygen species (ROS) by Cu^^ may occur 

with (Sandmann and Boger, 1980; Yruela et al, 1996) and without simultaneous inhibition 

of photosynthetic electron transport (Navari-Izzo et al, 1998). Consequently, Cu '̂*'-induced 

oxidative damage may have caused chlorophyll a breakdown, which in tum may have 

resulted in a reduction in the overall electron turnover by shut down of entire 

photosynthetic units (reaction centres with light harvesting chlorophyll) without 

simultaneous inhibitory effects on the quantum yield in light and darkness (<I>psn and 

Fy/Fm). 

Decreased oxygen evolution and electron turnover in FSB may be the result of indirect 

effects such as a decreased requirement for photosynthetic products, which could occur 

during direct inhibitory effects of Cu^* on physiological processes other than electron 

transport in FSB. Effects of Cû "*̂  on processes downstream of PSH could result in a 
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decrease in the content of PSn chlorophyll resulting from feed back mechanisms that may 

ultimately lower the cost of maintenance. It has been shown that Cu^* may have an 

inhibitory effect on the photoreduction of NADP"^ in photosystem I (PSI) (Sandmann and 

Boger, 1980). Sandmann and Boger (1980) showed that reduction of NADP"^ to NADPH 

with DCIP (dichlorophenolindophenol) as an electron donor was inhibited by 50% in 

spinach chloroplasts exposed to 2 JLIM CUSO4. Furthermore, Cû "̂  has the ability to inhibit 

H^-ATPase activity (Uribe and Stark, 1982; Demidchik et al., 1997) and may therefore 

inhibit photophosphorylation, which occurs downstream of FSB and PSI in chloroplasts. 

Exposure of spinach chloroplasts to 11 fiM Cû "̂  resulted in a 28% reduction of 

photophosphorylation within 3 min. (Uribe and Stark; 1982). The potential inhibitory 

effects of Cû "̂  on PSI and iF'-ATPase activity would not be reflected in the efficiency of 

PSn. However, inhibition of H*-ATPase and NADP* reduction may result in a lower 

requirement for electron delivery and mediation of H* transport across the thylakoid 

membrane by PSE, hence making part of this photosystem redundant. 

Reduced demand for carbohydrates may be one result of Cû "̂  inhibition of physiological 

processes downstream of photosynthesis which, however, is unlikely to be the cause of 

reduced photosynthesis in the present study. There was a dramatic 3-fold increase in dark 

respiration of Bantham and Wembury fronds after 2 days of exposure to 844 nM Cu^* and 

respiration was not inhibited at any time during the course of the experiment (Figure 2.05). 

The negative effect of Cû "̂  on F'm and Ft observed in the present study may be a true 

effect brought about by oxidative damage and chlorophyll a breakdown as indicated for 

Bantham fronds. The results could, however, also be an artefact caused by absorbance 

changes in the fronds. During exposure to 844 nM there was an obvious colour change of 

Bantham and Wembury fronds which became increasingly dark brown during the course of 
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the experiment and were almost black after 23 days of exposure (Figure 2.19). Darkening 

of the fronds may be the result of accumulation of accessory pigments such as fucoxanthin, 

which causes the brown colour of brown algae. Accumulation of organic acids and 

polyphenols, which is a well-known response of Fucus to exposure to high [Cu^*] (Smith 

et al., 1986) may also contribute to the darkening of the fronds. The colour change of the 

fronds was so intense that even very little absorbance by the accumulated substance at the 

main emission wave length of chlorophyll fluorescence at 685 nm (Falkowski and Raven, 

1997) could potentially have caused the reduction in the measured fluorescence of fronds 

exposed to high [Cu^*]. However, the correlation between reduced F'm and Ft and 

darkening of the fronds was not consistent. For Restronguet fronds there was a pronounced 

negative effect of 844 n M Cu * and Ft whereas no obvious colour change was 

observed. Hence the negative effects of Cû "̂  on F'm and Ft were not necessarily brought 

about by absorbance changes, at least not for Restronguet fronds, and the results may 

therefore reflect real quantitative effects of Cu^* on PSn. 

2.4.2. Mechanisms of Cu^* tolerance in Fucus 

The different levels of copper tolerance of fronds from the different populations may 

reflect their ability to avoid uptake and/or handle the metal intemally, as the success of 

plants and algae in contaminated habitats is dependent on keeping [Cû "̂ ]cyt close to zero 

(Murphy and Taiz, 1995; van Hoof et al., 2001). In the present study, organic substances, 

probably including polyphenols were released from Fucus during Cu^* exposure (Figure 

2.18). Secretion of polyphenols, which have high Cû "̂  complexing capacity, in order to 

lower the external concentration of Cû "̂  is believed to be one of the primary tolerance 

strategies of brown algae during exposure to high [Cu^*] (Sueur et al., 1982; Gledhill et al.. 
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1997). However, rather than chelating Cu * externally, secretion of polyphenols may be a 

mechanism of detoxifying the tissue of accumulated Cu^*. Due to water movements, the 

water inunediately surrounding the algae would be renewed quickly and therefore require 

continued secretion of organic compounds in order to chelate toxic metal ions in a polluted 

environment. It therefore seems possible that Fucus secrete the organic compounds with 

Cû "̂  already attached in order to detoxify the tissue. The secretion from Bantham fronds 

exposed to 844 nM Cu^* increased 6-fold compared to controls after 1 day, and that of 

Wembury and Restronguet fronds 3.5-fold. After 2 days of exposure to 844 nM, secretion 

from Restronguet fronds had returned to the level for control fronds, whereas secretion 

from Bantham and Wembury fronds continued for the rest of the experiment. Although the 

organic compounds secreted by the fronds may have been polyphenols, it is likely that at 

least part of the 6-fold increase in secretion by Bantham fronds was caused by the shock of 

sudden exposure to 844 nM [Cu^*]. Such release may, in part, have been caused by lipid 

peroxidation and oxidative damage to the plasma membrane, which may have resulted in a 

general loss of cellular substances. This would, however, have contributed significantly, 

albeit indirectly, to lowering [Cu^*] in the medium as organic substances in general are 

good chelators of heavy metals (Gledhill et al, 1997). 

The pattem of secretion suggests that Restronguet fronds coped better with a high degree 

of external un-chelated Cû "̂  than Bantham and Wembury fronds. Yet, interestingly, 

Restronguet fronds were better adapted to avoid uptake of large concentrations of total 

copper. Brown algae usually accumulate high internal total copper concentrations during 

Cu^* exposure (Bryan and Hummerstone, 1973; Bryan and Gibbs, 1983; Martin et al., 

1997; Stengel and Dring, 2000). However, the high content of polyphenols in fucoids 

(Ragan, 1979) may allow the algae to handle Cu^* intemally, by chelation away from the 

cytoplasm (Smith et al., 1986). 
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At about 1500 /Ag g DW, Bantham and Wembury fronds exposed to 844 nM for 23 days 

were accumulating 50% more total copper than Restronguet fronds (Figure 2.20). It is 

unlikely that the organic substances secreted by Restronguet fronds had a much higher 

capacity of chelating Cu^* in the medium than those secreted by Bantham and Wembury 

fronds. Organic ligands secreted by fucoids in general have a pKcuL = 10.15-10.50 (Sueur 

et al., 1982; Gledhill et al., 1999), which is amongst the highest Cu^* complexing constants 

known for ligands secreted by algae (Gledhill et al., 1997). The cellular mechanism of 

Cu^* uptake offers an alternative explanation. Cellular Cu^* uptake involves reduction of 

Cu^* to Cu* by membrane reductases (Hassett and Kosman, 1995; Georgatsau et al., 1997) 

and subsequent transport by speciaUsed Cu^* transporters, Ctr l and Ctr3 (Dancis et al., 

1994; Peiia et al., 2000). Populations of Fucus which are adapted to unpolluted habitats are 

exposed to very low [Cu^*], which may even be limiting. To cope with this shortage of 

copper it is likely that they have developed a high number of Cu^* uptake sites. Likewise 

Fucus in Cu^* contaminated habitats, which are not suffering from Cu^* deficiency, would 

be expected to have relatively few copper transporters in the cell membrane. Consequently 

when Cu^* is in excess, it might be expected that Bantham and Wembury fronds would 

accumulate higher quantities than Restronguet fronds. 

Remarkably, Wembury fronds were accumulating less copper than both Bantham and 

Restronguet fronds when exposed to [Cu^*] below 422 nM. Wembury fronds were 

collected from a wave exposed location and consequently had tougher tissue with a lower 

surface area/weight ratio than Bantham and Restronguet fronds from wave protected 

locations, which may explain the lower uptake per gram biomass at low [Cu^*] in 

Wembury fronds. This is however inconsistent with greater Cu^* damage and induction of 
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secretion in Wembury fronds. Consequently, a very small [Cu ]cyt may be needed to 

induce damage in Wembury fronds. 

The accumulation of copper in Bantham and Wembury fronds may have coincided with an 

increase in the internal polyphenol pool. The colour of Bantham and Wembury fronds 

became increasingly dark brown with increasing internal total copper concentration and 

[Cu^*] in the medium, which may have been the result of an increase in the internal 

polyphenol pool in order to cope with the increasing external [Cu^*]. However, no colour 

change of Restronguet fronds was noticeable although they did accumulate levels of 

copper which were equivalent to the concentrations in the darkened Bantham fronds. 

Consequently, Restronguet fronds may have means of handling internal copper, in addition 

to chelating with polyphenols. A metallothionein-encoding gene has recently been 

identified in Fucus (Morris et al., 1999) and increased metallothionein gene expression 

may, in part, explain the higher Cu^* tolerance in Restronguet fronds than in Bantham and 

Wembury fronds. Metallothionin genes in Fucus are transcribed during exposure to high 

[Cu^*] and may contribute to Cu^* tolerance in Fucus (Morris et al., 1999). Morris and co

workers (1999) did not examine the expression of metallothionein genes of Fucus from 

populations naturally exposed to different levels of copper. However, it has been shown 

that metallothionin genes are transcribed at higher rates in tolerant than non-tolerant strains 

of Arabidopsis and Silene during copper exposure (Murphy and Taiz, 1995; van Hoof et 

at., 2001). Consequently, it is possible that Restronguet fronds may express the 

metallothionin gene at higher levels than Bantham and Wembury fronds, which would 

provide them with higher concentrations of a cytosolic ligand with high copper complexing 

capacity. 
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The abihty to chelate external Cu by secretion of ligands, and to immobilise internal Cu 

by binding it to polyphenols and storeing it in physodes and the cell wall, is a general 

feature of Fucus, which may allow un-adapted populations to cope with some degree of 

copper exposure. In spite of these abilities, non-tolerant Bantham and Wembury fronds 

were only capable of chelating 42.2 n M free Cu^* in the external medium by secretion of 

organic substances and internal accumulation as any higher concentrations affected 

photosynthesis, dark respiration and growth. The tolerant Restronguet fronds are unlikely 

to have higher Cu^*-chelating capacity than non-tolerant strains yet their metabolism was 

mainly unaffected by [Cu^*]ext above 42.2 nM. The mechanism of tolerance in Restronguet 

fronds may therefore rely on reduced Cu^* uptake, due to a limited number of Cu^* 

transporters in the cell membrane and for high transcription of the metallothionein gene 

during copper exposure. 

2.4.3. Metabolic responses to C u ^ in tolerant and non-tolerant Fucus 

Amongst the potentially toxic effects of Cu^*, inhibition of photosynthesis and increased 

production and release of organic substances during exposure to high [Cu^*] in non-

tolerant Fucus is reflected in the rate of dark respiration and the relative growth rate 

(RGR). In agreement with other experiments (Bryan and Gibbs, 1983), there was a 

pronounced negative effect of Cu^* on RGR in non-adapted populations of Fucus, whereas 

RGR of Restronguet Fucus was only slightly affected at the high [Cu^*] of 844 nM. 

Similarly, dark respiration of Restronguet fronds was unaffected by [Cu^*] up to 844 nM, 

whereas the initial shock of exposure to this concentration resulted in a 2-fold increase in 

dark respiration of Bantham and Wembury fronds after 2 days, and remained slightly 

elevated for Wembury fronds throughout the experiment. The response pattem of dark 
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respiration of Bantham and Wembury fronds during exposure to high [Cu^*] was similar to 

that of other algae. Four days of exposure to 8 / A M copper resulted in a 2-fold increase in 

the dark respiration of Nitella nigra followed by a decrease to the level of controls after 8 

days (Gupta and Arora, 1978). 

The increased demand for production of Cu^*-complexing ligands in the non-tolerant 

Bantham and Wembury populations could apply an extra cost to their metabolism during 

exposure due to the effects on Cu^* homeostasis and general repair mechanisms. To 

similar effect, production of ROS during Cu^* exposure may result in highly increased 

antioxidant production (Luna et al., 1994; Yruela et al., 1996; Navari-Izzo et al., 1998; 

Teisseire and Guy, 2000). Consequently, exposure of non-adapted Fucus to elevated [Cu^*] 

may induce cellular responses, which would increase the respiratory demands. 

Simultaneous inhibition of the photosynthetic performance presents the algae with a 

dilemma: They need to produce enough ligands to chelate Cu^* to non-toxic levels as well 

as antioxidants, but not so much that their reserves are exhausted by increased respiratory 

demands. Consequently, whereas the Cu^*-resistant Restronguet fronds seemed capable of 

avoiding this physiological dilemma during Cu^* exposure and maintain an almost 

unaffected growth rate, failure of the non-tolerant Bantham and Wembury fronds to meet 

highly increased physiological demands resulted in a pronounced negative effects on their 

growth rates. 

2.4.4. Summary of discussion 

Effects of Cu^* on the physiology of adult populations of Fucus with different tolerance 

limits were studied in the present chapter. Fucus from the heavily Cu^* polluted 
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Restronguet Creek were better equipped to handle exposure to high concentrations of Cu 

than Fucus from the unpolluted Bantham Quay and Wembury Beach. 

Restronguet Fucus secreted less organic substances and accumulated lower concentrations 

copper during Cu^* exposure than Bantham and Wembury Fucus. This finding led to the 

conclusion that the mechanism of Cu^* resistance in tolerant Fucus may involve fewer sites 

for Cu^* uptake in the plasma membrane as well as higher levels of metallothionien 

expression compared with non-tolerant specimens. Lack of such mechanisms of resistance 

in non-tolerant Bantham and Wembury Fucus may have resulted in the increased 

respiration and reduced growth rate through increased cost of polyphenol and antioxidant 

production as well as a greater demand for general repair mechanisms. 

The ability of Cu^* to reduce the quantum yield of PSH was expressed in both tolerant and 

non-tolerant Fucus. Increased non-photochemical quenching in the Restronguet population 

during Cu^* exposure suggested that Cu^* reduced the tolerance of Fucus to saturating light 

and that the Restronguet population was adapted to divert the resulting excess light energy 

through the xanthophyll cycle in contrast to the Bantham and Wembury populations. 

Here I have addressed only the effects of Cu^* on the adult life cycle stages of Fucus. It is, 

however, a general belief that young Fucus zygotes are very sensitive to Cu^* exposure 

which may result in reduced growth and arrested development (Anderson and Kautsky, 

1996; Bond et al., 1999; Gledhill et al., 1999). In Chapter 3 effects of Cu^* on growth of 

Fucus germlings from Cu^* tolerant and non-tolerant populations wi l l be compared. The 

main emphasis wi l l be on effects of Cu^* on early development in the Fucus zygote from a 

non-tolerant population and on identifying the mechanism of arrested development and 

growth during Cu^* exposure. 

I l l 



C H A P T E R 3 

Targets of Cu^"" Toxicity in the 

Early Development of Fucus serratus 
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3.1. Introduction 

The presence of polar axes in an embryo is essential for correct development of the overall 

body plan. In animals there are two main axes, the antero-posterior axis defining head and 

tail, and the dorso-ventral axis laid down at a right angles to the former and defining front 

and back. In plants there is one main axis, the apical-basal axis, which defines shoot tip 

and root tip (Wolpert et al., 1998). Distinct strategies to set up the primary embryonic axis 

have been developed in different groups of organisms (Kropf, 1992; Kimble, 1994; Kessler 

and Melton, 1994; Jiirgens et al., 1995). Axis establishment can occur either before or after 

fertilisation at either the single- or multicellular stage. In the fruit fly, Drosophila, maternal 

gene products establish the axes in the unfertilised egg and set up the framework for 

subsequent development when still inside the ovary (Kimble, 1994). Likewise, maternal 

factors define the antero-posterior axis in the toad, Xenopus egg, whereas the dorso-ventral 

axis is established by sperm entry (Kimble, 1994). In mammals, axis establishment does 

not occur until the multicellular level where the fate of the individual cell is dependent on 

its relative positioning in the cleaving embryo (Kessler and Melton, 1994). Still other 

strategies for establishment of a polar axis have developed in different types of plants and 

algae. 

3.1.1. Polarisation in plants and algae 

Polar axis organisation in flowering plant embryos is established during oogenesis 

(Goldberg et al., 1994; Jiirgens et al., 1995). In many dicotyledon species such as 

Arabidopsis, polarity is determined by maternal factors and is apparent in the highly 

asymmetric unfertilised egg cell (Goldberg et al., 1994; Jurgens, 1995). The nucleus and 
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most of the cytoplasm is located towards the antipodal side, while a large vacuole is 

located at the micropylar end of the egg cell (Goldberg et al, 1994). Following 

fertilisation, reorganisation of the organelles occurs, which accentuates the polar 

organisation of the egg cell. In monocotyledons, such as maize, eggs are pear shaped and 

are also polarised, although the polarisation is less pronounced than in most dicotyledons 

(Schel et al., 1984). In maize the position of the vacuole and nucleus are exchanged 

following fertilisation, so that the nucleus becomes orientated towards the micropylar end 

(Kranz et al., 1995). The first zygote cell division in plants normally occurs transversely 

with respect to the polar axis of the zygote (Kropf et al., 1990; Jiirgens et al., 1995; Kranz 

et al., 1995). The first cell division in Arabidopsis embryos is highly asymmetric, and 

forms a small apical cell, which develops into the pro-embryo and the much larger basal 

cell which develops into part of the root meristem and mainly serves as extra-embryonic 

support tissue (the suspensor) (Jiirgens et al., 1995). In monocotyledons, the cell divisions 

following the first division appear to be very irregular and random and result in a 

multicellular, callus-like stmcture. The polarity in the embryo can only be observed again 

10 to 12 days after fertilisation (Kranz and Lorz, 1993; Kranz et al., 1995). 

The angiosperm egg cell is surrounded by gametophyte cells and embedded in the female 

reproductive organ, where fertilisation takes place (Goldberg et al., 1994). Consequently, 

studies of egg polarisation and embryo development in angiosperms are difficult. Methods 

have only recently been developed for in vitro fertilisation of isolated gametes and 

development of the resulting embryos (Kranz and Lorz, 1993; Breton et al., 1995). In vitro 

fertilisation and culturing of zygotes facilitates the study of early development in flowering 

plants but obtaining embryos is difficult. 
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Research on seedhng phenotypes in Arabidopsis mutants have revealed important 

information on pattem formation in plants (Mayer et al.. 1991; Mayer et al., 1993; 

Vroemen et al., 1996; Berleth et al., 2000). It has been shown that the apical-basal axis in 

Arabidopsis is divided into apical, central and basal region, the differentiation of which is 

controlled by the expression of genes including gurke, fackle and monopteros (Mayer et 

al., 1991; Vroemen et al., 1996). In their work, Mayer and co-workers (1991) suggested 

that the gnom gene possibly played a special role in the organisation of the polar axis. 

Further work on the gnom mutant, which tends to have a symmetrical first cell division 

(Vroemen et al., 1996), suggests that the gnom gene is directly involved in asynunetric cell 

division and is necessary for axis formation in Arabidopsis (Mayer et al., 1993; Vroemen 

et al., 1996). Work with mutants has also shown that auxin provides positional information 

and is important for expression of the polar axis in Arabidopsis embryos (Berleth et al., 

2000; Souter and Lindsey, 2000). Furthermore, it has been shown that the gnom mutants 

have defective auxin transport and effectively that the gnom gene is involved in regulation 

of the auxin transport mediator, PINl, (Steinman et al., 1999; Berleth et al., 2000; Souter 

and Lindsey, 2000). Although methods such as in vitro fertilisation and embryonic mutants 

facilitates the research, studies of early development in flowering plants are still 

problematic. Studies on early development in other systems, which share similarities with 

plants, i.e. fucoid algae, are much easier since gametes and zygotes are very easily 

obtained and cultured. 

Zygotes of fucoid algae (Fucus and Pelvetia) have long been used in experimental studies 

of development in plant embryos and provide an excellent model system. Unfertilised eggs 

and sperm are released from the conceptacles of adult algae into the surrounding 

environment where oogamous fertilisation and zygote development take place (Pearson 

and Brawley, 1996). Fucoid zygotes are easily obtained in large numbers and are simple to 
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culture and manipulate. The first experimental studies on fucoid zygotes were carried out 

by Thuret as early as 1854 (Thuret, 1854). Synchronous cultures of zygotes can be 

obtained and are therefore well-suited for studies of the factors controlling the 

developmental processes following fertilisation. In contrast to plant and most animal 

zygotes, the Fucus zygote is apolar before and several hours after fertilisation. The young 

zygote possesses no particular cytoplasmic order and is essentially radially symmetrical in 

all planes. The nucleus is located in the centre of the cell, and the cytoskeleton, various 

organelles and vesicles are uniformly distributed (Jaffe, 1966; Pu et at, 2000). Unfertilised 

Fucus eggs are arrested in the G l phase of the cell cycle (Corellou et al., 2000) and their 

metabolism is restricted to a level essential for cellular maintenance. Once fertilised a 

whole range of cytological processes are initiated, all of which are dependent upon 

intracellular communication. 

