CHARACTERISATION OF UNRESOLVED COMPLEX MIXTURES OF
HYDROCARBONS BY DEGRADATIVE METHODS

ANDREW THOMAS REVILL B.Sc. (Hons.)

A thesis submitted to the Council for National Academic
Awards in partial fulfilment of the requirements for
admittance to the degree of:

DOCTOR OF PHILOSOPHY

Polytechnic South West,
Department of Environmental Sciences,
Plymouth, Devon,
PL4 8AA, U.K.

February 1992
TO MY PARENTS
Unresolved Complex Mixtures (UCMs) of hydrocarbons are found in crude and refined oils and in water, sediments and biota polluted with oils. The concentrations of UCMs in oils are significant (e.g. >65% of the aliphatic hydrocarbons in fresh Kuwait crude) and it is perhaps surprising that virtually nothing is known about UCM composition. The present study sought to redress this paucity of information in three main ways:

First, following two recent studies of aliphatic UCMs, an investigation of the composition of the "aromatic" UCM of Venezuelan Tia Juana Pesado crude oil was made by spectroscopic (IR, NMR, MS) and oxidative (CrO₃, RuO₄) methods. These showed that the UCM was, in fact, highly aliphatic. The major compounds identified were alkyl substituted naphthenoaromatics with one and two aromatic rings. Chemical oxidation indicated that the alkyl branched side chains extended to at least twenty three carbon atoms.

Second, an investigation into the origins of UCMs was made. The products of hydrous pyrolysis of man-made (polythene) and biogenic (cutan) polymers under conditions proposed previously to simulate catagenesis, included, in the hydrocarbons, high proportions of UCMs (50% - >70%). Hydrous pyrolysis of polythene produced a mixture of saturated (56%) and olefinic (44%) hydrocarbons, whilst pyrolysis of cutan produced hydrocarbon (aliphatic and aromatic; 30-75%) and non-hydrocarbon (70-25%) fractions, both with >60% unresolved components. Oxidative characterisation of these UCMs produced mainly n-acids with somewhat similar results to those found when oil UCMs were oxidised. However, the laboratory generated UCMs are not perfect oil UCM models since some oil UCM oxidation products were not observed in the laboratory models.

Finally, an attempt was made to release the geochemical information contained within UCMs. Replicate oxidations of milligram quantities of oil UCMs followed by quantitative GCMS characterisation and multivariate statistical analysis of the resolved oxidation products gave reproducible distributions with >80% similarity. Application of this method to two oil spill incidents where the source oil was known (Milford Haven and the Humber Estuary) gave good correlations between sediment and source. In contrast analysis of Mersey Estuary sediments contaminated with heavy asphaltic oil and of Sullom Voe sediments contaminated with UCMs failed to show any correlation between the sediments and the source oils. However, subsequent re-analysis of the data excluding the major UCM oxidation products (n-carboxylic acids) produced better correlations which indicated that the greatest correlation potential for these UCMs was contained within the minor oxidation products. A similar study of UCMs from two oil seeps from the Siljan Ring region of Sweden failed to show any correlation with potential source rocks, in agreement with biomarker data.

This study has extended present knowledge of UCM composition and suggested a mechanism for UCM formation. Furthermore, quantitative and statistical analysis of UCM oxidation products has been shown to be useful for oil identification. There is still much to be learned about UCMs and the subject should provide a fruitful area for further research. Some possible approaches are suggested.

Parts of this work have been published [Revill et al. (1991), Organic Geochemistry: Advances and Applications in Energy and the Natural Environment, Manchester University Press (Abstract), 649-651; Revill et al. (1992), J. Chromatogr., 589, 281-286].
ACKNOWLEDGEMENTS

I was told recently, by someone with more experience than myself in these matters, that the acknowledgements are the most read part of any thesis. With this in mind I should like to indulge a little.

It is customary to thank ones supervisor first and I have every intention of doing the same. However, I should like to say that these thanks are not given lightly but with deepest sincerity. I am genuinely indebted to Dr. Steve Rowland for initially rescuing me from industrial oblivion and then his continued enthusiasm and encouragement throughout the course of the project. I feel no one could have had a better supervisor.

Also, thank-you to Dr. A. Rees, my second supervisor, who has now found pastures greener (and wetter!) with the NRA, but his input in the early stages of the work was invaluable. I miss those 9 a.m. cups of tea!

I am grateful to the Natural Environment Research Council for funding the project (studentship GT4/88/AAPS/60).

A special thanks must go to Dr. C. Anthony Lewis who not only put up with me sharing his office, drinking his coffee, eating his biscuits, hogging his computer (and beating him at squash) but also accepted the onerous task of proof reading this thesis. It most definitely is a funny old world BUT no other office will quite be the same!
I am grateful for the assistance of the following people and organisations, who provided samples or performed specialist analysis, these are:

Dr. J. de Leeuw (Delft University) for providing samples of cutan hydrous pyrolysate.

Dr. G. Wolff (Liverpool University) for supplying samples from the Siljan region of Sweden.

Mr. S. Howells (Oil Pollution Research Unit, Field Studies Council) for providing oiled sediments and reference oils.

Dr. S. Petch (Newcastle Research Group, Newcastle University) for hydrous pyrolysis experiments.

Dr. R. Raiswell (Leeds University) for elemental analysis.

Martin Green (V.G. Analytical) for FDMS of the aromatic UCM.

Martin Carr and Shaun Nicholson (P.M.L.) for help with statistical analysis and computing.

I also extend my thanks to members of the technical staff at Polytechnic South West especially Mr. R. Srodzinski for his amazing efforts with the Kratos MS-25 in near tropical conditions but also Mr. I. Doidge, Dr. R. Evens, Mr. A. Arnold, Mr. A. Tonkin and the late Mr. K. Pearson.

I would like to say a big thank-you to friends and colleagues (past and present) for their help academically but especially socially. These include Miss Amanda Homfray, Dr. Phil Goodall, Mr. Paul MacLaurin, Mr. S. Hird, Dr. A. Fisher, all in PEGG and the "Anal" boys. Enjoy those Wednesdays down the Sailing Club. Also, Dr. Fiona
Fitzpatrick for blowing bubbles!

A special thank-you to Mrs. Debbie Petherick for the exceedingly good (and cheap) typing, putting up with my handwriting and having to learn to use a new word processing package. I must also include Mrs. Pauline Hall, for together they produced the best departmental office anywhere.

I have to thank Bob and Alison Forster (Mum and Dad-in-law!) for being unfortunate enough to live in Plymouth and putting up with me treating their house like a hotel (definitely 6 stars).

I would like to take this opportunity to express my gratitude to the people who have influenced my academic life. These are many, but a notable few are Dr. Richardson (Ashleigh comprehensive school, Sheffield), Drs. Ben and Tony Matthews (Biological sciences department, Polytechnic South West, U.K.) and Dr. M.M. Rhead (Department of environmental sciences, Polytechnic South West, U.K.).

No words can express my feelings of gratitude towards my parents, sister and brother-in-law who have supported me through the academic disasters and financial frugality.

Finally, I have reserved the best till last. A very special thanks to Hilary for being there.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCM</td>
<td>dichloromethane</td>
</tr>
<tr>
<td>anh. Na₂SO₄</td>
<td>anhydrous sodium sulphate</td>
</tr>
<tr>
<td>TLC</td>
<td>thin layer chromatography</td>
</tr>
<tr>
<td>GC</td>
<td>gas chromatography</td>
</tr>
<tr>
<td>MS</td>
<td>mass spectrometry</td>
</tr>
<tr>
<td>EI</td>
<td>electron impact</td>
</tr>
<tr>
<td>FDMS</td>
<td>field desorption mass spectrometry</td>
</tr>
<tr>
<td>UNA</td>
<td>urea non adduct</td>
</tr>
<tr>
<td>UA</td>
<td>urea adduct</td>
</tr>
<tr>
<td>TUA</td>
<td>thiourea adduct</td>
</tr>
<tr>
<td>TUNA</td>
<td>thiourea non adduct</td>
</tr>
<tr>
<td>GPC</td>
<td>gel permeation chromatography</td>
</tr>
<tr>
<td>IR</td>
<td>infra red</td>
</tr>
<tr>
<td>UV</td>
<td>ultra violet</td>
</tr>
<tr>
<td>UVF</td>
<td>ultra violet fluorescence</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>UCM</td>
<td>unresolved complex mixture</td>
</tr>
<tr>
<td>KI</td>
<td>kovats index</td>
</tr>
<tr>
<td>SECTION</td>
<td>PAGE NUMBER</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>CHAPTER ONE</td>
<td></td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1 GENERAL</td>
<td>1</td>
</tr>
<tr>
<td>1.2 UCM COMPOSITION</td>
<td>5</td>
</tr>
<tr>
<td>1.2.1 THE ALIPHATIC UCM</td>
<td>6</td>
</tr>
<tr>
<td>1.2.2 THE AROMATIC UCM</td>
<td>9</td>
</tr>
<tr>
<td>1.3 ORIGINS OF UCMS</td>
<td>13</td>
</tr>
<tr>
<td>1.4 FINGERPRINTING OF UCMS</td>
<td>22</td>
</tr>
<tr>
<td>1.5 THE PRESENT STUDY</td>
<td>25</td>
</tr>
<tr>
<td>CHAPTER TWO</td>
<td></td>
</tr>
<tr>
<td>STRUCTURAL CHARACTERISATION OF THE AROMATIC UCM</td>
<td></td>
</tr>
<tr>
<td>2.1 GENERAL</td>
<td>27</td>
</tr>
<tr>
<td>2.2 BULK CHARACTERISTICS</td>
<td>30</td>
</tr>
<tr>
<td>2.3 CHEMICAL OXIDATION OF THE AROMATIC UCM</td>
<td>49</td>
</tr>
<tr>
<td>2.3.1 GENERAL</td>
<td>49</td>
</tr>
<tr>
<td>2.3.2 CHROMIUM TRIOXIDE OXIDATION</td>
<td>50</td>
</tr>
<tr>
<td>2.3.3 RUTHENIUM TETROXIDE OXIDATION</td>
<td>57</td>
</tr>
<tr>
<td>2.4 SUMMARY</td>
<td>66</td>
</tr>
<tr>
<td>CHAPTER THREE</td>
<td></td>
</tr>
<tr>
<td>ORIGINS OF THE UCMS</td>
<td></td>
</tr>
<tr>
<td>3.1 THEORIES OF PETROLEUM FORMATION</td>
<td>71</td>
</tr>
<tr>
<td>3.1.1 THE PRESENT STUDY</td>
<td>73</td>
</tr>
<tr>
<td>3.2 LABORATORY CATAGENESIS</td>
<td>75</td>
</tr>
<tr>
<td>3.2.1 GENERAL</td>
<td>75</td>
</tr>
<tr>
<td>3.2.2 HYDROUS PYROLYSIS OF ALKATHENE</td>
<td>76</td>
</tr>
<tr>
<td>3.2.2.1 DISCUSSION OF RESULTS</td>
<td>76</td>
</tr>
</tbody>
</table>
3.2.2.2 POSSIBLE MECHANISMS FOR
THE FORMATION OF A UCM
BY LABORATORY CATAGENESIS
OF ALKATHENE 93

3.2.3 HYDROUS PYROLYSIS OF AN
ALIPHATIC BIOPOLYMER 95

3.3 SUMMARY 110

CHAPTER FOUR
FINGERPRINTING OF UCMS

4.1 INTRODUCTION 113

4.2 INTEGRATION OF CHROMATOGRAPHIC DATA 115

4.3 MULTIVARIATE STATISTICAL TECHNIQUES 122

4.3.1 FACTOR ANALYSIS METHODS 124

4.3.2 CLASSIFICATION METHODS 125

4.4 CASE STUDIES 131

4.4.1 SULLOM VOE OIL TERMINAL 131

4.4.1.1 GENERAL 131

4.4.1.2 GRAVIMETRY AND GAS
CHROMATOGRAPHY 134

4.4.1.3 GAS CHROMATOGRAPHY-MASS
SPECTROMETRY 139

4.4.1.4 OXIDATIVE DEGRADATION 144

4.4.2 MERSEY OIL SPILL 151

4.4.2.1 INTRODUCTION 151

4.4.2.2 GRAVIMETRY AND GAS
CHROMATOGRAPHY 151

4.4.2.3 GAS CHROMATOGRAPHY-MASS
SPECTROMETRY 155

4.4.2.4 OXIDATIVE DEGRADATION 158

4.4.3 STATISTICAL ANALYSIS OF UCM
OXIDATION DATA 161

4.4.3.1 CLUSTER ANALYSIS AND
MULTIDIMENSIONAL SCALING 161
4.4.3.2 PRINCIPAL COMPONENTS ANALYSIS 170

4.4.4 THE SILJAN RING ... 178

4.4.4.1 GENERAL .. 178

4.4.4.2 GRAVIMETRY AND GAS CHROMATOGRAPHY 181

4.4.4.3 GAS CHROMATOGRAPHY-MASS SPECTROMETRY 184

4.4.4.4 OXIDATIVE DEGRADATION 190

4.4.4.4 STATISTICAL ANALYSIS 190

4.5 SUMMARY .. 198

CHAPTER FIVE
OVERALL CONCLUSIONS AND FUTURE WORK

5.1 OVERALL CONCLUSIONS 200

5.2 PROPOSALS FOR FUTURE RESEARCH 210

CHAPTER SIX
EXPERIMENTAL DETAILS

6.1 GENERAL PROCEDURES 215

6.2 ISOLATION OF ALIPHATIC AND AROMATIC UCM HYDROCARBONS 216

6.3 ISOLATION OF ENVIRONMENTAL UCM HYDROCARBONS 219

6.4 OXIDATION OF HYDROCARBON UCMS AND MODEL COMPOUNDS 221

6.4.1 CHROMIUM TRIOXIDE OXIDATIONS 221

6.4.2 RUTHENIUM TETROXIDE OXIDATIONS 222

6.5 HYDROUS PYROLYSIS 224

6.6 ANALYSES .. 225

6.6.1 ELEMENTAL ANALYSIS 225

6.6.2 GAS CHROMATOGRAPHY 225

6.6.3 GAS CHROMATOGRAPHY-ELECTRON IMPACT MASS SPECTROMETRY 226
6.6.3.1 SELECTED ION MONITORING 227
6.6.4 FIELD DESORPTION MASS SPECTROMETRY 227
6.6.5 ULTRA-VIOLET SPECTROSCOPY 228
6.6.6 ULTRA-VIOLET FLUORESCENCE SPECTROSCOPY 228
6.6.7 NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 228
6.6.8 INFRA-RED SPECTROSCOPY 228
6.7 PREPARATION OF AUTHENTIC COMPOUNDS 229
6.8 UCM FINGERPRINTING 229
6.8.1 ANALYSIS OF SAMPLES 229
6.8.2 COMPUTER MANIPULATION OF DATA 232

REFERENCES .. 236
APPENDIX ONE 263
APPENDIX TWO 264
APPENDIX THREE 266
APPENDIX FOUR 271
CONFERENCES AND PRESENTATIONS 273
CHAPTER ONE

INTRODUCTION

Unresolved complex mixtures are a common feature in gas chromatograms involving hydrocarbon fractions, yet their composition and origin remain little studied. This chapter reviews the occurrence of UCMs and current knowledge of their composition. Possible precursor compounds which may form UCMs during maturation are discussed and how this might relate to petroleum formation in general. Finally, the potential application of UCM composition in correlation studies is considered.
The journey of a thousand miles begins with a single step.

Lao Tze
INTRODUCTION

1.1 GENERAL

Gas chromatograms of hydrocarbons isolated from oil-polluted sediments, biodegraded crude oils and some refined petroleum products, often contain a feature which is commonly referred to as the Unresolved Complex Mixture or UCM (Figures 1.1 and 1.2). This is thought to result from the poor resolution of complex mixtures of hydrocarbons with similar physical and chemical properties (reviewed by Gough, 1989).

UCMs often account for more than 70% of the hydrocarbon burden of contaminated sediments, and UCM concentrations of 64-4500 µg g⁻¹ dry weight of sediment have been reported. Recently, UCMs have been shown to occur as mineral oil contamination in some food products (Grob et al., 1991) in riverine suspended matter (Qui et al., 1991) and other environmental samples (Table 1.1). The use of ¹⁴C-dating has shown that the UCM in sediments is almost invariably petrogenic in origin (Farrington and Quinn, 1973; Zofiriou, 1973; Wakeham and Carpenter, 1976; Farrington and Tripp, 1977).

Despite the widespread occurrence of UCMs, relatively little is known about UCM composition or origin. Hence, the geochemical information contained within these complex
FIGURE 1.1. EXAMPLES OF GAS CHROMATOGRAMS EXHIBITING UCMs
(A) Polluted sediment extract (Thompson and Eglinton, 1978)
(B) In reservoir degraded crude oil (Venezuela)
(C) Lubricating oil
FIGURE 1.2. CRUDE OIL BIODEGRADATION SEQUENCE (Jones, 1986)
Table 1.1 Reported Occurrences of Hydrocarbon UCMs in Recent Sediments (Adapted from Gough, 1989)

<table>
<thead>
<tr>
<th>Region</th>
<th>Sample Type</th>
<th>UCM</th>
<th>% UCM</th>
<th>Fraction Analysed</th>
<th>Carbon Range (KI Units)</th>
<th>Carbon Maximum (KI Units)</th>
<th>Appearance</th>
<th>Inferred Origin</th>
<th>Proposed Composition</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Narragansett Bay, USA</td>
<td>Sediment Core</td>
<td>343</td>
<td>96</td>
<td>Total HC</td>
<td>1400-3500+</td>
<td>2700</td>
<td>Unimodal</td>
<td>Anthropogenic</td>
<td>Cyclic Alkanes, Aromatics</td>
<td>Hurt and Quinn, 1979</td>
</tr>
<tr>
<td>Puget Sound, USA</td>
<td>Surface Sediment</td>
<td>3700</td>
<td>68</td>
<td>AHC</td>
<td>1600-3400</td>
<td>2600</td>
<td>Unimodal</td>
<td>Fossil Fuels - Urban Run Off</td>
<td>Branched/Cyclic Hydrocarbons</td>
<td>Barrick et al., 1980</td>
</tr>
<tr>
<td>Port Valdez, Alaska</td>
<td>Surface Sediment</td>
<td>1210</td>
<td>84</td>
<td>Total HC</td>
<td>1200-3200</td>
<td>2300</td>
<td>Unimodal</td>
<td>Petroleum</td>
<td></td>
<td>Shaw et al., 1985</td>
</tr>
<tr>
<td>Sarah Creek, USA</td>
<td>Surface</td>
<td>79</td>
<td>85</td>
<td>AHC</td>
<td>1600-3200</td>
<td>2650</td>
<td>Unimodal</td>
<td>Lube Oils and Pyrolysis Products</td>
<td>Cycloalkanes</td>
<td>Voudrias and Smith, 1986</td>
</tr>
<tr>
<td>Stockholm Archipelago</td>
<td>Suspended particles</td>
<td>1264</td>
<td>96</td>
<td>AHC</td>
<td>1200-3500+ 2050, 2650</td>
<td></td>
<td>Bimodal</td>
<td>Petroleum</td>
<td></td>
<td>Broman et al., 1987</td>
</tr>
<tr>
<td>Richards Bay, S. Africa</td>
<td>Surface micro-layer</td>
<td>1350</td>
<td>84</td>
<td>AHC</td>
<td>1500-3200</td>
<td>2800</td>
<td>Unimodal</td>
<td>Petroleum</td>
<td>Branched/Cyclic</td>
<td>Butler and Sibbald, 1987</td>
</tr>
<tr>
<td>Baltic Sea</td>
<td>Sediment Core</td>
<td>90</td>
<td>70</td>
<td>AHC</td>
<td>1400-3400</td>
<td>2300</td>
<td>Unimodal</td>
<td>Petroleum</td>
<td></td>
<td>Pihlaja et al., 1990</td>
</tr>
<tr>
<td>Yangtze River</td>
<td>Suspended Sediment</td>
<td>3</td>
<td>71</td>
<td>AHC</td>
<td>1700-3500+ 2200+3000</td>
<td></td>
<td>Bimodal</td>
<td>Anthropogenic</td>
<td></td>
<td>Qui et al., 1991</td>
</tr>
<tr>
<td>Kuwait</td>
<td>Surface Sediment</td>
<td>30</td>
<td>91</td>
<td>AHC</td>
<td>1300-3500+ 2200+3000</td>
<td></td>
<td>Bimodal</td>
<td>Petroleum</td>
<td></td>
<td>Morel et al., 1991</td>
</tr>
</tbody>
</table>

AHC = Aliphatic Hydrocarbons
mixtures has scarcely been utilised. It is the purpose of this introduction to summarise our knowledge of UCMs. The subject area has been extensively reviewed by Gough (1989), so the present account merely emphasises reports made since 1989.

1.2 UCM COMPOSITION

Until relatively recently, little was known about UCM composition. Early research (eg. Rossini et al., 1953) established typical elemental compositions and physical properties for UCMs from lubricating oils and suggested that they mainly comprised one to three ring cycloalkanes (e.g.I), dinaphthenonaphthalenes (II) and naphthenophenanthrenes (III).

Later, EI-MS studies (eg. Clerc et al., 1955; Hood and O'Neal, 1959) confirmed these average structures. In most later studies UCM composition has not been assigned but simply referred to as a mixture of branched/cyclic compounds (Table 1.1).

Recently, the early studies have been complemented by a series of reports which have utilised chromic acid
oxidation of the unresolved hydrocarbons to yield resolved, functionalised compounds (Gough, 1989; Gough and Rowland, 1990; Killops and Al-Juboori, 1990; Gough and Rowland, 1991). Although UCMs occur in both aliphatic and aromatic hydrocarbon fractions, most of the present research has concentrated on aliphatic UCM composition.

