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Abstract

This work investigates the transformation of wave shapes and the landward spatial
distribution of overtopping water over coastal structures by experimental data and a numerical
model based on the Reynolds Averaged Navier-Stokes (RANS) equations and Volume of
Fluid (VOF) surface capturing scheme (RANS-VOF), The aim of this study is to understand
the transformation of wave shapes and the landward spatial distribution of overtopping water
in the presence of coastal structures. This work provides new insights on the role of wave
skewness and asymmetry on the breakwaters stability and sediment transport around the
structure and on the beaches behind it. Also it helps to establish the extent of hazardous zones
behind coastal structures when overtopping is anticipated.

A set of practical empirical formulae, relating wave shapes to local Ursell number, are
derived based on an analysis of measurements collected in wave basin transmission tests of
the DELOS (Environmental Design of Low Crested Coastal Defence Structures) project. This
work also introduces the relationship of wave skewness on both sides of Low-Crested
Structures (LCS), as well as wave asymmetry. RANS-VOF model results show that in the
presence of LCBs, wave skewness decreases in the seaward near-field region including the
seaward slope and increases rapidly up to the maximum above the structural crest. It then
decreases dramatically in the leeward near-field region covering the leeward slope. Wave
asymmetry decreases in the seaward near-field region, down to the minimum value on the
structural crest, and then increases up to positive value in the leeward near-field region of
LCBs. Wave skewness retains a positive sign on both sides but asymmetry changes from
negative on the incident side to positive on the transmission side.

Bispectral Analysis of experiment and model results suggest that sum interaction between
wave components contributes positively to wave skewness but negatively to wave asymmetry,
while difference interaction contributes negatively to wave skewness but positively to wave
asymmetry. The underlying physics of large vanations of wave shapes in the vicinity of
coastal structures is that: both sum interactions and difference interactions are significant in
the seaward near-field region, while the sum interactions dominate on the structural crest but
difference interactions dominate in the leeward near-field region of LCBs.

A semi-analytical model is developed to relate the landward spatial distribution to the flow
depth and flow velocities at the leeward end of structural crests and the landward ground
levels. Model results indicate that for the same incident wave conditions, the proportion of
wave overtopping water passing a landward location increases initially with the increase in
the seaward slope of the structure from 1:8 to 1:3, but it subsequently decreases with steeper
slopes (from 1:3 to vertical). It is also found that the proportion of wave overtopping water
passing a location increases with Ursell number of the incident waves and landward ground
level, but decreases with increasing relative structural freeboard and structural crest width.
The effect of wave randomness is negligible on landward spatial distribution of wave
overtopping water.

RANS-VOF model results of the transformation of wave shapes and spatial distribution of
wave overtopping water are in good agreement with measurements collected in small scale
wave channel tests of DELOS project and measurements collected in CLASH project (‘Crest
Level Assessment of coastal Structures by full scale monitoring, neural network prediction
and Hazard analysis on permissible wave overtopping’) respectively. RANS-VOF model is
successful in reproducing the laboratory results and can therefore be used as well as
laboratory experiments in the future.
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CHAPTER 1 INTRODUCTION

CHAPTER 1

INTRODUCTION

1.1 Background

Ocean waves are usually formed by the local atmosphere conditions, such
as pressure, and a complex process of wind-water interactions, including the
resonance and the shearing action. As waves travel toward beaches, they will
gradually enter a nearshore coastal region where the local water depth starts
to influence the waves. [n this region, wave amplitudes I1ncrease,
wavelengths decrease, and wave Incident direction refracts toward the
normal of the beach. These linear propagation effects are observed readily
and understood well. In addition, pronounced nonlinear effects in shallow
water cause a dramatic transformation of wave shapes from initially
symmetric, nearly sinusoidal profiles, to asymmetric, pitched forward
profiles characteristic of near-breaking waves. Once waves have broken, bore
formation starts and broken waves pour water into the surf zone, where

complex energy dissipation, energy transfer and turbulent processes occur.
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Waves with these characteristics lead to nearshore fluid motions (e.g., long-
shore currents, rip currents, and undertow) and sediment transport (e.g.,

erosion and accretion of beaches, and the formation of bars and cusps).

The shoaling waves in a nearshore coastal zone exhibit high nonlinearity
and large wave energy densities, represented by large wave heights. If there
are insufficient sea defences or other human interventions, waves can cause
enormous damage to beach morphology, cliffs, farmland and coastal
properties. Of prime concern is the safety of people living by the coastlines
especially to those strolling along promenades during wave overtopping
events. As a result, coastal structures, such as seawalls, groynes, armoured
breakwaters, perforated-wall breakwaters and low-crested breakwaters, are
constructed. These structures are employed to prevent or reduce erosion and
flooding of coastal stretches of high value, to stabilize and retain beaches
and reclaimed land, and to increase the amenity value of the coast (e.g.
beach use, surfing). Their hydrodynamic function is to dissipate high waves
by forcing the waves to break, consequently causing substantial wave
attenuation and reflection, and reducing transmission and overtopping

energy.

However, in the presence of coastal structures, wave transformation
inevitably involves more complex processes, such as wave reflection, wave
refraction, wave transmission, wave overtopping and structural stability.
When the incident wave train impinges on the structure, part of the energy

is reflected back to the sea and part is transmitted in the leeside zone. Most
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of the incident wave energy is lost on the structure’s crest, essentially by
breaking. Part of the energy is also dissipated by air entrainment and {riction
at the solid skeleton interface and within the porous media. Most of the
previous work has been oriented towards the functional design of coastal
structures to evaluate reflection (Zanuttigh and van der Meer, 2008),
structural stability (Van der Meer, 1987; Burcharth et al.,, 2006) and
transmission (Van der Meer et al., 2005; Wang et al., 2007}, run-up (Van der
Meer and Stam, 1992), overtopping (EurOtop, 2008), scour (Sumer et al.,
2001; Sumer et al., 2005) and velocity and turbulence fields (Sakakiyama
and Liu, 2001; Losada et al., 2005). These complex processes present a big
challenge to coastal engineers in maintaining the structural stability and
protecting the beaches and landward properties that are sheltered by those

coastal structures.

1.1 Rationale

1.1.1 Transformation of wave shapes over a coastal Structure

The sediment transport in front of a toe of coastal structures can lead to
severe toe scour. Toe scour can compromise the structural stability, and is
known as one of the most common causes of failure for coastal structures.
There have been many evidences indicating that the failure of many coastal
structures was due to the toe erosion of these structures (Shiraishi et al.,
1960; Ichikawa, 1967; Gunbak et al., 1990; Lillycrop and Hughes, 1993;

Oumeraci, 1994a, b). For example, Ichikawa (1967) studied the collapse of
3
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breakwater of Tagonoura Harbour in Japan. Its failure took place in 1964
when the Typhoon No.24 hit that region. The investigation found that the
base of the structure had been scoured to a depth of up to 8 meters. More
recently, Silvester and Hsu (1997) have provided a variety of examples of the
collapse of coastal structures due to toe scour around the world. In general,
the toe failure occurs because of scour and the collapse of the stones at the
toe into the same scour hole. Markle (1986) indicated that after major storms
bedding layers slough off into the scour holes, and this damage migrates
back to the toe of the primary armour. The resulting instability of a toe will
also trigger or accelerate the instability of the main armour and the eventual
deterioration of the structures. Recently, the accumulated knowledge about
scouring around various coastal structures had been reviewed by Sumer and
Fredsee (2002). Sediment transport also significantly affects the morphology
of the beaches that are sheltered by the coastal structures (Figure 1.1.1).
This was extensively studied by EPSRC funded research projects LEACOAST
(Effect of shore-parallel breakwaters in tidal conditions on coastal
morphology) and LEACOAST2 (Larger-scale Morphodynamic Impacts of
Segmented Shore-Paralle]l Breakwaters on Coasts and Beaches). For example,
Pan et al. (2005} found that during storm events, large beach slope and wide
gaps between salient and breakwater may be formed due to the effects of
sediment transport. Johnson et al. (2010) also showed that sediment
transport results in the tombolo at low tide level and the salient at higher
tide levels in Sea Palling, Norfolk. Furthermore, they have also noticed

obvious bulges in the shoreline platform at Elmer, West Sussex and Jaywick,
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Essex.
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Figure 1.1.1 Beach changes in presence of coastal defences at Sea Palling, Norfolk

A key parameter for cross-shore sediment transport under breaking and
near-breaking waves is the shape of waves and associated near-bed orbital
velocity. Cornish (1898) observed that the onshore velocity under wave crests
was more effective at moving coarse sediment than the seaward velocity
related to wave troughs. This observation was consistent with the theory of
Stokes (1847): the onshore velocity related to a wave crest is larger and of
shorter duration than the seaward velocity associated with a wave trough,
arising from the skewed wave shape characterised by peaked crests and flat
troughs. It is generally believed that skewed near-bed velocities are directly
related to the net sediment transport (Inman and Bagnold, 1963; Bowen,
1980; Bailard and Inman, 1981; Elfrink et al., 1999; Doering et al., 2000;
Haas et al., 2008; Fuhrman et al., 2009). This is mainly because the onshore

velocity related to a wave crest is larger, but of shorter duration and
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consequently more effective at dislodging coarse sediment than the seaward
velocity associated with a wave trough. Nielsen (1992) identified the
importance of fluid acceleration in asymmetric waves. For a pitching forward
wave, the onshore velocity increases in magnitude faster than the offshore
velocity, and the associated boundary layer has a shorter time to develop.
Thus, the onshore velocity generates a thinner boundary layer and therefore
a larger bed shear stress. Janssen et al. (1997) concluded that an
asymmetric free-stream flow can result in different settling speeds of
particles during its increasing and decreasing phases. This is conclusively
supported by numerical results of Dong and Zhang (2002). Flow acceleration
in asymmetric waves, which serves as a proxy for horizontal pressure
gradient in the coastal bottom boundary layer, has significant effect on
sediment transport (Drake and Calantoni, 2001; Hoefel and Elgar, 2003;
Nielsen and Callaghan, 2003; Hsu and Hanes, 2004; Nielsen, 2006;
Gonzalez-Rodriguez and Madsen, 2007; Austin et al., 2009; Ruessink et al.,
2009; van der A et al., 2010). This effect is validated with U-tube
experiments (e.g., King, 1990) and field measurements in the surf zone
(e.g.,Gallagher et al.,, 1998) and in the swash (e.g.,Puleo et al., 2003).
Therefore, the transformation of wave shapes, related to sediment transport,
is believed to be important to structural stability and to the morphology of

the beach which is sheltered by coastal structures.

Better understanding of the transformation of wave shapes over coastal
structures is crucial in the assessment of functionality and stability of

coastal and flood defence schemes. It is also of key importance to the

6
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application and development of physically-based models of sediment
transport that aim to simulate the evolution of cross-shore beach profiles.
Previous studies, however, have mainly been on wave transmission,
reflection and wave spectral change over coastal structures (Van der Meer et
._al., 2000; Van der Meer et al., 2005; Wang et al., 2007), and the cross-shore
evolution of wave skewness and asymmetries on the natural beaches (Elgar
and Guza, 1985; Doering and Bowen, 1995; Herbers et al., 2003). Work on
wave energy transfer in the presence of coastal structures or sandy bars has
also been done by previous researchers (e.g., Beji and Battjes, 1993; Losada
et al., 1997; Masselink, 1998; Brossard and Chagdali, 2001; Brossard et al.,
2009). Currently, literature on the transformation of wave skewness and
asymmetry over coastal structures is sparse. A direct relationship between
wave skewness, wave asymmetry and wave conditions, such as the relative
water depth and relative wave height, will enable engineers to apply wave
skewness and asymmetry to sediment transport models easily and
accurately. Moreover, it would be helpful to look at the whole picture of wave
evolution, from the incident side, over the structural crest to the
transmission side of coastal structures. This work helps to enhance our
understanding of wave-structure interactions and provides a guideline in
designing and assessing the functionality and stability of coastal and flood

defence schemes.

In this thesis, third moments of wave surface elevations, such as wave

skewness and asymmetry, are employed to describe wave shapes. Wave

skewness describes the lack of symmetry of a wave profile relative to the

7
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horizontal axis, and wave asymmetry describes the lack of symmetry of a
wave profile relative to the vertical axis. For example, a wave with positive
skewness has peaky, narrow crests and flat, wide troughs, while a wave with
positive asymmetry has a pitch backward shape, with a steep rear face and a

gentle frontal face (Figure 1.1.2).
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Figure 1.1.2 Definition of skewed wave and asymmetric wave. solid line: positive
skewed wave, dashed line: positive asymmetric wave, n is the time series of surface

elevations and t is time.

1.1.2 Wave overtopping and its landward distribution

It has long been recognized that the erosion due to wave overtopping is
another one of the possible mechanisms of structural failure. For example,
Figure 1.1.3 shows a section of the tarmac promenade backing the damaged
seawall section that collapsed at Newlyn due to wave overtopping during a
storm in October 2004. The damage is probably due to the overtopping
downfall and the loss of fill from beneath/behind the wall. Figure 1.1.4

8
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shows a sea dike failure due to wave overtopping in a storm. This failure
may be due to the erosions of the clays by the overtopping flow. Minikin

(1950) also provided a description of the seaward collapse of the Mustapha

breakwater due to wave overtopping in a severe storm in Algeria in 1934.

Figure 1.1.3 Newlyn: Damage to Figure 1.1.4 the failure of a sea dike
promenade due to wave overtopping due to wave overtopping (photo: Zitscher,
(Source: Cornwall City Council) 1976)

Wave overtopping over coastal structures significantly affects
morphological changes of the beaches sheltered by coastal structures. Du et
al. (2010) found that wave overtopping alters the current circulation and
sediment transport patterns under storms and macro-tide conditions,
consequently leading to the formation of tombolos and salients. Wave
overtopping can also cause damages to the properties landward of the
coastal structures. The landward spatial distribution of overtopping water
determines the risk of damages and sets restrictions on the use of areas
behind the coastal defences. It ultimately affects the placement of roads,

walkways, railways, buildings and other infrastructure (Figure 1.1.5). Along
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developed coasts, the safety of people using the coastline is of particular
concern. In the UK, the safety issue of developed coasts is of particular
concern. According to statistics, approximately two to four people die every
year because of accidents happening at seawalls, breakwaters, natural rock
outcrops or beaches (Allsop et al., 2003). Evidence of damages to properties
behind coastal structures due to wave overtopping, was most graphically
given by the trainload of pig iron washed off Dover East Breakwater in the
1940s and by the destruction of seafront shelters at Sidmouth in 1992

(Allsop et al., 2005).

Figure 1.1.5 Severe wave overtopping at Samphire Hoe sea wall (photo courtesy of
WCCP/Eurotunnel Developments Ltd)

The purpose of a coastal or shoreline structure is to reduce the frequency
and severity of wave overtopping, and hence the risks or extent of flooding.
The UK government spends approximately £100 million per annum on new
or refurbished coastal defences (Allsop et al., 2005). An important criterion

for the design of a sea wall is the allowable degree of wave overtopping,

10
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which depends on the activities normally performed on the leeside of the
structure, the need to prevent erosion of the rear face of the sea wall, and
the economic consequences of flooding (Hedges and Reis, 1998). A mean
overtopping discharge smaller than 0.03 l/s/m 1s recommended for the
safety of the public close behind a seawall (Beseley, 1999; Allsop et al., 2003).
To achieve this low level of overtopping requires significant confidence in the
analysis of the overtopping characteristics of urban seawalls. Many coastal
engineers and scilentists have dedicated great efforts to investigating wave
overtopping (Jensen and Sorensen, 1979; Schiittrumpf and Oumeraci, 2005;
Pullen et al.,, 2008; Hughes and Nadal, 2009; Lykke Andersen and
Burcharth, 2009; van der Meer et al., 2009). Most of the existing research

has been directed towards the evaluation of the mean overtopping discharge.

However, average overtopping discharge i1s apparently not an appropriate
parameter for describing the overtopping flow away from the overtopping
point (Schuttrumpf and Oumeraci, 2005) and the landward spatial
distribution of overtopping water (EurOtop, 2008). Moreover, better
understanding of the spatial distribution of wave overtopping water is of key
importance to the design of the sea defences and the placement of roads,
walkways, railways, buildings and other infrastructure, even the safety of
people. It is anticipated that the spatial distribution of overtopping water is
related to flow depth and flow velocities. Therefore, researches have been
carried out recently to investigate the overtopping flow velocities and the
related flow depth on the seaward slope, the dike crest and the landward

slope (Schuttrumpf and van Gent, 2003; Schittrumpf and Oumeraci, 2005).
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Preliminary studies on the spatial distribution of overtopping water on a
vertical wall (Jensen and Sorensen, 1979; Bruce et al., 2005; Pullen et al.,
2008) and permeable structures with a seaward slope of 1:2 (Lykke
Andersen and Burcharth, 2006; Lykke Andersen et al., 2007; EurOtop, 2008)

have been done based on experimental data.

Previous studies depend mainly on limited experimental data, which is
also restricted to low data resolution of the spatial distribution, a few
geometries and a small amount of wave conditions. As a result there is little
guidance on how to parameterize the landward spatial distribution of
overtopping water across coastal structures. A better understanding of
spatial distribution of wave overtopping discharge will enable engineers to
establish the location and area of hazardous zones behind a structure when
overtopping is anticipated. Therefore, it is of importance to understand the
effects of wave conditions and structural geometries on the spatial
distribution of overtopping water, as well as the physics behind the landward
spatial distribution. For example, the governing parameters involved in

landward spatial distribution and the trajectory of overtopping water.

1.1.3 Links between wave shapes and overtopping

As mentioned above, the transformation of wave shapes directly affects
the sediment transport around coastal structures. It consequently leads to
significant scour in front of the toe of the coastal structures, and affects

morphological changes to the beaches behind the coastal structure. On the
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other hand, the landward spatial distribution of wave overtopping
determines the risk of damages to landward properties and is therefore
crucial in the assessment of structural functionality. Wave overtopping also
brings erosion on the landward side, occasionally resulting in the structure
failure. Thus, both the transformation of wave shapes and landward spatial
distribution of overtopping water are crucial in the assessment of
functionality and stability of coastal and flood defence schemes. In addition,
Elgar and Guza (1985), Doering and Bowen (1995) and Ruessink (1998}
concluded that the transformation of wave shapes arises from nonlinear
triad interactions in which two primary wave components with frequencies i
and fz excite a secondary wave component with the sum (fi+f2} or difference
(fi-f2, f1>f2} frequency. The incident waves and the nonlinearly excited higher
frequency waves are predominantly dissipated around the coastal structures.
The nonlinearly excited lower frequency (infra-gravity) wave components are
reflected from the structure and often dominate wave run-up at the seaward
slope of coastal structures. Once the highest run-up levels exceed the

structure crown, wave overtopping occurs.

1.1.4 Present approaches and methodologies

Low-Crested Structures (hereinafter LCS) are increasingly being used to
manage coastal erosion globally because they are economical and there is no
visual impact to coastal landscape. The objective of the European project
DELOS (‘Environmental Design of Low Crested Coastal Defence Structures’,

www.delos.unibo.it) is to develop effective and environmentally compatible

13
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design of LCS as a method of shoreline defence which also preserved the
littoral environment (e.g. prevent high-energy wave action and intermittent
periods of flooding within the region or zone between the limits of high and
low tides) and coast economic development. A new database, made up of
2337 tests, concerning experiments on wave transmission over low-crested
structures in wave flumes has been collected within the DELOS project by
Van der Meer et al. (2005). On the other hand, The EU project CLASH (‘Crest
Level Assessment of coastal Structures by full scale monitoring, neural
network prediction and hazard analysis on permissible wave overtopping’,

www.clash.ugent.be) aims to produce practical prediction methods on the

required crest height of most coastal structure types, based on permissible
wave overtopping and hazard analysis. A database on wave overtopping,
consisting of more than 10,000 irregular wave overtopping tests collected
from more than 160 independent projects or test series, was created in the
EU project CLASH by van der Meer et al. (2009). These two databases in
wave transformation and wave overtopping over coastal structures are state
of the art and both available to be downloaded. Therefore, a part of two
databases i1s used in this study to explore the underlying physics of the
transformation of wave asymretries over coastal structures and validate the

numerical results of wave transformation and wave overtopping.

Rather than laboratory experiments or field measurements of wave-
structure interactions covering a limited number of setups and devices, a
numerical model provides a means to obtain high spatial and time resolution

information of magnitudes which are difficult or impossible to measure in a
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CHAPTER 1 INTRODUCTION

physical experiment and therefore is a popular method for investigating
wave-structure interactions. Lin and Liu (1998) developed a numerical model
based on the Reynolds Averaged Navier-Stokes (RANS) equations and
Volume of Fluid (VOF) surface capturing scheme (hereinafter RANS-VOF).
The RANS-VOF model solves the Reynolds Averaged Navier-Stokes equation
for the mean flow field and the nonlinear k—& equations for the turbulent
kinetic energy, k, and the turbulence dissipation rate, €. The Volume of Fluid
method is employed to capture the free surface. In contrast with Boussinesq
model and Nonlinear Shallow Water Equation models, the RANS-VOF model
is able to describe the complex free surface, as well as near-shore wave-
structure interactions without assuming hydrostatic pressure (pressure
exerted by a fluid at equilibrium due to the force of gravity). It allows the
calculation of the velocity field in the whole computational domain for both
rotational and irrotational flow. This model also takes into account
mechanisms of turbulence generation/dissipation in the wave breaking
process by employing more advanced turbulence models, such as nonlinear
k-£ model. It also has the advantage of being able to simulate the flow inside
porous structures and requires less computational resources compared with
the 3D Large Eddy Simulation model and Particle method models. As a

result, the RANS-VOF model is employed in the present work.

Several improvements to the RANS-VOF model are needed in order to
obtain more accurate results of wave transformations and to simulate wave
overtopping. Firstly, the piecewise constant interface algorithm of VOF

method, which was originally developed by Hirt and Nichos (1981), always
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orientates free surface interfaces parallel to horizontal or vertical boundary
of cells. This method cannot obtain the accurate locations of surface
interfaces if mesh level is not fine enough. A piecewise linear interface
calculation (PLIC) reconstruction algorithm, developed by Youngs (1982), will
be employed in this study. This algorithm can orientate free surface
interfaces in a direction perpendicular to the locally evaluated VOF gradient,
thus giving a more accurate capturing of the free surface. Secondly, the
overtopping and transmission give rise to a piling-up of water in the leeside
region of the structure if the water is irreversible. In the experiments of
DELOS project and real cases of shore protected by coastal structures, this
pilling-up of water is not observed, as the potential piling-up behind the
breakwater 1s relieved by a circulation system and through the sides of the
breakwater respectively. In general, the piling-up of water will lead to
inaccurate surface elevations and flow conditions on the transmission side
and even perturb the wave breaking process on the structure by forcing a
strong return flow over the structure (Garcia et al., 2004). Therefore, a flow
recirculation system will be built in order to avoid the fluid piling-up in the
leeside of the breakwater (Diskin et al., 1970; Garcia et al., 2004). Finally,
the RANS-VOF model calculates wave transformation over coastal structures,
but there is no module dealing with the wave overtopping discharge and its
spatial distribution. Within a small computational domain, the cumulative
overtopping mass will lead to the instability of numerical simulations due to
the non-conserved mass in front of overtopping structures. Therefore, new

modules will be developed into the RANS-VOF model to calculate wave
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overtopping discharge, to recirculate overtopping water back to the incident
side of structure, and to evaluate the landward spatial distribution of
overtopping water. These improvements will be done before applying the
RANS-VOF model to the transformation of wave shapes and to the landward

spatial distribution of overtopping water over coastal structures.

1.2 Aims and Objectives

The aim of this work is to understand the transformation of wave shapes
and landward spatial distribution of wave-overtopping water in the presence

of coastal structures.
In particular the objectives of this work are to:

*» parameterize the relationship between wave asymmetries and local

wave conditions,

« model the evolution of wave asymmetries over coastal structures, and
examine the contribution of wave conditions and geometries to the

evolution,

¢ interpret the wunderlying physics of the transformation of wave

asymmetries over coastal structures,

¢ investigate spatial distribution of overtopping water behind
impermeable coastal structures, paying special attention to the effects

of wave conditions, structural geometries, and landward ground level

on spatial distribution of wave-overtopping water,
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¢ improve the RANS-VOF model and validated the numerical results by

measurements,

The organization of this thesis is as follows: Chapter 2 presents a
comparison of potential numerical models in simulating wave-structure
interactions, a description of the RANS-VOF model and model improvements
for the present work. Chapter 3 gives the parameterization and
transformation of wave asymmetries over Low-Crested Structures based on
measurements. Chapter 4 presents numerical simulations and
interpretations of the evolution of wave asymmetries over Low-Crested
Structures, paying special attention to the area above the structure. The
underlying physics is also given at the end. Chapter 5 investigates landward
spatial distribution of overtopping water using the RANS-VOF model, along
with a semi-analytical model and parameter analysis of numerical results.
Chapter 6 summarizes conclusions and future points of investigation that

have been identified through the development of this study.
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CHAPTER 2

NUMERICAL MODEL

In this chapter, the comparison of some potential numerical models in
simulating wave-structure interactions 1s presented, along with the
justification of selecting RANS-VOF model 1n this study. It 1s then followed
by a brief description of the selected RANS-VOF model. Some model
improvements that have been done during this work are introduced at the

end of this chapter.

2.1 Introduction

Since an accurate description of wave transformation processes is
necessary to assess correctly the performance of LCS, é series of previous
studies have let to a deeper knowledge of wave-structure interaction, based
on experimental and numerical investigation. Experimental study mainly
focused on the wave transmission, wave reflection and energy dissipation

(e.g. Seelig, 1980; Seabrook and Hall, 1998; Sakakiyama and Liu, 2001;
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Kramer et al.,, 2005; Van der Meer et al., 2005). However, experimental
investigations on wave-structure interactions have two main disadvantages:
first, the imperfection of experimental setups and device limitations; second,
small-scale experiments are influenced by scale effects, large-scale models
are expensive to be built. As a consequence, numerical modelling has gained
great popularity in recent decades for studying the wave-structure
interaction. It provides a means to obtain information of magnitudes in a
high spatial and time resolution, as well as the flexibility in setups of

numerical simulations.

The traditional numerical model is nonlinear shallow water equation
(NLSWE) model, which is derived from the Navier-Stokes equations with the
assumptions of hydrostatic pressure distribution, a depth-uniform velocity
profile and negligible vertical accelerations. Kobayashi et al. (1987) employed
it to study wave run-up and reflection from structures, but only for
impermeable boundaries. Kobayashi and Wurjanto (1989) then investigated
the normally incident irregular waves on a rough permeable slope and within
a thin permeable under-layer. It was extended to irregular waves interacting
with thick permeable under-layers by Kobayashi and Wurjanto (1990).
Numerical Results were validated by Cox et al. (1994) with the swash zone
measurements of irregular waves from the SUPERTANK Laboratory Data
Collection. Van Gent (1994) applied the nonlinear shallow water equation
model to wave motion inside the permeable structures. Satisfactory results
were obtained for modelling surface elevations and wave velocities. This kind

of model was also employed to simulate the propagation and run-up of one-
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dimensional long waves by Titov and Synolakis (1995) and long-shore and
onshore wave propagation by Titov and Synolakis (1998). Results showed
that the model describes the evolution and run-up of nonbreaking waves
very well. To consider wave breaking, one dimensional depth-averaged
NLSWE with bore-like dissipation and quadratic bottom friction was widely
used for the study of the surf zone (Raubenheimer et al., 1995; Elgar et al.,
1997) and swash zone (Raubenheimer et al., 1996). They found that this
kind of model described well the combined effect of reflection and dissipation.
More recently, such models have been used to simulate wave overtopping
(Causon et al., 2000; Hu et al., 2000; Hubbard and Dodd, 2002}). Model
results are in good agreement with analytical solutions and laboratory data
for wave overtopping at sloping and vertical seawalls, although the detailed
structure of wave breaking is ignored. However, NLSWE model is restricted
to small relative water depth. It requires locating the offshore boundary
condition of the numerical model close to the structure. NLSWE model is
suitable for relative long waves, therefore cannot reproduce the nonlinear
interactions between peak frequency and its higher harmonics. In addition,
restrictions of NLSWE model are associated with the semi-empirical
introduction of breaking, porous flow modelling or the difficulty in

simulating complicated free surfaces.

The Boussinesq model can be thought as an extension of the NLSWE
model with larger ranges of frequencies and water depths, by adding extra
terms to account for the dispersion and the nonlinearity. Peregrine (1967)

firstly introduced the standard Boussinesq equations into coastal
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engineering using the depth-averaged velocity as a dependent variable. The
Boussinesq model is able to predict the nonlinear wave transformation in
varying depth by integrating the momentum and conservation of mass
equations over depth reducing the three-dimensional problem to a two-
dimensional one. After that, Boussinesq equations were developed over many
decades and applied widely to the simulations of wave-structure interactions.
Beji and Battjes (1994) improved the Boussinesq model with improved
dispersion properties to simulate propagations of regular and irregular waves
over a submerged trapezoidal bar. Comparisons for non-breaking waves
show good agreement between numerical results and measurements.
Boussinesq models simulate wave breaking process by adding a dissipation
term to the depth-integrated momentum equations. For instance, Karambas
and Koutitas (1992) used the eddy viscosity model and Schéfer et al. (1993)

employed a more complicated ‘roller’ model to incorporate the velocity

distribution in the aerated region. Results of these models showed
reasonable agreement with measurements for free-surface profiles, but are
unlikely to produce accurate solutions for the velocity field. Karambas and
Koutitas (2002) developed a higher-order Boussinesq model, with improved
linear dispersion characteristics to describe wave motion in the regions
upstream and downstream of the breakwaters. Numerical results show very
good agreement with experimental data. Taking account of the bed or
structural permeability, Flaten & Rygg (1991) used the Darcy’s flow
approximation to model the flow inside the permeable bed, while Cruz et al.

