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Performance of a Boussinesq model for Shoaling and Breaking Waves 
A comparison with large scale laboratory data 

Francoise Ozanne 

ABSTRACT 

In this thesis, a nonlinear model predicting hydrodynamics data for waves shoaling and 

breaking on a beach is reproduced and extensively tested with laboratory data. The model is 

based on the 1D Boussinesq equations as derived by Madsen et al. (1991) and Madsen and 

Sorensen (1992), with the free surface elevation and the depth-integrated velocity as 

variables. It allows slowly varying bathymetries and contains additional high order terms to 

improve the frequency dispersion for shorter wave periods, and thus also to improve the 

shoaling properties of the model. Wave breaking is modelled using the concept of a surface 

roller as formulated by Schäffer et al. (1993). It is assumed that bottom friction is negligible. 

A large scale laboratory experiment (Supertank), designed in particular to obtain data to test 

the validity of wave propagation models, provides the wave and current data. Wave 

evolution over a complex bathymetry is examined for 4 cases. The data include conditions 

for long and short waves, and regular and irregular waves. 

During the model evaluation, emphasis is put on the study of parameters of importance to 

sediment transport, including (orbital) velocity, undertow and wave shape prediction. The 

latter encompasses velocity and elevation skewness, kurtosis and asymmetry. It is found that, 

despite an overestimation of the depth-averaged horizontal velocity in some cases, the 

predicted velocity moments and undertow are in good agreement with the data. Using a 

bispectral analysis, it is shown that the nonlinear transfers of energy amongst the low order 

harmonics are well reproduced, but that errors are introduced in the treatment of the high 

order super-harmonics. As a result, the short waves tests are found to yield better results 

than those for long waves. A sensitivity analysis on the free parameters introduced in the 

simulation of wave breaking is carried out. It appears that the results are mostly sensitive to 

the critical xv avve fi-ont slope OB 
, and in particular that the elevation and velocity skewness 

and kurtosis predictions are very sensitive to this parameter. 
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CHAPTER 1 INTRODUCTION 

In the past twenty years, the progress made in the development of numerical models that 

simulate wave transformation in the nearshore zone has been considerable. This was made 
possible thanks to the parallel developments achieved in computing technology. Much of 
the interest in the development of these numerical models was motivated by the need for 

tools that provide hydrodynamic data for the design of. for example, offshore structures, 
harbours, and coastal defence schemes. Indeed, increased human activity and interest both 

in the open sea and in the coastal zone have resulted in increased needs for data for the 
design of such structures. Since there may be not enough time and/or money to carry out an 

adequate wave measurement programme as part of a design process, numerical and physical 

wave modelling techniques offer good alternatives. The development and testing of 

numerical models are therefore essential if the model is going to be used as part of the 
design process. 

An important part of the tackling of coastal problems lies in the prediction of sediment 

transport in the nearshore zone. Sediment displacement is the result of short wave (orbital) 

motion, long wave motion and net flows, and the interactions between them. In particular, 

the net shoreward velocity, associated with wave skewness, and the return flow (or 

undertow), associated with wave-induced mass transport, play an essential part in the 

morphological dynamics of a beach. To further our understanding of the processes that 

change the coastlines, and thus be able to predict them, it is essential that the hydrodynamics 

of the surf zone be understood, and simulated accordingly. 

As surface gravity waves shoal, the wave field undergoes a substantial evolution from its 

deep water state owing to weak frequency dispersion and consequent nonlinear triad 

interactions. The study of the transformations of wave spectra typically show that narrow 

band spectra develop secondary peaks at harmonics of the peak frequency and broadband 

spectra show an increase of energy over a wide range of frequencies higher than most of the 

energetic part of the spectrum (Elgar and Guza, 1985a). In other words, energy is 

(nonlinearly) transferred from the incident kind waves to both higher and lower 

frequencies. For the length scale considered here, these energy transfers are predominantly 



the result of triad interactions, which may be described as an energy exchange between 3 
interacting wave modes'. Nonlinear interactions between a pair of wave components with 
frequencies and wave numbers (ft, k1) and (fz, kz) theoretically force secondary waves with 
the sum and difference frequency and wave number (f j± f2) and (k j± k2) (super- and sub- 
harmonics respectively). Thus, in the frequency domain, nonlinearities may result in 
important cross-spectral energy transfer in relatively short distances, and a wave field for 

which the phase relationship between some of the Fourier components is no longer random 
(the Fourier components become coupled). In the time domain, higher harmonic generation 

and their interactions cause surface elevation and orbital velocity time series to become 

increasingly asymmetrical. The waves become asymmetrical with respect to the horizontal: 

they become steep, sharp crested with broad troughs. This is termed skewness (skewed 

profile). The waves also tend to become asymmetrical with respect to the vertical, i. e. 

pitched forward. This is termed asymmetry (asymmetric profile). 

Nonlinear waves are quantified by non-zero third and higher order moments, that is a non- 
Gaussian distribution. The effect of wave shape changes on sediment transport has long 

been recognised. For example wave skewness in the surf zone is reflected in onshore 

velocities that are greater than the offshore velocities, and is generally thought to result in a 

net onshore sediment movement over a wave period. These effects have been incorporated 

in widely applied cross-shore sediment transport models based on the energetics approach 

developed by Bailard (1981), and modified by Guza and Thornton (1985). The later authors 

used field experiments to examine the relative significance of the velocity moments used in 

Bailard's model. They found that suspended and bed load transport are dominated by the 

third and fourth order moments respectively, or, in normalised form, the skewness and the 

kurtosis. 

While there is no doubt that the skewness does affect sediment transport, the details of this 

relationship are not clear. The hypothesis that wave skewness results in net onshore 

movement is made assuming that sediment transport responds instantaneously to 

fluctuations in the near-bed velocity. However, the analysis of field data by Russell (1993) 

shows there may be a lag between a variation in the bed velocities and suspended sediment 

concentrations. This could result in offshore sediment transport instead of the expected 

onshore transport. Russell concluded that detailed time variation of flow velocities (not just 

Given the length scale necessary for tertian waves forced by the interaction of three primary waxes to 
develop, harmonic generation by weaker third order interactions is not investigated in this study. 



wave-averaged quantities) are therefore likely to be required for (suspended) sediment 
transport predictions. This emphasises the importance of modelling wave skewness in order 
to get accurate predictions of sediment transport. 

The undertow is another wave-induced process that is significant in the cross-shore 

sediment dynamics. It is defined as a seaward directed return flow which compensates for 

the shoreward directed mass flux above the wave trough level. It is driven by the local 

difference between the vertically non-uniform 2 shoreward directed component of radiation 

stresses and the vertically uniform offshore directed pressure gradient (due to set-up and 

run-up). The resulting vertical velocity profile is complex and depends upon the distribution 

of the turbulence under the waves. Model evaluations of the undertow may be found in e. g. 
Svendsen (1984b). This offshore flow is significant in sediment transport as it is recognised 

that it tends to carry sediment offshore, where a bar may form. 

Given the complexity of the processes involved in the surf zone, the relationship between 

nonlinear nearshore hydrodynamics and consequent sediment dynamics is still mostly 

qualitative, but is nevertheless significant. The linear theory can therefore no longer be 

applied to the description of waves approaching the shoreline where the nonlinearities 

described above become significant or even dominant. High order wave theories or 

nonlinear models should thus be used to model wave motion in the final stages of shoaling 

and in the surf zone. 

At the starting point of the development of models for the propagation of ocean surface 

waves are the Navier-Stokes equations, which adequately describe the motion of water for 

an incompressible fluid of constant density. It is only very recently that it has become 

possible to solve these equations directly (see e. g. Petit et al., 1994). They are still very 

computationally demanding however, and the length of the computational domain is thus 

restricted. Various simplifications of the Navier-Stokes equations have been introduced, 

leading to various approximations. We are concerned here by approximations that (i) 

involve the integration over the depth of the Navier-Stokes equations, and (ii) retain some 

degree of nonlinearity, that is, shallow water waves models. The simplification of the 

problem by removing the vertical co-ordinate permits the treatment of a wider 

computational domain. Further assumptions may then be introduced that result in different 

Within the surf zone, gradients in the radiation stress that cause a shoreward directed mass-transport of water 
is confined to the region between the trough and crest levels. 
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systems of equations, with different applications. Thus, Airy (1845) derived the Nonlinear 
Shallow Water (NLSW) equations, applicable to non-linear non-dispersive waves. 
Boussinesq (1872) introduced the derivation of equations for weakly dispersive and weakly 
nonlinear waves travelling over a flat bed, the Boussinesq equations. The derivation of high 

order analytical solutions for nonlinear waves followed with the Korte«weg-de Fries 

equations (Korteweg and de Vries, 1895). 

The first steps towards the development of nonlinear wave theories were thus undertaken 
last century, but it was not until the late 60s, early 70s, when the rapid development of 
computers made numerical advances possible, that these theories were actually applied. 
Research in the development and application of the NLSW and Boussinesq equations has 
been continuous ever since. Much of the development of models based on the Boussinesq 

equations was spurred by the attraction of their capability to describe shoaling, refraction, 
diffraction, (partial) reflection, and, most importantly, wave-wave interactions. Indeed, the 

triad interactions responsible for the generation of harmonics are reproduced, and the wave 

shape evolution is therefore modelled. Results from a Boussinesq model were compared to 

a linear wave transformation model and field data by Elgar and Guza (1985a). They found 

that the Boussinesq model predicts the evolution of energy spectra more accurately than 
does the linear theory. 

The classical Boussinesq equations describe the propagation of weakly dispersive and 

weakly nonlinear waves, that is fairly long waves in shallow water. Significant research 

accomplishments were made in the last 10 years, whereby emphasis has been placed on 

efforts to extend the applicability of the classical Boussinesq equations to shorter waves 

('deeper' water) on one hand, and to the surf zone on the other hand. This extensive work 

has resulted in many different forms of the Boussinesq equations which have a different 

range of application, hence the term `Boussinesq-type equations' used hereinafter. A 

detailed review of the developments achieved in wave modelling with the Boussinesq 

equations is given in chapter 2. 

In the context of this study, the choice of a Boussinesq-type model was motivated by several 

aspects. First the models based on the most advanced equations are attractive in that they 

describe wave shoaling as well as wave breaking. Second, and not the least, the Boussinesq 

equations include (the lowest order of) nonlinearity and dispersion effects. They are thus 
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capable of simulating changes in the spectral shape and wave profile. Nonlinearity, reflected 
in vertical and horizontal asymmetry of the wave profile and velocity oscillations, was seen 
earlier to be a significant element in the prediction of sediment transport. The most 
immediate application of such models is thus the supply of hydrodynamic data necessary to 
drive sediment transport models. Lastly, previous studies have shown that this type of 
model yields good results for (i) first order surface elevation statistics, so that one can 
reasonably expect good results for velocity predictions, and (ii) wave shape in the shoaling 
zone for strictly weakly dispersive waves (Elgar and Guza, 1985a & b). Thus one can 

reasonably hope to obtain good results for higher order statistics in the surf zone. 

The object of this thesis is to evaluate a Boussinesq-type model that predicts the 

hydrodynamics of waves shoaling and breaking on a beach by using large scale laboratory 

data. During this model evaluation, emphasis is put on the study of parameters of 
importance to sediment transport, including orbital velocities, undertow and wave shape 

predictions. The latter encompasses velocity and elevation skewness, kurtosis and 

asymmetry. 

The organisation of this thesis is as follows: in Chapter 2, we shall survey the various 

developments, validations and applications of Boussinesq-type models. This chapter also 

identifies the needs for further research and presents the aims of this study. The theoretical 

foundations of water wave modelling using the Boussinesq equations are presented in 

Chapter 3 with the derivation of the equations. This chapter also gives a description of the 

solution method used to solve the equations, and a description of the preliminary testing of 

the model. Chapter 4 introduces the data and data analysis methods used. The numerical 

simulations and comparisons are presented and discussed in Chapter 5 (time domain 

analysis) and Chapter 6 (frequency domain analysis). Further discussion, a summary and 

conclusions are given in Chapter 7. 



CHAPTER 2 DEVELOPMENTS and APPLICATION'S of the 
BOUSSINESQ EQUATIONS 

2.1 Classical Boussinesq equations 

2.1.1 Early developments and first applications 
Boussinesq (1872) originally derived the Boussinesq equations by, incorporating low order 
dispersive effects in the nonlinear shallow water equations for waves propagating over a 
horizontal bottom. It was only in the late 60's however that his theory started to be applied: 
Peregrine (1967), using a perturbation approach, extended Boussinesq's original formulation 

to describe the nonlinear transformation of irregular short waves in water of varying depth 

using the free surface elevation and the depth averaged horizontal velocity as dependent 

variables. His equations, for which he also proposed the first numerical solution, read: 
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where i is the free surface elevation, ü is the depth-averaged velocity, and h is the still 

water depth. 

Subsequent work started with the development of numerical methods, and the study of their 

effect on the accuracy of the solution. Abbott and Rodenhuis (1972) showed the extreme 

sensitivity of the solutions to the equations to numerical errors, and the necessity of a high 

accuracy finite difference scheme. On the other hand, they showed that if sufficient accuracy 

can be obtained, solutions to the equations give good results. Abbott et al. (1978a & b, 

1984) described a third order accurate finite difference scheme for the solution of a 

modified version of Peregrine's equations. 

Numerical models based on Peregrine's equations (or equivalent formulations) were 

subsequently tested against laboratory data and analytical solutions (Abbott cl al., 1978a &- 

b, 1-laugel, 1980, Schaper and Zielke, 1984, Madsen and Sorensen. 1984). Both the solitary 
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wave theory and the cnoidal theory are solutions to the Boussinesq equations and have been 

used to validate 1D models for horizontal beds. Abbott et al. (1978a & b) were among the 
first to develop a two-dimensional numerical model based on Boussinesq equations (System 
21 `Jupiter'). Their model is able to describe shoaling, refraction, diffraction and partial 
reflection from porous structures (rubble mound breakwater). The latter is made possible by 
including a porosity factor. Madsen and Warren (1984) made a comparison of the solutions 
of the model developed by Abbott and co-workers with analytical solutions and physical 
model tests. They showed the prediction of such processes as shoaling, refraction, 
diffraction and partial reflection from piers and breakwaters is reliable and can be used 
`confidently' for engineering practice when applied within its limits (these limits may be 
broadly defined here as a restriction to fairly long waves in shallow eater, see section 2.1.2 

for more detail). Two dimensional Boussinesq-type models have therefore been used for 

many years to simulate wave conditions inside a harbour due to incoming waves. These 

models can describe all the processes involved in the propagation of irregular, 

multidirectional finite-amplitude (nonlinear) waves over complex bathymetries, i. e. 

shoaling, refraction, diffraction and partial reflection. 

Freilich and Guza (1984) were the first to study the simulation of wave-wave interactions 

and associated spectral evolution in shallow water with a Boussinesq-type model. On the 

basis of the original Boussinesq equations, they derived a new set of evolution equations for 

the amplitude and phase of Fourier components. These equations contain second order 

(quadratic) interaction terms that allow the transfer of energy across the wave spectrum over 

short distances in shallow water. They validated their model against field data for non- 

breaking irregular wave trains propagating on a constant slope. They showed that the 

evolution of the power spectra of normally incident shoaling waves may be predicted 

accurately. Their model, which is sometimes referred to as a nonlinear spectral model, «was 

subsequently verified against field data and improved in several subsequent papers (Elgar & 

Guza, 1985a & b, 1986; Elgar et al., 1990; Freilich et al., 1990; Elgar et al., 19971). In 

particular, validation was successfully extended to the prediction of bispectra and surface 

elevation asymmetry and skewness for weakly dispersive shoaling «ave. 

LIgar art al. (1997) also studied evolution of power spectra for breaking waves: they, compared measured 

power spectra in the surf zone with predictions from a models solving the NLSW equations and obtained good 

agreement. 
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2.1.2 Range of application 
The range over which the Boussinesq equations are valid depends on the main assumptions 
made in their derivation. Two small scaling parameters are shown to be important in 

evaluating the different forms of the Boussinesq equations (Peregrine, 1972). and hence 
defining their range of applicability: 

e, the ratio of wave amplitude to water depth a/h (a measure of the degree of 

nonlinearity of the waves); 

p, the square of the ratio of the water depth to the wave length (I1/L)2 (a measure of 
the degree of dispersion). 

E is assumed small and u is assumed to be smaller or of the same order as E (that is, the 

Ursell number Ur = e/p = 0(1)). In other words, the original form of the Boussinesq 

equations assumes that both dispersion and nonlinearity are weak and of the same order. 
This would tend to restrict the application of the equations to the propagation of small 

waves in shallow water. However, numerical testing has shown good results for high waves 

and also for waves propagating in intermediate depth waters (McCowan, 1981). 

Dingemans (1997) proposed an upper limit for Eat 0.25 (weak nonlinearity), and an upper 

limit for u at 1150 (i. e. h/L < 1/7) (weak dispersion). 

Many forms of the Boussinesq equations are found in the literature. This variety is due to 

the fact that there are many procedures to derive Boussinesq equations and almost as many 

resultant forms of the equations (see e. g. Dingemans (1997)). For example, the dependent 

variables can be chosen in different ways. Typical velocity variables may be the velocity at 

the surface, the depth integrated velocity or the bottom velocity. Also, since the nonlinear 

and dispersive terms are of higher order, they can be manipulated by invoking the linear 

long-wave equation (nearly horizontal flow equations) (Mei, 1989; Whitham, 1974; Long, 

1964). 

Within the weak nonlinearity and weak dispersion limit, the practical range of application of 

a variety of Boussinesq-type models was studied by McCowan (1978,1981,1985.1987), 

Witting (1984), Nwvogu (1993), Madsen et al. (1991) and Madsen & Sorensen (1992). The 

fact that the Boussinesq equations are only applicable to relatively shallow water depths is a 

major limitation of their original form. McCowan (1987) and Madsen et al. (1991) 

evaluated sets of Boussinesq equations for their applicability to propagate waves with the 

correct celerity, McCowan using different levels of dispersive terms, and Madsen et al. 
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using equations expressed in terms of different velocity variables, both methods resulting in 
the comparison of models with different linear dispersion relations. According to McCoNvan 
(1987), except for h1L0 < 0.05, the accuracy of the phase celerity and group velocity (and 
therefore the applicability of the model) depends on the velocity variable used. For the 
commonly used form of the Boussinesq equations, expressed in terms of the depth-averaged 

velocity, to keep errors in the phase velocity less than 5%, h/L0 has to be less than 1 5. 
Similarly, Madsen et al. (1991) showed that the worst form of the equations, expressed in 
terms of the surface velocity, breaks down for h/L0 larger than 0.12. They found, as well as 
McCowan, that the equations based on the depth-averaged velocity exhibit the best hLo 
limits, with a5% error in the phase celerity and a 20% error in the group velocity for h. Lo = 
0.22. It is therefore this form that the authors recommended. A subsequent analysis by 
Madsen and Sorensen (1992) shows that major errors in the embedded linear shoaling 
gradient occur when h/L0 > 0.1. From their study it appeared that the shoaling properties of 
a given set of equations also depends on the velocity variable used. 

2.1.3 The need to improve the frequency dispersion properties of the classical 
Boussinesq equations 

To use a Boussinesq model as an engineering tool, the extension of the application of the 

model to waves with larger h/L0, or kh, (also referred to in the Boussinesq literature as 
`deep(er) water waves', or `short(er) waves') would be a valuable asset. Note that the 

extension to the description of shorter waves is required not only to simulate waves further 

offshore, but also to accurately simulate the shorter waves (high harmonics) resulting from 

triad interactions during shoaling and breaking. 

Mei and Ünlüata (1972) have shown that the phase mismatch between the primary wave and 

its harmonics, d, controls the strength of the nonlinear interactions occurring over small 

length scales, and causes a modulation of the harmonic amplitudes. They showed, both 

experimentally and theoretically, that the smaller d, the stronger the interaction (and the 

larger the amplitude and beat length of the oscillations of the second harmonic). Since A 

decreases in decreasing depth (the waves become non-dispersive), the strength of the 

interactions is enhanced in decreasing water depths. The correct prediction of the strength of 

the interactions (i. e. the amount of energy exchanged among harmonics) therefore depends 

on the correct prediction of the phase mismatch. 

Good dispersion prediction is also essential for the correct simulation of the phase celerity 

of the free high harmonics. Indeed, during shoaling increasing energy is transferred into 
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bound sub and super-harmonics which travel phase locked to the primary wave train. Part of 
the energy can be released as free harmonics (e. g. a wave travelling over a submerged bar), 
i. e. harmonics travelling according to their own dispersion characteristics. The dispersion 

characteristics of free higher harmonics is thus a major factor of wave evolution because it 
determines the wave shape. Even when the primary component corresponds to veryy long 

waves, the modelling of this process therefore requires good linear dispersion and shoaling 
properties. 

Summary 

When applied within their range of validity, the classical Boussinesq equations provide 

satisfactory results. Given the applicability analysis carried out by a number of researchers, 
further development of the existing models and extension of their range of application is 

necessary, in particular with respect to their h/L limitation. This work is described in detail 

in the following section. 

2.2 Extension of applicability to shorter waves 
Recently, a number of attempts have been made to extend the range of applicability of the 

original equations to deeper waters by improving the dispersion characteristics of the 

equations. Each of these studies is based on the finding reported above that the frequency 

dispersion properties of a given set of equations depends on the velocity variable used. This 

has resulted in a range of new forms of the Boussinesq equations where more second and 

third order derivatives were introduced. 

It was Witting (1984) who first attempted to extend the range of applicability of the 

equations to deeper waters. He used the velocity at the free surface as the velocity variable 

and introduced improved dispersion characteristics. His new form of the Boussinesq 

equations is for one horizontal dimension, and gives excellent dispersion properties, but is 

unfortunately very difficult to extend to two dimensions (Madsen et al., 1991). 

Madsen et al. (1991) also derived a new set of Boussinesq equations introducing improved 

linear dispersion characteristics. Through direct manipulation of the dispersion terms, they 

obtained a model with extended accuracy in its dispersion relation. This procedure is 
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detailed in section 3.3. In terms of the depth-integrated velocity, or volume flux, P. the new 

equations are: 
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The introduction of high order terms in the momentum equation includes a linear dispersion 

parameter B which is adjusted so as to match the dispersion relation of the linearised 

extended equations with a polynomial expansion of the exact' linear dispersion relation 

combined with the use of Pade's approximant. They found that B= 1/15 gave optimum 

results (fig. 3.2). In deep water, the new equations have a frequency dispersion relation that 

approaches the exact linear dispersion relation. In shallow water, it converges towards the 

standard Boussinesq equations. The new equations resulted in an increase of the practical 

deep water limit from h/L0 = 0.22 to WL0 = 0.5 (with phase celerity errors restricted to 5% 

relative to Stokes 1 st order theory). This new form is valid for irregular wave trains in two 

horizontal dimensions but assumes a flat bottom. Madsen and Sorensen (1992) extended 

Madsen et al. (1991)'s new form of Boussinesq equations to the simulation of waves 

propagating on a slowly varying bathymetry. For the same value of B, the new equations 

allow for a more accurate simulation of shoaling and refraction of irregular wave trains (fig 

3.3). 

Nwogu (1993) also improved the linear dispersion properties of the Boussinesq equations: 

bearing in mind that the level at which the velocity is evaluated determines the dispersion 

properties of the equations, he derived a new set of equations with the horizontal velocity 

evaluated at some arbitrary distance -ah from the still water level. The optimal elevation at 

which the velocity is evaluated is then determined by comparing the dispersion relation of 

the linearized modified Boussinesq equations to that given by Stokes linear theory. The 

optimum depth is found to be close to mid depth at -0.531h (equivalent to B= 1/17.5, 

Dingemans (1997)). 

The difference in the frequency dispersion behaviour between B= 1/17.5 and B= 1/15 is 

not large. Dingemans (1997, p539) has shown that the choice B= 1/17.5 is best over the 

' assumed to be Stokes's first order theory 



range 0< kh < n, but it results in a less accurate phase velocity for very long waves (0 < kh 

< it/2) when compared to B= 1/15. 

Both the linear dispersion parameter B introduced by Madsen et al. (1991) and the depth at 

which the velocity is evaluated in Nwogu's model may thus be regarded as frequency 

dispersion tuning parameters. Both Madsen et al. and Nwogu have shown that their 

`extended' models are able to describe the propagation of waves from relatively deep water 
(e. g. h/L0 = 0.49) to shallow water. Nwogu's (1993) model was further tested by Wei and 

Kirby (1995a) who also devised an improved numerical scheme using a fourth-order 

predictor-corrector method. Testing included the simulation of random waves on a constant 

slope (ID) and regular waves propagating over a shoal (2D, standard test devised by 

Berkoff et al., 1982). The results are good when applied within the weak nonlinearity limit. 

It is relevant to note that Madsen et al. (1991) and Madsen and Sorensen (1992), as well as 

Nwogu (1993), looked at improvements on phase and group celerities for waves with kh up 

to 71 only. It is certain that these authors achieved great improvements on the application of 

the original equations; however, beyond that limit, it appears that the extended equations 

have an dispersion relation increasingly diverging from Stokes first order (figure 3.2 and 

3.3). These extended models must therefore be used with caution for kh > it. 

The conclusions reached by Mei and Ünlüata (1972) outlined in section 2.1.3 signal the 

importance of good linear dispersion characteristics for the simulation of nonlinear 

phenomena such as wave-wave interactions. Madsen and Sorensen (1993) investigated the 

performance of the extended equations for the simulation of higher harmonics generated 

during shoaling, and came to the same conclusion. They derived new evolution equations 

based on Madsen and Sorensen's (1992) model to simulate wave-wave interactions on 

constant depths and slowly sloping bottoms. They found remarkable improvements in the 

simulation of higher harmonics when compared to the classical Boussinesq equations. They 

also observed some underestimation of high harmonic amplitude in the shoaling region. 

Studies of waves travelling over a submerged bar have been carried out to show the 

generation of bound harmonics over the bar and their release as free waves behind the bar. 

This situation provides a severe test for the extended models with regard to (i) their linear 

frequency dispersion characteristics, and (ii) their capability to model . ave-wave 
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interactions. This experimental set-up was first investigated by Beji & Battjes (1994). They 
found that, for non-breaking cases, extended (improved linear dispersion characteristics) 
Boussinesq-type models can reproduce this process. 
A comparison was made between flume experiments with the same geometry as in Beji and 
Battjes (1994), and computations with 7 (non-dissipative) Boussinesq-type models from 

various European institutes. The dominant difference between the models lies in their linear 

frequency dispersion relation, with some less significant differences in the nonlinear and 

bed slope terms. An interesting detail of this study it that the participants did not have 

access to the experimental data during testing. This collaborative work was compiled and 

reported by Dingemans (1994). Again the bed geometry was chosen in view of the 

possibility of assessing the models for their accuracy to predict a correct frequency 

dispersion for the free short waves generated (released bound waves) on the downwards 

slope of the bar. The study was thus designed not only to demonstrate the importance of the 

accuracy of frequency dispersion but also to establish which form of Boussinesq models 

performs best with this respect. It showed that indeed it was on the downward slope of the 

bar that the results were most divergent. Two models appeared to share the best 

performances, the model derived by Madsen and Sorensen (1992) being one of them. Note 

however that this study did not evaluate the performance of more advanced models 

subsequently developed such as that by Wei et al. (1995) for example (see section 2.4.2). 

An important conclusion was also drawn from this comparison: the primary property 

affecting the model performance is the accuracy of the frequency dispersion characteristics. 

The reproduction of higher order nonlinear effects is an important property, but is of little 

use if the model's frequency dispersion characteristics are not accurate. 