1.2.1 THE ALIPHATIC UCM

Early mass spectrometric analyses suggested that aliphatic UCMs consist of branched alkanes and alkylcyclohexanes, with as many as three condensed cyclohexyl rings (reviewed by Gough, 1989; Table 1.2). Somewhat surprisingly, therefore, chromic acid oxidation of an aliphatic UCM from a lubricating oil examined by Gough (1989), yielded resolved components which were predominantly n-carboxylic acids and relatively few cyclic products. The absence of cyclics may have been due to ring opening during oxidation (Gough and Rowland, 1990) or the cyclic products may still have been unresolved by GC (Gough and Rowland, 1991). Killops and Al-Juboori (1990) subjected a heavily biodegraded Alaskan crude oil (total hydrocarbons), to a variety of chemical, spectroscopic and spectrometric techniques. Elemental and CI-MS analyses suggested a predominance of aliphatic hydrocarbons, of which acyclic (30%), mono- (40%) and di- (15%) cyclic compounds were abundant. Chromic acid oxidation of this sample produced low yields (contrasting with those obtained by Gough and
<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>CHROMATOGRAPHIC DATA</th>
<th>NO RINGS (WT %)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prudhoe Bay distillate /</td>
<td>n-alkanes-</td>
<td>28 22 16 12 12 6 4 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pelican Oil* /</td>
<td>n.d.</td>
<td>19 17 22 19 17 7 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Western Canada oil sand)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emeraude Field* /</td>
<td>n.d.</td>
<td>11 13 21 22 18 11 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(West Africa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biodegraded /</td>
<td>n.d.</td>
<td>26 22 17 14 10 6 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kuwait crude oil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* : data estimated from histograms
n.d.: not observed in the gas chromatogram
MA : monoaromatic hydrocarbons
Rowland, 1990), but the qualitative data was comparable to the earlier studies (Gough, 1989; Gough and Rowland, 1990), with \(n \)-carboxylic acids forming the major products and \(\alpha,\omega \)-dicarboxylic acids and monocycloalkanoic acids as minor products.

Killops and Al-Juboori (1990) suggested that the UCM contained an average aliphatic component with ca. 20 carbons and 2.5 rings. They also suggested that alkyl chains up to \(C_9 \) are present. In agreement with this, Gough (1989) and Gough and Rowland (1991) suggested that such \(n \)-carboxylic acids are derived from simple branched alkanes (e.g. IV) which may have cyclohexyl rings attached (e.g. V).

\[
\text{IV} \quad \text{V}
\]

For \(C_{20-30} \) compounds of type IV, Gough and Rowland (1990) point out that 536 isomeric structures are possible (allowing for alkyl chain lengths from \(C_1 \) to \(C_6 \)), a mixture which would probably be unresolved by GC.

Further evidence for these types of compounds was given by biodegradation studies (Gough et al., 1991). Using a
mono-culture of *Pseudomonas fluorescens* (a known hydrocarbon degrader), the authors showed that compounds of types IV and V exhibited a degree of resistance analogous to that of the UCM (Figure 1.3a). The UCM degradation profile was very similar to that seen in a tropical ecosystem when spilled oil was degraded (Oudot and Dutrieux, 1989; Figure 1.3b). This suggests that these structures proposed by Gough and Rowland (1991) are a reasonable model for some aliphatic UCM components.

1.2.2 THE AROMATIC UCM

Early studies of the hydrocarbons in the lubricant fraction of crude oil (Rossini et al., 1953) suggested that the major aromatic compounds present were mono nuclear aromatics with one to three cycloparaffin rings (e.g. VI) (37% of aromatics), dinuclear aromatics condensed with one to two cycloparaffin rings (e.g. VII) (34%) and trinuclear aromatics condensed with one to two aliphatic rings (e.g. VIII) (29%).

![VI](image)
![VII](image)
![VIII](image)

Farcasius and Rubin (1987) examined the "heavy end" of petroleum using spectroscopic and dehydrogenation methods
KEY TO COMPOUNDS IN FIGURE 1.3a

<table>
<thead>
<tr>
<th>Symbol number</th>
<th>Compound</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7-(n)-hexylnonadecane</td>
</tr>
<tr>
<td>2</td>
<td>9-(2-cyclohexylethyl)heptadecane</td>
</tr>
<tr>
<td>3</td>
<td>9-(2-phenylethyl)heptadecane</td>
</tr>
<tr>
<td>4</td>
<td>9-methyltetradecane</td>
</tr>
<tr>
<td>5</td>
<td>(n)-pentacosane</td>
</tr>
<tr>
<td>6</td>
<td>UCM</td>
</tr>
</tbody>
</table>
FIGURE 1.3a. BIODEGRADATION OF SELECTED COMPOUNDS AND THE UCM. (Adapted from Gough et al. 1991)
(For key to compounds see opposite)

FIGURE 1.3b. LEVELS REMAINING AT VARIOUS STAGES OF BIODEGRADATION IN A TROPICAL ECOSYSTEM.
(Adapted from Oudot and Dutrieux, 1989)
in an attempt to characterise the aromatic hydrocarbons. An average structure of a monoaromatic with an aliphatic side chain consisting of two to four saturated rings was suggested.

Gough (1989) used EIMS, GPC and FIMS to analyse the aromatic fraction of a lubricating oil, which indicated that the major compound classes were alkylbenzenes, alkynaphthalenes, alkyltetralins and other combinations of aromatic and saturated ring systems. Killops and Al-Juboori (1990), again working on a biodegraded Alaskan crude oil (total hydrocarbons), also utilised a variety of techniques to examine the aromatic UCM compounds. However, the only structural inferences made were that aliphatic cyclic moieties were important in the aromatic fraction and that there may have been 0 to 3.5 aliphatic rings associated with each aromatic structure. The lack of specific information may be partly due to the use of a sample with only ca. 10% aromatic content. Similarly Gough (1989) analysed the aromatic UCM of lubricating oils which are anomalously low in aromatic compounds due to refining. The only obvious aromatic products from these studies were alkylbenzoic acids indicating an average of two to three alkyl substituents per ring. The chromic acid oxidation performed by Gough (1989) produced similar products to those of the aliphatic UCM (namely n-carboxylic acids with \(\alpha,\omega\)-dicarboxylic acids, \(\gamma\)-lactones and ketones as minor products). These results, in conjunction with the
instrumental analyses, led Gough (1989) to propose an average structure of a monoaromatic compound, substituted with an aliphatic component similar to those proposed for the aliphatic UCM (e.g. IX).

![IX](image)

This type of structure could, as shown for the aliphatic UCM, generate sufficient numbers of compounds to produce an unresolvable mixture by GC. This model was supported by biodegradation studies (Gough et al., 1991) utilising cultures of *Pseudomonas fluorescens*. Compounds similar to IX (e.g. 9-(2-phenylethyl)heptadecane) exhibited a degree of resistance comparable to the UCM (Figure 1.3a; compound 3) suggesting that this was a viable model for some aromatic UCM compounds. However, this compound is lacking in the saturated cyclic moiety suggested by previous research (e.g. Rossini et al., 1953; Farcasiu and Rubin, 1987), which suggests that while it is a potential model compound, it is not entirely correct.

Gough (1989) suggested the use of more selective oxidants to provide further information, since chromic acid, while preferentially oxidising benzylic carbons, also oxidises tertiary carbons in the side chain, thus destroying the
most important structural feature of the compound. Ruthenium tetroxide (RuO₄), which was first used as an oxidant by Djerassi and Engle (1953) to produce sulfoxides from sulfides, has been finding increasing popularity in a variety of oxidative applications. The methodology, particularly in the use of solvents and co-oxidants, has undergone several modifications from the systems used initially (e.g. Oberender and Dixon, 1959; Nakata, 1963 and Sharpless et al., 1981) to those used by Stock and Tse (1983), Trifilieff (1987) and Boucher et al., (1990). The advantages of this oxidant are the low quantities required (due to the use of a co-oxidant) and the specificity for carbon-carbon double bonds and aromatic rings, leaving the aliphatic and alicyclic moieties intact (Figure 1.4). Ideally, one of the advantages of more detailed structural analysis of the UCM hydrocarbons (both aliphatic and aromatic) would be a "retro-analysis" to determine possible UCM precursors.

1.3 ORIGINS OF UCMs

¹⁴C-dating of UCMs isolated from sediments (reviewed by Gough, 1989) gave values of 15000-26000 years B.P., effectively discounting, for these cases, recent biosynthetic sources. This is also consistent with the co-occurrence of UCMs and "mature" biomarker profiles (Eglinton and Calvin, 1967; Volkman and Maxwell, 1986). In a recent study of hydrocarbons in Baltic sediments,
FIGURE 1.4. OXIDATION OF AROMATIC COMPOUNDS BY RUTHENIUM TETROXIDE. (Adapted from Stock and Tse, 1983 and Trifilief, 1987)
variations in UCM concentration closely paralleled those of the petrogenic alkanes (Pihlaja et al., 1990) providing further evidence of a petrogenic origin. In only a few cases have non-petrogenic UCMs been reported (Gough, 1989). These have very narrow carbon number ranges (eg. \(C_{16} - C_{22}\)) compared with typical petrogenic UCMs \((C_{14} - C_{34}\)) and have generally been attributed to microbial re-working of organic matter (Venkatesan and Kaplan, 1982, Grimalt et al., 1988). Since UCMs are generally accepted to be petrogenic in origin, it is reasonable to assume that the UCM precursor is kerogen. There are essentially two current theories of kerogen formation:

1. Kerogen results from the degradation of biochemical macromolecules into individual sub-units, followed by polycondensation and insolubilisation (Tissot and Welte, 1984; Figure 1.5a). The resulting structure is often represented as having aliphatic and aromatic rings with aliphatic side chains, cross linked by functional groups (Tissot and Welte, 1984; Behar and Vandenbroucke, 1987; Figure 1.5b).

2. Philp and Calvin (1976) suggested that kerogen may be formed from insoluble, selectively preserved residues from algae and bacteria. This alternative view of kerogen formation has been recently re-investigated by several workers. Nip et al. (1986a, 1986b) identified the presence of a highly aliphatic
FIGURE 1.5a. "CLASSICAL" PATHWAY TO KEROGEN FORMATION
(Tissot and Welte, 1984)

FIGURE 1.5b. TRADITIONAL VIEW OF KEROGEN STRUCTURE
(Behar and Vandenbroucke, 1987)
FIGURE 1.6. PROPOSED STRUCTURE OF THE HIGHLY ALIPHATIC BIOPOLYMER FROM AGAVE AMERICANA
(Tegelaar et al. 1989a)
biopolymer in extant and fossil plant cuticles and suggested that this new biopolymer exhibited a greater degree of preservation over geological time than cutin and cuticle waxes. Further studies (Nip et al., 1987; Nip et al., 1988; Derenne et al., 1988; Goth et al., 1988; Nip et al., 1989; Derenne et al., 1991) have identified resistant biopolymers in a variety of plant cuticles, coals, torbanites and oil shales. Tegelaar et al. (1989a) proposed a tentative structure (Figure 1.6) for the biopolymer from the cuticle of Agave americana, though this is currently under review (De Leeuw, Personal Communication 1991). A variety of biopolymers in extant organisms have been identified (Tegelaar et al., 1989b; Table 1.3) and this has led to a new mechanism of kerogen formation being proposed (Tegelaar et al., 1989c; Figure 1.7) based on the preservation potentials of many biomacromolecules (Table 1.4).

If such kerogen models are to be accepted, the effects of diagenesis and catagenesis on these macromolecules have to result in the formation of crude oils with an average composition of 57% saturated hydrocarbons and 29% aromatic hydrocarbons (based on 500 oils, Tissot and Welte, 1984). Both the saturated and aromatic components include UCMs, yet the presence of the UCM in the theories of kerogen formation appears to have been ignored. For oils which contain saturated and aromatic UCMs in significant proportions, precursor kerogens must contain suitable
<table>
<thead>
<tr>
<th>ORGANISM</th>
<th>MAJOR LIPIDS</th>
<th>CELL WALL BIOPOLYMER</th>
</tr>
</thead>
</table>
| Botryococcus braunii (Race A) | CH$_3$(CH$_2$)$_7$CH=CH-(CH$_2$)$_n$-CH=CH$_2$
 CH$_3$(CH$_2$)$_3$(CH=CH)$_2$-(CH$_2$)$_n$-CH=CH$_2$
 n=13,15,17,19 / C$_2$-C$_{31}$ | "PRB A" |
| B. braunii (Race B) | e.g. "Botryococcenes" | Identical to "PRB A" |
| B. braunii (Race L) | "lycopadiene" | "PRB L" |
| Tetraedron minimum | | "polylycopadiene" |
| Scenedesmus obliquus | | |
| Chlorella pyrenoidosa | | |
| Dunaliella tertiolecta | | |
| Plant Cuticles | Waxes | -(CH$_2$)$_n$-polysacch. moieties / Cutins |
| Plant Periderms | Waxes | -(CH$_2$)$_n$- moieties / Suberins |
FIGURE 1.7. PROPOSED REVISED PATHWAY TO KEROGEN FORMATION (Tegelaar et al., 1989c)
<table>
<thead>
<tr>
<th>Biomacromolecule</th>
<th>Occurrence</th>
<th>Preservation potential<sup>a</sup></th>
<th>Macerals</th>
<th>Expected major catagenic products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starch</td>
<td>Vascular plants; some algae; bacteria</td>
<td>-</td>
<td>+</td>
<td>Vitrinite, condensed aromatics</td>
</tr>
<tr>
<td>Glycogen</td>
<td>Animals</td>
<td>-</td>
<td>+</td>
<td>Vitrinite, condensed aromatics</td>
</tr>
<tr>
<td>Fructans</td>
<td>Vascular plants; algae; bacteria</td>
<td>-</td>
<td>+</td>
<td>n-alkanes/(condensed) aromatics</td>
</tr>
<tr>
<td>Laminarians</td>
<td>Mainly brown algae; some other algae and fungi</td>
<td>-</td>
<td>+</td>
<td>n-alkanes/aqueous aromatics</td>
</tr>
<tr>
<td>Poly 8-hydroxyalkanoates</td>
<td>Eubacteria</td>
<td>-</td>
<td>+</td>
<td>n-alkanes and aromatics</td>
</tr>
<tr>
<td>Cellulose</td>
<td>Vascular plants; some fungi</td>
<td>+/-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Xylans</td>
<td>Vascular plants; some algae</td>
<td>+/-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Pectins</td>
<td>Vascular plants</td>
<td>+/-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Mannans</td>
<td>Vascular plants; fungi; algae</td>
<td>+/-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Galactans</td>
<td>Vascular plants; algae</td>
<td>+/-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Macilages</td>
<td>Vascular plants (seeds)</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gums</td>
<td>Vascular plants</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alginic Acids</td>
<td>Brown algae</td>
<td>+/-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Fungal Glucans</td>
<td>Fungi</td>
<td>+/-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Dextrins</td>
<td>Eubacteria; fungi</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xanthans</td>
<td>Eubacteria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chitin</td>
<td>Arthropods; copepods; crustaceans; fungi; algae</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acid Macopolysaccharides</td>
<td>Mammals; some fish; eubacteria</td>
<td>+/-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Proteins</td>
<td>All organisms</td>
<td>+/-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Extensin</td>
<td>Vascular plants; algae</td>
<td>+/-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Murin</td>
<td>Eubacteria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teichoic Acids</td>
<td>Grampositive eubacteria</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telcharonic Acids</td>
<td>Grampositive eubacteria</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lipoteichoic Acids</td>
<td>Grampositive eubacteria</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lipopoly saccharides (LPS)</td>
<td>Grampositive eubacteria</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNA, RNA</td>
<td>All organisms</td>
<td>+/-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Glycolipids</td>
<td>Plants; algae; eubacteria</td>
<td>+/++</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Rubber, Gutta, Dolichols</td>
<td>Vascular plants; animals</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resins, Ambera</td>
<td>Vascular plants</td>
<td>+/++</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Cutins, Suberins</td>
<td>Vascular plants</td>
<td>+/++</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Lignins</td>
<td>Vascular plants</td>
<td>+/++</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tannins</td>
<td>Vascular plants; algae</td>
<td>+/+++/+++++</td>
<td>+/++</td>
<td>Suberin, Vitrinite, condensed aromatics</td>
</tr>
<tr>
<td>Sporopollenin</td>
<td>Vascular plants</td>
<td>+/++</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Algasem<sup>b</sup></td>
<td>algae</td>
<td>+/++</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Cutin<sup>c</sup></td>
<td>Vascular plants</td>
<td>+/++</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Suberin<sup>d</sup></td>
<td>Vascular plants</td>
<td>+/++</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

^a Preservation potential ranges from - (extensive degradation) to +++++ (no degradation) for any depositional environment.

^b Algasem is the collective term for the resistant non-hydrolyzable macromolecule in cell walls of (micro)algae.

^c Cutin is the collective term for the non-hydrolyzable macromolecule in many higher plant cuticles.

^d Suberin is the collective term for the non-hydrolyzable macromolecule in many higher plant periderms.
UCM-type aliphatic and aromatic structures. If the hypothesis that kerogen contains UCM precursors is accepted, then the UCM composition of oils might reasonably be expected to contain palaeoenvironmental information. Thus, different UCMs may be expected to show variations in composition which would reflect the type of organic matter at the time of deposition and subsequent geochemical fate (Gough, 1989; Gough and Rowland, 1990). If this information can be released, the source of oils may be distinguishable on the basis of the differences in UCM composition.

1.4 FINGERPRINTING OF UCMs

Part of the evidence for a petrogenic source for UCMs (Section 1.3) is the co-occurrence of UCMs with mature "biological marker" profiles. The information contained within the distribution and stereochemistry of these biomarkers has led to their widespread use as fingerprinting compounds in oil/oil and oil/source rock correlations (Pym et al., 1975; Seifert and Moldowan, 1978; Seifert et al., 1979; Philp, 1983; Jones et al., 1986 and Peters et al., 1989). These compounds (especially steranes and pentacyclic triterpanes) have been shown to be susceptible to biodegradation under certain conditions (Goodwin et al., 1983; Connan, 1984; Philp and Lewis, 1987; Chosson et al., 1991) and the relative rates and order of degradation to vary, depending upon the environment.
Therefore in any correlation study where degradation has occurred, the use of these compounds is prone to error. Indeed, a requirement in this type of situation would be to know which compounds have been degraded and by how much (Poynter and Eglinton, 1991). In addition, some oils contain a wide range of biomarker concentrations, which vary by as much as three orders of magnitude (though rarely accounting for greater than 1% of the C_{15+} hydrocarbons, Rullkötter et al., 1984). Thus an input of two oils, with widely differing biomarker concentrations could result in misleading biomarker profiles. The pentacyclic triterpane distribution can be further confused by inputs of naturally occurring compounds (e.g. from peat deposits; Quirk et al., 1980).

The use of UCM oxidation profiles to provide a complementary fingerprint was demonstrated for two, well documented, acute oil spills by Gough (1989) and Gough and Rowland (1990) (Figure 1.8). These studies utilised variations in seven oxidation products (three lactones and four ketones) to compare the oils and polluted sediments. However, these oxidation products were also only minor products (<1%) and presumably represented correspondingly minor UCM components. Thus, use of these compounds for fingerprinting suffers from the same disadvantages as that of traditional biomarkers. A more acceptable method might be to consider the oxidation products as a whole but any attempt to do this would require the comparison of complex
FIGURE 1.8. THE USE OF UCM OXIDATION PRODUCTS TO FINGERPRINT TWO ACUTE OIL SPILLS (Gough and Rowland, 1990)
chromatograms (for examples see Gough and Rowland, 1990; Gough and Rowland, 1991), which would be difficult and subjective if carried out manually. This problem undoubtedly lends itself to multivariate statistical techniques, similar to those which have become routinely used in exploration geochemistry (e.g. Birks, 1987; Barth, 1987; Esbensen and Martens, 1987; Esbensen et al., 1987).

1.5 THE PRESENT STUDY

The present study is intended to advance current knowledge of UCMs in three interconnected areas.

Chapter 1 has reviewed the current state of knowledge of UCM composition, how this may help in elucidating the origins of the UCM and the possible geochemical information contained within this complex mixture.

Chapter 2 details the use of instrumental and chemical techniques to characterise an aromatic UCM. In this investigation the UCM was degraded to a series of resolved components using a specific oxidant and the products compared with those formed by the oxidation of known aromatic hydrocarbons.

Chapter 3 combines the structural information from Chapter 2 with that of previous studies, to try to formulate ideas on the origins of UCMs. Laboratory maturation of possible
kerogen precursors has yielded UCMs, the oxidation products of which were compared to those of UCMs from oils. The results have implications for both UCM origins and theories of kerogen structure.

Chapter 4 reports the fingerprinting of UCMs by analysis of the oxidation products from a series of different aliphatic UCMs. This work advances the results of previous studies by the use of purpose written computer programs to compare chromatograms and multivariate statistical techniques to produce objective UCM correlations.
"Do you know what this is?"
"No" said Piglet
"It’s an A"
"Oh", said Piglet
"Not O---A" said Eeyore severely

A.A. Milne (The House at Pooh Corner)
STRUCTURAL CHARACTERISATION OF THE AROMATIC UCM

2.1 GENERAL

If relatively little is known about aliphatic UCM composition, even less is known about the aromatic UCM. Although Killops and Al-Juboori (1990) studied the UCM of a whole degraded oil, including the aromatic hydrocarbons (see Section 1.2) and Gough (1989) used Cr(IV) oxidation to study the aromatic UCM from lubricating oil and both concluded that the UCMs were comprised of monoaromatic compounds with branched alkyl side chains, it is not known how generally applicable their conclusions are.

A major problem in the study of aromatic UCMs, is the initial isolation of the unresolved components from the resolved components. Killops and Readman (1985) used HPLC to separate the aromatic fraction according to the number of aromatic double bonds. The majority of the UCM was monoaromatic, but this fraction still contained a high proportion of resolved components. Recently, Grimalt et al. (1991) achieved a similar result using column chromatography to fractionate Amposta oil (Spain).

At present there appears to be no satisfactory chemical method for the removal of the resolved components. For the present study this problem was overcome by using the aromatic UCM of a biodegraded oil (Tia Juana Pesado Crude [TJP], Venezuela) from which the resolved components had
already been removed by natural bacterial action. Although a biodegraded oil is not an ideal substrate from which to draw general conclusions about UCM structure, such oils nonetheless represent a massive amount of oil accumulated (2,800,000 MMBbl; Roadifer, 1987), including the world's three largest oil accumulations (the Orinoco heavy oil belt, Venezuela [1,200,000 MMBbl], Athabasca tar sand, Canada [868,600 MMBbl] and Cold Lake tar sand, Canada [270,000 MMBbl] (Roadifer, 1987)) and such oils are themselves the subject of considerable geochemical interest (reviewed by Hunt, 1979; Cassani and Eglinton, 1986; Roadifer, 1987; Cassani and Eglinton, 1991). Furthermore since the limited evidence obtained so far has suggested that the UCM is relatively inert to biodegradation (Gough et al., 1991), the UCM structure of a biodegraded oil might be expected to be similar to other, less degraded, oils.

Isolation of the aromatic fraction from TJP crude followed the method of Davies and Wolff (1990). Initially the high percentage of aromatic compounds (Table 2.1) modified the apolar solvent used as an eluent for column chromatography and severely reduced chromatographic separation so that an unusually high ratio of adsorbent to sample was required in the eventual separation of the aromatic UCM from the total oil (see experimental).
FIGURE 2.1. GC-FID OF TJP AROMATICS

(J&W DB-5, 25m, 40-300°C @ 5°C/min., H₂ carrier)

TABLE 2.1. YIELD FOR FOUR DIFFERENT FRACTIONATIONS OF TJP CRUDE OIL FRACTIONS FROM COLUMN CHROMATOGRAPHY.

