Review of Nanomaterials in Dentistry: Interactions with the Oral Microenvironment, Clinical Applications, Hazards, and Benefits

Besinis, Alexandros

http://hdl.handle.net/10026.1/4943

10.1021/nn505015e
ACS Nano
American Chemical Society (ACS)

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
A review of nanomaterials in dentistry: Interactions with the oral microenvironment, clinical applications, hazards and benefits.

Alexandros Besinis, Tracy De Peralta, Christopher J. Tredwin, and Richard D. Handy

ACS Nano, Just Accepted Manuscript • DOI: 10.1021/nn505015e • Publication Date (Web): 27 Jan 2015

Downloaded from http://pubs.acs.org on January 30, 2015

Alexandros Besinis1*, Tracy De Peralta2§, Christopher J. Tredwin2, and Richard D. Handy1

1 School of Biomedical & Biological Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA. UK.

2 Plymouth University Peninsula Dental School, University of Plymouth, John Bull Building, Tamar Science Park, Plymouth, PL6 8BU

§ Present address: School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA

Running head: Nanomaterials in dentistry

Keywords: Nanoparticles; protein corona; biomaterials; nanocomposites; dental implants; tooth chemistry; dentine; enamel; calcium hydroxyapatite; pulp stem cells differentiation; infection control; antibacterial activity

* Corresponding Author: Dr Alexandros Besinis

University of Plymouth
School of Biomedical & Biological Sciences
Room 410, Davy Building
Drake Circus
Plymouth, UK
PL4 8AA

Tel. +44 (0)1752 584697; Fax: +44 (0) 1752 584605
Email: alexander.besinis@plymouth.ac.uk; abessinis@hotmail.com
Vocabulary

Engineered nanomaterials - any intentionally manufactured material containing particles in an unbound state, or as an aggregate or as an agglomerate and where; for 50% or more of the particles in the number size distribution, one or more external dimensions is in the size range 1 nm to 100 nm.

Protein corona – a dynamic layer of proteins and other biomolecules that spontaneously adsorb onto the surface of a nanoparticle, when the nanoparticle enters a biological fluid. The biological identity of the nanoparticle is then determined by this adsorption layer once the protein corona is formed. The biophysical properties of the nanoparticle-protein corona complex can very significantly compared to the nanoparticle alone, with consequent effects on the biological responses of cells or organisms.

Adsorption – the process of biomolecule and/or solute accumulation at a cell membrane surface. Adsorption can be physical or chemical in origin. The biomolecular interactions of adsorption are governed by van der Waals forces, electrostatic attraction and/or hydrogen bonding depending on the substances and surfaces involved.

Nanoparticle dissolution - the dynamic process by which atoms or molecules from the surface of a nanoparticle goes into the solution phase; such that the dispersion contains a homogeneous mixture of particles and dissolved solutes derived from the surface of the particle. The degree of dissolution is dictated by the solubility of the material and the available surface area for dissolution, in addition to traditional factors in solution chemistry such as temperature, pH, and ionic strength. As for any material, it is a prerequisite that the constituent molecules must be soluble to some degree in the local environment in order for a nanoparticle to dissolve.

Enamel – the superficial layer that covers the crown of the tooth and is the hardest and most highly mineralised tissue in the body (96% w/w). The high mineral content renders enamel very strong, but also accounts for its brittleness. Enamel apatite consists of calcium hydroxyapatite and is highly crystalline with most crystals to be hexagonal.

Dentine – a hydrated composite mineralised tissue that underlies enamel and forms the bulk of the tooth. Dentine is 70% inorganic, 20% organic and 10% water by weight. The mineral phase is hydroxyapatite, similar to enamel, but dentine crystals have lower calcium content and are much smaller. The organic component of dentine is mainly collagen and is a permeable tissue due to the presence of the dentinal tubules.

Dental material - a substance or combination of substances specially prepared and/or presented for use by authorised persons in the practice of dentistry and/or its associated procedures.
The medical applications of engineered nanomaterials (ENMs) are relatively well-known. These include antibacterial coatings for medical instruments and wound dressings (e.g., self-sterilising TiO$_2$ catheters;\(^1\) nano-ZnO composite bandage\(^2\)), the use of nanoencapsulation technology for improved drug delivery,\(^3,4\) as well as exploiting the optical properties of nanomaterials for enhanced medical imaging.\(^5\) Some of the clinical aspects above (e.g., antibacterial ENMs) are particularly relevant to the oral cavity, and the role of ENMs in the control of the oral biofilm has been recognised.\(^6\) Although the use of ENMs in dental applications has received some commentary,\(^7,8\) a detailed evidence-based review has not been conducted, even though the use of nanotechnology in dentistry and dental materials has been the epicentre of extensive research in recent years.

In the oral cavity, non-clinical or occupational exposures are dependent on the use of nanoparticles (NPs) in food\(^9,10\) and personal care products, such as dentifrices.\(^11\) TiO$_2$ NPs are the most commonly used in food and personal care products (also known as E171 in food products, with 36% of the particles < 100 nm\(^12\)). The ingestion of TiO$_2$ via food is estimated to be relatively high (5 mg TiO$_2$/person/d);\(^13\) half of which is in nano-particulate form.\(^14\) Numerous studies have investigated the potential toxicity of ENMs,\(^15,16\) but the data is sparse on cells relevant to the oral cavity; although there is interest in using engineered and naturally-occurring NMs to manipulate the cells/tissues associated with dentition (e.g., controlling differentiation of pulp stem cells\(^17\)). Some oral exposures have been done with rodents in vivo,\(^18,19\) but none of these have collected samples to investigate potential pathologies in the oral cavity. Such data will be important in quantifying the risks of ENMs in the oral cavity, and be important in supporting the notion of responsible and safe innovation of nanotechnology in dentistry.

As with any new medicine or medical device, the potential benefits must be weighed against the risks.\(^20,21\) In terms of adverse health effects, there is an historic literature on the occupational exposure to dusts containing ultrafine particles\(^22\) and the concern of respiratory toxicity from inhaling ENMs has also been reviewed for different ENMs (CNTs;\(^23,24\) metal particles and silica\(^25\)), with a particular focus on high aspect ratio ENMs that may cause acute inflammation in the lungs.\(^26\) However, most of this literature has been concerned with events in the lung, not the oral cavity, and traditionally these experiments have used free forms of ENMs in aerosols or instillations, not ENMs that are trapped in the matrix of a commercial product, in semi-solid materials like food, or in a dental material.

This review illustrates the evidence base for the applications of ENMs in dentistry. The electronic search was conducted applying a combination of subject terms and keywords
on PubMed, Medline, Scopus and Web of Knowledge databases. The electronic search terms focused on the four main application fields in dentistry (as antimicrobial agents, fillers in dental composites, dental implants and in personal care products for the oral cavity) as well as the potential toxicity caused by ENMs in vivo following oral exposure. The keywords applied to the search databases were: (nanomaterials OR nanoparticles OR nanocoating OR nanotechnology) AND (antimicrobial OR antibacterial OR infection OR biofilm OR filler OR composite OR implant OR dentine OR enamel OR demineralisation OR remineralisation OR dentifrice OR toothpaste OR mouthwash OR oral product OR in vivo oral exposure toxicity) AND (dentistry OR dental OR oral). Quality criteria included considerations of experimental design in the published literature such as the use of appropriate bulk material or metal salt controls, and inclusion of information on at least the characterisation of the starting material such as chemical composition, primary particle size as well as size distribution where relevant. Papers with inadequate material characterisation, or poor descriptions of methodology or replication were excluded. The examples were also chosen to show a representative selection of materials, applications, and the historical chronology of the development of ENMs in this field. Selected examples from the published literature are presented in Tables 1-5.

The aims of this review were to: (i) reflect on the ultrafine structure, chemical composition and reactivity of teeth in the context of interactions with ENMs, and to set the scene on the nanoscale biology and surface film events in the oral cavity, (ii) describe the main actual and proposed applications of ENMs in dentistry, and (iii) put the dental applications in context of clinical outcomes versus potential hazards as well as risks. Finally, (iv) key knowledge gaps are identified with some recommendations for future research.

The properties of saliva and the behaviour of ENMs

Saliva is a complex mucous secretion that functions to maintain the pH in the oral cavity, mostly via bicarbonate and some calcium phosphate buffering. Acids derived from the consumption of food and drink, and/or bacterial metabolism are neutralised by bicarbonate (Figure 1B) in order to prevent acid erosion of the teeth. Additionally, saliva has a rinsing effect on teeth and contributes to bacteria clearance, but it also contains antibacterial proteins (e.g., lysozyme, iron chelators such as lactoferrin) as well as components of the immune system (e.g., immunoglobulins). Clearly, the antimicrobial properties of ENMs are of interest in relation to the latter functions (see below), but the behaviour of ENMs in saliva will also...
be influenced by the pH, electrolyte composition, and viscous properties of the mucus components.

It is not our intention here to detail the complex physico-chemistry of ENMs in biological media, but to appreciate the importance of the colloidal properties of ENMs that might be important for saliva. Firstly with respect to colloid chemistry, most ENMs are not in true aqueous solution but are dispersed in the liquid phase; with the aggregation of the materials being particularly influenced by the ionic strength of the medium, the presence of divalent ions like calcium, pH, and the presence of organic matter. Saliva is 99 % water and is a high ionic strength medium containing numerous electrolytes. The exact electrolyte concentrations in saliva can vary, but it normally contains (in mmol l\(^{-1}\)): sodium (2-26), potassium (13-40), phosphate (2-22), calcium (0.5-2.8), chloride (8-40), iodide (2-22), bicarbonate (0.1-8), magnesium (0.15-0.6), and a trace amount of fluoride (usually at µmol l\(^{-1}\)). These concentrations may be higher in freshly stimulated saliva. The millimolar concentrations of NaCl and the divalent ions such as Ca\(^{2+}\) and Mg\(^{2+}\) will tend to promote particle aggregation. Consequently, similar to physiological salines, saliva may promote the settling of aggregates of the ENM onto the surfaces of the oral cavity.

The resulting effects of ENMs in a dental material on the bulk electrolyte functions of saliva are likely to be modest, since the millimolar concentrations of NaCl and Ca\(^{2+}\) in the saliva would (theoretically) be in excess of any labile ENM derived from the tooth surface. For example, Besinis et al. found only negligible low micromolar release of silver from dentine slices coated with Ag NPs. The rheology and viscous properties of mucous solutions are mainly derived from the effects of charge screening by electrolytes on the protein folding of mucins. Provided the ion concentrations remain at millimolar levels, the effects of ENMs on the rheology of saliva are expected to be small. For similar reasons, the general pH buffering in saliva from millimolar concentrations of phosphate and bicarbonate might also be unaffected. However, ENMs often have a high surface area to volume ratio and it is possible that solutes such as fluoride, that are only present at micromolar concentrations, could be adsorbed by some ENMs. The F\(^-\) ions in saliva can react strongly with the free Ca\(^{2+}\) and HPO\(_4^{2-}\) ions available in the hydroxyapatite (HA) of enamel to form fluorapatite crystals that are less soluble and more resistant to acids compared to pure HA (Figure 1B). This is one of the benefits of fluoride in preventing dental caries, and theoretically this function may be lost, especially with ENMs with a net cationic charge in the saliva. Unfortunately, the effects of ENMs on the bioavailability of important trace anions have not been investigated.
The salivary flow rate also controls the solute concentrations in the oral cavity. Factors such as age, diseases and medication can impair the quantity (and quality) of saliva. The reduction or absence of the salivary flow usually results in increased food retention, and when the salivary buffering capacity has been lost, an acid environment is encouraged causing enamel demineralisation. In a healthy person, the unstimulated (resting) salivary flow rate is 0.3-0.4 ml min\(^{-1}\) and may increase to 1.5-2.0 ml min\(^{-1}\).\(^{34}\) When saliva is initially secreted, it is sterile, but subsequently the bacterial concentration can reach \(10^9\) ml\(^{-1}\). Salivary flow rate is normally too high to allow bacterial growth and proliferation in the fluid.\(^{38}\) Instead, bacteria need to adhere on an oral surface (teeth, mucosal tissue) to survive in the long term. The secretion of saliva is mainly controlled by cholinergic parasympathetic innervation to the salivary glands which promotes the release of saliva from the acinar cells, whilst in contrast; stimulation of sympathetic nerves tends to increase the protein content, resulting in a more viscous saliva.\(^{39}\) Evidence suggests that direct application of high milligram concentrations of ENMs to isolated nerve preparations do not alter the ability of peripheral nerves to generate an action potential,\(^{40}\) but the effects of ENMs on the secretory activity of salivary glands have not been investigated.

Saliva also contains immunological components (e.g., IgA, IgG and IgM) and antibacterial proteins (e.g., lysozyme, lactoferrin, and peroxidases). The effects of ENMs on the bioavailability and function of these immune-related components of saliva have not been specifically investigated. However, immunoglobulins and complement factors involved in immunity from serum do adsorb to ENMs, depending especially on the surface charge and hydrophobicity of the material.\(^{41}\) Lysozyme is also adsorbed onto the surface of some ENMs resulting in an alteration of the spatial arrangements of the \(\beta\)-sheets in the enzymes tertiary structure with a likely loss of its antibacterial properties (e.g., \(\text{TiO}_2\)).\(^{42}\) In contrast, some ENMs have peroxidase-like chemical reactivity,\(^{43}\) and such materials could be exploited for their antimicrobial properties. There are numerous other organic components in saliva including the mucin glycoproteins, agglutinins, histatins, proline-rich proteins, statherins, and cystatins.\(^{44}\) The effects of ENMs on many of these proteins/peptides are unknown.

The tooth surface microenvironment and interactions with ENMs

Substances in saliva do not interact directly with the tooth enamel, but do so via a thin layer known as the pellicle, which usually covers the dentition (Figures 1A and B). The pellicle is an acellular proteinaceous film of salivary origin that is usually formed within minutes, and it
is so strongly adhered to the enamel that even tooth brushing does not remove it. The thickness of the pellicle is 10-20 nm with a few minutes, increases to 20-500 nm at 2 h and reaches 100-1300 nm at 24 h.45 The main constituents of pellicle are salivary glycoproteins, phosphoproteins, lipids, and to a lesser extent, components from the gingival crevicular fluid.46,47 The pellicle plays an important role in the tooth demineralisation and remineralisation processes because it passively controls the diffusion of ions in and out of the dental tissues. It is therefore a selective semi-permeable structure that is regarded as a chemical buffering barrier, protecting the mineral content of the enamel from bacterial48 and dietary acid demineralisation.49,50 However, the structure of newly formed pellicle may not prevent the penetration of ENMs. The enamel-pellicle interface is not homogenous, but has a multi-layered globular structure.51 The size of these spherical structures ranges between 25 and 125 nm in diameter, and quite often voids are also observed, as the distance between adjacent globules is from 8 to 85 nm (sizes and distances measured from electron microscopy images of a 2 h pellicle52). It is therefore theoretically possible that ENMs smaller in size than these voids could penetrate the pellicle as it forms. However, once the proteinaceous biofilm is present over the globular structure of the pellicle, it seems likely that steric hindrance and protein-ENM interactions would slow or prevent further diffusion of the ENMs into the pellicle layer.