3.1.2. Early development in the Fucus zygote 

3.1.2.1. Early fertilisation events 

Fertilisation potential is the first detectable event following fertilisation of a Fucus egg and 

involves electrical depolarisation of the plasma membrane (Brawley, 1991; Taylor et al., 

1992; Taylor and Brownlee, 1993). The unfertilised Fucus egg maintains a resting 

membrane potential of about -60 mV mainly by efflux of K* ions from the cytosol into the 

surrounding environment (Brawley, 1991; Taylor and Brownlee, 1993; Roberts et al., 

1994). Contact of a sperm with a putative sperm receptor in the plasma membrane may 

induce the immediate opening of Na* channels, resulting in a large increase in inward Na* 

current and depolarisation of the membrane potential (Brawley, 1991; Taylor et al., 1992). 

Depolarisation of the membrane potential may, in tum, induce the opening of voltage-
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gated Ca channels in the cell membrane, influx of Ca into the cytoplasm and a further 

increase in the membrane potential (Taylor and Brownlee, 1993; Roberts et ah, 1994; 

Roberts and Brownlee, 1995). Depolarisation to about -5 mV induces the opening of 

voltage-regulated K*-channels, and increased K* efflux, which restores the membrane 

potential to its normal resting level within a few minutes of fertilisation (Taylor et al., 

1992; Taylor and Brownlee, 1993; Roberts et al., 1994). This fertilisation potential may 

play an important role in preventing polyspermy (Brawley, 1991). 

Egg activation occurs upon fertilisation and involves resumption of arrested physiological 

processes such as protein synthesis and cell cycle. In animal cells, egg activation has been 

shown to depend on a large transient elevation of cytoplasmic Ca^*, which propagates the 

egg as a wave of Ca^* release from intracellular stores. Small, locahsed Ca^* transients of 

about 200 nM can be detected in the cortical area of the Fucus zygote upon fertilisation. 

These Ca^* elevations are dependent on the fertilisation potential and influx of external 

Ca^*, whereas the role of internal Ca^* release is uncertain (Roberts et al., 1994). The 

fertilisation-induced Ca^* transients may be a requirement for egg activation as the Ca^* 

transient is involved in cell wall secretion in the Fucus zygote (Roberts et al., 1994; 

Roberts and Brownlee, 1995). The unfertilised Fucus egg possesses no cell wall but cell 

wall synthesis can be observed in the zygote about 10 minutes after fertilisation (Quatrano 

and Stevens, 1976; Roberts et al., 1994). It was shown that injecting the Ca^* buffer 

BAPTA into eggs or removing Ca^* from the external medium inhibits cell wall secretion 

in the Fucus zygote (Roberts et al., 1994; Roberts and Brownlee, 1995). 

3.1.2.2. Early polarisation 

Establishment of the polar axis in the Fucus zygote takes place a few hours after 

fertilisation as spatial information provided by environmental vectors is translated into 
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developmental responses in a two-step process (Quatrano, 1973; Kropf, 1992). The 

direction of incident light is probably the principal external polarising vector but water 

current and chemical and electrical gradients can also bring about axis selection (Bentmp 

et al, 1966; Gibbon and Kropf, 1993). Furthermore, zygotes in dense cultures orientate 

their axes towards one another (Hurd, 1920; Berger and Brownlee, 1994). I f no external 

polarising stimulus is present, zygotes still form an axis and very early work suggests that 

the site of sperm entry could determine the orientation of this 'default' axis (Knapp, 1931). 

This theory has only recently been confirmed. Within a few minutes of fertilisation, an 

actin patch forms at the site of sperm entry and, supposedly, marks the 'default' axis, 

which becomes overwritten during subsequent developmental events (Hable and Kropf, 

2000). The time course for the early developmental events in Fucus is summarised in 

Figure 3.01. During the phase termed 'axis formation' (3-8h after fertilisation, AF) a 

reversible polar axis is formed (Berger and Brownlee, 1994; Love et al, 1997). This initial 

axis can be re-orientated by changing the direction of the polarising light vector until the 

period termed 'axis fixation' (8-14h AF), after which the orientation of the polar axis can 

no longer be changed (Berger and Brownlee, 1994). Essential irreversible stmctural 

modifications involving the cell wall and organisation of the filamentous actin 

cytoskeleton take place during axis fixation (Kropf et al, 1988; Shaw and Quatrano, 

1996b). Orientation of the polar axis is expressed by the germination of a rhizoid about 20h 

AF. 

3.1.2.3. Detecting the light signal 

Initial detection of the polarising light signal in the Fucus zygote may involve focusing 

light at photoreceptors but the exact mechanism of light detection is unclear, and the 

optical properties of the Fucus zygote appear to be complex (Berger and Brownlee, 1994). 

The ability of the zygote to polarise under a very wide range of irradiances (Jaffe, 1958; 
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Axis fixation Germination 

Figure 3.01. Axis formation, fixation and germination in Fucus zygotes in response to the 
direction of polarising light. The direction of light is indicated by the arrow. Before and 
just after fertilisation the zygote is apolar (a). From 3 to 8 h after fertilisation (AF) a polar 
axis is formed but can be re-orientated in response to light coming fi-om another direction 
(b). At 8-14 h AF the polar axis is fixed in position (c), and at about 20 h AF the axis is 
expressed by the germination of a rhizoid (d). 
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Bentrup, 1963) indicates that the zygote responds to differences in light level in different 

regions of the cell and not to the absolute light intensity at any particular spot. Zygotes can 

be polarised by light pulses lasting less than one second given during the photosensitive 

period (Bentrup, 1963) and consequently possess the ability to memorise the light signal, 

which is subsequently translated by slower mechanisms, as axis formation takes at least 

one hour (Kropf 1992; Berger and Brownlee, 1994). 

One established theory of light detection during polarisation suggests that early events in 

polar axis establishment involve unequal excitation of photoreceptors in the plasma 

membrane by the light vector (Jaffe, 1958; Berger and Brownlee, 1994). This may be 

associated with enhanced redox transport at the cell surface on the side of the zygote facing 

away from the light (Berger and Brownlee, 1994). Asymmetric activation of a plasma 

membrane electron transport chain may in tum induce localised increases in Ca^* 

permeability of the plasma membrane through phosphorylation of Ca^* channels (Berger 

and Brownlee, 1994). Increased Ca^* influx and small cytosolic Ca^* elevations on the 

shaded side of the zygote could provide a polar signal which is sufficient to initiate axis 

establishment. 

An alternative model for translation of the light signal, which involves retinal and 

asymmetric actin polymerisation, has recently been proposed. The pigment, retinal, is 

known to form light sensitive complexes in association with opsins in animals, and the 

presence of retinal in Pelvetia zygotes (Robinson and Miller, 1997) led to the conclusion 

that similar complexes may exist in fucoid zygotes (Robinson et al., 1998). In their 

analogy, Robinson and co-workers (1998) proposed a spatial variation in the level of their 

enzyme, cyclic GMP, in response to a light gradient within the zygote during early 

photopolarisation. The finding that blue light alone was sufficient to cause a two-fold 
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increase in the level of cyclic GMP on the side of the zygote facing the light supported this 

hypothesis (Robinson and Miller, 1997; Robinson et al., 1998). Cyclic GMP is known to 

promote actin de-polymerisation (Furukawa and Fechheimer, 1997). It was therefore 

suggested that elevated levels of cyclic GMP on the side of the zygote which faced the 

light would result in actin de-polymerisation in this region and increased actin 

polymerisation at the rhizoid pole, and in this way mark the polar axis (Robinson and 

Miller, 1997; Robinson et at., 1998). 

3.1.2.4. The role of Ca^* in polarisation 

The free Ca^* concentrations control many aspects of cell function (Bush, 1995; Gilroy et 

al., 1993; Sanders et al., 1999). C a % is normally maintained at concentrations between 

30 and 200 nM (Bush, 1995; Mahlo et al, 1998) which, in marine organisms is typically 

an order of 10"* lower than [Ca^*] in the surrounding external environment. [Ca^*]cyt must 

be kept low because highly abundant metabolic phosphate esters form insoluble calcium 

phosphates (Gilroy et al., 1993). Binding of Ca^* to regulatory proteins plays some role in 

lowering the [Ca^*]cyt (Heizmann and Hunziker, 1991; Gilroy et al., 1993) but low steady 

state [Ca^*] is mainly achieved by active Ca^* export out of the cytosol into sub-cellular 

compartments such as ER and vacuoles and across the plasmamembrane (Koch, 1990; 

Poovaiah and Reddy, 1987; Bush, 1995; Malho et al., 1998), and is mediated by IT'/Ca^'" 

antiporters and ATP-ases, which drive transport of Ca^* against the concentration gradient 

(Poovaiah and Reddy, 1987; Koch, 1990; Bush, 1995). Since most plant and algal cells 

maintain a negative potential across the plasma membrane, a large electrochemical 

potential difference for Ca^* is present. Steep Ca^* gradients present the cell with the 

opportunity of abmptly increasing [Ca^*]cyt for signalling purposes (Trewavas and Gilroy, 

1991; Schroeder and Thuleau, 1991; Malho et al., 1998). Ca^* is an important second 

messenger in many different signalling pathways in plant, algal and animal cells and 

121 



interacts with target proteins directly or via calmodulin and Ca -dependent kinases. There 

are many examples of Ca^* transients in response to different environmental stimuli, such 

as touch, cold shock, oxidative stress, and hypo-osmotic shock in plants and algae (Knight 

et al., 1996; Taylor et al., 1997; Goddard et al., 2000). 

In flowering plants there is evidence for voltage independent, and both hyper polarisation 

and depolarisation, activated Ca^* permeable channels (Alexandre et al., 1990; Schroeder 

and Thuleau, 1991; Malho et al., 1998). Voltage sensitive channels can open in response to 

changes in plasma membrane potential, allowing Ca^* entry and elevation of [Ca^*]cyt. Low 

cytosolic mobility of Ca^* enables the cell to sustain a very localised rise in [Ca^*]cyt 

(Malho et al., 1998), such as has been observed in the tip of elongating Fucus rhizoids 

(Berger and Brownlee, 1993). 

Ca^ binding proteins. Ca^* is able to bind to a wide range of proteins, and is well suited 

for binding to irregular shaped crevices in proteins and can spurn other divalent cations 

such as Mg^*. Generally the same reaction site, which co-ordinates eight oxygen atoms to 

each Ca^*, occurs in many Ca^* binding proteins. Ca^* may also cross link different 

segments of proteins and induce large conformational changes (Williams, 1992).In 

parvalbumin, where the Ca^* binding site was first mapped, it is formed by E and F helices, 

and resembles a hand, hence the name 'EE hand' (Babu et al., 1988). Calmodulin is a 

major Ca^* binding protein, comprising four modules based on the EF hand (Babu et al., 

1988), and serves as a Ca^* sensor in nearly all eukaryotic cells. The sites in one lobe have 

high affinity for Ca^* and those in the other lobe have lower affinity for the ion (Williams, 

1992). Binding of Ca^* to the two high affinity sites increases the affinity of the low 

affinity sites and activates calmodulin. Another important group of Ca^* sensors in plants is 

the calcium-dependent protein kinases (CDPK's) which have a calmodulin-like reaction 
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site formed by four EF-hands (Harper et al.. 1991; Zhao et al., 1993). A CDPK subfamily 

with modified EF-hands has been identified in plants (Hrabak et al.. 1996). The different 

CDPK isoforms may be involved in regulating separate signalling pathways as they are 

specific for different substrates (Lee et al., 1998), and they may be activated by different 

[Ca^*]cyt. Different substrates for CDPK include CI" and K* channels in guard cells (Li et 

al., 1996) and the plasma membrane proton pump (Camoni, 1998). 

Ca^*-activated ion channels form an important group of Ca^* target proteins. Ca^*-activated 

ion channels are targeted directly by Ca^*, via other Ca^* binding proteins, or via 

depolarisation of the membrane potential (Garrill et al., 1992; Galione et al., 1994; Ward 

and Schroeder, 1994). Examples of Ca^*-activated ion channels are K*-, Ca^*-, and Cl"-

channels, which are involved in cell turgor regulation in different systems including fungi, 

plants and algae (Garrill et al., 1992; Taylor and Brownlee, 1993; Ward and Schroeder, 

1994). One example of the involvement of Ca^* in ion channel and cell turgor regulation is 

the model for guard cell closure proposed by Ward and Schroeder (1994). Loss of cell 

turgor during water stress induces an increase in the stress hormone abscisic acid (ABA) 

which, in tum, induces an increase in guard cell [Ca^*]cyt to >1 fiM. This level of cytosolic 

Ca^* may be sufficient to activate vacuolar K*-channels (VK-channels) in the membrane of 

the large central vacuole in the guard cell. Elevated [Ca^*]cyt and K* flux from the vacuole 

into the cytoplasm could depolarise the vacuolar membrane potential further until a level is 

reached which activates voltage-dependent, slow vacuolar cation channels (SV-channels), 

and induces Ca^* flux from the vacuole into the cytoplasm. This Ca^*-induced Ca^* release 

is likely to promote other regulatory roles during stomata closure (Ward and Schroeder, 

1994). 
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The role of Ca * in polarisation. Increases in [Ca * ]cyt on the side of the Fucus zygote 

facing away from the light (the rhizoid pole) is one of the first detectable responses in the 

Fucus zygote to a polarising light stimulus (Brownlee and Wood, 1986; Berger and 

Brownlee, 1993; Roberts et al., 1993; Shaw and Quatrano, 1996a; Love et al., 1997; Pu 

and Robinson, 1998). Confocal images of polarising Fucus zygotes have revealed that 

[Ca^*] at the rhizoid pole is 100 fold higher than [Ca^*] in the rest of the zygote, and 

appears as a gradient extending 5 /xm beyond the cell membrane (Berger and Brownlee, 

1993). The Ca^* gradient is thought to be an absolute requirement for polar axis 

establishment in fucoid zygotes, as microinjecting polarising zygotes with the Ca^* buffer 

BAPTA inhibits polarisation (Speksnijder et al., 1989; Taylor et al., 1992). Furthermore, 

calmodulin has been shown to be required for axis formation (Poovaiah and Reddy, 1987; 

Love et al., 1997; Pu and Robinson, 1998). Exactly how the initial polar Ca^* signal is 

established is unclear. In addition to Ca^* influx from the external medium, apical Ca^* 

may be supplemented from internal Ca^* stores (Kropf and Quatrano, 1987; Love et al., 

1997). After the initial Ca^* gradient has been established during axis formation, a positive 

ion current, entering at the rhizoid pole, can be detected by an extracellular vibrating 

electrode at about 5-6 hours AF (Jaffe, 1966; Nuccitelli and Jaffe, 1976). This current is 

carried in part by influx of Ca^* and efflux of CI" through ion channels in the plasma 

membrane (Taylor et al., 1992; Taylor and Brownlee, 1993) and may be involved in 

maintenance or amplification of Ca^* asymmetries. 

3.1.2.5. The role of F-actin in polarisation 

Actin is a ubiquitous protein in eukaryotes and is critical for a wide range of physiological 

and developmental processes. In vertebrates, muscle contractions arise from interactions 

between myosin and actin (Cooke, 1987) but actin also serves multiple functions in non-

muscle cells. Polymerised, filamentous actin (F-actin) is a component of the cytoskeleton 
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and serves many roles in intercellular transport and signal transduction, often in 

combination with tubulin (Small et al., 1999; Goode et al., 2000). Functioning of F-actin 

involves interactions with a range of proteins with signalling functions (Weeds, 1982; 

Frankel and Mooseker, 1996). F-actin is continuously dissolving and reforming, and is 

subject to a range of Ca^*-dependent and independent interactions involving calmodulin, 

GTPases such as Cdc42, Rho and Rac, and ionic gradients (Welch et al., 1997). Organelle 

and vesicle movement is often driven along F-actin and microtubule filaments by special 

motor proteins, such as myosin, dynein and kinesin (Shimmen and Yokota, 1994; 

Shimmen et al, 1995; Rogers and Gelfand, 2000). The dynamic reorganisation of F-actin 

and vesicular transport along the filaments underlie multiple processes such as changes in 

cell shape, locomotion, and cell polarity (Small et al., 1999). It has been suggested that F-

actin and the actin-binding protein Tea-l-p which is involved in organising cortical actin 

patches, may be localised at the cell pole during polarised growth in yeast. F-actin would 

then be involved in directing secretory vesicles containing membrane- and cell wall-

components towards the cell pole for secretion (Goode et al., 2000). It is possible that F-

actin has a similar role in polarising Fucus zygotes. 

Re-organisation of F-actin in the zygotes of fucoid algae is a requirement for polar axis 

establishment. Staining zygotes with the fluorescent actin-specific probe, phalloidin, has 

revealed that F-actin becomes localised at the future rhizoid pole some time during axis 

estabhshment (Kropf et al., 1989; Bouget et al., 1998a; Alessa and Kropf, 1999; Pu et al., 

2000). Furthermore, application of cytochalasin, and other actin depolymerising agents 

such as latmnculin B, to polarising zygotes prevents polar axis fixation (Quatrano, 1973; 

Pu et al., 2000). Although F-actin is an absolute requirement for polarisation in fucoid 

zygotes, the exact timing and patterning of F-actin localisation is controversial. Work 

presented by Pu and co-workers (2000) showed that a significant elevation in cellular actin 
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appeared in polarising Pelvetia zygotes within one hour after fertilisation. In this 

experiment there was a distinct actin elevation in cortical regions and a very slight increase 

in actin was detected at the rhizoid pole after 2h exposure to polarising light. However, 

definite accumulation of actin at the rhizoid pole was not detected until after germination 

{Puetal, 2000). 

In contrast, results presented by Alessa and Kropf (1999) suggest that actin accumulation 

appears at the rhizoid pole much earlier in zygote development. A cortical actin patch was 

detected at the rhizoid pole in response to polarising light within 3h after fertilisation (AF) 

(Alessa and Kropf, 1999). By 4 h AF, changing the direction of polarising light resulted in 

relocation of the actin patch within 40-50 minutes (Alessa and Kropf, 1999). 

The presented evidence does not allow firm conclusions of whether F-actin is a 

requirement for initiation of the Ca^* gradient at the Fucus rhizoid pole, or whether F-actin 

accumulation is initiated in response to the Ca^* gradient. Whatever the order of these 

events, they are both required for polar axis establishment in the Fucus zygote. Amongst 

the multiple functions of F-actin, one possible role in polarisation is to act as a cellular 

framework, which stabilises the polar axis by forming links with the extracellular matrix 

(see below). It is also possible that F-actin serves as a network for vesicular transport 

towards the rhizoid pole in a similar manner to that suggested for yeast (Goode et al., 

2000). Hence, the role of F-actin during axis establishment could be to provide a network 

for intracellular transport of cellular components such as vesicles towards the rhizoid pole 

(Goodner and Quatrano, 1993; Shaw and Quatrano, 1996b). The direction of the vesicular 

transport could then be controlled by the Ca^* gradient. 
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3.1.2.6. The role of the cell wall in polarisation 

Secretion of a cellulose/pectin cell wall in the Fucus zygote begins immediately after 

fertilisation and the polarising zygote possesses a rigid cell wall (Quatrano and Stevens, 

1976; Hable and Kropf, 1998). Fixation of the axis previously stabilised by F-actin 

localisation is dependent on the presence of the cell wall. Experimental enzymatic removal 

of the wall inhibited axis fixation (Kropf et al., 1988) and, in zygotes which had already 

fixed an axis, removal of the cell wall resulted in loss of the axis (Kropf et al., 1993; 

Berger et al., 1994). The role of the cell wall in axis fixation may be to provide anchoring 

points for molecular complexes which bridge the plasma membrane and form links with 

the F-actin network in the cytosol. Subsequent to F-actin accumulation, vesicles containing 

the cell wall component fucoidin, which is a Golgi-derived sulphated fucan F2 

polysaccharide, are secreted preferentially at the rhizoid pole (Wagner et al., 1992; Shaw 

and Quatrano, 1996b). Secretion of fucoidin is thought to play a key role in axis fixation 

and a model for axis fixation, which involves F-actin, the Ca^* gradient, the cell wall and 

secretion of fucoidin has been proposed (Figure 3.02), (Goodner and Quatrano, 1993). 

Golgi-derived vesicles containing fucoidin are transported towards the rhizoid pole via the 

localised actin filaments in response to the polar Ca^* signal and secreted into the cell wall. 

At the rhizoid pole, fucoidin may anchor the axis stabilising actin filaments into the cell 

wall. The membrane spanning protein, integrin, is expressed by all multicellular animals 

and mediates linkage between extracellular adhesion-molecules and the actin cytoskeleton 

(Humphries, 2000). The presence of integrin-like proteins has now been demonstrated in 

lily pollen tubes, where it appears to be involved in growth of the pollen tube tip (Sun et 

al., 2000). This finding brings support to the hypothesis which suggests that integrin is 

involved in regulating tip growth in pollen tubes and the Fucus rhizoid (Quatrano et al., 

1991; Lord and Sanders, 1992). Integrin may bind to F-actin on the cytosol side of the 

plasma membrane and connect to the fucoidin anchor in the cell wall via a vitronectin-type 
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Filamentous actin 

Golgi membranes 

Secretory vesicle 

01^ Actin anchoring complex 

Figure 3.02. Summary of axis fixation in a Fucus zygote. F-actin is localised at the 
rhizoid pole, and guides secretory vesicles containing Golgi-derived fucoidin to the 
rhizoid pole. Fucoidin secreted into the cell wall stabilises the actin-anchoring complex 
and fixes the polar axis. Modified from Berger and Brownlee, 1995. 
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protein in the space between membrane and wall (Goodner and Quatrano, 1993). 

Anchoring of F-actin to the cell wall irreversibly fixes the polar axis in the Fucus zygote. 