<table>
<thead>
<tr>
<th>Total Oil (mg)</th>
<th>Aliphatics (mg(%)</th>
<th>Aromatics (mg(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>236</td>
<td>67.5 (28.6)</td>
<td>91.8 (38.9)</td>
</tr>
<tr>
<td>190</td>
<td>52.1 (27.4)</td>
<td>73.8 (38.8)</td>
</tr>
<tr>
<td>130</td>
<td>37.7 (29.0)</td>
<td>57.5 (44.2)</td>
</tr>
<tr>
<td>430</td>
<td>120.3 (27.9)</td>
<td>168.2 (39.1)</td>
</tr>
<tr>
<td>RSD (%)</td>
<td>2.2</td>
<td>5.7</td>
</tr>
</tbody>
</table>
2.2 BULK CHARACTERISTICS

GC of the aromatic hydrocarbons revealed a broad UCM ranging from KI 1300-3600 (2700 max.) with only ca. 5% resolved components (Figure 2.1), as estimated by the time slice area measurement (Appendix I). Elemental analysis gave an average composition of:

<table>
<thead>
<tr>
<th>C%</th>
<th>H%</th>
<th>N%</th>
<th>S%</th>
<th>O%*</th>
<th>H/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>82.33</td>
<td>10.10</td>
<td>0.0</td>
<td>4.04</td>
<td>3.53</td>
<td></td>
</tr>
<tr>
<td>83.92</td>
<td>10.00</td>
<td>0.0</td>
<td>4.08</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>83.13</td>
<td>10.05</td>
<td>4.06</td>
<td>2.77</td>
<td>1.45</td>
<td></td>
</tr>
</tbody>
</table>

* Determined by difference

The H/C ratio suggests the presence of naphthenonaphthalenes (assuming an average composition of a C_{15} hydrocarbon, Z = -14, Table 2.2). However, this value cannot be taken as a true indication of the average compound class, since the relatively high sulphur content decreases the H/C ratio. For example, dibenzothiophene (C_{12}H_{14}S) contains 17% sulphur (wt/wt) and has a H/C ratio of 0.67 whereas biphenyl (C_{12}H_{10}) has a H/C ratio of 0.8. This effect is shown graphically for a variety of sulphur compound classes in Figure 2.2. This figure highlights the fact that the UCM is unlikely to consist entirely of
TABLE 2.2 ELEMENTAL ANALYSIS

<table>
<thead>
<tr>
<th>Aromatic Hydrocarbon</th>
<th>Z' Value</th>
<th>H/C Ratiob</th>
<th>General Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-6</td>
<td>1.76</td>
<td>C_nH_{2n-6}</td>
</tr>
<tr>
<td></td>
<td>-8</td>
<td>1.68</td>
<td>C_nH_{2n-8}</td>
</tr>
<tr>
<td></td>
<td>-10</td>
<td>1.60</td>
<td>C_nH_{2n-10}</td>
</tr>
<tr>
<td></td>
<td>-12</td>
<td>1.52</td>
<td>C_nH_{2n-12}</td>
</tr>
<tr>
<td></td>
<td>-14</td>
<td>1.44</td>
<td>C_nH_{2n-14}</td>
</tr>
<tr>
<td></td>
<td>-16</td>
<td>1.36</td>
<td>C_nH_{2n-16}</td>
</tr>
<tr>
<td></td>
<td>-18</td>
<td>1.28</td>
<td>C_nH_{2n-18}</td>
</tr>
<tr>
<td>Aromatic UCM (Gough, 1989)</td>
<td>-6</td>
<td>1.62</td>
<td>C_nH_{2n-6}</td>
</tr>
<tr>
<td>THIS STUDY</td>
<td>-6</td>
<td>1.45</td>
<td>C_nH_{2n-6}</td>
</tr>
</tbody>
</table>

Aromatic UCM (Gough, 1989) 1.62
THIS STUDY 1.45

a Z value = C_nH_{2n+z}

b for a C$_{25}$ aromatic hydrocarbon
FIGURE 2.2. ATOMIC H/C RATIOS vs. %S FOR DIFFERENT Z VALUES C_{12} - C_{30}

- z = -16
- z = -10
- z = -4
aromatic sulphur compounds. The 4% S content of the UCM must be due to dilution of the sulphur compounds by hydrocarbons with a H/C ratio greater than 1.45. Indeed, to obtain a sulphur content of 4%, each sulphur atom must be associated with hydrocarbons amounting to 800 a.m.u. (e.g. C₇H₁₄; C₃₄H₁₀₄).

GC-FPD showed that a range of sulphur compounds extending to at least ca. KI 3500 (Figure 2.3) was present, with less than 8% of these resolved. Considering the requirement from the elemental data for a mixture containing relatively high molecular weight hydrocarbons, the range of hydrocarbons and sulphur compounds must extend beyond the limits of GC-FPD detection.

One technique suitable for the analysis of such high molecular weight compounds is FDMS (Rose and Johnstone, 1982; Chapman, 1985). FDMS analysis of compounds produces M⁺ or M+1⁺ ions depending on compound type and instrument conditions (H. Major, VG Analytical Ltd., Personal Communication, 1991). The aromatic UCM and three standards, 7-hexylnonadecane, 9-(2-cyclohexylethyl)heptadecane and 9-(2-phenylethyl)heptadecane) were analysed by FDMS. The authentic compounds all produced strong M+1⁺ ions (Figure 2.4) while FDMS of the UCM produced both M⁺ and M+1⁺ ions (Figure 2.5) and a molecular weight range of 200-1200 Daltons, from which the distributions of the
FIGURE 2.3. GC-FPD OF TJP AROMATICS

(J&W DB-5, 25m, 40-300°C @ 5°C/min., H₂ carrier)
FIGURE 2.4. FDMS OF AUTHENTIC COMPOUNDS

7-Hexylnonadecane (m.w. = 352)

9-(2-cyclohexylethyl)heptadecane (m.w. = 350)

9-(2-phenylethyl)heptadecane (m.w. = 344)
I, ja

Figure 2.6. FDMS analysis of the aromatic UCM

February 1992, data show that there is little difference between the relative distributions of the studied parent classes and that there is a proportion of the sample which is indeed outside the normal limits of FDMS. Unfortunately, FDMS under these conditions is only suited to the analysis of large samples and the present study can be compared to similar studies on the alkylbenzenes and halogenated benzenes.

The relative response are not due to alkylbenzenes but rather other disubstituted benzenes (p, t, o) cm⁻³, para - dissubstituted benzenes or substituted clybenzene (t-butyl benzenes) with the strongest.
FIGURE 2.6. FDMS ANALYSIS OF THE AROMATIC UCM
common hydrocarbon and sulphur containing aromatics were plotted (Figure 2.6). The data show that there is little difference between the relative distributions of the various compound classes and that there is a proportion of the sample which is indeed outside the normal limits of GC-FID. Unfortunately, FDMS under these conditions is only a qualitative method and no quantitative information can be gained from the data.

UV spectroscopy of the UCM shows evidence for mono- and di-aromatic compounds (Figure 2.7). Specific information is limited due to the strong absorbance of naphthalenes. UVF spectroscopy suggests that the range extends to compounds with four and five aromatic rings (Figure 2.8) but, as with FDMS, the data is non-quantitative.

IR spectroscopy (Figure 2.9) indicates a highly aliphatic structure for the UCM; the aromatic absorbances appear relatively weak. There are similarities to the IR spectrum of 9-(2-phenylethyl)heptadecane (Figure 2.10). The most striking difference between the two is the almost complete absence in the UCM spectrum of the strong absorbance at 700 cm⁻¹ assigned to the aromatic C-H def. of mono substituted aromatic rings (Kemp, 1980). This difference suggests that the majority of UCM aromatic compounds are not mono-alkylbenzenes but rather ortho- disubstituted benzenes (730 cm⁻¹), para - disubstituted benzenes or substituted naphthalenes (810 cm⁻¹, 870 cm⁻¹) with the strongest
FIGURE 2.7. UV SPECTRUM OF THE AROMATIC UCM
[Standard spectra from Kemp (1987)]
FIGURE 2.8. UVF SYNCHRONOUS SCANNING SPECTRUM OF THE AROMATIC UCM
(Relative positions of aromatic compounds by reference to Mille et al., 1988)
FIGURE 2.9. IR SPECTRUM OF THE AROMATIC UCM
(Sample analysed as a thin film on NaCl discs. * indicates absorptions due to the slightly hydroscopic nature of the discs)

FIGURE 2.10. IR SPECTRUM OF 9-(2-PHENYLETHYL)HEPTADECANE
(Sample analysed as a thin film on NaCl discs. * indicates absorptions due to the slightly hydroscopic nature of the discs)
absorption at 730 cm$^{-1}$.

Proton NMR (Figure 2.11) confirmed the highly aliphatic nature of the aromatic UCM. Comparison of the spectrum with those of phenyldecane and 9-(2-phenylethyl)heptadecane (Figure 2.11) suggests a similar degree of aliphaticity to the latter, but with a greater proportion of tertiary centres (1.6 ppm), indicating a more highly branched structure.

13C-NMR spectra of the two authentic compounds each exhibited a resonance at 143 ppm assigned to the ipso carbon (benzene carbon, 128 ppm + substitution effect, 15 ppm: Kemp, 1980). This shift is absent in the UCM spectrum (Figure 2.12), which instead exhibits a resonance at 138 ppm. This, supported by the IR data, is strong evidence that the majority of aromatic compounds are not of the mono alkyl benzene type. Alternative compounds which may explain a resonance at 138 ppm are alkyl tetralins (2.I), alkyl tetrahydrophenanthrenes (2.II), alkyl octahydrophenanthrenes (2.III) and alkyl indans (2.IV).
FIGURE 2.11. 1H-NMR SPECTRA
(Jeol 270MHz; Sample in CDCl$_3$)
FIGURE 2.12. 13C-NMR SPECTRA
(Jeol 270MHz; Sample in CDCl$_3$)
13C-NMR data for the alkylated homologues of three of these compound classes (2.I, 2.II and 2.IV) and for the parent compound of the fourth (Table 2.3), show that the closest correlation is between the UCM and alkyltetralins, with substitution on the carbons β to the aromatic ring (carbon 2). Substitution at any other position produces chemical shifts at 140 ppm or greater. Although no data were available for alkylated homologues of octahydrophenanthrene or alkyl substituents greater than methyl for the tetrahydrophenanthrenes, comparison of the resonance values for the parent hydrocarbons with the effects of alkyl substitution in the other compound classes suggests that significant differences would occur, especially at carbons 4a, 4b, 8a and 10a (Structures 2.II and 2.III) which would give rise to resonances at 132-134 ppm. The UCM exhibited no resonances in this region. Furthermore the differences between chemical shifts reported for alkyltetralins and those recorded for the aromatic UCM are ≤ 0.8 ppm, with most ± 0.3 ppm. Differences of this magnitude are probably insignificant (Dr. N Turner, Exeter University, Personal Communication, 1991). It is also noteworthy that the IR spectrum of tetralin (Figure 2.13) exhibits a strong absorbance at 730 cm$^{-1}$ (out of plane C-H def.) which was the strongest of the aromatic absorbances in the UCM spectrum (Figure 2.9).

EI mass spectra of the UCM (Figure 2.14) are characterised by a wide range of ions, some diagnostic of particular
TABLE 2.3 ¹H-NMR DATA FOR ALKYL SUBSTITUTED TETRALINS, INDANS, TETRA- AND OCTA-HYDRO PHENANTHRENES
(Adapted from Adamczyk et al., 1984; Morin et al., 1985 and Seshadri et al., 1978). Figures in brackets indicate closest fit from UCM. Differences > 1 ppm are highlighted.

<table>
<thead>
<tr>
<th>COMPOUNDS</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>4a</th>
<th>4b</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>8a</th>
<th>9</th>
<th>10</th>
<th>10a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetralin</td>
<td>29.6</td>
<td>23.6</td>
<td>23.6</td>
<td>29.6</td>
<td></td>
<td></td>
<td>129.4</td>
<td>125.8</td>
<td>125.8</td>
<td>129.4</td>
<td>137.1</td>
<td>137.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-butyltetralin</td>
<td>37.6</td>
<td>27.5</td>
<td>19.8</td>
<td>29.8</td>
<td></td>
<td></td>
<td>129.0</td>
<td>125.4</td>
<td>125.3</td>
<td>128.5</td>
<td>141.6</td>
<td>136.9</td>
<td>137.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(37.5)</td>
<td>(29.3)</td>
<td>(19.9)</td>
<td>(29.7)</td>
<td></td>
<td></td>
<td>(128.9)</td>
<td>(125.2)</td>
<td>(125.2)</td>
<td>(128.2)</td>
<td>(137.8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-butyltetralin</td>
<td>36.3</td>
<td>34.2</td>
<td>29.6</td>
<td>29.3</td>
<td></td>
<td></td>
<td>129.1</td>
<td>125.3</td>
<td>125.4</td>
<td>128.8</td>
<td>136.9</td>
<td>137.0</td>
<td>137.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(37.0)</td>
<td>(35.0)</td>
<td>(29.7)</td>
<td>(29.7)</td>
<td></td>
<td></td>
<td>(128.9)</td>
<td>(125.2)</td>
<td>(125.2)</td>
<td>(128.9)</td>
<td>(137.7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-butyltetralin</td>
<td>29.4</td>
<td>23.4</td>
<td>23.3</td>
<td>29.0</td>
<td></td>
<td></td>
<td>129.0</td>
<td>139.9</td>
<td>125.6</td>
<td>129.0</td>
<td>134.2</td>
<td>136.8</td>
<td>137.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(29.4)</td>
<td>(22.7)</td>
<td>(22.7)</td>
<td>(29.3)</td>
<td></td>
<td></td>
<td>(128.9)</td>
<td>(137.7)</td>
<td>(125.2)</td>
<td>(128.9)</td>
<td>(137.7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indan</td>
<td>33.0</td>
<td>25.4</td>
<td>33.0</td>
<td>124.4</td>
<td></td>
<td></td>
<td>126.2</td>
<td>126.3</td>
<td>124.0</td>
<td>144.0</td>
<td>144.0</td>
<td>144.0</td>
<td>137.7</td>
<td></td>
</tr>
<tr>
<td>1-butylindan</td>
<td>44.8</td>
<td>32.2</td>
<td>31.7</td>
<td>124.3</td>
<td></td>
<td></td>
<td>125.9</td>
<td>126.1</td>
<td>123.5</td>
<td>147.8</td>
<td>144.0</td>
<td>144.0</td>
<td>137.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(37.5)</td>
<td>(31.9)</td>
<td>(31.9)</td>
<td>(125.2)</td>
<td></td>
<td></td>
<td>(125.2)</td>
<td>(126.2)</td>
<td>(125.2)</td>
<td>(137.7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-butylindan</td>
<td>39.4</td>
<td>40.2</td>
<td>39.4</td>
<td>124.3</td>
<td></td>
<td></td>
<td>125.9</td>
<td>125.9</td>
<td>124.3</td>
<td>143.7</td>
<td>143.7</td>
<td>143.7</td>
<td>137.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(37.5)</td>
<td>(37.5)</td>
<td>(125.2)</td>
<td></td>
<td></td>
<td>(126.2)</td>
<td>(125.2)</td>
<td>(125.2)</td>
<td>(137.7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-butylindan</td>
<td>32.8</td>
<td>25.6</td>
<td>32.5</td>
<td>124.4</td>
<td></td>
<td></td>
<td>140.8</td>
<td>126.2</td>
<td>124.0</td>
<td>141.3</td>
<td>144.2</td>
<td>144.2</td>
<td>137.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(22.8)</td>
<td>(32.8)</td>
<td>(125.2)</td>
<td></td>
<td></td>
<td>(137.7)</td>
<td>(126.2)</td>
<td>(125.2)</td>
<td>(137.7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrahydrophenanth.</td>
<td>30.4</td>
<td>23.2</td>
<td>23.0</td>
<td>25.5</td>
<td>132.5</td>
<td>131.5</td>
<td>123.0</td>
<td>125.0</td>
<td>124.7</td>
<td>128.6</td>
<td>132.9</td>
<td>125.9</td>
<td>128.3</td>
<td>134.2</td>
</tr>
<tr>
<td>1-methyl-</td>
<td>33.2</td>
<td>30.8</td>
<td>19.7</td>
<td>26.1</td>
<td>132.3</td>
<td>131.4</td>
<td>123.3</td>
<td>126.0</td>
<td>125.0</td>
<td>128.6</td>
<td>132.8</td>
<td>126.1</td>
<td>127.5</td>
<td>139.4</td>
</tr>
<tr>
<td>3-methyl-</td>
<td>30.4</td>
<td>31.4</td>
<td>29.2</td>
<td>33.4</td>
<td>132.4</td>
<td>131.4</td>
<td>123.0</td>
<td>125.8</td>
<td>124.8</td>
<td>128.6</td>
<td>132.7</td>
<td>125.8</td>
<td>128.1</td>
<td>133.9</td>
</tr>
<tr>
<td>Octahydrophenanth.</td>
<td>30.2</td>
<td>23.8</td>
<td>23.2</td>
<td>26.3</td>
<td>134.0</td>
<td>134.0</td>
<td>26.3</td>
<td>23.2</td>
<td>23.8</td>
<td>30.2</td>
<td>134.8</td>
<td>126.5</td>
<td>126.5</td>
<td>134.8</td>
</tr>
</tbody>
</table>
FIGURE 2.13. IR SPECTRUM OF 1,2,3,4-TETRAHYDRONAPHTHALENE
(TETRALIN; Taken from Pouchert, 1975)
FIGURE 2.14. EI-GCMS OF THE AROMATIC UCM
(J&W DB-5, 25m, 40-300°C @ 5°C/min., He carrier)
compound classes. One series is associated with alkylbenzenes \((m/z\ 91, 105, 119)\) and a second \((m/z\ 131, 145, 159, 173)\) could be assigned to napthenobenzenes (e.g. tetralins), but in general the spectra are too complex to draw many detailed conclusions.

In summary elemental, IR, UV, UVF, NMR and MS of the aromatic UCM suggest that it is characterised by napthenobenzene components, with aliphatic substitution on the saturated ring. Interestingly, such compounds have been shown to represent a relatively large proportion of the aromatic fraction of some ancient sediments (e.g. Green River shale; Anders et al. 1973; Gallegos, 1973; Anders et al., 1975).

2.3 CHEMICAL OXIDATION OF THE AROMATIC UCM

2.3.1 GENERAL

Gough (1989) used chromium (VI) \((\text{CrO}_3/\text{acetic acid})\) to oxidise the aliphatic UCMs of both crude and lubricating oils in an attempt to obtain structural information. He also used the same reagent to oxidise the aromatic fraction of a lubricating oil. This produced similar products to those of the aliphatic UCM i.e. \(n\)-carboxylic acids, \(\gamma\)-lactones and ketones. However, since the feedstock oils from which lubricating oils are made are de-aromatised during refining, these results are possibly of only limited
value and not relevant to the composition of the aromatic UCMs of crude oils in general. Few, if any, other studies of aromatic UCMs have been made and no other oxidants appear to have been used to characterise aromatic UCMs, even though a variety of reagents are available. Use of reagents such as ruthenium tetroxide (RuO$_4$) which are known to specifically oxidise aromatic rings, might be expected to yield additional compositional information.

Therefore, in the present study both Chromium (VI) and RuO$_4$ were used to oxidise the aromatic UCM of biodegraded TJP oil with the aim of obtaining more generally applicable compositional information.

2.3.2 CHROMIUM TRIOXIDE OXIDATION

Oxidation of the aromatic UCM was carried out according to the method of Gough (1989). The recovery of oxidation products (>80%) was comparable to Gough (1989) (Table 2.4). These resolved oxidation products accounted for ca. 25% of the recovered material by GC (estimated by the time slice area measurement, Appendix I). The major resolved oxidation products were n-monocarboxylic acids (Figure 2.15) (n-C_{5-23}) with a strong odd over even predominance between n-C_9 and n-C_{16}. This is comparable to the results of Gough (1989) for a lubricating oil (n-C_{7-20}). Other, relatively minor oxidation products were alkylketones (C_7-C_{20}; max C_{11}), including a secondary series of iso-methyl
<table>
<thead>
<tr>
<th>Sample Weight (mg)</th>
<th>Total Recovered Material (mg)</th>
<th>Recovery (%) (By weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td>chromium trioxide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>this study</td>
<td>10</td>
<td>8.1</td>
</tr>
<tr>
<td>Gough (1989)</td>
<td>50.8</td>
<td>42.2</td>
</tr>
<tr>
<td>ruthenium tetroxide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>89</td>
<td>98</td>
</tr>
<tr>
<td>66.4</td>
<td>57.8</td>
<td>87</td>
</tr>
<tr>
<td>55.0</td>
<td>26.5</td>
<td>48</td>
</tr>
</tbody>
</table>

* Results from Gough (1989) are from oxidation of a lubricating oil.
FIGURE 2.15. CHROMATOGRAMS FOR THE AROMATIC UCM CrO$_3$ OXIDATION PRODUCTS

(m/z 74 = n-carboxylic acid methylesters; m/z 99 = γ-lactones; m/z 58 = ketones; numbers indicate carbon number, br = branched, i = iso, K = ketone, L = Lactone)
branched ketones, and a series of γ-methyl-γ-lactones (C₅-C₁₁; max C₁₀). The dominant ketone was identified, by comparison of retention time and MS with Gough (1989), as a C₁₃ isoprenoid. Gough (1989) attributed similar oxidation products to oxidation of the alkyl side chain of alkylbenzenes due to preference for attack at the benzylic carbon,

followed by secondary oxidation of the alkyl chain to yield other acids, ketones or lactones; viz.,
However, the IR and NMR data of the TJP aromatic UCM (Section 2.2) indicated that the alkyl groups were not on the aromatic rings as suggested by Gough (1989) for the lubricating oil but rather that naphthenoaromatic, tetralin-type compounds were present. If this is the case, other oxidation products, notably o-phthalic acid might be expected.
After methylation during work-up phthalic acid would be present as the dimethyl ester, which unlike other phthalate esters, has a base peak at \(m/z \) 163 (cf. \(m/z \) 149) (Middleditch, 1989).