(1997) introduced a fictitious potential function to linearize the problem.
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Hsiao et al. (2002) presented a fully nonlinear 2D Boussinesq-type model for
regular waves propagating over a permeable bed and a porous submerged
breakwater. Since the linear Darcy’s law fails due to the turbulence effect for
flows with a high Reynolds number, Forchheimer extended Darcy’s law to
include a quadratic term for the frictional force induced by turbulence (Bear,
1972). Avgeris et al. (2004) introduced the Forchheimer terms instead of a
depth-averaged Darcy equation to account for the flow inside the submerged
permeable breakwaters. Johnson et al. (2005) incorporated a depth-averaged
Darcy-Forchheimer equation describing the flow inside the porous medium
into the model derived by Karambas and Koutitas (2002) with an eddy
viscosity formulation. These numerical results of waves and currents in the
vicinity of submerged porous breakwater are in good agreements with the
laboratory data. Fuhrman et al. (2005) improved the highly accurate
Boussinesqg-type model by Madsen et al. (2002; 2003) to allow domains with
arbitrary piecewise-rectangular bottom-mounted (surface-piercing)
structures. Numerical simulations include cases of linear wave diffraction
around a semi-infinite breakwater, linear and nonlinear gap diffraction, and
highly nonlinear deep water wave run-up on a vertical plate. However,
Boussinesq theory accommodates only moderate curvature of the free
surface and is unable to provide a full description of wave breaking (Reeve et
al., 2008). Moreover, Boussinesq models also lack the capability to
determine spatial distribution of the turbulent kinetic energy due to its

depth-integrated momentum equations.

It is well known that models with the Navier-Stokes solver are able to
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describe nearshore wave-structure interactions without assuming the
hydrostatic pressure. They also can predict the initiation of wave breaking
with a more advanced turbulence model, such as nonlinear k-g model. Lin
and Liu (1998) developed the RANS-VOF model to study the evolution of a
wave train, shoaling and breaking in the surf zone. The mean flow field is
governed by the Reynolds equations with a nonlinear Reynolds stress model.
Further turbulence closure assumptions lead to a set of transport ‘equations
for the turbulent kinetic energy, k, and the turbulence dissipation rate, €.
The volume of fluid (VOF)} method, which was originally developed by Hirt &
Nichols (1981}, was employed to track the free surface. It is a front capturing
method and can be used for modelling large-scale deformations of the
interface including break up and merging. In order to consider the structural
permeability, Liu et al. (1999) applied this model to porous structures with
the assumption of no turbulence inside the porous media. The turbulence
boundary layer adjacent to the porous wall was modified by including the
effects of percolation velocity along the porous boundary. This assumption is
not valid if the permeability of the medium is large, since there is strong
experimental evidence that turbulence inside the protective armour layer
could be significant under breaking waves when the size of the armour unit
is relatively large (Sakakiyama and Liu, 2001). Hsu et al. (2002) applies the
volume averaged method into the RANS-VOF model, developed by Lin and
Liu (1998), in order to consider the fluid in the porous media and outside
fluid simultaneously. This model was supported by the experiment data on

wave propagating over a trapezoidal structure with permeable armour
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(Sakakiyama and Liu, 2001). Garcia et al. (2004) applied the RANS-VOF
model to investigate the near-field flow around the permeable structure
under only regular waves. Losada et al. (2005) investigated the velocity and
turbulence distribution around and inside the permeable structure. Lara et
al. (2006} extended the application of RANS-VOF model to irregular wave
cases, by using an internal wave-maker. The model performs well on
different incident wave spectra, validated successfully by small-scale
laboratory tests. Losada et al. (2008) employed the RANS-VOF model to
investigate the functionality of rubble mound breakwaters with special
attention focused on wave overtopping processes. The computed surface
elevation and pressure under regular and irregular waves were compared
with the experimental data, reaching a very good agreement. The model also
reproduced the instantaneous and average wave overtopping discharge well.
Another kind of Navier-Stokes-VOF model was also developed by Greaves
(2004) and Greaves (2006) and Greaves (2007) with adapting quadtree grids
and a Compressive Interface Capturing Scheme for Arbitrary Meshes
(CICSAM) interface advection scheme. Model Results of interactions between
viscous waves and a submerged cylinder in a stationary tank are in good
agreement with experimental and other numerical data. In addition, model
results showed the sufficient ability in simulating large-scale deformation of
the free surface. Previous work proved the sufficient capability of simulating
the complex wave-structure interactions, consisting of wave reflection,
transmission, overtopping, breaking due to transient nonlinear waves and

turbulence in the fluid domain.
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In order to reproduce three dimensional processes including a better
turbulence description of wave-structure interactions, A 3D Large Eddy
Simulation (LES) model with a Smagorinsky sub-grid scale turbulence mode
was employed by Christensen and Deigaard (2001) to simulate wave
breaking, the large scale water motions and turbulence induced by the
breaking process. The application of this model was extended to the
investigation of flow rate over and through the gap of submerged
breakwaters by Losada et al. (2005) and the free surface flow over a semi-
circular obstruction by Lu et al. (2008). Results showed good agreement with
measurements of wave basin experiments for instantaneous free surface and
turbulence  propertiecs. However, computational efforts for LES
approximations are still time consuming nowadays. There are few

applications of LES on simulating porous flow as well.

Being a Lagrangian approach, particle methods such as the Moving
Particle Semi-Implictt (MPS) method of Koshizuka et al. (1995) or the Smooth
Particle Hydrodynamics (SPH} method (Dalrymple et al., 2001; Gotoh et al.,
2004; Shao et al., 2006} have become very popular, By accurately tracking
large deformations of the free surface. However, the high number of particles
required, the limited validations available and very low computational
efficiency are some of the issues that need to be resolved before considering
SPH for complex wave-structure interactions. In addition, although Shao et
al.(2006) demonstrated that SPH model can be used for wave overtopping,
the RANS-VOF simulations of Reeve et al. (2008) gave slightly better results

in comparison to experiments than the SPH model.
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The justification of selecting RANS-VOF model is based on the
consideration of three main aspects in wave-structure interactions.
Firstly, when wave interacts with coastal structures, there is strong 3-
D effect near these structures, where vertical variations of velocities
and turbulence are significant. RANS-VOF model is depth-resolved
model and therefore it can reproduce the vertical variations but the
same does not hold for the depth-averaged Boussinesq model.
Secondly, wave overtopping over coastal structure is a vicolent natural
phenomena and always associates with complex free surface, such as
the overtopping jet. RANS-VOF model is able to consider large free
surface deformations with the Volume of Fluid capturing scheme, but
Boussinesq model accommodates only moderate curvature of .the free
surface. Thirdly, wave breaking and wave overtopping over coastal
structures associates with strong turbulence. RANS-VOF model
captures the turbulence well with a k-g¢ turbulence model, while
Boussinesq model lacks the capability to determine distribution of

turbulent kinetic energy due to depth-integrated equations.

To date, RANS-VOF model is possibly the most adapted to the study
of wave-structure interaction for engineering purposes, as
computational efforts are reasonable and the number of simplifying
assumptions is considerably reduced compared to Boussinesq models.
RANS-VOF model is also probably most extensively validated for the
simulations of wave-structure interaction. As a result, the RANS-VOF

model is employed in the present work.
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2.2 RANS-VOF Model

This study employs the RANS-VOF model that was developed by Lin and
Liu (1998), Liu et al. (1999) and Lin and Liu (1999). It consists of a
Reynolds-Averaged Navier-Stokes solver, a two equations k-¢ turbulence

model and a Volume of Fluid surface capturing scheme.

2.2.1 Governing equation

Turbulence flow

The Reynolds-Averaged Navier-Stokes (RANS) equations for an

incompressible fluid are:

o) _ g (2.2.1)

<>6a<uf.>:_ 1 5(P>+ 1 a_(#(a@i)"'a<f1_j>)_<p)<”f'u;> +g,(2.2.2)

&

Where ‘< >’ represents the ensemble average, represents the turbulent
fluctuation, <uz> is the i-th component of the velocity vector (i, j=1, 2 for a
two dimensional problem), p is the fluid density, <P> the mean pressure, g; is

the i-th component of the gravitational acceleration, p the molecular

dynamic viscosity, and (u,'u;> is the Reynolds stress.

Flows in the porous media

Due to the complex structures of porous materials, it is not feasible to
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resolve the intrinsic flow field and solve the N-S equations directly inside
pores. Instead, Liu et al. (1999) and Hsu et al. {2002) suggested that the flow
equations are averaged over a length scale I, which is larger than the
characteristic pore size and is much smaller than the scale of the spatial
variation of the physical variables in the flow domain. Therefore, the fluid

variables can be decomposed into two parts, spatially averaged and spatially

fluctuated quantities, i.e. u, = (u_,.+u‘.")/n, n is the structural porosity.

The mean flow in porous media 1s governed by the following equations as

described by Liu et al., (1999):

Zioo (2.2.3)
ox,
e, o Wy 0 LOP, 0¥ O oy b (2.2.4)
n ot n ox; P Ox, n &x Ox, v i
1-n
=7, (2.2.5)
n
_ 2
a=a 170 ¥ (2.2.6)
n ghg,
75 1-n 1
b =p(1+ 2.2.7
p =Pt KC) n gD, ( )

where u_=uu ; v is the molecular kinematic viscosity; n is the effective

porosity of porous materials; van Gent (1995) proposed that yp=0.34,
ap=1000 for both the armour layer and the core and Bp=0.8 and 1.2

respectively for negative or null freeboard structures. Losada et al. (2005)
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argued that Bp=0.4 instead of 1.2 for positive freeboard without wave
overtopping. KC is the Keulegan-Carpenter (Keulegan and Carpenter, 1958)
number representing the ratio of the characteristic length scale of fluid
particle motion to that of porous media, i.e., KC=u.T/{nDso), where T is the
typical wave period and Dsp is the characteristic diameter of porous

materials.

In the equation (2.2.4), the third term on the right hand side is
responsible for transferring shear force and may become increasingly
important near the interface between porous media and ocutside flow for
smaller scale problems; the fourth term is the frictional force induced by
viscous effect (surface friction); and the fifth term represents the turbulence
effect (form drag). However, formulations above for flows in the pofous media
have not considered the shape, orientation, and surface roughness of porous

materials, which also affect the added mass and friction characteristics.

Turbulence model

As can be seen in Equation (2.2.2), Reynolds stresses should be related to
the mean velocities in order to solve the Reynolds equations for the mean
flow. Extensive research work has been done to seek the proper closure
model for the Reynolds stresses in the 1970s (e.g. Launder and Spalding,
1974; Launder et al., 1975). An alternative to Reynolds stress closure model
is the so-called k-g£ model in which Reynolds stress tensor is assumed to be
related to the strain rate of the mean flow and and the characteristic scales

of turbulence through the algebraic nonlinear Reynolds stress model (Shih et
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al., 1996).
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where Ci, Cz2, C3z and Cq are empirical coefficients, k is the turbulent
kinetic energy and ¢ is the turbulent dissipation rate, §; is the Kronecker
delta (equals 1 if i=j, and O otherwise) and v is the molecular kinematic

viscosity.

The conventional eddy viscosity model can be derived with C;=C2=C3=0

and it is in the expression:
L 2
<%%>=§k%—2m<q0 (2.2.10)

in which o; 1s the rate of strain tensor, vt is the eddy viscosity

v =C,k* /g, C; =0.09.

Recommended by Shih et al. (1996) and Lin and Liu (1998), the empirical

coefficients are:
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Two equations k-¢ turbulence model are:
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The empirical coefficients that appear in the model are surprisingly
universal. The recommended values for these coefficients are (Rodi, 1980): Cq

=0.09; C1:=1.44; C2:=1.92; 0x=1.0 and o¢=1.3.

2.2.2 Boundary condition:

Free surface:

For the dynamic boundary condition, denoting nas the unit normal on

the free surface and n; as the projection of non the xi, the continuity of the

normal stress component is:

(P)_ﬂ(a(ﬂ;>+a<u‘j>1n.n.=(rn) (2.2.14)
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in which <t,> is a prescribed normal stress applied on the free surface
and the surface tension has been ignored. If external tangential stress

component is applied on the free surface <t>, the continuity of tangential

stress component becomes:

ﬂ{a("‘)Jra("f')]n.;. (1) (2.2.15)

Kinematic boundary condition is:

a—F-+u,.Qf—=0 (2.2.16)
ot Ox;

where F is any physical property associated with the free surface particles.

The exchange of turbulent kinetic energy and the turbulent dissipation

rate at the free surface are assumed to be zero, that is,

8e) _
P =0 (2.2.17)
a;:c) n =0 (2.2.18)

Solid boundary:

For solid boundary, such as impermeable bottom and structure interface,
it 1s difficult to resolve the viscous layer for practical computation.

Alternatively, the free-slip boundary condition and the turbulent boundary
theory are applied:
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(un=0 in Q

alu o
<u')&=0 in Q
on

(2.2.19)

(2.2.20)

where Q is the part of the fluid domain boundary where the slip occurs;

<u> (1=1,2 for a two dimension problem) is the velocity vector in €; n and t

are the outward unit normal vector and a tangent unit vector in Q.

For the turbulence field, near the solid boundary, the log-law distribution

of mean tangential velocity in the turbulent boundary layer is applied, where

the values of k and £ can be expressed as functions of distance from the

boundary and the mean tangential velocity outside of the viscous sub-layer:

u*y
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Inlet and outlet boundary

(2.2.21)

(2.2.22)

(2.2.23)

(2.2.24)

The open boundary, composed of the radiation boundary condition and

sponge layer, is employed at the inlet and outlet of the computational
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domain.
The radiation boundary is:

ec, , 3 _

—t¢,—=0 (2.2.25)
ot o,

where 1=1, 2, representing the x- and y- coordinates; ci=g(h+n) is the

analytic wave velocity of the wave train that is positive at the right boundary
and negative at the left boundary. For irregular wave only the peak
component of irregular waves was considered; C could represent both

surface elevation and velocity vectors.

Inside the sponge layer, an additional friction term is added to the original
momentum equation in RANS equations (Equation 2.2.2) and this term
takes the form of —ff{x)*<u;>, where f{x) is the friction factor and <u;> is the
ensemble-averaged velocity in the i-th direction. Based on Wei and Kirby

(1995), the function f{x) has the form:

exp{( : x)"]—l
f(x)=a = for x,—x, <x<x, (2.2.26)
exp(l)—1

where %o is the coordinate of the right edge of the sponge layer, xs the

length of the sponge layer, a=200 and n=20 in present work.

As mentioned by Lin et al. (1998), the model will produce no turbulent
energy if there is no turbulent kinetic energy initially. Both the initial

condition and inflow boundary condition for k and & are defined as:
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k:%(g’c)z and e=C,k’/(fv) , where c is the wave celerity on the inflow

boundary, {=2.5e-3, £=0.1. Lin et al. (1998) found there is little impact on the

numerical solutions for both ¢ and §, except the breaking point.

Interface between fluid and porous media

In reality, the flow just outside of the porous surface s in the form of jets
and wakes, which are turbulent and quickly mixed within a short distance in
order of characteristic pore size Dnso. However, present work mainly
concerns wave transformations and overtopping outside of the porous
materials, which 1s not significantly influenced by the approximation of the
mean flow field just outside of the porous media (Liu et al. 1999). The

turbulence model is not solved in the porous media either.

Ilegbusi (1989) suggested the formulation to calculate the wall shear

stress near a porous surface:

(%)—i L B[(z+5,)p]" (2.2.27)
(r,/p) K v
7,= ¥ (1) (2.2.28)

"o (r, 0) (K {w,))

Where <u.> is the tangential velocity outside of the turbulent boundary
layer; ;‘ is tangential averaged velocity along the porous bed; von Karman

constant k=0.41; E is roughness coefficient and equals 9.0 for smooth wall;

r.is wall shear stress; r,is additional shear stress caused by flow suction or
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injection through the porous bed; v_ﬁis normal averaged velocity across the

porous bed and ¢,=0.01 suggested by Liu et al. (1999}.

With known <ue>, u, and v, , 7, can be calculated using the Newton-
Raphson method. The [riction velocity u* can be calculated subsequently by

u* =z |/p, which can be employed to define both the turbulent kinetic

energy, k, and dissipative rate, £ near the porous surface.

2.2.3 Surface capturing scheme and Partial Cell Treatment

The volume of fluid (VOF) method is a convenient and powerful tool for
modelling fluid flows that contain a free surface. It is used to identify
different types of computational cells and thus can be used to track the free
surface motion. The VOF concept achieves this by defining a fractional
volume or a VOF function, fo(x, y, t}, which specifies the fraction of a
computational cell filled with fluid (Figure 2.2.1). For simplicity the time and

space varying function fy(x, y, t} is described by fo. For example:

0 empty cell
Jo= 1 Jull cell (2.2.29)

other surface cell

The transport equation for the VOF function, f, is:
=2+ ((w)v) f, =0 (2.2.30)

where u, (i=1,2) is the fluid velocity vector.
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When calculating these convective fluxes special care must be taken to
avoid computational smearing of the air-fluid interface because this causes
considerable inaccuracy in the interface representation. Hirt and Nichols
(1981) proposed a simple way to track the fluid interface by introducing the
volume of fluid (VOF} concept and a scheme for the advection of the VOF
fraction function, which is called the Donor-acceptor method. Their VOF
method shows the effectiveness for tracking a fluid interface. The algorithm
of Hirt and Nichols (1981), known as ‘piecewise constant scheme’, is that the
interface was forced to align with one of the coordinate axes (horizontal or
vertical) depending on the prevailing direction of the interface normal. Fluxes
in a direction perpendicular to the reconstructed interface are estimated

using a Donor - Acceptor method.

The basic idea of partial cell treatment is that the obstacle can be modelled
as a special case of two-phase flow with infinite density. Partial cell
treatment partially blocks the cell face and cell itself according to the real
geometry of the boundary. The openness coefficient, §, is defined as the ratio
of the fluid volume to the total volume in a cell (Figure 2.2.1). The variables
in cells or cell faces are redefined as the multiplication of openness
coefficients with original variables representing the mean values there. Near
the obstacle openness coefficients are less than unity that makes the mean
quantities smaller than their original values. When openness coefficients

equal zero (obstacle), the numerical calculation is skipped in this cell.
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Figure 2.2.1 Finite difference meshes and cell classifications in the model, fo: the
ratio of cell occupied by the fluid to the whole cell area, & the ratio of cell not

occupied by the solid object to the whole cell area.

2.2.4 Internal wave maker

It 1s a challenging work to generate the incident waves from inlet
boundary and at the same time absorb the reflected waves from obstacles or
beaches in the computational domain. For depth-averaged equations models,
only the surface elevations are needed at the inlet boundary. Previous
researchers (e.g. Kobayashi et al.,, 1987; Dongeren and Svendsen, 1997)
developed the generating-absorbing boundary conditions based on the

assumption of linear superposition of incident and reflected waves. However,
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this type of boundary condition can only be applied to small amplitude
waves and may lead to cumulative errors, which may contaminate numerical

results in the entire domain eventually (Wei et al., 1999).

RANS-VOF model requires the velocity information along with the free
surface elevations at the inlet boundary. Thus, the model is more sensitive to
the errors from the boundary than other depth-averaged equations models.
Although Petit et al. (1994) employed the weakly reflecting boundary
conditions that send the incident wave and absorb the weakly reflected wave
simultaneously, this method again can only be applied to small amplitude

waves due to the linear theory assumption.

Based on the idea of Larsen and Dancy (1983) that a source function
inside the computational region 1s used to generate waves, Lin and Liu (1999)
employed this internal source function in the RANS-VOF model to generate
the linear monochromatic waves and irregular waves (hereinafter internal
wave maker). The validated relative wave height (H/h) is up to 0.3. The
internal wave generator is not interacting with reflected waves, but leads to

considerable increase of computational domain.
The brief description of the internal wave maker is (Lin and Liu, 1999);

a—”4-?—‘i=s(x,y,rf) in Q) (2.2.31)
ox Oy

Where s(x, y, t) is nonzero mass source function within the source region

Q, the free surface directly above the source function will respond
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immediately to the mass change induced by this source. A train of surface

gravity waves will be generated due to the restoring force by the gravity.

The source region used in present work i1s a rectangle with the width
(horizontal) of ws and the height (vertical) of ds, where ws<<A, A is the target
wavelength. With the assumption that all of the mass increase or decrease
introduced by the mass source function contributes to the generation of the
target wave, the source function s(x, y, t) should satisfy the following

relationship:
[ [ sCey.ndQde =2 cnwar (2.2.32)

Where C is phase velocity of the target wave. The factor 2 is used since
waves are generated on both sides of the source region. The spatial varying

mass source function is not considered here.

The source function s(x, y, t) can be easily derived depending on the wave
theory, Equation 2.2.32 and the assumption of the area A for rectangular

source region €. In the present study, the source functions s(x, y, t) are:
. ) CH .
For sinusoidal wave: ()= 781[1((0[) (2.2.33)

For 2nd-order stokes wave:

CkH? cosh(kh)[2+ cosh(2kh)]
84 sinh’ (kh)

s(t) =%cos(a)t+13;)+ cos(Zwt+2P){2.2.34)

To maintain the numerical stability, the source function s(t} must start
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“1+ 1485
P, = arccos(— Y " t8h (2.2.35)

from zero, therefore,
4b,

In which, k is wave number, C 1s phase velocity of the target wave, H is

kH cosh(kh)[2+cosh(2kh)]
sinh®{kh)

wave height and§, =

An irregular wave is composed of a series of sinusoidal waves with
different wave frequency and amplitude. For a known energy spectrum of an
irregular wave, the wave train can be reconstructed through the inverse
Fourier transformation with a finite number of wave components. Therefore,
an 1wuregular wave can be generated by superposing different wave

components:
" 2Ca, .
s(t) = ZTja’sm(a),.t +p,) (2.2.36)
i=l

Where ai, wi, psi and C; are the amplitude, angular frequency, phase and
phase velocity of the i-th target wave component respectively; h is water

depth at the source region; A is the area for rectangular source region.

In sum, internal wave maker is implemented in following steps: Firstly,
setup the source region in a rectangular with the width far smaller than the
target wavelength. Secondly, calculate the source function with the
assumption that all of the mass increase or decrease introduced by the mass
source function contributes to the generation of the target wave. Thirdly, add
this source function within the source region into the right hand side of the

continuity equation, to generate surface elevations.
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2.2.5 Computational mesh

A staggered mesh finite difference scheme is used in the present model. At
the beginning the whole computational domain is discretized by the imax*jmax
rectangular cells as sketched in Figure 2.2.1. The i-index of cells increases
from the left boundary to the right boundary and j-index of cells increases
from the bottom boundary to the top boundary of the computational domain.
imax and jmar are the maximum index of cells in the horizontal and vertical
directions respectively. All scalar quantities, i.e. P;; ki, & the VOF function,
fii, and the openness function, §;; in the cell (i, j) are defined in the centre of
the cells, while the vector and vector-related quantities, such as mean

velocities u;j and v;j are defined in the cell faces.

The present model is able to generate a non-uniform mesh. When a
variable mesh is to be specified, the model uses the linear divergent function
to make a smooth grid change (Lin and Liu, 2000). Although the use of
uniform meshes can produce more accurate results than the use of variable
meshes, in some practical computations, the variable size of mesh is
necessary to reduce the computational cost. For example, when the case of
wave breaking is simulated, the resolution near the breaking point must be
rather fine in comparison to what needed to resolve the wave itself. However,
it is necessary to deploy the constant size mesh around the free surface and
both inlet and outlet boundary to ensure the high accuracy of free surface

computation and the stability of numerical simulations.

The aspect ratio of the mesh size in the cell (i, )), Axi/Ay;, is of great
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importance for accurately capturing the free surface by VOF method.
Normally, Axi/ Ay~1 is preferred but Ax; can be an order of magnitude greater
than Ay, for some small amplitude long waves. For breaking wave simulation,
the aspect ratio should be smaller than or equal 2.5 to avoid inaccuracy

arising from false breaking (Lin and Liu, 2000).

2.2.6 Time Step Criteria

The explicit finite difference form for transient advection-diffusion
equations (Equations 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.12 and 2.2.13} is subject
to the numerical instability unless certain stability criteria are satisfied. The
standard von Neumann stability analysis was employed to obtain the

stability criteria for the linear approximation:

ArSmin{ﬂ,ﬂ} (2.2.37)

| (an) (o)
2(v+v) (Ax,._j)2+(Ay,._J.)2

Al < min (2.2.38)

The criteria are obtained with the assumption that the advection term is
discretized by upwind scheme. The first criterion is from the stability
requirement for the advection term and the second one arises from the
diffusion term. However, due to the intrinsic nonlinearity in the governing
equations and the combination of central difference method and upwind

scheme for the advection term in the present model, two coefficients of 3/10
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for Equation 2.2.37 and 2/3 for Equation 2.2.38 (Lin and Liu 1998) were

emploved to ensure the practical stability in the computation.

2.2.7 Computational procedure

By decomposing the instantaneous velocity and pressure fields into the
mean and turbulent components, the RANS-VOF model solves the 2D
Reynolds Averaged Navier-Stokes equations with the finite difference two-
step projection method (Chorin, 1968, 1969). The first step is to introduce a

tentative velocity without the pressure gradient term.

i n g

_uj . —_
At ox, p" ox,

~n+l
u: —u ou' 1 & au:’ au;’ o
(ﬂ(axj * ox. )_p<u"uf> ]+g, (2239)

?

In the second step, the tentative velocity is projected onto a divergence-

free plane to obtain the final velocity.

~fr+l nel
W oui __10p (2.2.40)
At P ox,

i

Since the pressure field is unknown in equation (2.2.40), the final velocity
is obtained by solving the pressure Poisson equation (2.2.41). The pressure
Poisson equation is derived by taking the divérgence of equation (2.2.40) and

applying equation (2.2.1} to the resulting equation.

—'THI n+l
dow _ o1 109p (2.2.41)
At Ox, ox. \ p" Ox
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Both the Reynolds equations and the k-¢ transport equations are solved
by discretizing the convection terms with the combined central difference
method and upwind method. The central difference method is used for the
diffusion, production, and dissipation terms. The time derivatives are
discretized by using forward time difference. The time step scheme was
usually adopted the explicit scheme in previous work (Lin and Liu, 1998; Liu
et al., 1999; Hsu et al., 2002; Garcia et al., 2004; Hieu and Tanimoto, 2006;
Karim and Tingsanchali, 2006; Lara et al., 2006). The complete processes of

RANS-VOF model are summarized in Figure 2.2.2.

46



CHAPTER 2 NUMERICAL MODEL

\"\
Start >
o Create the probilem setup, set the initial "

conditions and wave inputs

¥

Generate meshes and setthe
initial boundary conditions

The selup and meshesg
Cnrrect?

Compute the tentatwe velocities
and apply the boundary

h 4
Directly solver the pressure
roison eguation

!

No Canverge within

4000 iterations?

Update the pressure field, obtain the
final velocities and apply the
boundary conditions

v

Update k and € value and the VOF
function using final velocities

!

Apply the boundary condition

X
Output the instantaneous VOF function,
openness coeflicient, velocities, pressure,
turbulence parameters in the whole domain

:

Mave to nexttime step

Mo
Already reach the end

of simulation time?

Figure 2.2.2 Flow chart of computational processes of RANS-VOF model
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2.3 Model Improvements

The RANS-VOF model described above is widely used in coastal
engineering. Although this model is capable of simulating wave-structure
interactions, several aspects could be improved to increase the accuracy of
numerical results and capability in handling the simulations of wave

overtopping.

2.3.1 PLIC-VOF surface capturing scheme

The VOF method in the RANS-VOF model used the piecewise constant
reconstruction algorithm of Hirt and Nichols (1981}. This algorithm is not
able to obtain the accurate locations of surface interfaces, which directly
affect the computation of the pressure and the tangential velocities on the
free surface. The main reason is that it always orientates free surface
interfaces parallel to horizontal or vertical boundary of cells. The alternative
is to orientate free surface interfaces in a direction perpendicular to the
locally evaluated VOF gradient. Such method is known as piecewise linear
interface calculation (PLIC) (Youngs, 1982; Ashgriz and Poo, 1991; Rider and
Kothe, 1998; Lopeza et al., 2005). Thus, free surface interfaces within each
cell can acquire any orientation, and the geometrical profile of the fluid can

more closely represent the actual fluid geometry (Figure 2.3.1).
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Figure 2.3.1 Comparisons between Hirt and Nichols’ VOF interface reconstruction,

Youngs’ PLIC interface reconstruction and actual interface {Delnoij et al., 1988},

Most VOF advection algorithms are not derived directly from Equations
2.2.2, 224 and 2.2.13 but are based on a two-stage process. Firstly, free
surface interfaces are ‘reconstructed’ from the VOF data; secondly, changes
in VOF values are calculated by integrating fluid fluxes over cell boundaries,
using the geometrical profile to indicate the location of fluid regions. In order
to advance the solution of Equation 2.2.30 in time, it is first necessary to
construct an approximation to the interface given the values of the volume
fractions fi» at time th=nAt. This is referred to as the interface reconstruction

algorithm.