3.1.3. The developing embryo 

3.1.3.1. Rhizoid germination and elongation 

Establishment of the polar axis in Fucus is manifested by the germination of a rhizoid, 

which first appears as a small swelling (Hurd, 1920; Jaffe, 1958; Robinson, 1996). Rhizoid 

germination and elongation occur as tip growth, which takes place exclusively at the apex 

of an elongating cell, in contrast to diffuse growth where expansion occur over the entire 

cell surface (Kropf et al., 1998). Tip growth is a common phenomenon in different systems 

including fungal hyphae (Garrill et al., 1992), pollen tubes (Rathore et al., 1991), root hairs 

(Miller et al., 1999) and algal rhizoids (Kropf et al., 1998). Organelles such as 

mitochondria, Golgi membranes and secretory vesicles become highly abundant at the 

apex of tip growing systems (Brawley et al., 1977; Kropf et al., 1998; Miller et al., 1999), 

where cell membrane and newly synthesised cell wall are continuously secreted (Kropf, 

1992; Battey and Blackboum, 1993). In pollen tubes and root hairs, the organelles and 

secretory vesicles are guided to the rhizoid pole by axially arranged F-actin (Shimmen et 

al., 1995), which is anchored into a cortical ring near the growing tip (Lord and Sanders, 

1992; Miller et al., 1999). It is generally believed that the apex of pollen tubes and root 

hairs is an F-actin-free zone (Lord and Sanders, 1992; Miller et ai, 1999) but an inability 

to stain for F-actin may reflect high polymerisation/depolymerisation rates in the tip of 

growing pollen tubes (Fu et al., 2001). A sub-apical cortical actin ring has also been 

reported in fucoid rhizoids, although there are also F-actin hotspots in the rhizoid tip itself 

(Henry et al., 1996; Alessa and Kropf, 1999; Pu et al., 2000). Furthermore, a sub-apical 

ring of F-actin has also been demonstrated in the polarised apical cell of the brown algae 

129 



Sphacelaria rigidula which displays tip growth (Karyophyllis et al., 2000). Elongation of 

tip growing cells occurs by continuous secretion of new wall at the rhizoid apex but may 

depend on the generation of turgor pressure. Turgor pressure develops in fucoid zygotes 

during axis fixation (Allen et al., 1970) and its role during rhizoid elongation has been 

demonstrated by Wright and Reed (1990), who found that hyper-osmotic treatment 

inhibited rhizoid germination and elongation. As the cell wall matures, it becomes more 

rigid, hardens and the cell diameter reaches a maximum at about 15 fim in Fucus rhizoids. 

3.1.3.2. Ca^* and apical growth 

The Ca^* gradient, which is established during zygote polarisation, is a requirement for 

rhizoid germination and elongation, although apical [Ca^*] is higher and the gradient more 

localised, providing a much stronger polar signal (Roberts et al., 1993; Berger and 

Brownlee, 1993; Taylor et al., 1996). Similarly a gradient of high [Ca^*] is confined to the 

growing tip of pollen tubes (Malho and Trewavas, 1996; Pierson et al., 1996) and root 

hairs (Wymer et al., 1997). The apical Ca^* gradient is a requirement for apical growth, as 

microinjection of Ca^* buffers such as BAPTA into rhizoids and root hairs, or adding the 

Ca^* chelator, EGTA to the medium extinguishes the Ca^* gradient and inhibits elongation 

(Kropf and Quatrano, 1987; Speksnijder et al., 1989; Roberts et al., 1993; Pierson et al., 

1996; Taylor etal., 1996). 

Exactly how the Ca^* gradient is maintained is not clear. One theory suggests re

distribution of Ca^* channels in an F-actin-dependent process (Kropf, 1994; Shaw and 

Quatrano, 1996a). By the use of fluorescent dihydropyridine, which may bind to Ca^* 

channels, it was suggested that the putative Ca^* channels become more abundant at the 

rhizoid pole than in the rest of fucoid zygotes during axis establishment (Shaw and 

Quatrano, 1996a). Ca^* channels could be guided to the rhizoid pole by F-actin and the 
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increased concentration of Ca * channels may result in increased Ca influx causing the 

Ca^* gradient detected in the region (Shaw and Quatrano, 1996a). However, new evidence 

(Taylor et al., 1996) challenges this view. Patch clamping of voltage-activated mechano-

sensitive Ca^* permeable channels in polarised Fucus zygotes revealed no asymmetrical 

distribution of Ca^* permeable channels (Taylor et al., 1997). The presence of turgor 

pressure and a soft cell wall at the cell apex in tip growing cells (Kropf et al, 1998) may 

give rise to spatial regulation of evenly distributed mechano-sensitive Ca^* permeable 

channels (Pierson et al, 1996; Taylor et al, 1997). The higher elasticity of the cell wall at 

the rhizoid apex, than in the rest of the zygote, would allow the cell membrane at the apex 

to stretch and consequently activate mechano-sensitive Ca^* permeable ion channels in 

response to increased internal turgor (Taylor et al, 1997). This system potentially allows a 

very simple way of maintaining an apical Ca^* gradient during polar growth. 

3.1.3.3. Cell fate and division patterns 

Subsequent to rhizoid germination, the zygote divides perpendicular to the polar axis and 

two distinctively asymmetric cells, with very different fates, are formed (Figure 3.03 a-b). 

One is the spherical thallus cell, which is the precursor for the stipe and thallus, and the 

other is the elongate rhizoid cell, which develops into the disk holdfast of the adult. Cell 

fate and orientation of the cell division plane in the cleaving embryo is determined by the 

orientation of the polar axis, spatial information stored in the cell wall, and communication 

between cells (Berger et al, 1994; Bouget et al, 1998; Bisgrove and Kropf, 1998). The 

orientation of the first cell division is determined by alignment of the spindle with the polar 

growth axis and involves the microtubular cytoskeleton (Kropf et al, 1990; Bisgrove and 

Kropf, 1998; Corellou et al, 2000). Subsequent to germination the nucleus is rotated to a 

position parallel with the growth axis in a microtubule-dependent process, which results in 

division perpendicular to the polar axis (Kropf et al, 1990). It has been shown that 
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Figure 3.03. Early cell division in Fucus zygotes, showing an undivided, germinated 
cell (a), first cell division resulting in the thallus and rhizoid cells (b), second cell 
division, synmietrically dividing the thallus (c), and third cell division, asymmetrically 
dividing the rhizoid (d). 
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inhibition of axis fixation resulted in loss of the ability of the zygote to orientate the first 

division plane perpendicular to polarising light (Allen and Kropf, 1992; Shaw and 

Quatrano, 1996b). Subsequent embryo growth was reduced and malformations such as 

multiple rhizoids appeared (Allen and Kropf, 1992; Shaw and Quatrano, 1996b). The cell 

wall may play a key role in axis fixation by anchoring an F-actin stabilising complex and 

may play a position-dependent role in cell fate determination (Brownlee and Berger, 1995; 

Bouget et al., 1998b). In the germinating and elongating rhizoid, secretory vesicles are 

continuously transported towards the rhizoid pole and it is possible that components 

involved in cell fate determination are being secreted into the cell wall. Embryonic Fucus 

cells are totipotent and possess the ability to de-differentiate completely when isolated as 

protoplasts or single cells. Their fate is therefore not determined exclusively by 

intracellular factors (Berger and Brownlee, 1995; Bouget et al., 1998b). Laser 

microsurgery experiments showed that thallus and rhizoid cells isolated within their own 

wall continued to develop as normal, whereas their fate was switched when brought into 

contact with the wall of another cell type (Berger et al., 1994). This finding clearly showed 

that some property of the cell wall plays a cmcial role in cell differentiation in the 

developing embryo. Furthermore, Bouget and co-workers (1998b) showed that cell fate 

determination in Fucus embryos is dependent on cell-to-cell communication, and that this 

communication involved the transport of inhibitory messengers. Within the frame set by 

the polar axis, intracellular communication and the cell wall, the embryo continues to 

develop. The second cell division in the embryo is normally a symmetric division of the 

thallus cell perpendicular to the first cell division. Third cell division is an asymmetric 

division of the rhizoid cell transverse to the growth axis (Figure 3.03 c-d). The rhizoid 

continues to divide into large elongate cells perpendicular to the growth axis. This pattem 

of division would be conditioned by continued nuclear rotation prior to each cell division 

(Allan and Kropf, 1992). Divisions of the thallus cells are always perpendicular to the 
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previous cell division and these quickly continue to form many small cells, rich in 

chloroplasts (Kropf a/., 1998). 

3.1.4. Stress responses in the Fucus embryo 

Living in the intertidal zone, Fucus embryos are naturally exposed to highly varying 

conditions of stress such as solar irradiance, salinity and temperature to which they must 

respond and adapt in order to develop into adult algae. At low tide the inhabitants of the 

intertidal zone can be exposed to high levels of solar irradiance and a varying osmotic 

environment. During high tide, intertidal organisms experience low solar irradiances and 

highly variable osmotic conditions. 

3.1.4.1. Osmoregulation 

A common response of plant and algal cells to environmental stress is a transient elevation 

in cytosolic Ca^* (Sanders et al., 1999). The amplitude and duration of the Câ * signal may 

be dependent on the strength of the stimulus (Malho et al., 1998; Goddard et al., 2000). 

Examples of this stress response include an increase in cytosolic Ca^* as in the response to 

cold shock in tobacco and Arabidopsis seedlings, involving flux of Ca^* into the cytoplasm 

from both intemal and external sources (Knight et al., 1996). Oxidative stress inflicted 

upon tobacco seedlings by exposing them to H2O2 induced a cytoplasmic Câ * elevation 

which in tum resulted in changed superoxide dismutase activity (Price et al., 1994). These 

examples demonstrate the importance of Ca^* in stress control in plant cells. Ca^* 

involvement in response to changing extemal osmotic pressure in Fucus embryos is well 

documented (Taylor et al., 1996; Goddard et al., 2000). Like most plant cells, the thallus 

cell of the Fucus zygote is surrounded by a rigid cell wall which forms a physical barrier to 
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the expansion of the protoplast within it. Consequently the volume of the thallus cell 

remains relatively constant when exposed to hypo-osmotic conditions (Taylor et al., 1996). 

In contrast, the soft cell wall at the apex of the Fucus rhizoid provides less resistance 

against swelling during hypo-osmotic exposure. Consequently the surface area of a Fucus 

rhizoid cell increases by up to 20% in response to a 50% hypo-osmotic shock (Taylor et 

al., 1996). To avoid uncontrolled swelling and bursting, the rhizoid cell possesses the 

ability to osmoregulate by controlling the amount of ions and water in the cell. 

Osmoregulation in algal cells of different species which do not possess a rigid cell wall is 

highly dependent on Ca^* signalling (Okazaki et al., 1987; Tazawa et al, 1995). Hydration 

of the cytoplasm results in a transient elevation of [Ca^ Ĵcyt, which can be prevented by 

microinjection of BAPTA into the cell or by removing Ca^* from the medium (Okazaki et 

al., 1987; Tazawa et al., 1995; Taylor et al., 1996, 1997). In the Fucus zygote the Ca^* 

response during hypo-osmotic treatment occurs at the cell apex where Ca^* is elevated 

during tip growth (Taylor et al., 1996, 1997). Subsequent to hypo-osmotic swelling of the 

Fucus rhizoid, Ca^* influx at the rhizoid apex is followed by a Ca^* wave which spreads to 

the sub-apical region by release from intemal stores as the rhizoid continues to swell 

(Goddard et al., 2000). Ca^* activation of Ca^*-, CI - and K*-channels is involved in 

volume regulation in different systems (Garrill et al., 1992; Taylor and Brownlee, 1993; 

Ward and Schroeder, 1994). The cytosolic Ca^* wave in the Fucus rhizoid during exposure 

to hypo-osmotic conditions could stimulate Ca^*-activated ion channels in the plasma 

membrane and in this way mediate efflux of K*-and Cl'-ions (Taylor et al., 1996, 1997). 

Hypo-osmotic shock has been shown to induce an increased efflux of CI" and K* from the 

cytoplasm of Pelvetia zygotes, which was sufficient to significantly decrease the cell 

volume by promoting osmotic efflux of water (Nuccitelli and Jaffe, 1976). 
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3.1.4.2. Other stress factors 

In addition to a highly vzirying osmotic environment, Fucus embryos are naturally exposed 

to the stress inflicted upon them by high solar irradiances and disturbances caused by wave 

movements. Wave action may be a major mortality factor amongst seaweed embryos, with 

consequences for their distribution and abundance (Vadas et al., 1992). The proportion of 

embryos settling on the substratum decreases with increasing water velocity, and large 

numbers may be swept away from the shore (Norton, 1978). Gentle wave movements 

bring sand in suspension and consequently move it around on the beach, whereas more 

violent waves can move stones and tum over boulders. Consequently the embryos are in 

danger of being covered or cmshed under the sediment. Adult Fucus, however, has a very 

tough thallus and a strong stipe and holdfast and is therefore adapted to cope with these 

conditions (Norton et al., 1982). Even with a great loss of embryos Fucus still dominates 

the North Atlantic beaches due to mass production of new recmits. 

Fucus embryos are naturally shade adapted (Coelho et al., 2001) and high irradiances of 

photosynthetically active radiation (PAR) and UV are lethal to the microscopic stages 

(Liining and Neushul, 1978; Graham, 1996; Franklin and Foster, 1997). Recovery rates of 

Laminaria gametophytes exposed to sub-lethal irradiances are very slow (Hanelet et al., 

1997) and high level PAR+UV reduces the proportion of gametophyte and sporophyte 

germination and growth rate (Dring et al., 1996; Yabe et al., 1997). These microscopic 

stages, however, can adapt to increased UV irradiances (Han and Kain, 1996; Franklin and 

Foster, 1997), although shelter under the adult canopy is the major factor in avoiding high 

irradiances. 

Both high irradiances and wave action are naturally-occurring hazards which can be 

amplified by human activities, where global warming may result in more violent storms. 

136 



and damage to the ozone layer is concomitant which increases the UV irradiance. 

Anthropogenic activities can also result in other and more direct environmental hazards. 

Macroalgae in coastal environments, in particular in industrialised areas, are exposed to 

nutrient enrichment, contamination from organic matter, and toxins such as pesticides and 

heavy metals, including copper, which may present a real threat to fucoids in some of their 

natural habitats. 

3.1.5. Effects of copper on early stages of Fucus 

Copper is a potential hazard to brown algae and may have severe effects on the physiology 

of the adult algae (Chapter 2). Microscopic life cycle stages of brown algae have also been 

subject to research in recent years but, the exact target of copper toxicity in the early 

development of the algae is largely unknown. Standardised protocols for the use of the 

microscopic life history stages of Laminaria and Macrocystis in toxicity testing have been 

developed and several studies address their response to copper exposure (Chung and 

Brinkhuis, 1986; Anderson et al., 1990; Bidwell et al., 1998). Gametophyte development 

and growth of the young sporophytes of Laminaria and Macrocystis are more sensitive to 

copper than meiospore release and germination. Meiospore release, spore settlement and 

gametophyte germination in Laminaria and Macrocystis were unaffected by copper at 

concentrations below 0.8-1.0 /xM (Chung and Brinkhuis, 1986; Anderson et al., 1990; 

Bidwell et al., 1998). On the other hand, 0.08 jxM copper had an inhibitory effect on 

gametophyte development and 0.16 jxM copper resulted in abnormal growth patterns, with 

gametophytes failing to reach maturity (Chung and Brinkhuis, 1986). At 0.28 (iM there 

was no sporophyte development at all (Chung and Brinkhuis, 1986; Anderson et al., 1990). 

The microscopic stages of kelp may be more sensitive to elevated metal concentrations 
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Macrocystis, whereas there were no toxic effects on spore germination at concentrations 

below 47/iM (Bidwell et al, 1998). 

Studies of copper toxicity have also focused on the different life history stages of fucoids. 

The toxic effects of copper on fertilised eggs of F. vesiculosus are highly dependent on the 

timing of exposure of the eggs. Exposing eggs of F. vesiculosus to 0.3 / i M copper at the 

time of fertilisation had no effect on fertilisation, whereas pre-incubating eggs in the same 

concentration 30 minutes before sperm was added resulted in a 50 % decrease in 

fertilisation success (Andersson and Kautsky, 1996). Germination of F. vesiculosus 

zygotes is a critical stage in terms of copper toxicity. As little as 0.04 / A M copper, added at 

the time of fertilisation, reduced germination by up to 50%, whereas germination of 

embryos was unaffected by up to 0.6 / i M copper when added 24h AF (Andersson and 

Kautsky, 1996). Furthermore, rhizoid elongation of F. vesiculosus embryos exposed to 

copper after germination was unaffected by up to 0.5 \iM copper after 7 days of exposure 

(Gledhill et al., 1999). Consequently the F. vesiculosus embryos have developed some 

degree of copper tolerance at 24h AF, which is comparable to the tolerance limit between 

0.4 and 0.8 / i M for the adult algae (Stromgren, 1980). Evidently, the tolerance limit for 

Cu^* in developing Fucus embryos changes rapidly, and increases several fold within a few 

hours (Andersson and Kautsky, 1996). Exposure of jF. spiralis zygotes to copper after 

fertilisation, but prior to germination, resulted in a pronounced inhibitory effect on rhizoid 

elongation although all the zygotes germinated (Bond et al., 1999). In that study, copper 

was added at an early stage in zygote development and it is impossible to distinguish 

exactly which developmental stage was targeted. Although there was a striking effect on 

rhizoid elongation, this could reflect damage to earlier developmental events as well as an 

effect directly on rhizoid elongation. Andersson and Kautsky (1996), however, exposed 
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the processes prior to rhizoid germination are particularly sensitive to Cu . Although the 

sparse studies on effects of copper on Fucus embryos give some indications of the most 

vulnerable developmental stages, the more precise targets for Cu^* toxicity in the early 

development of the Fucus zygote still need to be established. 

3.1.6. Objectives 

This work sets out to determine targets of copper toxicity in the development and growth 

of the Fucus zygote. 

• The copper sensitivity of different developmental stages of zygotes, i.e. axis formation 

and fixation, is determined. 

• Effects of copper on the rate and pattem of cell division and on osmoregulation are 

established. 

• Effect of copper on rhizoid elongation of embryos from three different populations is 

measured and inter-population differences established. 

• Effects of copper on the physiological processes underlying early development and 

rhizoid elongation are determined by studying effects of copper on: 

1. F-actin localisation 

2. Localised secretion of fucoidin 

3. The Ca^* gradient 
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3.2. Material and metliods 

3.2.1. Experimental algae 

Adult F. serratus bearing mature fronds were collected at low tide from a population with 

known Cu^* tolerance status. It was previously established that adult F. serratus from the 

Cu^* exposed Restronguet Creek have a significantly higher Cu^* tolerance limit than adult 

F. serratus from unexposed locations (Wembury Beach and Bantham Quay) which have 

the same low Cu^* tolerance limit (Chapter 2). Mature receptacles were cut from separate 

male and female fronds. Fronds were rinsed in seawater, blotted dry and stored in a single 

layer between paper towels and wrapped in plastic in the dark at 3-5°C for up to two 

weeks. Gametes could be obtained from conceptacles within 3-4 days of collection. 

3.2.2. Obtaining and culturing zygotes 

To obtain eggs, female receptacles were rinsed thoroughly in tap water to remove any 

previously released oogonia and to stimulate new release. To further stimulate release, 

receptacles were placed in natural light or under fluorescent white light for 15 min. 

Subsequently fronds were placed in UV-treated and filtered (0.45 / im cellulose nitrate 

membrane) natural seawater (FSW) in the light for about Ih. Receptacles were removed 

and the oogonia were collected with a pasteur pipette and transferred to fresh FSW, which 

induced release of eggs from the oogonia. Eggs were separated from the empty oogonia by 

filtering through a 100 /xm nylon mesh and rinsing them in FSW. 
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Rinsing male receptacles in tap water and placing them in natural or fluorescent light 

induced sperm release, which appeared as orange secretions on the surface of the 

receptacles. Sperm was collected and activated by rinsing secretions of a receptacle into 

approximately 15 ml FSW. Sperm activity was monitored under the microscope at 

magnification x20. 

To induce fertilisation sperm and eggs were mixed under fluorescent white light at 16°C 

for 30 min. Fertilisation was stopped by filtering the zygotes several times through a 100 

(im nylon mesh into fresh FSW. Zygotes were sown sparsely onto small petri dishes (d=2.5 

cm) with coverslip bases and incubated at 16°C in unidirectional white light. Adhesion of 

the zygotes to the coverslips started immediately and after one hour the FSW was gently 

replaced with 5 ml of the artificial seawater medium, Aquil, modified from the original 

recipe by Morel et al. (1979) as described in Chapter 2, until the beginning of the 

experiment. One dish of zygotes was equivalent to one population and contained >200 

zygotes. 

3.2.3. Manipulating the orientation of the polar axis 

Polar axis orientation in the Fucus zygote occurs in response to the direction of 

unidirectional light (LI ) experienced by the zygote during the first few hours after 

fertilisation (Figure 3.04a) (Quatrano, 1973; Kropf, 1992; Berger and Brownlee, 1994). 

Therefore, the orientation of the polar axis is easily manipulated by different light 

treatments during axis establishment. Zygotes transferred to dark prior to axis formation 

germinate in random directions (Figure 3.04b). Exposure to L I during axis formation and 

subsequent transfer to darkness during the axis fixation period results in the zygotes fixing 
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Figure 3.04. Manipulation of the light environment experienced by Fucus zygotes controls the 
orientation of the polar axis. The polar axis is expressed by rhizoid germination. The figure 
shows zygotes exposed to unidirectional light ( L I ) during axis establishment (a), zygotes 
transferred from L I to darkness prior to axis formation (b), zygotes transferred from L I to 
darkness prior to axis fixation (c), zygotes transferred from L I to reversed unidirectional light 
(L2) prior to axis fixation (d), and, zygotes transferred from L I to L2 after axis fixation (e). 
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their axes according to the polarising signal received during axis formation. Therefore, 

transfer of zygotes from L I to darkness inraiediately after axis formation will result in 

germination away from L I (Figure 3.04c). Light from the opposite direction of L I (L2), 

immediately following exposure to L I during axis formation wi l l cause the polar axis to be 

re-orientated according to L2 (Figure 3.04d). However, zygotes which have irreversibly 

fixed their polar axes during exposure to L I and subsequently transferred to L2 wi l l be 

unaffected by L2 and germinate according to L I (Figure 3.04e). 