The process that forms the proteinaceous layer of the pellicle is not fully understood, but is presumably governed by the colloidal and physico-chemical properties of the macromolecules in saliva, such as the charge density, hydrophobicity, and relative concentration of each component to compete for binding on the tooth surface. Much the same ideas apply to the formation of the “protein corona” on ENMs in complex body fluids such as serum.$^{53-55}$ It is therefore logical that any ENMs present in the saliva will compete with the pellicle surface for proteins and other macromolecules in the saliva. The newly formed protein corona of ENMs (Figures 1A and B) will inevitably alter their physico-chemical properties. For example, adsorbed proteins may alter the net surface charge on the ENMs (changes in zeta potential and isoelectric points of NPs56); and consequently the charge screening with electrolytes and the agglomeration behaviour of the ENMs in the saliva itself. In theory, the interactions of the coated ENMs with the pellicle will also be influenced. It also follows that a tooth coated with an ENM of defined surface chemistry could be used to manipulate the formation of the pellicle. The latter may be of interest for preventing microbial colonisation of the teeth, for example, by providing a surface that does not favour microbial adherence. Bacteria are probably non-specifically associated with the tooth surface
(Figure 1B) under the effect of van der Waal’s attractive forces as well as repulsive electrostatic forces. Surface hydrophobicity generally enhances the attachment of microbes, and consequently a hydrophilic ENM coating might reduce the attachment of microbes.

Numerous studies have examined the antibacterial effect of NPs incorporated in the matrix of dental materials against mostly individual oral pathogens (see Table 1), while other research groups have investigated the antibacterial activity of NPs suspended in biological media containing microbes. However, the antimicrobial effects of ENMs in complex clinically-relevant biofilms such as that on the pellicle is far from clear. In general, the microbial communities in natural biofilms tend to be more resilient than the artificial cultures of individual species of microbes in the laboratory. For example, while Ag NPs are known for their antimicrobial properties on \textit{S. mutans}, the same material has no effect on the natural microbial diversity in marine biofilms that also include \textit{Streptococcus} species. The biodiversity of gut microflora is also influenced by metallic ENMs in some animals (e.g., fish gut), but a similar understanding for the oral cavity biofilm of humans is lacking.

Although, some ENMs may be small enough to theoretically permeate into the porous mineral structure of the enamel-pellicle interface (above), it is likely that the biofilm formed on the pellicle will be a significant barrier to ENM diffusion; either through steric hindrance (e.g., ENMs becoming trapped or entangled with the biofilm protein matrix), or by adsorption of the ENM onto the glycoprotein coat of the S-layer of microbes. Permeation into biofilms is partly controlled by biofilm thickness. Diffusion works most efficiently over small distances of a few microns and is exponentially slower for small increases in particle diameter. The diffusion path through the biofilm will also be determined by the microarchitecture of the biofilm; which is defined by the participating species and the conditions under which the biofilm is developed (potentially, every biofilm is unique in this respect). Channels and voids are known to be present in the oral biofilm. Plaque models have shown that the open channels can be 300 nm in diameter, which theoretically would be large enough to allow ENMs to permeate. However, diffusion theory based on the original Fick equations is idealised and does not take into account solvent drag or steric hindrance from proteins in the biofilm. Consequently, even small NPs (< 20 nm) may find it difficult to penetrate the biofilm. For example, Thurnheer \textit{et al.} found that 240 kDa molecules had difficulty in infiltrating the oral biofilm. The volume occupied by a molecule of this size is approximately 290 nm3 and thus it would be equivalent to a spherical NP of just 4 nm in diameter.
Furthermore, it is also likely that the ENMs diffusing into the biofilm will not be pristine, but coated in macromolecules and electrolytes from the saliva. Although the protein corona formation on ENMs in saliva has not been specifically studied, chemistry would suggest (for example) that the polyanionic mucins in saliva would bind electrostatically to cationic ENMs, and/or that the bulk electrolytes in saliva will form an electric double layer on the surface of the particles.31 The process is also likely to be dynamic with microbes secreting proteinaceous material as the biofilm develops and the bulk fluid movements into the pellicle enabling some adsorption of ENMs into the biofilm (the latter adsorption partly being governed by unstirred layer formation in the case of solutes65).

Nonetheless, understanding of how ENMs coated in a salivary corona will interact with the biofilm, and the microbes within it, is a significant data gap in quantifying the bioavailability of oral ENMs. Experiments are needed to determine the details of how the adhesion of ENMs on the dental surfaces is regulated, as well as the likely complex interactions of the ENMs with the bacteria, their secretory products, and the proteins forming the underlying pellicle layer. Currently there are no computational models for ENM binding to biological surfaces, but ENM adhesion or adsorption is likely to be governed by the chemistry of the pellicle and overlying biofilm (plaque), since the ENMs would not be in direct contact with the chemistry of the enamel surface. Any such biotic ligand type-model would need to consider the effects of the ionic strength and its likely ability to erode the electric double layer on the particle surface;31,66,67 the role of protein corona formation to sometimes encourage colloidal stability68-70 or alternatively promote agglomeration71-73 depending on the precise mixture of ions and macromolecules present in the media. ENMs can also impose structural and functional changes to the adsorbed proteins,74 although the functional consequences for the saliva, pellicle, and biofilm remain to be investigated.

The interaction of ENMs with the fine structure and chemistry of the tooth

The gross anatomy and fine structure of human teeth are well known,75 but here the anatomical and chemical characteristics of the tooth are considered in the context of potential interactions with ENMs (Figure 1). Teeth consist of four different tissues, of which three are mineralised (enamel, dentine, cementum), and surround an inner core of loose connective tissue; the dental pulp (Figure 2). The chemical composition of each tissue is outlined below.

Enamel
Enamel covers the crown of the tooth and is the hardest and most densely calcified tissue in the body. Its thickness varies as a function of location and age in the tooth and can be between 2.6 mm over the cusps of sound mature teeth, and as low as 1.2 mm on the lateral surfaces. Ninety six percent of the enamel by weight consists of mineral, with water and organic material composing the rest. Calcium hydroxyapatite (Ca\(_{10}(PO_4)_{6}(OH)_2\)) is the most dominant constituent of enamel, although minor (<2 %) non-apatitic mineral phases, such as octacalcium phosphate, can be detected. Calcium hydroxyapatite (HA) does not always exist in its pure form, but commonly other variations are also present. Calcium ions (Ca\(^{2+}\)) and hydroxyl groups are frequently missing and thus replaced by other ions present in the enamel such as fluoride (F\(^-\)), carbonate (CO\(_3^{2-}\)), chlorine (Cl\(^-\)), silicon (usually as SiO\(_4^{4-}\)), sodium (Na\(^+\)), magnesium (Mg\(^{2+}\)) and zinc (Zn\(^{2+}\)). The distribution of these ions is not even across the enamel layer (Figure 1B). Some of them (F, Cl\(^-\), Si, Zn\(^{2+}\)) appear at higher concentrations near the external surface of enamel, while others (Na\(^+\), Mg\(^{2+}\), CO\(_3^{2-}\)) are more abundant near the dentino-enamel junction (DEJ). Enamel apatite is highly crystalline, with the crystals being at least 100 µm long, 30 nm wide and 90 nm thick. Most crystals are hexagonal (Figures 1A and B) but some can be distorted due to crowding. Dental enamel has 558 crystallites/mm\(^2\) near the tooth surface and the distance between adjacent crystallites is 20 nm. HA crystals are surrounded by a thin film of firmly bound water (2 wt. %). The presence of water is associated with the porosity of the tissue. The remaining 2 wt. % in mature enamel is the organic matrix. Enamel does not contain collagen, but it has two unique classes of proteins called amelogenins and enamelines.

The ability of ENMs to permeate or adhere to the tooth enamel is poorly understood. Enamel is permeable to electrolytes, although in this dense and highly mineralised tissue this is most likely via inter-crystalline spaces, rod sheaths, and other defects in the surface. Nguyen et al. confirmed some innate permeability of human enamel using the Brunauer-Emmett-Teller (BET) gas adsorption method giving a BET surface area, pore volume and pore size of 0.22 m\(^2\) g\(^{-1}\), 2.8 mm\(^3\) g\(^{-1}\) and 22 nm respectively. There appears to be no data showing whether or not ENMs are capable of permeating enamel. However, Li et al. report the use of 20 nm HA particles to repair dentinal enamel. Cai et al. also suggested that HA NPs with sizes < 20 nm could integrate with the surface of enamel matrix; but highlighted the importance of particle size with the use of 20 nm particles being more advantageous than 40 or 80 nm HA particles. The exact type of bonds developed between ENMs and the enamel remains unclear, although it seems probable that electrostatic and van der Waals forces will be involved.
Dentine

Dentine is about 70% inorganic, 20% organic and 10% water by weight.92 The mineral phase is HA, similar to enamel, but dentine crystals have a lower calcium content and are more carbonate-rich compared to stoichiometric HA. The crystallites are much smaller than those found in enamel, having a hexagonal or plate-like morphology, and with dimensions of 3-30 nm in cross-section and about 50 nm in length.93,94 The HA crystals are therefore naturally occurring nanostructures, and with high concentration of carbonate (4.6 wt. %) renders the dentine a large and chemically reactive surface area.95 Fluoride, sodium and magnesium have also been detected in dentine in small amounts (Figure 1B). The inorganic part of dentine is mainly type I collagen that provides the structural backbone which holds together the apatite crystallites. The fibril diameter in dentine collagen varies from 60 to 200 nm.96

Dentine is permeated by characteristic microscopic channels called dentinal tubules (Figs. 1B and 2). Their diameter ranges from 2.5 \textmu m near the pulp, to 1.2 \textmu m in the middle of dentine, and 900 nm near the DEJ.97 The tubule density also varies depending on location. The number of tubules near the pulp is 45,000 mm-2 covering 22\% of the total surface area of dentine, in the mid portion there are 29,500 mm-2 tubules, and the corresponding value near the DEJ is 20,000 mm-2 where the percentage tubule area is just 1\%.95,97

The application of ENMs to dentine has received more attention (see dentifrices and personal care products section) compared to enamel (Table 4); mainly because dentine remineralisation is not so predictably achieved. Dentine is more porous than enamel due to its organic components, higher water concentration, and the presence of dentinal tubules. Consequently, ENMs of larger diameters may infiltrate dentine than enamel. Earl \textit{et al.} managed to infiltrate dentine tubules with 100 nm HA particles finding that the shape of the ENMs was also important.98 In the same study, larger needle-like HA particles up to 600 nm in length and 30-60 nm in width showed very limited infiltration. When demineralised dentine was treated with HA nano-rods having an average size less than 100 nm (variation in particle length was between 30 and 145 nm), 50\% of the tubules at the dentine surface were fully occluded and an additional 40\% were partially occluded.99

Most studies investigating the infiltration of dentine with ENMs use a partially demineralised dentine model. Consequently, interfibrillar and intrafibrillar infiltration is also possible as removal of the inorganic components during demineralisation results in larger voids between the collagen fibres.100 Using a fully demineralised model instead, Besinis \textit{et al.}
achieved an extensive infiltration of the collagen network with spherical HA and silica NPs when the particle size was less than 15 nm in diameter,101 in agreement with measurements of the inter-fibrillar spaces after demineralisation of between 20–25 nm.102,103 In a follow-up study, Besinis \textit{et al.} confirmed the remineralisation potential of fully demineralised dentine following infiltration with HA and silica NPs.104

\textit{Cementum}

Cementum is a thin specialised calcified, fibrillated bone substance that covers the dentine of the root (Figure 2). By weight, the cementum is approximately 65\% inorganic material (mainly HA), 23\% organic (collagen type I, proteins and polysaccharides) and 12\% water. The HA crystals in cementum are thin and plate-like with an average size of 55 x 8 nm. The thickness of cementum is considerably higher at the root apex (50-200 μm) compared to the cervical part of the tooth (10-15 μm).105 There appears to be limited studies of ENMs in the cementum layer of the tooth, or on the cementocytes (e.g., effect of bioactive glass NPs on cementoblasts106).

\textit{Pulp}

Pulp is located in the pulp chamber, which occupies the central portion of the tooth (Figure 2). The nerves present in the pulp allow detection of external stimuli and account for the sensation of teeth. The main function of the pulp is the formation of dentine.107 The odontoblasts that are responsible for the formation of dentine lie along the periphery of the pulp tissue. Other cells present in the pulp include fibroblasts, pre-odontoblasts, macrophages and T lymphocytes.

One prospective area of research for the dental pulp is the use of ENMs in regenerative medicine. Pulp stem cells can be used as a restorative clinical treatment to regenerate both the pulp and vasculature in the tooth.108 Dysfunction of stem cell differentiation is also generally implicated in DNA damage and tumorgenesis in the head and neck.109,110 ENMs have been proposed for medical imaging of stem cells (iron NPs, quantum dots) in order to track the migration and differentiation of the cells, as well as the use of nanofibre scaffolds to aid the regeneration of pulp tissue.17 Naturally occurring nanostructures such as nanotoliths with bacterial cellulose have also been proposed as scaffolds for pulp regeneration.111
Current Strategies for Clinical Dentistry - A role for ENMs?

The aetiology of pathogenesis in the oral cavity is complex, and a primary strategy for dentistry is the prevention of disease. Oral hygiene instruction for the patient is the first attempt in preventing both carious lesions and periodontal disease.112,113 Clearly, the use of antibacterial and/or abrasive ENMs in toothpaste may aid teeth cleaning. However, ultimately, the dental pellicle is the natural barrier that protects the hard tooth structures and the supporting tissues from the adverse effects of microorganisms and their corrosive metabolites.114 The antibacterial properties of some ENMs could be used to supplement the natural immune defences (\textit{e.g.}, immunoglobulins, lysozyme) already present in the pellicle. The dental pellicle, however, is also the structure in which bacterial colonisation begins. Perhaps ENMs can be designed to act as receptors for species-specific bacterial adhesion to the tooth surface; in essence, using ENMs as a “probiotic” surface to promote healthy microbes in the pellicle, or to aid in the restoration of a normal biofilm following dental treatment. The demineralisation of the tooth structure caused by acidic bacterial metabolites might be ameliorated by the use of alkali ENMs, which for example, might slowly release phosphate or bicarbonate buffering by dissolution (pH control at the tooth surface). The inflammation of the soft tissue by factors such as lipopolysaccharides (LPS) released by bacterial infection of the biofilm115 may be hard to prevent with specific chemical buffering because of the diversity of bacterial exudates. Nonetheless, metallic ENMs do absorb LPS very well116 and might reduce the bioavailability of this inflammatory agent.

Furthermore, dietary abrasion of enamel during mastication has been hypothesised to release naturally occurring nanoscaled HA particles, which are known to reduce oral biofilm formation and produce a remineralisation effect to prevent carious lesion progression.117 With soft diets of today consisting of less protein and increased carbohydrates, the release of protective nanoscale HA is likely to be in decline; contributing to growing incidence of caries in the human population.117-120 Potentially, toothpastes and other oral hygiene products could be supplemented with engineered HA to combat this problem, but the underlying cause of poor diet also needs to be addressed.