An interface reconstruction algorithm in Youngs (1982) is used. Youngs’

VOF method approximates the interface within a cell by a straight line
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segment with a slope determined from the interface normal. This normal, in
turn, is calculated from the gradient of the volume fraction using a nine

point stencil:

;1=(nx,n‘_)=v'—f Ay J(af] +[@J (2.3.42)
TV ey &

The gradient of the volume fractions can be discretized by finite difference

method as following:

S _Sfeo /o (2.3.43)
ox 2
af f“’ Js (2.3.44)
ay 2
.fE = Jin - +a0fi+].j +.ﬂ+l.j+l) (2-3-45)
2+a,
Jv = (frajm Y S+ fiojn) (2.3.46)
2+a,
1 .
Sy = (ff-l.j+1 +a0fi.j+1 + i+l.j+l) (2.3.47)
2+ ¢,
fszz;(f,._l_J oSt S ) (2.3.48)
+a,

where ¢, is a free parameter. Parker and Youngs (1992) proposed that

a, =2 seems to give the best results.
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The line segment cuts the computational cell under consideration in such
a way that the fractional fluid volume is equal to fj. The interface normal
computed in Youngs’ 2D algorithm will reproduce a line, regardless of its
orientation on an orthogonal mesh, and is, therefore, second-order accurate.
The resulting fluid polygon is then used to determine the fluxes through any
cell face with an outwards directed velocity. The method described above is
used in this study because of its sufficient accuracy and rigorous volume
(mass) conservation, especially in flow fields with appreciable spatial and

temporal variations.

In order to examine the efficiency of Youngs’ VOF interface reconstruction,
a case with regular waves was simulated by the RANS-VOF model. Figure
2.3.2 shows on the incident side, calculated surface elevation of Hirt and
Nichols’ VOF is close to that of Youngs’ VOF. Both of them are in a good
agreement with the measurements. This may be because waves are relatively
stable and do not break, consequently the free surface is regular and easy to
be captured. On the transmission side, wave breaking and overtopping
occurs above the structure, resulting in more turbulence generated and
transported in the fluid. Therefore, the fluid became more and more unstable
and free surface becomes irregular and complex. Figure 2.3.2b shows that
model results calculated by Youngs’ VOF are in better agreement with
measurements than those by Hirt and Nichols’ VOF, in particular at the
harmonics. This is because that free surface interfaces within each cell by
Youngs’ VOF can be reconstructed in any orientation rather than only

horizontal or vertical directions. The geometrical profile of the fluid can,
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therefore, closely represent the actual free surface. Therefore, Youngs’ VOF is

able to provide more accurate numerical results than Hirt and Nichols’ VOF.

Incident side

Measurements
0.1+ (a) — — — VOF of Hirt and Nichols
N i VOF of Youngs
é 0.05
—
0
-0.05 =
55 56 57 58 59 60
0.02
E
P
-0.02
55

t (s)

Figure 2.3.2 Comparisons of the surface elevation calculated by Hirt and Nichols’ VOF and
by Youngs’ VOF and measurements (a) on the incident side (b} on the transmission side of
LCS. Wave height H=0.10m, wave period T=1.6s, water depth h=0.35m and freeboard

R.=0m.

2.3.2 Return flow system

Coastal structures are designed to allow the transmission and

overtopping of a certain amount of the incident wave energy to the
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transmission side. In most 2D laboratory experiments of coastal structures,
the overtopping and transmission give rise to a piling-up of water in the
leeside region of the structure and hence to an increase of the mean water
level. This setup on the transmission side modifies the dynamics of the
waves In this region and the flow conditions in the vicinity of the breakwater.
It forces a strong return flow over the structure which perturbs the wave
breaking process on the structure seaward slope and crest, influencing the
breaker type, position and height. In real cases of shore protected by coastal
structures, this phenomenon is not observed, as the potential piling-up
behind the breakwater is relieved by 3D circulation systems. Part of the flow
is transmitted back to the seaward side through the permeable structure,
but a greater proportion returns to the open sea by the sides of the
breakwater, following pathways of lesser resistance (open areas with no
breakwaters). In the experiments of DELOS project, a recirculation system
was designed for preventing this usual shortcoming consisting of a non-

realistic set-up on the transmission side of the coastal structures.

The numerical simulations also need to setup the configuration of the
recirculation system the same as experiments. The return flow system
consists of several small apertures on the bottom of computational domain
(Figure 2.3.3). These apertures allow the excess of water in the leeward zone
due to wave overtopping to flow back to the seaward zone, but do not disturb
the flow pattern on either side of structures. The direction of this return flow
1s shown by the arrows in the figure. The returning flow in the numerical

flume is exclusively forced by the difference of water level between the
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seaside and leeside parts of the breakwater, and therefore has a nature-like

pattern. This design is similar to that of Garcia et al. (2004).

N (m)

-
Q5P mmn— T L T
T = * - fnn-- i

- - b(oo '''' ¢
L /

x (m)

Figure 2.3.3 Wave height envelopes and mean water level during time interval
from t=101s to t=120s with R-=0Om, (a) without flow recirculation, (b) with flow
recirculation. Arrows stand for the direction of the return flow. Symbols represent the
experimental data: ‘o’ for maximum height; ‘0’ for mean height; ‘¢’ for minimum

height. Spongy layer is located from x=0m to x=4m,

In order to examine the efficiency of this return flow pipe, case 2 in Table
D2 was simulated by the RANS-VOF model. Figure 2.3.3 shows the
maximum and minimum wave height envelopes and the mean water level

measured in the laboratory (dots) and calculated with the numerical model
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(lines). Numerical data result from a 10-wave phase-averaging, counted from
100s of simulation to ensure stable flow conditions. As can be seen in this
figure, in the case without a recirculation system, the agreement between
experimental and numerical data on the incident side is good. However, on
the transmission side, the minimum and mean wave heights are
overestimated significantly (Figure 2.3.3a). This is mainly due to the
increasing pile-up of water level coming from the overtopping and
transmission processes. Without a recirculation system, the increasing fluid
volume cannot be drained until the water level is higher than the crest of

structures, when the fluid can flow back to the incident side.

On the other hand, in the case with a recirculation system, the model is
able to simulate adequately the main features of the propagation of a wave
train passing over a zero freeboard breakwater (Figure 2.3.3b). The breaking
induced mean water level decreases at the offshore side of the breaking point
and then increases at the onshore side. Besides, in the leeward zone,
overtopping of the structure can induce an increase of the mean water level.
As can be seen in the Figure 2.3.3b, this set-up is correctly computed. As a
result, a conclusion can be drawn that the return flow system improves the
capability of RANS-VOF model in reproducing the waves and flow around

coastal structures.

2.3.3 Wave overtopping algorithm

The governing parameters involved in wave overtopping over coastal
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structures, such as significant wave height and peak period at the seaward
toe of structure, the landward ground level, structural freeboard, structural
crest width and structural slope, the layer thickness and velocity on the
structural crest, were found to be important in wave overtopping process
(Schuttrumpf and Oumeraci, 2005; Lykke Andersen and Burcharth, 2006;
van der Meer et al., 2009). Historically, sloping sea dikes or sea walls (Figure
2.3.4) have been the most widely used option for sea defences along the
coasts of the Netherland, Denmark, Germany and many parts of the UK
(EurOtop, 2008). By changing the seaward slope, tan(a), the wave
overtopping may exist following key processes: non-breaking or breaking
waves overtopping over a sea wall, even a sloping sea dike or a vertical sea

wall.

Figure 2.3.4 Hornsea’s seawall along the Holderness coast, UK (Source:
http://picasaweb.google.com/lh/photo/YCUHTs8PXbwdasEulh9NRg).

A definition sketch of the embankment is given in Figure 2.3.5. The origin
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of coordinates is at the landward end of structural crest with x for horizontal
axis and y for vertical axis; H; and T, are incident significant wave height
and peak period at the seaward toe of structures; R., B and tan(a) are the
structural freeboard, crest width and slope respectively. w;j vij, Axi, Ay; are
horizontal velocity, vertical velocity, cell width and cell height in the cell (i, j)
respectively. ua s0% is wave velocity at the crest of the structure, exceeded by
50% of the incoming waves; ha is the layer thickness at the crest of the

structure. hmeas represents the landward ground level.

y Yo _cell(i,))
Wave direction T WY, é-u..

i
_____ - 'E"u.ﬁ,.50%
= ~. S i = X
~ -
by, iy
N, i
h E %
meas % N
% \
\ \

Landward ground level

Figure 2.3.5 Sketch of a sea wall and definitions of governing parameters involved
in numerical simulations of wave overtopping. The rule of the cell indexes can be
referred in Section2.2.5.

The average overtopping discharge is usually calculated as the ratio of
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cumulative overtopping volumes to the simulation time. However, the error
in calculating overtopping volumes from VOF values may accumulate and
become significant in numerical modelling. Instead, the overtopping rate g(t)
per unit length of the dike is calculated as the product of layer thickness and
overtopping velocity at the overtopping point (x=-B) (Schuttrumpf and

Oumeraci, 2005). The average overtopping rate, g, (x=-B), was calculated

from t=0 to t=tp as:

To Vi J )
[DIRROM AT

g, =2807 at x(i)=-B (2.3.49)
n [

0

where w;(t) and Ay;are the horizontal velocity and cell height in the cell (i,

J) respectively (Figure 2.3.5). f  is the value of VOF function fo in the cell (i,

1), Jmax 1s the maximum index of cells in the vertical direction and to is the

simulation time.

In numerical modelling, the spatial distribution of overtopping water

behind the structures can be calculated by:

Ly .\'(‘l'm“ ]

j Z 1',,"}'([)*Axf' *.f;.,i *dt
V(-xg) 2 0 _\'li‘l=.\',, at vv(j) == _hmear (2350)
V T (i ) )
[ .[ PIRMOLF AT

0 x(i)=0

where V(xo)/V: is the proportion of overtopping volume passing xo. vij(t)
and Ax;are the horizontal velocity and cell width in the cell (i, j) respectively.

Imax 1S the maximum index of cells in the horizontal direction. tp is the
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simulation time and hmeqs is the landward ground level {Figure 2.3.5).

2.3.4 Mass conservation of wave overtopping

Wave overtopping water is usually in the forms of jets and splash behind
the structures and these jets and splash are irreversible back to the incident
side. In the experiments, the mean water level remains nearly constant since
the length of flume in front of overtopping structures is large enough, and
the overtopping volume is, therefore, relatively trivial to the initial water
volume in front of overtopping structures. In numerical simulations, the
irreversible overtopping water will cause the non-conserved mass on the
incident side of the simulation domain. This non-conserved mass will
accumulate as increasing simulation time up to a large value, leading to the
decreasing mean water level and instability of simulations finally. Although
large computation domain in front of overtopping structures could mitigate
the effect of non-conserved mass on the stability of simulations, it inevitably

increases the computational time of numerical simulations.

The mass difference of overtopping water between calculation step n and

previous calculation step n-1, Am(n*At), is:

imax  jmax

Am(n*aty= Y, > {S"G N7 xRy, (2.3.51)

x{iy=—8 j=l

where At is time step of numerical simulations; f*(i,j) and f*!(ij) stand for
the VOF function in the cell (1, J} at t=n*At and t=(n-1)*At respectively; imax

and jmar are the maximum indexes of cells in the horizontal and vertical
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directions; coordinates can be referred in Figure 2.3.5.

Considering the numerical diffusions occurred behind the structures, the
Am(t) may be a negative value without the wave overtopping. In this situation,
the Am(t) will be artificially defined as zero to avoid the mass errors on the
incident side. Therefore, adding this mass term Am(t) into the source
function in Equation (2.2.36), we can obtain the updated source function to

generate next waves with mass conservation:

s(x,y,0) = Z%sin(a)iH 2o+ j’:gz
i=1

(2.3.52)

where C is phase velocity of the target wave and A is the area of internal

source region.

A sample of this mass difference is shown in Figure 2.3.6. The mass
difference is similar to the pulse impact, with zero difference at most of time
but dramatic fluctuations at some times. This is mainly due to the
fluctuating nature of waves and wave run-up on the structure. The mass
difference is very small by considering the compensation of wave overtopping
mass the incident side of coastal structures. The percentage of mass
difference to the initial mass is smaller than 5%. Therefore, this technique
improves the stability of numerical simulation, as well as the accuracy of

surface elevations and flow parameters.
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Figure 2.3.6 {a) Mass fluctuations on the incident side of overtopping structure

and (b) mass difference of overtopping water, Am. mo is the initial mass and m is the

mass at simulation time t= n*At.
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CHAPTER 3

PARAMETERISATION AND TRANSFORMATION OF
WAVE ASYMMETRIES OVER LOW-CRESTED

STRUCTURES (LCS)

Understanding the transformation of wave shapes, described by wave
skewness and asymmetry, over coastal structures is crucial in the
assessment of the functionality and stability of coastal and flood defence
schemes. [t is also central to the application and development of physically-
based models of sediment transport that aim to simulate the evolution of

cross-shore beach profiles.

The aim of this present work is to parameterize wave skewness and wave
asymmetry and to understand their transformation over smooth and rubble
mound Low-Crested Structures (LCS). A set of empirical formulae of wave
asymmetries will be derived for practical use using laboratory data sets

collected in the DELOS project. Bispectral analysis will be used to investigate
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the contribution of nonlinear interactions between frequency components of

wave spectrum to wave skewness and asymmetry.

This chapter includes four parts: firstly, the significance of wave skewness
and wave asymmetry, and previous work are presented; followed by deriving
a set of empirical formulae of wave asymmetries as functions of local wave
parameters from laboratory data sets collected in the DELOS project;
Bispectral Analysis is introduced next to investigate the main contribution of
nonlinear interactions between frequency components of wave spectrum to

wave skewness and asymmetry; finally a brief summary is given.

3.1 Introduction

It has long been recognised that wave skewness and asymmetry are
directly related to sediment transport and subsequent changes in beach
morphology. Inman and Bagnold (1963) were the first to apply the concept of
a skewed velocity field to the modelling of beach equilibrium; Bagnold (1966)
later applied this concept to predict the total bedload transport. Wilson
(1966) showed that the net bed-load transport rate is proportional to the
third moment of near-bed free-stream velocity. Subsequently, higher
moments of the velocity field were incorporated into models of total bedload
transport by Bowen (1980) and Bailard and Inman (1981). Elfrink et al.
(1999) and Doering et al. (2000) analyzed the importance of velocity
skewness on cross-shore sediment transport. Haas et al., (2008) found that
the advection of sediment due to the skewed wave velocity is large and in the
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direction of the waves. It is opposite to the results with sinusoidal wave
velocities due to the increase in the bottom shear stress under the wave
crests. Fuhrman et al. (2009) found that wave skewness has important
onshore contributions outside the surf zone. Resuilts of streaming induced
within the wave boundary layer showed that skewness and asymmetry are

demonstrated to promote largely offshore streaming velocities.

Nielsen (1992) noted that the onshore velocity of a pitch forward wave
increases in magnitude faster than the offshore velocity, and the associated
boundary layer has a shorter time to develop. Thus, the onshore velocity
generates a thinner boundary layer and therefore a larger sediment
transport. Drake and Calantoni (2001) found that differences in acceleration,
between the front and the back of an asymmetric wave, yield horizontal
pressure gradients in the boundary layer, which act on the near-bed fluid
and sediment. This led Nielsen and Callaghan (2003} to conclude that the
acceleration effects, associated with the saw-tooth asymmetry of the flume
waves, account for the greatest part of the sediment transport. Hoefel and
Elgar (2003) observed that onshore bar migration is related to cross-shore
gradients in the skewness of velocity accelerations if mean currents are
relatively weak. Hsu and Hanes (2004) employed a two-phase model to study
the effects of wave shape on the transport of coarse-grained sediment in the
sheet flow regime. Examinations of the sheet flow response to flow, forcing
typical of asymmetric and skewed waves, indicated a net sediment transport

in the direction of wave propagation. Gonzalez-Rodriguez and Madsen (2007)
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parameterize the effects of wave shape on seabed shear stress and bedload

transport.

Recently, Ruessink et al. (2009) found that sediments entrained into the
flow during a particular wave half-cycle has not completely settled before
flow reversal and tends to be transported during the next half-cycle. This
phase-lag effect enhances net transport rates under oscillatory flow
dominated by velocity asymmetry. Dong and Zhang (2002) found that the
phase-lag between the free stream flow and particle can be simulated by two
phase models described in Dong and Zhang (1999). Austin et al. (2009)
found that onshore-directed flow accelerations under the steep front face of
asymmetric waves were significantly correlated with sediment suspension,
whilst the effects of flow skewness and bed-ventilation were discounted. Also
van der A et al. (2010) confirmed that net transport in acceleration-skewed
flow is non-zero, is always in the direction of the largest acceleration and
increases with increasing acceleration skewness based on the experimental

study.

Christou et al. (2008) concluded that highly nonlinear processes are
involved in the evolution of waves propagating over a breakwater. The
bispectrum can determine wave skewness and asymmetry arising from
wave-wave nonlinear interactions. Bispectral analysis of previous studies
showed that nonlinear interactions including self-interactions, sum and
difference interactions determine the amplitude of wave skewness and

asymmetry (Elgar and Guza, 1985; Crawford, 2000; Crawford and Hay,
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2001). Based on the bispectral analysis of data sets for a natural beach,
Doering and Bowen (1995) derived empirical relationships of wave skewness
and asymmetry with Ursell number. Herbers et al. (2003) used a Boussinesq
model to investigate the nonlinear transformation of the frequency-
directional spectrum and bispectrum of surface gravity waves propagating
over a submerged sand bar on a beach. Their Boussinesq model predicted
surfl zone skewness and asymmetry well. Zou et al. (2003) derived the
analytical solutions of wave orbital velocity for the entire water column over
a sloping bottom. Both their theory and observations showed that the
skewness and asymmetry of the vertical velocity are subject to significant
bottom slope effects, whereas those of horizontal velocity are not. However,
these studies focused on wave skewness and asymmetry on natural beaches;
the effect of coastal structures on wave skewness and asymmetry has not

been investigated.

Low-Crested Structures (LCS) are increasingly regarded by coastal
engineers and planners as a valuable alternative to more classical surface-
piercing and/or high-crested structures. This is because the cost of the
breakwater system increases with the increasing height of breakwaters.
Furthermore, LCS are more aesthetic and do not spoil the coastal landscape,
this being important in recreational and residential coastal development.
Better understanding of the transformation of wave shapes over LCS is
crucial in the assessment of the functionality and stability of coastal and

flood defence schemes. Previous studies, however, have mainly been on wave
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transmission, reflection and wave spectral change over LCS (Van der Meer et
al., 2000; Van der Meer et al., 2005; Wang et al., 2007). Literature on the

transformation of wave skewness and asymmetry over LCS is sparse.

3.2 Experimental data

Data was obtained from oblique three-dimensional wave transmission
tests in the multidirectional wave basin (18.0 m x 12.0 m x 1.0 m) at Aalborg
University, Denmark. Detailed descriptions about this project can be found

in Appendix D2.

A smooth mound Low-Crested Breakwater, and a rubble mound Low-
Crested Breakwater, were tested. The cross-section and layouts of smooth
and rubble mound LCBs including positions of gauges are given in Figure D2.
The target irregular 3-D waves were generated using the parameterised
JONSWAP spectrum and spreading function of cosine distribution with
spreading parameter s’=50. Layouts of breakwaters with 0°, 30° and 50°
relative to the wave generator were used to cover a large range of wave

incident angles.

Table 3.2.1 lists an overall view of 168 wave basin transmission tests
under irregular waves. The observations were measured from ten fixed
gauges, five of them located on the incident side of LCBs and the other five
gauges located on the transmission side of LCBs. Each record was sampled

at 40Hz and was 90-second long. A bandpass filtering (the upper and lower
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cut-off frequencies are 5 and 0.2 times the peak frequency respectively) was
applied to the measurements to remove the noise and signal which are

separated in the temporal frequency domain.

Table 3.2.1 Overall view of test program in wave basin transmission tests

Parameters Values
No of tests 168
Crest freeboard (m) 0.05, 0, -0.05
Water depth (m) {rubble mound LCS}) 0.20,0.25,0.30
Water depth (m) (smooth LCS) 0.25,0.30,0.35
Wave height (m) 0.06 to 0.22
Wave steepness 0.02 to 0.058
Wave peak period (s) 1.06 to 2.33
Wave mean period (s) 09 tol8
Incidence angles (°) 0to 60

3.3 Transformation of Wave Skewness and Asymmetry

over LCS

Although the skewness and the asymmetry of near-bed velocities is
directly related to the sediment transport rather than those of surface
elevations, it i1s difficult to measure near-bed velocities and measurements
have been done mainly for surface elevations. The skewness and asymmetry
of near-bed velocities relate to those of surface elevations through a transfer
function (Zou et al., 2003). The skewness, S, can be obtained from the third

moment of surface elevation normalized by the second moment of surface
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elevations to the power of 1.5:

l (3.3.1)
7

where S represents wave skewness, 7, is the time series of surface

elevations, ris the averaged surface elevations, E[ ] is the expected value.

Elgar and Guza (1985) proposed that wave asymmetry, A, can be
calculated as the skewness of Hilbert transform (Oppenheim and Schafer,

1998) of surface elevations!, ¢.

(3.3.2)

where A represents wave asymmetry, ¢ is the Hilbert transform of surface

elevations, Zis the mean of ¢ .

A band pass filter (minimum frequency equals one fifth of peak frequency
and maximum frequency equals five times of peak frequency) was applied to

the calculated and measured time series of surface elevations.

! The Hilbert transform of surface elevations can be thought of as the convolution of g(r) with the function A(t)= lifT 1)
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Figure 3.3.1 Surface elevation measured in (a) gauge 2 on the incident side and (b)
gauge 7 on the transmission side of smooth LCS, Freeboard is 0 m, incident wave

height is 0.14 m, wave period is 2.12 s, water depth is 0.3 m and incident angle is 0°.

As shown in Figure 3.3.1, waves are generally characterised by a gradual
peaking of crests and flattening of troughs at both sides of breakwaters, a
characteristic of positive wave skewness (Elgar and Guza, 1985). Also, most
waves pitch forward on the incident side, but pitch backward on the
transmission side, a characteristic of negative and positive asymimetries
respectively. This change of wave shape from the seaward side to the leeward
side of LCS was fully supported by the Bispectral analysis (Section 3.4) and
numerical simulations (Section 4.4). The transmitted wave train has greater
high frequency content than the incident wave train, as observed by Van der

Meer et al (20053).

Parameters involved in wave transmission over LCS, such as incident

wave height (preferably the value of Hs at the location of gauge 1), incident
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wave angles (g), Iribarren number (&tan(a)/(Sep)% S, where tan(a) is the
scaside slope of structures and S, 1s the wave steepness in deep water),
structural freeboards (R, crest width (B) and nominal diameters of rubbles
(Daso), were found to be important in wave transmission process (Van der

Meer, et al., 2005). A definition sketch is given in Figure 3.3.2.

Incident side B Transmission side
Hi Hs
[
v
Lo
Lp

Figure 3.3.2 Definitions of governing parameters involved in wave transmission

over LCS (Van der Meer et al., 2005).

However, parameters mentioned above are global and their effects on
wave-structure interaction are reflected in the local wave parameters. For
instance, the effect of incident wave angles 1s mainly on the transmission
coefficient, and consequently the transmitted wave heights, which is
consistent with the conclusions of Van der Meer et al. (2005). In addition,
based on the bispectral analysis, Elgar et al. (1985) concluded that wave

asymmetries were due to self-self interactions, sum frequency interactions
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and different frequency interactions. Therefore, wave asymmetries are a
measure of wave nonlinearity. The nonlinear interaction between two
primary wave trains can induce a second-order Stokes wave train (Phillips,
1960), and Ursell number (the relative wave height times the relative
wavelength squared) is the expansion parameter for a Stokes wave train.
Thus the Ursell number indicates the wave nonlinearity. As a result, we will
next look at the relationship between wave skewness or asymmetry and local
Ursell number, which has been applied to parameterize orbital velocity
asymmetries of shoaling and breaking waves on natural beaches in (Doering
and Bowen, 1995; Doering et al., 2000). Although it has been observed that
a gentler beach leads to more symmetric wave profile, this study does not
consider the slope effect of LCS, since in the DELOS experiments the smooth
LCB has only one seaside slope of 1:3, and the rubble mound LCB has only

one seaside slope of 1:2 as well.

Van der Meer (2005) pointed out that more energy is distributed around
higher frequencies than in the incident spectrum due to the effect of wave
breaking over a low-crested breakwater. As a result, although the wave peak
period on the transmission side (the reverse of peak frequency of wave
spectrumy} is close to wave peak period on the incident side, the mean period
(Tmo1=2*m*mo/mi, where mg is the zero order moment and m; is the first
order moment of power spectrum) may decrease considerably. Taking case
17 in Table D2 for example, Figure 3.3.3 shows that the peak of power

spectrum keeps the same (fp=2.23Hz) when wave propagates from incident
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side to the transmission side of LCS. However, the mean period Tmo: changes

from 1.54s on the incident side to 1.3s on the transmission side.

Incident side
----- Transmission side

6 -

Figure 3.3.3 Power spectrum of surface elevation on the incident side and

transmission side

Therefore, a local Ursell number calculated with peak period does not
contain the information of wave period changes over LCS, which
demonstrates the energy transferring from peak frequency to high
frequencies over LCS (see Figure 3.4.2 and Figure 3.4.2). Wave mean period
is used to calculate the local Ursell number instead. Thus, the definition of

local Ursell number, Uy, in the present work is:

m (3.3.3)
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where H; is defined here as the average height of the highest one-third of
the waves in 900 seconds for each gauge, L, is the local mean wavelength

calculated by the mean period and h is the local water depth.

1.5 - - - 1 1 .

S, smooth LCBs
A, smooth LCBs
S, rubble mound LCBs
A, rubble mound LCBs

Skewness/Asymmetry

_____
L
ha LT

[} 20 40 60 80 100 120
Ursell number

Figure 3.3.4 Comparison between Equations 4.10 [solid line) and 4.11 (dash-dotted
line) in Doering and Bowen (1995} and DELOS data on the incident side of both
smooth and rubble mound LCS. Note, the definition of Ursell number here is
calculated by the peak period in order to keep the same as that in Doering and Bowen
(1995).

It can be expected that wave skewness on the incident side (S) and
asymmetry on the incident side (4) of LCS will show a similar relationship
with respect to the Ursell number on the incident side (U} as that of wave
shoaling on a natural beach. Doering and Bowen (1995) obtained the

relationship between wave asymmetries and the Ursell number, and argued
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that the asymmetries at each depth are under strong local control. Figure
3.3.4 shows that the comparisons between Equations 4.10 and 4.11 in
Doering and Bowen (1995) and DELOS data on the incident side of both
smooth and rubble mound LCS. Note that the Ursell number in Doering and
Bowen (1995} was calculated by peak period and also different from the
present definition {(Equation 3.3.3) by a factor 3/ (32m). Figure 3.3.4 shows
that the Equations derived by Doering and Bowen (1995) underestimate
wave skewness and absclute asymmetry. It is worth mentioning that
Equations 4.10 and 4.11 in Doering and Bowen (1995) are empirical
formulae derived from field measurements of a natural beach in the absence

of coastal structures.

3.3.1 Transformation of wave skewness and asymmetry over smooth

LCS

Figure 3.3.5a shows that wave skewness is positive and increases rapidly
with increasing Ursell number, attains a maximum and then stays around
the maximum. While wave asymmetry fluctuates around zero at small Ursell
number, then becomes negative and decays with increasing Ursell number
(Figure 3.3.5c). These results are similar to those of the natural beach
(Doering and Bowen, 1995; Doering et al., 2000). Because of its similarity to
saturation characteristics, the relationship between wave skewness and

asymmetry and the Ursell number may be described by a hyperbolic tangent
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law. Using the DELOS data, Equations 3.3.4 (the ratio of the regression sum
of squares to the total sum of squares, R2 is 0.69) and Equations 3.3.5
(R?=0.84) are established from measurements on the incident side with least
squares fitting and provide quantitative relationships between S; and A; in
terms of Un The range of Ursell number on the incident side is between S

and 43.

‘2;'7)+0.10 (3.3.4)

ri

S, =1.28* tanh(

-22.87

A =—-1.53*tanh( }—1.52 (3.3.5)

el

It is expected that the relationship between wave skewness on the
transmission side (S} and wave asymmetry on the transmission side (Aj)
expressed 1n forms of the local Ursell number on the transmission side (Un)

is not similar to that on the incident side due to the presence of LCS.

Figure 3.3.5b shows that wave skewness stays around zero at small
Ursell number, then increases slowly up to a maximum value from zero,
finally starts to decrease slowly. It is interesting to observe that wave
skewness is larger than that on the incident side under the same Ursell
number (Figure 3.3.5a and Figure 3.3.5b). Elgar and Guza (1985), Crawford
(2000) and Crawford and Hay (2001) have suggested that wave energy at
high frequencies enhances sum frequencies interactions, therefore
generating more positive skewness, and this could be an explanation for our

observation. As shown in Figure 3.3.5d, wave asymmetry increases rapidly
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up to maximum value from zero then decays slowly with increasing Ursell
number. Wave asymmetry on the transmission side also has a maximum
value comparing with that on the incident side. The empirical Equations
3.3.6 and 3.3.7 are derived from the measurements on the transmission side
using least squares fitting to relate S; and A: to Un. Predictions agree well
with observations for wave skewness (R?=0.70) and reasonably well for wave
asymmetry (R?=0.62). As seen in Figure 3.3.5, for large Ursell number on the
transmission side of LCS, wave skewness for incident angle f=0° is smaller
but wave asymmetry is larger than those for incident angles f=30° and 50°.
These different wave skewness and asymmetry during oblique wave
propagation over LCS cause scatters in the relationship between wave
skewness and asymmetry and local Ursell number. This is mainly because
normal incident wave energy is reduced by the strong reflected wave from
LCS, while oblique waves face less resistance from reflected waves when they
propagate over LCS. Therefore, the cases with normal incident wave have
less transmitted wave energy and less sum nonlinear interactions, leading to
small wave skewness and large positive asymmetry (Section 3.4). It should

be stated that the range of Ursell number on the transmission side is

between 0.05 and 12.5.