3.2.4. Establishing the period of axis formation and fixation 

To determine the periods of axis formation and fixation, populations of synchronously 

developing zygotes from the same batch were grown in FSW at 16°C in L L At one-hour 

intervals from 2 to 14h AF, populations of zygotes were either transferred to darkness to 

determine the proportion which had formed an axis or to L2 to determine the proportion of 

zygotes which had fixed an axis at the given time. 

The proportion of zygotes, which formed their axes prior to transfer to dark and fixed their 

axes prior to transfer to L2 was scored during germination after 24h (Figure 3.04 c and e). 

Polarisation was calculated as: 

(number of zygotes germinating in the hemisphere away from L I ) / (total number of 

germinated zygotes). 

Populations of zygotes transferred to dark before the onset of axis formation germinated in 

random directions and an even number of zygotes germinated towards and away from L I . 

Consequently total inhibition of axis formation occurred at 50% polarisation and complete 

axis formation at 100% polarisation. At total inhibition of axis fixation, all zygotes would 

germinate towards L I and therefore occurred at 0% polarisation (Figure 3.04 d), whereas 
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all zygotes would germinate away from L I in the event of complete axis fixation (i.e. 

100% polarisation. Figure 3.04 e). 

3.2.5. Effects of Cu^* on axis formation and fixation 

Effects of Cu^* on axis formation were studied on zygotes from the Wembury population 

whereas effects of Cu^* on axis fixation were carried out on zygotes obtained from both the 

Wembury Beach and the Restronguet Creek population. The time of axis formation and 

fixation was determined as described above. Axis formation occurred between 3 and 7h AF 

and axis fixation occurred between 7 and 13h AF (Figure 3.05). Populations of zygotes 

were first incubated in Cu^*-free Aquil at 16°C in L I . Subsequently, in either the phase of 

axis formation or fixation, populations of zygotes were transferred to Aquil containing 

[Cu^*] ranging from 0 to 2110 nM while still kept in L I . Zygotes were then transferred to 

darkness in Cu^*-free Aquil to determine the proportion which had formed their axes 

during the treatment, or to L2 in order to determine the proportion which had fixed their 

axes during the treatment. Upon germination the proportion of zygotes (>200 per dish) 

which had formed/fixed their axes during the experiment was scored as described above. 

3.2.6. Effects of Cu^* on F-actin localisation 

Wembury zygotes were incubated in either Aquil with or without 2110 nM free Cu * in L I 

at 16°C during axis fixation, which was previously determined to be 7-13h AF. At 13h AF 

the incubation was terminated and F-actin distribution was visualised using the F-actin 

specific fluorescent probe Texas Red phalloidin (Molecular Probes, Eugene, Oregon, 
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Figure 3.05. Experimental design for the study of the effect of Cu^* on axis formation and 
fixation in Fucus zygotes. Zygotes were exposed to Cu^* and unidirectional light ( L I ) 
during axis formation and subsequently transferred to Cu^* free medium and darkness (a). 
Zygotes were exposed to Cu^* and L I during axis fixation, and subsequently transferred 
to Cu^* free medium and reversed unidirectional light (L2) (b). The ability of the zygotes 
to form/fix their axis during Cu^* exposure was calculated as the proportion of zygotes 
germinating away from L I . 
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USA) and confocal microscopy. Stock solutions contained 300 units of the product in 1.5 

ml of methanol to yield an approximate concentration of 6.6 / i M . Zygotes were fixed, 

permeabilised and stained using the following protocol modified from Henry et al. (1996). 

Aquil in the incubation dishes was replaced with 1 ml formaldehyde fixitive (0.1 m M 

maleimidobenzoyl-N-hydroxysuccinimide ester, 3.8% formaldehyde, 0.2% 

dimethylsulfoxide in artificial seawater (ASW)). After 30 minutes the fixitive was removed 

and the zygotes were washed 3 times for 5 minutes in ASW + 0.2 M sorbitol. Fixed 

zygotes were stained for 30 minutes in Texas Red phalloidin solution (1.3 fiM Texas red 

phalloidin in ASW + 0.2 M sorbitol). Stained zygotes were washed three times for five 

minutes in ASW + 0.2 M sorbitol. Fluorescent images of stained zygotes were obtained 

using a confocal scanning laser microscope (Bio-Rad, UK). An argon/krypton laser excited 

the Texas Red-stained zygotes at 568 nm and emission was recorded at 605 nm. Each 

image was an average of five scans in the same optical section. By using a 10 nm 

bandwidth 605 nm emission filter, chlorophyll fluorescence was minimised. The 

proportion of zygotes which had localised F-actin was scored. 

3.2.7. Effects of Cu^* on secretion of fucoidin 

Wembury zygotes were transferred to Aquil containing [Cu^*] ranging from 0 to 2110 nM 

and incubated at 16°C in L I during axis fixation. At 13h AF the incubation was stopped 

and secretion of fucoidin in the zygotes was visualised by staining with Toluidine Blue O 

(TB-O) (Sigma Chemicals, Dorset, UK) which binds to sulphated fucoidin. Zygotes were 

transferred directiy to the TB-O solution (0.1% TB-O in ASW, pH 1.5 with HCl), and after 

15 minutes they were washed three times for 5 minutes in 99% ethanol (Shaw and 

Quatrano, 1996b). Stained zygotes were immediately mounted in ASW and the proportion 
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of zygotes, which had secreted fucoidin into the cell wall was scored under a light 

microscope. 

3.2.8. Effects of Cu^* on osmoregulation 

Wembury zygotes were grown in Cu'̂ ^-free Aquil to allow the early developmental events 

and rhizoid germination to take place. At 18h AF embryos were transferred to Aquil 

containing [Cu^*] varying from 0 to 2110 nM for 6 hours. Zygotes were then exposed to 

ASW diluted with distilled water to either 50% or 25%. To allow rapid solution exchange 

around the embryos during the hypo-osmotic treatment, as much medium as possible was 

removed from the chambers and the embryos were flushed with 5 ml of diluted ASW by 

the use of a 5 ml pipette. The proportion of embryos (>200 per dish) which were able to 

osmoregulate during hypo-osmotic treatment was determined as: 

(1-bursting embryos/total number of embryos). 

3.2.9. Rhizoid elongation and C u ^ tolerance 

To determine the effect of Cu^* on rhizoid elongation, sparsely plated Wembury and 

Restronguet zygotes were allowed to develop in the incubation chambers in 5 ml Cu^*-free 

Aquil under standard lab conditions (see above, section 3.2.2.) until 18h AF. At this time 

the early developmental events had occurred and the embryos had just started to germinate. 

Subsequently embryos were transferred to Aquil containing [Cu^*] varying from 0 to 844 

nM. Fucus embryos release metal-complexing ligands when exposed to metals, which 

bring about a decrease in [Cu^*] (Gledhill et al, 1999). To compensate for ligand release 
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from the growing embryos the medium was changed every day. Embryos were grown for a 

total of 10 days. At suitable intervals transmission images of >25 embryos per dish were 

recorded on a confocal microscope (Bio-Rad, UK) at xlO magnification. The length of the 

rhizoid defined as the distance from the rhizoid/thallus dividing wall to the rhizoid tip was 

measured using analytical software (KALCIUM ANALYSE, Kinetic Imaging, Liverpool, 

UK). Rhizoid length was calibrated with a graticule. 

To allow for any population differences caused by factors other than Cu^* a comparative 

experiment examining effects of Cu^* on rhizoid elongation in embryos obtained from the 

two Cu^* intolerant populations, Wembury Beach and Bantham Quay was carried out. The 

protocol described above was followed except embryos were grown in Aquil containing 0 

and 211 nM Free Cu^* and measurements were taken on day 2, 5, and 8 AF. 

3.2.10. Cell division 

Fertilised Wembury zygotes were allowed to settle in the incubation dishes. At 2 h AF 

zygotes were transferred to Aquil containing [Cu^*] varying from 0 to 844 nM. To 

visualise the number of cell divisions by 24 h and 40 h AF, zygotes were immersed for 10 

minutes in the membrane-specific dye N-(3-triethyl-ammonium propyl)-4-(4-

(dibutylamino) styryl) pyridinium dibromide (FM 1-43, 1 /xM) (Molecular Probes, Eugene, 

Oregon, USA). This effectively labelled the partition membranes (Goddard et al., 2000). 

The number of cell divisions was monitored by imaging at least 25 embryos per dish on a 

confocal laser scanning microscope (Bio-Rad, UK) at 488 nm excitation and 530 nm 

emission. 
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3.2.11. Effect of C u ^ on cytosoUc C a ^ in the Fucus rhizoid 

To study the effects of Cu * on cytosoUc free Ca * in the Fucus zygote, two experiments 

were carried out. 1). Effects on Ca^* signaUing in the rhizoid apex of a moderate Cu^* 

treatment given as a short term pulse or as chronic exposure were studied by monitoring 

Ca^* during hypo-osmotic shock. 2). The effect on global cell Ca^* of acute exposure to 

high [Cu^*] in the Fucus rhizoid was investigated. 

Both experiments were carried out on germinated Wembury zygotes. Rhizoid cells were 

microinjected with the Ca^* specific dye Calcium Green and the Ca^* indifferent dye Texas 

Red in order to obtain simultaneous fluorescent images by confocal laser scanning 

microscopy (see below). 

3.2.11.1. Microinjection of Calcium Green/Texas Red 

Germinated Fucus zygotes at the two-cell stage were pressure microinjected with artificial 

intracellular solution (5 m M Hepes, 200mM KCl, 550 m M Manitol at pH 7.4; Berger and 

Brownlee, 1993) containing 1 m M Calcium Green, 10,000 dextran, and 1 mM Texas Red, 

10,000 dextran (Molecular Probes, Oregon, USA). Incubation chambers containing 

embryos were placed and held in position on the stage of a Nikon inverted microscope 

fitted with a x40 (N.A. 1.3) oil immersion objective. Micropipettes were pulled from 

0.69 mm (inner diameter) GC120F filamented borosilicate glass capillaries (Clark 

Electromedical Instruments, UK) on a horizontal electrode puller (model p-87 Sutter 

Instruments, USA). Dry bevelling of electrodes produced sharp tips with a larger opening 

relative to the tip diameter. This improved the impalement success and reduced pipette 

blockage (Kaila and Voipoi, 1985; Taylor et al., 1996). Microelectrodes were backfilled 

with the injection solution. The incubation medium was replaced with ASW containing 
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0.6 M sorbitol to reduce the cell turgor sufficiently to prevent bursting during the period 

immediately following microinjection. The natural adhesion of embryos to the coverslip 

bases of the incubation chambers was sufficient to hold the embryos in position. Before 

impalement of an embryo, a holding pressure of 20 kPa was established in the pipette by a 

Pico-injector PLI-100 (Medical Systems, USA) in order to avoid backflow of medium into 

the pipette or blockage of pipettes with cytoplasm on impalement. Impalement of an 

embryo 20-30 / im from the tip was carried out under white light illumination. After 

impalement the injection pressure was switched to 220 kPa and injection was monitored 

visually by dye fluorescence at 530 nm. Excitation light was provided by a xenon bulb 

(Burke Electronic) and dye emission passed through a 520-560 nm filter. Following 

microinjection, the micropipette was carefully removed and embryos were gradually 

transferred from hyperosmotic ASW to Aquil over 30 minutes. Embryos were allowed to 

recover under incubator conditions for at least 90 minutes before Ca^* measurements were 

made. 

3.2.11.2. Acquiring ratio confocal Ca^* images 

Embryos in incubation chambers were viewed on the stage of the Nikon inverted 

microscope with a x40 (N.A. 1.3) oil immersion objective. Calcium Green and Texas Red 

images were acquired with a MRC 1024 confocal laser scanning imaging system (Bio-Rad, 

UK) (Figure 3.06). An argon-krypton laser exited Calcium Green at 488 nm and Texas Red 

at 568 nm. Embryos were normally scanned at 10% laser power, which was appropriate to 

yield a good signal/noise ratio without significant photobleaching of the dyes. The 

excitation wavelengths were reflected by a tricroic mirror and focused into a scanning 

beam by a lens before reaching the embryo. Emission light of 530 nm for Calcium Green 

and 605 nm for Texas Red was reflected from the focal point and passed back through the 

lens and straight through the tricroic mirror. A dicroic mirror reflected green light at 
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Figure 3.06. Schematic diagram of the laser scamiing confocal microscope and light paths 
during acquisition of fluorescence ratio images. 
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wavelengths below 530 nm towards a second lens, which focused it through a pinhole in a 

photomultiplier. The red emission light at 605 nm passed straight trough the dicroic mirror 

and was focused through the pinhole in a second photomultiplier tube. The confocal 

pinhole apertures serve to block any light which does not originate from the focal plane, so 

that any unfocused information is not included in the final image. The light signal received 

by the photomultiplier tubes in response to the scanning laser beam was converted into 

digital images based on 255 grey levels in the analytical software package LASERSHARP 

3.2 (Bio-Rad, UK). The Bio-Rad Time Course software package was used to ratio the 

Calcium Green image against the Texas Red image in order to calibrate for dye distribution 

and yield the tme quantitative Ca^* distribution in the cell (Goddard et al., 2000). 

3.2.11.3. In vitro calibrations 

To estimate the amount of dye injected into the embryos, in vitro calibration of the dye 

concentration was obtained by measuring the fluorescence intensity in droplets of 

intracellular solution containing Texas Red concentrations varying from 0 to 250 / A M . 

Droplets were placed on the stage of the confocal microscope and excited at 568 nm. 

Emission was recorded at 605 nm and the fluorescence intensity measured by using the 

analytical software KALCIUM ANALYSE (K.I . , Liverpool, UK). The fluorescence values 

obtained were used to produce a calibration curve for the intracellular dye concentration 

(Figure 3.07a). Fluorescence measured in Texas Red images of the embryos was calibrated 

to the curve and a final intracellular dye concentration in the rhizoid of about 50 //.M was 

ensured to avoid buffering of cytosolic Ca^* by the injected calcium green. 

In vitro calibrations of [Ca^^] were carried out in order to estimate [Ca^%yt] in the rhizoid 

cell. Ratio images of Calcium Green/Texas Red fluorescence were obtained from droplets 
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Table 3.01. Composition of solutions containing known free Ca concentration. Each 
contained 550 m M mamiitol. KOH was used to adjust pH (Tsien and Rink, 1980). 

pCa^" [CaClz] Ca^^ ligand [KCl] pH buffer pH 
(mM) (10 mM) (mM) (10 mM) 

5 5 NTA 90 TAPS 8.42 
6 5 HEDTA 90 HEPES 7.70 
7 5 EGTA 90 MOPS 7.29 
8 5 EGTA 100 HEPES 7.80 
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Figure 3.07. In vitro calibration curves for dye concentration and Ca^* concentration. 
Calibration of the dye concentration was carried out by measuring fluorescence 
intensity at 605 nm of droplets of intracellular solution containing concentrations of 
Texas Red varying from 0 to 250 (A). Calibration of the Câ "̂  concenfration was 
carried out by calculating the ratio of the intensity of the Calcium Green signal to the 
intensity of the Texas Red signal of droplets containing 0 to 10 Câ ^ and 50 \xM 
Calcium Green/Texas Red (B). Values represents means of 3 measurements. 
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of different Ca buffer solutions (Table 3.01) containing 50 Calcium Green/Texas 

Red by use of a scanning laser confocal microscope and K A L C I U M ANALYSE. The 

fluorescence values of the ratio images were used to produce a calibration curve for [Câ "̂ ] 

(Figure 3.07b). In vitro and in vivo calibrations have previously been shown to differ by 

only 3-8% (Roberts et al., 1994; Goddard et al., 2000), and the in vitro calibrations were 

therefore considered sufficient to monitor dye- and Ca^^-concentration in the rhizoid cells. 

3.2.11.4. Effect of Cû "̂  on cytosolic Ca^* 

To monitor the effect of short term and chronic exposure to moderate [Cu^^] on the apical 

Câ "̂  gradient in the Fucus rhizoid, embryos were transferred to Aquil containing 422 nM 

free Cu^^ at 16°C for 3 hours, or were placed directly onto the stage of an inverted 

microscope in the incubation chambers and perfused with Aquil containing 422 n M Cû "*̂  

for 5 minutes. During perfusion, embryos were placed directly in the perfusion flow 

provided by a gravity-driven perfusion system to ensure good exchange of medium around 

the embryo. The perfusion tube was fitted to a mixing chamber which was connected to 

reservoirs containing experimental media. This allowed rapid change of the medium. A 

pump removed excess medium from the incubation chamber. Subsequent to the Cû "̂  pre-

treatment, embryos were perfused with hypo-osmotic solution (80% Aquil containing 422 

nM Cu "̂̂ ). Microinjected control zygotes were perfused with 80% Aquil without added 

Cû "̂ . Calcium Green/Texas Red fluorescent images of the embryos before and during the 

hypo-osmotic treatment were recorded every 5 seconds for up to 2 minutes. 

To monitor the effect of acute exposure to high [Cu^" ]̂ on [Ca^"^]cyt, microinjected embryos 

were placed onto the microscope stage without any Cû "̂  pre-treatment. Calcium 

Green/Texas Red fluorescent images of rhizoids before and during acute exposure to Aquil 
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containing [Cu ] varying from 0.844 to 8.44 were recorded at suitable intervals for 

up to 60 minutes. 

To quantify the observed changes in [Ca^^cyt] in response to moderate [Cu^*], fluorescence 

in the Calcium Green/ Texas Red ratio images of the embryos was measured in the apical 

and sub-apical region of the rhizoid using the image analytical software K A L C I U M 

ANALYSE (K.I . , Liverpool). The measured fluorescence was converted into [Ca^^yt] on 

the basis of the Ca^^ calibration curve (Figure 3.07b). The effect on Câ '̂ cyt of acute 

exposure to high [Cu^" ]̂ was expressed as relative changes in globular Ca^^ in the rhizoid. 

The fluorescence measured in the Calcium Green/Texas Red ratio images at any one time 

during the experiment was normalised to the fluorescence measured immediately before 

Cu^* was applied. 

3.2.12. Statistical tests 

Statistical testing of the data (Sokal and Rolf, 1981) was carried out where required by 

using STATGRAPICS plus 5.0. Assuming variance homogeneity and normal distribution 

of data (Ricketts, per. Com.), and treating the time factor as an independent variable 

analysis of variance were calculated as one and two-way ANOVA's and a p=0.05 level of 

significance was accepted. When significant difference between means was indicated by 

the ANOVA further comparison of means was carried out by multiple range tests, and also 

accepted at a p=0.05 level of significance. Where data were presented in percentage, 

arcsine transformation of the data was carried out prior to any statistical testing. 
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3.3. Results 

3.3.1. Cu toxicity in early development 

3.3.1.1. Establishing the period of axis formation and fixation 

The period for axis formation and fixation in Wembury zygotes was found to occur from 3 

to 7h AF (Figure 3.08). Prior to 3h AF, the zygotes were unresponsive to unidirectional 

light (L I ) , and orientated their polar axes at random upon transfer to dark. An increasing 

number of zygotes transferred from L I to dark from 3 to 7h AF orientated their polar axes 

according to L I . There was no further increase in the proportion of zygotes polarising 

according to L I when transferred to dark later than 7h AF. 

Axis fixation was determined to occur from 7 to 13h AF. Although zygotes formed a polar 

axis according to L I as early as 3h AF, the axis could still be re-orientated until 7h AF. 

Transfer of zygotes from L I to reversed unidirectional light (L2) before 7h AF resulted in 

re-orientation of the polar axis in response to L2 in the vast majority of zygotes. However, 

an increasing proportion of zygotes became conunitted to the axis established during 

exposure to L I when transferred to L2 later than 7h AF. By 13h AF all zygotes were fully 

committed to the polar axis established during exposure to L I , and consequently they were 

unresponsive to exposure to L2. 

3.3.1.2. Effects of Cu^* on axis formation and fixation 

Axis formation of Wembury zygotes was not affected by Cû "̂  at the concentrations used 

(Figure 3.09). When exposed to [Cu^" ]̂ varying from 0 to 2110 nM at least 93% of zygotes 

polarised within the normal time of axis formation. Due to the high proportion of axis 
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Figure 3.08. Determination of the time for axis formation (O) and fixation ( • ) in the 
Fucus zygote. Zygotes were incubated in unidirectional light ( L I ) . At various times 
after fertilisation (AF) zygotes were transferred to dark or to reverse unidirectional light 
(L2). The proportion of zygotes (>200 in each measurement), which had formed/fixed 
an axis was scored upon germination. Each data point represents an average of two 
measurements. 
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Figure 3.09. Effect of Cu^^ on axis formation and fixation in the Fucus zygote. Zygotes 
were incubated with a range of Cû "̂  concentrations in imidirectional Hght (LI ) diuing 
either axis formation or fixation. Subsequently they were transferred to Cu^^ free 
medium and kept in the dark or reversed imidirectional light (L2) rnitil germination. 
The figure show axis formation in Wembury zygotes (O), and axis fixation in 
Wembiuy ( • ) and Resfronguet zygotes ( • ) . Data were normalised to confrol. Values 
represents means ± 1 SD (n=4). 
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Figure 3.10. Examples of Fucus zygotes forming their axes in response to unidirectional 
light (L I ) during axis formation, when exposed to 2110 nM Cu^^ (A) and in control zygotes 
not exposed to Cu^^ (B). Although some of the Cu^^ exposed zygotes in this example have 
orientated their polar axes at a right angle to L I , overall there is no significant difference 
between the treatments. 
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Figure 3.11. Zygotes exposed to 2110 nM Cu^^did not fix their axes during exposure to 
unidirectional light (LI ) , but did fix their axes in response to reversed unidirectional 
light (L2) (A). Control zygotes not exposed to Cu^^ (B) fixed their axis during exposure 
to L I , and the orientation of the polar axes was unaffected by exposure to L2, although 
some of the rhizoids started to orientate their growth away from L2. This is indicated by 
an arrow. 
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formation in all treatments, the minor significant differences between them (p<0.05) were 

considered negligible. Examples of axis formation in zygotes exposed to 2110 nM Cû "̂  

and unexposed control zygotes are shown in Figure 3.10. 