The dental materials of today are greatly challenged by secondary disease (\textit{e.g.}, recurrent caries) after initial treatment is one of the main reasons for failures in dental materials.121-124 For this reason, an interest in the bioactivity of dental materials is increasing, as materials need to go beyond the physical and mechanical aspects of tissue repair. In direct tooth restoration with new composite materials, such things as wear resistance, surface hardness,
fracture toughness and compression, tensile and flexural strengths are needed to meet demands of mastication in the oral environment. While improvements in these areas are being accomplished for direct restorative materials, several limitations are still found for modern materials. The difficulties include; adapting the material to the internal surfaces of a prepared cavity, creating an effective marginal seal at the cavity tooth interface, marginal deterioration over the life of the restoration, material discoulouration over time, secondary decay caused by material microleakage, and post-operative sensitivity. Nanotechnology has the potential to bring improvements in the physical properties of dental materials, but the bioactivity aspect should not be overlooked. This might include biocidal properties of ENMs, as well as ENMs coated in factors to promote a beneficial immune response in the diseased tissue (e.g., cytokines, compliment activation), and subsequently growth factors to promote angiogenesis and wound repair.

Restorative dentistry has traditionally focused on the use of dental materials to replace tissue in the oral environment in order to restore physical function following tissue loss from disease processes. Although success with respect to mechanical function is often achieved, the broader biological function of the tissue is not. The mechanical and biological properties of living teeth are intimately related. Odontoblasts are key cells in tissue regeneration, and function in tertiary dentine development to protect the vital pulp from any continuation of disease processes or trauma. New ENMs that promote pulpal cell repair and cell differentiation may increase dental pulp vitality during or after restorative processes, and ultimately improve oral health.

In the periodontium, regeneration of bone which has been lost due to periodontal disease could be a vital step in the cessation of disease itself; where periodontal pocketing creates disease-promoting architecture in the oral environment. For example, engineered nanostructures could be used as a bone replacement, or ENMs that promote osseointegration (e.g., coated with HA) and/or bone regeneration could be used. It the 1990s it became apparent that enamel matrix proteins (EMPs) could promote fibroblast proliferation and growth, and commercially products, such as the enamel matrix derivative Emdogain®, and similar products that contain factors such as amelogenin are used in new regeneration therapies for tissue loss caused by periodontal disease. The use of such derivatives highlights the importance of bioactive materials in modern therapeutic strategies against periodontitis. The use of ENMs to provide a more targeted drug delivery of such therapeutics in dentistry has yet to be explored.
Engineered nanomaterials and their use in dentistry

Antibacterial - Infection control

Silver, zinc and copper have been traditionally used as antimicrobial agents for many centuries. Metals and their oxides have been incorporated in a wide range of dental applications, either alone, or in combination with other components, and there is interest in replacing the traditional micron-sized antimicrobial metal powders with their nanoscale counterparts (Table 1). The superior bactericidal activity of ENMs is attributed to their increased surface area, as well as the possibility to interact directly with the bacterial cell wall because of their small size. Nano-particulate silver is the most favourable antimicrobial agent among the metals, followed by TiO$_2$. Zn and ZnO NPs have also been suggested for use in dental applications due to their antibacterial properties. However, the number of the applications of nanometals in dentistry is limited, and for example, Zn does not have the acceptance it has in other fields such as the food industry. CuO is cheaper than Ag, with the advantage of being a stable chemical, and with physical properties that allow it to be easily mixed with polymers. However, Cu NPs have not been fully investigated as potential antibacterial agents in dental materials. Similar arguments apply to Au NPs.

Ag NPs may be favoured over other nano-particulate metals because silver is more bactericidal, while equally hard. In a comparative study, Besinis et al. showed that Ag NPs are more antibacterial against cariogenic bacterial species when compared to other metal NPs. Ren et al. found the minimum bactericidal concentration (MBC) of Ag, ZnO and CuO against *Pseudomonas aeruginosa* to be 100, > 5000 and 5000 µg ml$^{-1}$ respectively. The corresponding MBC values against *Staphylococcus aureus* were 100, 2500 and 2500 µg ml$^{-1}$; confirming the supremacy of Ag NPs. At the same time, silver, copper and zinc all score 2.5-3.9 on the Moh’s scale of hardness (titanium scores 6.0).

The size and shape of metal ENMs may also affect their bactericidal activity. Materials with a particle size of less than 10 nm have been shown to be the most effective against bacteria, while triangular NPs may be more bactericidal compared to spherical or needle-like morphology. Conversely, Suwanboon et al. found the antibacterial activity of ZnO NPs of different shapes (nano-rods, platelet-like, nano-flowers) to be similar. Metal-containing NPs are not the only type of ENMs known to provide antimicrobial properties to dental materials. Quaternary ammonium polyethylenimine, chitosan, silica and bioactive glass NPs have also been suggested.
The choice of antibacterial ENMs mainly depends on the type of dental application. For example, Ag, Zn and TiO$_2$ NPs are commonly incorporated in resin-based composites, or used as antimicrobial coatings for dental material and implants; while others such as bioactive glass nano-powders are mostly used as root canal disinfectants (Table 1). Silica NPs have been reported to inhibit bacterial adherence and control the growth of the oral biofilm.153,154 Although silica NPs have no inherent bacterial toxicity, it is likely that it is the unfavourable substrate (surface morphology and chemistry of silica NPs) which prevents or delays bacterial adherence and biofilm proliferation. The antimicrobial activity of some ENMs can be enhanced with UV light (\textit{e.g.}, crystalline TiO$_2$ NPs124). Certain metallic NPs (\textit{e.g.}, Ag and Cu NPs) have been proved effective against a wide range of bacterial strains including \textit{S. mutans}, \textit{S.aureus}, \textit{P.aeruginosa}, \textit{E. coli}, \textit{E.faecalis}, \textit{S. sobrinus} and \textit{S.epidermidis},155,156 while others are more bacteria-specific depending on their mechanism of action (\textit{e.g.}, ZnMgO NPs show highly specific antibacterial activity to Gram-positive bacteria157).

In order for ENMs to be generally accepted as replacements for the traditional antibacterial agents, they must first satisfy the regulatory requirements of any potentially new therapeutic of being safe, or safer than the existing product, and more effective.158 Additionally, any therapeutic agent should not compromise the integrity of the dental materials. Confidence in new nanotechnology may come from using ENMs as carriers for traditional antibacterial agents. For example, composites based on the release of chlorhexidine, the active ingredient in mouthwashes.159 However, such an approach may suffer from the short-lived effectiveness of chlorhexidine.160 In contrast, impregnation of bactericidal NPs into resin-based composites has demonstrated a long-lasting effect against cariogenic bacteria without affecting the physical and mechanical properties of the dental material.137

\textit{Nano-fillers}

Some selected examples of the use of ENMs as fillers in dental composites are shown in Table 2. Dental composites generally consist of three main components which are chemically different from each other: the organic matrix (usually a synthetic monomer or resin), the inorganic matrix (the filler) and a coupling agent (usually silane) to bond the filler to the organic matrix. Each of these phases can be modified and the resultant combination of the three components determines the physical, chemical, mechanical and optical properties of
composites; as well as their clinical behaviour. The introduction of new materials in the last few years, such as phosphine oxide initiators and monomethacrylate diluents, has led to dental composites with improved properties. However, it was not until the introduction of nano-fillers where significant new advances in the composites were developed (Table 2).

The chemistry, the morphology and the size of filler particles used in dental composites vary significantly, even within the nanoscale (Table 2). However, the aim of incorporating fillers to the resin, regardless of the type of filler, is to optimising the properties and performance of the final restorative material. The addition of fillers can enhance the mechanical properties of composites, reduce the polymerisation shrinkage, modify the thermal expansion coefficient of the composite to match that of the tooth, improve handling, provide radio-opacity and provide the composites with wear resistance and translucency. Conventional composites contain a range of fillers including silica, quartz and radiopaque silicate particles based on the oxides of barium, strontium, zinc, aluminium and zirconium. A widely accepted classification based on filler particle size was proposed by Lutz and Phillips, where composites are distinguished as macro-filler composites (0.1-100 µm), micro-filler composites (0.04-0.1 µm) and hybrid composites (fillers of different sizes). However, resin-based composites can be classified either according to their composition or the filler particle size.

Most of the current conventional composites have a filler particle size in the range of 0.04-0.7 µm. The concern is that particles of these sizes cannot interact optimally with the nanoscopic (1-10 nm) structural elements of enamel and dentine, such as the enamel rods, HA crystals, dentinal tubules and collagen fibres. As a result, the adhesion between the restorative material and the tissue can be compromised. However, the manufacturing of new advanced composites with unique properties became possible with the introduction of nano-fillers (particle size 1-100 nm, Table 2). The smaller particle size causes less curing shrinkage, offers more uniform particle distribution, allows a higher filler load, reduces viscosity and offers better handling, while the mechanical properties remain sufficiently competent. The average filler size in nanocomposites is 40 nm, but this is not a breakthrough as the same filler size had been achieved with the so called “micro-filled composites” since the 70’s. The real innovation with nano-fillers is their ability to increase the load of the inorganic phase. Micro-filled composites have a 50 wt. % filler load compared to 80 wt. % for the nano-filled. Filtek Supreme (3M ESPE, St. Paul, MN, USA) was the first dental nanocomposite to be launched in the market in 2002. Other examples of commercially available nanocomposites are Premise (Kerr/Sybron, Orange, CA, USA), GrandiO (Voco, Cuxhaven,
Germany), Ceram-X (Dentsply DeTrey, Konstanz, Germany), 4 Seasons (Ivoclar Vivadent, Schaan, Liechtenstein) and Palfique (Tokuyama Dental Corp., Tokyo, Japan).

Adding nano-fillers to enhance the physical and mechanical properties of resin-based composites is advantageous, and incorporating the highest possible percentage of filler content is the ultimate aim. However, the maximum filler load should be carefully considered because there are limitations. Table 2 shows that the effect of nano-fillers on the mechanical properties on the composites has received special attention. Some of the mechanical properties commonly measured include microtensile bond strength, flexural strength, diametral tensile strength, fracture toughness, microshear bond strength, Vickers hardness, and compressive strength.

Lohbauer et al. found that elevating the concentration of zirconia nano-fillers in either the primer or the adhesive gradually increased the microtensile bond strength.\(^{168}\) Although the highest values were reported for 20 wt. % filler content, even specimens with a low filler profile (5 wt. %) had enhanced mechanical properties compared to the unfilled controls. Other research groups have also reported that composites had better mechanical properties when they contained nano-fillers at a higher concentration.\(^{169-172}\) However, there does appear to be an optimal maximum of the percentage of nano-filler in the nanocomposite, after which the mechanical properties do not improve further, or even deteriorate. In some cases, the mechanical performance declined to such an extent that the unfilled controls were superior.\(^{169,171,173}\) The optimal filler load varies significantly between materials, and was about 10 wt. % for CaF\(_2\), 0.2 wt. % for HA, 0.5 wt. % for sodium montmorillonite (Na-MMT) and 40% for silica nano-fillers (Table 2).\(^{169-172}\) However, some caution should be used when comparing the optimum filler load across ENMs because the studies so far have not used standardised methodologies to prepare the composites; each necessarily requiring a different NPs synthesis, types of resin, modifications of the particle surface, and the timing of the polymerisation process. Nano-filled composites may not always enhanced mechanical properties compared to micro-filled composites. Ruttermann et al. found that solubility and shrinkage were similar for both types of composites, but the nano-filled composites demonstrated higher water sorption and opacity.\(^{174}\)

Although spherical nano-fillers are popular, partly because they distribute stress more uniformly across the bulk volume of the composite resin and inhibit crack formation,\(^{166}\) CNTs have also been tried. Zhang et al. synthesised a composite based on single-walled carbon nanotubes (SWCNTs).\(^{175}\) The result was a nanocomposite with improved mechanical performance. SWCNTs are well-known to have exceptional strength, but they can also be
accepted at higher filler concentrations by resin systems due to their unique dimensional
distribution (aspect ratio > 1000).176 Further research should be encouraged on resins
accommodating CNTs.

The aesthetics of the composite is also a critical issue for patients, and for example,
colour matching with the patients natural teeth is desirable. NPs have been employed to
modify the translucency for improved aesthetics.177 However, the optical properties are also
of clinical importance, and nano-fillers have been used to match the radiopacity of dental
adhesives,178 as well as to reduce the working and setting times for resins.173 Clearly, nano-
fillers can improve some properties while compromising others in the overall nanocomposite.
The practitioner should therefore take an overview of the composite in the context of clinical
considerations which are mainly determined by the position of the cavity and the aesthetic
requirements.163

\textit{Dental implants}

The aim of the dental implant manufacturer is to provide a product with a high success rate
after the initial implantation, and longevity. At present, the failure rates are 5-10\%, mainly
due to poor osseointegration, infection, or rejection.179 The future of a dental implant is
ddictated by the inflammatory response and the behaviour of the tissue at the tissue-implant
interface in the individual patient. Consequently, the implant surface chemistry and
topography are fundamental aspects to be considered when designing an implant. Cells are
typically around 10 µm in diameter, but the cell parts are much smaller, in the sub-micron
scale. The proteins secreted during osseointegration are even smaller with a typical size of
just 5 nm; which is close to the dimensions of the smallest man-made NPs.180 The notion of
ENMs with sizes comparable with basic biological components has been used as an argument
for the bespoke design of ENMs for medical applications where the material interact with
cells and tissues at a molecular level with a high degree of specificity.181 In principle, this
idea also applies to dental implant incorporating nanotechnology. Table 3 shows some
selected examples of the use of ENMs in dental implant applications.

Modifying the surface of Ti implants is one way to improve how an implant interacts
with the surrounding tissues. The application of a thin ceramic layer on metallic implants is a
popular way to enhance the formation of new bone and avoid adverse inflammatory reactions.
The ceramic nano-materials selected for manufacturing coatings on Ti implants are those that
have been classified as bioactive and mainly include HA,182-184 bioactive glass,185 and other
calcium phosphate compounds.186,187 Nano-HA is probably the most preferable material used as a coating for Ti, Ti alloys and stainless steel implants because it is similar to the inorganic component of bone. HA coatings transform implants to a biocompatible substrate that cells prefer to adhere to than the metallic surfaces of uncoated implants. \textit{In vivo} experiments with animal models have suggested that Ti implant surfaces modified with HA NPs show enhanced bone bonding and accelerated new bone formation.188,189 It has been demonstrated that dental implants coated with HA NPs have better bone-to-implant contact and increased removal torque values compared to the uncoated controls.190,191 However, the surface roughness and chemistry of implants are not the only factors that determine the biological responses. It has been suggested that particle size and morphology (\textit{e.g.}, spherical, rod-shaped, crystals) also play an important role in osteoblast adhesion and their bone-forming capacity.192,193

Implants coated with 20-100 nm calcium phosphate (CaP) nanocrystals have demonstrated similar enhanced osseointegrative behaviour \textit{in vivo}.194,195 \textit{In vitro} studies showed that osteoblasts (but not stem cells) had better proliferation on nano-CaP-impregnated Ti implants compared to untreated controls.196 However, both cell types demonstrated higher differentiation activity on surface-modified specimens. Alumina is another nano-ceramic candidate with promising osseointegrative properties. Webster \textit{et al.} reported increased osteoblast proliferation and adhesion on substrates made of nano-sized alumina (24 nm).197 Alumina nano-fibres (2 nm in diameter, 50 nm long) have also been found to encourage osteoblast differentiation and calcium deposition.198 Yang \textit{et al.} found that smaller particles of nanodiamonds promoted osteoblast adhesion and proliferation more compared to larger particles.199 This latter finding could be the basis for manufacturing coatings with variable particle sizes to control the degree of bone apposition and favour bone growth at specific anatomical locations. Other types of NPs, such as yttrium-stabilised zirconia and CNT-CaP NPs (Table 3), have also been investigated as means to reinforce Ti alloy and polymer-based implants respectively.189,200

Numerous \textit{in vivo} and \textit{in vitro} studies have suggested that nano-particulate coatings render dental implants more biocompatible while facilitating formation of new bone and reducing healing time (Table 3). However, a considerable number of scientific reports have also shown no significant benefits from modifying implant surfaces with NPs. \textit{In vivo} studies comparing blasted/acid-etched Ti endosseous implants (controls) with specimens further subjected to a bioceramic deposition process to form a nano-CaP coating, did not indicate any difference in bone bonding or healing between the two groups.201-203 A possible explanation
for these results is that the optimal bone quality of the implant bed overshadowed the superior oseointegrative properties of the CaP-coated specimens. This may suggest that in vivo studies selecting healthy bone tissues as implantation sites do not mimic the poor state of bone in edentulous patients.