S, = —l.25*tanh(3('1£)+l.23 (3.3.6)

rt

4,=-0.015*U,> +0.19*U,, - 0.05 (3.3.7)
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Figure 3.3.5 Relationship between wave skewness (a and b) and asymmetry (c and
d) and Ursell number on the incident side (left panel) and the transmission side (right
panel) of smooth LCS. Solid line is predicted by Equations 3.3.4 for (a), Equations
3.3.5 for (c), Equations 3.3.6 for (b) and Equations 3.3.7 for (d).

To demonstrate the validity the efficiency of Equation 3.3.3, a detailed
comparison of the dependence of wave skewness on Ursell number with peak
wavelength and mean wavelength can be found in Figure 3.3.6. Predictions
are calculated by formulae in form of Equation 3.3.6 using the least squares
regression. Regression results show that the R-square is 0.63 for Ursell
number with peak wavelength, and R-square is 0.71 for Ursell number with
mean wavelength. Therefore, a conclusion can be drawn that Ursell number

with mean wavelength is a better governing parameter to describe wave
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skewness and asymmetry on the transmission side of LCS, where there is a

broad spectrum.
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Figure 3.3.6 Comparisons of the dependence of wave skewness on Ursell number
with (a) peak wavelength and (b) mean wavelength on the transmission side. Symbols
represent the measurements; dashed lines stand for measurements equal predictions.

Predictions are calculated by the best-fitted expressions in form of Equation 3.3.6.

3.3.2 Transformation of wave skewness and asymmetry over rubble

mound LCS

The water depths used in the rubble mound LCS are 0.05m smaller than
those of smooth LCS, the nominal diameter of the units in the rubble mound
LCS is Dn50=0.047 m, and the seaside slope is 1:2 for rubble mound LCS,

whereas it is 1:3 for smooth LCS.

Figure 3.3.7a and Figure 3.3.7c shows that the relationships of rubble
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mound LCS between wave asymmetries and Ursell number are similar to
those of smooth LCS on the incident side. This may be due to the reflection
from both LCS is minimized with inclined structures in order to focus on
wave transmission in the design of the DELOS project (Van der Meer, 2005;
Kramer, 2005). Equations 3.3.8 and 3.3.9, derived by least squares fitting,
specify these relationships with R? = 0.64 and R? = 0.84 for wave skewness
and asymmetry respectively. The range of Ursell number on the incident side
is between 6 and 66. Comparisons between Equations 3.3.8 and 3.3.9 of
rubble mound LCS and Equations 3.3.4 and 3.3.5 of smooth LCS are shown

in the Figure 3.3.7.

s, =—11.32*tanh(%)+1.17 (3.3.8)

ri

~] 582

A =—1.23*tanh( )-1.16 (3.3.9)

ri

We will next examine the relationships between wave skewness and
asymmetry and Ursell number on the transmission side of rubble mound
LCS. Figure 3.3.7b shows that wave skewness stays around zero at small
Ursell number, then increases slowly up to a maximum value from zero,
finally begins to decay. Wave asymmetry increases quadratically with
increasing Ursell number from approximately zero, reaches the maximum of
wave skewness, then decays quadratically low to negative values (Figure

3.3.7d). The recommended formulae for rubble mound LCS are:
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-9.16

S, =2.97* tanh( )+3.04 (3.3.10)

e

A =-0.015*U,>+022*U, -0.41 (8.3.11)

where R? is 0.72 for Equation 3.3.10 and 0.54 for Equation 3.3.11. The
applicable range of Ursell number on the transmission side is 1.5 to 15. This
applicable range of Ursell number is larger than that for smooth LCS, and it

is due to smaller water depth at the same locations for rubble mound LCS.
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Figure 3.3.7 Relationship between wave skewness (a and b) and asymmetry (c and
d) and Ursell number on the incident side (left panel) and the transmission side (right
panel) of rubble mound LCS. Solid line is predicted by Equation 3.3.8 for (a), Equation
3.3.9 for (c), Equation 3.3.10 for (b) and Equation 3.3.11 for (d). The dash-dotted lines
are predicted using Equation 3.3.4 for (a), Equation 3.3.5 for (c), Equation 3.3.6 for (b)
and Equation 3.3.7 for (d) respectively.
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Figure 3.3.7 shows comparisons between Equations 3.3.10 and 3.3.11 of
rubble mound LCS and Equations 3.3.6 and 3.3.7 of smooth LCS.
Predictions of wave asymmetries on the transmission side for rubble mound
LCS are smaller than those of smooth LCS, although they are both around
zero values at small Ursell numbers. This may be due to the roughness and
porosity of the structure, causing energy dissipation, which consequently
decreases wave nonlinear interactions and generates small wave

asymmetries.

It is obvious to observe that wave skewness and asymmetry strongly
depend on local Ursell number on the transmission side for rubble mound
LCS, while there are some scatters for smooth LCS in Figure 3.3.5. This is
because rubble mound LCS has small reflection coefficients due to its
permeability. Since wave skewness and asymmetry are related to net
sediment transport, the investigations above provide effective ways to predict
wave asymmetries, which may help incorporate wave asymmetries into
analytic or numerical models of the sediment transport, consequently may

help improve the stability of breakwaters and decrease sediment transport.

3.3.3 Relationships of wave asymmetries between both sides of LCS

Although wave skewness and asymmetry are strongly related to local
Ursell number as discussed above, it is worthwhile investigating the
relationships of wave asymmetries between both sides of LCS. This helps

understand the effect of the presence of LCS on wave transformation over
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LCS.

Figure 3.3.8 shows that for smooth LCS, wave skewness on the
transmission (S;) side stays around zero, and then has weakly linear
independent on wave skewness on the incident side (S), while wave
asymmetry on the transmission side (A;) has weakly quadratic independence
on wave asymmetry on the incident side (A). The effect of the relative
freeboard on the relationships of wave asymmetries between both sides of
LCS is not significant. Wave skewness retains a positive sign on both sides
but asymmetry changes from negative on the incident side to positive on the
transmission side. For rubble mound LCS, wave skewness on the
transmission side shows linear dependence on wave skewness on the
incident side, and wave asymmetry on the transmission side displays a
weakly quadratic dependence on wave asymmetry on the incident side. The
effect of the relative freeboard on the relationships of wave asymmetries on
both sides of LCS is significant: under the same of S; or A, large relative
freeboards correspond to small S; or A: respectively. This is due to a
considerable increase in the intensity of wave breaking as the relative
freeboard increased (Blenkinsopp and Chaplin, 2008), consequently more
energy is dissipated, which decreases wave nonlinear interactions and
generates small wave asymmetries. Figure 3.3.8 shows that wave skewness
on the incident side is mostly larger than that on the transmission side,
which is mainly due to the decreased wave height and local Ursell number.

Small magnitudes of wave asymmetry on both sides of LCBs are
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approximately equal, but large magnitudes of wave asymmetry on the
incident side correspond to small wave asymmetry on the transmission side.
This is because waves with large negative asymmetry has steep front slope
and easy to be broken, subsequently leading to small transmitted wave
energy. The sign of wave asymmetry changes from negative to positive,
corresponding to waves pitching forward to pitching backward (Figure 3.3.1).
This is consistent with previous research results over a submerged sand bar
on a beach (Herbers et al., 2003). Note that Herbers et al.’s definition of wave

asymmetry has the opposite sign to that in the present work and also to that

of Elgar and Guza (1985).
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Figure 3.3.8 Relationships of wave asymmetries between both sides of LCS. (a)
wave skewness of smooth LCS, (b) wave asymmetry of smooth LCS, (c) wave skewness
of rubble mound LCS and (d) wave asymmetry of rubble mound LCS. Dotted line
represents S;=S: while Dashed line stands for A:«=-A;.
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34 Bispectral Analysis of Nonlinear Wave Interactions

In the presence of LCS, waves retain sharp crest and flat trough on both
sides but change from pitch-forward to pitch-backward, which in turn may
change the directions in wave induced sediment transport, consequently
modifying the beach morphology after construction of LCS. To better
understanding the transformation of wave asymmetries analyzed above,
Bispectral analysis (see Appendix C) has been applied here to study the
contributions to the wave skewness and asymmetry from the interactions of

different wave components, similar as work of Elgar and Guza (1985).

In waves that are initially linear, nonzero wave skewness and asymmetry
arises as a result of nonlinear interaction between the frequency
constituents of the waves during the shoaling process. Bispectral analysis
has been introduced to investigate the contribution of nonlinear interactions
between frequency components of wave spectrum by previous researchers
(Elgar and Guza, 1985; Doering and Bowen, 1995), since the b'ispectrum is
usually used to detect the secondary forced waves and can apparently show

the phase coupling between the primary waves and associated forced waves.

In the DELOS datasets, the generated spectrum initially has only one
peak at the primary frequency and keeps the same for cases with negative
and zero freeboards, but it evolves to double peaks around the primary
frequency for the cases with the positive freeboard due to wave reflections.
For the case of the LCB with the negative freeboard (Figure 3.4.1), the
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spectrum on the incident side has large peak at the primary frequency f=0.5
Hz and a small peak at the second harmonic frequency f=1.0 Hz, while a
broader power spectrum exists on the transmission side, although the
primary frequency remains at 0.5 Hz. This is consistent with the
investigation by Van der Meer et al. (2005). However, for the case of the LCB
with the positive freeboard (Figure 3.4.2), the spectrum on the incident side
shows three peaks, which are located at f=0.48 Hz, f=~0.6 Hz, and f=1.2 Hz
respectively. Transmitted waves are characterised by a broader power
spectrum, Peak frequencies are f~0.58 Hz and f~=1.1 Hz respectively. In the
present work, bispectral analysis is implemented next for the cases of
smooth LCB with the negative freeboard (Figure 3.4.1) and positive freeboard
(Figure 3.4.2). There are 281 degrees of freedom and the 95% significant
level for zero bicoherence is b=0.146 (Haubrich, 1965), and significant
nonzerco values in the bispectrum are limited to frequencies below 2 Hz.
Areas of significant bicoherence indicate frequency pairs (fi, f2) that are

involved in either sum or difference interactions.
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Figure 3.4.1 Normalized Power spectra by the energy of peak wave component (a
and b), contours of bicoherence (¢ and d), contours of real part (e and f) and imaginary
part (g and h) of normalized bispectrum on the incident side (left column) and
transmission side (right column) of smooth LCS (R.=-0.05m, Hi=0.13m, h=0.35m,
a=0°). The minimum levels of contour plots are (c) 0.15, (d) 0.15, (e) 2e-4, (f) 2e-4, (g) -
1le-4 and (h) 0.6e-4. The corresponding intervals of contour levels are 0.1, 0.1, 3e-4,
3e-4, 3e-4, and 1.5e-4 respectively. Dashed contours are negative values and solid

ones are positive values.
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Figure 3.4.2 Normalized Power spectra by the energy of peak wave component (a
and b), contours of bicoherence (c and d), contours of real part (e and f) and imaginary
part (g and h) of normalized bispectrum on the incident side (left column) and
transmission side (right column) of smooth LCS (Rc=0.05m, Hi=0.11m, h=0.25m, a=0°).
The minimum levels of contour plots are (c) 0.15, (d) 0.15, (e) le-4, (f) 1le-4, (g) -13e-4
and (h) 2e-4. The corresponding intervals of contour levels are 0.1, 0.1, 2e-4, 3e-4, 3e-
4, and 3e-4 respectively. Dashed contours are negative values and solid ones are

positive values.
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3
The bispectrum was normalised by E(7(:)*)? . The sign of the real part of

bispectrum, ®{8; and imaginary part of bispectrum, 3{8;at frequencies (f:, f2)
described the sign of the contribution to the overall skewness and
asymmetry arising from the nonlinear interactions. The relationships
between wave skewness and asymmetry and the bispectrum are defined by
Equations (C3) and (C4} in the appendix C. In Figure 3.4.1c, the bicoherence
on the incident side indicates strong coupling at the peaks (f;=0.5 Hz, f2=0.5
Hz) and (f;=1.0 Hz, f>=0.5 Hz) with Hb=0.35, while on the transmission side
(Figure 3.4.1d), the bicoherence indicates strong coupling at the peak (f;=0.5
Hz, f>=0.5 Hz) with b=0.35 and frequency pairs (f:=0.7 Hz, f>=0.5 Hz) and
(f1=0.9 Hz, f>=0.5 Hz) with b=0.25. It is obvious that wave nonlinear coupling
on the peaks and harmonics on the incident side 1s greater than that on the
transmission side. As shown in Figure 3.4.1e and 8f, on the incident side,
R{B(J,, f,)r has a large positive value around the frequency pairs (f;=0.5 Hz,
f-=0.5 Hz) and also has a small positive value at the frequency pairs (f;=1.0
Hz, f=0.5 Hz); while on the transmission side, R{B(f,, /;); 1s positive under the
self-self interaction (f;=0.5 Hz, f>=0.5 Hz) with large bicoherence. Positive

B, f)r of self-self interaction and sum interactions between peak

frequency and second harmonic, leads to an overall positive skewness, which
is also consistent with that in Figure 3.3.1. Figure 3.4.1g demonstrates that

on the incident side, 3{B(f,;)! is negative around the frequency pairs (f;=0.5
Hz, f>=0.5 Hz) with large bicoherence. The large negative 3{8(f. ;) induced by

self-self interaction leads to an overall negative asymmetry although there
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are small positive values. However, Figure 3.4.1h shows that 3{8(4, f;); on the

transmission side has large positive values around the frequency pairs
(fi=0.5 Hz, f»=0.7 Hz) and (fi1=0.5 Hz, f>=0.9 Hz). The couplings between
f1=0.5 Hz and f2=0.7 Hz, f;=0.5 Hz and f>=0.9 Hz correspond to the difference
interactions between fr= 0.5 Hz and f3=1.2 Hz, f;= 0.5 Hz and f3=1.4 Hz,
transferring energy into the spectral valley between 0.5 Hz and 1.4 Hz. The

large positive 3{B(f,, f,):induced by difference interactions leads to an overall

positive asymmetry.

Comparing with the case with the negative freeboard, the case with the
positive freeboard i1s analyzed and shown in Figure 3.4.2. The bicoherence
indicates strong coupling around the peaks (f;=0.6 Hz, f>=0.48 Hz) and
(fi=1.2 Hz, f>=0.48 Hz) with b=0.45 on the incident side and the frequency
pairs (f1=0.58 Hz, f2=0.52 Hz) with b=0.45 on the transmission side. Figure
3.4.2e and 9f shows that on the incident side, ®{B(f, )} 1s positive around
frequency pairs (f1=0.6 Hz, f>=0.48 Hz) and (f;=1.2 Hz, f2=0.48 Hz), and on
the transmission side W{B(/,/;)} is positive at the frequency pairs (f;=0.58 Hz,
f2=0.58 Hz) with self-self interaction. Therefore, the large positive R{B(f, )},
induced by self-self interaction and interactions between peak frequency and
higher frequency, leads to an overall positive skewness. As seen in Figure
3.4.2g, on the incident side, the peak (f;=0.6 Hz, f2=0.48 Hz) has negative
3B(f.f,): showing a sum interaction between frequencies f;=0.6 Hz and
f2=0.48 Hz, as well as the sum interaction between frequency pairs (f;=1.2

Hz, f>=0.48 Hz). Both sum interactions have large bicoherence. The large
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negative S{8(/. /)t iInduced by sum interactions between frequency pairs,

leads to an overall positive asymmetry. On the transmission side, Figure

3.4.2h describes positive 3{8(f;, /)t of large magnitude arises from the

coupling between f;=0.58 Hz and f>=0.52 Hz with b=0.45, corresponding to a
difference interaction between f;=0.58 Hz and f3=1.1 Hz transferring energy
into the spectral valley around the frequency of 0.52 Hz. Large positive

3{B(f, 1)y induced by difference interactions with large bicoherence leads to

an overall positive asymmetry.

3.5 Summary

This chapter describes the parameterisation and transformation of wave
skewness and asymmetry when waves propagate over smooth and a rubble
mound LCS. The analysis was based on measurements collected in the wave
basin transmission tests of DELOS project. On the incident side of smooth
LCS, wave skewness is positive and increases with increasing Ursell number
then stays around the maximum, and wave asymmetry is negative and
decays with increasing Ursell number. On the transmission side of smooth
LCS, wave skewness shows similar dependence on Ursell number to that on
the incident side, but wave skewness is larger than that on the incident side
under the same Ursell number, while wave asymmetry is positive and
increases rapidly up to a maximum then decays slowly with increasing U.,.
Several practical empirical formulae related wave skewness and asymmetry

to Ursell number are established using least squares fitting for practical use.
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Predictions are in good agreement with measurements. Although
relationships between wave asymmetries and Ursell number of rubble
mound LCS are similar to those of smooth LCS, wave skewness and
asymmetry on the transmission side of rubble mound are smaller than those
of smooth LCS under the same Ursell number, although they are both

around zero at small Ursell numbers.

Wave skewness on the transmission side of smooth LCS show linear
dependence on wave skewness on the incident side, while wave asymmetry
on the transmission side display weakly quadratic dependence on wave
asymmetry on the incident side. Although wave asymmetries on the
transmission side of rubble mound LCS display similar dependence on wave
asymmetries on the incident side as that of smooth LCS, the effect of the
relative freeboard on the relationships of wave asymmetries between both
sides 1s significant for rubble mound LCS, but not significant for smooth
LCS. Wave skewness retains a positive sign on both sides but asymmetry
changes from negative on the incident side to positive on the transmission

side.

Our bispectral analysis shows that positive skewness and negative
asymmetry arises from self-self and sum interactions between frequencies
components of wave spectrum; the main contribution to positive asymmetry
1s due to difference interactions between the two principal components of the

wave spectrum on the transmission side of LCS.

Since wave skewness and asymmetry are related to net sediment
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transport, the investigations above provide effective ways to predict wave
asymmetries, which may help incorporate wave asymmetries into analytic or
numerical models of the sediment transport, consequently may help improve

the instability of breakwaters and decrease sediment transport.
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CHAPTER 4

NUMERICAL MODELLING OF EVOLUTION OF

WAVE ASYMMETIES OVER LOW-CRESTED

STRUCTURES

The parameterisation and transformation of wave asymmetries over Low-
Crested Structures (LCS) in Chapter 3 help us understand the relationship
between wave shapes and wave nonlinearity in the presence of coastal
structures. However, experimental datasets used in the chapter 3 were
limited to areas away from the LCS. Therefore, it is not clear how wave
skewness and asymmetry evolve across the LCS, especially above the LCS. It
would be helpful for us to look at the whole picture of the evolution of wave
asymmetries, from the incident side, over the structural crest to the
transmission side of the LCS. This work may enhance our understanding of
wave-structure interactions and help to assess the functionality and stability

of coastal and flood defennce schemes.
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The main aim of this chapter is to investigate the evolution of wave
skewness and asymmetry over the LCS using the improved RANS-VOF model,
as well as briefly interpreting the underlying physics. Laboratory data sets of
wave surface elevations, collected in the small scale wave channel tests at
the University of Cantabria (UCA) of DELOS project (Appendix D1), are used

to verify the numerical results.

This chapter includes seven parts: Firstly previous work on
transformation of wave shapes in the nearshore zone is reviewed; it is then
followed by a summary of experiments; numerical model implementation
and model validation are presented next; along with a comparison of
numerical results, measurements and predictions by the empirical formulae
derived in chapter 3; subsequently, factors affecting the evolution of wave
asymmetries are investigated; the physical interpretations are discussed and

finally a brief summary is given.

4.1 Introduction

As mentioned in Chapter 3, the evolution of wave skewness and
asymmetry over coastal structures is important to the stability of coastal
structures and beach morphology behind coastal structures due to its
induced sediment transport (Inman and Bagnold, 1963; Wilson, 1966;
Nielsen, 1992; Holmedal and Myrhaug, 2006; Nielsen, 2006; Gonzalez-
Rodriguez and Madsen, 2007). Previous research on the cross-shore

evolution of wave skewness and asymmetries mainly focused on natural
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beaches. Elgar and Guza (1985) found that for waves shoaling across
natural beaches, wave skewness increases from around zero up to maximum
value from deep water to shallow water and then decreases to near zero in
even shallower water. Wave asymmetry decreases from zero as waves shoal,
reaching a minimum value slightly shoreward of the skewness maximum,
and then slight decreases in wave asymmetry in very shallow water occurs
when waves start to break. Doering and Bowen (1995) found that both wave
skewness and asymmetry are strongly dependent on local Ursell number (the
relative wave height H/h times the relative wavelength A/h squared, h is
water depth) for shoaling and breaking surface gravity waves on natural
beaches. For small Ursell numbers, both wave skewness and asymmetry are
near zero; for increasing Ursell numbers, wave skewness increases up to
maximum value then decreases down to zero, while wave asymmetry simply
increase in a negative sense. Herbers et al. (2003) presents the evolution of
wave skewness and asymmetry over a submerged sandy bar on the natural
beach, by comparing the experimental measurements and numerical results

from a Boussinesqg model.

Compared with natural beaches, wave propagation over coastal structures
gave rise to different wave processes. Previous work on interactions between
waves and LCS mainly focused on the prediction of wave transmission and
reflection (Van der Meer et al.,, 2005), overtopping (Zanuttigh et al., 2008),
structural stability (Burcharth et al., 2006), Scour (Sumer et al., 2005) and
velocity and turbulence fields (Losada et al., 2005). On the other hand, there
was plenty of work focused on wave energy transfer in the presence of
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coastal structures or sandy bars. Beji and Battjes (1993) examined high
frequency energy generations as waves propagated over submerged bars.
They interpreted the physical mechanism as the amplification of bound
harmonics during the shoaling process and their release in the deeper region,
resulting in the decomposition of these finite amplitude waves. In addition,
waves satisfy the triplet resonance conditions (Phillips, 1960} on the
structural crest, therefore a very rapid flow of energy begins from the
primary wave to the higher harmonics. Losada et al. (1997) studied
harmonic evolutions of monochromatic waves as they propagate over a
porous step under non-breaking conditions. Results showed that the
permeability of LCS reduces the amplitude of all the harmonic modes
considerably due to the friction of porous media. Also, porous structure
increases the effective relative depth and decreases the relative wave height,
resulting in a lower Ursell number and a lower chance to generate
harmonics. Masselink (1998) investigated the generation of secondary waves
on a barred beach using the field measurements. The results showed the
decomposition of breaking incident swell into several smaller and shorter
waves upon entering the deeper water landward of the bar. The consequent
broad wave spectrum results in a decrease in the significant wave period and
may further delay the dissipation of wave energy. Sénéchal et al. (2002)
found that although wave breaking appears to weaken the strength of
nonlinear couplings, the generation of high-frequency energy is hardly
affected by wave breaking on a sandy, barred beach. Brossard and Chagdali

(2001) and Brossard et al. (2009) found that the decomposition of a wave
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above a submerged structure implies a transfer of energy from the
fundamental mode towards the bound modes, phase-locked with the
fundamental. Downstream the structure, higher free harmonic modes are
generated. Currently, there is little work relevant to the evolutions of wave
skewness and asymmetry across coastal structures, also the experimental
datasets available were insufficient and limited to some areas away from the

LCS.

The RANS-VOF model, described in chapter 2, was able to give good
predictions of near-field flow around LCS under regular waves (Garcia et al.,
2004), velocity and turbulence fields around and within permeable
breakwaters (Losada et al., 2005), random wave interaction with submerged
permeable structures (Lara et al., 2006) and wave overtopping processes
(Losada et al., 2008). It then is employed to investigate the evolution of wave
skewness and asymmetry over coastal structures, paying special attention to
the area above the structure and behind the structure. Employing the RANS-
VOF model helps to overcome the limited experimental datasets for the
transformation of wave shapes and enhance our understanding of the effect

of coastal structures on the evolution of wave skewness and asymmetry.

4.2 Experiment

Two-dimensional wave transmission tests, conducted in the flume (24.0 m
x 0.6 m x 0.8 m) at University of Cantabria, Spain (Appendix D1), were

employed to validate results of the RANS-VOF model in this Chapter. Two
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rubble-mound low-crested structures of 0.25 and 1.00 m crest width were
tested. Both structures keep the same crest elevations from the bottom (0.25
m), front and back slope angles (1V/2H} and porous media. The models had
two-layer armour of selected gravel and a gravel core. Armour characteristics
are Dns50=0.031 m, porosity =0.49 and the core characteristics are Dy50=0.046
m, porosity =0.53. A final dissipative beach with 1/20 sloﬁe was made of

quarry rock with Dps50=0.015 m and porosity=0.43.
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Figure 4.2.1 Installation of wave gauges in the experiments with (a) narrow crest
tests and (b) wide crest tests. Unit: m. G1 to G1l1 represent the surface elevation

gauges.
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The data used for the present study were measured by 11 resistive free
surface gauges to assess free surface evolution, gauges G1 to G3 were
installed in front of the LCBs; gauges G4 to G5 were located above the
seaward slope of LCBs; gauges G6 was placed on the transmission side for
0.25 m crest width but above the crest and on the leeside slope for 1.00 m
crest width instead; gauges G7 to G11 were placed on the transmission side
along the flat bottom behind the LCBs. The detailed coordinates of gauges
are shown in Figure 4.2.1. Each record was sampled at 30Hz. An overall
view of test programme in the small-scale wave channel experiments is listed
in Table 4.2.1. Experimental set-up and test conditions were described in

further detail in Appendix D1.

Table 4.2.1 Overall view of test programmes in wave channel tests

Parameter Value

H~ H;i (m) 0.04, 0.07, 0.10
T~ Tpi (8) 1.6,24,32

Lp (m) 2.53 t0 6.17

B (m) 0.25 and 1.0

h (m) 0.3,0.35,0.4

4.3 RANS-VOF Model Implementation

The RANS-VOF model, described in Chapter 2, is used to investigate wave
shape changes over LCS. The RANS-VOF model solves the 2D Reynolds

Averaged Navier-Stokes equations by decomposing the instantaneous
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velocity and pressure fields into the mean and turbulent components.
Reynolds stresses are closed with an algebraic non-linear k—e turbulence

model. A PLIC-VOF method was employed to capture free surface.

4.3.1 Model set-up

As can be seen in Figure 4.3.1, the numerical setup includes a permeable
LCB (crest width B=1m) located on the bottom of the flume, a 1/20 Plexiglas
ramp in front of the LCB and a final dissipative beach with 1/20 slope which
was made of quarry rock with Dns0=0.015m and porosity, n, is 0.43. The
permeable LCB consists of two layers the same as the experiments in Section
4.2 and Appendix D1: an armour layer with the Dns0=0.0466 m and n= 0.53;
a core layer with the Dn50=0.031m and n=0.49. There are two crest widths,
B=0.25m and 1.00m, in the present work for investigating the effect of
structural crest width. The sponge layer, described by equation (2.2.26), is
8m long (peak wave length at the wave-maker is approximately 3m). The
spongy layer absorbs the generated waves directed left and reflected waves

from the seaward slope of the LCB.

The computational mesh, designed for the simulation of the experiments
described in Section4.2 and Appendix D1, consists of four main regions with
different size and functions. As shown in Figure 4.3.1, in the x-direction and
without high resolution requirements, the grid size is 0.05m in the sponge
layer area and 0.02m around the source region. The grid size is then

changed to 0.0lm in the vicinity of LCS which is the zone of breaking,
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overtopping and strong turbulence generation (local wave length is about
2.5m for Tp=1.6s). On the dissipative beach, the grid size is set to 0.02m
again to allow considerable savings of computational time. The grid size in
the y-direction is 0.02m from y=0m to y=0.24m (the solid bottom), while in
other cells it is 0.01m. The y co-ordinate of the top boundary is 1.0m to
avoid numerical instability from the large surface elevation and the splash.

The total number of cells is 1150 in the x-direction and 88 in the y-direction.

dx=0.05m dx=0.02m
dy=0.01m dy=0.01m
......... .. —
Sponge Layer h Source
I Region
- Retum flow pipe——2=

Figure 4.3.1 Sketch of the numerical setup and the computational meshes.
Dashed line stands for still water level, SWL, and h represents the water depth.

In the mean flow field, an open boundary, composed of a radiation
boundary and an artificial 8m long sponge layer, is specified at the inlet
boundary to absorb the reflected waves from LCS; while free-slip boundary
condition is applied on the other boundaries. A no-slip condition at the solid
boundaries and a zero-stress condition at the free surface were treated. For
turbulence field, on the free surface, the zero gradient boundary conditions

for turbulence generation were based on the assumption of no turbulence
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exchange between the water and air. A log-law distribution of the mean
tangential velocity in the turbulent boundary layer is considered near the
solid boundary. The initial condition consists of a still water situation with
no current and wave motion. A return flow system described in Section 0O
was applied. An internal wave-maker developed by Lin and Liu (1999) was
located at x =10m and used to generate TMA spectrum (Appendix B). The
duration of simulations is in excess of 300 s. According to the rule of thumb
for the designation of source region proposed by Lin and Liu (1998), the
0.15m (H) x0.02m (L) source region is chosen and O0.1m under the still water

level.