Axis fixation was inhibited by elevated concentrations of Cû "̂  (Figure 3.09). Axis fixation 

in Wembury zygotes was unaffected by [Cu^" ]̂ up to 84.4 nM (p>0.05). Further increase in 

[Cu "̂̂ ] had a significant inhibitory effect on axis fixation (p<0.05). Axis fixation was 50% 

lower in zygotes exposed to 2110 nM Cû "̂  compared with zygotes exposed to 84.4 nM 

Cu^* and Cu^^ free medium. Examples of axis fixation in zygotes exposed to 2110 nM free 

Cu^^ and in unexposed control zygotes are shown in Figure 3.11. Moderate [Cu^^] had a 

positive effect on axis fixation in Restronguet zygotes, increasing polarisation by about 

20%. Axis fixation was significantly higher in zygotes exposed to 42.2 to 211 n M Cû "̂  

than control zygotes unexposed to Cû "̂  (p<0.05). Further increases in [Cu^^ ] above 211 

nM had a significant inhibitory effect on axis fixation in Restronguet zygotes (p<0.05). 

However, only in zygotes exposed to 844 and 2110 nM Cû "̂  was axis fixation significantly 

inhibited when compared with control zygotes (p<0.05). Axis fixation in Restronguet 

zygotes exposed to 2110 nM Cu"̂ "̂  was about 65% lower than in zygotes exposed to 42.2 to 

211nMCu^^ 

3.3.1.3. F-actin localisation and secretion of fucoidin 

Requirements for axis fixation include F-actin localisation and secretion of fucoidin 

(Bouget et al., 1996; Shaw and Quatrano, 1996b). To determine the cause of Cû "̂  toxicity 

during axis fixation, effects of Cu"̂ "̂  on these physiological processes were studied. Zygotes 

were exposed to Cû "̂  during axis fixation and subsequently stained with Texas Red 

phalloidin to image the F-actin distribution with the confocal microscope, or stained with 
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TB-O, which resulted in a blue colouring of the rhizoid pole in secreting zygotes when 

examined under a light microscope. 

Examples of F-actin localisation in zygotes are shown in Figure 3.12. 80% of zygotes had 

localised F-actin at the rhizoid pole after exposure to 2110 nM Cû "̂  during axis fixation 

(n=56). This is considerably higher than the proportion of zygotes which had irreversibly 

fixed their axes (35%) when exposed to 2110 nM Cû "̂  within this time period. 97% of 

control zygotes (n=32) not exposed to Cû "̂  during axis fixation had localised F-actin at the 

rhizoid pole by the end of the treatment. Even with the difference in the proportion of 

zygotes localising F-actin when exposed to 0 and 2110 nM Cu^*, it is evident that 

dismption of F-actin localisation alone can not account for inhibition of axis fixation. 

Therefore the main target for Cû "̂  in axis fixation was considered to be a process operating 

in parallel with or downstream of F-actin localisation. 

Elevated [Cu^*] had a considerable inhibitory effect on polar secretion of fucoidin in the 

Fucus zygote during axis fixation (Figure 3.13). At low [Cu^" ]̂ (up to 84.4 nM) there was 

no effect of Cû "̂  on secretion (p>0.05), whereas further increase in the [Cu "̂̂ ] had an 

abrapt inhibitory effect on secretion. An increase in the [Cu^" ]̂ from 84.4 to 422 nM 

decreased the number of zygotes showing polar secretion by 75%. Increasing [Cu^*] from 

422 to 2110 nM resulted in no further decrease in the proportion of secreting zygotes 

(p>0.05). The effect of Cû "*" on secretion occurred within the same range of concentrations 

as that which had an inhibitory effect on axis fixation. The effect on secretion, however, 

was much more pronounced and it is evident that the main effect of Cû "̂  is either directly 

on secretion or on physiological processes, which are upstream of secretion, and 

downstream of F-actin localisation. 
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Figure 3.12. Confocal images of the distribution of F-actin in zygotes by 13h after 
fertilisation. F-actin localised at the rhizoid pole in an unexposed control zygote (A). F-actin 
localised at the rhizoid pole in a zygote incubated in 2110 nM free Cû "̂  (B). Cu^^ freated 
zygote with uniform F-actin distribution (C). 
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Figure 3,13. Effect of Cu^^ on the secretion of fiicoidin in Wembury zygotes. 
Zygotes were incubated in a range of Cu^^ concentrations during axis fixation. At 
13h AF they were stained with Toludine Blue O and the proportion of zygotes, 
which had secreted fucoidin was scored; values represents means ± 1 SD (n=3) (A). 
Secretion of fiicoidin in TB-O stained zygotes appeared as a blue colouring at the 
rhizoid pole. Pictures show secretion in control zygotes (B), and inhibition of 
secretion in zygotes exposed to 211 nM Cu^^ during axis fixation (C). 
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3.3.2. Effects of Cu * on osmoregulation and embryo growth 

3.3.2.1. Osmoregulation 

Figure 3.14 shows the effect of free Cû "*̂  on osmoregulation during exposure to 25 and 

50% hypo-osmotic shock. Osmoregulation was quantified as the number of two celled 

embryos able to withstand bursting in response to a hypo-osmotic treatment (transfer from 

seawater to 50 or 25% seawater). Pre-treatment of embryos with 0 to 844 nM free Cu^* for 

18h prior to exposure to a 50% and 25% hypoosmotic shock had no significant effect on 

the ability of the embryos to osmoregulate (p>0.05). However, some positive effect of high 

[Cu^^] on osmoregulation was indicated. Incubating zygotes with 2110 nM Cu^* 

significantly improved their ability to osmoregulate during exposure to a 50% hypo

osmotic shock compared with any other treatment (p<0.05). 96% of embryos pre-treated 

with 2110 nM free Cu^* could osmoregulate during exposure to a 50% hypoosmotic shock. 

This is significantly higher than the average 68% of osmoregulating embryos in the other 

treatments (p<0.05). Similar results were found when exposing zygotes to a 25% hypo

osmotic shock after 18 h of pre-incubation. Zygotes incubated with 2110 nM Cû "̂  had a 

significantly better ability to osmoregulate than zygotes incubated with 42.2, 84.4, and 211 

nM Cû "̂  (p<0.05). However, the ability of zygotes to osmoregulate during exposure to a 

25% hypo-osmotic shock was not significantly different when incubated with 2110 nM 

Cû "" and 422 and 844 nM Cû "" and in control zygotes (p<0.05). 

3.3.2.2. Rhizoid elongation and Cu^* tolerance 

The effect of Cû "̂  on rhizoid elongation in Fucus embryos was investigated. Embryos 

obtained from the Cu^"^-contaminated Restronguet Creek population and the Cu "̂̂ -

intolerant Wembury Beach population (Chapter 2) were grown in varying [Cu^^] (Figure 

3.15). The Fucus zygotes grew well in the artificial seawater medium Aquil and each 

166 



10 100 1000 

Cu^* concentration (nM) 

10000 

Figure 3.14. Effects of Cu^^ on osmoregulation in embryos pre-incubated with Cu^+ for 18 h 
and subsequently given a 50% hypo-osmotic shock (O) or a 25% hypo-osmotic shock ( • ) . 
Values represents means ± 1 SD (n=3). 
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produced a 700-750 (im long rhizoid within 10 days of incubation in control medium. 

Elevated [Cu^*] significantly reduced or inhibited rhizoid elongation in embryos from both 

populations, although Restronguet embryos had a higher Cu^* tolerance limit than 

Wembury embryos. The Cu^^ tolerance limit for rhizoid elongation was 42.2 n M in 

Wembury embryos and 221 nM in Restronguet embryos. Examples are shown in Figure 

3.16. 

Rhizoid length in Wembury embryos incubated in 0-211 n M Cu^* increased significantly 

throughout the experiment (p<0.05) and rhizoid elongation was unaffected in [Cu^*] up to 

42.2 nM Cu^* (Figure 3.15A; p>0.05). Exposure of embryos to [Cu^*] above 42.2 nM 

significantly reduced rhizoid elongation. Incubation in 211 nM Cû "̂  resulted in 

significantly reduced, but not arrested, rhizoid elongation throughout the experiment when 

compared with control embryos (p<0.05). Exposure of embryos to 844 nM Cû "̂  had a 

significant inhibitory effect on rhizoid elongation, resulting in complete growth arrest after 

seven days of incubation. Embryos exposed to 844 nM Cû "̂  had significantly shorter 

rhizoids than embryos in all other treatments on all days of measurement (p<0.05). 

Although there was a significant increase in rhizoid length in embryos exposed to 844 nM 

Cû "" until the 7* day of incubation (Figure 3.15A; p>0.05), thereafter rhizoid length did 

not increase significantly (p>0.05). 

Rhizoid length in Restronguet embryos increased significantly throughout the experiments 

in all concentrations tested (p<0.05) and after two days of incubation there was no 

significant difference in rhizoid length between the treatments (Figure 3.15B; p>0.05). 

Cû "̂  had no negative effect on rhizoid elongation in zygotes incubated in concentrations up 

to 211 nM Cû "̂  on any day of measurement (p>0.05). On day 4, zygotes incubated in 42.2 

nM Cû "̂  had produced significantly longer rhizoids than control embryos and embryos 
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Figure 3.15. EfFect of Cu^^ on rhizoid elongation in Fucus embryos 
obtained from Wembury Beach (A), and Resfronguet Creek (B). 
Germinated embryos were incubated for 10 days in varying Cu^^ 
concenfrations. Average rhizoid length for >25 embryos in each treatment 
was measured. Values represents means ± 1 SD (n= 3) 
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Figure 3.16. Examples of rhizoid elongation after 10 days of incubation. Wembury 
embryos in Cu^^ free confrol medium (A) and medium containing 211 nM Cu^^ (B), 
and Restronguet embryos in Cu^^ free medium (C) and medium containing 211 nM 
free Cu2+ (D). 
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Figure 3.17. Effect of Cu^^ on rhizoid elongation in embryos from Wembury Beach 
(W) and Bantham Quay (B), which are not naturally exposed to Cu^^. Germinated 
embryos were incubated for 8 days in Cu^^ free confrol medium and medium 
containing a Cu^^ concentration which was above the tolerance limit for embryos 
from a non-tolerant population, but within the tolerance limit for embryos from a Cu^^ 
tolerant population. Average rhizoid length for >25 embryos in each treatment was 
measured. Values represents means ± 1 SD (n= 3) 
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incubated in 211 nM Cu (p<0.05), which indicates some Cu requirement for rhizoid 

elongation in Restronguet embryos. Incubation in 844 nM Cu^* significantly reduced but 

never inhibited rhizoid elongation completely in Restronguet embryos. On the 4* day of 

measurement and thereafter, embryos incubated in 844 n M Cu^* produced significantly 

shorter rhizoids than embryos in the other treatments (p<0.05) but rhizoid elongation was 

never arrested (P<0.05). 

It was important to determine whether the difference in Cu^^ tolerance limits between 

embryos obtained from the Restronguet Creek and Wembury Beach populations was 

caused by tme adaptation in the Restronguet embryos or by other inter-population 

differences. Rhizoid elongation was therefore investigated in embryos from two unexposed 

populations incubated in 0 and 211 nM Cu^* for 8 days. The results (Figure 3.17) clearly 

show that the two unexposed populations had the same Cû "*̂  tolerance limit. There was a 

significant increase in rhizoid elongation in embryos from both populations in both 

treatments throughout the experiment (p<0.05), although rhizoid elongation in embryos 

was significantly reduced when exposed to 211 nM Cû "̂  compared with 0 nM (p<0.05). 

When exposed to either 0 or 211 nM Cû "̂  there was no difference in rhizoid elongation 

between zygotes from the two populations (p>0.05). The identical responses to Cu^* 

exposure in these two populations strongly suggests that the consistently better tolerance of 

the Restronguet population represent a true adaptation to elevated Cû "̂ . 

3.3.2.3. Cell division 

In addition to rhizoid elongation, cell division is essential for growth in the Fucus embryo 

and effects of Cû "̂  on cell division were therefore investigated. Ungerminated Wembury 

zygotes were exposed to a range of [Cu^^] and the number of cells per zygote was counted 

at 24 and 40h AF. The results (Figure 3.18) show that low to moderate [Cu^""] had a 
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Figure 3.18. Effects of Cu^^ on cell division in Wembury Fucus zygotes. Zygotes were 
exposed to Cu^^ 2h after fertilisation (AF) and the number of cell divisions measured at 
24 h AF (O) and 40 h AF ( • ). Values represents means ± 1 SD (n= 3) 
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positive effect on cell division, and that the inhibitory effect of high [Cu ] was most 

pronounced by 40h AF. 

By 24h AF the mean number of cells per embryo was 1.95 in the control treatment. 

Exposure of zygotes to 42.2 and 211 nM Cu^^ had a positive effect on cell division. In 

these concentrations the average number of cells was 2.05 and 2.10 respectively. This was 

significantly higher than in control embryos (p<0.05). Upon an increase in [Cu^^] to 844 

nM there was a decrease in number of cells per embryo to 1.88, which is equivalent to the 

number of divisions in controls (p>0.05). Exposure of zygotes to 2110 nM Cu^^ resulted in 

1.48 cells per embryo by 24h AF, which was significantly lower than in control embryos 

and any other treatment (p<0.05). 

By 40h AF the average number of cells per control embryo was 6.09. There was a positive 

effect of 42.2 nM Cu^* on cell division as the average number of cells per embryo was 

7.45, which was significantly higher than in control embryos (p<0.05). Increasing [Cu^" ]̂ to 

211 and 844 nM resulted in a reduction in the number of cells per embryo to the level of 

control embryos (p>0.05). Further increase in [Cu^" ]̂ had an inhibitory effect on cell 

division. Exposure to 2110 nM Cu^* resulted in an average 4.27 cells per embryo which is 

significantly lower than in control zygotes (p<0.05) and equivalent to a reduction of 43% 

compared with incubation in 42.2 nM. 

Examples of cell divisions in embryos incubated in medium containing 42.2 nM Cû "̂  and 

2110 nM Cû "̂  are shown in Figure 3.19. Cû "̂  clearly had a significant dismptive influence 

on the cell division pattem in the Fucus embryo. By 40 h AF 51.5±4.6% of embryos 

incubated in 2110 nM Cû "̂  had a cell division pattem which deviated from the normal 
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Figure 3.19. Examples of cell divisions in embryos stained with the cell wall dye FM 1-43 after 
40h of incubation in medium containing either 42.2 nM Cu^^ (top) or 2110 nM Cu^^ (bottom). 
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pattem for Fucus embryos at this age. Only 5.8±3.7% of embryos incubated with 42.2 nM 

Cû "̂  had a deviant cell division pattem. 

3.3.3. Effects of Cû "̂  on cytosolic Ca^^ in the Fucus rhizoid 

3.3.3.1. Effects of Cû "̂  on the Câ "̂  gradient 

Figure 3.20 shows an example of the cytosolic Ca^^ response to an 80% hypo-osmotic 

shock in the rhizoid of a Fucus embryo not pre-treated with Cû "̂ . Within 10 seconds of 

exposure to hypo-osmotic conditions there was an abmpt increase in apical Câ "̂  in the 

rhizoid cell. The Câ "̂  elevation occurred in a restricted area near the cell membrane and 

extended a few / im into the cytoplasm. Apical CSL* remained at an elevated level for at 

least 1 min. This response was observed in all 3 control embryos and was therefore 

characteristic for embryos that were not pre-treated with Cu "̂̂ . 

Figure 3.21 shows examples of rhizoid cytosolic Câ "̂  during an 80% hypo-osmotic shock 

in embryos pre-treated with medium containing 422 nM free Cu^* for 5 min. In 4 out of 6 

embryos investigated there was no elevation at all in apical Câ "̂  upon exposure to an 80% 

hypo-osmotic shock. In the remaining two embryos a slight increase in apical Câ "̂  was 

observed. The extent and duration of the Câ "̂  elevation in these embryos, however, was 

much less than in the control embryos (Figure 3.20). An example of cytosolic Câ "̂  in the 

rhizoid cell of embryos pre-incubated for 3 h in Aquil containing 422 nM free Cû "̂  is 

shown in Figure 3.22. In this example, no apical Câ "̂  elevation was present before and 

during exposure to an 80% hypoosmotic shock. This response in apical Câ "̂  was observed 

in 5 out of 7 embryos investigated. 
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Figure 3.20. Calcium Green/Texas Red images of Câ ^ in the apex of a rhizoid cell 
during the first 55 seconds after exposure to an 80% hypo-osmotic shock. The hypo
osmotic shock was applied at t=0 s. Only the rhizoid tip is shown and it is outlined in 
white in the first image. The colour bar (bottom right indicates the Ca^^concentration. 
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Figure 3.21. Calcium Green/Texas Red ratio images of apical cell Ca^^ in the rhizoid of two 
embryos pre-incubated for 5 min. in medium containing 422 nM Cu^^ and subsequently given 
an 80% hypo-osmotic shock. In 4/6 zygotes (A) no change in apical and sub-apical Ca^^ was 
observed. In 2/6 there was a slight increase in apical Câ ^ (B), this is indicated by an arrow. 
The colour bar (bottom right indicates the Ca^^concentration. 

178 



0.01 MM 1 MM 

Figure 3.22. Calcium Green/Texas Red ratio of changes in cell Câ ^ in a rhizoid 
tip during an 80% hypo-osmotic shock given subsequent to 3h exposure to 422 nM 
Cu^^. No apical changes in Ca^^ were observed. Sub-apical Ca^^ started to increase 
15-20 seconds after the hypo-osmotic shock was given. The colour bar (bottom 
right) indicates the Ca^^ concentration. 
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To quantify the [Câ '̂ cyt] responses in Cu^^ pre-treated and control embryos during hypo

osmotic treatment, changes in apical and sub-apical [Ca^^] were determined. Ruorescence 

in the ratio images was converted into [Câ "*̂ ] on the basis of the calibration curve (Figure 

3.07b). The average changes in apical [Ca^*] in experimental embryos during hypo

osmotic shock are shown in Figure 3.23. Apical [Ca^^l in control embryos increased from 

0.1 to approximately 1 /xM upon exposure to hypo-osmotic conditions. This is equivalent 

to a 100-fold increase in [Câ '̂ Jcyt- At 55 seconds after the hypo-osmotic treatment was 

applied, the apical [Ca^^] had gradually decreased by about 50%. In embryos pre-treated 

with Cu^^ for either 5 min or 3h before the hypo-osmotic treatment, only minor changes in 

apical [Câ "̂ ] were observed. 

Figure 3.24. shows average changes in sub-apical [Câ "̂ ] during the hypo-osmotic 

treatment. Sub-apical resting [Ca^^] in control embryos before the hypo-osmotic treatment 

was about 0.1 fiM, whereas sub-apical resting [Câ "̂ ] in Cû "̂  treated embryos of about 0.15 

/ i M was 50% higher. This was independent of the duration of the Cu^* exposure. The 

predominant response in embryos pre-incubated with Cu^^ for 3h was an increase in 

[Ca^ l̂cyt from about 0.15 to 0.3 /xM approximately 15-20 seconds after exposure to hypo

osmotic conditions (Figure 3.24). This result was based on calculations of sub-apical 

[Câ "̂ ] in the 5 out of 7 embryos where the response was observed. In 2 out of 3 control 

embryos and 4 out of 6 embryos pre-treated with Cû "̂  for 5 min, some increase in sub-

apical [Câ "̂ ] during the hypo-osmotic treatment was observed (Figure 3.24). However, 

with a relative increase in sub-apical Câ "̂  in these embryos of no more than 10-15%, this 

increase was less than half of what was observed in 5 out of 7 embryos pre-treated with 

Cû "̂  for 3 h before the osmotic shock treatment. 
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Figure 3.23. Average changes in the apical Ca^^ concentration during exposure to 
an 80% hypo-osmotic shock in embryos exposed to 422 nM j ^ M Cu^^ for 5 min., 
n=6 ( • ) , 3h., n=7 ( A ) , and in control embryos, n=3 ( • ) . 
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Figure 3.24. Average relative changes in sub-apical Ca^ concentration during an 80% hypo
osmotic shock in embryos pre-treated with 422 nM Cu^* for 5 min., n=4 ( • ) , 3 h., n=5 ( A ) , 
and in control embryos, n=2 ( • ) . 
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3.3.3.2. Effects of acute Cu^* exposure on Ca^* homeostasis 

Figure 3.25 shows an example of the cellular Ca^* response to acute exposure to 2110 nM 

free Cu^^ in a rhizoid cell. Within 30 seconds of application of Cu^^ there was a dramatic 

increase in Ca^* throughout the rhizoid and the global Ca^* remained at this level for at 

least 2 min. In particular the sub-apical Ca^^ level remained high for about 10 min. A 

dramatic increase in Câ "̂  relative to the level before acute exposure to high [Cu^^] was a 

general response in the rhizoid. This increase was independent of free [Cu^*] at 2110 n M 

and above (Figure 3.26). In one embryo exposed to 844 nM free Cu^^, the Câ "̂  elevation 

lasted for about 300 s and eventually decreased to below the level measured at time 0. This 

would reflect dye loss or errors in ratio due to low signals in the ratio images. In embryos 

exposed to 2110 nM free Cu^^, the cell Ca^^ remains at the elevated level until about 2400 

seconds after Cû "̂  was applied, at which time the cell Ca^^ had decreased to the resting 

level. The general trend for cell Câ"*̂  observed in the 3 embryos exposed to the extreme 

[Cu "̂̂ ] of 8440 nM was a global increase in cell Câ "̂ , lasting for several minutes. In one of 

these embryos a sudden decrease in cell Câ"*̂  was observed about 2000 seconds after Cû "̂  

exposure. The nature of this decrease indicates that it probably was caused by dye loss 

from a dying cell. 
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Figure 3.25. Example of the Calcium Green/Texas Red images of the Câ ^ elevation 
observed in Fucus rhizoid cells subject to acute Cu^^ exposure. The colour bar (bottom 
right indicates the Câ ^ concentration. 
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Figure 3.26. Relative changes in global cell Ca?^ in 7 rhizoid cells during acute 
exposiu-e to three different concentrations of Cu^*. Cu^^ concentrations used are 
indicated in the figiwe. 
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3.4. Discussion 

Polar axis establishment in the Fucus zygote is dependent on a sequence of complex 

physiological processes of which the best known are localisation of F-actin, establishment 

of an apical Ca^* gradient, and localised secretion of fucoidin into the cell wall. The same 

processes are underlying rhizoid elongation, which occur as tip growth. In the present 

study it was shown that Cû "̂  selectively targets these physiological processes and 

consequently reduces and arrests polarisation with possible consequences for further 

development of the embryo, and inhibits rhizoid elongation. Similarly, it has been shown 

by other workers, that Cû "̂  may target very early processes in the Fucus zygote (Anderson 

and Kautsky, 1996), and reduce and even arrest rhizoid elongation and growth of the 

embryos (Bond et al., 1999; Gledhill et al., 1999). 