Despite extensive research, it is still not clear whether the improved properties of the nano-coated implants are derived from the chemistry of the coatings, or whether it is due to the change that the coatings introduce to the surface roughness of the implants. Mendes et al. argue in favour of the latter suggesting that the improved osseointegration found for implants coated with nanocrystalline CaP arises from the complexity of the resultant surface rather than the CaP chemistry itself. In general, the degree of osseointegration is improved with increased surface roughness; and nano-modified dental implants do have increased surface roughness compared to standard metallic implants with polished surfaces. Consequently, one might argue that the advantage of the NPs deposition on the dental implants surfaces is mainly due to the nanoporigraphy they introduce. However, further research is required to either support or reject this hypothesis. It is noteworthy that many studies in the current literature fail to fully characterise the implant surfaces under investigation and in some cases scanning electron microscopy (SEM) is the only technique employed to describe these surfaces and compare between them. Thus, future studies should include more advanced surface characterisation techniques (e.g., 3D measurements for SEM, atomic force microscopy, X-ray photoelectron spectroscopy) to assess the nanostructure of coated implants and provide quantitative data which then could offer a better understanding on whether the bone response is determined by the surface nanotopography. Also, further investigation is needed on how the particle size and morphology affects the host response, and ultimately the bone bonding.

Dentifrices – Personal care products

The use of dentifrices (toothpastes, tooth powders, mouthwashes, etc.) to manage oral health and generally help prevent dental caries is recommended to the public. The use of nanotechnology in these products is of growing commercial interest. In principle, ENMs could be used to aid the mineralisation process of the enamel and/or dentine (discussed above by providing HA, fluoride), control microbes and plaque as part of brushing (e.g., antimicrobial ENMs, Table 1), or provide nanoscale minerals to enhance pH control (e.g., calcium phosphate). Employing artificial HA in dentifrices, such as toothpastes, to restore the
lost mineral content of enamel and dentine has been considered as a sensible strategy.208-211 Nano-HA has been tested in different forms (spherical, needle-like, crystalline). Lu \textit{et al.} found that nano-HA added in toothpaste, not only enhanced the micro-hardness of enamel and improved remineralisation but may also reduce bacterial colonisation of the tooth surfaces.209 Other ENMs that have been suggested to promote enamel and dentine remineralisation in experimental studies include nano-particulate bioactive glass,212,213 nano-sized carbonated apatite alone or in combination with silica,214,215 nano-sized calcium fluoride,216 carbonate-hydroxyapatite nanocrystals217 and nano-precursors of amorphous calcium phosphates.100 Logically, these materials might also be included in toothpastes or other commercial dentifrices.

Nonetheless, there are some commercial products where the basis for mode of action has been explained. Casein phosphopeptide (CPP), which is produced from a tryptic digest of casein by aggregation with calcium phosphate and purification by ultrafiltration,218 carries calcium and phosphate ions bound to it in the form of amorphous calcium phosphate (ACP). The CPP-ACP nanocomplex is commercially known as RecaldentTM and is available as a product with the brand name GC Tooth Mousse® (GC Ltd) in the form of a topical cream. As a rich source of calcium and phosphate ions, the CPP-ACP nanocomplexes have been suggested to promote enamel remineralisation. When in the oral cavity, the CPP-ACP nanocomplexes adhere to the enamel, pellicle, plaque and soft tissue, delivering calcium and phosphate ions. The free calcium and phosphate ions then enter the enamel rods and reform into apatite crystals, contributing to the teeth remineralisation.

The role of nano-HA and other Ca-based NPs has been investigated as a treatment for dentine hypersensitivity by occluding the dentinal tubules.98,219 Application of 40 nm silica NPs has also been found to form a physical barrier at the entrance of dental tubules preventing the movement of the fluid within the tubules which is the cause of sensitivity problems.99 Strontium chloride was the first tubule blocking agent to be introduced to the market (as Sensodyne) 50 years ago.220 However, strontium chloride was incompatible with fluoride and was finally replaced with strontium acetate. Although several studies have shown that 10\% strontium chloride dentifrices reduce dentine hypersensitivity,221-223 Zappa, who summarised the results of clinical studies with strontium chloride toothpastes, concluded that the clinical efficacy of strontium-based products was uncertain.224 Saliva naturally plugs the dentinal tubules both by transporting calcium and phosphate ions into the openings of the channels and by forming a calcium and phosphate-rich salivary glycoprotein layer.225 In an attempt to mimic the natural occlusion mechanism, ProClude (Ortek Therapeutics Inc.) was
manufactured. ProClude consists of arginine (an amino acid which is positively charged at physiological pH), bicarbonate (a pH buffer) and calcium carbonate (as a source of calcium). Arginine binds to the surface of calcium carbonate and in the form of positively charged agglomerates adheres to the negatively charged dentine surface and tubules. Colgate developed the arginine technology (Pro-Argin™) further by adding fluoride. However, it has to be noted that a number of studies have shown that brushing with toothpastes for sensitive teeth has an adverse effect causing dentine erosion and the tubules to open rather than resolving the problem. Clearly, there is an emerging market on the use of nanotechnology in dental healthcare products, and like other ENMs applications in the food or personal care sectors, the safety and efficacy of these products need to be proven, as well as improved product labelling to give clarity on which products actually contain natural or ENMs (see below).

Safety of engineered nanomaterials used in dentistry

The safety of patients

The current regulatory procedures for approving new medicines and medical devices and how they apply to ENMs has recently been discussed, as well as considerations for occupational health. Briefly, the overarching process of conducting a clinical trial with a medicine intended for human use is covered by the Clinical Trials Directive (Directive 2001/20/EC) which sets out the implementation of good clinical practice for such trials, and various codes relating to medicinal products for humans (e.g., Directive 2004/27/EC). In addition, regulation EC number 726/2004 lays down the procedure for the authorization and supervision of medicinal products and this involved establishing the European Medicines Agency with some oversight of national level authorities within Europe (Regulation (EC) No 26/2004). Juillerat-Jeanneret et al. argue that from a legal and regulatory perspective that these regulations apply equally to nanomedicines, as the fundamental purpose of the regulations is the same for all medicines. Outside the European Union, regulations are often established at national level. For example, in the United States the Food and Drug Administration (FDA) provides federal regulations on the safety of medicines (e.g., Federal Regulations 21). The founding principles behind regulation include demonstrating that the new product is effective for its intended clinical use, or more effective than an existing product, and it must be safe. In the case of dentistry, Annex I of the Medical Devices Directive 93/42/EC identifies some legal requirements on the use of devices that would...
include dentures and various dental implants, whether or not they contained ENMs. The multi-variate use of different ENMs in composites, or to restore dentine, presents some complexity for the regulations since one of the drivers is the intended use of the new substance. For example, the use of Ag NPs as an antibacterial in a composite might be regarded as a medicine, while the inclusion of (for example) CNTs or HA for mechanical properties might fall under the medical devices regulations. Some clarity on these points is needed from governments and regulatory authorities, but it would seem sensible for commercial companies seeking product approval to be guided by the main intended use of the whole product as a starting point.

In essence, risk is a function of exposure and hazard (toxicity), and both aspects are considered in risk assessments for ENMs. For patients the exposure is defined by the intended treatment, the physical form, and concentrations of the ENMs in the therapeutic agent or medical device. Since the intended treatment (exposure) is usually known from the outset, although some investigations of erosion and bioavailability of ENMs from dental materials may be needed, the focus is mainly on hazard assessment. The regulations for toxicity testing also require that the route of uptake, frequency of dosing, formulation, concentration, and administration site must be related to the expected use in humans. Consequently, for medicines used in dentistry, oral toxicity tests on animal models will be relevant; as well as toxicity data on the tissues relevant to the oral cavity.

There are several theoretical routes of exposure for dental patients. These include: (i) accidental or incidental ingestion of the nano-containing dental material during or after treatment; (ii) the generation of aerosols during dental treatment that might present a respiratory hazard to the patient (e.g., aerosols from drilling into a nano-composite during a dental repair); (iii) systemic toxicity from any ingested or inhaled ENMs; (iv) direct toxicity to the cells/tissue of the oral cavity.

The ingestion and subsequent systemic hazard from oral exposure to ENMs has been studied in rodents (TiO$_2$; Cu NPs; Ag NPs19) and fish (TiO$_2$; C$_{60}$ and CNTs234), as well as in vitro using the Caco-2 intestinal cell line235,236 or isolated perfused intestines.35 Selected examples of oral toxicity studies with different models are summarised in Table 5. It is clear that some pristine (unmodified) ENMs can be absorbed across the vertebrate gut from an ingested food matrix (e.g., TiO$_2$), and although for metal-containing ENMs the bioavailability may only be a few percent of the dose, this is not dissimilar to traditional dissolved metal of concern like mercury.233 However, most oral toxicity studies in animal models have used gut gavage,232 and there is some concern that ENMs introduced to the gut
via salines may have a higher bioavailability than those in a food or dental material matrix. Nonetheless, the use of physiological saline would also be relevant to dental practice.

In vivo studies on rodents show that at least total metal concentrations in the internal organs from exposure to metal-containing ENMs can increase, and this may also lead to organ pathology (Table 5). For example, Wang *et al.* found pathology in liver and kidney of mice after single oral gavage of TiO$_2$ NPs (25 or 80 nm). There is also at least one report of argyria in humans after chronic ingestion of colloidal silver solution, indicating that silver from nano-silver can be absorbed. However, there is controversy over whether or not intact particles are absorbed across the gut epithelium. Gitrowski *et al.* recently demonstrated endocytosis of intact TiO$_2$ NPs by Caco-2 cells. Interestingly, the uptake mechanism was sensitive to endocytosis inhibitors such as nystatin and was also dependent on the crystal structure of the material; indicating that shape/crystal form is also an important aspect of the oral hazard.

The hazard from dental materials must be taken in context with these studies on oral toxicity to animals, and other oral hazards outside of dentistry for the patient as a member of the public. For example, there is a potential dietary exposure risk from food and personal care products containing ENMs. In addition, the mucociliary escalator in the lung may clear ultrafine particles (e.g., from air pollution) from the airway which are then subsequently ingested. The relative oral exposure from ENMs during intermittent dental work may be small compared to the potential long term exposure via the food. For example, Weir *et al.* estimate ingestion of about 1-3 mg TiO$_2$ Kg body weight$^{-1}$ day$^{-1}$, with about a third of the material being at the nanoscale. A patient would therefore need to ingest grams of TiO$_2$ ENM on a visit to the dentist in order to achieve the same annual dose as might be incidentally achieved from food products.

However, the toxicity data in the public domain on ENMs used specifically in dental applications is sparse, with no information on oral toxicity from dental materials, biomaterials or implants containing ENMs in animal models or patients. As a rule, dental materials for permanent restorations are designed to be inert and chemically stable in the oral environment. However, there has always been a concern that leaching of toxic compounds may occur either as a result of material instability or degradation, or due to inappropriate application or preparation of the dental material by the clinician. Metal release from dental materials is not uncommon (e.g., amalgams, metal alloys239), but the reported elemental release is usually negligible or comparable to that of food and drink intake. The release of chemical substances leaching from resin composites240,241 and endodontic sealers242,243 has also been confirmed;
raising the concern that patients are unnecessarily exposed to potentially toxic chemicals during and after treatment. However, similar information for dental materials containing ENMs is lacking.

There is also a concern of direct contact toxicity from the ENM with the cells and tissues of the oral cavity. The oral epithelium is mostly non-keratinised stratified squamous epithelium, with the exception of gingiva, hard palate and dorsal surface of the tongue. The epithelium acts with saliva to form a protective mucous barrier. The salivary film covering the oral cavity has an estimated thickness of 70-100 µm, whereas the thickness of the non-keratinised squamous epithelium varies between 500 and 800 µm; the latter being thicker than the epithelium of the oesophagus (300-500 µm) or the intestines (20-25 µm). It therefore might be argued that the oral cavity is a better barrier than, for example, the more permeable intestine, but this notion derived from the transport of solutes across epithelia has yet to be verified with experimental data for ENMs. It seems likely that some types of ENMs will become trapped in the mucous secretion of the saliva by steric hindrance (discussed above), but nanomedicines are being engineered to cross mucous barriers (e.g., to improve drug delivery) and it is possible that such traits will be useful in dentistry (e.g., delivery of antimicrobials, anaesthetics, etc.). However, there is a concern that some ENMs are immunogenic and would induce a hypersensitivity reaction or inflammation in a vulnerable patient. This risk may be present with traditional medicines and medical devices, and whether the risk would be greater for an ENM in the oral cavity is unknown.

Occupation exposure of the practitioner

The occupational health of the practitioner should also be considered in the context of routes of exposure. For health and safety in the workplace, safe systems of work are aimed at preventing exposure so that there is a negligible risk. This approach also applies to ENMs, although in practice employers do show some uncertainty about what might be nano-specific in the governance of health and safety. Potential exposure of the practitioner could arise from incidental ingestion or dermal contact. However, the clinical practice of wearing surgical gloves, and not eating or drinking while treating patients should minimise these exposure routes as they would with other substances.

Exposure to aerosols of dental materials containing ENMs has not been quantified in a workplace scenario, and there is a theoretical exposure from activities such as drilling or filing into a repair that already contains ENMs. There are exposure limits set for dusts and...
powders that might create an aerosol in the workplace (e.g., 10 mg m\(^{-3}\) for an 8 h exposure to dust generally in the UK), and reports from various health and safety agencies indicate exposures of a few mg m\(^{-3}\) or less to workers in ENM manufacturing plants.\(^{253}\) The exposure risk to dentists working with only a few grams of dental material at a time is likely, therefore, to be much less. Interestingly, studies on abrasion/sanding of industrial coatings and composites find mainly negligible (not detectable) or low releases of free ENMs.\(^{254}\) This might imply that a similar activity by a dentist such as abrading/shaping a dental composite might be low risk. However, distance from the point source of the exposure is also critical, and in dentistry the practitioner is inevitably very close to the patient. Clearly, further research is needed on workplace exposure to ENMs in dentistry.

Conclusions and recommendations

There appears to be many potential benefits to patient outcome from using nanotechnology in dentistry. The benefits include new materials for preventative health care using dentifrices that are either antimicrobial and/or have some restorative properties for the enamel. The use of ENMs to enhance the mechanical and physiological functions of the tooth *via* new nano-fillers and composites should provide an enhanced capability for some areas of restorative dentistry. The use of ENMs to improve osseointegration, infection control, and biocompatibility of dental implants may reduce the rejection rates in some invasive procedures. There are also completely new frontiers in dental treatment such as the use of ENMs to control and direct pulp stem cells in order to regenerate the tooth.