A total of 48 tests with the different wave conditions and coastal
structural geometries are used in this study (Table 4.3.1). Test No. 34 to No.
48 are used to investigate the effect of the randomness in waves on the
evolution of wave shapes over LCS. All irregular waves are generated through
the internal source region based on the theory of TMA spectrum (Appendix
B). Calculation of wave propagation for 300s with cells of 1150x88 requires
about 36 CPU hours using a single processor of Intel Core 2 CPU 6600 @
2.4GHz, 2.4GHz. According to Table 4.3.1, the maximum peak frequency, f;,
1s 0.625Hz, and the small water depth is 0.3m. Therefore, the corresponding
minimum wavelength is 2.53m. Similarly, the wavelength for fmax (about 2Hz
in this sudy) is 0.4m. Therefore, there are approximately 250 points for f;
and 40 points for fmax above the LCS, and 125 points for f, and 20 points for

fmax in front of LCS.
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Table 4.3.1 Overall view of numerical simulations of the transformation of wave

shapes over LCS

Wave B H~H; T~ Porosit
CaseNo. 000  (m)  (m) (3 (m (m) (ArmorsCore)
1 Regular 1 0.1 1.6 0.4 -0.05 0.53+0.49
2 TMA 025 0.1 1.6 035 0.0 0.53+0.49
3  TMA 1 0.04 1.6 0.4 -0.05 0.53+0.49
4  TMA 1 0.07 1.6 04 -0.05 0.53+0.49
5  TMA 1 0.1 1.6 04 -0.05 0.53+0.49
6  TMA 1 0.04 2.4 04 -0.05 0.53+0.49
7  TMA 1 0.07 24 04 -0.05 0.53+0.49
8  TMA 1 0.1 24 0.4 -0.05 0.53+0.49
9  TMA 1 0.04 32 04 -0.05 0.53+0.49
10 TMA 1 0.07 3.2 04 -0.05 0.53+0.49
11 TMA 1 0.1 3.2 0.4 -0.05 0.53+0.49
12 TMA 1 0.04 1.6 0.35 0.0 0.53+0.49
13 TMA 1 0.07 1.6 0.35 0.0 0.53+0.49
14  TMA 1 0.1 1.6 035 0.0 0.53+0.49
15  TMA 1 0.04 24 035 0.0 0.53+0.49
16  TMA 1 0.07 2.4 035 0.0 0.53+0.49
17  TMA 1 0.1 24 035 0.0 0.53+0.49
18  TMA 1 0.04 32 035 0.0 0.53+0.49
19  TMA 1 0.07 3.2 035 0.0 0.53+0.49
20  TMA 1 0.1 3.2 035 0.0 0.53+0.49
21 TMA 1 0.04 1.6 0.3 0.05 0.53+0.49
22  TMA 1 0.07 1.6 0.3 0.05 0.53+0.49
23 TMA 1 0.1 1.6 0.3 0.05 0.53+0.49
24  TMA 1 0.04 2.4 03 005 0.53+0.49
25  TMA 1 0.07 24 0.3 0.05 0.53+0.49
26  TMA 1 0.1 24 03 005 0.53+0.49
27  TMA 1 0.04 3.2 03 005 0.53+0.49
28  TMA 1 0.07 3.2 0.3 0.05 0.53+0.49
20  TMA 1 0.1 3.2 03 005 0.53+0.49
30 TMA 1 0.1 1.6 0.4 -0.05 0.0+0.0
31 TMA 1 0.1 1.6 0.4 -0.05 0.3+0.3
32 TMA 1 0.1 1.6 0.35 0.05 0.53+0.49
33  TMA 1 0.1 1.6 0.35 -0.05 0.53+0.49
34-48 TMA (25 01 16 04 -005 0.53+0 .49
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Figure 4.3.2 Overview of 30 numerical gauges (WG1 to WG30). Water depth at
x=11m is 0.4 m. Solid line represents calculated surface elevations at t=200 s; dash-

dotted line stands for still water level.

There are 30 numerical gauges along the cross-shore section of simulation
setups, covering the flat bottom and Plexiglas ramp on the incident side,
slopes and crest of LCS and flat bottom and permeable beach on the
transmission side. The according coordinates of each numerical gauge can
be referred to Figure 4.3.2. The outputs have the sample frequency of 40 Hz
and consist of VOF values, horizontal and vertical velocities. To exclude the
numecerical noisc and the influence of irregular intervals of sampling (by
dynamic time step), the outputs are re-sampled into equal sampling intervals
of 0.025s, then filtered using the band pass filter, which has a low limit of
0.2 times peak frequency and a high limit of 5 times peak frequency. This
band pass filter ensured that the energy at both the low limit and high limit
is less than 1 percentage of the energy at the peak frequency. Since
numerical simulation is unstable in the initial several waves arising from the

internal wave-maker, the first 10 waves were excluded in following
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calculations.

4.3.2 Validation of generated waves

A regular wave propagating over a LCB with a wide crest was generated to
investigate the capability of capturing the surface elevations using the RANS-

VOF model (Case No.1).

- Calculation

_ Ol——arwGa I | 0 Measurement
Y | 1 | |
70 71 72 73 74 75
01— bywGs | 1 |

N (m)
o
lo
o
()
|©

Time (s)

Figure 4.3.3 Comparisons of predicted wave surface elevations and measurements
(a) on the incident side, (b) on the seaward slope, {c) on the crest, (d) on the landward
slope and {e) on the transmission side of LCS {Case No.l). Coordinates of WGs can be

referred in Figure 4.3.2,
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As shown in Figure 4.3.3, the cross-shore evolution of wave shapes over a
LCB is of importance; waves are all characterized by a peaking of crests,
flattening of troughs, a character of positive skewness (Elgar and Guza,
1985), although there are differences in the magnitudes of wave skewness.
Waves are characterized by pitching forward from the incident side to the top
of the crest, but pitching backward from the top of the crest to the
transmission side, corresponding to transfer from negative asymmetry and
positive asymmetry. These phenomena are consistent with the results in
Section3.3. Measured waves on the incident side were well reproduced
through the source region, and all calculated surface elevations are in good

agreement with measurements.

The cases with irregular waves generated from the TMA spectrum (see
Appendix B) were considered in the present work. Figure 4.3.4 shows the
comparisons of calculated power spectrum and measurements in front of
and behind the LCB (Case No.8). Results show that the spectrum of
measured waves on the incident side (WG4 and WG8) was well reproduced
through the source region, and all the calculations are in good agreement
with measurements. This indicates that the wave-maker used in the present
model is capable of generating accurately the irregular waves for numerical

simulations.
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Figure 4.3.4 Comparisons of calculated power spectrum and measurements (Case

No.8). Coordinates of WGs can be referred in Figure 4.3.2.

The evolution of wave spectrum is also shown in Figure 4.3.4 with the
cut-off frequency equalling 3 Hz. The solid and dash-dotted lines represent
the calculated and measured spectra respectively. To illustrate the
evolutions of the power spectrum, Sp(f), the vertical axes of the graphs
(Figure 4.3.4c and Figure 4.3.4d), which correspond to the numerical gauges
(WG18 and WG21) on the transmission side, is scaled the same as those of
WG4 and WGS8. The locations of spectrum peaks and spectrum shape are in
good agreement with measurements. Results show that incident wave
spectrum has the energy concentrated around the peak frequency and less

energy on the higher frequencies (Figure 4.3.4a). The reflected waves from
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the LCB contaminate the incident wave spectrum, causing a secondary peak
to appear (Figure 4.3.4b). The incident wave energy reduced considerably
over LCB and the remaining energy was transferred from the low frequencies
to high frequencies, leading to a higher upper tail (Figure 4.3.4c and Figure
4.3.4d). This phenomenon is consistent with that in Van der Meer et al.
(2005) and Lara et al. (2006). The spreading of spectrum energy on the high
frequencies is well captured by the numerical model, although there is a
slight underestimation of spectrum energy around the peak frequency on the

transmission side (Figure 4.3.4c and Figure 4.3.4d).

4.3.3 Velocity field around LCS

To further understand the wave transformation over coastal structures, it
will be helpful to examine the flow pattern around coastal structures. Figure
4.3.5 presents three snapshots of instantaneous velocity distribution,
representing three stages of wave propagating over coastal structures: wave

breaking, propagation on the crest and entrance into the transmission side.
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e O 2

Figure 4.3.5 Snapshot of the flow pattern in the computational domain (shown in
Figure 4.3.2). The grey area is the impermeable bottom, while the blue area represents
the permeable obstacles. The wave conditions: H=0.07m, T=1.6s, h=-0.4m and R.=-
0.05m.

In Figure 4.3.5a, it shows clearly the stage immediately after wave
breaking. The velocity field around the seaward edge of the structural crest
is very chaotic, with characteristics of both large upward and downward
velocities. The velocities on the crest and the leeward slope of coastal
structures are around zero, showing there is no wave effect at these areas at

this phase. While in Figure 4.3.5b, the waves propagate around the middle of
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the structural crest, with small water depth restriction, the velocities, both
vertical and horizontal components, remain larger due to energy flux
conservation. These large velocities may affect the stability of armour stones
on the structural crest. The velocity on the seaward slope of coastal
structure is downward and nearly tangent to the slope and there is still no
wave effect on the leeward slope of coastal structure. In Figure 4.3.5c, it is
obvious that overtopping water with large jet-like velocities enters into the
area on the leeward slope of structures, associated with a positive elevation
of mean water level. The velocities on the structural crest demonstrate that
there is a part of transmitted water flowing back to the incident side of
coastal structure, forming a resistance to the incident waves. However, this

part of water is very small for Low-Crested Structures.

4.4 Comparisons of Model Results and Measurements

Since the Ursell number 1s important to wave skewness and asymmetry
(Doering and Bowen, 1995; Doering et al., 2000; Elfrink et al., 2006), the
parameters related to Ursell number was considered next. Five cases with
different wave conditions but the same structural geometry and bottom
bathymetry were employed to validate the numerical simulations. These five
cases have the wave condtions as: Hi=0.04m, Tp=1.6s and h=0.4m;
Hi=0.10m, Tpi=1.6s and h=0.4m; H;=0.07m, Tpi=1.6s and h=0.4m; Hi=0.07m,
Tpi=3.2s and h=0.4m; H;=0.10m, Tpi=1.6s and h=0.3m. In order to compare
the calculated wave skewness and asymmetry with measurements,

generated wave height and peak period are adjusted to make the calculated

111




CHAPTER 4 NUMERICAL MODELLING OF EVOLUTION OF WAVE ASYMMETRIES

significant wave height and peak frequency at the x=14m the same as the

measurements of G1.

Comparisons of wave skewness and asymmetry of wave surface elevation
between measurements and numerical calculations are shown in Figure
4.4.1, although the measurement domain is much smaller than the
computational domain. For these five cases, calculated wave skewness and
wave asymmetry are in good agreement with the measurements both on the
incident side and on the transmission side. Numerical calculations and
laboratory measurements demonstrate that wave skewness increases slowly
in the far field but decreases in the seaward near-field region (consisting of
seaward slope and a part of areas in front of the structural toe). It then
increases up to the maximum on the structural crest then decreases
dramatically down to approximately zero in the leeward near-field region
(covering leeward slope and a part of areas behind the structural toe). Wave
asymmetry decreases from zero on the incident side, down to the minimum
value on the structural crest, and then increases up to positive value in the
leeward near-field region of LCS. Finally wave skewness increases and wave

asymmetry decreases on the beach behind LCS.
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Figure 4.4.1 Comparisons of wave skewness (S) and asymmetry (A) of wave surface
elevations between different (a, d) significant wave heights with T;:=1.6s and ho=0.4m,
(b, e) peak wave periods with Hi=0.07m and ho=0.4m (c, f) water depths at x=11m with
Hi=0.10m and Tpi=1.6s under the same other wave conditions and structural
geometry. Structural crest width B=1.0m. Lines represent numerical results and dots
represent measurements. o: measurements associate with solid line, 0: measurements
associate with dashed line. Grey area represents the LCB and bottom (scaled for

aesthetic reason).
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Evolutions of wave skewness and asymmetry over LCS described above
are similar to those over a submerged sandbar on a natural beach found
from the field measurements and predictions in Herbers et al. (2003). Wave
skewness is positive on both incident side and transmission side except for
the permeable beach, and wave asymmetry is negative on the incident side
but changes to positive values on the transmission side instead. This

phenomenon is consistent with the results of section 3.3.

4.5 Relationships of Wave Asymmetries and Ursell number

Wave channel tests described in described in Section 4.2 cover larger
ranges of wave conditions and structural properties than those in wave
basin transmission tests in Section 3.2, as well as more wave gauges around
LCS. We next apply the relationships between wave skewness and
asymmetry and local Ursell number (see definition in Equation (3.3.3)),
derived in Chapter 3, to numerical results and measurements. Results of
numerical gauges WG1 to WG7 and Measurements of G1 to G5 are used for
comparisons on the incident side, while results of numerical gauges WG19
to WG23 and measurements of G8 to G11 are used for comparisons on the
transmission side. Detailed coordinates of numerical gauges and wave

gauges can be referred in Figure 4.3.2 and Figure 4.2.1 respectively.
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Figure 4.5.1 Relationships of U: (U~=H.Lm?/h3®) and (a) wave skewness and (b)
asymmetry in front of LCS. o: the calculated results; A: measurements; solid lines:
predictions by Equations 3.3.8-3.3.9.
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Figure 4.5.2 Relationships of Ursell number, U, and (a) wave skewness, S, and (b)
wave asymmetry, A, above the flat bottom on the transmission side of LCS. o: the
calculated results; A: measurements; solid lines: predictions by Equations 3.3.10-
3.3.11.
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Figure 4.5.1 shows the comparisons of calculations, measurements and
predictions by Equations 3.3.8 and 3.3.9 on the incident side of LCS. The
relationships between calculated wave asymmetry and local Ursell number
are in good agreement with measurements and predictions, but calculated
wave skewness is smaller than the predictions although it agrees with
measurements. This discrepancy may be due to different reflection
coefficients. Both experiments and computational domain in this chapter are
2-Dimension, and waves are reflected normally from LCS. However,
experiments for deriving empirical formulae in CHAPTER 3 are 3-Dimension
and a large part of reflected waves could escape the area between the
inclined structure and the wave generator and get absorbed in the absorbing
sidewalls (Kramer et al.,, 2005). Since reflected waves mainly consist of
excited low-frequency wave components, which bring more difference
interactions in, therefore, the reflected wave contribute negatively to wave

skewness.

Figure 4.5.2 shows the comparisons of calculations, measurements and
predictions by Equations 3.3.10-3.3.11 on the transmission side of LCS. The
relationships between calculated wave skewness and asymmetry and local
Ursell number are in good agreement with measurements and predictions,
although the applicable range of Ursell number in Equations 3.3.10-3.3.11
is 1.5-15. Comparing with the observations in Chapter 3, calculations and
measurements of this study have large wave period and large water depth,
which lead to larger wave height and mean period on the transmission side,
consequently large Ursell number. Results of the present study were helpful
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to extend the effective ranges of empirical formulae proposed in Chapter 3. It
should be noted that the local mean Ursell number becomes to be incredibly
large due to extremely small water depths above LCS, thus local mean Ursell
number is no longer a suitable parameter to describe wave skewness and

asymmetry.

4.6 Factors Affecting the Evolution of Wave Asymmetries

4.6.1 Incident wave height, period and water depth

As shown in Figure 4.4.1a and Figure 4.4.1d, the larger wave height
corresponds to larger wave skewness and larger absolute wave asymmetry
on both sides of LCS. This is because large waves correspond to large
transmitted waves and have large Ursell number, therefore have large wave

skewness and absolute wave asymmetry (see Chapter 3).

Figure 4.4.1b and Figure 4.4.1e showed that the effect of wave period on
wave skewness is more significant than on wave asymmetry. It is interesting
to observe that the variations of wave asymmetries decrease with the
increasing wave periods. For the case of Tpi=1.6s, the wave skewness and
asymmetry dramatically change over LCS, while for the case of Tpi=3.2s, the
wave skewness and asymmetry have mild changes around LCS. Small wave
peak period corresponds to small extent of the effect of LCS. The case of
Tpi=1.6s decreases the maximum wave skewness to zero in a shorter

distance than the case of Tpi=3.2s, and the maximum asymmetry of the
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former is closer to LCS than that of the latter. This is mainly due to small
changes in relative water depth (h/L, h is water depth and L is the wave
length) on the rear slope with long wave length, and the decoupling process

is strongly dependent on the increasing gradient of relative water depth.

Figure 4.4.1c and Figure 4.4.1f indicated the combined effects of water
depth and the freeboard (Rc is 0.05m when h equals 0.3m). On the incident
side of LCS, small water depth corresponds to large wave skewness and
small negative wave asymmetry. This is consistent with the conclusions of
Section3.3: small water depth corresponds to large Ursell number, thus
corresponds to larger wave skewness and small negative wave asymmetry.
However, small water depth corresponds to nearly zero wave skewness and
asymmetry in the leeward near-field region. This is because LCS located in
small water depth (h=0.3m) have positive freeboards, which reflect a large
part of wave energy and only allow a small part of wave energy to be
transmitted and to overtop. This kind of structure finally induces small wave
heights and local Ursell number. It should be noted that for the emerged
case wave skewness and asymmetry on the top of the crest is mainly
calculated based on the free surface inside the porous media. Therefore, it 1s
not recommended here to consider wave skewness and asymmetry on the
top of the crest, since the aim of this study is to investigate the mean flow

outside the porous media.
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4.6.2 Incident wave shapes

Near-shore waves always change shapes under different atmospheric
pressure and wind speed. It 1s important to consider the effect of near-shore
incident wave shapes on the evolution of wave skewness and asymmetry,

and this will help to understand the wave process approaching the LCS.

To study the effects of incident wave shapes on the evolution of wave
skewness and asymmetry across LCS, two cases with different regular wave
shapes were investigated, including a positively skewed wave and negatively
skewed wave, both pitching forward. These two waves were under the same
wave parameters, structural properties and bottom bathymetry. After about
200 wave cycles of the numerical simulations, wave skewness and
asymmetry were calculated using numerical outputs of 30 locations across

the LCS.

As can be seen in Figure 4.6.1a, the positively skewed wave has sharp
crests and flat troughs, but the negatively skewed wave has sharp troughs
and flat crests. Both of them pitch forward, a characteristic of steep front
face and gentle rear face. The difference of rear face slope induces different
magnitude of wave asymmetry, although the front face slope is nearly the
same. Figure 4.6.1b shows the evolution of significant wave heights (the
average height of the highest one third of the waves) across the LCS. Small
variation of wave heights appears in the near field in front of LCS, this is
mainly due to the partial standing waves (observed by Garcia et al. 2004 as
well) induced by the combination of incident wave and reflected wave from
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LCS. Therefore, wave heights around the nodes are smaller than those
around the anti-nodes. Wave heights start to decrease after passing the front
slope of LCS due to wave breaking. Wave heights continue to decrease down
to about one-third of incident wave height since the energy transmitted or
overtopped is considerably smaller. It is obvious that the incident wave
shapes have little effect on wave heights across the LCS, therefore the
conclusion can be drawn that transmission coefficients are not changed by
incident wave shapes. Figure 4.6.1c and Figure 4.6.1d show that incident
wave shapes have a significant effect on wave asymmetry only on the
incident side but they have a significant effect on wave skewness on both the
incident side and top of LCS. The incident shapes have less effect on wave
skewness and asymmetry on the transmission side. The reason is that wave
skewness and asymmetry are adaptive to local water depth in the far field in
front of LCS and controlled by local Ursell number (see Chapter 3). Therefore,
with the same local water depth and sufficient area of far field in front of LCS,
wave asymmetries of different incident wave shapes tend to be the same by

this adaptive process.
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Figure 4.6.1 Effect of incident wave shapes on the evolutions of wave skewness
and asymmetry across LCS. {a) Wave profiles at x=11m, (b) significant wave heights,
H., (c) wave skewness, S, and {(d) wave asymmetry, A, under the same wave parameters
and structural properties. Grey area represents the LCB and bottom geometry (scaled
for aesthetic reason). Negatively skewed wave: $=-0.23, A=-0.19; positively skewed
wave: $=0.45, A=--0.35. Source region is located around x=10 m. B=1.0m, R;= -0.05m.,
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4.6.3 Randomness in incident waves

With the same wave conditions but random phase angles, 15 cases with
irregular waves have been investigated to investigate the effect of wave
randomness on wave asymmetries over the breakwater with a narrow crest

B=0.25m, H=0.10m, Tp~=1.6s and h=0.4m at X=11m.
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Figure 4.6.2 Effect of the randomness in incident waves on the evolution of wave
skewness (S) and asymmetry (4) over LCS, with the same significant wave height and
peak period and structural geometry. (a) Power spectrum, Soff), at x=11m and (b) wave
skewness and asymmetry. The dotted line represents the 95% confidence levels of the
mean skewness or asymmetry. Grey area represents the LCB and bottom geometry

(scaled for aesthetic reason). B=0.25 m, R.= -0.05 m.
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Using the TMA spectrum (see appendix B}, Series of time series were
generated with wave conditions at x=11m are: significant wave height
Hi=0.10m, wave peak period Tpi=1.6s and water depth h=0.4m. These time
series have the same peak frequency and are only different from the
distribution of power spectrum around the peak frequency (Figure 4.6.2a).
The mean wave skewness and asymmetry averaged between 10 cases with
95% confidence levels of the mean skewness or asymmetry are shown in
Figure 4.6.2b. As can be seen in Figure 4.6.2, the effect of the randomness
In irregular waves on both wave skewness and asymmetry across LCS is
negligible. This i1s mainly because wave skewness and asymmetry are
dependent on local Ursell number, which is only related to significant wave
height, peak frequency and local water depth, rather than the shape of
power spectrum (see Chapter 3). Large confidence interval appeared around
the shoreline (about x=24m), and this may arise from the numerical errors in
dealing with the extremely shallow water, or possibly due to the calculated

errors of wave skewness and asymmetry from small significant wave heights.

4.6.4 Relative crest width of LCS

The effect of crest width (B) on wave skewness and asymmetry was
investigated through two different crest widths: B=0.25m and B=1.0m,
under the same incident wave shapes, H;=0.10m, Tpi=1.6s and h=0.4m at

x=11m,
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Figure 4.6.3 Effect of relative crest width of LCS on (a) wave skewness (S) and (b)
asymmetry (4A) under the same wave conditions. Grey area represents the LCB and
bottom geometry {scaled for aesthetic reason). Symbols represent measurements, o:

narrow crest with; o: wide crest with. R.= -0.05m.

As shown in Figure 4.6.3, both cases display large variations of wave
skewness and asymmetry around the LCS. It is interesting to observe that
for both crest widths, the point of maximum wave skewness is located
around the leeside end of the crest and minimum wave asymmetry appears
at the middle of the crest. However, the rate of increase of wave skewness is

dependent on the width of the crest. The case with a narrow crest has a
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larger rate of increase of wave skewness and asymmetry above the crest than
the case with a wide crest. The maximum and minimum wave skewness and
asymmetry for these two cases are the same. We can draw a conclusion that
wave nonlinear interactions on the crest are developed into saturationfor
both crest widths. On the other hand, these two crest widths cause different
wave skewness and asymmetry on the transmission side, for example, a wide
crest has smaller skewness and larger asymmetry than a narrow crest. This
1s because large crest width offsets the controlled area by the transmission
effect. At the same location on the transmission side, waves propagating over
the narrow crest have recovered to a Rayleigh distribution, while waves
propagating over the wide crest may be still under the influence of wave

transmission effect.

4.6.5 Porosity of LCS

By changing the structural porosity, three cases with different porosities
were investigated: zero porosity (y=0.0), small porosity (y=0.4) and large
porosity (y=0.53). H;=0.10m, Tp=1.6s and h=0.4m. As shown in Figure 4.6.4a,
significant wave heights decreased slowly when wave propagated in front of
LCS, and then increased up to the maximum above the front slope of LCS
due to the decreasing water depth. After wave breaking, wave energy
dissipated and wave height decayed quickly. Comparing these three cases,
the case with zero porosity has the largest wave heights and the case with
large porosity has the smallest wave heights above LCS. It is mainly because
large porosity of LCS corresponds to large energy dissipation. There is less
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energy converting to the potential energy and thus a smaller wave height.

Zero porosity
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Figure 4.6.4 Effect of structural porosity on the evolution of {a) significant wave
height (H.), (b) wave skewness (S) and (¢) wave asymmetry (4) under the same wave
conditions and structural geometry. Grey layer only represents the LCB and bottom
geometry (scaled for aesthetic reason).c: measurements of the case with large

porosity. B=1.0m, R.= -0.05m.

After examining the significant wave heights, comparisons of wave
skewness and asymmetry between these three cases are shown in Figure
4.6.4b and Figure 4.6.4c. For all cases wave skewness increases first then

decays on the transmission side of LCS, while wave asymmetry decreases

126



CHAPTER 4 NUMERICAL MODELLING OF EVOLUTION OF WAVE ASYMMETRIES

initially but subsequently increases up to a maxumum value.

For the case with large porosity, wave skewness and absolute asymmetry
decreases to zero in a shorter distance behind LCS than those for the cases
with smaller porosities. The maximum wave skewness and asymmetry of the
former is also closer to LCS. Therefore, larger porosity corresponds to
smaller extent of the effect of LCS. This can be explained by the work of
Losada et al. (1997): Increasing porosity increases the effective water depth
(hes, taking into account the effects of structural permeability). Moreover, due
to dissipation in the porous medium, the relative wave height, a/hef,
decreases and the Ursell number decreases as well. Therefore, increasing
porosity wave skewness and asymmetry decrease and the chance of

harmonic generation is reduced.

4.6.6 Relative freeboards of LCS

Under the same wave conditions, Hi=0.10m, Tpi=1.6s and h=0.35m, three
cases with different freeboards (R.=0.05m, Om and -0.05m) were employed to
investigate the effect of relative freeboards on the wave skewness and

asymmetry.

As shown in Figure 4.6.5, the effect of relative freeboards on wa\.re
skewness and asymmetry 1is significant on the top of the crest and
transmission side but the same does not hold on the incident side. This is
expected since the permeability and small freeboards of LCS cause less

difference in reflection coefficients. Due to more dissipation inside the
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porous media, the case with a positive freeboard has smaller wave energy
and subsequently smaller nonlinear interactions over the structural crest. It
obviously corresponds to small wave skewness and absolute asymmetry.
However, comparing with the case with a negative freeboard, the case with a
zero freeboard has larger maximum wave skewness and asymmetry, as weil
as larger extent of the effect of LCS. The main reason is that the case with a
zero freeboard corresponds to a smaller effective water depth on the
structural crest. Taking the definition in Losada et al. (1997), the effective
water depth on the structural crest is around 0.0108 m for R=0 m and
0.0572 m for R~=0.05m when the linearized friction coefficient equals 5. As
mentioned in Chapter 3, wave skewness and asymmetry increase with
decreasing water depth and increasing Ursell number. Harmonic
generations increase with the decreasing water depth, and therefore they
take more time to be released on the transmission side (Losada et al., 1997).
As a result, a conclusion can be drawn that coastal structure with around
zero freeboard will lead to the maximum wave skewness and asymmetry and
large extent of the effect of structures. Coastal structure with a small
positive freeboard, however, helps to reduce wave skewness and asymmetry

significantly.
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2 ! ! | ! Ta)

Figure 4.6.5 Effect of relative freeboard on the evolution of (a) wave skewness (S)
and (b} wave asymmetry (4) under the same wave conditions and structural geometry.

Grey layer only represents the horizontal location of bottom geometry. B=1.0m.

4.7 Discussions

It has been increasingly recognized that pronounced nonlinear effects in
shallow water induce a dramatic transformation of wave shapes from initially
symmetric, nearly sinusoidal profiles, to asymmetric, pitched forward

profiles characteristic of near-breaking waves. With the presence of LCS,
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wave skewness decreases in the seaward near-field region and increases up
to the maximum on the structural crest; it then decreases dramatically in
the leeward near-field region. Wave asymmetry decreases in the seaward
near-field region, down to the minimum value on the structural crest, and

then increases up to positive value in the leeward near-field region of LCS.

Elgar and Guza (1985), Doering and Bowen (1995} and Ruessink (1998)
concluded that this transformation of wave skewness and asymmetry arises
from nonlinear triad interactions in which two primary wave components
with frequencies f; and fz excite a secondary wave component with the sum
(f1+f2) or difference (fi-f2, fi>f2) frequency. Therefore, Bispectra analysis (See
Appendix C) was employed here to examine the nonlinear interactions
occurring in the wave propagations over LCS. Kim and Powers (1979)
showed that the bi-coherence, b2(fi, {3), represents the fraction of power at
frequency fi+f2 due to quadratic coupling of the 3 modes (fi, fz2, and fi1+13).
The bi-coherence does give an indication of the relative degree of phase
coupling between triads of waves (Elgar and Guza, 1985), with b=0 for

random phase relationships, and b=1 for a maximum amount of coupling.