Dimethylphthalate was identified as a minor component (ca. 5\% of TIC) of the UCM oxidation products by GCMS. The spectrum showed strong similarities to that reported for dimethylphthalate (Figure 2.16; Middleditch, 1989). (Although dimethylphthalate has been reported as an analytical artefact (plasticiser) in some solvents and in water which has passed through plastic tubing (Middleditch, 1989), there is no evidence for this compound in the procedural blank (Figure 2.17). Thus the presence of dimethylphthalate is strong evidence for the presence of naphthenobenzenes in the UCM). No evidence for esters of methyl phthalic acid or tetrahydrophenanthrene-type structures could be found, in agreement with the results from \(^{13}\text{C}-\text{NMR} \) spectroscopy that such structures were absent.
FIGURE 2.16. EXPANDED CHROMATOGRAM AND MASS SPECTRUM TO SHOW THE PRESENCE OF DIMETHYLPHTHALATE IN THE CrO₃ OXIDATION PRODUCTS

FIGURE 2.17. M/Z 163 CHROMATOGRAM OF THE OXIDATION BLANK
2.3.3 RUTHENIUM TETROXIDE OXIDATION

The relatively non-specific mechanism of the Cr(VI) oxidation (March, 1985) was followed by investigating a more specific reagent for the oxidation of aromatic hydrocarbons (viz. RuO₄). The oxidation conditions were modified from those of Stock and Tse (1983) and Boucher et al. (1990), and were validated by a series of trials utilising phenyldecanes as substrate (Table 2.5). Recoveries of ca. 60% were achieved, with undecanoic acid (analysed as a methyl ester) accounting for up to 80% of the products. Interestingly, there was no evidence for the benzylic ketone previously reported as a by-product (Stock and Tse, 1983; Trifilieff, 1987);

\[
\text{Oxidation of the aromatic UCM generally gave good recoveries (48-99%; Table 2.4) and produced a series of resolved (5% by GC cf. 25% by CrO}_3/\text{acetic acid) components superimposed on a UCM (Figure 2.18). The former were mostly } n\text{-carboxylic acids. However, the } m/z 74 \text{ chromatogram, typical of carboxylic acid methyl esters, also exhibited a significant UCM, suggesting the presence}
\]
<table>
<thead>
<tr>
<th>Substrate (mg)</th>
<th>RuCl₃ mg (molar ratio)</th>
<th>NaIO₄ mg (molar ratio)</th>
<th>Solvent</th>
<th>Mixing</th>
<th>T°C</th>
<th>Products (mg)</th>
<th>% Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>205</td>
<td>6.0 (0.03)</td>
<td>2.0 (10)</td>
<td>CCl₄</td>
<td>static</td>
<td>Amb.</td>
<td>120</td>
<td>59</td>
</tr>
<tr>
<td>200</td>
<td>50 (0.26)</td>
<td>2.0 (10)</td>
<td>CCl₄</td>
<td>static</td>
<td>Amb.</td>
<td>124</td>
<td>62</td>
</tr>
<tr>
<td>200</td>
<td>100 (0.53)</td>
<td>1.0 (5.2)</td>
<td>CCl₄</td>
<td>shaken</td>
<td>Amb.</td>
<td>138</td>
<td>69</td>
</tr>
<tr>
<td>218</td>
<td>2.6 (0.01)</td>
<td>3.4 (17.3)</td>
<td>CCl₄</td>
<td>static</td>
<td>Amb.</td>
<td>189</td>
<td>86</td>
</tr>
<tr>
<td>200</td>
<td>2.6 (0.01)</td>
<td>3.4 (17.3)</td>
<td>CCl₄</td>
<td>m/s</td>
<td>35°C</td>
<td>128</td>
<td>64</td>
</tr>
<tr>
<td>200</td>
<td>2.6 (0.01)</td>
<td>3.4 (17.3)</td>
<td>CCl₄</td>
<td>mechanical</td>
<td>35°C</td>
<td>130</td>
<td>65</td>
</tr>
<tr>
<td>200</td>
<td>2.6 (0.01)</td>
<td>3.4 (17.3)</td>
<td>chloroform</td>
<td>mechanical</td>
<td>35°C</td>
<td>126</td>
<td>63</td>
</tr>
</tbody>
</table>

* = non-thermostated
= thermostated
Amb. = ambient temperature
m/s = magnetic stirrer
FIGURE 2.18. GC-FID OF THE AROMATIC UCM RuO₄ OXIDATION PRODUCTS
(J&W DB-5, 25m, 40-300°C @ 5°C/min., H₂ carrier)

FIGURE 2.19. M/Z 74 CHROMATOGRAM OF THE AROMATIC UCM RuO₄ OXIDATION PRODUCTS
(J&W DB-5, 25m, 40-300°C @ 5°C/min., H₂ carrier)

59
of acidic unresolved products (Figure 2.19). The
n-monocarboxylic acid profile from this oxidation was also
different to that of the Cr(VI) oxidation. The
distribution shows no even/odd predominance up to C_{14}
(equivalent to C_{13} in the Cr(VI) oxidation) and thereafter
a strong even/odd predominance up to C_{22} (RuO_4 oxidation
abstracts one carbon from the aromatic ring, so this is
equivalent to an odd/even predominance from the Cr(VI)
oxidation).

Assuming that these n-carboxylic acids are liberated from
alkyl chains attached directly to an aromatic ring, the
chain lengths (C_8-C_{22}) represent the alkyl moieties present
in the sample (actual chain lengths C_{n+1}). These results
suggest that chain lengths of 16, 18 and 20 carbons are
minor or even absent. Additionally there is little evidence
for chain lengths greater than C_{21}. The differences between
the oxidation product profiles of the RuO_4 and CrO_3
oxidations must be due to secondary oxidation of side
chains in the latter, presumably at tertiary centres, to
yield further n-carboxylic acids. This is further supported
by the presence of a UCM in the m/z 74 chromatogram of the
RuO_4 oxidation (which presumably contains branched
compounds) and the absence of a strong UCM in the Cr(VI)
oxidation m/z 74 chromatogram. Fractionation of the
material recovered from the RuO_4 oxidation, into acidic and
non-acidic (i.e. reacted and unreacted) portions, yielded
50% acids, of which 16% were resolved by GC (cf. 5% for the
total recovered products). This fraction was examined by several techniques in an attempt to arrive at an average structure for the unresolved acids.

1H-NMR (Figure 2.20) gave ratios for the various proton types as,

\[-\text{OCH}_3, \text{CH}^-, \text{CH}_2-, \text{CH}_3\]

\[1 : 3 : 8 : 3\]

These figures, assuming direct attachment to a mono aromatic ring would indicate a C$_{19}$ alkylbenzene or if diaromatic, a C$_{23}$ alkynaphthalene precursor. Increasing these figures however, to allow for the formation of diacids, the precursor becomes a C$_{33}$ diaromatic (assuming the alkyl chain is attached to an aromatic ring at two separate points). These two hypothetical structures are not ideal in terms of the observed KI range (max. KI 2700) of the UCM and evidence from IR, NMR and the chromic acid oxidation for the predominance of naphthenobenzene type structures. Stock and Tse (1983) oxidised tetralin with RuO$_4$ to yield predominantly adipic acid, HOOC(CH$_2$)$_2$COOH and some glutaric acid, HOOC(CH$_2$)$_3$COOH, and therefore the presence of alkylated naphthenobenzenes should lead to dicarboxylic acid oxidation products, which if the alkyl portion is significantly branched, may remain unresolved by GC.
FIGURE 2.20. 1H-NMR SPECTRUM OF THE ACIDIC FRACTION PRODUCED BY RuO₄ OXIDATION OF THE TJP AROMATIC UCM
If this were the case, then the dicarboxylic acid products suggested by NMR would require a C$_{32}$ monoaromatic precursor, much closer to the GC maximum of KI 2700.

Mass spectra taken through the unresolved portion of the acidic fraction (Figure 2.21) confirm the presence of carboxylic acids (as methyl esters, m/z 74, McLafferty rearrangement) but also exhibit other important ions. All three spectra possess a relatively strong m/z 87 ion in relation to the m/z 74. In n-carboxylic acid methyl esters, the m/z 74 is the base peak, with m/z 87 present at 50-60%. The relatively enhanced m/z 87 ions in these spectra compared with spectra of n-carboxylic acid methylesters could be due to enhanced fragmentation γ to the acid group:

A more likely alternative is a δH rearrangement (Mclafferty, 1980). n-Carboxylic acid methyl esters generally rearrange γ to the carbonyl carbon, yielding the
FIGURE 2.21. EI–GCMS OF THE UNRESOLVED ACIDS PRODUCED BY THE RuO₄ OXIDATION OF THE TJP AROMATIC UCM (J&W DB-5, 25m, 40–300°C @ 5°C/min. He carrier)
The spectra also exhibit two very distinct ion series at m/z 55, 69, 83, 97 and m/z 95, 109, 123, 137 which can be assigned to mono- and dienes or mono- and bicyclic compounds respectively. There is no evidence from 1H-NMR for the presence of alkenes (4-6 ppm), and none would be expected since double bonds are attacked by RuO$_4$ and are not produced. This leaves, therefore, the presence of mono- and bicyclic alkanes in the unresolved oxidation products, suggesting these comprise part of the alkyl chain and presumably are not condensed to the naphthenobenzene structure. Corroborating evidence is provided by Farcasius
and Rubin (1987) who analysed petroleum residues by dehydrogenation and suggested that the aliphatic portion of aromatic compounds should consist of two to four saturated rings per molecule.

2.4 SUMMARY

Bulk UCM analyses (elemental, UV, UVF, IR, \(^1\)H- and \(^{13}\)C-NMR) produced strong evidence that the majority of compounds in the aromatic UCM are highly aliphatic, with only one or two aromatic rings. In general the evidence suggested the presence of naphthoaromatic compounds rather than monoalkylbenzenes and \(^{13}\)C-NMR corroborated this conclusion. The presence of dimethylphthalate in the chromic acid oxidation products (and absence in the procedural blank), plus evidence for branched dicarboxylic acids from RuO\(_4\) oxidation are also consistent with this. The data strongly suggest that the aliphatic side chain could include saturated rings and structures 2.V to 2.VII are proposed as possible candidates.

Gough and Rowland (1990) showed that for a c\(_{20-30}\) "T-branch"
alkane, there were 536 possible isomers. The number of isomers (excluding stereoisomers) for the three types of aromatic compounds suggested (2.V-2.VII), between C_{20} and C_{30} was calculated using a purpose written computer program (Appendix II) (Tables 2.6-2.8) and found to be 1,213, not including multiple branching on the chain or methyl branching on the saturated rings. For the purpose of this calculation it was assumed that for a particular carbon number, the number of carbon atoms in the alkyl chain (n) was equal to the total less those in the ring system(s). Within this side chain, the monoalkyl moiety was allowed to have from zero to n-1 carbon atoms (i.e. there must always be at least one carbon atom between any two ring systems). At an oven temperature ramp of 5°C per minute C_{20} and C_{30} are separated by 17 min. (1020 s; J&W DB-5) with a baseline peak width of ca. 10 seconds, thus GC could in theory resolve only 102 compounds in this time. Clearly, naphthenoaromatic compounds with side chains containing saturated rings could easily account for the unresolved nature and other chemical characteristics of the aromatic UCM.
TABLE 2.6. RESULTS FROM THE "T-BRANCH" PROGRAM FOR A MONO-AROMATIC NAPHTHENO COMPOUND (Z = -8) BETWEEN C_{20} AND C_{30}

NUMBER OF T-BRANCH ALKANES, EXCLUDING STEREOISOMERS MOLECULE ASYMMETRIC AT ONE END ONLY

<table>
<thead>
<tr>
<th>Total(^a)</th>
<th>Branch Carbons(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbons</td>
<td>1 2 3 4 5 6 7 8 9</td>
</tr>
<tr>
<td>10</td>
<td>8 6 4 2</td>
</tr>
<tr>
<td>11</td>
<td>9 7 5 3 1</td>
</tr>
<tr>
<td>12</td>
<td>10 8 6 4 2</td>
</tr>
<tr>
<td>13</td>
<td>11 9 7 5 3 1</td>
</tr>
<tr>
<td>14</td>
<td>12 10 8 6 4 2</td>
</tr>
<tr>
<td>15</td>
<td>13 11 9 7 5 3 1</td>
</tr>
<tr>
<td>16</td>
<td>14 12 10 8 6 4 2</td>
</tr>
<tr>
<td>17</td>
<td>15 13 11 9 7 5 3 1</td>
</tr>
<tr>
<td>18</td>
<td>16 14 12 10 8 6 4 2</td>
</tr>
<tr>
<td>19</td>
<td>17 15 13 11 9 7 5 3 1</td>
</tr>
<tr>
<td>20</td>
<td>18 16 14 12 10 8 6 4 2</td>
</tr>
</tbody>
</table>

Total isomers including unbranched parent = 576

\(^a\) Refers to the number of side chain carbons *i.e.* the C_{20} compound has 10 carbons in the parent and therefore 10 carbons in the chain.

\(^b\) Refers to the number of carbons in the branch of the side chain *i.e.* in a side chain of 10 carbons there can only be 4 carbons in the branch (6 in the main chain) before isomers start to be repeated.
TABLE 2.7. RESULTS FROM THE "T-BRANCH" PROGRAM FOR A MONO-AROMATIC NAPHTHENO COMPOUND WITH ONE CYCLOHEXYL RING IN THE SIDE CHAIN BETWEEN C_{20} AND C_{30} ($Z = -10$)

![Chemical Structure](image)

NUMBER OF T-BRANCH ALKANES, EXCLUDING STEREOISOMERS MOLECULE ASYMMETRIC AT BOTH ENDS

<table>
<thead>
<tr>
<th>Total</th>
<th>Branch Carbons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbons</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>Total isomers including unbranched parent = 462</td>
<td></td>
</tr>
</tbody>
</table>

a,b Notes as per table 2.6
TABLE 2.8. RESULTS FROM THE "T-BRANCH" PROGRAM FOR A MONO-AROMATIC NAPHTHENO COMPOUND WITH TWO FUSED CYCLOHEXYL RINGS IN THE SIDE CHAIN BETWEEN C_{20} AND C_{30} (Z = -12)

![Chemical Structure](image)

NUMBER OF T-BRANCH ALKANES, EXCLUDING STEREOISOMERS MOLECULE ASYMMETRIC AT BOTH ENDS

<table>
<thead>
<tr>
<th>Total(^a)</th>
<th>Branch Carbons(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbons</td>
<td>1</td>
</tr>
<tr>
<td>-------------</td>
<td>----</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
</tr>
</tbody>
</table>

Total isomers including unbranched parent = 175

\(\text{a,b}\) Notes as per table 2.6
This chapter describes investigations into the origins of UCMs. The products of hydrous pyrolysis of man-made (polythene) and biogenic (cutan) polymers under conditions proposed previously to simulate catagenesis, included, in the hydrocarbons, high proportions of UCMs (50% - 70%). Hydrous pyrolysis of polythene produced a mixture of saturated (56%) and olefinic (44%) hydrocarbons, whilst pyrolysis of cutan produced hydrocarbon (aliphatic and aromatic; 30-75%) and non-hydrocarbon (70-25%) fractions, both with >60% unresolved components. Oxidative characterisation of these UCMs produced mainly n-acids with somewhat similar results to those found when oil UCMs were oxidised. However, the laboratory generated UCMs are not perfect oil UCM models since some oil UCM oxidation products were not observed in the laboratory models.
Estragon: Let's pass on now to something else, do you mind?
Vladimir: I was just going to suggest that
Estragon: But to what?
Vladimir: Ah!
Silence

Beckett (Waiting for Godot)
3.1 THEORIES OF PETROLEUM FORMATION

It is widely accepted that petroleum formation follows the general pathway:

\[
\text{ORGANIC MATTER} \xrightarrow{\text{DIAGENESIS}} \text{KEROGEN} \xrightarrow{\text{CATAGENESIS}} \text{PETROLEUM}
\]

(Tissot and Welte, 1984)

At present there are essentially three theories of kerogen and petroleum formation. One is the classical view that macromolecules are broken down to smaller units, followed by re-condensation to produce kerogen and catagenesis to form petroleum (Tissot and Welte, 1984). The second is that of selective preservation of biomacromolecules in conjunction with polycondensation to form the kerogen structure (Philp and Calvin, 1976; Tegelaar et al., 1989c) followed by catagenesis. Both these processes may play important roles in petroleum formation.

A third, alternative, but less widely accepted view of petroleum formation, is that at least part of the petroleum mixture has an abiogenic origin (Robinson, 1963; Robinson, 1966; Gold, 1979; Gold, 1986; Gold et al., 1986). Such theories propose that an input of meteoritic hydrocarbons,
often referred to as kerogen-like (Pering and Ponnampuruma, 1971; Cronin et al., 1987; Kerridge et al., 1987; Morgan et al., 1991) occurred during the formation of the Earth which, under the prevailing conditions produced a mixture of (primarily) methane and some liquid hydrocarbons (Gold et al., 1986). It is suggested that the high pressures present had a stabilising effect, preventing dissociation of the compounds and producing a good solvent in the form of liquid methane. This mixture could then migrate out from the deeper regions of the Earth, undergoing a series of important reactions, such as those demonstrated by Gold et al. (1986) in the laboratory. These workers showed that methane, under geological pressures (1000 atm) and in the presence of a clay catalyst (e.g. montmorillonite), formed C₂ units which condensed to form benzenes, alkylated aromatic rings and a polyethylene-type polymer on the catalyst surface. Gold (1986) suggests that these reactions could account for the major components in crude oils and that larger polymeric material can be accumulated either by condensing out from the solvent (methane) at reduced pressures, or as a result of polymerising reactions involving C₂ units. Efforts are currently underway in the Siljan Ring region of Sweden (Haggin, 1986; Osborne, 1986; Anon, 1987; Shirley, 1987; Aldhous, 1991) to provide geological evidence for this hypothesis.

If any of the above theories of petroleum formation are correct, they must also account for the production of
quantitatively significant hydrocarbon UCMs by catagenesis. Indeed, if the results of recent studies of UCM composition are correct (Gough and Rowland, 1990, 1991; Killops and Al-Juboori, 1990) the UCM produced should comprise significant proportions of simply branched (so-called "T-branched") compounds. \(^{14}C\)-dates of 15000-26000 years and co-occurrence with mature biomarker profiles are regarded as strong evidence that UCMs are petrogenic (reviewed by Gough, 1989; see section 1.3) and analyses in this study show that UCMs are abundant in petroleum and can account for up to 30% of fresh crude oils (Table 3.1); a fact often overlooked when oils are examined by GC alone due to normalisation on the resolved compounds. Previous investigations into petroleum formation have not accounted for the presence of this abundant unresolved portion.

3.1.1 THE PRESENT STUDY

Each of the above theories of petroleum formation considers that at least part of crude petroleum is derived from catagenesis of macromolecular organic matter, whether this is biogenic, as in the case of kerogen, or abiogenic, as in the case of the polyethylene-type material observed by Gold and co-workers (e.g. Gold et al., 1986) and the materials detected in meteorites (e.g. Morgan et al., 1991). Therefore in the present study a series of laboratory simulated catagenesis experiments on both biogenic (biopolymeric) and abiogenic (polythene) materials were
<table>
<thead>
<tr>
<th>OIL</th>
<th>% ALIPHATICS</th>
<th>% AROMATICS</th>
<th>% ASPHALTENES AND POLARS*</th>
<th>ALIPHATIC UREA ADDUCT % OF ALIPHATICS</th>
<th>ALIPHATIC UREA NON ADDUCT* % OF ALIPHATICS</th>
<th>UREA NON ADDUCT* % OF OIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nigerian Light¹</td>
<td>52</td>
<td>17</td>
<td>31</td>
<td>37</td>
<td>63</td>
<td>33</td>
</tr>
<tr>
<td>Kuwait²</td>
<td>33</td>
<td>24</td>
<td>43</td>
<td>34</td>
<td>66</td>
<td>22</td>
</tr>
<tr>
<td>Forties³</td>
<td>42</td>
<td>18</td>
<td>40</td>
<td>38</td>
<td>62</td>
<td>26</td>
</tr>
<tr>
<td>Libyan³</td>
<td>50</td>
<td>16</td>
<td>34</td>
<td>44</td>
<td>56</td>
<td>28</td>
</tr>
<tr>
<td>Iranian Light³</td>
<td>40</td>
<td>19</td>
<td>41</td>
<td>37</td>
<td>63</td>
<td>25</td>
</tr>
<tr>
<td>Tia Juana Pesado³</td>
<td>23</td>
<td>35</td>
<td>42</td>
<td>10</td>
<td>90</td>
<td>21</td>
</tr>
</tbody>
</table>

* By Difference
+ Taken to represent UCM

¹ Deltsio sourced
² Carbonate sourced
³ Marine sourced
carried out in order to investigate (a) whether UCM hydrocarbons were produced, (b) if so, in what quantities and (c) how the composition of these UCMs compared with the UCMs found in natural petroleum.

3.2 LABORATORY CATAGENESIS

3.2.1 GENERAL

The best available and most widely accepted method for the laboratory simulation of catagenesis is hydrous pyrolysis (reviewed by Eglinton, 1988; Siskin and Katritzky, 1991). First used by Lewan et al. (1979), hydrous pyrolysis involves subjecting the sample, most commonly kerogen or rock chips, to heat (300-360°C) in the presence of water and an inert atmosphere (helium or nitrogen) in a sealed pressure vessel. At these temperatures, the vapour pressure of water increases the pressure inside the vessel to > 120 atm. Samples are commonly heated for 1-4 days depending on the temperature. Artificial maturation of kerogens isolated from petroleum source rocks often yields an organic-soluble fraction in which the non-aromatic hydrocarbons are dominated by a series of n-alkanes and (though often ignored) a UCM (e.g. Huizinga et al., 1987; Eglinton et al., 1988; Eglinton, 1988). Type I and II kerogen structures (i.e. the most important oil-prone kerogens) are traditionally viewed as comprising a series of polymethylene chains, cross linked by functional groups
(Tissot and Welte, 1984; Behar and Vandenbroucke, 1987). Such polymethylene chains would appear to fulfill the structural pre-requisite for the simply branched T-shaped alkanes by proposed Gough and Rowland (1990; 1991) to form part of the aliphatic UCM.

Therefore in the present study, hydrous pyrolysis of two macromolecules, one man-made, the other a biomolecule, was carried out in an attempt to discover which types of "kerogen-like" structures might yield a UCM under catagenic conditions.