These potential benefits should be balanced against the risks. For the patient the exposure to ENMs will be controlled by the planned dental treatment, and thus the main concern is on the hazard of the ENMs in dental materials. The data so far indicates that oral toxicity for ENMs is low, but some ENMs are translocated across the gut to cause systemic disturbances, perhaps with organ pathology. However, the matrix in which the ENM is incorporated will be important and oral toxicity studies have yet to be done with dental materials containing EMNs. Overall, however, the information so far indicates that the oral hazard is low or manageable and should not be a barrier to the safe innovation of nanotechnology in dentistry. The safety assessment processes in place for medicines and medical devices remain robust, and although individual toxicity tests may need modifications to work well with ENMs, the overall safety strategy is appropriate. Nonetheless, there are some improvements in health and safety that can be made. For example, better guidance to practitioners on nano-
incorporated products with respect to patient safety and occupational health. For the public and patients, the nano-specific labelling on the many personal care products in dentistry could be improved to clearly identify the nano ingredient(s). Thus giving clarity on whether a product actually contains an ENM and what the proposed mode of action or benefit of the new product might be to the consumer.

Research recommendations and data gaps.

Although the potential benefits appear to outweigh the risks associated with using ENMs in dentistry, there are still several areas where knowledge can be improved. These include:

(i) Specific research to understand how the protein corona is formed on ENMs in saliva, and how the ENM might change the bioavailability of active ingredients in the saliva. It is also unclear how or if ENMs alter the secretory functions of the salivary glands.

(ii) Research on clinically-relevant biofilms. Although there is some understanding of laboratory cultures of microbes and ecologically-relevant biofilms. In contrast, biofilms in/on the human body are poorly understood with respect to ENMs. Some targeted research on the oral cavity biofilm is needed to underpin the role of ENMs in drug delivery, antimicrobial functions, and on penetration to the dentine surface.

(iii) Mechanistic investigations on how ENMs strengthen the tooth structure (enamel, dentine, pulp and cementum) and further exploration of adding physiological function to nano-enhanced dental materials. The use of second and third generation ENMs with complex three dimensional structures rather than particles need to be explored for their mechanical properties in dental applications.

(iv) The use of ENMs in dental therapeutics for drug delivery and to provide growth factors involved in tissue regeneration, or stem cell treatments is worthy of more investigation with respect to both efficacy and safety.

(v) New dentifrices containing ENMs offers the chance of preventative dentistry and better public health, but consumer choice is important. Research on the composition of existing products, and product labelling, are part of improving consumer confidence in using commercial products containing nanotechnology.
References

123. Bernardo, M.; Luis, H.; Martin, M. D.; Leroux, B. G.; Rue, T.; Leitao, J.; DeRouen, T. A. Survival and Reasons for Failure of Amalgam Versus Composite Posterior...

Figure legends

Figure 1. A. Diagram shows the presence of NPs (isolated particles or agglomerates) in saliva and the structure of dentinal tissues. The pellicle covers the superficial layer of enamel and the oral biofilm develops on the pellicle surface. The characteristic hexagonal shape of the enamel crystallites is apparent and also the presence of the tubules in the underlying tissue of dentine. The NP-ion-protein complexes do not adhere directly to the tooth surfaces, but adhesion occurs either to the pellicle layer or the developing biofilm.

B. Schematic diagram of the oral environment, oral biofilm and dentinal mineralised tissues showing the distribution of NPs and ions. Natural saliva normally contains a range of ions and proteins. In the presence of NPs, NP-ion-protein complexes are formed. Oral conditions promote particle agglomeration that results in particle sedimentation onto the dentinal surfaces. The pellicle has a globular structure and its proteinaceous layer facilitates the adherence of the early colonising species necessary for the oral biofilm development. The oral biofilm and pellicle act as a diffusion/permeation barriers to NPs preventing them from reaching the enamel-pellicle interface. Certain ions (F⁻, Cl⁻, SiO₄²⁻, Zn²⁺) are more abundant near the external surface of enamel, while others (Na⁺, Mg²⁺, CO₃²⁻) are found at higher concentrations near the dentino-enamel junction. The most commonly ions found in dentine are F⁻, Na⁺, Mg²⁺ and CO₃²⁻.

Figure 2. Tooth anatomy showing the four main components of the tooth (enamel, dentine, cementum and pulp). Details of the complex oral biofilm, which develops on the tooth surfaces, and the characteristic microscopic channels (dentine tubules) that permeate dentine are also shown. Dental research studies have investigated the use of a big range of ENMs in different clinical applications including enamel remineralisation strategies, antibacterial applications, caries management, dentine hypersensitivity and root canal disinfection.
Figure 1
Figure 2

Antibacterial effect on oral bacteria: Ag, QPEI, bioactive glass, ZnO, TiO_2, Au and Cu NPs

Enamel remineralisation, treatment of early caries, repair of enamel defects: Bioactive glass, CaP, HA, CaCO_3, CHA and CaF_2 NPs

Caries management, dentine remineralisation, tubules occlusion: CaO, SiO_2, HA, CaP, bioactive glass and carbonate apatite NPs

Root canal disinfection, odontoblast stimulation: Bioactive glass, CaP, ZnO and HA NPs

Dentinal tubules
An *E. faecalis* biofilm was left to mature for 21 days before being challenged with CSRB NPs (0.1 and 0.3 mg ml\(^{-1}\)) or RB (10 µM) for 15 min and exposed to photodynamic therapy (dosage of 20, 40 and 60 J cm\(^{-2}\); and fractionated dosage of 10 and 20 J cm\(^{-2}\) twice). The cytotoxicity tests were performed with mouse fibroblast cells. Incubation time after exposure was 15 min in the dark. CSRB NPs and RB were tested with radiation (20 J cm\(^{-2}\)) with complete elimination of biofilm bacteria in the case of 0.3 mg ml\(^{-1}\) CSRB NPs. The initial thickness of the biofilm was 39.2 ± 7.3 µm, which was reduced to 13.1 ± 4.3 µm and 23.1 ± 5.57 µm after CSRB NPs and RB treatment respectively. CSRB NPs showed no dark toxicity (95.5 ± 12% cell survival), but toxicity was higher following irradiation (72.86 ± 9% cell survival).

Table 1. Use of antimicrobial engineered nanomaterials in dental materials.

<table>
<thead>
<tr>
<th>Nanomaterial characteristics</th>
<th>Aim of application</th>
<th>Treatment</th>
<th>Key results</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chitosan (CS) functionalised with rose-bengal (RB) NPs were chemically crosslinked to RB using N-ethyl-N’-(3-dimethylaminopropyl)carbodiimide (EDC 5 mM) and N-hydroxy succinimide (NHS 5 mM). The particle size of the resulting CSRB NPs was 60 ± 20 nm.</td>
<td>To introduce an antibiofilm effect and stabilise the structural-integrity of dental root dentin by photocrosslinking dentine collagen matrix.</td>
<td>An E. faecalis biofilm was left to mature for 21 days before being challenged with CSRB NPs (0.1 and 0.3 mg ml(^{-1})) or RB (10 µM) for 15 min and exposed to photodynamic therapy (dosage of 20, 40 and 60 J cm(^{-2}); and fractionated dosage of 10 and 20 J cm(^{-2}) twice). The cytotoxicity tests were performed with mouse fibroblast cells. Incubation time after exposure was 15 min in the dark. CSRB NPs and RB were tested with radiation (20 J cm(^{-2})) and without radiation.</td>
<td>Complete death of biofilm bacteria was not achieved with either CSRB or RB even at 60 J cm(^{-2}). The best antibacterial effect was achieved with fractionation of the dosage (20 + 20 J cm(^{-2})) with complete elimination of biofilm bacteria in the case of 0.3 mg ml(^{-1}) CSRB NPs. The initial thickness of the biofilm was 39.2 ± 7.3 µm, which was reduced to 13.1 ± 4.3 µm and 23.1 ± 5.57 µm after CSRB NPs and RB treatment respectively. CSRB NPs showed no dark toxicity (95.5 ± 12% cell survival), but toxicity was higher following irradiation (72.86 ± 9% cell survival).</td>
<td>Shrestha et al. (2014)(^{255})</td>
</tr>
<tr>
<td>50 nm ZnO NPs and 20 nm Ag NPs</td>
<td>Resin composite with antibacterial activity to inhibit the growth of oral cavity microorganisms.</td>
<td>ZnO or Ag NPs were added to a resin composite material at a concentration of 1 wt. %. Disk-shaped specimens were prepared using light treatment. The antibacterial activity was tested against S. mutans and Lactobacillus after 12 h of incubation.</td>
<td>Measurement of the active colonies formed on the surface of blood agar plates showed a significant antibacterial activity for the resin composites with added ZnO NPs (0.93 ± 1.53 CFU for S. mutans and 1.20 ± 0.77 CFU for Lactobacillus) or added Ag NPs (7.33 ± 7.19 and 0.73 ± 0.79 CFU respectively) compared to the control group (126.0 ± 29.47 and 3.80 ± 2.54 CFU respectively).</td>
<td>Kasraei et al. (2014)(^{256})</td>
</tr>
<tr>
<td>2.7 nm Ag NPs. Ag NPs were synthesised by dissolving silver 2-ethylhexanoate powder in 2-(tert-butylamino)ethyl methacrylate (TBAEMA) at 0.1 g of silver salt per 0.9 g of TBAEMA.</td>
<td>An adhesive/primer system with improved antibacterial activity.</td>
<td>5% of aqueaturnary ammonium monomer (dimethylaminododecyl methacrylate, DMADDM) and 0.1% of Ag NPs were incorporated into a primer and an adhesive.</td>
<td>The agar disk diffusion test showed that primer specimens containing 0.1% Ag NPs had significantly larger inhibitions zones compared to controls. The MTT assay and lactic acid production results showed that the metabolic activity of bacteria on specimens containing Ag NPs was significantly lower. The colony forming unit (CFU) value for the DMADDM + Ag NPs specimens was 10(^{-2}) compared to 0.4 x 10(^{-2}) for the controls without Ag NPs.</td>
<td>Cheng et al. (2013)(^{257})</td>
</tr>
<tr>
<td>Colloidal solution of lactose-modified chitosan (Chitlac) - Ag NPs. Ag NPs were obtained from AgNO(_3) after mixing with ascorbic acid. Size of Chitlac - Ag NPs clusters was 1-5 µm.</td>
<td>Antimicrobial coating for medical devices and implants.</td>
<td>Thermosets surfaces were coated with 0.5 mM Chitlac - Ag NPs. Antibacterial activity was tested against S. aureus and P. aeruginosa (3h). Cytotoxicity tests were performed using human skin fibroblasts and osteoblast-like cells (24-72 h).</td>
<td>Viability of bacteria after exposure to treated surfaces was 6 times less (1 log (CFU ml(^{-1})) compared to untreated surfaces (6 log (CFU ml(^{-1})). LDH release after 72 h contact with treated surfaces was 15% for fibroblasts (control was 21%) and 8% for osteoblast-like cells (control was 9%).</td>
<td>Travan et al. (2011)(^{360})</td>
</tr>
<tr>
<td>Quaternary ammonium polyethyleneimine (QPEI) NPs were added in a resin composite containing 47% zirconia-silica particles with average size 0.01-6.0 µm. Size of QPEI not given. Components were manually mixed for 20 s.</td>
<td>Resin composite with antibacterial activity.</td>
<td>Disc-shaped control composites and composites with 1 wt. % QPEI NPs were placed intraorally in patients. Biofilm formation was allowed for 4h before testing.</td>
<td>71% of bacteria remained viable on control resin composite compared to 19% on samples containing QPEI NPs. Incorporation of QPEI NPs increased the biofilm thickness to 107 µm (was 69 µm on control surfaces).</td>
<td>Beyth et al. (2010)(^{361})</td>
</tr>
<tr>
<td>QPEI NPs were incorporated into a provisional restorations</td>
<td>Provisional restorations</td>
<td>QPEI NPs were introduced to the restoration material</td>
<td>No bacterial growth was observed for the 24 h aged samples. No results mentioned.</td>
<td>Shvero et al.</td>
</tr>
</tbody>
</table>
commercial provisional cement. Size of the NPs was not provided.

with long-term antibacterial effect. at 0.5, 1 and 2 wt. %. Microtiter plates were coated with the final product and the antibacterial effect of 24 h and 14 days aged samples was tested against S. mutans and E. faecalis.

growth of S. mutans was observed on samples aged for 14 days. No growth of E. faecalis was also observed on 14 days aged samples where the QPEI NPs concentration was higher than 1 wt. %.

Sol-gel derived bioactive glass nanopolymers (58S, 63S, 72S). Particle size was 20-90 nm.

Orthopaedic infection control and disinfection of root canal. Bacteria (E. coli, S. aureus, S. typhi, P. aeruginosa) were cultured in broth containing bioactive glass NPs at different concentrations (6.25 – 100 mg ml⁻¹) for 24, 48, 72, 96 and 120 h. Cytotoxicity was assessed by the MTT assay using mouse fibroblasts.

The minimum bactericidal concentration (MBC) of 58S was 50 mg ml⁻¹ whereas the MBC was 150 µg ml⁻¹. There was a 20% reduction in biofilm growth on composite discs containing 10% ZnO. Antibacterial effect on discs with 10% TiO₂ was similar to controls.

Resin composites with antimicrobial activity to prevent biofilm formation. ZnO NPs were introduced to a microhybrid composite at 1, 5 and 10 wt. %. Also 10% ZnO or TiO₂ NPs were added to a nanofilled composite. Antibacterial activity was tested against S. sobrinus after 3 days of biofilm formation.

The minimum bactericidal concentration (MBC) of ZnO NPs was 50 µg ml⁻¹ whereas the MBC was 150 µg ml⁻¹. There was a 20% reduction in biofilm growth on composite discs containing 10% ZnO. Antibacterial effect on discs with 10% TiO₂ was similar to controls.

Dental adhesives with long-term bacteria inhibition properties. TiO₂ NPs were added to a commercial dental adhesive at 5, 10, 20 and 30 wt. %. The nano-adhesive was then spread on a 1.2 cm² disc and light cured. Samples were coated with S. epidermidis and UV irradiated for up to 120 min.

Bacteria harvested from the specimens containing 20% TiO₂ NPs produced 12 colonies per sample, while 10% containing samples only 1 colony. The incorporation of 20% TiO₂ NPs did not increase the tensile bond strength of specimens (18 N) compared to control.

Root canal disinfectant. Caries and restoration free human premolars were seeded with 0.1 ml E. faecalis and then root canals were filled with nano-45S5, micro-45S5 or a 50:50 mixture of both.

Nano-45S5 had a 12-fold higher surface area compared to its micrometric counterpart. All specimens treated with nano-45S5 showed bacterial growth (12 out of 12), while micro-45S5 was significantly more effective (1 out of 12). Three out of 12 specimens dressed with the nano-micro mixture showed bacterial growth.

Composite adhesive to prevent enamel demineralisation. Ag NPs were added to the adhesive at 0, 250 and 500 ppm. Disk-shaped (3 x 2 mm) specimens were prepared and their effect was determined on the bacterial growth on liquid media (incubation time up to 24 h at 37°C) and with agar diffusion assay (incubation time 48 h at 37°C). S. mutans and S. sobrinus were the bacterial strains tested.