3.4.1. Effects of Cu^* on embryo growth and osmoregulation 

3.4.1.1. Osmoregulation 

The rhizoid cell of the Fucus zygote possesses the ability to osmoregulate during exposure 

to hypo-osmotic conditions by controlling the concentration of ions and water within the 

cell (Taylor et al, 1996; Goddard, 2000). Hypo-osmotic treatment of a Fucus zygote 

initiates a Câ "̂  wave at the apex of the rhizoid as it begins to swell (Taylor et al., 1996, 

1997). The Câ "̂  wave propagates to the sub-apical region by release of Câ "̂  from intemal 

stores (Goddard et al., 2000), and the Ca^* signal is involved in mediating ion efflux 

through CI - and K"^-channels in the cell membrane, which in tum regulate hypo-osmotic 

swelling. Cu^* is known to be a potent inhibitor of ion channels in both plants and animals 

(Kiss et al., 1991; Osipenko et al., 1992; Amesheh and Weber, 1999; Demidchik et al., 
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1997; 2001). Therefore it was expected that Cu would affect plasma membrane ion 

channels and consequently have negative effects on the osmoregulatory process. In the 

present study osmoregulation in the Fucus zygote was unaffected by Cu^* at concentrations 

up to 844 n M during exposure to a 50% and 25% hypoosmotic shock. However, 2110 n M 

Cû"*̂  improved the ability of the rhizoid cell to osmoregulate. Although it is possible that 

Cu^* did have an inhibitory effect on the activity of plasma membrane ion channels, and in 

this way diminish the ability of zygotes to osmoregulate, Cû "̂  may still have had a positive 

effect on osmoregulation. A rigid cell wall protects the thallus cell of the Fucus zygote 

from uncontrolled swelling during hypo-osmotic treatment, whereas the cell wall at the 

rhizoid tip is soft and allows the cell to swell (Taylor et al., 1996). In a cellulose cell wall 

the cellulose and hemicellulose fibres are held together by hydrogen bonds (Fry, 1994). 

Hydrogen bonds are relatively weak, and it is therefore possible that Cû "̂  may have a 

direct strengthening effect on the cell wall by forming stronger cross links between the cell 

wall components. Furthermore, cell wall softening during turgor-driven cell enlargement in 

flowering plants is effected by a specific group of cell wall proteins (expansins) which may 

act by breaking hydrogen bonds between hemicellulose and cellulose (Fry, 1994; 

Cosgrove, 1996). The existence of expansins in Fucus has not been shown, but cell wall 

softening enzymes would be required during growth, and a similar mechanism to that in 

flowering plants is likely to exist. Cû "̂  has a high affinity for -SH groups and may 

therefore inhibit enzymes at elevated concentrations by cross-linking sulfhydryl groups and 

cause conformational changes (Stauber and Florance, 1987; Rijstenbil et al., 1994; von 

Stedniak et al., 1997). It is therefore possible that the positive effect of Cu^^ on 

osmoregulation is caused by inhibition of cell wall softening expansin-like proteins within 

the cell wall of the rhizoid. Hence, elevated concentrations of Cu^^ could result in a more 

rigid cell wall, and consequently prevent bursting during hypo-osmotic conditions. Cû "̂  

may have had other effects on the cell wall. Inhibition of secretion of the cell wall 
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component fucoidin, has been shown to have a positive effect on osmoregulation in 

Pelvetia zygotes (Bisgrowe and Kropf, 2001). Adding 5 / ig l ' Brefeldin A to germinated 

zygotes 4-6 h prior to hypoosmotic treatment inhibited secretion of fucoidin, destroyed 

Golgi membranes and increased the percentage of zygotes which could withstand transfer 

to distilled water from 55% to 85% (Bisgrowe and Kropf, 2001). In that work it was 

suggested that the improved osmoregulation in zygotes exposed to the inhibitor of 

secretion was coursed by strengthening of the cellulose cell wall, which was doubled in 

thickness in response to Brefeldin A as revealed by electron microscopy. Secretion of 

fucoidin in the Fucus zygote is initiated during the time when zygotes in the 

osmoregulation experiment were pre-incubated with Cu^^ (Wagner et al., 1992; Shaw and 

Quatrano, 1996). Furthermore, it was shown in the present work (see below, 3.4.2.2.), that 

Cu^* has a strong inhibitory effect on localised secretion of fucoidin. It is therefore a 

possibility that the inhibitory effects of Cu^^ on secretion may have resulted in 

strengthening of the cellulose cell wall at the rhizoid tip of the Fucus zygotes analogous 

with the results presented by Bisgrove and Kropf (2001). However, the inhibitors 

(Brefeldin A and Cu^*) may have changed the osmotic potential of the zygotes during the 

pre-incubation period, which offers an alternative explanation. It was shown in Chapter 2 

and by other workers (Ploz, 1991; Ymela et al., 1996; Ciscto, 1997) that Cu^^ is a potent 

inhibitor of photosynthesis. Consequently, Cu^* may have reduced the photosynthetic 

capacity and lowered the carbohydrate content of the zygotes. This in tum could have 

lowered the osmotic potential of the zygotes and resulted in less swelling during the hypo

osmotic treatment, and have given the impression of improved osmoregulation. 

3.4.1.2. Cell division 

The first cell division in the Fucus embryo is orientated perpendicular to the polar axis and 

subsequent divisions occur in a specific pattem (Kropf et al., 1990). In the present study. 
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2110 nM Cu resulted in abnormal cell division patterns in the Fucus zygote from non-

tolerant populations, and this effect could be the result of the inhibition of Cu^* on axis 

fixation. Failure of the Fucus zygote to establish a polar axis results in loss of the ability to 

orientate the first division plane correctly (Allan and Kropf, 1992; Shaw and Quatrano, 

1996). Consequently, the abnormal and often random cell division pattems observed in the 

present study could be the result of the inhibitory effect of Cu^* on axis fixation during 

Cu'̂ ^ exposure. Although Cu^^ had a severe effect on the cell division pattem, cell division 

rate was unaffected or even increased at concentrations below 2110 nM. At low 

concentrations, 42.2 and 211 nM, Cû "̂  had a positive effect on cell division rate, whereas 

844 nM Cu^^ had no effect on cell division rate even though this concentration is 20-fold 

higher than the tolerance limit for axis fixation and rhizoid elongation, and is equivalent to 

the concentration which eventually arrested rhizoid elongation in Cu^^-intolerant embryos. 

In fucoid zygotes, negative regulators of the cell cycle (DNA replication checkpoints) may 

ensure accurate transmission of genetic information by preventing mitosis until DNA is 

fully replicated (Corellou et al., 2000). It is a possibility that Cu^^ has increased the cell 

division rate by inhibiting the action of the DNA replication checkpoints, which would 

result in mitosis and completion of cell cycle before DNA replication was completed. DNA 

replication check points may also be involved in regulation of spindle alignment prior to 

cell division (Corellou et al., 2000). Therefore, dismption the DNA replication checkpoints 

by Cu^* as well as incomplete replication of DNA, may have contributed to the abnormal 

cell division pattem observed. Only in embryos exposed to 2110 nM Cu^^ was the cell 

division rate observed to slow down compared to control embryos. 

3.4.1.3. Rhizoid elongation and Cu^* tolerance 

This study showed that rhizoid elongation in F. serratus embryos have different tolerance 

limits to Cu^^, which reflects the Cu^* status in the habitat from which they were obtained. 
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Physiological experiments carried out on adult F. serratus from the same locations 

revealed that the adult algae also have different Cû "̂  tolerance limits, which are dependent 

on the Cu^^ status in their natural environment (Chapter 2). By comparing results on 

embryos and adults from the same locations it is revealed that the Cû "̂  tolerance limit in 

the embryos mirrors the tolerance limit in the adults. Cu^^ tolerant Restronguet embryos 

even displayed some Cu^^ requirement during axis fixation. Chelating of Cû "̂  by 

polyphenols, which are present in cytoplasmic physodes and in the cell wall (Smith et al., 

1986; Schoenwaelder and Clyton, 1998), and secretion of copper complexing ligands to the 

medium (Gledhill et al., 1999), may be a general Cû "̂  tolerance mechanism in Fucus 

embryos as well as adults. Hence, other mechanisms may be responsible for the higher 

tolerance limit in the Restronguet population, and the similar response pattem in embryos 

and adults suggests that genetic adaptation is involved. Metallothionein genes, which are 

transcribed at higher rate in tolerant strains of Silene and Arabidopsis than in non-tolerant 

strains (Murphy and Taiz, 1995; van Hoof et al., 2001), have been identified in Fucus 

(Morris et al., 1999). Consequently, inter-population differences similar to those of 

flowering plants are likely to occur in Fucus. 

The Cû "̂  tolerance limit for rhizoid elongation in embryos obtained from uncontaminated 

sites was 42.2 nM. Higher [Cu^" ]̂ resulted in inhibition of rhizoid elongation. Similarly, 

Cû "̂  has been shown to have an inhibitory effect on apical cell elongation in Fucus 

embryos and pollen tubes. Thus, 10 ytM total copper reduced the elongation of Lilium 

longiflorum pollen tubes to about 15% of control tubes within 60 minutes of application 

(Sawidis and Reiss, 1995), and similar observations were made on Lilium pollen tubes 

exposed to elevated concentrations of Pb^* (Roderer and Reiss, 1988). Cû "̂ , together with 

Cd^^ is a much stronger inhibitor of pollen tube elongation than other divalent metals such 

as Co^*, Fê "̂ , Mn^*, Hg^*, and Zn^* (Sawidis and Reiss, 1995). Furthermore, growth in F. 
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spiralis embryos, measured as relative increase in zygote area, was significantly reduced at 

free Cu^* concentrations above 42.2 nM, and became irreversibly arrested at 844 nM 

(Bond et al., 1999; Gledhill et ai, 1999). Total embryo area correlates with rhizoid 

elongation as the main embryo expansion during the first days occurs as rhizoid 

elongation. Although Cu^^ eventually arrested rhizoid elongation completely in the present 

study, the effect of Cu^^ on rhizoid elongation at 844 nM Cu^* was more pronounced in the 

experiment by Bond et al. (1999) as those embryos grew very short stunted rhizoids. It is a 

possibility that there are different tolerance limits of Cu^* in F. serratus (used in the 

present study) and F. spiralis (Bond et al., 1999). However, the timing of adding Cû "̂  to 

the incubation medium is a more likely explanation. Exposing F. vesicolusus embryos to 

Cû "̂  at the time of germination rather than at the time of fertilisation increased their 

tolerance limit about 10-fold (Anderson and Kautsky, 1996). In the study by Bond and co

workers (1999), Cû "*̂  was added after fertilisation as soon as the zygotes had settled in the 

incubation chambers, before axis fixation had occurred. Therefore, what was measured was 

the effect of Cu^^ on axis establishment as well as rhizoid elongation. In the present study, 

Cû "̂  was not added until after rhizoid germination when the initial developmental 

processes had taken place and effects of Cu^^ on axis fixation were not included in the 

results. Rhizoid elongation in the Fucus embryo is the result of tip growth, which may 

share common processes to those in axis fixation (Kropf and Quatrano, 1987; Speksnijder 

et al., 1989; Roberts et al., 1993; Taylor et al., 1996; 1997). Therefore, studying 

mechanisms of Cu^^ toxicity during polar axis establishment would not only reveal effects 

of Cû "*̂  during early development but also shed light on toxicity mechanisms in rhizoid 

elongation. 
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3.4.2. Cu^* toxicity in early development 

3.4.2.1. Axis formation and fixation 

Polar axis establishment in Fucus occurs a few hours after fertilisation. The polar axis is 

first formed and then irreversibly fixed in response to polarising light (Quatrano, 1973; 

Kropf, 1992). In this study it was determined that axis formation in F. serratus occurs 

between 3 and 7 h AF, and subsequently becomes irreversibly fixed between 7 and 13 h 

AF. Similar timing of events has previously been shown for F. serratus (Berger and 

Brownlee, 1994; Love et al., 1997). Early developmental events in Fucus are sensitive to 

metal toxicity, and copper is known to be a potent inhibitor of growth in Fucus embryos 

during early development (Andersson and Kautsky, 1996; Bond et al., 1999). In the 

present study it was shown that Cu^* toxicity in the Fucus zygote targets axis fixation, 

whereas axis formation was unaffected, even when exposed to very high concentrations of 

Cû "*̂ . During axis formation the polarising light vector is first detected and translated into 

spatial information. Excitation of photoreceptors in the plasma membrane on one side of 

the zygote may result in asymmetrically enhanced redox activity at the cell surface, which 

in tum initiates Ca^* asymmetries (Berger and Brownlee, 1994; Love et at., 1997). 

Altematively, in a process which involves retinal, the polarising light signal promotes 

asymmetric cychc GMP activity, which in tum, may result in increased F-actin 

polymerisation by the rhizoid pole (Robinson and Miller, 1997; Robinson et al., 1998). 

Although our understanding of light detection in the Fucus zygote remains vague, it is 

clear that the pigments involved are unaffected by Cu'̂ "̂  even at relatively high 

concentrations. Similarly, the mechanism of translating the light signal into spatial 

information, whether it involves an increase in redox chain activity or cyclic GMP activity, 

is apparently unaffected by elevated concentrations of Cû "̂ . 

192 



Axis fixation in the Fucus zygote is a complex process and many different events are 

involved. The exact timing and order of events is unclear, and only a few have been subject 

to detailed study. Three of the major processes thought to be involved in axis fixation are 

localisation of F-actin (Bouget et al., 1996; Alessa and Kropf, 1999; Pu et al., 2000), 

establishment of a Ca^^ gradient (Specksnijder et al., 1989; Taylor et al, 1992) and 

localised secretion of fucoidin into the cell wall (Wagner at al 1992; Shaw and Quatrano 

1996b). The present study focused on each of these three processes, as they all, either 

singly or in combination, were potential principal targets of Cu^* toxicity during early 

development in the Fucus zygote. 

3.4.2.2. Localised secretion of fucoidin 

Direct effects of Cu^* on secretion of fucoidin, or processes upstream of secretion, may 

have caused the negative effect of Cû "*" on axis fixation. It was shown in this study that 

fucoidin was secreted into the cell wall at the rhizoid pole in 77% of control zygotes during 

axis fixation, and similar results have been presented by other workers (Wagner et al., 

1992; Shaw and Quatrano, 1996b). However, 211 n M Cû "" considerably inhibited 

secretion of fucoidin, as the proportion of secreting zygotes was reduced to 15% when 

treated with this concentration during axis fixation. This is within the concentration range 

which also had an inhibitory effect on axis fixation although the inhibitory effect of Cu^* 

on secretion of fucoidin was more pronounced. Preliminary experiments (data not shown) 

revealed that the adhesion of zygotes was unaffected by up to 2110 nM Cu^* and suggests 

that secretion of polysaccharides and mucus in general was unaffected by Cû "̂ . 

Furthermore, secretion of Cu^^ complexing ligands by Fucus zygotes was not inhibited by 

increasing [Cu^"^]. On the contrary it was increased (Gledhill et al., 1999). Such secretion 

in fucoid embryos is performed by exocytosis (Schoenwaelder and Clyton, 1998) in a 

similar way as localised secretion (Shaw and Quatrano, 1996b). Consequently the effects 
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of Cu on secretion in Fucus zygotes may be targeted exclusively at localised secretion of 

fucoidin at the rhizoid tip. It is likely that the negative effect of Cû "̂  on axis fixation is 

related to effects on secretion or upstream processes. In the suggested model for axis 

fixation (Goodner and Quatrano, 1999), Golgi-derived vesicles containing fucoidin are 

guided towards the rhizoid pole by actin filaments in response to the polar Ca^* signal. The 

direct effects of Cu^^ on secretion of fucoidin could involve peroxidation of Golgi 

membranes through production of free radicals. The strong oxidative properties of Cû "̂  are 

known to cause the production of reactive oxygen species (ROS) and result in peroxidation 

and damage to intemal membranes (Luna et al., 1994; Ymela et al., 1996; Navari-Izzo et 

al., 1998;). However, Cû "̂  has been shown to result in accumulation of light- and electron 

microscope translucent vesicles in F. spiralis rhizoids and Lilium pollen tubes at 

concentrations which inhibited cell elongation, and which were within the range used in 

the present experiment (Sawidis and Reiss, 1995; Bond et al., 1999). It is very likely that 

the accumulated vesicles contained Golgi-derived substances, which have not been 

secreted into the apical plasma membrane and cell wall. Consequently, vesicles are still 

derived from the Golgi during Cû "̂  exposure in these organisms. These results suggest that 

the inhibitory effect of Cû "̂  on tiansport and secretion of secretory vesicles is likely to 

cause the pronounced negative effect on secretion, rather than direct effects of Cu^* on the 

Golgi apparatus. Hence, F-actin localisation and establishment of the Câ "̂  gradient are 

potential targets for Cu^* toxicity in the developing Fucus zygote. 

3.4.2.3. F-actin localisation 

The inhibitory effect of Cu^* during axis fixation was downstream of F-actin localisation, 

as even [Cu^" ]̂ as high as 2110 nM did not inhibit F-actin localisation greatiy. In agreement 

with previous results (Kropf et al., 1989; Bouget et al., 1996; Alessa and Kropf, 1999; Pu 

et al., 2000), it was shown that F-actin localises at the rhizoid pole in the Fucus zygotes 
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during axis establishment. Heavy metal ions may cause depolymerisation of the F-actin 

cytoskeleton, as Cd^* ions were shown to be responsible for loss of actin filaments in 

vascular muscle cells (Wang et al., 1996). The effect of metal ions on F-actin 

depolymerisation, however, was very specific for Cd^*, as a number of different divalent 

metal ions, including Cu^^, were tested and found ineffective (Wang et al., 1996). In the 

present study, even during exposure to 2110 n M Cu^*, as many as 80% of zygotes 

localised F-actin during the axis fixation period. Although this is 17% less than the 

proportion of zygotes which had localised F-actin in the control treatment, it is not enough 

to account for the 66% decrease in axis fixation, and the significant effect of Cû "*" on 

secretion of fucoidin. Consequentiy the main target for Cu^* during axis fixation in the 

Fucus zygote must be upstream of secretion of fucoidin and downstream of F-actin 

localisation. 

3.4.3. Effects of Cu^* on cytosolic Ca^* in the Fucus rhizoid 

3.4.3.1, The Câ "̂  gradient 

The Câ"*" gradient at the Fucus rhizoid tip is initiated during axis establishment (Berger and 

Brownlee, 1993; Pu and Robinson, 1998), and becomes very localised during rhizoid 

germination and growth (Roberts et al., 1993; Taylor et al., 1996). Sustaining the apical 

Ca'^* gradient is very important for continued apical growth in both the Fucus zygote and 

other tip growing systems, as can be seen from microinjecting Câ "̂  buffers such as 

BAPTA that dismpt the Câ "̂  gradient and attenuate apical growth (Speksnijder et al., 

1989; Roberts et al., 1993; Pierson et al., 1994; Malho et al., 1995; Taylor et al., 1996). 

Maintenance of the apical Câ "̂  gradient may involve influx of extemal Câ "̂  across the 

plasma membrane through mechanosensitive Câ "̂  channels, which are activated by 
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localised stretching of the membrane at the apex by cell turgor (Taylor et al., 1996; 1997). 

By monitoring [Ca^" ]̂cyt in a Fucus zygote microinjected with Câ "̂  sensitive dye, and 

simultaneously patch clamping the plasma membrane during hypo-osmotic treatment it 

was shown that voltage- and mechanosensitive Câ "̂  channels play a major part in apical 

Ca^* signalling in the Fucus zygote (Taylor et al., 1997). Furthermore, this work (Taylor et 

al., 1997) also suggests that the mechanisms of establishing the growth related Ca^* 

gradient and the hypo-osmotic Ca^* elevation in the Fucus rhizoid may be linked. 

Amplification of the apical Ca^^ gradient is a general response in the Fucus rhizoid when 

exposed to slight hypo-osmotic conditions. Goddard et al. (2000) showed that transfer of 

embryos from SW to 80% SW resulted in pronounced apical Câ "̂  elevations in all 

embryos tested (n=20). Similarly in the present study, an abmpt, 10-fold increase in apical 

[Câ "̂ ] was observed upon transfer from ASW to 80% ASW. Due to the soft cell wall at the 

rhizoid tip during rhizoid germination and apical growth, the cell turgor increase may 

result in localised activation of stretch activated Câ "̂  channels and influx of Câ "̂ , which 

contribute to maintenance of the Ca^* gradient (Taylor et al., 1996; 1997). 