3.2.2 HYDROUS PYROLYSIS OF ALKATHENE

3.2.2.1 DISCUSSION OF RESULTS

In order to attempt to produce a UCM under thermal stress in the laboratory, "Alkathene", (the trade name for a man-made, low density polythene, with a general formula of:

\[\text{CH}_3 - (\text{CH}_2)_n - \text{CH} - (\text{CH}_2)_n - \text{CH} - (\text{CH}_2)_n - \text{CH}_3 \]

\[\begin{array}{c|c|c}
(\text{CH}_2)_n & (\text{CH}_2)_n & X \\
\text{CH}_3 & \text{CH}_3 & \end{array} \]
with an average value of $n = 30$ and approximately 10 methyl groups/1000 carbons) was subjected to hydrous pyrolysis at 350°C for 24 hours and 48 hours in a stainless steel bomblet.

The different pyrolysis times appear to have a significant effect on the quantity of material recovered (Table 3.2) and on the appearance of the gas chromatograms of the extractable fractions (Figure 3.1). The longer pyrolysis time (experiment 2) produced much less organic-soluble material and a much smoother distribution of n-alkanes (n-C_{13-32}; max n-C_{17}) with a slight odd over even predominance. Neither GC profile showed an obvious UCM. However, urea adduction of the organic extracts from both experiments and GC of the UNA, revealed the presence of quite significant proportions of UCMs (Table 3.2, 43% and 58%; Figure 3.2). The extended pyrolysis time appears to have reduced the amount of GC resolvable material in the UNA fraction (35% in experiment 1; 17% in experiment 2) and altered the UCM profile from bimodal (experiment 1) to a much smoother distribution.¹

Argentatious TLC of the UNA of experiment 1 produced a

¹FOOTNOTE: It has often been proposed that bimodal UCMs in sediments represent an input of two different oils (Thompson and Eglinton, 1978) or that the oil maybe sourced from two different kerogens (Killops and Al-Juboori, 1990). Biodegradation of UCMs can also alter the overall distribution of the aliphatic UCM, even producing a single maximum UCM from a bimodal distribution (Jones et al., 1986). However, the present results show that a UCM produced from one source can also be bimodal.
TABLE 3.2a. QUANTITATIVE DATA FOR THE HYDROUS PYROLYSIS OF ALKATHENE AND CUTAN

<table>
<thead>
<tr>
<th>Amount of Material</th>
<th>T°C</th>
<th>Time</th>
<th>Total Yield (mg)</th>
<th>Amount of Total products GC Resolved (%)</th>
<th>UNA (mg)</th>
<th>UA (mg)</th>
<th>UNA Resolved (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkathene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2g</td>
<td>350</td>
<td>24hrs</td>
<td>93.4</td>
<td>50</td>
<td>19.7</td>
<td>25.8</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(43%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0g</td>
<td>350</td>
<td>48hrs</td>
<td>5.6</td>
<td>25</td>
<td>2.8</td>
<td>2.0</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(58%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agave americana</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.4mg</td>
<td>350</td>
<td>48hrs</td>
<td>2.4</td>
<td>29</td>
<td>0.5</td>
<td>1.5</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(25%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N.A.</td>
<td>365</td>
<td>72hrs</td>
<td>38.1</td>
<td>N.A.</td>
<td>8.9</td>
<td>22.7</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(28%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N.A. = Data not available

FIGURE 3.2b. QUANTITATIVE DATA FOR THE OXIDATION OF ARTIFICIALLY PRODUCED UCMS

<table>
<thead>
<tr>
<th>Material</th>
<th>Amount of UNA Oxidised (mg)</th>
<th>Total recovered Material (mg(%)</th>
<th>Amount of recovered Material resolved By GC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkathene</td>
<td>3.5</td>
<td>2.4 (69)</td>
<td>72</td>
</tr>
<tr>
<td>Cutan</td>
<td>3.1</td>
<td>2.8 (90)</td>
<td>70</td>
</tr>
</tbody>
</table>
FIGURE 3.1. ALKATHENE HYDROUS PYROLYSIS PRODUCTS
(J&W DB-5, 25m, 40-300°C @ 5°C/min., H₂ carrier gas)
(Total organic solubles, numbers indicate n-alkane chain length)
FIGURE 3.2. UREA NON ADDUCT FRACTIONS OF ALKATHENE HYDROUS PYROLYSIS TOTAL PRODUCTS
(J&W DB-5, 25m, 40-300°C @ 5°C/min., H₂ carrier gas)
saturates fraction (R_t 0.6-0.96; 56%) and a polyene portion (R_t 0.03-0.5; 44%) with the latter exhibiting the more pronounced UCM by GC (86% unresolved cf. 64% unresolved in the saturates fraction; Figure 3.3). Unfortunately, insufficient material was available from experiment 2 to allow a similar fractionation, but comparison of the GC results for the UNA from experiment 2 and the polyene fraction of experiment 1 (Figure 3.4) suggests that the experiment 2 UNA contains similar saturated and polyene components.

GCMS spectra of the saturated UCM showed significant m/z 83, 97, 111 fragments (Figure 3.5). These indicate the presence of either abundant cyclic hydrocarbons or alkenes. Several pieces of evidence confirm that the compounds are not alkenes: TLC resolution was monitored by authentic reference compounds (eicosane and eicosene) and alkenes would not be expected in this TLC fraction; ¹H-NMR indicated a high degree of branching (3°carbon, 1.6 ppm) and a lack of olefinic protons (4-6 ppm; Figure 3.6). The mainly unresolved nature of this fraction in the GCMS analysis (Figure 3.5) suggests that the cyclic compounds possess alkyl side chains which presumably contain some branching, possibly of the simple "T-branch" type. If this is the case, the UCM in this fraction would have a composition similar to that proposed for petrogenic UCMs by Gough and Rowland (1990, 1991).
FIGURE 3.3. SATURATED AND "POLYENE" FRACTIONS FROM ALKATHENE EXPERIMENT 1 UNA FRACTION
(J&W DB-5, 25m, 40-300°C @ 5°C/min., H₂ carrier gas; hydrous pyrolysis at 350°C for 24 hours)
FIGURE 3.4. COMPARISON OF ALKATHENE EXPERIMENT 2 UNA FRACTION AND EXPERIMENT 1 'POLYENE' FRACTION

(J&W DB-5, 25m, 40-300°C @ 5°C/min., H₂ carrier gas)

(Matching symbols indicate some of the peaks which correspond by retention time)
FIGURE 3.5. GCMS ANALYSIS OF THE ALKATHENE UNA SATURATED FRACTION
(J&W DB-5, 25m, 40-300°C @ 5°C/min., He carrier gas hydrous pyrolysis at 350°C for 24 hours)
FIGURE 3.6. 1H-NMR SPECTRUM OF THE ALKATHENE UNA SATURATED FRACTION
In contrast, GCMS analysis of the polyene fraction from TLC (Figure 3.7) did indicate the presence of unresolved alkenes (m/z 69) with little evidence for unresolved aromatic compounds, though these do appear to be present as resolved compounds (Figure 3.8). 1H-NMR of this fraction confirmed the presence of alkenes and the absence of significant amounts of aromatic compounds (Figure 3.9). Interestingly, there was only a very weak NMR resonance attributable to tertiary carbons, suggesting a reduced degree of branching compared with the saturated fraction.

In order to characterise the saturated UCM further and to allow comparison with petrogenic UCMs, the UNA saturated fraction (experiment 1) was subjected to chromic acid oxidation using the method of Gough (1989).

Oxidation produced 69% of recovered material, which is comparable to that from petrogenic UCMs (Gough and Rowland, 1990). However, only about 28% was unresolvable by GC (Figure 3.10). The latter figure is considerably lower than that produced from petrogenic UCMs, which typically have shown about 70% of unresolved oxidised material (Gough and Rowland, 1990). This could indicate either that the oxidant to substrate ratio is too great, leading to over oxidation, or that the Alkathene UCM contains a greater proportion of simple, more readily oxidised alkanes, than petrogenic UCMs, i.e. petrogenic UCMs are much more complex in their molecular structure than the Alkathene UCM.
FIGURE 3.7. GCMS ANALYSIS OF THE ALKATHENE UNA POLYENE FRACTION
(J&W DB-5, 25m, 40-300°C @ 5°C/min., He carrier gas)
FIGURE 3.8. MASS CHROMATOGRAMS TO SHOW THE PRESENCE OF AROMATIC COMPOUNDS IN THE ALKATHENE UNA POLYENE FRACTION
(J&W DB-5, 25m, 40-300°C @ 5°C/min., He carrier gas)
FIGURE 3.9. 1H-NMR SPECTRUM OF THE HYDROUS PYROLYSIS PRODUCTS OF ALKATHENE UNA "POLYENE" FRACTION
FIGURE 3.10. GAS CHROMATOGRAM OF THE CrO$_3$ OXIDATION PRODUCTS FROM THE SATURATED HYDROCARBON UNA FRACTION ISOLATED FROM THE HYDROUS PYROLYSIS PRODUCTS OF ALKATHENE

(J&W DB-5, 25m, 40-300°C @ 5°C/min., H$_2$ carrier gas)

(numbers indicate chain length)
The resolved compounds in the oxidised Alkathene UCM were found to be n-monocarboxylic acids (n-C$_{\text{6-25}}$; max. C$_{10}$) and α,ω-dicarboxylic acids ($C_{\text{6-20}}$; max. C$_{9,10}$). Production of predominantly straight chain components from an artificially-produced UCM is a striking similarity to the result of oxidation of petrogenic UCMs. However, the relative dominance of n-dicarboxylic acids over n-monocarboxylic acids in the GC profile is in contrast to the oxidation product profiles seen from oxidation of petrogenic UCMs (Gough, 1989, Killops and Al-Juboori, 1990; Gough and Rowland, 1990, 1991; this study, Chapter 4). There are at least two possible explanations for the latter observation. One is that Alkathene, which has a branch point approximately every 30 carbons, fragments during hydrous pyrolysis at alternate inter-branch positions, leaving compounds with two branch points, which would then yield diacids upon oxidation:

\[
\begin{align*}
\text{R} & \quad \text{a = acid} \\
\text{(CH}_2\text{)}_n & \quad \text{da = diacid}
\end{align*}
\]

However, if this were the case, a predominance of diacids
with around 30 carbons would be expected since this is the number of carbons between branch points. In addition, GCMS of the saturated UCM suggested a high proportion of compounds with a cyclic moiety, which would appear to refute the above mechanism, and in oxidations of authentic reference compounds performed by Gough (1989), 9-(2-cyclohexylethyl)heptadecane did not yield any diacids. Alternatively, the predominance of diacids could be due to secondary oxidation. In this study the oxidation method was the same as that used for petrogenic UCMs and the substrate was assumed to have a molecular weight of 352. Should this have been an overestimation, an excess of the oxidant might have produced over oxidation. Since Roceck and Mares (1959) proposed that all methylene groups in a linear alkyl chain are equivalent and should be oxidised at the same rate, and Gough (1989) found that a series of \(\alpha,\omega \)-dicarboxylic acids were formed in the oxidation of \(n \)-pentacosane, presumably from secondary oxidation, this appears to be the more reasonable explanation for the present results. Interestingly, the \(n \)-mono acids produced in the oxidation exhibit a strong even over odd predominance between \(C_{14} \) and \(C_{20} \), while the diacids exhibit no apparent carbon number predominance. Further investigations are required to explain this result.

No evidence could be found for the presence of ketones and \(\gamma \)-lactones in the oxidation products, although these have been found in all of the petrogenic oxidation products to
date. Such compounds originate from methyl branched and isoprenoidal compounds in oils as shown by oxidation of authentic compounds (Gough and Rowland, 1991). So it is perhaps unsurprising that they were absent from the Alkathene UCM oxidation products.

3.2.2.2 POSSIBLE MECHANISMS FOR THE FORMATION OF A UCM BY LABORATORY CATAGENESIS OF ALKATHENE

Hoering (1984) concluded from hydrous pyrolysis experiments utilising deuterium labelled water that the reaction mechanism occurring in hydrous pyrolysis (and by inference natural catagenesis) were consistent with a free radical process. Abbott et al. (1990), studying biological marker release from kerogen during hydrous pyrolysis, also stated that the resulting kinetic calculations supported a free radical mechanism. Such a mechanism would yield predominantly alk-1-enes from alkyl chains, viz;

\[
\begin{align*}
R'\text{-}\text{CH}_2\text{-CH}_3 & \rightarrow R'\text{-CH}_2\text{-CH}_3 \quad \text{rearrangement} \quad \rightarrow R'\text{-CH}_2\text{-CH}_3 \quad \text{CH} \quad \text{CH} \quad R \\
R'\text{-CH}_2 \quad + \quad \text{CH} = \text{CH} \quad \text{CH} \quad R
\end{align*}
\]

(after Henderson et al., 1968 and de Leeuw, Personal Communication, 1991)

Terminal alkenes however could reasonably be expected to
become hydrogenated within the hydrous pyrolysis free radical system by the scavenging of hydrogen (Hoering, 1984). Rowland (1990) reported the production of branched alkenes (e.g. phyt-l-ene) in the hydrous pyrolysis of methanogenic bacteria and it is well known that alkyl substituted alkenes have increased stability, due to steric hindrance of the hydrogenation step (Rylander, 1979). Thus, it is unexpected that terminal alkenes would survive under the conditions which prevail in hydrous pyrolysis and it seems likely that the unsaturation is associated with a more hindered carbon (e.g. a tertiary carbon), possibly due to migration away from the terminal position. This could explain the predominantly unresolved nature of the polyene fraction, since some form of branching is presumed to be required to produce the unresolved mixture, e.g. the "T-branch" type structures proposed for the aliphatic UCM (Gough and Rowland, 1990).

Comparing the UCM produced in this study with those in oils, it is perhaps the saturated fraction which is of most interest. GCMS and 1H-NMR suggest a high degree of branching and cyclicity within the unresolved portion of this fraction. Bearing in mind the initial formation of terminal alkenes as previously discussed, it is conceivable that free radical cyclisation (Ege, 1989) could occur, producing alkylcyclopentanes, viz;
However, it should be possible for the corresponding six membered ring to form, since these are slightly more stable (March, 1985). Mango (1990), in studying possible origins for the light cycloalkanes in petroleum, used heating experiments to show that an n-alkane (octadecane) heated in sealed tubes, with cholestane and adamantane, without water at 330°C for 4 weeks yields alkylated homologues with both five and six membered rings, which were not produced from degradation of the cholestane or adamantane (determined by mass). This would suggest that polymethyleneic chains will undergo reactions which can produce cyclic compounds, possibly by mechanisms similar to those described.

3.2.3 HYDROUS PYROLYSIS OF AN ALIPHATIC BIOPOLYMER

Recently, there has been renewed interest in the role that selective preservation of biomacromolecules plays in the formation of kerogen (e.g. Tegelaar et al., 1989b; 1989c). This has led to the identification of a wide range of
resistant biopolymers (e.g. Largeau et al., 1984; Derenne et al., 1988; Goth et al., 1988; Tegelaar et al., 1989c; Derenne et al., 1991) and one such, is the biopolymer of *Agave americana* (L). This biopolymer, referred to as cutan, is proposed to consist of a carbohydrate backbone linked to aliphatic moieties via ether bonds (Figure 3.11). Cutan has also been used in the present study as a substrate for laboratory formation of a UCM.

The sample of cutan was subjected to hydrous pyrolysis at 350°C for 48 hours and, in a second experiment, at 365°C for 72 hours. These times and temperatures were adventitious since the samples were provided by other workers (see acknowledgements). Quantitative data, where available, are given in Table 3.2 (page 78). The GC profiles appear to contain several similarities (Figure 3.12). Both exhibit a range of *n*-alkanes (*n*-C₁₄-C₄₀; max. *n*-C₃₅) with a strong odd over even predominance between C₂₉ and C₃₅. The profile from experiment 1 is 29% resolved by GC (Table 3.2; no data were available for experiment 2). The UNA fractions exhibited broad UCMs (that from experiment 2 was bimodal; Figure 3.13). Both UNA fractions were 75% unresolved by GC (Table 3.2). Fractionation of the UNA from both experiments into hydrocarbons and non-hydrocarbons (Table 3.3; Figures 3.14 and 3.15) indicated that the relative proportions of hydrocarbons increased with an increase in pyrolysis temperature/time. In addition, the UCM decreased from 85% to 60% (Table 3.3).
FIGURE 3.11. PROPOSED STRUCTURE OF THE HIGHLY ALIPHATIC BIOPOLYMER FROM AGAVE AMERICANA (Tegelaar et al. 1989a)
FIGURE 3.12. HYDROUS PYROLYSIS PRODUCTS OF THE ALIPHATIC BIOPOLYMER ISOLATED FROM AGAVE AMERICANA, TOTAL ORGANIC SOLUBLES
(J&W DB-5, 25m, 40-300°C @ 5°C/min., H₂ carrier gas)
(numbers indicate n-alkane chain length; assignment in experiment 2 is by comparison with experiment 1 results)
FIGURE 3.13. CUTAN HYDROUS PYROLYSIS PRODUCTS UNA FRACTIONS
(J&W DB-5, 25m, 40-300°C @ 5°C/min., H₂ carrier gas)

[cholestane (contaminant)]
TABLE 3.3. QUANTITATIVE DATA FOR THE FRACTIONATION OF CUTAN PYROLYSATE

<table>
<thead>
<tr>
<th>Pyrolysis Temp/Time</th>
<th>Total UNA (mg)</th>
<th>% Resolved</th>
<th>H/C</th>
<th>NON H/C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>mg</td>
<td>% res.</td>
</tr>
<tr>
<td>1. 350°C/48hrs</td>
<td>0.5</td>
<td>25</td>
<td>0.15 (30%)</td>
<td>15</td>
</tr>
<tr>
<td>2. 365°C/72hrs</td>
<td>8.9</td>
<td>25</td>
<td>6.7 (75%)</td>
<td>40°</td>
</tr>
</tbody>
</table>

* This value becomes 35% if the residual alkanes are removed from the calculation
FIGURE 3.14. CUTAN HYDROUS PYROLYSIS EXPERIMENT 2 UNA HYDROCARBON AND NON-HYDROCARBON FRACTIONS (J&W DB-5, 25m, 40-300°C @ 5°C/min., H₂ carrier gas)
Hydrocarbon fraction

[cholestane (contaminant)]

non-hydrocarbon fraction

FIGURE 3.15. CUTAN HYDROUS PYROLYSIS EXPERIMENT 1 UNA HYDROCARBON AND NON-HYDROCARBON FRACTIONS (J&W DB-5, 25m, 40-300°C @ 5°C/min., H₂ carrier gas)
Unfortunately, the relatively small amount of material isolated from experiment 1 precluded any subsequent analysis. GCMS and 1H-NMR of the UCM hydrocarbon fraction from experiment 2 indicated the presence of cyclic (m/z 69, 83, 97), branched (1.5 ppm) and some aromatic (m/z 91; 7 ppm) compounds (Figures 3.16 and 3.17).

The corresponding non-hydrocarbons fraction was 89% unresolved by GC (Figure 3.14) and from GCMS, IR and 1H-NMR shown to contain highly aliphatic (e.g. 2930 cm$^{-1}$, C-H str.; 1.3 ppm) functionalised (e.g. 1700 cm$^{-1}$, C=O str.) compounds (Figures 3.18-3.21). This possibly suggests that ether linkages in the original biopolymer were incorporated into aliphatic structures e.g. as ketones or aldehydes.

Interestingly, 1H-NMR showed that neither fraction contained any alkenes, which were abundant in the hydrous pyrolysate of Alkathene. Although the reason for this is not known it is not surprising that there is such a difference since the two substrates are very different. The UNA hydrocarbon fraction from experiment 2 was also subjected to oxidation with chromic acid. Recovery of material exceeded 90% of which 70% was resolved by GC (Figure 3.22). The major oxidation products were again straight chain compounds viz, n-monocarboxylic acids (C_6-C_{32}; max. $C_{11,12}$) and α,ω-dicarboxylic acids (C_8-C_{21}; max. C_{11}). Thus, this artificially-produced UCM is also, to some extent, similar to the UCM found in oils. The n-diacids were less abundant.
FIGURE 3.16. GCMS ANALYSIS OF CUTAN HYDROUS PYROLYSIS
EXPERIMENT 2 UNA HYDROCARBON FRACTION
(J&W DB-5, 25m, 40-300°C @ 5°C/min., He carrier gas)
FIGURE 3.17. 1H-NMR SPECTRUM OF CUTAN EXPERIMENT 2
UNA HYDROCARBON FRACTION
(Jeol 270MHz; sample in CDCl$_3$)
FIGURE 3.18. GCMS ANALYSIS OF CUTAN EXPERIMENT 2 UNA NON-HYDROCARBON FRACTION
(J&W DB-5, 25m, 40-300°C @ 5°C/min., He carrier gas)
FIGURE 3.19. IR SPECTRUM OF CUTAN UNA EXPERIMENT 2
NON-HYDROCARBON FRACTION

(A = C-H str., B = C=O str., C = C-H def., D = C=O str., E = C=O str.,
F = C-H def.; ▲ indicates absorbance bands due to solvent CCl₄)
FIGURE 3.20. 1H-NMR SPECTRUM OF CUTAN HYDROUS PYROLYSIS EXPERIMENT 2 UNA NON-HYDROCARBON FRACTION
(Jeol 270MHz; sample in CDCl$_3$)

FIGURE 3.21. EXPANDED 1H-NMR SPECTRUM OF CUTAN HYDROUS PYROLYSIS EXPERIMENT 2 NON-HYDROCARBON FRACTION
(Jeol 270MHz; sample in CDCl$_3$)
FIGURE 3.22. GAS CHROMATOGRAM OF THE CrO$_3$ OXIDATION PRODUCTS FROM THE SATURATED HYDROCARBON UNA FRACTION PRODUCED BY CUTAN HYDROUS PYROLYSIS EXPERIMENT 2
(J&W DB-5, 25m, 40-300°C @ 5°C/min., H$_2$ carrier gas)

(numbers refer to chain length)

• n-acids
△ α,ω-diacids
than in the case of Alkathene, which again is similar to the oxidation products of most crude oils. The monocarboxylic acids exhibited a slight even/odd predominance between C_{15} and C_{22}, but no carbon number preference was exhibited by the diacids. There was some evidence, from GCMS, for the presence of \(\gamma \)-lactones and ketones within the oxidation products (Figure 3.23) which is a further similarity to natural UCMs.

The formation of ketones and lactones by oxidation indicates that a proportion of the branching in the UCM is due to mono- and dialkyl substituted alkyl chains, as shown by oxidation of authentic compounds (Gough, 1989). However, these alkanes were relatively minor in the A. americana UCM since the \(^1\text{H}-\text{NMR}\) resonance attributable to \(^3\text{o}\) carbons (1.5 ppm) in the hydrocarbon UCM was relatively weak.