After 24 h of incubation, the bacterial growth was measured spectrophotometrically (A₅₇₀) and the optical density values for specimens containing 0, 250 and 500 µg ml⁻¹ Ag NPs were 0.7 ± 0.07, 0.72 ± 0.06 and 0.69 ± 0.05 respectively in the case of S. mutans. The corresponding values for S. sobrinus were 0.70 ± 0.05, 0.68 ± 0.10 and 0.71 ± 0.11. The values for blanks were 0.7 ± 0.07 (S. mutans) and 0.70 ± 0.05 (S. sobrinus). The agar diffusion assay showed no zones of inhibition.

Oral tissue conditioner with antimicrobial activity. Disc samples of 20 x 3 mm of tissue conditioner containing Ag NPs at 0.1, 0.5, 1.0, 2.0 and 3.0% (vol/vol %: Ag sol/conditioner liquid) were prepared. Specimens were placed in culture plates and their antibacterial activity was tested against S. mutans, C. albicans and S. auereus after 24 and 72 h of incubation at 37°C.

An inhibitory effect was observed against all bacterial strains even for specimens with the lowest (0.1 %) Ag content. For S. mutans, C. albicans and S. auereus, no CFUs were observed for specimens containing 1, 2 and 1% Ag respectively. There were no statistical differences between incubation times of 24 and 72 h.

As an antimicrobial A TaN-Ag nanocomposite coating (1.4-1.7 µm thick) The highest relative fluorescence intensity of the bacterial retention was

Ahn et al. (2009)
coating for dental implants. was synthesised by a twin-gun reactive magnetron sputtering and deposited on 50 mm pure Ti plate specimens. The samples tested contained 0, 14.9, 17.5 and 21.4% Ag. Control Ti samples were uncoated. The antimicrobial efficacy of the specimens was evaluated using *S. aureus*. Samples were inoculated with bacteria and incubated for 6 h at 37 °C. observed on the uncoated Ti surfaces (97 ± 3 arbitrary units) followed by TaN-Ag14.9% (92 ± 2), TaN-Ag17.5% (84 ± 4), TaN (69 ± 3) and TaN-Ag21.4% (57 ± 3). The *S. aureus* growth on uncoated Ti samples was 44 CFU cm⁻², 37 CFU cm⁻² on TaN coated samples and 3 CFU cm⁻² on TaN-Ag 21.4% coated samples.

MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. Studies are presented in chronological order for convenience.
<table>
<thead>
<tr>
<th>Nanomaterial characteristics</th>
<th>Aim of application</th>
<th>Treatment</th>
<th>Key results</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybrid silica/acrylic NPs were synthesised by seeded emulsion polymerisation. Following methyl methacrylate (MMA) polymerisation, a poly(methacrylate) (PMMA) shell (3-6 nm thick) was formed on the surface of silica NPs. Core NPs had a diameter size of 59.4 ± 14.4 nm, whereas hybrid NPs were larger (silica/PMMA 78/22: D = 75.8 ± 12.5 nm; 57/43: D = 81.2 ± 15.4 nm).</td>
<td>As nanofillers to increase the silica filler content in dental resin composites.</td>
<td>The silica or hybrid (silica/PMMA at ratios of 78/22 and 57/43) NPs were introduced to the resin and were mixed manually until the powder was completely wetted. The filler content in the specimens prepared was 20, 30 or 40 wt. % for the silica NPs and 40, 50 or 60 wt. % for the hybrid NPs.</td>
<td>Composites containing 30 wt. % silica NPs demonstrated the highest flexural strength (57 MPa), which decreased with further increase of the filler content (48 MPa for 40 wt. %). The flexural strength of composites prepared with hybrid NPs at the same filler content (40 wt. %) was considerably lower (25 MPa for the 78/22 NPs and 30 MPa for the 57/43 NPs). The flexural modulus of composites containing 40 wt. % silica NPs was 3091 MPa and the respective value for composites carrying hybrid 78/22 NPs at the same filler content was 2694 MPa. The flexural modulus for composites with filler particles carrying a higher amount of PMMA (57/43) was significantly lower (1528 MPa). The use of hybrid NPs enabled the incorporation of a higher concentration of silica in the composites and better dispersion of the filler particles.</td>
<td>Canché-Escamilla et al. (2014)²⁷⁰</td>
</tr>
<tr>
<td>HA NPs (20-70 nm) were prepared following biomimetic and hydrothermal processes.</td>
<td>As nanofillers to reinforce an adhesive system.</td>
<td>HA NPs were incorporated into the resin solutions of the adhesive system at 0.2%, 1%, 5%, and 10% (w/v). Fillers were mechanically stirred with the resins and sonicated for 30 min to ensure dispersion.</td>
<td>The control group had a mean microtensile bond strength (µTBS) of 52.1 ± 16.6 MPa, which increased significantly for the adhesive containing 1% of the biomimetic HA NPs (59.5 ± 11.9 MPa). The µTBS for 10% filler content was significantly lower for all types of HA NPs ranging from 33 to 42 MPa.</td>
<td>Wagner et al. (2013)²⁶⁰</td>
</tr>
<tr>
<td>Zirconia NPs (20 – 50 nm) were prepared by laser vapourisation.</td>
<td>As nanofiller to improve the properties of resin/adhesive.</td>
<td>Zirconia NPs were incorporated into the primer or adhesive of a commercial adhesive system at different concentrations (5, 10, 15, 20 wt. %). Mixtures were sonicated for 1h to increase dispersion prior to application.</td>
<td>Incorporation of zirconia NPs at 20 wt. % in the primer increased the microtensile bond strength (µTBS) to 41 ± 13 MPa. When added at the same concentration to the adhesive µTBS was 32 ± 15 MPa. µTBS for control was 25 ± 11 MPa.</td>
<td>Lohbauer et al. (2010)¹⁶⁰</td>
</tr>
<tr>
<td>CaF₂ NPs (56 nm) were synthesised by spray-drying.</td>
<td>Resin composite with improved mechanical properties and F release.</td>
<td>CaF₂ NPs were incorporated in a glass-reinforced composite at 10, 20 and 30 wt. %. Specimens were immersed in a NaCl solution and monitored up to 84 days.</td>
<td>The flexural strength of nanocomposites containing 10, 20 and 30 % CaF₂ was 170 ± 20, 125 ± 15 and 100 ± 15 MPa respectively before immersion. After 84 days of immersion (pH 4) the corresponding values were 130 ± 15, 117 ± 10 and 70 ± 10 MPa. At 84 days, the F release was 47, 252 and 327 µg cm⁻² respectively.</td>
<td>Xu et al. (2010)¹⁷⁰</td>
</tr>
<tr>
<td>HA nanorods were synthesised by hydrothermal method. Particle size was not given.</td>
<td>As nanofillers to improve the properties of dental adhesives.</td>
<td>HA nanorods were added to an experimental ethanol based adhesive at 0.2–5 wt. % and sonicated for 1 min.</td>
<td>Diametral tensile strength was higher when 0.2 and 0.5 wt. % HA had been incorporated (35 ± 5 and 33 ± 2 MPa compared to 25 ± 5 MPa for control). The highest flexural strength was observed at the same filler contents and was 50 ± 5 and 52 ± 5 MPa respectively (41 ± 4 MPa for control). Specimens with 0.2% HA had the highest microshear bond strength (22 ± 3 MPa compared to 11 ± 3 MPa for control). Flexural strength remained unchanged.</td>
<td>Sadat-Shojaei et al. (2010)¹⁷¹</td>
</tr>
<tr>
<td>Silica NPs (20-50 nm, mean diameter 26 nm) and 10-40 µm silica microparticles (mean diameter 18 µm). Silica NPs were treated with γ-MPS and left to dry for 20 days.</td>
<td>As nanofillers to improve mechanical properties of dental resin composites.</td>
<td>25 x 2 x 2 mm² specimens were prepared. Specimens contained 20, 30, 40 and 50 wt. % silica NPs or 60 wt. % micro-silica (control).</td>
<td>Composites containing 40 wt. % silica NPs demonstrated the highest fracture toughness and flexural strength (1.4 ± 0.1 MPa.m⁰⁻² and 149.7 ± 8.1 MPa respectively). 50% filler content had the highest Vickers hardness (70.1 ± 3.7 VHN). Composites containing 60% micro-silica had similar properties with those containing 20% silica NPs.</td>
<td>Hosseinalipour et al. (2010)(^{172})</td>
</tr>
<tr>
<td>1 mm thick and up to 1 µm long and wide sodium montmorillonite (Na-MMT) plate-like particles.</td>
<td>As nanofillers to increase the bond strength of dentin bonding systems.</td>
<td>Na-MMT particles were modified by methyl methacrylate by graft polymerisation. The modified NPs were incorporated into an adhesive at 0.2, 0.5, 1, 2, and 5 wt. % fillers dispersed by sonication. The adhesive was applied to 3 mm thick human dentine discs etched with 35% phosphoric acid for 15 s.</td>
<td>The adhesive containing 0.5 wt. % PMMA-modified Na-MMT NPs had the highest micro-shear bond strength (30 ± 7 MPa). The corresponding values for adhesives with filler content 0, 2, 1, 2, and 5 wt. % were 26 ± 5, 24 ± 10, 24 ± 5 and 19 ± 6 MPa. The value for the control was 20 ± 6 MPa.</td>
<td>Atai et al. (2009)(^{160})</td>
</tr>
<tr>
<td>ZrO₂ – SiO₂ NPs were synthesised according to a sol-gel technique. Primer NPs were 50 nm and agglomerates up to 10 µm.</td>
<td>As nanofillers to improve the properties of resin-based restorative materials.</td>
<td>The restorative material contained nanofiller (23% ZrO₂/72% SiO₂) at 74%. 25 x 2 x 2 mm specimens were prepared. Specimens containing glass microparticles at the same concentration were also made and used for comparison. Flexural strength was measured after specimens were stored in water at 37 °C for 24 h and also after being stored at 37 °C for 4 weeks and then thermocycled 5000 times between water baths at 5°C and 55°C.</td>
<td>Flexural strength of the specimens containing NPs was 68 ± 11 MPa compared to 93 ± 8 MPa for specimens with glass microparticles. After thermocycling, flexural strength was 42 ± 6 and 66 ± 8 MPa respectively. Both materials showed the same solubility (1.48 ± 0.04 µg mm⁻³) and similar shrinkage (3.5 ± 0.3 and 3.0 ± 0.5 vol. % respectively). Water sorption (82 ± 2.6 µg mm⁻³) and x-ray opacity (27 ± 2.9 mm) of the nano-filled material was significantly higher compared to its micro counterpart (30 ± 6.3 µg mm⁻³ and 7 ± 1.1 mm).</td>
<td>Ruttermann et al. (2008)(^{174})</td>
</tr>
<tr>
<td>Spherical monodisperse SiO₂-based Ta₂O₅ NPs were synthesised by flame-spray pyrolysis (primary particle size was 10 nm).</td>
<td>Radiopaque dental adhesive.</td>
<td>The particle surface was functionalised with γ-methacryloxypropyltrimethoxysilane in cyclohexane at 70°C for 24 h. The particles were manually mixed with the dental adhesive matrix and then dispersed by ultrasonication. The filler content was 1 and 20 wt. %. The Ta₂O₅ weight fraction in the final powder product ranged between 35 and 83 wt. %. Dental adhesive was applied to enamel and dentine of bovine incisors previously etched with 37% phosphoric acid gel.</td>
<td>The method of dispersion (centrifugal mixing, sonication or both) was found to affect the sedimentation of the particles. Centrifugal mixing along with and ultrasonication gave the best results with 86% of the particles to be < 30 nm. Samples with 35 wt. % Ta₂O₅ had lower radiopacity than dentine (72% Al), while samples with 83 wt. % Ta₂O₅ had higher radiopacity than dentine and enamel (170% Al). Unfilled adhesive demonstrated the strongest adhesion on dentine (16.1 ± 4.0 MPa) while adhesive with 20 wt. % functionalised filler content was most effective on enamel (26.8 ± 5.1 MPa).</td>
<td>Schulz et al. (2008)(^{178})</td>
</tr>
<tr>
<td>Single-walled carbon nanotubes (SWCNTs) with a diameter of < 10 nm and mean length of 15 µm.</td>
<td>Resin-based composite with improved mechanical properties.</td>
<td>SWCNTs were oxidised with H₂SO₄ and HNO₃ for 8 h under ultrasonication and rinsed with ethanol. SWCNTs were nano-</td>
<td>The flexural strength of SWCNTs specimens was 141.1 ± 8.4 MPa compared to 115.0 ± 3.2 MPa for the unfilled controls.</td>
<td>Zhang et al. (2008)(^{173})</td>
</tr>
</tbody>
</table>
coated with SiO$_2$ by a hydrolysis process. 25 x 2 x 2 mm composite specimens were prepared containing 0.1 wt. % SiO$_2$–modified SWCNTs.

Silica NPs. The particles used were 7 and 40 nm in diameter and had a surface area of 50 and 380 m2 g$^{-1}$ respectively. NPs were treated with γ-MPS.

Nanocomposites with improved aesthetic properties. 1 mm thick composites were prepared. Resin matrix was loaded with 70 wt. % micro-fillers (Ba-glass, 1 µm) and 6 wt. % of different combinations of 7 and 40 nm silica NPs.

The contrast ratio of the specimens was found to decrease with increasing content in 7 nm silica NPs. Specimens containing 6 wt. % 7 nm silica NPs exhibited the lowest contrast ratio (0.51 ± 0.03 at 400 nm). Translucency was reduced with increasing concentration in 40 nm silica NPs. The lowest translucency was measured for specimens containing 5 wt. % 40 nm NPs and 1 wt. % 7 nm NPs (0.78 ± 0.02).

Kim et al. (2007)177

BaSO$_4$ NPs. Particle size was <10 nm.

To control the reaction time and mechanical properties of glass ionomer cements. A glass ionomer powder was manually mixed with 1,2,5,10,15 and 25 wt. % BaSO$_4$ NPs. Six mm in height and 4 mm in diameter cylindrical specimens were prepared in moulds.

Increasing concentration in BaSO$_4$ NPs initially resulted in reduced working times and initial setting times but for higher concentration the effect was reversed. The shortest working time was for specimens with 5 wt. % BaSO$_4$ NPs (132.4 ± 9.5 s) and the shortest initial setting time for 15 wt. % particle content (338 ± 10.4 s). The corresponding values for the controls were 155.4 ± 15.1 and 442 ± 32.7 s. Incorporation of NPs in the glass cement decreased the compressive strength even at low concentrations. Compressive strength for samples containing 1% BaSO$_4$ was 142 MPa compared to 160 MPa of the control. Samples with nanoparticle concentrations > 10% had reduced surface hardness too.

Prentice et al. (2006)173

Ytterbium fluoride (YbF$_3$) NPs, 25 nm.

To control the reaction time and mechanical properties of glass ionomer cements. YbF$_3$ NPs were incorporated in a glass ionomer cement at 1,2,5,10,15 and 25 wt. %. Compressive strength and surface hardness tests were performed using 6 x 4 mm cylindrical specimens.

Glass cement specimens with an increasing content in YbF$_3$ NPs demonstrated shorter working and initial setting times. The corresponding values for specimens containing 25 wt. % YbF$_3$ NPs were 44.0 ± 2.9 s and 145.0 ± 6.1 s compared to 155.4 ± 15.1 and 442 ± 32.7 s of the controls. The compressive strength of the control was 160 MPa. Addition of NPs at 5 and 25 wt. % reduced the strength values at 145 and 105 MPa respectively. Incorporation of NPs up to 5 wt. % increased the surface hardness of the specimens to 43 VHN from 40 VHN but higher concentrations reduced the surface hardness (29 VHN for 25 wt. % NP content).