Inhibition of the Ca^^ gradient is a general feature of Cu^* toxicity in the Fucus zygote. In 

4 out of 6 experimental zygotes, exposure to 422 nM Cû "̂  instantly and completely 

inhibited their ability to abmptly increase apical Ca^* during slight hypo-osmotic 

conditions. The apical Câ "̂  elevation in the remaining 2 out of 6 experimental zygotes was 

very limited. The rapid effect of the attenuation of the Câ "̂  gradient suggests that the Cû "̂  

toxicity is due to inhibition of ion channels in the plasma membrane. A number of ion 

channels have been associated with the plasma membrane of the Fucus zygote. Voltage-

gated mechanosensitive cation channels have been identified by patch clamp experiments 

(Taylor and Brownlee, 1993; Taylor et al., 1992; 1996; 1997). Applying a mechanical 
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pressure of 0.5-2 kPa to the rhizoid plasma membrane or stretching it by inducing 

hypoosmotic swelling of the rhizoid resulted in increased cation channel activity (Taylor et 

al, 1996; 1997). Membrane depolarisation and single channel recordings of these 

mechanosensitive channels revealed that the conductance was carried by an outward 

current and an inward Ca^^ current (Taylor et al., 1996). This ion channel was blocked by 

Gd^^ (Taylor et al., 1996) which also blocks mechanosensitive Câ "̂  ion channels in other 

systems (Yang and Sachs, 1989; Amasheh and Weber, 1999). By the use of an 

extracellular vibrating probe it was shown that the positive inward current, observed at the 

rhizoid apex in the Fucus zygote, appears to be carried partly by CI' efflux (Nuccitelli and 

Jaffe, 1976). 

Cu^* is known to be a potent inhibitor of the current passing through different types of ion 

channels, antiporters and ATPases in different organisms, but the effect of Cu^* is complex 

and there is no general response of the different types of ion channels to Cu "̂̂ . The 

numerous examples include the inhibitory effects of Cû "̂  on Na" /̂K*/Ca^" -̂ATPase (Li et 

al., 1996; Viarengo et al., 1996), H'-ATPase (Demidchik, 1997; 2001) and Na^/Ca^^-

antiporter (Viarengo et al., 1996). Patch clamp experiments have revealed that Cû "̂  

depresses current passing through Câ "̂  channels in both plant and animal endo- and 

plasma-membranes (Kasai and Neher, 1992; Osipenko et al., 1992; Viarengo et al., 1996; 

Klusener at al 1997). Cu^^ strongly inhibited the conductivity through a non-specific Câ "̂  

channel in the Bryonia dioica ER membrane (Klusner et al., 1997), and elevated [Cu^" ]̂ 

reduced the inward current through voltage activated Câ "̂  channels in neuronal plasma 

membranes (Kasai and Neher, 1992; Osipenko et al., 1992). Furthermore, Kasai and Neher 

(1992) found that Gd̂ "̂  was a potent inhibitor of the same neuronal Câ "̂  channel. Cu^* is 

also known to inhibit current through CI" channels (Kiss et al., 1991; Demidchik, 1997; 

Amasheh and Weber, 1999). Amasheh and Weber (1999) found that elevated [Cu^^] is a 
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potent inhibitor of the current passing through Ca "^-activated CI" channels in the Xenopus 

laevis oocyte plasma membrane. Interestingly, applying Gd̂ "̂  to the membrane had a 

similar inhibitory effect on the Ca^'^-activated CI" channel conductivity (Amasheh and 

Weber, 1999). It is very interesting to notice at least two examples where Cû "̂  and Gd^^ 

ions are shown to be potent inhibitors of the conductance through the same type of ion 

channels (Kasai and Neher, 1992; Amasheh and Weber, 1999). Although there is no 

general effect of different ions on different types of ion channels, it is possible that the 

effects of Cu^^ and Gd^* on other types of ion channels may be similar. Gd^* is known to 

be a very potent inhibitor of stretch activated Câ "̂  channels (Yang and Sachs, 1989; Zhang 

et al., 1998), and has also been shown to inhibit inward Ca^^ current through stretch-

activated ion channels in the apex of the Fucus rhizoid (Taylor et al., 1996). Therefore, the 

coincident effect of Gd^* and Cu^* on Ca^^- and Cl'-ion channels suggests that Cu^* is also 

a potential inhibitor of stretch activated Câ "̂  channels. Cû "̂  may act by either blocking 

Ca^" -̂channels in the Fucus rhizoid or changing the protein configuration. 

3.4.3.2. Effects of Cu^* on Ca^* release from internal stores 

Ca^^ signalling in the Fucus rhizoid is not solely dependent on the influx of Ca^* from the 

extemal medium, but also relies on release of Ca^^ across intemal membranes (Goddard et 

al., 2000). The mobilisation of Câ "̂  from intemal Câ "̂  stores across endomembranes in 

plants is gated by both ligand- and voltage-activated Ca^* channels (Sanders et al., 1999). 

Evidence for hyperpolarisation- and depolarisation-activated Câ "̂  channels in 

endomembranes of higher plants has been presented (Johannes et al., 1992; Ward and 

Schroeder, 1994; Allan and Sanders, 1994, 1996;). Furthermore, both inositol 1,4,5-

trisphosphate (IP3)- and cyclic ADP-ribose (cADPR)-activated Câ "̂  channels have been 

identified in plants, where IP3 and cADPR stimulate distinct Câ "̂  release pathways from 

both vacuoles and the ER (Gilroy et al., 1990; Allen et al., 1995; Muir and Sanders, 1997). 
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IPs-induced Ca * release from endomembranes may occur in the Fucus zygote. 

Photorelease of caged IP3 was shown to induce a rapid increase in [Câ Ĵcyt in Fucus 

rhizoids (Goddard et al., 2000). This finding suggests the involvement of IP3 in the 

generation of Ca^^ signalHng in the Fucus zygote (Goddard et al., 2000). Ca^* itself acts as 

a co-agonist in IP3 induced Ca^^ release from intemal stores, and the activity of the IPs-

receptor is regulated by the IP3- and Ca^^-concentration in the cytoplasm (Finch et ah, 

1991; Combettes et al., 1994; Kaftan et al., 1997; Hirose et al., 1998). The Ca^^ 

dependence of the IPs-receptor is described by a bell-shaped curve which means that Ca^^ 

has a negative feedback on the IPs-receptor below and above the Ca^* optimum which is 

dependent on [IP3] (Combettes et al., 1994; Kaftan et al., 1997). The membrane-bound 

enzyme phospholipase C (PLC) catalyses the hydrolysis of the membrane lipid 

phosphatidylinositol 4,5-bisphosphate (PIP2) to IPs and diacylglycerol (Burgess et al., 

1984; Runnels and Scarlata, 1998). Cu^* is able to inhibit PLC activity and thereby effect 

the IP3 dependent Câ"*̂  signalling (Panfoli et al., 2000). Incubating gills and digestive 

glands of mussel, Mytilus galloprovincialis, with elevated [Cu^" ]̂ for 30 minutes resulted in 

an inhibitory effect on the PLC activity (Panfoli et al., 2000). This finding led to the 

conclusion that the inhibitory effect of Cû "̂  on the enzyme was due to lipid peroxidation 

and changed configuration induced by ROS production (Panfoli et al., 2000). Furthermore, 

Cû "̂  and other metals have been shown to form complexes with IP3 (Haug et al., 1994; 

Persson, 1998), which may obstmct the role of IPs as a messenger. The inhibitory effect of 

Cu^^ on IP3 production and consequently on IP3 controlled Câ "̂  release from intemal Câ "̂  

stores may play a role in the dismption of Câ "̂  signalling in the Fucus zygote during long 

term exposure to moderate concentrations of Cû "̂ . 
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3.4.3.3. Effects of acute Cu^* exposure on Ca^* homeostasis 

Damage to the plasma membrane and changes to the total ionic current are some of the 

primary effects of Cu^* toxicity at the cellular level (Kiss and Osipenko, 1994). Elevated 

[Cu^^] is known to cause lesions in plant plasma membranes, which may result in dismpted 

ion homeostasis in Arabidopsis seedlings (Murphy et al., 1999) and the freshwater algae 

Nitella flexilis (Demidchik et al., 1997; 2001). Increased membrane permeability resulted 

in increased ion current, which was carried by K"̂  efflux (Murphy et al., 1999) and Ca^* 

influx (Demidchik et al., 2001). In the experiment by Demidchik and co-workers (2001) 

the increased membrane permeability seemed to be unrelated to lipid peroxidation by ROS, 

as addition of antioxidants had no effect on the increased current. However, there are 

numerous examples of membrane lipid peroxidation caused by the highly oxidative 

properties of Cu^*, which induces oxidative damage (De Vos et al., 1991; 1993; Luna et 

al., 1994; von Stedniak et al., 1997; Cuypers et al., 1999; Teisseire and Guy, 2000). 

Câ"*̂  signalling is dependent on the ability of the cell to maintain [Ca^" ]̂cyt at a low level by 

exporting Câ "̂  against a concentration gradient into vacuoles and the extemal medium 

(Bush, 1995; Sanders et al., 1999). However, lipid peroxidation of ER membranes by ROS 

in neurons resulted in highly increased Câ "̂  permeability of these membranes (Racay et 

al., 1997; Lehotsky et al., 1999). Oat leaves exposed to elevated concentrations of Cu^^ 

were subject to membrane peroxidation and chlorophyll breakdown, which are common 

symptoms of oxidative damage (Luna et al., 1994). Highly increased antioxidant enzyme 

activity and production of free radicals has been found in response to elevated [Cu^^] in 

different plant species including Lemna minor (Teisseire and Guy, 2000). Similarly in the 

present study, acute exposure of the Fucus zygote to extreme (2-20 /xM) [Cû "̂ ] resulted in 

an abmpt increase in Câ "̂ cyt within 30 seconds. This response is likely to be caused by loss 

of cellular control of intemal Câ "*" stores, and extemal Câ "̂  due to membrane peroxidation 
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by Cu^^, and consequently flooding of the cytoplasm with Ca . Therefore, the cytosolic 

Ca^* elevations observed in the Fucus zygote in response to extreme acute and moderate 

chronic Cû "*" conditions may be the result of Cu^* promoting the production of free radicals 

and lesions in plasma and endo-membranes. 

3.4.4. Summary of discussion 

Effects of Cû "*" on early development in the Fucus zygote and on growth of germlings 

acquired from populations with different tolerance limits were addressed in the present 

chapter. 

By studying effects of Cû "̂  on rhizoid elongation it was established that Restronguet 

embryos had a higher tolerance limit than Bantham and Wembury embryos. Furthermore, 

the Cû "̂  tolerance during axis fixation was higher for Restronguet than Wembury zygotes. 

These results are mirrored both in the tolerance limit for adult Fucus (Chapter 2) and the 

natural copper status at the locations from which the algae were collected (Chapter 1). 

Cu^* was shown to have a positive effect on osmoregulation in non-tolerant embryos. This 

observation could be a direct strengthening effect of Cû "̂  on the cell wall, or an indirect 

effect through lower osmotic potential of the zygotes due to inhibited photosynthesis. 

It was shown that initiation of the polar axis in polarising zygotes was unaffected by high 

[Cu^"^], whereas Cû "̂  had a pronounced inhibitory effect on axis fixation. This effect may, 

in tum, have resulted in the abnormal cell division pattem observed, as alignment of the 

division plane is dependent on correct establishment of the polar axis. 
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The inhibitory effect of Cu on axis fixation and rhizoid elongation was caused by 

inhibitory effects on secretion of fucoidin and/or the apical Câ "̂  gradient, whereas F-actin 

localisation was largely unaffected. Cu^^ had the ability to rapidly and completely 

attenuating the apical Câ "̂  gradient, which is an absolute requirement for axis fixation and 

rhizoid elongation. This effect may be the result of Cû "̂  blocking apical Câ "*" carrying ion 

channels, which are partly responsible for maintenance of the gradient. Cu^^ may also 

interfere with IP3 controlled Ca '̂̂ -release from intemal stores, and in this way contribute to 

the loss of the apical Câ "̂  gradient. 

Acute exposure of zygotes to extreme [Cû "*"] resulted in largely increased [Câ "*"]cyt. This 

effect may be the result of Cû "*̂  induced ROS production, which potentially could result in 

lipid peroxidation of endo- and plasmamembranes, which in tum could cause the flooding 

of the cytoplasm with Ca^*. 
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CHAPTER 4 

General Discussion 



Fucus spp. have the abiUty to tolerate the presence of toxic metals in the environment, as 

evidenced by the presence of luxuriant populations in highly contaminated costal areas 

influenced by anthropogenic mineral exploitation. Such metal resistance is not a general 

feature of the genus and strains of tolerant and non-tolerant Fucus populations have 

developed in locations with varying metal status. In the present study, Fucus serratus 

obtained from Restronguet Creek which has been exposed to high levels of Cu^^ for 

decades, generally had a much higher level of resistance to imposed Cu^* stress than 

populations from Bantham Quay and Wembury Beach, which have no history of Cu^* 

pollution. The differences in Cu^* tolerance were manifested by highly reduced and even 

negative growth rates of fronds from Bantham and Wembury populations compared with 

those from the Restronguet population that were largely unaffected during both short and 

long term exposure to high [Cu^*]. 

The tolerant and non-tolerant populations of Fucus have been shown to have different 

strategies for responding to high [Cu^"^]. Adult Bantham and Wembury Fucus responded 

to Cu^* by accumulating it in high concentrations in the tissue, indicating that large 

quantities of Cû "̂  were chelated intemally. This is consistent with the demonstration by 

Smith and co-workers (1986) that Cû "̂  was chelated intemally and probably stored in 

vacuoles and/or cell walls of brown algae. Bantham and Wembury fronds accumulated 

Cû "̂  to similar high levels whereas Restronguet fronds accumulated significantly less total 

copper per gram dry weight than Bantham and Wembury fronds. This suggests that the 

superior tolerance of the Restronguet population may be based, at least in part, on 

exclusion mechanisms. The natural exposure of Fucus from Restronguet Creek to excess 

Cû "̂  may have led to the development of relatively few Cû "̂  uptake sites in the plasma 

membrane which would contribute to avoidance of copper uptake. In addition, the 

population may have a higher level of metallothionein expression than non-tolerant 
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populations, analogous with tolerant and non-tolerant strains of Arabidopsis and Silene 

(Murphy and Taiz, 1995; van Hoof et al., 2001). 

Large quantities of organic substances were released from the Bantham and Wembury 

fronds in response to elevated Cu^^. Production and secretion of ligands may lower [Cu^" ]̂ 

in the water surrounding the algae (Gledhill et al., 1999), although such ligands might 

easily be washed away and diluted. The large efflux of organic substances from Bantham 

and Wembury fronds may therefore include polyphenols or other chelators secreted with 

Cu^^ already bound, to lower the concentration of Cû "̂  accumulated in the tissue. 

Altematively, the high concentrations of organic substances measured in the incubation 

medium during Cu^* exposure in non-tolerant algae, may reflect leakage of cell contents as 

a result of oxidative membrane damage. Cu^^-induced lipid peroxidation, which resulted in 

leakage of cell contents through lesions in the cell membrane, has been demonstrated in 

Arabidopsis seedlings after 4h exposure to 30 ju,M CUSO4 (Murphy et at., 1999). In that 

study, leakage of cell contents was studied by measuring the concentration of the 

incubation medium by flame photometry. Similar measurements from Fucus during Cu^* 

exposure would indicate whether Cu^* led to solute leakage. I f efflux was unaffected 

during Cû "̂  exposure this would indicate that organic substances were selectively secreted. 

Increased K"̂  efflux would indicate a general loss of cell content through lesions in the cell 

membrane. 

Cû "̂  appears to reduce the photosynthetic efficiency and capacity of Fucus by targeting 

two distinct parts of the photosynthetic apparatus. Furthermore, the tolerant population of 

Fucus from Restronguet Creek was more resistant to inhibitory effects of Cû "̂  on 

photosynthesis than non-tolerant populations. Inhibitory effects of Cû "̂  on the 

photosynthetic efficiency of photosystem 11 was expressed by a negative impact on the 
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quantum yield in photosynthetically saturating light, whereas the quantum yield of the 

dark-adapted state was unaffected after long-term (23 days) exposure. This suggests that 

Cû "̂  reduced the tolerance of Fucus to saturating light. These results are consistent with 

the findings of Ouzounidou et al. (1997) who showed that Cû "̂  reduces the quantum yield 

of the light- but not the dark-adapted stage of maize seedlings after 15 days exposure to 

elevated [Cu^*]. Unlike Bantham and Wembury fronds, Restronguet fronds appeared to be 

able to divert the excess light energy, resulting from inhibitory effects on photosynthetic 

efficiency, by converting it to thermal energy through non-photochemical quenching 

(NPQ). The observed increase in NPQ of the Restronguet fronds may in tum result from a 

more resistant xanthophyll pool. A large xanthophyll pool and NPQ activity in brown algae 

is normally associated with sun-adaptation (Harker et al., 1999) and these results therefore 

suggest that sun-adapted fronds may have a higher tolerance to Cû "̂  than shade-adapted 

fronds. Although there was some increase in NPQ in Bantham and Wembury fronds at 

intermediate [Cu^"^], high concentrations had an inhibitory effect on NPQ. However, the 

non-tolerant populations may have responded to the increased sensitivity to high 

irradiances by increasing their production of accessory pigments to screen the 

photosynthetic apparatus from excess light. Bantham and Wembury fronds exposed to high 

[Cu "̂̂ ] became increasingly dark brown during the course of the experiment. Although this 

darkening in part may have been caused by accumulation of polyphenols, it could have 

been the result of fucoxanthin accumulation. 

In addition to the inhibitory effects of Cû "̂  on photosynthetic efficiency, there may have 

been a negative effect on the photosynthetic capacity of Fucus. This was indicated by a 

reduction in maximum fluorescence (F'm) in saturating light. The observed reduction in the 

fluorescence signal, particularly in Bantham and Wembury fronds, may have been the 

result of increased pigmentation. However, the darkening effect of Cû "̂  was only observed 
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in non-tolerant fronds, yet there was still some inhibitory effect of Cu on the fluorescence 

of Restronguet fronds. Furthermore, the reduced fluorescence coincided with a reduction 

in the chlorophyll a pool of non-tolerant populations. Production of reactive oxygen 

species (ROS) and breakdown of chlorophyll a, particularly in the non-tolerant 

populations, may be an additional cause of reduced photosynthesis in Fucus, which was 

apparent after both short- and long-term exposure. Excess light energy and elevated 

[Cu^ ĵcyt in non tolerant species may have contributed to increased production of reactive 

oxygen species (ROS) which, in tum, may have resulted in the breakdown of the 

chlorophyll a pool. Cu^^ seems to affect the pigment composition in Fucus as both 

chlorophyll and carotenoids may have been affected. Moreover, the pigmentation during 

Cû "̂  exposure seems to be dependent on the degree of Cû "̂  tolerance of the algae. It would 

therefore be highly relevant to carry out a detailed study of the content of chlorophylls and 

different carotenoids in different populations of Fucus after long-term exposure to Cu^*. 

Furthermore, it would be interesting to compare effects of Cû "̂  on the photosynthetic 

apparatus in sun- and shade-adapted Fucus, to clarify the possibility of higher Cû "̂  

tolerance in sun-adapted fronds. 

In the present study it was shown that the level of Cû "̂  tolerance of Fucus embryos and 

young zygotes mirrors that of the adults from which they were acquired. Bantham and 

Wembury zygotes and embryos were more sensitive to Cu^^ than Restronguet ones. There 

was some inhibitory effect of Cû "̂  on rhizoid elongation of Restronguet embryos although 

this was more pronounced in Bantham and Wembury embryos. Similarly, inhibitory 

effects of Cû "̂  on developmental processes of young zygotes occurred at lower 

concentrations in Wembury zygotes than Restronguet ones, which even displayed some 

Cu^^ requirement at this stage in the life cycle. 
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Cu targets the estabUshment of the polar growth axis in the Fucus zygote in a very 

selective manner. Polarisation of the Fucus zygote occurs as a sequence of complex 

physiological processes. The polar axis is initiated during photopolarisation by the 

detection and translation of a determining environmental vector, usually light, into spatial 

information (Berger and Brownlee, 1994). Subsequently the polar axis is irreversibly fixed 

in a sequence of physiological processes at the rhizoid pole, involving F-actin localisation 

(Bouget et al., 1998a), secretion of fucoidin (Shaw and Quatrano, 1996b) and 

establishment of a Ca^^ gradient (Taylor et al., 1992). Photopolarisation was unaffected in 

non-tolerant zygotes even at extreme [Cu "̂̂ ] whereas there were inhibitory effects on the 

axis fixation process in both non-tolerant and, to a lesser extent, tolerant zygotes. Failure of 

zygotes to fix their polar axis correctly affected their further development. Whereas the cell 

division rate of Fucus embryos was largely unaffected, there was an abnormal pattem of 

cell division in the developing embryo in response to Cû "̂  exposure. Such abnormalities 

may be related to the inhibitory effects of Cû "̂  on axis fixation, as fixation of the polar axis 

is a requirement for correct orientation of the cell division plane (Shaw and Quatrano, 

1996b). 