As shown in Figure 4.7.1a, in the seaward near-field zone including the
scaward slope, there is not only strong coupling in the sum interactions
between primary frequency and its harmonics, but also some coupling in the
difference interactions between harmonics and low frequencies. These low
frequencies may be from the reflected long waves from LCS. However, on the

crest the difference interactions diminish and stronger couplings in the sum
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interactions between higher harmonics appear (Figure 4.7.1b). In the
leeward near-field zone including the leeward slope, difference interactions
between harmonics and low frequencies increase gradually, along with
decreasing coupling in the sum interactions between primary frequency and
its harmonics (Figure 4.7.1c and Figure 4.7.1d). As concluded in Section 3.4,
sum interactions (fi, f2, fi+f2) have positive contributions to wave skewness
and negative contributions to wave asymmetry, and the difference
interactions (f1, f2, f2-fi) have a negative contribution to wave skewness and

positive contribution to wave asymmetry.

0; 7N (@wWGs 0; 7N T (®'wWeiz
%Qs‘ .0 . : L 0 A= B
g 0 : 1.5

Figure 4.7.1 Normalized power spectrum and bi-coherence, b2(fl, f2), of surface
elevations (a) on the front slope (WG8), (b) on the crest (WG12), (c) on the rear slope
(WG18) and (d) on the transmission side (WG21). The dotted lines represent the

primary frequency and second harmonic.
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The nonlinear interactions between primary components and harmonics
are consistent with earlier work. Beji and Battjes (1993) found that high
frequency energy is generated when waves propagated over submerged bars.
They interpreted the physical mechanism as the amplification of bound
harmonics during the shoaling process and their release in the deeper region,
resulting in the decomposition of these finite amplitude waves. In addition,
since waves satisfy the triplet resonance conditions (Phillips, 1960) on the
structural crest, a very rapid flow of energy is transferred from the primary
wave to the higher harmonics. Brossard and Chagdali (2001) and Brossard
et al. (2009) concluded that the decomposition of a wave above a submerged
structure implies a transfer of energy from the fundamental mode towards

the bound modes, phase-locked with the fundamental.

The effect of sum and difference frequency interaction on wave skewness
has been introduced by Crawford (2000), for completeness we will also
briefly discuss them here. The difference frequency interaction generates
long waves and usually accompanies a group or bound wave response. This
group wave is manifested as a depression of the mean surface elevation
under the largest waves of the group. Therefore, a peaky wave (positive
skewness) in the middle of the group riding on the increasing depressed
surface has an increasing negative contribution to wave skewness. In
contrast, the sum frequency interaction generates more short waves,
corresponding to the release of depressed mean surface elevation. A peaky
wave in the middle of the group riding on the increasing elevated surface has
an increasing positive contribution to wave skewness.
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The effect of the sum and difference frequency interactions on wave
asymmetry can be understood physically through the following argument.
Sum {requency interaction in front of LCS has a response of short wave
generation. Due to the dispersive effect, the short wave propagates slower
than the primary wave. The short wave is gradually lagged by the primary
wave and appears at the trailing edge of the primary wave (indicated by
square in Figure 4.3.3c). Therefore, wave develops as a pitching forward
wave, characteristic of sharp front face and gentle rear face. On the crest of
LCS, waves propagate at the same velocity in a rather non-dispersive
medium due to small water depth, thus wave asymmetry will remain the
same. However, when wave propagates into the deep water above the rear
slope of LCS, the dispersive effect becomes significant again. Difference
frequency interaction dominates this area and generates longer waves. Long
wave propagates faster than the primary wave, and it gradually exceeds the
primary wave and appears at the leading edge (indicated by square in Figure
4.3.3e). Thus, the wave evolves from pitching forward to pitching backward,
characteristic of gentle front face and sharp rear face. It should be noted that
the dissipation induced by the continuous shearing after wave breaking,
which make the turbulence bore degenerate into small-scale motions with
gentle slope of front face (Battjes, 1988}, it also contributes to wave evolution
from pitching forward to symmetric. Although plunging wave breaking will
reduce the wave asymmetry after the breakpoint, the wave has been
transformed into a turbulent bore immediately after wave breaking, still

characterized by a steep, turbulent front and an area of recirculating flow
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between the toe of the front (Battjes, 1988). Therefore, the difference of wave

asymmetry before and after wave breaking is small.

In contrast with the evolution of wave skewness and asymmetry on a
plane beach in Elgar and Guza (1985), the presence of LCS changes waves
from pitch-forward to pitch-backward (corresponding to change the sign of
wave asymmetry from negative to positive). The wave skewness has
minimum value around the seaward end of the crest and maximum value
around the leeward end of the crest of LCS. Wave asymmetry has the
minimum above the crest and maximum values on the transmission side.
This evolution of wave skewness and asymmetry may affect the directions in
wave Induced sediment transport, consequently modifying the beach

morphology after construction of LCS.

4.8 Summary

A 2-D RANS-VOF model was employed to investigate the evolution of wave
skewness and asymmetry of wave surface elevations over LCS. Computed
surface elevations and wave asymmetries were In good agreement with
laboratory measurements collected in the small scale wave channel tests at
the University of Cantabria (UCA). The relationships of calculated skewness
and asymmetry and local mean Ursell number agreed reasonably with the
predictions of the empirical formulae in Section 3.3. The results of the
present study enlarged the validate ranges of mean Ursell number and were

helpful to extend the application ranges of empirical formulae.
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Our results show that wave skewness increases slowly in the far field but
decreases in the seaward near-field region; it then increases up to the
maximum on the structural crest then decreases dramatically down to
approximately zero in the leeward near-field region. Wave asymmetry
decreases from zero on the incident side, down to the minimum value on the
structural crest, and then increases up to positive value in the leeward near-
field region of LCS. Finally wave skewness increases and wave asymmetry
decreases on the beach behind LCS. The presence of LCS changes waves
from pitch-forward to pitch-backward (corresponding to change the sign of
wave asymmetry from negative to positive). The wave skewness has
minimum value around the seaward end of the crest and maximum value
around the leeward end of the crest of LCS. Wave asymmetry has the

minimum above the crest and maximum values on the transmission side.

Our analysis on factors affecting the evolution of wave skewness and
asymmetry shows that large wave height corresponds to large wave
skewness and small wave asymmetry on both sides of LCS. Incident wave
shapes have a significant effect on wave asymmetry only on the incident side;
the negatively skewed wave has the larger free-stream velocity and average
overtopping discharge than the positively skewed wave. Rates of increase of
wave skewness and asymmetry above the crest increase with the decrease in
the crest width. The variations of wave asymmetries decrease with increasing
wave periods. Leeward areas with the effect of the structure increase with an
increase in the wave peak period and a decrease in the wave porosity.
Maximum wave skewness and asymmetry increase with the increase of
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structural freeboard from negative ones to zero, but they subsequently
decrease with larger positive freeboards. The randomness in irregular waves

has little effect on both wave skewness and asymmetry across LCS.

Bispectral analysis shows that the evolution of wave skewness and
asymmetry across the LCS can be mainly attributed to difference and sum
frequency interactions. There are both sum interactions and difference
interactions in the seaward near-field region of LCS, while the sum
interactions dominate on the crest and difference interactions dominate in

the leeward near-field region of LCS.

This study provides new insights on the role of wave skewness and
asymmetry on the breakwaters stability and sediment transport around the

structure and on the beaches behind it.
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CHAPTER §

SPATIAL DISTRIBUTION OF WAVE OVERTOPPING

WATER BEHIND COASTAL STRUCTURES

The spatial distribution of wave overtopping water behind the structure
sets the restriction to the use of the areas behind the coastal defences and
determines the consequent damages. Better understanding of the spatial
distribution of wave overtopping water is of key importance to the design of
sea defences and the placement of roads, walkways, railways, buildings and
other infrastructure, even the safety of people. It helps engineers to establish
the extent of the hazardous zones behind the structure when overtopping is

anticipated.

The aim of this study is to use the RANS-VOF model to investigate the
spatial distributions of random wave overtopping over impermeable coastal
structures, paying special attention to the effects of wave conditions,

structural geometries, and landward ground level on the spatial distribution
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of wave overtopping water. This study compares the calculated landward
spatial distribution of wave overtopping water with measurements of CLASH
project, by Pullen et al (2008) for vertical wall and Lykke Andersen (2006) for

1:2 dike respectively.

This chapter includes six parts: firstly, a concise literature survey on wave
overtopping and its distribution is introduced; it is followed by a description
of the numerical model implementation; a comparison of numerical results
and measurements is given next; along with a semi-analytical model
developed to understand the underlying physics of spatial distribution of
overtopping water. Factors affecting spatial distribution of overtopping water

over coastal structures are analyzed and finally a brief summary is given.

5.1 Introduction

The complexity involved in the wave interaction with LCB has led the
majority of investigators to resort to laboratory experiments and field
measurements. For example, a database on wave overtopping consisting of
more than 10,000 irregular wave overtopping tests collected from more than
160 independent projects or test series was created in the EU project CLASH
by van der Meer et al. (2009). Wave overtopping over breakwaters and sea
walls was extensively investigated by Jensen and Sorensen (1979) and Owen
(1980) respectively, followed by Troch et al. {2004), Briganti et al. (2005]),

Caceres et al. (2005), Pullen et al. (2008), and Franco et al. (2009). The work
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was extended to the sea dikes by TAW (2002), Schuttrumpf and van Gent
(2003) and Li et al. (2004; 2007). Bruce et al. (2009) established the
influence of armour type and configuration on overtopping based on small-
scale physical model tests. Recent studies were carried out to investigate the
influence of wave obliquity and directional spreading on wave overtopping of
rubble mound breakwaters by Lykke Andersen and Burcharth (2009} and
combined wave overtopping and storm surge overflow of a levee with a
trapezoidal cross section by Hughes and Nadal (2009). On the other hand,
numerical modelling of wave overtopping has gained popularity recently. Hu
et al. (2000) used the non-linear shallow water equations to study wave
overtopping. Liu et al. (1999) applied 2D RANS-VOF model, developed by Lin
and Liu (1998), to study wave overtopping over porous structures. This
model was employed by Losada et al. (2008), Reeve et al. (2008) and Xiao et
al. (2009) for the simulation of wave overtopping. In contrast Shao et al
(2006) employed the smoothed particle hydrodynamics (SPH) method to
investigate the surface wave overtopping. However, previous study on wave
overtopping has mainly focused on the overtopping discharge at the
overtopping point (Owen, 1980; Troch et al.,, 2004; Schuttrumpf and
Oumeraci, 2005; Bruce et al., 2009; van der Meer et al., 2009), but there is
little work on the spatial distribution of wave overtopping water behind the

sea defences.

Jensen and Sorensen (1979) presented some results of spatial

distribution of wave overtopping discharges behind a vertical wall and
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proposed an empirical equation to fit these results. Within the CLASH
project, Bruce et al. (2005) and Pullen et al. (2008) collected the spatial
distributed overtopping data from both field and laboratory experiments. A
relationship between the spatial distribution data and the distance behind
the sea defences was established. Their work was only for the vertical wall in
the Samphire Hoe and did not consider the effect of landward ground level.
Based on the large scale and small scale experiments on rubble mound
breakwaters, Lykke Andersen (2006) Lykke Andersen and Burcharth (2006)
and Lykke Andersen et al. (2007) proposed a formula which 1s a function of
wave steepness, incident angle, significant wave height and landward ground
level, to predict the landward spatial distribution of overtopping water. These
formulae were based on experimental data collected by a limited number of
buckets in laboratory experiments, and having limited resolution of the
spatial distribution. The effect of structural geometry was also not
investigated. EurOtop Manual (EurOtop, 2008) recommended a formula
slightly different from that in Andersen and Burcharth (2006) to predict the
landward spatial distribution of overtopping water. This formula is only valid
for rubble mound structures with a slope of approximately 1:2 and for angles
of wave attack between 0 and 45. Currently, there is little data on the spatial
distribution of wave overtopping water landward of impermeable coastal
structures (Bruce et al.,, 2005) and as a result there is limited guidance on

how to parameterize this process.
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5.2 RANS-VOF Model Implementation

5.2.1 Set-up of RANS-VOF model

Prior to the applications of the RANS-VOF model to investigate the spatial
distribution of overtopping volume, the model was used to examine the
overtopping of a smooth impermeable dike with a 1:6 seaward slope, which
has also been investigated previously by Li et al. (2004; 2007), Shao et al.

(2006}, and Ingram et al. (2009).

0.2¢
01F G1 G2l GSl G4l 5
OF Surface profile
L swL s
-0.1 e L R
_-0.2F o
Eo3t
~0.4F ,
0.5F ]
-0.6 ' Source |
07F Region y ‘. '
-0.8 i el YT R YO A
=11-10 9 8 -7 6 -5 4 -3 -2 -1 0

x (m)

Figure 5.2.1 Sketch of computational domain. G1 to G4 represent the locations of
four wave gauges in the experiments; hi is water depth at the toe of structures; SWL
is still water level; R, B and tan{a} are the structural freeboard, crest width and
seaward slope respectively. The origin of coordinates is at the landward end of

structural crest with x for horizontal axis and y for vertical axis.
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Figure 5.2.1 shows the setup of numerical simulations. The length of
computation domain is 13.0 m x 1.0 m. The geometry of the sea dike
includes a seaward slope of 1:6, a crest with a width of 0.3m and a height of
0.8m. An internal wave-maker developed by Lin and Liu {(1999) was used (o
generate regular and irregular waves. The duration of simulations is in
excess of 300 s. A radiation boundary, composed of an open boundary and a
sponge layer, is specified at the inlet boundary, while a free-slip boundary
condition is applied to the solid boundaries. A zero-stress condition is
applied at the free surface. Turbulent kinetic energy k and dissipation rate €
are assumed to be a function of distance from the solid surface and have
zero gradient at the free surface. hwe=0.7m is water depth at the toe of
structures; Rc is the structural freeboard; B is structural crest width; tan(a)
is the structural slope; Gl to G4 are surface elevation gauges in the

experiments.

5.2.2 Effect of mesh size

The effects of increasing grid resolution on wave Induced motions are
investigated with three grid levels of 1300x100, 725x85 and 350x40. For
grid level of 1300x100, The grid system is uniform with the mesh spacing of
Ax=0.01 m and Ay; =0.01 m. For grid level of 725x85, the grid system is non-
uniform in both x- and y- directions, presenting a minimum cell size of Ax;
=0.01 m and Ay, =0.01 m in the vicinity of free surface and coastal

structures. For grid level of 350x40, the grid system is non-uniferm as well
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but the minimum cell size is of Ax=0.02 m and Ay,; =0.02 m.
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Figure 5.2.2 Effect of mesh size on the predicted surface elevations. H=0.16m,
T=2.0s, h=0.7m and R.=0.1m.

The example of wave overtopping a smooth impermeable dike with a 1:6
seaward slope described by Li et al. (2004) was reinvestigated using the
RANS-VOF model. Regular waves with wave height H=0.16 m and wave
period T=2.0 s were generated by an internal source region, placed at x=-6.1
m away from the toe of sea dike with a water depth of 0.7 m (Figure 5.2.1).
Figure 5.2.2 shows the comparisons of surface elevations between different

mesh grid levels. The surface elevation calculated by mesh grid level of
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350x40 shows large discrepancy at G4 and GS from those by other two mesh
grid levels, although there is only small underestimation at G2 and G3. This
is because the VOF surface capturing scheme with coarse mesh level cannot
capture the details of wave breaking, which is the major source of
turbulence. It consequently cannot simulate the appropriate turbulence
generation and dissipation, leading to incorrect surface elevations. Li et al
(2004) also concluded that more detailed physical phenomena of motions
can be represented with increased mesh refinement. Since mesh grid levels
of 1300x100 and 725x85 has little effect on surface elevations for all wave
gauges, a conclusion can be drawn that mesh grid level of 725x85 is fine
enough to capture most important processes as other finer grid levels. To
save the computational time in the case studies, we next employ the mesh
grid level of 725x85 to explore the wave overtopping. Calculation of wave
propagation for 300s with cells of 725*85 requires about 30 CPU hours

using a single processor of Intel Core 2 CPU 6600 @ 2.4GHz, 2.4GHz.

53 Model Validation

5.3.1 Surface elevation

The case of wave overtopping over a 1:6 impermeable dike in Section 5.2.2
can be validated by measurements in Li et al. (2004). Figure 5.3.1 shows
that time history of the calculated surface elevation at G2 and G4 are in

good agreement with measurements of Li et al (2004), although there is a
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discrepancy at G4 between the present model and measured data. This may
be due to the 3-D effect of highly nonlinear waves at G4, characterised by a

gradual peaking of crests, flattening of troughs and pitching forward to the

sea dike.
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Figure 5.3.1 Calculated surface elevations (solid line) and measured surface
elevations of Li et al. (2007) (circles) at {a) G2 and (b) G4. H=0.16m, T=2.0s, h=0.7m
and R.=0.1m.

5.3.2 Average overtopping discharge

Table 5.3.1 lists a total of 35 tests with the different wave conditions and
coastal structural geometries used in this study. The outputs of each test
case were sampled at 40 Hz for 300-second. There are 3 wave heights, 2
wave periods, 7 structural slopes, 4 relative crest widths, 8 landward ground

levels and 3 relative freeboards. Test No. 16 to No. 35 are used to investigate
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the effect of the randomness in waves on spatial distribution of overtopping
water. All irregular waves are generated through the internal source region
using the theory of TMA spectrum (Appendix B).

Table 5.3.1 Overall view of numerical simulations of spatial distribution of

overtopping water

Case No. Hi(m) Tpi(s) hwe(m) Rc(m) B{(m) tan(a)
1 014 20 07 01 n2:3 1-A

2 0.16 2.0 0.7 0.1 0.3 1:6

3 0.14 1.6 0.7 0.1 0.3 1:6

4 0.16 1.6 0.7 0.1 0.3 1:6

5 0.12 1.6 0.7 0.1 0.3 1:8

6 0.12 1.6 0.7 0.1 0.3 1:4

7 0.12 1.6 0.7 0.1 0.3 1:3

8 0.12 1.6 0.7 0.1 0.3 1:2

9 0.12 1.6 0.7 0.1 0.3 1:1

10 0.12 1.6 0.7 0.1 0.3 Vertical
11 0.16 2.0 0.7 0.15 0.3 1:6
12 0.16 2.0 0.7 0.05 0.3 1:6
13 0.12 1.6 0.7 0.1 0.6 1:6
14 0.12 1.6 0.7 0.1 0.9 1:6
15 0.12 1.6 0.7 0.1 0.0 1:6
16-35 .12 1.6 0.7 0.1 0.3 1.6

Figure 5.3.2 shows that calculated dimensionless averaged overtopping
discharges are in good agreement with the predictions of Equations (A1) and
(A3) against the relative freeboards. Calculated dimensionless overtopping

discharge is significantly underestimated compared with the predictions for
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large relative freeboards. This is probably due to the inability of the model to
capture small overtopping volumes, such as spray. Another possible
explanation for this underestimation is that the air effect is ignored in the
numerical model, since de Waal et al. (1996) and Pullen et al. (2008) found
that the increase due to wind is large when the discharge is small and its

effect decreases as the discharge increases.
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Figure 5.3.2 Comparisons of dimensionless overtopping discharge,

Q=q,ﬂ *Jtﬂl‘(a)/(é‘;, *Jg*bf ), against the dimensionless freeboards, R=R /{(H, *2) (8 is surf

similarity with the peak period at the toe of structures), between numerical results

and empirical formulae,
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5.3.3 Landward spatial distribution of overtopping water

Pullen et al (2008) and Lykke Andersen and Burcharth (2006} have
measured limited spatial distributions of wave overtopping water for a
vertical wall and a sea dike with 1:2 seaward slope. Numerical simulations
can provide high resolution results and are much more economical than the

associated physical experiments.

As shown in Figure 5.3.3, the proportion of overtopping volume passing
the landward location x decays rapidly at first (with distance x from the
structure) and then slows with further increase in x away from the structure,
so that the bulk of wave overtopping water falls into the area immediately
behind the structure. Comparisons of landward spatial distribution of wave
overtopping water behind the structure were done for the 1:2 seaward slope
case and for a vertical wall, at zero landward ground level. The calculations
are in good agreement with the measurements, by Pullen et al (2008) for
vertical wall (Figure 5.3.3a) and Lykke Andersen (2006) for the slope of 1:2
(Figure 5.3.3b). The divergence in results for the case with the slope case
may be a result of the differing geometry used. Measurements of Lykke
Andersen (2006) were for permeable structure with a crest width of 0.17m,
and the data was collected in only four chambers; while present work is for
impermeable structure with the crest width of 0.3m, and the spatial

distribution data of overtopping water has high resolutions.
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(a) vertical wall
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- 0.8 O Measurements of Pullen et al.(2008)
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Figure 5.3.3 Comparisons of landward spatial distribution of overtopping water

between numerical results and measurements for (a) a vertical wall and (b} a sea dike

with the seaward slope of 1:2. V(x)/V: is the proportion of overtopping volume passing

x; V: is the cumulative overtopping volume; Lo is deep water wave length with the

mean period and H; is significant wave height at the toe of sea dike; landward ground
level hmeas=0 for both cases.

5.4

It is

Semi-Analytical Model

well known that wave run-up significantly affects the wave

overtopping process. For a certain freeboard of coastal structure, the larger

the wave run-up height, the larger overtopping volume over the crest is.
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Hunt {1959) proposed the following formula for the 2% relative run-up level

on impermeable structures:

%:q *é:m fOf" é:m 320 (54'1)

5

%ﬁzlo*q SJor & >2.0 (5.4.2)

n

)3

where ¢;=1.5 for irregular wave and 1.0 for regular wave; Ru2%1s the run-
up that only two percent of the wave run-up values observed will reach or

exceed; H; is significant wave height at the toe of the dike; Tin is mean wave

~ period; Ly=¢T}/(27) is deep water wave length and & is surf similarity:

§m=tan(af)/ﬂ/H{. /Ly .

It is expected that spatial distribution of wave overtopping water behind
the structure is mainly affected by the landward ground level, the horizontal
velocity and the layer thickness on the landward end of the dike crest.
Schittrumpf and Oumeraci (2005) derived the general formulae of layer
thickness on the dike crest, ha, at the landward end of the crest (x=0):

R X,
h =0)=c, *x, *(1 - ———)*exp(—c, -~ 5.4.3
Ax=0)=c, *x, *( tan(a')*xz) p(—c, B) ( )

Xy =C|*\)H.l'*LO ifé, 2.0

*
x,=¢* z;gn f’ ifé >2.0

150



CHAPTLER 5 SPATIAL DISTRIBUTION OF WAVE OVERTOPPING WATER

where ha is the layer thickness on the dike crest; xz is horizontal wave
run-up length; tan{a) is the structural slope; ¢z =0.168/tana, ¢3=0.75 (for

irregular wave); g is gravity acceleration.

Schittrumpf and Oumeraci (2005) found that the variation of the
overtopping velocity along the dike crest width is only influenced by bottom
friction. The dike crest employed here is relatively short (B=0.30 m) and the
surface of the modelled dike was very smooth. Therefore, the velocity
changes along the dike crest can be ignored. The horizontal velocity at the

landward end of the crest (x=0 m) can be calculated by Equation (10) in

*HI %k RHZ%_RC (5.4.4)
T, Sq ¥ H,

where a.,=0.75; uas0% 1s wave velocity on the structural crest, exceeded

Schittrumpf and Oumeraci (2005}:

N

— *
U 450% = g

by 50% of the incoming waves; s, = \/H, /L, is deep water wave steepness.

The landward trajectory of overtopping water with initial velocity, ua,so%, is
treated as free fall and takes the shape of a parabola. The travel distance,

x{y), of overtopping water at the elevation of y above the crest is given by:

2y+h Oty oo, +h
x(¥) =1, 50, * A ) + A% _ a, |* YT Prieas. where 0y <h, (x=0) (5.4.95)
‘ g-a, ot (g-a,)

where aax and aay represent the acceleration induced by the air resistance.
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In Equation (5.4.5), assuming the air effect is negligible and the horizontal
acceleration of overtopping water is zero, Equation (5.4.5) can be rewritten in

a simpler form:

’2 h
x(y)=u,\_50%* % Vl"he."'e OSJ/S]’!A(.X:O) (546)

By dividing the layer thickness on the structural crest, ha, into 10 units,
each unit has the same horizontal velocity and unit height but different
elevation y. The proportion of overtopping volume passing landward location

x can be calculated from Equations (5.4.3)-(5.4.6).

A case of irregular wave overtopping over a 1:6 sea dike (Case No. 16) was
investigated, with H=0.12m, T,=1.6s and the same geometry as shown in
Figure 5.2.2. Figure 5.4.1 shows the comparisons of landward spatial
distribution of overtopping water between semi-analytical and numerical
results and measurements. The semi-analytical landward spatial
distribution of overtopping water over a 1:6 dike is in good agreement with
the numerical results (Figure 5.4.1a). The general trend of spatial
distribution of overtopping water over a 1:2 dike agrees reasonably well with
both numerical results and measurements (Figure 5.4.1b). However, the
numerical results and measurements tend to spread part of overtopping
water into a farther area for both cases. Bearing in mind the assumptions of
this semi—analyti_cal model, this is mainly because the velocity used in

Equation (5.4.6) is the averaged velocity on the structural crest which 50% of
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the incoming waves will exceed. These 50% of waves have larger velocities
than uaso%, consequently, causing the overtopping water to travel farther.
Another possible reason is that the significant wave height used in
Equations (5.4.3) and (5.4.4), H, is approximately the average height of one-
third largest waves; therefore, the semi-analytical model ignores the

overtopping parts of some individual larger waves, which are able to travel

| farther.
(a) 1:6 dike
0 21; 1\ Un I I I I — Numerical results

Z"’ 0.6 | \o O  Semi-Analytical results

>0

= 0.4 -

g 0.2~ -

0 P I ] |
0 02 04 06 8 1 12 14
Xflgi
(b) 1:2 dike
) 0; I [| —— Numerical results

0 Semi-Analytical results
0 Measurements of Lykke Andersen (2006)

q o of
0 02 04 06 08 1 12 14 16 18 2
x/H.

1

Figure 5.4.1 Comparisons of landward spatial distribution of overtopping water
over (a) a 1:6 dike and (b) a 1:2 dike between semi-analytical results, numerical results

and measurements. H:=0.12m.

153




CHAPTER 5 SPATIAL DISTRIBUTION OF WAVE OVERTOPPING WATER

5.5 Parameter Analysis of Model Results

We will next look at the effects of structural slope, tan(ag), incident
significant wave height, H;, mean period of incident wave, Tm, wave
randomness, structural relative crest width, B/L, structural relative
freeboard, R./H; and landward ground level, hmeqss, on the landward spatial
distribution of overtopping water. These parameters were found above to be
important in wave overtopping process over coastal structures in the semi-

analytical model.

5.5.1 Incident wave condition

It is well known that the relative wave height (wave height divided by
water depth) and relative wave length {(wave length divided by water depth)
are very important to the wave overtopping processes. Large relative height
corresponds to large overtopping volume, and larger relative wave length
corresponds to a larger phase velocity towards the overtopping point and on
the structural crest. The Ursell number, U,=H:Lo?/h? (H; is the significant
wave height at the toe of structures, Lo is the deep water wave length with
the mean period T, and hswe is water depth at the toe of structures), can

represent the combination effects of wave height and wave length.
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_Ur=5.05
- - =U=3351
T

Figure 5.5.1 Effect of Ursell number of incident waves on landward spatial
distribution of overtopping water, h«we=0.7m, B=0.3m, tan{a}-1:6, R-.=0.1m and

Ameas=Om.

Figure 5.5.1 shows the influence of Ursell number on landward spatial
distribution of wave overtopping water. At the same relative landward
distance, the proportion of overtopping water passing x increases with the
increasing Ursell number. For small Ursell number, a large part of
overtopping water falls into the locations close to the structures, but for
large Ursell number it falls into the locations farther away from the
structures. It is shown in Figure 5.5.1 that overtopping water mainly falls
inside one-quarter of the significant wave height behind the structure for
U~=1.4, while it falls into a larger area, up to one and half significant wave

heights behind the structure for U~=5.05.
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5.5.2 Randomness in incident waves

Since random waves are common in real sea states, it is necessary to
investigate the effect of wave randomness on the landward spatial
distribution of wave overtopping water. The effect of wave randomness was
investigated by generating 20 sets of irregular waves, randomly from TMA
spectrum with the same significant wave height and peak period at the toe of
structures {Case No. 16 to No. 35). The simulation time i1s 300s,

approximately 200 waves. The geometry and boundary conditions are also

the same for all these 20 cases.

0 50 100 150 200 250 300
t (s)
! I I | I | I |
_ 08P\ (b) |
2 0.6 _
x —
\5 0.4
02F e -
0 | |
0 02 04 06 08 1 12 14
x/H

Figure 5.5.2 Effect of wave randomness on (a} cumulative overtopping volume (Vi)
and (b) landward spatial distribution of overtopping water. Solid line represents the
expected value and the dashed lines show the 95% confidence levels of the expected

value. Hi=0.12m, Tpi=1.6s8, htoe=0.7m, R=0.1m, B=0.3m and hmeas=0m.
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Figure 5.5.2 shows the effect of randomness on cumulative overtopping
volume and landward spatial distribution of overtopping water for the first
200 waves. The maximum standard deviation is 0.004 (expected value
1=0.037) for the cumulative volume, and is 0.04 (expected value u=0.31) for
the proportion of overtopping water passing x. Therefore, the effect of wave
randomness on the overtopping discharge and landward spatial distribution
is not significant, although the effect of randomness on cumulative
overtopping volume is larger than on landward spatial distribution of
overtopping water. A conclusion could be drawn that spatial distribution of
wave overtopping is mainly dependent on the parameters of peak wave

components (e.g. H; and Tp).