3.3 SUMMARY

The above experiments have shown that hydrous pyrolysis of polymers containing polymethylenic chains produces mixtures of compounds which include substantial proportions of unresolvable compounds (25-55% UNA). This applies to both biogenic and abiogenic polymers. These results indicate that catagenesis of polymethylenic type I and II kerogens (Behar and Vandenbroucke, 1987) would probably produce a proportion of the UCMs found in oils. When subjected to
FIGURE 3.23. GCMS ANALYSIS OF THE CrO₃ OXIDATION PRODUCTS OF THE CUTAN SATURATED HYDROCARBON UNA FRACTION PRODUCED BY CUTAN HYDROUS PYROLYSIS EXPERIMENT 2
(J&W DB-5, 25m, 40-300°C @ 5°C/min., H₂ carrier gas)

(m/z 74 = n-carboxylic acid methylesters,
 m/z 99 = γ-lactones, m/z 58 = ketones)
CrO$_3$ oxidation, both laboratory generated UCMs yielded a series of resolved compounds, dominated by n-mono- and diacids. The relative proportion of the latter was greatest in the case of the UCM from the Alkathene pyrolysis, which was attributed to secondary oxidation of mono-acids formed initially. Significantly, the fraction of the UCM that was oxidised to resolved acids was about 70% in both cases, suggesting that simple "T-branched" alkane and/or cyclic structures make-up a much greater proportion of these laboratory UCMs than of those in oils (15-20% resolved). This is consistent with the highly aliphatic nature of the individual polymers used in these experiments. These results indicate the need for better models of UCM precursors to be investigated, such that the oxidation products from the UCMs formed produce components similar to those from natural UCMs.
MAY WE GO PLAY IN THE STREET, UNCLE F.?

THAT'S VERY RISKY! YOU MIGHT RUN INTO A DIMENSIONAL TRANSMOGRIFIER!

WHAT'S THAT?

SOME PEOPLE CALL THEM "CARS" AND "TRUCKS"; I CALL THEM DIMENSIONAL TRANSMOGRIFIERS...

...BECUASE THEY CHANGE THREE-DIMENSIONAL CATS INTO TWO-DIMENSIONAL ONES!
4.1 INTRODUCTION

The limitations associated with the use of biomarkers for comparing degraded oils with non-degraded oils or their source rocks have already been discussed in Section 1.4. As a result of these limitations, Gough and Rowland (1990) suggested that, in addition to the biomarker profiles, UCM oxidation product profiles could be used to fingerprint degraded oils. The technique was applied successfully to two acute oil spills where partly degraded beached oils were correlated with oils from a tanker and ruptured pipeline (Figure 4.1). However, the profiles used in that study (shown in Figure 4.1) represented only a few, randomly chosen, components of the total oxidation products and furthermore only two spills were investigated.

The aims of the present study are (i) to use the oxidation product profiles as a whole to "fingerprint" degraded oils, (ii) to use non-subjective, computer based statistical techniques to compare these profiles (i.e. multivariate analysis) and (iii) to extend the study to include further case histories of oil/oil and oil/source rock correlations.
FIGURE 4.1. THE USE OF SELECTED UCM OXIDATION PRODUCTS TO FINGERPRINT TWO ACUTE OIL SPILLS (Gough, 1989) (1983 spill of Nigerian crude oil from the Sivand into the Humber Estuary and the 1986 fuel oil spill from the Amoco Milford Refinery into Milford Haven, sample collected from Newgale beach)
4.2 INTEGRATION OF CHROMATOGRAPHIC DATA

UCMs isolated from crude oils, source rocks and sediments were oxidised and the oxidation products examined and quantified according to the methods outlined in Chapter 6.

Gough (1989) used a time slice area measurement program written for a Shimadzu integrator (C-R3A; Appendix I) in order to estimate the percentage resolved components in isolated UCMs by GC. This method has been re-evaluated with results which suggest that in certain cases the program may have overestimated the amount of resolved material in the chromatograms. An important integration parameter for Shimadzu integrators is the "drift value", which is normally set to a value of ca. 10000 to allow for valley to valley peak integration (Figure 4.2). Gough (1989) used a value of zero, assuming this would give a near flat baseline, however this value causes integration between major valleys in the chromatogram (Figure 4.2). In the present study it was found that a method of manual peak detection, followed by the time slice area measurement, gave more reliable results. This involved consideration of the whole UCM as one "peak" as illustrated in Figure 4.2. The differences shown in Figure 4.2 can be expressed numerically if each method is used to integrate the same chromatogram. The chromatogram used exhibited a UCM which eluted over 52 minutes, which is sufficient time for 624 slice areas to be measured (Shimadzu manual). The
FIGURE 4.2. EXAGERATED DIFFERENCES BETWEEN GC INTEGRATION METHODS FOR THE UCM (Shimadzu integrator)

--- Normal peak integration (DRIFT = 10 000)
----- "Auto" UCM integration (Gough, 1989; DRIFT = 0)
------ UCM integration by manual peak detection
× Manual peak limits

The relative proportions of UCM and resolved compounds are assessed by integration of the total chromatogram (resolved + UCM) followed by integration of the resolved peaks only. Thus a drift value of 0 could underestimate the total area and therefore overestimate the proportion of resolved compounds.
following results were obtained:

<table>
<thead>
<tr>
<th>Drift Setting</th>
<th>No. of Slices</th>
<th>% Resolved Components</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reported as</td>
<td>Measured</td>
</tr>
<tr>
<td>0</td>
<td>353</td>
<td>45</td>
</tr>
<tr>
<td>1</td>
<td>494</td>
<td>30</td>
</tr>
<tr>
<td>Manual Peak Detection</td>
<td>622</td>
<td>15</td>
</tr>
</tbody>
</table>

Thus only the manual peak detection method in this example reported a number of slices (622) close to the theoretical number (624). Not all examples measured show such a large difference between methods and some produced near concurrent data; however it is apparent that the automatic drift setting underestimates the UCM area. The manual method is more reliable but may still introduce errors if the chromatographic baseline does not return to the level which existed at the start of the GC analysis, as is the case with column bleed.

There were fewer problems encountered with integration using the Kratos DS90 (rev.5) GCMS software. Since the data system displays the chromatogram and the integrated baseline, one is better able to judge the appropriateness of the integration parameters. However it was important to check the baseline for each integration and, where necessary, alter the various parameters until a reasonable baseline was achieved. Interestingly, little difference was found between using peak height or peak area for
FIGURE 4.3. COMPARISON OF GCMS INTEGRATION METHODS AND CALIBRATION OF PEAK HEIGHT AND PEAK AREA MEASUREMENTS FOR D₆-NAPHTHALENE.

(man. = manual integration, auto = software integration)
In addition to the commercial integration software for GC and GCMS, two BASIC programs were written (Appendix III). One allowed comparison of the chromatographic integration data for each sample and found peaks which were present in all samples (PEAK-MATCH). The second, more complex program, compared each data set in turn with all others and where peaks were absent, inserted an integration value of zero (DB-MATCH). These programs are shown schematically in Figure 4.4 and 4.5. Since peaks were matched by retention time (scan number) it was found to be necessary to include two internal standards, one towards the beginning (d₈-naphthalene) and one towards the end (perylene) of the chromatographic analysis. Thus retention time variations between runs could be monitored. For example, the run to run variation in GCMS scan number (retention time) is often 5 scans at the start of an analysis, but increases to 10 scans or more by the end of the analysis. A chromatographic correction parameter was built into the program to compensate for this phenomenon. Once the chromatographic data had been produced and integrated and pre-processed by the aforementioned programs, the data could be analysed by computer based statistical methods.

Brereton (1987) emphasises the importance of understanding all steps in the acquisition and processing of data, and nowhere is this more apparent than with the problems
FIGURE 4.4. OUTLINE OF THE PURPOSE WRITTEN PEAK MATCH PROGRAM
(Y = Yes, N = No)

120
FIGURE 4.5. OUTLINE OF THE PURPOSE WRITTEN DBMATCH PROGRAM
(Y = Yes, N = No)
highlighted here with respect to peak integration. Whilst computer based integration is essential with the increased sample through-put made possible by modern instrumentation, it is important that the operator does not treat this as a "black box" but attempts to understand the processes involved and to validate the results obtained.

4.3 MULTIVARIATE STATISTICAL TECHNIQUES

Multivariate analysis is a term used to describe a collection of statistical techniques which allow a number of variables (p) measured for a number of samples (n) from a data matrix (n x p) to be tested for intersample correlations. The use of these techniques in chemistry is often called chemometrics (Massart et al., 1989). The data matrix is often very large (e.g. 100 x 20) so chemometric analysis is invariably computer based, with the underlying aim of reducing the data in both size and complexity to allow easier understanding. The range of multivariate statistical techniques is wide (for an introduction see Chatfield and Collins, 1980) and it is important that the most appropriate technique is chosen for the task in hand. Table 4.1 gives an indication of the most appropriate type of analysis for each different type of data. Mellinger (1987) suggests a useful preliminary categorisation of multivariate techniques into factor analysis methods and classification methods.
Table 4.1: Classification of Multivariate Methods According to Data Type and Aims of the Analysis (Adapted from Feinberg and Ducea, 1991)

<table>
<thead>
<tr>
<th>data type</th>
<th>aims of analysis</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONT</td>
<td>ORDR</td>
<td>UNOR</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

CONT, Continuous; ORDR, Ordered Categorical; UNOR, Unordered Categorical; BINA, Binary; PRED, Prediction; DESC, Description; GROU, Clustering; CLAS, Classification

+ Possible
- Impossible
✓ Suitable
X Possible, not ideal
Factor analysis techniques (most commonly principal components analysis [PCA] and factor analysis [FA]) are methods by which multidimensional data can be represented in two (or less commonly three) dimensions (Massart et al., 1989). The most commonly used of these techniques is PCA (Smith, 1991), which has found wide use in organic geochemistry (e.g. Kvalheim and Telnaes, 1986a; Telnaes et al., 1987; Mello et al., 1988; Grahl-Nielsen and Lygre, 1990; Yunker et al., 1991). PCA produces new axes (Principal components) for the original data, which are orthogonal and represent the greatest variance within the data (Smith, 1991) with each successive principal component representing a decreasing amount of variance. Thus, the common 2-D plot of PC1 v. PC2 displays the greatest variance. Therefore, principal components are composite variables and as such rarely produce straightforward answers (Kvalheim and Telnaes, 1986b) because one factor may have an overwhelming influence on the data (e.g. biodegradation, maturity). A further drawback of PCA is that in general at least five samples are required for each variable (Tabachnick and Fidell, 1989). Whilst some statisticians (M. Carr, Personal communication, 1991) feel that this ratio may be excessive, certainly a greater number of samples than variables is required because PCA (and FA) are sensitive to the size of correlations.
The resulting 2-D plots of PC1 v. PC2 etc. can be used to identify groupings of samples or correlations between variables. However these groupings are separated only in two dimensions, and individuals within each group may well be separated in other dimensions (Brill et al., 1985). To enhance the results from PCA, the new, reduced, number of components describing the data can be subsequently subjected to cluster analysis (Adams, 1991) which allows intra-group correlations to be assessed. Thus a combination of the two techniques will allow groups of samples to be identified and the relationships of individuals to each other within a group to be studied.

4.3.2 CLASSIFICATION METHODS

The most common form of classification is cluster analysis (Mellinger, 1987) which has the aims of searching for unbiased groupings in the data (Meglen, 1988). The overriding concept in cluster analysis (and to some extent all multivariate data analysis) is one of similarity, dissimilarity or distance (for an introduction see Chatfield and Collins, 1980 and Everitt, 1980; Birks, 1987).

The most widely used distance measure is Euclidean distance, given by equation (1)
\[
d_{ij} = \left(\sum_{n=1}^{N} (x_{ik} - x_{jk})^2 \right)^{1/2} \infty \infinite
Figures 4.6 and 4.7 illustrate the concept of equal distance contours for three metric distances of the form $d_{jk} = \sqrt{\sum_{k}^n |X_{ik} - X_{jk}|^r}$, where r represents the type of distance: 1 for city block, 2 for Euclidean, and ∞ for dominance.

Coxon, 1982

Figures 4.6 and 4.7 depict an example of a hierarchical dendrogram.
program, most of which produce hierarchical dendrograms (Figure 4.7), although there are alternative pictorial representations possible (see Everitt, 1980; Chatfield and Collins, 1980; Tabachnick and Fidell, 1989). Hierarchical dendrograms relate samples to each other (by horizontal lines; Figure 4.7) as well as the degree of their similarity (by vertical lines, Figure 4.7). On its own, this technique suffers from the opposite problems to PCA in that whilst it gives detailed groupings, it does not show spatial distributions. However, as stated earlier, cluster analysis can be used in conjunction with PCA to provide complementary information. An alternative treatment of distance measures is multi-dimensional scaling (MDS, Kruskal and Wish, 1978). MDS takes inter sample distances in multidimensional space and projects the samples onto two dimensions whilst attempting to measure the relative positions of samples as closely as possible and minimise the so called "stress function" (4) (Mantoura, et al., 1982).

\[S = \left[\frac{\sum_{i,j} (d_{ij} - \hat{d}_{ij})^2}{\sum_{i,j} d_{ij}^2} \right]^{1/2} \] ..(4)

\[\hat{d}_{ij} = \text{Fitted distance from the regression corresponding to the dissimilarity function} \]

\[S = \text{stress on the data} \]

Essentially, MDS ranks the inter-sample distances (dissimilarities) and uses these to determine the relative
positions in two dimensions. Thus the orientation and scale of an MDS plot are arbitrary (Mantoura et al., 1982). One example of a distance matrix is the common between towns road distance chart found in the front of most road atlases, and if this is used as input to the MDS program, the result looks very much like a map of mainland U.K. (Figure 4.8) except that the image is rotated through 180° and some towns are slightly out of place because road distances are not true Euclidean distances. The advantage of MDS is in its flexibility, compared with other techniques (e.g. PCA) in dealing with situations where the number of samples is small compared to the number of variables (cf. PCA) (Mantoura et al., 1982). This is because MDS utilises distance rather than variance data. For example, five samples can all have a distance from each other where as the variance of these (few) samples would probably cause most variables to be grouped into one principal component, thereby producing a loss of information.

In conclusion, where whole chromatograms of a small number of samples are to be compared, MDS and cluster analysis are more appropriate than PCA and these methods were therefore adopted for the analysis of the chromatographic data resulting from oxidation of UCMs in the following case studies.
FIGURE 4.8. THE RESULT OF PERFORMING MDS ANALYSIS ON A ROAD DISTANCE MATRIX (After Chatfield and Collins, 1980)
4.4 CASE STUDIES

4.4.1 SULLOM VOE OIL TERMINAL

4.4.1.1 GENERAL

Sullom Voe oil terminal (Shetland, U.K.; Figure 4.9) receives oil from the North Sea Ninian Field where the oil is stabilised and stored for further transport. Permission to build the terminal stipulated that an annual survey of the (pollutant) hydrocarbons of benthic sediments should be performed to monitor the impact of terminal operations on this environmentally sensitive area.

These surveys (reviewed by Dodd and Howells, 1985) have repeatedly shown that concentrations of aliphatic hydrocarbons in sublittoral sediments around the oil terminal rarely exceed an average of 100 µg g⁻¹ dry sediment. However, in some sediments concentrations were higher than this average and the gas chromatographic profiles included significant UCMs (Figure 4.10). Some concern was expressed over this and the Shetland Oil Terminal Environmental Advisory Group (SOTEAG) sponsored an investigation into the likely sources of these UCMs, with four possibilities having been previously suggested. These were (a) a general background of "chronic" hydrocarbon accumulation from the many activities in the area (Dodd and Howells, 1985), (b) biodegradation of Ninian crude oil, known to be legally...
FIGURE 4.9. MAP SHOWING THE LOCATION OF THE SHETLAND ISLANDS
FIGURE 4.10. EXAMPLES OF UCMS IN SAMPLES FROM THE 1981 BENTHIC SEDIMENT SURVEY AROUND THE SULLOM VOE OIL TERMINAL
(numbers indicate n-alkane chain length)
discharged to the area from the Calbeck Ness diffuser, (c) fuel oil, originally spilled from the Esso Bernicia in 1978, remnants of which may have survived in the area (cf. Grigson, 1981) or (d) a contribution of hydrocarbons from nearby peat deposits (S. Howells, Personal Communication, 1989).

4.4.1.2 GRAVIMETRY AND GAS CHROMATOGRAPHY

Gravimetric data for samples from various locations in the Sullom Voe area (Figure 4.11) are shown in Table 4.2. Each sediment sample contained similar concentrations of aliphatic hydrocarbons (Table 4.2) which were dominated by n-alkanes with a distribution characteristic of higher plant waxes (Figure 4.12). Removal of these by urea adduction yielded a small amount of UCM (KI 1500 - KI 4000+; max. KI 2900, KI 3700) superimposed upon which were a series of resolved compounds attributable to acyclic isoprenoids, steranes and triterpanes (Figure 4.12).

Similar analysis of the peat sample (Figure 4.13) produced a UNA fraction of <1mg from the 100g extracted, comprising a series of resolved compounds identified as predominantly triterpanes. For example, the major component was identified by relative retention time as the 17α(H),21β(H)C₃₁ homohopane (22R) of presumed biogenic origin (cf. Quirk et al., 1980). No measurable UCM was present in the UNA of the peat.
FIGURE 4.11. SAMPLE SITE LOCATIONS FOR SULLOM VOE SAMPLES
Table 4.2: Concentration of Fractions in Sullom Voe Sediments (µg g⁻¹ dry weight)

<table>
<thead>
<tr>
<th>Sediment Fraction</th>
<th>Station 1</th>
<th>Station 3</th>
<th>Station 6</th>
<th>Scatsea Ness Peat</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOE*</td>
<td>4300</td>
<td>1300</td>
<td>6000</td>
<td>40,000</td>
</tr>
<tr>
<td>Total Aliphatics</td>
<td>300</td>
<td>200</td>
<td>360</td>
<td>97</td>
</tr>
<tr>
<td>UNA Aliphatics</td>
<td>33</td>
<td>25</td>
<td>32</td>
<td>nd</td>
</tr>
<tr>
<td>Total Aromatics</td>
<td>680</td>
<td>460</td>
<td>1900</td>
<td>1200</td>
</tr>
</tbody>
</table>

nd = not detected

* = Total Organic Extract
FIGURE 4.12. GAS CHROMATOGRAMS OF SULLOM VOE STATION 3
TOTAL ALIPHATICS AND UNA FRACTIONS
(numbers indicate n -alkane chain length, Pr = pristane)
(J&W DB-5, 25m, 40-300°C @ 5°C/min., H₂ carrier gas)
FIGURE 4.13. GAS CHROMATOGRAMS OF SCATSA NESS PEAT TOTAL ALIPHATICS AND UNA FRACTIONS
(numbers indicate n-alkane chain length, Pr = pristane)
(J&W DB-5, 25m, 40-300°C @ 5°C/min., H₂ carrier gas)
Gas chromatograms of the BP Ninian Crude and Esso Bernicia fuel oil are shown in Figure 4.14. The UNA fractions were dominated by a UCM with resolved peaks (mainly pristane, phytane and triterpanes) superimposed (Figure 4.15). Since Ninian crude contains relatively high proportions of acyclic isoprenoids the UNA was further subjected to thiourea adduction. The final, isolated UCMs of the two oils were somewhat similar, ranging from ca. KI 1200 to KI 4000 with bimodal distributions (Figure 4.16).

4.4.1.3 GAS CHROMATOGRAPHY-MASS SPECTROMETRY

Figure 4.17 shows partial m/z 191 mass chromatograms, illustrating the distributions of pentacyclic triterpanes in the sediments, peat, Bernicia fuel oil and Ninian crude. The peak assignments are given in Table 4.3 (facing page 143). The sediment samples contained both petrogenic (e.g. norhopane, hopane) and biogenic (e.g. 22R homohopane in relatively high amounts) triterpanes. The peat sample comprised triterpanes which are usually regarded as biogenic in origin. Indeed, a similar distribution is observed in Sullom Voe sediments, suggesting that the peat is the major source of biogenic triterpenoid hydrocarbons in the sediments. The distribution of petrogenic triterpanes in the sediments is similar to that of the Bernicia fuel oil (i.e. norhopane/hopane >1). Whilst this suggests that the major source of sediment petrogenic triterpanes is the Bernicia fuel oil, this is by no means
FIGURE 4.14. GAS CHROMATOGRAMS OF NINIAN CRUDE AND BERNICIA FUEL OILS TOTAL ALIPHATIC FRACTIONS
(numbers indicate n-alkane chain length, Pr = pristane)
(J&W DB-5, 25m, 40-300°C @ 5°C/min., H₂ carrier gas)
FIGURE 4.15. GAS CHROMATOGRAMS OF REFERENCE OILS UNA FRACTIONS
(numbers indicate n-alkane chain length, Pr = pristane
Ph = phytane, H = C19 hopane)
(J&W DB-5, 25m, 40-300°C @ 5°C/min., H2 carrier gas)
FIGURE 4.16. UCMS ISOLATED FROM SULLOM VOE SAMPLES
(numbers indicate carbon number, Ph = phytane)
(J&W DB-5, 25m, 40-300°C @ 5°C/min., H₂ carrier gas)
FIGURE 4.17. PARTIAL M/Z 191 CHROMATOGRAMS OF UNA FRACTIONS FROM SULLOM VOE SAMPLES AND REFERENCE OILS (J&W DB-5, 25m, 40-300°C @ 5°C/min., He carrier gas) (for peak identification see table opposite)
conclusive evidence since a norhopane/hopane ratio >1 has been reported in several oils, notably those of Middle Eastern origins (e.g. Tibbetts et al., 1983) and such a distribution can also be the product of selective biodegradation of the C_{30} hopane (Seifert and Moldowan, 1979; Goodwin et al., 1983). In addition, the concentrations of hopanes in the fuel oil and Ninian crude (Table 4.4) were quite different (2.5:1) and a small amount of residual fuel oil could have a relatively large effect upon the biomarker distributions of a UCM residue derived largely from Ninian Crude. The biomarker evidence was therefore inconclusive and an attempt to fingerprint the quantitatively more important UCM was made, utilising oxidative degradation, GCMS analysis and multivariate statistical techniques (MDS and cluster analysis).

4.4.1.4 OXIDATIVE DEGRADATION (CrO_3)

Although the aliphatic hydrocarbons in Sullom Voe sediments exhibited a strong UCM, their relatively low concentrations meant that only ca. 2-3 mg of UCM could be isolated from the sediment collected at Station 6 and less than 1 mg from stations 1 and 3.

Previous oxidations (Gough, 1989; Gough and Rowland, 1990) had utilised 50 mg of sample. Therefore, a series of validation experiments using Silkolene lubricating oil feedstock were carried out to test the feasibility and
TABLE 4.4: CONCENTRATIONS OF BIOMARKERS IN OILS (ugg⁻¹)

<table>
<thead>
<tr>
<th>OIL</th>
<th>TOTAL HOPANES</th>
<th>C₂₉</th>
<th>C₃₀</th>
<th>TOTAL STERANES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ninian crude</td>
<td>1100</td>
<td>100</td>
<td>380</td>
<td>1100</td>
</tr>
<tr>
<td>Bernicia fuel oil</td>
<td>2500</td>
<td>550</td>
<td>900</td>
<td>1400</td>
</tr>
</tbody>
</table>

TABLE 4.5. RESULTS OF OXIDATION OF SULLOM VOE SAMPLES

<table>
<thead>
<tr>
<th>Sample</th>
<th>% Alkanes</th>
<th>% UCM</th>
<th>Total Yield from Oxidation (%)</th>
<th>Isolated oxidised products (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sullom Voe sediments</td>
<td>66</td>
<td>9</td>
<td>95</td>
<td>70</td>
</tr>
<tr>
<td>Ninian crude</td>
<td>52</td>
<td>31</td>
<td>89</td>
<td>55</td>
</tr>
<tr>
<td>Bernicia fuel oil</td>
<td>28</td>
<td>62</td>
<td>84</td>
<td>69</td>
</tr>
</tbody>
</table>

145
reproducibility of oxidation of 2 mg samples (see experimental for details). These gave a high recovery of material (80-90%) with good repeatability when the oxidation product profiles were examined visually (Figure 4.18).

Application of this refined method to the isolated UCMs (Table 4.5) produced a series of GC resolved components, superimposed on a reduced UCM. Mass chromatography of the major oxidation products (Carboxylic acids as methyl esters, m/z 74; ketones, m/z 58 and γ-methyl-γ-lactones, m/z 99) highlighted some similarities and some differences between the oxidation product profiles (Figures 4.19-4.21). The most noticeable difference was the relatively enhanced level of low molecular weight compounds in the sediment oxidation products. This may be a function of sample work-up although all samples were treated similarly. However, it is clear that the final chromatograms are complex and that a thorough comparison of even only three samples by eye is extremely difficult and that statistical treatment of the data is needed. Three samples are too few for a valid statistical analysis, so the results from these analyses were combined with data from further samples in a second case study from the River Mersey (Section 4.4.2), from a reproducibility study and from two previous case studies involving acute oil spills (Gough and Rowland, 1990).
FIGURE 4.18. REPEAT OXIDATIONS OF 2MG SAMPLES OF SILKOLENE LUBRICATING OIL: TOTAL OXIDATION PRODUCTS (J&W DB-5, 25m, 40-300°C @ 5°C/min., H₂ carrier gas)
FIGURE 4.19. M/Z 74 CHROMATOGRAM FOR SULLOM VOE UCM
CrO₃ OXIDATION PRODUCTS
(J&W DB-5, 25m, 40-300°C @ 5°C/min., He carrier gas)
FIGURE 4.20. M/Z 58 CHROMATOGRAM FOR SULLOM VOE UCM
CrO₃ OXIDATION PRODUCTS
(J&W DB-5, 25m, 40-300°C @ 5°C/min., He carrier gas)
FIGURE 4.21. M/Z 99 CHROMATOGRAM FOR SULLOM VOE UCM
CrO₃ OXIDATION PRODUCTS
(J&W DB-5, 25m, 40-300°C @ 5°C/min., He carrier gas)
4.4.2 MERSEY OIL SPILL

4.4.2.1 INTRODUCTION

On the 19 August 1989, there was an accidental spillage of 150 tonnes of Tia Juana Pesado (TJP; Venezuela) heavy asphaltic crude oil from the Shell refinery at Stanlow, Elsmere Port into the Mersey Estuary (Davies and Wolff, 1990). Since TJP crude is a UCM-rich degraded oil, this spill provided a good test of the use of the UCM "fingerprinting" method.

4.4.2.2 GRAVIMETRY AND GAS CHROMATOGRAPHY

Gravimetric data for the oil and sediment (Dungeons Lane, 0-3 cm) are given in Table 4.6. The sediment contained 1331 µg/g dry weight of hydrocarbons of which 55% was saturated hydrocarbons and 45% aromatic hydrocarbons. Davies and Wolff (1990) found concentrations of 80-400 µg/g dry weight in sediments from nearby Widnes, collected a day after the TJP spill. These concentrations can be compared to values of ca. 100 µg/g dry weight from Mersey (Eastham Ferry) sediments collected in 1984 (Readman et al., 1986) and a range of 5-100 µg/g for estuarine sediments in general (Farrington and Meyers, 1975). Thompson and Eglinton (1978) reported ca. 100 µg/g dry weight in the Severn Estuary, whilst lower levels (10 and 42 µg/g) were reported in the less industrialised Dee and Tamar Estuaries.
Table 4.6: Concentration of Hydrocarbons in TJP Oil (% of Total Oil) and Mersey Sediments (ug g⁻¹ Dry Weight)

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Sample</th>
<th>TJP Crude</th>
<th>Mersey Sediment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total organic extract</td>
<td>-</td>
<td></td>
<td>2669</td>
</tr>
<tr>
<td>Total saturates</td>
<td>23</td>
<td></td>
<td>730</td>
</tr>
<tr>
<td>Total aromatics</td>
<td>27</td>
<td></td>
<td>601</td>
</tr>
</tbody>
</table>
In contrast, concentrations of hydrocarbons in oil polluted sediments range at least up to 12400 µg g⁻¹ dry weight (Farrington and Meyers, 1975) and levels of 53660 µg g⁻¹ were reported in Humber Estuary sediments 5 months after a spill of 6000 tonnes of Nigerian crude oils (Jones et al., 1986). However, in most of these studies the spilled oil was of "average" composition, i.e. ca. 86% hydrocarbons with 57% saturated hydrocarbons and 29% aromatic hydrocarbons (average of 517 crude oils, Tissot and Welte, 1984). In contrast, TJP is a heavy asphaltic oil with a low hydrocarbon content (50%) and especially low saturated hydrocarbon content (23%; Table 4.7). This is typical of the heavy oils of Venezuela (Tissot and Welte, 1984; de Audemard et al., 1987) which characteristically have high asphaltene, resin and NSO content.

Thus, although "oiling" of sediments is often characterised by an elevation of the saturated hydrocarbon concentration, this may not be the case when the oil is a heavy asphaltic oil such as the TJP. This may explain why Davies and Wolff (1990) were unable to detect TJP crude residues in a freshly oiled Mersey sediment, even though the oil was visible.

GC analysis of saturated hydrocarbons from both the Mersey sediment and TJP crude exhibited predominant UCMs (Figure
FIGURE 4.22. GAS CHROMATOGRAMS OF MERSEY SEDIMENT AND TIA
JUANA PESADO CRUDE ALIPHATIC FRACTIONS
(J&W DB-5, 25m, 40-300°C @ 5°C/min., H₂ carrier gas)
(Pr⁺ = pristane + co-eluting compounds, Ph = phytane
T = triterpane compounds)
4.22) with a few resolved components which are mainly terpanes (identified by relative retention times). Otherwise, the two UCM profiles were very different.

4.4.2.3 GAS CHROMATOGRAPHY-MASS SPECTROMETRY

Qualitatively the distributions of steranes were similar in both oil and sediment (Figures 4.23 and 4.24). Which is not entirely unexpected since both have been biodegraded. For example the C₃₀ααα 20S and 20R sterane distribution (Figure 4.23; peaks 1 and 2 respectively) has been altered such that the more readily biodegraded 20R isomer (peak 2) has been reduced from the usual 60% abundance (relative to total R and S) to ca. 48%. However, there are also quantitative differences in the ratio of certain low molecular weight steranes (peaks 3 and 4; Figure 4.23) compared to the higher molecular weight steranes (e.g. peaks 1 and 2) which are reflected in the absolute concentrations of these compounds (Davies and Wolff, 1990). This suggests that the sterane profile of the sediment is not dominated by a contribution from the TJP crude. This is confirmed by the triterpane distributions (Figures 4.25 and 4.26) which show significant differences between the sediment and crude, notably an enhanced tricyclic terpane content (e.g. peak 1; Figure 4.25) and an unidentified component (peak 2) in the oil which is not detected in the sediment (see also Davies and Wolff, 1990). The concentration of demethylated triterpanes (Figure 4.26) is
FIGURE 4.23. M/Z 217 MASS CHROMATOGRAM FOR MERSEY SEDIMENT AND TJP CRUDE ALIPHATIC FRACTIONS (J&W DB-5, 25m, 40-300°C @ 5°C/min., H, carrier gas)

FIGURE 4.24. M/Z 218 MASS CHROMATOGRAM FOR MERSEY SEDIMENT AND TJP CRUDE ALIPHATIC FRACTIONS (J&W DB-5, 25m, 40-300°C @ 5°C/min., H, carrier gas)
FIGURE 4.25. M/Z 191 MASS CHROMATOGRAM FOR MERSEY SEDIMENT AND TJP CRUDE ALIPHATIC FRACTIONS (J&W DB-5, 25m, 40-300°C @ 5°C/min., H$_2$ carrier gas)

FIGURE 4.26. M/Z 177 MASS CHROMATOGRAM FOR MERSEY SEDIMENT AND TJP CRUDE ALIPHATIC FRACTIONS (J&W DB-5, 25m, 40-300°C @ 5°C/min., H$_2$ carrier gas)
also higher in the crude (Davies and Wolff, 1990; a feature typical of biodegraded oils).

Thus the biomarker evidence is inconclusive but suggests that TJP hydrocarbons have not made a major contribution to the sediment. In order to provide complementary data, an examination of the sediment and oil UCMs was made.

4.4.2.4 OXIDATIVE DEGRADATION

Oxidative degradation of TJP crude and sediment saturated hydrocarbons (both 80% unresolved) produced the yields shown in Table 4.7. Also included is data for the hydrocarbon feedstock of TJP lubricating oil (Shell naphthenic lubricating oil, Gough, 1989) since this is refined on Merseyside. Most of the UCM hydrocarbons in the sediment are less readily oxidised than those in either oil (40% cf. ca. 70%). If all the oxidisable (40%) UCM hydrocarbons in the sediment were from TJP crude then a maximum of 57% of the saturated hydrocarbons in the sediment could originate from TJP crude. There is no evidence for this from GC and GCMS, but these may not be good guides due to the low hydrocarbon content of TJP. When equal amounts of saturated hydrocarbons from TJP crude and the sediment were mixed and analysed by GC, the resulting profile was almost identical to that of the original sediment (Figure 4.27). This infers that GC alone could not reveal even this level of contamination.
<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>% SATURATES IN ORIGINAL SAMPLE</th>
<th>TOTAL YIELD FROM OXIDATION (%)</th>
<th>ISOLATED* OXIDATION PRODUCTS (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sediment</td>
<td>55</td>
<td>95</td>
<td>40</td>
</tr>
<tr>
<td>TJP crude</td>
<td>23</td>
<td>87</td>
<td>71</td>
</tr>
<tr>
<td>TJP lube oil*</td>
<td>66</td>
<td>73</td>
<td>69</td>
</tr>
</tbody>
</table>

* Refers to that fraction not eluting with hexane from column chromatography and includes acids, ketones and lactones

FIGURE 4.27. GAS CHROMATOGRAM OF A MIXTURE OF THE ALIPHATIC HYDROCARBONS FROM MERSEY SEDIMENT (50%) AND TJP CRUDE (50%)
(J&W DB-5, 25m, 40-300°C @ 5°C/min., H₂ carrier gas)
(Pr⁺ = pristane + co-eluting compounds, Ph = phytane T = triterpane compounds)
Visual examination of the oxidation product profiles of TJP crude and the sediment by mass chromatography showed the two profiles to be qualitatively similar to each other (Figures 4.28 and 4.29) and similar to that of the TJP lubricating oil (Gough, 1989).

The data were then subjected to more rigorous statistical analyses in conjunction with the data from the Sullom Voe case study and, in order to expand the data base additional sets of samples were analysed. These included duplicate oxidations of 2 mg samples of Silkolene lubricating oil, an oxidation of 50 mg of the same oil, oxidation of two acute oil spills studied by Gough (1989) and Gough and Rowland (1990) and a repeat GCMS analysis of one of the samples. Gravimetric data for all the samples included in this data set are given in Table 4.8.

4.4.3 STATISTICAL ANALYSIS OF UCM OXIDATION DATA

4.4.3.1 CLUSTER ANALYSIS AND MULTIDIMENSIONAL SCALING

Each compound class in the oxidation product profiles was quantified, the resulting data analysed by the DB-MATCH program and then subjected to cluster analysis and MDS. The results of this are shown in two ways,

(i) a hierarchical dendrogram which indicates groups of samples and the degree of their association,
FIGURE 4.28. M/Z 74 CHROMATOGRAM OF THE OXIDATION PRODUCTS OF MERSEY SEDIMENT AND TJP CRUDE UCMS
(J&W DB-5, 25m, 40-300°C @ 5°C/min., He carrier gas)
(numbers indicate n-acid chain length)

FIGURE 4.29. SUMMED M/Z 58 + 99 CHROMATOGRAM OF THE OXIDATION PRODUCTS OF MERSEY SEDIMENT AND TJP CRUDE UCMS
(J&W DB-5, 25m, 40-300°C @ 5°C/min., He carrier gas)
TABLE 4.8: GRAVIMETRIC DATA FOR SAMPLES ANALYSED BY MULTIVARIATE STATISTICS

<table>
<thead>
<tr>
<th>No.</th>
<th>SAMPLE</th>
<th>ALKANES (%)</th>
<th>UCMs (%)</th>
<th>TOTAL Yield (%)</th>
<th>OXIDISED Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2</td>
<td>Silkolene 150 (2mg)</td>
<td>78</td>
<td>86</td>
<td>94</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Silkolene (50mg)</td>
<td>79</td>
<td>86</td>
<td>95</td>
<td>71</td>
</tr>
<tr>
<td>4</td>
<td>Amoco tank oil</td>
<td>16</td>
<td>68</td>
<td>87</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Newgale beach oil</td>
<td>16</td>
<td>21</td>
<td>75</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>Sivand cargo</td>
<td>55</td>
<td>76</td>
<td>83</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>Humber sediment</td>
<td>43</td>
<td>87</td>
<td>83</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>Mersey sediment repeat GCMS analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Sullom Voe sediment</td>
<td>66</td>
<td>9</td>
<td>95</td>
<td>70</td>
</tr>
<tr>
<td>10</td>
<td>Ninian crude oil</td>
<td>52</td>
<td>31</td>
<td>89</td>
<td>55</td>
</tr>
<tr>
<td>11</td>
<td>Bernicia fuel oil</td>
<td>28</td>
<td>62</td>
<td>84</td>
<td>69</td>
</tr>
<tr>
<td>12</td>
<td>Mersey sediment</td>
<td>55</td>
<td>80</td>
<td>95</td>
<td>40</td>
</tr>
<tr>
<td>13</td>
<td>TJP crude oil</td>
<td>22</td>
<td>85</td>
<td>87</td>
<td>71</td>
</tr>
</tbody>
</table>
and,

(ii) a two dimensional plot of samples which indicates the relative positions of the samples. This can show both how samples within a group are related and how close each sample is to the next group. Thus both forms of data presentation complement each other and therefore, should be studied at the same time.

A technique often used in statistical analyses of this type is standardisation of the data (Smith, 1991). This involves calculating the mean and standard deviation for each variable and dividing each number by one of them or by subtracting the mean and dividing by the standard deviation. The aim of this treatment of the data is to prevent any one variable having a disproportionately large effect upon the end result. However, it is unclear if a data set with only thirteen samples (including duplicates) is large enough for this to work and results from this study suggest not (see end of this section). Thus the initial analyses were performed without standardisation.

Samples 1-3: Reproducibility Study

The two oxidations of 2 mg of Silkolene lubricating oil (samples 1 and 2, Figure 4.30) show that the reproducibility of the method at this level is in the region of >88%, though further replication would be
KEY TO SAMPLE NUMBERS IN FIGURE 4.30

<table>
<thead>
<tr>
<th>No.</th>
<th>SAMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Silkolene 150 (2mg)</td>
</tr>
<tr>
<td>2</td>
<td>Silkolene 150 (2mg)</td>
</tr>
<tr>
<td>3</td>
<td>Silkolene 150 (50mg)</td>
</tr>
<tr>
<td>4</td>
<td>Amoco tank oil</td>
</tr>
<tr>
<td>5</td>
<td>Newgale beach oil</td>
</tr>
<tr>
<td>6</td>
<td>Sivand cargo</td>
</tr>
<tr>
<td>7</td>
<td>Humber sediment</td>
</tr>
<tr>
<td>8</td>
<td>Mersey Sediment repeat GCMS analysis</td>
</tr>
<tr>
<td>9</td>
<td>Sullom Voe sediment</td>
</tr>
<tr>
<td>10</td>
<td>Ninian crude oil</td>
</tr>
<tr>
<td>11</td>
<td>Bernicia fuel oil</td>
</tr>
<tr>
<td>12</td>
<td>Mersey sediment</td>
</tr>
<tr>
<td>13</td>
<td>TJP crude oil</td>
</tr>
</tbody>
</table>
FIGURE 4.30. RESULTS OF CLUSTER AND MDS ANALYSES OF THE OXIDATION PRODUCTS FROM SEVERAL CASE STUDIES WITH NO STANDARDISATION
(For sample identities see key opposite)
desirable, this was precluded by time constraints. Comparison of these samples with the oxidation of 50 mg of the same oil (sample 3) show poor agreement. This is probably due to the different oxidising environment experienced by the substrate (viz. relatively more solvent in the 2 mg oxidation; see experimental).

Samples 4 and 5: Amoco Tank Spill

One of the oil spills investigated by Gough and Rowland (1990) was a well documented spillage of oil from an Amoco tank at Milford Haven and was chosen by those authors because the oil had a known source (thus the oil and sediment hydrocarbons can almost be regarded as duplicates). These samples cluster together with >90% similarity, well away from other samples (4 and 5; Figure 4.30).

Samples 6 and 7: Humber Spill

Gough and Rowland (1990) also studied a spill of Nigerian Crude oils from the tanker Sivand into the Humber estuary (samples 6 and 7). These showed a correlation of ca. 78%. The scale of dissimilarity is in agreement with previous studies of this oil spill (Jones et al., 1986) and suggests that there have been other inputs of hydrocarbons to the Humber sediment in addition to the Sivand oil.
Samples 9-11: Sullom Voe

The Sullom Voe sediment (sample 9) clusters with the Silkolene lubricating oil samples (1 and 2) and the biodegraded TJP Crude (sample 13) but well away from the suspected sources (Ninian Crude, sample 10 and Bernicia fuel oil, sample 11). This suggests that the UCM in Sullom Voe sediments is most likely due to a chronic accumulation from weathered hydrocarbon sources such as the hydrocarbons in aqueous road run-off, which often exhibits a strong UCM (Bomboi and Hernandez, 1991). This result contradicts the biological marker data which indicated that the Bernicia fuel oil was a more likely source, though this evidence was not conclusive (see Section 4.4.1.3).

Samples 8, 12 and 13: Mersey Oil Spill

The samples from the Mersey spill (12 and 13) were not similar (<50%) and this is in agreement with the GC and GCMS results (Sections 4.4.2.2 and 4.4.2.3; Davies and Wolff, 1990). These showed the UCM distributions to be very different and that the oil contained relatively high proportions of tricyclic triterpenoids and demethylated hopanes compared with the sediment. Interestingly, this method fails to provide any evidence for the presence of TJP Crude in the Mersey sediment, yet detected the presence of the Sivand oil in the Humber sediments which are also known to already contain a hydrocarbon burden (Readman et
al., 1986). This emphasises the effect of the background hydrocarbon loading of the Mersey sediments on the relatively low saturated hydrocarbon content of TJP crude.

Repeat GCMS analysis of the same sample (samples 8 and 12; Figure 4.30) show the level of reproducibility to be 80% which is less than that for the two Silkolene oxidations and may suggest that this is a worst case example. If this is taken into account for the other samples, the existing clusters remain intact. The difference between samples 8 and 12 is likely to be a function of peak height integration. In conclusion, all samples known to be identical gave similarity values >80% and two known to be fairly similar (78%).

Subsequent re-analysis of the same data but after standardisation (division by the mean) produced results which appear to be less convincing (Figure 4.31). It is interesting that similar clusters still form within the data set, i.e. samples 1 and 2, 12 and 8, 6 and 7, although some are broken apart, e.g. samples 4 and 5; however each cluster exhibits less similarity between individual members of the cluster. For example, in the analysis without standardisation, samples 1 and 2 were 90% similar (Figure 4.30) but this has decreased to 80% with standardisation (Figure 4.31). More strikingly, samples 4 and 5 have decreased from 90% to ca. 40% similarity. It would appear therefore, with the prior knowledge available for the
<table>
<thead>
<tr>
<th>No.</th>
<th>SAMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Silkolene 150 (2mg)</td>
</tr>
<tr>
<td>2</td>
<td>Silkolene 150 (2mg)</td>
</tr>
<tr>
<td>3</td>
<td>Silkolene 150 (50mg)</td>
</tr>
<tr>
<td>4</td>
<td>Amoco tank oil</td>
</tr>
<tr>
<td>5</td>
<td>Newgale beach oil</td>
</tr>
<tr>
<td>6</td>
<td>Sivand cargo</td>
</tr>
<tr>
<td>7</td>
<td>Humber sediment</td>
</tr>
<tr>
<td>8</td>
<td>Mersey Sediment repeat GCMS analysis</td>
</tr>
<tr>
<td>9</td>
<td>Sullom Voe sediment</td>
</tr>
<tr>
<td>10</td>
<td>Ninian crude oil</td>
</tr>
<tr>
<td>11</td>
<td>Bernicia fuel oil</td>
</tr>
<tr>
<td>12</td>
<td>Mersey sediment</td>
</tr>
<tr>
<td>13</td>
<td>TJP crude oil</td>
</tr>
</tbody>
</table>
FIGURE 4.31. RESULTS OF CLUSTER AND MDS ANALYSIS OF THE OXIDATION PRODUCTS FROM SEVERAL CASE STUDIES WITH STANDARDISATION OF THE DATA (for sample identities see key opposite)
samples within the database, that, in this case, standardisation of the data does not help the analysis, presumably due to the relatively small number of samples.

