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Summary 23 

 24 

1. Pathogens can be critical drivers of the abundance and distribution of wild 25 

animal populations. The presence of an over-dispersed pathogen load 26 

distribution between hosts (where few hosts harbor heavy parasite burdens 27 

and light infections are common) can have an important stabilizing effect 28 

on host-pathogen dynamics where infection intensity determines 29 

pathogenicity. This may potentially lead to endemicity of an introduced 30 

pathogen rather than extirpation of the host and/or pathogen.  31 

2. Over-dispersed pathogen load distributions have rarely been considered in 32 

wild animal populations as an important component of the infection 33 

dynamics of microparasites such as bacteria, viruses, protozoa and fungi.  34 

3. Here we examined the abundance, distribution and transmission of the 35 

model fungal pathogen Batrachochytrium dendrobatidis (Bd, cause of 36 

amphibian chytridiomycosis) between wild-caught Litoria rheocola 37 

(common mist frogs) to investigate the effects of an over-dispersed 38 

pathogen load distribution on the host population in the wild. We 39 

quantified host survival, infection incidence and recovery probabilities 40 

relative to infectious burden, and compared the results of models where 41 

pathogen over-dispersion either was or was not considered an important 42 

feature of host-pathogen dynamics.  43 

4. We found the distribution of Bd load between hosts to be highly over-44 

dispersed. We found that host survival was related to infection burden, and 45 

that accounting for pathogen over-dispersion allowed us to better 46 

understand infection dynamics and their implications for disease control. 47 
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In addition, we found that the pattern of host infections and recoveries 48 

varied markedly with season whereby (i) infections established more in 49 

winter, consistent with temperature dependent effects on fungal growth, 50 

and (ii) recoveries (loss of infection) occurred frequently in the field 51 

throughout the year but were less likely in winter.  52 

5. Our results suggest that pathogen over-dispersion is an important feature 53 

of endemic chytridiomycosis, and that intensity of infection determines 54 

disease impact. These findings have important implications for our 55 

understanding of chytridiomycosis dynamics and the application of 56 

management strategies for disease mitigation. We recommend quantifying 57 

individual infectious burdens rather than infection state where possible in 58 

microparasitic diseases. 59 

   60 
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Introduction 66 

 67 

Pathogens are increasingly being identified as important drivers of the abundance and 68 

distribution of wild animal populations (Altizer, Harvell & Friedle 2003; Grogan et al. 69 

2014; Voyles et al. 2014). The complex host-pathogen dynamics that drive these 70 

systems have classically been explained within the micro- and macro-parasite 71 

epidemiological paradigm, where pathogens are categorised according to a number of 72 

characteristics common to each group, such as the apparent degree of pathogen load 73 

over-dispersion seen between hosts in macro- but not micro-parasites. Microparasites 74 

typically include viruses, bacteria, protozoa and fungi, whereas macroparasites 75 

include larger organisms such as helminths and arthropods.  76 

 77 

However, several recently emerged infectious pathogens (such as the fungus 78 

Batrachochytrium dendrobatidis [Longcore, Pessier & Nichols 1999] in amphibians 79 

and Hendra virus in bats; Wang et al. 1998) appear to defy clear categorisation within 80 

this paradigm as their dynamics fail to follow typical patterns (Briggs, Knapp & 81 

Vredenburg 2010; Murray et al. 2013; Plowright et al. 2015). Furthermore, traditional 82 

mitigation strategies based on the above paradigm are proving to be poor tools for the 83 

control of these diseases in wild populations. An improved understanding of the 84 

dynamics of these diseases is thus essential for managing them in situ, and will have 85 

broad applicability to emerging infectious diseases in general.  86 

 87 

Batrachochytrium dendrobatidis (hereafter Bd), the cause of the amphibian fungal 88 

skin disease chytridiomycosis has had a devastating impact upon amphibian 89 

populations around the world (through range contractions, population declines and 90 
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extirpations, and species extinctions). In the past, single-celled fungal pathogens like 91 

Bd have been typically considered as microparasites both taxonomically and for the 92 

purposes of modeling their disease dynamics (Anderson & May 1981). However, Bd 93 

infections demonstrate a number of features more common to larger parasites such as 94 

helminths and arthropods (Hudson & Dobson 1998; Briggs, Knapp & Vredenburg 95 

2010).  96 

 97 

Bd has a short life cycle within a single host involving two forms (infectious zoospore 98 

and reproductive sporangium; Berger et al. 2005a). In contrast to typical 99 

microparasites it appears to suppress an effective adaptive immune response in hosts 100 

(Rosenblum et al. 2012; Cashins et al. 2013; Fites et al. 2013). While it is able to 101 

multiply asexually at a moderate rate on individual hosts, duration of infection can be 102 

long, and pathogenicity relies on high infectious burdens, a feature typical of 103 

macroparasites (Voyles et al. 2009; Vredenburg et al. 2010). Infectious burden also 104 

appears to be strongly dependent on external factors affecting the life cycle of the 105 

pathogen, such as temperature and moisture (Voyles et al. 2012), similar to 106 

macroparasitic diseases, and hence population infections often display highly seasonal 107 

dynamics and spatiotemporal distribution patterns consistent with environmental 108 

determinants (Murray et al. 2013; Phillott et al. 2013).  109 

 110 

Pathogen over-dispersion, another feature well recognised as common to 111 

macroparasites, occurs with chytridiomycosis (Skerratt et al. 2011), but its effects on 112 

disease dynamics have not been investigated. Over-dispersion likely provides one 113 

explanation for why some species and populations persist with chytridiomycosis 114 

while others that do not exhibit over-dispersion have been driven to extinction (Lips et 115 
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al. 2006; Skerratt et al. 2007; Briggs, Knapp & Vredenburg 2010; Vredenburg et al. 116 

2010). It may also help to explain the inability to detect a difference in survival 117 

probability between two disease states (infected and uninfected) in the multi-state 118 

mark-recapture study by Briggs, Knapp and Vredenburg (2010), because the effects of 119 

a small proportion of highly infected frogs may be unobserved when grouped with 120 

low infection results. 121 

 122 

Pathogen over-dispersion (otherwise known as parasite aggregation, pathogen 123 

aggregation, or pathogen distribution heterogeneity) describes a distribution of 124 

infectious organisms amongst hosts whereby most infected individuals have low 125 

infectious burdens, while very few hosts have high burdens. Over-dispersion is an 126 

important characteristic for understanding the dynamics of macroparasite diseases 127 

(Hudson & Dobson 1998), and it implies that the infection intensity pattern (described 128 

by the intensity-frequency curve) among hosts within a population tends to be highly 129 

positively skewed - thus infectious organisms are both spatially and temporally 130 

aggregated among hosts (Wilson et al. 2002).  131 

 132 

Chytridiomycosis provides a unique opportunity to examine the phenomenon of 133 

pathogen over-dispersion with a microparasite (Hudson & Dobson 1998; Skerratt et 134 

al. 2011). Unlike typical microparasitic infections, the epidermal localization of 135 

chytridiomycosis and the use of real time PCR enable the non-invasive and relative 136 

quantification of burdens among hosts (Hyatt et al. 2007). Given pathogen over-137 

dispersion is a feature of endemic chytridiomycosis, and infection intensity affects 138 

both survival and infection transmission probabilities, examining its effects on disease 139 
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dynamics could have important implications for our understanding of the disease 140 

ecology of microparasites.  141 

 142 

We used the multi-state mark-recapture framework to investigate transmission and 143 

recovery dynamics of endemic chytridiomycosis in Litoria rheocola (the common 144 

mist frog; Liem 1974) in tropical north Queensland, Australia, as a function of 145 

individual-level infection status, population-level apparent prevalence, and 146 

environmental covariates. We chose this study species and tropical stream system as it 147 

represents hundreds of similar species and systems that have survived introduction of 148 

chytridiomycosis and now exist with endemic disease in Australia and the Americas 149 

(Berger et al. 1998; Lips et al. 2006; Skerratt et al. 2007; Murray et al. 2009; Skerratt, 150 

Speare & Berger 2011; Phillott et al. 2013). The study aimed to firstly, characterize 151 

the presence of Bd pathogen over-dispersion in the context of a wild population of 152 

endemically Bd infected amphibians, and secondly, to investigate infection and 153 

recovery state transition dynamics throughout seasons and years. In particular, we 154 

wanted to determine whether defining infection as a binary variable (two infection 155 

states: uninfected and infected) or tertiary variable (three states: uninfected, and two 156 

discrete levels of infectious load which takes into account pathogen over-dispersion) 157 

affects our understanding of infection dynamics. Here we demonstrate that an over-158 

dispersed distribution of a microparasite within the host population plays an important 159 

role in defining disease dynamics.  160 

 161 

  162 
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Materials and methods 163 

 164 

Species, site and sampling 165 

We collected mark-recapture encounter data (via toe-tip marks) for adult male 166 

common mist frogs (Litoria rheocola) from a 150 m stream transect in lowland 167 

tropical rainforest of Tully Gorge National Park (145° 38' E 17°46' S, 130 m above 168 

sea level), Queensland, Australia over 22 trips between November 2005 and October 169 

2007 (see Phillott et al. 2013 for further details of field work at this site). Bd is 170 

suspected to have arrived at this site around 1989. Although annual survival rates are 171 

low (12%) there is high recruitment (91%) and the population appears stable (Phillott 172 

et al. 2013). L. rheocola is an obligate stream-breeder, and the breeding season for 173 

this population occurs from May to August (coinciding with the dry winter season; 174 

Bureau of Meteorology 2008) however adult males maintain calling territories at the 175 

stream throughout the year (Hodgkison & Hero 2002; Phillott et al. 2013). Individual 176 

frogs were skin-swabbed at every capture (maintaining strict hygiene, and following 177 

standard protocols; Phillott et al. 2010; Phillott et al. 2013), and swabs were analyzed 178 

for the presence of Bd DNA via quantitative PCR (qPCR; one well, one zoospore 179 

equivalent [zse] considered positive; Hyatt et al. 2007; Skerratt et al. 2011).  180 

 181 

Multi-state mark-recapture modeling 182 

Multi-state mark-recapture analysis (MSMR; Lebreton et al. 2009) has recently 183 

emerged as a unified framework for capture-mark-recapture field studies (CMR; 184 

Lebreton et al. 1992). In this framework the chance of encountering an individual on a 185 

particular occasion is a product of its probability of recapture (ρ), conditional on its 186 

probability of surviving the interval (S), and its probability of making one of a number 187 
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of defined transitions between states (ψ). The state concept enables investigation of 188 

time-varying individual categorical variables, such as site, breeding status or disease 189 

status (see Lebreton et al. 2009 for review and synthesis), and has thus expanded 190 

CMR studies to the investigation of individual-level disease dynamics (Cooch et al. 191 

2012). The advantage of CMR for studying wildlife disease is that it accounts for 192 

imperfect detection, compared with traditional epidemiological cohort near-census 193 

follow-up. Multi-state modeling is increasingly being used for the study of disease in 194 

wild animals (see for example Senar & Conroy 2004; Conn & Cooch 2009; Rossi et 195 

al. 2011). Multi-state mark-recapture has been applied to the study of 196 

chytridiomycosis in several ecological systems to date (Murray et al. 2009; Briggs, 197 

Knapp & Vredenburg 2010), and provides less confounded parameter estimates 198 

(Jennelle et al. 2007) than the previously used measure of 'return rate' (Kriger & Hero 199 

2006).  200 

 201 

We applied the information theoretic approach (IT-AIC, following the steps outlined 202 

in Phillott et al. 2013) to explore state-specific endemic chytridiomycosis infection 203 

dynamics using the MSMR framework. We hence performed two- and three-state 204 

multi-state modeling with program MARK (version 6.0; White, Kendall & Barker 205 

2006) to elucidate the individual-level effect of chytridiomycosis infection on survival 206 

probability in the field by assigning frogs to an infection state at each capture via 207 

qPCR results. We particularly wanted to determine the probabilities for infection and 208 

recovery transitions, in order to understand the nature of infection dynamics in situ 209 

(Murray et al. 2009; Cooch et al. 2012).  210 

 211 
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We investigated the best predictors (several, due to model uncertainty) from the 212 

Cormack-Jolly-Seber (CJS) analysis for existing survival and recapture parameters for 213 

this dataset (Phillott et al. 2013) in the new context of state transition probabilities. 214 

Hence we investigated survival as a function of infection status (γ), apparent trip 215 

prevalence (π), mean daily maximum temperature (°C) for the 28 days preceding each 216 

trip (λ), and a cyclical seasonal linear trend variable (τ, where autumn is considered 217 

equivalent to spring). Recapture probability was investigated as a function of infection 218 

status (γ), mean daily relative humidity (%) at maximum temperature for the 28 days 219 

preceding each trip (ε), mean daily radiation (MJ/m2) over 28 days preceding each trip 220 

(ζ), and capture effort (in days per trip δ). Weather variables were obtained from the 221 

SILO climate database which provides spatially interpolated values from regional 222 

meteorological stations (Jeffrey et al. 2001; Bureau of Meteorology 2008). 223 

 224 

We defined infection status (γ) as a time-varying individual covariate categorized into 225 

either two or three states on the basis of infection intensity (zse) at each capture. In the 226 

two-state analysis, A = Bd negative (uninfected) and B = Bd positive (infected). In the 227 

three-state analysis, Bd load was discretized into groups: A = Bd negative, B = 1-4 zse 228 

“low”, C > 4 zse “high”. This low-burden group of hosts is the most poorly defined in 229 

terms of disease processes; individuals may be newly infected, recovering, resistant, 230 

their burdens may represent background contamination, or they may contain 231 

unaccounted sampling or laboratory error (McClintock et al. 2010). The chosen 232 

threshold between infection states (4 zse) allowed us to separately model the 233 

transmission dynamics of this low-burden group and eliminated potential confounding 234 

from the high-infected host group. In addition, multi-state analysis methods have high 235 

data requirements, and this threshold permitted Bd positive results to be split evenly 236 
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between states B (low intensity) and C (higher intensity) providing sufficient power 237 

for analysis (66 samples zse ≤ 4; 64 samples zse > 4; Fig. 1). We acknowledge that by 238 

artificially discretizing the continuous variable zse into low and high categories of 239 

intensity of infection there is some loss of information and some potential 240 

misclassification of infection levels close to the cutoff value (although the 241 

repeatability of the quantitative PCR at James Cook University is very high; Hyatt et 242 

al. 2007). However, the results remain interpretable in terms of the effects of 243 

comparative levels of infection. The sample size was not sufficient for categorization 244 

into additional levels of infection intensity, such as a moderate group.  245 

 246 

The state transition parameter 𝜓𝜓𝑖𝑖𝑟𝑟𝑟𝑟 defines the probability that an individual in state r 247 

at time i will be in state s at time i + 1. Importantly where there are more than two 248 

states, this includes the probability of transitions from each state in the MSMR Jolly-249 

Movement Model (JMV; Lebreton et al. 2009), including the probability of remaining 250 

in the same state 𝜓𝜓𝑖𝑖𝑟𝑟𝑟𝑟, and the outgoing probabilities for each state must sum to one 251 

(Fig. 1). States in this study represent discrete infection conditions (defined by zse 252 

infection intensities) in which the marked individual may potentially be encountered, 253 

conditional on being in that state and alive. Following the results in Phillott et al. 254 

(2013), and to incorporate both individual and population-level effects, we 255 

hypothesized that state transition probabilities are influenced by infection status (γ), 256 

apparent trip prevalence (π) and seasonal environmental covariates such as 257 

temperature (λ). As an example of how these effects might influence the transitions 258 

between states, recoveries should be associated with increased ambient temperature to 259 

reduce Bd growth (Voyles et al. 2012) and promote host thermoregulatory 260 
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immunomodulation (Richards-Zawacki 2010). Similarly, recoveries should also be 261 

associated with reduced prevalence as they require an absence of re-infection.  262 

 263 

We applied the bootstrap and median 𝑐̂𝑐 goodness of fit tests with the general model 264 

S(γ)ρ(γ)ψ(γ) (further details on goodness of fit testing and modeling assumptions can 265 

be found in Appendix S1). Bootstrapping yielded p = 0.61 (𝑐̂𝑐 = 1.028), and median 𝑐̂𝑐 266 

yielded 𝑐̂𝑐 = 1.110 (95% CI 0.925 - 1.295; 1000 simulations) for the two-state multi-267 

state dataset, hence the most conservative estimate of 𝑐̂𝑐 = 1.110 was used. Similarly 268 

for the three-state analysis, bootstrapping yielded p = 0.64 (𝑐̂𝑐 = 1.026), and median 𝑐̂𝑐 269 

gave 𝑐̂𝑐 = 1.097 (95% CI 0.944 - 1.250; 1000 simulations), hence 𝑐̂𝑐 = 1.097 was 270 

employed. Candidate model sets for two and three-state analyses were constructed 271 

separately a priori using a restricted form of the all subsets approach, and tested 272 

systematically (Appendix S1; Lukacs, Burnham & Anderson 2010; Hegyi & 273 

Garamszegi 2011; Doherty, White & Burnham 2012). We constructed models using 274 

the intercept design matrix coding format and the logistic (logit) link function. Where 275 

numerical convergence was suspect, we employed the alternate optimization routine 276 

from within MARK, and assessed each model individually for estimable parameter 277 

count, adjusting as necessary (Lebreton et al. 2009; Cooch et al. 2012). We used 278 

QAICc to rank model parsimony (Burnham & Anderson 2002), model averaging to 279 

reduce selection bias (Lukacs, Burnham & Anderson 2010), and we estimated 280 

monthly parameter probabilities (1 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ = 365
12

≈ 30.42 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑), reporting 281 

unconditional 95% confidence intervals (95% CI; Burnham & Anderson 2002). 282 

Akaike weights were used to determine relative variable importance from entire 283 

candidate model sets (Doherty, White & Burnham 2012), and we report evidence 284 

ratios and model averaged effect sizes where appropriate for comparisons between 285 
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states (Burnham & Anderson 2002). Model averaged effect sizes were based on 286 

model averaged real parameter estimates and confidence intervals were unbounded on 287 

the real probability scale using the delta method for difference between two variances 288 

with the model averaged variance-covariance matrix. Raw encounter history and 289 

predictor variable data together with model averaged parameter estimates for the 290 

three-state analysis are available in Appendix S3. We additionally performed a 291 

discrete time simulation for a population of adult frogs employing the model-averaged 292 

trip-based parameter estimates from the three-state multi-state mark-recapture 293 

analysis over the study period to demonstrate the impact of estimated state transition 294 

and survival parameters on actual population numbers. Detailed methods and results 295 

from this simulation are available in Appendix S1 and S2.  296 

 297 

  298 
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Results 299 

 300 

Infection pattern summary 301 

We made 424 captures of 243 uniquely marked adult male L. rheocola frogs 302 

throughout the two year study period (109 frogs were caught more than once). Forty-303 

seven frogs (43% of those caught more than once) changed infection state at least 304 

once (became infected or recovered), and 13 frogs (28% of those caught more than 305 

twice) changed state two or more times (although only three of these, 23%, were re-306 

infected after recovery). State transitions were approximately even with 28 infection 307 

and 34 recovery transitions. Two frogs gained and lost infection several times. The 308 

highest infection intensity recorded prior to recovery was 123 zse. Apparent Bd 309 

infection prevalence for the whole study period was 130/421 = 0.3088 (binomial 95% 310 

CI 0.2650 to 0.3553 by Clopper-Pearson method, assuming statistical independence). 311 

The intensity-frequency histogram for qPCR swab results for the whole study period 312 

was highly positively skewed (Fig. 2; 291 records for Bd negative and 21 high zse 313 

records were truncated for visualization; N = 421, range 0 to 4028 zse). The variance 314 

to mean ratio of infectious organisms per host (s2/m) was 2227.47 (very much higher 315 

than one, indicative of pathogen over-dispersion). The Weibull distribution (α = 316 

0.46901, β = 15.259) and negative binomial distribution were fit to the data (Fig. 2), 317 

and the corrected moment estimate of k (of the negative binomial distribution) was 318 

0.0069, indicating a high degree of pathogen over-dispersion (Wilson et al. 2002).  319 

 320 

Multi-state mark-recapture results 321 

Model averaged parameter estimates revealed marked seasonality in survival and 322 

transition probabilities in both analyses (monthly model averaged estimates for state-323 
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dependent survival, recapture and state transition probabilities are reported with 324 

unconditional 95% confidence intervals in Figs 3 and 4 for two- and three-state multi-325 

state analyses, respectively; see Appendix S2 for ranked tables of model results). 326 

While survival differed between infected and uninfected frogs in the two-state 327 

analysis, apparent survival probability estimates for the infected group were 328 

incongruously higher than those for the uninfected group, except during one winter 329 

trip session. Confidence intervals for the infected group were considerably wider, 330 

however, and overlapped those for the uninfected group for all trip sessions (Fig. 3a). 331 

In comparison, when the infected group was separated into two infection categories 332 

(group B with 1-4 zse, group C > 4 zse) in the three-state analysis, frogs with differing 333 

levels of infectious burden had differing survival probabilities (frogs with > 4 zse had 334 

consistently lower survival; Fig. 4a). While recapture probabilities were relatively 335 

stable throughout the study period in both analyses, in the two-state analysis both 336 

uninfected and infected frogs had similar recapture probabilities (Fig. 3b), whereas in 337 

the three-state analysis the low-burden group had low recaptures compared with the 338 

high-burden group (although confidence margins were wide in the three-state 339 

analysis; Fig. 4b).  340 

 341 

Parameter estimates revealed marked seasonality in state transition probabilities 342 

between infection states. In the two-state analysis, frogs were much more likely to 343 

become infected in winter (correlating with prevalence), while there was a moderate 344 

reduction in the probability for recovery transitions during this period in the infected 345 

group (Fig. 3c). The three-state analysis further highlighted these trends with some 346 

exceptions despite overlapping confidence margins (transitions constituting the gain 347 

of or increase in infectious burden shown in Fig. 4c; reduction of infectious load or 348 
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loss of infection transitions shown in Fig. 4d). The highest probability for infection 349 

transitions occurred during winter from the uninfected (group A) to low-burden frogs 350 

(group B). Recovery transition (loss of infection) probabilities were seasonal, peaking 351 

during summer and autumn, and were similar between both high and low-burden 352 

groups. Stationary transition probabilities (shown in Fig. S2, Appendix S2) were 353 

derived from the aforementioned model-averaged transition probabilities and 354 

probability theory which states that the sum of the probabilities of leaving each state 355 

must equal one. Hence throughout most of the year, among those surviving a 356 

sampling interval, frogs were most likely to either remain in the uninfected state, or 357 

return to that state through infection recovery (Fig. S2, Appendix S2). Low-burden 358 

frogs (group B) were observed to increase their infectious load (to group C) at a 359 

relatively low and stable rate throughout the study (Figs 4c, S2b, Appendix S2). 360 

Hypothetical population dynamics (including variation in total population size) based 361 

on these transition and survival probabilities are exemplified in a series of three 362 

population dynamics simulation models illustrated in Fig S1 (Appendix S2).  363 

 364 

Despite model selection uncertainty, the most parsimonious models in both analyses 365 

modeled apparent survival and state transition probabilities as a function of a 366 

multiplicative interaction between individual-level infection state and population-level 367 

infection prevalence (the models 𝑆𝑆(γ × 𝜋𝜋)𝜌𝜌(𝛿𝛿)𝜓𝜓(γ × 𝜋𝜋) and 𝑆𝑆(γ × 𝜋𝜋)𝜌𝜌(γ +368 

𝜁𝜁)𝜓𝜓(6γ × 𝜋𝜋), with 9.1% and 20.4% support for two- and three-state analyses, 369 

respectively). Ranked relative predictor variable importance (reporting only those 370 

>0.1) for the two-state analysis were prevalence (π = 0.6228) and temperature (λ  = 371 

0.3400) for survival; days (δ  = 0.36301), radiation (ζ  = 0.29044) and relative 372 

humidity (ε  = 0.24491) for recapture; and prevalence (π = 0.9254) for transition. For 373 
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the three-state analysis these were prevalence (π = 0.8700) and temperature (λ = 374 

0.1298) for survival; radiation (ζ = 0.5109), relative humidity (ε = 0.2632) and days (δ 375 

= 0.1674) for recapture; and prevalence (π = 0.9264) for transition.  376 

 377 

The model averaged effect size as a mean across trips for the survival difference 378 

between infected and uninfected groups in the two-state analysis was 0.1070, with the 379 

infected group demonstrating higher apparent survival overall (95% CI -0.0577 to 380 

0.2717). Similarly, the model averaged effect sizes for survival in the three-state 381 

analysis were as follows: B-A 0.1184 (95% CI -0.0448 to 0.2815), B-C 0.2610 (95% 382 

CI -0.1573 to 0.6794) and A-C 0.1427 (95% CI -0.2086 to 0.4940). While there was 383 

limited support for an effect of individual infection status on apparent survival in the 384 

two-state analysis (the evidence ratio comparing most parsimonious models with and 385 

without γ was 2.8222), there was correspondingly strong support in the three-state 386 

analysis (evidence ratio 695.20), and strong support in both analyses for an effect of 387 

infection status on state transition probability (evidence ratios > 918.90 and 319.36 for 388 

the two- and three-state analyses, respectively; Lukacs et al. 2007).  389 

 390 

  391 
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Discussion 392 

 393 

Pathogen over-dispersion and survival probabilities 394 

We found marked aggregation of Bd within our endemically infected wild amphibian 395 

population, as demonstrated by a highly over-dispersed intensity-frequency 396 

distribution curve (Fig. 2). Thus, while most infected individuals had low burdens, a 397 

few hosts had high burdens. Categorizing infectious burdens into low or high groups 398 

based on qPCR swab results allowed us to partially resolve paradoxical results from 399 

our two-state analysis which were similar to those reported by Briggs, Knapp and 400 

Vredenburg (2010). The model averaged estimates from our two-state analysis 401 

revealed a lower apparent survival probability for uninfected frogs compared with 402 

infected frogs, although confidence intervals for the infected state were wide (Fig. 3a). 403 

After taking pathogen over-dispersion into account, apparent survival probability of 404 

infected frogs fell to either side of the uninfected group, with high-burden frogs 405 

having the lowest survival estimates (Fig. 4a). The reason for a difference between the 406 

two and three state analyses is the high degree of pathogen over-dispersion and its 407 

differential effects; approximately half the infected frogs were classed in the low-408 

burden group (Fig. 2). In addition, infection intensity was found to be seasonally 409 

associated with survival as well as transmission and recovery probabilities. Our 410 

results are consistent with previous field work showing over-dispersion (Skerratt et al. 411 

2011), and linking reduced survival with higher Bd infection intensities (Murray et al. 412 

2009), and also demonstrates that quantifying infectious burdens is key to 413 

understanding the ecology of chytridiomycosis. 414 

 415 
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We used the MSMR framework to provide dynamic estimates of first-order Markov 416 

infection state transition probabilities and state-dependent survival estimates from 417 

field data whilst accounting for imperfect detection (Murray et al. 2009; Cooch et al. 418 

2012). Compared with the single-state Cormack-Jolly-Seber model (Phillott et al. 419 

2013), the MSMR framework permits reassessment of individual disease status at 420 

each capture, which is essential for examining individual-level infection dynamics and 421 

survival probabilities in a system where infection status fluctuates. Most disease 422 

studies utilizing MSMR analyses to date have categorized individuals on the basis of 423 

their infection status (uninfected versus infected states; Murray et al. 2009; Briggs, 424 

Knapp & Vredenburg 2010). This binary definition in the presence of pathogen over-425 

dispersion can greatly diminish our understanding of survival and state transition 426 

probabilities, and here we demonstrate the importance of this effect through 427 

comparisons of two and three state analyses.  428 

 429 

Transition probabilities – infection and recovery 430 

In our study, frogs gained and lost infection frequently, consistent with previous field 431 

data on mountain yellow-legged frogs (Rana muscosa and R. sierrae) in temperate 432 

USA (Briggs, Knapp & Vredenburg 2010), and some individuals demonstrated 433 

numerous state transitions. Comparing two- and three-state analyses helped resolve 434 

the nature and magnitude of transition probabilities between disease states (Figs 3c, 4c 435 

and 4d). As expected from previous studies on the temperature dependence of Bd 436 

(Voyles et al. 2012), we found that frogs were most likely to become infected during 437 

winter months (June to August in the southern hemisphere), with the transition to a 438 

low infectious burden (1-4 zse) being most probable (Fig. S2a, Appendix S2). 439 

Alternatively, recovery from both low and high infectious burdens was equally 440 
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probable and high throughout most of the year, dropping moderately during winter 441 

(Figs S2b and S2c, Appendix S2).  442 

 443 

A relatively long incubation period (roughly 3-8 weeks between exposure and clinical 444 

signs; Berger et al. 2005b; Voyles et al. 2009) in an environmentally responsive 445 

pathogen means more chance for pathogen-adverse environmental conditions (such as 446 

temperature spikes) to favour host recovery and survival. Thus, recovery transitions 447 

may be favoured over infection transitions throughout most of the year in areas with 448 

higher temperatures such as at low elevation tropical regions. A long incubation 449 

period also artificially inflates point prevalence measures and deflates mortality 450 

measures compared with pathogens that have short incubation periods. This is also 451 

likely to lead to a highly over-dispersed intensity-frequency distribution because most 452 

of the infected population is in the subclinical phase of the disease at any point in time 453 

(in endemically infected populations, unlike propagating epidemics which can rapidly 454 

lead to widespread mortality). Re-infection transitions were comparatively 455 

uncommon, however (only three of the 13 frogs that were observed to change state 456 

two or more times), possibly suggesting adaptive immunity may occur in the field. 457 

However, the third simulation scenario (Fig. S1c, Appendix S2) assumed no effect of 458 

adaptive immunity and resulted in population dynamics consistent with our 459 

expectations and dynamics observed in the wild.  460 

 461 

Uninfected frogs versus those with low infectious burdens 462 

Finding that uninfected frogs had lower apparent survival probabilities than those in 463 

the low-burden state (Fig. 4a) was unexpected. The difference in apparent survival 464 

between these infection states was small to moderate (11% for two-state analysis, 12-465 
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26% for three-state analysis). Perhaps this survival discrepancy, and part of the cause 466 

for the high level of pathogen over-dispersion, is due to the low infection group 467 

representing a greater proportion of more resistant individuals. Under laboratory 468 

conditions conducive to disease progression, infections occur only at low levels for 469 

about a week post-exposure (Hyatt et al. 2007) suggesting low infections in 470 

susceptible wild individuals would only be maintained if conditions for the disease 471 

were suboptimal or if individual frogs were relatively resistant. In comparison, the 472 

uninfected group would contain susceptible individuals that eventually become 473 

exposed and die from the disease but are not re-caught prior to death. Similarly, the 474 

lower winter survival probabilities in the low burden and uninfected frogs compared 475 

with other seasons (given that pathogenicity relies on high infectious burdens, and that 476 

these burdens are driven by weather; Voyles et al. 2009; Murray et al. 2013) is likely 477 

due to frogs increasing their intensity of infection and dying without being detected in 478 

the high burden state.  479 

 480 

Alternatively, the above discrepancy may be due to emigration confounding in 481 

capture-mark-recapture studies (Murray et al. 2010; Schmidt 2010). For example, 482 

differential permanent emigration rates between the two states may lead to different 483 

apparent survival probabilities. We have no a priori reason to suspect higher 484 

emigration in uninfected frogs or in those with high zoospore burdens compared with 485 

those having low burdens (Roznik et al. 2015). Rather, frogs appeared to maintain 486 

calling territories on the stream year-round suggesting site fidelity (Phillott et al. 487 

2013). Tracking studies comparing movements of uninfected and infected frogs could 488 

be used to resolve potential confounding due to emigration if it appears to be an issue 489 

(Roznik & Alford 2015).   490 
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Implications of pathogen over-dispersion 491 

Implications of pathogen over-dispersion for the management of endemic 492 

chytridiomycosis can be separated into two categories; those that affect the way we 493 

study, model and report this disease; and those that affect actual disease dynamics. In 494 

the first instance, we have demonstrated empirically that failing to account for 495 

different levels of infectious burden between hosts can lead to errors in understanding 496 

of population dynamics (for example, through mark-recapture state categorizations, or 497 

ecological modeling). In addition, we highlight that the commonly reported measure 498 

of disease abundance, population infection prevalence, is particularly susceptible to 499 

errors in interpretation when used to compare populations with differing levels of 500 

pathogen over-dispersion. In the second instance, pathogen over-dispersion impacts 501 

population dynamics where infectious burden affects 1) pathogenicity, 2) the rate of 502 

production of the infectious stage released to the environment, or 3) the degree of host 503 

resistance or immunity (May & Anderson 1979). The first two conditions occur in 504 

chytridiomycosis, based on this study and past work (Hyatt et al. 2007; Murray et al. 505 

2009).  506 

 507 

The specific effects of pathogen over-dispersion on populations will likely depend on 508 

the degree and predominant causes of the observed over-dispersion, and elucidating 509 

these may assist with predicting long-term population outcomes and hence 510 

management approaches. There are three main potential causes of observed over-511 

dispersion including 1) heterogeneous exposure, 2) variable multiplication within the 512 

host, and 3) sampling artifact (Hudson & Dobson 1998). In the context of 513 

chytridiomycosis, we focus on the second cause which is likely to be generally the 514 

most important given what we know of the disease, although exceptions may occur 515 
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(Berger et al. 2009). Variation in pathogen replication on the host within a population 516 

is caused by differences in host susceptibility (Berger et al. 2005b; Tobler & Schmidt 517 

2010) and temperature suitability for pathogen growth (Murray et al. 2013). The 518 

former may be associated with past exposure history, and physiological and 519 

behavioural characteristics. There is some evidence for each of these, although their 520 

specific importance remains uncharacterized (Tobler & Schmidt 2010; Savage & 521 

Zamudio 2011). Species that have been driven to extinction by chytridiomycosis 522 

appear to be highly susceptible, have little variation in host susceptibility (Carey et al. 523 

2006; Skerratt et al. 2007; Berger et al. 2009; Bataille et al. 2013), and have occurred 524 

in areas that were highly favourable for the pathogen (Murray et al. 2011). Thus, it is 525 

important to identify the predominant cause of pathogen over-dispersion as this may 526 

provide an indication of potential long-term persistence of the population.  527 

 528 

Conclusions 529 

In conclusion, we have shown that pathogen over-dispersion is an important feature of 530 

a microparasitic disease, in this case endemic chytridiomycosis. Overlooking non-531 

uniform pathogen distributions in microparasitic diseases may lead to paradoxical 532 

interpretations of disease dynamics. We also show that Bd infections occur seasonally 533 

and that recoveries are common and likely important for population persistence. 534 

Future management of endemic chytridiomycosis might focus on environmental 535 

manipulation to favor host recoveries (Scheele et al. 2014). Understanding the main 536 

causes of pathogen over-dispersion will indicate whether other disease control 537 

interventions should be targeted predominantly towards 1) assisting the longer-term 538 

evolution of resistance within the population via selection techniques, 2) reducing 539 

exposure and transmission of infection between hosts, 3) bolstering population size 540 
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through approaches directed at habitat conservation, or 4) minimizing other 541 

threatening processes. We recommend quantifying individual infectious burdens 542 

rather than infection state where possible in microparasitic diseases. 543 

 544 

Data Accessibility 545 

 546 

Raw encounter history and predictor variable data, together with three-state model 547 
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Figure legends 779 

Figure 1. Example schematic illustrating state transition probabilities (ψ) and survival 780 

probabilities (S) for the respective infection states at capture session six (drawn from 781 

the three-state multi-state analysis). The notation ψrs indicates the monthly state 782 

transition probability from state r to state s from time (capture session) i to i+1, and St 783 

represents survival probability from time i to time i+1, for individuals in state t. Circle 784 

sizes are representative of the relative expected population size (from the simulation), 785 

and arrow line thicknesses represent the relative magnitude of the respective 786 

probabilities.  787 

 788 

Figure 2. Intensity-frequency histogram showing highly over-dispersed distribution 789 

of infectious organisms between individual hosts (highly positively skewed), together 790 

with the fitted Weibull and negative binomial distributions. N = 421; 291 Bd negative 791 

records and 21 high zoospore records were truncated for visualization; original data 792 

range 0 to 4028.  793 

 794 

Figure 3. Model averaged estimates for monthly (a) survival probability, (b) recapture 795 

probability, and (c) state transition probability with unconditional 95% confidence 796 

intervals from the two-state multi-state analysis for male adult L. rheocola at Tully. 797 

 798 

Figure 4. Model averaged estimates for monthly (a) survival probability, (b) recapture 799 

probability, (c) infection transition probabilities, and (d) recovery transition 800 

probabilities with unconditional 95% confidence intervals from the three-state multi-801 

state analysis for male adult L. rheocola at Tully. States are defined as: state A = Bd 802 

negative (uninfected), state B = 1-4 zse, state C >4 zse.  803 
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Figure 1.   804 

 805 
  806 
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Figure 2.   807 
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Figure 3. 811 
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Figure 4. 822 
 (a) 823 
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Supporting Information 834 

 835 

The following Supporting Information is available for this article online:  836 

Appendix S1. Portable document file (PDF) containing description of parameters, 837 

predictor variables, construction of candidate model sets, and population dynamics 838 

simulation methods.  839 

Appendix S2. Portable document file (PDF) containing tables of results (Tables S1-840 

S6), population dynamics simulation results, transition probabilities description, and 841 

results figures (Figs S1, S2). 842 

Appendix S3. Excel spreadsheet containing raw encounter history and predictor 843 

variable data, together with three-state model-averaged parameter estimates.  844 

 845 