Summary 

The extensive research reported above has resulted in a number of extended forms of the 

Boussinesq equations applicable to waves with larger kh. The new equations have better 

linear frequency dispersion and shoaling properties, which were shown to be of importance 

for the simulation of nonlinear interactions. They thus offer a promising tool for wave shape 

prediction, and, if extended to the surf zone, for application to sediment transport 

prediction. Lastly, the importance of frequency dispersion. relative to amplitude dispersion, 

makes the application of the extended Boussinesq-type models to the surf zone conceivable 

despite the weak nonlinearity assumption. 
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2.3 Wave breaking 

Wave breaking is one of the phenomena most difficult to describe mathematically. The 

modelling of the surf zone processes is typically based on highly simplified representations 
of broken waves. Surf zone modelling methods can be divided into two categories: the short 
wave-averaged models and wave-resolving models. In the wave-averaged models, the 

equations for conservation of mass and momentum are depth-integrated and time-averaged. 
Svendsen and Putrevu (1996) give an extensive review of these models. Wave-resolving 

models are time domain models that have the advantage of providing information about the 

phase motion in terms of both the elevation and the velocity. Their attraction also lies in 

their capacity to predict wave shape. They are reviewed in detail in this section. 

The modelling of wave breaking is hampered by the difficulty in describing the breaking 

process. The modelling of two breaker types is breifly reviewed here: spilling breakers, 

which are observed when waves of large steepness are incident to a gently sloping beach, 

and plunging waves, which are observed on relatively steep beach slopes, with waves of 
intermediate steepness. After a wave has broken as a spilling or plunging breaker, a 

transition occurs in the so-called outer surf zone. For the spilling breaker, the forward slope 

of the wave top becomes unstable. A plume of water and air bubbles slides down the slope 

from the crest. The volume of the plume, or surface roller, increases, and the wave height 

decreases rapidly. For the plunging breaker, the crest of the wave moves forward and falls 

down at the trough in front of it as a single structured mass of water, or jet. The jet of water 

plunges down, and pushes up a very turbulent mass of water which continues the breaking 

process. In both cases, this transition in the outer surf zone is followed by the transformation 

of the wave into a bore-like wave in the inner surf zone. 

The transition occurring in the outer zone involves rapid processes that are difficult to 

model. The inner part of the surf zone on the other hand can be described as a series of 

periodic bores. This gave rise to two concepts: the bore concept, applied with the nonlinear 

shallow water equations, and the roller concept, first introduced by Svendsen (1984a) in a 

wave-averaged model, and subsequently applied to a (phase-resolving) Boussinesq model. 

The NLSW equations are valid for very shallow water (for all long wave theories, pIrz « 1) 

but finite wave height (e = 0(1)). In this case, therefore, nonlinearity dominates over 

dispersion (Ur- » 1). These conditions hold in both the inner surf zone and the swash zone. 

The suitability of the NLSW equations for the modelling of the broken waves is further 
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enhanced by the fact that they admit bore-like solutions. They predict that the Nave front 

will gradually steepen until it is vertical. The NLSW equations have already been used with 

great success to model inner and swash zones hydrodynamics (Hibberd & Peregrine, 1979). 

The main restriction for the use of the NLSW equations is that they can only be used for 

very shallow water and for the simulation of broken waves as they do not include frequency 

dispersion. 

Boussinesq equations on the other hand include the balanced effects of lowest order 

frequency dispersion and amplitude dispersion. This tends to stabilise the waves profiles. 

This is in contrast with the NLSW equations, for which only amplitude dispersion is 

included, and for which, as a result, the wave front continuously steepens. The Boussinesq 

equations can therefore describe wave shoaling and pre-breaking stage. An extension of 

Boussinesq equations to describe wave breaking therefore seems attractive. Since in the 

derivation of the equations it is assumed that H/h is small, and since this parameter near the 

breaking point reaches values close to 1, its extension to the surf zone may seem 

contradictory. Despite this, several authors have extended their Boussinesq model to 

describe wave breaking without including additional (high order) terms to allow for more 

nonlinear waves. The results obtained from these new models are unexpectedly promising. 

The extension of Boussinesq-type models to the surf zone requires two steps: the 

introduction of a breaking criterion and the inclusion of an energy dissipation term. Bearing 

in mind that Boussinesq-type models are time dependent models, which rules out e. g. 

energy-based wave breaking formulations such as Battjes & Janssen's (1978), three 

different concepts have been adopted to incorporate wave breaking and energy dissipation: 

- the first is based on the eddy viscosity concept (Karambas and Koutitas (1992), 

Wei and Kirby (1995b)); 

- the second is based on the surface roller concept (Brocchini et al. (1992), Schäffer 

et al. (1993)); 

- the third concept was introduced by Svendsen et al. (1996) which accounts for 

vorticity. 

Svendsen et al. (1996) carried out a theoretical comparative study of these 3 concepts. They 

concluded that in each case, the terms added to the equations resulted in remarkably similar 

effects, i. e. the Boussinesq equations respond equally to the different terms introduced in the 
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momentum equations. The models thus produce comparatively good results for the 
simulation of wave decay and wave shape evolution. 

The surface roller concept is described in detail here since it is the method that is applied in 

this thesis. It was first applied in a phase-averaged model by Svendsen (1984a): the water 
body is split into two parts. The main part is part of the wave motion (i. e. orbital motion). 
The breaking is represented by a surface roller that travels on the front of each wave, at the 

wave celerity. Engelund (1981) used the analogy between the broken wave and a hydraulic 

jump to determine the volume (hence mass) of the surface rollers. Svendsen (1984a) applied 
this analogy to express the energy flux and radiation stress in a broken wave. 
This concept was first introduced into a Boussinesq model by Deigaard (1989) who 
incorporated the effect of the roller as an additional pressure term in the depth-integrated 

momentum equation. 

Schaffer et al. (1993) modified this approach to incorporate the effect of the roller as an 

additional momentum flux. Again, the surface roller is considered as a passive bulk of water 

riding on the front of the breaking wave. It is transported at the wave celerity while the 

orbital velocity of the flow below is assumed to be uniformly distributed over the vertical 

and is a lot smaller than the wave celerity (and hence smaller than the roller celerity). The 

vertical distribution of the horizontal velocity is thus non-uniform in the presence of rollers. 

The contribution from the roller is introduced as the excess momentum flux due to 

deviations from a uniform velocity profile. This is incorporated in the depth-integrated 

momentum equations as an additional convective momentum term. The development of this 

model is presented in section 3.4. Schäffer et al. (1993) thus derived a new set of equations 

for both the one and two dimensional cases. The breaking criterion is related to the water 

surface slope and the thickness of the roller is determined by simple geometrical 

considerations (after Deigaard, 1989). The one-dimensional model was tested and compared 

against experimental data (Schäffer et al., 1993). The model gives a good prediction of the 

variation of the wave height and mean water level for regular as well as irregular waves 

breaking on a barred beach. The two dimensional model simulations appeared in later 

papers in which the model was extended to the swash zone (see section 2.4.3). 

Summary 

Despite the weak nonlinearity assumption, when provided with an appropriate dissipative 

mechanism and breaking criterion, the Boussinesq equations can be modified to describe 
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breaking waves. The different attempts made to include these criterion were described here. 
They were shown by Svendsen et al. (1996) to be equivalent. The first model validations, 
which were made in terms of surface elevation predictions, are promising. 

2.4 Recent developments 

Research in the development and application of the Boussinesq equation has been 

accelerating in the past 4 years and has experienced what one might call a 'Boussinesq 
Boom'. The developments presented in this section appeared during the late stage of the 
study presented in this thesis. These developments have included the extension of spectral 
models to reproduce energy dissipation, extension to the description of more nonlinear or 
dispersive waves, simulation of swash motion, percolation and first applications to sediment 
transport prediction. 

2.4.1 Wave breaking and nonlinear spectral models 
Eldeberky and Battjes (1995) observed, from laboratory experiments on waves propagating 

over a submerged trapezoidal bar, that the spectral evolution of breaking and non-breaking 

waves is similar. Breaking was found to simply re-scale the wave spectrum through energy 
dissipation without changing the spectral shape significantly. On the basis of these 

observations Eldeberky and Battjes (1996) devised a spectral model including wave 
breaking. Their model dissipates energy equally through the whole range of frequency. 

Comparison of experimental and numerical results for power spectra of random waves 

propagating over non-barred and barred profiles yielded good agreement. Chen et al. (1997) 

incorporated a frequency dependent energy dissipation mechanism in a Boussinesq model 

with improved dispersion (after Nwogu, 1993 and Chen and Liu, 1995) and compared their 

results with field data. The inclusion of the frequency dependence allows a more realistic 

weighting of breaking towards primary and high frequency bands, thus allowing low 

frequency energy to propagate through. This model resulted in improved skewness and 

asymmetry predictions when compared to frequency independent dissipation. No 

improvements were obtained for the power spectra, for which the results were also good if 

no frequency dependence was included 1. 

The insensitivity- of the power spectrum predictions to the frequency dependence was found b% Chen et al. to 
be due to the fact that the preferential reduction of high frequency energy is largely compensated by increased 

nonlinear transfers of energy to high frequencies. 
17 



2.4.2 Boussinesq models with improved nonlinearity 
The standard Boussinesq equations are derived assuming that E and p are small (<<1) and of 
the same order (&'p = 0(1)). The extended equations described in section 2.2 have provided 
an extended limit on p. In order to comply with tip = 0(1) however, if p is to increase, then 
c must increase as well. This is limited since the weak nonlinearity assumption remains. This 

was illustrated in Wei et al. (1995). To be able to fully exploit the advantages of these 

extended equations (i. e. use the full range of kh), the limit on .6 must also be extended. For 

that reason, and also purely to be able to simulate a more nonlinear regime, Wei et al. (1995) 
derived a new set of Boussinesq type equations valid for fully (to second and third order) 
nonlinear dispersive waves (which they solved using the fourth order numerical scheme 
presented in Wei and Kirby (1995a)). Unlike the derivation of the Boussinesq equations so 
far, no assumption of small nonlinearity is made, and terms of O(E) in the O(p) dispersive 

terms are retained (i. e. the nonlinear dispersive terms are not neglected). Their model also 
includes improved frequency dispersion as introduced by Nwogu (1993). It was applied to 

shoaling solitary waves and the propagation of undular bores over a flat bed, with strong 

nonlinearities. Wei et al. found significant improvements for wave height and phase celerity 

predictions. They also presented a rare evaluation of a Boussinesq model with respect to 

horizontal velocity predictions. Assuming a parabolic vertical distribution, they were able to 

estimate the profile for the horizontal velocity, which they compared to a fully nonlinear 

potential flow model (Grilli et al., 1989). Both solutions were in good agreement. Again this 

showed much improvement over the weakly nonlinear Boussinesq equation with improved 

dispersion. 

Wei and Kirby (1995b) extended Wei et al. 's model to the surf zone by introducing energy 

dissipation terms based on an eddy viscosity concept. They applied their model to random 

waves shoaling and breaking over a constant slope. Comparison of numerical and 

experimental results are good. Good agreements were found not only for wave heights, but 

also for third moment elevation statistics (elevation skewness and asymmetry). 

2.4.3 Inclusion of swash oscillations 

Madsen et al. (1994) extended the surf zone model by Schäffer et al. (1993) to the 

description of swash oscillations. Inclusion of the swash zone requires a number of 

modifications: first the swash zone is represented by incorporating a moving shoreline 

boundary condition. The dispersion terms are `switched off at the still water shoreline where 

the equations thus reduce to the nonlinear shallow water equations. Finally, the gromh of 
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numerical instabilities is avoided by altering the numerical scheme in this region NN ith the use 
of numerical filters. The first results show promising qualitative results for the run-up and 
reflected low frequency waves. This model was further tested by Sorensen et al. (1994) for 
2D nearshore circulation. Again promising results are obtained for rip current generation and 
current circulation behind detached breakwaters. The model evaluation has been mostly 
qualitative. 
Further qualitative testing of this model for regular and random waves was presented by 
Madsen et al. (1997a & b). In addition, they compared their results for run-up predictions to 
both laboratory data and predictions of a model based on the nonlinear shallow water 
equations. They obtained encouraging results. The spatial evolution of phase-averaged 
quantities such as the cross-sectional roller area, the radiation stress, energy flux and energy 
dissipation were found to be in good agreement with predictions by conventional phase- 
averaged wave models. 

2.4.4 Higher order frequency dispersion 

Models with higher-order frequency dispersion have recently been produced which involve 

the introduction of fifth order derivative terms (Schäffer & Madsen, 1995; Dingemans, 

1997). To date, this work has been purely theoretical and no solution to the higher order 

equations has been proposed. 

2.4.5 Latest applications: wave-current interactions & sediment transport prediction 

A theoretical study of wave-current interactions with a Boussinesq model with extended 

linear frequency dispersion properties was carried out by Chen et al. (1998). Physical 

processes such as wave blocking by opposing current were modelled and shown to be in 

reasonable agreement with theoretical calculations. The model remains to be tested with 

measurements. 

Finally, for completeness, the first applications of Boussinesq models to the prediction of 

beach profile evolution may be found in Karambas et al. (1995), Rakha et al. (1996) and 

Nwogu (1996). All those applications yield promising results ! 

2.5 Evaluation of the performance of Boussinesq models 

The segmented nature of the developments of Boussinesq models has resulted in equally 

segmented model testing programmes. Apart from Dingemans's (1994) comparison of 7 
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different Boussinesq models with a single data set, the validation of Boussinesq models has 

consisted of the verification for the prediction of a variety of quantities with various data 

sets. Furthermore, validation has concentrated on elevation predictions, giving relatively 
very little attention to the prediction of velocities. In particular, three issues have been 

extensively addressed in the testing of the models, namely performance with regards to 
frequency dispersion, wave-wave interactions, and wave decay in the surf zone. 

The validation of Boussinesq-type models to date is summarised in tables 2.1 and 2.2. Table 

2.1 covers the most advanced time-domain Boussinesq-type models, and the range of the 

parameters studied in their evaluation. Table 2.2 displays the most advanced frequency- 

domain models, and their validations. 

From table 2.1 it is clear that, in the past, the verification of Boussinesq-t}ype models has 

been focused on surface elevation predictions, with attentions focusing on wave height 

(shoaling and decay) and mean water levels. 

Bosboom et al. (1996) proposed a rare study of a Boussinesq model with respect to velocity 

predictions of non-breaking waves. This study consisted of the evaluation of regular waves 

propagating over a submerged bar. For surf zone models, the verification of velocity 

predictions with a Boussinesq model has been limited to Svendsen et al. (1996) and Madsen 

et al. (1997a). Svendsen et al., assuming a parabolic velocity distribution of the horizontal 

velocity, compared predictions to laboratory measurements, and obtained acceptable 

agreement. Madsen et al. (1997a) applied Madsen et al. 's (1994) model to compare 

undertow predictions with laboratory measurements for one case of regular waves 

propagating on a constant slope. They found good agreement. 

Besides a lack of evaluation of Boussinesq models with regards to velocity prediction, it is 

clear that wave shape prediction has received little attention. With the exception of 

Bosboom et al. (1996), who compared predicted velocity time series to laboratory 

measurements, it also appears that most evaluation of wave shape prediction has focused on 

elevation distortions. Wei and Kirby (1995b) and Madsen et al. (1997b) evaluated their 

respective time domain surf zone models for the prediction of elevation skewness and 

asymmetry, presumably through a bispectral analysis. Both these authors considered a single 

case of irregular waves on a constant slope. Their comparison yielded good results. 
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Frequency domain models have been mostly evaluated in terms of power spectrum 

predictions. Chen et al. (1997) extensively tested their new frequency domain Boussinesq 

model extended to the surf zone with field and laboratory data. In particular. their 

comparison included elevation skewness and asymmetry, but no velocity predictions. 
Bosboom et al. (1997) evaluated Eldeberky and Battjes's (1995) model for second and third 

order velocity moments. They tested two cases, one of short waves, one of long waves, 

propagating over a complex bathymetry. The best results were obtained for the long %N-aves. 

2.6 Objectives of this study 
2.6.1 Model selection 

The numerical model used in this thesis is based on the most advanced work existing at the 

beginning of this study, that is, the work carried out by Madsen and co-workers at the 

Danish Hydraulic Institute (DHI) in the early nineties, which produced state of the art 

Boussinesq-type models. It is based on the ID Boussinesq equations as derived by Madsen 

et al. (1991) and Madsen and Sorensen (1992), with free surface elevation and depth- 

integrated velocity as variables. It allows slowly varying bathymetries and contains 

additional high order terms to improve the frequency dispersion for shorter wave periods, 

and thus also improve the shoaling properties of the model. Wave breaking is modelled 

using the concept of surface roller as formulated by Schäffer et al. (1993). It is assumed that 

bottom friction is negligible. 

The methods of numerical modelling with Boussinesq-type equations may be classified into 

the time domain finite difference method, and the frequency domain methods. Freilich and 

Guza (1984) were the first to use a spectral approach. They were followed by Madsen and 

Sorensen (1993) and Eldeberky and Battjes (1995,1996). This method has the advantage of 

providing a simpler solution as the evolution equations are solvable with a Runge Kutta 

method. It has the disadvantage however of assuming non-reflective waves. It also results in 

a solution for the surface elevation only; an expression must be applied to subsequently 

determine the velocity (Bosboom et al., 1997). The procedure applied to rewrite the 

equations from the time domain into the frequency domain also involve further assumptions 

of slowly varying complex amplitude. Lastly this method was found by Madsen and 

Sorensen (1993) to be very efficient for regular (or bichromatic) waves (i. e. for a finite 

number of harmonics), but very time consuming to solve for irregular wave trains (very 
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large number of harmonics). For these reasons the time domain model described above was 
preferred over Madsen and Sorensen's (1993) frequency domain model. 

2.6.2 Aims of this thesis 

With the exception of Wei and Kirby's (1995b) model, a common assumption for the 
Boussinesq models recently modified to include the description of breaking waves is that 
they can only describe waves with weak nonlinearity. This appears contradictory as 
breaking waves have reached a highly nonlinear regime. Despite this inconsistency, these 

models have yielded reasonable results with regard to wave decay and set-up. A better 

understanding of the strength and applicability of the model to the surf zone is needed. The 

primary purpose of this study is to investigate the behaviour of a Boussinesq model when 
applied beyond the limits of the assumptions made in the model derivation. The model will 
be evaluated for shoaling and breaking waves, with emphasis on the surf zone. 

Every aspect of the performance of numerical models needs to be tested. Section 2.5 has 

identified the `holes' in the validation of Boussinesq models so far. Little work has been 

presented on the evaluation of the model with respect to velocity predictions, and the 

prediction of vertical and horizontal asymmetry of the wave profile and velocity 

oscillations. The object of this study is to assess how satisfactorily these processes may be 

modelled using a Boussinesq type model. 

Further research is also required in studying the effect the free parameters introduced in the 

simulation of wave breaking, which were arbitrarily chosen from laboratory and numerical 

experiments (section 4.1.3). No sensitivity analysis has been produced in the work presented 

by Schäffer et al. (1993), and later numerical investigations by Sorensen et al. (1994) and 

Madsen et al. (1994). In a recent paper, Madsen et al. (1997a) looked at the effects of 

changing these parameters, their aim being to improve the results for wave height and mean 

water level. The aim here is not only to improve the results by adjusting these parameters, 

but in so doing, to test the sensitivity of the solution to systematic changes in the 

parameters. In contrast with Madsen et al. (1997a), who focused on wave height and mean 

water level predictions, this sensitivity analysis will cover testing with respect to velocity 

prediction. and the shape of both the wave profiles and the velocity oscillations. The latter 

will be shown to be critical. 
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The starting point of a model validation is verification with analytical solutions and 
laboratory data. This should include sensitivity tests of any empirical parameters used. and 
testing of all aspects of model performance. The next step is the verification with field data. 

An intermediate stage has been adopted here where the model is verified with large scale 
laboratory data. The accuracy of the measurements can be accepted with more confidence 

than for small scale data, for which further errors are introduced due to surface tension. 

Furthermore, the similarity in the behaviour of numerical and physical tanks, in particular in 

terms of boundary conditions, produces a fair comparison. The validation of the model is 

also further pushed by the complexity of the bathymetry. 

This study thus provides a thorough examination of the model's performance, with 

emphasis on predictions in the surf zone. To summarise, the objectives of this research are 

" to study dependence of the model on empirical (wave breaking) parameters; 

" to evaluate the model with large scale laboratory data; 

" to evaluate the veloci predictions as well as surface elevation predictions; 

" to verify the model with respect to the prediction of third and fourth order 

statistical moments ( time domain analysis) of elevation and velocity; 

" to verify the model with respect to the prediction of third order spectra (bispectral 

analysis), i. e. prediction of wave harmonics and their interaction, and their effect on the 

shape of both the wave profiles and the velocity oscillations; 

" to investigate the contribution of individual triad interactions to wave shape 

evolution; 

" to compare the evolution of high order moments of velocity and surface elevation; 

" to evaluate the performance of the model with respect to short wave simulation; 

" to investigate the effects of the slowly varying bathymetry assumption on the 

predictions. 
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CHAPTER 3- THE MODEL 

3.1 Introduction 

This chapter introduces the numerical model evaluated in this study. In section 3.2. two 

theories for non-linear shallow water waves are derived. Emphasis is put on the 

assumptions made in the derivations and the consequent limitations/range of application of 

the two approximations. Section 3.3 provides a discussion of the Boussinesq equation in 

the limit where h/L «1 no longer holds. Analysis yields a set of modified Boussinesq 

equations valid for shorter waves. In section 3.4, a simple description of wave breaking is 

incorporated in the Boussinesq model by using the concept of surface rollers. Section 3.5 

gives the outline of the numerical method used to solve the equations. Finally, in section 

3.6, preliminary testing of the numerical model is described. 

3.2 Equations for shallow water waves - Derivation 

3.2.1 Introduction 

There are various ways to derive equations for shallow water waves. The derivation of the 

equations illustrated here proceeds by vertically integrating the governing equations, and 

applying boundary conditions. The dependent velocity variable is thus the depth-averaged 

velocity. At some point in the derivations, assumptions have to be made about the vertical 

structure of the flow. Two important scaling parameters are useful in this process, namely 

,u and e. The assumptions made about the vertical structure of the flow depend on the 

relative magnitude of these two parameters. 

In this section, the derivation of the one dimensional (1-D) NLSW equations and 1-D 

Boussinesq equations from the vertical integration of the Euler equations is outlined. The 

derivation of the Boussinesq equations follows the method outlined by Schäffer et 

al. (1993). A derivation in non-dimensional form has the advantage of showing the relative 

magnitude of each terms with respect to frequency dispersion and amplitude dispersion. 

How evver, it was decided here to write the equations in dimensional form. Emphasis is 

placed on consideration of the principles and assumptions. Dingemans (1997) gives 
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extensive details on different model derivation methods, including a derivation with non- 
dimensional variables and using a perturbation series approach. 

3.2.2 The Navier-Stokes equations - Integration over the depth. 
The motion of an incompressible Newtonian fluid is well described by the Navier-Stokes 

equations which express the conservation of mass and momentum. The continuity and 

momentum equations are: 

öu fl- 
-+-=O (3. la) 
ox äz 

öu öu du 1 c-p a2 u '62U - +u+ w +- -v +=0 (3. lb) öt öx dz p oäc pX 
2 aZ 2 

-+u+w-++g-v z1,, 
+ 

g2w 
ät öx oz p oz &2 az 2 

where u and w are the horizontal and vertical particle velocity respectively, p is the fluid 

density, v is the kinematic viscosity, g is the acceleration due to gravity, and p is the 

pressure. Figure 3.1 shows the definition of the geometrical quantities used throughout this 

derivation. i is the free surface elevation, h the still water depth, and d the total water 

depth. The Cartesian co-ordinate system is chosen so that the x-plane lies in the still water 

surface plane and is taken positive shoreward; z is positive upwards. 

n 

x 
dh 

Figure 3.1 Definition of the geometrical quantities 

The difficulty with these equations is that they are very computationally demanding to 

solve for complex problems such as wave description in the coastal area. In particular, 

water wave description is complicated by the unknown position of the free surface where a 

complex nonlinear boundary condition needs to be applied. To simplify the problem, some 

assumptions are made and the resulting equations are then an approximation of the chosen 

features of the flow. 
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First, an important assumption is frequently made: the fluid is assumed to be invviscid. The 
internal friction and the bottom boundary-layer friction arising from the water viscosity are 
neglected in view of the short length and time scales to be modelled, and assuming that the 
thickness of the boundary-layer is small compared to the water depth'. Neglecting the 

viscous forces, the governing equations reduce to the Euler equations. 

The following boundary conditions are applied: 

wLs=a17 +uLa17 atz=11(x, t) (3. ld) 
öt ox 

pl, =o atz =i (x, t) (3.1e) 

Wlb =-Ulb 
äh 

atz = -h(x) (3.10 
ox 

The subscripts s and b indicate that the variables are evaluated at the free surface and sea 
bed respectively. The physical principle imposed on the bounding surfaces states that once 

a fluid particle is on the surface, it remains there. This relates the kinematics of the particle 

motion on the surface to the changes in the surface levels, and results in the kinematic free 

surface boundary condition (3.1 d), and, assuming a fixed bed, the kinematic bottom 

boundary condition (3.1f). A second physical property is applied to the free surface where 

it is assumed that the pressure is constant, and the surface tension effects are neglected. 

This gives the dynamic free surface boundary condition (3.1 e). 

The starting point for the derivation of the finite amplitude shallow water equation and 

Boussinesq equations is the integration of the continuity equation and the horizontal 

momentum equation from the sea bed (z = -h) to the instantaneous free surface (z = q). 

This yields terms of the form e. g. !a/ ax which are then transformed in terms of the form 

-! ý / cx f using Leibnitz's rule: 

d ß(x) ß(x) a dý3 da 

dr 
$F(. ý, z)d: = 

J- F(x, z)dz+F(x, ß) 
dx -F(x, a) dx 

a(x) a(x) 

The resulting extra terms that require an evaluation at -h and i (i. e. a(x) and ß(x) 

respectively) are treated using the boundary conditions. The results of these integrations are 

presented in the following. 

1 note that in the extension of the model to the description of wave breaking (section 3.4), it is also assumed 
that the effects of wave breaking on energy dissipation dominate over the effects of viscosity. 
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By integration of the continuity equation from the sea bed to the free surface, and applying 
the kinematic boundary condition at the sea bed and free surface (equations (3.1 f) & (3.1 d)) 

we find: 

7 aý 
+a Judz=O 

at äx -h 
(3.2) 

Assuming that the bed is fixed (i. e. ah/at = 0), integration of the horizontal momentum 

equation from the sea bed to the free surface and application of the continuity equation 
(3.1 a) and the boundary conditions (3.1 d-f) gives: 

a Judz+-__ a Ju'dz+ 17 1d 17 Jpdz__p(_h)_=O 1 Ah 

pa 
(3.3) 

Applying the continuity equation (3.1a) and the boundary conditions (3.1 d- fl, an 

expression for p(z) can be obtained from the vertical integration of the vertical momentum 

equation: 

ä17 öq p(z)=p[ g(i7-z)+ at 
f wdz+ _f uwdz-w 2 (z) 
Z 

(3.4) 

This expression for p(z) can now be used to remove the pressure terms from the horizontal 

momentum equation. This requires some assumptions about the vertical structure of the 

flow to be made. 

3.2.3 The non-linear shallow water equations 

The NLSW equations, also called the finite amplitude shallow water equations, are derived 

assuming that c= 0(1) and 1u « 1. The vertical acceleration is O(ff) and is therefore 

neglected, and the expression for p(z) reduces to 

P(z) = Pg(11 - z) 

In other words, the pressure is hydrostatic to O(p). 

(3.5) 

Ignoring the term gi 7a x, substitution of (3.5) for p(z) in the momentum equation (3.3) 

yields 

?7 
u2d: +ghi=0 1ua': +-- J (3.6) 

Equations (3.6) and (3.2) describe the motion of non-dispersive, non-linear waves. The 

2 
phase celerity is independent of the wave number k, and is defined as c= g(h -q). This 

expression for c implies that the wave crest travels faster than the wave trough which leads 
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to the continual steepening of the wave front (as a result, the NLSW equations do not have 

solution of permanent form). This is known as amplitude dispersion. This steepening of the 

wave front can be balanced by allowing for some frequency dispersion: the effect of 
frequency dispersion is that the higher harmonics responsible for the steepening of the 

wave front travel much slower than the basic wave (the wave celerity is now a function of 
both local depth and wave number). From the derivation of the NLSW equations it is clear 
that these equations do not include frequency dispersion. The classical Boussinesq 

equations on the other hand allow for weakly dispersive, weakly non-linear waves. 

3.2.4 The Boussinesq approximation 

If it is assumed that O(E) -ý O(p) « 1, terms of O(E) as well as terms of O(u) are retained, 

and the high order non-linear and dispersive terms may be neglected'. Equation (3.4) 

reduces to 

a77 P(z)=P[g(77-z)+ öt 
f wdz 
z 

(3.7) 

This now exhibits frequency dispersion as a result of including the effect of the vertical 

acceleration (0(p)) on the pressure distribution, which is therefore no longer hydrostatic. 

An expression for the vertical velocity w may be obtained from the continuity equation 

(3.1a) in terms of the horizontal velocity by vertical integration from the sea bed to an 

arbitrary level z: 

Ö 
w(z)=- Judz 

-h 

(3.8) 

Substitution of equations (3.7) and (3.8) for p(z) and w(z) in the momentum equation (3.3) 

yields 

h+r=0 (3.9a) udz+ +g 
fa lu2dz a 

'I cx -h 
0 

-h 

where 

ä° °` 
yr -- 

f JSddz (3.9b) 
nA t 

ZA - 

Notice that all non-linear contributions to V/ have been neglected. 

Let us define the depth-integrated velocity P. and the momentum flux : 11 as 

Note that assuming O(6) z O(u) leads to the retention of some nonlinear effects in the dispersive terms, 

resulting in the so-called Serre equations. 
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)7 ?7 
P=J udz and M=J u` dz 

-h -h 

Assuming a uniform vertical distribution of the horizontal velocity, the expression for the 
dispersive term V then reduces to: 

h3 ö3u h2 63(uh) 

=6 &2at 2 &20-Y 

while the momentum flux simplifies to 

P2 
M=- 

d 

Since all non-linear contributions to yr arising from the difference between d and h have 

been neglected, it is consistent to express the dispersive term as: 

_ 
h3 03(P/h) h2 Ö3P 
69x2t299 (3.10) 

In terms of the depth-integrated velocity the horizontal momentum equation and continuity 

equation become: 

öP+ö(P2/d)+ 
hard+h3 

e3(P/h)h2 93p-= 
0 3. l la 

öt öx g öx 6 &25t 2 &29t 
) 

017 
+IlP 

of ox 
(3.11 b) 

The set of equations (3.11) describes the motion of weakly dispersive, weakly non-linear 

waves propagating over changing bathymetry. It is emphasised here that their derivation is 

based on the assumption that e and u are small and of the same order. The limiting cases 

are obtained fore <<, u (linear long waves) and E» ,u (finite amplitude long waves). 

The Boussinesq equations only differ from the NLSW equations by the third order 

derivative terms in the momentum equation. The derivation shows that it is this 

(dispersive) term that accounts for the effects of ii on the pressure distribution. In contrast 

with the NLSW equations, it is possible to obtain solutions with permanent wave form. 

At this point, the implications of the shallow water assumption (p « 1) need to be 

emphasised. First, it limits the application of the equations to fairly long waves. This may 
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be expressed as h«L, that is, this assumption also implies that the wave properties vary 
little in a distance of the same order as the depth (Peregrine, 1972). Dingemans (1997) 

demonstrates this statement by showing that the bottom slope hX is at most O(u"`' ). that is. 

the slope should be at most so large that at least one wave length fits in the inhomogeneit`, 

region'. In the following, the bottom slope is assumed small, and as a result, higher order 
derivatives (profile curvature) and product of derivatives may be neglected. The 

momentum equation (3.11) simplifies to : 

öP+ä(P2/d)+ 
gh°7 at O ox 

h2 03P 1h öh 162p 

3 &2a 3 ox ox öt (3.1? ) 

The small bottom slope assumption implies that h,, « JJ112. The application of (3.12) is 

therefore limited to slowly varying bathymetries (hL/h « 1). 

These equations are equivalent to those derived using a perturbation approach and 

assuming that the horizontal velocity profile has a quadratic variation over the depth 

(Dingemans, 1997). 

3.3 Improved linear frequency dispersion 

3.3.1 Introduction 

In section 3.2.4, a set of Boussinesq type equations was derived neglecting terms of 

0(6, u, 11), and expressed in terms of the free surface elevation and the depth-integrated 

velocity component. They are repeated here with, between square brackets, the relative 

order of magnitude of each terms: 

a77 
+ýp =0 

ar ox 

[1] [£] 

ýP 
+ 

ß(P2 /d) 
+h (17 h2 cý3P 

ýt CA 
g3& 

`' (t 

[1] [c] [1] [µ] 

defined by Dingemans (1997) as ̀ the region in which appreciable changes in water depth occur'. In other 

words, the length of the inhomogeneit)- region should be at least of the order of one wave length. 
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It is clear from the derivation of the Boussinesq equations that the resulting set of equations 
(3.13) are limited to fairly long waves with respect to the local water depth (1u « 1). A 

direct consequence of this assumption is the incorrect representation of shorter waves. The 

steepening of the wave front as a wave travels in shallow water is a result of harmonic 

generation due to non-linear interactions, a process called amplitude dispersion (see section 

3.2.3). The resulting higher harmonics, if correctly modelled, will have a tendency to 

counterbalance the steepening effect of the non-linear interactions by travelling slower than 

the fundamental wave, hence remaining behind it. These higher harmonics however may 

not be considered to be fairly long waves and their simulation by the present Boussinesq 

model (set of equations (3.13)) is questionable: the result of inaccurate frequency' 

dispersion (terms 0(u)) for shorter waves is that the computed wave form may be 

inaccurate. 

Recently extensive research efforts have concentrated on improving linear frequency 

dispersion for Boussinesq type equations. This has resulted in a range of new forms of the 

Boussinesq equations where more second and third order derivatives (terms 0(u)) were 

introduced. This work was reviewed in section 2.2. Here, the method proposed by Madsen, 

Murray and Sorensen (1991) will be followed. 

Because the limitation to relatively shallow water is the primary factor affecting the 

applicability of the Boussinesq equations, it is important to understand the effect that the 

choice of the velocity variable has on the dispersion properties of the model. Thus, in 

section 3.3.2, the frequency dispersion properties of various forms of the Boussinesq 

equations for a flat bottom are studied. The modification of the Boussinesq equations to 

extend the accuracy of the dispersion relation is presented in section 3.3.3. 

3.3.2 Frequency dispersion properties of the classical Boussinesq equations 

In order to assess the frequency dispersion properties of a set of Boussinesq equations, and 

hence determine their relative depth limitation, the linear dispersion relation of the given 

equation is compared with the exact linear dispersion relation given by: 

tanhkh 

glý kh 
(3.14 

Madsen cat al. (1991) compared the dispersion characteristics of three sets of linearised 

Boussinesq equation expressed in terms of the depth averaged velocity U (set equivalent to 
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set (3.13) restricted to flat beds), the bottom velocity ub and the mean sea level velocity um. 
Each of these sets of equations is limited to flat beds. The derivation of the equations and 
their respective linear dispersion relation can be found in their paper. The latter may be 

expressed as follows: 

c2 1+Bk2h2 
(3.15) 

gh 1+(B+ 1I )k2h2 
3 

where B=0 for the equations in ti 

B= 1/6 44 Ub 

B= -1/3 um 

Hence the level at which the velocity is evaluated determines the dispersion properties of 

the equation. It may be shown that, for small kh, the solution converges towards the exact 
linear dispersion relation. As kh increases however, the departure from Stokes first order 

theory (linear theory) is greater. A comparison of these phase celerities with the exact 

linear solution is shown in figure 3.2. It is clear that the equations in u, n give the worse 

results. For kh > 1.75, solutions to the dispersion relation cannot be found. The equations in 

ü on the other hand yield the best phase properties. However, the phase errors for larger kh 

are still significant and limit the application of this model to small relative depths. 

1 

0.8 

T 0.6 

rn 0.4 
0 

0.2 

kh 

Figure 3.2 Comparison of phase celerities for various forms of the Boussinesq equations with Stokes 

first order theory . ------ B=-l, '3, --- 8=0, exact, ........ B= 1/15 
. ........ 

B= 1/6. c is 

normalised with (gh)"2 

4 3 

045 
0123 



In order to extend the applicability of the Boussinesq equations to larger kh. B may be 

considered as a curve fitting parameter chosen so that equation (3.15) follows equation 
(3.14) as closely as possible, over as wide a range of kh as possible. For this purpose, 
Witting (1984) suggested a method by which the optimum value of B can be obtained by 

comparing equation (3.15) with the Pade approximant of (3.14). A Pade expansion of c2 of 

order [1/1] gives an expression for (3.14) of the same form as (3.15), with B= 1115 

(Madsen et al., 1991). Figure 3.2 shows that, indeed, a dispersion relation with B= 1/15 

gives a better agreement than with B=0. Madsen et al. (1991) carried out the same 

analysis for group velocities, and came to the same conclusion. 

3.3.3 Boussinesq equations with improved frequency dispersion 

From section 3.3.2 it is clear that the derivation of the Boussinesq equations for which the 

coefficient B could explicitly be chosen (so as to fit Stokes first order theory) would be a 

great improvement. There are a number of ways by which this has been done (section 2.2). 

Madsen et al. 's (1991) approach was to directly manipulate the (high order) dispersive 

terms. Their method is illustrated here. 

Since the non-linear and dispersive terms are of higher order, the linear long wave 

approximation 
äP+gh077 

N0 öt öx 
may be used to manipulate terms of higher order without any loss of accuracy (Mei, 1989; 

Whitham, 1974; Long, 1964). By spatial differentiation, and neglecting second order 

spatial derivatives of the still water depth, we get: 

a3 P+2 äh ä2 l+ h 
9317 

0 
Cß'1 

2 Öt 
g&2g03 (3.16) 

Addition of the product of Bh2 times the left hand side terms in (3.16) to the standard 

Boussinesq momentum equation for slowly varying bathymetries gives: 

ark 
+ 

aP 
=0 (3.17a) 

cr 

cT+'(P2/d)+ghcal _(1+B)h2 
c3P 

+Bgh3x311 
ýI cII, 3 l2öt 

+h 
al P+2 

Bgh c 17 (3.17b) 
c 3ötc- 
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This new set of equations has the dispersion relation (3.15); B can explicitly be chosen so 

as to fit (3.14) (optimum B= 1/15). Non-dimensionalisation shows that the left hand side 
terms in (3.16) are 0(g,,, ), and are multiplied by 2, uhB. The terms added to the original 
Boussinesq equations are therefore O(i u, ) (Dingemans, 1997). Hence, for small kh. or 
long waves, these additional terms will have no effect: u terms are small, hence the higher 

order terms introduced, which are O(, cAAZ), are very small and have no effect on the 

solution. On the other hand, for larger kh, or shorter waves (higher harmonics), the newly 
introduced terms 0(61,41/) become significant. 

3.3.4 Linear shoaling analysis 

Madsen & Sorensen (1992) carried out a linear shoaling analysis on the modified 

equations. The linear shoaling coefficient, or linear shoaling gradient, is defined as 

ax la 
hx Ih 

where a is the wave amplitude, and the subscript x denotes differentiation with respect to 

space. Details of this analysis may be found in their paper. The resulting shoaling 

coefficients for the new set of equations (3.17) with B=O and B=1/15 are compared to 

Stokes first order theory on figure 3.3. It is clear that the accuracy of the dispersion relation 

affects the linear shoaling behaviour of the model. The standard Boussinesq equations 

(B=O) lead to major discrepancies for kh larger than 1. The modified Boussinesq equations 

with B=1/15 however show an excellent agreement for kh as large as 4.5. 
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°-' 0.1 U 
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Q) 
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p12345678 
kh 

Figure 3.3 Comparison of linear shoaling coefficient a for equation ( 3.17) with B=O ( ---- -) and 

B=1/15 (.......... ), with Stokes first order theory () 
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Madsen and Sorensen have also shown a major dependence of the linear shoaling 
properties of the model on the bed slope terms, the removal of which resulted in large 

overestimation of the shoaling gradient. Dingemans(1997) carried out a shoaling analysis 
for 4 sets of Boussinesq equations having the same linear dispersion properties, but 
different bed slope terms. He came to the same conclusion as Madsen and Sorensen. and 
further shows that the equations with the bed slope terms as in Madsen and Sorensen's 

model yields the best shoaling properties. 

3.4 Incorporation of wave breaking 

3.4.1 Introduction of the effect of surface rollers in the momentum equation 

Wave breaking is modelled using the concept of the surface roller as formulated by 

Schäffer et al. (1993). This concept assumes spilling breakers. The surface roller is 

regarded as a passive bulk of water being carried by the wave, at the wave celerity. The 

roller generation is assumed to introduce a non-uniform velocity profile. The effect of wave 
breaking is incorporated in the depth-integrated momentum equation through an additional 

convective term resulting from the new non-uniform velocity profile. Schäffer et al. (1993) 

follow the approach by Svendsen (1984a) whereby the vertical profile of the horizontal 

velocity is simplified to: 

u=C for q-(5 <Z < 17 

u= UO for -h _<z < q-c5 

S is the roller thickness and is defined on figure 3.4., which also shows the new vertical 

distribution of the horizontal velocity u. 

110 

d 

SW! 

Figure 3.4 Definition sketch of a surface roller and assumed velocity profile in the presence of a roller 
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Introducing the new velocity profile into the expressions for the depth-integrated 

77 
velocity P= Judz 

and the momentum flux M= 
lu2dz 

gives 
-h -h 

P=uo(d-8)+c8 and M=uö (d-S)+c25 (3.18 a& b) 

Hence the effect of the surface rollers is introduced by accounting for the effect of the non- 
uniform velocity distribution. The excess momentum flux due to the non-uniform velocity 
distribution can now be defined as: 

2 

R= M- 
P 

=(c-uo)2g d 

(3.18a) rearranged gives an expression for (c - uo) : 

cd-P (c-uo)= 
d-s 

which, substituted into (3.19), gives: 

R-S(`-ä)Z(' a. ) -. 

The governing equations therefore become: 

a77 
+aP 

of a 

+ 
äP öR 

+ 
ö(P2 /d) 

+ 
a1 

=1 h2 
°3P 

+B h3 
a3,1 

at AA 
gh 

a 
(3 + B) 

c-x2ät 
g 

a3 

+h 
oh 1 c2P 

&3 ätöx + 2Bgh 
a2 )7 

ÖX2 

(3.19) 

(3.20) 

(3.21 a) 

(3.21b) 

3.4.2 Geometrical definition of the surface roller - breaking criterion 

The breaking criterion, which is related to the local slope of the water surface, determinates 

the thickness of the roller 6 from simple geometry: breaking is initiated when the local 

slope of the free surface 0 reaches a threshold OB. The water above the tangent of the slope 

tann is assumed to belong to the roller, thus defining &0 then exponentially decays to O, as 

described by equation (3.22). This time variation of 0 is chosen by virtue of the fact that 

breakers often transform rather quickly into the bore-like stage: 
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tan o_ tan 06+ (tan t- to 4- tan 0. ) exp - In 2 (3.22) 

t* controls the rate of decay of 0. tB is the time at which breaking is initiated. The fourth 

parameter involved in the simulation of wave breaking is the roller shape parameter f 

(figure 3.5). After the determination of the surface roller, 5 is multiplied by fs purely to 

compensate for the simple way of separating the roller from the rest of the flow. Breaking 

ceases if the local slope becomes less than tangy again. The waves are absorbed by a 

numerical sponge layer at the shoreline boundary (section 3.5.5). The model therefore 

assumes that there is no reflection from the inner surf zone and swash zone. This is a 

significant point which we will come back to in section 4.2.4 and throughout the thesis. 

Finally, the excess momentum due to the surface roller requires the determination of the 

phase celerity c (equation (3.20)). In order to avoid the introduction of additional 

differential equations, an analytical expression for c was chosen as 1.3 the linear shallow 

water wave celerity gh. This approximation is in agreement with the experiments carried 

out by Stive (1980). 

Figure 3.5 Geometrical definition of a surface roller. 

Although this is a simple wave breaking model that relies on several empirical parameters 

and that still assumes weakly non-linear waves, Schäffer et al. (1993) showed its 

capabilities to predict various quantities and simulate various surf zone processes. Initiation 

and cessation of wave breaking, cross-shore evolution of the wave height and mean water 

level, horizontal shift between the break point and the point at which the set up in the mean 

water level is initiated are all reasonably well predicted. Computed and measured time 

series of surface elevation were also directly compared and indicated satisfactory wave 

shape and harmonic generation predictions. These validations were carried out for both 

regular and irregular waves measured in small scale laboratory experiments. 
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The main limitation of this model is that the wave breaking simulation relies on four 

empirical parameters. The figures recommended by Schäffer et al. for OB, 0, t* and f; are 
200,100, T/10 and 1.5 respectively, where T is a typical wave period. One of the objectives 
of this study is to test the sensitivity of the model to these four free parameters. It is 
important to note that since this model is able to predict weakly nonlinear wave fields only. 
it tends to underestimate the wave height in the region of breaking. Consequently. the local 

slope of the water surface will tend to be underestimated in this region. The value 

recommended by Schäffer et al. for OB is therefore chosen smaller than the actual wave 

steepness at the breaking point. 

3.5 The numerical scheme 
3.5.1 Introduction 

The numerical scheme used here is the one developed by Abbott et al. (1984) for the set of 

equations (3.13), and extended by Madsen et al. (1991) to solve (3.17). The equations are 

solved using a time centred implicit finite difference scheme on a space-staggered 

rectangular grid as described in figure 3.6. In the following, the subscript i indicates the 

horizontal co-ordinate (x; =dx j+dx2+... +dxr_1) and the superscript n indicates time levels (t" 

= nAt). 

Time level 

n+1 

n 

n-1 

o 77 

p 0 

i-1 i i+l 
x (volume number) 

Figure 3.6 Computational grid 
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3.5.2 Finite difference approximation 
The governing equations (3.21) are expressed in finite difference form using, as far as 

possible, a time-centred central difference implicit scheme: 

n+l n n+l n n+l n , l; 
+1P, +l + 1+1 P, + P, 

, 0 (3.23a) At Ox 22 

pn+l + pn 

At 

18+ Sn+l Sn + Sn+l -1 Pin + Pi+] Pn+i + Pi+l l1I 
-- 

-) n+112 
1.3 ghi -n 1'3 gh, - n+l Ax 2 2d; 2d; 2d; 

I Sn + Sn+l Sn + Sn+] -1 pn + pn Pn+l + Pn+l 
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[1.3gh, 

i -i-1i1.3 ghi-I - 
i-1 r 

OX 2 2dn+l/2 n n+l 
i-1 2di-1 'd, 

-1 

n+l n+l nn n+l n+l nn 1 Pi+l Pi Pi+l + P; P; + Pi-1 Pi + P- 

Ax 2 2dr n+112 2 2di n+112 
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d n+112 +d n+112 n+l +n n+l 

gi i-1 rli lI li-1 
2 Ax 22 

I (h+h_ 2\ 
(B+_ý rr 12 1P'n+ý +l_ZPn+1+Pn+1-Pn +2P"-P`_' I- 

3 4AtAx , -ý +ý 

1 h, +h; -1 
h, -h, -1 

11 11+1 - P; n1l 
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P, +, - pin 

32 Ax At 2AX 2Ax 

l1' +`! '_1 
31 

n+1/2 
Bg 

2 ý3 
(t7, 

+1-3r11+311; -1-711-2) - 

2Bg 
Ox 2 0x2 

('1; 
+I -711 -)11-1 +; J, -z) ~ý 3.23b 

where the surface elevations at time level n+1/2 are estimated explicitly from the continuity 

equation: 

n+l! 2 n+ 
Al 

(Pin - pfl 1. _ 11,2Ax 

hence, assuming that the bed is fixed (i. e. lot = ödlöt), 

n+1/? n 
At nn d, =d, +2 Ax 

P, -P, +1) 

The discretisation of the x\-a\-e breaking term cR / cý also involved an explicit estimation 

of the total Nvater depth at n+1 with: 

41 



At do+l =dn+ (P, n 
- Pi+l 

Following Verwey (1980), the nonlinear convective term a(P 2/ d) / Ox was discretized 

assuming (p2 )n+1/2 _ pn pn+l 

The above approximations suggest that care should be taken when choosing the time 
increment. 

3.5.3 Truncation error correction 

In the discretisation it is assumed that the variation of the flux and elevation can be 

described by Taylor series that are truncated after the 2"d order derivative terms. Abbott et 

al. (1984) pointed out that this truncation error is of the same order of magnitude as the 

dispersive term. In order to identify and eliminate these error terms, a truncation error 

analysis was performed. It gave rise to the following correction terms to the left hand side 

of equation (3.23b): 

Ott Ö3P AX2 Ö3 l% Atz Ö37% 

24 3 gd 24 &3 
gd 8 &X 2 0' 

which, invoking the linearised long wave equation (Abbott, 1978b) may be re-written 

gd 
At' 

+ 
0x 2c3P 

12 24 0 2x5 

3.5.4 Method of solution 

The finite difference system of equation (3.23) may be rearranged in the form 

n+l n+l n+l 
ak Pi-1 +bk ýr-I +Ck pi = Cýk 

pn+l +Q n+l +b pn+l +C n+l +C pn+l =d qk+l 1 -I A+l rl, 
_1 k+l k+l i k+l 1+1 k+l 

in which >>"+' and P"+' are the unknown variables, and the coefficients q, a, b, c, r and d 

are functions of known quantities (P", ii" , At, sý ... ) . 
At each time level, the finite difference 

equations may be assembled in the following matrix system: 
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a1 b1 

q2 a2 

P, 

cl 7i 
b2 C2 r2 P2 

a3 b3 C3 772 

a11.2 b11.2 c11.2 77 ii 
1 Pii+i 

d, 
d2 
d3 

d 11.2 
* 

(3.24) 

where the first two rows of the matrix correspond to the first volume, and so on. The stars 

represent boundary conditions. In the present form, the model is restricted to flux boundary 

conditions only. An alternative will be introduced in section 3.5.5. This system of 

equations must be solved at each time step, yielding the new P and 7 values. It is first 

brought to a tri-diagonal form using the Gaussian elimination technique. The resultant (tri- 

diagonal) matrix is then solved using the double sweep method (Abbott and Basco, 1985). 

3.5.5 Initial and boundary conditions 

The initial conditions are those of a cold start. The surface elevation and computational 

velocity were set to zero throughout the computational domain at t=0. Two alternatives 

were used for the wave generation boundary condition. Larsen and Dancy (1983) devised a 

method for generating the incident wave field inside the computational domain. This has 

the advantage of allowing the implementation of an absorbing seaward boundary using a 

so-called sponge layer. Alternatively, a wave generation boundary condition requiring the 

prescription of the surface elevation at the boundary was sought. This involves the 

calculation of the boundary flux from the continuity equation. (3.24) then reads: 

I 

b, a, C, 
a2 q2 b2 C2 

a3 b3 

1%I 

Pl 

r2 P2 

C3 '72 

a11.2 b11.2 011.2 7711 

I Pu+l 

* 

d, 
dz 
d3 

d11., 

Absorption at the shoreward boundary (and possibly at the seaward boundary) is based on 

the concept of sponge layers. The principle is that both the flux and the surface elevation 
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are (artificially and exponentially) damped to zero by division by u, at each time level. u, 
follows: 

N+l-i p 
+1 P' (Pmax l) 

where u, and p are constants, N is the number of volumes in the sponge layer, and i is an 
index whereby i=1 corresponds to the boundary volume. Therefore, p= ýu, at the 

boundary, and u=1 at the beginning of the sponge layer, and in the rest of the 

computational domain. 

Chen and Liu (1995) argue that `the highest order of the spatial derivative in the equations 

derived by Nwogu (1993) is one order higher than that in the conventional Boussinesq 

equations. This creates a difficulty in specifying appropriate boundary conditions and 

increases the numerical effort for solving these new equations'. The same problem 

transpires with Madsen and Sorensen's model: inspection of equation (3.23b) shows that 

the calculation of the high order spatial derivatives (additional third order terms in x) at the 

first internal flux point requires the specification of the surface elevation outside the 

boundary. Madsen and Sorensen recommend the prescription of the surface elevation and 

curvature at the incoming boundary. In this study it was initially chosen to approximate the 

solution by applying these terms from the second internal flux point only. For the cases 

studied here, this has been found to give satisfactory results. This is despite the fact that, 

for 2 of the runs investigated, the input consists of short waves. The effect of the 

simplification made in the implementation of the high order spatial derivatives is further 

discussed in section 3.6.3. 

3.5.6 Numerical filter 

Schäffer et al. (1993) recommended that an implicit numerical filter be used in 

combination with the roller momentum in order to secure a smooth and stable solution. The 

stabilising low pass filtering effect is obtained by a slightly forward time-centring of the 

spatial derivatives in the mass equation, and is applied in the vicinity of a surface roller. A 

weighting parameter a is therefore introduced so that 3.23a becomes: 

7ýý}+I - 77 11 1 aP, +l + (2 - a) P" 
- 

aP, 
n+l + !2- aý Pin 

At 
+. 

1x 2 
\' 0 

Notice that if a=1, the original finite difference equation is recovered. 
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3.6 Preliminary testing of the model 

3.6.1 Introduction 

The numerical model was implemented using Salford FORTRAN, in a Windows 

environment. This section describes the testing of the source code. By assuming that the 

waves are propagating in one direction only, the Boussinesq equations ((3.13) restricted to 

a flat bed, i. e. high order term in h, r neglected) can be reduced to the Kortewtweg-deVries 

(KdV) equation. The KdV equation has for solution a periodic wave of constant form. The 

surface elevation of these waves is described by the cn-function (one of the Jacobian 

elliptic functions), which led to the name `cnoidal' waves as an analogy to 'sinusoidal' 

waves. The numerical model was therefore tested against cnoidal wave solutions for wave 

propagation over a flat bed in section 3.6.2.1 and cnoidal wave shoaling in section 3.6.2.2. 

Further evaluation of the model consisted in testing its improved dispersion properties, 

over a flat bed in section 3.6.3.1, and over a slowly varying bathymetry in section 3.6.3.2. 

These tests were aimed at reproducing the results obtained by Madsen et al. (1991) and 

Madsen and Sorensen (1992) respectively. Finally, the implementation of wave breaking 

was verified with the tests presented by Schäffer et al. (1993) and results are submitted in 

section 3.6.4. 

For all of the following tests, a time series of surface elevation is specified as the seaward 

boundary condition. 

3.6.2 Propagation of a cnoidal wave 

3.6.2.1 Flat bed 

The numerical model's capability to simulate the propagation of nonlinear waves over a 

flat bed was tested with the cnoidal first order theory (Svendsen, 1974). Comparison of the 

propagation of cnoidal waves in a channel with a flat bottom is shown in figure 3.7. The 

depth of the channel is 10 m, and its length is 500 m. The cnoidal waves are generated at 

the seaward boundary with a wave height of 1 m, and a wave period of 15.5 sec. (wave 

length 150 m). Thus, L 1r = 15 (h/Lo < 0.2) and Ur = 22.5, , N-hich is well within the limits of 

the cnoidal theory'. Figure 3.5 shows that the surface elevation time series predicted by the 

model are in good agreement with the cnoidal theory. 

defined by Uh > 6-7 and Ur > 15 (Svendsen, 1974) 
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Figure 3.7 Wave propagation over a flat bed. Plot of theoretical (cnoidal, - ----- ) and numerical 
() time series of the free surface elevation at x=300 m (H=lm, T=15.5sec., L=1 50m, dx=2.5m, 
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3.6.2.2 Sloping bed 

The shoaling properties of the model for nonlinear waves were tested with the theory 

developed by Svendsen (1974) for cnoidal waves over a gently sloping bottom. At the 

seaward boundary, the depth of the channel is 10 m. The bed is flat for the first 140 m; it 
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Figure 3.8 Wave shoaling test. Plot of theoretical (cnoidal, )K ; linear, -------) and predicted 
() wave height (H=1 m, 7-15.5sec., L=150m, J1v=2.5m, dt=0.25sec., slope= l in53, slope starts at 

x=140m). 
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then has a constant slope of 1/53 from 140 m to 440 m. Finally, for the last 100 m the 
bottom is flat again with a water depth of 2.5 m. The same wave input is used as in the 

previous test, i. e. a wave height of I m, and a wave period of 15.5 sec, which was shown to 

be within the limits of the cnoidal theory. The wave height predicted by the linear theory is 

plotted along with wave height predicted by the cnoidal theory on figure 3.8. It confirms 

the well known fact that the cnoidal theory predicts a much faster increase in wave heights 

than the linear theory does. Figure 3.8 shows that the computed shoaling wave height is in 

good agreement with the cnoidal theory, with the exception of the last point for which H= 

2m and the water depth is 2.5m, hence H/h = 0.8. This is an agreed figure for the wave 

breaking criterion, and therefore justifies the discrepancy between theoretical and predicted 

wave heights in this region where both the numerical and the analytical solutions fail. 

3.6.3 Improved frequency dispersion 

3.6.3.1 Flat bed 

In order to verify the improved dispersion characteristics of the model, the following test 

case, proposed by Madsen et al. (1991), was studied: in a 4.2 m deep, 120 m long channel 

with a flat bed, a sinusoidal wave train was generated at the seaward boundary with H=0.2 

m and T=2.5 sec., leading to h1L0 = 0.43 (kh = 2.7). For this value of h1L0, the standard 

Boussinesq equations ((3.13) or (3.17) with B= 0), lead to a phase celerity error of -12% 

(figure 3.2), while the improved equations with B= 1/ 15 lead to a celerity error of + 1.7% 

only. This is illustrated in figure 3.9a (B=0) and 3.9b (B=1/15) where it is clear that the 

extension of the accuracy of the dispersion relation has resulted in a dramatic improvement 

of the model's performance for shorter waves. 

It is notable however that the wave generation presents some irregularities even with B= 

1/15, with the appearance of a `hump' in the wave height for the first 7m after generation. 

The wave height then stabilises at H=0.22 m. This wave generation problem was 

anticipated in section 3.5.5. It is shown in section 3.6.3.2 that, in the case for which the 

condition ,a«1 
holds for the incident wave train, the wave generation is unaffected by the 

simplification made in the incorporation of the higher order spatial derivatives. For this 

case, the improved dispersion is still essential to the accurate description of the higher 

harmonic generated during shoaling and breaking. It appears from figure 3.9 that the 

simplification made in the implementation of the seaward boundary results in 

imperfections in the w\-ax e generation for cases where short waves are present in the 

prescribed incoming wave train. In the cases studied in this thesis ho«-e, %-er, wave 
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generation appeared to be affected by other more dominant factors. Wave generation is an 

essential part of a numerical model; it is also a difficult one which has incited considerable 

research. In the case of Boussinesq models, an intrinsic problem lies with the very fact that 

the model describes wave-wave interactions, and, as a result, the wave shapes tend to 

change constantly. This and the effects of wave reflection were found to dominate the 

accuracy of the wave generation in the cases studied in this thesis (section 5.6). It was thus 
decided a posteriori that the treatment of the seaward boundary2 was reasonable in the 

context of this study. 
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Figure 3.9 Wave propagation over a flat bed in deep water. Predicted surface elevation over I wave 

period. (top plot) B=O; (bottom plot) B=1/15 (H=0.2m, 7-2.5sec., L=9.6m, Ax=0.75m, dt=0. Isec. ) 

According to the linear theory, the theoretical wave length for this case is Lth= 9.65m. The 

wave length predicted by the model is slightly less at 9.5 m. The flux predicted by the 

2 c. f. section 3.5.5. 
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model is 0.43 m2/s for the stabilised wave (H = 0.22 m). Again according to the linear 

theory, the theoretical flux for this case is Pth = 0.43 m2/s, assuming a wave height of 
0.22m. This demonstrates the good performance of the model for equivalent conditions. It 

also suggests that if an input wave height was sought by trial and error so as to obtain the 

prescribed wave height, the solution would yield good results. This method was applied by 
Wei and Kirby (1995). 

Madsen et al. (1991) also verified the improved dispersion characteristics of the model 

with respect to wave group propagation and found the same spectacular improvement to 

the solution when B= 1/15. 

3.6.3.2 Sloping bed 

In order to test the shoaling properties of the model, Madsen and Sorensen (1992) 

conducted two test cases: with all nonlinear terms in the Boussinesq equations `switched 

off, and with B= 1/15, a regular wave train with H=0.1 m and T=4 sec (deep water 

case) and T=8 sec (intermediate water case) is set to travel over a 1/50 slope. The initial 

water depth is 13 m and the final water depth is 0.2 m. The bed is flat for the first 10 m. At 

the top of the slope, the waves are allowed to travel over a 50 m flat bed before reaching 

the sponge layer. 

intermediate water 

For the first test case, T=8 sec., leading to kh =1 (h/Lo = 0.13) at the seaward end of the 

channel. Figure 3.10 shows a series of plots of surface elevation (covering one wave 

period), and a comparison between predicted and linear (Stokes first order) shoaling wave 

heights. The agreement is very satisfactory. The phase prediction of the model was checked 

by comparing the predicted number of waves in the channel with that predicted by Madsen 

and Sorensen. This proved satisfactory with 13 waves in both cases. From figure 3.2, it can 

be shown that for kh = 1, the relative error in the shoaling coefficient between linear theory 

and the Boussinesq equation with B=0 is less than 1% (it is 0% for B= 1/15). Indeed, if 

this test is run with B=0, it is found that the predicted wave is only slightly 

underestimated. This test thus demonstrates that indeed no loss of accuracy is incurred 

during the manipulation and introduction of the high order terms. Notice that for this case, 

the `B-terms' in the Boussinesq equations being small, there is no problem of wave 
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generation, which confirms that the model may be used with confidence so long as 1«1 
holds for the incident wave train. 
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Figure 3.10 Wave shoaling in intermediate water. (top plot) predicted surface elevation over 1 wave 
period; (bottom plot) predicted () and theoretical (linear, --- - -) shoaling wave height (H=0. lm, 
7=8sec., L=78m, Ax=1m, dt=0.16s, B=1/15). 

deep water 

For the deep water test case, T=4 sec. , 
leading to kh = 3.3 (h/Lo = 0.52) at the seaward 

end of the channel. Figure 3.11 shows a series of plots of surface elevation covering one 

wave period, and figure a comparison between predicted and linear (Stokes first order) 

shoaling wave heights. The resulting, stabilised wave height was 0.098 m. It is this figure 

that was used for the calculation of the linear shoaling. Again the agreement is satisfactory. 

The numerical predictions overestimate the linear theory in the late stages of shoaling (x > 
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625 m). The same crude check was carried out on the phase prediction as in the previous 
case. Both the results presented by Madsen and Sorensen (1992) and those obtained here 

predict the presence of 32 waves in the channel. A further check was made by comparing 
the predicted wave length at the location where the wave height is minimum (x = 500m). 
Madsen et al. 's results give LH,,,;,, =19m, while the model reproduced for this study gives 
LHmin - 20m. Hence the phase simulation of the model is acceptable for this case. 
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Figure 3.11 Wave shoaling in deep water. (top plot) predicted surface elevation over 1 wave period; 

(bottom plot) predicted () and theoretical (linear, ------- ) shoaling wave height (H=0.1 m, T=4sec., 

L=25m, Ay-=1 m, At--0.08s, B=1/15). 

The undulations present in the predicted spatial variations of the wave height in figures 

x. 10 and 3.11 are also present in Madsen and Sorensen (1992)'s results. They attributed the 

presence of these oscillations to reflection from the sloping beach. 
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3.6.4 Wave breaking 

A first impression of the capability of the model to simulate wave breaking is given in 
figure 3.12. A 0.7 m high cnoidal wave is generated very close to breaking point and 
propagates over a1 in 40 slope from 1.1 m to 0.2 m deep. The waves are generated inside 
the domain at x= 12 m, and are absorbed by a 12 m sponge layer at each end of the 
numerical tank. This test shows that the model is capable of qualitatively reproducing wave 
decay, set-up and the development of asymmetric (bore-like) profiles. 
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Figure 3.12 Wave breaking. Bathymetry and predicted surface elevation with surface rollers at r24sec 
(H=0.7m, T=4sec., L=14.6m, dx=0.4m, dt=0.05sec. ). 

The next test involves the reproduction of the test presented by Schäffer et al. (1993). It 

consists of the comparison of the mean water level (mwl) and mean wave height prediction 

with measurements. The regular incident waves (Ho = 0.12 m, T=1.6 sec) are set to 

propagate over a bar (figure 3.13). The waves are generated inside the domain at x=5m, 

and are absorbed by a5 in sponge layer at each end of the numerical tank. Figure 3.13 

shows the predicted and measured mean wave heights across the channel. It appears that 

the wave height prediction in the region of the break point is underestimated. This «-as also 

observed by Schäffer et al. who suggested this is due to the fact that the Boussinesq 

equations used in this model are for weakly nonlinear waves only. In the breaking region, 

the assumption c«1 certainly does not hold. The maximum measured wave height is 

0.152 nm, corresponding to a water depth of 0.9 m, hence H//hb = 0.8. Notice that, although 

the model does not predict the measured maximum wave height, (i) it still initiates 
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breaking at the same location as indicated by the measurements (this is because the 
breaking criterion as recommended by Schäffer et al. accounts for this under-estimation 
(section 3.4.3)), and (ii) it still predicts the wave decay well. 
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Figure 3.13 Wave breaking. (top plot) predicted () and observed ()K ) mean wave height; 
(middle plot) predicted and measured mean water level; (bottom plot) bathymetry (Ho=0.12m, 7L1.6sec., 
Ax=0.1 m, At=0.05sec., B=0) 

. 

Figure 3.13 also shows the predicted and measured mean water level. Again the results are 

most satisfactory and in accordance with Schäffer et al. 's. The change of gradient occurs at 

the correct location. The magnitude of the set-up is fairly well reproduced, as well as the 

lag between breaking point and change of gradient of mwl. 

Summary 

This preliminary testing of the model has involved comparison with analytical solutions 

and reproduction of the same tests as Madsen et al. (1991), Madsen and Sorensen (1992), 

and Schäffer et al. (1993). This series of tests has shown that the model reproduced for this 

study performs within the same accuracy as Schäffer et al. 's. 
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CHAPTER 4- THE DATA and DATA ANALYSIS 

4.1 Introduction 

The data used for this study were collected during the SUPERTANK Laboratory Data 
Collection Project run in 1991 in the Wave Research Laboratory, Oregon State University 
(Kraus & McKee Smith, 1994). This experiment has the advantage of providing data for 

conditions comparable to those in the field with data unbiased by scaling distortions. The 

total length of the channel is 104 m, its width is 3.7 m and depth 4.6 m. It contained a 76 m 
long sandy beach. This data set was also chosen because it provides a comprehensive set of 

cross-shore wave and current measurements, in the shoaling zone and throughout the surf 

zone. In addition, the velocities were measured using current meters set in vertical arrays 

which permitted the investigation of any vertical variability of the flow. Section 4.2 gives 
details about the selected data collection and its characteristics (in a `Boussinesq context'). 
The methods used for the time domain data analysis are described in section 4.3. 

4.2 The Supertank data 

4.2.1 Instrumentation and data collection 

Figure 4.1 shows the experimental set-up, with a typical beach profile, and the location of 

the instrument stations. The co-ordinate system is chosen so that the x-plane lies in the still 

water surface plane and is taken positive shoreward with its origin at gauge 1. The free 

surface oscillations were measured using 16 resistance gauges (gauges 1 to 16) spaced 3.7 

m apart, and 10 capacitance gauges (gauges 17 to 26) spaced 0.6 to 1.8 m apart. The array 

of resistance gauges extended from the toe of the beach to a water depth of approximately 

0.5 m (which happens to be beyond the average breaking point for all the runs considered 

here). The array of capacitance gauges extended from the mid-inner surf zone to the 

maximum run-up limit. The numerical experiment stopped after the third capacitance 

gauge (i. e. gauge 19 on figure 4.1), where the sandy bed was never exposed. The most 

offshore wave gauge signal was used as input in the numerical model at the seaward 

boundary. 

The velocities were measured using 18 Marsh-McBirney electromagnetic current meters 

deployed in depths of 0.3 to 1.8 m in vertical arrays of 1 to 4 instruments with a vertical 

spacing of 0.3 m. Each array was configured to share timing pulse to reduce electronic 
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interference. The arrays are labelled cl, c2 .... to c8 on figure 4.1. The cross-shore location 

of c3 varied by a few tenth of centimetres from run to run. As the model assumes that the 
horizontal velocity u is uniform over the depth, the additional information about the 
vertical structure of the flow permitted checks to be made of how applicable to the data the 
model is relative to this assumption. 
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Figure 4.1 Experimental set-up. Wave gauges are numbered I to 26. Gauges 1 to 16 are resistance 
gauges, gauges 17 to 26 are capacitance gauges. The 18 electromagnetic current meters are represented by a 
dot or star. The arrays are labelled c 1, c2 .. to c8. The profile at the beginning of run Al and the still water 
level are drawn as plain lines. 

The beach profile measurement was carried out in the centre line of the tank before each 

experiment with a typical horizontal spacing of 0.3 in, and with much finer resolution over 

features such as bars. Most tests were initiated with the final profile configuration of the 

previous test. It was the case for all the runs used for this study, for which the initial profile 

was therefore arbitrary. This also had the advantage of providing, for each run, the initial 

and final profiles. Any longshore variability was occasionally inspected by surveying the 

profile 0.9 m away from the walls (as well as in the centre line). 

The digitally-controlled hydraulic wave generator was equipped to absorb outgoing energy 

(i. e. energy that was reflected from the beach) at the peak spectral frequency. 
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4.2.2 The selected data 
The assumptions of weak nonlinearity, spilling breakers, no reflection from the region 
beyond gauge 19, and slowly varying bathymetry form the basis of the model. Obviously. 
the aim here being to assess the model for hydrodynamic predictions in the surf zone, the 
regime is expected to be highly nonlinear, and the weak nonlinearity assumption is 

expected to be violated. This section presents the selected data, and makes a preliminary 
analysis of its characteristics in terms of its application to the model. 
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Figure 4.2 Beach profiles for all 4 runs. The profile at the beginning and end of each run are drawn as 
plain and dashed curves respectively. 

The results of comparison with 4 runs are presented here: 2 of regular waves, and 2 of 

irregular waves (broad spectrum). The bed profiles for all 4 runs (figure 4.2) are complex 

and arbitrary. The main features for runs A2 and Al are the presence one main bar and a 

smaller one inshore. The beach is fairly shallow, with a slope of 1 in 33 and 1 in 36 in front 

and beyond the main bar respectively. The seaward face of the bar has a1 in 7 slope. The 

bathymetry for runs B2 and B1 is mainly characterised by a higher bar with a1 in 9 

seaward face. It also features a deep trough in the lee of the bar. Figure 4.2 also shows the 

beach profiles at the end of the (40 minutes) runs. It shows, with the exception of Al, that 

these runs resulted in little net sediment transport. It is therefore reasonable to assume the 

bed profile to be stable for the duration of the (numerical) tests (typically 3 minutes). 
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The wave characteristics of these runs are presented in table 4.1. The beach slope 

parameter S (= h,, L/h) is large (S > 1, i. e. hx > p1/2 , 
in the breaking region). making the 

assumption of slowly varying bathymetry questionable. Furthermore, the typical wave 

period for both Al and A2 being as high as 8 sec., S reaches values as high as 4 and 

significant reflection from the slope is anticipated. 

Hrms 

(m) 

Tp 

(s) 

Sp i Sbr Breaker 

Type 
co Cbr Po 

A2 (A 1215A) irregular 0.6 8 0.5 4 plunge 0.1 0.26 (0.6) 0.005 

A1 (A 1216A) regular 0.6 8 0.5 3.8 plunge 0.1 0.39 (0.57) 0.005 

B2 (A1310A) irregular 0.4 3 0.2 1.3 spill/plunge 0.07 0.24 (0.52) 0.03 

B1 (A 1311 A) regular 0.4 3 0.2 1.3 spill/plunge 0.07 : 0.39 (0.41) 0.03 

Table 4.1 Wave characteristics. the subscripts `o' and `br' refer to the wave generation and breaking 

regions respectively. The breaker type is estimated with the surf similarity parameter computed using the outer 
surf zone slope and Hb/L0.6(, and Ebr are estimated based on Hrms12. An estimation of Eb, based on Hmax is 

given in brackets. The run name in brackets indicates the Supertank run identification. 

Shallow water waves are characterised by u«1. An upper limit for p is 0.02 (section 

2.1.2). Thus the dispersion parameter u (-- h/gT2) is typical of very long (primary) waves 

for Al and A2, while B2 and BI are characterised by a rather short primary wave. It was 

shown in section 3.6.3 that the generation of short waves resulted in discrepancies between 

the prescribed and the resulting wave train in the model. In these 2 cases however, kh is 

still low at 1.27. The absence of dispersive terms in B, which are therefore still relatively 

small, in the first two computational volumes, did not noticeably affect the wave 

generation. Verification against figures 3.2 and 3.3 shows that for kh = 1.27, the model 

with extended frequency dispersion accuracy should perform well for those short waves 

tests'. 

The degree of nonlinearity c in the generation region is typical of weak nonlinearity. For 

decreasing water depth, the restriction on E (and thus &I, u) is increasingly violated. In the 

breaking region, the nonlinearity parameter E based on Hrms (c = Hrmsl2h) reaches 0.26 

and 0.24 for the irregular waves cases. The weak nonlinearity limit proposed by Dingemans 

(1997) (section 2.1.2) is thus slightly exceeded for A2. For the regular wave cases however, 

note that the upper limit for N, or kh, proposed by Dingemans (1997), has been extended to 0.25, or ; t, 

respectively. 
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nonlinearity increases with an c as high as 0.39. Computed with Hmax, e ranges between 
0.4 and 0.6 in the breaking region. 
Strictly speaking, the model is only applicable for an Ursell Number Ur = F/, u = 0(l). In 

practice, acceptable results can be obtained with larger Ursell numbers. Dingemans (1997) 

found that good results are obtained for e as high as 0.25 while u should typically be 

smaller than 0.02 (for equations with no improved dispersion). 

The breaker type that characterises the four experiments is that of plunging breakers. This 

goes against the intrinsic assumption of spilling breakers made in the extension of the 

model to the surf zone. 

4.2.3 Approximation for the depth averaged velocity 
The velocity variable output from the model is the depth-integrated velocity, from which 

the depth-averaged velocity is calculated. The measurements of the cross-shore velocity 

consisted of vertical arrays of 1 to 4 current meters, that is, measurements at fixed altitudes. 

In order to obtain an approximation of the depth-averaged velocity from the measurements, 

several options were available: it could be approximated by averaging over all current 

meters, ignoring the current meters located close to the free surface (i. e. ignoring the 

current meter with less than 100% immersion), or using the current meter closest to the 

theoretical depth-averaged velocity (at = -0.4h, Dingemans, 1997) only. Inspection of the 

current data provides an answer. 

The most shoreward `array' (c8, consisting of one current meter only) measured very large 

velocities compared to its adjacent current meter (not shown). It is placed very close to the 

still water level and, despite the set up', it is expected to be occasionally emerged. Indeed 

the signal issued from this current meter is anomalous: it contains spikes and high 

frequency noise, a clear indication of the instrument becoming intermittently exposed. The 

results from this current meter should thus be used with caution, if at all. The same 

observation was made with the other three current meters located close to the still water 

level, and where the set down is greatest: namely the `top current meters' of c4 and c5 (at 

0.11 nl below the sii'l), and c3 (at 0.06m above the suwl). They are represented by stars on 

figure 4.1. The above observations are illustrated here with fig 4.3 where the signal from 

' e. g. B2: CM Cy -0.024ni below siel. set up = 0.01m. hence CM @ -0.034 below the mean eater 

surface. At this location Hrnis = 0.2m, assume 0.1 m amplitude 
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the top current meter at c3 for condition B2 is plotted together with the signal of the current 
meter located directly below (middle top current meter, c3). The oscillations of this signal 
are much larger, particularly for the onshore velocities. Since the oscillations for both 

current meters are in phase, it is possible to use it in order to get an idea of the crest 
velocities occurring at this location. It is clear however that the uncertainties as to what this 
current meter is measuring prevent it being used in the comparison. 
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Figure 4.3 Observed velocity oscillations at array c3. top current meter, ------ middle top 
current meter. Positive velocities are directed onshore. 

Figure 4.4 provides the statistical measures of the mean, standard deviation, skewness and 
kurtosis (defined in section 4.3) for each current meter, and for each run. For example, for 

run Al, panel (1,1)1 shows the depth variation of the mean for, from left to right in the 

panel, c3, c4, c5 and c6. It appears that the top current meters of arrays c3, c4 and c5, 

indicated by a circle, almost systematically indicate large deviations from the otherwise 

fairly uniform through the depth velocity field. The third and fourth order statistics are 

particularly affected. The middle top current meters from these arrays also show some 

deviations, particularly for the standard deviation of array c3. These deviations are less 

significant however, and are ignored. 

It is clear from figures 4.3 and 4.4 that the top current meters from arrays c3, c4 and c5, and 

the current meters from array c8 should not be included in the calculation of the measured 

depth-averaged velocity. The fairly uniform velocity profile that transpires from the 

analysis of the rest of the current meters indicates that an averaging over the said meters is 

acceptable. From here on, it is implicitly understood that the top current meters of arrays 

c3, c4 and c5, and the current meter of array c8 are disregarded, unless otherwise stated. 

the notation used throughout this thesis is such that panel(4,2) indicates the plot on row 4. column 2. 
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Figure 4.4 Vertical variation of the observed velocity statistics at four cross-shore locations (arrays c3, 
c4, c5 and c6). 0 Top current meter, x middle top current meter, )E middle bottom current meter, 

" bottom current meter. Columns, from left to right, are A 1, A2, B1 and B2. Rows, from top to bottom, are 
the velocity mean, standard deviation, skewness and kurtosis. 

Figure 4.4 reveals another interesting feature of the current data. For runs B2 and B 1, 

despite the fact that we are dealing with shorter waves, the uniformity of the velocity field 

through the depth is indisputable. For runs Al and A2, on the other hand, this uniformity is 

not as unequivocal. This is surprising as, for these two runs, the waves are very long (u << 

1), which is characteristic of nearly horizontal flows. One would thus expect the 

assumption of horizontal velocity uniform over the depth to hold better for Al and A2, 

than for B1 and B2. 

4.2.4 Reflection from the shoreline 

Reflection of a small fraction of the incident wave energy flux produces significant cross- 

shore variations in energy levels (Elgar et al., 1997). Reflection from the region from 

gauges 19 (landward boundary of the model) up to the shoreline is a matter of concern, 

especially for A2 and Al. The typical wave period for both these runs is large (low wave 

steepness), and the foreshore is steep. This results in high values for the Irribaren number, 

and it is probable that significant reflection occurred in this region. 
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Figure 4.5 (top plot) cross-shore variation of the observed wave height, test Al. (bottom plot) Bessel 
solution with T= 8s and s= 1/36. 

This presumption is confirmed by the fact that the cross-shore variation of the measured 

wave height shows clear modulations, especially in the inner surf zone and swash zone, 

where they are of a factor of two (figure 4.5). These modulations are characteristic of cross- 

shore standing waves. They appear to damp away offshore, further suggesting they may be 

due to reflected waves of which the amplitude is damped as they propagate offshore. In say 

0.3 m water depth, the wave length of an 8 s. incident waves is about 14 m. Thus, the 

expected separation of nodes and antinodes is about 3.5 m. The separation between the 

wave staffs is therefore small enough to resolve the modulations in wave height due to 

reflection. A quick analytical solution (using a Bessel function) for the location of nodes 

and antinodes of a standing waves field was applied to this situation. A solution is given in 

figure 4.5. It indicates that a relatively good correlation can be obtained using T=8 sec and 

a slope of 1/36. This indicates that the maxima and minima observed in the data are 

(physically) possible locations for nodes and antinodes, which further indicates that these 

oscillations may be the result of reflection'. 

' The possibility that these oscillations may be the result of wave reflection is strengthened in section 6.4. 

where it is shown that (i) the skewness arising from the self interactions at the peak frequency is 
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4.2.5 Summary 

The data essentially consist of 2 conditions: long waves (A runs) and short basic waves (B 
runs), both conditions being investigated for irregular and regular cases. Each of these 
cases is identified in figure 4.6 with the observed surface elevation time series at gauge 1. 
Some characteristics of the data set fall outside of the domain of application of the model. 
This is inevitable and the model-data comparison will show the limitations of the model 
with respect to its assumptions. 

Al 

A2 

B1 

B2 

0 50 100 150 200 
time (s) 

Figure 4.6 Observed time series of surface elevation at gauge I for all 4 data sets. 

4.3 Data analysis 

250 300 

The sampling rate for the wave and current gauges was 16 Hz. A 10 Hz, fifth-order anti- 

aliasing Bessel filter was then applied to the resistance gauges and current meters data to 

eliminate noise and avoid aliasing. In addition, the data, as received, had already been 

decimated to 4 Hz. The generated time series were also decimated to 4 Hz. Both the 

predicted and observed time series were band pass filtered between 0.06 -2 Hz. 

(unexpectedly) negative at the location of minima in the measured Hrms (condition A I), and that (ii) a 
correlation is found between negative skewness arising from interactions amongst short waves and reflection. 

62 



It was emphasised in the introduction that in shallow water the first and second moments 
(mean and variance) are not sufficient to define the wave regime. In shallow water the 
waves become increasingly asymmetrical about both the vertical and the horizontal axis, 
thus resulting in skewed and saw-toothed wave shapes. The statistical distribution of the 
instantaneous surface elevation, or velocity, in this region can no longer be assumed to 
follow a normal distribution, and can no longer be expressed by the first two statistical 

moments only. The extent of the deviations from the normal distribution may be examined 
through two parameters: 

the third central moment, or skewness: 

the fourth central moment, or kurtosis: 

S- 
07ý)3 

aN 

K 77 

Qý'N 

where N is the number of data points and cr is the standard deviation of the random 

function of time ra(t). The normal distribution (distribution symmetric with respect to the 

mean value) has S=0 and K=3. The skewness gives information about the asymmetry of 

the statistical distribution. When, as is the case for shallow water waves, the mode of the 

distribution is located lower than the mean and the distribution has a long tail in the range 

greater than the mean, S takes a positive value. In terms of elevations, this implies that if S 

> 0, the wave crest heights are greater than the wave trough depths, and vice versa. In terms 

of velocities, S>0 indicates that the velocity is skewed onshore (i. e. onshore velocities are 

high, with short duration, while offshore velocities are smaller, with longer duration). The 

kurtosis gives information about the peakedness of the statistical distribution. If the peak is 

higher than that of the corresponding normal distribution, then K>3, in which case the 

distribution features long tails on both sides to compensate for the high peak. This suggests 

that if K>3, the degree of variability in the instantaneous surface elevation is less. The 

physical meaning of the kurtosis is uncertain, but its importance with regards to suspended 

sediment transport has been shown to be significant (see chapter 1). 

Besides the standard deviation', the skewness and kurtosis were thus svstematicall}, 

calculated for both elevation and velocity time series. In addition, the mean was calculated 

for the elevation time series, yielding the mean water level mu-1. 

defined as the square root of the second central moment, or variance (m) 
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The time series analyses were carried out using a zero-upcrossing method to define 

individual waves. A wave is defined between two upward crossings of the water surface 

about the mean water level. The wave height is defined as the sum of the absolute values of 
the maximum and minimum elevation between two zero-upcrossings. Very small wt aves (H 

< 0.6 cm) were not identified as individual waves. They were included as part of the 

preceding wave. Analysis of elevation time series further involved calculation of maximum 

and minimum elevations and wave heights. Analysis of velocity time series also involved 

calculation of maximum onshore and offshore velocities. 

The shoreward mass flux, concentrated above the wave trough level, is compensated in the 

laboratory by a seaward mean return flow, also called undertow. Since, in the surf zone, the 

shoreward mass flux of the waves is strongly enhanced by the breaking process (Svendsen, 

1984b), the effect of the roller on the vertical distribution of the horizontal velocity must be 

included. Thus the undertow may be approximated as a depth-averaged quantity as the time 

average of u0, which is defined from equation (3.18a) as: 
P-c8 

u°_ d-8 
(4.1) 

Since the time average of the depth-integrated velocity is zero in the physical tank, and 

since, given the boundary conditions, the time average of the flux in the numerical tank is 

non-zero and positive, the average was removed from the depth-integrated velocity time 

series before applying equation 4.1. The time average of uO is then negative to compensate 

for the shoreward flux due to the surface roller. 

The calculations for the observed undertow involves further approximations. It was found 

that (i) the measurements indicate a velocity field that is fairly uniform through the depth, 

and that (ii) the mean velocity for each of the current meters is negative. It may thus be 

assumed that each of these current meters measured undertow, and that the undertow is 

fairly uniform through the depth. The observed undertow was thus calculated from the 

averaging of all current meters. 

A bispectral analysis was also performed on the data. It is described in detail at the 

beginning of chapter 6. 
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CHAPTER 5 MODEL - DATA COMPARISON: A TIME DOMAIN 

ANALYSIS 

5.1 Introduction 

5.1.1 Introduction 

The developments and applications of numerical models based on the Boussinesq equations 

were reviewed in chapter 2. In this review it was emphasised that, to date, the validation of 
the Boussinesq model used in this study has essentially concentrated on surface elevation 

predictions, with particular focus on wave height and mean water level predictions. Given 

the importance of the knowledge of the velocity field for sediment transport predictions, it is 

surprising that very little work has been presented on evaluating the capability of this model 
(and Boussinesq models in general) to predict velocities. The wave shape is another element 

of importance for sediment transport predictions. Again no thorough study of the model 

with respect to wave shape has been produced. 

In this chapter, both the surface elevation and depth-averaged velocity predictions are 

compared with large scale laboratory data (section 5.2). The assessment of the capabilities 

of the model is taken further in section 5.2.3, by comparing predicted and measured 

skewness and kurtosis, thus giving an indication of the model's potential to predict wave 

shape. In addition, the robustness of the model is assessed with respect to the free 

parameters involved in the simulation of wave breaking (sections 5.1.3 and 5.3). The 

implications and effects of the slowly varying bathymetry assumption made in the derivation 

of the equations are investigated in section 5.4. This is followed by a discussion on wave 

reflection in section 5.5, and an analysis of the treatment of the seaward boundary condition 

in section 5.6. Section 5.7 provides a summary and discussion. 

5.1.2 Design of numerical experiments 
1nzp rol'edle dispersion 

In order to improve the description of the super-harmonics, all computations were 

performed with B= 1/15. This also proved essential for the correct shoaling of the primary 

waves in runs B1 and B2. 
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Mesh size and test duration 

It is important that At and Ax be chosen small enough to provide an adequate resolution of 

the super-harmonics as well as the primary wave. For Al and A2, At and Ax were set to 0.05 

sec and 0.25 m respectively. BI and B2 required a finer resolution, with At and Ax at 0.025 

sec and 0.14 m, respectively. With these mesh sizes, the Courant number, defined as the 

ratio of the propagation velocity of the physical and numerical waves', C, _ gh , was 

equal to I at the deepest location. The number of grid points per wave length and wave 

period up to the fifth super-harmonic are tabulated in table 5.1. 

Exp. Harmonic T (s) points per L (m) points per 

......................................... 
1 Al &A2 

2 

3 

4 

5 

B1&B2 1 

2 

3 

4 

5 

wave period wave length 

8 160 40.7 163 

4 80 18.5 74 

2 40 6.2 25 

1 20 1.56 6 

0.5 10 

3 120 

1.5 60 

0.75 30 

0.375 15 

0.1875 7.5 

0.39 1.6 

14.0 100 

3.5 25 

0.9 7 

0.22 1.6 

0.05 - 
Table 5.1 Number of grid points per wave length and wave period 

The number of grid points available up to the third harmonic are adequate. Those for the 

fourth and fifth harmonics however are very low. This is not a problem for B1 and B2 since 

only the third harmonic develops in these tests (see chapter 6). It is not the case for tests AI 

and A2, however, for which nonlinear interactions are intense, even in the shoaling region. 

Yet, increasing the wave resolution further by halving the mesh size (thus keeping Cr 

constant) did not improve the results. It is possible that yet a finer resolution may improve 

the results. Unfortunately this could not be attempted due to computer memory limitations. 

On the other hand however, observation of the cross-shore evolution of the power spectrum 

For numerical stability and accuracy, the time step it must be smaller than the time required for the modelled 
). 

wave to travel over the distance lv, i. e. Jr < Ay (gh) ' (assuming wave celerity = (gh)'I'- 
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for Al shows that the fifth harmonic develops in a depth of about Im. The maximum kh 

value for this harmonic is thus about 15, for which, despite improved dispersion 

characteristics, the model does not perform well anyway (figures 3.2 & 3.3). In view of the 

practical and theoretical limitations outlined above, the resolution of the fourth and fifth 

harmonics was considered acceptable. 

The computations for runs Al and A2, and B1 and B2 were performed for a duration of 300 

sec and 175 sec respectively. This gave ample reserve to obtain permanent wave profiles at 

the shallowest station for both regular runs 1. Note that, due to the very nature of the model, 

the stationarity of the wave profile is relative. Strictly speaking, the waves are non-stationary 
in time and space; this is inherently due to nonlinear interactions occurring. If nonlinearity 

and dispersion balance each other, the waves can be stable. 

Wave generation 

Since the initial conditions across the channel are those of a cold start, a slow start condition 

was prescribed in order to avoid the development of disturbances or instabilities. The waves 

were then allowed to travel over a flat bed section before reaching the toe of the slope. This 

was necessary in order to obtain a stable solution at this location. It had the disadvantage 

however of allowing the incoming wave field to transform, owing to nonlinear transfers of 

energy. The length of the flat bed sections were set to 20 m and 15 m for tests A and B 

respectively. The uncertainties in the wave generation are further convoluted by fact that no 

seaward propagating waves (i. e. waves reflected from the slope and/or the boundary) are 

allowed to leave the domain2. Wave generation is discussed in detail in section 5.6. The 

predicted and measured power spectra at gauge 1 are compared, for all four runs, on figure 

5.1. It shows that the actual wave field compares reasonably well with the prescribed wave 

field. Some discrepancies between the prescribed and the actual wave field are noted for 

condition Al, for which the energy at the third harmonic frequency is overestimated. The 

energy at frequencies > 0.5 Hz are underestimated for A2. 

Eg.: for A 1, the celerity of the fourth harmonic of the primary wave is gT 
=1.56 m/s., which thus travels the 

1) Ir 
82 m distance from the wave maker up to gauge 19 in 52 sec (making the conservative assumption that the 

third harmonic is present in the incoming wave field). 
2 note that besides the effect of nonlinear interactions and reflection on the wave generation, the treatment of 

the boundary coundition described in section 3.5.5 also contributes to errors. 
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Figure 5.1 Predicted () and observed (exact) (------) power spectrum for each run at gauge 1. 

Shoreward boundary condition. efficiency of the sponge layer 

With the duration of the test chosen such that permanent wave profiles could establish 

throughout the channel, the possibility of waves reflecting from the shoreward boundary 

must be given consideration. The efficiency of the sponge layer was evaluated indirectly as 

follows: each run was initially performed with the outgoing boundary located such that the 

reflected waves could not manifest themselves in the domain of interest. This is exemplified 

here with tests Al and A2: for a total duration of 300 sec, with a basic wave speed of 

approximately (h)"2 = 4m/s (choosing a very conservative mean water depth of 1.6 m). the 
ýý 

primary waves travel a distance of 1200m. Since the shoreward end of the domain of 
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interest is at 82 m from the incoming boundary, the use of a 560 m long horizontal bed 
beyond that domain prevented any reflected wave from perturbing the wave field. The 
results from these tests were then compared with the results from a test run with the same 
conditions except this time the horizontal bed section beyond the domain of interest was 
reduced to 5m (minimum distance required in front of the sponge layer in order to avoid 
numerical instability)'. Both experiments resulted in almost exactly the same predictions, 
thus attesting to the remarkably high efficiency of the sponge layer. 

5.1.3 Sensitivity to the free breaking parameters 
The simulation of wave breaking involves the use of a number of parameters described in 

section 3.4. These are OB, 0o, fs and t , 
for which the figures recommended by Schäffer et al. 

(1993) are 20°, 10°, T/10 and 1.5 respectively. OB controls the onset of wave breaking, 

whereas the remainder of the parameters control the rate of decay by controlling the roller 
thickness (equations (3.22) & (3.20)). These values were evaluated from laboratory 

measurements and subsequently `adjusted' after numerical experiments. The relative 

uncertainty introduced in the estimation of these parameters is thus accentuated by the fact 

that some adjustments for the model limitations were made during this process. Indeed the 

model tends to underestimate the wave height in the region of breaking (Schäffer et al, 
1993), thus underestimating the local slope of the water surface in this region. The value 

recommended by Schäffer et al. for OB was therefore chosen to be smaller than the actual 

wave slope at the breaking point, which is evaluated from laboratory data. An additional 

assumption was introduced in order to avoid complicating the numerical scheme: the phase 

celerity in equation (3.20) is approximated by 1.3(gh)112. Equations (3.20) & (3.21) show 

that this approximation affects the rate of decay by directly controlling the magnitude of the 

excess momentum due to the roller. 

Sensitivity testing of the model with respect to the five parameters discussed above were 

carried out for all four data sets. This showed that the model is fairly robust with respect to 

0, f, 
, t* and the expression for c. Decreasing 0, (to e. g. 7°) results in an increase of the 

roller thickness b hence an increase in the energy dissipation and rate of decay. A decrease 

of t* has the same effect: decreasing t* (to e. g. T/20) results in a steeper transition to q5o 
. 

hence in an increase of ('). The effect of changing f, 5 is more subtle. A small change in f (to 

1 note that due to memory limitations, it and d were reduced to 0.05 s and 0.38 m for AI and A2, and to 0.05 

s and 0.22 ni for BI and B2. This applies to both experiments that are bein`,, compared here. 
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e. g. 1.7) has very little effect on the results. On the other hand, a large increase in f, 5 (to e. g. 
2.5) results in a milder wave height decay. This may appear contradictory at first since 
increasing f5 directly increases & It may be interpreted as follows: as 6 increases with 

increasing ff the energy dissipation increases, and the wave height decreases. If the initial 

decay is too strong, wave breaking may eventually stop. Note that a large decrease in qo and 

t* may have the same effect. The analytical formulation of the phase celerity c was 

successively set to (gh)'12,1.3(gh)"2 and 1.5(gh)"2. Again, very little change in the rate of 

decay with varying c was observed. 

Testing of the model with respect to OB on the other hand shows more significant sensitivity 

to this parameter. This is not surprising since this parameter controls the breaking location 

as well as the roller thickness. In the following study, particular attention is therefore given 

to the effect of OB on the results. The computations presented here were initially run with OB, 

0,,, fs and t* set to 20°, 10°, T/10 and 1.5 respectively (section 5.2). They were subsequently 

run with a range of OB (section 5.3), chosen in view of two combined aims: to improve the 

results (by adjusting the location of breaking), and to test the sensitivity of the results to this 

parameter. The choice of OB was occasionally restrained by numerical stability problems. 

Finally, testing of the model with respect to the numerical filter showed that the weighting 

parameter a had relatively little effect on the results (other than stabilising ! ). It was found 

that increasing a results in a slightly increased rate of decay. 

5.2 Model-data comparison 

5.2.1 Surface elevation (low order) statistics 

The predicted and measured surface elevation statistics are compared in figure 5.2a (tests A) 

and 5.2b (tests B). For each run, these figures show the cross-shore variation of 

" the mean water level (mwl) and standard deviation (top plots), 

" the mean maximum and mean minimum elevations (centre plots), and 

" Hrms (bottom plots). 

Note that Hrms is plotted together with the mean roller thickness S, which gives an 

indication of the location and intensity of wave breaking. Hmax is also shown for both 

irregular runs. The breaking point is located above the first bar, in the region of gauge 14 (x 
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Figure 5.2a Cross-shore variation of the predicted () and observed (W , o) surface elevation 
statistics for run A1 (left column) and A2 (right column). From top to bottom are the elevation standard 
deviation ()K), mwl ( 0), mean maximum crest elevation ()K ), mean minimum trough elevation ( o), Hrms 
()K), and 3. Hmax (o ), is shown for the irregular run. The vertical line at about 48 m indicates the bar crest 
location. 
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Figure 5.2b Cross-shore variation of the predicted and observed surface elevation statistics for run BI 

(left column) and B2 (right column). Legend as in figure 5.2a. 
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47 m)'. The location of the bar crest is indicated by the vertical line. In the following, the 
domains seaward and shoreward of the vertical line will be referred to as the shoaling and 
breaking zones respectively. 

The results show the development of oscillations in the modelled cross-shore variation of 
surface elevation statistics. These are discussed in detail in section 5.5. The predictions for 
the standard deviation and Hrms follow the same trends. The overall agreement for both 
these parameters is fairly good for all 4 tests. Note that the irregularity in the observations 
for Al, particularly for gauge 1, were shown to be due to reflection from the swash zone 
(section 4.2.4), which the model does not reproduce. 
Both the standard deviation and Hrms tend to be overestimated in the surf zone for tests B. 
These over-estimations correspond to over-estimations of both the mean maximum and the 
absolute mean minimum elevations in that region. Inspection of the mean roller thickness 

reveals that some initial breaking occurs over the bar crest, but then stops over the bar 

trough to start again further onshore. The cessation of breaking allows the waves to shoal 
again, thus resulting in overestimated wave heights. No information on the location of 
breaking in the laboratory is available for this study. However, gauge 15 is located in the 

region of the trough and does not show signs indicating that breaking has stopped. Thus, 

given the spatial variation of the observed elevation statistics, it is suspected that breaking 

started over the bar crest and was continuous through the surf zone. It is shown in section 
5.4 that the erroneous prediction of the breaking location is due to a violation of the mild 

slope assumption in the breaking region. 

The results show an underestimation of Hrms and Hmax in the final stages of shoaling and 
in the outer surf zone for the irregular runs. Schäffer et al. (1993), Svendsen et al. (1996) 

and Madsen et al. (1997a) made the same observation. This appears to be a common feature 

of models expressed in terms of the depth-integrated velocity. Models with the depth- 

averaged velocity as a dependent variable tend to overestimate slightly the wave height (see 

e. g. Wei et al., 1995). In the derivation of i7-P and q- ü models, high order nonlinear terms 

are neglected. As the waves shoal, these neglected terms become increasingly significant 

and (should) affect the solution. Table 4.1 shows that the nonlinear parameters based on 

Hmax for the irregular runs are very high. For condition A2, table 4.1 gives c=0.1 at gauge 

' The interested reader is referred to table 3.1 for an indication of the wave height to water depth ratio at the 
breaking point (= 2Enr ). 
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1 and based on Hrms. E based on Hmax is already as high as 0.2 at the toe of the beach. and 
reaches 0.6 at the average breaking point. The highest waves in the incoming wave train 
tend to be underestimated by the model, thus resulting in underestimated Hrms. Notice that 
the underestimation of the wave height is associated with an underestimation of the mean 
elevations above the mwl, whilst the predictions for mean elevation below the m114 are 
correct. It also appears that, for the same breaking parameter, the underestimation is greater 
for A2 than for B2. This, on the basis of the model limitations outlined above, may be 

explained by the fact the basic wave height for B2 is smaller (nonlinearity weaker) than that 

of A2. Besides a violation of the weak nonlinearity assumption, the wave height 

underestimation in the breaking zone may be the result of bad shoaling properties of the 

model for the high super-harmonics (large kh) inevitably present in the irregular runs. Since 

less high harmonics develop for B2, the improved performance of the model for that run 
(relative to A2) is again justified. 

The irregular spatial variation of the wave heights (also seen in figures 3.8 and 3.13) is due 

to the fact that, due to wave-wave interactions, the wave shape constantly changes as the 

wave train propagates onshore. In the time series analysis, waves smaller than 6 cm are 

ignored (and assumed to belong to the preceding wave; see section 4.3). Thus, as the waves 

shoal, at e. g. x= 30 m, such a small wave, if less than 6 cm high, may be ignored. At say x= 

32 m, if this wave has `grown' to be larger than 6 cm, it is identified as an individual wave. 

This results in the wave at x= 30 m being divided into two smaller waves at x= 32m, and a 

decrease in the wave height. Of course the minimum wave height of 6 cm is arbitrary, and 

reducing it results in some smoothing in the spatial variation of the wave height'. 

The nm l predictions are not as satisfactory. The set up in particular is underestimated for all 

four runs, particularly the tests B1 and B2. For those two tests, the set-up underestimation 

may be partly explained by the fact that the breaking is predicted at the wrong location, that 

is, too far onshore. This was already seen to be the reason for the overestimation of the wave 

height. Since the set-up is related to the rate at which energy is dissipated, the wave height 

overestimation is associated with a late set-up. 

An interesting feature of the model appears in the cross-shore variation of 5. The wave 

breaking simulation allows each wave to be treated individually. This is reflected in the 

note that the same minimum wave height was used for both the lab and numerical data. 
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irregular runs for which 8 indicates the successive breaking of the highest to the lowest 

waves. An attraction of this wave breaking model is that is allows wave breaking to cease if 

the water depth increases again. This can be useful in the case of waves breaking over a 
submerged bar for example. In the case of B1 and B2 however, the cessation of wave 
breaking in the bar trough is unrealistic. 

Figure 5.3 shows the predicted versus measured elevation statistics for all four cases. The 

plain line and the two dashed lines represent perfect agreement and 20% difference between 

measured and computed data, respectively. It shows that despite the poor performance of the 

model for the mwl, the rest of the parameters are well predicted. Discrepancies up to 50% 

are noticed but typical errors are less than 10%. Close inspection shows that the points 

outside the 20% limit systematically belong to the surf zone. 

5.2.2 Depth-averaged velocity (low order) statistics 

The predicted cross-shore variation of the velocity statistics are compared to observations in 

figure 5.4a (tests A) and 5.4b (tests B). These figures display the cross-shore variation of, 

from top to bottom, 

" the undertow, 

" the standard deviation, 

" the mean onshore and mean offshore depth-averaged velocities (Üo� and Üoff 
, 

respectively), and 

" the mean maximum onshore and mean maximum offshore depth-averaged 

velocities (Ümaxo� and Ümaxoff, respectively). 

The same oscillations as those observed in the elevation statistics appear. Again they will be 

discussed in section 5.5. 

The undertow predictions are in good agreement with the approximation obtained from the 

observations. The results for the regular long waves test tend to over-estimate the undertow 

in the surf zone. 
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The predictions for both the offshore velocities, Üoff and Umaxof, and the onshore velocities, 
U0, and Ümaxo� are promising. The results are excellent for the irregular runs. The 

predictions for the regular runs tend to overestimate Uo� and Ümaxon in the breaking zone. 
The eventuality that these over-estimations may be the result of the approximations made in 

the calculations of the depth-averaged velocity from the measurements deserves some 

attention. These approximations are described in section 4.2.3. Since the current meters are 

mostly located in the bottom half of the water column (figure 4.1), one may, expect the 

calculations of the depth-averaged velocity from the measurements to be an underestimate. 

The uniformity of the velocity field suggests this may not be the case. Let us consider the 

current meters from cl and c2. They were set in the bottom half of the water column, close 

to the bed. It was found that the calculation of the measured velocity at this location leads to 

a fairly good agreement with the predicted depth-averaged velocity at this cross-shore 

location. Furthermore, since, in theory, velocity profiles tend to become more uniform as the 

waves propagate into shallower waters, if the discrepancies were due to the approximations 

involved in the observed depth-averaged velocity, then they would increase with increasing 

water depth. It is not the case however, as it is in shallower water that the discrepancies are 

largest. It may thus be concluded that the approximation made in the calculation of the 

measured depth-averaged velocity is quite valid. 

This overestimation of the onshore velocity was also observed by Wei et al. (1995) and 

Bosboom et al. (1996), who both found that this was associated with an overestimation of 

the crest elevation. Their tests consisted of regular non-breaking waves (Table 2.1). Note 

that their models are expressed in terms of rl and ü, which tends to slightly overestimate 

shoaling (see section 5.2.1). Wei et al. proposed that the overestimation of onshore 

velocities, like the overestimation of the crest elevations by their model, is due to the 

limitation of the model to weakly nonlinear waves. It is particularly accentuated in the surf 

zone, which would support this hypothesis. Wei et al. (1995) compared the results from 

their weakly nonlinear model to those from their new `fully' nonlinear model and found 

remarkable improvements, which also corroborates the above assumption. 

As for the elevations, the plot of predicted against observed velocities (figure 5.5) shows 

general agreement within 20 %. Given that most of the model - data comparison for the 

velocities are located in the surf zone, the results are fairly good. 
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5.2.3 Wave shape prediction 

5.2.3.1 Direct comparison of elevation time series 
One of the attractions of time domain models like Boussinesq-type models is that their 

output consists of time series of surface elevation and velocities which can directly be 

compared to measurements, thus giving an indication of the ability of the model to simulate 

the wave shape. Both the measured and the computed time series of surface elevation are 

plotted for each regular test at three representative cross-shore locations in figure 5.6. The 

time lag between the measured and simulated time series was evaluated at gauge 1. The 

measured time series were subsequently shifted by that time lag for all gauges, hence 

making it possible to keep track of time information. The series are given for a duration of 

twice the wave period, starting after permanent wave profiles were obtained at gauge 19, 

and with a time increment of 0.25 sec, that is 32 and 12 points per wave period for Al and 

B1 respectively. 

The wave profile for Al evolved significantly during shoaling. The discrepancies between 

the observed and simulated wave field at gauge 1 were already observed in figure 5.1 where 

it appeared that the energy at the third harmonic frequency is overestimated in the 

simulation. Indeed, this is reflected in the time series by a simulated wave profile showing 

signs of the presence of a super-harmonic. This appears to incite more nonlinear interactions 

which result in a steeper wave shape at gauge 14. Besides wave generation inaccuracies, the 

discrepancies between predicted and observed elevation time series can be explained by 

looking at figures 3.2 and 3.3. It is clear from these figures that the phase celerity and 

shoaling of waves for large kh cannot be well predicted. 

Measured wave period is alternatively smaller (gauge 14) and larger (gauge 19) than 

computed. This may be the result of offsets in the cross-shore position of the wave gauges. 

The magnitude of the errors thus introduced depends on the wave celerity and the speed and 

intensity of wave shape changes. These are known to be rapid for run Al, and a small 

mismatch in the location of the physical and numerical wave gauges is likely to be the origin 

of these wave profile mismatches. 

The reproduction of the wave shape for B1 is fairly good throughout the channel. The wave 

profile for this test barely evolved during shoaling, which is indicative of little triad 

interactions. The wave generation is reasonably good. Despite the improved dispersion 
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characteristics introduced in the equations, there is a difference of phase celerity between the 

model and laboratory results: the waves appear to travel faster in the model than they 

actually did in the tank. This difference of phase celerity increases as the waves travel 

shoreward. Inspection of the wave shape (and power spectrum) evolution between gauges 1 

and 8 shows dominance of the primary waves in this region, thus kh varies from 1.25 to 1.11 

1. Given that B= 1/15, and according to figure 3.2, the phase error relative to Stokes first 

order theory (linear theory) between these two gauges is nil. Indeed both Stokes first order 

theory and equation 2.15 give c=3.77 m/s at gauge 8. An evaluation of the actual celerity at 

this location was made using the signal from (laboratory) gauges 7 and 8, which are distant 

At gauge 1, L=14 nm, h=2.8 m. At gauge 8, L=11.3m, h=2m. 
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by 3.66m and between which little change occurs. This gave a wave celerity of 3.67 m s. 
This solution differs from the Stokes first order theory towards which the parameter B was 
`adjusted' for short waves, and explains the discrepancy. 
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Figure 5.7 Wave profiles at three cross-shore locations for B 1. 
Predictions with B= 1/15 ( ), B= 1/21 (ý--- ), and observations (- ---- -). 

The same test was run with B= 1/21 for which c is slightly reduced to 3.75 m/s 1. It resulted 

in very little difference in the elevation statistics. It did however result in a slight 

improvement in the phase velocity prediction (figure 5.7). 

A value of 1/2 1 can be shown to yield better results for large kh. Over the whole range of kh however, B=1115 

yields the best results. Here (kh=1.25), theoretically, B=1/21 yields results that depart from Stokes's first order 
solution more than B=1/15. Since the actual celerity is somewhat smaller than Stokes's first order solution, and 
since B=1/21 Fields a celerity (slightly) closer to the actual one, calculations with this value were attempted 

nevertheless. 
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Small errors in the predictions of the phase celerity, because they have a cumulative effect, 
may result in large discrepancies. Despite this deficiency of the model, the wave shape is 

very well predicted for test B1, and the over-prediction of the phase celerity is not a 
problem. It must be kept in mind however as the wrong prediction of an harmonic phase 
celerity may result in an incorrect wave profile prediction. 

5.2.3.2 Elevation and velocity skewness and kurtosis 

Elevation 

The predicted and observed skewness and kurtosis of the free surface elevation, S, 7 and K,, 

respectively, are compared on figure 5.8 for all 4 tests. For each run, the spatial variations of 
S,, and K. are comparable in shape, and the discrepancy between predicted and observed S, 7 
is comparable to the discrepancy between predicted and observed K, r 

S, 7and K, 7 for case Al start increasing very early at about x= 10 m. For test B1 on the other 
hand, they are constant up to x= 35m, after which they start increasing. Al is characteristic 

of long/shallow water for which the phase mismatch between fundamental and bound 

harmonics is smaller than for B l. The development of triad interactions for Al and A2 

occurs further offshore compared to B1 and B2. This is well reproduced by the model. 

Let us first examine S, 7 and K, 7 in the shoaling zone. The agreement between predictions and 

data is fairly good. S, 7 and K, 7 tend to be underestimated for all runs, except Al. This 

underestimation is associated with an underestimation of the crest elevation (figure 5.2a & 

b). Clearly the underestimation of S, 7 and K, 7 is a result of the violation of the weak 

nonlinearity assumption. The slight overestimation of S, 7 and K, 7 for Al on the other hand is 

associated with an overestimation of the crest elevation which will be discussed in section 

5.6. 

In the breaking zone, the spatial evolution of S, 7and K, 7becomes more variable. A common 

feature of the observed cross-shore variation of S,, and K,, for A2, BI and B2 is an increase 

up to some distance after breaking, after which both parameters decrease. This is in 

agreement with observations based on field experiments by Guza and Thornton (1985). This 

pattern is not observed for Al for which reflection was already seen to induce irregularities 

in the cross-shore evolution of the wave field. 
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Figure 5.8 Cross-shore variation of the predicted and observed surface elevation skewness S,, (left 
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The predictions do reproduce this maximum for B 1, for which direct observation of the time 
series already indicated matching wave shapes. For the other runs, the dominant trend 
indicates a general increase for the predictions of S,, and K. The simulated cross-shore 
variations of S, 7 and K, 7 for B2 are interesting in that they show a sudden decrease in the 
region of the bar trough. It was shown in section 5.2.1 that wave breaking is unrealistically 
predicted to cease at this location. 

The possibility that this continual increase of S, 7 and K, 1 in the surf zone may due to 
boundary effects was investigated. The tests were run with a range of sponge layer 

parameters, and with variable length of flat bed in front of the sponge layer. This had no 

effect on the results. Reasons for the disagreements in the breaking zone, not only- in 

magnitude but also in shape, were thus thought to lie in the model's properties. 
In the inner surf zone region, nonlinear effects increasingly dominate over dispersive effects. 
It is clear that the model is being applied beyond its limits. The presence of the dispersive 

terms tends to counter-balance the nonlinear terms: the effect of frequency dispersion is that 

the higher harmonics travel much slower than the basic wave. This results in a wave profile 

that is less steep (under-estimated asymmetry), which in turn may result in an overestimated 

skewness. 

The nonlinear parameter c can be shown to be continuously increasing in the surf zone. 

While the effects of the violation of the weak nonlinearity assumption in the surf zone are 

not clear, it is reasonable to suggest this violation may be responsible for discrepancies in 

the region. 

A more definite cause for these disagreements is the presence of wave components with 

high kh generated during shoaling and breaking. From figures 3.2 and 3.3 it is clear that the 

model's performance with respect to predicting the phase celerity and shoaling of waves 

with kh larger than 5 is poor. A poor performance for high kh is thus reflected in a poor 

wave shape prediction. This is further discussed in section 5.7. 

depth-avveraged velocity 

The predicted and observed skewness and kurtosis of the depth-averaged velocity. Su and 

Ku respectively are compared in figure 5.9. The overall fit for Su and KU is very promising. 

The results for BI exhibit some interesting features. While the predicted OW, and 0,, ff are 

larger than the measured data, the Su and KU show excellent agreement with the data. In 
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other words, although the magnitude of the predicted velocities is larger than the measured 
ones, it appears that the shape of the velocity time series is well predicted. 
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Figure 5.10 shows a plot of predicted versus observed skewness and kurtosis. The largest 

discrepancies for S,, and K, 1 are for the largest skewness and kurtosis values, that is, data in 

the surf zone. 
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disagreements for the elevation statistics could be the difficulty of measuring free surface 

elevations in the surf zone. Turbulence and aeration make the free surface level difficult to 

determine. Furthermore, the performance of the resistance and capacitance wave gauges 

with respect to measuring wave shape is uncertain. For example, resistance gauges are 
known to distort the wave shape due to the finite distance between their two parallel wires 

(Hughes, 1993). 

On the other hand, one may argue that the improved agreement for the velocity moments 

may be due to the fact that these are integrated quantities, and, as a result, irregularities may 

be smoothed out. Inspection of fig. 4.4 however shows that, for most cases, the velocity 

moments are fairly uniform though the depth. Furthermore, despite the fact that arrays c 1, c2 

and c7 (fig. 4.1) consist of one current meter only (i. e. no smoothing is made). the 

agreement between numerical predictions and measurements is good, even in the surf zone 

(array c7). It may thus be concluded that the averaging over three or two current meters at 

arrays c3, c4, c5 and c6 has not resulted in significant smoothing, and may not justify the 

improved agreement for the velocity moments. 

5.3 Sensitivity to OB 

The sensitivity to f, 5; t* and the analytical expression for c were qualitatively described in 

section 5.1.3. The effect of q$B is greater in magnitude and is studied in detail in this section. 

5.3.1 Surface elevation (low order) statistics 

Figure 5.11 shows the effect of OB on the mwl (left column), the standard deviation (middle 

column), and s and Hrms (right column). The effect of OB on Hrms is as expected: 

increasing OB results in a shift shoreward of the breaking point, which is reflected by a shift 

shoreward of S. 

Let us first consider Al. As OB increases from 20° to 23° , the waves are allowed to shoal 

further. This results in a marginally better fit for Hrms. Increasing OB further to 26° results in 

a decrease and modulations in Hrms in the breaking zone. This is explained by the fact that 

allowing the waves to shoal further results in increased nonlinearity, thus increased 

generation of higher harmonics, with an eventual decrease of the wave period. 

89 



mwI (m) 

0.05 

0 

-0.05 

0.04 

0.02 

0 

-0.02 

0.04 

0.02 

n 

Al 

SIE )K 

U. c 

0.15 

0.1 

n nc 

A2 

)K )K 

B1 

it 
ýr 

SIE )K .. /, 

U. UZ 

0.01 

0 

n nl 

v 

nn 

0.15 

0.1 

0.05 

v 

n1 

0.15 

0.1 

0.05 

v 

0.1 

0.05 

n 

standard dev. (m) Hrms & x*roller (m) 

Al 

A2 

I 
. 
)K 

.1 1 

\ý" 

3iE ýý 

B1 

0.5 

0 

u. 4 

0.3 

0.2 

ni 

v 

0.4 

0.2 

v 

0.4 

0.3 

0.2 

0.1 

n 

Al 

31E ;I 

ý n. 

ýýr 

A2 

/ý 

B1 

40 60 40 60 40 60 

x (m) x (m) x (m) 

Figure 5.11 Effect of 08 on the surface elevation (low order) statistics: mwl (left column), standard 

deviation (centre column), and Hrms and 8 (right column), for, from top to bottom row, A], Al BI and B2. 

0,6 = 17°, ------ cH = 20°, ------- OB = 23°, .......... B = 26°. x observed data. Results are plotted 
for x- 30-63m. 

90 



Increasing q5B for A2 lead to instabilities and no improvement on the prediction of the 

shoaling wave was possible here. This run shows little sensitivity to cbB with respect to 
Hrms. 

For B1 and B2, OB = 20° leads to overestimations of the standard deviation and Hrms in the 

post-breaking region. This was seen to be a direct result of the incorrect prediction of the 
breaking location. Increasing q5B further obviously increases the discrepancy. Reducing q5B to 
170 gives a better reproduction of wave decay by inducing earlier breaking, but slightly 

underestimates Hrms in the breaking region. Notice that for B2, increasing q$ to 26° induces 

the waves to break much further shoreward with no improvement for Hrms at the breaking 

point. The results are dominated here by the weak nonlinearity assumption. For these 2 

cases, keeping OB at 20° and `tuning' with the parameters that control wave decay may give 
better results in the inner surf zone, while still predicting breaking at the wrong location. 

The flexibility of the model may thus lead to results that can be misleading. This emphasises 

the need to carry out a thorough evaluation of the model in terms of breaking location, wave 

shape and reproduction of the wave-wave interactions. 

The shift shoreward of the breaking point with increasing OB also results in a shift shoreward 

of the start of set-up, and in a further underestimation of the mean water level. Decreasing 

OB on the other hand tends to slightly improve mean water level predictions. For equivalent 

changes in OB, the short wave runs seem to be more sensitive to this parameter than the long 

wave runs. This is because a change of OB significantly affects the breaking location for 

these tests, in contrast with tests Al and A2. 

5.3.2 Depth-averaged velocity (low order) statistics 

The effects of OB on the velocity predictions (figure 5.12) are fairly similar to those for the 

surface elevation. They show the same sensitivity to OB qualitatively: the increase in the 

surface elevation standard deviation as a consequence of an increase of Oe is associated with 

an increase in the velocity standard deviation. The similarity is also quantitative as the 

relative increase (decrease) of the standard deviation for a qB changing from 20° to 26° (17°) 

is the same for both the elevation and the depth-averaged velocity. OB has relatively little 

effect on the undertow predictions. 
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5.3.3 Elevation and velocity skewness and kurtosis 
It was shown that the results for low order statistics exhibit some sensitivity to OB. It is 
however on S, 7 and K, 7 (figure 5.13) that OB has the most significant effects. 

Su and Ku show the same sensitivity to OB as S, 7 and K. both qualitatively and quantitatively. 
Results are shown on figure 5.14 for completeness. 

S, 7 and K, 1 are generally best predicted with cbB = 20°. As 95B increases, so do S, 7 and K, r 
Again the effect of increasing Opis that the waves are allowed to shoal further, and therefore 

become more nonlinear. Thus it is expected that S, 7 and K, 7 should increase with increasing 

OB. However, an increase of OB by 6° only (condition Al) may result in a very significant 
increase in S. and K, r both being over-predicted in this case. The regular long waves run Al 

exhibits the greatest sensitivity to OB. While increasing cbB to 23° results in a slight 
improvement for the wave height, it produces a dramatic increase, and in this case 

overestimation, of S. and K.. In other words, efforts to improve the results for the wave 
height and the mean water level may yield the wrong wave shape. This, again, stresses the 

need to evaluate the model in all aspects, not only in terms of wave height and mtitw1. 

The predicted S. and K, 7 for case 131, which so far followed the trend obtained from the 

measurements, are seen to start increasing some distance after breaking if q5e is set as high as 

26°. These over-estimations of predicted S, 7 and K, 7 are due to the increasing presence of 

higher harmonics, generated during shoaling and breaking, which is associated with 

increasing OB. This will be discussed further in section 5.6. 

5.4 The mild slope assumption and its implications 

Throughout the comparisons carried out so far it has been possible to observe the prediction 

by the model of strong interactions of the waves with the bathymetry. For example, the 

modulations in the onshore and offshore velocities perfectly follow the bathymetry, 

increasing over the bars, and decreasing over the troughs. The predicted skewness and 

kurtosis also show strong coupling with the bathymetry, particularly for the irregular runs. 

Whilst this correlation between e. g. the velocities and the bathymetry is theoretically 

agreeable, the predicted interruption in the bar trough of the , ave breaking process for cases 

BI and B2 raises the following question: is this predicted instantaneous response to changes 

in the water depth a realistic representation of the actual wave field ? 
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This section provides a discussion of the effects of deviations from the assumption of slowly 
varying bathymetry. As an introduction, it is useful to emphasise why this assumption was 
made and its implications. First, the long wave assumption, the basis of classical Boussinesq 

models as well as of models based on the nonlinear shallow water equations, may be 

expressed as kh « 1, that is, the wave length is much longer than the water depth. This may 
be reinterpreted as implying that the wave properties vary little in a distance of the same 
order as the depth (Peregrine, 1972). This in turn has some implications regarding the bed 

slope. Using non-dimensional and scaled variables, Dingemans (1997) showed that the 
bottom slope hx is 0(, U1/2) at most, that is hX <= hWL. In the derivation of the equations 
(section 2.2.4), the first derivative of h was considered small, i. e. hx « X1'`2, and 

consequently higher derivatives and products of derivatives were neglected 1. Since, despite 
improved dispersion, h/L is restricted itself, this imposes a very stringent restriction on the 
bottom slope and curvature. 

Let us first consider the regular case B 1. The bathymetry changes for this case show very 

strong features where it is expected that the requirement that the bathymetry be slowly 

varying is not met, and where the changes of curvature are such that their neglect by the 

model may affect the solution. Figure 5.15 shows the cross shore variation of the bed slope, 

curvature and beach parameter. It shows that the region of the bar trough does correspond to 

large values of these parameters. It appears from the results that the model responds 

instantaneously to quickly changing bathymetries. In contrast, it was observed in section 

5.2.1 that the (laboratory) waves did not actually respond to the sudden change in , eater 

depth just shoreward of the bar. It appears that a violation of the mild slope assumption may 

result in an unrealistic instantaneous response to the water depth changes. 

These observations lead to the idea that the actual bed profile could be modified to resemble 

the topography which the waves actually feel. In other words, the aim here is to estimate an 

effective bottom topography. Intuitively therefore, and on the basis of figure 5.15, it was 

decided to smooth the bathymetry from bar crest onshore. Figure 5.15 shows the new 

smoothed profile. 

1 Note that if it is assumed that ht= Op"), higher derivatives and products of derivatives are now O(p) and are 
thus retained. The resulting equations allow for larger slopes. 
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Figure 5.16a shows the elevation statistics for both raw and smoothed profiles compared 

with measured data. It shows that the profile smoothing has resulted in a better prediction of 
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the location and intensity of wave breaking, which is no longer concentrated in the inner 

surf zone 1. This in turn has resulted in a much better fit for Hrms, the maximum and 
minimum elevations, and the standard deviation. This improvement is reflected in excellent 
wave decay predictions and an attenuation of the cross-shore modulations. The latter is 
discussed in section 5.5. In addition, the set-up is initiated earlier, and is thus higher. As a 
result, a better fit for the mwl is obtained. 

Profile smoothing has resulted in a smoother variation of S, 7 and K, 1 but brought no 
improvements. Surprisingly, in this particular case, S,, and K. do not depend on the 

correctness of wave breaking prediction. The model limitations other than the mild slope 

assumption remain (namely limitation to weakly non linear waves, errors in phase celerity 

and shoaling for kh > 4/5). Consequently perfect results cannot be expected. It implies that, 

for this test, S. and K, 1 are primarily sensitive to these model limitations rather than to the 

mild slope assumption. One may suggest that wave shape evolution for this case is 

dominated by triad interactions which do not depend on the wave breaking process. 

Figure 5.16b show the velocity statistics for both raw and smoothed profiles compared with 

measured data. Improvements for velocity predictions appear as a decrease of both onshore 

and offshore velocities in the surf zone, resulting in a slightly better agreement with 

observations. Again no significant change to Su and Ku appears. 

The effect of smoothing the bathymetry for B2 is shown on figure 5.17a (elevation) and 

5.1 8b (velocity). Profile smoothing has resulted in the same improvements as for B 1, except 

that this time, improvements on S, 7 and K,, predictions also emerge, whereas Su and Ku are 

now overestimated. This suggests that for this test, in contrast to B 1, significant nonlinear 

transfers of energy (thus significant changes in wave shape) occur in the breaking region, 

and that the intensity of these transfers is depth (or bed slope) -dependent. 

Smoothing the profile in the same way barely has any effect on cases Al and A2. This is 

surprising since the restriction on bottom slope much more stringent for these long waves 

runs. Since the cross-shore variation of curvature for Al and A2 is smoother, and the 

curvature is smaller , one may suggest that it is not the bottom slope but the change of 

curvature that affected the results for B1 and B2 . 

' as defined by the observations 
98 



0.04 

0.03 

0.02 

0.01 

0 

_n Al 

mwi 

w )o 

W )K )K )K I 
X X X W / 

v. v0 

20 40 60 

mean max. elevation 

0.3 

0.2 

0.1 

0 

-0.1 

-0.2 

ilE 
_ 

ý1 
rý ý1 

5K 4-ý,. 
,, 
* 

0 20 40 

elevation skewness 
0 

4 

3 

2 

i 

n1 
L 

1.5 

1 

0.5 

0 

I -V. J 

0 20 40 60 0 20 40 60 
x (m) x (m) 

Figure 5.16a Effect of profile smoothing on the surface elevation statistics, run B 1. 
Actual profile (------), effective profile ( ). 

99 

standard deviation 

0.15 

0.1 

0.05 

"1 \. f 
E 

1 

0' 
0 20 40 60 

Hrms & 20*roller 

0.5 

0.4 

0.3 

0.2 

0.1 

n V 
60 20 30 40 50 60 

elevation kurtosis 



undertow 

0.2 

0 

-0.2 

0.6 
0.4 

0.2 

0 

-0.2 

-0.4 

-0.6 

I' 

0 20 40 60 

mean on/offshore velo. 

standard deviation 
0.8 

0.6 

0.4 

0.2 

0 
0 20 40 60 

mean max on/offshore veto. 

1 

0.5 

0 

-0.5 

-1 

0 20 40 60 0 20 40 60 

velocity skewness velocity kurtosis 
l. D 

1 

0.5 

0 

0 

5 

4 

3 

2 

*) 

ýýýý 
r 

\/ýý 

x 
x 

x 

I -u. 00 20 40 60 0 20 40 

x (m) x (m) 

Figure 5.16b Effect of profile smoothing on the depth-averaged velocity statistics, run B 1. 

Actual profile ( ------ ), effective profile ( ). 

100 

60 



mwi 

0.1 

0.05 

A 

n nel u. uL 

0.015 

0.01 

0.005 

0 

-0.005 
n Al 

0.5 

0.4 

0.3 

0.2 

0.1 

A 

-v. v Iv 
0 20 40 60 0 20 40 

Hrms & 60*roller Hmax 
U. 4 

0.3 

0.2 

0.1 

A 

0 

5 

4 

3 

2 

uV 

0 20 40 60 0 20 40 

elevation skewness elevation kurtosis 
.. c Z 

1.5 

1 

0.5 

0 

standard deviation 

r 

ilE 

60 

X 

X 
)K 

41 
11 

60 

x 

ýý 

1 

iý 
ter" 

I 
-U. 00 20 40 60 0 20 40 

x (m) x (m) 

Figure 5.17a Effect of profile smoothing on the surface elevation statistics, run B2. 

Actual profile (------), effective profile ( ). 

101 

60 



0.3 

0.2 

0.1 

0 

-0.1 

-0.2 

0.6 

0.4 

0.2 

0 

-0.2 

-0.4 

-0.6 

undertow 

p 

0 20 40 60 

mean on/offshore velo. 

0.6 
0.5 

0.4 

0.3 

0.2 

0.1 

n 

standard deviation 

xý 

0 20 40 60 

max on/offshore veto. 

1 

0.5 

0 

-0.5 

-1 

0 20 40 60 0 20 40 60 

velocity 
a 

skewness velocity kurtosis 

1.5 

1 

0.5 

0 

-0.5 

7 

6 

5 

4 

3 

2 

xx 
x( 

X 

ýV 
XX 

yrt1* 

I 
0 20 40 60 0 20 40 

x (m) x (m) 

Figure 5.17b Effect of profile smoothing on the depth-averaged velocity statistics, run B2. 

Actual profile ( ------). effective profile ( ). 

102 

60 



5.5 Modulations in the spatial variation of statistics 
A striking feature in the model results is the development of oscillations in the cross-shore 

variation of the surface elevation and velocity statistics, particularly in the case of both 

regular runs (see figures 5.2 & 5.8 for elevations, figures 5.4 & 5.9 for velocities). The 

eventuality that these modulations may be due to reflection from the sponge layer was ruled 

out during the tests on the efficiency of the sponge layer described in section 5.1.2. It is 

interesting to note that the measurements also show modulations in the cross-shore variation 

of the surface elevation statistics. These oscillations have the same wave length as those 

observed in the predictions, but are of smaller amplitude, and out of phase. Since the 

distance between two adjacent wave gauges is 3.66 m in the shoaling region, they are better 

defined for Al (figure 5.2a), for which the wave length is longer. The presence of 

modulations both in the measurements and in the computations suggests two justifications 

for their appearance: they may be due to recurrence behaviour in nonlinear interactions 

(Boczar-Karakiewicz et al., 1987), and/or they may be due to reflection from the slope. 

Another interesting point is that the wave length and amplitude of the oscillations for the 

standard deviation (or wave height) (figures 5.2 & 5.4) are different from those observed for 

the mwl and skewness (figures 5.8 & 5.9). 

oscillations in the standard deviation and wave height 

The possibility that the oscillations in the standard deviation may be due to nonlinear 

interactions is first examined. (Recurrent) triad interactions between the primary and bound 

second harmonic are characterised by a beat length given by (Dingemans, 1997): 

Lr= 
2ff (5.1) 

k2 -2kß 

where kl and k2 are the wave number of the primary and first harmonic respectively. Thus 

the recurrence length for conditions A and B are 203 m and 7m respectively, which does 

not correspond to the actual wave length of the observed oscillations (at 18 in and 5.5 m 

respectively). The predicted and measured power spectra at gauge 1 are compared, for all 

four runs, on figure 5.1. While interactions for BI solely consist of self-interactions (the 

peak at the first harmonic is very weak), the picture for Al is complicated by the fact that 

higher harmonics are already present in the field at gauge 1. Since equation (5.1) provides 

the beat length resulting from interplay between first and second harmonics only, the 

theoretical evaluation of Lr is uncertain. 
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It was thus decided to evaluate Lr numerically. Numerical experiments were also carried out 
in order to assess the significance of nonlinear interactions occurring over the flat bed. The 

incoming wave fields for both Al and BI were propagated over a flat depth with a depth 

equal to that at gauge 1. The cross-shore variation of the standard variation thus obtained 
displayed regular oscillations. For B l, the amplitude of these oscillations was about 1.5% of 
the standard deviation, whereas Lr was found to be 7 m. For Al, the amplitude of the 

oscillations was about 5.5% of the standard deviation. Lr for that run was not as clear, 

although a recurrence pattern was depicted every 165m. Table 5.2 tabulates these results. It 

is clear that the oscillations present in the results do not correspond to either theoretically or 

experimentally predicted oscillations due to nonlinear transfers of energy. 

1/ Actual oscillations 2/ oscillations due to triad 

interactions only 

flat bed test (theory) 

Al B1 Al B1 

length (m) 18 5.5 165 (203) 7 (7) 

amplitude (m) 0.032 0.023 < 0.01 < 0.002 

% standard dev 18 % 17% 5.5 % 1.5 % 

Table 5.2 - Amplitude and length of cross-shore modulations of the elevation standard deviation 

1/ actual, that is oscillations over the flat bed section in front of the slope 

2/ flat bed test, that is modulations for waves propagating over a flat bottom (i. e. modulations due to 

triad interactions only). The lengths in bracket are theoretical evaluations of recurrence in nonlinear interaction 

using equation (5.1). 

The possibility that triad interactions may be responsible for these modulations is further put 

in doubt by the fact that the oscillations are of constant wave length. Boczar-Karakiewicz et 

al. (1987) showed theoretically that the propagation of a wave train over a sloping bed 

develops oscillations with decreasing beat length. 

Bearing in mind the fact that the time domain Boussinesq equations allow waves travelling 

in both directions, it is possible that the oscillations observed both in the measured and 

predicted results may be due to reflections from the bed slope. The computed maximum 

elevations above and below the mwl (see e. g. figure 5.2b) show the wave envelope across 

the channel. The modulations of the wave envelope are characteristic of standing waves 
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patterns, with maxima and minima reached at the same (cross-shore) locations. Results in 

section 5.4 show that these modulations are indeed due to reflection from the slope. By 

changing the location and intensity of the breaking, the smoothing of the profile has resulted 
in a remarkable reduction in the modulations of the wave height (or standard deviation). 
Since the waves are breaking earlier, less energy is allowed to propagate shoreward and 
reflect. 

The validity of these conclusions may be questioned by the fact that the oscillations do not 
damp away offshore. This is particularly striking for B l. It is interesting at this point to 

consider the effect of the treatment of the seaward boundary on the results. In the model, the 

waves reflected from the slope propagate seaward to the boundary where no allowance is 

made for seaward propagating waves to leave the domain undisturbed. Any outgoing wave 
is thus reflected back, which may result in the establishment of a standing wave field. Test 

B1 was run for a duration of 50 sec., at which time the first waves reach gauge 19. The 

results thus obtained show a clear damping of the reflected waves as they propagate 

offshore. It may thus be concluded that the fact that the amplitude of the modulation is 

constant along the tank for a longer test duration (175 sec) is due to the re-reflection at the 

wave generator of the reflected waves, thus creating a standing wave field. 

In the case of oscillations dominated by reflection, the difference in the observed and 

simulated modulations may be explained by the difference in the intensity and location of 

reflection in the laboratory and numerical experiments. First, the model may not always 

predict the breaking location correctly (e. g. case B 1). By allowing more energy to propagate 

into the surf zone, this may result in significant discrepancies in the magnitude and location, 

and thus effect, of reflection. Second, the observations include reflection from the slope 

beyond gauge 19, a region which the model ignores. The accuracy of the reproduction of 

reflection from the slope by the model is unknown. For case B1, the modulations in Hrms 

remaining after profile smoothing have the same amplitude and wave length as those 

observed in the measurements. This suggests that the amount and nature of the reflection in 

the simulations and in the model are equivalent. This in turn suggests two observations. 

First, the reflection responsible for these oscillations in the laboratory occurs before gauge 

19. Second, in the physical tank, the seaward propagating waves were also reflected back at 

the wave generator. Note that, the wave generator is set to absorb outward going waves at 

the peak frequencyfp only, implying f effected waves # fp" 
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oscillations in the skewness and mwl 
Observation and analysis of the cross-shore modulations have concentrated on those 

observed in the standard deviation (or equivalently wave height) predictions. For test B 1, the 

predicted mwl, S,, and Su display oscillations of a different nature, with a longer wave length 

and higher amplitude. Furthermore, these oscillations do not disappear nor attenuate with 

profile smoothing, which implies that they may not be the result of reflection. Thus, while it 

has been established that the modulations in the standard deviation are predominantly due to 

reflection, as opposed to triad interactions, the question for the mwl and skewness 

oscillations remains open. 

In order to investigate their origin, the length of the flat bed section at the toe of the slope, 
FBL, was changed. If these oscillations are dominated by triad interactions, they should 

change with varying FBL. Case B1 is examined here. FBL was originally set to 15 m 
(section 5.1.2). The recurrence length for B1 was theoretically and experimentally found to 

be 7m (table 5.2). FBL was thus changed to values ranging from 8 to 15 m. As shown on 

figure 5.18, this has resulted in shifts of the modulations in both the mwl and skewness, 

which suggests that these modulations are dominated by triad interactions. This is confirmed 

by the fact that (i) the cross-shore variation of the second harmonic amplitude displays 

modulations with the same wave length and amplitude and in phase (see figure 5.21), and 

(ii) these modulations do not disappear with profile smoothing. 

Notice that a change of the length of the flat bed section in front of the slope results in no 

change in the location of nodes and antinodes for the oscillations in the standard deviation, 

which also retain the same amplitude and length. This confirms that these modulations are 

dominated by reflection, and not by triad interactions. 

The origins of the oscillations have now been identified. The difference in nature of the 

modulations in the data and in the computed results can now be examined. The incoming 

wave field in the model is allowed to transform before reaching the slope. For Al in 

particular (for which FBL does not correspond to the recurrence length) and for both 

irregular runs, this may have resulted in different recurring cycles. It is also possible that the 

treatment of the seaward boundary generates super-harmonics components, thus altering the 

cycle of nonlinear wave interactions. 
r 
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Figure 5.18 Effect of the length of the flat bed section, FBL, on the surface elevation statistics, run B 1. 
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5.6 Wave generation 
In this section, the significance of FBL with respect to wave generation is investigated. Let 

us first examine the direct effect of FBL on wave generation. Comparison of the amplitude 

of the oscillations in the standard deviation due to triad interaction only (obtained from the 
flat bed test) and the standard deviation itself show that triad interactions occurring over the 
flat bed are very small. Table 5.2 shows that the amplitude of these oscillations is of the 

order of 5.5% and 1.5% of the standard deviation for Al and B1 respectively. It may safely 
be assumed that this should not affect wave generation significantly. 
In section 5.5, it was demonstrated that, because of the nonlinear transfers of energy 

occurring during propagation over the flat bed, changes in FBL resulted in shifts' of the 

oscillations that are dominated by these energy transfers, that is the oscillations in the 

skewness and mwl. In order to optimise wave generation, ideally, the flat bed length should 
be chosen such that the predicted and observed triad-interaction-dependent-modulations are 

in phase. However, it appears that changing the length of the flat bed has very little effect on 

the predictions in the surf zone (figure 5.18). This supports that assumptions made above 

that the triad interactions occurring over the flat bed sections have little effect on the wave 

generation. These observations were made for B 1, but hold for case Al as well, as shown in 

figure 5.192. The irregular runs on the other hand showed no significant sensitivity to FBL. 

Choosing FBL so as to match observed and predicted modulations is thus not essential. 

The combined effects of wave reflection (and the resulting standing wave field) and changes 

in FBL on the wave generation are now examined. It is now understood that, since the 

oscillations in the standard deviation are dominated by reflection3, the location of maxima 

and minima (antinodes and nodes), and the amplitude of the oscillations remain the same 

with changing FBL. This, combined with the fact that the seaward boundary condition is 

fixed, results in shifts up or down of the standard deviation over the duration of the 

experiment (panel (1,2) figures 5.18 and 5.19). Note that this is likely to have occurred in 

the physical tank too. Figure 5.20 provides a close-up on the standard deviation in the 

generation region for both Al and B l. For example, for test B 1, with FBL = 14 m, the 

1 without any change of amplitude and length of oscillations 
2 note that for this case, changing FBL has had very little effect on the skewness oscillations, i. e. no shift. This 

is because the recurrence length for this run is long (165/203m) compared to the change in FBL (by 4m). 

Also note however that, with FBL=16m, over the duration of the experiment, the spectral peak was 

underestimated at gauge I because of phase mismatch between lab-model modulations. In other word, the best 

fit at gauge I does not correspond to best overall fit during shoaling. Also note that overestimation of the third 

harmonic spectral peak could not be corrected by changing FBL. 

3 and since the location and intensity of the reflection remains the same, regardless of FBL 
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generation point corresponds to an antinode, and the standard deviation is minimum. If FBL 

= 11 m, then the generation point corresponds to a node, and the standard deviation is 

maximum. 

B1, standard deviation 
0.16 
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0.13 

0.12 

0.11 

Al 

1, '11fl 

" tl ºý 

0.22 
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0.18 

0.16 

Al , standard deviation 

V. 1 

-20 -10 0 10 20 -20 0 20 40 
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Figure 5.20 Combined effect of FBL and reflection on the elevation standard deviation, run BI (left) and 
Al (right). * observed data. 
Legend run A 1: FBL = 20m FBL = 16m ( 

........ 
). x= -FBL to 50 m. 

Legend B 1: FBL = 15m( FBL= 12.5m( ------), FBL= llm(........ ), FBL= 14m(- -- -). x=- 
FBL to 20 m. 

Note that the changes in the predictions in the surf zone for B1 resulting from changing FBL 

may now be ascribed to reflection, not the direct effect of changing FBL. The shifts up or 

down of the standing wave field for this test run result in changes in breaking location, 

hence changes in surf zone predictions. Hence the slightly better fit in the surf zone obtained 

with FBL = 11 m is the result of overestimated wave heights in the shoaling zone (figure 

5.18). 

It appears from these observations that the wave field evolution over the flat bed due to triad 

interaction has little effect on wave generation and on the hydrodynamics in the surf zone. 

Wave generation is dominated by the effects of reflection, or more exactly, the combined 

effects of wave reflection and choice of FBL. Ideally, FBL should thus be chosen such that, 

for a given duration of the experiment, the wave generation is optimum. 

It is emphasised however, that except for special cases like 131, for which breaking is 

problematic, the choice of FBL is not critical as the surf zone predictions are not affected. In 

the case where optimum wave generation is sought, it is clear that wave generation should 
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not be assessed in terms of power spectrum prediction, and that a more global approach is 

required. For example, for Al, optimum results in the shoaling zone are obtained with FBL 

= 16m. Note however that, with FBL = 16m, over the duration of the experiment, the 

spectral peak at gauge 1 is underestimated because of the phase mismatch between predicted 
and observed modulations. In other word, the best fit at gauge 1 does not correspond to best 

overall fit during shoaling. Also note that overestimation of the third harmonic spectral peak 
for that run could not be corrected by changing FBL. 

5.7 Discussion 

5.7.1 General performance of the model 
This section provides a discussion on the general performance of model with respect to 

" regular and irregular waves, 

" long and short waves, and 

" shoaling and breaking waves. 

regular waves (A1, B1) and irregular waves (A2, B2) 

On the basis of the four tests examined here it may be concluded that, overall, the model 

performs equally well for regular and irregular waves. 

long waves (A) & short waves (B) 

Contrary to expectations, the results for conditions B (short primary wave) are better than 

those for conditions A (long waves). This seems contradictory since the model is expected 

to perform better for long waves. However this can be explained by three reasons: 

- wave generation for conditions B is relatively better (figure 5.1) 

- the degree of nonlinearity is greater for A (table 4.1) 

- given the steepness of the waves, a lot more reflection from the slope beyond gauge 

19 is suspected to have occurred for A 

- condition A is characterised by long waves, that is waves for which the phase 

mismatch between free and bound waves is small (increasingly non-dispersive waves). The 

triad interactions are thus more intense than for B, resulting in greater changes in wave 

shape. The resulting numerous super-harmonics, despite the improved dispersion 

characteristics, cannot be handled correctly by the model. This may be examined by 

assessing the model's performance for individual harmonics. 



Let us first consider B I. The surface elevation time series were band pass filtered between 

0.1-0.5 Hz (first harmonic), 0.5-0.9 Hz (second harmonic) and 0.9-1.3 Hz (third harmonic). 

The resulting standard deviation for the raw time series and these 3 harmonics is presented 
in figure 5.21. Apart from a marked overestimation in the surf zone for the first harmonic 

(due to re-shoaling, section 5.5), the predicted and measured results compared well. Figure 

5.21 also shows the same results for the test carried out with a smoothed profile. The fit is 

improved, with a smoother variation and not as much overestimation of amplitude of the 

first harmonic. 
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Figure 5.21 Cross-shore variation of the elevation standard deviation, for the first three harmonics, run 

B 1. predictions with (top plot) actual profile, (bottom plot) effective profile. 

total (- , )K ), first harmonic a, ( ---- -- o), second harmonic a2(------, + ), third harmonic a3 

( ......... ,x). 
The markers are the observed data, the lines are the predictions. 
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Figure 5.22 Cross-shore variation of the elevation standard deviation for the first 7 harmonics, run Al. 
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(bottom plot) fourth to seventh harmonic: 4th harmonic a4 ( , )K ), 5th harmonic a5 (- ---, -- ), 6th 
harmonic a6 ( -------- ), 7th harmonic a7 (........ , X). 
The markers are the observed data, the lines are the predictions. 

The same analysis was carried out on Al and is displayed on figure 5.22. The surface 

elevation time series were band pass filtered between 0.0625-0.1875 Hz..... up to the 7th 

super-harmonic. Figure 5.22 shows that the first and second harmonics are correctly 

predicted. The standard deviation of the third and higher harmonics are overestimated some 

distance after breaking (at x zz 50m). Table 5.3 tabulates the location of the appearance of 

high harmonics for both Al and B1 together with their kh values. For Al, kh Z- ? for the 

third harmonic, which appears very early, at about 25 m. The third harmonic for condition 

BI has kh z 3.8. One would thus expect the model to perform better for Al than for BI for 

113 



this harmonic. It is not the case however, because the third harmonic in Al is more 
significant than the third harmonic in B1. For example, it represents approximately 35 % of 
the total energy at the breaking point for Al, against 18 % for B l. Moreover, the third 
harmonic develops and is present over a much longer distance for Al. Since Al is 

characterised by yet higher harmonics, the poor performance of the model with respect to 
higher harmonics (figures 3.2 and 3.3) explains the improved results for B 1. 

Al Bi 

Harmonic nb presence detected kh Harmonic nb presence detected kh 

at gauge nb at gauge nb 
110.44 111.27 

2 1 0.96 2 12 2.47 

3 8 1.98 3 16 3.78 

4 12 5.60 

5 13 14.50 

6 14 49.6 

7 15 - 
8 16 - 
9 16 - 

Table 5.3 kh values for each harmonics; run Al and B I. The location of first appearance of the harmonics is 

determined from the predicted power spectrum (not shown). 

shoaling and breaking waves 

As expected, the model performs better in the shoaling zone than in the surf zone. The 

disagreements between the data and predictions are greatest for runs for which super- 

harmonic generation is intense, particularly for the skewness and kurtosis. 

The Boussinesq equations contain frequency dispersion and amplitude dispersion terms that 

balance each other. In the breaking region, the waves become increasingly non-frequency 

dispersive, and amplitude dispersion dominates. Waves in this region have in fact 

successfully been modelled with the nonlinear shallow water equations. It is thus possible 

that the presence of the dispersion terms (high order `Boussinesq' terms) induce errors in the 

wave shape prediction in the breaking region. It was recognised that the effect of the 

dispersion terms is to stabilise the wave profile by reducing the steepening of the wave front 
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(sec. 3.2.3). This would result in an underestimation of the asymmetry, and possibly, as a 
result, an over-estimation of the skewness. 
Note however that observation of the time series shows that the predicted steepening of the 

wave front compares fairly well with the measured one. It is possible that the computations 

were stopped at a reasonable cross-shore location, that is at a location where dispersive 

effects in the equations are also present in the physical tank. Further investigation is now 

required to, in particular, evaluate asymmetry predictions. This is presented in chapter 6. 

Definite causes for the discrepancies for the skewness and kurtosis in the surf zone were 

established in the previous section. Indeed the super-harmonics are increasingly present in 

the surf zone. The performance of the model for waves with large kh is known to result in (i) 

the incorrect phase celerity/wave number of high harmonics, (ii) incorrect linear shoaling. It 

appears from figure 5.22 that the transfer of energy to higher frequencies is over-estimated, 
hence the over-estimation of the skewness. The performance of the model with regards to 

the accuracy in predicting nonlinear transfer of energy is examined in chapter 6. 

Finally, it appears from test Al that a relatively good wave height and wave envelope 

prediction does not necessarily mean that the wave shape is right. On the other hand, it 

appears from BI that good (normalised) wave shape prediction is not necessarily a sign of 

good wave height prediction. This also applies to the velocities. 

5.7.2 Sensitivity to q$B 

The free parameters were chosen on the basis of laboratory measurements, but allowing for 

the fact that, since the model is limited to weakly nonlinear waves, it tends to underestimate 

the wave height in the breaking region (Schäffer et al., 1993). Thus the breaking criterion 

was chosen accordingly. Despite this, and for the data studied in this chapter, the model 

appears fairly robust, and OB = 20° does indeed give the best overall results. 

In a recent paper, Madsen et al. (1997a) looked at the improvements obtained for the wave 

height and mwl by changing the free breaking parameters. It was shown here that similar 

improvements could be obtained, and that the sensitivity of the mwl and wave height to q$B is 

moderate. The present study further establishes that the depth-averaged velocity statistics 

show the same sensitivity to OB, both qualitatively and quantitatively. In addition, it appears 

that this sensitivity is emphasised for the skewness and kurtosis of elevation and velocity 

predictions, especially for cases where the generation of higher harmonics is intense. The 
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danger is that an effort to optimise q$B for a good fit for the wave height and mwl (as 

proposed by Madsen et al., 1997a) may result in the wrong wave shape. 

The reason for this sensitivity is now examined with case Al. The effect of OB on the 

elevation standard deviation is examined on figure 5.23. It is known that high kh, hence bad 
frequency dispersion and shoaling properties, result in the wrong phase celerity for higher 
harmonics (and therefore wrong wave shape), and wrong harmonic amplitude (over- 

prediction), respectively. Since increasing OB effectively results in the generation of more 
high harmonics, an increase in qB for a case like Al results in significant changes to the 

wave shape. 

It is clear that the extent of the sensitivity to OB depends on the stage of wave transformation 

process: if waves with large kh are already present at the breaking point (i. e. generated 
during shoaling) (case Al), or if increasing OB results in the generation of waves with large 

kh (case B 1, OB = 26°) , then increasing OB yields large overestimations of the elevation and 

velocity skewness and kurtosis. 
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Figure 5.23 Effect of OB on the cross-shore variation of the elevation standard deviation, for the first six 
harmonics, run Al. 08= 20° ( ), qB= 26'( -- ---). 
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Given the sensitivity of the skewness and kurtosis of elevation and velocity on 0B, the model 
must be applied with caution in cases for which triad interactions are intense (which happen 

to be long waves cases for which the model should perform best). 

Finally, in the study of irregular and regular wave cases, Ozanne et al. (1997) found that, in 

contrast with the regular waves case, the irregular waves showed little or no sensitivity to 
OB. This trend is not repeated here. In terms of percentage difference, for the same change in 

OB, Al, A2 and B2 undergo the same increase in the elevation and velocity standard 
deviation. 

5.7.3 Weak nonlinearity versus weak dispersion 

In order to assess the dependence of the discrepancies between the predicted and measured 

results on the degree of nonlinearity c, the difference between predicted and measured 

standard deviation, skewness and kurtosis of surface elevation were plotted against E in 

figure 5.24. All four runs and each wave gauge are represented. Dependence on the degree 

of dispersion ,u and on the Ursell number U,. are also shown in figure 5.24. 

The difference for the standard deviation was normalised by the predicted standard 
deviation at gauge 14 (breaking point). The discrepancies are expected to increase with 

increasing c, increasing u, and increasing U,. In other words, increasing discrepancies with 

increasing c (increasing 1c) show a correlation between errors and violation of the weak 

nonlinearity (weak dispersion) assumption. 

Figure 5.24 shows that the discrepancies do indeed increase with increasing E. Also notice 

that the degree of nonlinearity for tests A reaches as high as 0.3 8, compared to tests B 

(maximums at 0.24). This implies that it is for A runs that the violation of the weak 

nonlinearity assumption produces the most errors. 

Figure 5.24 shows no sign of increasing errors with increasing p, even for the short wave 

runs. Indeed, thanks to improved dispersion, no discrepancies are observed for large degrees 

of dispersion. The larger discrepancies associated with small p are due to violation of weak 

nonlinearity. 

An expected increasing discrepancy with increasing Ursell number is shown in figure 5.24. 

Note that good results are obtained even when E and p are not of the same order. The largest 

discrepancies are observed for largest s, and thus largest U,. It is not established whether 
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discrepancies are the result of a violation of the weak nonlinearity assumption, or a result of 
the fact that s and u are not of the same order, or both. 

Similar observations were made for the depth-averaged velocity statistics. They are shown 
in figure 5.25. The same remarks apply. 

5.7.4 Towards a parameterization for the skewness and kurtosis of elevation and 

velocity ? 

The predicted and measured elevation skewness and kurtosis are plotted against .6 and U 
(figure 5.26). Both the observations and the predictions indicate a dependence of S,, and K77 

on u and EA first order polynomial fit to both the predicted and the observed data is 

shown'. The same correlation also appears between Su and Ku with p and c (figure 5.27). 

The same trend is observed for regular and irregular waves, and short and long waves. A 

parameterization is tempting, although the scatter is still large. Such parameterization 

requires the testing of a wider range of wave characteristics and the inclusion of other 

parameters. 

The improved performance of the model with velocity moment predictions, in contrast with 

elevation moments, is again apparent both in figures 5.25 and 5.27. 

5.7.5 Summary of the various sources of discrepancy 

The causes for the disagreements between the observation and predictions may be 

summarised as follows: 

" The model limitations to weak dispersion and weak nonlinearity are major causes for 

disagreements. Note that, despite the improvements introduced to extend the accuracy of the 

linear dispersion relation, the model still yields inaccurate results for kh > 5. 

" Errors in the measurements must also be accounted for. For example the difficulty to 

measure the surface elevation in the surf zone was found to be a possible cause for 

disagreements. Accurate positioning of the instruments is also essential, especially for 

rapidly evolving waves like test Al. Finally the measurement of wave shape with the 

resistance gauges may be inaccurate. 

" The differences between laboratory and model conditions have also certainly contributed 

to discrepancies. The model does not reproduce hydrodynamics beyond gauge 19. and their 

effect on the modelled domain. Two processes are ignored that may explain discrepancies: 

1 The aim here is only to show trends. Fitting higher order polynomials will follow the data better but are not 

physically realistic. If a parametrisation is sought after, a more appropriate curve fitting should be used. 
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reflection - from the slope beyond gauge 19 

undertow 

The effect of these two processes on the wave shape are unknown. Note however that since 

Su and Ku are well predicted, and since undertow is not simulated, it appears that the current 

oscillations are not perturbed by undertow. 

" Finally, despite the correction for truncation errors, numerical errors are inevitable, and the 

effects of the stabilising numerical filter (sec 3.5.5) are not fully established. 
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CHAPTER 6 

6.1 Introduction 

MODEL - DATA COMPARISON: A BISPECTRAL 

ANALYSIS 

The departure, in shallow water, of the probability density function of the surface elevation 

and orbital velocity from a Gaussian distribution has so far been evaluated in terms of the 

third and fourth order statistical moments in a time domain analysis. In this chapter, a 

bispectral analysis is performed on the surface elevation and depth-averaged velocity data. 

This method was introduced by Hasselmann et al., 1963, and subsequently applied by 

numerous investigators, in particular, by Elgar and Guza (1985b) for shallow water waves. 

The bispectral analysis provides information about the existence, nature and intensity of the 

wave-wave interactions. It provides a means of evaluating the skewness and asymmetry 

arising from triad interactions. These quantities were defined in section 1.2.1. The 

skewness may thus be re-evaluated, and a new quantity, the asymmetry, may be 

determined. In addition, the contribution to skewness and asymmetry arising from 

individual wave triads may be determined, thus providing a deeper insight into the 

differences between the model and data results. Finally, in the context of this study, the 

additional benefit of bispectral analysis is that it indicates the fraction of the energy present 

at a given set of frequencies that is due to triad interactions, thus distinguishing bound 

waves from free waves. 

In section 6.2, the bispectrum is defined, and its properties relevant to this study are 

reviewed. Section 6.3 presents model-data comparison for total asymmetry, and section 6.4 

looks at the contribution from selected wave triads to total skewness and asymmetry. 

Finally the results are summarised and discussed in section 6.5. 

6.2 Bispectral analysis 

6.2.1 Introduction to bispectral analysis 

The bispectrum is formally defined as the Fourier transform of the third order correlation 

function of a time series q(t) (Hasselmann et al., 1963): 
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1 B(. fj, 
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fk) 

+°° 
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-ao 

S(r 
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(6.1b) J 

where r is a lag, f is the frequency, E[] is the expected value, or average, operator. 
The bispectrum can also be expressed in terms of Fourier coefficients as: 

B(fj'fk )=E Al Alk 4k 
(6.2) 

where A f, is the complex Fourier coefficient of frequency f, and * denotes the complex 

conjugate. The bispectrum is zero if the average triple product of Fourier coefficients is 

zero. This occurs if the modes are independent of each other, that is, for the random phase 

relationships between Fourier modes in a linear wave field (Elgar and Guza, 1985b). On 

the other hand, if waves are present at f, fk and f +k, and if there is a phase relation between 

the waves at these frequencies (i. e. energy is nonlinearly transferred from the interaction 

between two components to the third one), then the bispectrum is non-zero. 

The bispectrum has real and imaginary components. It may be expressed in terms of its 

biamplitude and biphase: 

B(fj, fk) = 
Ifk)l. 

e-`ß('' 
) 

(6.3a) 

where the biphase is 

ß (. fJ 
'. 
fk ) =tan- 

I_4B(fJJk)] (6.3b) [B f 
,. 
fk)] 

where 93{ } and 3{ } denote the real and imaginary parts respectively. The biamplitude 

indicates the nature and relative strength of the interactions, and the biphase gives a 
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measure of the relative importance of the real and imaginary parts of the bispectrum, which 
will be defined latter. 

Using symmetry properties, the bispectrum can be uniquely described by its values in a 
bifrequency octant. For a digital time series with Nyquist frequency fv, the bispectrum is 

uniquely defined within a triangle in a (fJ, f2)-space defined on figure 6.1. 

fz f , /N2, 
f2 

, /N2 

Figure 6.1. plan view of a unique bifrequency space 

fl 
JN, 

f2 

In this bifrequency space, for a wave train with peak frequency fp, the convention adopted 
in this thesis is that a non-zero B(fp, 2ff) indicates nonlinear interactions between waves at 
fp, 2fp and 3fp. Note that the bispectral analysis does not indicate the direction of energy 
flow, hence a non-zero B(fp, 2fp) may indicate a sum interaction resulting in the transfer of 

energy to the third harmonic, i. e. fp + 2fp -> 3fp , or a difference interaction modifying the 

first harmonic, i. e. 3fp - 2fp -> fp 
. Similarly, a non-zero B(fp, fp) indicates phase coupling 

between primary and second harmonics (i. e., assuming fp + fp -> 2fp 
, the self-self 

interaction of the waves at fp forces waves at 2fp ). Difference interactions can also occur 

that result in the generation of low frequency waves. These interactions are not considered 

in this analysis. 

By analogy to equation (6.2), the power spectrum may be defined as 

P(fd)=E AA (6.4) 

The power spectrum indicates the contribution to the second order moment (variance) of 

Y7(t) from the spectral component at f j. The variance can thus be recovered from the 

integrated power spectrum. By analogy it can be shown that the bispectrum represents the 
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contribution to the third order moment from the spectral components at f and fk 
, and that 

the third moment of q (t) may be recovered from the integral of the real part of the 
bispectrum (Hasselmann et al., 1963): 

+00 

E[7l3(t)]J fR{B(fj, fk )}dfjdfk 

-00 
(6.5) 

The skewness, or nondimensional mean cube, of r7(t) is obtained by normalising equation 
(6.5) by the variance to the power of 3/2 (Doering and Bowen, 1995): 

E 173 (t) 
3/2 

E[772 (t)] 
(6.6) 

Masuda and Kuo (1981) showed that the imaginary part of the bispectrum is related to the 
(vertical) asymmetry of the waves: 

+0o 

ff{B(f 
'1k )}dfj dfk 

A= -°° 3/2 
E[772 (t)] 

(6.7) 

With these new definitions, the biphase may be interpreted as a measure of the relative 

importance of the skewness and asymmetry in the bispectrum. 

The bispectrum may be expressed in a normalised form defined as the bicoherence 

spectrum given by Kim and Powers (1979): 

(fj, fk) _ 

IB(f;, fk)I 
- 

E IAfjAfk11. E IAfj+kl (6.8) 

Such normalisation ensures that 0 
_< 

bS1. Thus for a given triad, a zero bicoherence 

indicates normal independent modes, whereas a non-zero bicoherence indicates phase- 

coupled modes. While the bispectrum indicates the nature of the interactions, and their 

relative strength, the bicoherence spectrum (or normalised bispectrum) indicates the 

fraction of the power at e. g. 3fp that is the result of phase coupling between waves at fp and 
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2fp, (assuming the flow of energy is fp + 2fp --+ 3fp ), however small the interaction. In other 
words, if b(fp, 2fp) = 1, the forced waves at 3fp are entirely due to the interaction of the 
waves at fp and 2fp ; that the third harmonic is travelling as a bound wave. b(fp, 2fß) = 0.4 
indicates that 40% of the waves at 3fp are due to the interaction of the waves at fP and 2fp 

9 
and that the remaining of the third harmonic energy is travelling as free waves. 

In this chapter, model-data comparisons consist of evaluations of the bispectrum in terms 
of its real and imaginary parts, and evaluation of the bicoherence. Skewness and 
asymmetry are calculated and compared for both elevation and velocity time series. More 
information regarding bispectral analysis may be found in Doering (1988) and Elgar and 
Guza (1985b). 

6.2.2 Data analysis 

To calculate the bispectrum, a Fast Fourier Transform method is used to calculate the 

product [A 
j, Afk A f. 

+k] 
from discrete blocks of digital data that are ensemble averaged. The 

laboratory data, as received, had been decimated to 0.25 sec. It was thus decided to 
decimate the predicted time series to 0.25 sec also. The records were scaled for zero mean 

and broken down into segments of 64 sec (256 data points) each, with a 50% overlap. This 

resulted in a frequency resolution of 0.0156 Hz. No frequency averaging was applied. The 

cut-off frequency for the analysis was set to 2 Hz for all data. Note that this analysis is 

concerned with sum interactions only and that a 64 sec segment is therefore sufficient. The 

duration of the numerical experiment being limited, the length of the record for each run 

allowed ensemble averaging over 7 and 4 segments only, for cases A and B respectively. 

As a consequence the number of degrees of freedom, which is a function of the number of 

segments, is small, and the statistical stability of the bispectral estimates is low, especially 

for the irregular tests. Analysis of the statistical stability of the bispectral estimates is either 

vague or non-existent in the literature. It was indirectly assessed here by comparing the 

skewness estimated with the bispectral analysis to the exact skewness, that is the skewness 

obtained from the time domain analysis. A plot of the predicted total skewness evaluated 

from the time domain analysis versus the predicted total skewness evaluated from the 

bispectral analysis is shown on figure 6.2. The left hand plot is the elevation skewness; the 

right hand plot is the velocity skewness. The results show some scatter which can be shown 

to be related to e. g. the type of tapering window used, or the amount of overlapping. The 

reliability of the bispectral estimates is thus satisfactory. According to Elgar and Guza 
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(1985b), the number of degrees of freedom required for statistical stability decreases with 
increasing strength of the bispectral signal. It will be shown in section 6.5 that the 

bicoherence estimates indicate very strong interaction for all four runs for which it appears 

that the energy present at each harmonic frequency is entirely due to triad interactions. This 

further justifies the statistical stationarity of the estimates despite the small numbers of 

degree of freedom. 

Lastly it is important to bear in mind the fact that this study consists of the comparison of 

laboratory and numerical results. It is not the exactitude of the estimates that is sought here, 

rather the validity of the comparison. Great care has been taken to ensure that those results 

are analysed in exactly the same way. 
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Figure 6.2 Predicted skewness estimated from the bispectral analysis versus exact predicted skewness. 
Surface elevation (left panel), depth-averaged velocity (right panel). 0A1, " A2, xB1, and + B2. 

6.3 Total effect of triad interactions on flow asymmetry 

The evaluation of the wave shape so far has consisted of direct comparison of time series, 

and comparison of skewness and kurtosis evaluated from a time domain analysis. 

Bispectral analysis may be used to give further information on the wave shape: while the 

skewness may be retrieved from the real part of the bispectrum, a new quantity, the wave 

asymmetry (defined here as asymmetry with respect to the vertical) may be obtained from 

the imaginary part of the bispectrum. The relationship between flow asymmetry (as 

opposed to skewness) and sediment transport is not clear. One may suggest that the violent 

change of sign of the velocity in the case of a strongly asymmetrical wave profile may 

U) 
3 0.8 
m 

0.6 

E0.4 
4d 
w 0.2 
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result in the direction of the sediment movement initiated by the shoreward velocity to be 

reversed offshore. According to Nielsen (1992), several experiments, including those of 
King (1991), have shown that asymmetric waves produce net sediment transport. The 

asymmetry, or imaginary part of the bispectrum, is not only investigated here for its direct 

potential effects on sediment dynamics. Elgar and Guza (1985b) have shown that the 
imaginary part of the bispectrum is also a measure of the skewness of the first derivative of 

the time series, that is skewness of the acceleration in the case of a velocity time series. 
Hanes and Huntley (1986), using field data, first suggested that fluid acceleration had 

possible effects on suspended sediment transport. Since acceleration is directly related to 

the wave shape, both Hanes and Huntley's and King's finding corroborate each other. 

Figure 6.3a shows the spatial variation of the predicted and observed elevation asymmetry, 

A, 7 , 
integrated and normalised according to 6.7. It was shown in section 6.2 that S, 7 and Su 

were estimated with sufficient accuracy from the bispectrum. These estimates are shown in 

figure 6.3, along with asymmetry estimates. The reader is referred to figures 5.13 and 5.14 

for a detailed cross-shore evolution of the exact skewness, for varying OB. 

Since a negative asymmetry indicates a forward pitched profile, the increasing negative 

value of A, 7 indicates increasingly (vertically) asymmetrical wave profiles. The results for 

Al and A2 are fairly good, particularly for A2. For Al, A, 7 is successively under-estimated 

in the outer surf zone, and over-estimated in the inner surf zone'. In contrast, the results for 

BI and B2 show a good qualitative prediction of the cross-shore variation of A,, but a 

underestimation in the surf zone. It appears that while the predicted Sn for Al was 

overestimated in the surf zone (figure 6.3a, panel (1,1)), the predicted A, 7 for that case are 

comparatively good. On the other hand, the S, 7 predictions for B1 were almost perfect 

(figure 5.13, panel (3,1)), but A, 7 in the surf zone is underestimated. The improved results 

for Al and A2, relative to B1 and B2, seem contradictory. Indeed (i) since the prediction of 

asymmetry relies on the correct prediction of the phase shift between the primary and its 

harmonics, and (ii) since Al and A2 are runs for which high harmonics generation is 

intense and kh reaches values beyond 15, one would expect the results to be worse for these 

two cases. 

observed and predicted asymmetry are compared in absolute terms. 
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Figure 6.3b Cross-shore variation of the observed and predicted depth-averaged velocity skewness S,, 
(left column) and depth-averaged velocity asymmetry AL, (right column) estimated from the bispectral 
analysis. Legend as in figure 6.3a. 
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Another interesting feature lies with the effect of Op on the asymmetry. While increasing OB 

results in an increase in skewness, it appears to also result in a decreasing asymmetry.. In 

other words, it seems that the increased presence of high harmonics results in decreased 

asymmetry. Furthermore, whilst the fit with laboratory data was improved with decreasing 

OB for the skewness, it appears that, for the asymmetry prediction, the fit is improved with 
increasing qB. Note that if a choice has to be made, accurate prediction of the skewness is 

preferred. 

Figure 6.3b shows the spatial variation of the predicted and observed velocity asymmetry 
Au. The predictions for AU for cases Al and A2 are larger than the observations in the surf 

zone (in contrast with A,, for which the predictions and the observations were in better 
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Figure 6.3c Effect of profile smoothing on the cross-shore variation of the observed and predicted 

elevation skewness Sq (left column) and elevation asymmetry Aq (right column) estimated from the bispectral 

analysis. For runs BI (top panels), and B2 (bottom panels). 08 = 200. * observed data, effective 

profile, ------ actual profile. 
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agreement). The asymmetry predictions for B1 and B2 are good (and improved relative to 

A,, predictions). It is interesting to see that A, 7and Au for B1 and B2 follow the same trends, 

whereas A,, and Au for Al and A2 follow distinctly different trends. The model does not 

predict this change of trend. Also interesting is the fact that skewness and kurtosis follow 

the same spatial variation, not the skewness and asymmetry. Lastly, observation of the 

results for both A,, and Au for case Al show that the asymmetry is less sensitive to OB than 

the skewness. 

The smoothing of the bathymetry for cases B1 and B2 was seen in section 5.4 to result in 

improved skewness and kurtosis predictions. The effect of profile smoothing on elevation 

and velocity asymmetry predictions is shown on figure 6.3c and 6.3d respectively. Profile 

smoothing has resulted in a smoother variation of A,, and Au, and a better fit for B 1. 

velocity skewness velocity asymmetry 
B1 

1.5 

1 

0.5 

0 

-0.5 

1.5 

1 

0.5 

0 

-0.5 

B1 

0 

-1 

-2 

B2 

0 20 40 60 
x (m) 

ýý 

ilf 

B2 

0 i 
Or, 

-1 

-2 

0 20 40 60 
x(m) 

Figure 6.3d Effect of profile smoothing on the cross-shore variation of the observed and predicted 

velocity skewness Su (left column) and velocity asymmetry Au (right column) estimated from the bispectral 

analysis. For runs BI (top panels), and B2 (bottom panels). Legend as in figure 6.3a. 
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& current meter arrays. The plain lines are the parameterization proposed by Doering and Bowen (1995). 

In section 5.5 some degree of correlation between S, p Su, K, ý Ku and e and u has been 

shown to exist (figures 5.26 and 5.27). The scatter being quite large, no attempt to 

parameterize this dependence was made. The same possible correlation between A' Au and 

E and p is now sought after in figure 6.4a, and the same ̀ loose' correlation is obtained. A 

similar parameterization was introduced by Doering and Bowen (1995) where two 

expressions for Au and SU (arising from wind wave interactions) as a function of the Ursell 

number were obtained: 

At, = [0.8 + 0.62 log(U, )] sin { [-90° + 90° tanh(O. 73 / U, )]ir / 180) 

SI, = [0.8 + 0.621og(U, )] cos ff-90' + 90" tanh(0.73 / U, *r / 180) 
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where the Ursell number is defined as: 

p Ur= 3g H`T 2 

4 8ý2 h2 
HH is a characteristic wave height. The data consisted of field measurements from four 
different sites and representative of a wide range of conditions. The scatter was still quite 
large, but the parameterization, obtained from a least square fit, is in accordance with 
theoretical expectations. Doering and Bowen (1995)'s expressions for AU and Su were 
fairly successfully applied to the cases studied here (figure 6.4b), with the same amount of 

scatter. Interestingly, this parameterization was also successfully applied to A, 7 and S. 

Indeed the shape of the wave profiles and velocity oscillation are seen to evolve in a similar 

way. In fact, the parameterization appears to fit the A,, better than A u. 
Note that all computations on figure 6.4b are with OB= 20°. For large E, the skewness 

predictions were already seen to overestimate the observations. This is reflected in larger 

deviations from the parameterization for large Ursell numbers. 

6.4 Contribution to skewness and asymmetry from single wave triads 

The comparison of elevation and velocity skewness, and elevation and velocity asymmetry, 

that have been discussed so far are that of total estimates. In order to get a better insight of 

the model's performance, and establish where the discrepancies between laboratory and 

numerical results arise, an examination of the contribution to skewness and asymmetry 

from phase-coupling between individual harmonics is required. 

In the following, a detailed description of bispectral evolution for case Al is first given. 

This case was chosen in spite of the fact that the cross-shore variation of the skewness for 

this run is atypical (presumably because of reflection), and despite the consequent fact that 

the discrepancies between observed and predicted skewness are the largest (relative to the 

other 3 cases. It was selected because it presents intense wave-wave interaction activity 

relative to cases B1 and B2), and thus offers a good example of bispectral evolution. The 

model's capability to model triad interactions may therefore be fully assessed. Case Al 

also has the advantage (over A2) to be a regular wave test for which the bispectral peaks 

are very well defined. Finally, this case has presented the most sensitivity to OB , and a 

detailed analysis for this case will demonstrate why this occurs. 
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Figure 6.5 shows the real and imaginary parts of the bispectrum for the measured (top 

panels) and the predicted (bottom panels) time series of surface elevation at gauge 13, 

which is located just before breaking. The predictions are with cbB = 20° 2. Notice that the 
imaginary part of the bispectrum is multiplied by -1 to facilitate viewing. The bispectrum is 

plotted in a (fr, f2)-space with vertices at (fi =0, f2 = 0), (fi = fN12 
, 
fz =f , \2) and (f = f.; 2, fý _ 

0), that is, half the unique bifrequency space. This was found to cover the most interesting 

part of the bispectrum (very little `bispectral activity' is observed beyond 1 Hz), and again 
to facilitate viewing. 

Let us first consider the real part of the bispectrum (panels (1,1) and (2,1)). From the 

laboratory data it appears that, at this gauge, the skewness arises mainly from the (,,, 2fp) 

interaction. The rest of the skewness arises predominantly from the (fp, 3fp), (2fp, 2fp) and 
(2fp, 3fp) interactions. Surprisingly, the (fp, fp) interaction gives rise to relatively little 

skewness at this gauge. This will be examined later (figure 6.8). Looking now at the 

predicted real part of the bispectrum it appears that the model gives a good qualitative 

prediction of wave-wave interaction. It is clear however the skewness is overestimated, 

particularly the contribution from the (fp, fp), (fp, 2fp) and (ff, 3fp) interactions. This is 

reflected in an overestimation of the total skewness (figure 5.13, panel(l, 1)) at this gauge. 

The imaginary part of the bispectrum for the measured time series (panel (1,2)) presents the 

same results as the real part, with the exception that the contribution to asymmetry from the 

(fp, fp) and (fp, 2fp) interactions are of the same order. The prediction (panel (2,2)) is 

excellent qualitatively, but, as shown in figure 6.3a, the total asymmetry at this gauge is 

under-estimated. 

The same data are presented on figure 6.6 for gauge 19. First it shows that the model 

largely over-estimates the intensity of the wave-wave interactions. This results in the 

generation of high harmonics that are not present in the measured time series, which clearly 

contributes to the over-estimation of the total skewness and asymmetry. Second, the 

overestimation of the total skewness (and asymmetry) is also shown clearly to arise from 

an over-estimation of the contribution to skewness (and asymmetry) for the phase-coupling 

also present in the observations. 

The spatial evolution of a selected set of triads is now investigated. The triads selected are 

those which give rise to the most significant interactions. These are shown on figure 6.7. 

2 seen to be neither the optimum neither the worse case (fig 5.15 and 5.16) 
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Figure 6.8 shows the cross-shore variation of the band-integrated and normalised real part 
of the bispectrum for each of these 12 triads. The integration is carried out over the 
frequency bands as shown in figure 6.7. The band-integrated real part of the bispectrum 

was then normalised with the total (integrated) variance to the 3/2 power, thus giving the 

percent skewness or asymmetry. The predicted results are presented for OB= 170,200 and 
26°. Note the scale of the y-axis varies from row to row. In addition, panels (1,1) and (1,2) 

show the total skewness (equation (6.5)) and the skewness resulting from interactions 

amongst short waves only (f > 0.06 Hz), respectively. These two plots show that the 

contribution to the total skewness from the difference interactions that result in bound low 

frequency waves is negligible. This was also found to be true for the other data. 

4fp 

3fv 

2fv 

fp 

Figure 6.7. Identification of the 12 triads selected for investigation The dotted lines indicate the integration 

limits for each single wave triad. 

Figure 6.8 shows the contribution to skewness predominantly arises from the (f 
. J, ) 

interaction up to gauge 11, after which the (fp, 2fp) interaction becomes the main source of 

skewness. A smaller contribution comes from the (fp, 3fp), (2fp, 2fp) and (2fp, 3fp) interactions, 

which develop further onshore during shoaling. The rest of the harmonics shown in figure 

6.8 develop just prior to and during breaking. The model reproduces well this spatial 

variation of the contribution from each triad. 
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The irregularity of the spatial variation of the measured skewness is reflected in the 
(irregular) spatial variation of the contribution to skewness arising from the (fp fp) and 
(fp, 2fp) interaction, denoted S, 7(fp fp) and S, 7(fp, 2fp). Due to the atypical spatial variation of 
the measured skewness, it is difficult to conclude where the discrepancies between 

observed and predicted skewness arise from. On the other hand, an important characteristic 

of the model appears with the demonstration of the source of the dependence of the 

skewness on OB. It is evident that a change in c5B greatly affects the predictions for the 

higher harmonics. Increasing OB from 20° to 26° results in a dramatic overestimation of the 

amplitude of the high order harmonics, and relatively little change to the amplitude of the 

low order harmonics e. g. S, 7 (fp, fp) and S, 7(fp, 2fp). 

The negative skewness due to interactions involving primary and super-harmonics that is 

observed at gauge 16, and to a lesser extent at gauge 17 is unusual and inconsistent with 

expectations. These locations coincide with a minimum in the cross-shore variation of the 

observed wave height (figure 4.5), which was shown to be likely to be linked to wave 

reflection from the region beyond gauge 19. It is possible that reflection may be responsible 

for the negative skewness. This suggestion is supported by the fact the model, which 

ignores the region beyond gauge 19 and therefore fails to reproduce reflection from this 

zone, does not predict these negative contributions to skewness. 

Furthermore, the model predictions for B1 with the raw bathymetry also yield the presence 

of negative contributions to skewness from the (fp, f, ) interactions (not shown). These 

results are associated with a strong overestimation of wave reflection from the slope, and 

disappear when the profile is smoothed (i. e. when the reflection is reduced). This further 

corroborates the suggestion that wave reflection is responsible for negative contributions to 

skewness. Note that this suggestion implies that (i) the reflected waves are at the 

frequencies involved in the interaction concerned, and (ii) nonlinear interactions occurs 

between ingoing and outgoing waves. 

To examine the effect of wave reflection on skewness, the skewness of a standing wave 

field of the form 

ra(t)=a1 coslasinwt+a2 cos2kxsin2wt 

was considered. al and a2 are the amplitudes of the fundamental and second harmonic 

respectively. The computed results, shown in figure 6.10, reveal that indeed the skewness 

arising from sum interactions may be negative. The effect of reflection on the wave shape 

is unclear however, and needs to be investigated further. 
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Figure 6.10 Spatial variation of the skewness of a standing wave field consisting of two harmonics with 
amplitudes 0.3m and 0.15m. T= 8s, L= 50m. 

The predicted and observed asymmetry are presented in the same format in figure 6.9. Each 

of the triads investigated here makes the same relative contribution to A, as for S,,. The 

effect of OB on the solution is less evident, although it appears that increasing Op generally 

results in a decrease of Art If OB= 17° and 20° , the decrease of A, 7after wave breaking is (i) 

underestimated for the low order harmonics, and (ii) not reproduced for the high order 

harmonics. If Opis increased to 26° however, the overall fit is much improved. 

The same analysis on A2 shows that the over-estimation of the skewness at the last three 

wave gauges observed in section 5.2.3 (figure 5.8, panel(2,1)) is the result of an over- 

estimation of the contribution to skewness from the high order interactions. This confirms 

that the discrepancies for that run are due to the presence of high harmonics (with kh > 5, 

that is from the 5th harmonic) which the model cannot reproduce accurately. 

The bispectral evolution for all the data is summarised in figure 6.11, which displays the 

predicted versus observed skewness arising from each triad, with OB = 20°. For B1 and B2 

note that: 

, ., .I 

4 .... .......... ... 

...... Na .................................... 

- the data is obtained with the smoothed profile. 

- fp = 0.33 Hz, and the integration limits (figure 6.7) have been changed 

accordingly. 
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- (4fp, 4fp), (4fp, 3fp) and (2fp, 5fp) skewness and asymmetry are not calculated (and are 
set to zero) since for the analysis fc =2 Hz and 6fp =2 Hz (see figure 6.7), and therefore 
these triads lie outside the domain of analysis. This limit is reasonable however since the 
most significant interactions for these runs are (fp, fp), (fp, 2fp), (fp, 3fp), (2fp, 2fp), and 
(2fp, 3fp) 

A reasonable agreement, within the scatter, is obtained for the low order harmonics. Figure 
6.11 also shows a clear over-prediction of the contribution to skewness from the high order 
harmonics. The largest discrepancies are for the largest contributions to skewness, that is, 

in the surf zone. Note that this is with OB= 20° only. 
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Figure 6.12 Predicted versus observed normalised contributions to skewness from (left column) low 

order interactions, and (right column) high order interactions, for the 4 studied cases. (top panels) qH = 17'', 

(middle panels) qH = 20°, (bottom panels) OB = 26°. Legend as in figure 6.11. 
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Figure 6.12 shows the contribution to skewness from low order interactions, that is (f fp), 
(fp, 2fp), (fp, 3fp), and (2fp, 2fp), and high order interactions. The predictions with OB = 17`,, 20° 

and 26° are presented. It appears that, for the low order contributions, the scatter remains 
the same with increasing OB. In contrast, the over-estimation clearly increases with 
increasing OB for the high order contributions. It is also consistently outside the 20% 
difference limit (dashed line). With OB= 26° and for case Al, the predicted high order 
contributions become of the same order as the low order contributions. 

The contribution to asymmetry for all the data is summarised in figure 6.13, where the 

predicted versus observed asymmetry arising from each single triads, with OB= 20°. The kh 
dependence of the results is less evident for this quantity. 

6.5 Discussion 

The results presented in this chapter are estimates of the surface elevation statistics. 
Estimates of similar statistics for the depth-averaged velocity can be shown to yield the 

same results, and similar discrepancies between observations and predictions. 

The nonlinear transfers of energy amongst low order harmonics are well simulated. The 

transfers of energy to higher order harmonics are over-estimated. In addition, the bispectral 

analysis has shown that changes in OB mostly affect the high order harmonics3. Note that 

this can also be shown with the power spectra. The bispectral analysis shows clearly that 

the discrepancies observed in chapter 5 arise from the limitation of the model to the 

simulation of waves with small kh. Despite the extension of the accuracy of the linear 

dispersion relation for shorter waves, waves with large kh are not simulated accurately. 

The skewness is a measure of the (cumulative) amplitude of the harmonics present in the 

field, while asymmetry depends on the phase shift of the harmonics with respect to the 

primary wave. In other words, an overestimation of the skewness indicates an 

overestimation of the amplitude of the harmonics. An overestimation of the asymmetry 

indicates an overestimation of the phase shift between the primary and its harmonics. Note 

however that the relationship is not that straightforward since the wrong prediction of the 

phase shift (i. e. wrong asymmetry) may result in the wrong skewness, and vice-versa. 

3 that is, assuming the direction of energy transfer is e. g. fp + 5fp -* 6f,, 
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Incorrect wave shape prediction is thus the result of the combined effects of incorrect 

prediction of linear shoaling, intensity of the nonlinear transfers and linear frequency 

dispersion. Each of these model limitations have been shown to be kh related. 

Besides the physical limitations of the model, the over-estimation of the super-harmonics 

generation may be the result of the predictions being purely theoretical. In reality, other 

processes (leakage to other harmonics, phase shifts, noise, energy dissipation due to 

viscosity, etc. ) may occur that may reduce the intensity of the nonlinear transfers. 

Finally, the observations from the last three wave gauges (i. e. the capacitance gauges) 

appear to almost systematically break the trend in the spatial variation of the skewness and 

asymmetry for Al. It is possible that this is the result of errors in the measurements. 
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CHAPTER 7- CONCLUSIONS 

7.1 Summary and conclusions 
Boussinesq-type models for non-breaking waves are widely used for coastal engineering 
applications. Their recent extension to the simulation of breaking waves has enlarged their 

possible range of application. In this thesis, a surf zone Boussinesq-type model was 

selected and implemented, and its performance was evaluated with high quality, large scale 
laboratory data. The model validation concentrated on parameters of importance to 

sediment transport predictions (velocity and wave shape' predictions), parameters which 

were neglected in previous studies of Boussinesq-type models. 

Since in the derivation of the Boussinesq equations it is assumed that H/h is small, and 

since this ratio near the breaking point reaches values close to 1, the extension of 
Boussinesq models to the surf zone seems inconsistent. Despite this, several authors have 

extended their Boussinesq model to describe wave breaking without including additional 

(high order) terms to allow for more nonlinear waves. The resulting surf zone Boussinesq 

models yield surprisingly good results. This suggests that violation of the weak nonlinearity 

assumption is not as crucial as one might have expected. In fact, Dingemans (1994) has 

shown that the accuracy of the frequency dispersion properties is much more critical. 

In the surf zone, the increasing intensity of triad interactions results in an increasing 

generation of super-harmonics, for which the performance of the model is limited in two 

related respects. Firstly, the incorrect prediction of the wave number mismatch between the 

primary and bound high harmonics when waves with kh > 4-5 are present results in an 

incorrect nonlinear transfer of energy. Secondly, if high harmonics with large kh are 

travelling as free waves, their phase celerity and shoaling are incorrectly predicted. 

Using the bispectral analysis, it was shown that the discrepancies between the experimental 

data and numerical results arose predominantly from the inaccurate treatment of the high 

order super-harmonics. The exchanges of energy amongst the low order harmonics have 

been shown to be accurately reproduced. In the case where strong nonlinearities develop, 

the model tends to over-estimate the transfer of energy to the high order super-harmonics 

'wave shape' encompasses both the surface elevation and the velocity vertical and horizontal asymmetries. 
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(kh > 5) by more than 50% (with cbB = 20°), and, as a result, yields an incorrect wave shape. 
It is important to stress that the development of strong nonlinearities results in the violation 
of both the weak nonlinearity and weak dispersion assumptions. 

Another inconsistent aspect of the model transpired during this model validation: with the 
improved dispersion characteristics, the performance of the model for wave shape 
prediction was found to be better for the short wave tests compared to the long wave tests. 
This is unexpected since the model was originally derived for long waves, and 
subsequently extended to the simulation of shorter waves. Long waves propagating in 
decreasing water depths (thus becoming increasingly non-dispersive) undergo strong wave- 
wave interactions, and the resulting super-harmonics, or short waves, cannot be correctly 
simulated by the model. In other words, long waves, for which the model should perform 
best, are those that generate the greatest nonlinear exchange of energy. The resulting super 
harmonics are not treated correctly by the model. This clearly needs to be anticipated when 
applying the model. 

The model, if applied within its (extended) limits, performs very well. The depth-averaged 

horizontal velocity predictions are promising, even in the surf zone. It was found that, 

although the velocity tends to be overestimated (by more than 20% in the surf zone), the 

velocity moments and the undertow are very well reproduced (generally within 20%). The 

model thus provides a suitable method of calculating these quantities (otherwise evaluated 
from field measurements) for application to sediment transport prediction. 

The improved agreements between the observations and the predictions for the velocity 

moments, in contrast with the elevation moments for which differences up to 60% are 

found, suggests that disagreements for the latter may be due to the difficulty to measure 

surface elevations in the surf zone. 

The evaluation of the high order moments has shown that the surface elevation and velocity 

time series both undergo the same distortions, both qualitatively and quantitatively. The 

same parameterization for the elevation and velocity moments may thus be applied. 

The sensitivity analysis carried out on the empirical breaking parameters has shown that the 

results are mostly sensitive to the critical wave front slope OB. In a recent paper, Madsen et 

al. (1997a) looked at the improvements obtained for the wave height and mu, 'I by changing 

the free breaking parameters. It was shown here that similar improvements could be 
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obtained, and that the sensitivity of the mwl and wave height to op is moderate. The present 

study further establishes that the depth-averaged velocity statistics show the same 

sensitivity to qB as the elevation statistics, both qualitatively and quantitatively. In addition, 
it appears that this sensitivity is emphasised for the skewness and kurtosis of elevation and 

velocity prediction, especially for cases where the generation of higher harmonics is 

intense. In case Al, increasing q$B so as to improve the wave height predictions resulted in 

marked over-estimations of the elevation and velocity skewness and kurtosis predictions. In 

case B 1, increasing q$B so as to improve the elevation and velocity skewness and kurtosis 

predictions resulted in increased over-estimations of the wave height and velocity 

predictions in the surf zone. The danger is that an effort to optimise qB for a good fit for the 

wave height and mwl (as proposed by Madsen et al., 1997a) may result in inaccurate wave 

shape predictions. These are important results in the context of sediment transport 

predictions. 

Ideally, an end-product of this sensitivity analysis would be a set of guidelines for choice of 

the breaking parameters. This was made difficult by the fact that optimum predictions of 

different quantities are obtained for different values of OB. Thus, given the subjectivity 

involved in selecting optimum values, and given the limited number of cases studied here, 

this has not been possible. Overall, a op of 20° is recommended. 

As a result of the mild slope assumption (invoked by hX « p, thus allowing the neglect of 

h., 2 
,h,.... terms), the slope has to be small enough so that the wave properties (wave 

length) vary little in a distance of the same order as the depth. A consequence of the 

violation of the mild slope assumption is an unrealistically instantaneous response to water 

depth changes. Note that in this context, the accuracy of the bathymetry data in terms of 

small features is superfluous. The mild slope assumption is often overlooked, and the 

attention is focused on the nonlinearity and dispersion characteristics of the Boussinesq 

models. In this thesis it has been shown that a violation of the mild slope assumption can 

lead to substantial errors in the predictions, particularly in terms of wave shape. In 

particular, for B1 and B2, it has led to the simulation of wave breaking at the incorrect 

location. For those two cases, the smoothing of the bathymetry, to eliminate the water 

depth changes to which the waves cannot realistically respond to, has resulted in a better 

agreement with the data. 
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Discrepancies between predictions and observations were found to be the combined result 

of : 

"a violation of the model assumptions of weak nonlinearity, weak dispersion`', 

balanced nonlinearity and dispersion, and slowly varying bathymetry; 

" inherent errors in the measurements; 

" differences between the physical and numerical tanks (in particular the reflection 
from the swash zone and undertow are not simulated in the numerical model); 

" numerical errors in the model (truncation errors, boundary conditions, wave 

generation). 

In the cases studied here, these errors are greatest in the surf zone, where the effects of each 

of these factors (except the last one) are greatest. The cumulative error is typically limited 

to within 20 % for most quantities. Greater errors were obtained for the elevation moments 

(up to 60%) and for the depth average velocity (overestimated by up to 40%). 

7.2 Future directions 

The relative contribution to errors from the violation of the various assumptions inherent in 

the model has not been established. Recently, some work has been carried out in order to 

eliminate these assumptions. Models have been produced that allow for (i) higher order 

improved dispersion, and (ii) higher order non-linearity (for references see section 2.4). 

This has resulted in the developments of more advanced, but also more complex models, 

with higher order terms. The evaluation of models with higher order improved dispersion 

has been theoretical, and no numerical solution has been proposed for these new equations. 

The equations with higher order non-linearity have been solved in one dimension only, and 

their application has been limited to small computational domains. However, with the 

phenomenal progresses made in affordable computer power nowadays, these models are 

viable. Comparison of the predictions of the present model with (i) those of a fully 

dispersive model with the same limits on the degree of nonlinearity, and (ii) those of a fully 

nonlinear model with the same dispersion relation would help determine the relative effects 

of both these limitations. 

The parameterization of the dependence of the ske«ness, kurtosis and asymmetry on Ur. or 

on c and u, is very attractive as it would provide a means to obtain these quantities which 

despite the extension of the accuracy of the linear dispersion relation 
154 



eliminates the use of a Boussinesq model and bispectral analysis (both of which are still 

very time consuming methods). The scatter obtained is still large however. It is possible 
that inclusion of a dependence on other quantities (e. g. beach slope, number of wave 

components interacting, etc. ) may reduce this scatter. 

In view of the effects of the violation of the mild slope assumption, it would be interesting 
2 to investigate the model behaviour if larger bed slopes are allowed (i. e. if some h, 

, 
h"" .... 

terms are retained). It would also be useful to formulate a technique by which the effective 
bathymetry could be obtained. Recently, with the development of video monitoring of 
beach evolution, a number of authors (Grilli, 1998; Dalrymple et al., 1998) have proposed 

means of evaluating the bathymetry from known wave characteristics (for example wave 

length and period) using depth inversion methods. At present, these methods are limited to 

shoaling waves on monotonically decreasing depths, and are thus not applicable to our case 

studies. Such developments are very attractive as in the future they could provide a means 

of determining the effective bottom topography for numerical modelling applications. 

Further consideration of wave reflection is required. Two aspects need studying: reflection 

from the swash zone, which is not simulated by the model, and reflection from the 

remainder of the slope, present both in the physical and numerical tanks. Note that the 

latter assumes that reflection does occur from the slope. Further study is recommended in 

order to evaluate the extent of wave reflection from the swash zone in the laboratory, and 

its effects on the results, in particular on the wave shape. Also the model's capabilities of 

reproducing reflection from the slope needs to be evaluated. 

As the undertow is not directly simulated by the model, its effects on the hydrodynamics 

are not accounted for in the numerical solution. Despite this, predictions for the velocity 

moments are good, which suggests that, in the cases studied here, undertow has little or no 

effect on the incoming waves. This requires further investigation. 

The modelling of wave transformation in the nearshore region is not complete without the 

simulation of the swash oscillations. The extension to the shoreline of the model does not 

involve any difficulties as far as physical considerations are concerned. The problem lies 

with numerical difficulties, in particular with the introduction of a moving boundary. 

Recently, several approaches were presented to overcome this (sec. 2.4.3). and the 
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inclusion of such a boundary is recommended. In the context of this study, a direct 

advantage is that it would allow the simulation of reflection from the swash zone, and thus 

eliminate the uncertainties introduced with its neglect. 

The theoretical and numerical development of models for nonlinear waves has recently 

accelerated and resulted in increasingly better models. The future is certain to see the 

flourishing of models capable of accurately modelling wave motion, and, with the 

improvements achieved in computing technology, these models will become readily 

available for engineering application. The difficulty in predicting nearshore hydrodynamics 

lies in the modelling of additional physical effects such as wave breaking, and associated 

turbulence, bed friction, percolation effects, etc. These processes are not fully understood, 

and are difficult to represent mathematically. 

Considering the simplifications involved, the simulation of wave breaking in the model 

tested in this thesis is most satisfactory. In fact, an(other) interesting contradicting element 

of the model lies with the simulation of breaking waves. The surface roller concept invoked 

in the introduction of wave breaking assumes spilling breakers. On the other hand, the 

restriction of the model to weakly dispersive and weakly nonlinear waves implies that aL 

« 1, which tends to characterise waves that break as plunging breakers. 

Despite this inconsistency, the model yields relatively good results for both breaker types. 

This suggests that, in terms of the quantities evaluated in this thesis, plunging and spilling 

breakers may be evaluated with the same approximation. It is clear however that the 

turbulence induced in these two breaking modes is fundamentally different, and the 

mathematical representation of wave breaking, and its incorporation in a hydrodynamic 

model, still has a long way to go. 

Finally, although 2D non-breaking Boussinesq models are now applied in engineering 

practice, it is rather surprising to note that no validation of these models with field data has 

been carried out (or documented... ). Such testing needs to be done. 
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