Prentice et al. (2006)173

Studies are presented in chronological order for convenience.
Table 3. Use of engineered nanomaterials in dental implant applications.

<table>
<thead>
<tr>
<th>Nanomaterial characteristics</th>
<th>Aim of application</th>
<th>Treatment</th>
<th>Key results</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper (Cu) decorated multi-walled carbon nanotubes (MWCNTs) were produced following the wet chemical method and using copper acetate as a precursor. The inside and outside diameters of the MWCNTs were 10-20 nm and 40-60 nm respectively. The length of MWCNTs was 2-10 µm. The size of Cu, CuO and CuO crystallites was 4.6, 10 and 13 nm respectively.</td>
<td>As a biocompatible nanocoating on Ti-6Al-4V dental implants to improve the microstructural and nanomechanical properties of fluorapatite (FA)-based composite coatings.</td>
<td>FA-TiO<sub>2</sub>-MWCNT-Cu nanotubes were synthesised following the sol-gel technique and applied to Ti-6Al-4V specimens following a spin coating process. All Ti alloy specimens (10 mm x 10 mm x 1 mm) had been previously polished to remove original oxides and surface defects.</td>
<td>The indentation depth for the different nanocoatings tested was FA > FA-TiO<sub>2</sub>-MWCNT-Cu > FA-TiO<sub>2</sub>. Addition of 10 wt. % TiO<sub>2</sub> and 1wt. % FA-TiO<sub>2</sub>-MWCNT-Cu was found to increase the elastic modulus of FA up to 60%. The elastic modulus of the FA, FA-TiO<sub>2</sub> and FA-TiO<sub>2</sub>-MWCNT-Cu coatings was 11.8, 14.5 and 19.3 GPa respectively. The FA-TiO<sub>2</sub> composite coating demonstrated the highest Vickers Hardness (0.72) followed by the FA-TiO<sub>2</sub>-MWCNT-Cu (0.58) and FA (0.37) coatings.</td>
<td>Sasani et al. (2014)<sup>261</sup></td>
</tr>
<tr>
<td>HA NPs (70-80 nm) were produced according to an electrochemical deposition method, where Ca(NO<sub>3</sub>)<sub>2</sub> and NH<sub>4</sub>H<sub>2</sub>P<sub>O</sub><sub>4</sub> were dissolved in distilled water to a Ca/P ratio of 1.67.</td>
<td>As a coating on titanium implants to improve osteoblast cell proliferation and differentiation.</td>
<td>Titanium plates of 10 x 10 x 1 mm were polished, sandblasted and washed in 75% acetone in an ultrasonic bath. Before applying the nano-HA coatings, specimens were treated with a solution containing HF and HNO<sub>3</sub> and a second solution containing HCl and H<sub>2</sub>SO<sub>4</sub>. Murine preosteoblast cells (MC3T3-E1) were seeded at a density of 1x10<sup>4</sup> on each plate and cultured up to 21 days.</td>
<td>The protein content of cells growing on nano-HA coated plates (14 µg plate<sup>-1</sup>) was significantly higher compared to the control group (5 µg plate<sup>-1</sup>) at early stage (day 7). The alkaline phosphatase (ALP) activity (0.5 nmol µg<sup>-1</sup>h<sup>-1</sup>) and osteocalcin production (1 ng µg<sup>-1</sup> protein respectively) after 21 days of culture.</td>
<td>Shi et al. (2013)<sup>262</sup></td>
</tr>
<tr>
<td>Carbon nanotubes (CNTs) synthesised by a chemical vapour deposition. Size was not specified.</td>
<td>Biodegradable bioactive polymer-based material to be used in bone fixatives for maxillofacial surgery applications.</td>
<td>CNTs were dissolved in tetrahydrofuran solvent and mixed with calcium phosphate (CP) and polylactic acid (PLA). The final composites (PLA-CNT1 and PLA-CNT2) contained 0.1 and 0.25 wt. % CNTs. Disc-shaped specimens (1 x 10 mm) were prepared in molds at 180°C. 4x10<sup>4</sup> H<sub>2</sub>O<sub>2</sub> pre-osteoblast cells were seeded on each sample and cultured for 14 days. Cell viability was measured by the MTS method and the cell differentiation into osteoblasts by the ALP activity.</td>
<td>The highest tensile strength was measured for PLA samples consisting of 50% CP and 0.25% CNTs (15.9 ± 0.9 MPa) when compared to PLA (6.0 ± 0.9 MPa) controls. During the 14 days culture period there was an increase in cell growth (apart from a drop observed after 7 days for PLA-CNT2 samples). After 14 days, the cell growth on PLA, PLA-CNT1 and PLA-CNT2 samples was 1.75 ± 0.25, 2.10 ± 0.20 and 2.15 ± 0.10 respectively. The corresponding values for the ALP activity were 0.16 ± 0.01, 0.21 ± 0.03 and 0.17 ± 0.03.</td>
<td>Lee et al. (2011)<sup>263</sup></td>
</tr>
<tr>
<td>HA nanocrystals (5 nm).</td>
<td>As a dental implant coating.</td>
<td>Screw-shaped Ti dental implants were either single or double coated with nano-HA. Specimens had been sandblasted and acid etched prior to coating. Implants were surgically placed in the tibia of New Zealand rabbits and removed after 2, 4 and 9 weeks of healing.</td>
<td>The thickness of the single coating was 20 nm, and of the double 40 nm. Interferometry results showed that the double coated implant had the smoothest surface (0.77 µm) and the uncoated control the roughest (1.08 µm). After 9 weeks of healing, the removal torque values for the control, single coated and double coated samples were 42 ± 10, 52 ± 10 and 48 ± 14 Ncm respectively. The corresponding values for the formation of new bone were 58 ± 6, 60 ± 9 and 59 ± 13 %.</td>
<td>Svanborg et al. (2011)<sup>201</sup></td>
</tr>
</tbody>
</table>
CaP NPs (20-100 nm). As a coating on maxillofacial implants to improve the peri-implant endosseous healing properties. Implants with a CaP modified surface NPs were surgically placed to 15 patients and removed 3 months later. The bone area and the bone-to-implant contact (BIC) of the CaP modified implants were 9.1 and 13.3 % respectively while the corresponding values for the control implants were 8.7 and 10.8 %.

Telleman et al. (2010)195

CaP NPs. Particle size was not specified. To modify the bone implant surfaces. Ti implants (5 mm in diameter and 11.5 mm long) were either, alumina-blasted and dual acid-etched (controls), or were impregnated with low levels of Ca (0.5%) and P (4%). Specimens were submerged into a suspension of either sarcoma osteogenic cells or mesenchymal stem cells and incubated at 37 °C for up to 9 days. The cell adhesion on the implants was evaluated and also the cell behaviour by ALP and MTT assays.

Bucci-Sabattini et al. (2010)196

HA particles (1-150 nm), suspended in a toluene-based solution were used to coat Ti (cpTi) and titanium alloy (Ti-6Al-4V) implants by discrete crystalline deposition. To modify the surface of titanium implants and promote osseointegration. Nano-HA modified cylindrical (2 x 1 mm) implants were placed in the femur of 8-week-old rats. Implants were harvested after 4 days, 1 week and 2 weeks for examination.

Lin et al. (2009)198

Rod-like nano-HA crystals. The cross-sectional diameter of the HA nano-rods was 70-80 nm. As a coating on porous titanium implants to promote osseointegration. Screw-shaped titanium implants (8 mm long, 3 mm in diameter) were coated with nano-HA by an electrochemical deposition technique (3.0 V, 2 h at 85 °C). Implants were surgically placed in the proximal tibias of rabbits and harvested at 6 and 12 weeks following the operation.

Yang et al. (2009)199

Rod-shaped HA NPs (particle size was not specified) coated pure Ti screw-shaped implants following an electrochemical deposition technique. The thickness of the HA coating was 1-2 µm. As a coating for metallic implants to enhance bone bonding, osseointegration and accelerate healing. Titanium implants (10 mm long, 3 mm in diameter) were sandblasted, dual acid-etched and heat treated with hydrogen peroxide before electrochemically coated with nano-HA. Then implants were inserted into rabbit trabecular bone for 2-12 weeks. Mean removal torque values for control samples harvested at 2, 4, 6, 8 or 12 weeks were 21 ± 4, 24 ± 6, 50 ± 10, 42 ± 6 and 50 ± 14 Ncm respectively. The corresponding values for coated specimens were 40 ± 15, 40 ± 15, 50 ± 16, 40 ± 13 and 51 ± 8 Ncm showing that surface modification with nano-HA accelerates bone bonding and healing. After 4 weeks, results were similar.

He et al. (2009)200

Diamond NPs (1-50 nm). As a coating for orthopaedic implants to regulate bone growth. Nano-diamond (ND) coatings were produced by microwave plasma enhanced chemical-vapour-deposition and deposited on silicon wafers in the presence of 5-25% hydrogen gas (ND5-ND25) at 800 °C for 2 h. Osteoblasts were seeded on specimens at a density of 3500 cells cm⁻² and cultured for 4 h to assess adhesion rates and up to 5 days to evaluate cell. NDS and ND10 particles were 20-80 nm in diameter, while the size of ND15, ND20 and ND25 was considerable larger (0.2 - 2 µm). Osteoblast adhesion for control silicon specimens, ND coated samples, NDS and ND10 was 480 ± 100, 180 ± 70, 300 ± 50 and 320 ± 70 cells cm⁻² respectively. For higher hydrogen concentrations (>15%) cell adhesion was less than 200 cells cm⁻². After 5 days of culture, there were 3800 ± 600 cells cm⁻² on NDS specimens and 2000 ± 400 cells cm⁻² on ND20. Osteoblast proliferation on...
<table>
<thead>
<tr>
<th>CaP NPs (20-100 nm).</th>
<th>As a coating on Ti alloy implants to enhance bone formation and healing.</th>
<th>Titanium alloy implants (2 mm in diameter and 9.5 mm in length) that had been previously acid etched were bonded with CaP nanocrystals. Implants were placed in the posterior maxillae of patients and retrieved after 4 or 8 weeks.</th>
<th>The histomorphometric results showed that the BIC for the CaP coated samples was 44.5 ± 7.4% after 4 weeks of healing and 45.3 ± 22.4% after 8 weeks. The respective values for the non-coating implants were 15.5 ± 4.6% and 18.3 ± 12.9%. After 4 weeks, the bone volume for the coated and uncoated specimens was similar, but after 8 weeks it was 44.5 ± 7.4% for the CaP treated samples and 18.8 ± 10.3% for the controls.</th>
<th>Goene et al. (2007) (^{194})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yttrium-stabilised zirconia (YSZ) NPs. Single particles size was 50 nm. Particles formed 0.6 (\mu)m clusters.</td>
<td>Bioactive durable coating for biomedical implants.</td>
<td>A composite bilayer coating of YSZ and 45S5 NPs was deposited on chemically etched Ti6Al4V discs with a surface area of 1.5 (\text{cm}^2). The coating was synthesised by an electrophoretic deposition method followed by sintering of the coated samples at 900 °C for 2 h.</td>
<td>The produced bilayer consisted of a 5 (\mu)m thick YSZ layer and a 15 (\mu)m layer of 45S5-YSZ. The universal hardness value was 0.35 ± 0.09 GPa and the elastic modulus 16.13 ± 3.0 GPa.</td>
<td>Radice et al. (2007) (^{200})</td>
</tr>
</tbody>
</table>

Studies are presented in chronological order for convenience.
Table 4. Use of engineered nanomaterials in dental personal care products and proposed dentifrice applications.

<table>
<thead>
<tr>
<th>Nanomaterial characteristics</th>
<th>Aim of application</th>
<th>Treatment</th>
<th>Key point results</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyethylene-glycol coated</td>
<td>To treat dentine</td>
<td>Tooth specimens were demineralised in a citric acid and EDTA solution for 10 min and then sonicated for 30 min to remove the smear layer and open the dentinal tubules. Each specimen was immersed in 5 mL of water containing 100 mg PEG-MNPs for 30, 60, 90 or 120 min. An external magnetic field was applied in order to direct the NPs to move inside the tubules.</td>
<td>SEM and energy dispersive X-ray spectroscopy (EDS) examination showed that the majority of the dentinal tubules were occluded with NPs following treatment with the water solution containing PEG-MNPs. The exposure time was found to be important and the best results were achieved for specimens treated for 120 min.</td>
<td>Dabbagh et al. (2014)</td>
</tr>
<tr>
<td>maghemite NPs (PEG-MNPs)</td>
<td>hypersensitivity.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>were synthesised according to the “graft-to” method. Particle size was < 25 nm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spherical silica NPs (12 nm) and</td>
<td>To encourage infiltration of demineralised dentine blocks (5 mm × 1 mm × 1 mm) were infiltrated with colloidal solutions containing silica and HA NPs for 24 h and then immersed in an artificial saliva for up to 12 weeks.</td>
<td>Infiltration of demineralised dentine with HA NPs for 24 h restored up to 55% of the P and Ca levels. Exposure of specimens infiltrated with silica NPs to artificial saliva resulted in a 20% restoration of the P levels and a 16% recovery of the mineral volume. The mineral separation after 4 weeks of remineralisation was 18.7-20.6 µm for the silica NPs group compared to 15 µm for the sound control and 63.7-75.4 µm for the demineralised control.</td>
<td>Besinis et al. (2014)</td>
<td></td>
</tr>
<tr>
<td>and HA NPs (3-5 nm). HA NPs were synthesised according to the sol-gel technique.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesoporous CaO silica (MCS) NPs (40 nm) were manufactured via a hydrothermal process.</td>
<td>As a paste to treat fully demineralised dentine.</td>
<td>SEM examination showed that at least 50% of the dentinal tubules were significantly occluded.</td>
<td>Chiang et al. (2010)</td>
<td></td>
</tr>
<tr>
<td>Spherical silica NPs (40 nm)</td>
<td>As a dentifrice for dentine hypersensitivity.</td>
<td>The MCS nano-paste was applied on 2 mm thick human dentine discs for 10 min before rinsing. Discs were pre-treated with 17% EDTA for 5 min.</td>
<td>MCS NPs caused a nearly 100% occlusion of the dentinal tubules. The depth of penetration was 100 µm. MCS reduced dentine permeability. The fluid conductance was 13% (40% for the control desensitisers).</td>
<td>Earl et al. (2009)</td>
</tr>
<tr>
<td>as a dentifrice for the remineralisation of enamel lesions.</td>
<td>1 mm thick dentine sections were polished, sonicated and etched with 37 vol. % phosphoric acid to remove the smear layer. Specimens were then infiltrated with 40 wt. % silica NPs in water. Silica solutions were ultrasonicated for 5 min and then applied drop wise to dentine.</td>
<td>SEM and energy dispersive X-ray spectroscopy (EDS) examination showed that the majority of the dentinal tubules were occluded with NPs following treatment with the water solution containing PEG-MNPs. The exposure time was found to be important and the best results were achieved for specimens treated for 120 min.</td>
<td>Dabbagh et al. (2014)</td>
<td></td>
</tr>
<tr>
<td>Calcium carbonate NPs. Particle size was several tens to hundreds of nm.</td>
<td>As a dentifrice for the remineralisation of enamel lesions.</td>
<td>Sections obtained from human sound molars were treated with a demineralising solution to create subsurface lesions. Sections were then treated with a dentifrice containing 1% calcium carbonate (CC) twice a day for 4 weeks. During the rest of the day they were stored in artificial saliva at 37 °C.</td>
<td>Mineral loss for the baseline specimens (no remineralisation) was 8.0 ± 2.2 % x µm, for the specimens treated with a dentifrice containing 1% CC was 4.1 ± 1.2 % x µm and for specimens treated with a non-CC dentifrice was 6.5 ± 2.0 % x µm. Lesion depth was 184 ± 41, 148 ± 39 and 156 ± 40 µm respectively. Maximum mineral density was 60.2 ± 14.9, 79.6 ± 8.1 and 66.3 ± 12.3 % respectively.</td>
<td>Nakashima et al. (2009)</td>
</tr>
<tr>
<td>Calcium phosphate nanocrystals (<300 nm).</td>
<td>To promote dentine remineralisation.</td>
<td>Dentine specimens were etched with phosphoric acid for 15 s and then immersed in a solution containing 500 mg ml⁻¹ polyacrylic acid, 200 mg ml⁻¹ PVPA and 5 wt. % Portland cement. Specimens were stored at 37 °C and remineralisation was allowed for up to 8 weeks.</td>
<td>The concentration of polyacrylic acid was found to regulate the formation of calcium phosphate nanocrystallites. Without polyacrylic acid the size of the crystals was 300 nm, while size was reduced at 75-100 nm in the presence of polyacrylic acid at 100 mg ml⁻¹. For concentrations > 500 mg ml⁻¹ polyacrylic acid behaved as an inhibitor and 50 nm calcium phosphate nanoprecursors were formed instead. Remineralisation of the</td>
<td>Tay and Pashley (2008)</td>
</tr>
</tbody>
</table>
Carbonate hydroxyapatite (CHA) crystals (100 nm). | As a paste to cover defects on enamel surface and enhance remineralisation. | Enamel slabs (3 x 3 mm) were brushed three times a day for 15 days with a CHA toothpaste using an electric toothbrush. Brushing sessions were for 30 s. Enamel specimens were washed with tap water after each session. | X-ray diffraction examination of the enamel surfaces treated with CHA toothpaste confirmed that CHA remained present even after brushing. SEM shows a thick homogenous apatitic layer of CHA on enamel surfaces that fills any pits or scratches. | Roveri et al. (2008)\cite{Roveri}

Spherical HA NPs (< 100 nm) were synthesised by sintering at 700°C. Also needle-like HA NPs (60 nm in length) were synthesised by precipitation. | As a paste to promote remineralisation. | Solutions of spherical and needle-like HA NPs as well as a mixture of both types (particle size < 2µm) were added to a toothpaste without sodium fluoride. Specimens (human premolars with artificial caries) were treated for 5 and 10 days. | The hardness of demineralised enamel was 104 HV and that of sound enamel 287 HV. After 5 days of treatment with spherical H NPs, needle-like HA and mixed HA the hardness of the specimens was 190, 200 and 150 HV respectively. After 10 days of remineralisation the corresponding values were 255, 260 and 175 HV. | Lv et al. (2007)\cite{Lv}

45S5-type bioactive glass NPs were synthesised by flame spray synthesis. Particle size was in the range 20-50 nm. | To increase the mineral content of dentine. | Dentine specimens previously demineralised with 17% EDTA for 2 h, were immersed in suspensions of glass NPs or micro-glass at 37 °C for 1, 10 and 30 days. | In the slurry with nano-glass there was a rapid increase in the release of Ca\(^{2+}\) and dissolved silica. After 24 h the concentration values were 67.8 ± 3.7 ppm and 22.3 ± 0.3 mg l\(^{-1}\) respectively. Saturation levels had been reached within 6 h. Final ion concentrations for the slurry with micro-glass were 16.6 ± 2.6 and 2.6 ± 0.7 mg l\(^{-1}\). After 30 days of remineralisation, the mass loss (after calculations) for the samples infiltrated with nano-glass was 25 ± 3% (32 ± 3% for microglass) suggesting higher mineral content. The Young’s modulus of the infiltrated samples was not different than demineralised dentine (6.6 ± 1.2 GPa). | Vollenweider et al. (2007)\cite{Vollenweider}

Rod-shaped HA NPs synthesised by a hydrothermal technique. NPs were 100 nm long and 30-60 nm in diameter. | As a dentifrice for the treatment of dentine sensitivity. | Dentine sections were obtained from human molars and 1 mm thick dentin discs were prepared. Specimens were etched with 37 vol. % phosphoric acid solution for 60 s and then infiltrated with 0.5 wt. % nano-HA suspensions in methanol. Prior to application suspensions were ultrasonicated for 5 mins. | 50% of the dentinal tubules were fully occluded and another 40% had at least half of their cross-sectional area blocked by HA NPs. | Earl et al. (2006)\cite{Earl}

Nano-HA. Particle size was not specified. | As a paste to remineralise enamel. | Subsurface enamel lesions were induced to permanent teeth. Specimens were then treated with two toothpastes slurries. Both were prepared by mixing 100 g of toothpaste in 100 ml distilled water. One slurry contained nano-HA with sodium monofluorophosphate (0.65%) and the other nano-HA but excluded fluoride. Enamel specimens remained static in stirred solutions and remineralisation was for 24 or 48 h. | The Vickers Hardness Number (VHN) for sound enamel was 326 ± 25.5 and for demineralised specimens 293.2 ± 18.1. After 24 h and 48 h of remineralisation with the slurry containing nano-HA and fluoride the VHN were 298.8 ± 19.7 and 316.7 ± 14.1 respectively. For specimens treated with nano-HA but no fluoride the corresponding values were 312.3 ± 14.2 and 315.4 ± 14.1 | Jeong et al. (2006)\cite{Jeong}

Studies are presented in chronological order for convenience.
Table 5. Literature data on the toxicity of engineered nanomaterials from in vivo oral exposure studies.

<table>
<thead>
<tr>
<th>Engineered Nanomaterial</th>
<th>Dose</th>
<th>Exposure Method</th>
<th>Species</th>
<th>Toxic Effects</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au NPs (20 nm) and Ag NPs (20 nm)</td>
<td>1 M kg(^{-1}) or 2 M kg(^{-1}) of each ENM daily.</td>
<td>Exposed once daily for 14 days by oral gavage.</td>
<td>Male Swiss albino mice (25-30 g).</td>
<td>Exposure to the NPs caused body weight loss, which was higher for Ag NPs compared to Au NPs and more evident at the highest concentration (2M) tested. The blood and tissue (brain, liver, kidney, and spleen) oxidative stress levels were elevated for all groups compared to control showing that both ENMs produced toxicity. Ag NPs were found to be more toxic for all organs except the spleen where Au NPs caused more toxicity. The toxic effect was dose dependent for both NPs.</td>
<td>Shrivastava et al. (2014)(^{265})</td>
</tr>
<tr>
<td>100 ml of 20 µCi per mouse of 125I, a single dose of 4 mg kg(^{-1}) of each ENM, Sampling at 1, 7 and 30 days post dosing.</td>
<td>Orally injected with the dispersion, single dose.</td>
<td>Female Balb/c mouse.</td>
<td>125I labeled PEGylated graphene oxide derivatives show no obvious uptake to the internal tissues oral administration. Radioactivity in the stomach and intestine increased by day 4 post-exposure. No changes in haematology were observed.</td>
<td>Yang et al. (2013)(^{266})</td>
<td></td>
</tr>
<tr>
<td>< 20 nm non-coated (NM300K), or < 15 nm PVP-coated Ag NPs, AgNO(_3), or carrier solution only (NM300KDis).</td>
<td>Ag NPs : 90 mg Ag kg(^{-1}) body weight (bw), AgNO(_3), 9 mg Ag kg(^{-1}) bw.</td>
<td>Exposed daily for 28 days by oral gavage. Dosing volume was 3.3 ml kg(^{-1}) bw.</td>
<td>Male Sprague-Dawley rats, 6 weeks old.</td>
<td>Silver was present in all examined organs with the highest levels in the liver and spleen for all silver treatments. Silver concentrations in the organs were highly correlated to the amount of total Ag in the Ag-NP suspension, indicating that dissolved silver, and to a much lesser extent, Ag NPs, passed the intestines in the Ag-NP-exposed rats. In all groups silver was cleared from most organs after 8 weeks post-dosing, but not from the brain and testis.</td>
<td>van der Zande et al. (2012)(^{25})</td>
</tr>
<tr>
<td>Poly(amido amine) dendrimers and silica NPs of different size (50-200 nm), surface charge, and surface functionality.</td>
<td>0.2 ml of single escalating doses per mouse were administered starting from 3 or 10 mg kg(^{-1}) at half-log dose increments (up to 1000 mg kg(^{-1}))</td>
<td>All test compounds were dispersed in sterile physiological saline (filtered through 0.2 mm filters) and injected intravenously by tail vein injections. Animals were monitored for 10 days.</td>
<td>CD-1 (caesarean derived-1) mice.</td>
<td>A distinct trend in nanotoxicity based on surface charge and functional group was observed with dendrimers regardless of their size. Amine-terminated dendrimers were fatal at doses >10 mg kg(^{-1}) causing haematological complications, whereas carboxyl- and hydroxyl-terminated dendrimers of similar sizes were tolerated at 50-fold higher doses. Larger silica NPs were less tolerated than smaller silica NPs irrespective of their surface functionality.</td>
<td>Greish et al. (2012)(^{25})</td>
</tr>
<tr>
<td>Al(_2)O(_3) (30 nm and 40 nm). Al(_2)O(_3) (bulk, size not specified).</td>
<td>ENMs were suspended in 1% Tween-80. Doses of 500, 1000 and 2000 mg kg(^{-1}).</td>
<td>Single oral doses (precise method not specified). Animals observed for 14 days.</td>
<td>Adult female albino Wistar rats, 8–10 week old.</td>
<td>Aluminium concentrations are not reported in the tissues. Inhibition of hepatic superoxide dismutase at day 3 post-exposure, mostly lost by day 14 post-exposure. Hepatic catalase increased with no clear difference between the materials. The authors report a dilated central vein and expanded portal tract, but there are no quantitative histological measurements to support the claim.</td>
<td>Prabhakar et al. (2012)(^{24})</td>
</tr>
<tr>
<td>Single-walled carbon nanotubes (SWCNT), 1.1 nm mean outside diameter, 5-30 µm length, compared to carbon 60.</td>
<td>Control, 10, or 500 mg kg(^{-1}) SWCNT or C60 for 6 weeks.</td>
<td>ENMs incorporated into animal feed.</td>
<td>Rainbow trout (Oncorhynchus mykiss)</td>
<td>Normal growth and haematology indicated no overt toxicity. A transient oxidative stress was observed in the brain as measured by thiobarbituric acid reactive substances (TBARS). Two animals from the C60 treatment showed liver pathology including necrosis and vacuole formation in the parenchyma.</td>
<td>Fraser et al. (2011)(^{24})</td>
</tr>
<tr>
<td>TiO$_2$ (5 nm)</td>
<td>Control, 5, 10 or 50 mg kg$^{-1}$ every day for 60 days.</td>
<td>Intragastric administration of repeated daily dose.</td>
<td>Mice</td>
<td>The Y-maze test showed that TiO$_2$ NPs exposure could significantly impair the behaviors of spatial recognition memory. Moreover, TiO$_2$ NPs significantly inhibited the activities of Na$^+/K^+$-ATPase, Ca$^{2+}$-ATPase, Ca$^{2+}$/Mg$^{2+}$-ATPase, acetylcholine esterase, and nitric oxide synthase. Cholinergic neurotransmitters were also affected.</td>
<td>Hu et al. (2010)14</td>
</tr>
<tr>
<td>TiO$_2$ (50 and 120 nm). Crystal structures not specified.</td>
<td>Suspensions of TiO$_2$ (5 g kg$^{-1}$ bw), lead acetate (500 mg kg$^{-1}$ bw), or combined dosing of the above (TiO$_2$ + lead acetate) for 7 days.</td>
<td>Oral gavage. 0.1 ml 10 g$^{-1}$ bw, daily for 7 days.</td>
<td>Laboratory-bred Kun Ming mice, female and male, 6–8 weeks old.</td>
<td>Note, food and water provided 2 h after each gavage. Elevation of total Ti metal concentrations in the liver, kidney and brain at 7 days post exposure. Combined exposure with lead acetate increased the apparent Ti accumulation. Tissue Pb concentrations also increased in the combined exposure. Authors interpret histopathology as “deranged and swollen” cells in the liver, swollen renal tubules, and necrotic cells in the hippocampus. However, the histology was not quantitative with no incidence or criteria for histological reporting described.</td>
<td>Zhang et al. (2010)268</td>
</tr>
<tr>
<td>P25 TiO$_2$ NPs (21 nm); 75% anatase and 25% rutile.</td>
<td>ENMs incorporated into animal feed.</td>
<td>Rainbow trout (Oncorhynchus mykiss)</td>
<td>Ti accumulation in gill, gut, liver, spleen and brain. Adverse effects included 50% inhibition of the brain Na$^+/K^+$-ATPase activity, but there were no effects on growth.</td>
<td>Ramsden et al. (2009)233</td>
<td></td>
</tr>
<tr>
<td>“Aeroxide” P25 TiO$_2$ (21 nm); 75% anatase and 25% rutile.</td>
<td>Drinking water, 5 ml water intake for average 30 g mouse.</td>
<td>CS7Bl/6Jjun/jun adult male mice.</td>
<td>DNA strand breaks indicated by increased tails on alkaline comet assay in peripheral blood cells. Increased micronuclei incidence to about 9/1000 red blood cells. mRNA for pro-inflammatory cytokines upregulated.</td>
<td>Trouiller et al. (2009)279</td>
<td></td>
</tr>
<tr>
<td>TiO$_2$ NPs (25 and 80 nm), compared to 155 nm material.</td>
<td>5 g kg$^{-1}$ for 2 weeks.</td>
<td>Single oral gavage.</td>
<td>Adult mice</td>
<td>The accumulation of Ti metal from nanoscale TiO$_2$ (25 and 80 nm) occurred in the spleen, kidney, lung, brain and liver; depending on particle size. Organ pathologies in the liver interpreted as hydropic degeneration around the central vein and the spotty necrosis of hepatocytes. Blood urea nitrogen elevated in the 25 nm TiO$_2$ treatment, interpreted as renal dysfunction.</td>
<td>Wang et al. (2007)231</td>
</tr>
<tr>
<td>Cu NPs (23.5 nm), Cu microparticles (17 µm), or CuCl$_2$ metal salt.</td>
<td>Control, 500-5000 (micron powder), 108-1080 (nano), 24-237 (metal salt), in mg kg$^{-1}$.</td>
<td>Single oral gavage.</td>
<td>Imprinting control region (ICR) mouse model, 8 weeks old.</td>
<td>The LD$_{50}$ values for the nano-, micro-copper particles, and CuCl$_2$ were 413, >5000 and 110 mg kg$^{-1}$ body weight, respectively. Nanoscale material caused atrophy of the spleen with fibrosis. Mild steatosis reported in the liver, and moderate tubular necrosis in the kidneys of Cu NP-exposed mice.</td>
<td>Chen et al. (2006)252</td>
</tr>
</tbody>
</table>

Studies are presented in chronological order for convenience.