The inhibitory effects of Cu^^ on axis fixation appeared to be downstream of F-actin 

localisation, which was largely unaffected by Cû "̂ , and upstream of polarised secretion of 

fucoidin into the rhizoid apex, which was severely inhibited by Cu^*. Cû "̂  may specifically 

target the localised secretion of fucoidin, as secretion of mucusand cell wall components, 

other than fucoidin, appeared to be unaffected, and secretion of polypohenols may have 

been increased by Cû "̂ . Other workers (Bond et al., 1999) have demonstrated the 

accumulation of vesicles inside the Fucus rhizoid cell which coincided with the 

development of very stunted rhizoids in Fucus zygotes exposed to Cû "̂  during 

polarisation. These vesicles may contain fucoidin, the incorporation of which into the cell 
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wall may be prevented by Cu Hence, rather than inhibitory effects on fucoidin synthesis 

in the Golgi, Cû "̂  may impair intracellular polar vesicle transport. During intracellular 

transport, vesicles are guided along actin filaments by motor proteins such as myosin and 

kinesin (Rogers and Gelfand, 2000). Cû "̂  is unlikely to impair vesicle transport by 

affecting the axially-arranged actin filaments, as it has been shown in this and other 

studies (Wang et al., 1996) that F-actin polymerisation is largely unaffected by Cu^^ 

exposure. Cû "̂  may, however, target myosin, kinesin and other motor proteins, which are 

responsible for the actual movement of vesicles. Intracellular vesicle transport can be 

visualised in vivo by labelling motor protein subunits with green fluorescent protein and 

imaging vesicular transport using confocal microscopy (Orozco et al., 1999). In their work, 

Orozco and co-workers (1999) imaged polar vesicular transport in cilia. It would be very 

interesting and useful to adapt and develop the method of Orozco and co-workers (1999) 

for monitoring vesicle transport in polarising Fucus zygotes. 

It was shown that the maintenance of the localised Câ "̂  gradient is one of the key targets 

for Cû "̂  toxicity in Fucus zygote development. Exposure of germinated zygotes to a slight 

hypo-osmotic shock results in a noticeable amplification of the apical Câ "̂  gradient 

(Goddard et al., 2000), which is dependent on Ca^^-conducting ion channels in the plasma 

membrane (Taylor et al., 1996, 1997). Exposure to Cû "̂  inunediately inhibited the Câ "*" 

elevation at the rhizoid apex in response to hypo-osmotic conditions. This result suggests 

that Cû "̂  specifically targets the apical Câ "̂  gradient in the Fucus zygote by inhibiting 

inward Ca^^ flux through Câ "*" conducting ion channels. This in tum would result in loss of 

the polar signal which is a prerequisite for both axis fixation and rhizoid elongation. 

Hence, such inhibition could in itself cause the observed inhibitory effects on Cû "̂  on both 

axis fixation and rhizoid elongation. Consequentiy it would be of great relevance to 

monitor the direct effect of Cu^* on ion channel activity in the plasma membrane of the 
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Fucus zygote using patch clamp techniques. Existing protocols for patch clamping of the 

zygote membrane during hypo-osmotic treatment of rhizoids (Taylor and Brownlee, 1993; 

Taylor et al., 1996, 1997) could be used for monitoring the effect of Cû "̂  on Ca^^ channel 

activity. 

In addition to influx of Ca^* from the extemal medium, the apical Câ "̂  gradient in Fucus is 

dependent on Ca^* release from intemal stores in an inositol 1,4,5-trisphosphate (IP3) 

controlled process (Goddard et al., 2000). The membrane bound enzyme, phosholipase C, 

catalyses the production of IP3 (Runnels and Scarlata, 1998) which in tum induces the 

release of Ca^* from intemal stores such as the ER via IP3 -sensitive Ca^^ channels (Hirose 

et al., 199). Phospholipase C is itself activated by localised Câ "̂  elevations in a positive 

feedback mechanism and IPs-induced Ca^^ release is a process downstream of Ca^^ entry 

from the extemal medium (Goddard et al., 2000). Hence, inactivation of the IP3 pathway in 

the Fucus zygote may be a result of inhibitory effects on the stretch-activated Câ "̂  

channels at the rhizoid apex. There are, however, several other potential targets for Cu^* in 

the IPs-pathway. For example, Cu^* has the ability to inhibit the phospholipase C activity 

in mussel gill membranes (Panfoli et al., 2000) and to form complexes directly with IP3, 

hence disrapting its role as a messenger (Persson et al., 1998). Furthermore, Cu^* has been 

shown to strongly inhibit the conductivity of Ca^^ channels in Bryonia dioica ER 

membranes (Klusener et al., 1997). Cu^* may therefore also target the IP3 -sensitive Ca^^ 

channels, which are controlling intemal Ca^* release in Fucus. It would be interesting to 

study the effects of Cû "̂  on IPs-induced Câ "̂  release in the Fucus zygote. By 

microinjecting germinated rhizoids with Calcium Green/Texas Red and caged IP3, and 

subsequently induce localised photorelease of IPs with a UV pulse, IPs-induced Ca^^ 

release can be monitored by the use of a confocal microscope (Goddard et al., 2000). A 

negative effect of Cû "̂  on the Câ "̂  release from intemal stores would result from direct 
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inhibitory effects on the IP3 pathway, which could be caused either by complex formation 

between Cû "̂  and IP3, or by inhibitory effects of Cû "̂  on the IP3 sensitive Ca^* channels in 

intemal membranes. 

In adults, production of ROS and oxidative damage was indicated by chlorophyll a 

breakdown and possible lesions in the plasma membrane. Exposure of embryos to high 

[Cu^^] resulted in an inunediate large elevation of Ca^* throughout the rhizoid cell, which 

lasted for several minutes. Such a response may be the result of the induction of ROS by 

Cu^^ which in tum may cause lipid peroxidation and membrane damage. Cu^'^-induced 

damage to endo- and plasma membranes in the embryo would have allowed flux of Ca^* 

into the cytoplasm from the extemal medium and vacuoles, which holds several-fold 

higher [Ca^^]. It would be highly relevant to study the effect of Cu^^ on ROS production in 

Fucus embryos to clarify the role of ROS in Cû "̂  toxicity in Fucus. This could be achieved 

by loading embryos with fluorescent indicators and subsequently exposing them to Cû "̂  

and monitor the response on a confocal microscope. 

Resistance to environmental stress requires an appropriate stress response. Several stress 

responses in plants involve both Ca^* and H2O2 signalling (Bowler and Fluhr, 2000). This 

also appears to be the case following exposure of Fucus embryos to a hyper-osmotic shock 

(Coelho et al., unpublished data). The embryo responded to hyper-osmotic treatment by a 

burst of reactive oxygen species, which correlated with elevated Câ "̂  to promote a cellular 

stress response involving a complex signalling pathway (Coelho et al., unpublished data). 

Câ "̂  signalling during exposure of a plant cell to a stress factor appears to be specific, due 

to controlled release and spatial location of the signal. H2O2 signalling, on the other hand, 

may induce similar cellular responses to different stresses, and H2O2 induction by exposure 

to one form of stress may induce several defence-related genes (Bowler and Fluhr, 2000). 

211 



H2O2 signalling may therefore induce cross-tolerance in plants as illustrated by higher 

pathogen resistance in plants treated with UV radiation compared with untreated plants 

(Bowler and Fluhr, 2000). Similarly, the Cu^*-resistant Restronguet population may have a 

higher tolerance limit to pollutants and environmental factors other than Cû "*̂  compared 

with the Bantham and Wembury populations, which are not tolerant to Cu^^. A generally 

higher stress tolerance of the Restronguet population than both the Bantham and Wembury 

populations was reflected by the higher relative growth rates of Restronguet control fronds 

after 2 days. It would be very interesting to study the tolerance limits of Cu^^ tolerant and 

non-tolerant Fucus to other environmental factors such as metals other than Cu "̂̂ , 

hydrocarbons, UV radiation, herbicides etc. 

The present study indicated that Cu^* tolerance in Fucus is an inherited character. There 

were no differences in the level of Cû "̂  tolerance of F. serratus expressed as axis fixation 

of zygotes and growth of germinated embryos and adults from the same population. A l l of 

these stages were, however, more sensitive than axis formation, which occurs 

approximately 2h after fertilisation, and was the earliest developmental stage studied. The 

strategies of Cu^* resistance (metallothionein and exclusion mechanisms) which were 

suggested to distinguish tolerant adult Fucus from non-tolerant specimens (Chapter 2) are 

also likely to exist in tolerant zygotes and embryos. Metallothionein genes which are 

expressed in Fucus during Cu^* exposure (Morris et al., 1999) may be transcribed at higher 

rates in tolerant than non-tolerant strains (van Hoof et al., 2001). Furthermore, gene 

expression in young Fucus zygotes may rely almost entirely on matemal mRNA during the 

first hours after fertilisation. Early experiments showed that inhibition of mRNA synthesis 

in Fucus zygotes had no effect on early developmental processes, which suggests the 

presence of matemal mRNA in the zygotes and that this mRNA is required and sufficient 

for protein synthesis during zygote development (Quatrano, 1968). The presence of mRNA 

212 



in Fucus zygotes was further supported by the finding that unfertihsed eggs contain large 

quantities of actin mRNA which is not required until polarisation in the fertilised zygote 

(Masters et al., 1992). Assuming that Fucus provides its progeny with matemal 

metallothionein, the Restronguet zygotes were likely to synthesise higher levels of 

metallothionein than non-tolerant zygotes regardless of the Cû "*̂  treatment. Such default 

induction of metallothionein may be the physiological difference which allowed 

Restronguet zygotes to fix their polar axes at higher [Cu^" ]̂ than Bantham and Wembury 

zygotes and may have resulted in the Cu^* requirement, which was expressed in 

Restronguet zygotes exposed to Cu '̂̂ -free medium during axis fixation. The assumption 

that metallothionein production in Restronguet zygotes is dependent on gene expression of 

the parents rather than on [Cu^" ]̂ in the environment of the zygote is extremely interesting. 

This could be tested further by quantifying metallothionein gene expression in eggs, 

embryos and adults exposed to different [Cu^"^]. Furthermore, the hypothesis that 

metallothionein is synthesised at higher levels in Cu^"^-tolerant than non-tolerant 

populations of Fucus also suggests an interesting study. The Fucus metallothionein gene 

has been identified and methods for quantification of metallothionein mRNA have been 

developed (Morris et al., 1999). 

Very few studies have addressed the issue of inherited versus acquired Cû "̂  tolerance in 

macroalgae. Similar to the fucoids, green algae such as Enteromorpha compressa are 

known to develop Cû "̂  tolerant strains which may become dominant in habitats exposed to 

elevated [Cu^*] (Correa et al., 1996). However, in contrast to the present study, Correa and 

co-workers (1996) showed that rather than being an inherited character, Cu^^ tolerance of 

E. compressa is acquired during the development of the algae. There was a significant 

difference in the tolerance limit of adult E. compressa measured as relative elongation of 

segments, which was 10 / i M total copper for algae from a 'clean' habitat and 100 fiM for 
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algae from a Cu polluted habitat. Li comparison, there was no difference in the Cu 

tolerance limit for the progeny from the two populations which was comparable to the 

adults from the clean habitat (Correa et al, 1996). The higher level of Cu^^ tolerance in E. 

compressa adults than in their progeny may indicate that there is a higher selection 

pressure on the young, and non-tolerant young may therefore die before they reach 

maturity. This would result in rapid selection, as only tolerant individuals would live to 

reproduce, Altematively, Cû "̂  tolerance may be acquired by all individuals during their 

development into adults. In Fucus there appeared to be no difference in the tolerance limit 

for Cu^* in zygote, embryos and adults, and the selection for Cu^* tolerance therefore 

appears to be equal at all stages. Earlier developmental stages may, however, express 

higher sensitivity to Cû "̂ . It has been shown that Fucus is much more sensitive to Cû "̂  

during fertilisation than at the time of germination (Andersson and Kautsky, 1996). Such 

sensitivity could imply that there is a negative effect on the gametes as well as on the 

fertilisation process itself. Egg activation in Fucus and resumption of the cell cycle and 

metabolism is dependent on the fertilisation potential, which is initiated by ion channel-

mediated flux of extemal Na"̂  and Câ "̂  across the plasma membrane into the cytoplasm of 

the zygote in response to fertilisation (Taylor and Brownlee, 1993). The present study 

indicated that Cu^^ may inhibit channel-mediated flux of Câ "̂  across the plasma membrane 

of the Fucus zygote, hence Cu^* may also inhibit the fertilisation potential, which initiates 

zygote development. It is therefore possible that there is a larger selection pressure for 

Cu^* tolerance on the Fucus zygote during fertilisation and within the first l-2h after 

fertilisation, or that Cû "̂  tolerance is acquired during this very early life cycle stage. To 

establish the effect of Cu^* on Fucus gametes and fertilisation more precisely it would be 

relevant to carry out simple comparative germination experiments of zygotes exposed to 

Cû "̂  as gametes prior to fertilisation, during fertilisation and inunediately after fertilisation 

has taken place. Such experiments may confirm that fertilisation and/or the first few hours 
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after fertilisation is the stage in the Fucus life cycle which experiences a larger selection 

pressure for Cû "̂  tolerance than any subsequent developmental stage. 

Restronguet Creek has been exposed to Cu^^ pollution for more than a century and the 

Cû "̂  tolerance of the Fucus population growing within the Creek is well established. 

Consequently, this population does not provide much information about the development 

of a tolerant population. However, habitats which are not exposed to continuous discharge 

of Cu^* may be affected by more unpredictable sources of Cu^*. Anti-fouling paint on ships 

is a known source of Cu^* release into the marine environment. Furthermore, a ship may 

represent a strong selection pressure for the development of Cû "̂  tolerance as numerous 

zygotes may settle on a ship. Cû "̂  in anti-fouling paint would then favour the few which 

have an unusually high Cû "*̂  tolerance due to natural variability. As Cu^* tolerance in 

Fucus is inherited, these individuals may release Cu^^ tolerant gametes once maturity is 

reached. Consequently the presence of ships painted with Cu^"^-containing paints represents 

not only a source of Cû "̂  but also of individuals with extremely high Cû "̂  tolerance, which 

may then be released into an environment with naturally very low concentrations of Cu^*. 

The present work has focused on the physiological responses of Fucus subjected to Cû "̂  

exposure. Apical portions of fronds were used as they were easier to handle than whole 

individuals and facilitated a range of different measurements on tissue of approximately 

the same age. This approach, however, did not provide any information about the 

responses of sub-apical portions. Different responses are likely to occur in different parts 

of the thallus. For example apical parts of Ascophyllum nodosum thalli accumulated more 

copper and were more sensitive to changes in [Cû "̂ ]ext than other parts of the alga (Stengel 

and Dring, 2000). Consequently, additional information on physiological effects of Fucus 

exposed to toxic metals could be gained by studying segments from other parts of the 
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thallus and whole algae. Inter-population differences in the physiological responses of 

Fucus during Cu^* exposure were studied by including three populations which were either 

not exposed to Cu^* or exposed to very high concentrations in their natural environment. 

Three populations is the minimum required for the study of inter-population differences. 

Although the results of the present study clearly indicate that exposure of Fucus to Cû "̂  in 

its natural environment results in the development of tolerant populations, it would be 

statistically more convincing to include a larger number of both exposed and unexposed 

populations in the work. 

The Fucus zygote provides an excellent model for assessment of environmental impact on 

early embryo development. The zygote is very easily obtained and cultured in synchronous 

populations and the developmental events following fertilisation are relatively well known, 

and both adult and microscopic stages of brown algae are often used in toxicity testing and 

biomonitoring. Some of the methods in this study could be developed further and used in 

such programmes. Biological monitoring of metal pollution often occurs as straightforward 

measurement of the tissue metal content of an organism such as Fucus. On the basis of the 

present study it is evident that such measurements may give a biased impression of the 

effects of heavy metals on an organism and underestimate the actual toxicity level in a 

habitat. The Cu^"^-tolerant Restronguet population accumulated far less copper than the 

non-tolerant Bantham and Wembury populations during exposure to the same [Cu^^], 

whereas the Wembury population accumulated much less copper than both the Restronguet 

and Bantham populations during exposure to low [Cu^"^]. A much more useful approach 

would be to measure the metal content of transplanted material using the tissue from one 

reference station with known accumulation thresholds combined with measurements made 

on local tissue. Transplantation experiments of this kind would provide more specific 

information about the conditions the biota are subject to in a particular habitat, although 
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the approach does not provide the instant resuUs that are often desirable in environmental 

monitoring. Use of Fucus zygotes, which respond to pollutants within a few hours after the 

exposure, may therefore be a useful addition or alternative to tests on adult tissue. 

Microscopic stages of brown algae are useful in biomonitoring programmes as they are 

very easy to obtain and culture in large numbers and the tests gives a fairly rapid indication 

of how the organism is affected by exposure to particular environmental conditions. 

Standardised protocols have been developed for the use of the brown alga Ecklonia radiata 

in toxicity testing in Southem Australia (Bidwell et al., 1998; Burridge et al., 1998). Axis 

fixation in Fucus is affected by very low (nM) [Cu^*], and since this developmental stage 

is easily assessed by simple manipulative experiments the system could be further 

developed for use in toxicity testing. However, this approach would only provide 

information which is relevant to the time when the sample was taken whereas monitoring 

metal accumulation in adult Fucus does provide information about the time-integrated 

effects. Combined use of zygotes and adults would provide a detailed description of the 

conditions for the biota in a particular environment. 

The present study has provided insight into some of the mechanisms of Cu^* toxicity in 

both zygotes and adults of F. serratus. There are, however, still unanswered questions, 

which would add to knowledge of toxicity effects in Fucus: 

• Câ "̂  signalling, which is important for the development of the Fucus zygote, is 

intermpted by Cu^*. To determine more precisely the targets for Cû "̂  in Câ "̂  

signalling, future studies should focus on the effects of Cû "̂  on Câ "̂  ion channels in 

the plasma membrane and on Câ"*̂  release from intemal stores. 
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The inhibitory effects of Cu on Ca signalling may be a determining factor in 

inhibition of localised secretion at the rhizoid apex. Localised secretion may also be 

intermpted by inhibitory effects on the attachment and movement of motor proteins on 

the actin filaments. Inhibitory effects of Cu^^ on the actual vesicle transport along actin 

filaments should therefore be studied. 

Cu^^ may induce ROS production in Fucus embryos and adults as well as lesions in the 

plasma membrane, which may result in leakage of the cell content, and these responses 

should therefore be studied. 

Photosynthesis is a primary target for Cû "̂  in the physiology of Fucus. Cu^^ inhibited 

photosynthetic electron transport and appeared to lower the resistance of fronds to 

saturating light and to change their pigment composition. Future work on the effects of 

Cû "̂  on the photosynthetic apparatus in Fucus should therefore include detailed studies 

of effects of Cû "̂  on the pigment composition of fronds as well as on the role of 

adaptation to high irradiances in Cû "̂  tolerance. 

Cû "̂  tolerance in Fucus is an inherited character. The tolerance level of zygotes and 

embryos is equivalent to that of adult algae from the same population. The tolerance of 

zygotes and embryos may therefore depend on the expression of matemal 

metallothionein mRNA. Consequently it would be highly relevant to monitor 

metallothionein gene expression of eggs, zygotes and adults from tolerant and non-

tolerant populations. Instead of inherited Cu^"^-tolerance, tolerance may be acquired 

immediately after fertilisation and it is therefore relevant to study the effects of Cû "̂  on 

these early stages. 

Cross tolerance may occur with environmental stresses other than Cû "̂  and it is 

therefore relevant to test the tolerance level of Cû "*" tolerant populations to other stress 

factors. 
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Fucus provides a useful system for studying the toxic effects on development and 

physiology of algae and may be a suitable candidate for inclusion in standardised toxicity 

testing. With the present day concems over environmental impacts, not only by heavy 

metals but also other stressors such as hydrocarbons and UV radiation, Fucus should 

continue to be a valuable model system for environmental science in the future. 
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Appendix 1 

Composition of Aquil, modified from Morel et al. (1979). 

Amount added g f ' Concenfration Final concenfration 
Constituent nano pure water in stock (M) in Aquil (M) 

Synthetic Ocean Water (SOW) 
NaCl 24.03 4.20 X lO-' 
Na2S04 4.09 2.88 X 10-̂  
KBr 0.10 8.40 X lO"* 
KCl 0.70 9.39 X 10-̂  
H3BO3 0.03 4.85 X 10"* 
NaHC03 0.20 2.38 X 10"̂  

Make sure all anhydrated salts are completely dissolved before adding the hydrated salts 

CaCl2-2H20 1.51 1.05 X 10-̂  
MgCl2-6H20 11.10 5.46 X 10-̂  

Nutrients 
SrCl2-6H20 1.70 6.38 • 10-̂  6.38 X 10-̂  
NaF 0.30 7.14 • 10-̂  7.14x10-^ 
K I 0.04 2.40 • lO"* 2.40 X 10-̂  
NaN03 1.70 2.00 • 10-̂  2.00 X 10-̂  
NaH2P04 0.276 2.00 • 10-̂  2.00 X 10"̂  

Make each stock individually and add each at 1 ml t' to SOW 

Trace metals 
Solution 1 gr' 0.0J MHCl 

FeCl3-6H20 0.122 4.51 • lO-"* 4.51 x 10'̂  

Solution 2A g lOOmr' 0.01 MHCl 
Na2Mo04-2H20 2.42 1.00 lO"' 1.00x10"^ 
CoCl2-6H20 0.595 2.50 • 10'^ 2.50 x 10* 

Solution 2B g lOOr' 0.01 MHCl 
ZnS04-7H20 0.115 4.00 • 10'̂  4.00x10-' 
MnCl2-4H20 0.460 2.30 • 10'̂  2.30 x lO'* 

Add solution 2A and 2Bat 1 mlt' each to solution 1. Then add solution I at 1 ml l' to SOW 
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Appendix 2 

Summary of the preparation of copper enriched Aquil and initial concentrations 
of total copper and free Cu^^ 

[total copper] Volume (^1) copper stock Initial total copper Initial free Cu^^ 
of stock (mM) per 100 ml Aquil (^iM) in Aquil (^M) in Aquil 

0.2 50 0.1 0.0422 
0.2 100 0.2 0.0844 
2.0 25 0.5 0.211 
2.0 50 1.0 0.422 
2.0 100 2.0 . 0.844 
2.0 250 5.0 2.11 

20.0 100 20.0 8.44 
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