
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

01 University of Plymouth Research Outputs University of Plymouth Research Outputs

2015-12-12

Turing Computation with Recurrent

Artifcial Neural Networks

Carmantini, G

http://hdl.handle.net/10026.1/4830

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.

Turing Computation with
Recurrent Artificial Neural Networks

Giovanni S. Carmantini
School of Computing and Mathematics

Plymouth University, Plymouth, United Kingdom
giovanni.carmantini@gmail.com

Peter beim Graben
Bernstein Center for Computational Neuroscience Berlin

Humboldt-Universität zu Berlin, Berlin, Germany
peter.beim.graben@hu-berlin.de

Mathieu Desroches
Inria Sophia-Antipolis Méditerranée

Valbonne, France
mathieu.desroches@inria.fr

Serafim Rodrigues
School of Computing and Mathematics

Plymouth University, Plymouth, United Kingdom
serafim.rodrigues@plymouth.ac.uk

Abstract

We improve the results by Siegelmann & Sontag [1, 2] by providing a novel and
parsimonious constructive mapping between Turing Machines and Recurrent Ar-
tificial Neural Networks, based on recent developments of Nonlinear Dynamical
Automata. The architecture of the resulting R-ANNs is simple and elegant, stem-
ming from its transparent relation with the underlying NDAs. These characteris-
tics yield promise for developments in machine learning methods and symbolic
computation with continuous time dynamical systems. A framework is provided
to directly program the R-ANNs from Turing Machine descriptions, in absence of
network training. At the same time, the network can potentially be trained to per-
form algorithmic tasks, with exciting possibilities in the integration of approaches
akin to Google DeepMind’s Neural Turing Machines.

1 Introduction

The present work provides a novel and alternative approach to the one offered by Siegelmann and
Sontag [1, 2] of mapping Turing machines to Recurrent Artificial Neural Networks (R-ANNs). Here
we employ recent theoretical developments from symbolic dynamics enabling the mapping from
Turing Machines to two-dimensional piecewise affine-linear systems evolving on the unit square, i.e.
Nonlinear Dynamical Automata (NDA)[3, 4]. With this in place, we are able to map the resulting
NDA onto a R-ANN, therefore providing an elegant constructive method to simulate a Turing ma-
chine in real time by a first-order R-ANN. There are two main advantages to the proposed approach.
The first one is the parsimony and simplicity of the resulting R-ANN architecture in respect to pre-
vious approaches. The second one is the transparent relation between the network and its underlying
piecewise affine-linear system. These two characteristics open the door to key future developments
when considering learning applications (see Google DeepMind’s Neural Turing Machines[5] for a
relevant example with promising future integration possibilities) – with the exciting possibility of
a symbolic read-out of a learned algorithm from the network weights – and when considering ex-
tensions of the model to continuous dynamics, which could provide a theoretical basis to query the
computational power of more complex neuronal models.

1

2 Methods

In this section we outline a mapping from Turing machines to R-ANNs. Our construction involves
two stages. In the first stage a Generalized Shift [3] emulating a Turing Machine is built, and its
dynamics encoded on the unit square via a procedure called Gödelization, defining a piecewise-
affine linear map on the unit square, i.e. a NDA. In the second stage, the resulting NDA is mapped
onto a first-order R-ANN. Next, the theoretical methods employed are discussed in detail.

2.1 Turing Machines

A Turing Machine [6] is a computing device endowed with a doubly-infinite one-dimensional tape
(memory support with one symbol capacity at each memory location), a finite state controller and a
read-write head that follows the instructions encoded by a δ transition function. At each step of the
computation, given the current state and the current symbol read by the read-write head, the machine
controller determines via δ the writing of a symbol on the current memory location, a shift of the
read-write head to the memory location to the left (L) or to the right (R) of the current one, and the
transition to a new state for the next computation step. At a computation step, the content of the tape
together with the position of the read-write head and the current controller state define a machine
configuration.

More formally, a Turing Machine is a 7-tuple MTM = (Q,N,T, q0,t, F, δ), where Q is a finite set
of control states, N is a finite set of tape symbols containing the blank symbol t, T ⊂ N \ {t}
is the input alphabet, q0 is the starting state, F ⊂ Q is a set of ‘halting’ states and δ is a partial
transition function, determining the dynamics of the machine. In particular, δ is defined as follows:

δ : Q×N→ Q×N× {L,R}. (1)

2.2 Dotted sequences and Generalized Shifts

A Turing machine configuration can be described by a bi-infinite dotted sequence on some alphabet
A; it can then be defined as:

s = . . . di−3
di−2

di−1
.di0di1di2 . . . , (2)

where l = . . . di−3
di−2

describes the part of the tape on the left of the read-write head, r =
di0di1di2 . . . describes the part on its right, q = di−1

describes the current state of the machine
controller, and the dot denotes the current position of the read-write head, i.e. the symbol to its
right. The central dot splits the tape into two one-sided infinite strings α′, β, where α′ is the left
part of the dotted sequence in reverse order. The first symbol in α represents the current state of the
Turing Machine, whereas the first symbol in β represents the symbol currently under the controller’s
head. The transition function δ can be straightforwardly extended to a function δ̂ operating on dotted
sequences, so that δ̂ : AZ → AZ.

A Generalized Shift acts on dotted sequences, and is defined as a pair MGS = (AZ,Ω), with AZ

being the space of dotted sequences, Ω : AZ → AZ defined by

Ω(s) = σF (s)(s⊕G(s)) (3)

with

F : AZ → Z (4)

G : AZ → Ae (5)

where σ shifts the symbols to the left or to the right, or does not shift them at all, as determined by
the function F (s). In addition, the Generalized Shift can operate a substitution, with G(s) being
the function which substitutes a substring of length e in the Domain of Effect (DoE) of s with a
new substring. Both the shift and the substitution are functions of the content of the Domain of
Dependence (DoD), a substring of s of length `.

A Turing Machine can be emulated by a Generalized Shift with DoD = DoE = di−2
di−1

.di0 and
the functions F,G appropriately chosen such that Ω(s) = δ̂(s) for all s (see [7] for a detailed
exposition).

2

2.3 Gödel codes

Gödel codes (or Gödelizations) [8] map strings to numbers and, in particular, allow the mapping of
the space of one-sided infinite sequences to the real interval [0, 1]. Let AN be the space of one-sided
infinite sequences over an alphabet A, s be an element of AN, rk the k-th symbol in s, γ : A→ N
a one-to-one function associating each symbol in the alphabet A to a natural number, and g the
number of symbols in A. Then a Gödelization is a mapping ψ from AN to [0, 1] ⊂ R defined as:

ψ(s) :=

∞∑
k=1

γ(rk)g−k. (6)

Conveniently, Gödelization can be employed on a Turing machine configuration, represented as a
dotted sequence α.β ∈ AZ. The Gödel encoding ψx and ψy of α′ and β define a representation of s
(ψx(α′), ψy(β)) known as symbol plane or symbologram representation, which is contained in the
unit square [0, 1]

2 ⊂ R2. The choice of encoding ψx and ψy to use on the machine configurations
is arbitrary. Therefore, to enable the construction of parsimonious Nonlinear Dynamical Automata
our encoding will assume that β always contains tape symbols only, and that the first symbol of α′ is
always a state symbol, the rest being tape symbols only. Based on these assumptions, the particular
encoding is defined as:

ψx(α′) = γq(a1)n−1q +

∞∑
k=1

γs(ak+1)n−ks n−1q ,

ψy(β) =

∞∑
k=1

γs(bk)n−ks ,

(7)

with nq = |Q|, i.e. the number of states in the Turing Machine, ns = |N|, i.e. the number of tape
symbols in the Turing Machine, γq and γs enumerating Q and N respectively, and with ak and bk
being the k-th symbol in α′ and β respectively.

2.3.1 Encoded Generalized Shift and affine-linear transformations

The substitution and shift operated by a Generalized Shift on a dotted sequence s = α.β can be rep-
resented as an affine-linear transformation on (ψx(α′), ψy(β)), i.e. the symbologram representation
of s. In particular, a substitution and shift on a dotted sequence can be broken down into substi-
tutions and shifts on its one-sided components. In the following, we will show how substitutions
and shifts on a one-sided infinite sequence can be represented as affine-linear transformations on
its Gödelization. These results will be useful in showing how the symbologram representation of a
Generalized Shift leads to a piecewise affine-linear map on a rectangular partition of the unit square.
Let s = d1d2d3 . . . be a one-side infinite sequence on some alphabet A. Substituting the n-th
symbol in s with d̂n yields ŝ = d1 . . . dn−1d̂ndn+1 . . ., so that

ψ(s) = γ(d1)g−1 + . . . γ(dn−1)g−(n−1) + γ(dn)g−n + γ(dn+1)gn+1 + . . . ,

ψ(ŝ) = γ(d1)g−1 + . . . γ(dn−1)g−(n−1) + γ(d̂n)g−n + γ(dn+1)gn+1 + . . . ,

= ψ(s)− γ(dn)g−n + γ(d̂n)g−n.

As the previous example illustrates, Gödelizing a sequence resulting from a symbol substitution is
equivalent to applying an affine-linear transformation on the original Gödelized sequence. In partic-
ular, the parameters of the affine-linear transformation only depend on the position and identities of
the symbols involved in the substitution. Shifting s to the left by removing its first symbol or shifting
it to the right by adding a new one yields respectively sl = d2d3d4 . . . and sr = b d1d2d3d4 . . .,
where b is the newly added symbol. In this case

ψ(sl) = γ(d2)g−1 + γ(d3)g−2 + γ(d4)g−3 + . . .

= gψ(s)− γ(d1),

and

ψ(sr) = γ(b)g−1 + γ(d1)g−2 + γ(d2)g−3 + γ(d3)g−4 + . . .

= g−1ψ(s) + γ(b)g−1.

3

Again, the resulting Gödelized shifted sequence can be obtained by applying an affine-linear trans-
formation to the original Gödelized sequence.

2.4 Nonlinear Dynamical Automata

A Nonlinear Dynamical Automaton (NDA) is a triple MNDA = (X,P,Φ), with P being a rectan-
gular partition of the unit square, that is

P = {Di,j ⊂ X| 1 ≤ i ≤ m, 1 ≤ j ≤ n, m, n ∈ N}, (8)

so that each cell Di,j is defined as the cartesian product Ii × Jj , with Ii, Jj ⊂ [0, 1] being real
intervals for each bi-index (i, j), Di,j ∩Dk,l = ∅ if (i, j) 6= (k, l), and

⋃
i,j D

i,j = X .
The couple (X,Φ) is a time-discrete dynamical system with phase space X = [0, 1]

2 ⊂ R2 (i.e. the
unit square) and with flow Φ : X → X , a piecewise affine-linear map such that Φ|Di,j := Φi,j .
Specifically, Φi,j takes the following form:

Φi,j(x) =

(
ai,jx
ai,jy

)
+

(
λi,jx 0
0 λi,jy

)(
x
y

)
. (9)

The piecewise affine-linear map Φ also requires a switching rule Θ(x, y) ∈ J1,mK× J1, nK to select
the appropriate branch, and thus the appropriate dynamics, as a function of the current state. That
is, Φ(x, y) = Φi,j(x, y) ⇐⇒ Θ(x, y) = (i, j).

Each cell Di,j of the partition P of the unit square can be seen as comprising all the Gödelized
dotted sequences that contain the same symbols in the Domain of Dependence. That is, for a Gen-
eralized Shift simulating a Turing Machine, the first two symbols in α′ and the first symbol in β.
The unit square is thus partitioned in a number of I intervals equal to m = nqns, and one of J inter-
vals equal to n = ns, with nq being the number of states inQ and ns the number of symbols in N, for
a total of nqn2s cells. As each cell corresponds to a different Domain of Dependence of the underly-
ing Generalized Shift in symbolic space, it is associated with a different affine-linear transformation
representing the action of a substitution and shift in vector space. The transformation parameters
(ai,jx , a

i,j
y) and (λi,jx , λ

i,j
y) can be derived using the methods outlined in subsubsection 2.3.1.

Thus, a Turing Machine can be represented as a Nonlinear Dynamical Automaton by means of its
Gödelized Generalized Shift representation.

3 NDAs to R-ANNs

The aim of the second stage of our methodology is to map the orbits of the NDA (i.e. Φi,j(x, y)) to
orbits of the R-ANN, which we will denote by ζi,j(x, y).

Let ρ(·) denote the proposed map. Its role is to encode the affine-linear dynamics at each Φi,j branch
in the architecture and weights of the network, and emulate the overall dynamics Φ by suitably acti-
vating certain neural units within the R-ANN given the switching rule Θ. Therefore, we generically
define the proposed map as follows:

ζ = ρ(I,A,Φ,Θ), (10)

where I is the identity matrix mapping (identically) the initial conditions of the NDA to the R-
ANN and A is the adjacency matrix specifying the network architecture and weights, which will
be explained in subsequent sections. In addition, ρ defines different neural dynamics for each type
of the neural units, that is, ζ = (ζ1, ζ2, ζ3) corresponding to MCL, BSL and LTL, respectively
(see below for the definitions of these acronyms). The details of the R-ANN architecture and its
dynamics are subsequently discussed.

3.1 Network architecture and neural dynamics

The proposed map, ρ, attempts to mirror the affine-linear dynamics (given by Equation 9) of an NDA
on the partitioned unit square (see Equation 8) by endowing the R-ANN with a structure capturing
the characteristic features of a piecewise-affine linear system, i.e. a state, a switching rule and a set
of transformations.

4

Branch
 Selection

Layer

Linear
Transformation

Layer

Machine
Configuration

Layer
External Input

Figure 1. Connectivity between neural layers within the network.

To achieve this, we propose a network architecture with three layers, namely a Machine Configura-
tion Layer (MCL) encoding the state, a Branch Selection Layer (BSL) implementing the switching
rule and a Linear Transformation Layer (LTL), as depicted in Figure 1.
The neural units within the various layers make use of either the Heaviside (H) or the Ramp (R)
activation functions defined as follows:

H(x) =

{
0 if x < 0

1 if x ≥ 0
(11) R(x) =

{
0 if x < 0

x if x ≥ 0
. (12)

Since Φ is a two-dimensional map, this suggests only two neural units (cx, cy) in the MCL layer
encoding its state at every step. A set of BSL units functionally acts as a switching system that
determines in which cell Di,j the current Turing machine configuration belongs to and then triggers
the specific LTL unit emulating the application of an affine-linear transformation Φi,j on the current
state of the system. The result of the transformation is then fed back to the MCL for the next
iteration. On the symbolic level, one iteration of the emulated NDA corresponds to a tape and state
update of the underlying Turing machine, which can be read out by decoding the activation of the
MCL neurons.

3.1.1 Machine Configuration Layer

The role of the MCL is to store the current Gödelized configuration of the simulated Turing Machine
at each computation step, and to synaptically transmit it to the BSL and LTL layers. The layer com-
prises two neural units (cx and cy), as needed to store the Gödelized dotted sequence representing a
Turing Machine configuration (see Equation 7).

The R-ANNs is thus initialized by activating this layer, given the NDA initial conditions
(ψx(α′), ψx(β)) which are identically transformed via I by the map ρ(·) as follows:

(cx, cy) = (ψx(α′), ψx(β)) ≡ ζ1 = ρ(I, ·, ·, ·)|(ψx(α′),ψx(β)) (13)

At each iteration, the units in this layer receive input from the LTL units, and are activated via the
ramp activation function (Equation 12); in other words ζ1 ≡ (cx, cy) = (R(

∑
i t
i
x), R(

∑
j t
j
y)).

Finally, the MCL synaptically projects onto the BSL and LTL (refer to Figure 2 for details of the
connectivity).

3.1.2 Branch Selection Layer

The BSL embodies the switching rule Θ(x, y) and coordinates the dynamic switching between LTL
units. In particular, if at the current step the MCL activation is (cx, cy) ∈ Di,j = Ii × Jj , with
Ii = [ξi, ξi+1) being the i-th interval on the x-axis and Jj = [ηj , ηj+1) being the j-th interval on
the y-axis, the BSL units activate only the (ti,jx , t

i,j
y) units in the LTL. In this way, only one couple

of LTL units is active at each step. The switching rule is mapped by ρ(·) as follows:

ζ2(x, y) = ρ(·, ·, ·,Θ(x, y) = (i, j)). (14)

The BSL is composed of two groups of Heaviside (Equation 11) units, implementing respectively
the x and the y component of the switching rule of the underlying piecewise affine-linear system,
namely: i) the bx group receives input with weight 1 from the cx unit of the MCL layer, and com-
prises nqns units (i.e. bix, 1 ≤ i ≤ nqns); ii) the by group receives input with weight 1 from cy and
comprises ns units (i.e. bjy, 1 ≤ i ≤ ns). The activation of the two groups of units is defined as:

bix = H(cx − ξi) with ξi = min(Ii),

bjy = H(cy − ηj) with ηj = min(Ji).
(15)

5

LTLBSLMCL

0 h_
2

hh_
2

D1,3

D2,3

0

h_
2

-h_
2

h_
2

1

1

1

11

h_
2

-h_
2

bx
0 1

1

3

cx
0 1

1

h_
2

-h_
2

bx
0 1

1

2

h_
2

bx
0 1

1

1

0 1

1

by
2

0 1

1

by
1

0 1

1

cy h_
2

D1,1

D2,1

D1,2

D2,2

(a) Branch Selection Layer

D1,2
h_
2

0 1

1

ty

-h_
21

1

h_
2

1

1

-h_
2

11 1

0 1

1

by
2

0 1

1

cy
0 1

1

by
1

bx
0 1

1

1 bx
0 1

1

2 bx
0 1

1

3

cx
0 1

1

tx
0 1

1

(b) Complete branch connection layout

Figure 2. Detailed feedforward connectivity and weights for a neural network simulating a NDA
with only 6 branches.

Each bix and bjy BSL unit has an activation threshold, defined as the left boundary of the Ii and Jj
intervals, respectively, and implemented as input from an always-active bias unit (with weight −ξi
for the bix unit and −ηj for bjy). Therefore, an activation of (cx, cy) in the MCL corresponding to
a point on the unit square belonging to cell Di,j , would trigger active all units bkx with k ≤ i. The
same would occur for all neural units bky with k ≤ j.1

Each bix unit establishes synaptic excitatory connections (with weight h
2) to all LTL units corre-

sponding to cells Dk,i (i.e. (tk,ix , tk,iy)) and inhibitory connections (with weight −h2) to all LTL units
corresponding to cells Dk,i−1 (i.e. (tk,i−1x , tk,i−1y)), with k = 1, . . . , ns; for a graphical represen-
tation see Figure 2. Similarly, each bjy unit establishes synaptic excitatory connections to all LTL
units corresponding to cells Dj,k and inhibitory connections to all LTL units corresponding to cells
Dj−1,k, with k = 1, . . . , nqns. Together, the bix and bjy units completely counterbalance through
their synaptic excitatory connections the natural inhibition (of bias h, which value and definition will
be discussed in the following section) of the LTL units corresponding to cell Di,j (i.e. (ti,jx , t

i,j
y)).

In other words each couple of LTL units (ti,ix , t
i,j
y) receives an input of Bix +Bjy , defined as follows:

Bix = bix
h

2
+ bi+1

x

−h
2
,

Bjy = bjy
h

2
+ bj+1

y

−h
2
,

(16)

where the input sum

Bix +Bjy =

h if (cx, cy) ∈ Di,j
h
2 if cx ∈ Ii, cy 6∈ Jj or cx 6∈ Ii, cy ∈ Jj
0 if (cx, cy) 6∈ Di,j

(17)

only triggers the relevant LTL unit if it reaches the value h. That is, if (cx, cy) ∈ Di,j thenBix+Bjy =

h, and the pair (ti,ix , t
i,j
y) is selected by the BSL units. Otherwise (ti,ix , t

i,j
y) stays inactive asBix+Bjy

is either equal to h
2 or 0, which is not enough to win the LTL pair natural inhibition. An example of

this mechanism is shown in Figure 2 , where the LTL units in cell D1,2 are activated via mediation
of bx = {b1x, b2x, b3x} and by = {b1y, b2y}. Here, both b3x and b2y are not excited since cx and cy ,
respectively, are not activated enough to drive them towards their threshold. However, b2x excites
(with weights h

2) the LTL units in cell D2,2 and D1,2 and inhibits (with weights −h2) the LTL units
in cell D2,1 and D1,1. Equally, b2y excites (with weights h

2) the LTL units in cell D2,1, D2,2 and

1Note that the action of the BSL could be equivalently implemented by interval indicator functions repre-
sented as linear combinations of Heaviside functions.

6

D2,3 and inhibits (with weights −h2) the LTL units in cells D1,1, D1,2 and D1,3. The b1x and b1y
units excite cells {D2,1, D1,1} and {D1,1, D1,2, D1,3}, respectively, but these do not inhibit any
cells (due to boundary conditions).

3.1.3 Linear Transformation Layer

The LTL layer can be functionally divided in sets of two units, where each couple applies two
decoupled affine-linear transformations corresponding to one of the branches of the simulated
NDA. On the symbolic level, this endows the LTL with the ability to generate an updated ma-
chine configuration from the previous one. In the LTL, a branch (i, j) of a NDA, Φi,j(x, y) =
(λi,jx x + ai,jx , λ

i,j
y y + ai,jy), is simulated by the LTL units (ti,jx , t

i,j
y). Mathematically, this induces

the following mapping:

(ti,jx , t
i,j
y) = ζi,j3 (x, y) = ρ(·, ·,Φi,j(x, y), ·). (18)

The affine-linear transformation is implemented synaptically, and it is only triggered when the BSL
units provide enough excitation to enable (ti,jx , t

i,j
y) to cross their threshold value and execute the

operation. The read-out of this process corresponds to:

ti,jx = R(λi,jx cx + ai,jx − h+Bix +Bjy),
ti,jy = R(λi,jy cy + ai,jy − h+Bix +Bjy).

(19)

A strong inhibition bias h (implemented as a synaptic projection from a bias unit) plays a key role
in rendering the LTL units inactive in absence of sufficient excitation. The bias value is defined as
follows

−h
2
≤ −max

i,j,k
(ai,jk + λi,jk) with k = {x, y}. (20)

Hence, each of the BSL inputsBix andBiy contributes respectively to half of the necessary excitation
(h2) needed to counterbalance the LTL’s natural inhibition (refer to Equation 16 and Equation 17).

The LTL units receive input from the two CSL units (cx, cy), with synaptic weights of (λi,jx , λ
i,j
y),

and they are also endowed with an intrinsic constant LTL neural dynamics (ai,jx , a
i,j
y). If the input

from the BSL layer is enough for these neurons to cross the threshold mediated by the Ramp activa-
tion function, the desired affine-linear transformation is applied. The read-out is an updated encoded
Turing machine configuration, which is then synaptically fed back to the CSL units (cx, cy), ready
for the next iteration (or next Turing machine computation step on the symbolic level).

3.1.4 NDA-simulating first order R-ANN

The NDA simulation (and thus Turing machine simulation) by the R-ANN is achieved by a combi-
nation of synaptic and neural computation among the three neural types (MCL, BSL, and LTL) and
with a total of

nunits = 2︸︷︷︸
MCL

+ns + nsnq︸ ︷︷ ︸
BSL

+ 2n2snq︸ ︷︷ ︸
LTL

+ 1︸︷︷︸
bias unit

(21)

neural units, where nq and ns are the number of states and the number of symbols in the Turing
Machine to be simulated, respectively. These units are connected as specified by an adjacency
matrix A of size nunits × nunits, following the connectivity pattern described in Figure 1 and with
synaptic weights as entries from the set

{0, 1, h
2
,
−h
2
} ∪ {ai,jk − h | i = 1, . . . , nqns , j = 1, . . . , ns , k = x, y},

the second component being the set of biases.

An important modelling issue to consider is that of the halting conditions for the ANN, i.e. when to
consider the computation completed. In the original formulation of the Generalized Shift, there is no
explicit definition of halting condition. As our ANN model is based on this formulation, a deliberate
choice has to be made in its implementation. Two choices seem to be the most reasonable. The first
one involves the presence of an external controller halting the computation when some conditions
are met, i.e. an homunculus [4]. The second one is the implementation of a fixed point condition,

7

intrinsic to the dynamical system, representing a TM halting state as an Identity branch on the NDA.
In this way a halting configuration will result in a fixed point on the NDA, and thus on the R-ANN.
In other words, the network’s computation is considered completed if and only if

ζ1(x′, y′) = (x′, y′). (22)

In the present study we decided to use a fixed point halting condition, but the use of a homunculus
would likely be more appropriate in other contexts such as interactive computation [9, 10, 11] or
cognitive modelling, where different kinds of fixed points are required in order to describe sequential
decision problems [12], such as linguistic garden paths [4, 10].

The implementation of the R-ANN defined like so simulates a NDA in real-time and, thus, it sim-
ulates a Turing Machine in real time. More formally, it can be shown that under the map ρ(·)
the commutativity property ζ ◦ ρ = ρ ◦ Φ is satisfied, which extends the previously demonstrated
commutativity property between Turing machines and NDAs [9, 13, 14].

4 Discussion

In this study we described a novel approach to the mapping of Turing Machines to first-order R-
ANNs. Interestingly, R-ANNs can be constructed to simulate any piecewise affine-linear system on
a rectangular partition of the n-dimensional hypercube by extending the methods discussed

The proposed mapping allows the construction, given any Turing Machine, of a R-ANN simulating
it in real time. As an example of the parsimony we claim, a Universal Turing Machine can be
simulated with a fraction of the units than previous approaches allowed for: the proposed mapping
solution derives a R-ANN that can simulate Minsky’s 7-states 4-symbols UTM [15] in real-time with
259 units (as per Equation 21), approximately 1/3 of the 886 units needed in the solution proposed
by Siegelmann and Sontag [1], and with a much simpler architecture.

In future work we plan to overcome some of the issues posed by the mapping and parts of its under-
lying theory, especially in relation to learning applications. Key issues to overcome are the missing
end-to-end differentiability, and the need for a de-coupling of states and data in the encoding. A
future development would see the integration of methods of data access and manipulation akin to
that in Google DeepMind’s Neural Turing Machines [5]. A parallel direction of future work would
see the mapping of Turing machines to continuous-time dynamical systems (an example with poly-
nomial systems is provided in [16]). In particular, heteroclinic dynamics [12, 13, 17, 18] – with
machine configurations seen as metastable states of a dynamical system – and slow-fast dynam-
ics [19, 20] are promising new directions of research.

References

[1] H. T. Siegelmann and E. D. Sontag, “On the computational power of neural nets,” Journal of
computer and system sciences, vol. 50, no. 1, pp. 132–150, 1995.

[2] H. T. Siegelmann and E. D. Sontag, “Turing computability with neural nets,” Appl. Math. Lett,
vol. 4, no. 6, pp. 77–80, 1991.

[3] C. Moore, “Unpredictability and undecidability in dynamical systems,” Physical Review Let-
ters, vol. 64, no. 20, p. 2354, 1990.

[4] P. beim Graben, B. Jurish, D. Saddy, and S. Frisch, “Language processing by dynamical sys-
tems,” International Journal of Bifurcation and Chaos, vol. 14, no. 02, pp. 599–621, 2004.

[5] A. Graves, G. Wayne, and I. Danihelka, “Neural turing machines,” arXiv preprint
arXiv:1410.5401, 2014.

[6] A. M. Turing, “On computable numbers, with an application to the entscheidungsproblem,”
Proc. London Math. Soc, vol. 42, 1937.

[7] C. Moore, “Generalized shifts: unpredictability and undecidability in dynamical systems,”
Nonlinearity, vol. 4, no. 2, p. 199, 1991.

[8] K. Gödel, “Über formal unentscheidbare sätze der principia mathematica und verwandter sys-
teme i,” Monatshefte für Mathematik und Physik, vol. 38, pp. 173 – 198, 1931.

8

[9] P. beim Graben, “Quantum Representation Theory for Nonlinear Dynamical Automata,” in
Advances in Cognitive Neurodynamics ICCN 2007, pp. 469–473, Springer, 2008.

[10] P. beim Graben, S. Gerth, and S. Vasishth, “Towards dynamical system models of language-
related brain potentials,” Cognitive neurodynamics, vol. 2, no. 3, pp. 229–255, 2008.

[11] P. Wegner, “Interactive foundations of computing,” Theoretical Computer Science, vol. 192,
pp. 315 – 351, 1998.

[12] M. I. Rabinovich, R. Huerta, P. Varona, and V. S. Afraimovich, “Transient cognitive dynamics,
metastability, and decision making,” PLoS Computational Biology, vol. 4, no. 5, p. e1000072,
2008.

[13] P. beim Graben and R. Potthast, “Inverse problems in dynamic cognitive modeling,” Chaos:
An Interdisciplinary Journal of Nonlinear Science, vol. 19, no. 1, p. 015103, 2009.

[14] P. beim Graben and R. Potthast, “Universal neural field computation,” in Neural Fields,
pp. 299–318, Springer, 2014.

[15] M. Minsky, “Size and structure of universal turing machines using tag systems,” in Recursive
Function Theory: Proceedings, Symposium in Pure Mathematics, vol. 5, pp. 229–238, 1962.

[16] D. S. Graça, M. L. Campagnolo, and J. Buescu, “Computability with polynomial differential
equations,” Advances in Applied Mathematics, vol. 40, no. 3, pp. 330–349, 2008.

[17] I. Tsuda, “Toward an interpretation of dynamic neural activity in terms of chaotic dynamical
systems,” Behavioral and Brain Sciences, vol. 24, pp. 793 – 810, 2001.

[18] M. Krupa, “Robust heteroclinic cycles,” Journal of Nonlinear Science, vol. 7, no. 2, pp. 129–
176, 1997.

[19] M. Desroches, M. Krupa, and S. Rodrigues, “Inflection, canards and excitability threshold in
neuronal models,” Journal of mathematical biology, vol. 67, no. 4, pp. 989–1017, 2013.

[20] M. Desroches, A. Guillamon, R. Prohens, E. Ponce, S. Rodrigues, and A. E. Teruel, “Ca-
nards, folded nodes and mixed-mode oscillations in piecewise-linear slow-fast systems,” SIAM
Review, vol. in press, 2015.

9