5.5.3 Seaward slope of the structure

Types of breaking waves, such as spilling, plunging, collapsing and
surging, occur on the coast depending on the surf similarity, consisting of
incident wave steepness and bottom slope (Battjes, 1974). Wave energy
reflected from the coast is also dependent on the surf similarity. Therefore,
seaward structural slopes associate with wave reflection coefficients, wave
breakers and wave run-ups on the seaward slopes. An investigation of the
effect of structural slopes on landward spatial distribution of wave

overtopping water will be presented next.

Seven cases with structural slopes of 1:8, 1:6, 1:4, 1:3, 1:2, 1:1 and a
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vertical wall are examined respectively. All cases (Case No. 5 to No. 10 and
No. 16) have the same generated waves from an internal wave maker and the
same freeboards. As shown in the Figure 5.5.3, the proportion of wave
overtopping volume passing X increases as the structural slope increases
from 1:8 to 1:3, but it decreases as the slope increases further from 1:3 to a
vertical wall. All the proportion of wave overtopping water decreases

exponentially with distance x away from the structure.

I J I | I | e vertical wall
= = = tan(a)=1:1
08¢ o tan(e)y=12
. tan(a)=1:3
‘,‘ —— tan(a)=1:4
0.6F \ \¥%, - - ~tan(a)=1:6

Figure 5.5.3 Effect of structural seaward slope, tan(a), on the landward spatial

distribution of overtopping water. Hi=0.12m, Tpi=1.68, htoe=0.7m, R.=0.1m, B=0.3m
and hmeas=Om.

The effect of structural seaward slopes on spatial distribution of

overtopping water is not monotonic and can be explained as following: For
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milder slope, wave breaker is likely to be a spilling or plunging breaker and
wave reflection coefficient is small. The wave loses more energy to breaking
but has less wave energy reflected. For steeper slope, wave tends not to
break, or has a surging breaker; wave reflection coefficient is large, and
standing waves can also be formed. Wave energy is mainly reflected and has
less wave energy dissipated due to wave breaking. The combination of wave
breaking and reflection on the seaward slopes affects the horizontal velocity
and layer thickness on the crest, which are key parameters for the landward
spatial distribution shown in Equation (5.4.6). For example, the case with
the slope of 1:8 has much energy dissipated due to wave breaking, and the
case with the slope of 1:3 has little energy dissipated due to wave breaking
and little energy reflected by structures, therefore, the sum of kinetic energy
and potential energy on the crest of the latter case is larger than that of the
former case. Wave overtopping water of the case with the slope of 1:3,
therefore, travels farther than the case with the slope of 1:8. This is
consistent with the conclusion in Sunamura and Okazaki (1996) that the
reflection coefficient increases as the breaker type changes from spilling to
collapsing through plunging, corresponding to increasing the structural

slopes.

5.5.4 Relative crest width of the structure

The relative crest width of the structure, defined as the ratio of the crest

width, B, to the deep water wave length, L, is significant to the layer
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thickness and velocity on the structural crest (Schittrumpf and Oumeraci,
2005). Therefore, it can be expected that the landward spatial distribution of
overtopping water is dependent on the relative crest width based on semi-

analytical model.
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Figure 5.5.4 Effect of the relative structural crest width, B/L,, on the landward
spatial distribution of overtopping water. Hi=0.12m, Tpi=1.6s, htoe=0.7m, tanfa)-1:6,

R=0.1m and Ameas==Om.

Figure 5.5.4 shows the spatial distribution of wave overtopping water
against relative landward distance, x/H;. With the same incident wave
conditions (H~=0.12m, T,=1.6s) and the same geometry, the proportion of
wave overtopping volume passing x increases significantly as decreasing the

relative crest width from 0.3 to 0. This is because large relative crest width

160



CHAPTER 5 SPATIAL DISTRIBUTION OF WAVE OVERTOPPING WATER

leads to large deductions of velocity and layer thickness on the structural
crest due to the friction and the deformation of the overtopping tongue at the
crest of the dike (Schuttrumpf and Oumeraci, 2005). The larger the relative
crest width, the more significant the effect of friction and the deformation of
the overtopping tongue is. Therefore, for the same velocity and layer
thickness on the seaward end of structural crest (x=-B), large relative crest
width corresponds to a smaller velocity and less layer thickness on the
landward end of structural crest (x=0m). Small velocity and layer thickness

result in small travel distance of overtopping water.

5.5.5 Relative freeboard of the structure

Structural freeboard relative to significant wave height at the toe of
structures, R./H; is significant to the velocity and layer thickness on the

structural crest, according to Equation (5.4.3) and Equation (5.4.4).

Figure 5.5.5 shows that the effect of relative structural freeboards on
landward spatial distribution of wave overtopping water is significant. For a
certain landward location, the proportion of wave overtopping volume
passing X decreases as increasing relative structural freeboards. For example,
the majority of overtopping water travels about one significant wave height
away from structures for relative freeboard of 0.94, but it travels farther
behind structures, up to 1.6 times the significant wave height for a relative

freeboard of 0.32. This is mainly due to the horizontal velocity on the crown
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crest. Due to the gravity effect, large relative freeboard requires more
potential energy to overtop the crest; therefore, the kinetic energy will
decrease. Small kinetic energy corresponds to small horizontal velocity on
the crown crest. Therefore, large relative freeboard leads to small travel

distance of overtopping water.

1 [ I | | [ | T R =032
‘\_ —Rcin:() 63
0.8 H‘-‘ - = =R /H=0.94
1 '\
] '\’
1} .
- 0.6 N, —
2 TN
S’ ‘\ \‘\_
04 N -
\\ _\'
~ - \_
~ -~
0.2 — ~ ~ N \-\' -
0 | ! | R il L
0O 02 04 06 08 1 12 14 16 18 2
x/H.

1

Figure 5.5.5 Effect of relative structural freeboard, R./H:, on landward spatial
distribution of overtopping water. Hi=0.16m, Tp=2.08, h:xe=0.7Tm, Ameas=0m, B=0.3m
and tan(a)=1:6.

5.5.6 Landward ground level

It can be expected that the spatial distribution of overtopping water depends
on the landward ground level, hAmess. As discussed in Section 5.4, the

trajectory of overtopping volume is in a parabolic type, therefore, we can
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estimate that if the overtopping volume is dropped into x= 2+0) m at

g

Ameas=0m, then it will fall into x= }M at hmeas=0.1m instead (Figure
g

2.3.5). Figure 5.5.6 shows the effect of landward ground level on landward
spatial distribution of overtopping water as a function of relative landward

distance.

Figure 5.5.6 Effect of landward ground level, hmeas, on the landward spatial
distribution of wave overtopping water. H;=0.12m, T;i=1.658, heoe=0.7m, R.=0.1m,

tan(aj=1:6 and B=0.3m.

It is interesting to observe that for the same wave conditions and
structural geometry, spatial distribution of wave overtopping water is

strongly dependent on hmess. The proportion of wave overtopping volume
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passing x increases with increasing the landward ground level,. hmeas. The
overtopping water even reaches to a distance up to three times bigger than
significant wave height for hme.s=0.3 m, while it only splashes down in the
area of half the significant wave height from structures for hmeqas=-0.05 m.
However, our results show the overestimation in the proportion of wave
overtopping water falling into the area with x slightly bigger than zero,
comparing with the predictions by Lykke Andersen (2006). This is mainly
due to the small overtopping discharge for this case, similar to a nappe (in
hydro-engineering refers to the sheet of water over-topping) clinging to the
landward face of the weir with very low water heads. It can be expected that
the proportion of wave overtopping water falling into the area immediately
behind the structure decreases with increasing the overtopping discharge,

such as decrease relative freeboard (Figure 5.5.5).

5.6 Summary

Spatial distribution of irregular wave overtopping water behind
impermeable coastal structures was investigated using the RANS-VOF model.
We have demonstrated that the calculated average overtopping discharges
agree well with predictions by Van der Meer and Janssen (1995) and TAW
(2002). Calculated landward spatial distributions of wave overtopping water
are in good agreements with the measurements by Pullen et al (2008) for a

vertical wall and Lykke Andersen (2006) for a dike with the slope of 1:2. The
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proportion of wave overtopping water decreases exponentially with the
distance away from the structure, corresponding to the bulk of wave

overtopping water falling into areas immediately behind the structure.

A semi-analytical model was derived to extract the governing parameters
involving the spatial distribution of wave overtopping water behind coastal
structures. This semi-analytical model related the landward spatial
distribution of wave overtopping water to the landward ground level, the
velocity and layer thickness on the crest. The semi-analytical landward
spatial distribution of overtopping water agrees reasonably well with both
numerical results and measurements. Parameter analysis found that
negatively skewed waves have the larger cumulative overtopping volume and
average overtopping discharge than positively skewed waves. For the same
incident wave conditions, the proportion of wave overtopping volume passing
a location increases with increasing structural slope from 1:8 to 1:3, but it
decreases with increasing the slope from 1:3 to vertical wall. The proportion
of wave overtopping water passing a location increases with increasing Ursell
number of incident waves and the landward ground level, but decreases with
increasing relative structural freeboard and the relative crest width. The
effect of wave randomness is negligible on both cumulative overtopping

volume and landward spatial distribution of wave overtopping water.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

6.1.1 Main findings

This PhD work has successfully investigated the transformation of wave
shapes over Low-Crested Structures (LCS) and the spatial distribution of the
overtopping water behind coastal structures, by employing the improved 2D

RANS-VOF model and state-of-the-art experimental datasets.

The first part of this work presents the results of an investigation of the
transformation of wave skewness and asymmetry as waves propagate over
low-crested breakwaters, (LCBs), based on an analysis of measurements
collected in the DELOS project. The local Ursell number, calculated by mean
period rather than peak period, is identified as a key parameter affecting
wave skewness and asymmetry around LCS. This work then established a

set of empirical formulae using least squares regression for both smooth and
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rubble mound LCBs, relating wave skewness and asymmetry to local Ursell
number. Predicted wave skewness and asymmetry are in good agreement
with measurements. Further study shows that wave skewness on both sides
of LCBs i1s linearly correlated for rubble mound LCBs but weakly correlated
for smooth LCBs. Wave asymmetry on both sides of LCBs has a weakly
quadratic correlation. The effect of the relative freeboard on the relationships
of wave asymmetries between both sides is significant for rubble mound

LCBs, but the same does not hold for smooth LCBs.

RANS-VOF model is firstly introduced to investigate wave skewness and
asymmetry over over Low-Crested Structures. Numerical results are in good
agreement with laboratory measurements collected in the small scale wave
channel tests at the University of Cantabria (UCA) and the predictions made
by the empirical formulae derived in this thesis. In the presence of LCS,
positive wave skewness decreases in the seaward near-field region and
increases rapidly up to the maximum on the strﬁctural crest. It then
decreases dramatically in the leeward near-field region. Negative wave
asymmetry decreases in the seaward near-field region, down to the
minimum value on the structural crest, and then increases up to positive

value in the leeward near-field region of LCS.

The Bispectral Analysis in this work helps us understand that wave
nonlinear interactions, including sum interaction and difference interaction,
strongly contribute to wave skewness and asymmetry. That is, sum

interaction contributes positively to wave skewness but negatively to wave
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asymmetry, while difference interaction negatively contributes to wave
skewness but positively contributes to wave asymmetry. The underlying
physics of large variations of wave shapes in the vicinity of coastal structures
is that: both sum interactions and difference interactions are significant in
the seaward near-field region, while the sum interactions dominate on the
structural crest but difference interactions dominate in the leeward near-

field region of LCS.

Parameter analysis shows that larger wave heights correspond to greater
wave skewness and smaller wave asymmetry on both sides of LCS. Incident
wave shapes have a significant effect on wave skewness and asymmetry but
only on the incident side. Rates of increasing wave skewness and asymmetry
above the crest increase with decreasing structural crest width. The
variations of wave asymmetries above structures decrease with increasing
wave periods. The extent of the effect of structures, however, increases with
an increasing wave peak period and a decreasing structural porosity.
Maximum wave skewness and asymmetry increase with the increase of
structural freeboard from negative values to zero, but they subsequently
decrease with larger positive freeboards. The randomness in irregular waves

has an insignificant effect on both wave skewness and asymmetry across

LCS.

The second part of this work presents results of the spatial distribution of
the overtopping water behind impermeable coastal structures, using the

RANS-VOF model. Calculated average overtopping discharges agree well with
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predictions by Van der Meer and Janssen (1995) and TAW (2002}. The
calculated spatial distributions of wave overtopping water behind the
structure are in good agreement with the measurements by Pullen et al
(2008) for a vertical wall and Lykke Andersen and Burcharth (2006) for a 1:2
seaward slope of the dike. A semi-analytical model, relating the landward
spatial distribution of wave overtopping water to the landward ground level,
and the velocity and layer thickness on the crest, was derived. The semi-
analytical landward spatial distribution of overtopping water agrees
reasonably well with both numerical results and experimental
measurements. This finding can lead researchers to target these parameters
and produce more detailed guidelines for protecting the properties that are

sheltered by coastal structures in the future.

Parameter analysis shows that for the same incident wave conditions, the
proportion of wave overtopping water passing a landward location increases
initially with the increase in the seaward slope of the structure from 1:8 to
1:3, but it subsequently decreases with steeper slopes (from 1:3 to vertical).
The proportion of wave overtopping water passing a location increases with
Ursell number of the incident waves and landward ground level, but
decreases with increasing relative structural freeboard and structural crest
width. The effect of wave randomness is negligible on landward spatial

distribution of wave overtopping water.
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6.1.2 Recommendations

The local Ursell number, known as a measure of wave nonlinearity, is
identified as a key parameter affecting wave skewness and asymmetry
around LCS. The flow depth and flow velocities at the leeward end of
structural crests, as well as the landward ground levels, are also proved to
be governing parameters of landward spatial distnibution of wave

overtopping,

The derived empirical formulae, which relate wave skewness and wave
asymmetry to local wave conditions, provide effective ways to predict wave
skewness and asymmetry directly and accurately. The predicted wave
skewness and asymmetry can be subsequently incorporated into analytic or
numerical models of sediment transport. The semi-analytical model of the
landward spatial distribution of overtopping water also provides a useful
means to approximately estimate the spatial distribution of overtopping
water behind coastal structures, before running high-cost experiments or
complex numerical simulations. This estimation can offer a general concept
of spatial distribution of overtopping water and will give an idea of the ranges

of hazard zones expected in a specific setup.

The sequence of random waves with typical parameters, such as
significant wave height and peak periocd, has no significant effect on the
transformation of wave skewness and asymmetry over LCS and on the
landward spatial distribution of overtopping water over an impermeable

structure. This finding will give engineers more confidence when using
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significant wave height and peak period only to investigate the

transformation of random wave shapes and random wave overtopping.

As mentioned in the introduction, wave skewness and wave asymmetry
are directly related to sediment transport. The proportion of wave
overtopping water passing a certain landward location can also be used to
define the location and area of hazardous zones behind the structure for the
scenarios when overtopping is anticipated. As a result, controlling the wave
asymmefries is an effective means of controlling the net sediment transport,
and controlling the proportion of the overtopping water passing a certain
landward location helps to reduce the extent of the hazardous zones behind
the structure. The findings of this study along with the economic
considerations can be used to propose guidelines for future practical

engineering applications.

¢ Building a toe berm or a shallow foreshore in front of the structure can
reduce incident wave heights and peak periods by forcing wave
breaking. This will result in smaller wave skewness and asymmetry,
wave overtopping discharge and the size of the hazardous area behind

the defences.

e Using a relatively small positive freeboard and a relatively small
structural crest in addition to a large structural porosity, could cause
smaller wave skewness and asymmetry, as well as smaller extent of

the effect of structures.

* Adopting a large relative crest and freeboard, and a high ground level
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for placing landward properties, as well as trying to avoid seaward
slopes of 1:2 and 1:3. This could cause a small proportion of the
overtopping water passing a certain landward location and a smaller

hazardous area behind the defences.

6.2 Future Work

More experimental data for wave transformation over coastal structures
and landward spatial distribution of wave overtopping water is needed to

enhance our understanding and verify the main findings of the present work.

The present 2D RANS-VOF model simulates both the turbulence field and
mean flow field very well in the whole domain except at the breaking point.
This 1s due to the fact that gravity-wave breaking is essentially a three-
dimensional process and the k-e turbulence model always overestimates the
turbulence level around the breaking point (Lin and Liu, 1998). At the same
time, this model ignores the air effect above the free surface and as a resuilt,
the trapped air bubbles inside the water and splashes in the air are not fully
treated. Also, the velocities and pressure at the free surface need to be
linearly extrapolated. These apbroximations are one of the possible causes
for the discrepancy between numerical results and measurements in the
present work. Therefore, more work should be done in the improvements of
the numerical model. These improvements may consist of taking account of
the air effect and considering the 3D effect in wave breaking and overtopping,

as well as employing a dynamic Sub-Grid-Scale (SGS) turbulence model
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which helps to capture the wave-induced small-scale turbulent flows.

The present study shows that the local effect of LCS on the
transformation of wave shapes is significant. However, only a qualitative
analysis on variations of wave shape has been done so far. A quantitative
analysis on the extent of the effect of structures on variations of wave shape

will be needed for practical applications in the future.

The future work should also cover the impact and redistribution of
overtopping water after touching the landward ground. It is expected that
the impact of the overtopping water on the landward ground level and the
redistribution of overtopping water are of importance to landward scour
research and the landward drainage scheme. In addition, the spatial
distribution of wave overtopping water over a permeable coastal structure,

which is more common in the practical applications, still needs to be

addressed.
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EMPIRICAL FORMULAE FOR OVERTOPPING

DISCHARGE

A combination of storm surge and large waves may cause overtopping of
such structures like breakwaters, dikes, seawalls, etc., leading to damage to
and flooding of the area behind the structure. Overtopping is defined as the
water volume passing over the crest of structures per unit length in a unit

time. The average discharge, g, has the unit of m?%/m/s.

Al Formulae of Van der Meer and Janssen (1995)

Another commonly used formula for calculating wave overtopping

discharge is derived by Van der Meer and Janssen {1995).
For breaking waves (plunging): §p<2

g 006 L, soe R
Jera? Nana 77 EFH Y v ¥y

(A1)
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For non-breaking waves (surging}: §,>2

1 -02%exp(-26* R ) (A2)

N A7 00" 7s

Where a is the slope of the front face of the structure, R. is the structural
freeboard, Hs significant wave height {(=H;,3) at the toe of the slope and Lo,

tan o

being the deep water wave length g72,/(2n). ¢, = . The coefficients ys,

s’ tap

Vn, ¥r, and yp are introduced to take into account the influence of a berm,
shallow foreshore, roughness and oblique wave attach. All these coefficients

are 1.0 in present work.

A2 Formulae of TAW (2002)

(EurOtop, 2007) recommends the formulae to probability design and

prediction proposed by TAW (2002) for breaking and non-breaking waves (-

1,0<9):
0.067 R
L. - * Py ¥ o reXP(A TSI e (A3)
\/g*H?"O \/[ana 5!1!4.0 HmU }’b y_,f' 7[1‘ Ve
e = 0.2 % expl(-2.6%—— *Rf —)
. . * me Fro ¥
With a maximum of: V¥ Hoo A
The formulae to deterministic design and prediction:
g P
0.067 R
q = *y, ¥E 10 Fexp(—4.3* P T ) (A4)
\/g*Hio \/tana fm—].O HmO 7b }/_,f' 7}5 Y
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q R,
A —02%exp(-2.3%——¢
. . * 3 Hm *}/*}(
With a maximum of: V& o L 4
Where a is the slope of the front face of the structure, R.is the structural
freeboard, Hmo is the energy spectrum based significant wave height at the

toe of the slope and Tm.aobeing the mean energy wave period, Lm.1,6=97%m

1o/ (21). £, o= ——en< . The coefficients y», V5, vs and y. are introduced to

\f HmO /Lm—l.l]

take into acount the influence of a berm, permeability and roughness of or
on the slope, oblique wave attach and a vertical wall on the slope

respectively. All these coefficients are 1.0 in present work.
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TMA SPECTRUM

TMA spectrum is developed to incorporate finite depth effects into the
JONSWAP spectrum. Bouws et al. (1985) apply the transformation factor,
®{wn), derived by Kitaigorodskiu et al. (1973), to the JONSWAP spectrum and

present the TMA spectrum as S{w)=So(w)* ®{wn), where So(w) is the JONSWAP

spectrum and @, =27f\Jh/g

The transformation factor, ®(ws) is calculated as following (Kitaigorodskii

et al., 1975):

k(w,h) (;z)k(a), h)

9 k(@)
ow oy, =0 \m

$@,) = (B1)

k(w, o)™

The JONSWAP spectrum, described in Hasselmann et al., (1973}, can be

expressed in following form:

177



APPENDIX B

3 4 .
) o Aw-12) {202

Wave data collected during the JONSWAP experiment were used to

determine the values for the constants in Equation (B2):

0.22 143
72 g3 007 w<w
=3.3; a =0.076| > =22 = d
vooee ( ) . [ ) ? {0.09 >0,

where F is the distance from a lee shore, called the fetch, or the distance
over which the wind blows with constant velocity. Ujo is the mean wind
speed at 10 meters above the sea water level. These two constants were

modified to generate the target significant wave height and peak period.

0.12 - - = JONSWAP spectrum ||

s~ TMA spectrum

0.1
0.081—
o
~& 0.06-
v
0.04—

0.02-

1 1.5 2
Figure B1 JONSWAP spectrum and TMA spectrum for H.=0.16m, T;=2.0s, h=0.7m

and Uio=10m/s, F=3.3km.
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Figure Bl is an example of a TMA spectrum which indicates clearly the
effect of water depth of the magnitude as well as the shape of the JONSWAP

spectrum.

When the time series or TMA spectrum of irregular waves are available,
the Fast Fourier Transformation (FFT) is then employed to obtain the
angular frequency, o;, the amplitude, a; and the phase, Py, of the wave
components, which is necessary for internal source functions (see equation

(2.2.36))

For time series,

ok *
n
4= [FFT ()| (B4)
N
P arctan(imag[FFT(n(t)),.] 55)

real | FFT(n(1)),]

Where 7(t) is the time series data, fs is the sampling frequency of nft), N is
the number of points in time series, n is the number of points of FFT, and i

is the frequency line number, or array index, of the FFT of nf{t).

For TMA spectrum, the amplitude vector of i-th target wave component, a;

is:
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a; = [2*S(o,)* o, (B6)

where Awi is the frequency interval and the phase vector, @; is the vector
used in generating TMA spectrum (Equations (B1) and (B2)), Ps, can be

generated randomly.
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BISPECTRAL ANALYSIS

C1 Descriptions

The digital complex bispectral estimate B{f:, f2) for discretely sampled data
can be interpreted in terms of Fourier coefficients, (Haubrich, 1965; Kim and

Powers, 1978), as

B(A\. f3) = ELAU)AUS)A ()] (C1)

where E[ ] denotes an expected value, A{f) denotes a complex Fourier
coefficient, while the asterisk represents a complex conjugate. f; (i=1, 2, 3)
are wave [requencies and conventionally f3=fi+fo. For example, if B{0.359,
0.59)=0.5, this indicates a self-self interaction at frequency f~0.59 coupling

to energy at frequency f=1.18 Hz.

In the work of Kim and Powers (1978), the normalized magnitude of the

bispectrum was used to define the bicoherence, b.
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1B, 1)
E[|A.,.|Af2 ; ]E[| A,

b (S fy) = (C2)

]

Elgar and Guza (1985) concluded that the bicoherence does represent the
relative degree of phase coupling between triads of waves. For example, with
b=1 for full coupling, and b=0 for random phase relationships. Significant
peaks in bicoherence identify two frequencies of the three in an interacting

triad contributing significant energy to the time series.

Hasselman et al. (1963) and Elgar and Guza (1985) indicated that the
mean cube or third moments of a stationary random time series, denoted
here by n(t), can be related to the integral of the parts of the bispectrum if f;

is greater than fo. For example, wave skewness, S, can be expressed as

g 22 RBULL

23372 (C3)
E@m())

Similarly, wave asymmetry, A, was defined as the integral of the

imaginary part of the bispectrum (Elgar and Guza, 1985)

4= 22 SBUL L)) c4)
E(()*)"?

Where ' and ®!denote the imaginary and real parts of the bispectrum

respectively.
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C2 Benchmark of Bispectral Analysis

To check the validity of bispectral analysis code and the sign of skewness
and asymmetry, the pitch-backward saw-tooth (steep rear faces and gently
sloping front faces, but crests and troughs of equal amplitudes) waves are

used, see Figure C1.

skewness= 22171 | skewness=0
asymmetry=0 | asymmetry= 2.2171

0.1¢ \\‘l

0.05

Surface Hevation /m

i
i
¥

20 122 124

- i
126 128 130
Time /s

b

—0.0?

Figure Cl1 Surface elevations of a saw-tooth wave (dashed line, Skewness=0,
Asymmetry=2.2171) and its Hilbert transform (solid line, Skewness=2.2171,
Asymmetry=0).

While a ‘stokes wave’ shape (broad, low troughs and narrow, tall crests
but symmetric front and back faces) has zero asymmetry and positive
skewness. The different wave shape and characteristics come from the 90
degree phase difference, which also reflect the phase relationship between

the primary frequency and the phase-locked harmonics, although they have

identical power spectra.
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The Higher-Order Spectral Analysis (HOSA) code was employed in this
study, with 1024-point Fourier Transform, 512-point hanning window and
50% overlap. The sample frequency of data is 40 Hz. Data is 800 seconds
long. The real part of bispectrum is zero and the image part of bispectral is
positive, and the sum value is 2.2171, see Figure C2. It is easy to find that
the primary frequency fl is 0.625 Hz, and the peaks of image part of
bispectrum are (fi, fi), (2f1, f1), (3f1, fi), (4f1, fi), (2f1, 2f1), (2fi+f1, 2f1). The
results above show that this HOSA code can describe the bispectrum

efficiently.

spectrum at the incident side spectrum at the incident side

=
=
& =
=
—

Power spectrum density m*/Hz
[—]
S £ 8 g :
Power spectrum density m2/Hz
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&
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s 2 2
2 =
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real part of bispectrum at the incident side
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nd
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Figure C2 Bispectrum of pitch-backward saw-tooth time series. Left panel is the
real part of bispectrum, while right panel is the image part of bispectrum
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EXPERIMENTS

D1 Two-Dimensional Wave Transmission Tests

Two-dimensional wave transmission tests were conducted in the small-
scale channel flume at University of Cantabria, Spain (Figure D1), within the
EU-funded DELOS project. Detailed descriptions about this project can be
found in Kramer et al. (2005) and DELOS website

(http:/ /www.delos.unibo.it/). The wave and current flume is 24 m long, 0.60

m wide and 0.80 m high. The piston—-type wave-maker has two attached free
surface wave gauges integrated in an Active Wave Absorption System
(AWACS ®) that allows the absorption of reflected waves from the model. The
wave-maker and the rear absorbing beach occupy 4 m at one of the ends of

the flume.

185



http://www.delos.unibo.it/

APPENDIX D

’
7

400 . 270 L2 380 8 800 L1,
Wave maker )1 %— 00 ISU
R —
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Recwculation tank Recireulation pipe False stez] botom Recireulation tank
120 Plexiglas ramp Botwom aperture 1720 Plexiglas ramp

Figure D1 Experimental set-up (Kramer et al., 2005). Distances in centimetres

The low crested structure model was built over a 3.8-m long stainless
steel horizontal false bottom. In the frontal foot of the rubble, a Plexiglas
ramp with 1V / 20 H slope connected the false bottom with the bottom of the
flume. Two rubble-mound low-crested structures of 0.25 and 1.00 m crest
width were tested. Crest elevation from the bottom (0.25 m), front and back
slope angles (1V/2H) and rubble characteristics were maintained constant
for both structures. The models had two-layer armour of selected gravel and
a gravel core. The core characteristics are D,50=0.031 m, porosity =0.49 and
Armour characteristics are Dnso=0.046 m, porosity =0.53. A final dissipative
beach with 1/20 slope was made of quarry rock with Dp50=0.015 m and

porosity=0.43.