4.4.3.2 PRINCIPAL COMPONENTS ANALYSIS

As discussed in section 4.3 the small numbers of samples and large number of variables involved in the case studies make statistical analysis by MDS the most appropriate method for comparing the data. The foregoing section shows that this approach is valid, and gives good reproducibility. The advantages of the above approach include the provision of both a two dimensional distances plot and the cluster analysis dendrogram from which a quantitative measure (% similarity) of difference is obtained. However, one of the disadvantages of this method is that no measure of the relative influence of the different variables (i.e. n-acids, lactones and ketones) to the overall differences between samples is provided. This information is provided by PCA, where the effects are expressed by so-called "loading" values i.e. those variables with the greatest loading being responsible for the greatest difference between samples. However, PCA is usually deemed inappropriate for analysis of small sample sets (Tabachnick and Fidell, 1989).

It was, therefore, a considerable surprise when application of a PC-based PCA software package (UNSCRAMBLER II©) to the
environmental data set studied above (section 4.4) produced a score plot (Figure 4.32; cf. MDS distance plot) which was strikingly similar to the MDS analysis. The orientation of the MDS and PCA plots are different but the groupings of samples are remarkably similar. It is apparent therefore, unless this is an extreme coincidence, that the PCA package which uses a newly developed algorithm (Tyssø et al., 1987) is appropriate for this size and type of data set. The importance of this conclusion is that a measure of the relative influence of the variables could now be obtained (note, however, that the PCA analysis does not supplant MDS since no cluster analysis was available with the PCA package).

Table 4.9 shows that the range of acid concentrations is considerably greater than that of either the lactones or ketones. A small percentage change in the acid concentration therefore has quite a large influence on the MDS similarity measure (i.e. Euclidean distance) between samples. PCA of the data demonstrated this since PC1 and PC2 accounted for 84% of the total variation (PC1 = 63%). Within PC1 the greatest loading is found for the first 50 variables which are all n-acids. This is shown diagrammatically in Figure 4.33 where the magnitude of either positive or negative deviation on the y-axis indicates the influence of the variable on the difference between samples. It is clear that variables 1-50 (n-acids) have the greatest influence. The influence of PC2 is not
<table>
<thead>
<tr>
<th>No.</th>
<th>SAMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Silkolene 150 (2mg)</td>
</tr>
<tr>
<td>2</td>
<td>Silkolene 150 (2mg)</td>
</tr>
<tr>
<td>3</td>
<td>Silkolene 150 (50mg)</td>
</tr>
<tr>
<td>4</td>
<td>Amoco tank oil</td>
</tr>
<tr>
<td>5</td>
<td>Newgale beach oil</td>
</tr>
<tr>
<td>6</td>
<td>Sivand cargo</td>
</tr>
<tr>
<td>7</td>
<td>Humber sediment</td>
</tr>
<tr>
<td>8</td>
<td>Mersey Sediment repeat GCMS analysis</td>
</tr>
<tr>
<td>9</td>
<td>Sullom Voe sediment</td>
</tr>
<tr>
<td>10</td>
<td>Ninian crude oil</td>
</tr>
<tr>
<td>11</td>
<td>Bernicia fuel oil</td>
</tr>
<tr>
<td>12</td>
<td>Mersey sediment</td>
</tr>
<tr>
<td>13</td>
<td>TJP crude oil</td>
</tr>
</tbody>
</table>
FIGURE 4.32. COMPARISON OF THE TWO DIMENSIONAL PLOTS PRODUCED BY MDS AND PCA
(For sample identities see key opposite)
<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>ACIDS</th>
<th>LACTONES</th>
<th>ACIDS : LACTONES : KETONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicilone Zng1</td>
<td>19.3</td>
<td>3.6</td>
<td>5.4 : 1.0 : 1.4</td>
</tr>
<tr>
<td>Silicilone Zng2</td>
<td>25.5</td>
<td>4.8</td>
<td>5.3 : 1.0 : 1.6</td>
</tr>
<tr>
<td>Silicilone Zng3</td>
<td>34.1</td>
<td>6.4</td>
<td>5.1 : 1.0 : 1.3</td>
</tr>
<tr>
<td>Amoco tank oil</td>
<td>52.9</td>
<td>6.6</td>
<td>10.0 : 1.3 : 1.0</td>
</tr>
<tr>
<td>Newgale beach</td>
<td>46.4</td>
<td>7.2</td>
<td>12.5 : 1.9 : 1.0</td>
</tr>
<tr>
<td>Sound cargo oil</td>
<td>30.3</td>
<td>7.7</td>
<td>4.4 : 1.2 : 1.0</td>
</tr>
<tr>
<td>Humber Estuary sediment</td>
<td>38.2</td>
<td>9.9</td>
<td>4.1 : 1.0 : 1.0</td>
</tr>
<tr>
<td>Solvom Vee station 6</td>
<td>21.4</td>
<td>3.7</td>
<td>4.6 : 1.0 : 1.0</td>
</tr>
<tr>
<td>Nimea crude</td>
<td>35.6</td>
<td>6.6</td>
<td>14.3 : 1.0 : 1.0</td>
</tr>
<tr>
<td>Formica oil</td>
<td>52.9</td>
<td>6.6</td>
<td>14.6 : 1.0 : 1.0</td>
</tr>
<tr>
<td>TIP crude</td>
<td>17.5</td>
<td>1.2</td>
<td>14.6 : 1.0 : 1.0</td>
</tr>
<tr>
<td>Money Estuary sediment</td>
<td>64.6</td>
<td>3.9</td>
<td>22.9 : 1.4 : 1.0</td>
</tr>
<tr>
<td>Money sediment repeat</td>
<td>80.1</td>
<td>5.0</td>
<td>21.1 : 1.3 : 1.0</td>
</tr>
</tbody>
</table>
FIGURE 4.33. LOADINGS PLOT FOR PC 1 FROM PRINCIPAL COMPONENTS ANALYSIS OF THE DATA

FIGURE 4.34. LOADINGS PLOT FOR PC 2 FROM PRINCIPAL COMPONENTS ANALYSIS OF THE DATA
negligible (21%) as shown in Figure 4.34, and again the major loading is due to the n-acid oxidation products. Thus, analysis of the loading plots confirms that the groupings in Figure 4.32 are due mainly to differences in the n-acid distribution. When the n-acid data are removed from the data matrix a somewhat different scores plot is obtained (Figure 4.35). The duplicate oxidations (1 and 2), repeat GCMS analysis (8 and 12) and known correlated samples (Amoco tank oil [4], Newgale beach [5]) remain well grouped together. However samples 6 and 7 (Sivand oil and Humber sediment) are no longer close to one another. This suggests that the UCM precursors of the lactones and ketones in the Humber sediment were not all from the Sivand, whilst the UCM precursors of the n-acids were dominated more by the Sivand UCM. Interestingly, for the Mersey case study the opposite appears to be true; viz. the Mersey sediment UCM contains similar lactone and ketone precursors to TJP crude whereas the UCM precursors of the n-acids in the Mersey sediment are quite different to the TJP crude UCM and are probably dominated by n-acid precursors from the background contamination of the Mersey.

If the same logic is applied to the Sullom Voe study (samples 9-11) the Ninian Crude UCM (10) seems to have a similar lactone and ketone distribution (Figure 4.35) to that of the sediment, whilst the n-acids in the oxidised sediment UCM are apparently mainly from another source (Figure 4.32), possibly background hydrocarbons from
KEY TO SAMPLE NUMBERS IN FIGURE 4.35

<table>
<thead>
<tr>
<th>No.</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Silkolene 150 (2mg)</td>
</tr>
<tr>
<td>2</td>
<td>Silkolene 150 (2mg)</td>
</tr>
<tr>
<td>3</td>
<td>Silkolene 150 (50mg)</td>
</tr>
<tr>
<td>4</td>
<td>Amoco tank oil</td>
</tr>
<tr>
<td>5</td>
<td>Newgale beach oil</td>
</tr>
<tr>
<td>6</td>
<td>Sivand cargo</td>
</tr>
<tr>
<td>7</td>
<td>Humber sediment</td>
</tr>
<tr>
<td>8</td>
<td>Mersey Sediment repeat GCMS analysis</td>
</tr>
<tr>
<td>9</td>
<td>Sullom Voe sediment</td>
</tr>
<tr>
<td>10</td>
<td>Ninian crude oil</td>
</tr>
<tr>
<td>11</td>
<td>Bernicia fuel oil</td>
</tr>
<tr>
<td>12</td>
<td>Mersey sediment</td>
</tr>
<tr>
<td>13</td>
<td>TJP crude oil</td>
</tr>
</tbody>
</table>
FIGURE 4.35. TWO DIMENSIONAL PCA SCORES PLOT FOR ANALYSIS OF THE DATABASE EXCLUDING n-ACIDS DATA
(For sample identities see key opposite)
aqueous road-run off. These results appear to make sense, since, for example, in each case study it is known that the source oils contributed to the sediments (the Sivand spill did impact the Humber sediment [Jones et al., 1986], the TJP visually contaminated the Mersey sediments [Davies and Wolff, 1990] and Sullom Voe oil terminal does discharge Ninian crude contaminated water [Dodd and Howells, 1985]) but they are not the only, or necessarily major, source of UCM hydrocarbons in each case. Thus, it seems reasonable that the UCMs in each sediment comprise mixtures of hydrocarbons from several sources and, like the biomarkers and other hydrocarbons, the UCMs have different compositions and make different contributions to the final UCM oxidation product profiles.

The fact that UCMs are quantitatively more important than individual hydrocarbons classes (e.g. biomarkers) led to the original proposition that UCMs might better reflect the sources of contamination. This appears to be invalid. The argument has come full circle in that UCM "fingerprinting" suffers from similar limitations to biomarker "fingerprinting". The importance, at present, lies in the additional information provided by the method, as originally suggested by Gough and Rowland (1990). Thus, it would appear that in studies such as these, a combined approach which utilises biomarker, UCM and any other data available is more likely to produce the answer closest to the truth!
The initial success of the MDS/cluster analysis method in the foregoing environmental case studies led the author to consider application to a geochemical problem, where conventional techniques had been unable to provide an answer.

4.4.4.1 GENERAL

The Siljan Ring (Sweden; Figure 4.36) is widely accepted as a meteorite impact crater (Svensson, 1973; Rondot, 1975; Thorsland and Auton, 1975; Jaanusson, 1982; Vlierboom et al., 1986; Hedberg, 1988 and Konor et al., 1988). Impact is thought to have occurred in the late Devonian (360 x10^6 years BP; Bottomley et al., 1978). This region has been of interest to geologists for many years (e.g. Linnaeus, 1734; Tilas, 1740; cited in Hedberg, 1988) and interest then, as now has centred around the occurrences of sporadic petroleum or "Rock oil", especially within the limestones, in this mainly igneous region. In the field, bituminous seeps are observed oozing from fractures, styolites or partially cement-filled cavities (Middleton, 1990). Also where limestone outcrops occur, staining can be seen as a result of hydrocarbon infiltration of the fine grained matrix (Middleton, 1990).

Middleton (1990) suggested that the hydrocarbons could
FIGURE 4.36. SIMPLIFIED GEOLOGICAL MAP OF THE SILJAN RING (Middleton, 1990)
occur by either,

(a) their being already in place within the limestones prior to meteorite impact and were subsequently allowed to migrate due to the fractures produced by the impact, or

(b) the faulting which followed the impact allowed hydrocarbons to migrate into the otherwise impermeable limestone.

The source of the hydrocarbon seeps is presumed to be the organic rich Fjacka shale which underlies the Boda limestone (Hedberg, 1988) though other potential source rocks have been suggested. The sediments ringing the crater are too immature to generate oil (Vlierboom, cited in Shirley, 1987), and it is suggested that the impact caused localised heating of the Fjacka shale to liberate hydrocarbons which have migrated to the overlying limestone. However, a maximum burial depth for the Boda limestone, prior to impact, of 2.5 km (Middleton, 1990 and references therein) may have heated the Fjacka shale sufficiently to produce some hydrocarbons. An alternative theory, and the reason for much renewed interest in the Siljan ring, is that of an abiogenic origin for oil and gas (see Section 3.1; Gold 1979). Gold (1979) has suggested that the meteorite impact produced fracturing which reached the mantle, allowing outgassing of methane and subsequent
hydrocarbon formation. The Siljan Ring is a good test site for these theories since the region is mainly underlain by granite rather than sedimentary rocks (Gold, 1986).

Previous attempts to correlate the hydrocarbon seeps with their proposed source rocks by "traditional" biomarker analysis have been hampered by the severe biodegradation and/or weathering of the samples (Hedberg, 1988). In this study, UCM fingerprinting was attempted in order to correlate the oil seeps with their potential source rocks.

4.4.4.2 GRAVIMETRY AND GAS CHROMATOGRAPHY

Gravimetric data and sample descriptions are given in Table 4.10. The samples yielded widely differing concentrations of aliphatic hydrocarbons (23-50% of total organic extract; Table 4.10) but all exhibited a broad UCM (KI 1100-3500; Figure 4.37) with samples 4, 5 and 6 possessing insignificant amounts of resolved compounds. Samples 1 and 2 are, as expected, very similar by GC (Figure 4.37), although the relative amounts of n-C_{17} and pristane appear different and as yet the reason for this is unclear. The amount of n-C_{19} also appears to be enhanced in sample 2.

Sample 3 exhibits relatively enhanced levels of the lower molecular weight n-alkanes (n-C_{15-17}), with high levels of pristane.
TABLE 4.10: SAMPLE DESCRIPTIONS AND GRAVIMETRIC DATA FOR SILJAN RING SAMPLES

<table>
<thead>
<tr>
<th>No</th>
<th>Sample Description/Location (Figure 4.34)</th>
<th>Age</th>
<th>Amount Extract Used (mg)</th>
<th>Aliphatic hydrocarbons mg (%)</th>
<th>Aromatic hydrocarbons mg (%)</th>
<th>UA (mg) (%) of aliphatics</th>
<th>Dendroliolid UNA mg (%) of aliphatics</th>
<th>TUA mg (%) of UNA</th>
<th>TUNA mg (%) of UNA</th>
<th>Amount Oxidized (mg)</th>
<th>Recovered Material mg (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fjära Oil Shale, Organic rich layer/Ommundsborg Quarry</td>
<td>Oolitic</td>
<td>60</td>
<td>13(33)</td>
<td>15(33)</td>
<td>6.3(49)</td>
<td>5.8(45)</td>
<td>2.5(43)</td>
<td>2.5(43)</td>
<td>2.0</td>
<td>1.0(80)</td>
</tr>
<tr>
<td>2</td>
<td>Fjära Oil Shale, Whole/Ommundsborg Quarry</td>
<td>Oolitic</td>
<td>44</td>
<td>11(23)</td>
<td>14(32)</td>
<td>5.5(44)</td>
<td>4.1(37)</td>
<td>1.9(46)</td>
<td>2.1(51)</td>
<td>2.0</td>
<td>1.8(90)</td>
</tr>
<tr>
<td>3</td>
<td>Carbonated Nodule, Oil Stained/Kalska Quarry</td>
<td>Silurian</td>
<td>14</td>
<td>6(43)</td>
<td>5(21)</td>
<td>3.0(50)</td>
<td>2.4(40)</td>
<td>0.2(8)</td>
<td>2.0(33)</td>
<td>2.0</td>
<td>1.5(75)</td>
</tr>
<tr>
<td>4</td>
<td>Coral Reef, Oil Stained/Umeåkerden Quarry</td>
<td>Oolitic</td>
<td>50</td>
<td>7(23)</td>
<td>5(17)</td>
<td>3.0(43)</td>
<td>3.1(44)</td>
<td>1.0(32)</td>
<td>1.9(61)</td>
<td>1.9</td>
<td>1.5(79)</td>
</tr>
<tr>
<td>5</td>
<td>Ahum Shale, Whole/ - not known</td>
<td>Cambrian</td>
<td>20</td>
<td>10(50)</td>
<td>5(25)</td>
<td>2.8(28)</td>
<td>6.0(50)</td>
<td>2.5(42)</td>
<td>3.2(53)</td>
<td>2.0</td>
<td>1.8(90)</td>
</tr>
<tr>
<td>6</td>
<td>Oil Seep/Seaborgy</td>
<td>N/A</td>
<td>29</td>
<td>10(34)</td>
<td>8(28)</td>
<td>4.5(45)</td>
<td>4.1(41)</td>
<td>1.8(44)</td>
<td>2.0(49)</td>
<td>2.0</td>
<td>1.6(80)</td>
</tr>
</tbody>
</table>

N/A = Not Applicable
FIGURE 4.37. GAS CHROMATOGRAMS OF THE ALIPHATIC FRACTIONS ISOLATED FROM THE SILJAN RING SAMPLES
(J&W DB-5, 25m, 40-300°C @ 5°C/min., H₂ carrier gas)
(numbers indicate chain length, Pr = pristane)
Removal of the resolved components with urea highlighted the relatively high levels of acyclic isoprenoids in samples 2 and 3, and to a slightly lesser extent sample 1 (Figure 4.38). All the samples yielded ca. 40% of UNA from the aliphatic fraction (Table 4.10) except for the Alum shale (sample 5), which yielded 60% of UNA (Table 4.10). Thiourea adduction was used in an attempt to remove these acyclic isoprenoid compounds and, for the sake of consistency, all samples were treated, even those which exhibited little or no isoprenoids. The procedure was moderately successful, especially in samples 1 and 3 (Figure 4.39) and to a lesser extent with sample 2. Unfortunately, each adduction removes some UCM, thus a compromise has to be reached between the level of resolved compounds and the amount of material remaining. However in each sample, the thio-urea adduction highlighted the presence of steranes and triterpanes (KI 2700-KI 3200; Figure 4.39).

4.4.4.3 GAS CHROMATOGRAPHY MASS SPECTROMETRY

GCMS of sterane distributions (Figure 4.40) highlights the expected similarity between samples 1 and 2. Sample 3 also has some similarity to the Fjacka shale, in that the (20R) C₃₀aaα isomer (peak 8) is dominant, but the level of the C₃₀ ββ isomers appears to be enhanced compared to the (20S) C₃₀aaα isomer (Figure 4.40). Sample 4, the stained coral, exhibits some similarities to the Solberga oil, with the
FIGURE 4.38. GAS CHROMATOGRAMS OF THE ALIPHATIC UNA FRACTIONS ISOLATED FROM THE SILJAN RING SAMPLES
(J&W DB-5, 25m, 40-300°C @ 5°C/min., H2 carrier gas)
(Pn = pristane).
FIGURE 4.39. GAS CHROMATOGRAMS OF THE ALIPHATIC TUNA FRACTIONS ISOLATED FROM THE SILJAN RING SAMPLES
(J&W DB-5, 25m, 40-300°C @ 5°C/min., H₂ carrier gas)
KEY TO M/Z 217 PEAK ASSIGNMENTS

<table>
<thead>
<tr>
<th>Peak #</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C_{27} \beta 20S Diasterane</td>
</tr>
<tr>
<td>2</td>
<td>C_{27} \beta 20R Diasterane</td>
</tr>
<tr>
<td>3</td>
<td>C_{27} aaa 20S</td>
</tr>
<tr>
<td>4</td>
<td>C_{27} aaa 20R</td>
</tr>
<tr>
<td>5</td>
<td>C_{29} aaa 20S</td>
</tr>
<tr>
<td>6</td>
<td>C_{29} aaa 20S</td>
</tr>
<tr>
<td>7</td>
<td>C_{29} aββ (20S + 20R)</td>
</tr>
<tr>
<td>8</td>
<td>C_{29} aaa 20R</td>
</tr>
</tbody>
</table>
FIGURE 4.40. M/Z 217 CHROMATOGRAMS OF THE ALIPHATIC FRACTIONS ISOLATED FROM THE SILJAN RING SAMPLES
(J&W DB-5, 25m, 40-300°C @ 5°C/min., He carrier gas)
(for peak identities see key opposite)
(20S) C₇aaa isomer being dominant. An important
difference, however, is the enhanced level of (20R) C₇aaa in the
borehole hydrocarbons, which is absent in the coral sample. The Alum shale shows a low level of steranes, with those that are present appearing to correspond to ββ isomers, indicating a high degree of maturity. Thus, while the sterane distributions show similarities between certain samples, there are also important differences, making it difficult to draw any firm conclusions.

Examination of the triterpane distributions gives similar results to that of the steranes (Figure 4.41). Samples 1 and 2 exhibit the expected similarity, except that the whole shale produces a distribution lower in tricyclic terpanes, suggesting that there are pentacyclic triterpanes present in fractions of the shale other than the so called organic rich layer. Sample 3 again shows some similarity to the Fjacka shale, but again with important differences, namely the relative proportions of C₇ and C₉ hopanes and C₂₁ and C₂₄ tricyclic compounds (Figure 4.41). Similarly sample 4 again has greatest affinity with the Solberga oil (sample 6), except for the relative amounts of C₂₉ and C₃₀ hopanes and the Alum shale (sample 5) appears to be devoid of pentacyclic compounds, although a few tricycles appear to be present. This is presumably attributable to the high maturity of the Alum shale.
FIGURE 4.41. M/Z 191 CHROMATOGRAMS OF THE ALIPHATIC FRACTIONS ISOLATED FROM THE SILJAN RING SAMPLES

(J&W DB-5, 25m, 40-300°C @ 5°C/min., He carrier gas)
(numbers refer to carbon number, T = tricyclic compounds, P = pentacyclic compounds)
The lack of any conclusive correlations from the biomarker analyses suggested the use of oxidative degradation of the isolated UCMs, in an attempt to gain further information on the possible origins of the hydrocarbon seeps. Thus, each UCM was subjected to oxidation as previously described, with good recoveries (Table 4.10), though the amount of resolved material by GC was still low (ca. 20%). These distributions are in agreement with the biomarker data in that samples 1 and 2 while similar (Figure 4.42), do exhibit some differences, and samples 3 and 4 appear very different to the rest. This is further highlighted by examination of the carboxylic acid profiles (m/z 74; Figure 4.43). All the samples appear to exhibit a strong odd over even predominance, with the C_{13} and C_{15} acids predominating. Analysis of γ-lactones (m/z 99; Figure 4.44) and ketones (m/z 58; Figure 4.45) show greater differences between the samples, though these components are present in only relatively minor amounts.

In an attempt to judge the similarity of the samples, the data was subjected to statistical analysis as before.

4.4.4.5 STATISTICAL ANALYSIS

Comparison of the chromatographic data using the DBMATCH program and subsequent statistical analysis produced the
FIGURE 4.42. TOTAL OXIDATION PRODUCTS FOR UCMR ISOLATED FROM THE SILJAN RING SAMPLE (J&W DB-5, 25m, 4-300°C @ 5°C/min., H, carrier gas)
1. Fjäcka organic rich layer
2. Fjäcka whole shale
3. Stained nodule
4. Stained coral
5. