
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

04 University of Plymouth Research Theses 01 Research Theses Main Collection

2016

Visualisation Studio for the analysis of

massive datasets

Tucker, Roy Colin

http://hdl.handle.net/10026.1/4870

http://dx.doi.org/10.24382/3308

Plymouth University

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.

Page | 1

Copyright Statement
This copy of the thesis has been supplied on condition that anyone who consults it is

understood to recognise that its copyright rests with its author and that no quotation

from the thesis and no information derived from it may be published without the

authors consent.

Page | 2

Visualisation Studio for the analysis of massive

datasets

by

Roy Tucker

A thesis submitted to the University of Plymouth

in partial fulfilment for the degree of

Doctor of Philosophy

School of Computing and Mathematics

Faculty of Science and Technology

October 2015

Page | 3

Author’s Declaration
 At no time during the registration of the degree of Doctor of Philosophy has

the author been registered for any other University award without the prior

agreement of the Graduate Committee

Relevant scientific seminars and conferences were regularly attended at which work

was presented and several papers were published.

1.1 Publications:

14th International Conference – Information Visualisation (IV 2010) Extended

Abstract ‘Using VISA to visualise multi-dimensional spike train data sets’ – London

VISA Carmen Cross Correlation Service released – 20th July 2012

Tucker, R., Barlow, N. & Stuart, L. (2012) 'The Background and Importance of

Exploiting Multiple Cores: A Case Study in Neurophysiological Visualization'.

Proceedings of the 2012 International Conference on Parallel and Distributed

Processing Techniques and Applications, 2 pp 352-358.

Tucker, R., Gunaratne, S., Barlow, N. & Stuart, L. (2014) 'A Scaling Cross Platform

Tool for the Analysis of Neurophysiological Data'. International Journal of Computer

Application, 3 (4). pp 41-56.

1.2 Conferences Attended:

14th International Conference – Information Visualisation (IV 2010)

CARMEN Consortium meeting 23rd – 24th May 2011

2012 International Conference on Parallel and Distributed Processing Techniques

and Applications 18th July 2012, Las Vegas.

From Maps to Circuits: Models and Mechanisms for Generating Neural Connections

(MAP 2014), 28/29 July 2014, Edinburgh UK

Signed………………………. Dated: 22/03/2016

Thesis word count: 79,472

Page | 4

Acknowledgements

I would like to take this opportunity to express both thanks and gratitude to my

supervisory team of Dr Liz Stuart and Dr Nigel Barlow for the endless patience and

coffee supply that makes this thesis possible.

 A special thanks to Professor Steve Furnell - Head of School for the School of

Computing and Mathematics at Plymouth University for his support.

 A special thanks to Dr Evelyne Sernagor of the Newcastle University Medical

School who provided several data sets of 1500+ simultaneously recorded spike

trains. These proved invaluable in testing the software.

 Thanks is also due to the staff and research students of the School of

Computing, Electronics and Mathematics (Faculty of Science and Engineering) there

are too many amazing people to mention but my special thanks goes to Sam

Gunaratne, Dean Thomas, Fahad Almansour, Torbjorn Dahl, Pushpa Subramaniam,

Martin Beck, Shirley Atkinson, Mary Squire, Nicholas Outram, Julie Taylor, Sam

Green, Carole Watson, Peter Mills, Antonio Rago and Kurt Langfeld.

 As always the invaluable support of my family Mother, Father and Brother

make my study a possibility. Finally my thanks and gratitude to Alan Griffiths, who is

no longer with us, and without whom this work would never have been begun.

Page | 5

Abstract
Visualisation Studio for the analysis of massive datasets by Roy Tucker

 This thesis describes the research underpinning and the development of a

cross platform application for the analysis of simultaneously recorded multi-

dimensional spike trains. These spike trains are believed to carry the neural code

that encodes information in a biological brain. A number of statistical methods

already exist to analyse the temporal relationships between the spike trains.

Historically hundreds of spike trains have been simultaneously recorded, however as

a result of technological advances recording capability has increased. The analysis

of thousands of simultaneously recorded spike trains is now a requirement.

 Effective analysis of large data sets requires software tools that fully exploit

the capabilities of modern research computers and effectively manage and present

large quantities of data. To be effective such software tools must; be targeted at the

field under study, be engineered to exploit the full compute power of research

computers and prevent information overload of the researcher despite presenting a

large and complex data set.

 The Visualisation Studio application produced in this thesis brings together

the fields of neuroscience, software engineering and information visualisation to

produce a software tool that meets these criteria. A visual programming language for

neuroscience is produced that allows for extensive pre-processing of spike train data

prior to visualisation. The computational challenges of analysing thousands of spike

trains are addressed using parallel processing to fully exploit the modern

researcher’s computer hardware. In the case of the computationally intensive

pairwise cross-correlation analysis the option to use a high performance compute

cluster (HPC) is seamlessly provided. Finally the principles of information

visualisation are applied to key visualisations in neuroscience so that the researcher

can effectively manage and visually explore the resulting data sets. The final

visualisations can typically represent data sets 10 times larger than previously while

remaining highly interactive.

Page | 6

Contents

Copyright Statement ... 1

Author’s Declaration .. 3

1.1 Publications: ... 3

1.2 Conferences Attended: ... 3

Acknowledgements ... 4

Abstract... 5

Contents ... 6

List of Figures ... 11

Introduction ... 15

1 Overview .. 16

1.1 The Research Question .. 17

1.2 Outcomes and Contribution .. 17

1.3 A Tour of the Thesis .. 18

Visualisation .. 20

2. Overview .. 21

2.1 Historical Visualisation Applications .. 22

2.2 The Development of the Thermic Map, Flow Map and Information Graphics 24

2.3 The Visualisation Process ... 30

2.3.1 Data Gathering .. 31

2.3.2 Data Transformations .. 31

2.3.3 Graphics engine visual mappings .. 31

2.3.4 Visual and Cognitive Processing, Data Exploration and View Manipulation ... 36

2.4 Summary .. 39

Neuroscience .. 40

3 Overview .. 41

3.1 History of Neuroscience .. 41

3.2 The Neuron as the core component of the nervous system 41

3.2.1 Dendrites ... 43

3.2.2 Axon .. 43

3.2.3 Synapse ... 44

3.3 The action potential or ‘spike’ and the generation of spike trains........................... 46

Page | 7

3.3.1 Overview of neuron encoding schemes ... 46

3.3.2 Rate encoding schemes .. 47

3.4 Connectivity between neurons in a biological neural network 48

3.4.1 Direct Coupling .. 48

3.4.2 Indirect Coupling .. 49

3.4.3 Common Input Coupling .. 49

3.5 Recording Neural Network Activity .. 49

3.5.1 The Multi Electrode Array (MEA’s) ... 49

3.5.2 The Data Explosion in Neural Science ... 51

3.6 Analysing Neural Network Recordings .. 51

3.6.1 iRaster – The classic spike train raster plot. ... 52

3.6.2 iGrid – The Cross Correlation grid .. 52

3.6.3 iAnimate – The Multi Electrode Array firing animation 52

3.6.4 Challenges of big data in neuroscience.. 52

3.7 Summary .. 54

Parallelism .. 55

4 Overview .. 56

4.1 Historical development of parallel computation ... 56

4.1.1 Multiprogramming systems and the LEO III ... 56

4.1.2 Co-operative Multitasking... 56

4.1.3 Pre-emptive Multitasking .. 57

4.2 Features of Multiprogramming / Multitasking processing 58

4.2.1 Categories of computer processes ... 58

4.2.2 Processes and threads of execution .. 58

4.2.3 The operating systems thread scheduler and the thread blocking process 59

4.2.4 Multiprogramming / multitasking is not parallel computation 60

4.3 Development of true parallel computation ... 60

4.4 Forms of computation ... 62

4.4.1 Single instruction, single data stream (SISD) ... 62

4.4.2 Single instruction, multiple data streams (SIMD) .. 62

4.4.3 Multiple instructions, single data stream (MISD) .. 62

4.4.4 Multiple instructions, multiple data streams (MIMD) 63

4.5 Embarrassingly Parallel Problems .. 63

4.6 Parallel Programing – The failure to launch .. 64

4.6.1 Concurrency Frameworks – An abstraction layer for parallel coding 65

4.6.2 The spread of Concurrency Frameworks in modern development languages 65

Page | 8

4.6.3 General structure of a concurrency framework ... 67

4.7 The future for parallel / concurrent computation .. 69

5 Overview .. 71

5.1 The Information Processing Cycle .. 71

5.1.1 The Input Phase .. 72

5.1.2 The Processing Phase ... 72

5.1.3 The Output Phase .. 73

5.2 Dataflow Programming Languages & Visual Programming Languages 73

5.2.1 Dataflow implementation models ... 75

5.2.2 Dataflow execution models .. 76

5.2.3 Selection of dataflow model and execution method for VISA 3 implementation

 77

5.3 The Visualisation of Inter-Spike Associations (VISA project) 78

5.3.1 VISA Goals .. 78

5.3.2 VISA3 Development Goals .. 79

5.3.3 Neuroscience Visualisations .. 80

Research and Software Development Methodology .. 84

6 Overview .. 85

6.1 Research Methodology ... 85

6.1.1 Theoretical Research ... 85

6.1.2 Empirical Research .. 86

6.1.3 Selected Research Methodology – Empirical Positivist 87

6.2 Project goals / aims ... 89

6.3 Software Development Methodology .. 90

6.4 The Spiral Development Methodology .. 91

6.4.1 Risk driven process model generator ... 91

6.4.2 Cyclic approach for incrementally growing a system 92

6.4.3 Key research outputs ... 93

Designing iPipeline & the neuroscience visual programming language 94

7 Overview – iPipeline .. 95

7.1 Definition of terms ... 95

7.2 The ‘thin’ framework layer ... 97

7.2.1 Workflow Desktop .. 97

7.2.2 Process base classes .. 100

7.2.3 Data model support classes ... 103

7.2.4 Parallel execution engine ... 109

Page | 9

8 Creating a data model for neuroscience spike train recordings 111

8.1 Designing the data model ... 111

8.1.1 Managing big data in the data model ... 111

8.1.2 The theory of binary trees and self-balancing red-black binary trees 114

8.1.3 Supporting Shneiderman’s principle of “Overview first” and “Details on demand”

 120

8.1.4 Creating the dataflow ‘token’ using the developed data model 120

8.1.5 Supporting history and relationship tracking ... 121

The i-Raster Visualisation ... 125

9 Overview of the i-Raster Visualisation .. 126

9.1 Drawbacks of Somerville’s i-Raster Visualisation with modern neuroscience

datasets ... 128

9.1.1 Addressing the dataset density problem through the Visual Programing

Language (VPL) ... 129

9.1.2 Addressing the dataset density problem through additional i-Raster

functionality .. 138

The i-Grid Visualisation ... 143

10 Overview of the i-Grid Visualisation .. 144

10.1 Overview of Pair-wise Cross Correlation ... 144

10.1.1 Computational challenge of Pair-wise Cross Correlation 145

10.1.2 MPJ Express as an implementing environment for i-Grid’s cross-correlation

algorithm. ... 147

10.1.3 Implementation issues of i-Grid’s cross-correlation algorithm. 148

10.1.4 Algorithm performance – Lab PC vs High Performance Computing (HPC)

cluster 150

10.2 Identifying interconnected neural clusters ... 153

10.3 Scaling the iGrid Visualisation ... 155

10.4 The Dendrogram Visualisation .. 157

10.4.1 The dendrograms visual encoding scheme .. 160

10.4.2 The dendrogram “forest” view .. 161

10.4.3 The dendrogram “un-clustered view” ... 168

10.4.4 The dataset’s “Overview” view ... 169

The i-Animate Visualisation ... 171

11 Overview of the i-Animate Visualisation .. 172

11.1 Goals of the i-Animate Visualisation .. 173

11.2 Basic implementation details ... 173

11.3 The information overlay options in i-Animate. .. 177

Page | 10

11.3.1 The MEA grid overlay. ... 177

11.3.2 The Heat map overlay selection. .. 178

11.3.3 Implemented heat maps in the i-Animate visualisation. 181

12 Conclusions .. 183

12.1 Contributions ... 183

12.1.1 The Visualisation Studio (i-Pipeline) ... 183

12.1.2 The Neural Science Problem Domain Library (i-Pipeline) 183

12.1.3 The i-Raster Visualisation .. 184

12.1.4 The i-Grid Visualisation .. 184

12.1.5 The i-Animate Visualisation .. 185

12.2 Future Development ... 185

12.2.1 Exploitation of high performance GPU hardware ... 185

12.2.2 Distributed Computing and Cloud Computing .. 186

12.2.3 Application to other problem domains .. 186

12.3 Conclusion .. 186

Appendix 1: Creating a new iPipeline toolbox process .. 188

1 Creating iPipeline Toolbox Processes .. 189

1.1 Data processing algorithm to segment data by a time window 189

1.2 Planning the algorithm .. 189

1.2.1 How the problem domain data model is modified by this algorithm 190

1.2.2 Permitted connections to / from the time segmenting algorithm 190

1.2.3 Process settings panel(s) ... 190

1.2.4 Creating visual elements .. 191

1.2.5 The iPipeline Toolbox .. 191

1.3 Implementing a skeleton data analysis process .. 192

1.3.1 Time Segmenting algorithms settings panel GUI creation 195

1.3.2 Time segmenting algorithm’s ISettingsPanel interface implementation 196

1.3.3 Responding to OK / Cancel button events on the settings panel 200

1.3.4 Integrating the settings panel with the parent process 201

1.3.5 Implementation of process core algorithm .. 202

1.3.6 Introducing the new process to iPipeline’s problem domain 204

Appendix 2: Glossary of Terms ... 206

Appendix 3: Publications ... 209

References ... 237

Page | 11

List of Figures
Figure 2-1: Recent history of visualisation (Friendly & Denis, 2001) 22

Figure 2-2: Lascaux Cave art with modern constellations shown (Rappenglück, 1999) 23

Figure 2-3: The Catal Hoyuk town map as it now appears (Slide 100, Museum at Konya,

Turkey and Slide 100D Semitic Museum at Harvard University (Cambridge, MA))(Brock,

2001) .. 23

Figure 2-4: The Catal Hoyuk town map as it might have appeared when created (Brock,

2001) .. 23

Figure 2-5: The Turin Papyrus Map from ancient Egypt (Harrell & Brown, 1992a) 24

Figure 2-6: The “Designatio orbis Christiani” an early "Thermic Map" (Hondius & Purchas,

1607) .. 25

Figure 2-7 John Snows 1854 thermic map of the London Broad Street Cholera outbreak

(Snow, 1855) .. 26

Figure 2-8: Florence Nightingale's Polar Area Diagrams or Rose Charts analysing causes of

mortality among injured soldiers in the Crimea War of 1853 - 1856 (Nightingale, 1859) 27

Figure 2-9: Minard’s Map of Napoleon’s losses in the Russian campaign of 1812, the maps

title reads “Figurative map of successive losses in men of the French Army in the Russian

campaign 1812-1813”). (Robinson, 1967) ... 28

Figure 2-10: The original London Underground map incorporating both geographic and

topological information (Creemers et al., 2014). .. 29

Figure 2-11: Henry Becks topological map of the London Underground as it appeared when

published in 1933 (Creemers et al., 2014). .. 30

Figure 2-12: The visualisation process (Ware, 2012) .. 31

Figure 2-13: Histogram representing student grades that applies Ware’s guidelines. 35

Figure 2-14: Data table representing student grades the breaks several of Ware’s guidelines.

 ... 36

Figure 3-1: Major structures of a neuron (amended). (Jarosz, 2009) 43

Figure 3-2: The structure and operation of a chemical synapse. (Wikipedia, 2014) 45

Figure 3-3: A neural spike train showing spiking activity over a 2 sec time period. 46

Figure 3-4: Coupling option between connected neurons in a neural network. (Somerville,

2011) .. 48

Figure 3-5: An in vitro MEA array. (Potter, 2010) ... 50

Figure 3-6: An in vivo MEA array. (Normann, 1993) .. 50

Figure 3-7: MEA electrode recording from a neural network. Source (Buzsaki, 2004) 50

Figure 4-1: Execution of the pre-emptive multitasking model .. 59

Figure 4-2: Amdahl's Law and realisable performance gains in parallel algorithms 61

Figure 5-1: The Information Processing Cycle .. 71

Figure 5-2: A dataflow system visualised as a directed graph. (Source: (Microsoft, 2012)). 75

Figure 5-3: Raster plot of 20 spike trains recorded for 2000ms ... 80

Figure 5-4: Raster plot re-ordered to identify when neurons started to spike (burst sort) 81

Figure 5-5: iGrid plot with neurons clustered using pair wise cross correlation. (Stuart, Walter

& Borisyuk, 2003) .. 82

Figure 5-6: Actual simulated neural network structure used in examples. 83

Figure 6-1: Research Strategies (Remenyi & Money, 2012).. 85

Figure 6-2: The "scientific method" or classic research process (ArchonMagnus, 2015). 86

Figure 6-3: Boehm's Spiral Development Model (Boehm, 2000). .. 91

Figure 7-1: Structure of the iPipeline workflow framework ... 95

Page | 12

Figure 7-2: iPipeline’s workflow desktop component ... 97

Figure 7-3: Workflow to merge five data files into a single data source. 98

Figure 7-4: Workflow to merge five datasets. Two new files are created, the first of raw data

and the second after sorting the raw data. .. 99

Figure 7-5: Thin layer base process class implementation structure. 100

Figure 7-6: The visual representation (glyph) of a process .. 102

Figure 7-7: Core iPipeline interfaces and their relationships .. 104

Figure 7-8: Settings panel for burst sort algorithm ... 106

Figure 7-9: Visual encoding for incomplete parameter configuration 107

Figure 7-10: The parameter management sub-system structure 108

Figure 8-1: A binary search tree for a regularly firing (10Hz) neuron recorded for one second.

 ... 115

Figure 8-2: An unbalanced binary search tree ... 116

Figure 8-3: A Red-Black binary search tree for a regularly firing (10Hz) neuron recorded for

one second ... 117

Figure 8-4: Left / Right rotation in a binary search tree. Source (Cormen et al., 2009).

𝑵𝑩: 𝒕𝒉𝒆 𝒔𝒚𝒎𝒃𝒐𝒍𝒔 𝜶, 𝜷 𝒂𝒏𝒅 𝜸 𝒓𝒆𝒑𝒓𝒆𝒔𝒆𝒏𝒕 𝒂𝒏𝒚 𝒂𝒓𝒃𝒊𝒕𝒂𝒓𝒚 𝒃𝒊𝒏𝒂𝒓𝒚 𝒔𝒆𝒂𝒓𝒄𝒉 𝒕𝒓𝒆𝒆 118

Figure 8-5: A binary tree structure both before and after a left rotation of the marked 𝒙, 𝒚

connection. Source (Cormen et al., 2009). .. 118

Figure 8-6: The iPipeline parameter and parameter manager system 122

Figure 8-7: Implementation of the 'Command' software design pattern 123

Figure 9-1: Raster chart of twenty spike trains recorded for two seconds. 126

Figure 9-2: Spike trains re-ordered in the Y-axis from minimum to maximum inter spike

interval (ISI). ... 127

Figure 9-3: Spike train firing rate frequency overlaid onto raster chart 127

Figure 9-4: The dataset after filtering to show the 10 most active spike trains with a section

zoomed to show detail. ... 128

Figure 9-5: Somerville's i-Raster chart for 700 spike trains recorded for 30 minutes 129

Figure 9-6: Simple i-Raster VPL program .. 130

Figure 9-7: Filter to exclude "noisy" data channels (those withfiring rates). 131

Figure 9-8: Generation of a grouped spike train that summarises two spike trains. 132

Figure 9-9: Visual program to group 64 spike trains together .. 132

Figure 9-10: A researcher’s 1411 spike train dataset "grouped" with 64 spike trains per a

group .. 133

Figure 9-11: Detailed view of summary spike train one ... 133

Figure 9-12: VPL program to “burst sort” spike trains prior to grouping them 134

Figure 9-13: A researcher’s 1411 spike train dataset burst sorted and grouped with 64 spike

trains per a group .. 135

Figure 9-14: Detailed view of a burst sorted group of 64 spike trains 135

Figure 9-15: Time segment process added to VPL to create six five minute time segments

 ... 136

Figure 9-16: Division of the original raster chart using the time segmenting process 137

Figure 9-17: First five minute time segment of 1411 spike trains burst sorted and grouped

with 64 spike trains per a group .. 137

Figure 9-18: Detailed view of a burst sorted group of 64 spike trains (first five minute time

segment) ... 138

Figure 9-19: Time filtered raster chart extracted from a 1411 spike train dataset 140

Figure 9-20: Components of the interactive time filtering tool .. 141

file:///C:/Users/rtucker/Dropbox/Thesis%20Master%20Document/Thesis%20CORRECTED%20Master%20Document/Master%20Document/Master%20Thesis%20Document%20Roy%20Tucker%20242415.docx%23_Toc446154195
file:///C:/Users/rtucker/Dropbox/Thesis%20Master%20Document/Thesis%20CORRECTED%20Master%20Document/Master%20Document/Master%20Thesis%20Document%20Roy%20Tucker%20242415.docx%23_Toc446154196
file:///C:/Users/rtucker/Dropbox/Thesis%20Master%20Document/Thesis%20CORRECTED%20Master%20Document/Master%20Document/Master%20Thesis%20Document%20Roy%20Tucker%20242415.docx%23_Toc446154196
file:///C:/Users/rtucker/Dropbox/Thesis%20Master%20Document/Thesis%20CORRECTED%20Master%20Document/Master%20Document/Master%20Thesis%20Document%20Roy%20Tucker%20242415.docx%23_Toc446154197
file:///C:/Users/rtucker/Dropbox/Thesis%20Master%20Document/Thesis%20CORRECTED%20Master%20Document/Master%20Document/Master%20Thesis%20Document%20Roy%20Tucker%20242415.docx%23_Toc446154215
file:///C:/Users/rtucker/Dropbox/Thesis%20Master%20Document/Thesis%20CORRECTED%20Master%20Document/Master%20Document/Master%20Thesis%20Document%20Roy%20Tucker%20242415.docx%23_Toc446154218
file:///C:/Users/rtucker/Dropbox/Thesis%20Master%20Document/Thesis%20CORRECTED%20Master%20Document/Master%20Document/Master%20Thesis%20Document%20Roy%20Tucker%20242415.docx%23_Toc446154221
file:///C:/Users/rtucker/Dropbox/Thesis%20Master%20Document/Thesis%20CORRECTED%20Master%20Document/Master%20Document/Master%20Thesis%20Document%20Roy%20Tucker%20242415.docx%23_Toc446154224
file:///C:/Users/rtucker/Dropbox/Thesis%20Master%20Document/Thesis%20CORRECTED%20Master%20Document/Master%20Document/Master%20Thesis%20Document%20Roy%20Tucker%20242415.docx%23_Toc446154224

Page | 13

Figure 9-21: Accessing the electrode display from i-Raster’s primary interface. 141

Figure 9-22: A two second burst sorted recording of 500 spike trains with the electrode

display shown. .. 142

Figure 9-23: Electrode display filtering a dataset by recording electrode. 142

Figure 10-1: Generation of time bin totals in pair-wise cross correlation 145

Figure 10-2: Number of required cross correlation calculations for neuronal networks up to

2000 neurons in size. .. 146

Figure 10-3: Operation of i-Grids MPJ Express implementation of the cross correlation

algorithm ... 148

Figure 10-4: Cross correlation results as a nested hash map structure 149

Figure 10-5: Cross-correlations per second vs neural network size in desktop and HPC

environments .. 153

Figure 10-6: iGrid visualisation with cross correlation histogram for neuron spike trains 1 and

7. The red bar denotes the peak cross-correlation value used for the iGrid representation.

 ... 157

Figure 10-7: Resized iGrid visualisation & cross correlation histogram placing greater

emphasis on the detailed histogram while retaining awareness of its place in the correlation

grid. The red bar denotes the peak cross-correlation value used for the iGrid representation.

 ... 157

Figure 10-8: iGrid dendrogram overview visual encoding scheme..................................... 160

Figure 10-9: A "forest" composed of two trees .. 161

Figure 10-10: Spike train dendrogram collapsed and filtered to show a sub-cluster 162

Figure 10-11: Filtered iGrid for spike trains 4, 11 and 3, 19 ... 163

Figure 10-12: Cross-correlation chart for spike trains 3 and 11 ... 164

Figure 10-13: Predicted inter-neuron connections ... 165

Figure 10-14: Actual simulated neural network connections .. 165

Figure 10-15: Cross-correlogram for spike trains 11 and 19 showing the weak but statistically

significant signal (i.e. in excess of the Brillinger threshold). ... 167

Figure 10-16: iGrid visualisation for the second step of neural network mapping 168

Figure 10-17: The "Un-clustered view" with the spike trains filtered out from iGrid 169

Figure 10-18: Fully expanded overview showing the test data sets structure. 170

Figure 11-1: Primary i-Animate controls .. 173

Figure 11-2: i-Animate time and time filtering controls ... 174

Figure 11-3: Stimulation event triggers initial response from the neural network 175

Figure 11-4: A wave of neural activity has formed and is spreading through the network .. 176

Figure 11-5: The wave's passage activates three neuron clusters which exhibit a period of

intense spiking activity .. 176

Figure 11-6: By approximately 12 seconds after the stimulating event the nextwork has

returned its unstimulated state .. 176

Figure 11-7: A wave of neural spiking activity moving through the neural networks most

active region. .. 177

Figure 11-8: MEA Grid showing isolated clusters of active neurons and densely packed

regions of active clusters. .. 177

Figure 11-9: The classic rainbow colour map. (Moreland, 2009a) 178

Figure 11-10: Divergent colour map for scientific visualisation .. 180

Figure 11-11: Moreland's colour space applied to geo-spacial data along with its RGB colour

mapping for normalised scalar values. (Moreland, 2009b) .. 180

Page | 14

Figure 1-1: Dividing a single spike train recording into ten data sets using a 200ms time

window .. 189

Figure 1-2: Time segmenting process setting panel (mock up) ... 191

Figure 1-3: A deployed iPipeline framework with process library 204

Figure 1-4: Neural Analysis ProcessLibrary package .. 204

Figure 1-5: Batch script to generate the ProcLib.jar file from the compiled code. 205

Figure 1: Directed Graph of a VISA3 Visual Program .. 217

Figure 1: An example of a typical spike train recording for three neurons over a period of

500ms ... 224

Figure 2: An example of (i) direct synaptic coupling and (ii) common input coupling 225

Figure 3: Example cross-correlogram for two connected neurons 225

Figure 4: An example of a Cross Correlogram calculation using a six-bin window 226

Figure 5: Example Brillinger normalised cross-correlogram with confidence interval 226

Figure 6: Example Correlation Grid showing only significant peaks (bin size 2ms, window

size 100) ... 227

Figure 7: Example Correlation Grid, showing only significant peaks and clustered (bin size

2ms, window size 100) .. 227

Figure 8: Neuron assembly for test data set .. 227

Figure 9: Number of required cross correlation calculations for neuronal networks up to 2000

neurons in size. ... 228

Figure 10: Overview of the parallel cross correlation algorithm ... 231

Figure 11: Dendrogram plot of the first two spike train clusters in a 50 neuron network 232

Figure 12: iGrid showing significant cross-correlation peaks in a 50 neuron test dataset .. 232

Figure 13: Dendrogram for 50 neuron test dataset .. 233

Chapter 1: Introduction

Summary
Overview of the thesis

Chapter 1

Introduction

Chapter 1: Introduction

Page | 16

1 Overview

The human brain consists of over 1012 neurons which form in excess of 1000

trillion synaptic connections between them. The neurons communicate by

transmitting short (1ms) electrical signals (known as spikes) through the synaptic

connections. From these three simple components; neuron, synaptic connection and

electrical signal all the complex neuronal structures of the human brain arise. These

structures grant us the ability to learn, memorise, reason, experience emotion and

ultimately make us into conscious and self-aware entities. Despite the simplicity of

the components scientific explanations for these key facets of the human brain are at

best only partially complete. The fundamental question of “how does the brain work?”

remains only partially answered.

The great barrier to progress in understanding the human brain is the extreme

complexity of the organ. Certainly that complexity is required to give rise to such

complex emergent properties as consciousness. Such complexity does, however,

make it extremely difficult to understand how the brain functions. Historically

scientific investigation has been limited by the ability to simultaneously record the

activity of large numbers of neurons. These recordings are known as spike trains

and have been limited to tens or hundreds of neurons. The introduction of silicon-

based multi-electrodes comprising hundreds or more electrode contacts offers

unprecedented possibilities for simultaneous recordings of spike trains from

thousands of neurons (Einevoll et al., 2012). This increase in the number of recorded

spike trains opens up the serious possibility of:

 mapping neuron connectivity in regions of the brain

 decoding the meaning of the signals transmitted between neurons

 expanding our knowledge of brain function and

 developing effective treatments for many brain function disorders

In order to realise the full benefits of this new technology science cannot

however rely on the neuroscientist alone. It is not enough simply to record the

activity of thousands of neurons and give that data to a neuroscientist. The

neuroscientist must also be given tools with which to analyse and visualise the data.

The creation of such tools must inevitably draw on scientific knowledge from fields

outside of neuroscience. The computer stands at the heart of the modern world’s

ability to analyse data in large quantities. Inevitably the computer scientist must

become involved in providing the tools to record and analyse large spike train data

sets. Equally important is the knowledge of Visual Analytics as a tool to effectively

study large data sets without overwhelming the researcher. The value of Visual

Analytics to the analysis of neuroscience data has been shown by Somerville and

Walter (Somerville, 2011; Walter, 2004). This research attempts to extend these

techniques to the analysis of thousands of simultaneously recorded spike trains.

Chapter 1: Introduction

Page | 17

1.1 The Research Question

“How can Software Engineering and Visual Analytics be applied to aid the

general analysis of scientific data and specifically current neural spike train data?”

To answer this question this research aims to:

I. Develop a generic framework suitable for data analysis in any problem

domain.

II. To apply that framework to the specific problem domain of neuroscience

visualisation for thousands of simultaneously recorded spike trains.

III. To exploit parallel computation and programming as a solution for the

problems of increased computational complexity arising from “big data”.

IV. To apply data visualisation and visual analytics techniques to effectively

analyse large (1000+) simultaneously recorded spike trains.

To accomplish these aims this research has the following objectives:

I. To create a Visualisation Studio for the analysis of massive datasets (i-

Pipeline).

II. To build the Visualisation Studio in a cross platform manner.

III. To exploit the delivery of increased computing power through multi-core

architectures. This will require the application to support parallel

computation.

IV. To develop a library of data analysis processes suitable for the

investigation of neuroscience data. This library should also exploit the

delivery of increased computing power through multi-core architectures.

V. To develop a set of interactive visualisations that support a researcher’s

analysis of thousands of simultaneously recorded spike trains.

VI. To identify neural coupling from spike train data using an algorithm that

scales seamlessly from the researchers desktop to a university cluster

computer environment.

1.2 Outcomes and Contribution

This work makes two significant contributions to the state-of-the-art. The first is

the Visualisation studio itself (i-Pipeline). This uses the techniques of dataflow

programming to produce naturally paralysable “programs” to analyse large data sets.

The second is the enhancement of Somerville’s i-Raster and i-Grid visualisations to

support large scale data sets (1000+ spike trains) and the introduction of the new i-

Animate visualisation. In each case maintaining the interactive nature of the

visualisations for 1000+ spike trains has placed extensive demands on the computer

hardware. Modern computers deliver computational power through multi-core

processor systems. Unfortunately exploiting this power requires programs to be re-

written in a manner that supports parallel computation. This work has adopted this

approach from the beginning and reveals how even a researcher’s typical desktop

computer can deliver “big data visualisation” performance with the correctly

Chapter 1: Introduction

Page | 18

developed software tools. The enhancements made to i-Raster and i-Grid can be

summarised as:

 The data model underlying both visualisations has been re-developed to

support much larger in memory datasets with rapid searching to maintain

the performance of the interactive displays.

 Both have seen expanded “overviews” added to visually manage the

larger datasets:

o I-Raster has had a visual representation of the multi-electrode

array that recorded the data set added to facilitate selection of

spike trains to include on the raster chart.

o I-Raster has also had the ability to collapse spike trains into groups

added. This allows much more data to be represented by a single

line of the chart. A drill down facility has been added to view the

individual spike trains.

o I-Grid has seen the cross-correlation data used with a clustering

algorithm to create a dendrogram of potentially connected neurons.

Filtering of items on the i-Grid visualisation is now achieved by

expanding / collapsing sections of the dendrogram tree.

o I-Grid is now rendered in an “infinite virtual space” to prevent loss

of clarity with large datasets. A viewport allows the user to inspect

the visualisation.

 Both visualisations have been re-coded to fully support and exploit the

modern computers new paradigm of delivering compute power through

multiple compute cores.

1.3 A Tour of the Thesis

After this introductory chapter a review of the history and current state of the art

for the three key fields is provided in chapters 2-4 as follows:

 Chapter 2: Visualisation

 Chapter 3: Neuroscience

 Chapter 4: Parallelism

Chapter 5 explores the ideas of underlying “Visual Programming Languages”

including dataflow programming. The Visualisation studio (i-Pipeline) falls into the

category of a visual programming language and therefore these principles underlie

its operation.

Chapter 6 examines the research and software development methodology

adopted in this research project.

Chapter 7 examines the actual implementation of i-Pipeline from a technical

point of view.

Chapter 1: Introduction

Page | 19

Chapter 8 examines the implementation of the neuroscience library, its analysis

algorithms and their implementation.

Chapters 9-11 examine each of the neuroscience visualisations included in the

neuroscience library as follows:

 Chapter 9: The i-Raster visualisation

 Chapter 10: The i-Grid visualisation

 Chapter 11: The i-Animate visualisation

Chapter 12 concludes the thesis with a review of the contribution and

achievements made. This is followed by the appendix and references.

Chapter 2: Visualisation

Summary
In this chapter the term “Visualisation” is defined and the scope of the field examined with
real world examples of its practical application.

Chapter 2

Visualisation

“visualisation noun. A mental image that is similar to a visual perception”

Chapter 2: Visualisation

Page | 21

2. Overview
Visualisation is a wide ranging field that can take many different forms. A simple

review of its applications reveals how truly multi-disciplinary the field is. In brief the areas to

which visualisation techniques have been applied would include:

 Information Visualisation

 Interactive Visualisation

 Scientific Visualisation

 Music Visualisation

 Geographic Visualization

 Flow Visualization

The common point across all these fields is that the user is constructing a ‘mental

model’ of an aspect of the real world from a visual representation. In the modern information

driven world this definition immediately conjures thoughts of complex 3D graphical displays

created and managed by high power computers that present complex data that only skilled

specialists understand. While this is certainly one aspect of visualisation in the modern world

historically the field of visualisation was in effective use as a tool that helps its user make

sense of the world long before the development of the modern computer, interactive

graphical displays and global information sharing networks.

The construction of ‘mental models’ that reflect the real world is something that any

creature (including humans) must undertake simply to survive in the natural world. The

scientific name for humans is “Homo sapiens” literally meaning “wise man”. This title is

earned from our unequalled ability (in nature) to construct ‘mental models’ that reflect the

reality of our world. The construction of mental models is however not a purely mental

activity, indeed it has been observed that “It does not seem possible to account for the

cognitive accomplishments of our species by reference to what is inside our heads alone.

One must also consider the cognitive roles of the social and material world.”(Hutchins, 1995).

It therefore seems appropriate to assert that our mental models are formed both through

interactions with others and the material world. Ultimately all such interactions are mediated

by our five senses (sight, hearing, touch, smell and taste). Of these the sense that has

evolved to provide the most data to our brains is our sense of sight (or vision). Indeed it has

been observed that “Visual displays provide the highest bandwidth channel from the

computer to the human. Indeed, we acquire more information through vision than through all

of the other senses combined.”(Ware, 2012). In the human brain there are some 20 billion

neurons dedicated to the analysis of visual information and the identification of patterns

within visual elements.

Throughout human history the combination of the human visual and cognitive

systems has evolved to provide us with an impressive survival advantage based on the

ability to identify / recognise specific patterns in visual data that is presented to us. These

patterns then form the basis on which the cognitive system builds its mental model of the

world.

The field of visualisation attempts to exploit this impressive, naturally evolved ability,

to process and perform pattern recognition on visual data as a means of transmitting existing

and discovering new knowledge. Fundamentally exploitation of this ability involves the

Chapter 2: Visualisation

Page | 22

movement of the cognitive load from the cognitive system to the perceptual / visual system.

A simple example of the effect can be seen by contrasting the time required to mentally

solve an arithmetic problem with the time required to complete the same task using pen and

paper. It has been shown that an individual will usually take five times longer to complete the

task mentally than they do with pen and paper. (Card, Mackinlay & Schneiderman, 1999).

Visualisation may then also be accurately described as a cognitive tool that aids and

supports decision making. The key benefits derived from the visualisation process were

summarised by Colin Ware as (Ware, 2012):

 Visualization provides an ability to comprehend huge amounts of data.

 Visualization allows the perception of emergent properties that were not anticipated.

 Visualization often enables problems with the data to become immediately apparent.

 Visualization facilitates understanding of both large-scale and small-scale features of

the data.

 Visualization facilitates hypothesis formation.

While the modern computer is now the visualisation tool of choice (primarily because

of its phenomenal ability to process huge amounts of data and generate a visualisation of it),

the desire to derive the benefits listed above reaches back to before the dawn of recorded

history. It seems then appropriate to first consider how visualisation has been applied in the

historical context.

2.1 Historical Visualisation Applications

The history of visualisation is the history of the tools that humans use to amplify their

cognition with the final goal of gaining knowledge. Figure 2-1 summarises the recent history,

developments in and applications of visualisation.

Figure 2-1: Recent history of visualisation (Friendly & Denis, 2001)

As can be seen from the visualisation in Figure 2-1 Friendly & Denis identify three

primary drivers for advancement in the field of visualisation over time:

1. Cartography

Chapter 2: Visualisation

Page | 23

2. Statistic and graphics

3. Technology

With such diverse drivers for advancement in the field and the separation of time it is

impossible to say exactly at what point in time humans began visualising data. Do we

include the oldest reliably dated cave art (37,300 to 40,800 year old art in the caves of El

Castillo, Spain (Pike et al., 2012))? Are these graphics which are simple silhouettes of

people’s hands created by blowing paint onto the cave walls too primitive to be said to create

a mental model causing us to prefer a more quantitative measure? Within these same caves

we find a painting of a constellation Corona Borealis “Northern Crown” dated at 12,000 BC.

This is however not the oldest map of the stars, in the Lascaux Caves representations of the

night sky dated at 15,300 B.C. (Figure 2-2) are found (Rappenglück, 1999). Finally by circa

6,200 B.C. we find the first map of a man made settlement painted on the walls of a cave,

the town of Catal Hoyuk in Turkey (Figure 2-3 & Figure 2-4).

Figure 2-2: Lascaux Cave art with modern constellations shown (Rappenglück, 1999)

Figure 2-3: The Catal Hoyuk town map as it now

appears (Slide 100, Museum at Konya, Turkey and
Slide 100D Semitic Museum at Harvard University

(Cambridge, MA))(Brock, 2001)

Figure 2-4: The Catal Hoyuk town map as it might

have appeared when created (Brock, 2001)

By 1150 B.C. the Egyptians were producing maps that visualised multiple data items.

Figure 2-5 shows the “Turin Papyrus Map” which is widely regarded as both the oldest

Chapter 2: Visualisation

Page | 24

surviving topographical map and the oldest surviving geological map (Harrell & Brown,

1992a; Harrell & Brown, 1992b).

Figure 2-5: The Turin Papyrus Map from ancient Egypt (Harrell & Brown, 1992a)

In these examples can be seen all three drivers of progress in the field of

visualisation at work; every example is some form of map expressing spacial relationships

either on Earth or in the sky (Cartography). These relationships are represented using

graphics to encode mathematical data (distances on the Earth or apparent angles in the sky

– Statistics and graphics). Finally the progression of technology moves the maps from the

impossible to transport cave painting, to the papyrus maps carried by Egyptian functionaries

overseeing the quarrying of stone for the nation’s monuments.

Given that mathematics, statistics and technology are key drivers in the advancement

of visualisation as a field it is perhaps unsurprising that its true power only started to be

exploited in the 17th and 18th centuries. A time that is often described as the dawning of the

Age of Reason (Redwood, 1976). Over this time period many of the classical restrictions on

scientific enquiry were relaxed leading to an explosion in scientific investigation. Ultimately

this would lead to the industrial revolution with its profound impact on society around the

world. The fields of mathematics, statistics and technology all benefited greatly from the new

freedom of enquiry and, in turn, so did the fields that relied upon them - such as cartography.

By the mid-17th century the production of “general maps” (that portrayed “base data” such as

landforms, settlements and boundaries) had reach a point that allowed the first “thermic map”

to be created.

2.2 The Development of the Thermic Map, Flow Map and Information

Graphics

The thermic map is defined as “a map made to reflect a particular theme about a

geographic area. Thematic maps can portray physical, social, political, cultural, economic,

sociological, agricultural, or any other aspects of a city, state, region, nation, or continent.”

(Maps & Cartographic Information, 2014). One of the oldest thermic maps (1607 A.D.) can

be seen in Figure 2-6 below, in this case the map not only provides a geographic overview of

the world but also uses colour and glyphs to show the distribution of Christian, Muslim and

idolatrous regions of the world.

Chapter 2: Visualisation

Page | 25

Figure 2-6: The “Designatio orbis Christiani” an early "Thermic
Map" (Hondius & Purchas, 1607)

Glyphs Used

Christianity

Muslim
Idolatrous

The theme of the map is, of course, to show how much work still remained to convert

the world to the “true faith” of Christianity (Hondius & Purchas, 1607). In such thermic maps

the beginnings of modern Information Graphics can be seen. Over the next two centuries the

use of thermic maps developed and began to be applied to many different fields. Ultimately

this would lead to the creation of some of the most important maps in history. For example in

1854 John Snow, while investigating a cholera outbreak in London plotted 83 related deaths

onto a map of the affected area and from this thermic map determined that the common

factor in each case was the water pump from which the deceased had been drinking. After

the pumping handle was removed from the Broad Street water well the outbreak immediately

began to decline (Snow, 1855). Today the production of this thermic map (Figure 2-7) is

regarded as the founding event of the modern science of epidemiology (the study of patterns,

causes and effects of health and disease in defined populations).

Chapter 2: Visualisation

Page | 26

Figure 2-7 John Snows 1854 thermic map of the London Broad Street Cholera outbreak (Snow, 1855)

John Snow’s map served to challenge the majority view, that the primary means by

which disease was spread was through the air. Looking back to the mid-19th century it is

important to remember the theory of ‘germs’ was in its infancy and that Louis Pasteur’s work

confirming germ theory would not be completed for another decade.

At the same time John Snow was composing his thermic map another historical

figure from the medical world was applying information visualisation techniques to their own

work. Florence Nightingale is famous for her work in founding the field of modern nursing but

she was also a highly capable mathematician and statistician who used information

visualisation in the form of Polar Area Diagrams (or ‘rose charts’) to illustrate her findings to

the members of the British government (Nightingale, 1858; Nightingale, 1859).

Chapter 2: Visualisation

Page | 27

Figure 2-8: Florence Nightingale's Polar Area Diagrams or Rose Charts analysing causes of mortality
among injured soldiers in the Crimea War of 1853 - 1856 (Nightingale, 1859)

Nightingale’s demonstration of the impact of increasing sanitary conditions on

mortality rates in British hospitals would serve as the foundation for the modern profession of

nursing as well as the British government’s overhaul of patient care at military hospitals.

The increasing use of Information Visualisation to express statistics in the latter half

of the 19th century was not limited to Britain and her empire. Indeed perhaps the most

famous thermic map of this period was published by the French civil engineer Charles

Minard. Technically this map was a ‘flow’ map, a sub category of thermic maps defined as

maps that “can be used to show movement of almost anything, including tangible things

such as people, products, natural resources, weather, etc, as well as intangible things such

as know-how, talent, credit of goodwill.”(Harris, 2000). Minard produced and published 51

thermic maps over the course of his life (Robinson, 1967) but he is famous for his “Carte

figurative des pertes successives en hommes de l'Armée Française dans la campagne de

Russie 1812-1813” map showing the devastation of Napoleon’s Grande Armee during his

invasion of Russia in 1812 (Figure 2-9).

Chapter 2: Visualisation

Page | 28

Figure 2-9: Minard’s Map of Napoleon’s losses in the Russian campaign of 1812, the maps title reads
“Figurative map of successive losses in men of the French Army in the Russian campaign 1812-1813”).

(Robinson, 1967)

Minard’s map expresses several different data types in a single visualisation. In

summary the map details:

i. The size of the army, particularly providing a visual representation of the human cost

of the campaign.

ii. The geographical route (latitude and longitude) taken by the army as it moved.

iii. Whether the army was advancing or retreating and the points at which units left or re-

joined the main force.

iv. The passage of time and the location of the army at key dates.

v. The weather encountered by the retreating army (the winter of 1812 was one of the

worst ever recorded) with the temperature being recorded in the horizontal bar at the

bottom of the map.

The brilliance of Minard’s map is the amount of data it conveys while at the same

time providing a strong visual demonstration of the relationships between the various data

items. This visual expression of the relationships between so many variables shows the

power of Information Visualisation and has resulted in this map being called “the best

statistical graphic ever drawn” (Tufte, 2001). The maps stark revelation of the human cost of

war also seems to give truth to the phrase that a picture is worth a thousand words, it has

been observed that the map “seemed to defy the pen of the historian by its brutal eloquence”

(Marey, 1878).

It has been noted that thermic mapping always involves a trade-off between the

geographic confines of the map and the representation of data. Minard fully accepted this

conflict and over the 51 thermic maps he created always resolved it in favour of the

representation of data. Therefore he “revised coastlines, paid little attention to projections,

and forced the scales of the geographic features on his maps to fit the data being portrayed,

rather than vice versa, as is usually done today”(Robinson, 1967). This was not, of course,

to say that the geography is unimportant simply that the rigidity of geography was not

allowed to obscure the data Minard wanted to communicate to the maps user.

Chapter 2: Visualisation

Page | 29

If Minard’s thermic / flow maps showed that the accurate portrayal of geography

(arguably the core of cartography) was not paramount, at least for the purpose of Information

Visualisation, then it was Henry Beck’s London Underground map that took discarding strict

geographic data to the extreme. Made in the early 20th century and still in use today this map

discards geographic relationships completely in favour of the information it is trying to

communicate – namely the interconnections between tube stations. Figure 2-10 shows the

original London tube map that strictly presented geographic information and the

interconnections between them while Figure 2-11 shows Henry Beck’s initial version.

Figure 2-10: The original London Underground map incorporating both geographic and topological
information (Creemers et al., 2014).

Chapter 2: Visualisation

Page | 30

Figure 2-11: Henry Becks topological map of the London Underground as it appeared when published in
1933 (Creemers et al., 2014).

Beck’s map places a far greater emphasis on the topological information about the

London underground system than the original map which gives equal importance to the

geographical information. Beck’s map however was immediately more useful and relevant to

the underground traveller. Users of the underground system lack the points of reference

usually used to navigate by geographical features. In the original Figure 2-10 map its actual

user was forced to discard half the information it presented as the geographical data was

unusable for the task of navigating underground. The cost was an increased cognitive load

on the user as they were forced to perform a “filtering” operation to extract the information

that would permit them to navigate. It was Beck’s recognition that the important data was the

topology of the rail network, its stations and the connections between them, which made his

map an immediate success. The cognitive load on his users was reduced as the data

presented was already “filtered” into a usable form to complete the navigation task for which

it was intended.

2.3 The Visualisation Process

Visualisation is the process of forming a mental picture of something that is invisible or

abstract. It may itself be visualised as the set of processes and feedback loops shown in

Figure 2-12.

Chapter 2: Visualisation

Page | 31

Figure 2-12: The visualisation process (Ware, 2012)

2.3.1 Data Gathering

The initial (and longest) loop is the process of gathering data, here the analyst may

either be creating a new visualisation or researching new data to expand or enhance an

existing one. The classic research process will be used with the analyst identify potentially

relevant data to the topic under consideration, consolidating that data into a single data

source and following up any interesting leads that can be readily identified. This stage is

impacted by both the physical environment and the social environment. The physical

environment is, of course, the ultimate source from which the data is derived and it may

restrict the data available to the researcher and therefore the visualisation techniques that

may be applied to extract meaning. Similarly the social environment may serve to influence

both the ways in which data is collected and interpreted.

2.3.2 Data Transformations

Having prepared the data the analyst may decide that if certain transformations are

performed on the data prior to visualisation it will be easier to extract meaning from the data.

The exact transformations applied will depend ultimately on the field of study, the research

question(s) being asked and the visualisation techniques that the analyst wishes to employ.

Essentially this step can be seen as a data pre-processing stage that generates the final

data to be presented in the visualisation. Its output provides the data that will undergo

mapping to a visual representation and final rendering.

2.3.3 Graphics engine visual mappings

The graphics engine and visual mapping transform and present the pre-processed

data to the analyst. The use of terms such as “graphics engine”, to the modern mind,

immediately implies the use of a computer and this is usually the case in the modern world.

It should be remembered however that this is not the only means of creating visualisations

and many other techniques (such as model building, painting or sketching and sonification)

Chapter 2: Visualisation

Page | 32

remain valid forms of visualisation beyond the 2D / 3D graphics abilities of the modern

computer. The visual mapping phase selects appropriate symbols to represent data items;

the study of symbols and how they convey meaning is known as semiotics. The field

originated in the United States in 1868 with the work of logician and mathematician Charles

Sanders Peirce (Brent, 1998; Peirce, 1868). Semiotics as a field is defined as “The study of

signs and symbols and their use or interpretation” (Oxford English Dictionary, 2014) and is

closely related to linguistics as the use of signs and symbols effectively forms a visual

language. Attempts have been made to develop a general classification for all signs &

symbols (Bertin, 1983) but no single system has gained wide acceptance with most seeming

to be based on “arguments by example” rather than formal experiment (Ware, 2012).

Despite this there is broad agreement that symbols can be divided into three areas:

i. Semantic – The relation between signs and the things to which they refer (their

meaning).

ii. Syntactic - Relations among signs in formal structures (a set of symbols that may be

constrained by rules that are specific to it).

iii. Pragmatic - Relation between signs and the sign using agents (usually humans).

Reviewing the above areas it might be concluded that visualisation will be a tool only

of use to those from the same or similar social / cultural background. Clearly all three

elements seem to require some agreed social or cultural context for proper interpretation of

the visualisation. To illustrate this point consider the semiotic breakdown shown in Table 2-1

where a complex UK road sign / symbol has been analysed by semiotic area.

Semiotic area Sign / Symbol

Semantic – “Meaning” - Water / River / Sea

 - Warning / Danger

 - Wall / Barrier

 - Car / Road user(s)
Syntactic – “Combination of symbols to give
new meaning” - Quayside or river bank

Pragmatic – The using agents - Road user(s)
Table 2-1: An analysis of a UK road traffic sign by semiotic area.

It is certain that an understanding of the social / cultural background can greatly aid

the effective interpretation of a visual representation. However there remains a difference

between “greatly aid” and “is necessary / required”. In the first case we should proceed by

establishing a set of conventions which are learned and adhered to whereas in the second it

can be expected that different people from different social and cultural backgrounds will

interpret an image in the same way. Fundamentally the question becomes whether or not

symbols represents a learned language or a universal language that can express

concepts across social and cultural divides. Research is divided on this point but the majority

seem to favour the interpretation of symbols as a universal language. For example

Deregowski has reported that both adults and children in a remote region of Zambia with

little graphic art could still easily match photographs of toys to the actual toys (Deregowski,

1968). Similarly Hochberg and Brooks raised their own daughter to the age of two in a

picture free house; they never read to her from picture books nor indicated that a picture was

a representation of anything. Despite the lack of input telling her that pictures had any kind of

meaning and any instruction on how to interpret pictures she could correctly identify objects

in line drawings and black-white photographs demonstrating that interpretation of visual

Chapter 2: Visualisation

Page | 33

images / symbols is not a learned skill (Hochberg & Brooks, 1962). Nevertheless counter

arguments can be raised especially when non-pictorial images are used. In Table 2-3 we

identify the red triangle as a warning / danger symbol. It is difficult to see how this

designation can be anything but a learned social / cultural rule applied to the context of road

signs. It bears little resemblance to any real world object. How then do we explain the

difference between pictorial representations of a real world object as a universal language

when other non-pictorial representations appear to be learned? Pearson et al., argue that

“The most probable explanation is that, at some stage in visual processing, the pictorial

outline of an object and the object itself excite similar neural processes”(Pearson, Hanna &

Martinez, 1990). Ware argues that this view is plausible as “one of the most important

products of early visual processing is the extraction of linear features in the visual array.

These may be either the visual boundaries of objects or the lines in a line drawing” (Ware,

2012).

From the studies discussed above we may ultimately make a case that the

interpretation of symbols used on visualisations ultimately depends on both the human visual

system, the natural environment in which it has evolved and the social / cultural learning of

the individual. This fact allows the division of symbols into the following categories:

Symbol Type Description

Sensory Refers to symbols / visualisations that express meaning by using the
perceptual processing power of the brain without learning.

Arbitrary Refers to symbols / visualisations that express meaning through learned
social / cultural conventions (and therefore lack a perceptual basis).

Table 2-2: Colin Wares symbol classification scheme based on the symbols learned or un-learned
meaning (Ware, 2012).

A graphical language can, therefore, be seen as a combination of symbols that fall

into both the sensory and arbitrary categories. Whether or not any graphical language will

represent a “universal language” or a “learned language” will depend on which category the

majority of its symbols fall. There are probably very few graphical languages composed of

entirely of only sensory or arbitrary symbols and therefore no completely universal language

or completely learned language. In light of this we may re-examine our assessment that the

language of road traffic signs is a learned one dependent on society and cultural training.

Sign / Symbol Symbol
Type

Comments

 - Water / River / Sea Sensory In our environment we encounter waves most
frequently in liquids. The most common liquid we
encounter is water. Our brains develop to pattern
recognise waves and associate them with water.

 - Warning / Danger Arbitrary Both the use of a triangle and the adoption of the
colour red are associated – in western culture – with
warnings and danger.

 - Wall / Barrier Sensory Walls and barriers abound in the natural
environment and our visual system adapts to
recognise them. This symbol combines elements of
a cliff face and a man-made wall.

Chapter 2: Visualisation

Page | 34

Sign / Symbol Symbol
Type

Comments

 - Car / Road user(s) Sensory Our environment conditions our visual systems to
recognise the pattern of a car / vehicle in much the
same way as a dangerous predatory animal while
associating this with a particular environment (the
road).

Table 2-3: Quayside or river bank road traffic sign analysed using Ware's symbol classification scheme.

As can be seen in Table 2-3 when Ware’s classification scheme is applied to the

elements of the Quayside or river bank road traffic sign we can see that, of the signs four

elements, three are categorised as sensory and one is arbitrary. From this we may

categorise this symbol as a ‘sensory’ symbol that expresses meaning through the perceptual

processing power of the brain without learning.

It would be inappropriate to infer that all road traffic signs attempt to fall into the

sensory category and hence form a ‘universal’ graphical language from an examination of a

single road sign. Fortunately the development of road traffic signs is a well-documented area

and some research will quickly show that the designers employed seven guiding principles

when designing traffic signs. These are (Shinar et al., 2003):

i. Spatial Compatibility

ii. Conceptual Compatibility

iii. Physical Representation

iv. Frequency

v. Standardisation

vi. Singular Functionality

vii. Visibility

The most relevant of these are items (ii) and (iii). Conceptual Compatibility is defined

as “a driver will know the meaning of a symbol without having to reflect and interpret its

meaning”. Clearly then the designers are targeting ‘sensory’ symbols where meaning arises

from visual processing rather than the cognitive application of learned knowledge. Physical

Representation is defined as “a driver will experience what is shown on the sign”. This

immediately requires the sign to reflect the physical world / reality that the user (driver) is or

is about to encounter. Inevitably then the mental model being built in the drivers mind by the

symbol should reflect the physical world. As we observed earlier the drivers most powerful

perceptions of the physical world arise from the visual sense.

Given this it seems appropriate to classify the ‘graphical language’ of road signs as

an attempt to create a universal graphical language. It also serves to inform us that if we

wish our own visualisations to be universally understood by a wide audience we should

endeavour to match data with a visual representation that falls into Ware’s ‘sensory’

category.

Ware has examined the processes of the human visual system and has distilled from

his studies eight guidelines for mapping data to a representation.

i. Design graphic representations of data by taking into account human sensory

capabilities in such a way that important data elements and data patterns can be

quickly perceived.

Chapter 2: Visualisation

Page | 35

ii. Important data should be represented by graphical elements that are more visually

distinct than those representing less important information.

iii. Greater numerical qualities should be represented by more distinct graphical

elements.

iv. Graphical symbol systems should be standardised within and across applications.

v. Where two or more tools can perform the same task, choose the one that allows for

the most valuable work to be done per unit time.

vi. Consider adopting novel design solutions only when the estimated payoff is

substantially greater than the cost of learning to use them.

vii. Unless the benefit of novelty outweighs the cost of inconsistency, adopt tools that

are consistent with other commonly used tools.

viii. Effort spent on developing tools should be in proportion to the profits they are

expected to generate. (This means that small market custom solutions should be

developed only for high value cognitive work).

The impact of Ware’s guidelines can be appreciated by contracting two visualisations of

the same data. In Figure 2-13 the grades achieved by a group of university students has

been visualised as a histogram that follows Ware’s guidelines. In Figure 2-14 the same

grades are visualised as a data table that breaks several of Ware’s guidelines. In each figure

whether guideline has been followed or broken is indicated (or).

Figure 2-13: Histogram representing student grades that applies Ware’s guidelines.

Chapter 2: Visualisation

Page | 36

Figure 2-14: Data table representing student grades the breaks several of Ware’s guidelines.

2.3.4 Visual and Cognitive Processing, Data Exploration and View Manipulation

The previous stages of the visualisation process have been concerned with the

generation of a visualisation that effectively shifts the analyst’s cognitive load onto the visual

systems of the brain as they are more suited to perform pattern recognition tasks. In this final

step of the visualisation process the Information Analyst must use the visualisation produced

to attempt to answer the research question. When the visualisation is initially presented it is

subject to visual and cognitive processing where the analyst attempts to identify interesting

patterns within the data and attach meaning to them. A well designed visualisation will have

shifted the majority of the pattern recognition tasks to the analyst’s visual systems (which are

optimised for this task). Determining potential causes for the identified patterns will be the

responsibility of the analyst’s cognitive system.

The process by which the analyst uses a visualisation to discover / reveal information

about the research question was summed up by Ben Shneiderman when he developed the

information seeking mantra “Overview first, zoom and filter, then details on demand”

(Shneiderman, 1996). This mantra describes both how data should be presented and how

the information analyst will interact with the visualisation. Assuming that it is an interactive

visualisation where interaction is possible. In total Shneiderman identifies seven “Task-

domain information actions” that visualisation users may perform. In summary these tasks

are:

Chapter 2: Visualisation

Page | 37

i. Overview Gain an overview of the entire data collection

ii. Zoom Zoom in on items of interest

iii. Filter Filter out uninteresting items

iv. Details-on-Demand Select an item or group and get details when needed

v. Relate: View the relationships between items

vi. History Keep a history of actions to support undo, replay and

progressive refinement.

vii. Extract Allow extraction of sub-collections and of query parameters.

The mantra also serves as a description of the final part of Ware’s visualisation

process (Figure 2-12) in which the analyst uses the visual and cognitive system to explore

the data presented, identify patterns and features and then modify the presented

visualisation to extract greater detail about interesting features.

2.3.4.1 Examining the Information Seeking Mantra

Each component of the Information Seeking Mantra serves to facilitate the analysts

quest to answer their research question and is worthy of independent examination. An

insightful analysis of the mantra is provided by Craft & Cairns who identified what can be

learnt from the mantra (Craft & Cairns, 2005). Their findings are summarised by mantra

section below:

2.3.4.2 Overview

The presentation of a complete overview of the dataset is of primary importance as it

provides context for all the stages that follow. Many patterns and themes within a dataset

can be see only in the context of the entire dataset and therefore this forms the first step of

the analysts ‘visual thinking’ in examining the patterns within a dataset. The primary goal is

to identify features that are considered ‘interesting’ within the context of the research

question being asked. The recognition of the ‘interesting’ patterns (mostly by the analysts

visual cortex) and the selection of those relevant to the research question forms the basis for

the next step of the visual information seeking process by selecting candidates to be

retained or eliminated in the zoom & filter step.

2.3.4.3 Zoom and Filter

Both zooming and filtering serve the same purpose specifically “reducing the

complexity of the data representation by removing extraneous information from view and

allowing for further data organization” (Craft & Cairns, 2005). The difference between the two

is subtle and is further complicated by the fact that zooming is itself usually divided into two

possible actions – Zooming-in and Zooming-out. At the highest level the distinction between

zooming and filtering can be stated as:

i. Zooming – adjustment, by the user, of the size and position of data elements.

Zooming may be regarded as “filtering by navigation and change of representational

vantage point” (Craft & Cairns, 2005).

a. Zooming-in: removes extraneous information from the visual field. This in turn

allows the cognitive centres to further organise the information into patterns to

inform further interpretation and decision making.

b. Zooming-out: reveals hidden information – usually contextual information that

is already know but cannot be recalled. Essentially the user is rediscovering

Chapter 2: Visualisation

Page | 38

his location within the information space and integrating the detailed

information revealed by the previous ‘zoom-in’ with their overall mental model.

ii. Filtering – Reducing the complexity of the display by removing extraneous

information without changing the data representation or the user’s view of it.

In either case both Shneiderman and Craft note that the visualisations

responsiveness to the user’s interaction must be swift or its usefulness as an aid to cognition

will be impaired.

2.3.4.4 Details on Demand

A typical information visualisation will contain many data points with the count ranging from

tens to millions of points. Almost immediately it becomes impossible, given limited screen space, to

display supplemental data on all these points. The mantra advocates a “details on demand” approach

where supplemental data is provided on a data point by data point basis at the user’s request. The

‘request’ should be a simple action such as a mouse-over or selection of a data point that does not

change the representational context in which the user is viewing the data.

2.3.4.5 Relate

An interactive visualisation should support its user in identifying and viewing the

relationships that may exist between data points. Usually this is implemented as a change in

viewpoint when the user makes a selection of a particular data item; the new viewpoint

should present related items to the selected data point by degree of similarity. Of course

what constitutes an appropriate measure of similarity will depend on the data being

visualised and on any measure that might be calculated or made available to the

visualisation engine during the data transformation step of the visualisation process.

2.3.4.6 History

Maintaining a record of the user’s actions as they explore the dataset and providing a

facility to rapidly undo or redo actions is a key part of the user’s interaction with the

visualisation. This accepts that the user is performing an ‘exploration’ of the dataset and that

due to the exploratory nature it is possible for the user to need to restore the visualisation to

a previous state. It may be that some user action that might have yielded a useful result

does not, after all, achieve its goal. In this case a user will immediately wish to return to the

previous state to continue the exploration of the dataset in a different direction. Equally the

user may gain useful information from the action but still desire to return to the previous state

as the contrast between the two states can itself provide further information. Finally of

course the user may simply make an error and they should be able to rapidly recover from

this.

2.3.4.7 Extract

An interactive visualisation frequently results in users performing a lengthy set of

interactions to reveal the information needed to answer their research question. The

information so revealed is often useful in many different tasks and it would be very labour

intensive to re-create the interaction sequence every time the information was required for a

task. Accordingly an interactive visualisation should provide the user with a means to extract

and preserve the information exposed by their exploration of the dataset for use in other

computer systems and projects.

Chapter 2: Visualisation

Page | 39

2.4 Summary

Visualisation provides a tool that exploits the human sensory system – primarily the

visual system – as a means to extract and reveal knowledge from a dataset while minimising

the cognitive load on the researcher. The visualisation allows the researcher / observer to

form a mental model of the revealed knowledge and how it fits into the area under study.

Chapter 3: Neuroscience

Summary
In this chapter the field of neuroscience is defined, its history examined and the
simultaneous recording of multi-dimensional spike train data is described.

Chapter 3

Neuroscience

“neuroscience noun. Any or all of the sciences, such as neurochemistry and experimental psychology,

which deal with the structure or function of the nervous system and brain”

Chapter 3: Neuroscience

Page | 41

3 Overview
Neuroscience is a multi-disciplinary field concerned with the scientific study of the

nervous system. Its scope is broad ranging from the physical biology of neural networks,

their cells and structure through development and functioning to their computational ability

and the emergence of consciousness.

3.1 History of Neuroscience

The scientific study of the brain begins in Ancient Egypt and is perhaps surprisingly the

subject of the oldest medical document now known. The Edwin Smith Surgical Papyrus

written by the Egyptian physician Imhotep around 1700 BC contains the first recorded

account of the brains anatomy as well as documenting 48 cases of brain injury and

recommended treatments (Feldman & Goodrich, 1999). Despite the scientific approach

adopted in the papyrus the Egyptian’s still believed that the seat of consciousness and

reason was the heart and regarded the brain as a minor organ. This view was first

challenged by Hippocrates who argued that the brain was the seat of reason. It was not until

approximately 157AD that the Roman physician and philosopher Galen (a follower of

Hippocrates) observed that gladiators in the arena lost their mental faculties when they

suffered damage to the brain that the ancients began to accept the brain as the seat of

consciousness and reason (Rocca, 2003).

Despite these vital insights study into the brains functioning remained sparse and

focused on documenting brain injury and its effects rather than its normal functioning.

Detailed study of the brain and its operation waited on the development of technology and

techniques that allowed researchers to examine its structure. The key technological

breakthroughs that lead to the first studies of brain structure were the development of the

microscope and in 1873 the discovery of a ‘staining technique’ by Camillo Golgi that allowed

the researcher to view the intricate structures of individual neurons. In 1887 this technique

came to the attention of the Spanish neuroscientist Santiago Ramón y Cajal who further

refined it and applied it to his studies of the central nervous system. Golgi and Cajal’s work

would establish the neuron as the ‘functional unit’ of the brain as well as amassing the

scientific evidence for the ‘neuron theory / doctrine’ and mapping brain regions. Golgi and

Cajal would share the 1906 Nobel Prize in Physiology or Medicine and their studies now

underpin the modern field of neuroscience (Shepherd, 1991). Detailed study of the brain’s

structure and operation is therefore a relatively young research area which only developed in

the late 19th and early 20th centuries. Despite this process in the field has been considerable

both because it is a young research area were much remains to be learned and because of

the many practical applications in diverse fields such as biology, chemistry, computer

science, mathematics, linguistics, engineering and medicine.

3.2 The Neuron as the core component of the nervous system

The brain constitute a massively parallel computational system that, by a method not

yet understood, gives rise to our consciousness as an emergent property of its operation.

The brain exerts centralised control over the body with results similar to that of a Central

Processing Unit (CPU) in a modern computer. While the results might be similar to a CPU

the method by which control is achieved is radically different. Neuroscience has established

the Neuronal Doctrine to explain how the biological neural network of the brain functions as

an information processing system (Shepherd, 1991). The Neuronal Doctrine is an extension

Chapter 3: Neuroscience

Page | 42

of ‘cell theory’ based on Golgi and Cajal’s work and has steadily evolved over the last few

decades (and continues to evolve). The doctrine makes the following assentation’s (Finger,

2001):

i. Neural units: The brain is composed of individual units – Neurons.

ii. Neurons are cells: Neurons are biological cells with unique features (dendrites and

axon’s).

iii. Specialisation: The neurons size, shape and structure vary according to its location

or function.

iv. Nucleus is the cells core: The centre of the cell is the nucleus; this contains the

genetic material of the cell that is always replicated before cell division.

v. Cell division: Nerve cells multiply through the process of cell division.

vi. Axons are cell processes: Axons are outgrowths of nerve cells (whether myelinated

or not).

vii. Law of dynamic polarization: The axon can conduct in both directions BUT there is

preferred direction of transmission from cell to cell. This preferred direction is created

by a refractory period of 1-2ms in which the cell’s Na+ channels that originally

opened to depolarize the membrane remain open. During this period the cell cannot

respond to any stimulus.

viii. Synapse: A barrier to transmission exists at the site of contact between two neurons

but it may permit transmission

ix. Unity of transmission: The contact between any two cells may be excitatory or

inhibitory but will always be of the same type.

x. Dale’s law: Each nerve terminal releases the same types of neural transmitter

(Connors & Long, 2004; Dale, 1935).

To fully understand the neuronal doctrine it is necessary to examine what is known about the

structure and operation of neurons in the brain. Figure 3-1 details the structure of a typical

neuron:

Chapter 3: Neuroscience

Page | 43

Figure 3-1: Major structures of a neuron (amended). (Jarosz, 2009)

As the neural doctrine asserts that the neuron is a biological cell the key features of

any body cell are present in the form of a nucleus and soma (cell body). The specialised

structures of the rest of the cell provide the biological system to create and receive the

electrochemical signals used to encode and exchange data between the neurons in a neural

network.

3.2.1 Dendrites

The dendrites are branched projections that receive electrochemical stimulation from

connected neurons. Their primary task is to transfer the received signal(s) to the soma

where if the combined signal from all connected dendrites is ‘strong enough’ the neuron will

‘fire’, that is generate its own electrical signal (action potential) to be propagated through the

axon to other connected neurons within its neural network. It is believed that the dendrite is

considerably more than a simple transmission system, the total surface area of the dendrite

places a limit on the amount of information a neuron may gather, chemicals within the

dendrite may serve to enhance or suppress the strength of the received electrical signal.

Over time a neuron may even vary these factors; dendritic spines are protrusions on each

branch that may grow to increase the surface area allowing additional connections to a

neuron to be formed, and chemical changes within the cell may moderate the number and

strength of electrical signals received (Roo et al., 2008). The dendrite / dendritic spine forms

the second part of a synapse (see below) and this ability to vary the strength and number of

connections over time gives rise to synaptic plasticity in which the strength of a connection

varies over time depending on activity level. This synaptic plasticity is believed to form the

biological basis by which the neural network achieves learning.

3.2.2 Axon

The neurons axon performs the task of delivering an electrochemical stimulation or

action potential to the dendrites of connected neurons. Unlike the dendrite branches, which

can be numerous, neurons have only a single axon however at the end of the axon it divides

Chapter 3: Neuroscience

Page | 44

into smaller branches called telodendria. Hence even though a neuron has a single axon it

may connect too many dendrites and many other neurons within a neural network. The axon

connects to the soma at the axon hillock. When a dendrite experiences an electrochemical

stimulation at a synapse it transmits a signal to the neurons soma. The signals carried by

dendrites are passive and they decrease with distance (much like signals in an electric

cable). It is at the axon hillock that the signals received from all the neurons dendrites are

summed over time. Should the combined sum of all signals from all dendrites exceed a

threshold value that varies from neuron to neuron an action potential will be generated. For

many years it was believed that creation of the neurons action potential occurred in the axon

hillock but it has recently been shown that the initiation of action potentials usually begins in

the adjacent (unmyelinated) segment of the axon proper (Clark, Goldberg & Rudy, 2009).

The axon serves as the means to propagate the action potential to the next synapse. An

axon may be myelinated or unmyelinated. An unmyelinated axon can be likened to a simple

electrical wire with the action potential being transmitted through continuous conduction. In

the case of myelinated axons the actual process of propagation is called ‘saltatory

conduction’ meaning to ‘hop or leap’. The process of saltatory conduction is achieved by the

electrochemical interactions of the axons myelin sheath and the unsheathed segments

called the nodes of Ranvier after their discoverer Louis-Antone Ranvier. The cytoplasm of

the axon is electrically conductive while the myelin sheath inhibits charge leakage.

Depolarization at one node of Ranvier elevates the voltage at the next node of Ranvier. This

causes the action potential to be regenerated at the next node of Ranvier. The result is an

electrical signal that appears to hop or leap from one node of Ranvier to the next without

diminishing in strength as it travels. This results in a significantly faster transmission of the

nerve impulse down the length of the axon (Huxley & Stämpfli, 1949; Tasaki, 1939). The

speed of propagation will be dependent on the diameter of the axon.

3.2.3 Synapse

The branches of an axon’s telodendria connect to the dendrites / dendritic spines of

another neuron via a structure known as a synapse. The synapse transmits, usually via an

electrochemical reaction, the action potential from the pre-synaptic neuron to the post-

synaptic neurons dendrite. Figure 3-2 details the structure of a typical chemical synapse:

Chapter 3: Neuroscience

Page | 45

Figure 3-2: The structure and operation of a chemical synapse. (Wikipedia, 2014)

The primary features of a synapse are, of course, the axon of the transmitting neuron

and the dendrite of the post-synaptic neuron. These two primary features are not, however,

directly connected a small space remains between the membranes of the axon terminal and

the dendrite. This space is known as the synaptic cleft and is on average 0.2 micron wide.

Information is carried across the gap using a chemical called a neurotransmitter. The

sequence of events to transmit the information from the axon terminal to the dendrite of the

connecting neuron is summarised as ('synapse,' 2014):

i. The arrival of an action potential at the axon terminal forces the movement of the

synaptic vesicle(s) towards the axon terminals membrane

ii. A synaptic vesicle binds and fuses with the membrane of the axon terminal and

releases a neurotransmitter into the synaptic cleft.

iii. The neurotransmitter diffuses across the synaptic cleft and binds to receptor

molecules on the postsynaptic membrane.

iv. The binding action opens channel shaped protein molecules and electrically charged

ions flow into or out of the neuron.

v. The abrupt shift in electrical charge across the postsynaptic membrane changes the

electrical polarisation of the membrane creating a postsynaptic potential (PSP).

vi. If the inflow of positively charged ions is large enough then the PSP is excitatory and

can lead to the generation of a new action potential in the post-synaptic neuron.

Alternatively the response may be inhibitory, suppressing action potential generation.

vii. After binding to a receptor the neurotransmitter is hydrolysed (broken down) by

enzymes in the synaptic cleft.

Chapter 3: Neuroscience

Page | 46

viii. The neurotransmitter is then re-absorbed by the presynaptic membrane of the axon

terminal.

3.3 The action potential or ‘spike’ and the generation of spike trains

Having described the signalling mechanism between neurons from the perspective of

its biological implementation it is now necessary to consider the signals exchanged by

neurons. In one sense the signal itself is extremely simple; the neuron’s action potential is a

short voltage pulse lasting only 1-2ms which is often termed a ‘spike’. A neuron that

generates this electrical pulse is usually said to be ‘firing’. Plotting this spiking activity over

time generates a ‘spike train’ such as the one seen in Figure 3-3. The similarity between this

spike train and a binary sequence of 0’s and 1’s such as those encoding data in a modern

computer is strongly evident.

Figure 3-3: A neural spike train showing spiking activity over a 2 sec time period.

Binary data in a modern computer encodes data and information and it is believed

that the firing rate and pattern of the neurons serves the same function in the ‘biological

computer’ that is the brain (Adrian & Zotterman, 1926). Initially it was believed that the

neuron firing rate was the primary carrier of data and information, particularly after Adrian &

Zotterman demonstrated that stimulation of the skin and body hair produced corresponding

increases in neuron firing rates (Adrian & Zotterman, 1926; Zotterman, 1939). Research has,

however, proposed many different methods by which a spike train can carry information.

These are summarised in Figure 3-3:

Coding Scheme

Rate Coding
Temporal
Coding Population Coding Sparse Coding

Spike-count rate
Phase-of-firing
code Correlation coding

Linear Generative
Model

Time-dependent
firing rate

Independent spike
coding

Position coding

 Table 3-1: Coding schemes for information in neural networks.

A detailed discussion of neural coding schemes is beyond the scope of this project

however an understanding of the broad categories is necessary for a full appreciation of the

visualisations that will be described later. Accordingly a summary of the principles underlying

each category of information encoding scheme is now provided. All of these data encoding

schemes have been found to be in use by the brain.

3.3.1 Overview of neuron encoding schemes

Individual spiking events, when recorded intracellularly, are always all-or-nothing

events with identical characteristics. When recorded extracellularly individual spiking events

can appear to show variations in duration, amplitude and shape but this is simply a recording

artefact rather than a real variation. These variations are introduced by such factors as

distance between neuron and recording electrode or poor electrical conductivity. Individual

spiking events are of such short duration, usually 1ms, that they are always treated as an all-

Chapter 3: Neuroscience

Page | 47

or-nothing point event in time (Dayan, 2005; Dayan & Abbott, 2005; Gerstner & Kistler,

2002). Analysis of spike trains and neural firing patterns is a highly mathematical field

applying statistical methods, probability theory and stochastic point processes. This work

has shown that some of these schemes are definitely in use, such as the time-dependent

firing rate used by motor neurons to determine the strength at which a muscle is flexed, but

this does not preclude other methods also being used to transmit different types of

information (Gerstner et al., 1997).

3.3.2 Rate encoding schemes

Rate encoding schemes can be seen as the classic encoding scheme for information

in the neural network as laid out by Adrian and Zotterman in 1926. Such schemes encode

information in the ‘firing rate’ of a neuron’s spike train. This scheme is definitely in use by

motor neurons to control muscle flexing with higher firing rates triggering a larger response

from the muscle.

3.3.2.1 Temporal encoding schemes

In temporal encoding schemes information is encoded through the precise timing of

spikes on the millisecond level. The difference between temporal and rate encoding is best

illustrated by example. Drawing an analogy with the modern computer it is possible to

encode the decimal numbers 455 and 819 using their binary representations of 0111000111

and 1100110011 respectively. Assume that each binary ‘1’ digit is represented by a neuron

spike event and each binary digit (‘1’ or ‘0’) represents a 1ms time period. Given this

arrangement it is possible to compute a ‘firing rate’ for a neuron encoding these values. In

both cases the firing rate is 6 spikes / 10ms. Hence representing these values purely in

terms of firing rate is not possible as both have the same firing rate. The information is

conveyed by the exact timing of individual spikes within the 10ms period (Theunissen &

Miller, 1995). It has been shown by Theunissen and Miller that organisms perform sound

localisation tasks within milliseconds but that sufficient information could not be gathered

and transmitted purely using the firing rate models at this timescale. Hence modern neural

science believes that temporal encoding must at least supplement rate encoding. Studies of

this type of encoding usually focus on measurements of, and variations in, the inter-spike

interval(s) of a spike train.

3.3.2.2 Population encoding schemes

Population encoding schemes argue that information in the neural network is not

encoded exclusively by the activity of a single neuron. Rather the data input / stimulation of

the neural network is represented by the joint activities of many neurons. This method of

neural encoding is employed throughout the neural cortex and many examples could be

given. As an example consider the medial temporal (MT) lobe of mammalian brains. The MT

lobe is primarily responsible for long term memory of both facts and events (Smith & Kosslyn,

2006). The MT lobe is closely associated with processing both auditory and complex visual

stimuli. It has been experimentally demonstrated that the MT lobe, while analysing motion in

a visual scene, extracts the direction of motion using a collection of neurons that each

encode a preferred direction (Georgopoulos, Schwartz & Ketiner, 1986). Motion in a neurons

preferred direction results in an elevated firing rate giving rise to a mathematical vector. The

final direction of motion is encoded as the vector sum of all MT neurons analysing the scene

(Maunsell & Van Essen, 1983).

Chapter 3: Neuroscience

Page | 48

3.3.2.3 Sparse encoding schemes

A sparse encoding scheme attempts, given a large set of possible inputs, to find a

small number of representative patterns which when combined reproduce the original input.

A relatively simple example might be the encoding for an English sentence. There are a very

large number of possible sentences but only a small set of symbols needed to represent

them these being the letters, numbers, punctuation and spaces. In the brain this type of

encoding is characterised by the activation of only a small subset of all available neurons. It

has been shown experimentally that this form of encoding is utilised in the primary visual

cortex of the mammalian brain (Olshausen & Field, 1996).

3.4 Connectivity between neurons in a biological neural network

From the overview of data encoding schemes it can be seen that neurons work

together to encode data. One of the defining properties of the biological neural network is its

ability to reconfigure itself through synaptic plasticity in response to its environment. It can,

therefore, be concluded that the interconnections that can be formed between individual

neurons is key to implementing an effective data encoding scheme. Any individual

connection between two neurons may be excitatory or inhibitory. That is the action potential

or spiking event delivered by the connected neuron may either increase or decrease the

likelihood that its partner will generate its own action potential, or spiking event. With this in

mind there are three basic connections that can be formed between two neurons as detailed

in Figure 3-4. Each of these will now be examined.

Figure 3-4: Coupling option between connected neurons in a neural network. (Somerville, 2011)

3.4.1 Direct Coupling

Figure 3-4 (i) shows the simplest connection between neurons. Termed direct

connection the axon of neuron A links, via a synapse, directly to neuron B. Spike events

generated by neuron A will be delivered directly to neuron B and may serve either to

increase the likelihood of neuron B firing or suppress its firing activity. In this case an

analysis of the spike trains for neuron A and B will show a strong correlation between their

Chapter 3: Neuroscience

Page | 49

firing patterns with neuron B’s activity (or lack of activity) closely following Neuron A’s spiking

activity.

3.4.2 Indirect Coupling

Figure 3-4 (ii) Neuron A and B are still connected but not directly. An intermediary

neuron (C) mediates signals passing between the pair. In this instance two connections are

involved in connecting neuron A and B each of which may be independently excitatory or

inhibitory. All three spike trains will show correlation with each other in their spiking pattern

however the strength of the correlation will vary with A->C and C->B exhibiting a stronger

correlation than A->B.

3.4.3 Common Input Coupling

Figure 3-4 (iii) shows the case of common input coupling. Here neuron A’s axon

terminals have established a synaptic connection to two neurons (B and C). Each

connection is, of course, an instance of direct coupling and therefore both neuron’s B and C

will exhibit a correlation between their spiking events and neuron A’s spike train. However

this relationship implies that a (weaker) correlation will also exist when examining the

correlation between B->C as both share a common source of spike events from neuron A.

Neural networks themselves are composed of many instances of the couplings shown

in Figure 3-4 with individual neurons exhibiting complex correlations between their spiking

patterns with a wide degree of variability in the strength of these correlations. The next

section examines both how spike train recordings are made and the strength of the

correlation between spiking events is measured.

3.5 Recording Neural Network Activity

Before any determination of neural connectivity or neural data encoding scheme can

be attempted it is first necessary to record the activity of a neural network. This section

examines the physical challenges associated with the recording of neural network activity.

The typical human brain cerebral cortex contains some 200 billion individual neurons

that have established 125 trillion synapses (Micheva KD et al., 2010). For all practical

purposes it is impossible to record the activity of the entire cerebral cortex given the limits of

current technology. Despite this limitation modern technology does allow for the examination

of the activity in the neural network on a smaller scale. If useful information is to be derived it

is important to record the activity of as many neurons as possible at the same time. This has

given rise to neural network recordings known as “Multiple simultaneously recorded neural

spike trains”.

3.5.1 The Multi Electrode Array (MEA’s)

The spiking activity of a neural network can be detected using electrodes inserted

into the tissue of the neural network. Electrodes are usually arranged into an “array” that

records activity in a particular area of the network (see Figure 3-5 and Figure 3-6). The

electrodes when placed close to a neuron’s soma or axon transduce the electrical charge of

an action potential (spike event) recording the firing of the neuron. Multi electrode arrays

generally come in two classes.

i. The in vitro (Latin: within glass) array and

ii. The in vivo (Latin: within the living) array.

Chapter 3: Neuroscience

Page | 50

The in vitro array (Figure 3-5) is used to study neural network samples that have

been removed from their usual biological setting such as brain slices. The primary benefit of

in vitro work is that the system under study is greatly simplified being detached from the

immense complexity of a living organism. This allows for detailed study of a small number of

components (Vignais & Vignais, 2010). The primary drawback to such studies is that it is

difficult to extrapolate its results back to the intact organism (Rothman, 2002).

The in vivo array (Figure 3-6) is implanted into a living organism and permits study of

the activity within the neural network in its natural setting.

Figure 3-5: An in vitro MEA array. (Potter, 2010)

Figure 3-6: An in vivo MEA array. (Normann,

1993)

The simultaneous recording of multiple neurons is not, however, as simple as

inserting an array into a tissue sample or live animal. Each electrode has the potential, on

average, to record spiking events from over a 1000 neurons situated within 140 µm of the

electrode (Buzsaki, 2004). A recording of the electrical activity from the electrode will,

therefore, represent the sum of all spiking events from an unknown number of neurons

within ~140 µm of the electrode. To be useful the recorded signal must be analysed,

individual neurons identified and the recorded spiking events assigned to neurons. This task

is complicated by the fact that all spiking events appear in the recording to have the same

characteristics. The process is termed spike sorting with each spiking event be identified and

then assigned to a neuron that produced it.

The use of an array of electrodes or

sometimes the division of the electrode tip

into multiple tips (a tetrode) allows this to

occur through a process of triangulation

with different electrodes (or tips) receiving

the same signal at different strengths. The

varying signal strength provides the basis

for measuring the distance to the pre-

synaptic neuron while the physical

location of the receiving electrode in the

array will provide the basis for

triangulation. Figure 3-7 illustrates the

principle. Despite the application of these

techniques there remains no universally

Figure 3-7: MEA electrode recording from a neural

network. Source (Buzsaki, 2004)

Chapter 3: Neuroscience

Page | 51

agreed algorithm for spike sorting with different algorithms’ pre-synaptic different results from

the same input data (Brown, Kass & Mitra, 2004). Development of an effective spike sorting

techniques remains a challenge for neuroscience that places considerable constraints on

recording multiple simultaneously generated spike trains. The practical impact of this is that

the typical number of reliably recorded spike trains per an electrode of the recording array is

markedly below the theoretical limit of ~1000 neurons. Nevertheless work continues in this

field and the last few years have seen a marked growth in the number of simultaneously

recordable spike trains. It is a reasonable expectation that this trend will continue in the near

future as the number and sensitivity of electrodes in recording arrays increases and superior

spike sorting algorithms are developed.

3.5.2 The Data Explosion in Neural Science

Given the historical limitations on spike sorting algorithms’ discussed above the

number of simultaneously recorded neural spike trains has been small, typically in the

hundreds of neurons range. However as technology has advanced more modern recording

equipment is now able to identify thousands of neurons in a typical recording session

(Taketani & Baudry, 2006). While even this is significantly below the theoretical maximum it

still represents a flood of data that requires significant processing power to analyse. While

the computer provides the power to record this mass of data the development of software to

analyse it has not kept pace with the ability to record the data. This is a trend that has been

seen in many areas of science due to the fast pace of technological change in the

information technology field (Ward & Barker, 2013). In addition to this Brown et al, believe

that “Multiple spike trains are multivariate point processes, yet research in statistics and

signal processing on multivariate point process models has not been nearly as extensive as

research on models of multivariate continuous-valued processes” (Brown, Kass & Mitra,

2004). Brown also observes that such analysis techniques as are available tend to restrict

themselves to analysing neuron pairs rather than considering the wider connection network.

As a further analysis failing Brown identifies that neural plasticity “makes non-stationarity in

neural data a rule rather than an exception”. Despite this there is a lack of “explicit adaptive

estimation algorithms to track these dynamics for multivariate point processes”. This lack of

proven analysis methods serves to hold back progress despite the wealth of data now being

recorded.

3.6 Analysing Neural Network Recordings

The analysis of multiple simultaneously recorded spike trains has as its goal the

identification of the recorded networks functional connectivity between neurons and the

mapping of the network. This information will then allow researchers to formulate and refine

computational models describing the operation of the recorded network.

This project presents three visualisations aimed at allowing the researcher to explore a

set of simultaneously recorded spike trains with the goal of identifying connectivity between

neurons. These are:

1. The spike train raster chart (iRaster),

2. The pairwise cross correlation grid (iGrid) and

3. The MEA firing animation (iAnimate)

Each of these will be discussed in the relevant implementation chapter but in

summary they are used as follows:

Chapter 3: Neuroscience

Page | 52

3.6.1 iRaster – The classic spike train raster plot.

The iRaster visualisation presents the raw data being analysed as a collection of

spike trains plotted as a time series of discrete spiking events. Exploring the dataset in this

view is primarily a re-ordering and filtering task. The interactive plot will provide a set of built

in analysis algorithms to order / reorder spike trains (primarily sorting on inter-spike intervals

and bursts of spiking activity). The VISA analysis pipeline will provide a means to introduce

the researchers own custom developed ordering algorithms. Finally the raster plot will be

able to group and filter individual spike trains. It provides a means to inspect visually the raw

data and to identify visually the recurring patterns that indicate potential connectivity.

3.6.2 iGrid – The Cross Correlation grid

Based on the work of Stuart, Walter and Borisyuk the cross-correlation grid is a

visualisation from which it is possible to determine the neural networks connectivity (Stuart,

Walter & Borisyuk, 2005). This is a computationally intensive visualisation which while very

effective does not scale well to large data sets. The computational load grows exponentially

as the number of recorded neuron spike trains increases. The visual grid representation also

becomes quickly un-usable as neuron counts rise. This project will use parallel computation

to increase access to compute power and provide a pre-processing algorithm to handle the

computational load. This algorithm will scale effectively from a researchers laptop to a high

performance compute cluster (HPC) without code modifications. To prevent cognitive

overload on the part of the user a clustering algorithm will identify connected neurons. The

clusters will be used to create a dendrogram allowing user navigation of the data set by

neuron cluster.

3.6.3 iAnimate – The Multi Electrode Array firing animation

The physical spacial relationship between firing neurons can also be used to visually

identify clusters of neurons. By plotting firing of neurons over time on a 2D plane

representing the recording multi electrode array clusters can be visually identified. This

allows further analysis, such as the cross-correlation grid to target these neurons. Where

position data is available in addition to the spike train data this animation can be used to

identify potentially connected neurons.

3.6.4 Challenges of big data in neuroscience

As with many fields the information technology age has had considerable impact on

the field of neuroscience. The 125 trillion synapses or connections between neurons in the

brain, remains a problem that not even today’s computers can completely model. Indeed at

the moment it is not possible to simultaneously record the activity of the 200 million+

neurons. Nevertheless it is possible to record a subset of this and ask meaningful questions

based on these recordings. Extracting answers from the mass of data generated by

recording even a small sub-set of neuron activity requires researchers to confront the ‘big

data’ problem. To be complete it is necessary to define what is meant by the term ‘big data’

and exactly what the problems are in its analysis and presentation.

Big data is a term which has been very poorly defined, usually by salesmen

determined to push their product as a solution to extracting useful information. Usually this is

a data mining product that attempts to identify sales opportunities from purchasing data or

internet browsing histories. Ward and Barker however provide a more academically

satisfying definition of the term. After reviewing its history and use they decided to define big

data as:

Chapter 3: Neuroscience

Page | 53

“Big data is a term describing the storage and analysis of large and or complex data sets

using a series of techniques including, but not limited to: NoSQL, MapReduce and machine

learning” (Ward & Barker, 2013).

From this definition some key points regarding big data may be extracted:

1. The term big data may be applied to data sets which are:

a. Physically large in terms of data points or

b. large in terms of complexity, i.e. high data dimensionality even if small in

terms of physical size or

c. Both of the above where the data set is physically large and complex.

2. Effective analysis of the data is a non-trivial task requiring considerable computing

power. This may include the latest in machine learning and artificial intelligence

algorithms.

The recording and analysis of multi-dimensional spike train data for neuroscience clearly

falls into 1(c) and 2 above. Such data usually exhibits certain attributes that present

challenges to the data analyst. These are usually summarised as (Laney, 2001):

i. Volume – High volume data refers to the number of individual data points being

collect. Neuroscience already provides far more potentially collectable data points

than can be recorded. Advances in technology over time will serve to make a steadily

growing number of data points recordable.

ii. Velocity – High velocity data refers to the recording rate at which data points are

created. As with volume the rate at which MEA’s record the spike train signal, the

sampling rate, is growing with time. The simple storage or high velocity data can

present a considerable challenge.

iii. Variety – High variety data refers to the range of different sources that might

generate spike trains. MEA data is only one method for observing neural network

activity. Many other forms of recording exist such as Voltage Sensitive Dyes,

Functional magnetic resonance imaging (fMRI) and Positron emission tomography

(PET). Successful analysis will involve combining data from a variety of sources

This definition pre-dates the development of the concept of big data. Some organisations

argue to add variability and complexity to the above (SAS, 2014). Given Ward and Barker

more precise definition of big data this would seem sensible.

iv. Variability – High variability refers to periodic peaks or bursts of activity which can

place burdens both on recording and storing the data. Neural networks in particular

generate bursts of high velocity data when subject to stimulation.

v. Complexity – Neuroscience data is unavoidable complex with many different data

encoding schemes and the need to represent all the experiences of a living organism.

In addition neural networks analyse and dictate responses to stimulation as well as

giving rise to consciousness in living creatures. That the data will be complex is an

unavoidable conclusion even if science does not yet fully understand how all these

processes are achieved.

Bringing to bear the computing resources need to store and analyse neuroscience

data will present a considerable challenge in and of itself.

Chapter 3: Neuroscience

Page | 54

3.7 Summary

Neuroscience is a complex science combining elements of classical biology, chemistry

and electronics to explore the operation of neural networks. As with many fields the

application of technology to the collection and analysis of neural networks has revealed a

wealth of new data. However converting the raw data into usable information challenges

even the modern computer with a truly ‘Big Data’ problem. Additionally this is a relatively

young science (100-150 years old), Golgi and Cajal were its founders and they shared the

1906 Nobel Prize. Their remains much yet much to be learned about the operation of

biological neural networks, ranging from data encoding schemes to the operation of neuron

clusters’ as data processing centres. Progress will require software tools and new

mathematical algorithms that address the problems of ‘Big Data’ and the analysis of point

processes. It will also require a far wider sharing of data recordings, analysis code and

expertise (Gibson et al., 2008). Finally, to be usable, the information extracted must be

presented in a way that avoids cognitive overload to the user.

Chapter 4: Parallelism

Summary
In this chapter the term “parallel processing” is defined and its use as a means of delivering
increased computing performance is examined.

Chapter 4

Parallelism

 “parallel adj. Of or relating to the simultaneous performance of multiple operations: parallel

processing”

Chapter 4: Parallelism

Page | 56

4 Overview
The term parallelism has arisen in computing to describe the simultaneous performance

of operation of multiple operations. In has emerged as the primary means of delivering

increase computing power in the 21st century but its effective exploitation requires software

developers to re-think software design. This has led to the proliferation of software written to

historic design standards that fails to fully exploit the available power of the modern

computer. It is argued that this waste of computing power must be avoided if the challenges

of applying the computer to significant “Big Data” problems are to be met.

4.1 Historical development of parallel computation

Historically parallel computation was developed not to address the processing of large

quantities of data but the considerable difference in operating speed between a computers

CPU and its attached peripherals. In the early age of computing ‘time on the CPU’ was an

expensive commodity. Expensive hardware meant most businesses utilised only a single

computer with departments submitting jobs to a central administrator. In this situation the

primary measure of efficiency was the work done per CPU cycle. However a large number of

CPU cycles were effectively wasted when interacting with attached peripherals. Printers,

hard disks and data transmission over a network were all tasks that required CPU’s to pause

program execution and await completion of the operation. Some element of these time

consuming operations was unavoidable, such as loading the program and persisting its

results to disk. This markedly extended the time required to execute a program and lowered

the efficiency of the computer.

4.1.1 Multiprogramming systems and the LEO III

The first attempt to address the CPU / peripheral time imbalance came in 1961 in the

form of the LEO III (Lyons Electronic Office). This computer was the first multiprogramming

system (Aris et al., 1997) which enabled a batch of programs to be loaded into the CPU

simultaneously. This allowed multiple programs to effectively queue for access to CPU time.

In this system the first program would execute until it reached an instruction requiring the

use of a peripheral device. Rather than pausing CPU operations while the peripheral

completed its task the ‘context’ of the executing program would be saved and work on the

next queued program would commence. Once the peripheral completed operation(s) the

‘context’ of the currently executing program would be saved and the original restored.

Execution could then proceed as if no interruption had occurred but no CPU cycles were

wasted as another task had been making progress during peripheral operation. The primary

limitation of this system became the availability of additional tasks to maintain CPU usage. In

the modern computing age this would be termed a problem of granularity. Queuing entire

programs for access to CPU cycles will not maximise CPU usage as the executing units are

too large.

The issues of granularity and the size of the executing unit were not initially

recognised while the batch processing of jobs remained common. However this changed as

the use of computers moved from the batch processing environment to interactive use.

4.1.2 Co-operative Multitasking

The rapid expansion in the use of information technology over the 1970’s and 1980’s

lead to the computer becoming far more ubiquitous both in the business and home

Chapter 4: Parallelism

Page | 57

environments. Production costs for computer hardware fell as printed circuit boards were

replaced with the single chip microprocessor. In 1975 the first commercial successful

microcomputer the Altair 8800 shipped with its creators expecting to ship a few hundred

units, actual demand topped a thousand systems in the first month (Ceruzzi, 2003). This

spread of cheap computing power spelled the end for the large corporate IT computing

department. No longer would users submit jobs and await results from the single IT

department controlled computer. The microprocessor placed computing power onto the

desks of staff and researchers. It also exposed the flaws of the multiprogramming’s queuing

system. Users who would previously wait hours for a program to be executed and the results

returned expected a far more interactive experience from the new microprocessor. For the

first time effective human-computer interaction (HCI) became important with the need for

interactive displays that showed levels of progress. Shneiderman codified the important

“Golden Rules” of HCI as (Shneiderman & Plaisant, 1998):

i. Strive for consistency.

ii. Enable frequent users to use shortcuts.

iii. Offer informative feedback.

iv. Design dialog to yield closure.

v. Offer simple error handling.

vi. Permit easy reversal of actions.

vii. Support internal locus of control.

viii. Reduce short-term memory load.

Several of these rules do not operate well in the multiprogramming environment,

particularly (iii) and (vi - viii). In these cases the ‘all or nothing’ approach of batch processing

and the need to wait until a task is complete before updating the user limits compliance with

these rules. For example a long running peripheral operation should provide feedback on

progress but if the CPU is executing a different program the original cannot report progress.

The solution, adopted in early operating systems such as Windows (prior to Win 95)

and the Mac (prior to Mac OS X), was co-operative multitasking (Apple, 2001; Microsoft,

1995). In co-operative multitasking programs are expected to regularly ‘offer’ time on the

CPU to other programs that need to perform ongoing tasks. So long as software developers

respected this requirement the impression of an interactive system could be maintained for

the user. The obvious drawback was that a program could still ‘hog’ CPU time by refusing to

offer time to other programs. As a result any number of well written applications could have

their operation disrupted by a single poorly written application. Despite this in the early era

of microcomputers co-operative multitasking provided a much improved alternative to

multiprogramming systems.

4.1.3 Pre-emptive Multitasking

At the same time as co-operative multitasking was being adopted as a solution to the

drawbacks of multiprogramming systems a rival strategy termed pre-emptive multitasking

was emerging. In 1969 this approach was selected for the UNIX operating system and is

now standard in UNIX and its derived operating systems (Aikat et al., 1995). In the pre-

emptive multitasking paradigm the available CPU cycles are divided into ‘time slices’ with

each executing process being allocated a number of time slices. This paradigm makes an

implicit guarantee that each executing process will receive CPU time on a regular basis

regardless of other activities. This approach provided pre-emptive multitasking systems with

Chapter 4: Parallelism

Page | 58

a key advantage over co-operative multitasking – control of CPU time remained with the

operating system. It was therefore impossible for a poorly coded or badly implemented

application to ‘hog’ access to the CPU at the expense of other programs. Ultimately this

advantage would persuade both Microsoft and Apple to abandon their original

implementation of co-operative multitasking. By the mid 1990’s, Microsoft Windows had

adopted the pre-emptive multitasking system incorporating it into both Windows NT and

Windows 95. Apple Inc. followed suit with the MAC OS 9.x, released in October 1999.

4.2 Features of Multiprogramming / Multitasking processing

4.2.1 Categories of computer processes

In the broadest sense a process executing on a computer can be categorised into

two categories that describe the limiting factor that controls its operation.

i. An I/O Bound process. This category of process is the original reason for the

development of multitasking / multiprogramming systems. Performance is limited by

the peripheral devices and the speed at which data can be requested and delivered

(Corporation, 2008)

ii. A CPU Bound process. In these processes the total computation time to complete

the process is limited by the operating speed of the CPU. Typically a computationally

intensive process will have its performance bound by the number of CPU cycles

available to it.

The primary reason for the emergence of the pre-emptive multitasking model is that it

can efficiently allocate CPU time between both process types via the concept of “thread

blocking”. Unlike the co-operative multitasking system which caters effectively only for I/O

bound processes and rely’s on software developers to ensure that CPU cycles are offered

for re-allocation to other (primarily CPU bound) processes. Each executing process contains

at least one “thread of execution” representing the instruction currently being executed by

that process. Time on the CPU is determined by allocating time slices to the various threads.

Each time slice represents a number of CPU cycles that may be used to execute

instructions. The pre-emptive model interrupts a threads execution at the end of its time

slice and performs a context switch to allow execution of another thread. The sequence for

the pre-emptive multitasking model can be seen in Figure 4-1. The sequence for a co-

operating multitasking model is similar but the concept of time slices triggering context

switches is removed. Instead a context switch occurs only when a process ‘offers’ to allow

another thread to run.

4.2.2 Processes and threads of execution

In Figure 4-1 the term “process” could be considered synonymous with “thread” and

in the earliest systems this was true. Originally each process could be considered to be a

thread executed on a classic Von Neumann computer (Neumann, 1945). This of course

means that each process is completely isolated from another with its own memory space

and variables. The ‘context switch’ involved saving the executing processes memory space

and loading the previously saved memory space for the next executing process. However it

was rapidly realised that granularity would again become an issue. Individual processes

could increase granularity by having several threads of execution. For example the word

processor on which this document is written is currently:

Chapter 4: Parallelism

Page | 59

i. Accepting text input from a keyboard,

ii. spell and grammar checking the document and

iii. background saving the document

Figure 4-1: Execution of the pre-emptive multitasking model

Of these three items (i) and (iii) are I/O bound processes while item (ii) is a CPU

bound process. Items (i) and (iii) will, therefore, frequently have to wait for extended time

periods while item (ii) could effectively utilise processor cycles almost continually. To perform

a context switch to a completely different process every time (i) or (iii) needed to pause

would deprive (ii) of usable CPU time. By dividing a single ‘process’ into ‘multiple threads of

execution’ that shared the same memory space but received their own CPU time slice

allocation the CPU bound tasks could proceed without interruption from I/O bound tasks.

This leads to a more efficient allocation of time slices to processes and threads through the

‘thread blocking’ process.

4.2.3 The operating systems thread scheduler and the thread blocking process

Modern operating systems now use the thread as the smallest unit of programmed

instructions that can be independently managed (Lewis & Berg, 1995). At the core of a

multitasking operating system is the thread scheduler. This component is part of the

operating system and manages the allocation of CPU cycles to the threads of execution.

When the pre-emptive multitasking model is used the thread scheduler enforces the

allocation of time slices to threads. When a time slice expires threads are forced off the CPU

and replaced by the next queued thread. In the co-operative model a thread cannot be

forced to yield the CPU but may offer to do so allowing the next queued thread to execute.

This round robin system continues allowing each loaded thread to execute in sequence. An

I/O bound operation will lead to frequent cases where a thread must pause while it awaits

data to be delivered. In these cases the thread scheduler ‘unloads’ the thread from the

queued list of threads awaiting a time slice on the CPU. At this point the thread is said to be

‘blocked’ and unable to proceed as it is no-longer queued to receive CPU time slices. The

thread is held in this suspended state until a signal is received indicating the required data is

available. The thread is returned to a queued state once the peripheral unit signals that the

Chapter 4: Parallelism

Page | 60

I/O task has been completed. Of course when a process is divided into ‘multiple threads of

execution’ it is possible for a different thread within the same process to proceed even

though a different thread within the process is ‘blocked’. The result is that the thread &

blocking mechanism provide the required granularity to maximise the effective use of CPU

cycles between CPU bound and I/O bound operations.

4.2.4 Multiprogramming / multitasking is not parallel computation

From the users point of view an effective multitasking system appear to function as if

true parallel computation was occurring. However this is merely an illusion delivered through

the high number of context switches between the executing threads and processes. Prior to

the development of multi-core CPU systems in 2001 a computer did not perform true parallel

computation. This is defined as “the simultaneous performance of multiple operations” and

despite the rapid context switching at any given instant only a single operation was being

performed. To meet the requirements of true parallel processing the system requires at least

two CPU’s so that simultaneous performance of multiple operations can occur.

4.3 Development of true parallel computation

In 2001 the International Business Machines Corporation (IBM) released to the market

the first non-embedded dual core CPU system, the POWER-4 (Tendler et al., 2002). This

was the world’s first non-embedded dual-core processor and the forerunner to the modern

multi-core CPU systems in use today. The initial driver for the development of multi-core

systems was not simply to exploit parallel computation. Rather it came from the industry

desire to maintain the phenomenon known as Moore’s Law. Formulated in 1965 by Intel co-

founder Gordon E. Moore his law states “the number of transistors on integrated circuits

doubles approximately every two years” (Moore, 1965), meaning that the computers

computational power doubles at the same rate. By the 1990’s manufacturers were pushing

the physical limits for miniaturisation of components and this was threatening to prevent

further growth in the CPU’s computational power. Indeed it is something of a misnomer to

call Moore’s Law a ‘Law’ it is more an ‘observation’ of trends in the industry (Dubash, 2005).

Parallel computation became seen as a way to maintain the growth in computing power.

Instead of packing ever more power into a smaller CPU the new paradigm would be to use

multiple CPU’s and operations to deliver more compute power in the same time period.

The paradigm shift by hardware manufacturers towards the delivery of increased

compute power through multiple cores has given rise to a new ‘Law’ that rivals Moore’s.

Known as Amdahl’s law it argues that the potential speedup in program / process execution

depends on the amount of code parallelisation that can occur in an application (Hill & Marty,

2008). In the case of parallel computation using multiple cores Amdahl’s law can be stated

mathematically as:

𝑆(𝑁) =
1

(1 − 𝑃) +
𝑃
𝑁

Where:

i. S(N) = the maximum speed up from using N processors

ii. P = the portion of a program that can be made parallel

iii. N = the number of CPU compute cores working on the problem

Chapter 4: Parallelism

Page | 61

In Figure 4-2 Amdahl’s law has been graphed to demonstrate the key features

required to realise significant performance increases.

Figure 4-2: Amdahl's Law and realisable performance gains in parallel algorithms

As can be seen from Figure 4-2 the critical factors for determining performance

increase are the available number of compute cores and the degree of parallelism that can

be introduced into the executing algorithm. It is also clear that a sharp law of diminishing

returns is in effect for both factors. By far the most important of these factors is the

percentage of parallelism that can be introduced into an algorithm. This is because the

average desktop / laptop system incorporates only a relatively low number of compute cores.

The typical commercial computer system in 2014 features 4-6 compute cores on average.

The high end research machine deployed in universities might expect 8 compute cores to be

available. To secure access to larger numbers of cores requires execution of the algorithm

on a cluster computer system or in a distributed cloud based environment. From an

examination of the data underlying Figure 4-2 it can be seen that moving a highly parallel

algorithm (say 95%) from a 4 core to a 6 core system yields a 38% decrease in execution

time. The same algorithm moved to an 8 core system would realise a 70% decrease in

execution time. This represents a significant performance boost and makes it possible to

conclude that the relatively low number of compute cores in an average computer system

avoids the full impact of the law of diminishing returns. The degree / percentage of

parallelism in an algorithm is a quite different story, historically this percentage has been 0%

for the majority of algorithms. This has arisen because there has been no point or benefit to

Chapter 4: Parallelism

Page | 62

writing parallel code for the majority of algorithms that ran on a multitasking system. As

multitasking was not true parallelism no benefit could arise from writing code to execute in

parallel. It would always be serially executed regardless. Amdahl’s law asserts that in a

multicore environment this is no longer true. In this case an algorithm must be divided into a

parallel component and a sequential component. Increasing the availability of compute cores

speeds execution of the algorithms parallel component but has no impact on the sequential

component (Hill & Marty, 2008). It has been proven that any algorithm will contain a

sequential and un-parallisable element (Kirk & Hwu, 2012). Most problems also include a

parallisable element allowing them to exploit a multicore computer to improve performance.

The exact performance boost that can be realised will depend on the exact form of parallel

computation that the algorithm can exploit.

4.4 Forms of computation

Research into parallel computation has identified four forms or category’s into which

algorithms can be divided (Flynn, 1972). In his taxonomy Flynn identified these as:

1. Single instruction, single data stream (SISD)

2. Single instruction, multiple data streams (SIMD)

3. Multiple instructions, single data stream (MISD) and

4. Multiple instructions, multiple data streams (MIMD)

With the exception of the first category (SISD) all of the others can be subjected to

some level of parallelism. Each will be examined in turn and illustrated with an example.

Note that the sequential component of the algorithm, storing a value into memory in each

example given, has been omitted for clarity.

4.4.1 Single instruction, single data stream (SISD)

This category defines the algorithms executed on a classical single core computer

system. In this case at any given instant a single instruction is executing against a single

item of data. For example scaling the vector by (
3
2

)by the value 5 might be implemented as

a single instruction (multiply by 5) and a single data stream delivering the values 3 and 2. A

single compute core sequentially applying the instruction to each value of the data stream

will yield the solution vector of(
15
10

). As with the classical single core computer system this

type of computation cannot be considered parallel computation.

4.4.2 Single instruction, multiple data streams (SIMD)

Algorithms falling into this category define a single instruction but need to execute it

multiple times. Each compute core takes on responsibility for execution of the instruction

against a data stream. The vector scaling operation used above may be modified to

demonstrate this case. The instruction remains unchanged (multiply by 5) but each compute

core receives a stream of data that contains a single data item (one core receives the value

3 the second the value 2). The same solution vector is reached but the data items are

processed ‘in parallel’ on their own compute core.

4.4.3 Multiple instructions, single data stream (MISD)

Algorithms falling into this category define multiple instructions but provide a single

stream of data against which all instructions must be executed. Again we may restate the

Chapter 4: Parallelism

Page | 63

vector scaling problem used above as a MISD algorithm. In this version two instructions will

be defined:

1. Multiply by 3 and

2. Multiply by 2.

The single data stream holds the scalar value of 5. Each compute core will execute

an individual (but different) instruction against the delivered data stream value but the

solution vector will still be correctly derived.

4.4.4 Multiple instructions, multiple data streams (MIMD)

Completing the categories of processing algorithms the multiple instructions, multiple

data streams could be considered the most parallisable form of algorithm. The vector scaling

example used previously does not fall into this category. However a simple matrix

multiplication problem will serve to illustrate this category of algorithm. Here two matrices are

multiplied together to give a solution (A * B = AB).

Matrix ‘A’ forms the multiple instructions set with each row in the matrix generating an

instruction set. Each value in a row will generate its own instruction to form the instruction

set. The columns of matrix ‘B’ will each form a data stream which is delivered to each

instruction set. Each instruction set will contain at a minimum two instructions (multiply by a

value and add the result to a running total). Equally at a minimum there will be two streams

of data delivered to the compute core (a column of matrix ‘B’).

In addition to the various forms of computation there is at least one type of problem

that is suited to solution by parallel computation.

4.5 Embarrassingly Parallel Problems

Cleve Moler a co-founder of MathWorks and developer of the MATLAB software first

coined the term ‘embarrassingly parallel’ to describe problems “for which little or no effort is

required to separate the problem into a number of parallel tasks. This is often the case

where there exists no dependency (or communication) between those parallel tasks”(Foster,

1995; Moler, 1986). If Amdahl’s law is applied to such a problem it will have a P value close

to 1 (remembering that it can never be 1). Figure 4-2 shows that such a problem is a perfect

candidate for parallel computation. High increases in performance being available with even

a small number of compute cores. The potential increase in execution performance is

effectively limited by the number of available compute cores. These problems are, therefore,

prime candidates for solution by cluster or cloud computing systems.

Embarrassingly parallel problems abound both in science and nature making the

multicore computing system ideal for their solution. Examples would include:

1. Event simulation in particle physics.

2. Ensemble calculations of numerical weather prediction.

3. Genetic algorithms and many other evolutionary computing techniques.

4. Brute-force searches in cryptography (such as Bitcoin mining).

5. Serving static files on a web server to multiple users simultaneously.

Chapter 4: Parallelism

Page | 64

6. Computer simulations comparing many independent scenarios, such as climate

models.

7. Pairwise cross correlation of neural spike trains.

As the name of these problems implies failure to exploit the paradigm shift to the

delivery of increased computing power through multicore hardware and parallel programing

could be seen as ‘embarrassing’ when solving these problems. Almost all modern hardware

on which computer programs are developed is a multicore system delivering compute power

through multiple cores. If multicore hardware has become ubiquitous then it is to the shame

of the modern software development community that the parallel programming skills needed

to fully utilise it have not.

4.6 Parallel Programing – The failure to launch

Ever since programming emerged as a distinct discipline developers have been trying

to abstract themselves away from the hardware on which the code is executed. Modern

programing paradigms such as Object Orientated Programing (OOP) focus on describing the

logic of an algorithm without any reference to the executing hardware. Popular programing

languages such as Java and the .NET Framework family (including C#, C++, Visual Basic)

now use ‘virtual machines’ such as Java’s JRE and Microsoft’s Common Language Runtime

(CLR). This abstracts even the concept of the codes execution environment. Abstraction is

usually implemented as a layered architecture with each layer building on the previous to

provide a different representation of the same process (Floridi & Sanders, 2004). An

instance where abstraction breaks down and the physical hardware becomes relevant to the

higher abstraction layers is not well handled by programmers / developers. An example of

this from the history of parallel computation would be the co-operative vs pre-emptive

multitasking models of thread scheduling. As described in the co-operative multitasking

model developers were required to write code that ‘offered’ time on the CPU to other

executing threads. Traditionally management of access to CPU cycles falls into the

operating systems layer and not the creation of application code. This is the primary reason

for the co-operative multitasking model being dropped in favour of pre-emptive multitasking

model in the modern operating system. Pre-emptive multitasking manages CPU access

entirely within the operating system and so respects the traditional layered model.

Parallel computation represents another programming challenge that violates the

traditional layered approach that abstracts the software developer from the hardware. Indeed

Amdahl’s law expresses beautifully the close relationship between an algorithms

performance, the executing hardware and the degree of parallelism built into the algorithm

(see Figure 4-2). Nevertheless traditional software development emphasises ignoring

hardware and views the algorithms logic as sequentially executing functions. The training of

software engineers at colleges and universities continues to be focused primarily on

traditional programming models. Parallel computation, if taught at all, appears in only 1-2

final year undergraduate modules that often have little hands on experience (Higginbotham

& Morelli, 1991). This occurs even though almost every computer in use is at least a dual

core system. Most historians mark the end of the single-core era as May 2004 when the Intel

Corporation dropped development of its last single core systems (Flynn, 2004). A decade

later software engineers are still only making slow progress to accept that the paradigm of

adding compute power through multiple cores requires a new coding paradigm. Despite the

slow progress the development community is fully aware that a parallel coding paradigm is

Chapter 4: Parallelism

Page | 65

required. In 2009 David Stewart CEO of CriticalBlue and chairperson for the Multicore

Programming Practices (MPP) working group comments on this situation stating that

“There's capability in (multicore) platforms which is not being utilized or not being optimized

by the software development community" (Myslewski, 2009).

Given the clear need for parallel code production, or concurrent programming, it must

be asked why software engineers and the development community have made such slow

progress? Research has been underway in the field of parallel code production. The most

critical barrier to progress was identified by Apple Inc. which has observed that “the

dominant model for concurrent programming - threads and locks - is too difficult to be worth

the effort for most applications” (Apple, 2009). This conclusion would suggest that the

current parallel programming models are not fit for purpose. Indeed it has been observed

that this style of programming has “a well-deserved reputation for introducing bugs that are

difficult to find and fix” (Myslewski, 2009). What is needed then is either:

1. A new way of doing parallel / concurrent programming or…

2. An easier and more productive way to utilise the current model of threads and locks.

At the moment no-one has advanced an approach for concurrent programming that

fully respects the traditional abstraction layers between developer and hardware. Therefore

most research has focused on the second option of simplifying how the current model is

used.

In summary, while the hardware to support parallel / concurrent programing has

spread into almost every environment and computing device, the software development

community has been slow to design and develop applications that exploit the full potential of

this hardware. In turn this has restricted the opportunities to exploit this power in both

business and scientific communities. Software development languages are now belatedly

adopting concurrency frameworks for parallel computation. However the teaching and

training of software engineers to identify and exploit opportunities for parallelisation of code

remains spotty at best.

4.6.1 Concurrency Frameworks – An abstraction layer for parallel coding

Research into simplifying the current thread and locks model has taken the form of

the development of “Concurrency Frameworks” that are added to the traditional development

languages. These frameworks offer a new abstraction layer between developer and

hardware. In principle these frameworks accept that traditional threads and locks are too

close to the executing hardware. At the application coding level developers want to work with

abstract concepts. In the case of concurrent / parallel coding the most obvious abstraction is

the parallel task. This is the concept that the code to complete a task should be grouped into

a logical whole, assigned to a compute core and that at some indeterminate point in the

future it will produce a result. This clearly leaves the developer with more hardware

dependent considerations than normal, like a need to consider the number of available

compute cores. It does, however, abstract away responsibility for managing threads via the

software design pattern of a thread pool.

4.6.2 The spread of Concurrency Frameworks in modern development languages

The creation and incorporation of concurrency frameworks into modern coding

languages has been a slow process. It may still be considered a second best solution to a

Chapter 4: Parallelism

Page | 66

completely new coding paradigm and as Goetz the primary developer of the Java

concurrency framework notes “writing correct programs is hard; writing correct concurrent

programs is harder” (Goetz et al., 2006). Nevertheless in the absence of any better paradigm

the major software development languages have seen the need to develop concurrency

frameworks.

Language Concurrency Framework Release Date Source

Python Stackless Python 01/2000 (Tismer, 2000)

Java JSR 166: Concurrency Utilities 09/2004 (Lea, 2004)

C++ Intel® Threading Building Blocks 08/2006 (Reinders, 2007)

.Net Framework
(v4)

Task Parallel Library (available in
all .Net languages)

04/2010 (Microsoft, 2010)

Table 4-1: Creation of concurrency frameworks in application development languages. (Tucker, Barlow &
Stuart, 2012)

Table 4-1 details the creation and deployment dates for concurrent programming

frameworks in major application development languages. As can be seen deployment has

been slow with Microsoft being the latest adopter to introduce a concurrency framework for

its .NET programming languages. Early adopters of concurrency frameworks have already

enjoyed considerable commercial success. Stackless Python for example is credited with the

commercial success of EVE Online with over 500,000 paying subscribers (Loktofeit, 2013).

EVE Online was developed by CCP Games based in Reykjavik, Iceland and the CEO Hilmar

Veigar Petursson has been cited as crediting Stackless Pythons concurrency features as the

prime reason for the languages selection as the EVE Online implementation language. In

endorsing the language he said:

“When embarking on the creation of EVE Online, a single shared persistent world we

realized two things: We could not given constraints of time and commercial reality do this in

a compiled language and we needed innovative concurrency control for such a large scale

shared state simulation across tens of thousands of CPUs (EVE Clients included). After

many experiments with various combination of existing scripting languages and NT fibers we

arrived at Stackless Python. Stackless Python offered us the power of Python coupled with a

vastly superior concurrency control mechanism over anything we had seen before, first as

continuations and later with an innovative channel based API. CCP's commercial success

today is built on the single decision of selecting Stackless Python as our foundation”

(Petursson, 2011).

Despite the difficulties of the thread and locks model for concurrent programing the

developers of concurrency frameworks have defended it. Oracle’s Java language architect

Brian Goetz has observed “threads are the easiest way to tap the computing power of

multiprocessor systems” and “as processor counts increase, exploiting concurrency

effectively will only become more important” (Goetz et al., 2006). It is such statements as

these and the successful commercialisation of concurrency frameworks that the drive to

deploy and use concurrent frameworks arises. This drive finally seems to be overcoming the

development communities’ general resistance to adopting concurrent / parallel programming

due to the difficulties involved.

The advantages of a concurrency framework may be summarised as (Oracle, 2004):

Chapter 4: Parallelism

Page | 67

1. Reusability and effort reduction: The effort required to create concurrent code is

considerable but the core elements are used and reused throughout development.

Making these available within a framework increases code re-use and reduces effort.

2. Superior performance: The primary goal of all concurrent code is to balance the

degree of parallelism and the number of compute cores to minimize execution time.

3. Higher reliability: Parallel coding has long been considered a ‘bug magnet’. By

working with tested and proven framework code a programs reliability should be

increased.

4. Maintainability and Scalability: Reusable framework components are easier to

maintain and can be scaled as technology advances.

5. Increased Developer Productivity: Abstraction of the developer from the hardware is

(partially) restored allowing them to focus on what to do and not how the computer

does it.

4.6.3 General structure of a concurrency framework

The problems associated with concurrent programing have been understood for

some time and the production of concurrency frameworks does now have at least some

common elements. This is true regardless of programming language since the underlying

problems remain the same. This project will draw extensively on improved execution time

performance to generate interactive visual displays for large datasets. This will be mainly

achieved through concurrent code exploiting the Java concurrency framework. It seems

worthwhile at this point to examine the elements that commonly appear in a concurrency

framework with emphasis on the Java implementation.

The formal specification for the Java Concurrency Framework is given in Java

Specification Request - 000166 Concurrency Utilities (Lea, 2004). It is divided into the

following six core component:

1. Task Scheduling Framework

2. Concurrent Collections

3. Atomic Variables

4. Synchronizers

5. Locks

6. Nanosecond-granularity timing

Each of these framework components will be considered in turn and their role in

Java’s concurrent programming model explained from the framework documentation (Oracle,

2004).

4.6.3.1 Task Scheduling Framework

This component is charged with the execution of the concurrent tasks submitted by

the code for parallel computation. This manages invocation, scheduling, execution and

control over parallel code tasks within a set of configurable policies. At its heart the Executor

framework manages these tasks, interacts with the sequential application code and executes

tasks either on a single background thread or through an application of the thread pool

software design pattern.

Chapter 4: Parallelism

Page | 68

4.6.3.2 Concurrent Collections

All modern development languages provide a set of common data structures, called

collections, such as lists, queues, stacks, and maps. Each data structure provides a means

to manage a collection of data or data objects. The primary barrier preventing the use of

such structures in the concurrent environment is the pre-emptive multitasking thread

scheduler itself. With its aggressive enforcement of time slice allocation to application

threads the scheduler can corrupt data by forcing a thread off the CPU before a memory

update can be completed. Classic data structures are not generally ‘thread safe’ in that they

cannot allow multiple threads to access the data without the risk of corruption.

This component provides a set of ‘thread safe’ data structures that are immune to

data corruption when accessed by multiple threads. This reduces developer workload, as

most thread safety issues are eliminated, and improves reliability as the opportunity for many

common concurrency bugs to enter the code base is eliminated. In addition these classes

are optimised to offer high performance making them more suitable for implementing high

performance concurrent applications.

4.6.3.3 Atomic Variables

As with data structures and collections the classic variables such as Integer and

Boolean are vulnerable to data corruption by a pre-emptive thread scheduler. In this

component they are re-implemented as ‘atomic’ variables where the thread scheduler may

not corrupt their values by interrupting update operations.

4.6.3.4 Synchronizers

The need to synchronise the operation of multiple threads when writing concurrent

code cannot be completely avoided, despite it being a relatively low level operation that is

usually abstracted away from the application developer. This component provides pre-

written and tested synchronisation / locking systems. In addition to the classic semaphores

and mutex locks the Java concurrency framework provides barriers, latches and exchangers.

This provides a set of reusable components that avoid the need to manually code most

thread locking strategies.

4.6.3.5 Locks

Synchronisation between thread operations is normally performed through the

locking and thread blocking mechanism described in 4.2.3. The concurrency framework

includes many pre-written locking strategies, through its synchronizers. However the

complexity of concurrent programming ensures that situations can arise where developers

must write their own. This component provides developer access to both the classic memory

locks and more advanced timed, multiple condition and non-lexically scoped locks.

4.6.3.6 Nanosecond-granularity timing

The timing component provides access to a nanosecond granularity time source

(assuming the executing platform support nanosecond timing). Many portions of the

concurrency framework depend on accurate timing. The parallel code developer may also

require such timing accuracy if (or when) forced to interact with the system at a low level.

4.6.3.7 Recent changes to the Java Concurrency Framework

In the course of this projects execution the Java concurrency framework has

undergone a major update. While the project uses Java’s JDK 1.6 and does not utilise these

Chapter 4: Parallelism

Page | 69

changes no review of the development of parallel / concurrent programing could be complete

without covering the most recent changes. Concurrent programming research is an

expanding field which in the case of Java 7 has led to the following major updates to the

concurrency framework (Konda, 2011; Oracle, 2014):

1. The Executor framework in the Task Scheduling framework has been extended to

support Fork & Join operations such as those common to UNIX systems.

2. The pre-written synchronizers have added the Phaser that merges functionality from

a CyclicBarrier and CountDownLatch as well as allowing an application to be divided

into a set of ‘phases’ during execution.

3. The generation of pseudo-random numbers without cross thread communication has

been added. This will reduce thread contention and further optimise performance.

4.7 The future for parallel / concurrent computation

The road ahead for the effective development of parallel computation and concurrent

programing remains unclear. Parallel computation became necessary as hardware shifted

from delivering compute power via a single core CPU to the multicore CPU. Advances in

computer hardware have not slowed. Manufacturers seem committed to multicore and have

started to open up the massively parallel compute cores of graphics cards for general

purpose computing operations (GPGPU’s). The increasingly interconnected world has also

seen cloud computing emerge as a practical means to deliver compute power that was

historically restricted to the high performance compute cluster in a practical way to the

masses (Apache, 2014; NVIDIA, 2014a; NVIDIA, 2014b). Many big data problems such as

that of neuroscience may benefit from leveraging this additional compute power. Additionally

many computers already include the hardware for GPGPU programming and frameworks

such as CUDA and OpenCL are emerging to program them (Khronos, 2014; NVIDIA, 2014c).

While still lagging behind hardware development, it may be that these software

frameworks and the distributed computing technologies of cloud computing represent the

future. A future that will deliver greater compute power in a massively parallel but distributed

way.

Chapter 5: Visual Programming Languages

Summary
This chapter examines Visual Programming Languages, how they work and the rationale
behind creating one for the third iteration of the VISA project.

Chapter 5

Visual Programming Languages

 “Visual Programming Language (VPL) is an application development environment designed on a

graphical dataflow-based programming model.”

Chapter 5: Visual Programming Languages

Page | 71

5 Overview
One of the primary contributions of this project is the development of a Visual

Programing Language (hereafter a VPL) as a means to create a concurrent data processing

environment that can be customised to perform data analysis for any type of data. This

chapter examines VPL’s and their suitability as a means of creating a user customisable

data processing pipeline. Additionally it introduces the Visualisation of Inter-Spike

Associations project and examines why development of a VPL for the project was

undertaken for the third iteration of its software.

5.1 The Information Processing Cycle

The operation of any computer system can be described at the highest level by the

information processing cycle. This cycle is considered to have four parts which are:

i. Input

ii. Processor / Processing

iii. Storage

iv. Output

In describing the system the terms ‘data’ and ‘information’ must be carefully defined.

Data represents the raw unorganised facts that need to be processed. Information is

processed data which is organised, structured or presented in a given context so as to make

it useful. Computers, and all other information processing systems, transform raw data into

useful information. The information processing cycle describes at a high level how this is

performed.

Figure 5-1: The Information Processing Cycle

Figure 5-1 provides a representation of the information processing cycle in which raw

unorganised data is input into a processing system. Algorithms are then applied to this data

to organise and structure it. The selection of algorithms depends, of course, on what the

user deems will be ‘useful’ for their purpose. One or more algorithms may be used giving

rise to the need to store data being processed. The final processed output depends on the

algorithms used and their order of application. No matter how it was created the output must

be presented to the user in some fashion, classically on a computer monitor though this is

not a requirement.

Despite having four distinct components the (iii) component storage serves to

support the processing operation. There are many forms of data storage but they simply act

Chapter 5: Visual Programming Languages

Page | 72

to persist and retrieve data on demand. No actual processing occurs to stored data and as

such the information cycle has three ‘active’ phases.

5.1.1 The Input Phase

This phase is primarily focused on providing the raw data to the processing system.

As such it serves as the interface between the data processing system and the outside world.

The data deluge of the modern information age has led to the creation of a wide array of

data storage and delivery systems that deliver data in an equally numerous number of

formats. Examples would include keyboards, microphones, hard disk drives, mice and track

pads. Before the processing component of the cycle can begin data must first be read and

placed into a storage location from which it can be delivered to the processing elements on

demand. In the classical computer system this will be some form of memory ranging from

CPU registers to random access memory (RAM) or a hard disk drive. The key requirements

to complete the input phase are:

i. The ability to access the raw data – Appropriate permissions, physical access to the

data storage mechanism or some sort of remote access such as modern cloud and

distributed processing systems can provide.

ii. An understanding of the data’s semantics. Data represents discrete facts and

therefore includes an element of meaning. For example the integer number 8 is a

piece of data but is incomplete without meaning. It can represent a wide range of

data such as 8 planets, 8 miles per hour or 8 degrees Celsius. Hence to be used by

information processing systems data is not simply values but also their meaning.

The input process then receives data and stores both discreet values and their

meaning in a form suitable for further processing. In the modern computer a ‘data model’ is

often created in memory that represents the raw data.

5.1.2 The Processing Phase

In this phase a sequence of algorithms is applied to the raw data aimed at extracting

‘useful features’ from the data. What exactly constitutes a useful feature depends entirely on

the information that the user desires to extract and the use to which it will be put. In any

significantly sized data set their will be a wide range of possible information depending on

the meaning of the raw data and the overall goal of the processing. Nevertheless the

processing phase will always have the following features:

i. There will be one or more goal(s).

ii. There will be one or more algorithm(s), even if the only algorithm is to produce an in

memory representation of the raw data. The algorithm transforms the data into

information and has been called the defining activity of computers (Illingworth, 1997).

iii. The processing result will be delivered to some kind of output phase.

The creation of goal(s) for the processing will define what constitutes ‘useful’

information and will usually involve answering one or more research question(s). Complex

goals may break down into a number of sub goals that must be achieved before the primary

goal can be completed. The overall goal will constrain the data that must be made available

and the algorithms that will be applied.

When the goals have been established algorithm selection and sequencing can

occur. Here the user identifies the individual operations that must be performed to transform

Chapter 5: Visual Programming Languages

Page | 73

the raw data into the required information. The algorithms could be viewed as tools in a

toolbox with the user selecting those that reveal the information needed to meet the

processing goals. As with the classical engineers toolbox the ‘tools’, aka algorithms must be

selected and applied in the correct order to achieve the processing goals. For complex tasks

or multiple goals it may be useful to change the order in which the algorithms are applied

either to provide different information about the same data or to provide the same

information presented in a different way. The ability to derive new information by viewing the

same information in different ways is one of the strengths of the human visual processing

system (see chapter 2).

Regardless of the algorithm(s) applied and in what sequence the end result must

finally be presented to the information user.

5.1.3 The Output Phase

To be useful the results of processing must be presented to a user who applies the

information to the solution of a problem. As with the input phase there is a wide range of

possible outputs. Broadly the output can fall into two categories:

i. Static – Typical examples would be printouts and fixed information displays

ii. Interactive – In this case the user has the option to further interact with the output

essentially performing further processing themselves.

The classic examples of static output is printed output be it numeric, textual,

graphical or some combination of these three. Other examples would be a static image

rendered to a display screen or saved to a storage medium. The increasing power of

computers and their impact on the field of data visualisation (see chapter 2) has allowed far

greater use of interactive output systems. Such systems are particularly useful were it is

uncertain exactly what algorithms or processing might yield useful information. In the

interactive system the user may manipulate the output to reveal additional information

beyond that identified in the initial processing. These exploratory data operations if they

consistently reveal useful information may then be consistently applied to future analysis as

a new algorithm. Some output systems, such as information displays and sonification, may

blur the line between static and interactive output. Such systems may present static

information views or if the user can manipulate them become truly interactive.

In summary then the Information Processing Cycle can be seen as describing a ‘flow’

of data (the input) through a sequence of transformations (processes) to produce useful

information (the output).

5.2 Dataflow Programming Languages & Visual Programming

Languages

The classical computer has at its core a “von Neumann” processor (Neumann, 1945)

however this architecture is not the only solution to constructing a data processor. In the

early 1970’s research into parallel processing showed that the von Neumann architecture

suffered from two bottlenecks (Ackerman, 1982; Backus, 1977):

i. The global program counter.

ii. The global updatable memory.

Chapter 5: Visual Programming Languages

Page | 74

The global program counter is simply a register that stores the address of the next

executable code instruction. This hinders parallel execution as that requires the execution of

multiple instructions whereas the classic program counter can only point to one instruction.

Global updatable memory refers to the processors access, and ability to modify any value in

memory. In parallel code this leads to conflicts as different instructions may attempt to

access the same memory location. Different instructions executing at the same time may

update or read incorrect values from global memory.

Researchers proposed a new processor architecture that was named a dataflow

system to address these deficiencies. In a dataflow system there is no concept of an object

held in global memory, such as a variable. Instead the dataflow model deals only with values

and processing is achieved by manipulating values to produce new values. Each

programming ‘statement’ has a precise mathematical meaning given by a mathematical

function. No global counter is employed instead the mathematical functions execute as their

input values become available. The function’s output is routed to another function where it

provides an input value. This function will in its turn wait until all values that are routed to it

as inputs have been computed and then immediately execute. A program constructed in this

manner can be represented as a ‘data dependency graph’ and their execution is said to be

data driven.

The advantage of the dataflow system is that it is naturally paralysable with each

function being independently executed as its input values become available. As such

programs also form a data dependency graph they may be visualised as sequence of

connected nodes in a directed graph. This leads to an interesting possibility where such a

system may be ‘visually programmed’. The programmer adds functions to a directed graph

and routes the output of each function to the input of another. The resulting graph represents

a naturally paralysable program where each node executes as previous nodes make data

available. This approach allows the construction of visual programming languages (VPL’s).

Figure 5-2 illustrates the concept using the Microsoft Visual Programming Language.

The coupling of dataflow with a graphical representation as a directed graph was first

proposed by Sutherland in his 1966 PhD thesis (Sutherland, 1966). This resulted in the

creation of many dataflow languages of which LabVIEW is perhaps the most famous

(Graphical Programming, 2013). While the naturally parallisable nature of dataflow programs

provides a significant advantage given that modern hardware is now delivering increased

compute power through parallelism a number of problems remain for dataflow system.

These can be summarised as:

i. The handling of complex data structures as values is inefficient, but no complete

solution to this has been proposed. In this project a high degree of Object Orientated

Programing (OOP) and abstraction will be used to address the need for complex data

structures.

ii. Dataflow computation tends to involve long ‘pipelines’ of interconnected processes

and this can degrade performance where the application being programmed is not

sufficiently paralysable.

iii. The programmer does not have explicit control over memory and a highly branched

pipeline will lead to extensive data duplication as different branches seek to

independently process the same data. Shared data structures are possible but will

Chapter 5: Visual Programming Languages

Page | 75

require development of thread safe data structures and careful memory management

/ garbage collection mechanisms.

iv. The complexities introduced by (ii) and (iii) will result in a management overhead that

consumes both memory and time. Therefore although the pipelines parallelism is

exposed to the hardware its full advantages may not be realised.

Figure 5-2: A dataflow system visualised as a directed graph. (Source: (Microsoft, 2012)).

Visual Programming Languages (VPL’s) have enjoyed success in the academic field

and in the research labs of the world, however mainstream business programming continues

to favour text based compiled or interpreted languages. The construction of data processing

pipelines in which the user can introduce new algorithms by manipulating graphical elements

rather than re-coding an application offers great flexibility.

5.2.1 Dataflow implementation models

There are essentially two implementation models for dataflow / workflow

programming. The token based dataflow model and the structure based dataflow model

(Johnston, Hanna & Millar, 2004). In either of these models execution of the dataflow

program is controlled using either a data-availability-driven approach or a demand-driven

approach. This section will examine these options and the rationale behind selecting a

structure based data-availability-driven approach for implementation.

5.2.1.1 The token based dataflow model

In token based dataflow the connections between nodes of the dataflow directed

graph carry ‘tokens’ that encapsulate the data being processed and convey it between

Chapter 5: Visual Programming Languages

Page | 76

processing nodes. The connections are termed ‘edges’ or ‘arcs’. These arcs may either be

input arcs that deliver data for processing or output arcs that transmit processing results to

the next node in the directed graph. From the implementation point of view these arcs are

unbounded first-in first-out (FIFO) queues (Khan, 1974) that deliver tokens to processing

nodes. A processing node becomes fireable, or executable, when at least one token is

available on an input arc. Nodes may have multiple input arcs that form a ‘firing set’ all of

which must carry a token before the node becomes fireable (Davis & Keller, 1982). To begin

the computation special input nodes are required that generate the first set of tokens. Once

a node is fireable it removes a data token from its input arc(s) and performs its operation. At

the conclusion of processing the node places a new token on one or more of its output arcs.

This in turn makes further nodes fireable and advancing the program to the next processing

step.

5.2.1.2 The structure based dataflow model

The structure based dataflow model emerged from research in the early 1980’s and

uses the same arc and node directed graph structure as the token model (Davis & Keller,

1982; Keller & Yen, 1981). The key difference is that while each node in the token model can

generate multiple tokens, i.e. it is a stream processor, in the structure model each node

creates only one data object or ‘structure’ on each of its output arcs. This structure is not

removed from a FIFO queue by later nodes but remains on the arc. The primary advantage

of the structure approach is:

“It is possible for these structures to hold infinite arrays of values, permitting open-ended

execution, and creating the same effect as the token model, but with the advantage that the

structure model permits random access of the data structures and history sensitivity”

(Johnston, Hanna & Millar, 2004).

The structure model is attractive given its ability to define a structure for almost any

data model while offering random data access and a record of processing history.

Nevertheless it has not seen wide adoption in dataflow programing because of its primary

disadvantage. The disadvantage to the structure based approach is that it is inherently less

efficient at storing data than token based systems. This arises because to preserve the

ability to examine the history of the program all generated data must be preserved. Data

structures can grow very large as the program progresses if a complete processing history is

preserved.

5.2.2 Dataflow execution models

Regardless of the selected dataflow implementation model it will be necessary to

control the execution of the dataflow program. This involves identifying when nodes of the

directed graph have become ‘fireable’ and scheduling them for execution. Either of the two

dataflow implementation models creates ‘tokens’ that are placed on the ‘arcs’ of the dataflow

diagram. Note that the data structures from the structure implementation can be considered

a form of ‘token’. Research has shown that rather than treating these tokens as passive

conveyors of data they are the best means to control program execution (Kosinski, 1978).

There are two approaches to controlling the execution of a dataflow program.

5.2.2.1 Program execution using the data-availability-driven approach

The data-availability-driven approach could be considered the ‘pure’ dataflow

approach. Execution of program nodes in the directed graph begins when a node becomes

Chapter 5: Visual Programming Languages

Page | 77

‘fireable’. The status of a node as fireable depends on the availability of data in the form of a

token (or structure) on a nodes input arc(s). Only when all input arcs have a data token

available is a node fireable and becomes eligible for execution at the next opportunity.

At the end of execution each node will place a token (or structure) on its output arc(s).

These in turn will cause further nodes in the directed graph to become fireable. This process

repeats until a terminating condition is reached. In the case of the VISA 3 project the normal

terminating condition is that a visualisation node is reached. The processed data is delivered

to the visualisation application encapsulated by the node.

5.2.2.2 Program execution using the demand-driven approach

The demand-driven approach reverses the data-availability approach. Instead of a

node passively waiting to become ‘fireable’ it monitors its output arc(s) waiting to receive a

demand for data. When a demand is received the node places demands for data onto its

input arc(s). This in turn serves to trigger demands for data from nodes higher up the

directed graph. Ultimately a node is reached that either has or can acquire / load the

demanded data. Once a node receives its demanded data (a token / structure on an input

arc) it processes the data and places its own token / structure onto the output arc. Johnston

et al describe the demand-driven approach as a four step process (Johnston, Hanna & Millar,

2004):

1. A node’s environment requests data.

2. The node activates and requests data from the environment

3. The environment delivers the requested data

4. The node places a token / structure onto its output arc(s).

5.2.3 Selection of dataflow model and execution method for VISA 3 implementation

In the final implementation of the VPL’s directed dataflow graph this project has

selected a structure based dataflow model with a data-availability-driven approach to the

VPL’s execution.

The choice of a data-availability-driven approach to the VPL’s execution is not

particularly contentious. This approach mirrors closely the information processing cycle of

input -> processing -> output around which the VPL is built. The majority of the VPL design

follows a top down approach and it made sense to continue this with the execution method.

Switching to a demand-driven approach would have required users to select which

visualisations should be activated ahead of execution. This seems an unnecessary step as

the data availability approach can automate the process of determining a complete workflow.

This avoids both work and cognitive load on the user. In summary then the data availability

approach was selected for this project because:

 The data-availability approach mirrors the input -> processing -> output cycle of

the VPL’s processing nodes.

 The data-availability approach is “top-down” which replicates how the typical user

would read a flow chart and build processing pipelines in the VPL.

 The step of defining which visualisations will “demand” data can be eliminated.

 Cognitive load on the user is reduced because:

o Most users will be familiar the flow chart analogy

Chapter 5: Visual Programming Languages

Page | 78

o Users will naturally build their visual processing pipelines by defining

inputs, the processing to be performed and the output visualisations to be

produced.

More contentious is the choice of a structure based dataflow model. The majority of

dataflow programing languages use the token based dataflow model with the structure

approach not proving popular. The primary reason for selecting the structure based dataflow

model was the broad specification given for this VPL. Concrete information was available for

the neuroscience data that would be used with the VPL. However the specification required

the VPL to adapt to potentially process any type of data. It would have been very difficult to

design a ‘token’ based system without imposing some limits on the type or amount of data it

could carry. The structure based approach is inherently more suitable being more

generalised. Its use also offered the problem domain specific process developer the

opportunity to define the structure for themselves. This provides the ability to tailor the

structure to the problem domain data. The structure approach also naturally allows for

random access to the data structure and the tracking of execution history. This is a

significant number of advantages that could be useful when analysing a wide range of data.

The drawback that had to be accepted was the potential that data structures may grow quite

large. Problem domain developers should look to ensure they store data in an efficient

manner and track processing history only where it is needed. In summary then the selection

of the structure based dataflow model was made for the following reasons:

 The definition of the “structure” that carried data through the dataflow model

could be done by the problem domain developer.

 The problem domain developer can design and tailor the structure to support the

data and processing they wish to perform.

 The structure approach has the potential to carry an unlimited amount of data

(within the constraints of the computer systems memory)

 The structure approach affords random access to data as needed by the

processing nodes.

 The structure approach allows several input arcs to be activated simultaneously.

This supports execution of processing nodes in parallel.

5.3 The Visualisation of Inter-Spike Associations (VISA project)

The Visualisation of Inter-Spike Associations project lead by Dr Liz Stuart at Plymouth

University will provide the problem domain for the initial iPipeline process library. To fully

understand the potential benefits of employing a VPL to perform data processing it is

necessary to review the project goals:

5.3.1 VISA Goals

The VISA project is developing a software toolkit suitable for the analysis of multi-

dimensional spike train data recordings. The toolkit will provide software capable of deriving

the functional connectivity of the recorded neural network. This project will be the third

iteration of the software development cycle for the project. The overall project goals can be

summarised as:

1. To produce an open source toolkit that allows researchers to visualise and explore

multi-dimensional spike train recordings.

Chapter 5: Visual Programming Languages

Page | 79

2. Assist researchers in mapping the functional connectivity of the recorded neural

network.

3. Provide the above in an operating system agnostic toolkit.

The previous development cycles produced the Neurigma toolkit which in principle

met the goals above. However the third development cycle addressed a number of

deficiencies in the toolkit.

The problems identified for the Neurigma toolkit were:

1. Data processing to identify patterns in the recorded spike train data was highly

structured. Neuroscience however has not identified a single set of data analysis

algorithms. Researchers often wish to develop new and novel algorithms for spike

identification, sorting and visualisation. Neurigma while an excellent tool was not

flexible enough to allow user introduced algorithms or to change the sequence of

analysis.

2. Neurigma failed to exploit the full computational power of the computers using it.

Written as a classic desktop application and, despite the considerable computational

workload of spike train analysis, it only employed a single compute core for

calculations. The modern research machine has at a minimum two compute cores

and far more likely four or more cores. This practically limited the toolkit to small

datasets where the computational workload could be handled by a single core in a

reasonable time.

3. Over time researchers ability to simultaneously record multiple spike trains has

grown considerably. When originally conceived the toolkit was expected to deal with

at most a few hundred spike trains. Modern recording equipment can now effectively

record thousands of spike trains necessitating a software tool capable of analysing

them.

4. While the visualisations iRaster and iGrid in the original toolkit have proven effective

at deriving the recorded neural networks structure they do not scale well to large

networks. As networks size grows the researcher begins to suffer from ‘data deluge’.

It becomes impossible to identify patterns in the data or make meaningful data

filtering decisions due to the amount of data and the resulting cognitive load on the

researcher. Finally with large datasets the limited on screen display space can no

longer effectively present the dataset for researcher exploration.

5.3.2 VISA3 Development Goals

For the third iteration of the VISA toolkit the drawbacks of the Neurigma software

were targeted with the aim of creating a toolkit that allowed users to:

1. Develop their own algorithms in a mainstream programming language and introduce

them to the software. This would be achieved by introducing a VPL that allowed

researchers to create modules and connect them into a data processing pipeline.

2. Made full use of the available compute power of the typical researcher’s lab

computer system. Exploiting parallelism wherever possible to speed compute

intensive operations such as the generation of cross-correlograms for a spike train

dataset.

3. Operated on significantly larger datasets both in terms of:

a. Number of simultaneously recorded spike trains.

Chapter 5: Visual Programming Languages

Page | 80

b. Increased recording length in terms of total time.

4. Addressed the difficulties of scaling the existing visualisations to cope with both the

greater number of spike trains and the longer duration recordings.

5. Finally the data processing pipeline would be adaptable beyond neuroscience so that,

in principle, any data could be analysed. Possibilities would include, but are not

limited to, financial, economic and other science fields.

5.3.3 Neuroscience Visualisations

The Neurigma toolkit provided two visualisations for the analysis of neural spike

trains and discovery of the connection architecture in the network. iRaster is an interactive

raster chart intended to provide a time series plot of spiking events. By sorting and re-

ordering the individual spike trains it is possible to identify visually recurring patterns in the

data. iGrid utilised the formal method of pairwise cross correlation to identify connectivity

within the neural network. These visualisations form the ultimate goal for the data processing

pipeline and the end point for the data pipelines. The final implementation of each will be

examined in its own chapter but to understand the design choices made and challenges

faced an overview of each is presented here.

5.3.3.1 iRaster interactive spike train raster plot

This is the most basic visualisation where spike events are displayed as point events

along a timeline. Mathematical algorithms, such as inter-spike interval and burst sorting may

be applied to identify recurring patterns in the dataset. Figure 5-4 gives an example of a

burst sort where twenty spike trains have been plotted. In Figure 5-3 the raw data is

presented with no attempt to analyse it. In Figure 5-4 the same raster plot has been re-

ordered using a burst sort algorithm. This re-orders the spike trains based on when they first

started to show spiking activity. The contrast between the two presentations of the same

data is striking. A visual inspection of the raw unprocessed data reveals little structure within

the data set. No attempt has been made to present the raw data in a way that exploits the

viewer’s visual processing abilities. The data seems, therefore, unrelated with each spike

train being disconnected from all others.

Figure 5-3: Raster plot of 20 spike trains recorded for 2000ms

Chapter 5: Visual Programming Languages

Page | 81

The un-ordered raw data of Figure 5-3 has few distinguishing features. When visually

inspected it seems to show no recurring patterns. There are clearly points were synchronous

or near synchronous spike events occur but the patterns do not seem to repeat and could

easily be simply chance artefacts from ordering the spike trains in a random order. Hence

examination of the raw data does not seem to convey any useful information.

Applying a burst sort algorithm to re-order the spike trains starts to reveal the hidden

structure within the data. This algorithm uses a sliding window of 300ms and re-orders the

spike trains based on the earliest spike event in the window. The window must contain at

least three spike events before the first spike time is used to re-order the spike train.

Figure 5-4: Raster plot re-ordered to identify when neurons started to spike (burst sort)

After the burst sort is applied more meaningful patterns start to appear in the data. Of

the 20 recorded neurons it would appear that 11 of them started to spike very close together.

This indicates that at a large cluster of connected neurons exist. Figure 5-4 shows these as

neurons 8, 12, 9, 16, 4, 20, 13, 11, 15, 1 and 7. This is by no means a definitive proof of

connection but provides us with a potential starting point. Of the remaining neurons 6, 18

and 17 are likely to be either disconnected or very loosely connected. The others may / may

not be connected to the large cluster or form clusters of their own.

The burst sorting of the raw data has permitted rapid identification of potentially

interconnected neurons by visual inspection. These potential neuron groupings will form the

basis for the assessment of connectivity using the iGrid visualisation.

5.3.3.2 iGrid interactive visualisation of pairwise cross-correlation spike train data

The iGrid visualisation primary use is to confirm the connectivity between neurons.

The technique of pairwise cross-correlation is used to assign a metric to the ‘strength’ of the

relationship between two neurons. Each neuron pairing is plotted onto a grid with grey

scaling being used to encode the strength of the relationship between the two neurons.

Black denotes a perfect correlation, were the neurons fire together, and white representing

no significant correlation. A sliding window and binning of spike events combined with the

Chapter 5: Visual Programming Languages

Page | 82

statistical technique of Brillinger normalisation is used to assess correlation strength. The

techniques will be examined when the implementation of the iGrid visualisation is reviewed.

Figure 5-5 shows the result of plotting the 20 neuron dataset used to demonstrate iRaster.

The strength of the correlation in the neurons firing pattern has been used to cluster the

neurons into connected groups.

Figure 5-5: iGrid plot with neurons clustered using pair wise cross correlation. (Stuart, Walter & Borisyuk,
2003)

The iGrid plot allows more detailed investigation of the neural networks connectivity.

If a cluster is observed on the grid which also appears on the raster plot it is possible to infer

a connection between the neurons. Equally a strong correlation between spike trains, i.e.

completely black iGrid cell, implies connectivity. A visual inspection of Figure 5-5 identifies

several clusters; neurons 1, 15, 9 and 18 form a cluster while 7 and 20 seem to form their

own group with a connection to neuron 1. Neurons 2 and 13 group together and have a

connection to neuron 15. Neuron 6 and 14 do not seem to correlate with any group. Neurons

8 and 17 form an isolated cluster with no connectivity to other clusters in the network.

Neurons 3 and 19 form a cluster with connections to neurons 5, 11 and 12. Similarly neurons

4 and 11 form a cluster with connections to neurons 3 and 10. This leaves neuron 16 which

is involved in a connection with neuron 12.

The actual architecture of the neural network used in these visualisation examples is

shown in Figure 5-6. As can be seen the structure of the network has been predicted almost

exactly by the iGrid visualisation. Many of the potential groupings seen in iRaster have been

proven and others resolved into more clearly defined clusters and connections.

Chapter 5: Visual Programming Languages

Page | 83

Figure 5-6: Actual simulated neural network structure used in examples.

Chapter 6: Research and Development Methodology

Summary
In this chapter the research and software development methodology is explained covering
the data captured and the software development process employed.

Chapter 6

Research and Software Development Methodology

 “methodology noun. The process used to collect information and data for the purpose of making

business decisions.”

Chapter 6: Research and Development Methodology

Page | 85

6 Overview
This chapter examines both the research and software development methodologies

applied to create i-Pipeline, the neural science analysis algorithms and data visualisations.

6.1 Research Methodology

The successful completion of a research project often rests on the selection of a

suitable methodology on the part of the researcher. Research methodology is broadly

categorised into two strategies; Theoretical research and Empirical research. The empirical

strategy is usually further sub divided into two approaches; Positivist (or quantitative)

research approach or Interpretivist (or qualitative approach) (Remenyi & Money, 2012).

Figure 6-1: Research Strategies (Remenyi & Money, 2012)

 Each of these approaches will be briefly examined and the reason for selecting an

empirical positivist research approach explained.

6.1.1 Theoretical Research

Theoretical research “draws on ideas and concepts which represents the cumulative

body of previous research and through a process of reflection and discourse develops,

extends or in some other way qualifies the previous work” (Remenyi & Money, 2012). This

type of research is seen primarily as a cerebral activity that can be considered a modern

equivalent of “Rationalism”. Rationalists regard reason as the chief source and test of

knowledge. A rationalist asserts that (Blanshard, 2016):

 reality itself has an inherently logical structure

 a class of truths exists that the intellect can grasp directly

 certain rational principles exist in logic, mathematics, ethics, and metaphysics

that are so fundamentally true that denying them causes one to fall into

contradiction

There is generally no “right” or “wrong” way to conduct theoretical research and it can

be done almost anywhere. Albert Einstein was one of the 20th century’s greatest theoretical

scientists who when asked to show someone his laboratory took out his fountain pen and

said “There it is!” (Remenyi & Money, 2012).

Chapter 6: Research and Development Methodology

Page | 86

6.1.2 Empirical Research

Empirical research “draws on observation of primary evidence in order to understand

a phenomenon being studied. This evidence can be quantitative or qualitative” (Remenyi &

Money, 2012). The Encyclopaedia Britannica gives the definition of empiricism as “the view

that all concepts originate in experience, that all concepts are about or applicable to things

that can be experienced, or that all rationally acceptable beliefs or propositions are justifiable

or knowable only through experience” (Duignan, 2016). This research approach might be

considered to be the “classic” research process (sometimes called the “Scientific method”)

illustrated in Figure 6-2 below:

Figure 6-2: The "scientific method" or classic research process (ArchonMagnus, 2015).

Whilst an understanding of theoretical concepts and issues is a prerequisite of

empirical research the foundation of the research must be the data the researcher gathers.

Hence the empirical researcher might say “It is a capital mistake to theorise before one has

data”. Empirical research is, therefore, grounded in the observations (aka experience) of the

researcher. Those observations form the data for the research.

As can be seen in Figure 6-1 the conduct of empirical research is usually further

subdivided into positivist (quantitative) or interpretivist (qualitative) research.

Chapter 6: Research and Development Methodology

Page | 87

6.1.2.1 Positivist / Quantitative Research

The essence of positivist (quantitative) research is that it relies on numbers (Remenyi

& Money, 2012). Hence information derived from sensory experience, interpreted through

reason and logic, forms the exclusive source of all authoritative knowledge. Verified data

received from the senses is known as empirical evidence (Macionis & Gerber, 2010).

Research done in the positivist style will therefore rely on numbers and on the researcher’s

skill in mathematics or statistical analysis. Historically, this has been the approach adopted

in the natural sciences.

6.1.2.2 Interpretivist / Qualitative Research

Interpretivist or qualitative research aims to understand and interpret interactions

whereas quantitative research tests hypotheses (Johnson & Christensen, 2010). Qualitative

research methods examine the “why” and “how” of the subject under study in addition to the

“what”, “where”, “when” and “who”. Qualitative methods produce information on the particular

case under study. Where more general conclusions are drawn (propositions) quantitative

methods can be used to seek empirical support for such research hypotheses. This

approach is often employed in the social sciences to gather an in-depth understanding of

human behaviour and the reasons for that behaviour.

6.1.3 Selected Research Methodology – Empirical Positivist

This project selected an empirical positivist approach to the development of i-Pipeline,

the neuroscience analysis library and the i-Raster, i-Grid and i-Animate visualisations. To

understand why this research methodology was adopted it was necessary to examine the

hypothesis being tested and the research question derived to test it.

6.1.3.1 Hypothesis

The original application of visual analytics to the problem of mapping a neural

network’s functional connectivity produced the original i-Raster and i-Grid visualisations

(Somerville et al., 2011; Stuart, Walter & Borisyuk, 2005). The usefulness of these

visualisations was being limited because of the following factors:

 In the field of neuroscience:

o Technological advancement has seen the number of simultaneously

recordable spike trains move from the hundreds into the thousands.

The i-Raster and i-Grid visualisations as implemented cannot scale to

datasets of this size.

 In the field of visual analytics:

o The i-Raster / i-Grid visualisations can be scaled to manage large

neuroscience datasets if the emerging “big data” visualisation

techniques are incorporated into them. These include:

 The addition of tools that summarise data while offering the

ability to “drill down” to more detailed data.

 The addition of tools to filter data within the visualisations.

o Creating interactive visualisations of big data on the average research

computer require software that exploits the full compute power of the

computer hardware.

 In the field of software engineering

o There has been a paradigm shift in how the modern computer delivers

increased compute power. Historically, this has been achieved by

Chapter 6: Research and Development Methodology

Page | 88

replacing the computers CPU with a faster version every 18 months.

Hardware vendors are now delivering increased compute power

through the provision of multiple CPU’s.

o Access to the full compute power of modern computers requires

software to be written in a way that permits the parallel execution of

code on multiple CPU’s.

o Software engineering issues and the need to access multiple compute

cores (CPU’s) was not considered in the original implementation of i-

Raster and i-Grid. This prevents the original versions from scaling to

use “big data” visual analytics techniques while remaining interactive.

6.1.3.2 The Research Question

To test the hypothesis above, the following research question was formulated:

“How can Software Engineering and Visual Analytics be applied to aid the general

analysis of scientific data and specifically current neural spike train data?”

This question challenges the researcher to improve upon the work of Somerville and

Stuart by introducing more recent developments in visual analytics to their original

visualisations. Previous work was limited to the fields of neuroscience and visual analytics,

but the recent developments in visual analytics rely heavily on the field of software

engineering. Hence, if interactive “big data” visualisation is to be achieved software must be

re-engineered in light of the paradigm shift in the delivery of compute power.

The joining of the software engineering and visual analytics fields is, of course, not

limited to producing visualisations for neuroscience. Hence the research question also

required that the techniques developed in the project should be applicable to “the general

analysis of scientific data” even if they are, in principle, demonstrated using neuroscience

data.

6.1.3.3 Selection of research methodology

Having reviewed the underlying hypothesis and the projects research question the

research methodology of empirical positivist was selected. Empirical research is grounded in

observation (experience) and the key field of visualisation / visual analytics draws most of its

effectiveness from how a user “experiences” an interactive visualisation. The positivist

approach argues that “information derived from sensory experience, interpreted through

reason and logic, forms the exclusive source of all authoritative knowledge. Verified data

received from the senses is known as empirical evidence” (Macionis & Gerber, 2010). This is

a reasonable definition for visualisation where knowledge is created through the combination

of the researcher’s senses with reason and logic. The verified data for the project is of

course the simultaneously recorded spike trains. This data was either recorded from live

animal experiments or generated from simulated neural networks. The live animal

simultaneously recorded spike train data was provided by researchers at the Newcastle

University Institute of Neuroscience (Sernagor, 2016). Simulated simultaneously recorded

spike train data was generated using Plymouth Universities Neural Network Simulator and

Neural Network Creator (Borisyuk, 2002; Borisyuk, 2008).

The success or failure of the project in addressing the research question was

determined empirically by measuring:

Chapter 6: Research and Development Methodology

Page | 89

i. The number of spike trains visualised

ii. The number of data points processed and the rate of processing.

iii. The number of compute cores utilised.

iv. The time required to complete computationally expensive operations (such as

cross correlation).

v. The ability of the software to operate in multiple environments (laptop,

desktop computer and high performance compute cluster (HPC).

6.2 Project goals / aims

The first stage was the identification of the project’s key goals from the research

question. These can be summarised as:

a. Develop a data processing system with the following properties:

i. The system must accept any data for processing regardless of its storage

format.

ii. Provides a means for a researcher to define data processing algorithms

and incorporate them into the data processing system.

iii. Provide a means for the researcher to define a data “pre-processing”

pipeline using the algorithms they have created.

iv. Provide a means to rapidly add, re-order execution of and remove data

processing algorithms from the pipeline.

v. To deliver the pre-processed data to an independent “visualisation

program”. This program should run independently of the data processing

system.

b. Develop a set of data pre-processing algorithms appropriate to the analysis of

neural spike train data. These algorithms were used to demonstrate the

operation of the data processing system as an analysis tool. Broadly the

algorithms were categorised as:

i. Input algorithms that accept a selection of commonly used neural spike

train data formats.

ii. Analysis algorithms that process the spike train data with the goal of

deriving the functional connectivity of the neural network that generated

the spike train data.

iii. Output / Visualisation algorithms that deliver the processed data to the

independent visualisation programs.

c. Develop a set of independent visualisation programs that facilitate the visual

exploration of the dataset. Three visualisations were selected for development

and expanded over previous implementations to fully exploit the computing

power of the modern research computer.

i. iRaster – based on the work of Somerville (Somerville et al., 2011) this

visualisation provides the researcher with a detailed view of neural spike

train data at the level of individual spike events.

ii. iGrid – also based on the work of Stuart (Stuart, Walter & Borisyuk, 2005)

this visualisation permits the researcher to infer functional connectivity

between neurons from the spike train recording.

iii. iAnimate – a new visualisation of the multi-electrode array (MEA) that

recorded the spike train data. Animation of the recorded spike trains

Chapter 6: Research and Development Methodology

Page | 90

spiking activity over time, allowing the researcher to visual identify

patterns within and across the neural network.

In addition, the following supporting goals were set for the project software:

1. The software should be cross platform and deployable to any research computer

running a modern operating system.

2. Multi-threaded programming should be used throughout to exploit fully the

compute power of modern computer systems.

3. The most computationally intensive algorithm (cross-correlation analysis) should

have the option to run in a cluster computer environment or on the researcher’s

machine (with an extended run time) without the need to modify the code.

4. Visualisation techniques should be applied throughout the project to enhance the

user’s experience. Specific attention was paid to ensuring responsiveness from

the software despite the large data processing demands.

6.3 Software Development Methodology

The uncertain and unpredictable nature of the challenges that this project generated

required an iterative software development approach. In addition, the project carried

significant risks that would have to be addressed over the product development. Specifically:

1. Large processing demands would be placed on hardware without knowing

exactly what hardware would be available at runtime.

2. Responsiveness of the application could be threatened by the size and

quantity of the data to be held in memory.

3. The availability of a cluster computing facility could not be guaranteed.

These constraints required the selection of a software development methodology that

supports both iterative development and allows the effective management of risks. Several

possible development methodologies were considered and ultimately the Spiral Model

(Boehm, 1986) was selected. This model of development emphasises the production of

prototypes and the management of risk as part of the iterative development cycle. Figure 6-3

illustrates the structure of a spiral development process:

Chapter 6: Research and Development Methodology

Page | 91

Figure 6-3: Boehm's Spiral Development Model (Boehm, 2000).

6.4 The Spiral Development Methodology

 Boehm defines the primary characteristics of the spiral development method as

follows (Boehm, 2000):

 a risk-driven process model generator

 a cyclic approach for incrementally growing a system

 a set of anchor point milestones for ensuring stakeholder commitment

6.4.1 Risk driven process model generator

Boehm defines risk as “situations or possible events that can cause a project to fail

to meet its goals”. This project had several major risk factors arising from its multi-

disciplinary nature. Examples would include:

 Several of the desired project goals were in mutual conflict with each other,

such as implementing visually responsive applications (Visual Analytics) vs

cross-platform compatibility (Software Engineering).

 As initially conceived the project would have utilised the CARMEN Virtual

Laboratory (VL) for neurophysiology (Gibson et al., 2008; Weeks, 2010) to

Chapter 6: Research and Development Methodology

Page | 92

provide the required cluster computing hardware but this was not under the

researcher’s control.

 It was expected that the implemented features would evolve over time as

each development cycle would provide greater clarity on what was physically

possible for the hardware to accomplish.

It was therefore considered vital that a software development methodology should be

employed that allowed risk to be evaluated and addressed at each stage of the development.

The spiral model directly links risk to the generation of its “process model” and is, therefore,

particularly well suited to the development of projects with a large number of (initially)

unknown risk factors. A process model should answer two main questions:

1. What should be done next?

2. For how long should it continue?

In the spiral model, the answers to these questions are driven by risk considerations.

Ultimately, the answers to these questions will define the work and the amount of time

dedicated to the next cycle of development.

6.4.2 Cyclic approach for incrementally growing a system

In software development it is common to time box or time limit each development

cycle. It is also common to require that each cycle has a distinct identifiable output. Software

development methodologies that employ this approach are generally described as

“incremental” methodologies. The spiral model’s development cycles produce incremental

product prototypes. Each cycle builds on the prototype from the previous cycle with the

completed software product “evolving” with each cycle (see Figure 6-3).

 In the case of this project the development of functional prototypes proved critical to

identify areas where further refinement was needed. The initial research plan called for the

following prototypes:

Prototype Description Chapter

Visual programming language
(core i-Pipeline / VPL)
implementation.

Develops the VPL directed
graph, base classes for
different types of graph nodes
and the i-Pipeline virtual
desktop

See: Chapter 5 for
Visual programming
Languages (VPL’s).
See: Chapter 7 for i-
Pipelines design.

Development of neuroscience
data model

Develops an efficient data
storage system with support
for rapid filtering and sorting
operations

See: Chapter 8 for the
design and development
of the neuroscience data
model.

Development of initial
neuroscience processing
algorithms

Development of the burst sort
and inter spike interval sorting
algorithms for i-Raster

See: Chapters 9, 10 and
11 for processing
algorithms and their use.

Integration of data model and
neuroscience algorithms with i-
Pipeline

Algorithms are “wrapped” into
graph nodes and the i-Pipeline
Toolbox implemented

See: Chapters 7, 8
appendix 1

Development of the parallel
execution engine

A data-availability-driven
approach to the VPL’s
execution is implemented on
top of a structure based
dataflow model

See: Chapter 5 (Section
5.2.2) – Dataflow
execution models

Chapter 6: Research and Development Methodology

Page | 93

Prototype Description Chapter

Development of the i-Raster
visualisation

Implementation of a revised i-
Raster visualisation
incorporation the new
overview and filtering features

See: Chapter 9

Development of a pairwise
cross correlation and clustering
algorithm to run over the
CARMEN compute cluster

Developed and deployed a
CARMAN service for pairwise
cross correlation and
clustering.

See: Chapter 10
(Section 10.1.1) –
Computational challenge
of Pairwise Cross
Correlation

Development of i-Grid
visualisation

Implementation of the i-Grid
visualisation with a new
dendrogram overview using
the clustering algorithm.

See: Chapter 10

Development of i-Animate Implementation of i-Animate to
visualise recording MEA array
with heat map overlays.

See: Chapter 11

Table 6-1: Research prototyes, work undertaken to produce them and associated thesis chapter(s).

 The primary risk with the prototype plan as set out in Table 6-1 was the reliance on

an external third party (the CARMEN Virtual Laboratory (Gibson et al., 2008)) to provide the

compute cluster for the most computationally intensive data analysis. Ultimately this risk was

realised with the provided hardware and access restrictions preventing the CARMEN

compute cluster from delivering the needed computing power. The fall back plan of using the

Plymouth University high performance computing cluster was adopted and the pairwise

cross correlation and clustering algorithms were implemented using this hardware.

6.4.3 Key research outputs

In this project a framework for data processing and analysis has been developed

modelled on the VPL concept. This framework will allows a developer to provide a library of

pre-coded algorithms which are represented as graphical nodes. Each node is deployable to

a desktop environment and can be linked with other nodes to form a visual data processing

pipeline. The pipeline will follow the dataflow execution model with each algorithm executing

concurrently. The final output is delivered to a visualisation module that acts as the terminus

for the pipeline. The visualisation module is an independently executing program which

applies the principles of information visualisation and allows an interactive exploration of the

processed data. The visualisation may also present options for further processing.

The created VPL, named iPipeline is a general framework into which domain experts

may place a library of analysis algorithms. By exchanging libraries the VPL is customisable

for data analysis in any problem domain. For the purpose of development a library for the

analysis of neuroscience data has been developed. The neuroscience problem addressed

was the discovery of a neural network’s architecture from the analysis of simultaneously

recorded neural spike train data. This problem was selected as it is a computationally

challenging “big data” problem that can be solved efficiently through combining the

disciplines of neuroscience, software engineering and information visualisation.

Chapter 7: Design of iPipeline

Summary
This chapter reviews the design of the iPipeline data processing environment including both
the technical design and the visualisation choices made.

Chapter 7

Designing iPipeline & the neuroscience visual programming

language

“pipeline noun. In computing, a pipeline is a set of data processing elements connected in series,

where the output of one element is the input of the next one.”

Chapter 7: Design of iPipeline

Page | 95

7 Overview – iPipeline
The iPipeline workflow environment provides the framework for the visual data

processing pipeline at the heart of the software implementation. It is designed as two ‘layers’:

1. A ‘thin’ framework layer which handles the creation of the workflow’s directed graph

and its execution.

2. A ‘thick’ problem domain layer that provides:

a. The problem domain specific data model and

b. The problem domain specific algorithms that manipulates and visualises the

data model.

Describing and studying a problem using different “layers of abstraction” is a

common technique in computer science (Floridi & Sanders, 2004).

Figure 7-1 provides an overview of iPipeline’s layered structure and its individual

components. This is followed by the definition of several key terms that will be used

throughout this chapter.

Figure 7-1: Structure of the iPipeline workflow framework

7.1 Definition of terms

This section provides the exact definition for a number of technical terms that will be

used throughout this chapter.

Chapter 7: Design of iPipeline

Page | 96

Term Definition

Problem domain developer The external third party developer who provides the
implementation of the ‘thick’ problem domain specific layer.

Workflow A directed graph of connected ‘process nodes’ that define a
sequence of processing that usually ends with the creation
of a visualisation.

Workflow Desktop The virtual space in which the user creates the workflow
using process nodes drawn from the toolbox.

Toolbox A floating toolbox visible on the workflow desktop that
contains the problem domain specific processes loaded
from the ‘thick’ framework layer.

Process or process node A process / process node encapsulates an algorithm
allowing its insertion into a workflow. The information
processing cycle can be used to classify a process as a:

1. A data source / input process or
2. A data analysis / manipulation process or
3. A data output / visualisation process

‘Base processes’ representing each of the above steps
have been created and the problem domain developer
should extend these classes to implement a process
algorithm

Process algorithm The algorithm encapsulated inside a process. The
algorithm will implement some part of the information
processing cycle and can be categorised as either:

1. An input algorithm
2. A data processing algorithm
3. An output algorithm

Process glyph The graphic used to represent a process on the workflow
desktop.

Process settings panel A graphical user interface component that permits user
configuration of the problem domain algorithm
encapsulated in a process.

Data model support classes The development of a ‘thick’ problem domain layer is
supported by providing access to a collection of pre-written
classes.

Thin framework layer Collectively refers to all pre-developed iPipeline
components. This layer provides:

1. The ability to visually create a directed graph.
2. The base definition for a ‘process’ in the directed

graph.
3. The data model base process classes.
4. The parallel execution engine that executes the

user defined workflow to produce a visualisation.

Thick problem domain specific
framework layer (or the thick
framework layer)

Created by the problem domain developer this layer has
two primary tasks:

1. provide a set of process nodes specific to the field
being studied

2. provide a ‘thread safe’ data model to represent
the data being processed

ProcLib.jar The name for the Java jar library developed by the problem
domain developer. It contains all classes needed to
implement the “Thick problem domain specific framework
layer”. Changing to another problem domain simply
requires swapping the ProcLib.jar file.

Chapter 7: Design of iPipeline

Page | 97

Table 7-1: Definition of terms used in this chapter

7.2 The ‘thin’ framework layer

This layer is the core of the iPipeline implementation. It provides all of the

functionality needed to make visual programing using a pipeline of processes a

reality. The four key components of this layer can be seen in Figure 7-1 and each

component will be reviewed in turn.

7.2.1 Workflow Desktop

The user interacts with the application via the workflow desktop component. It is here

that the user creates their workflows using the domain specific processes provided by the

problem domain developer. Figure 7-2 illustrates the desktop with its key features identified.

Figure 7-2: iPipeline’s workflow desktop component

 The desktop can expand infinitely in any direction to accommodate any sized

workflow or any number of workflows. The single most important part of the workflow

desktop is the toolbox. It is through the toolbox that the user is provided with access

to the process nodes from which they will build a workflow. The contents of the

toolbox will change depending on the specific problem domain being studied. It is

through the toolbox that iPipeline’s ‘thin’ framework layer connects to the ‘thick’

framework layer. The content of the toolbox is defined in the ‘thick’ framework layer.

The toolbox is divided into three sections mirroring the three phases of the

information processing cycle (see Chapter 5). The toolbox divisions, their mapping to

the information processing cycle and a description of each division is given in

Table 7-2.

Chapter 7: Design of iPipeline

Page | 98

Toolbox division Information processing
cycle phase

Description

Data Source Input Phase Processes encapsulating
algorithms that provide
data for processing.

Data Manipulation Processing Phase Processes encapsulating
algorithms that manipulate
the data in the pipeline.

Data Visualisation Output Phase Processes encapsulating
algorithms that visualise
the data in the pipeline.

Table 7-2: Divisions of the toolbox and their relationship to the information processing cycle

 To construct a workflow the user places nodes from the toolbox onto the desktop

surface and connects them together. At a minimum a workflow must be composed of one

data source process and one data visualisation process. Such a workflow will simply create

a visualisation that displays the data loaded into the pipeline. More commonly one (or more)

data manipulation processes will be inserted between the data source and data visualisation

processes. The definition of a valid workflow can therefore be given as:

1. A workflow that contains a route through the workflow’s directed graph which starts

at a data source

process and ends at a

data visualisation

process and

2. Optionally the route

may contain any

number of data

manipulation

processes.

3. All processes must

have correctly

configured settings

panels.

A valid workflow must

have at least one (1) route

through its directed graph that

meets the conditions above

but may have more.

Figure 7-2 has two (2) such

routes. Figure 7-2 shows both

the minimal case (route 1)

where a data source and data

visualisation process is

directly connected and the

optional case where a data

manipulation process has

been inserted (route 2). Each route can be executed to produce a set of data that is

Figure 7-3: Workflow to merge five data files into a single data
source.

Chapter 7: Design of iPipeline

Page | 99

delivered to the data visualisation process at the end of the route. Since Figure 7-2 has two

routes through its directed graph it will deliver two sets of data to the iRaster visualisation at

the end of the workflow. These will be:

1. The raw data read from a data file by the input file process at the start of the workflow

(route 1 in Figure 7-2).

2. A sorted set of data created by the optional data manipulation process (route 2 in

Figure 7-2).

The power of visual programming becomes apparent when the workflow becomes

more complex. Figure 7-2 dealt with a simple case where a single file of data is loaded into

the pipeline. Figure 7-3 extends the workflow to load five (5) files of data. This situation might

arise where a researcher wishes to combine simultaneous recordings from five different

sensors into a single set of data. The problem domain developer has provided a data

manipulation process to merge multiple datasets into a single dataset. Modifying the

workflow only takes

moments. A classical

computer program would

require changes to the

source code and re-

compilation to achieve the

same result. This can realise

considerable time savings

as operations can be

inserted into (or removed

from) the workflow without

having to re-code or

recompile the application.

The processes encapsulate

computer code that is

“written once; re-used

anywhere”.

Figure 7-4 further

extends the Figure 7-3

example by introducing a

new process – the export to

file process. The workflow in

Figure 7-3 loads merges and

sorts five sets of data. This

processing takes time and it

might be useful to create

and permanently store a

single file with this

processing already

completed. Figure 7-4

shows such a workflow that

produces two files. The first

Figure 7-4: Workflow to merge five datasets. Two new files are
created, the first of raw data and the second after sorting the raw
data.

Chapter 7: Design of iPipeline

Page | 100

file stores the result of combining five sets of raw data. The second file stores the same data

after it has been sorted. The

benefits to the researcher can

be summarised as:

1. The single file of raw

data is easier to use

and distribute than

five files of raw data.

2. The result of

merging the raw

data files and sorting

the result is

preserved allowing

these steps to be

eliminated in future.

3. The workflow is

naturally paralysable.

Writing the merged

raw data file to disk

can occur at the

same time as sorting

the raw data as they

appear on different

routes through the

workflow.

The workflow desktop

provides a flexible visualisation

of the “program” that the user is

creating. At the same time it

provides the ability to rapidly

reconfigure that program and

preserve the results.

7.2.2 Process base classes

The ‘thin’ framework

layer must interact with the

“domain specific visual

programming language” built by

the problem domain developer

(The ‘thick’ layer). However the

‘thin’ framework has no

knowledge either of the problem

domain or the specific

algorithms that have been

implemented by the problem

domain developer. Nevertheless this gap must be bridged if any “visual program” is to be

created and executed. The process base classes (and the IProcess interface) provide the

Figure 7-5: Thin layer base process class implementation
structure.

Chapter 7: Design of iPipeline

Page | 101

means to bridge the gap (see Figure 7-5). The bridge is built on the idea that whatever

workflow may have been created by the user it must take the form of a directed graph. As

such a guarantee exists that the workflow takes the form of a collection of ‘nodes’ linked

together with parent / child relationships. The ‘thin’ framework layer is therefore aware only

of ‘nodes’ and ‘links’:

 Nodes represent ‘something that is done to data’.

 Links define the order in which the nodes ‘do something to the data’ (a parent

node must finish ‘doing its thing to the data’ before a child node starts to ‘do its

thing’).

The above statements both contain an abstract “something”. That ‘something’ is an

algorithm that manipulates data. The “BaseProcess” class can therefore be considered an

abstraction that represents an algorithm created by the problem domain developer. Hence

any ‘BaseProcess’ may be a ‘node’ in the workflows directed graph. To make any algorithm

interoperate with iPipeline it must first be “wrapped” in a “BaseProcess” class. Wrapper

classes are a form of software design pattern formally identified by the ‘gang of four’ in their

seminal book on software design patterns (Gamma et al., 1994). This class exposes a

common interface that iPipeline uses to interact with the encapsulated algorithm. Within the

iPipeline code base this interface is called ‘IProcess’ the UML diagram in Figure 7-5 shows

the IProcess interface and its implementing classes.

The IProcess interface is itself derived from the Java languages Runnable interface.

This means that each process is itself ‘runnable’ as an independent entity – essentially a

mini-program. The runnable interface has however been expanded to add the functionality

needed by a ‘node’ in a directed graph. The most basic function is to encapsulate the

problem domain developer’s algorithm (whatever it might be). The process(Object[]) :

boolean method provides this facility. The problem domain developer will extend the base

class (which implements IProcess) and overrides this method to implement their algorithm.

The method is invoked by the parallel execution engine during execution of the workflow.

Every node in the workflow’s directed graph must accept the result from previous

parent nodes and produce a result of its own. The IProcess interface provides three methods

to manage the production of results:

 getResult() : IProcessingResult

 setProcessingResult (IProcessingResult) : boolean

 clearResult() : void

These methods are used by the parallel execution engine to control the flow of

processing results through the workflow. The interface IProcessingResult is the abstraction

representing the structure produced by iPipelines structure based dataflow model (Davis &

Keller, 1982; Dennis & Robinet, 1974; Keller & Yen, 1981)(see Chapter 5). This abstraction

will be discussed further in the next section.

The final three methods of the IProcess interface reflect the information processing

cycle. As discussed in chapter 5 this cycle is composed of three primary steps:

1. Input

2. Processing and

Chapter 7: Design of iPipeline

Page | 102

3. Output.

A ‘base’ class is required for each of these steps. These three base classes will form

the link between the ‘thin’ framework layer that manages the workflow and the ‘thick’

framework layer which defines the algorithms to be executed. The BaseProcess class seen

in Figure 7-5 provides an implementation of the IProcess interface sufficient to represent a

‘general processing node’ (step 2 of the information processing cycle). Step 1 and step 3 are

essentially more specialised versions of the general processing node. Specialised sub-

classes are provided to implement these steps. Step 1 is represented by the

BaseInitialProcess class while step 3 is represented by the BaseVisualisationProcess class.

Taken together the three ‘base’ classes provide the problem domain developer with a

means to wrap their algorithms into a ‘thin’ framework class that:

1. Can be represented as a node in a workflow’s directed graph and

2. Be executed by the thin frameworks parallel execution engine.

 In addition to the software implementation of a process each process also needs to

be represented visually on the workflow desktop. The representation is known as the

process glyph. The user will connect these process glyphs together to create the workflow.

Figure 7-6 shows the visual elements of a process glyph.

Figure 7-6: The visual representation (glyph) of a process

 The process glyph has two primary tasks to perform. Firstly to identify the algorithm

encapsulated by the process and secondly to define which other processes are allowed to

connect to this process. The majority of the process glyph is given over to describing the

algorithm encapsulated by the process. The BaseProcess class and its child classes allow

both a textual description and an image to be associated with the encapsulated algorithm. At

the heart of the glyph a button prominently displays the image with the textual description

above it. The button provides access to the process settings panel created by the problem

domain developer.

The remainder of the process glyph is an input and an output connection points. As

described in chapter five iPipeline uses a structure based dataflow model. In this model each

process receives input and generates output by receiving and transmitting ‘tokens’ that

encapsulate data. The input / output connection points define which processes will deliver

dataflow tokens for processing and where the token created by the process will be sent. The

BaseProcess class has both an input and an output connection point. Hence the class both

accepts dataflow tokens as input and produces them as output. Its child classes

Chapter 7: Design of iPipeline

Page | 103

BaseInitialProcess and BaseVisualisationProcess (see Figure 7-5) do not have both

connection points as they represent the start or end of a workflow. The BaseInitialProcess

has no input connection point because it represents the start of the workflow and therefore

there can be no earlier process that provides input dataflow tokens. Equally the

BaseVisualisationProcess has no output connection point since it represents the end of a

dataflow.

In addition to the controlling processes connectivity through their presence or

absence each connection point carries a series of three glyphs that define the types of

process that can connect to that point. These glyphs are inspired by the UK road traffic sign

system and reflect the information processing cycle and are presented in Table 7-3 below.

Process Category Visual encoding
used

UK Road Traffic
sign

Visual road traffic
encoding

Input Process

Order / Command

Data Manipulation
Process

Warning / Danger

Output Visualisation
Process

Information

Table 7-3: Visual encoding of process type and its similarity to UK road signs

 As Table 7-3 shows the stages of the information processing cycle are connected to

a geometric shape. Input processes (stage one) are related to a circle / disk glyph. Circular

signs on the road system encode commands and usually instruct a driver to start doing

something. Input processes are associated with this symbol as they represent the start of a

workflow. Very often such processes will draw data from a hard disk. The second stage of

the information processing cycle (data manipulation / processing) is represented by a

triangle. The road sign analogue is a warning / danger sign. The intent is to prompt the user

to ensure that they are selecting the correct data manipulation process + algorithm to

generate the data visualisation they need. The final stage (output) is represented by a

rectangle intended to represent a computer monitor or sheet of paper. The road sign

analogue is a traffic sign that presents information to the driver. This reflects that the

production of information is the end goal of the information processing cycle and that the

visualisation processes are the end of an iPipeline workflow. To indicate the types of process

that may connect to a connection point the glyph is either filled with a solid colour

(connection allowed) or unfilled (connection dis-allowed).

7.2.3 Data model support classes

The ‘thin’ framework layer is primarily concerned with the implementation and

execution of iPipeline’s workflow. However it does need to provide a means to build the

‘thick’ problem domain specific framework layer “on top of itself”. The data model support

classes are intended to provide a group of software entities that support the development of

the ‘thick’ problem domain layer. The ‘base process classes’ discussed in the previous

section could fit this definition but are of such key importance they warranted a separate

discussion. Figure 7-7 expands upon Figure 7-5 to show the data model support classes /

interfaces.

Chapter 7: Design of iPipeline

Page | 104

Figure 7-7: Core iPipeline interfaces and their relationships

 The data model support classes divide into four “sub-systems” to support the

operation of the thin framework layer. These sub-systems may also be used by developers

Chapter 7: Design of iPipeline

Page | 105

implementing the “thick” problem domain layer. Table 7-4 summarises the provided sub-

systems, their purpose and the classes / interfaces that provide their implementation.

Sub-System Name Classes / Interfaces Description

Dataflow token IProcessingResult The interface to be
implemented by the class
that will serve as the
dataflow token (see Chapter
5)

Settings Panel ISettingsPanel Interface to be implemented
by a graphical component
that allows customisation of
problem domain algorithms

Parameter Management IValuePair<E,F>
IParameter<E>
IParameterManager

Provides a generic system
for transferring any data
value without knowing its
data type

Observer Pattern IObserver
ISubject
IConnectable

Interfaces used to implement
the observer software design
pattern

Table 7-4: Thin framework layers supporting sub-systems

7.2.3.1 The dataflow token sub-system

As chapter 5 explained iPipeline employs a structure based dataflow model that

generates a single output token from each workflow process. The token needs to ‘flow’

through the workflows directed graph. The ‘thin’ framework layer is responsible for ensuring

that this happens. At the same time the ‘thin’ layer knows nothing about the token’s

implementation. The token is highly specific the problem domain and is therefore

implemented in the ‘thick’ problem domain layer. To solve this problem a software interface

has been created in the ‘thin’ framework layer. This interface (IProcessingResult) must be

implemented in the ‘thick’ problem domain layer. This interface ensures that the ‘thin’

framework layer can transfer the dataflow token between processes of the workflows

directed graph.

7.2.3.2 The settings panel sub-system

While individual processes within a workflow have a consistent visual representation

it is possible – even likely – that some of the problem domain algorithms encapsulated within

them will require user defined inputs. In neuroscience for example many algorithms require

the researcher to define a time window (the cross-correlation algorithm would be one case).

The user defined inputs for a workflow process are dependent on the algorithm

encapsulated by the process. The ‘thin’ framework layer can, therefore, have no knowledge

of these (they are defined in the ‘thick’ problem domain layer). Despite this the ‘thin’

framework must still store and manage such user input since it is part of defining a workflow.

This problem has been solved through the creation of the ISettingsPanel interface and the

parameter manager sub-system.

The ISettingsPanel interface provides the ‘thin’ framework layer with the ability to

attach a Java JPanel to any processes glyph. Accessed via the process glyph button (see

Figure 7-6) this panel allows algorithm specific values to be supplied. The problem domain

developer is free to develop any panel they need for their algorithm simply by implementing

this interface. However the ‘thin’ framework layer needs to make the user inputted values

Chapter 7: Design of iPipeline

Page | 106

available to an algorithm in a consistent manner. This has to be achieved without the thin

layer placing any restrictions on the user input and without knowledge of the number or type

of values to be passed to the algorithm. The solution adopted models values as a name /

value pair where the name is always a string and the value is a Java generic datatype that

can become any type of value. This structure is known as a “Parameter” and is highly suited

to inclusion in a list data structure. The Parameter Manager sub-system discussed in the

next section manages an array list structure of these parameters. The ISettingsPanel

provides interface methods to access “parameters” created by the JPanel that implements it.

The BaseProcess uses these methods to populate a “parameter manager” object which the

problem domain developer can access from the algorithm they are encapsulating into a

process. This provides the problem domain developer the freedom to create and store as

many “parameters” as they wish when creating the settings panel for a process. At the same

time access is provided to these parameters via a software interface. This ensures that the

developer’s parameters (whatever they might be) are delivered to the algorithm

encapsulated in the process being created.

Figure 7-8: Settings panel for burst sort algorithm

 Figure 7-8 provides an example of a settings panel for sorting neural spike train data

based on when the spike train shows the first ‘burst’ of spiking activity. The panel is

completely configurable by the problem domain process creator in terms of algorithm

specific parameters. However it does require the presence of the OK and Cancel buttons as

these store, or remove, the parameters from the processes ParameterManager software

object. In addition the problem domain developer should name the dataset with a descriptive

name which will be used to identify the dataset in any visualisation. The final design of a

settings panel will contain two elements. The OK / Cancel and dataset name will always be

present and forms the link between iPipelines ‘thin’ framework layer and the ‘thick’ problem

domain layers. The remaining controls, values and the parameters generated from them are

specific to the encapsulated algorithm and form part of the ‘thick’ problem domain framework

layer.

 A final issue faced when linking the ‘thin’ framework layer to the algorithm specific

settings panel is the validation of the parameters. The ISettingsPanel provides a method to

validate the parameters. This of course must be coded by the problem domain developer but

the true / false Boolean result indicates the validity of the algorithm’s parameters to the ‘thin’

framework layer. A configuration that fails to pass this validation method cannot be part of a

valid route through the workflow’s directed graph. The ‘thin’ framework layer will also indicate

this failure to the user visually on the workflow desktop. Figure 7-9 shows an input process

which should load data from a file but which has not yet been pointed at the required data

file.

Chapter 7: Design of iPipeline

Page | 107

Figure 7-9: Visual encoding for incomplete parameter configuration

 For incorrectly configured settings panels the ‘thin’ framework overlays an animated

icon on top of the process glyph. Visually this icon is a set of rotating gears that

indicate the need for further configuration of the process settings panel.

7.2.3.3 The parameter management sub-system

The primary problem faced by the ‘thin’ framework layer is to find a way to use,

transmit and manipulate data without knowing in advance what that data will be. The

parameter management sub-system is the ‘thin’ framework layers solution to this problem.

Figure 7-10 shows the system’s structure via a UML class diagram.

Chapter 7: Design of iPipeline

Page | 108

Figure 7-10: The parameter management sub-system structure

 The core functionality of the system is described by two software interfaces. The

IParameter interface represents the abstract concept of a name & value pair while the

IParameterManager interface represents a collection of IParameter objects. For each of

these two interfaces a concrete implementation is provided. These implementations are then

used throughout the ‘thin’ framework layer to manage data that cannot be predefined.

Examples of such data would include; the problem domain data model, the definition of the

dataflow token and delivering algorithm specific data in a generic way. This sub-system

therefore see’s use both within the ‘thin’ framework layer to manage data and also in the

‘thick’ problem domain layer.

 The core of the system is a name-value pair where a string holds a name associated

with a ‘value’. In this case the ‘value’ is any object or datatype. Java generics are used to

allow a parameter to accept any ‘value’. The provided concrete implementation class

examines the data type assigned on creation of a new Parameter and while it will allow the

Chapter 7: Design of iPipeline

Page | 109

value to change it will now allow a change in the values type after construction. The name

component of the name-value pair is always a string. The interface IParameter<E> defines

these rules while the Parameter<E> concrete class provides the implementation (see

Figure 7-10).

 The IParameterManager interface and its concrete implementation

ParameterManager provide a means to store and pass parameter objects between software

entities. In the ‘thin’ layer knowledge of the meaning of the parameters is not required. Its

primary application within the ‘thin’ layer is to exchange values between a process and an

associated algorithm specific settings panel. Every process implementation encapsulates a

ParameterManager object which is exposed to the attached settings panel. Any settings

values can therefore be stored as name-value pairs and accessed by the processes

encapsulated algorithm.

 The parameter / parameter manager system is also the primary tool for building the

dataflow token that will be passed through the workflows directed graph. Its generic data

allows structures to be built where the ‘value’ component is itself either another parameter or

a list of parameters. The ‘thin’ layer represents the dataflow token via the IProcessingResult

interface and this interface gives access to the dataflow token’s data through parameters

(see Figure 7-7). In this way the ‘thin’ framework layer can manage the dataflow token

without knowledge of its contents or structure

7.2.4 Parallel execution engine

The final component of the ‘thin’ framework layer the parallel execution engine is

charged with actually executing the algorithms encapsulated in the workflow processes.

Execution begins with the identification of all valid workflows currently defined on the

workflow desktop. For each valid workflow execution begins with an input process that

creates a dataflow token and places it on its ‘output arc(s)’. Whenever a child process

detects that a dataflow token is available on every input arc then execution of that child

process. Execution terminates when a visualisation process passes the final dataflow token

to a visualisation. Each workflow process is a Java Runnable (see Figure 7-5) and can

therefore be executed on an independent thread. The Java concurrency framework (Goetz

et al., 2006; Lea, 2004) is leveraged to create a pool of worker threads that execute each

process once all dataflow tokens from parent processes have been created. This approach

exploits the natural parallelism of a directed graph with processes executing as soon as data

becomes available to them. It is also the source of the single restriction placed on the

problem domain developer. Specifically that the data model they create must be thread safe.

The data model will implement (or be wrapped by a class that implements) the

IProcessingResult interface. Since the dataflow token will be propagated through the

directed graph and each process is expected to be running on a different thread the

underlying implementation must be thread safe.

Chapter 8: Neuroscience Problem Domain Layer

Summary
This chapter examines the implementation of the iPipeline problem domain layer for analysis
of neural spike trains. It serves to provide the implementation on which the neuroscience
visualisations are built and as a model for implementing this layer both in neuroscience and
for other fields.

Chapter 8

Neuroscience Problem Domain Layer

 “Problem Domain Analysis is the process of creating a model describing the problem to be solved”.

Chapter 8: Neuroscience Problem Domain Layer

Page | 111

8 Creating a data model for neuroscience spike train recordings
Before iPipeline can be used to analyse and deliver data to interactive visualisations an

implementation of the problem domain layer must be created. At a minimum this

implementation must provide:

1. A thread safe data model representing the multi-dimensional spike train recordings to

be analysed.

2. A set of analysis processes (algorithms) that can be combined to create a dataflow

directed graph.

3. A set of interactive visualisations that the researcher may use to further explore the

data.

This chapter considers points (1) and (2) while the interactive visualisations

provided will be described in their own chapters.

8.1 Designing the data model

The creation of the spike train data model required a number of factors to be taken into

account. These can be summarised as:

1. Neural spike train recordings constitute ‘big data’

2. The data model should be thread safe

3. The use of memory should be minimised

8.1.1 Managing big data in the data model

The phrase “big data” has become something of a buzz word in information

technology and a clear definition can be difficult (Snijders, Matzat & Reips, 2012). The two

most commonly agreed upon qualities of big data is its physical size and complexity.

Generally to be big data one or both of these must “Big Data usually includes data sets with

sizes beyond the ability of commonly used software tools to capture, curate, manage, and

process the data within a tolerable elapsed time”. The various types and definitions of big

data were reviewed in chapter 3 which examined why spike train recordings form a “big data”

set. This section considers how the “big data” can be managed in a practical implementation

of a spike train data model.

In designing the data model it is important to consider:

1. Data Storage

2. Data Searching

3. Interactive Data Visualisation

These areas are identified from considering the use to which the data model will be

put. Simultaneously recorded spike trains generate huge amounts of data at even modest

neuron firing rates. For example a 1000 neuron data set recorded for 30 minutes and

exhibiting a 10Hz firing frequency rate will generate 18 million data points (1000 * 30 * 60 *

10). Given that a primary goal of the VISA project is to allow analysis of more data using a

typical researcher desktop or laptop system an efficient storage model must be developed.

This already large number was further complicated by the storage model in use in earlier

versions of the VISA software.

Chapter 8: Neuroscience Problem Domain Layer

Page | 112

8.1.1.1 Flaws in the original VISA data model

Previous versions of VISA used a Boolean array to represent whether a neuron had

fired. Typically a true / false entry would be made for every millisecond describing whether a

spike event had been detected. This would require some 1,800,000,000 individual data

points for 1000 neurons recorded for 30 minutes. The implementing language is Java which

normally uses 1 byte to represent a Boolean value. Simply holding this data structure in

memory will require 1.67638 Gigabytes of storage. Such a structure, while suitable for 100’s

of neurons rapidly grows as the number of recordings and their length grows. As such it

cannot be said to scale to the number of neurons that modern hardware can record or is

expected to record in the near future. The original Boolean array data structure suffers from

two failings that lead to considerable inefficiency:

1. It does not encode in a single entry all relevant information about a spiking event

2. It stores irrelevant data that produced considerable memory inefficiencies.

8.1.1.2 Encoding and storing relevant data

A spike event looked at in isolation, is an all or nothing event that has only one

relevant piece of data associated with it – the time at which it occurs (Dayan & Abbott, 2005;

Gerstner & Kistler, 2002). A neural spike train is a time ordered sequence of spikes recorded

from the same neuron. The original VISA data model encoded the time a spike occurs into a

sequence (array) of Boolean values. This means that the time a spike occurs is represented

by its position in the array. The time between spike events is expressed as the number of

array elements between two true Boolean values. To extend the analogy a single neuron

firing with a rate of 10Hz would be encoded as an array of 1000 elements where ten have a

true value and 990 are false. Assuming a constant firing rate for the neuron every 100th

element of the Boolean array is a true value. In terms of memory this data structure is

extremely inefficient as some 99% of the stored values are the same, a Boolean false value.

A solution to this problem is already known, the described data structure could be

implemented far more efficiently using a sparse array.

A sparse array eliminates the repetitive data and stores only the points of interest. In

this case the ‘interesting data’ is the times at which spike events occur. Traditionally

implemented as a linked list this approach discards the Boolean in favour of recording the

time of the spike event. Each array entry becomes a single time value and a pointer to the

location in memory of the next spike event in the spike train. To be meaningful a time value

requires two components, a numeric value and the units in which the numeric value is stated.

In the final data model this implementation is followed with a double value denoting spike

time and an integer enumeration for the timescale. In addition a third integer value

representing the number of spikes occurring at this time was added for use when groups of

spike trains are created. In the Java language the memory requirements for this data

structure becomes 16 bytes being one 8 byte double value and two 4 byte integer values.

Using this data structure the example of one neuron recorded for 1000ms and firing at a rate

of 10Hz requires 160 bytes to store. Java fails to define the size in memory of a Boolean but

most implementations of the Java Virtual Machine (JVM) use one byte per Boolean value.

Assuming this the memory saving is 1000 / 160 or 6.25 times smaller when a sparse array is

used. Returning to the original example of a 1000 neuron data set recorded for 30 minutes

and exhibiting a 10Hz firing frequency rate the storage requirement becomes 0.26822

Gigabytes or 274.6582 Megabytes. The adoption of the sparse array model minimises

memory demands and adapts itself to the specific number of neurons and firing rate.

Chapter 8: Neuroscience Problem Domain Layer

Page | 113

Theoretically the data for a large number of relatively inactive neurons could be stored in

less memory than a small number of highly active neurons. The important point is that the

model adapts its memory use to the data being stored unlike the original VISA model.

8.1.1.3 Searching the data model & interactive displays

The VISA project ultimately aims to deliver the processed data to interactive

visualisations that a researcher may use to explore the dataset. In designing the data model

it is important to remember the use to which it will be put. From chapter two Shneiderman

identifies seven “Task-domain information actions” that visualisation users may perform. In

summary these tasks are (Shneiderman, 1996):

viii. Overview Gain an overview of the entire data collection

ix. Zoom Zoom in on items of interest

x. Filter Filter out uninteresting items

xi. Details-on-Demand Select an item or group and get details when needed

xii. Relate: View the relationships between items

xiii. History Keep a history of actions to support undo, replay and

progressive refinement.

xiv. Extract Allow extraction of sub-collections and of query parameters.

It is appropriate then to design a data model that supports these operations as much

as possible. The iPipeline framework leaves the definition of the data model so completely

open specifically to allow its design to be appropriate for the data held. So the developer

must ask what are the most common operations performed on this data and how can they

be supported? What constraints exist for the data model? These two questions can both be

answered by looking at how the data will used. Of Shneiderman’s seven task domain actions

only (vi) seems completely independent of the data models implementation. For the others a

time efficient means to sort and extract sub-sets of the data in the model is required. Why

time efficient? Time efficiency is necessitated since this data model is used to generate

interactive displays. In such a display the visualisation developer aims to “promote an

experience of being in direct contact with the data” (Ware, 2012). (Rutkowski, 1982) calls

this the Principle of Transparency which when successfully applied allows the user “to apply

intellect directly to the task; the tool itself seems to disappear”. One of the key requirements

to produce this effect is the tools responsiveness. Long delays in responding to user

interactions violate the principle of transparency. As a general rule of thumb Shneiderman

recommends that the visual response to an interaction should be provided within 1/10th of a

second of the interaction (Shneiderman & Plaisant, 1998). The user’s interaction will

inevitably require the display to perform some transformation of the data. When faced with

‘big data’ ensuring the systems responsiveness can be challenging. Indeed the very

definition of big data used in section 8.1.1 required a data set that was difficult to curate and

manage in a tolerable time period. Since the problem domain involves big data the

developer must consider not only how data points are described and stored (curation) but

also how they can be managed in a tolerable time period.

The question that must be asked by the data model developer is: How can the model

manage a large number of data points (millions) and still be responsive? The key

requirements to answer this can be drawn from Shneiderman’s task domain actions:

1. The ability to create sub-sets of data (ii, iii, iv, v and vii)

Chapter 8: Neuroscience Problem Domain Layer

Page | 114

2. The ability to rapidly search and organise large amounts of data (i, ii, iii, v and vii)

Meeting the first requirement will greatly reduce the amount of data that must

undergo transformation when the user interacts with the data. Meeting the second will allow

transformations to occur at high speed. The most fundamental structure in the neuroscience

data is the spike event however there is a higher level structure. The definition given for a

spike train in section 8.1.1.2 was:

A neural spike train is a time ordered sequence of spikes

The previous VISA data model translated this to mean an array of values but the

question can be asked, is there a more efficient data structure than an array? In this case

the efficiency being sought is the ability to rapidly search, sort and create sub-sets of the

data. Much research has historically focused on rapid searching and sorting of data sets and

has identified numerous data structures that perform these tasks (sets, stacks, queues, hash

maps, arrays and lists to name a few). The simple array is the least efficient structure in

terms of searching, sorting and extracting sub-sets. The next implementation step for the

problem domain layers data model was to select a more suitable structure to manage the

spike-train data. After reviewing the various options availiable the Java TreeSet which

provides an implementation of a red-black binary search tree was selected.

Ultimately the Java TreeSet class was selected as the storage mechanism for spike

train data points. This class provides an implementation of a red-black binary search tree.

The next section overviews how binary trees and specifically red-black binary trees work.

8.1.2 The theory of binary trees and self-balancing red-black binary trees

8.1.2.1 Definition

A binary search tree has the following properties (Hibbard, 1962):

1. There is one and only one node, called the root, such that for any node p there exists

one and only on path which begins with the root and ends with p.

2. For each node p the number of links beginning with p is either two or zero. If the

number is two, then p is said to be a proper node. If the number is zero then p is said

to be a blank node

3. The set of links is partitioned into two sets L and R. Each link belonging to L is called

a left link. Each link belonging to R is called a right link.

4. For each proper node p, there is exactly one left link beginning with p and exactly

one right link beginning with p.

Each node of the binary search tree is associated with a value, usually termed its key, which

controls the ordering of the node within the tree so that:

1. The left sub-tree of a node contains only nodes with keys less than the node’s key.

2. The right sub-tree of a node contains only nodes with keys greater than the node’s

key.

3. The left and right sub-tree also form a binary search tree.

4. There must be no duplicate nodes.

5. A unique path exists from the root node to every other node.

Chapter 8: Neuroscience Problem Domain Layer

Page | 115

Performing operations, like search, insert and delete on a binary search tree requires

comparisons between the nodes keys. These comparisons are made by a comparator which

defines the ordering of any two keys. In VISA3 the implemented neuroscience data models

fundamental unit of data – a neuron spike event – implements the Java Comparable

interface to provide a natural ordering based on the time a spike occurs. This reflects the

definition of a neural spike train as a time ordered sequence of spike events. Figure 8-1

illustrates a binary search tree for a neuron with a regular firing rate of 10Hz. Time values

are recorded in milliseconds with a spike event every 100 milliseconds.

Figure 8-1: A binary search tree for a regularly firing (10Hz) neuron recorded for one second.

From Figure 8-1 the key features of a binary search tree can be derived. The root

node is the spike event at 500ms. Leaf nodes have no child nodes associated with them and

are nodes 100, 400, 600 and 1000. Proper nodes have exactly one left and one right child

node being nodes 300, 500 and 800. The structure is in sorted order with earlier spike

events to the left and later events to the right. The tree may be broken at any node and the

resulting structure is itself a binary search tree. For example if the 500 to 800 link is broken

then 800 becomes the root node for a new binary search tree. It is this property that makes

the extraction of sub sets highly efficient. Duplication of data is not possible, as two nodes

with the same value cannot exist in the same binary search tree. In addition it is normal to

speak of binary search trees having a size and a depth. As with the traditional array structure

the size is the number of elements, 10 in Figure 8-1. The depth is given by the number of

levels, occupied by nodes of the tree after the root. Figure 8-1 is a depth three (3) binary

search tree. The depth of the tree is critical to the performance of the search, insert and

delete operations which perform faster with lower depth value trees. This introduces the

concept of the ‘balanced binary search tree’.

8.1.2.2 Balanced binary search trees

Figure 8-1 serves as an example of a ‘balanced binary search tree’. A tree is said to

be balanced when its nodes are organised to comply with the rules of a binary search tree

and the depth of the tree is minimised. This property is not implicit in a binary search tree; it

is possible to construct a tree with the same data which is not balanced. In Figure 8-2 this

has been done for the spike train used in Figure 8-1. Figure 8-2 shows the worst case

scenario where the individual spike events have been added to the tree in a time sorted

order. The result is still a binary search tree as all the rules outlined in section 8.1.2.1 still

Chapter 8: Neuroscience Problem Domain Layer

Page | 116

hold true but the depth of the tree has grown to nine (9). Operations on this unbalanced

binary search tree are considerably less efficient. For example the Figure 8-1 search tree

could locate an item with no more than four comparisons between the nodes key and the

requested key (worst case). The Figure 8-2 search tree will, in the worst case, require ten

comparisons when searching for the spike event at 1000 milliseconds.

Figure 8-2: An unbalanced binary search tree

It would be very unusual for modern recording equipment not to store spike train

recordings as a sorted time sequential list of spike events (i.e. a spike train). As Figure 8-2

illustrates building a binary search tree by adding sorted data to the structure inefficient.

Indeed the resulting data structure is functionally equivalent to a linked list and would lose all

of the benefits associated with binary search trees. Nevertheless the input data for the data

model will almost certainly be stored in exactly this sorted form. What is required then is a

means to accept sorted / ordered data but generate a balanced binary tree structure. Once

again the storage method for the neural data needs to adapt to the data received. Simply put

a binary search tree is required that minimises its depth regardless of the order in which data

is added or removed. This is the definition of a self-balancing binary search tree (Knuth,

1998). Fortunately in the case of a binary search tree Rudolf Bayer proposed a solution to

this problem in the form of the Red-Black tree in 1972.

8.1.2.3 The Red-Black self-balancing binary search tree

To create a Red-Black binary search tree the requirements of section 8.1.2.1 are

expanded to impose the following additional constraints (Cormen et al., 2009):

1. Each node of the tree is assigned a colour – either Red or Black.

2. The tree’s root node is always black.

3. All leaves are the same colour as the root node (Black).

4. Every red node MUST have two black child nodes.

5. Every path from a given node to any of its descendent leaves contains the same

number of black nodes.

Chapter 8: Neuroscience Problem Domain Layer

Page | 117

The impact of these additional constraints is best illustrated by example. Therefore

Figure 8-1 has been re-stated as a red-black binary tree in Figure 8-3.

Figure 8-3: A Red-Black binary search tree for a regularly firing (10Hz) neuron recorded for one second

The additional constraints introduced to create the Red-Black tree enforce a new

property. The length of the path from the root to the furthest leaf is not more than twice the

length of the path to the leaf nearest to the root. So long as this property is maintained the

resulting tree is at all times roughly height balanced. This property can be stated

mathematically as; A Red-Black tree with 𝑛 internal nodes has a height no greater than

2 log(𝑛 + 1).

Any modification of the tree has the potential to violate one or more of the additional

constraints that create the red-black tree. Therefore the insert and delete operations may

require the tree to re-balance. The creation / extraction of sub sets could only violate

additional constraint 2 in which case the correction is trivial as the sub-tree nodes are simply

re-coloured. Hence it is true to say that any sub-tree of a red-black tree is itself expressible

as a red-black tree. Structural modifications are more complicated but the constraints of a

red-black tree can always be restored using one or more rotations. A rotation is defined as:

“a local operation in a search tree that preserves the binary-search-tree property”. There are

two types the left or the right rotation. In each case the rotation “pivots” around a link in the

tree changing the connections between nodes and possibly re-colouring them. Figure 8-4

illustrates both the left and right rotations.

Chapter 8: Neuroscience Problem Domain Layer

Page | 118

Figure 8-4: Left / Right rotation in a binary search tree. Source (Cormen et al., 2009).

𝑵𝑩: 𝒕𝒉𝒆 𝒔𝒚𝒎𝒃𝒐𝒍𝒔 𝜶, 𝜷 𝒂𝒏𝒅 𝜸 𝒓𝒆𝒑𝒓𝒆𝒔𝒆𝒏𝒕 𝒂𝒏𝒚 𝒂𝒓𝒃𝒊𝒕𝒂𝒓𝒚 𝒃𝒊𝒏𝒂𝒓𝒚 𝒔𝒆𝒂𝒓𝒄𝒉 𝒕𝒓𝒆𝒆

Performing a rotation may lead to a violation of constraint 2, 4 or 5; in this case either

nodes must be re-coloured or a further rotation one level higher in the tree must be made. In

the worst case scenario this may cascade up the tree to the root node. If a rotation of the

root node changes its colour to red then the nodes of the tree must be re-coloured to restore

constraint 2. Figure 8-5 shows the impact of a left rotate operation on a binary tree structure.

Figure 8-5: A binary tree structure both before and after a left rotation of the marked 𝒙, 𝒚 connection.
Source (Cormen et al., 2009).

Fortunately the Java SDK provides an implementation of Bayer’s Red-Black binary

tree in the form of Java TreeSet class. Therefore the data model implemented for the

problem domain of spike train analysis makes extensive use of this class. All individual spike

events are stored in the data model in a TreeSet which is the foundation of the models spike

train implementation. ISpikeTrain and its concrete implementation function as a Java

Chapter 8: Neuroscience Problem Domain Layer

Page | 119

collection of ISpike objects representing a single recording with the TreeSet as the storage

mechanism for collection objects. The result is a data structure that can manage a large data

quantity while making a guarantee of performance when filtering, zooming and creating sub

sets of the data.

In summary then the key qualities of a red-black binary tree that make it suitable for

spike train data management can be summarised as (Bayer, 1972):

1. The tree provides an efficient search operation that guarantees search times of

𝑂(log2 𝑛) where 𝑛 is the number of elements in the tree.

2. The tree guarantees that the insert, delete and re-ordering operations for data also

occur in 𝑂(log2 𝑛) time.

3. The tree is a self-balancing binary search tree, meaning that even in the face of an

arbitrary number of insertions or deletions it will maintain performance.

4. In order traversal of the tree is possible using an asymptotically optimal algorithm

requiring 𝑂(𝑛) time.

5. A self-balancing binary search tree is one of the most efficient data structures for

incremental sorting, adding items to a list over time while keeping the list sorted at all

times.

Using a data structure that is essentially self-sorting simply mirrors the key property

of a spike train recording, that it is a time ordered sequence of spikes. The self-balancing

binary tree enforces this definition by using the ‘natural ordering’ of the data it contains. In

this case the natural order is the distinguishing feature of a neural spike – the time at which it

occurs. Furthermore Shneiderman’s “Task-domain information actions” are also easily

supported by the data structure. The creation of overviews, for example, often involves

combining detailed information to present a simplified view. With neural spike train data this

would involve creating a single spike train that represents several individual spike trains.

This merging would result in many insertion operations. The self-balancing binary trees

maintain performance regardless of the number of insert or delete operations performed

(unlike traditional binary tree structures). Equally the Zoom, Filter and Details on Demand

operations will require frequent searches, insertions and deletions. All these occur in

𝑂(log2 𝑛) time in a red-black binary tree. Returning to the example of 1000 neurons recorded

for 30 minutes with an average 10Hz firing rate the performance impact of the red-black

binary tree can be assessed. Such a recording generates 18 million data points. The

simplest request that can made of the data set is; did a spike event occur at time 𝑥

milliseconds? In the original VISA data structure this would involve searching 1000 arrays

and determining if the 𝑥 element was true. This same test can be made in a red-black binary

tree in no more than(log2 18,000,000) = 24.10149357 𝑜𝑟 25 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠. This reduction in

workload leads to significant time savings when querying the data model. Finally there is

Shneiderman’s task domain action – Extract (point vii) which requires the extraction of a sub

collection of the data set. The tree structure of the red-black binary tree also supports this

operation. Any red-black binary tree may be ‘broken’ at any node of the tree to create a new

binary tree. The node at which the break occurs becomes a new root node of a new binary

tree which is already a sorted, in-order representation of a sub-set of the original binary tree.

Hence the creation of a data subset is a rapid operation requiring almost no compute time.

This section has demonstrated the importance of storing and managing large data

sets using efficient data structures. In addition Rutkowski’s “principle of transparency” and

Chapter 8: Neuroscience Problem Domain Layer

Page | 120

Shneiderman’s “task-domain information actions” have been used to identify a suitable data

model structure that supports the visualisation and management of ‘big data’.

8.1.3 Supporting Shneiderman’s principle of “Overview first” and “Details on

demand”

The lowest levels of the data model have been focused on providing efficient

management of the ‘big data’ problem. Conversely the higher levels provide a structure that

supports effective visualisation of the large data set. Key to this is Shneiderman’s principle of

providing the user with a high level ‘overview’ of the data sufficient to identify key features.

The user then requests more detailed information on the features that interest them. The

primary aim is to avoid a ‘data deluge’ or ‘cognitive overload’ of the user’s data processing

ability. The general approach is to provide a summary of the data with which the user may

interact to reveal more detailed information. To support the generation of data summaries

the data model provides a means to manage spike trains both as individual recordings and

on the level of groups. The INeuron interface and its concrete implementation provide the

wrapper around individual spike train recordings. This interface is then extended to create

the INeuronGroup interface which manages arbitrary collections and groupings of neuron

spike train recordings. This sets up an ‘is-a’ relationship within the data model that allows

any INeuron object to be seamlessly replaced with an INeuronGroup object. Equally the

opposite is true so that an INeuronGroup can be replaced with a single INeuron spike train

recording. The concrete implementation for the INeuronGroup interface holds references to

each INeuron object placed into the group. From these it constructs a single Red-Black

binary tree that contains all spiking events from all group members. The complication with

this approach is that multiple spike trains may contain spiking events synchronous spike

events and binary trees cannot contain duplicate values. This is resolved by introducing an

attribute to the ISpike object to track frequency. For single spike trains this value is always 1

but as groups are created synchronous spike events are represented by a single entry in the

binary tree with frequency > 1. This structure permits visualisations to group and summarise

data and then treat those summaries as a single spike train entity. Behaviours are provided

to break an INeuronGroup back to its constituent parts. This allows visualisations to present

groups of spike trains either as a single entity or multiple spike trains.

8.1.4 Creating the dataflow ‘token’ using the developed data model

So far the structures in the data model have been concerned with individual data

points or individual recordings. However the data model is also required to act as a dataflow

token that can be placed on the arcs of the iPipeline dataflow directed graph. The iPipeline

framework exposes an interface to represent the dataflow token and a default

implementation that allows any data model to be added to it using a generic name / value

pair. The data model must then be reducible to the value component of a name value pair.

This is not a significant issue for a data model since the developer simply defines an

appropriate data model and then provides a wrapper to contain it. In the case of the spike

train data recordings it is logical that this wrapper should represent the entire network of

recorded neurons. The INeuronAssembly and its concrete implementation provide both a

container for the data recordings and a means to attach meta-data such as size, duration of

recording and timescale used (milliseconds, seconds etc.).

With the data model defined two utility methods were created that allowed any

number of INeuronAssembly objects to be stored / extracted from iPipelines

IProcessingResult object. This defines the general structure that each processing operation

Chapter 8: Neuroscience Problem Domain Layer

Page | 121

in the neuroscience data processing library would follow. In sudo code each processing

operation follows the following high level structure:

1. Receive an arbitrary number of IProcessingResult objects; one on each input arc of

the dataflow directed graph

2. Extract all INeuronAssembly objects and associated parameters from each

IProcessingResult and compile them into a list. This requires a deep copy to be

made of the data model as the same IProcessingResult object will potentially be

delivered over multiple arcs of the dataflow graph.

3. For each listed INeuronAssembly apply the data processing logic to transform the

data model to its new state.

4. When all identified INeuronAssembly objects have been transformed create a new

IProcessingResult object that contains the transformed data model(s).

Once created the iPipeline framework will place the post processing

IProcessingResult object on all outgoing arcs for the process. This will trigger processes

further down the iPipeline directed graph as processing results complete.

8.1.5 Supporting history and relationship tracking

Shneiderman’s task domain actions also identified a need to track relationships and

the processing history through which the data has passed. These domain actions are

primarily focused on the users interactions with the visualisation displays. However there is

clearly value in maintaining, in the data model, a record of the transformations, or processing

that has been applied to the data. Additionally as new processes generate information and

meta-data there is a need to provide a mechanism where the data model becomes

extensible. The iPipeline framework exposes two data structures to manage history and

relationship tracking:

1. The IParameterManager interface and its concrete ParameterManager

implementation provide the means to track processing history and append new data

structures to the model making it extensible.

2. The ICommandTracker interface and its concrete CommandTracker implementation

are a pre-made implementation of the ‘Command’ software design pattern. This

provides a ready-made data structure that allows interactive visualisations to

“encapsulate a request as an object, thereby letting you parameterize other objects

with different requests, queue or log requests, and support undoable operations”

(Gamma et al., 1994).

8.1.5.1 Parameter Manager – creating an extensible data model

One of the primary goals of the iPipeline framework is that users should be able to

create and introduce their own data processing algorithms. It is inevitable such algorithms

will need to provide their own data structures. The iPipeline framework therefore provides a

general means to package new data structures into an existing model and manage them as

a part of the data model. Indeed the IProcessingResult views the developed data model as a

‘Parameter’ that is special only in that it provides the dataflow ‘token’ with the data it is

carrying. In this system a parameter is a name value pair where the name is any descriptive

string and the value is any object or collection of nested objects. The ‘collection of nested

objects’ can constitute a data model in its own right allowing the existing model to be

expanded to meet changing requirements. One of the drawbacks of the structure dataflow

Chapter 8: Neuroscience Problem Domain Layer

Page | 122

model is the demands placed on system memory. If this becomes a concern it is possible to

output data to long term storage devices and store references to files into the parameter

system.

The parameter / parameter manager system also provides the means to store

individual process parameters. This forms part of the developer created settings panels with

the system providing the storage mechanism for an arbitrary number of settings values per a

process. Figure 8-6 provides the high level UML diagram for the system. As can be seen the

ParameterManager provides an iterable collection of IParameter objects that supports

serialisation. The concrete Parameter class uses Java generics to provide a type safe name

/ object data structure. The Parameter constructor accepts any object <E> for its value but

on creation enforces that any future updates to the parameter must supply an object of type

<E>. Hence parameter type is initialised at construction and becomes immutable thereafter,

despite the use of a generic parameter.

Figure 8-6: The iPipeline parameter and parameter manager system

8.1.5.2 Command Tracker – A software pattern to support interactive visualisation &

tracking of user interactions

As Shneiderman described it is an important property of any interactive visualisation

that the user should be able to rapidly see the result of an interaction. It is of equal

importance that they should be able to rapidly return the visualisation to a previous state.

Chapter 8: Neuroscience Problem Domain Layer

Page | 123

The reasons for doing so range from an interaction that did not produce the desired result to

the user seeking to remind themselves of the broader context of the detailed data they have

been examining.

To facilitate this task domain action iPipeline provides an implementation of the

‘Command Pattern’, a software design pattern that supports this behaviour (Gamma et al.,

1994). The iPipeline framework itself makes extensive use of this implementation to allow

users to freely redefine the structure and connections in the dataflow graph. The

implementation is deliberately provided as a separate package that can also be added to the

problem domain visualisations. Figure 8-7 shows the UML for the implementation:

Figure 8-7: Implementation of the 'Command' software design pattern

The core of the system is the ICommandTracker interface and its concrete

implementation CommandTracker. To create a new command the developer must

implement the ICommandBehaviour interface and provide code both to execute and undo

the command. A wrapper class ‘Command’ adds the functionality needed to track execution

to the developer coded command.

To effectively utilise this system it is recommended that the developer creates a

single controller class for a visualisation that maintains a CommandTracker object. The most

flexible option is to use composition where the controller class implements

ICommandTracker but delegates its functions to a CommandTracker. All interactions with

the visualisations should be coded as commands. Specifically the command should be

encapsulated into a class that implements ICommandBehaviour.

Chapter 8: Neuroscience Problem Domain Layer

Page | 124

Collectively the design of the neuroscience data model and the supporting iPipeline

framework address all of Shneiderman’s ‘Task-Domain actions’ to produce effective

visualisations for exploring large neuroscience spike train recordings.

Chapter 9: The i-Raster Visualisation

Summary
This chapter describes the iRaster visualisation, its implementation and the visualisation
techniques added to it, to manage large datasets.

Chapter 9

The i-Raster Visualisation

 “Raster noun. A pattern of closely spaced rows of dots that form an image (as on the cathode-ray

tube of a television or computer display)” (The Merriam-Webster dictionary, 2004)

Chapter 9: The i-Raster Visualisation

Page | 126

9 Overview of the i-Raster Visualisation

A raster chart is one of the most common visualisations. In principle a raster

chart can be generated by taking any two variables, assigning them to the X and Y

axis of a chart and plotting the variables data. They have been used in many fields

from the production of navigational charts (National Oceanic and Atmospheric

Administration, 2015) to neuroscience (Somerville et al., 2011). Within neuroscience,

they provide the researcher with the most elementary view of their raw data; the

neural spike train. Figure 9-1 shows a raster chart of twenty simulated spike trains

recorded for 2 seconds. The x-axis shows time in milliseconds and the y-axis

denotes the id number of the electrode that recorded the spike train.

Figure 9-1: Raster chart of twenty spike trains recorded for two seconds.

Somerville demonstrated that visual analytics could be effectively applied to a raster

chart it three ways (Somerville, 2011):

i. Reordering spike trains along the y-axis (Figure 9-2)

ii. The accurate representation of spiking rate (Figure 9-3)

iii. Reduction of complexity using filters and zooming (Figure 9-4)

Through the application of these three methods visual analytics makes it possible to

identify patterns within the dataset through visual inspection of the raster chart. Figure 9-2 to

Figure 9-4 show examples of these techniques applied to the dataset seen in Figure 9-1

Chapter 9: The i-Raster Visualisation

Page | 127

Figure 9-2: Spike trains re-ordered in the Y-axis from minimum to maximum inter spike interval (ISI).

Figure 9-3: Spike train firing rate frequency overlaid onto raster chart

Chapter 9: The i-Raster Visualisation

Page | 128

Figure 9-4: The dataset after filtering to show the 10 most active spike trains with a section zoomed to
show detail.

 Somerville’s interactive raster chart (known as i-Raster) is a valuable tool for the

examination of spike train datasets. However since its development the technology used by

neuroscience to record spike train datasets has advanced considerably. The result is that

dataset size has increased significantly in terms of:

1) The number of spike trains that can be recorded (the Y-axis of an i-Raster chart).

2) The time period of the recording (the X-axis of an i-Raster chart).

9.1 Drawbacks of Somerville’s i-Raster Visualisation with modern

neuroscience datasets

Figure 9-5 presents an i-Raster chart generated from a collaborating researcher’s

dataset. The recording is of 700 spike trains over a 30 minute period (this is approximately

half of the 1411 recorded by the researcher). Performing any meaningful visual analysis of

the dataset in Figure 9-5 has clearly been rendered impossible by the increased density of

the dataset. Of course this is caused by the fact that the display area for the i-Raster chart

has not been increased. This research has focused on how Somerville’s i-Raster

visualisation can be improved to once again make visual analysis possible with modern

spike train recordings. This has been achieved by two primary methods:

1) Introduction of i-Pipeline’s visual programing language (VPL) provides the

opportunity to pre-process the dataset before it is visualised and

2) The provision of further functionality within i-Raster to manage both the

increased number of recorded spike trains and the increased recording period.

In each case the guiding principle applied to create a solution has been the Visual

Information Seeking Mantra developed by Shneiderman:

Chapter 9: The i-Raster Visualisation

Page | 129

“Overview first, zoom and filter, then details-on-demand.” (Shneiderman, 1996)

Figure 9-5: Somerville's i-Raster chart for 700 spike trains recorded for 30 minutes

9.1.1 Addressing the dataset density problem through the Visual Programing

Language (VPL)

The raster charts seen in Figure 9-1 to Figure 9-5 can be represented by the simplistic

VPL program seen in Figure 9-6.

Chapter 9: The i-Raster Visualisation

Page | 130

 In this program a file containing a dataset of multiple

simultaneously recorded spike trains is loaded into memory and

delivered directly to the i-Raster visualisation. The dataset is the

rendered as a raster chart by the visualisation. As demonstrated

in Figure 9-5 this approach fails with modern spike train

recordings.

 Shneiderman advises that in cases where the on screen

density of data has become overwhelming to a user an overview

should be introduced. The overview should either filter or

present a summary of the data. The user then has the option to

access more detailed data on demand. The primary benefits of

incorporating an overview element were summarised by Craft

and Cairns as:

 It paints a "picture" of the whole data entity that the information visualization

represents.

 Patterns and themes in the data can often be seen only from a vantage point that

comprises the whole view.

 Major components and their relationships to one another are made evident.

 The overall “shape” of the data itself can provide assistance in understanding the

information.

 Significant features can be discerned and selected for further examination.

 Revealing these features at the outset can aid the user in filtering the extraneous

information (Craft & Cairns, 2005).

The density of the i-Raster chart can be reduced both by filtering the data and by

summarising it.

9.1.1.1 Filtering the i-Raster charts data

Simultaneously recording the spiking activity of a thousand plus neurons is by its

nature an imperfect process. Researchers devote considerable effort to ensuring that good

electrical contact is made between the recording electrodes and the tissue sample. Despite

this it is inevitable that some recording channels will suffer from “noise”. This noise usually

appears in the form of a very high inter spike interval (ISI) where the recorded neuron

appears to be firing nearly constantly. What constitutes an excessively noisy recording

channel will depend on a number of factors and can only be accessed by the neuroscientist

based on the details of the sample and the recording method used. Nevertheless it is a

relatively simple matter to introduce a third step (or process) into the VPL program in

Figure 9-6 to filter out these “noisy” recording channels. Figure 9-7 shows the amended

program configured to filter out spike trains with an average firing rate in excess of 1.5 spike

events per microsecond.

Figure 9-6: Simple i-Raster
VPL program

Chapter 9: The i-Raster Visualisation

Page | 131

Figure 9-7: Filter to exclude "noisy" data channels (those withfiring rates).

9.1.1.2 Summarising the i-Raster charts data

It is unlikely that filtering out “noisy” channel from the recording will in and of itself

solve the density problem. For the VPL to be useful in solving the density problem another

step (referred to as a process) must be introduced which generates an overview. This

overview can be presented to the user instead of the overwhelming raw data. Additionally

incorporating this process into the VPL would allow the summarised data to be used by other

visualisations beyond i-Raster. The question that must then be asked is what data should be

summarised to generate the overview? The available choices in the case of a neural science

raster chart are:

1) To summarise data by the recording electrode (the y-axis data type) or

2) To filter by time (the x-axis data type) and present only a portion of the data.

A solution for each of the above cases has been implemented into the VPL and is

described in the next section.

9.1.1.3 Case 1: Summary by recording electrode

When generating an overview using the VPL the researcher needs to ask themselves

what “picture” they wish to paint of the dataset. The researcher’s visual exploration of the

dataset will begin with this picture and they will explore the features revealed by it. The

picture presented in Figure 9-5 has two primary draw backs:

1) Only half the dataset is displayed (if all 1411 are displayed Figure 9-5 is a black

rectangle).

2) No “features” can be seen in the dataset and therefore the researcher has no

point from which to begin a visual exploration of the dataset

Given that Figure 9-1 proved to but usable when presenting 20 spike trains it might be

argued that the y-axis dataset is usable if limited to 20 spike trains. A “process” can therefore

be proposed were multiple spike trains are combined (grouped) and rendered as a single

Chapter 9: The i-Raster Visualisation

Page | 132

spike train. The grouping operation is illustrated in Figure 9-8 where the first two spike trains

of Figure 9-1 have been grouped to produce a summary spike train.

Figure 9-8: Generation of a grouped spike train that summarises two spike trains.

 Applying this approach to the 1411 spike train dataset seen in Figure 9-5 would

require 70 spike trains to be grouped together into a summary spike train (1411 / 70 = 70.55

per group). However it is inappropriate to group data simply on the basis of what is needed

for a workable display. Grouping spike trains is dangerous as neighbouring cells can be

doing very different things. Ultimately only the neuroscientist using their knowledge of the

recording hardware and the piece of neural network that was recorded can make a sensible

choice for grouping. The i-Raster chart therefore allows spike trains to be moved between

groups by the researcher. After consultation with the neuroscience group that recorded the

projects test dataset it was agreed that groups of 64 spike trains would be more appropriate.

The recording MEA array was laid out as a 64 x 64 grid and each summary spike train would

therefore reflect one “row” of the recording array

Figure 9-9 shows the VPL program

to perform this grouping operation.

A “Group: Integrate” process has

been introduced into the VPL

pipeline. The process is configured

to divide the dataset into groups of

64 spike trains. The processed

dataset is then delivered to the i-

Raster visualisation for display.

Visualisation is performed as

shown in Figure 9-8. The resulting

raster chart can be seen in

Figure 9-10. The new visualisation

is considerably more useful than

the original Figure 9-5 version. The

researcher is no longer confronted

with essentially a black featureless rectangle. The visualisation now includes all of the data

(1411 spike trains vs 700) and “features” are starting to become apparent. Distinct bands of

activity have become visible which may serve as starting points for further investigation. The

“shape” of the dataset (to borrow Craft & Cairns term) is also becoming apparent. The upper

half of the dataset shows a highly active collection of spike trains while the lower half is less

active.

Figure 9-9: Visual program to group 64 spike trains together

Chapter 9: The i-Raster Visualisation

Page | 133

Figure 9-10: A researcher’s 1411 spike train dataset "grouped" with 64 spike trains per a group

 The Visual Information Seeking Mantra also advises that it is important for the

visualisations user to obtain detailed information on demand. Hence it is important that i-

Raster provides some means to display the individual spike trains that compose a summary

spike train. This must be done in a way that does not render the raster chart unusable.

Figure 9-11 shows the solution that has been adopted.

Figure 9-11: Detailed view of summary spike train one

 In Figure 9-11 the user has requested a “detailed” view of summary spike train one.

The summary spike train has been removed from the raster chart. It is, however, not

practical to plot the 64 spike trains in the space freed by removing summary spike train one.

Chapter 9: The i-Raster Visualisation

Page | 134

The result would have been as usable as the Figure 9-5 raster chart. Instead the space

allocated to plotting the summary spike trains along the y-axis is considerably reduced to

free additional space for the “detailed” view. It is however important to maintain a

representation of the remaining 20 summary spike trains. This allows the user to maintain an

overall context for the detail they are viewing (for example the spiking activity bands are still

visible). The majority of the raster chart’s space is now available for plotting, in detail, the 64

spike trains of summary spike train one. Figure 9-11 clearly shows that it is possible to study

firing patterns in the detailed data. The Figure 9-11 revised raster chart has remained useful

to the researcher despite displaying twice as much data as the original and unusable chart

(Figure 9-5). The continuing usefulness of the Figure 9-11 raster chart can be attributed to

the application of two key components of the visual information seeking mantra:

1) Overview first – provided by summary spike trains representation of multiple detailed

spike trains

2) Zooming – The space allocated to representing a set of spike trains increases as

more detailed data is requested by the user.

The visual programing languages group integrate process (as seen in Figure 9-9) has

provided a means to modify the dataset to produce a more effective visualisation. This

approach can be developed further. Somerville argued that the re-ordering of spike trains in

the y-axis prior to visualisation could also be used to reveal features to the researcher. In

principle then it should be possible to not only group but also re-order the spike train dataset.

Figure 9-12 shows the VPL with just such a sorting process introduced into it.

The “burst sort” process allows

the researcher to re-order the

spike trains based on when they

first show a “burst” of spiking

activity. The burst sort seen in

Figure 9-12 has been configured

to define the start of a burst of

activity as five spike events with

an average inter spike interval of

50ms. The start time is the time of

the first spike in the five spike

sequence. The burst is considered

to end when the average inter

spike interval rises above 300ms.

After the spike trains are re-

ordered they are once again

grouped into collections of 64 spike trains as before (Figure 9-9). Finally the processed

dataset is again visualised using i-Raster. The results can be seen in Figure 9-13 (summary

view) and Figure 9-14 (detailed view). The summary view does not appear to show any

major visual change from Figure 9-10 however the detailed view has revealed a new feature

of the dataset. In Figure 9-14 summary spike train one has been expanded to show its 64

constituent spike trains in detail. The result is a clear feature running down the left hand side

of the raster chart. Such a visual feature, where many spike trains show activity immediately

after each other, is not proof of neural connectivity between the neurons that generated the

Figure 9-12: VPL program to “burst sort” spike trains prior to
grouping them

Chapter 9: The i-Raster Visualisation

Page | 135

spike trains. It does however providing a starting point to the researcher by identifying

possible target spike trains for more rigorous analysis. Somerville identified a total of seven

sorting algorithms commonly used to re-order spike trains. These seven are available in the

new i-Raster implementation. In addition these seven sorting methods have also been made

available as VPL processes to pre-process datasets prior to visualisation.

Figure 9-13: A researcher’s 1411 spike train dataset burst sorted and grouped with 64 spike trains per a
group

Figure 9-14: Detailed view of a burst sorted group of 64 spike trains

Chapter 9: The i-Raster Visualisation

Page | 136

9.1.1.4 Case 2: Filtering data by time

The grouping and sorting operations seen so far focus on the y-axis of the raster

chart. However it would be inappropriate to ignore the other dimension of the dataset – time.

Plotted along the x-axis of the raster chart it shows the same density problem experienced

on the y-axis. The length of the recorded dataset has increased but the total screen space

available to plot the data is unchanged. The result is clear from comparing Figure 9-13 and

Figure 9-14. Summary spike train 1 in Figure 9-13 is not useful being essentially a black

featureless rectangle. However when summary spike train 1 is viewed in detail (Figure 9-14)

hidden structure becomes apparent. The question must therefore be asked; can the data

plotted on the x-axis be visualised more effectively?

To answer this question it is necessary to consider the nature of the dataset. A neural

spike train is a sequence of times at which a neuron “spiked”. A spike is an electrical signal

transmitted through the neurons axon which is detected and recorded by an electrode.

Generation of the signal is triggered by electrical signals received through the neurons

dendrites (a stimulus). Information is encoded into a sequence of spikes. Researchers

typically record two types of data in their experiments:

1. Spontaneous activity where the neural network is not stimulated and the

recording simply shows the “resting state” activity in the neural network.

2. Interleaved stimulation where a different stimulus (usually light) is applied at

different times. The recording shows the networks reaction to the stimulus.

Researchers make use of this by noting the time at which they applied a “stimulus” to

the neural network. The activity recorded immediately after the stimulus represents the

neural networks encoding of information about the stimulus. Hence rather than considering

the whole recording there is value in viewing it as a series of time segments between the

applications of stimuli.

The addition of a VPL that pre-processes the dataset prior to visualisation provides

an opportunity to manage a dataset as a series of time segments. Figure 9-15 shows the

VPL program that divides the 30 minute dataset used so far into six time segments each five

minutes long.

Figure 9-16 shows what will

happen to the dataset seen in

Figure 9-13 immediately prior to

visualisation by i-Raster. The

300 seconds (or 5 minute) time

window will divide the original

raster chart into six new raster

charts. After this division the x-

axis will no longer represent a 30

minute time period but instead a

5 minute time period. The Visual

Information Seeking Mantra

would categorise this change of

Figure 9-15: Time segment process added to VPL to create six
five minute time segments

Chapter 9: The i-Raster Visualisation

Page | 137

scale as a “zoom” operation to reveal more detail.

Figure 9-17 and Figure 9-18 present the first 300 second time segment. In Figure 9-17 only

summary spike trains are shown in the same manner as Figure 9-13. In Figure 9-18

summary spike train one has again been expanded to present a detailed view of the 64

spike trains that were grouped together to create summary spike train one (equivalent to

Figure 9-14 for the whole dataset).

Figure 9-16: Division of the original raster chart using the time segmenting process

Figure 9-17: First five minute time segment of 1411 spike trains burst sorted and grouped with 64 spike
trains per a group

Chapter 9: The i-Raster Visualisation

Page | 138

Figure 9-18: Detailed view of a burst sorted group of 64 spike trains (first five minute time segment)

 Contrasting Figure 9-17 which presents the first five minute time segment on its own

with the representation of that time segment shown on Figure 9-16 the benefit of time

segmenting is apparent. Clearly the same features of the dataset are present. In Figure 9-17

however these features are much more visually apparent. Furthermore summary spike train

1 which in Figure 9-16 is a featureless black rectangle now starts to exhibit structure.

Periods of intense spiking activity followed by periods of lower spiking frequency are now

apparent.

 The detail view has also revealed more information about the burst sorted spike

trains. In Figure 9-14 it appeared that each spike train in summary group four began a burst

of spiking activity immediately after its predecessor. Examining this feature in Figure 9-18 it

is clear that this is not the case. Some spike trains do indeed begin spiking immediately after

their predecessor. However in other cases there are distinct gaps of longer time periods

between the first and second spike train starting to fire. Further analysis will be required to

determine if these apparent groupings indicate functional connectivity in the neural network.

They do however provide the researcher with a place to start.

9.1.2 Addressing the dataset density problem through additional i-Raster

functionality

In addition to applying the new VPL to manage modern neural science data sets it is

also possible to introduce additional functionality to the i-Raster visualisation. As with the

VPL the aim of this functionality is to efficiently sort, zoom and filter sections of the dataset.

This additional functionality should not be viewed in isolation as it both extends Somerville’s

i-Raster functionality and complements the processing performed by the VPL.

Two key pieces of functionality have been added to achieve the goal of managing

increased neural dataset size:

1. A time filter that allows the idea of time segmenting a raster chart (as seen in

the VPL) to become an interactive user experience and

Chapter 9: The i-Raster Visualisation

Page | 139

2. A graphical representation of the multi-electrode array (MEA) used to record

the spike trains. Individual electrodes or groups of electrodes can be selected

and the raster chart interactively reconfigures itself to show only the spike

trains recorded by those electrodes.

9.1.2.1 The interactive time filter for i-Raster

The usefulness of visualisation as a tool is enhanced by the modern computers ability

to allow the user to interact with the visualisation. This fact is at the core of the Visual

Information Seeking Mantra in the form of its advice to use filtering and zooming to explore

datasets. Somerville’s i-Raster implementation was primarily concerned with sorting and

filtering data in the y-axis of the raster chart (by electrode id number). Using the VPL this has

been extended by sorting and grouping spike trains. Within i-Raster individual spike trains

may now be filtered into or out of groups and moved between groups. However the x-axis (or

time dimension) offered no such filtering or zooming abilities. This deficiency has been

addressed through the introduction of an interactive time filter.

In principle the operation of the interactive time filter is relatively simple. The user is

presented with a scale bar representing the entire x-axis of the raster chart. A start and end

slider define the beginning and end of a time range. Only spike events that fall between the

start and end of this time range will be shown on the raster chart. Figure 9-19 shows the

concept in action. The 1411 burst sorted and grouped spike trains seen in Figure 9-13 have

been time filtered to show only the first 60 seconds of spiking activity.

Chapter 9: The i-Raster Visualisation

Page | 140

Figure 9-19: Time filtered raster chart extracted from a 1411 spike train dataset

 As can be seen in Figure 9-19 the time filtering achieves on the x-axis of the raster

chart what grouping does for the y-axis. By filtering out the spike train outside of the time

range the scale of the raster chart is changed. This has a zooming effect allowing for a more

detailed view of a smaller section of the dataset. Figure 9-20 shows the key components of

the time filtering tool.

Chapter 9: The i-Raster Visualisation

Page | 141

Component Function

Menu bar push button toggles the time
range selection tool on / off.

Time range selection tool represents the x-
axis of the raster chart.

Time range selections start slider. Colour
coded green in a traffic light style.

Time range selections end slider. Colour
coded red in a traffic light style.

Time point entry box permits entry of an
exact time point value for either time range
slider. Double click start or end slider to
directly type a time point value for that slider.

Figure 9-20: Components of the interactive time filtering tool

 Taken together all the components in Figure 9-20 allow the user to view any portion

of the recorded dataset at any desired scale. The raster chart updates in real time as the

user modifies the start and end range selection sliders. This allows the user to zoom

seamlessly between the two views seen in Figure 9-19. The user is able to maintain an

awareness of the overall dataset while concentrating their attention on particular time

periods.

9.1.2.2 The multi-electrode array display (Electrode Display)

Accessed through i-Raster’s main interface the electrode display provides a

visualisation of the multi-electrode array (MEA) that recorded the currently viewed spike train

data.

Figure 9-21: Accessing the electrode display from i-Raster’s primary interface.

 The increase in the number of recorded spike trains in a modern neuroscience

dataset has, in part, been achieved by using ever increasing numbers of electrodes on the

recording MEA devices. Neurons that are physically close to each other in a biological

sample are more likely to form connections than those which are widely separated. Proximity

should not be taken as a guarantee of connectivity (some neuron axon’s can be over a

meter long). Proximity between neurons generating the recorded spike trains does, however,

provide a starting point for exploring the dataset. The electrode display provides a means to

rapidly select and filter spike trains on a raster chart to show only those recorded from

specific regions of the MEA.

Chapter 9: The i-Raster Visualisation

Page | 142

Figure 9-22: A two second burst sorted recording of 500 spike trains with the electrode display shown.

 Figure 9-22 shows a two second burst sorted recording of 500 spike trains. The

electrode display has been activated and since the whole dataset is being viewed all

electrodes are selected. The VPL program that loaded this dataset is identical to the one

seen in Figure 9-12 earlier. To filter the dataset to show spike trains from a single region the

user simply drags a selection rectangle around the area. Multiple regions of the MEA can be

selected by holding down the right control key while selecting. When individual spike trains

are being displayed (rather than summary groups) placing the mouse over an electrode will

highlight the corresponding spike train. Figure 9-23 shows the same dataset filtered to show

data from three regions. One of the summary spike trains has been expanded and the

electrode that recorded spike train 101 identified.

Figure 9-23: Electrode display filtering a dataset by recording electrode.

Chapter 10: The i-Grid Visualisation

Summary
This chapter describes the iGrid visualisation its implementation and the visualisation
techniques add to it to manage the large datasets now being produced by recording
hardware.

Chapter 10

The i-Grid Visualisation

 “Grid noun. A network of lines that cross each other to form a series of squares or rectangles”

Chapter 10: The i-Grid Visualisation

Page | 144

10 Overview of the i-Grid Visualisation
The i-Raster visualisation demonstrated how potentially connected neurons could be

identified from a visual inspection of spike train recordings. This chapter considers the i-Grid

visualisation which provides a means to make this assessment for the entire data set. In

addition challenges exist in scaling the grid to cope with the increased data set size

generated by the modern multi-electrode recording array (MEA). In a similar manner to i-

Raster the provided implementation of i-Grid includes a number of new features aimed at

managing the growing data size. Again Shneiderman’s Visual Information Seeking Mantra –

“Overview first, zoom and filter, then details-on-demand” is applied so users can extract

useful information by visual inspection.

Before the new i-Grid implementation can be examined in detail it is first necessary to

understand the mathematical theory that underpins the grids operation. The generation of

the grid rests on the creation of spike train pair-wise cross correlations as a metric to

determine functional connectivity between neurons. The metric is then applied to order and

group spike trains into clusters. The clusters of inter-connected spike trains reflect the

underlying functional connectivity between neurons in the recorded neural network.

10.1 Overview of Pair-wise Cross Correlation

Cross correlation is a commonly used mathematical technique to identify recurring

patterns in recorded signal data. In i-Grid’s case this signal is the recorded neuron spike

train with the researcher looking for repeating patterns. Cross correlation is a ‘binning

process’ that generates a histogram describing the degree of similarity between spike trains.

The procedure to generate a pairwise cross correlation is as follows:

i. Select a pair of simultaneously recorded spike trains. To compile a meaningful

i-Grid visualisation all recorded spike trains must be paired with all other spike

trains in the data set.

ii. Determine a time window and bin size. The exact determination of these

factors must be made by the researcher based on the data set being examined.

Key factors in making these decisions are:

a. The length of the spike train recording. Cross-correlation is a statistical

technique that requires a reasonable data sample in order to be

effective.

b. The spike train firing rates should be similar between the compared

spike trains. The i-Raster visualisation provides a firing rate display for

recorded spike trains to visually verify this.

iii. One of the selected spike trains is designated as the reference spike train and

the second as the target spike train.

iv. For each spiking event on the reference spike train the target spike train is

examined. The centre of the time window is placed on the target spike train at

the same moment in time as the reference spike occurred. The bin size divides

the time window into a number of “bins”. The total number of spike events on

the target spike train is summed for each bin and then added to a running total

for each time bin. Figure 10-1 illustrates the procedure.

v. The aggregate totals are then “normalised” so that the average bin count value

is 1. This normalisation, known as “Brillinger normalisation” allows the program

Chapter 10: The i-Grid Visualisation

Page | 145

to make meaningful statistical judgements about the relationship between the

target / reference spike trains (Brillinger, 1979). The normalisation allows the

visualisation to establish a threshold for a significant degree of correlation

between the reference and target spike trains. Spike trains showing a

statistically significant degree of correlation will be clustered together in the

final visualisation. The threshold is usually set at about two standard deviations

from the mean.

vi. The usual visual representation of a pair-wise cross correlation is as a

histogram showing the normalised bin counts for the time window bins (called a

Cross-Correlogram). All Cross-Correlogram peaks in excess of the Brillinger

threshold denotes a significant cross correlation with the strongest peak

providing a measure of correlation between the reference and target spike

trains.

Figure 10-1: Generation of time bin totals in pair-wise cross correlation

10.1.1 Computational challenge of Pair-wise Cross Correlation

The generation of any individual cross correlation between two spike trains may not

appear computationally challenging. However the scientific communities’ ability to record

spike trains is rapidly growing both in terms of the recording length and the number of

simultaneously recordable spike trains. This translates into an increasing number of data

points (growth in recording length) and an increase in the total number of cross correlation

pairs. Within the project both of these challenges need to be addressed in order to develop a

scalable solution that cope effectively with current recording technology and near future

technologies.

Chapter 8 described how the challenge of increased recording length has been met by

employing sparse arrays and red / black binary trees to manage the growth in data points.

However if the project is to achieve the goal of a scalable solution it must also address the

growth in the number of recorded spike trains. The pair-wise cross correlation process

rapidly becomes computationally intensive as the number of pairs in the data set grows. The

number of cross correlations that must be completed to identify all statistically significant

relationships within a data set is given by:

Chapter 10: The i-Grid Visualisation

Page | 146

𝑛2 + 𝑛

2

Where 𝑛 = the total number of neuron spike trains recorded in the data set.

Graphing this function illustrates the rapid growth in computational load as data set

sizes grow. Figure 10-2 illustrates the number of pair-wise cross correlations that must be

computed for data set sizes between 0 and 2000 recorded neurons:

Figure 10-2: Number of required cross correlation calculations for neuronal networks up to 2000 neurons
in size.

 Figure 10-2 shows that a data set of 2000 neurons requires some 2,001,000 cross

correlations to be performed. Each of these can in turn contain hundreds or thousands of

data points (neuron spiking events). In contrast the number of calculations required for the

smaller data sets traditionally used with the VISA software (approx. 200 spike trains) was

20,100 cross correlations. Hence a growth of 10x the number of recorded spike trains had

led to nearly a 100x increase in the computational load measured in terms of the number of

cross correlations to perform. The growth in computational load is then further compounded

by the increase in recording length and the expectation of further growth in the number of

recorded spike trains as technology advances.

Chapter 10: The i-Grid Visualisation

Page | 147

 To meet the explosive computation demands the new implementation of i-Grid

adopts two approaches:

1. Raw spike train data is pre-processed into a set of highly compact cross correlation

data composed of normalised bin counts. Once compiled significant system memory

resources can be freed with the i-Grid visualisation operating from the normalised bin

data.

2. The pre-processing algorithm has been designed from the ground up to function as

either:

a. A multi-threaded program that exploits all of the available compute cores of

the executing system OR

b. Exploits the Java implementation of the Message Passing Interface (MPI) to

distribute its operation across a high performance computer cluster (HPC).

The MPI implementation used is MPJ Express (Shafi & Jameel, 2006).

Each of the above approaches attempts to minimise the memory footprint of the i-

Grid data model (item 1) or maximise the utilisation of the systems computing power (item 2).

The supporting technology in the form of MPJ Express does introduce an external

dependency were other visualisations in the VISA suite operate on a standard Java install.

This limitation was accepted as necessary to scale the i-Grid visualisation to meet increasing

computational demands.

10.1.2 MPJ Express as an implementing environment for i-Grid’s cross-correlation

algorithm.

MPJ Express is an implementation of the Message Passing Interface (MPI) standard

developed for distributed computing using a high performance computer cluster (a HPC

cluster). The Java language itself offers no official MPI bindings however various attempts at

creating such bindings by the academic community exist. Technologies considered for

developing the cross-correlation algorithm on a HPC included:

1. The HP Java Project (Carpenter, 2007): The original implementation for bridging

the Java – MPI gap. It was rejected as it sacrificed the code portability of Java

between platforms. Essentially a wrapper around a C implementation of MPI

accessed via Java’s Native Interface (JNI) technology it would have required the C

library to be recompiled for each platform. Nevertheless this project did define the

mpiJava interface that has become a de facto standard used in other MPI – Java

projects

2. Open MPI (Open MPI: Open Source High Performance Computing, 2014): this

implementation of the MPI standard provides a Java interface primarily at the

request of the Hadoop development community. Development team is composed

of many leading industry companies however it was rejected as the Java bindings

are not formally part of the project and will be included in future releases only so

long as there is active demand from the Hadoop community.

Ultimately MPJ Express was selected for use based on its unique feature of not

being limited to use on high performance clusters. Instead the implementation offered two

modes permitting use on laptop / desktop systems outside of a HPC cluster as well as a true

HPC mode. In the first instance Java threads replace the individual compute cores of a HPC

cluster. These threads are then scheduled by the operating system to exploit however many

Chapter 10: The i-Grid Visualisation

Page | 148

compute cores the local machine offers. In the full HPC mode the more classic distribution of

tasks across the cluster’s compute nodes occurs. MPJ Express serves as an abstraction

layer that hides the details of the operating mode from the code allowing code written to the

mpiJava interface to operate seamlessly between multi-core and HPC cluster systems.

10.1.3 Implementation issues of i-Grid’s cross-correlation algorithm.

Figure 10-3 below provides a visual representation of the cross correlation algorithm

as it has been implemented in the revised i-Grid design.

Figure 10-3: Operation of i-Grids MPJ Express implementation of the cross correlation algorithm

 Development of the cross correlation algorithm passed through several prototypes.

The primary development issue was the need to accommodate execution on both a HPC

and more regular research machines. It became impossible to predict the resources that

would be available at run time (memory was a key issue) yet a key development goal was

that the algorithm should adapt to the execution environment. Writing a scalable algorithm

that could process large data sets in both the HPC and classic desktop / laptop scenario

proved challenging. The HPC, of course, had access to far more memory resources than the

typical desktop system and the third prototype revised its approach so that the memory load

actually reduced as the algorithm executed. This proved the key to scaling to large data sets

on systems with more limited memory resources. A naive implementation would simply

generate a cross correlation task and assign it to a task queue for completion. This is highly

inefficient in terms of memory as both the large raw spike train recording and the processed

cross correlation results must be held in memory simultaneously. Rather than attempting to

hold all this data in memory at the same time the algorithm processes cross correlation for

each “row” of the i-Grid representation.

Chapter 10: The i-Grid Visualisation

Page | 149

Figure 10-3 describes the final implementations operation using a small data set for

clarity. A data set of 5 spike trains is presented as a 5 x 5 grid for processing and the

number of required computations per Figure 10-2 in such a grid is 15. Initially all five (5)

spike trains must be loaded into memory and the first “row” of data (5 spike trains) generates

a task queue of five cross correlation tasks. The queued tasks a distributed to processing

cores (HPC cluster mode) or to worker threads (multicore mode). Completed cross

correlation tasks are returned and written out to disk. Each complete cross correlation task

generates the nested hash map structure shown in Figure 10-4. The hash map structure is

readily storable as a JSON string and it is compressed to this format before being stored to

disk.

Figure 10-4: Cross correlation results as a nested hash map structure

Once stored the cross correlation is deleted from memory along with the spike train

that was cross correlated with its self as it will not be involved in further computation. While

on the small scale of a 5 x 5 grid this removal frees a relatively small amount of memory the

impact is very significant for larger grids and long spike train recording times. Unlike earlier

implementations which saw an explosion in memory use in line with Figure 10-2 this

implementation actually reduces memory load as the calculations proceed. Of course the

memory burden has been off loaded to the hard disk drive and long term data storage.

However these systems provide considerably more storage capacity than RAM. This lifts the

threshold in terms of the number of spike trains that can be cross correlated while making

the limiting factor for computation the easily expandable available data storage capacity (as

opposed to the more fixed available RAM).

Chapter 10: The i-Grid Visualisation

Page | 150

10.1.4 Algorithm performance – Lab PC vs High Performance Computing (HPC)

cluster

 The cross-correlation algorithm has been tested on both a standard lab PC and on

Plymouth University’s high performance computer cluster (HPC). The performance of the

algorithm in each environment is detailed in the relevant sub-section below.

A series of test datasets with the neuron count ranging between 50 and 2000

neurons were generated using a Neural Network Simulator (Borisyuk, 2002). Table 10-1

details the dataset sizes and expected number of cross correlations for each test run.

Neuron Count Cross Correlation Tasks

50 1275

100 5050

150 11325

200 20100

300 45150

400 80200

500 125250

1000 500500

2000 2001000
Table 10-1: Test dataset sizes and number of cross correlations to be performed.

 For each dataset the neural simulator generated a two minute simulated recording of

spike train data from the network with millisecond resolution for spiking events. Each

recording therefore covers a 120,000 millisecond time period.

10.1.4.1 Lab PC Cross-Correlation algorithm performance

 The specification for the lab computer used to test the algorithm is as follows:

Item Description

Processor Intel Core i7-2600 CPU @ 3.40GHz

Installed Memory 16.0GB

Operating System Windows 7 Enterprise (64 bit) Service Pack
1

Table 10-2: Lab PC Specification

 The primary measure of performance will be the number of cross correlations

completed per a second. It is expected that smaller datasets will generate a lower rate of

cross correlations per a second as the initialisation and in memory management of data will

be a significant portion of the total time spent performing the cross correlation task. For

larger dataset the cross-correlations per second rate is expected to rise before become fairly

stable as the overhead becomes a smaller percentage of the total compute time. The exact

point at which this stabilisation occurs will depend on the hardware used and number of

compute cores available. Hence as dataset sizes grow a point of diminishing returns will be

reached after which the computation rate becomes static and the total time to complete a run

will depend primarily on the number of spike trains being cross correlated. The Intel i7 CPU

core used in this test contains four cores which exploit Intel’s hyper threading technology to

offer eight virtual compute cores.

 The results generated by testing the cross-correlation algorithm in this environment

are detailed in Table 10-3 below:

Chapter 10: The i-Grid Visualisation

Page | 151

Neuron Count Cross Correlation
Tasks

Total Time (Sec) Per second rate

50 1275 21.84 58.37

100 5050 83.05 60.81

150 11325 172.93 65.49

200 20100 305.34 65.83

300 45150 680.24 66.37

400 80200 1201.63 66.74

500 125250 1872.54 66.89

1000 500500 7445.04 67.23

2000 2001000 29744.07 67.27
Table 10-3: Lab PC Cross-Correlation rates for various sized datasets

As expected the performance of the lab PC plateaued with datasets in excess of 150

spike trains. For dataset sizes of 150 spike trains or less the average number of cross

correlation tasks completed per a second was 61.56. This contrasts with the 200 – 2000

spike train range where the completed cross correlation tasks per a second was 66.72. The

average across the entire range was 65 cross-correlations per a second.

10.1.4.2 Plymouth University High Performance Computing (HPC) clusters

performance

To demonstrate that the cross-correlation algorithm fully utilises the computational

resources made available to it the tests performed on the lab PC were then repeated using

the high performance computing cluster at Plymouth University. The test run was performed

on the universities Fotcluster1(Mills, 2013). Fotcluster1 is a 376 core distributed-memory

cluster which comprises of:

1. A ViglenHX425Hi HPC combined head and storage node, plus 46 compute nodes.

2. Each compute node is a single U Viglen HX224i, equipped with Dual Intel Xeon

E5420 (Harpertown) Quad Core 2.50Ghz processors and 8 GB of memory per

motherboard.

3. Each node is connected via a 3com 3870 - 48 port network switch.

4. A total of 10TB of storage capacity is available.

For the purpose of this experiment a total of 32 compute cores were made available

representing a ‘4x’ increase in compute cores compared to the lab PC system. For the

algorithm to have scaled successfully it needs to show approximately a 3x - 4x increase in

performance. Note a direct 4x improvement is not expected since the overhead from

managing the compute cluster is noticeably larger than that of a multi-core CPU operating on

a single motherboard. Table 10-4 sets out the results achieved with the university HPC:

Neuron Count Cross Correlation
Tasks

Total Time (Sec) Per second rate

50 1275 10.51 121.37

100 5050 29.04 173.89

150 11325 55.78 203.04

200 20100 92.85 216.47

300 45150 196.48 229.80

400 80200 339.09 236.51

500 125250 525.23 238.47

1000 500500 2031.16 246.41

Chapter 10: The i-Grid Visualisation

Page | 152

Neuron Count Cross Correlation
Tasks

Total Time (Sec) Per second rate

2000 2001000 8039.12 248.91
Table 10-4: HPC Cross-Correlation rates for various sized datasets

As expected the increased availability of compute cores in the HPC results in a

marked increase in performance. Recall that the same algorithm is executing in both

situations without any re-coding so any increase in performance must arise from

utilisation of the HPC’s increased resource availability. Table 10-5 contrasts the

performance between the desktop and HPC environments:

Neuron
Count

Cross Correlation
Tasks

Desktop HPC HPCx Faster

50 1275 58.38 121.31 2.08

100 5050 60.81 173.90 2.86

150 11325 65.49 203.03 3.10

200 20100 65.83 216.48 3.29

300 45150 66.37 229.79 3.46

400 80200 66.74 236.52 3.54

500 125250 66.89 238.47 3.57

1000 500500 67.23 246.41 3.67

2000 2001000 67.27 248.91 3.70

Table 10-5: Contrast between desktop and HPC performance.

As anticipated the majority of HPC results placed firmly in the middle of the 3 – 4x

faster range. The increased overhead from managing the cluster was significant only up to

the 150 spike train dataset size. Additionally while the performance of the desktop system

plateaued sharply at this point the HPC continued to improve its performance. Nevertheless

it was clearly plateauing itself by the time the 2000 spike train dataset was reached. The

more gradual onset of diminishing returns in the HPC environment becomes clearly visible if

the cross correlation per second rate is charted (see Figure 10-5). Of course the primary

benefit of employing a HPC is the ability to compute cross correlations for considerably more

spike trains in less time. The increased compute rates of the HPC lead to a direct reduction

in the time required to analyse a data set. In the experiments case the desktop required 8h

15min 44.07 seconds to fully process the 2000 spike train data set (2001000 cross

correlations) whereas the same data set was processed by the HPC in 2h 13min

59.12seconds.

Chapter 10: The i-Grid Visualisation

Page | 153

Figure 10-5: Cross-correlations per second vs neural network size in desktop and HPC environments

With the cross-correlation operation completed it is now necessary to use these

calculations to infer the structure of the neural network that generated the recorded data set.

10.2 Identifying interconnected neural clusters

At its most basic level a neural network is a set of interconnected neurons. These

interconnections form clusters of co-operating / communicating neurons which act as data

processors. The ultimate goal for i-Grid is to identify these clusters of interacting neurons

from the recordings of their firing activity. Cross-correlation provides a measure of the

“strength” of the connection between two recorded neurons. A strong cross-correlation signal

indicates that the neurons are likely to be connected and form part of a cluster of neurons

that work together to process data. Having compiled the cross-correlation data it is now

necessary to identify these clusters.

Clustering of data sets can be done in a variety of different ways but the identification

of clusters based on connectivity is known as connectivity based clustering / hierarchical

clustering. The classic visualisation associated with a hierarchical clustering is the

dendrogram. Previous work has shown that iGrid can effectively identify neural network

structure(Stuart, Walter & Borisyuk, 2005) but one of its primary drawbacks was its inability

to scale to larger data sets. In this case the grid presents so much detail that it becomes

visually overwhelming to the user or simply too dense to be effectively displayed. Clearly

then for a cross correlation grid to become effective Shneiderman’s Information Visualisation

mantra should be applied. This requires the introduction of a means for the user to “overview”

the data set and to filter the items included on the grid. The grid itself then becomes the

element that delivers the “detail on demand”. In this implementation of the cross correlation

0

50

100

150

200

250

300

0 50 100 150 200 300 400 500 1000 2000

N
o

 o
f

C
ro

s
s
-c

o
rr

e
la

ti
o

n
s
 p

e
r

s
e
c
o

n
d

Neural Network Size

Cross-Correlations per a second.
Desktop vs HPC

Desktop HPC

Chapter 10: The i-Grid Visualisation

Page | 154

grid the “overview” of the data set will be provided by an interactive dendrogram that groups

and displays spike train clusters. The user’s interaction will allow the filtering of individual

clusters or parts of clusters into / out of the “detailed” cross correlation grid.

The clustering algorithm selected as the foundation for the dendrogram overview is a

hierarchical agglomerative clustering solution using complete linkage clustering. The metric

employed to determine the distance between clusters is the Euclidean distance between the

most significant peaks of the two spike trains normalised cross-correlogram. Alternative

linking strategies were considered (single linkage and average linkage) best complete

linkage proved the most effective at identifying the connectivity structure of the simulated

neural network.

To understand how the selected clustering algorithm function works the terms

agglomerative clustering and complete linkage need to be clearly defined:

 Agglomerative clustering is a recursive process where larger clusters are

formed by the merging of smaller clusters. At each iteration the algorithm merges

the two “closest” clusters to form a new cluster. The “closest” clusters are

determined by applying a linkage algorithm to determine a “distance” between

clusters

 A linkage algorithm is used to determine how closely two clusters are related.

This involves both the selection of a metric to measure closeness and a means of

determining that metric for clusters of multiple data sets.

o The selected metric for this implementation of iGrid is the strength of the

peak normalised cross correlation bin between two spike trains.

o Complete linkage is used in which each spike train in each of the two

clusters under consideration for merger provides a peak cross-correlation

value. The largest cross-correlation peak determines how “close” the

clusters are with larger peak values indicating greater closeness.

o Other linkage methods were considered but proved less effective in

identifying connectivity. The considered methods were:

 Single linkage where a single spike train within each cluster

would be taken as representing the cluster. The cross-correlation

between these two would be used as a measure of closeness.

 Average linkage where the average value of all cross-correlation

peaks between spike-trains in the two clusters is taken as a

measure of closeness.

Logically the process of clustering can be continued until all spike trains have been

grouped into a single cluster. This would however be inappropriate as connectivity cannot be

inferred between neurons where the spike train’s peak cross-correlation bin does not exceed

the Brillinger threshold (Brillinger, 1979). The result of clustering can therefore be

represented as a series of dendrograms and un-clustered spike trains which did not show a

significantly strong correlation signal to be clustered together.

The final output of the cross correlation and clustering algorithm is two JSON encoded

data files:

Chapter 10: The i-Grid Visualisation

Page | 155

1. The detailed cross-correlation results encoding all cross-correlation bins for all

recorded spike trains as per Figure 10-4. This data will be used to produce the

classical iGrid representation.

2. A clustering file containing a series of dendrograms (and un-clustered spike

trains) which will be used to provide both an overview of the dataset and a

means to control filtering of spike trains into / out of the detailed iGrid view.

These two files and the original spike train recordings themselves are passed to the

iGrid visualisation module.

10.3 Scaling the iGrid Visualisation

Addressing the pure computational challenges to cross-correlate spike train data using

a cross platform program that scales to use all available resources is challenging. These

issues are however primarily technical in nature and can be overcome with time and effort.

The final goal however is to make the data available to the user to explore using visual

analytics where the majority of the “heavy lifting” is performed by the users’ visual systems

with only limited cognitive effort. In iGrid’s case the primary barrier to this is one of

information overload. This is easily demonstrated by taking the 2000 spike train recording

used in testing the cross-correlation algorithm and considering the iGrid display that would

result from its visualisation.

Representing the 2,000 spike train data set as a cross-correlation grid would require

the display of 4,000,000 individual grid cells. Typically a modern high resolution monitor

operates at resolutions of 1920 x 1080 pixels. This provides a display of 2,073,600 pixels or

51.84% of a 4,000,000 cell grid. While this comparison clearly shows that such a grid cannot

be displayed the selection of a single pixel to represent a data point is inappropriate because:

1. The modern high resolution monitor deliberately employs a resolution were the

individual pixels cannot be appreciated as separate entities in the human visual

system.

2. It would be impractical to dedicate the entire screen to the grid display as this would

leave no room for the provision of interactive controls that would facilitate user control

to overview, filter and extract selected detail from the visualisation.

To successfully allow the visual exploration of a spike train cross correlation dataset

these issues must be addressed. The approach adopted in the implemented solution is to

demote the grid representation from its position of providing the overview, filtering and

detailed data delivery. Instead the grid will focus on the delivery of detailed data a role in

which it excels. Responsibility for the provision of the overview and filtering of data will

however be removed from the grid and re-allocated to a series of dendrogram visualisations.

Each cluster generated in the data analysis phase will form a dendrogram providing the user

with an overview of the identified clusters within the data set. Spike trains that exhibited no

significant cross-correlation (and which are therefore not clustered) will be reported

separately. The individual nodes of the dendrogram will be interactive allowing the user to

expand or collapse individual dendrograms or sub-sections / sub-trees of a dendrogram. By

this means filtering of the spike trains included in the iGrid cross-correlation plot will be

achieved.

Chapter 10: The i-Grid Visualisation

Page | 156

Despite the re-allocation of the overview and filtering roles to the dendrogram

visualisation it is anticipated that the number of spike trains displayed will remain quite large

in any significant sized data set. Instead of limiting the iGrid display to the available screen

space a “viewport” approach was adopted where the grid visualisation is generated on a

virtual screen space of potentially infinite extent (within the constraints of available system

memory). This allows the visualisation to ensure that each cell of the cross correlation grid is

rendered at a size that allows the human visual system to effectively process its relationship

to other nearby spike trains. On screen presentation is via a viewport that shows a

conveniently sized section of the rendered grid. Scroll bars and in viewport labelling is used

to maintain the users overall awareness of position within the data set.

While iGrid itself provides a detailed visual representation of the relationships between

the spike trains and spike train clusters it does not represent the “most detailed view

available”. That of course is the cross correlation data itself that was used to generate the

grid. This data is traditionally represented as a histogram plot of the cross-correlation bins

generated from the raw spike train data. Previous implementations have provided these as

pop-up graphs or via replacement of the iGrid cell with a glyph representing the major peaks

of the histogram (those surpassing the Brillinger threshold). In each case the resulting

histogram is visually small and difficult for the user to process without significant cognitive

effort. The new implementation extends the viewport concept to the cross-correlation

histogram. The iGrid viewport is dynamically resizable by the user allowing them to control

the screen space dedicated to the iGrid representation. The remaining screen space is

dedicated to the presentation of the cross-correlation data in its most basic form – the cross

correlation histogram. This allows the user to directly control the display space for iGrid and

the cross-correlation histogram. As the user explores the data set they will at different times

assign different levels of importance to the iGrid vs histogram representations. The ability to

visually resize the two viewports allows the user to visually place greater importance on one

or both of the visualisations. Taken together these features implement the Visual

Information-Seeking Mantra of overview first, zoom and filter with details on demand.

Figure 10-6 and Figure 10-7 show the visual effect of this approach. In Figure 10-6 a data

set of 20 spike trains has been rendered as a cross correlation grid with a supporting

histogram. Greater visual emphasis has been placed on the entire data set as represented

by the grid but the histogram shows an interesting feature – two significant cross correlation

peaks. Figure 10-7 presents the same data but this time greater emphasis has been placed

on the cross correlation histogram by enlarging the viewport to half the screen size. Despite

this the correlation grid is still clearly visible, a vertical scroll bar has been added avoiding

compressing the grid display to an unusable degree but still showing the interesting cross-

correlation and the cluster of spike trains that it is part of.

Chapter 10: The i-Grid Visualisation

Page | 157

Figure 10-6: iGrid visualisation with cross correlation histogram for neuron spike trains 1 and 7. The red
bar denotes the peak cross-correlation value used for the iGrid representation.

Figure 10-7: Resized iGrid visualisation & cross correlation histogram placing greater emphasis on the
detailed histogram while retaining awareness of its place in the correlation grid. The red bar denotes the

peak cross-correlation value used for the iGrid representation.

10.4 The Dendrogram Visualisation

The second component of the revised iGrid implementation is the dendrogram display.

This display will serve as both an overview of the data set and a means of filtering it before

rendering of the cross correlation grid. At its most basic a dendrogram is a directed graph

(also known as a digraph) composed of nodes (or vertices) and edges (Bondy & Murty,

1976). The connecting edges between nodes have direction and navigation between nodes

Chapter 10: The i-Grid Visualisation

Page | 158

is restricted to the edges direction. Together these are arranged in a tree structure with

filtering being achieved by expanding / collapsing various branches of the tree. Directed

graphs can be further categorised as cyclic or acyclic based on whether navigation through

the tree along the directed edges permits a return to a previously visited node / vertex (cyclic

if it does or acyclic if it does not). Whether a cyclic or acyclic dendrogram will arise is

dependent on the clustering algorithm selected. In the case of an agglomerative clustering

algorithm an acyclic dendrogram will arise as spike trains and clusters of spike trains merge

to form ever larger groupings. The implemented clustering algorithm terminates when no

significant cross correlation peak between the remaining clusters exists. These unrelated

clusters then form the root nodes of potentially several directed acyclic rooted trees or

arborescence’s (Gordon & McMahon, 1989). The final presented dendrogram is, therefore,

technically defined as an acyclic directed multi-tree – or forest - in graph theory. The

agglomerative clustering approach also imparts the properties of a k-nary tree with k = 2.

Such trees are known in computer science as binary trees and have been used for the

efficient storage, searching and sorting of data (Garnier & Taylor, 2009). Indeed this concept

was presented in Chapter 8 as an efficient data structure for the storage and manipulation of

long duration neuron spike train recordings. K-nary trees have also seen regular use as a

visualisation tool especially in computer science. The dependencies between software

packages in a modern large-scale object orientated program should be visualised as a

directed acyclic graph (DAG) – the acyclic dependencies principle (ADP) (Martin, 1996). The

inability to visualise the software applications structure as a directed graph free of cycles is

indicative of a poor high level design.

Clearly then the dendrogram as an acyclic directed graph is a well-studied area and in

implementing the dendrogram for iGrid the developers first sought for an existing

visualisation framework which could be leveraged to provide the foundation for iGrid’s

overview and filtering dendrogram. The key requirements were:

1. The framework must integrate with the existing visualisation components and the

underlying data model.

2. The cross-platform support requirements of the project must be respected

3. Ideally the framework would provide base implementations for:

a. Vertices / Nodes

b. Directed Edges

c. The formation of rooted tree structures (K-nary trees)

d. The management of multi-tree structures as a single “forest”

e. Presentation of (a)-(d) as a directed acyclic graph (DAG)

4. The framework would have to be extensible so that it could be adapted to the

spike train data as required.

5. Has a permissive free software license that imposes minimal restrictions on re-

distribution

No framework was found that provided all of the required features however the

developers selected the Java Universal Network / Graph framework (the JUNG framework)

as the foundation on which the dendrogram visualisation should be built (Madadhain J. et al.,

2005). The reasoning for this choice was as follows:

Chapter 10: The i-Grid Visualisation

Page | 159

1. The JUNG framework is implemented in the Java language facilitating integration

of the existing Java based data model and the developed iGrid & cross-

correlation histogram views.

2. The Java language provides the cross platform support needed in a manner

consistent with the rest of the project.

3. JUNG was developed using abstract graph theory as its guide. Extensive use

was made of Java Generics when modelling nodes / vertices and edges. This

permitted the development of various wrapper, adapter and decorator classes

(Gamma et al., 1994) to be developed that allowed components of the existing

data model to become components of the JUNG graph.

4. A suitable foundation graph class (DirectedSparseGraph) is pre-implemented.

5. The JUNG framework is distributed under the permissive Berkeley Software

Distribution (BSD) license.

Despite meeting many of the criteria a number of issues remained unaddressed by the

JUNG framework.

1. While the concept of a directed graph was supported the framework did not

include any native support for acyclic graphs.

2. As a consequence of (1) no layout manager existed for rendering a directed

acyclic graph as a dendrogram. Indeed no dendrogram layout manager existed at

all with directed graphs being rendered as “networks” with no consideration given

to presentation as dendrogram trees with “roots” and “leaves”.

3. While being designed from conception to be extensible (open source) and

adaptable (via Java generics) the framework is not particularly well documented

with largely incomplete online Java doc. This lead to extensive code reviews of

online implementation examples and a steep learning curve.

Production of the final iGrid overview and filtering dendrogram therefore involved a

significant development effort that included:

1. the extension of the JUNG frameworks DirectedSparseGraph to support a “forest”

of directed acyclic rooted tree’s

2. The extension of JUNG’s base tree classes to support acyclic rooted trees

3. The implementation of a JUNG dendrogram layout manager that supports

rendering multiple dendrograms to provide the base visualisation for the forest.

4. The development of various wrapper, adapter and decorator classes to bridge

between the visualisation framework, underlying data model and the iGrid

visualisation that would be filtered by the users interactions with the dendrogram.

5. Creation of a visual encoding for representing two different structures within the

dendrogram. The visible leaves of the dendrogram trees represented the raw

spike train data that would be included on the iGrid visualisation. The other nodes

/ vertices represented clusters of spike trains and at higher levels of the

dendrogram clusters of clusters of spike trains.

Chapter 10: The i-Grid Visualisation

Page | 160

10.4.1 The dendrograms visual encoding scheme

 While most of the issues faced were purely technical in nature the selection and

implementation of a suitable visual representation of the spike train data set is critical to the

success of the dendrogram visualisation. The glyphs used and the meaning attached are

summarised in Figure 10-8.

Glyph Meaning and selection rational

Denotes a single spike train recording in the raw
dataset. Visually a single neuron easily identifiable
from soma and dendrite representation.

A

B

Denotes a cluster of spike trains. Visually a series
of cell like bodies grouped into a single entity. The
primary role of the dendrogram will be to filter the
spike trains included in the iGrid visualisation.
Therefore this glyph may appear in two states:

A. Collapsed with all constituent spike trains
filtered out of the iGrid visualisation.

B. Expanded with constituent spike trains
filtered in or out of the iGrid visualisation
based on their own states.

These states provide coarse grained filtering of the
data set by including or excluding entire clusters of
spike train recordings.

A

B

C

The “selected” glyph identifies nodes of the
dendrogram tree that will be affected by the next
user operation. A semi-transparent icon (A) that can
be merged with other glyphs such as the individual
spike train (B) or the cluster icon (C) to denote user
selection.

Denotes a single spike train recording in the raw
dataset that has been excluded from the iGrid
visualisation regardless of the status of any cluster
it is part of. This permits finer grained filtering
control which allows the filtering of individual cluster
members. Variation of the “No Entry” traffic symbol
to denote that the iGrid cross-correlation entry has
been removed from the visualisation.

Figure 10-8: iGrid dendrogram overview visual encoding scheme

While the dendrogram is a “forest” of individual dendrogram trees it is presented as a

series of views targeting individual components of the forest. Within the forest there are

essentially two types of spike train collections:

1. A true cluster of multiple spike trains presented as a series of collapsible /

expandable nodes that ultimately represent a set of interconnected neurons.

2. A “cluster” of one spike train that shows no significant correlation in its spiking

pattern with any other spike train recording.

Given this it is logical to present three views into the dendrogram dataset:

1. The “forest view” which presents the spike trains that show significant cross

correlations as dendrogram tree. Each cluster identified in the data set will form

Chapter 10: The i-Grid Visualisation

Page | 161

one tree in the forest. Collapsing / expanding nodes will allow that cluster or

part of the cluster to be filtered out of / or into iGrid’s primary display.

2. An “un-clustered view” presenting the spike trains that showed no significant

correlation with the other members of the data set. These potentially less

interesting spike trains can be filtered out of / or into iGrid’s primary display as

a group or individually.

3. An “Overview” presenting all members of the data set. Un-clustered spike

trains + root nodes of the forest trees form the top level of this view. The forest

trees are then expanded / collapsed in a manner similar to navigating files and

folders in a “windows explorer” style view. This the user to explore the data set

as a whole to make decisions on filtering data.

10.4.2 The dendrogram “forest” view

The forest view is where the user will spend the majority of their time when

overviewing the spike train clusters identified in the dataset. Figure 10-9 shows a small

dataset of 20 spike trains. A total of two major clusters have been identified and presented

in order of complexity.

Figure 10-9: A "forest" composed of two trees

Chapter 10: The i-Grid Visualisation

Page | 162

 Cluster 1 is by far the more complex, containing 16 of the data sets 20 spike trains

(80% of the recorded data). The result is an 8 level rooted tree with a large number of sub

clusters. Figure 10-10 shows some of those sub clusters; spike trains 4 and 11 form “cluster

2” while 3 and 19 forms “cluster 3”. Both of these clusters show a strong cross correlation

signal between their members creating “cluster 4”.

Figure 10-10: Spike train dendrogram collapsed and filtered to show a sub-cluster

 In addition to the four clustered spike trains we can see that progressively weaker

(but still significant) cross-correlations exist with spike trains 12, 10, 16 and 5. Initially these

have been filtered out to focus on the stronger relationship between spike trains 4, 11, 3 and

19. Figure 10-11 presents the filtered iGrid for these four spike trains. Clearly strong

relationships are expected between spike trains 4 and 11 and spike trains 3 and 19.

Inspection of Figure 10-11 also shows a strong signal between spike trains 3 and 11. This

signal is clearly visible in the cross-correlogram (see Figure 10-12) with spike train 11

Chapter 10: The i-Grid Visualisation

Page | 163

recording activity at 10ms in advance of spike train 3. The normalised bin count of 12.329

indicates a strong correlation and hence it can be inferred that the connection between the

two sub clusters is via spike train 3.

Figure 10-11: Filtered iGrid for spike trains 4, 11 and 3, 19

Chapter 10: The i-Grid Visualisation

Page | 164

Figure 10-12: Cross-correlation chart for spike trains 3 and 11

Chapter 10: The i-Grid Visualisation

Page | 165

 The analysis has again been completed entirely using the researcher’s visual cortex

while applying the Visual Information Seeking Mantra of Overview first, Zoom and Filter,

Details on demand. The result is to identify that the spike trains 3, 4, 11 and 19 form the

structure shown in Figure 10-13. Since a simulated neural network was used to test the

implementation this structure can be contrasted with the actual network shown in

Figure 10-14. While the analysis has been focused on only 4 of the spike trains in two sub

clusters the connections have been successfully mapped for the section of the network

examined.

Figure 10-13: Predicted inter-neuron connections

Figure 10-14: Actual simulated neural network connections

 The next step would be to expand the analysis to take in the other clustered spike

trains which were filtered out in Figure 10-10 (spike trains 5, 10, 12 and 16). As the actual

Chapter 10: The i-Grid Visualisation

Page | 166

network structure is available in Figure 10-14it is also possible to work in the other direction

and make predictions about what the visualisations should show. For example I have not

connected spike trains 11 and 19 in the first stage analysis. The actual network contains an

indirect connection between these nodes via spike trains 19 to 3 to 12 to 10 to 11. Hence the

prediction that a weak cross correlation signal should exist between spike train 11 and 19

can be made (while connected the connection is very indirect). Examination of the iGrid

representation in Figure 10-11 does seem to indicate a weak signal. If the network structure

was unknown this weak signal would be the logical point to begin expanding the network

map. Figure 10-15 presents the cross-correlogram for spike trains 11 / 19 which shows a

normalised peak of 3.6386 at -1ms – weak compared to the peak of 12.329 seen between

spike trains 3 and 11 but still significant.

Chapter 10: The i-Grid Visualisation

Page | 167

Figure 10-15: Cross-correlogram for spike trains 11 and 19 showing the weak but statistically significant
signal (i.e. in excess of the Brillinger threshold).

Chapter 10: The i-Grid Visualisation

Page | 168

 Introducing the previously excluded spike trains generates the iGrid representation

shown in Figure 10-16.

Figure 10-16: iGrid visualisation for the second step of neural network mapping

Here it is possible to see the all of the spike trains involved in the 19 to 3 to 12 to 10 to

11 chain and to observe that they show significant activity between each other. Examination

of their cross-correlations would indeed permit the mapping of the 19 to 3 to 12 to 10 to 11

spike train connection.

In this manner it is possible to rapidly identify both direct and indirect connectivity

between spike trains in a data set using a purely visual examination of the dendrogram

forest and its supporting views.

10.4.3 The dendrogram “un-clustered view”

Inevitably in any data set some of the recorded spike trains will show no significant

cross correlation with other members. In this case the selected agglomerative clustering

algorithm will produce a “cluster” of only a single spike train. Using the previous example

data set this was true for spike trains 6 and 14 (see Figure 10-14). While of course they are

a part of the dataset it is most likely that the user will want to filter these out of the display as

they should not form a part of any connectivity map. Rather than present these with

clustered spike trains by creating a one spike train tree in the dendrogram forest these spike

trains have been provided with a dedicated view. This allows the user to work with these

items as a collection in their own right (even though they do not form a rooted tree). The

most common decision will be to make a filtering decision (in / out) for this group. A viewport

is again used to present this view immediately to the right of the primary dendrogram forest.

Figure 10-17 shows this group with the individual spike trains filtered out of iGrid as they

were in the previous example.

Chapter 10: The i-Grid Visualisation

Page | 169

Figure 10-17: The "Un-clustered view" with the spike trains filtered out from iGrid

10.4.4 The dataset’s “Overview” view

 The presentation of the dataset as a forest of rooted trees provides an overview

when no part of the tree has been collapsed. However as sections are hidden it is possible

that the user will lose awareness of all the relationships within the dendrogram trees. This is,

of course, expected as the point of collapsing these sections is to ease the cognitive load on

the user. However no matter how far the user “drills down” into the dataset a time will come

when they wish to return to the “higher” overview. Maintaining awareness of the overall

dataset structure and the user’s position within it is important. To permit this a windows

explorer style view independent from the filtering performed by the primary forest view is

provided. This view permits the user to examine the clustering applied to any portion of the

dataset without changing the configuration of the filters applied to the iGrid view. Primarily, it

provides a planning tool where the user can identify candidate spike trains for inclusion in

the next stage of the analysis. Figure 10-18 shows the fully expanded explorer tree view for

the test dataset used in the previous examples.

Chapter 10: The i-Grid Visualisation

Page | 170

Figure 10-18: Fully expanded overview showing the test data sets structure.

Chapter 11: The i-Animate Visualisation

Summary
This chapter describes the i-Animate visualisation which provides a visual representation of
the multi-electrode array used to simultaneously record multiple spike trains from a biological
sample.

Chapter 11

The i-Animate Visualisation

“microelectrode noun. A minute electrode; especially: one that is inserted in a living biological cell or

tissue in studying its electrical characteristics”

Chapter 11: The i-Animate Visualisation

Page | 172

11 Overview of the i-Animate Visualisation

Within neuroscience the primary means of recording and studying the electrical

signals exchanged between interconnected neurons has been through arrays of

microelectrodes (MEA’s) inserted into a biological sample (either in-vitro in a

laboratory setting or in-vivo where the array is inserted into a living biological

organism). Data processing within a neural network depends on the connections

between individual neurons. Hence it is connected clusters of neurons that form the

data processing centres of biological organisms. In chapter 10 the i-Grid visualisation

provided a mathematical (i.e. statistical) method for the identification of connectivity

and clustering within a spike train sample. However as technology advances and it

becomes possible to record thousands of individual spike trains in real time another,

more visual based approach becomes possible. It has long been know that large

groups of connected neurons (i.e. clusters) can exhibit many different patterns of

activity when they are stimulated. Examples include:

 Waves of activity that pass across the recorded cluster(s).

 Inhibition where the activation of one region suppresses activation in

another region.

 Simultaneous activation where the activation of one region triggers

activation in another region.

 Long range connection neurons which “forward” activity in one region to

what appears at first to be a completely different region of the neural

network.

Historically recording these forms of activity between individual neurons has not

been possible. On the coarser level of neuron clusters however the signal grows

strong enough to record. Recordings of “brain waves” in humans was achieved by

Hans Berger in 1924 (Millet, 2002; Swartza & Goldensohn, 1998), the inventor of

electroencephalography, and are known as EEG’s. Through the application of this

science it has been possible to map the regions of the human brain and their

associated functions.

Advances in MEA technology have recently allowed the recording of large

numbers of neural spike trains in sufficient quantities to apply these techniques at

the finer scale of inter-neuron connectivity. Stimulation of a neural network can be

achieved in many different ways and is possible in both in-vitro and in-vivo. Photo

sensitive neural networks such as a retina can be stimulated with light. Chemical

stimulation is another common practice. Electrical stimulation is possible through a

recording MEA (though this is rare, most MEA’s are passive recording devices). In

some cases stimulation may not be necessary as the neural network exhibits

spontaneous activity (for example spontaneous activity is always present when

recording from an immature piece of the central nervous system). This immediately

suggests a visualisation in which each recording electrode “glows” when it detects a

Chapter 11: The i-Animate Visualisation

Page | 173

spiking event and then “cools” over a short time period. Collectively by manipulating

the “cooling” period it becomes possible to see clusters of activating neurons. The i-

Animate visualisation provides the means to generate this representation of a spike

train data set.

11.1 Goals of the i-Animate Visualisation

The i-Animate visualisation was created to meet the following key goals.

I. To create a visualisation were the human visual system is used to

identify interconnected neurons and clusters as an alternative to

mathematically based cross correlation.

II. The increased length of modern spike train recordings facilitates (i) as

the human visual system is more sensitive to identification of changes

over time. This provides another tool for exploration of the data set.

III. Visualisation of the MEA grid provides a means to employ heat maps to

exploit the human visual system. This facilitates the visual identification

of active regions of the array and provides another means of identifying

spike trains worthy of further analysis in i-Raster or i-Grid.

11.2 Basic implementation details

Figure 11-1 shows the primary interface to the i-Animate display with the key features

labelled.

Figure 11-1: Primary i-Animate controls

 In addition a set of simple animation controls are provided to play / pause the

animation of the MEA grid activity and accelerate / decelerate the rate of playback. The File

menu provides the option to save the current activity display. Finally long recordings can be

time filtered using a timeline bar. Figure 11-2 details these controls.

Chapter 11: The i-Animate Visualisation

Page | 174

Figure 11-2: i-Animate time and time filtering controls

 The central area of the i-Animate display is given over to the representation of the

MEA grid that recorded the simultaneous spike trains. As the animation plays this area

shows the ever shifting pattern of electrode activation in response to spike detection. Here it

becomes possible to observe neural activity as it spreads from neuron to neuron and

electrode to electrode. Two primary overlays can be applied to this area to present additional

information:

I. The MEA Grid – Accessed via the toolbar button this overlay highlights each

electrode which recorded spike train data over the course of the recording. It is used

to identify those areas of the MEA grid that show activity.

II. The heat map – Accessed via the toolbar button the heat map overlay operates in

one of three modes:

a. Off / Deactivated – – The initial mode were the electrode activity animation

plays without any heat map data being overlaid.

b. Grayscale Heat Map – – In this mode each cell of the MEA Grid is

assigned a greyscale value reflecting the total amount of spiking activity

recorded in the active time sequence. Grayscale is the preferred operating

mode for the heat map as it has been shown that the human visual system is

most sensitive to changes in luminance rather than changes in hue.

c. Colour Heat Map – – Despite having known drawbacks colour heat maps

such as the classic rainbow heat map remain a popular. Therefore a colour

heat map mode is also provided.

It is difficult to present information extracted from an animation in a static context. As

previously observed it is the change over time that the human visual system is sensitive to

rather than static displays. Figure 11-3 to Figure 11-6 attempts to show a classic sequence

of spike train activity being triggered and how this spreads as a wave to three clusters of

neurons that ‘process’ the stimulation. The screenshots show major events in the following

order:

Chapter 11: The i-Animate Visualisation

Page | 175

Time point Comment Diagram

203770 ms Initial cluster of activation is visible Figure 11-3

207990 ms Wave front expanding away from initial activation Figure 11-4

211198 ms Wave front has split into three clusters of activity Figure 11-5

215906 ms Activity ceases in the three clusters Figure 11-6
Table 11-1: Spike train activation in response to neural network stimulation

 The total time period from initial activation of the neural network to its return to a

quiescent background state is 12.136 seconds. Only the key static screenshots can be

presented on paper but the animation can be verbally described.

I. At 203.77 seconds into the spike train recording a ‘burst’ of activity begins in the MEA

region highlighted in Figure 11-3

II. Over the next 4.22 seconds a ‘wave’ of neural spiking events forms and begins to

spread out through the network. This wave begins to break into three clusters of

activity (Figure 11-4).

III. Over the next 3.208 seconds the wave breaks up into three distinct clusters that

exhibit highly elevated spiking frequency as these regions ‘process’ the stimulation

event (Figure 11-5).

IV. Finally over the last 4.708 seconds the spiking frequency in the activated neural

clusters falls off and returns to levels characteristic of the network before the

stimulating event (Figure 11-6).

Figure 11-3: Stimulation event triggers initial response from the neural network

Chapter 11: The i-Animate Visualisation

Page | 176

Figure 11-4: A wave of neural activity has formed and is spreading through the network

Figure 11-5: The wave's passage activates three neuron clusters which exhibit a period of intense spiking
activity

Figure 11-6: By approximately 12 seconds after the stimulating event the nextwork has returned its
unstimulated state

Chapter 11: The i-Animate Visualisation

Page | 177

11.3 The information overlay options in i-Animate.

While i-Animates primary display is focused on the presentation of changes in spike

patterns and frequency a set of graphical overlays provides additional information. The MEA

grid overlay provides a quick means to identify the active areas of the recording array were

spiking events where detected. The collection of heat map overlays provides a means to

identify the most active areas both over the entire recording or time filtered segments of it.

11.3.1 The MEA grid overlay.

This overlay provides a rapid means to identify the areas of the multi-electrode array

that detected spiking events during the course of the recording. In Figure 11-7 the wave front

seen in Figure 11-4 has been overlaid with the MEA grid. The wave is clearly moving

through the most active region of the network over the course of the recording.

Figure 11-7: A wave of neural spiking activity moving through the neural networks most active region.

 The MEA grid provides the highest level overview of the recording. It is useful to

rapidly identify relatively isolated clusters of potentially interconnected neurons such as the

groups highlighted in Figure 11-8 below. However in regions were spiking activity is high

across many neurons it becomes impossible to visually identify cluster with this high level

overview. This drawback is addressed through the introduction of heat maps (see next

section).

Figure 11-8: MEA Grid showing isolated clusters of active neurons and densely packed regions of active
clusters.

Chapter 11: The i-Animate Visualisation

Page | 178

 It should be noted that the apparent gaps or “black” areas does not imply an absence

of neurons or even that the neurons did not produce spiking activity. One of the primary

challenges of making MEA recordings is to ensure good electrical connectivity across the

tissue sample being recorded from. These regions may simply indicate areas of poor

connectivity between the sample and the recording electrodes.

11.3.2 The Heat map overlay selection.

To provide more detailed information on the recorded spiking activity (particularly in

recordings with densely packed active clusters) i-Animate provides a series of time filterable

heat map overlays. These heat maps permit a detailed visual examination of recorded

spiking activity both for the entire recording or if time filtered for a segment of it. The heat

map is rendered atop the display of individual spiking events and by default is 30%

transparent permitting both displays to be viewed together. The user may right click the heat

map toolbar button to adjust the transparency level from 0% to 100%. This provides options

to view the heat map overlay with or without the spiking event animation and when viewing

both to find a comfortable level for the user.

A selection of heat map algorithms are provided as no single algorithm has proven

consistently useful for all types of data (or even the different data sets of the same data type).

An analysis of common heat map choices in the field of scientific visualisation showed that

the rainbow colour map (see Figure 11-9) was by far the most used (Borland & Taylor II,

2007). This heat map colour space was the default used by 8 out of 9 visualisation toolkits

examined by Borland and Taylor. An analysis of the published IEEE Visualisation papers

showed it was used 51% of the time (Moreland, 2009a).

Figure 11-9: The classic rainbow colour map. (Moreland, 2009a)

 Despite its dominance research has demonstrated that the rainbow colour map is

almost certainly a poor choice for almost all forms of scientific data visualisation (Moreland,

2009a; Ware, 2012). The majority of the rainbow colour maps failings can be traced to the

fact that it is “based on the colours of light at different wavelengths, the rainbow colour map’s

design has nothing to do with how humans perceive colour” (Moreland, 2009a). The key

failings identified by Moreland are:

1. Colours do not have a natural ordering unlike grayscale colours. “Perceptual

experiments show that although a test subject with no prior training will always order

grayscale colours in order of luminance (in one direction or the other), the test

subjects will order rainbow colours in numerous different ways” (Moreland, 2009a;

Ware, 2012).

2. The degree of colour change perceived across the rainbow map is not a

constant. As can be seen in Figure 11-9 there is little change in colour across the

blue, green and red areas while the colour change becomes far more rapid in the

cyan and yellow areas producing a distinct “band” in these sections. Called Mach

bands these visual artefacts obfuscates real data and can hide important data

(Borland & Taylor II, 2007).

3. Viewers with colour deficiencies cannot distinguish many colours considered

“far apart” in the rainbow colour map. Roughly 5% of the population cannot

Chapter 11: The i-Animate Visualisation

Page | 179

distinguish between red and green in the classic rainbow colour scheme. More

generally users with colour deficient vision often cannot distinguish colour “far apart”

on the spectrum. This leads to severe miss-interpretation were radically different data

values are perceived as being the same (Light & Bartlein, 2004).

To address these failing Moreland proposes that a colour map should result in the

generation of heat maps that have the following key features:

1. The map yields images that are aesthetically pleasing.

2. The map has a maximal perceptual resolution.

3. Interference with the shading of 3D surfaces is minimal.

4. The map is not sensitive to vision deficiencies.

5. The order of the colours should be intuitively the same for all people.

6. The perceptual interpolation matches the underlying scalars of the map.

While points 2-6 are grounded firmly in scientific reasoning Moreland considers point

1, that the heat map should be aesthetically pleasing, to remain important as users will often

select the visual tool to use based on its appearance.

Given Moreland’s criteria i-Animate provides three heat map colour schemes:

1. A greyscale heat map – This scheme naturally meets the majority of

Moreland’s criteria with the exception of point 1 in that it does not appear

particularly aesthetically pleasing.

2. A rainbow heat map – Despite its demonstrated shortcomings the rainbow

heat map remains popular and its omission would be seen by some as a

failure. Hence it has been included despite the known drawbacks. While it

satisfies point 1 of Moreland’s criteria it fails to meet the other criteria.

3. Moreland proposes that a diverging colour heat map that moves from “cool

to warm” colour regions is most suited to scientific visualisation. The cool to

warm colours introduce to the divergent colour map a “natural” ordering of

colours; Moreland argues that in all other respects the classic divergent

colour map meets his criteria. Moreland’s divergent colour map is i-Animate’s

third heat map option.

Chapter 11: The i-Animate Visualisation

Page | 180

Figure 11-10 shows the heat map colour scheme recommended by Moreland and

Figure 11-11 shows its application to geographic data as Moreland presented it in his paper

to illustrate its effectiveness along with the RGB values that normalised values (0 to 1) would

map too.

Figure 11-10: Divergent colour map for scientific visualisation

Normalised scalar values to RGB mapping Geo-spacial data visualised using Moreland’s
colour scheme

Figure 11-11: Moreland's colour space applied to geo-spacial data along with its RGB colour mapping for

normalised scalar values. (Moreland, 2009b)

 It is hoped that by providing a wide choice of colour schemes for the heat map

function i-Animate will provide sufficient choice to all users while encouraging the use of the

most effective scientific techniques.

Chapter 11: The i-Animate Visualisation

Page | 181

11.3.3 Implemented heat maps in the i-Animate visualisation.

This section presents the three implemented heat map colour schemes and the

associated i-Animate render for the control data set of 1411 spike trains recorded over 30

minutes.

Heat map colour scheme Heat map applied to control data set

Grayscale heat map

Rainbow heat map

Divergent colour map – Moreland

Table 11-2: I-Animate's heat map colour schemes in action

 As can be seen from Table 11-2 the three implemented heat maps provide markedly

different views of the same data set. In each view it is clear that there are key, highly active

spike trains. The grayscale colour scheme is the least effective of the three with little

structure apparent beyond the most active recording electrodes. The rainbow heat map

reveals more structure and permits the identification of active regions that are likely to form

clusters in any cross correlation analysis. Moreland’s divergent colour scheme is however

markedly more effective with many of the clusters that merged to form densely packed active

areas becoming visible.

Chapter 12: Evaluation and the Way Forward

Summary
This chapter evaluates what has been achieved through this work and where the research
may progress in the future.

Chapter 12

Evaluation and the Way Forward

Chapter 12: Evaluation and the Way Forward

Page | 183

12 Conclusions

This chapter reviews the research and the contributions it has made, there is a

discussion of future work, and finally, the achievements in the context of the original

research question.

12.1 Contributions

This section reviews the various contributions made by the thesis’s software

project. The software draws from the three primary fields of neuroscience, software

engineering and data visualisation uniting aspects of all three to produce an

extensible software tool for the analysis neural spike train recordings.

12.1.1 The Visualisation Studio (i-Pipeline)

The visualisation studio exploits the “pipelining” introduced by dataflow / visual

programming languages to create pipelines of data processing activities. These

pipelines process raw data into a form suitable for visualisation. The modern

computer increasingly delivers its computational power through multi-core

processors. To fully utilise this power a modern software application must be written

in a parallel form with units of work being performed by multiple compute cores. The

pipelines produced by dataflow programing are amenable to paralysation permitting

efficient execution of data processing activities in a multi-core environment.

Visual programming of a data processing pipeline also permits a researcher to

rapidly introduce, remove or re-order data processing activities to make the

processed data set more amenable to analysis. Visual analysis of the final data set is

the preferred approach and the visualisation studio provides tools to facilitate big

data analytics.

While this research has demonstrated the effectiveness of the visualisation

studio using neuroscience data the framework itself is generic and can be applied to

almost any field of research.

This research has also served to demonstrate that the researcher’s typical

desktop / laptop computer has the potential to be utilised far more effectively. A great

deal of its computational power is wasted when traditionally developed software is

used for data processing and analysis. This is most clearly demonstrated by the

visualisations produced which now handle thousands and not hundreds of spike

trains while remaining highly interactive.

12.1.2 The Neural Science Problem Domain Library (i-Pipeline)

The creation of the Visualisation studio’s problem domain layer demonstrates

how developers and domain experts working together can create libraries of

algorithms and visualisations. The libraries creator has been left almost completely

free to create a data representation for their problem domain. Any data analysis

algorithm in the problem domain can be “wrapped” into a Visualisation studio

Chapter 12: Evaluation and the Way Forward

Page | 184

process. The process wrapper ensures the simple deployment and incorporation of

the algorithm into a Visualisation studio dataflow pipeline.

Recognition of the modern trend of delivering increased computational power

through a multi-core architecture allows algorithms and visualisations to fully exploit

available compute resources. The implemented problem domain layer demonstrates

this by writing its most computationally expensive algorithm (cross-correlation) in a

way that adapts to available resources. Resources may range from a limited two

core laptop, through a 4-6 core desktop system to a full HPC compute cluster.

Visualisations that apply the techniques of visual analytics have been re-

engineered to also exploit the delivery of increased compute power through multiple

cores. This has allowed visualisation previously limited to presenting hundreds of

spike trains to present thousands while remaining highly interactive. To permit visual

exploration of these large data sets Ben Shneiderman’s Visual Information-Seeking

Mantra of “Overview first, zoom and filter, then details-on-demand” has been applied.

The final result is a significant improvement in the amount of data that can be

processed and effectively visualised on the typical researcher’s computer.

12.1.3 The i-Raster Visualisation

Somerville’s i-Raster visualisation (Somerville et al., 2011) has been re-

engineered. Its many spike train sorting algorithms are now available not only within

the visualisation but as data pre-processing operations in the pipeline. Paralysation

of the visualisations code has been the key to expanding its ability to present

thousands rather than hundreds of spike trains. Grouping of spike train data has

been used to provide an overview of the larger data set and a burst sort and

grouping algorithm introduced. Interactive zoom and filtering tools permit the visual

examination of detail in the spike train data set. Time filtering permits the detailed

examination of a large data set and the generation of multiple (smaller) data sets.

12.1.4 The i-Grid Visualisation

Stuart’s i-Grid visualisation (Stuart, Walter & Borisyuk, 2005) was originally

used to assist researchers in visually identifying clusters of inter-connected neurons

from their spike train recordings. The clustering technique of the original i-Grid has

been expanded to become the foundation of a new “overview” – the cluster

dendrogram. This overview serves to provide a means to zoom and filter i-Grid’s

display, while maintaining a complete overview of the data set.

The computationally expensive component of creating an i-Grid visualisation

is the cross-correlation process. This algorithm has been re-coded to fully exploit the

delivery of compute power through multi-core systems. In addition it has been re-

written to use Message Passing Java (MPJ) allowing it to effectively utilise high

performance compute (HPC) clusters. All of this is wrapped into a Visualisation

studio pipeline process that allows even this complex algorithm to be rapidly used in

any data processing pipeline.

Chapter 12: Evaluation and the Way Forward

Page | 185

12.1.5 The i-Animate Visualisation

 I-Animate is a new visualisation that creates a representation of the modern

(large) multi-electrode array used to simultaneously record spike trains. An animation

of the recorded neuron spiking events over time is providing allowing the researcher

to visually identify potentially connected neurons. Overall and time filtered views of

the electrodes recorded activity levels are available through a selection of heat maps.

Available heat maps range from the classic (but visually ineffective) rainbow heat

map to Moreland’s “Diverging Colour Map for Scientific Visualization”.

12.2 Future Development

The Visualisation Studio and the implemented neuroscience problem domain

library represent a significant change in the way data is processed and visualised.

However modern technology still provides avenues through which greater gains can

be realised. This section examines some of these avenues to advance the data

processing elements and performance of the Visualisation Studio.

12.2.1 Exploitation of high performance GPU hardware

As described in chapter 4 techniques to code applications in a manner that

makes full use of the modern computers multiple compute cores has lagged far

behind the hardware’s ability to deliver increased performance. This research has

insisted that the application generated should make full use of multiple compute

cores as a means of increased performance delivery. This has been taken to its

furthest extreme with the computationally intensive pairwise cross-correlation

calculations on which the i-Grid visualisation is based. The algorithm as implemented

can be run on any computer supporting an MPJ installation from the humble laptop

to the HPC cluster without modification. The algorithm will determine the available

compute cores; assign cross-correlation operations and process results completely

independently from the user. Most users will not have the benefit of access to a HPC

cluster at will. The modern graphics processing unit (GPU) has already

revolutionised the field of interactive data visualisation. Now the computing power of

the graphics card is being opened up to accelerate scientific, analytics, engineering,

consumer, and enterprise applications. This provides even a simple laptop with

access to what is effectively a mini-HPC cluster. Programmatic access to GPU’s is

now available through application programming interfaces (API’s) such as:

 NVIDIA’s Compute Unified Device Architecture (CUDA),

 Khronos groups Open Computing Language (Open CL) and the

 OpenMP Architecture Review Board’s Open Multi-Processing

(OpenMP) API

The Visualisation Studio is a cross platform Java based application entirely

capable of using these tools either through Java bindings or by invoking native code

from Java using the Java Native Interface (JNI). This opens the possibility of using

these mini-HPC clusters, present in almost all modern computers, to perform

complex and computationally intensive data analysis in addition to their more

Chapter 12: Evaluation and the Way Forward

Page | 186

traditional roles in producing interactive displays. The Visualisation Studio could also

optionally implement core components to run in such an environment. The parallel

execution engine would be a prime candidate for such a conversion.

12.2.2 Distributed Computing and Cloud Computing

This research has focused on the production of an application deployed to the

researcher’s desktop. However modern technology affords other options such as

distributed or cloud computing as a means to bring increased compute power to bear

on a problem. The Apache Hadoop framework is an open source Java application to

facilitate the distributed processing of very large data sets. Interfacing the

Visualisation Studio with the Hadoop framework would offer access to HPC scale

compute power even in the absence of a HPC or GPU option.

12.2.3 Application to other problem domains

Finally while the field of neuroscience is used in this research as the primary

problem domain the developed Visualisation Studio application has been designed

from the ground up as a general solution that can be applied to many different

problems. Science and nature are replete with problems that are “embarrassingly

parallel”. Such problems are well suited to the hardware and software tools (such as

the Visualisation Studio) that are now emerging. Alternate problem domains and

computationally intensive tasks which could be the subject of an implementation of

the Visualisation Studio’s problem domain layer might include:

 Financial analysis and reporting.

 Event simulation in particle physics.

 Ensemble calculations of numerical weather prediction.

 Genetic algorithms and many other evolutionary computing techniques.

 Brute-force searches in cryptography.

 Computer simulations comparing many independent scenarios, such as

climate models.

 Fluid Mechanics

12.3 Conclusion

This research began by asking the question “How can Software Engineering

and Visual Analytics be applied to aid the general analysis of scientific data and

specifically current neural spike train data?” The development and testing of the

Visualisation Studio application has shown that:

 Software tools that rely on delivering compute power from a single, ever

faster; CPU can only provide limited interactive data visualisations.

 Software tools that embrace the delivery of compute power through multi-

core hardware and a parallel programming model can offer greatly

enhanced interactive data visualisations.

Chapter 12: Evaluation and the Way Forward

Page | 187

 Practical parallel programming models can emerge from dataflow

programming’s pipeline model and the creation of a visual programming

language (VPL) for the problem domain under study.

 These VPL programs can tackle complex data analysis task while being

efficiently and efficiently executed on modern multi-core computer systems.

 Interactive data visualisations can manage the resulting “big data sets”

even on limited desktop hardware. This is achieved by combining Software

Engineering with the techniques of Visual Analytics. In the case of this

research the amount of data visualised increased by a factor of 10 from

hundreds to thousands of spike trains.

 In future the most effective research will combine the efforts of a multi-

disciplinary team to produce valuable results. At the core of these teams

will be a problem domain expert and a software engineer.

Appendix 1: Creating a new toolbox process

Summary
This appendix serves as a guide for problem domain developers looking to build their own
implementation of the iPipeline problem domain layer. It reviews the creation of a new data
processing algorithm ready for inclusion into a workflows directed graph.

Appendix 1

Appendix 1: Creating a new iPipeline toolbox process

Appendix 1: Creating a new toolbox process

Page | 189

1 Creating iPipeline Toolbox Processes
The primary interface between iPipelines ‘thin’ framework layer and the ‘thick’ problem

domain layer is the iPipeline toolbox. This graphical user interface (GUI) component

provides user access to the problem specific data processing algorithm’s and visualisations.

The iPipeline framework supports extension of the problem domain layer allowing

developers to encapsulate new data processing algorithms and add them to the visual

programing language (VPL). In this appendix the process for encapsulating a new data

analysis algorithm for use in either the input, data processing or output stages of the VPL.

The most common of these three is the creation of a new data processing algorithm;

therefore the appendix focuses on this task. Additional requirements to implement an input

or output process will be detailed at the end.

1.1 Data processing algorithm to segment data by a time window

For the purposes of this appendix a problem domain algorithm requires implementation.

Spike trains are a time ordered sequence of spike events and for this appendix an algorithm

will be implemented that divides a single spike train into multiple time segments. Typically

this would be used to divide a spike train into smaller segments and work with the sub-set of

data. An application might be to take a single recording, divide it into say ten pieces and then

feed this into a burst sort algorithm. This will apply the burst sort algorithm to ten different

points in the original spike train. If the burst sorted segments shows repeating patterns, i.e.

the same neurons fire in sequence, a possible connection can be inferred. Figure 1-1

illustrates the concept of dividing a spike train into multiple time windows each forming a new

data set.

Figure 1-1: Dividing a single spike train recording into ten data sets using a 200ms time window

It is a common technique when analysing neural recordings to divide the spike train

into time windows and examine each for recurring or repeating patterns. More

complex implementations are possible but the purpose of this appendix is to review

how the algorithm is created and integrated into the problem domain layer of

iPipeline. The algorithm will therefore be kept relatively simple to avoid obscuring the

development process with unnecessary detail.

1.2 Planning the algorithm

Chapter 6 section 6.2.1 outlined the points of contact between the iPipeline framework and

the problem domain algorithm(s). Each of them will need to be considered when

implementing the time segmenting algorithm. In summary the points that must be considered

were:

Appendix 1: Creating a new toolbox process

Page | 190

1. The problem domain data model

2. Definition of permitted connections

3. Process settings panel(s)

4. Problem domain specific visual elements

5. The iPipeline toolbox

Each of these sections will be examined in turn and the required resources and Java code

created.

1.2.1 How the problem domain data model is modified by this algorithm

The first and most important task is to identify the changes that the algorithm will make to the

problem domains data model as it ‘flows’ through the VPL’s directed graph. In the case of

time segmenting algorithm it can expect to receive at least one and possibly many

INeuronAssembly objects. In addition to at least one set of raw data the user will have to

provide at least one parameter in the form of the length of the time window. In addition it

would seem sensible to allow the user to assign a new name to each generated sub-set.

This should offer the option to include the time period covered from the original data set so

that the user can maintain context. Additionally the original undivided data set should be

preserved allowing the user to display an ‘overview’ of the entire data set and then switch to

specific time segments when more detail is required. This applies Shneiderman’s information

seeking mantra of overview first, zoom / filter and details on demand to generate a visually

explore able data set.

1.2.2 Permitted connections to / from the time segmenting algorithm

The time segmenting algorithm is a classic data processing task with two potential sources

of data. It can either:

1. Receive a dataset loaded directly from disk or other storage medium.

2. Receive a dataset from data processing algorithms earlier in the directed dataflow

graph.

Equally there are two possible outputs to which it may be connected:

1. It may deliver the data sets it generates to a visualisation (output) module or

2. The data sets may serve as the input to further data processing modules.

1.2.3 Process settings panel(s)

The content required for the user controlled settings can be listed as:

1. A time window value

2. A scheme for naming the generated sub-sets

The time window size will be relatively simple to design – a single double value and a unit of

measure. The user should not have to enter the time value in the same units used to

measure spike times. Conversion between units should be automatic. The developer should

also provide a sensible default value. In this case most spike trains are measured in

milliseconds so this is a sensible unit to use. The ideal default time value is more difficult as

it depends on the data set, task being performed and desired number of sub-sets. For this

implementation a time window of 200ms has been selected to generate ten sub sets.

Appendix 1: Creating a new toolbox process

Page | 191

The implemented process will offer two naming conventions. In either case the user will be

asked to provide a name string to which a second component is appended. The two options

for appending to the name string will be:

1. The period of time covered by the time window that generated the sub set or

2. A numeric value that increments by one for each generated sub set.

In case one the user might provide the name string “Raw Data” and generate a set of names

such as “Raw Data 0ms - 200ms”, “Raw Data 201ms - 400ms”, “Raw Data 401ms - 600ms”

up to “Raw Data 1801ms - 2000ms” for a two second recording. In case two the time value is

replaced with a numeric integer i.e. “Raw Data sub set 1”, “Raw Data sub set 2” up to “Raw

Data sub set 10”.

1.2.4 Creating visual elements

An iPipeline process requires at least three visual elements to be created. These are:

1. A large 50 x 50 pixel graphic used to represent the process as part of the dataflow

directed graph. This image should visually represent the processes operation on the

data set. In the case of the time segmenting algorithm a representation similar to

Figure 1-1 will be created showing a segmented spike train.

2. A small 16 x 16 pixel graphic being a scaled down version of (1) will be needed to

represent the process in the iPipeline toolbox. This image will be composed with the

process symbol to create the toolbox entry for the new process. Normally this can

be generated as a 1/3rd scale version of (1).

3. The process settings panel should be

designed to include the elements

identified in section 1.2.3. A mock up

is shown in Figure 1-2 that addresses

all the required elements that the user

must define.

The final step will be to combine the

1.2.5 The iPipeline Toolbox

The iPipeline toolbox obtains its contents from a Java JAR archive that contains all problem

domain specific code. Essentially this is the developer produced ‘thick’ problem domain layer

of iPipeline. Once the process implementation is complete the JAR archive must be re-built

to include the new process. The process may be summarised as:

1. Implement all required code in the ProcessLibrary.Processes package of the

iPipeline project.

2. Create a Java JAR archive named ‘ProcLib.jar’ that contains all sub-folders of the

iPipeline projects ProcessLibrary folder.

3. Deploy this Java archive along with the iPipeline executable. Optionally you may hide

the file so it is not visible.

Figure 1-2: Time segmenting process setting

panel (mock up)

Appendix 1: Creating a new toolbox process

Page | 192

At start-up iPipeline will scan its executing folder for the ProcLib.jar archive and build the

contents of its toolbox based on the processes and other resources in the archive.

Essentially the archive can be thought of as the problem domain layer of the iPipeline

implementation. Replacing the ProcLib.jar archive allows the problem domain layer to be

changed, i.e. from neuroscience to financial analysis. Obviously creating a new problem

domain layer involves considerable work by a domain expert and coders but once done

reconfiguring to a new problem domain is relatively simple.

For developer convenience the process of preparing the ProcLib.jar archive can be

automated. Simply add the functionality to the ProcessLibrary.Processes package and

execute the LibCreate.bat file to automatically construct the JAR archive.

1.3 Implementing a skeleton data analysis process

This section details the steps required to create a new data analysis process. Examples of

the produced code are shown using the time segmenting algorithm. After adding a new class

to the ProcessLibrary.Processes package have it extend the BaseProcess class. To create a

new data analysis process the following setup work is required:

 Create the code that allows the new process to be deployed from the toolbox. It

would not be normal to modify this code except to change the declaration of the

variable being added to the new class’s name. The relevant points at which to make

the change are shown highlighted in yellow. The standard code snippet is shown in

Figure 1-1:

 public Action getAddWidgetAction() {
 return new AddAction();
 }

 private class AddAction extends AbstractAction {

 @Override
 public void actionPerformed(ActionEvent e) {
 if (MouseDualClickDetector.isDoubleClick()) {
 PipeControl objControl = PipeControl.getInstance();
 if (null != objControl) {
 TimeSegmentingProcess widgetToAdd = new TimeSegmentingProcess();
 objControl.addProcess(widgetToAdd);
 }
 }
 }
 }

Table 1-1: Standard code snippet to add a new process to the iPipeline virtual desktop

 Create the processes standard set of constructor methods. This involves the creation

of the four constructors shown in Figure 1-2. As before the only change that is

required is to the name of the class highlighted in yellow.

Appendix 1: Creating a new toolbox process

Page | 193

//Constructors
 public TimeSegmentingProcess() {
 super();
 }

 public TimeSegmentingProcess(String strNewName) {
 super(strNewName);
 }

 public TimeSegmentingProcess(JDesktopPane objNewDesktop) {
 super(objNewDesktop);
 }

 public TimeSegmentingProcess(String strNewName, JDesktopPane objNewDesktop) {
 super(strNewName, objNewDesktop);
 }

Table 1-2: ‘Standard Process’ constructors’ code snippet

With the above steps completed the new process can be instantiated by the iPipeline

framework and added to a dataflow directed graph. The next steps implement the details of

the algorithm.

 The base process class provides protected class attributes which should be

initialised to define the connectivity and visual appearance of the process widget.

This will require the creation of the visual icons used to represent the process. A

template method with the signature protected void initProcess() is provided by the

base process class. This should be overridden and customised for the algorithm

being implemented. Table 1-3 shows the overridden method with the minimal code

which should be included for all processes.

 protected void initProcess() {
 //The GUI Widget for this class should always be this text.
 this.setProcessName("Time Segment");
 //Setup Icon for parameters (Time segmenting Icon)
 this.icnDisplay = new
ImageIcon(getClass().getResource("/ProcessLibrary/Icons/TimeSegLarge.png"));
 this.icnSettingsCog = new
ImageIconAnimated(getClass().getResource("/ProcessLibrary/Icons/TimeSegLarge.png"));
 //Specify Connections
 this.icnParent = IconFactory.getInstance().getConnectorIcon(ConnectorType.CON110);
 this.icnChild = IconFactory.getInstance().getConnectorIcon(ConnectorType.CON011);
 //Setup Menu Display Name and ImageIcon
 this.strDisplayName = "Time Segment";
 //Setup Other Attributes here
 }

Table 1-3: Minimal process initialisation code for the initProcess template method.

The initialisation code achieves three tasks:

1. Provides a process and a display name. The process name is used on the process

GUI widget to identify the process while the strDisplayName attribute is shown in the

toolbox. Normally these are the same but this is not required, it may be useful to

provide a longer more descriptive name for the toolbox.

Appendix 1: Creating a new toolbox process

Page | 194

2. Defines two icons used by the process widget to represent the process. The first of

these (icnDisplay) is used when all parameters have passed validation. The second

(icnSettingsCog) is used when the parameters fail validation. It will be composed with

the rotating cogs icon and displayed as a visual prompt that this process requires its

parameters to be correctly configured. Usually the animated cogs are sufficient to

denote the need for the user to re-configure the parameters. However this provides

the option to go further and modify the underlying graphic. In the case of this process

no modification is needed so the same graphic is used.

3. Defines the types of process that may connect to this process on an input arc and on

an output arc of the dataflow directed graph. Permitted types are defined by the

information processing cycle. These are input, processing and output processes. An

enumeration provides a true / false flag used to define permitted connections. The

ConnectorType.CON110 used for the processes input arcs means that input and

data processing processes may connect to this process but not output processes.

Similarly the ConnectorType.CON011 means that this processes output arcs may

lead to either another data processing process or an output process.

 To complete the initialisation of the visual elements it is necessary to instantiate the

graphic that will be used in iPipelines toolbox to represent the process. This image

will be composed with the process symbol to create the toolbox entry for the new

process. Again a standard code snippet customised to the appropriate graphic is

used as shown in Table 1-4:

@Override
 public ImageIcon getProcessIcon() {
 if (null == this.icnMenuIcon) {
 //Load Image resource from Jar Archive
 JarResources jar = new JarResources("ProcLib.jar");
 Image objImage =
Toolkit.getDefaultToolkit().createImage(jar.getResource("ProcessLibrary/Icons/TimeSegSma
ll.png"));
 this.icnMenuIcon = new ImageIcon(objImage);
 }
 return this.icnMenuIcon;
 }

Table 1-4: Loading the customised toolbox image for the new process

 One visual component is still missing at this point – the settings panel for the process.

As the settings panel is specific to the process for now simply create a class that

extends from Java’s JPanel. This will produce an empty JPanel which can be

customised later. As a naming convention use the name of the process that will own

the panel followed by ‘SettingsPanel’. In the case of the process being developed this

becomes TimeSegmentingSettingsPanel.

 With the empty panel created it must now be attached to the owning process.

Override the method JPanel setupParamWindow() to match the following code

snippet:

Appendix 1: Creating a new toolbox process

Page | 195

protected JPanel setupParamWindow() {
 TimeSegmentingSettingsPanel jpnDisplay = new
TimeSegmentingSettingsPanel(this);
 jpnDisplay.addCancelActionListener(this);
 jpnDisplay.invalidate();
 return jpnDisplay;
 }

Table 1-5: Creation of process settings panel for the time segmenting process

 The blank settings panel is now attached to its owning process. Of course at the

moment it does nothing so the next step is to define a process specific group of

settings. Obviously most of the code for a settings panel will be specific to its

associated process. However the code that manages the parameters created and

makes them available to the associated process is fairly standard. It still requires

customisation to handle the specific parameters but the abstract concept of

managing parameters is expressed through the ISettingsPanel interface. The

developer should implement this interface after designing the settings panel so that is

can exchange parameters with the owning process. Creating a settings panel is

therefore a two stage process:

o Implement the JPanel GUI components and associated input validation logic.

This step is highly specific to the process being developed so only general

guidance can be given. Nevertheless the considerations for the time

segmenting algorithm’s settings are reviewed below as an example of the

process.

o Implement the ISettingsPanel interface. This is the more general step and

more specific guidance can be given. Nevertheless there remain points at

which the implementation must be customised to the algorithms specific

needs.

1.3.1 Time Segmenting algorithms settings panel GUI creation

Table 1-6 shows the time segmenting settings panel implemented in the Netbeans GUI

designer with its initial defaults:

Table 1-6: Time segmenting settings panel GUI implementation

For the time segmenting algorithm the following business rules have been implemented:

1. Default time measure is Milliseconds with the option to change to either seconds or

microseconds.

Appendix 1: Creating a new toolbox process

Page | 196

2. The default time window size is 200 which will create 5 datasets for every second of

spike train recording. Defining this is the aim of the settings panel and it is expected

that most users will be changing the values for item (1) and (2).

3. The radio buttons allow the user to adopt one of schemes for the generated datasets:

a. Append the time period covered by the dataset to the dataset’s label (name)

or

b. Append a sequential number to the dataset’s label (name). The number must

be a positive integer greater than 0.

4. A dataset label or name is required for clear identification of the dataset when it is

visualised. The default label “Dataset” is supplied and if the user blanks this field or

fills it with whitespace and no other characters the default will be restored.

The selected defaults provide an immediately executable process though the user should

review at least items (1) and (2) to ensure their suitability for the data set being analysed.

1.3.2 Time segmenting algorithm’s ISettingsPanel interface implementation

The implementation of the ISettingsPanel interface provides the link between a process and

its associated configuration settings. The settings are required to be managed in a generic

manner as the iPipeline framework cannot predict the number or types of the individual

parameters. This is achieved through the ParameterManager which provides a container

that can manage a list of key / value pairs. Each parameter is stored as a Parameter object

which uses a string as the identifying key and any ‘value’. The value element is any type of

data such as integer, double, string, enumeration or object. The current parameter collection

is maintained by the process to which the settings panel belongs but the panel can retrieve

the collection via the ISettingsPanel interface.

The ISettingsPanel interface and documentation is shown in Table 1-7. A discussion of the

implementation for each of the five methods follows.

Appendix 1: Creating a new toolbox process

Page | 197

/**
 * Interface implemented by a class that extends JPanel to serve as a settings window
 * for a process
 * @author Roy
 */
public interface ISettingsPanel {

 /**
 * Accessor method to retrieve the current collection of parameters from
 * the owning process
 * @return An IParameterManager interface to the parameter collection
 */
 public IParameterManager getCurrentParameters();

 /**
 * This method takes the current list of parameters from the settings panel's
 * owning IProcess and uses it to update the various fields / GUI
 * components on the panel
 */
 public void refreshParameters();

 /**
 * Adds an action listener which will respond to a left click on the OK
 * button. The process which owns the settings panel will normally be the
 * listener
 * @param objNewListener - Any ActionListener
 * @return boolean true if the new listener was added, false otherwise.
 */
 public boolean addOkButtonActionListener(ActionListener objNewListener);

 /**
 * Adds an action listener which will respond to a left click on the CANCEL
 * button. The process which owns the settings panel will normally be the
 * listener
 * @param objNewListener - Any ActionListener
 * @return boolean true if the new listener was added, false otherwise.
 */
 public boolean addCancelActionListener(ActionListener objNewListener);

 /**
 * This method test the current settings shown on this settings panel and
 * determines if they are valid for the processing algorithm. Invalid settings
 * will prevent execution of the attached process. The process widget will
 * show a set of rotating cogs indicating that the user must correctly
 * configure the settings panel before use.
 * @return boolean true if the current settings are usable by the processing
 * algorithm, false otherwise.
 */
 public boolean hasValidSettings();
}

Table 1-7: The ISettingsPanel interface

Appendix 1: Creating a new toolbox process

Page | 198

1.3.2.1 Method 1: public IParameterManager getCurrentParameters();

The implementation for this method is standard across all settings panels and provides an

accessor for the owning processes parameter collection. The standard code is shown in

Table 1-8.

private IProcess objParent = null;

public IParameterManager getCurrentParameters() {
 return this.objParent.getParameters();
 }

Table 1-8: The getCurrentParameters() implementation

Note that although the objParent is uninitialized; it will be set by the iPipeline framework

when creating the settings panel. See Table 1-5 for the initialisation code the guarantees this.

1.3.2.2 Method 2: public void refreshParameters();

The purpose of this method is to synchronise the currently displayed parameter values on

the settings panel with those store by the panels owning process. Obviously the code will be

customised for each GUI component but the general structure for each parameter should

follow this pseudo code:

1. From the parent process obtain the list of parameters and search for the required

parameter

2. If the parameter is found extract its value and set the relevant component on the

settings panel GUI to reflect the value

3. If the parameter is not found initialise the settings panel GUI component to a sensible

default value.

Table 1-9 provides sample code showing the processing for the dataset label parameter.

This code can be extended to process any parameter. Note that the developer is responsible

for assigning meaningful parameter names. As before the points where a developer will

need to make changes for the specific parameter being coded are highlighted in yellow.

 public void refreshParameters() {
 //Display Name update
 IParameter objDispNameParam =
this.objParent.getParameters().getParameter("DisplayName");
 if (null != objDispNameParam) {
 if (objDispNameParam.getParamaterValue() instanceof String) {
 String strNameValue = (String) objDispNameParam.getParamaterValue();
 this.txtDSName.setText(strNameValue);
 } else {
 this.txtDSName.setText("Dataset");
 }
 } else {
 this.txtDSName.setText("Dataset");
 }
 }

Table 1-9: Sample code to refresh the dataset label / name parameter

Appendix 1: Creating a new toolbox process

Page | 199

1.3.2.3 Method 3: public boolean addOkButtonActionListener(ActionListener

objNewListener);

All settings panels should feature an ‘OK’ and ‘Cancel’ button which following the Java

convention an ActionListener object should be provided that encapsulates the relevant code.

The parent process usually defines this listener, indeed it often IS the listener. As such this

accessor method allows an external object to associate an ActionListener with the ‘OK’

button. This is standard default code that can in most instances be copy / pasted.

 public boolean addOkButtonActionListener(ActionListener objNewListener) {
 boolean blnWasSet = false;
 if (null != objNewListener) {
 this.btnOk.addActionListener(objNewListener);
 blnWasSet = true;
 }
 return blnWasSet;
 }

Table 1-10: Standard accessor to add an action listener to the settings panel 'OK' button

1.3.2.4 Method 4: public boolean addCancelActionListener(ActionListener

objNewListener);

All settings panels should feature an ‘OK’ and ‘Cancel’ button which following the Java

convention an ActionListener object should be provided that encapsulates the relevant code.

The parent process usually defines this listener, indeed it often IS the listener. As such this

accessor method allows an external object to associate an ActionListener with the ‘Cancel’

button. This is standard default code that can in most instances be copy / pasted.

 public boolean addCancelActionListener(ActionListener objNewListener) {
 boolean blnWasSet = false;
 if (null != objNewListener) {
 this.btnCancel.addActionListener(objNewListener);
 blnWasSet = true;
 }
 return blnWasSet;
 }

Table 1-11: Standard accessor to add an action listener to the settings panel 'Cancel' button

1.3.2.5 Method 5: public boolean hasValidSettings();

This method provides the parent / owning process with a means of validating that the current

configuration of parameters on the settings panel can be used to execute the algorithm. If

the algorithm can be successfully completed with the current settings then this method

should return true. If any setting is invalid, for example a time window size of 0 in the time

segmenting algorithm, the method should return false prompting the iPipeline framework to

visual indicate that the process needs further user configuration.

The code for this method obviously depends on the number of parameters and types of

validation required so it is impossible to give a standard code snippet for it. However as an

example Table 1-12 contains example code to validate that the user has provided a dataset

name for the new dataset created by the processing algorithm.

Appendix 1: Creating a new toolbox process

Page | 200

 public boolean hasValidSettings(){
 boolean blnResult = false;
 //Ensure that a valid name exists for the combined dataset
 String strName = this.txtDSName.getText();
 //Ensure a non-null & non-empty string exists
 if(null != strName && !strName.isEmpty()){
 //Strip whitespace and ensure length at least 1
 strName = strName.replace(" ", "");
 if(0 < strName.length()){
 blnResult = true;
 }
 }
 return blnResult;
 }

Table 1-12: Sample implementation to validate that the dataset name has been configured

1.3.3 Responding to OK / Cancel button events on the settings panel

Every settings panel should include an ‘Ok’ and ‘Cancel’ button for the user to accept / reject

changes to the settings. Two methods are provided to respond to the users ‘Ok’ and ‘Cancel’

button events allowing the developer maximum flexibility in responding. The developer may

choose to respond via either the settings panel itself or via its parent process object. By

default the code snippets given so far have programmed the parent process to respond to

the ‘Cancel’ buttons click event. For most processes the action taken is simply to hide the

settings panel without updating the process settings. This is usually delegated to the parent

process and the code required is reviewed in section 1.3.4 when integrating the settings

panel with its parent process. The ‘Ok’ button response is highly dependent on the actual

parameters added to the settings panel. As such its behaviour is usually defined by the

settings panel itself following the principle of encapsulating data and related behaviours into

the same class. The ‘Ok’ button handler’s primary task is to scan all user inputs and package

them into the parent / owning processes ParameterManager object. It should also invoke the

parent processes ‘Ok’ handler if the developer has any process level code that should

execute when the process settings code is updated. The code snippet in Table 1-13 should

be sufficient to perform these tasks:

 private void btnOkActionPerformed(java.awt.event.ActionEvent evt) {
 // TODO add your handling code here:
 //Scan new settings and store them to owning process
 this.packageSettingsIntoManager();
 //Invoke any parameter change handlers on the parent process
 if (null != this.objParent) {
 if (this.objParent instanceof ActionListener) {
 ((ActionListener) this.objParent).actionPerformed(evt);
 }
 }
 }

Table 1-13: Standard code to process a parameter update on the settings panel

The packageSettingsIntoManager() method from the Table 1-13 code snippet performs the

work of scanning the settings panel for user changes and updating the parameters in the

parent / owning processes ParameterManager object. Obviously no standard code can be

given for this as it will be based on the problem domain and the required parameters to

Appendix 1: Creating a new toolbox process

Page | 201

control the process being implemented. The pseudo code for this method can however be

clearly stated as follows:

1. Ensure that the SettingsPanel has a parent / owner process

2. For each parameter on the settings panel

a. Assign a parameter name (this should match the name used in the

refreshParameters() method; see code snippet in Table 1-9).

b. Extract the parameter value from the settings panel data entry field.

c. Get the parent process parameter manager and call the setParameter

method passing the name, value pair.

As an example of how this method should be implemented the time segmenting algorithm’s

implementation is shown in Table 1-14.

 private void packageSettingsIntoManager() {
 if (null != this.objParent) {
 if (!this.txtDSName.getText().equalsIgnoreCase("")) {
 this.objParent.getParameters().setParameter("DisplayName",
this.txtDSName.getText());
 }
 SpikeTimescale timeScale = (SpikeTimescale) this.cbxTimescale.getSelectedItem();
 this.objParent.getParameters().setParameter("TimeWinScale", timeScale);
 TimeSegmentingMode mode = TimeSegmentingMode.APPEND_TIME_PERIOD;
 if (this.radBtnTimeSegmentNumber.isSelected()) {
 mode = TimeSegmentingMode.APPEND_SEQUENCE_NUMBER;
 }
 this.objParent.getParameters().setParameter("TimeSeqMode", mode);
 SpinnerModel model = this.spnSegStart.getModel();
 if (model instanceof SpinnerNumberModel) {
 SpinnerNumberModel numModel = (SpinnerNumberModel) model;
 Number number = numModel.getNumber();
 Integer startSeqNo = number.intValue();
 this.objParent.getParameters().setParameter("TimeSeqNo", startSeqNo);
 }
 try {
 Integer winSize = Integer.parseInt(this.txtTimeWin.getText());
 this.objParent.getParameters().setParameter("TimeWinSize", winSize);
 } catch (NumberFormatException ex) {
 //Time window size could not be set revert to default of 200
 this.objParent.getParameters().setParameter("TimeWinSize", 200);
 }
 }
 }

Table 1-14: Example implementation for the packageSettingsManager() method

1.3.4 Integrating the settings panel with the parent process

With the settings panel completed it must now be integrated with its parent or owning

process. The panel has already been created using the code in Table 1-5. The process has

the option of responding to the settings panels ‘Ok’ and ‘Cancel’ button behaviours. Usually

the cancel operation simply hides the settings panel and the ok option does not need

process specific code. Table 1-15 gives the code snippet needed to implement this default

behaviour.

Appendix 1: Creating a new toolbox process

Page | 202

 protected void processParamAction(ActionEvent e) {
 //Process Ok action
 if (e.getActionCommand().equals("OK")) {
 this.paramOKClick(e);
 }
 //Process Cancel action
 if (e.getActionCommand().equals("Cancel")) {
 frmParams.setVisible(false);
 }
 }

 private void paramOKClick(ActionEvent e) {
 //Implement any process specific code to execute when the process parameters
 //are changed / updated
 //Close parameters window
 frmParams.setVisible(false);
 }

Table 1-15: Default code to respond to settings panel changes

At this point the settings panel has been successfully integrated with its owning parent

process. The new process itself is almost complete; all that remains is to implement the

process core algorithm.

1.3.5 Implementation of process core algorithm

The base process class provides a single protected method which the problem domain

developer must override and implement with the algorithm that performs the data processing.

The method signature is:

protected boolean processAction(Object[] objData);

This is of course the concrete implementation of the algorithm encapsulated into the process

object. As such it is impossible to define any standard code as it depends wholly on the

problem domain being studied, the data available and the desired analysis to be performed.

However it is possible to give some general advice and guidance to problem domain

developers.

Almost all implementations of this method should begin by compiling a list of the process(es)

attached as a parent to this process. These will be the processes delivering a dataflow token

along the input arcs of the directed dataflow graph. The base process implementation

provides this list in the form of the vecParents vector variable. From each of these processes

a IProcessingResult object can be obtained by calling the getResult() method. The retrieved

IProcessingResult represents the dataflow token delivered by the input arc and will contain

one or more instances of the domain specific data model. It is recommended that the

problem domain developer writes a static unpackData() and packData() method that can

extract the list of data models from the IProcessingResult envelope or package a data model

list into the envelope. The IProcessingResult essentially stores data as name value pairs

allowing almost any data model, no matter how complex, to be stored. As an example

Table 1-16 shows the structure adopted in the implemented neural analysis model:

Appendix 1: Creating a new toolbox process

Page | 203

Table 1-16: IProcessingResult Dataflow token with neural model embedded

Chapter 7 provides a detailed discussion of the problem domain data model adopted for

neural data analysis. For our purpose here the problem domain static pack method accepts

a list of INeuronAssembly objects in the form of a vector and returns an IProcessingResult

object with the Table 1-16 structure. Equally the static unpack method unwraps this structure

and retrieves the original vector of INeuronAssembly objects.

Once the dataset has been extracted from the dataflow token the processing algorithm is

applied to each delivered dataset in turn. In the case of the time segmenting algorithm

illustrated in this appendix this involves the creation of additional neuron assemblies. Each

assembly contains the same set of neurons with the spike trains modified to include only

those spikes that fall within a given time range.

At the end of processing a vector of new / modified datasets is produced which is once more

packaged into an IProcessingResult object that serves as the output arc dataflow token for

this process.

In summary then the standard pseudo code for implementing the processAction method

becomes:

1. Obtain vector of parent IProcess objects.

2. For each parent process retrieve the IProcessingResult dataflow token by calling

getResult() on each process.

a. For each retrieved result. Unpack the problem domain specific data model

from the IProcessingResult dataflow token.

b. For each dataset delivered apply the algorithm being implemented to the

delivered data.

c. Add the modified / new dataset to a vector of problem domain data models.

3. Pack completed vector of problem domain models into IProcessingResult and store

into the processes protected attribute objResultSet. This places the

Appendix 1: Creating a new toolbox process

Page | 204

IProcessingResult onto the processes output arc(s) to trigger further processing of

the directed workflow graph.

1.3.6 Introducing the new process to iPipeline’s problem domain

At this point a fully functional process has been created. This process must now be deployed

to iPipeline’s problem domain layer. This process is essentially automated with its own

executable batch file which builds the required Java jar file, the ProcLib.jar file.

Nevertheless it is worth reviewing how this is achieved to better understand the application

structure.

As was noted in Chapter 6 iPipeline is divided into two ‘layers’ a thin framework layer and a

thick problem domain layer. When deployed these ‘layers’ take the form of two Java jar files

that should be deployed together. Table 1-17 and Figure 1-3 detail which jar corresponds to

which layer and shows them deployed and ready for execution.

iPipeline Layer Java Jar File

Framework Layer PipelineTestbedV021.jar

Problem Domain Layer ProcLib.jar
Table 1-17: iPipeline 'Layer' Jar files

Figure 1-3: A deployed iPipeline framework with process library

The toolbox of processes presented to the application user depends on the processes

contained in the ProcLib.jar. This approach maintains a distinct separation between the two

layers and allows iPipeline to switch to a new problem domain simply by providing a different

ProcLib.jar file that contains the new problem domain processes.

 The iPipeline source files provide a package named ‘ProcessLibrary’ which the developer

may use to add and organise the problem domain specific

code. Step 1.2.5 instructed you to place your new process

into the ‘ProcessLibrary.Processes’ package. It is this

package that is used to produce the ProcLib.jar file. The

ProcessLibrary package and its sub packages for the

neural analysis problem domain layer are shown in

Figure 1-4. The only required sub package is the

Processes package. The other packages simply assist in

organising the various problem domain elements. The

‘ProcessLibrary.Processes’ package must be present

however as it is from here that the iPipeline framework will

draw the processes used to populate its process toolbox making them available to the user.

As a practical note it makes sense for problem domain developers to use additional

packages to organise their work, for example the data model implementation and the

visualisations implementations.

Figure 1-4: Neural Analysis

ProcessLibrary package

Appendix 1: Creating a new toolbox process

Page | 205

The creation of a new problem domain library is achieved by compiling the ‘ProcessLibrary’

package into its own jar file. A simple two-step process will achieve this goal:

1. Build the iPipeline project so that the compiled classes are placed into the projects

build\classes\ProcessLibrary\ folder. This is their normal destination for a Netbeans

project.

2. Execute the batch script shown in Figure 1-5 to generate the ProcLib.jar file

containing only the problem domain layer code.

To use any specific problem domain jar file simply copy / paste it to the same directory as

the Framework Layer jar, PipelineTestbedV021.jar, as shown in Figure 1-3.

Figure 1-5: Batch script to generate the ProcLib.jar file from the compiled code.

Appendix 2: Glossary of terms

Summary
This appendix serves as a guide to various technical terms used throughout the thesis and
across the three fields of Software Engineering, Visualisation and Neuroscience.

Appendix 2

Appendix 2: Glossary of Terms

Appendix 2: Glossary of terms

Term / abbreviation Description

CPU Central Processing Unit (CPU) - the part of a computer that
performs logical and arithmetic operations on the data as
specified in the instructions. (HarperCollins, 2014)

Hadoop Apache Hadoop is an open-source software framework
written in Java for distributed storage and distributed
processing of very large data sets on computer clusters built
from commodity hardware. (Apache, 2014)

JSON JavaScript Object Notation (JSON) - is a lightweight data-
interchange format. It is easy for humans to read and write. It
is easy for machines to parse and generate. It is based on a
subset of the JavaScript Programming Language, Standard
ECMA-262 3rd Edition - December 1999. JSON is a text
format that is completely language independent but uses
conventions that are familiar to programmers of the C-family of
languages, including C, C++, C#, Java, JavaScript, Perl,
Python, and many others. These properties make JSON an
ideal data-interchange language. (ECMA, 2013)

JUNG Java Universal Network / Graph framework is a software
library that provides a common and extendible language for
the modelling, analysis, and visualization of data that can be
represented as a graph or network. It is written in Java, which
allows JUNG-based applications to make use of the extensive
built-in capabilities of the Java API, as well as those of other
existing third-party Java libraries. (Madadhain J. et al., 2005)

Machine Learning A field of study that gives computers the ability to learn
without being explicitly programmed. (Samuel, 1953)

MapReduce MapReduce is a programming model and an associated
implementation for processing and generating large data sets
with a parallel, distributed algorithm on a cluster. (Dean &
Ghemawat, 2004)

MEA Multi-Electrode Array (MEA) - are devices that contain
multiple plates or shanks through which neural signals are
obtained or delivered, essentially serving as neural interfaces
that connect neurons to electronic circuitry. (Taketani &
Baudry, 2006)

MPI Message Passing Interface (MPI) - is a language-
independent communications protocol used for programming
parallel computers. Both point-to-point and collective
communication are supported. MPI "is a message-passing
application programme interface, together with protocol and
semantic specifications for how its features must behave in
any implementation." (Gropp et al., 1996) MPI's goals are high
performance, scalability, and portability. MPI remains the
dominant model used in high-performance computing today.
(Sur, J.Koop & Panda, 2006)

Appendix 2: Glossary of terms

Term / abbreviation Description

MPJ Message Passing Java (MPJ) - An open source Java
message passing library that allows application developers to
write and execute parallel applications for multicore
processors and compute clusters/clouds. (Shafi & Jameel,
2006)

NoSQL A variety of non-relational databases that are used for
handling huge amounts of data in the multi-terabyte and
petabyte range. Rather than the strict table/row structure of
the relational databases that are widely used in all enterprises,
NoSQL databases are field oriented and more flexible for
many applications. They are said to scale horizontally, which
means that inconsistent amounts of data can be stored in an
individual item/record (the equivalent of a relational row). The
"not" SQL designation comes from the SQL language used to
query a relational database. (Freedman, 2016)

OOP Object Orientated Programming (OOP) - is a programming
paradigm based on the concept of "objects", which may
contain data, in the form of fields, often known as attributes;
and code, in the form of procedures, often known as methods.
A distinguishing feature of objects is that an object's
procedures can access and often modify the data fields of the
object with which they are associated (objects have a notion of
"this" or "self"). In OO programming, computer programs are
designed by making them out of objects that interact with one
another. (Kindler & Krivý, 2005)

Thread safe Thread safety is a computer programming concept
applicable in the context of multi-threaded programs. A piece
of code is thread-safe if it only manipulates shared data
structures in a manner that guarantees safe execution by
multiple threads at the same time. (Oracle, 2015)

UML The Unified Modelling Language (UML) – The Object
Management Groups (OMG) standard for specifying,
visualising, and documenting models of software systems,
including their structure and design. (OMG, 2005)

VISA The Visualisation of Inter Spike Associations project that
developed the original i-Raster and i-Grid visualisations.
Funded by the Engineering and Physical Sciences Research
Council (EPSRC). (Stuart, Walter & Borisyuk, 2003)

VPN Virtual Private Network (VPN) - extends a private network
across a public network, such as the Internet. It enables users
to send and receive data across shared or public networks as
if their computing devices were directly connected to the
private network, and thus are benefiting from the functionality,
security and management policies of the private network.
(Mason, 2001)

Appendix 3: Publications

Appendix 3

Appendix 3: Publications

Tucker, R., Barlow, N. & Stuart, L. (2012) 'The Background and Importance of Exploiting Multiple
Cores: A Case Study in Neurophysiological Visualization'. Proceedings of the 2012 International
Conference on Parallel and Distributed Processing Techniques and Applications, 2 pp 352-358.

THE BACKGROUND AND IMPORTANCE OF
EXPLOITING MULTIPLE CORES:

A CASE STUDY IN NEUROPHYSIOLOGICAL
VISUALIZATION

Roy Tucker, Nigel Barlow and Liz Stuart
The Visualization Lab, School of Computing & Mathematics, University of Plymouth, Plymouth, UK

roy.tucker@plymouth.ac.uk(contact author), nigel.barlow@plymouth.ac.uk, liz.stuart@plymouth.ac.uk

Keywords: Concurrency, Parallel Computation, Multithreading, Massive datasets, Visualization

Abstract: This paper reviews the history and current use of multi-threading in software development. Over the last
decade, there has been a complete paradigm shift in computer hardware. Currently, increased computing
power is supplied using an increasing number of core processors. This paradigm shift has led to the
development of higher level programming constructs and frameworks in many popular languages.
Therefore, it is clear that both the hardware and software of the future are going to be based heavily upon
concurrency. Despite this, software developers are still resistant to embrace multi-threading. This
resistance is understandable due to the complexity of coding concurrency. However, this paper proposes
that Concurrency is no longer an option but a necessity. In conclusion, the paper presents a case study
based on the visualization of large quantities of Neurophysiological data. This application was developed
using the Java concurrency framework.

mailto:roy.tucker@plymouth.ac.uk
mailto:nigel.barlow@plymouth.ac.uk
mailto:liz.stuart@plymouth.ac.uk

Tucker, R., Barlow, N. & Stuart, L. (2012) 'The Background and Importance of Exploiting
Multiple Cores: A Case Study in Neurophysiological Visualization'. Proceedings of the 2012
International Conference on Parallel and Distributed Processing Techniques and
Applications, 2 pp 352-358.

1 Introduction

During the early days of Computing, there was a considerable difference between the

operating speed of CPUs and the speed of connected peripherals. Back then, CPU time was

expensive, thus it was highly inefficient to pause the execution of a program to enable the

execution of a slower input/output peripheral.

The first attempt to address this problem was the LEO III (Lyons Electronic Office)

developed in 1961. LEO III employed the first multiprogramming system [1] which enabled a

batch of programs to be loaded into the CPU simultaneously thereby essentially queuing for

CPU time. In this system, the first program would execute until it reached an instruction

which required the use of a peripheral device. At this point, the context of the first program

would be stored thereby enabling the next program to execute. Subsequently, the use of

CPU time was maximised. The main limitation of this system was that it required multiple

programs to maintain this level of CPU usage. Nowadays this would be recognised as a

problem of granularity, the executing units were too large to maximise the CPU usage.

The limitations of multiprogramming became obvious as computer systems moved from

batch processing to interactive use. Multiprogramming was not capable of delivering well

designed systems. One of the key benchmarks for well-designed systems was the set of

“Golden rules” defined by Shneiderman [2]. These rules were, and still are, widely adopted

throughout the industry. They emphasise the importance of providing “informative feedback”

to the user.

Initial attempts to provide interactive feedback to users involved the co-operation of software

developers. This was known as co-operative multitasking. This relied on developers

ensuring their applications yielded CPU time to other applications.

Initially, this approach was successful. The earlier versions of Windows (prior to Windows 95)

and the Mac operating system (prior to MAC OS X) employed co-operative multitasking [3,

4]. Whilst co-operative multitasking was increasingly deployed as a multitasking solution,

another option called pre-emptive multitasking evolved.

In contrast, pre-emptive multitasking paradigm provides slices of CPU time to each of the

executing processes. Effectively, this enforces the sharing of the CPU time. This implicit

guarantee of CPU time enables developers to provide user with well- designed systems

capable of proving “informative feedback” quickly. In 1969, this approach was selected for

use in the UNIX operating system. It is standard in UNIX and its derived operating systems

[5].

By the mid 1990’s, Microsoft Windows had adopted the pre-emptive multitasking system

incorporating it into both Windows NT and Windows 95. Apple Inc. followed suit with the

MAC OS 9.x, released in October 1999.

Tucker, R., Barlow, N. & Stuart, L. (2012) 'The Background and Importance of Exploiting
Multiple Cores: A Case Study in Neurophysiological Visualization'. Proceedings of the 2012
International Conference on Parallel and Distributed Processing Techniques and
Applications, 2 pp 352-358.

2 The Pre-emptive Model

In the pre-emptive model, processes are separated into two categories:

• I/O Bound processes where the total computation time to complete the process is

limited by the speed at which data can be requested and delivered [6]. Typically processes

that make long read / write operations to disk would be I/O Bound and

• CPU Bound processes where the total computation time to complete the process is

limited by the operating speed of the CPU. Typically a process that primarily ‘crunches

numbers’ will be CPU bound.

This blocking mechanism enables the CPU time being consumed by these “waiting”

processes to be re-allocated to processes in the CPU bound category. This continues until

an interrupt signals to the I/O bound process that the blocked process can proceed.

As this pre-emptive model evolved, programmers began to develop applications as a

collection of interacting (co-operating) processes. In turn, this raised the issue of how to

efficiently share data between multiple processes. As originally conceived, a process ran in

its own protected memory space isolated from other processes. However, this was not

conducive to data sharing. The solution was that co-operating processes should share the

same memory space. This approach would become known as multi-threading with multiple

‘threads of execution’ sharing a single processes memory space.

2.1 The paradigm shift from Moore’s Law to Amdahl's law

Moore’s Law states that the power of computer processing would double approximately

every two years. Since its formulation in 1965, this law has provided a reliable guide to the

growth of computing power. This predictable growth in computing power has been quietly

exploited by software engineers worldwide. Until now, developers have enjoyed ever faster

performance from their software simply by updating to newer hardware. However, it is

proposed [7] that Moore’s Law cannot be sustained as physical limitations for miniaturisation

are encountered. Conversely, it is argued that advancing technologies will enable the law to

survive far into the future [8].

Regardless of these opposing opinions, developers must consider how current and future

technologies will deliver computing power. It is clear that hardware manufacturers have

moved to the idea of delivering computer power through multi-core systems. Almost all forms

of computer now employ multi core hardware as standard. This ranges from the mobile

phone through to desktop computers of major research projects. Whilst considering highly

compute intensive operations such as weather forecasting, computing power is now

delivered by massively parallel super computers, grid computing and the opening of graphics

processing cores for general non-graphical use (for example using Nvidia’s CUDA) is

becoming more widespread in research. Yet, it is still not enough.

Tucker, R., Barlow, N. & Stuart, L. (2012) 'The Background and Importance of Exploiting
Multiple Cores: A Case Study in Neurophysiological Visualization'. Proceedings of the 2012
International Conference on Parallel and Distributed Processing Techniques and
Applications, 2 pp 352-358.

 Consequently, another law is now dominating the current expansion of computer

processing and throughput. This is Amdahl's law which describes the performance increases

that can be achieved through the parallelisation of software. Essentially a program is divided

into two portions, the parallelisable and the sequential components. Additional compute

cores will improve the execution speed of the parallel component of the program but these

will have no effect on the sequential component [9].

2.2 Recent developments in hardware

In the last decade computer power has expanded based on the development of

multithreaded execution architectures as well as the delivery of additional power using

multicore systems. However, this increased processing capability can only be realised when

software developers change their programming styles to exploit this new paradigm.

Fundamentally, the latest hardware advances are completely dependent on the

understanding and adoption of these new techniques by software developers. David Stewart

CEO of CriticalBlue and chairperson for the Multicore Programming Practices (MPP) working

group comments on this situation stating that “There's capability in (multicore) platforms

which is not being utilized or not being optimized by the software development community"

[10].

Developers are often deterred due to the difficulty of using threads and locks to control

access to shared memory. Goetz [11], a key developer of the Java languages Concurrency

Framework, states “writing correct programs is hard; writing correct concurrent programs is

harder.” Indeed, this style of programming has “a well-deserved reputation for introducing

bugs that are difficult to find and fix." [10]. Even Apple Inc. dismisses it stating that "the

dominant model for concurrent programming - threads and locks - is too difficult to be worth

the effort for most applications." [12]

 Despite the difficulties Goetz notes that “threads are the easiest way to tap the computing

power of multiprocessor systems”. Furthermore, “as processor counts increase, exploiting

concurrency effectively will only become more important” [11]. Therefore if the true power of

multicore systems is to be realised, it is essential that the next generation of developers will

have the tools and the training to address the difficulties of concurrent programming.

2.3 Recent developments in software

Over the last few years several mainstream programming languages have evolved to

address the tools needed for concurrent programming. These tools provide concurrency

frameworks that allow developers to work with abstract concepts rather than the lower level

threads and locks.

This trend is likely to continue. Intel is currently experimenting with the Intel Array Building

Blocks (Intel® ArBB) framework that will integrate with standard C++ applications without

any compiler specific extensions [13]. This would remove a major compatibility hurdle to

developing C++ parallel code.

Tucker, R., Barlow, N. & Stuart, L. (2012) 'The Background and Importance of Exploiting
Multiple Cores: A Case Study in Neurophysiological Visualization'. Proceedings of the 2012
International Conference on Parallel and Distributed Processing Techniques and
Applications, 2 pp 352-358.

Table 1 shows a selection of the major coding languages that have released a concurrency

framework over the last decade. Stack-less Python represents a significant fork of the

language that has enjoyed commercial success and development support (via CCP Games

Inc). The Java Concurrency Utilities merged a concurrency framework with cross platform

support to produce a flexible and widely deployable solution. Microsoft’s Task Parallel

Library went a step further seeking the same goal for a whole range of languages supported

by the .NET framework. While all of these were high level languages, Intel have addressed

the lower level C++ language. Note that they too are now experimenting with a new more

general solution than the existing Threading Building Blocks (TBB).

 The development of frameworks to remove the complexity of task and thread management

is essential to promote multi-threaded computation and ensure it is accessible to the

software development community. This is very helpful. However, software engineers must

also be able to able to design, debug, validate and optimise code.

Tools to support all these area of software development are at an early stage of their

development. Areas such as debugging and validation are challenging. Patterson [14] states

that multi-threaded code is well known to be notoriously difficult to debug and validate. The

non-deterministic behaviour of concurrent code and the dangers of deadlock as well as race

conditions are well understood. Despite these challenges, the tools to detect such errors

during development are only now beginning to emerge.

For example, it was 2008 when Intel announced the development of a dedicated package of

software engineering tools called the Intel® Parallel Studio suite [15]. The package was

released to the development community in May 2009 [16]. With such tools only just

beginning to emerge most developers remain uncertain how to validate and debug parallel

code beyond repeated testing and code inspections. Issues of code optimisation,

identification of parallelisable code and its long term maintenance are seldom considered by

most developers.

3 Future Trends

Over the next decade, parallelism in software development will become more important both

in research and in commerce applications. Indeed, the development company, CCP based

in Iceland, is already crediting its commercial success to Stackless Python [17]. With the

preference for multicore architectures firmly entrenched with manufacturers, the demand for

software to exploit its power is unavoidable. However, this raises one of the primary issues,

namely that of training software developers to exploit the hardware capability. Many of the

current generation of programmers seldom consider parallel execution of code. This is

understandable as it has mirrored the underlying hardware (subject to processor time slicing

providing an illusion of parallel execution).

However, the next generation of developers must embrace the harder task of parallel code

development as ‘standard practice’. To achieve this training programs both in universities

and industry must to be updated to emphasize parallel coding principles and to introduce the

Tucker, R., Barlow, N. & Stuart, L. (2012) 'The Background and Importance of Exploiting
Multiple Cores: A Case Study in Neurophysiological Visualization'. Proceedings of the 2012
International Conference on Parallel and Distributed Processing Techniques and
Applications, 2 pp 352-358.

software engineering tools that will support the design, implementation, validation and tuning

of parallel programs.

3.1 Power and Environmental issues

Power has traditionally been seen as being in abundant supply, but this view is changing.

The emergence of cloud computing has led to the formation of warehouse sized data

centres that “are now consuming more energy than heavy manufacturing in the United

States” [18]. Subsequently, this has led to political pressures (in light of carbon emission

targets and taxes) to reduce energy consumption and waste.

Table 18: Concurrency Frameworks for major coding languages

One of the primary benefits of the multicore

architecture is that such systems “feature

more even power density and do not show

dramatic temperature peaks” [23];

nevertheless “the power consumption of the

basic multicore component is critical to its

cost and operation” [18].

4 Case Study: Visualization of
large Neurophysiological
datasets

This case study of the VISA (Visualisation of

Inter Spike Associations) software

demonstrates that concurrent programming

is already a necessity in current applications.

This software is the main output of an

established research VISA project at the

Visualization Lab, University of Plymouth.

The main aim of this research is to develop

a new approach to the analysis of

experimental data in neurophysiology based

on the use of modern computer science techniques such as graphical engineering,

visualization and virtual reality. This new approach will provide neuroscientists with an

interactive environment within which to explore their data sets. The primary focus of this

research is on the analysis of multi-dimensional spike train datasets.

Langua

ge

Frame-work Re-

lease

Date

Source

Java JSR 166:

Concurrency

Utilities

09/04 [19] Lea

(2004)

.Net

Frame-

work

(v4)

Task Parallel

Library

(available in

all .Net

languages)

04/10 [20]

Microsof

t (2010)

Python Stack-less

Python

01/00 [21]

Tismer,

(2000)

C++ Intel®

Threading

Building

Blocks

08/06 [22]

Reinder

s (2007)

Tucker, R., Barlow, N. & Stuart, L. (2012) 'The Background and Importance of Exploiting
Multiple Cores: A Case Study in Neurophysiological Visualization'. Proceedings of the 2012
International Conference on Parallel and Distributed Processing Techniques and
Applications, 2 pp 352-358.

4.1 VISA Project Goals

Due to increasing size of data, the VISA software was completely redeveloped to fully exploit

the Java concurrency framework. It was essential for the software to maintain throughput in

order to achieve three main project goals:

 To enable the Neurophysiologists to process exponentially larger datasets than earlier
versions in order to manage current and future demand.

 To develop the software in a language that offered cross platform compatibility to enable
easy distribution

 To target a “typical researchers computer” with the option to execute with increased
efficiency and speed on more powerful systems.

 To introduce a workflow based interface loosely based on “visual programming
languages”. This workflow interface would enable users to control the ordering of data
pre-processing operations. This would provide users with greater control over the types
and ordering of pre-processing operations. Ultimately the goal is to enable users to
create their own pre-processing code modules to fine-tune their workflows in the future

4.2 Spike train data

In general, a neuron accumulates electrical stimulus, from other neurons coupled to it, until

some internal threshold is reached. Once its threshold is reached, the neuron initiates an

action potential. When a neuron initiates action potentials over time, we say that the neuron

is firing. Note that action potentials are more commonly referred to as spikes and a series of

these spikes over time is known as a spike train. Spike train data is one of the main types of

data collected during Neurophysiological experimentation.

Spike train datasets are records of the activity of a collection of neurons under investigation.

It is well established that information is encoded in this data. In the VISA project, the spiking

frequency and thus, inter-spike-intervals carry information. Therefore, research is focused on

the analysis of multidimensional spike train data to uncover information about the

synchronisation of spike trains and the connectivity of neurons.

4.3 Quantity of Data

VISA is currently in its third edition. The first two development cycles of the VISA project

incorporated the development of a cross platform tool [24, 25].

When the project began, laboratories were typically recording from at most 64 electrodes

simultaneously. This was deemed to be a very large amount of data and it was recorded

using an 8 by 8 multi-electrode array. Currently, due to recent improvements in electrode

hardware, Neurophysiologists are now able to routinely capture data using 4096 electrodes

simultaneously. For example, the Plexon Array [26], can now record data for over 30

minutes at a sampling frequency of 7.702 kHz when matched with appropriate hardware.

Tucker, R., Barlow, N. & Stuart, L. (2012) 'The Background and Importance of Exploiting
Multiple Cores: A Case Study in Neurophysiological Visualization'. Proceedings of the 2012
International Conference on Parallel and Distributed Processing Techniques and
Applications, 2 pp 352-358.

With typical trials lasting anywhere from a few milliseconds to tens of minutes, datasets sizes

have vastly increased. For example: During an experiment when recordings are taken from

all 4096 electrodes sampling data every millisecond, a 30 minute trial would result in a data

file of 10.43 MB with approximately 1 million data points.

4.4 Introduction to VISA

The VISA3 interface is effectively a visual programming language which enables the user to

create a workflow.

Figure 6: Directed Graph of a VISA
3
 Visual Program

A workflow is a set of processes joined together. It is understood that such a programming

model is naturally parallelisable; processes are able to execute as soon as all inputs are

available.

A typical VISA3 workflow is shown in Figure 6. This workflow shows 12 processes on the

workflow interface. Note that these processes are selected by the user from a Toolbox and

dragged on to the interface. These processes have parameters set by the user and they are

connected together into the workflow as shown by dragging the mouse between process

“ends”. This workflow is dealing with three input files, two of which subsequently sorted and

then exported to an external file. Eventually, all this data is visualised using the iRaster

visualization.

Tucker, R., Barlow, N. & Stuart, L. (2012) 'The Background and Importance of Exploiting
Multiple Cores: A Case Study in Neurophysiological Visualization'. Proceedings of the 2012
International Conference on Parallel and Distributed Processing Techniques and
Applications, 2 pp 352-358.

The iRaster visualization enables the Neurophysiologists to investigate their data

interactively using a traditionally-based raster plot representation. In addition to the

functionality delivered by classical raster plot visualization, iRaster also provides the user

with the following core functionality: data zooming methods, multiple views of data with view

synchronization, and the contextual labelling of spike train identifiers and time points. iRaster

also enables users to interactively and dynamically remove spike trains or time periods and

to zoom in onto specific time periods to look at spike trains in greater detail. The software

also provides an extensive list of spike train reordering functions. The majority of software

tools currently available provide the usual static raster plots that are merely snapshots of the

spike train data. In contrast, iRaster enables the user to interactively navigate through and

directly manipulate spike train data, providing a dynamic experience of the data.

4.5 Concurrency in the VISA Interface

The key benefits of this interface are apparent. Scientists are not confronted with the need to

learn a text based interface, the interface is designed to be intuitive.

The structure of the workflow, which may exploit parallel execution, is also apparent. If you

refer to Figure 6, three sections of the workflow that could execute in parallel are obvious.

Each process, such as the Import File process or the “Merge Datasets” process, represents

a processing activity that may commence execution as soon as its inputs are available. The

connections between various processes show the precise flow of data within the program.

Within the Java language, parallel execution is achieved through the concurrency framework.

It operates as follows:

A ‘pool’ of threads each capable of executing a code module is created. Note this applies

only to code modules that implement the concurrency frameworks ‘Callable’ interface. Pool

size is dynamically determined based on the processors available on the executing machine

but aims to optimise for CPU bound tasks. It is reasonable to assume that most tasks in

VISA3 will fall into this category.

At the beginning of execution the application determines all paths, through the directed

graph, that comply with the requirements of the information processing cycle. Specifically

this ensures that some input is received (usually from a data file), some processing is

performed and finally some output is generated (typically a data visualisation module is

triggered).

Each processing node of the directed graph is implemented as a “binary latch” [11]. This

latch acts a synchroniser which simulates a gate that can only be opened once. Until the

conditions for opening the gate are met, all threads reaching the latch will be unable to

proceed. The latch will be converted into the terminal state once these conditions are met. In

the case of VISA3, the conversion requires all preceding operations to have completed and

delivered a dataset to the waiting process. When the gate opens, all datasets from previous

nodes are delivered to the next node and processing begins on that thread.

Tucker, R., Barlow, N. & Stuart, L. (2012) 'The Background and Importance of Exploiting
Multiple Cores: A Case Study in Neurophysiological Visualization'. Proceedings of the 2012
International Conference on Parallel and Distributed Processing Techniques and
Applications, 2 pp 352-358.

The datasets flowing through the directed graph are required to implement the VISA3

interface IProcessingResult. Note that IProcessingResult is designed to wrap any data

structure. Therefore, classes implementing this interface serve as the ‘tokens’ that drive the

dataflow processing [27] and are placed onto the nodes input/output paths (triggering the

‘latches’ as required).

In addition to the development of a workflow interface, the Java Concurrency Framework

was further leveraged to improve performance of the iRaster visualisation. As described in

section 4.4, this visualisation provides an interactive raster plot of the spike trains.

The re-engineering of the visualisation was critical to maintain interactivity, due to the

increase in dataset size. The original implementation typically worked with several hundred

spike train recordings simultaneously whereas the new version works with thousands. Note

that scientists are particularly keen to embrace this software as their traditional means of

analysis do not scale.

4.5.1 Exploiting multiple-cores in VISA

Maintaining the responsiveness of an interactive application while filtering and processing

this amount of data is challenging. Given this complexity, effective use of computing power

in the rendering and display of the raster plot is essential. Recall that it has already been

established that future increases in computer power will be delivered through multiple

compute cores. The Java Concurrency Framework provides a natural means to access and

manage this increased computing power in the future.

To exploit multiple cores, the VISA3 data model was redesigned as a set of thread safe

classes that could be shared across multiple executing tasks in the Concurrency Framework.

The iRaster visualization process was designed using the model, view, controller design

pattern with the synchronisation of shared data occurring in the model. Subsequently, the

rendering could easily be adapted for parallel execution.

This required a concurrent task that accepted a screen area and spike train to render within

the area. Therefore, rendering the display focuses on the individual components of the data

model that are to be shown as well as generating a collection of concurrently executable

tasks. A latch is again employed to ensure the various tasks complete before the final

display is presented. The raster chart is then cached with re-rendering occurring only as data

is filtered into/out of the display. Interactive components, such as selection highlights, scale

sliders, are sequentially rendered over the cached chart.

4.6 Future VISA3 Development plans

The workflow interface and the iRaster visualisation have clearly demonstrated that parallel

execution of data pre-processing and visualisation activities can scale the application to

2000+ data recordings each with thousands of data points while maintaining responsiveness.

There are now two primary tasks. The first task is the conversion of the iGrid visualisation

Tucker, R., Barlow, N. & Stuart, L. (2012) 'The Background and Importance of Exploiting
Multiple Cores: A Case Study in Neurophysiological Visualization'. Proceedings of the 2012
International Conference on Parallel and Distributed Processing Techniques and
Applications, 2 pp 352-358.

[24] to use the Java Concurrency Framework to enable the new larger datasets to be

visualized in this way. This will enable the popular visualization iGrid to exploit multicore

processors, thus enabling the visualization of new, larger datasets. This is challenging as

iGrid is based on the production of numerous cross-correlograms. These calculations

become so numerous that it is likely to be necessary to move to general-purpose computing

on graphics processing units (GPGPU) model to ensure the user requirement for

responsiveness are delivered.

The second task is to deploy the iRaster software more widely. The CARMEN Project is

developing a ‘workflow’ system similar to the VISA interface [28] for processing neural

recordings. In principle, this should be directly connectable to the iRaster visualisation.

Whilst it requires conversion to a client-server model to support deployment on the CARMEN

hardware, it will be offered as a downloadable client to view data stored in the CARMEN

repository. The intention is to make this software freely available for all non-commercial use.

5 Conclusions

Multi-Threaded code originally arose from the need to manage long running tasks without

the executing application becoming unresponsive to the user. However, over the last decade

a new use of this technique has arisen. This is attributed to the fact that hardware

manufacturers now deliver increased computing performance through multiple compute

cores. Threads have been used as a natural way of writing applications that fully exploit

delivery of computing power. Nevertheless, this application of threads falls outside their

original purpose. Therefore, its use has been limited by a lack of software tools and

developer training.

Now that hardware manufacturers have committed themselves to multi-core hardware

systems, the software developer must acknowledge that to continue to benefit from ever

faster hardware, the way in which they write programs must change.

 Developers are beginning to accept this need to change and this is supported by the

availability of development tools such as Intel® Parallel Studio suite and the addition of

concurrency frameworks to major programming languages.

Despite the availability of these support tools, threading and concurrency continue to be

seen as advanced concepts with training continues to lag behind the deployment of

hardware capable of executing concurrent code.

In the next few years, this must change with the next generation of developers being trained

to expect their code to execute in a concurrently on multi-core hardware. In many research

fields multi-core hardware will be combined with clustering and grid technologies (cloud

computing) to dramatically increase data processing throughput. In business, every

employee can expect to be using multi-core devices as standard (from desktop PC to mobile

phones and tablets). The developers of today graduate with a firm understanding of object

orientated development; the developer of tomorrow will need to add concurrent programming

Tucker, R., Barlow, N. & Stuart, L. (2012) 'The Background and Importance of Exploiting
Multiple Cores: A Case Study in Neurophysiological Visualization'. Proceedings of the 2012
International Conference on Parallel and Distributed Processing Techniques and
Applications, 2 pp 352-358.

and the experience of a concurrency framework to these skills if they are to meet the needs

of business tomorrow!

 The value of these skills has been demonstrated in the case study of the VISA3

project. In VISA3, the number and length of neural spike train recordings that need to be

processed by the software has been scaled up by a factor of ten. Finally the application of a

workflow based interface to the VISA3 software demonstrates that visualising a concurrent

application in this manner may offer a means to effectively design and debug concurrent

software.

6 References

[1] ARIS, J., HERMON, P., LAND, F. & CAMINER, D. 1997. L.E.O.: The Incredible Story of

the World's First Business Computer Mcgraw-Hill.

[2] SHNEIDERMAN, B. & PLAISANT, C. 1998. Designing the user interface: Strategies for

effective human-computer interaction Addison Wesley.

[3] MICROSOFT. 1995. Windows 95 Architecture Components Windows TechNet [Online].

Available: http://technet.microsoft.com/en-us/library/cc751120.aspx [Accessed 14/03/2012].

[4] APPLE. 2001. Threading Architectures - Technical Note TN2028 [Online]. Apple Inc.

Available:

https://developer.apple.com/legacy/mac/library/#technotes/tn/tn2028.html#//apple_ref/doc/ui

d/DTS10003065 [Accessed 26/03/2012 2012].

[5] AIKAT, D., STEPNO, B., CHERNOFF, E., MANNING, M., ROBINSON, W. & HUGHES, T.

1995. The Digital Research Initiative - What is UNIX [Online]. Chapel Hill: University of North

Carolina. Available: http://www.ibiblio.org/team/intro/unix/what.html [Accessed 05/03/2012

2012].

[6] CORPORATION, Intel. 2008. What does it mean to be I/O Bound. Intel Corporation.

[7] DUBASH, M. 2005. Moore's Law is dead, says Gordon Moore [Online]. Techworld.

Available: http://news.techworld.com/operating-systems/3477/moores-law-is-dead-says-

gordon-moore/ [Accessed 22/09/2011].

[8] KRAUSS, L. M. & STARKMAN, G. D. 2004. Universal Limits on Computation [Online].

Available: http://arxiv.org/pdf/astro-ph/0404510v2.pdf [Accessed 13/03/2012 2012].

[9] HILL, M. D. & MARTY, M. R. 2008. Amdahl’s Law in the Multicore Era. Computer - IEEE

Computer Society, 33-38.

[10] MYSLEWSKI, R. 2009. The multicore future, and how to survive it - Avoiding the

proprietary extensions trap [Online]. San Francisco. Available:

http://www.theregister.co.uk/2009/08/25/multicore_developments/ [Accessed 05/03/2012

2012].

Tucker, R., Barlow, N. & Stuart, L. (2012) 'The Background and Importance of Exploiting
Multiple Cores: A Case Study in Neurophysiological Visualization'. Proceedings of the 2012
International Conference on Parallel and Distributed Processing Techniques and
Applications, 2 pp 352-358.

[11] GOETZ, B., PEIERLS, T., BLOCH, J., BOWBEER, J., HOLMES, D. & LEA, D. 2006.

Java Concurrency in Practice, Pearson Education.

[12] APPLE. 2009. Grand Central Dispatch - A better way to do multicore [Online]. Apple Inc.

Available:

http://www.ctestlabs.org/hughes_multicore/documents/GrandCentral_TB_brief_20090608.pd

f [Accessed 26/03/2012 2012].

[13] GHULOUM, A., SHARP, A., CLEMONS, N., TOIT, S. D., MALLADI, R., GANGADHAR,

M., MCCOOL, M. & PABST, H. 2010. A Flexible Parallel Programming Model for Multicore

and Many-Core Architectures [Online]. Intel Software and Services Group. Available:

http://drdobbs.com/cpp/227300084 [Accessed 14/03/2012 2012].

[14] PATTERSON, D. A. & HENNESSY, J. L. 2008. Computer Organization and Design: The

Hardware/Software Interface Morgan Kaufmann.

[15] INTEL. 2008. News Fact Sheet [Online]. Intel Corporation. Available:

http://download.intel.com/pressroom/kits/events/idffall_2008/IDF_Day2_FactSheet.pdf

[Accessed 13/03/2012 2012].

[16] INTEL. 2009. Intel PR Chip Shots [Online]. Intel Corporation. Available:

http://www.intel.com/pressroom/chipshots/archive.htm#052609a [Accessed 13/03/2012

2012].

[17] PETURSSON, H. V. 2011. Stackless Python Applications [Online]. Python Software

Foundation. Available: http://www.stackless.com/wiki/Applications [Accessed 14/03/2012

2012].

[18] BLAKE, G., DRESLINSKI, R. G. & MUDGE, T. 2009. A Survey of Multicore Processors.

IEEE SIGNAL PROCESSING MAGAZINE, 26-37.

[19] LEA, D. 2004. JSR 166: Concurrency Utilities [Online]. Java Community Process

Program. Available: http://jcp.org/en/jsr/detail?id=166 [Accessed 06/03/2012 2012].

[20] MICROSOFT. 2010. Parallel Programming in the .NET Framework [Online]. Microsoft

Developer Network. Available: http://msdn.microsoft.com/en-

us/library/dd460693(v=vs.110).aspx [Accessed 06/03/2012 2012].

[21] TISMER, C. 2000. Stackless Python 1.0 + Continuations 0.6 [Online]. Available:

http://mail.python.org/pipermail/python-dev/2000-January/001835.html [Accessed

26/03/2012 2012].

[22] REINDERS, J. 2007. Threading Building Blocks Outfitting C++ for Multi-core Processor

Parallelism O'Reilly Media.

[23] MONCHIERO, M., CANAL, R. & LEZ, A. G. 2008. Power/Performance/Thermal Design-

Space Exploration for Multicore Architectures. IEEE TRANSACTIONS ON PARALLEL AND

DISTRIBUTED SYSTEMS, 19, 666-681.

Tucker, R., Barlow, N. & Stuart, L. (2012) 'The Background and Importance of Exploiting
Multiple Cores: A Case Study in Neurophysiological Visualization'. Proceedings of the 2012
International Conference on Parallel and Distributed Processing Techniques and
Applications, 2 pp 352-358.

[24] STUART, L., WALTER, M. & BORISYUK, R. 2005. The correlation grid: analysis of

synchronous spiking in multi-dimensional spike train data and identification of feasible

connection architectures. Biosystems, 79, 223-233.

[25] SOMERVILLE, J., STUART, L., SERNAGOR, E. & BORISYUK, R. 2011. iRaster: A

novel information visualization tool to explore spatiotemporal patterns in multiple spike trains

Journal of Neuroscience Methods, 194, 158-171.

[26] PLEXON 2006. MEA Workstation - System for recording and analyzing microelectrode

arrays. In: INC, P. (ed.) Online. Dallas: Plexon Inc.

[27] DENNIS, J. & ROBINET, B. 1974. First version of a data flow procedure language.

Programming Symposium. Springer Berlin / Heidelberg

[28] SMITH, L. S. 2010. CARMEN - Code Analysis, Repository & Modeling for E-
Neuroscience [Online]. CARMEN Consortium. Available: http://www.carmen.org.uk/
[Accessed 29/03/2011 2011].

Tucker, R., Gunaratne, S., Barlow, N. & Stuart, L. (2014) 'A Scaling Cross Platform Tool for
the Analysis of Neurophysiological Data'. International Journal of Computer Application, 3 (4).
pp 41-56.

A SCALING CROSS PLATFORM TOOL FOR THE
ANALYSIS OF NEUROPHYSIOLOGICAL DATA

Roy Tucker, Saman Gunaratne, Nigel Barlow and Liz Stuart
The Visualization Lab, School of Computing & Mathematics, Plymouth University, Plymouth, UK

roy.tucker@plymouth.ac.uk(contact author), nigel.barlow@plymouth.ac.uk, liz.stuart@plymouth.ac.uk

Keywords: Concurrency, Parallel Computation, Multithreading, Massive datasets, Information Visualization, Visual

analytics

Abstract: This paper describes the development of a cross platform cross correlation and clustering application for

neural spike train recordings that will scale seamlessly from use on a researchers PC to a high performance

computing cluster (HPC). Clusters of neurons are identified from the neural recordings using a hierarchical

agglomerative clustering algorithm applied to the cross correlation data. Finally a cross correlation grid is

used to visualise the neural clusters with the user navigating through the dataset using a dendrogram

depicting the identified clusters. The cross correlation algorithm is an “embarrassingly parallel problem” that

is scaled to cope with a large number of neurons through exploiting multiple compute cores both in the

setting of a researchers PC or an HPC. This scaling is achieved using MPJ Express a Java implementation of

the Message Passing Interface (MPI).

1. Introduction

The study of neurons as the functional component

of the nervous system began in 1873 when Camillo

Golgi developed a staining technique that made

them visible to researchers using microscopes [1].

Combined with the work of Santiago Ramón y

Cajal these scientists laid the foundation for the

“neuronal doctrine”. At its core this doctrine

asserts that the brain is composed of individual

units that contain specialized features such as

dendrites, a cell body, and an axon. Since this

discovery neural science has developed to study

how cognition, memory and the higher brain

functions emerge from networks of interconnected

neurons. Communication between neurons in a

“neuronal network” is by electro-chemical means

and it is the study of these electro chemical signals

that form the basis of neural scientists’

investigations into the emergent properties of

neuronal networks.

2. Neurophysiological Data

While cognition, memory and the higher brain

functions are highly complex, the neuron itself is a

relatively simple cell dedicated to the production

and transmission of electrical signals. A neuron

accumulates electrical charge from other neurons

that have connected to it. Once the accumulated

charge reaches a threshold the neuron generates an

action potential and discharges. When a neuron

discharges its stored electrical energy it is said to

‘fire’ and modern recording hardware can record

these electrical discharges’ over time. A single

discharge event is usually referred to as a spike

while a recording over time of these spikes is

termed a spike train. Spike trains form the basic

data for neural science research into both the

connections between neurons and the data being

transmitted within a neuronal network. Figure 7

shows a typical spike train recording for three

neurons over 500ms (700ms – 200ms). Here the

horizontal plot denotes the spiking of the neuron

over time with a vertical line.

Figure 7: An example of a typical spike train
recording for three neurons over a period of 500ms

mailto:roy.tucker@plymouth.ac.uk
mailto:nigel.barlow@plymouth.ac.uk
mailto:liz.stuart@plymouth.ac.uk

Tucker, R., Gunaratne, S., Barlow, N. & Stuart, L. (2014) 'A Scaling Cross Platform Tool for the
Analysis of Neurophysiological Data'. International Journal of Computer Application, 3 (4). pp
41-56.

It has been shown that, each neurons spiking event

is essentially identical [2] and therefore the

individual spikes do not seem to transmit or carry

information. Rather the information is encoded in

the timing and sequence of spikes. This has

encouraged researchers to focus on the frequency

(or inter spike intervals) and the synchrony

between spike trains in their attempt to decode the

information being transmitted. Research has

demonstrated that synchrony between spike trains

is of great importance for information processing

in the brain [3].

2.1. Coupling of neurons

The synchronisation between any two neuron spike

trains is dependent on the coupling that exists

between the neurons within the neuronal network

that they are part of. Researchers have identified

two types of coupling:

i. Direct coupling and

ii. Indirect coupling.

Both types are illustrated in Figure 7.

Figure 8: An example of (i) direct synaptic coupling
and (ii) common input coupling

In case (i) neuron A delivers an electrochemical

signal directly to neuron B while in case (ii)

neurons B and C share a common input from

neuron A. In each case the resulting spike train

recordings will show a strong synchronisation (or

correlation) between A and B / C while B and C

will show a weaker correlation reflecting their

shared input from A.

The study of the correlation between multiple

spike trains offers the opportunity to map the

underlying neuronal network structure and

interpret the neural code being used to transmit

information, but faces a considerable

computational challenge when its sheer scale is

considered.

The human brain is estimated to contain

approximately one hundred billion neurons (10
11

)

with each neuron on average maintaining 7000

connections to other neurons. Even with the most

modern equipment we lack the ability to

simultaneously record the spike trains for this

many neurons as well as the computational tools to

analyse the resulting data. Nevertheless the study

of smaller neuronal network structures, in detail, is

possible through the study of synchrony and

correlations between spike trains.

Much data has been recorded in the form of multi-

dimensional spike trains where the spiking

behaviour of an assembly of neurons is

simultaneously recorded while being subjected to a

stimulus. A common first step in the analysis of

this data is the preparation of a cross correlation

analysis.

3. Cross Correlation

The process of cross correlation aims to provide a

consistent mathematical basis to measure the

degree of synchrony between multi-dimensional

spike trains. Focused on comparing a pair of spike

train recordings (and hence a pair of neurons) its

output is a cross correlogram such as that shown in

Figure 9.

Figure 9: Example cross-correlogram for two
connected neurons

Here we see a strong correlation in spike events at

the +5ms position indicating that the two spike

trains analysed show a highly synchronous spiking

pattern separated by 5ms. Such a chart is generally

referred to as a Pair-wise cross correlogram.

Tucker, R., Gunaratne, S., Barlow, N. & Stuart, L. (2014) 'A Scaling Cross Platform Tool for the
Analysis of Neurophysiological Data'. International Journal of Computer Application, 3 (4). pp
41-56.

3.1. Pair-wise cross-correlogram

The creation of a cross correlogram is essentially a

two-step procedure involving ‘binning’ the spike

events of the two spike trains into time bins and

then preparing a histogram of the number of spike

events in each time bin.

The two selected spike trains are assigned the roles

of reference spike train and target spike train and

the binning parameters of bin size and window size

are decided upon (for Figure 9 these where a bin

size of 3ms and a window size of 100ms). The

binning process involves positioning each spike

event on the reference spike train at the centre of

the time window and calculating the number of

spikes of the target spike train that fall into each

bin as illustrated in Figure 10.

Figure 10: An example of a Cross Correlogram
calculation using a six-bin window

The result for each bin is summed with the result

from all other spike events on the reference spike

train to generate the data for the histogram plot. If

the spiking data exhibits a temporal correlation

between the two spike trains a statistically

significant peak will be seen on the histogram plot.

3.2. Peak significance

A histogram plot with a strong ‘peak’ as seen in

Figure 9 provides a good indication of a temporal

correlation between the two neurons spiking

patterns. It is however possible to obtain false

positives due to the high spiking frequency of a

spike train. To address this issue the cross

correlogram data is usually normalised using the

Brillinger normalisation and confidence

interval [4].

Figure 11: Example Brillinger normalised cross-
correlogram with confidence interval

The Brillinger technique gives each bin a mean

value of one allowing meaningful comparisons to

be made between spike trains of different lengths.

A confidence interval based on the data is

calculated and any peak lower than this interval is

considered to be purely random while peaks

greater than this interval denote significant

correlation.

Figure 11 shows a Brillinger normalised cross-

correlogram with the mean spike bin size of one

and the confidence interval shown. While a

Brillinger normalised cross-correlogram provides a

reliable indication of neuronal coupling it remains

focused on the connectivity between two neurons

while a functional neuronal network will include

many more than two neurons. Inevitably the

pairwise cross-correlogram is not a suitable

visualisation for identifying connectivity within

any meaningfully sized neuronal network.

3.3. The Cross-Correlation Grid

(iGrid)

This deficiency was first addressed by Walter,

Stuart and Borisyuk who created a compact

visualisation known as iGrid [5] to provide a visual

overview of a large set of cross-correlogram data.

Tucker, R., Gunaratne, S., Barlow, N. & Stuart, L. (2014) 'A Scaling Cross Platform Tool for the
Analysis of Neurophysiological Data'. International Journal of Computer Application, 3 (4). pp
41-56.

Figure 12: Example Correlation Grid showing only
significant peaks (bin size 2ms, window size 100)

In this visualisation the significant peaks in the

cross correlogram data (and their relative strength)

are encoded using grey-scale squares with white

indicating no significant peak and black the largest

peak in the grid. In Figure 12 we see a cross-

correlation grid for a network of 10 neurons

representing some 55 individual cross-

correlograms. The initial iGrid implementation

was further improved upon by introducing a

clustering algorithm to re-order spike trains within

the grid. In Figure 13 we see the same cross-

correlation grid presented in Figure 12 but this

time re-ordered using the clustering algorithm.

Figure 13: Example Correlation Grid, showing only
significant peaks and clustered (bin size 2ms,

window size 100)

The two clusters of connected neurons in the test

dataset are now clearly visible with neurons 1, 3, 5

& 7 forming the first cluster while 2, 4 & 6 form

the second. The remaining neurons 8, 9 & 10 show

no strong correlation with either cluster. This does

indeed mirror the interconnections in the test

neuronal network which is shown in Figure 14.

Figure 14: Neuron assembly for test data set

Clearly then the cross correlation technique

provides a useful means to extract the structure of

a neuronal network from simultaneous recordings

of that networks spiking behaviour. In turn

knowledge of the network structure permits the

researcher to identify which neurons are

generating/receiving signals in response to the

applied stimulus.

3.4. Drawbacks to the cross

correlation grid

While useful the cross correlation grid does

present a number of problems to the researcher.

Most noticeably it still suffers from scalability

issues when applied to larger datasets in two ways:

 The computational workload in terms of

cross correlation generation and

normalisation rapidly grows as neuronal

network size increases and

 The available screen space to physically

display a cross correlation grid is limited

and beyond approx. 100 neurons the visual

benefit of the grid is lost to the human eye.

In examining these points we note that the number

of cross-correlograms that must be generated and

Tucker, R., Gunaratne, S., Barlow, N. & Stuart, L. (2014) 'A Scaling Cross Platform Tool for the
Analysis of Neurophysiological Data'. International Journal of Computer Application, 3 (4). pp
41-56.

normalised for a neuronal network of size 𝑛 is

given by the equation:

𝑛2 + 𝑛

2

This function is graphically shown in Figure 15,

for neuronal networks of, up to, 2000 neurons. A

neuronal network of 2000 neurons would require

the production and normalisation of 2,001,000

pairwise cross correlations. Current recording

hardware for multi-dimensional spike trains can

already routinely record neuronal networks in the

1500 – 2000 neuron range [6], using Multi-

Electrode Arrays (MEA’s). It is anticipated that a

rapid growth in recording sizes will occur over the

next several years so even a 2000 neuron neuronal

network recording will soon be seen as relatively

small. In addition to the growth in recording size in

terms of physical neurons recorded the time over

which the recordings are made has also been

growing with durations of 30+ minutes or more

becoming increasingly common [7]. This has

resulted in a marked growth in the number of

recorded spike events (or data points) to be

processed at the cross-correlations binning stage

further leading to an increased computational

workload in creating the pairwise cross-correlation

data.

Figure 15: Number of required cross correlation
calculations for neuronal networks up to 2000

neurons in size.

Finally the growth in recorded neurons has also

made it impossible to visually display the

correlation grid in any way that allows meaningful

conclusions to be extracted. This can be simply

demonstrated by contrasting the screen pixels

available with the required grid size. The modern

monitor runs with a typical resolution of 1920 x

1080 pixels providing a visible grid of 2073600 in

which the display is rendered. However the

visualisation of a 2000 neuron cross-correlation

grid will require at a minimum 4,000,000 pixels

even if one pixel represented a single grid entry.

Thus, in practice, it is impossible to visually

extract a useful overview of a dataset from a

display where a pixel must represent 1.929 data

points (4000000 / 2073600).

A final drawback of these scaling issues in the

iGrid visualisation is the loss of interactivity with

the user. The original iGrid implementation

allowed users to interact with the grid, viewing

individual cross-correlograms and re-ordering the

grid as needed. The growth in dataset size often

slows these interactions to the point where the

benefit to the user is lost.

Giving these issues of increasing computational

load and expanding dataset sizes we must conclude

that iGrid as originally implemented, while useful,

does not scale well for application to the datasets

produced by modern recording hardware.

4. Parallelism

4.1. Scaling iGrid’s computational

elements

Addressing the scaling issue of the iGrid analysis

tool requires:

1. Managing the computational burden of

cross-correlation analysis so that the goal

of an interactive tool that can be used on a

‘typical’ standard PC.

2. Providing a new visualisation element to

provide a meaningful ‘overview’ of the

data set.

The need to address point one provided an

opportunity to employ parallel computation to

create a data model that would support the

Tucker, R., Gunaratne, S., Barlow, N. & Stuart, L. (2014) 'A Scaling Cross Platform Tool for the
Analysis of Neurophysiological Data'. International Journal of Computer Application, 3 (4). pp
41-56.

interactive iGrid tool. Generally computation

architectures are categorised using Flynn’s

Taxonomy [8] into the following four architectures:

1. Single instruction, single data stream

(SISD)

2. Single instruction, multiple data streams

(SIMD)

3. Multiple instructions, single data stream

(MISD)

4. Multiple instructions, multiple data

streams (MIMD)

The production of cross-correlogram data is a

“Single instruction, multiple data streams” task

where the computational algorithm is a constant

(Single instruction) but the data to be operated on

repeats (Multiple data streams, with each neuron

pair within the dataset being a separate data

stream). Therefore we can categorise the cross-

correlation computation as a Single instruction,

Multiple data stream (or SIMD) task. It has been

noted that such tasks are naturally parallelisable

but this was not exploited in the original iGrid

implementation. Given the smaller data set sizes

used for the original implementation this did not

hinder the application however as the application

scales this becomes a significant bottleneck.

Modern computing hardware delivers performance

through parallel computation (Multi-Core

computers and the increasing use of GPU’s for

parallel computation) [9]. Additionally the delivery

of computing power ‘in the cloud’ is now

emerging as a new approach to creating

computationally intensive applications that can

draw on additional computation power as needed.

This growth in the options for parallel processing

of large data sets presented a variety of options

that where considered for scaling the

computational portion of the iGrid software. In

summary the considered options where:

1. A dedicated processing cluster available to

researchers over the web (in the form of the

Carmen Project’s Virtual Laboratory [10]).

2. A cloud based solution such as Amazon Web

Services that caters for big data analysis.

3. A distributed computing / cluster computing

solution such as that offered by the Apache

Hadoop project.

4. An implementation of the algorithm utilising

the MPI – Message Passing Interface allowing

execution on any computing cluster that

supports this standard.

5. An implementation that exploits the compute

capabilities of GPU’s now being opened up by

frameworks such as CUDA and OpenCL

which are particularly suited to this type of

problem.

Our previous work on the VISA project had

created a Java based data model suitable for

representing neural spike trains and the developer

undertook to extend this model to support the

cross-correlation and clustering required for the

iGrid software. Initial development was aimed at

the Carmen Project’s Virtual Laboratory which

provided a service based framework that readily

supported the existing Java implementation. The

service based architecture wraps a Java executable

that performs the cross-correlation and clustering

analysis. The ultimate approach adopted was to

generate from the wrapped executable a file a

cross-correlation data file and a file of clustering

records derived from the cross correlations. This

approach separated the naturally parallelizable

component of the analysis (the cross-correlation)

from the serial clustering process. Parallel

processing within the Java executable was

achieved through the Java Concurrency

Framework and the use of multiple threads to

exploit multiple cores. To cluster the cross

correlation results we selected a hierarchical (or

connectivity based) agglomerative clustering

solution using complete linkage clustering. The

metric used to determine the distance between

clusters was the Euclidean distance between the

most significant peak of the cross correlogram

after Brillinger normalisation. Consideration was

given to single linkage and average linkage

clustering and these remain as options in the

deployed CARMEN service but complete linkage

provided the most accurate identification of the

underlying neural structure in our simulated

Tucker, R., Gunaratne, S., Barlow, N. & Stuart, L. (2014) 'A Scaling Cross Platform Tool for the
Analysis of Neurophysiological Data'. International Journal of Computer Application, 3 (4). pp
41-56.

networks. Both the cross correlation and clustering

files where encoded as JSON strings allowing

portability of results between processing systems.

While the CARMEN service was successfully

implemented it did not realise the speed benefits

hoped for several reasons. Most noticeably the

availability of solely 8 compute cores coupled with

the overhead of the service wrapper meant a speed

increase could not be realised. Despite this it

served as a useful proof of concept that indicated a

more flexible system was required. Furthermore

encoding the processing results into JSON strings

provided a portable cross platform format that

allowed re-coding of the actual analysis

implementation without affecting integration with

the iGrid software.

The next phase of development involved

identifying a technology that would:

1. Preserve the benefits of the cross platform

nature of Java while

2. Operate in a timely manner in a cluster

computing environment.

In this case the developers looked to the widely

supported Message Passing Interface standard

(MPI) to provide portability between many high

performance computing clusters [11]. MPJ Express

was selected as the implementation of MPI as this

provided support for operation not only in the

‘Cluster Configuration’ typical of many high

performance computing clusters but also offered a

multi-core mode that allowed multiple threads to

replace the cluster nodes. The use of this mode

greatly improves the portability of the MPI

solution to the cross-correlation generation and

neural cluster identification as it permits the same

MPI implementation of these functions to migrate

seamlessly from a user’s laptop / desktop to a high

performance cluster computer [12]. This did

involve re-coding the cross correlation and

clustering algorithms’ to support the MPI standard

but fortunately the use of JSON strings for

encoding results limited the overall changes

needed to these two areas.

The MPI implementation of the cross-correlation

and clustering algorithms was initially developed

on a hyper-threaded 4 core desktop system

(providing access to 8 concurrent threads) running

an Intel Core i7-2600 CPU @ 3.40 GHz. It was

subsequently migrated to the University of

Plymouth High Performance Computer (Fotcluster

1) [13]. This cluster is a 104 core distributed

memory cluster composed of a ViglenHX425Hi

HPC combined head and storage node plus 12

compute nodes employing a mixture of Dual Intel

Xeon Quad Core E5620 @ 2.4Ghz processors and

Dual Intel Xeon Quad Core E5310 @ 1.6Ghz

processors. In each case the MPJ Framework

provided the executing environment for the MPI

implementations and the speed & performance of

the computationally intensive cross-correlation and

clustering algorithms can be seen in the results

section.

4.2. Implementing the Algorithm

Similar to all programs being parallelized, these

cross correlation and clustering programs will

contain both a serial and a parallel element.

Initially, it is necessary to decompose the problem

into steps that (i) can and (ii) cannot be executed in

parallel [14]. Both the cross correlation and

clustering parts of this algorithm are open to

parallelization. However, the cross correlation

portion of the algorithm is a naturally paralisable

problem (also known as an embarrassingly parallel

problem), whilst the clustering process is

considerably more complex to implement in

parallel. Fortunately the hierarchical agglomerative

clustering algorithm, which uses complete linkage,

for a 2000+ neuronal network is not a

computationally expensive process (although as

data size increases, it may become so) [15]. The

majority of the computational workload is in the

calculation and normalisation of the 2,000,000+

pairwise cross correlations that must be derived for

a 2,000+ neuronal network. The efficient

parallelisation of this component of the algorithm

is all about the effective load balancing across the

compute cores. Ideally, the algorithm should

ensure all cores are working at maximum

Tucker, R., Gunaratne, S., Barlow, N. & Stuart, L. (2014) 'A Scaling Cross Platform Tool for the
Analysis of Neurophysiological Data'. International Journal of Computer Application, 3 (4). pp
41-56.

capacity [16]. The natural division of the work is

into single pairwise cross correlation calculations

between two spike train recordings.

Theoretically, it is possible to apply a finer grained

division of the work. This would involve

parallelisation of the binning operation. RT: for

each reference spike trains spiking event could be

used. Whilst theoretically possible, this option is

not feasible due to the large number of threads that

would be generated and the need to co-ordinate the

movement of data between them. Note that each

reference spike train could include 1000+

individual spiking events. Since, this algorithm

needs to execute efficiently whether it is executing

on a laptop, a desktop PC or a HPC, the finer

grained parallelisation could not be adopted. Thus,

the implemented solution is based on a coarser

grained, individual cross correlation approach that

can be effectively deployed across all hardware.

It should be noted that in the future, the use of

laptop and desktop GPUs for general computation

may lead to a re-evaluation of the coarse grained

task parallelism approach. Thus, this algorithm

would be adapted to exploit the thousands of

potential GPU cores made available as such

hardware and corresponding software becomes

available [17].

Note that the cross correlation of neuron 1

(reference neuron) with neuron 10 (target neuron)

is identical to the cross correlation of neuron 10

with neuron 1. Thus, the grid is symmetrical.

Within the algorithm, each row of the cross

correlation grid is processed individually one after

the other. After processing a row of the correlation

grid, the data regarding that reference neuron is no

longer required. For example: after processing

row 1 of the grid, all data regarding to the

reference neuron 1 is no longer required in the

current task. Exploiting this property of the

correlation grid enables the algorithm to release

memory as it executes. During testing, this

memory management was essential when

executing on a laptop/desktop.

In the solution a queue of pairwise cross

correlation tasks are assigned to each available

compute core. As each row of the grid is processed

these queues receive a decreasing number cross

correlation tasks. Note that queued tasks are

delivered to the compute cores via the message

passing interface as the cores complete previous

work. Thus, when all queues are eventually

emptied, the cross correlation calculations for that

row are complete and the data of the reference

neuron is released from memory.

Figure 16: Overview of the parallel cross correlation
algorithm

The concurrent operation itself consists of deriving

the cross correlation bins seen in Figure 10 and the

Brillinger normalisation process shown in Figure

11. The resultant cross correlations are stored in

memory until a complete row of the grid has been

processed. When the row is complete, the bin data

for this row is saved to a file. Thus, the

corresponding memory is released so that the next

row of the grid can be processed. Note that the

cross correlation data is encoded as JSON strings

in order to maintain system portability. Figure 16

depicts the complete process for a grid size of 5.

Once this compute intensive part of the algorithm

is complete, multi-core processing queues are shut

down and serial execution resumes for the

clustering calculation. The clustering calculation

uses an agglomerative, hierarchal clustering

technique with complete linkage. This technique

(see Figure 11) is a bottom-up clustering approach

that clusters items based on the height of the

Tucker, R., Gunaratne, S., Barlow, N. & Stuart, L. (2014) 'A Scaling Cross Platform Tool for the
Analysis of Neurophysiological Data'. International Journal of Computer Application, 3 (4). pp
41-56.

highest peak in the cross correlogram [15]. The

user has the option to set the value of a ‘confidence

level’ which is used to define whether any cross

correlation peak is significant. Peaks are deemed to

be significant when they are higher than this

confidence level [4].

This is sufficient to define the relationship between

any two ‘clusters’ when both clusters include a

single spike train. In cases where the cluster

contains more than one spike train, the cross

correlation of each spike train in the first cluster

and every spike train in the second is examined.

Once again the most significant peak found

denotes the strength of the correlation between the

two clusters (this is known as ‘Complete Linkage’

as all cross correlations are considered when

selecting the most significant peak). Each

repetition of the clustering algorithm merges the

two most closely correlated clusters in the dataset.

This results in a new cluster at each iteration until

no more significant peaks exist between the

remaining clusters. Thus, clustering is complete

and the generated clusters are saved to a file. In

conjunction with the original spike train data file,

the cross correlation and clustering files are input

to the iGrid visualisation.

4.3. Scaling the visualisation

elements of iGrid

The correlated and subsequently clustered dataset

is input to the iGrid visualisation tool. Once loaded,

the tool produces the default initial cross

correlation grid plot, as well as, a dendrogram plot

of the data clustering (refer to Figure 17Figure

17).

Figure 17: Dendrogram plot of the first two spike
train clusters in a 50 neuron network

The dendrogram is used as navigation tool due to

the vast quantity of data. The dendrogram is used

to select spike trains for inclusion in the iGrid plot.

Figure 18: iGrid showing significant cross-
correlation peaks in a 50 neuron test dataset

This means that the iGrid provides a detailed view

of specific related spike trains. Figure 18 shows an

iGrid plot generated from our test data of 50

neurons recorded over 30 minutes. The spike train

plot has been ordered to group higly correlated

spike train patterns together, thus revealing the

neuron clusters.

Error! Reference source not found. shows the

associated dendrogram for the same 50 neuron

dataset. Note that the dendrogram identified 28

spike trains that show significant correlation in

Tucker, R., Gunaratne, S., Barlow, N. & Stuart, L. (2014) 'A Scaling Cross Platform Tool for the
Analysis of Neurophysiological Data'. International Journal of Computer Application, 3 (4). pp
41-56.

their spiking pattern. These spike trains are

connected in eight clusters. The remaining 22

spike trains were uncorrelated (and have been

filtered out to improve clarity).

Figure 19: Dendrogram for 50 neuron test dataset

When this derived (guessed) topology is compared

to the original (previously unseen) neuronal

network, it was correct. The same eight clusters of

correlated data are also apparent in the iGrid

representation in Figure 18. It is essential that this

system can scale-up. The results of testing its

ability to scale-up follows. To measure its success

testing will examine its performance under various

data loads and across various hardware platforms.

5. Results – using MPJ Express and

a High Performance Cluster

Performance of the scalable cross correlation

algorithm has been tested on both a standard PC

and on the High Performance Computing Cluster

(HPC) at Plymouth University.

5.1 Test Datasets

Testing was performed using datasets which

ranged in size from 50 neurons to 2000 neurons.

The size, and resulting number of cross

correlations performed, of each dataset is shown in

Table 19.

Neuron Count Cross Correlations

50 1275

100 5050

150 11325

200 20100

300 45150

400 80200

500 125250

1000 500500

2000 2001000

Table 19: Dataset sizes and number of cross
correlations performed

It should be noted that the HPC is capable of

processing larger datasets. The test data was

limited only by the largest comparable dataset on a

standard PC. Note that the 2000 neuron network

took 8.26 hours to complete while consuming

almost all available memory resources.

5.2 Standard PC Results

Testing of the cross correlation algorithm on a

standard PC used the following hardware:

Item Description

Processor Intel Core i7-2600 CPU

@ 3.40GHz

Installed Memory 16.0GB

Operating System Windows 7 Enterprise

Service Pack 1

The performance of the application was measured

in terms of the number of completed cross

correlations per second of operation. The results

are given in Table 20.

Neuron

Count

Cross

Correlation

tasks

Total

Time (Sec)

Per

second

rate

50 1275 21.84 58.37

100 5050 83.05 60.81

150 11325 172.93 65.49

200 20100 305.34 65.83

300 45150 680.24 66.37

400 80200 1201.63 66.74

500 125250 1872.54 66.89

1000 500500 7445.04 67.23

2000 2001000 29744.07 67.27

Tucker, R., Gunaratne, S., Barlow, N. & Stuart, L. (2014) 'A Scaling Cross Platform Tool for the
Analysis of Neurophysiological Data'. International Journal of Computer Application, 3 (4). pp
41-56.

Table 20: Total Cross Correlation time and per sec
rates for a standard PC

5.3 HPC Results

The High Performance Computer cluster (HPC) at

Plymouth University [13] was used to demonstrate

the scalability of the software. For the purpose of

this test 32 of the 104 compute cores where made

available. This represents a ‘4x’ increase in the

number of available compute cores compared to

the standard PC. Performance was measured by the

number of cross correlations completed per second.

Results are detailed in Table 21.

Neuron

Count

Cross

Correlation

tasks

Total

Time

Per second

rate

50 1275 10.51 121.37

100 5050 29.04 173.89

150 11325 55.78 203.04

200 20100 92.85 216.47

300 45150 196.48 229.80

400 80200 339.09 236.51

500 125250 525.23 238.47

1000 500500 2031.16 246.41

2000 2001000 8039.12 248.91

Table 21: Total Cross Correlation time and per sec
rates for HPC

5.4. Performance of scaling the

algorithm

As expected the increased availability of compute

cores in the HPC results in a marked increase in

performance. Recall, that the same algorithm is

executing in both situations without any re-coding.

This demonstrates that the platform agnostic

algorithm executes in both environments,

Furthermore, it clearly shows that it also scales as

additional resources are made available.

Performance is measured in terms of the number of

cross correlations performed per second. Table 22

shows the result for a standard PC and the High

Performance Cluster:

Table 22: Cross correlations per a second Desktop /
HPC

As expected the performance of the algorithm flat

lines based on the resources made available. The

desktop system averaged 65 cross correlations per

second with networks of 50 to 2000 neurons. Its

performance remained close to this average for all

networks of 150+ neurons.

As expected, the HPC makes greater resources

available in terms of compute cores and this leads

to a higher performance. The HPC averaged

212.76 cross correlations per second with networks

of between 50 and 2000 neurons. However, there

was a greater degree of variation in the averages.

Table 23: Performance variation from mean
calculation rate by neuronal network size

Note that the HPC performed better with larger

datasets up until its performance flat lined. Smaller

datasets executed on the HPC suffered from

significantly poorer performance, in terms of the

variation from the mean.

This is attributed to poor resource utilisation of the

HPC’s compute cores. The HPC reached its

average performance when the size of the datasets

Tucker, R., Gunaratne, S., Barlow, N. & Stuart, L. (2014) 'A Scaling Cross Platform Tool for the
Analysis of Neurophysiological Data'. International Journal of Computer Application, 3 (4). pp
41-56.

exceeded 200. The HPC continued to show a

marked performance increase when the size of the

datasets exceeded 1000. The percentage deviation

from the mean performance for both the standard

PC and the HPC are shown in Table 23.

6. Summary of Results

This paper has demonstrated this algorithm used to

reveal the architecture of neuronal networks will

scale seamlessly from standard PCs up to large

HPCs. The application is supported by the

hardware agnostic Java language and implements

its solution using MPJ Express. MPJ Express is a

widely used Java implementation of the Message

Passing Interface standard. This enables parallel

computation of the cross correlations to

substantially improve both the performance and

size of datasets that can be analysed. The

computational performance of this application

scales as additional compute cores become

available. This enables the application to increase

performance over time, as future delivery of

computing power will be through the deployment

of larger multi core processing systems (Amdahl's

law) as well as scaling to exploit the power of

current and future HPC environments.

7. Future work

This work has focused on providing an iGrid

implementation in which the computationally

intensive portions of the grid generation are

performed using more modern techniques (parallel

rather than serial code). The implementation has

been re-engineered into a more flexible and re-

usable form, namely an MPJ Express

implementation that scales seamlessly from the

standard PC to a HPC. Note that this does not

exhaust the potential for improving the

performance of the iGrid analysis of

simultaneously recorded spike trains.

It is anticipated that further performance increases

can be realised by utilising the expanding field of

General-purpose computing on graphics

processing units (GPGPU). Exploiting this area

would enable an increased dataset size to be

analysed by the iGrid application before the use of

HPC technology becomes necessary. Accordingly

it may be possible to realise further performance

increases (in terms of speed and dataset size)

through the application of CUDA and OPEN CL.

These could be used to solve the computationally

intensive cross correlation algorithm without

needing to involve technologies beyond those

common to a standard PC.

The relatively fixed rate of calculations at 60-68

cross correlations per second on a standard PC also

indicates that further optimisation of the MPI

implementation may be possible as significant time

is spent in communication. In this case a

potentially more efficient distribution of data

across compute cores could be further investigated.

The existing implementation divides data into

individual spike trains and delivers those spike

trains to the compute cores. The drawback of this

approach is that the considerable re-transmission

of data. The alternative strategy would be to divide

data into time slices with compute cores being

responsible for calculating portions of the cross

correlation. Subsequently, cores would sum up the

resulting cross correlation bins for each time slice.

This may result in more efficient transmission of

data to cores at the cost of additional work to

produce the final result. Whether such an approach

will improve performance is under investigation.

8. References

[1] NICHOLLS, J. G., MARTIN, A. R., WALLACE, B.

G. & FUCHS, P. A. 2001. From Neuron to Brain: A

Cellular and Molecular Approach to the Function of the

Nervous System, Sinauer Associates.

[2] ROBINSON D. editor 1998. Neurobiology. Springer,

The Open University. ISBN: 3-540-63546-7

[3] BORISYUK, R. M. & BORISYUK, G. N. 1997.

Information coding on the basis of synchronization of

neuronal activity. Biosystems, 40, 3-10.

[4] BRILLINGER, D. R. 1979. Confidence intervals for

the crosscovariance function. Selecta Statistica

Canadiana, 5, 1-16.

Tucker, R., Gunaratne, S., Barlow, N. & Stuart, L. (2014) 'A Scaling Cross Platform Tool for the
Analysis of Neurophysiological Data'. International Journal of Computer Application, 3 (4). pp
41-56.

[5] WALTER, M., STUART, L. & BORISYUK, R.

2003. A Compact Visualisation for Neurophysiological

Data. Seventh International Conference on Information

Visualization (IV'03).

[6] PLEXON 2006. MEA Workstation - System for

recording and analyzing microelectrode arrays. In: INC,

P. (ed.) Online. Dallas: Plexon Inc.

[7] BUZSAKI, G. 2004. Large-scale recording of

neuronal ensembles. Nature Neuroscience, 7, 446-451.

[8] FLYNN, M. J. 1972. Some Computer Organizations

and Their Effectiveness. Computers, IEEE Transactions

on, C-21, 948-960.

[9] TUCKER, R., BARLOW, N. & STUART, L. 2012.

The Background and Importance of Exploiting Multiple

Cores: A Case Study in Neurophysiological

Visualization. Proceedings of the 2012 International

Conference on Parallel and Distributed Processing

Techniques and Applications, 2, 352-358.

[10] GIBSON, F., AUSTIN, J., INGRAM, C.,

FLETCHER, M., JACKSON, T., JESSOP, M.,

KNOWLES, A., LIANG, B., LORD, P., PITSILIS, G.,

PERIORELLIS, P., SIMONOTTO, J., WATSON, P. &

SMITH, L. 2008. The CARMEN Virtual Laboratory:

Web-Based Paradigms for Collaboration in

Neurophysiology 6th Int. Meeting on Substrate-

Integrated Microelectrodes.

[11] Tennessee, U. o. (Sept 2009) MPI: A Message-

Passing Interface Standard Version 2.2. Message

Passing Interface Forum.

http://www.mcs.anl.gov/research/projects/mpi/mpi-

standard/mpi-report-2.0/mpi2-report.htm (Accessed:

01/10/2013).

[12] SHAFI, A. & JAMEEL, M. (2006) MPJ Express

Project. http://mpj-express.org/index.html (Accessed:

01/10/2013).

[13] University of Plymouth. (2013) High Performance

Computing - fotcluster1.

http://www.plymouth.ac.uk/pages/view.asp?page=3393

5 (Accessed: 29/10/2013).

[14] Grama, A., Karypis, G., Kumar, V. & Gupta, A.

(2003) Introduction to Parallel Computing. Harlow:

Pearson Education Ltd.

[15] Everitt, B. S., Landau, S. & Leese, M. (2001)

Cluster Analysis. London: Hodder Headline Group.

[16] Breshears, C. (2009) The Art of Concurrency - A

Thread Monkey's Guide to Writing Parallel

Applications. O'Reilly Media.

[17] Kirk, D. (2010) Programming Massively Parallel

Processors: A Hands-on Approach (Applications of

GPU Computing Series). Burlington: Elsevier Inc.

http://www.mcs.anl.gov/research/projects/mpi/mpi-standard/mpi-report-2.0/mpi2-report.htm
http://www.mcs.anl.gov/research/projects/mpi/mpi-standard/mpi-report-2.0/mpi2-report.htm
http://mpj-express.org/index.html
http://www.plymouth.ac.uk/pages/view.asp?page=33935
http://www.plymouth.ac.uk/pages/view.asp?page=33935

References

References
Ackerman, W. B. (1982) 'Data Flow
Languages'. Computer, 15 (2). pp 15-25.

Adrian, E. D. & Zotterman, Y. (1926) 'The
impulses produced by sensory nerve endings:
Part II: The response of a single end organ'.
The Journal of Physiology, (61). pp 151-171.

Aikat, D., Stepno, B., Chernoff, E., Manning,
M., Robinson, W. & Hughes, T. (1995) The
Digital Research Initiative - What is UNIX. vol.
2012. Chapel Hill: University of North Carolina.

Apache (2014) What Is Apache Hadoop? The
Apache Software Foundation.
http://hadoop.apache.org/ (Accessed:
14/04/2014).

Apple (2001) Threading Architectures -
Technical Note TN2028. vol. 2012. Apple Inc.

Apple (2009) Grand Central Dispatch - A
better way to do multicore. vol. 2012. Apple
Inc.

ArchonMagnus (2015) The Scientific Method
as an Ongoing Process.svg. Wikimedia
Commons.
https://en.wikipedia.org/wiki/Scientific_method
#cite_note-Garland2015-1 (Accessed:
15/03/2016).

Aris, J., Hermon, P., Land, F. & Caminer, D.
(1997) L.E.O.: The Incredible Story of the
World's First Business Computer. Mcgraw-Hill.

Backus, J. (1977) 'Can Programming Be
Liberated from the von Neumann Style? A
Functional Style and Its Algebra of Programs',
ACM Annual Conference. Seattle
Communications of the ACM, pp. 613-641.

Bayer, R. (1972) 'Symmetric binary B-Trees:
Data structure and maintenance algorithms'.
Acta Informatica, 1 (4). pp 290-306.

Bertin, J. (1983) Semiology of Graphics:
Diagrams, Networks, Maps. ESRI Press.

Blanshard, B. (2016) 'Rationalism', in
Encyclopædia Britannica Online.
Encyclopædia Britannica Inc., Available at:
http://www.britannica.com/topic/rationalism.
(Accessed: 15/03/2016)

Boehm, B. (1986) 'A Spiral Model of Software
Development and Enhancement'. ACM
SIGSOFT Software Engineering Notes, 11 (4).
pp 14-24.

Boehm, B. (2000) 'Spiral Development:
Experience, Principles, and Refinements'.[in
SPECIAL REPORT CMU/SEI-2000-SR-008.
Pittsburgh, USA: Carnegie Mellon University
Software Engineering Institute. 49. Available
at:
http://www.sei.cmu.edu/reports/00sr008.pdf
(Accessed:Boehm, B.

Bondy, J. A. & Murty, U. S. R. (1976) Graph
Theory With Applications. Elsevier Science
Ltd/North-Holland.

Borisyuk, R. (2002) Neural Network Simulator.
[Computer Program]. The Visualisation Lab -
University of Plymouth. Available at:
http://www.tech.plymouth.ac.uk/infovis/LAB_D
ownloads.htm (Accessed: 11/01/2010)

Borisyuk, R. (2008) Network Creator.
[Computer Program]. The Visualisation Lab -
University of Plymouth. Available at:
http://www.tech.plymouth.ac.uk/infovis/LAB_D
ownloads.htm (Accessed: 11/01/2010)

Borland, D. & Taylor II, R. M. (2007) 'Rainbow
color map (still) considered harmful.'. IEEE
Computer Graphics and Applications, 27 pp
14-17.

Brent, J. (1998) Charles Sanders Peirce,
Revised and Enlarged Edition: A Life. Indiana
University Press.

http://hadoop.apache.org/
http://www.britannica.com/topic/rationalism
http://www.sei.cmu.edu/reports/00sr008.pdf
http://www.tech.plymouth.ac.uk/infovis/LAB_Downloads.htm
http://www.tech.plymouth.ac.uk/infovis/LAB_Downloads.htm
http://www.tech.plymouth.ac.uk/infovis/LAB_Downloads.htm
http://www.tech.plymouth.ac.uk/infovis/LAB_Downloads.htm

References

Brillinger, D. R. (1979) 'Confidence intervals
for the crosscovariance function'. Selecta
Statistica Canadiana, 5 pp 1-16.

Brock, J. F. (2001) 'THE OLDEST
CADASTRAL PLAN EVER FOUND : The
Catalhoyuk Town Plan of 6200 B.C', 42nd
Australian Surveyors Congress. Brisbane,
Queensland, Australia, pp. 25-28.

Brown, E. N., Kass, R. E. & Mitra, P. P. (2004)
'Multiple neural spike train data analysis:
state-of the-art and future challenges'. Nature
neuroscience, 7 pp 456-461.

Buzsaki, G. (2004) 'Large-scale recording of
neuronal ensembles'. Nature Neuroscience, 7
(5). pp 446-451.

Card, S. K., Mackinlay, J. & Schneiderman, B.
(1999) Readings in Information Visualization:
Using Vision to Think. Morgan Kaufmann.

Carpenter, B. (2007) The HP Java Project.
Pervasive Technology Labs at Indiana
University.
http://www.hpjava.org/mpiJava.html
(Accessed: 25/11/2014).

Ceruzzi, P. E. (2003) A History of Modern
Computing. MIT Press.

Clark, B. D., Goldberg, E. M. & Rudy, B.
(2009) 'Electrogenic Tuning of the Axon Initial
Segment'. Neuroscientist, 15

Connors, B. W. & Long, M. A. (2004)
'ELECTRICAL SYNAPSES IN THE
MAMMALIAN BRAIN'. Annual Review.
Neuroscience, 27 pp 393-418.

Cormen, T. H., Leiserson, C. E., Rivest, R. L.
& Stein, C. (2009) Introduction to Algorithms.
3 edn. The MIT Press.

Craft, B. & Cairns, P. (2005) 'Beyond
Guidelines: What can we learn from the Visual
Information Seeking Mantra?', 9th

International Conference on Information
Visualisation. London Institute of Electrical
and Electronics Engineers (IEEE).

Creemers, R., Deaves, P., Feather, C., Lloyd,
P. & Willsher, M. (2014) The London Tube
Map Archive.
http://www.clarksbury.com/cdl/maps.html
(Accessed: 24/03/2014).

Dale, H. (1935) 'Pharmacology and Nerve-
endings (Walter Ernest Dixon Memorial
Lecture)', Proceedings of the Royal Society of
Medicine. London PubMed Central, pp. 319-
332.

Davis, A. L. & Keller, R. M. (1982) 'Data flow
program graphs.'. IEEE Compute, 15 (2). pp
26-41.

Dayan, P. & Abbott, L. F. (2005) Theoretical
Neuroscience: Computational and
Mathematical Modeling of Neural Systems.
MIT Press.

Dennis, J. & Robinet, B. (1974) 'First version
of a data flow procedure language
Programming Symposium'. Springer Berlin /
Heidelberg, pp 362-376.

Deregowski, J. B. (1968) 'Picture recognition
in subjects from a relatively pictureless
environment.'. African Social Research, 5 pp
356-364.

Dubash, M. (2005) Moore's Law is dead, says
Gordon Moore. Techworld. Techworld.

Duignan, B. (2016) 'Empiricism', in
Encyclopædia Britannica Online.
Encyclopædia Britannica Inc. Available at:
http://www.britannica.com/topic/empiricism.
(Accessed: 15/03/2016)

Einevoll, G. T., Franke, F., Hagen, E., Pouzat,
C. & Harris, K. D. (2012) 'Towards reliable
spike-train recordings from thousands of
neurons with multielectrodes'. Current Opinion
in Neurobiology, 22 pp 11-17.

http://www.hpjava.org/mpiJava.html
http://www.clarksbury.com/cdl/maps.html
http://www.britannica.com/topic/empiricism

References

Feldman, R. P. & Goodrich, J. T. (1999) 'The
Edwin Smith Surgical Papyrus'. Childs
Nervous System, 6-7 pp 281-284.

Finger, S. (2001) Origins of neuroscience: a
history of explorations into brain function. USA:
Oxford University Press.

Floridi, L. & Sanders, J. W. (2004) Levellism
and the Method of Abstraction. 43 pp.
Available at:
http://www.cs.ox.ac.uk/activities/ieg/research_
reports/ieg_rr221104.pdf (Accessed:
11/04/2014).

Flynn, L. J. (2004) Intel Halts Development of
2 New Microprocessors. The New York Times.
http://www.nytimes.com/2004/05/08/business/
08chip.html?ex=1399348800&en=98cc44ca9
7b1a562&ei=5007 (Accessed: 11/04/2014).

Flynn, M. J. (1972) 'Some Computer
Organizations and Their Effectiveness'.
Computers, IEEE Transactions on, C-21 (9).
pp 948-960.

Foster, I. (1995) Designing and Building
Parallel Programs: Concepts and Tools for
Parallel Software Engineering. Addison-
Wesley.

Friendly, M. & Denis, D. J. (2001) Milestones
in the History of Thematic Cartography,
Statistical Graphics and Data Visualization.
http://www.datavis.ca/milestones/ (Accessed:
05/03/2014).

Gamma, E., Helm, R., Johnson, R. &
Vlissides, J. (1994) Design Patterns:
Elements of Reusable Object-Oriented
Software. 1 edn. Addison-Wesley
Professional.

Garnier, R. & Taylor, J. (2009) Discrete
Mathematics: Proofs, Structures and
Applications. 3rd edn. CRC Press.

Georgopoulos, A. P., Schwartz, A. B. &
Ketiner, R. E. (1986) 'Neuronal Population
Coding of Movement Direction'. Science, 233
pp 1416-1419.

Gerstner, W. & Kistler, W. M. (2002) Spiking
Neuron Models: Single Neurons, Populations,
Plasticity. London: Cambridge University
Press.

Gerstner, W., Kreiter, A. K., Markram, H. &
Herz, A. V. M. (1997) 'Neural codes: Firing
rates and beyond', Proceedings of the
National Academy of Sciences of the United
States of America. National Academy of
Sciences of the United States of America.

Gibson, F., Austin, J., Ingram, C., Fletcher, M.,
Jackson, T., Jessop, M., Knowles, A., Liang,
B., Lord, P., Pitsilis, G., Periorellis, P.,
Simonotto, J., Watson, P. & Smith, L. (2008)
'The CARMEN Virtual Laboratory: Web-Based
Paradigms for Collaboration in
Neurophysiology'. 6th Int. Meeting on
Substrate-Integrated Microelectrodes,

Goetz, B., Peierls, T., Bloch, J., Bowbeer, J.,
Holmes, D. & Lea, D. (2006) Java
Concurrency in Practice. Pearson Education.
8th

Gordon, G. & McMahon, E. (1989) 'A greedoid
polynomial which distinguishes rooted
arborescences'. Proceedings of the American
Mathematical Society, 107 (2). pp 287-298.

Graphical Programming. (2013) National
Instruments Corporation.
http://www.ni.com/gettingstarted/labviewbasic
s/dataflow.htm (Accessed: 23/04/2014).

Harrell, J. A. & Brown, V. M. (1992) 'The
oldest surviving topographical map from
ancient Egypt (Turin Papyri 1879, 1899 and
1969)'. Journal of the American Research
Center in Egypt, 20 pp 81-105.

Harris, R. L. (2000) Information Graphics: A
Comprehensive Illustrated Reference. 1 edn.
Oxford University Press.

http://www.cs.ox.ac.uk/activities/ieg/research_reports/ieg_rr221104.pdf
http://www.cs.ox.ac.uk/activities/ieg/research_reports/ieg_rr221104.pdf
http://www.nytimes.com/2004/05/08/business/08chip.html?ex=1399348800&en=98cc44ca97b1a562&ei=5007
http://www.nytimes.com/2004/05/08/business/08chip.html?ex=1399348800&en=98cc44ca97b1a562&ei=5007
http://www.nytimes.com/2004/05/08/business/08chip.html?ex=1399348800&en=98cc44ca97b1a562&ei=5007
http://www.datavis.ca/milestones/
http://www.ni.com/gettingstarted/labviewbasics/dataflow.htm
http://www.ni.com/gettingstarted/labviewbasics/dataflow.htm

References

Hibbard, T. N. (1962) 'Some combinatorial
properties of certain trees with applications to
searching and sorting.'. Journal of the ACM, 9
(1). pp 13-28.

Higginbotham, C. W. & Morelli, R. (1991) 'A
System for Teaching Concurrent
Programming', SIGCSE '91 Proceedings of
the twenty-second SIGCSE technical
symposium on Computer science education.
New York Association for Computing
Machinery (ACM), pp. 209-316.

Hill, M. D. & Marty, M. R. (2008) 'Amdahl’s
Law in the Multicore Era'. Computer - IEEE
Computer Society, pp 33-38.

Hochberg, J. E. & Brooks, V. (1962) 'Pictorial
recognition as an unlearned ability'. American
Journal of Psychology, 75 pp 624-628.

Hondius, J. & Purchas, S. (1607) Designatio
Orbis Christiani [World Map]. Atlas Minor
London.

Hutchins, E. (1995) Cognition in the Wild.
University Press Group Limited.

Huxley, A. F. & Stämpfli, R. (1949) 'Evidence
for saltatory conduction in peripheral
myelinated nerve fibres'. Journal of
Physiology, 108 (3). pp 315-339.

Illingworth, V. (1997) Oxford Dictionary of
Computing. Oxford Paperback Reference. 4
edn. Oxford University Press.

Jarosz, Q. (2009) File:Neuron Hand-tuned.svg.
Wikimedia Commons.
https://commons.wikimedia.org/wiki/File:Neur
on_Hand-tuned.svg (Accessed: 10/03/2016).

Johnson, R. B. & Christensen, L. B. (2010)
Educational research: Quantitative, qualitative,
and mixed approaches. 4th Edition edn.
SAGE Publications.

Johnston, W. M., Hanna, J. R. P. & Millar, R. J.
(2004) 'Advances in Dataflow Programming
Languages'. ACM Computing Surveys, 36 (1).
pp 1-34.

Keller, R. M. & Yen, J. (1981) 'A graphical
approach to software development using
function graphs', IEEE Compcon. pp. 151-161.

Khan, G. (1974) 'The semantics of a simple
language for parallel programming.',
International Federation for Information
Processing (IFPT) Congress. Amsterdam, pp.
471-475.

Khronos (2014) OpenCL - The open standard
for parallel programming of heterogeneous
systems. Khronos Group.
http://www.khronos.org/opencl/ (Accessed:
14/04/2014).

Kirk, D. B. & Hwu, W.-m. W. (2012)
Programming Massively Parallel Processors:
A Hands-on Approach. 2 edn. Elsevier
Science.

Knuth, D. E. (1998) Art of Computer
Programming: Sorting and Searching. 2 edn.
vol. 3. Addison-Wesley Professional.

Konda, M. (2011) What's New in Java 7.
O'Reilly Media.

Kosinski, P. R. (1978) 'A straightforward
denotational semantics for non-determinate
data flow programs', 5th ACM Symposium on
Principles of Programming Languages 1978.
ACM Press.

Laney, D. (2001) '3D Data Management:
Controlling Data Volume, Velocity, and
Variety.'. Application Delivery Strategies, 949

Lea, D. (2004) JSR 166: Concurrency Utilities.
vol. 2012. Java Community Process Program.

http://www.khronos.org/opencl/

References

Lewis, B. & Berg, D. J. (1995) Threads Primer:
A Guide to Multithreaded Programming.
Prentice Hall PTR.

Light & Bartlein (2004) 'The End of the
Rainbow? Color Schemes for Improved Data
Graphics.'. EOS, TRANSACTIONS,
AMERICAN GEOPHYSICAL UNION, 85 (40).
pp 385-391.

Loktofeit, C. (2013) EVE Online Surpasses
500,000 Subscribers Worldwide. CCP Games.
http://community.eveonline.com/news/news-
channels/press-releases/eve-online-
surpasses-500-000-subscribers-worldwide/
(Accessed: 11/04/2014).

Macionis, J. J. & Gerber, L. M. (2010)
Sociology, Seventh Canadian Edition with
MySocLab. 7th Edition edn. Pearson
Education Canada.

Madadhain J., Fisher D., Smyth P., White S. &
B., B. Y. (2005) 'Analysis and visualization of
network data using JUNG'. Journal of
Statistical Software, 10 (2). pp 1-35.

Maps & Cartographic Information. (2014)
University of Washington Map Collection,
University of Washington Libraries.
http://guides.lib.washington.edu/content.php?
pid=123049&sid=1103146 (Accessed:
05/03/2014).

Marey, E. J. (1878) La methode graphique
dans les sciences experimentales. Paris:

Martin, R. C. (1996) Granularity. The C++
Report, 8, (10) 57-62.

Maunsell, J. H. & Van Essen, D. C. (1983)
'Functional properties of neurons in middle
temporal visual area of the macaque monkey.
I. Selectivity for stimulus direction, speed, and
orientation'. Journal of Neurophysiology, 49
pp 1127-1147.

Micheva KD, Busse B, Weiler NC, O'Rourke N
& SJ., S. (2010) 'Single-synapse analysis of a

diverse synapse population: proteomic
imaging methods and markers.'. Neuron, 68
(4). pp 639 - 653.

Microsoft (1995) Windows 95 Architecture
Components. Windows TechNet. Microsoft
Corporation.

Microsoft (2010) Parallel Programming in
the .NET Framework. vol. 2012. Microsoft
Developer Network.

Microsoft (2012) VPL Introduction. Microsoft
Developer Network.
http://msdn.microsoft.com/en-
us/library/bb483088.aspx (Accessed:
22/04/2014).

Millet, D. (2002) 'The origins of EEG'.
International Society for the History of the
Neurosciences 7th Annual Meeting. Los
Angeles, California, USA: International
Society for the History of the Neurosciences.

Mills, P. (2013) High Performance Computing
- fotcluster1. Plymouth University.
https://www.plymouth.ac.uk/your-
university/about-us/university-
structure/faculties/science-
engineering/hpc/what-is-a-cluster (Accessed:
29/10/2013).

Moler, C. (1986) 'Matrix computation on
distributed memory multiprocessors', First
conference on Hypercube Multiprocessors.
Knoxville, Tennessee Society for Industrial
and Applied Mathematics.

Moore, G. E. (1965) 'Cramming more
components onto integrated circuits'.
Electronics, 38 (8).

Moreland, K. (2009a) 'Diverging Color Maps
for Scientific Visualization'. Proceedings of the
5th International Symposium on Advances in
Visual Computing: Part II. Las Vegas, Nevada:
Springer-Verlag.

http://community.eveonline.com/news/news-channels/press-releases/eve-online-surpasses-500-000-subscribers-worldwide/
http://community.eveonline.com/news/news-channels/press-releases/eve-online-surpasses-500-000-subscribers-worldwide/
http://community.eveonline.com/news/news-channels/press-releases/eve-online-surpasses-500-000-subscribers-worldwide/
http://guides.lib.washington.edu/content.php?pid=123049&sid=1103146
http://guides.lib.washington.edu/content.php?pid=123049&sid=1103146
http://msdn.microsoft.com/en-us/library/bb483088.aspx
http://msdn.microsoft.com/en-us/library/bb483088.aspx
http://www.plymouth.ac.uk/your-university/about-us/university-structure/faculties/science-engineering/hpc/what-is-a-cluster
http://www.plymouth.ac.uk/your-university/about-us/university-structure/faculties/science-engineering/hpc/what-is-a-cluster
http://www.plymouth.ac.uk/your-university/about-us/university-structure/faculties/science-engineering/hpc/what-is-a-cluster
http://www.plymouth.ac.uk/your-university/about-us/university-structure/faculties/science-engineering/hpc/what-is-a-cluster

References

Moreland, K. (2009b) 'Diverging Color Maps
for Scientific Visualization (Expanded)'. ISVC
'09 Proceedings of the 5th International
Symposium on Advances in Visual Computing:
Part II. Las Vegas: Springer-Verlag, pp 92 -
103.

Myslewski, R. (2009) The multicore future,
and how to survive it - Avoiding the
proprietary extensions trap. vol. 2012. San
Francisco:

National Oceanic and Atmospheric
Administration, N. O. S. (2015) Raster
Navigational Charts: NOAA RNCs. US
Department of Commerce.
http://www.nauticalcharts.noaa.gov/mcd/Rast
er/ (Accessed: 17/07/2015).

Neumann, J. V. (1945) First Draft of a Report
on the EDVAC. University of Pennsylvania.
Available at:
https://sites.google.com/site/michaeldgodfrey/
vonneumann/vnedvac.pdf?attredirects=0&d=1
(Accessed: 08/04/2014).

Nightingale, F. (1858) Notes on Matters
affecting the Health, Efficiency and Hospital
Administration of the British Army.

Nightingale, F. (1859) A Contribution to the
sanitary History of the British Army during the
late War with Russia. London:

Normann, R. A. (1993) Utah array. Wikimedia
Commons.

NVIDIA (2014a) What is GPGPU Computing?
NVIDIA. http://www.nvidia.com/object/what-is-
gpu-computing.html (Accessed: 14/04/2014).

NVIDIA (2014b) GPU Cloud Computing
Service Providers.
http://www.nvidia.com/object/gpu-cloud-
computing-services.html (Accessed:
14/04/2014).

NVIDIA (2014c) CUDA Parallel Computing
Platform. NVIDIA.

http://www.nvidia.com/object/cuda_home_ne
w.html (Accessed: 14/04/2014).

Olshausen, B. A. & Field, D. J. (1996)
'Emergence of simple-cell receptive field
properties by learning a sparse code for
natural images'. Nature, 381 pp 607 - 609.

Open MPI: Open Source High Performance
Computing. (2014) The Open MPI Team,
Indiana University. http://www.open-mpi.org/
(Accessed: 26/11/2014).

Oracle (2004) Concurrency Utilities Overview.
Oracle Corporation.
http://docs.oracle.com/javase/1.5.0/docs/guid
e/concurrency/overview.html (Accessed:
11/04/2014).

Oracle (2014) Concurrency Utilities
Enhancements in Java SE 7. Oracle
Corporation.
http://docs.oracle.com/javase/7/docs/technote
s/guides/concurrency/changes7.html
(Accessed: 11/04/2014).

Oxford English Dictionary. (2014) Oxford
University Press.
http://www.oxforddictionaries.com/definition/e
nglish/semiotics (Accessed: 10/03/2014).

Pearson, D., Hanna, E. & Martinez, K. (1990)
'Computer-generated cartoons'. in Barlow, H.,
Blakemore, C. and Weston, S.M. (eds.)
Images and understanding. Cambridge:
Cambridge University Press, 3 3 pp 46-60.

Peirce, C. S. (1868) 'On a New List of
Categories'. Proceedings of the American
Academy of Arts and Sciences, 7 pp 287 -
298.

Petursson, H. V. (2011) Stackless Python
Applications. vol. 2012. Python Software
Foundation.

Pike, A. W. G., Hoffmann, D. L., García-Diez,
M., Pettitt, P. B., Alcolea, J., De Balbín, R.,
González-Sainz, C., de las Heras, C.,

http://www.nauticalcharts.noaa.gov/mcd/Raster/
http://www.nauticalcharts.noaa.gov/mcd/Raster/
http://www.nvidia.com/object/what-is-gpu-computing.html
http://www.nvidia.com/object/what-is-gpu-computing.html
http://www.nvidia.com/object/gpu-cloud-computing-services.html
http://www.nvidia.com/object/gpu-cloud-computing-services.html
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
http://www.open-mpi.org/
http://docs.oracle.com/javase/1.5.0/docs/guide/concurrency/overview.html
http://docs.oracle.com/javase/1.5.0/docs/guide/concurrency/overview.html
http://docs.oracle.com/javase/7/docs/technotes/guides/concurrency/changes7.html
http://docs.oracle.com/javase/7/docs/technotes/guides/concurrency/changes7.html
http://www.oxforddictionaries.com/definition/english/semiotics
http://www.oxforddictionaries.com/definition/english/semiotics

References

Lasheras, J. A., Montes, R. & Zilhão, J. (2012)
'U-Series Dating of Paleolithic Art in 11 Caves
in Spain'. Science, 336 (6087). pp 1409-1413.

Potter, S. M. (2010) File:MEAinHand.jpg.
Wikimedia Commons.
https://en.wikipedia.org/wiki/File:MEAinHand.j
pg (Accessed: 10/03/2016).

Rappenglück, M. A. (1999) 'Palaeolithic
Timekeepers Looking At The Golden Gate Of
The Ecliptic; The Lunar Cycle And The
Pleiades In The Cave Of La-TETe-Du-Lion
(Ardéche, France) – 21,000 BP'. Earth, Moon,
and Planets, 85-86 (0). pp 391-404.

Redwood, J. (1976) Reason, Ridicule and
Religion: The Age of En'lightenment in
England, 1660-1750. Thames & Hudson Ltd.

Reinders, J. (2007) Threading Building Blocks
Outfitting C++ for Multi-core Processor
Parallelism. O'Reilly Media.

Remenyi, D. & Money, A. (2012) Research
Supervision for Supervisors and their
Students. Academic Publishing International.
2nd Edition

Robinson, A. H. (1967) The Thematic Maps of
Charles Joseph Minard. Imago Mundi. Imago
Mundi, Ltd.

Rocca, J. (2003) Galen on the Brain:
Anatomical Knowledge and Physiological
Speculation in the Second Century Ad
(Studies in Ancient Medicine). Boston: Brill
Academic Pub.

Roo, M. D., Klauser, P., Mendez, P., Poglia, L.
& Muller, D. (2008) 'Activity-Dependent PSD
Formation and Stabilization of Newly Formed
Spines in Hippocampal Slice Cultures'.
Cerebral Cortex, 18 (1). pp 151-161.

Rothman, S. S. (2002) Lessons from the living
cell: the culture of science and the limits of
reductionism. New York: McGraw-Hill.

Rutkowski, C. (1982) An introduction to the
Human Applications Standard Computer
Interface Part 1: Theory and Principles. Byte
Magazine, 7, (10) 291-310.

SAS (2014) Big Data. What it is and why it
matters. SAS Institute Inc.
http://www.sas.com/en_us/insights/big-
data/what-is-big-data.html (Accessed:
14/04/2014).

Sernagor, E. (2016) Newcastle University
Institute of Neuroscience. Newcastle
University.
http://www.ncl.ac.uk/ion/staff/profile/evelynese
rnagor.html#publications (Accessed:
03/03/2016).

Shafi, A. & Jameel, M. (2006) MPJ Express
Project. http://mpj-express.org/index.html
(Accessed: 01/10/2013).

Shepherd, G. M. (1991) Foundations of the
neuron doctrine. History of Neuroscience.
Oxford: Oxford University Press.

Shinar, D., Dewar, R. E., Summala, H. &
Zakowska, L. (2003) 'Traffic sign symbol
comprehension: a cross-cultural study'.
Ergonomics, 46 (15). pp 1549-1565.

Shneiderman, B. (1996) 'The eyes have it: A
task by data type taxonomy for information
visualizations'. Proceedings of the IEEE
Symposium on Visual Languages, pp 336-
343.

Shneiderman, B. & Plaisant, C. (1998)
Designing the user interface: Strategies for
effective human-computer interaction.
Addison Wesley. 4

Smith, E. E. & Kosslyn, S. M. (2006) Cognitive
Psychology: Mind and Brain. Pearson.

Snijders, C., Matzat, U. & Reips, U.-D. (2012)
'“Big Data”: Big Gaps of Knowledge in the

http://www.sas.com/en_us/insights/big-data/what-is-big-data.html
http://www.sas.com/en_us/insights/big-data/what-is-big-data.html
http://www.ncl.ac.uk/ion/staff/profile/evelynesernagor.html#publications
http://www.ncl.ac.uk/ion/staff/profile/evelynesernagor.html#publications
http://mpj-express.org/index.html

References

Field of Internet Science'. International
Journal of Internet Science, 7 (1). pp 1-5.

Snow, J. (1855) 'On the Mode of
Communication of Cholera'. London: John
Churchill.

Somerville, J. (2011) The Exploration of
Neurophysiological Spike Train Data using
Visual Analytics. University of Plymouth.

Somerville, J., Stuart, L., Sernagor, E. &
Borisyuk, R. (2011) 'iRaster: A novel
information visualization tool to explore
spatiotemporal patterns in multiple spike
trains'. Journal of Neuroscience Methods, 194
(1). pp 158-171.

Stevenson, A. & Waite, M. (2011) Concise
Oxford English dictionary. 12th ed. / edited by
Angus Stevenson, Maurice Waite. edn.
Oxford: Oxford University Press.

Stuart, L., Walter, M. & Borisyuk, R. (2003)
'Analysis of multi-dimensional Spike Trains
using VISA'. 5th Neural Coding Workshop.
Aulla, Italy: September 2003 Proceedings of
5th Neural Coding Workshop. (Accessed:
14/04/2011).

Stuart, L., Walter, M. & Borisyuk, R. (2005)
'The correlation grid: analysis of synchronous
spiking in multi-dimensional spike train data
and identification of feasible connection
architectures'. Biosystems, 79 (1-3). pp 223-
233.

Sutherland, W. R. (1966) The on-line
graphical specification of computer
procedures. Massachusetts Institute of
Technology.

Swartza, B. E. & Goldensohn, E. S. (1998)
'Timeline of the history of EEG and associated
fields'. Electroencephalography and clinical
Neurophysiology, 106 pp 173–176.

'synapse' (2014), in Encyclopædia Britannica.
Encyclopædia Britannica, Inc. Available at:

http://www.britannica.com/EBchecked/topic/5
78220/synapse#ref284813. (Accessed:
27/03/2014)

Taketani, M. & Baudry, M. (2006) Advances in
Network Electrophysiology Using Multi-
Electrode Arrays. Springer.

Tasaki, I. (1939) 'THE ELECTRO-
SALTATORY TRANSMISSION OF THE
NERVE IMPULSE AND THE EFFECT OF
NARCOSIS UPON THE NERVE FIBER'.
American Journal of Physiology, 127 (2). pp
211-227.

Tendler, J. M., Dodson, J. S., Fields, J. S. J.,
Le, H. & Sinharoy, B. (2002) 'POWER4
System Microarchitecture'. IBM Journal of
Research & Development, 46 (1). pp 5-25.

The Merriam-Webster dictionary. (2004) 11th
ed. edn. Springfield, Mass.: Merriam-Webster.

Theunissen, F. & Miller, J. (1995) 'Temporal
encoding in nervous systems: a rigorous
definition.'. Journal of Computational Neural
Science, 2 (2). pp 149-162.

Tismer, C. (2000) Stackless Python 1.0 +
Continuations 0.6. vol. 2012.

Tucker, R., Barlow, N. & Stuart, L. (2012) 'The
Background and Importance of Exploiting
Multiple Cores: A Case Study in
Neurophysiological Visualization'.
Proceedings of the 2012 International
Conference on Parallel and Distributed
Processing Techniques and Applications, 2 pp
352-358.

Tufte, E. R. (2001) The Visual Display of
Quantitative Information. 2 edn. USA:
Graphics Press.

Vignais, P. M. & Vignais, P. V. (2010)
Discovering Life, Manufacturing Life: How the
experimental method shaped life sciences.
Berlin: Springer.

http://www.britannica.com/EBchecked/topic/578220/synapse#ref284813
http://www.britannica.com/EBchecked/topic/578220/synapse#ref284813

References

Walter, M. A. (2004) Visualization
Techniques for the Analysis of
Neurophysiological Data. University of
Plymouth.

Ward, J. S. & Barker, A. (2013) 'Undefined By
Data: A Survey of Big Data Definitions'. arxiv
[Online]. Available at:
http://arxiv.org/abs/1309.5821 (Accessed:
14/04/2014).

Ware, C. (2012) Information Visualization:
Perception for Design (3rd Revised edition
edition). Morgan Kaufmann.

Weeks, M. (2010) Writing Code for Carmen
Services.

Wikipedia (2014) File:Synapse diagram
picture.jpg. Wikimedia Commons.
https://commons.wikimedia.org/wiki/File:Syna
pse_diagram_picture.jpg (Accessed:
10/03/2016).

Zotterman, Y. (1939) 'TOUCH, PAIN AND
TICKLING: AN ELECTRO-PHYSIOLOGICAL
INVESTIGATION ON CUTANEOUS
SENSORY NERVES'. The Journal of
Physiology, 95 (1). pp 1-28.

http://arxiv.org/abs/1309.5821