The data used for the present study were measured by 11 resistive free
surface gauges to assess free surface evolution. Gauges G1 to G3 are
installed in front of LCS. Gauges G4 to G5 are located above the seaward

slope of LCS. Gauge 6 is above the crest and Gauge 7 is on the leeside slope
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for 1.00 m crest width, while both gauges G6 and G7 are placed on the
transmission side for 0.25 m crest width instead. Gauges G8 to G11 were
placed on the transmission side along the flat bottom behind the LCS. The
detailed coordinates of gauges are shown in Figure 4.2.1. Each record was
sampled at 30Hz. The rubble mound LCS weré tested for three different
water depths of 0.3 m, 0.35 m and 0.4 m, corresponding to three different
freeboards (-0.05 m, O m and 0.05 m). There are three incident wave heights
(0.04 m, 0.07 m and 0.10 m) and three wave periods (1.6 s, 2.4 s and 3.2 s).
Table D1 presents a summary of the relevant small-scale channel tests (only
G1 and G8 are shown). Experimental set-up and test conditions were

described in further detail in Kramer et al. (2005).
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Table D1 Summary of the relevant small-scale channel tests

Test No. Test set-up Gauge G1 Gauge 8
B (m) Duration({s) Hi{m) Tp{s) h[m)]| Hs{m} Tps] Tmean[s] Ur 2] A Hoim) Tp(s) Tmean(s] U S A

50 0.25 480 0.1 1.6 0.4 0.09 153 1.13 14.39 0.41 -0.05|005 1.55 094 10.39  0.08 0.16

116 025 480 0.1 1.6 0.35 |0.09 163 1.11 16,10 047 -0.15]003 161 092 7.06 0.07 0.26

223 1 800 (reg) 0.1 1.6 0.4 008 160 1.56 1802 033 -0.12]0.03 160 083 1.91 0.03 0.54

255 1 480 0.04 1.6 0.4 003 159 1.11 5983 0.12 -0.03|002 159 073 3.97 6.03 0.07

260 1 480 0.07 1.6 0.4 006 1.55 1.11 10.11 021 -0.08|0.03 157 070 5.83 0.03 0.09

264 1 480 0.1 1.6 0.4 0.08 159 1.14 1463 035 -0.03|003 152 075 6.08 0.03 0.29

268 1 720 004 24 0.4 0.03 220 1.43 1092 0.15 -0.03]002 228 085 8.28 0.06 0.13

272 i 720 0.07 24 0.4 0.05 228 1.39 2142 0.23 -0.06]002 235 (.78 13.97 034 0.34

276 1 720 0.1 24 0.4 0.08 224 1.39 2857 033 -006|003 235 0387 16.85 073 0.31

280 i 960 0.04 3.2 0.9 0.03 3.10 1.66 2024 024 -008]002 318 1.02 1584 075 0.00

284 1 960 0.07 3.2 0.4 007 310 1.60 5280 052 -0.14|0.03 3.10 1.05 3339 1.35 -0.36
289 1 960 0.1 3.2 0.4 0.07 3.10 1.59 53.01 0.52 -0.14|0.03 3.18 1.07 34.59 1.34 -0.38
320 1 480 0.04 1.6 0.35 {0.03 163 1.07 1342 0.12 -0.04]|003 164 1.55 17.28 -0.07 0.02

323 1 480 0.07 1.6 0.35 {006 163 1.10 2459 026 -005]|004 163 1.39 23.25 -0.05 0.27

326 1 480 0.1 1.6 0.35 {0.69 164 1.10 33.86 047 -0.15]0.01 11.38 1.09 223.23 -0.07 0.17

329 1 720 0.04 24 0.35 | 0.03 235 145 2803 0.12 -005]003 235 212 33.88 0.04 0.08

332 1 720 G.07 2.4 0.35 0.06 240 1.43 53.04 0.21 -0.04 | 0.02 2.48 1.83 24.89 0.54 0.25

335 1 720 0.1 2.4 0.35 [ 0.08 240 1.40 74.39 030 001 |0.01 248 134 15.11 1.38  0.42

338 1 960 0.04 32 0.35 | 0.03 258 1.60 2852 027 -003]002 325 2.68 6194 0.18 0.04

342 1 960 0.07 3.2 0.35 | 005 258 1.56 53.26 0.47 -0.05]002 325 1.81 4600 1.12 -0.12
346 1 960 0.1 3.2 0.35 | 0.07 258 1.51 77.05 063 -0.07|0.01 333 1.31 35.31 1.85 -0.38
365 1 480 0.04 1.6 0.3 003 161 102 12,72 0.14 -0.040.02 161 1.45 11.53 0.0t 0.06

367 1 480 0.07 1.6 0.3 006 161 103 2148 034 -0.11]10.04 161 1.62 20.01 013 0.0l

369 1 480 0.1 1.6 0.3 009 163 1.07 3294 047 -026|007 163 1.82 4161 0.1%5 -0.08
371 1 720 0.04 24 0.3 003 220 1.42 2448 006 003 |002 248 1.97 34.20 -0.02 -0.06
373 1 720 007 24 0.3 0.06 240 1.40 52.23 016 007 [0.05 248 212 66.72 -0.01 -0.16
375 1 720 0.1 2.4 0.3 0.08 240 1.40 76.30 033 0.10 | 0.07 248 234 100.37 0.00 -0.25
377 1 960 0.04 32 0.3 0.03 258 1.55 28.14 0.18 0.06 |0.03 3.18 12.48 60.15  0.03 -0.12
379 1 960 007 32 0.3 0.05 258 1,51 50.59 0.38 0.07 1004 3.18 261 10565 0.00 -0.23
381 1 960 0.1 3.2 0.3 0.07 258 1.45 7646 0.57 0.03 |0.07 3.25 2.85 17573 003 -0.41
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D2 Wave Basin Transmission Tests

Data was obtained from oblique three-dimensional wave transmission
tests in the multidirectional wave basin (18.0 m x 12.0 m x 1.0 m) at Aalborg
University, Denmark}, within the EU-funded DELOS project. Detailed
descriptions about this project can be found in Wang (2003), Kramer et al.

(2005) and DELOS website (http:/ /www.delos.unibo.it/).

A smooth mound Low-Crested Breakwater, and a rubble mound Low-
Crested Breakwater, were tested. The cross-section and layouts of smooth
and rubble mound LCS including positions of gauges are given in Figure D2.
The rubble mound structure was 25 cm high with a crest width of 10 cm
and it was built of quarry rock. The cross-section consisted of a bottom layer,
a core and an outer armour layer with the detailed characteristics:
Ws0=0.269 kg, Dns0=0.0466m and a grading of Dgs/Di5=1.25, see the cross-
section scheme at the top and left hand-side of Figure D2. The smooth
structure had gentler slopes than the rubble mound structure, which is also
the case in reality. The seaward slope was 1:3 and the leeward slope 1:2. The
structure height was 0.30m and the crest width 0.20m. The structures were
placed on a horizontal plateau, which was 0.16m higher than the bottom of
the basin. This created a larger depth in front of the wave generator and
made it possible to generate very steep and breaking waves in front of the
structure, see Figure D3. Reflection from the rear wall of the basin was

minimised using 1:5 rubble beach.
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Figure D2 Cross-section and layouts of rubble mound and smooth LCS including

positions of gauges, ‘x’ marks the position of wave gauges (Kramer et al., 2005).
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Figure D3 Bottom topography for 0° rubble mound layout (Kramer et al., 2005).

Units in ecm

The target irregular 3D waves were generated using the directional
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spectrum, S(w), which describes the distribution of the wave energy in both
the spatial and frequency domains. S(@)is expressed as a product of the
unidirectional wave spectrum S,(w) (described in equation (B2)) and a

spreading function D(6,®), that is, S(0,0)=S,(0)* (0, 0).

D(0,1) is the spreading function that characterises the distribution of wave
energy in wave propagation directions from O to 2n. Even though the wave

energy can be distributed in different direction, the total energy in wave field

27
should remain constant. It is defined by ID(B,f)dQ =1. The Cosine-power or
0

cos?s spreading function is as following (Mitsuyasu et al., 1975):

227 sy L [6-6,
= ol RS D1
@.7) r(zs'+1)COS [ 2 } B1)

where 8= wave propagation angle, §,=main wave propagation direction,
I'=Gamma function, s’ is a function of wave frequency. In experiments, a

constant value of s'=50 was used in 3D wave generation.

Layouts of breakwaters with 0°, 30° and 50° relative to the wave generator
were used to cover a large range of wave incident angles. Table D2 and Table
D3 presents a summary of 168 wave basin transmission tests over a smooth
LCS and rubble mound LCS respectively (only G2 and G7 are shown). Each
record was sampled at 40Hz and was 90-second long. ’fhe observations wefe
measured from ten fixed gauges, five of them located on the incident side

and other five gauges located on the transmission side of LCS (Figure D2).
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Table D2 Wave basin transmission tests on Smooth LCS

Test set-up Gauge 2 Gauge 7

Test No Layout R (m] h [ﬂ) H: (rnl Tpi (3] I'.I_s [_m] T_p (S) Tmean [S) Uy S A H (m} Tn (S) Tm(im (s) U: S A

1 0 0O 03 008K 16 009 153 1.37 1508 0.6 -0.07 | 0.08 1.58 1.05 330 002 038

2 0 0 0.3 0.11 1.88 0.13 2.05 1.43 2393 099 -0.45 | 0.06 1.90 1.17 6.76 0.31 0.55

3 0 0 0.3 0.14 2.12 0.7 2.18 1.48 33.35 0.83 -0.76 | 0.07 2.05 1.31 10.43 061 0.44

4 0 0 0.3 0.08 1.13 0.07 1.16 1.09 6.03 034 0.03 | 0.03 1.19 076 0.79 0.04 -0.08
5 0 0 0.3 0.11 1.33 0.10 1.31 1.19 11.13 0.64 -0.01 | 0.04 1.35 0.8% 1.94 0.03 0.13

6 v 0 0.3 0.14 1.5 0.13 1.53 1.23 16.56 0.87 -0.11 1 0.06 1.55 1.03 4.15 0.24 0.31

7 0 0 0.3 .14 2.12 017 2.18 1.54 36.70 0.74 -0.80 | 0.08 2.05 1.23 12.53 0.53 0.59

8 0 0 0.3 .14 1.5 0.14 1.53 1.25 17.42 0.97 -0.15 | 0.07 1.58 1.07 3.15 0.22 0.43

9 0 0.05 0.25 0.07 1.5 0.09 1.48 1.28 19.28 0.69 -0.06 | 0.03 1.51 0.84 1.81 -0.14 0.11

10 0 0.05 0.25 0.09 1.7 0.11 1.58 1.31 23.77 097 -0.18 | 0.04 1.65 1.01 3.75 0.04 0.47

11 0 0.05 0.25 0.11 1.88 0.13 2.18 1.40 32.30 0.96 -0.45 | 0.05 1.77 1.11 5.95 0.22 0.60

12 0 0.05 0.25 0.07 1.06 0.06 1.09 1.04 7.78 0.29 -0.02 | 0.02 1.11 0.62 0.36 0.09 -0.06
13 0 0.05 0.25 0.09 1.2 0.09 1.37 1.14 13.21 0.53 0.00 | 0.02 1.26 0.71 0.96 0.01 -0.04
14 0 0.05 0.25 0.11 1.33 0.11 1.37 1.14 16.39 0.75 -0.10 ] 0.03 1.42 0.84 1.96 0.00 0.12

15 0 -0.05 035 0.09 1.7 0.12 1.65 1.46 15,71 0.68 -0.12 1 0.07 1.71 1.07 4.54 0.26 0.46

16 0 -0.05 035 0.13 2.04 0.18 2.01 1.57 2866 087 -0.49 ] 0.09 1.97 1.20 8.53 0.72 0.41

17 0 -0.05 0.35 0.17 2,33 .21 2,23 1.62 36.91 0.88 -0.72 1 0.09 2.23 1.39 12.23 0.89 0.08

18 0 -0.05 035 0.09 1.2 0.09 1.36 1.15 6.40 0.37 0.05 | 0.06 1.30 0.84 1.37 0.09 0.12

19 0 -0.05 035 0.13 1.44 g.14 1.40 1.26 12.80 0.72 -0.01 | 0.07 1.55 1.00 3.09 0.36 0.34

20 0 -0.05 035 0.17 1.65 G.18 1.55 1.30 18.51 0.93 -0.24 1 0.10 1.60 1.12 6.44 0.59 0.32

21 30 0 0.3 0.08 1.6 ¢.10 1.42 1.29 13.81 0.60 -0.04 | 0.04 1.51 0.90 2.54 0.00 0.31

22 30 0 0.3 0.11 1.88 0.13 1.55 1.34 20.08 0.76 -0.42 1 0.05 1.77 1.05 4.49 0.29 0.56

23 30 0 0.3 0.11 1.88 0.14 1.93 1.41 24.02 0.78 -0.42 | 0.04 1.77 1.02 3.68 0.17 0.54

24 30 0 0.3 0.11 1.88 0.13 1.65 1.35 21.01 0.94 -0.39 | 0.05 1.83 1,11 5.41 0.34 0.55

25 30 0 0.3 0.14 2.12 0.17 2.09 1.48 32.69 0.80 -0.71 f 0.05 1.97 1.13 6.63 0.47 0.60

26 30 0 0.3 0.08 1.13 0.08 1.06 1.02 5.72 0.40 0.02 | 0.03 1.19 0.72 0.74 0.03 -0.11
27 30 4] 0.3 0.11 1.33 0.11 1.31 1.14 11.56 0.65 -0.01 | 0.04 1.37 0.83 1.89 -0.06 0.09

28 30 0 0.3 0.11 1.33 0.12 1.28 1.12 11.46 0.69 -0.05 | 0.04 1.35 0.81 1.52 -0.01 0.14

29 30 0 0.3 0.11 1.33 0.11 1.35 1.15 11.46 0.65 -0.01 | 0.04 1.35 0.85 2.12 0.0 0.16

30 30 0 0.3 0.14 1.5 0.14 1.38 1.17 - 15.29  0.79 -0.13 | .05 1.40 0.90 3.11 0.09 0.35

31 30 0 0.3 0.14 2,12 0.16 2.18 1.48 32.16 0.85 -0.70 | 0.06 2.09 1.20 9.35 0.63 0.60

32 30 Q 0.3 0.14 1.5 0.14 1.40Q 1.16 15.44 0.81 -0.07 | 0.05 1.44 0.0 3.47 0.10 0.34

33 30 0 0.3 0.14 1.5 0.15 1.44 1.18 16.41 0.84 -0.03 | 0.05 1.51 0.90 3.53 0.15 0.43

34 30 0 0.3 0.14 1.5 0.15 1.40 1.18 16.27 0.86 -0.09 | 0.05 1.46 0.89 3.33 0.05 0.38

35 30 0.05 0.25 0.07 1.5 0.i0 1.46 1.25 18.70 0.60 0.05 | 0.03 1.46 0.81 1.48 -0.09 0.10

36 30 0.05 0.25 0.09 1.7 0.12 1.44 1.28 25.27 0.75 -0.20 | 0.03 1.65 0.94 3.18 -0.05 0.31

37 30 0.05 025 0.11 1.88 0.13 2.05 1.37 31.81 0.85 -0.45 | 0.04 1.77 1.02 4.12 0.04 0.51

38 30 0.05 025 0.11 1.88 0.14 2.01 1.41 37.46 0.80 -0.46 | 0.04 1.90 1.00 4.12 -0.05 0.43

39 30 .05 .25 011 1.88 0.13 1.60 1.29 28.18 0.84 -0.50 | 0.04 1.80 1.03 5.12 0.14 0.64

40 30 0.05 0.25 0.07 1.06 0.07 1.02 098 7.19 035 0.01 | 0.02 1.16 061 .32 0.17 -0.03
41 30 0.05 0.25 0.09 1.2 0.09 1.23 1.06 11.53 0.53 0.01 0.02 1.19 0.68 0.80 0.03 -0.14
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Continued
Test set-up Gauge 2 Gauge 7

Test No. lavout Re(m) h{m) Hj {m} Ty (s) | Hs (m] Tois) Tgmean(s) U S A Hs(m] Tp (s} Tmean(s) Ur S A
47 an 0.058 025 n1i 1.33 .12 1.35 1.13 17.82 0.A9 -0.07 | 0.03 138 Nn.79 1.~4 -0.05 0.05
43 30 -0.05 035 0.09 1.7 0.12 1.55 1.35 12.76  0.65 -0.12 | 0.06 1.63 1.01 3.44 0.20 0.34
44 30 -0.05 035 0.13 2.04 0.17 2.05 1.49 2361 0.74 -0.45 | 0.07 1.86 1.11 5.48 0.65 0.40
45 30 -0.05 035 0.13 2.04 0.17 1.80 1.53 26.26 0.75 -0.43 | 0.06 1.97 1.10 5.21 0.53 0.49
46 30 -0.05 035 0.13 2.04 0.17 1.97 1.50 24.53 0.78 -0.49 | 0.08 1.97 1.20 7.75 0.71 0.41
47 30 -0.05 035 0.17 2.33 0.21 2.28 1.65 38.60 0.75 -0.74 | 0.09 218 1.33 10.53 0.98 0.18
48 30 -0.05 035 0.09 1.2 0.10 1.22 1.07 5.69 0.41 0.03 | 0.05 1.23 0.79 1.36 0.13 -0.02
49 30 -0.05 035 0.13 1.44 0.14 1.38 1.20 11.51 0.70 -0.06 | 0.06 1.46 0.90 2.42 0.17 0.38
50 30 -0.05 035 0.13 1.44 0.14 1.31 1.19 10.93 0.70 -0.07 | 0.05 1.42 0.86 2.18 0.13 0.25
51 30 -0.05 0.35 0.13 1.44 0.14 1.38 1.21 11.68 0.68 -0.05 | .07 1.46 0.98 3.35 0.18 0.34
52 30 -0.05 035 0.17 1.65 0.19 1.51 1.22 15.99 0.91 -0.27 | 0.07 1.77 1.05 4.31 0.48 0.46
53 50 Q 0.3 0.08 1.6 0.11 1.55 1.31 1521 0.62 -0.17 | 0.03 1.60 0.82 1.44 0.03 0.23
54 50 0 0.3 0.11 1.88 0.15 1.77 1.36 23.95 0.82 -0.43 | 0.04 1.83 0.98 3.09 0.15 0.26
55 S0 QO 0.3 0.11 1.88 0.14 1.74 1.39 2395 0.86 -0.37 | 0.03 1.71 0.91 223 0.14 0.19
56 50 0 0.3 0.11 1.88 0.14 1.80 1.38 23.89 0.75 -0.47 | 0.04 1.77 1.04 4.02 0.23 0.41
57 50 0 0.3 0.14 2.12 0.17 1.90 1.44 3l1.63 0.81 -0.51 ] 0.04 1.90 1.06 4.45 0.23 0.45
38 S0 0 0.3 0.08 1.13 0.07 1.07 .99 5.13 0.39 0.00 | 0.02 1.16 0.62 0.37 0.09 -0.06
59 50 0 0.3 0.11 1.33 0.12 1.31 1.10 10.63 0.69 -0.09 | 0.03 1.38 0.74 0.90 0.05 0.06
60 50 0 0.3 0.11 1.33 0.11 1.35 1.10 591 0.62 -0.04 | 0.03 1.40 0.72 0.66 -0.01 0.09
61 50 0 0.3 0.11 1.33 0.11 1.40 1.11 10.54 0.70 -0.11 ] 6.04 1.42 0.79 1.48 0.04 0.12
62 50 0 0.3 0.14 1.5 0.15 1.51 1.19 16.753 0.85 -0.28 | 0.04 1.55 0.91 1.94 0.13 0.31
63 50 0 0.3 0.14 2.12 0.16 1.97 1.49 32.32 0.77 -0.51 | 0.04 1.97 1.04 4.35 0.21 0.29
64 50 0 0.3 0.14 1.5 0.14 1.51 1.22 17.47 0.77 -0.28 | 0.04 1.65 0.86 1.82 0.23 0.21
65 50 0 0.3 0.14 1.5 0.15 1.48 1.18 16,39 0.84 -0.32 | 0.04 1.58 0.85 1.81 0.23 0.19
66 50 0 0.3 0.14 1.5 0.15 1.46 1.19 17.01 0.82 -0.31 | 0.04 1.58 0.87 1.83 0.25 0.17
67 50 0.05 0.25 0.07 1.5 011 1.51 1.22 19.68 0.63 -0.18 | 0.01 1.48 0.66 0.45 -0.22 -0.03
68 50 0.05 0.25 0.09 1.7 0.14 1.68 1.27 28,54 0.76 -0.37 | 0.02 1.63 0.80 1.25 -0.18 0.07
69 50 0.05 025 0.11 1.88 G.17 1.65 1.28 35.79 0.80 -0.48 | 0.02 1.68 0.88 2.02 -0.05 0.28
70 50 0.05 025 0.11 1.88 0.16 1.71 1.29 34.46 095 -0.37 | 0.02 1.71 0.81 1.17 -0.19 0.08
71 50 0.05 0.25 0.11 1.88 0.16 1.77 1.30 34.89 0.73 -0.52 1 0.03 1.68 0.93 2.69 -0.01 0.30
72 50 0.05 0.25 0.07 1.06 0.08 1.00 0.90 6.47 0.38 0.03 |0.01  1.19 0.52 0.09 0.01 -0.08
73 50 0.05 0.25 0.09 1.2 0.10 1.31 1.01 11.19 0.55 -0.05 | 0.01 1.26 0.55 0.21 0.11 -0.08
74 50 0.05 0.25 0.11 1.33 0.13 1.42 1.09 17.33 0.72 -0.16 | 0.02 1.35 0.68 0.52 -0.06 -0.04
75 50 -0.05 0.35 0.09 1.7 0.12 1.58 1.37 13.71 0.61 -0.05 | 0.05 1.65 0.88 2.14 0.15 0.13
76 50 -0.05 0.35 0.13 2.04 0.16 1.97 1.54 25.10 0.76 -0.42 | 0.06 2.09 1.09 4.42 0.37 0.37
77 50 -0.05 035 0.13 2.04 0.16 1.86 1.47 22.01 0.84 -0.38 |1 0.05 1.97 1.03 3.14 0.25 0.23
78 50 -0.05 035 (.13 2.04 0.17 1.86 1.49 24,61 0.79 -0.52 | 0.07 1.90 1.10 5.23 0.51 0.56
79 50 -0.05 0.35 0.17 2.33 0.20 2.23 1.56 32.72 0.84 -0.62 | 0.07 2.28 1.15 6.15 0.73 0.50
80 50 -0.65 0.35 0.09 1.2 0.09 1.08 1.05 5.12 0.39 -0.01 | 0.05 1.16 0.73 1.12 0.21 -0.01
81 50 -0.05 035 0.13 1.44 0.14 1.38 1.21 11.59 0.62 -0.08 | 0.05 1.42 0.82 1.72 0.13 0.12
82 50 -0.05 035 0.13 1.44 0.14 1.28 1.17 10.47 0.68 -0.02 | 0.04 1.48 0.77 1.14 0.09 0.07
83 30 -0.05 035 0.13 1.44 0.14 1.40 1.20 11.16 0.64 -0.09 [ 0.06 1.40 0.90 2.40 0.06 0.14
84 50 -0.05 035 0.17 1.65 0.19 1.60 1.26 17.56 0381 -0.24 006 1.65 0.97 277 0.28 0.35
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Table D3 Wave basin transmission tests on Rubble Mound LCS
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Continyed
Test set-up Gauge 2 Gauge 7
JLest No, Lavout Rofm) bh(m) H; (mj Ty (s)§He (m) Tofs) Tuean(s) U ) AlH.imj Tp (s} Tocan (S) U S A

49 30 0ns 092 011 1.33 [0 1.35  1.08 24.98 0.90 0925 o003 1.35 (.94 204 000 0.05

43 30 -0.05 0.3 0.09 1.7 0.10 1.55 1.31 15.25 090 -0.12 0.06 1.55 1.12 5.84 0.29 0.31

44 30 -0.05 0.3 0.13 2.04 0.13 1.80 1,36 2097 1.11 -0.55 0.08 1.83 1.18 8.38 0.75 0.34

45 30 -0.05 0.3 0.13 2.04 0.13 1.80 1.33 20.28 1.13 -0.63 0.07 1.97 1.21 7.99 0.74 0.32

46 30 -0.05 0.3 0.13 2.04 0.14 1.80 1.36 21.42 1,18 -0.48 0.08 1.90 1.23 10.28 0.76 0.32

47 30 -0.05 0.3 0.17 2.33 0.16 223 1.44 290.83 0.96 -0.86 0.09 2.18 1.27 11.39 1.09 -0.01
48 30 -0.05 0.3 0.09 1.2 0.09 1.16 1.04 6.84 0.52 0.02 0.05 1.19 0.82 2.03 026 -0.05
49 30 -0.05 0.3 0.13 1.44 0.13 1.37 1.14 13.34 0.85 -0.11 0.07 1.38 1.02 4.83 0.24 0.27

50 30 -0.05 0.3 0.13 1.44 0.13 1.35 1.12 12,18 0.81 -0.07 0.06 1.38 0.99 4.03 0.19 0.20

51 30 -0.05 0.3 0.13 1.44 0.13 1.38 1.16 13.88 0.83 -0.08 0.07 1.40 1.04 5.58 026 0.28

52 30 -0.05 0.3 0.17 1.65 0.15 1.51 1.21 1796 1.05 -0.23 0.08 1.77 1.13 7.51 0.52 0.38

53 50 0 0.25 0.08 1.6 0.09 1.46 1.20 1571 0,97 -0.04 0.04 1.55 1.03 S5.11 006 0.34

54 50 0 0.25 0.11 1.88 0.11 1.71 1.23 21.01 1.19 -0.43 0.05 1.77 1.05 5.90 0.39 0.30

S5 50 0 0.25 0.11 1.88 0.11 1.55 1.21 20,30 1.23 -0.39 0.05 1.77 1.11 6.64 0.44 0.29

56 50 0 0.25 0.11 1.88 0.12 1.71 1.21 21.52 1.28 -0.45 0.05 1.77 1.04 6.38 032 0.36

57 50 0 0.25 0.14 2.12 0.13 1.97 1.28 2763 1.16 -0.75 | 0.05 1.0 1.08 6.86 060 0.34

58 30 0 0.25 0.08 1.13 0.08 1.09 1.01 870 0.56 0.02 0.03 1.28 077 1.57 0.12 -0.04
59 S50 0 0.25 0.11 1.33 0.11 1.25 1.07 14.50 0.89 -0.05 0.04 1.38 0.85 2.89 002 0.11

60 50 4] 0.25 0.11 1.33 0.10 1.28 1.06 13.37 0.87 -0.02 ] 0.04 1.38 0.85 244  -007 -0.01
61 50 0 0.25 0.11 1.33 0.11 1.28 1.08 14.08 0.85 -0.08 | 0.05 1.42 093 4.08 009 0,18

62 30 0 025 0.14 1.5 0.13 1.38 1.09 17.70 1.06 -0.25 | 0.05 1.65 097 464 025 0.30

63 S0 0 025 0.14 2.12 0.13 2.05 1.30 27.00 1.10 -0.80 0.05 2.05 1.12 6.70 0.72 0.24

64 50 0 0.25 0.14 1.5 0.13 1.44 1.09 17.88 1.06 -0.26 0.05 .51 0.87 3.43 0.3¢ 0.20
65 50 0 025 0.14 1.5 0.13 1.37 1.07 1694 1.09 -0.28 0.05 1.60 0.89 3.47 0.38 0.20

66 50 0 0.25 0.14 1.5 0.13 142 1.11 18.19 1,12 -0.23 0.05 1.58 0.91 3.84 040 0.23

67 50 0.05 0.2 0.07 1.5 0.08 1.38 1.12 20.04 1.01 -0.05 0.04 1.51 1.16 9.58 -0.06 0.14

68 50 005 0.2 0.09 1.7 0.10 146  1.11 2293 1.25 -0.23 | 0.03 1.55 1.05 7.03 0.08 0.25

69 50 .05 0.2 0.11 1.88 0.11 1.60 1.10 2484 128 -0.51 0.03 1.80 1.09 7.60 0.32 0.33

70 50 .05 0.2 0.11 1.88 0.10 1.65 1.11 23.88 1.26 -0.52 0.03 1.77 1.14 7.99 0.27 0.33

71 50 0.05 0.2 0.11 1.88 0.11 1.60 1.14 26.7% 127 -0.48 0.03 1.71 1.04 6.72 0.28 0.26

72 50 0.05 0.2 0.07 1.06 0.07 1.06 0.95 16.33 0.57 0.03 0.02 1.11 0.94 3.29 0.0 0.01

73 S0 0.05 0.2 0.09 1.2 0.09 1.22  1.00 16.60 0.88 -0.05 0.03 1.28 1.00 4.55 0.05 -0.09
74 50 005 0.2 0.11 1.33 0.10 1.30 1.03 20.12 0.97 -0.14 | 0.03 1.35 0.99 4.80 -0.07 0.03

75 50 -0.05 03 0.09 1.7 0.10 1.60 1.29 14.10 0.91 -0.22 0.06 1.65 1.18 7.03 0.31 0.39

76 50 -0.05 0.3 0.13 2.04 0.13 1.93  1.41 22,71 1.01 -0.63 | 0.07 2.01 1.23 927 077 040

77 50 -0.05 0.3 0.13 2.04 0.13 1.83 1.37 21.54 1.08 -0.57 | 0.07 1.90 1.24 8.82 0.72 0.32

78 50 -0.05 0.3 0.13 2.04 0.14 1.90 1.38 23.43 1.06 -0.75 0.08 1.80 1.22 9.47 0.82 0.44

79 S0 -0.05 0.3 0.17 2.33 0.16 2.23 1.48 31.48 091 -0.85 0.08 2.18 1.25 9.72 1.04 0O.11

80 50 -0.05 0.3 0.09 1.2 0.09 1.14  1.03 6.58 0.49 0.03 0.05 1.22 0.94 3.02 026 -0.02
81 30 -0.05 0.3 0.13 1.44 0.13 1.35 1.13 12.43 0.87 -0.11 0.06 1.55 1.04 4.69 0.16 0.25
82 50 -0.05 0.3 0.13 1.44 0.12 1.31  1.10 10.96 0.83 -0.07 | 0.06 1.46 1.03 4.31 0.19 0.21

83 50 -0.05 0.3 0.13 1.44 0.13 1.31 1.14 13.05 0.89 -0.11 0.07 1.42 1.06 5.56 0.21 0.24

84 50 -0.05 0.3 017 1.65 0.15 1,51 1.18 17.24 1.06 -0.37 |1 0.07 1.55 1,06 5.92 0.63  0.39
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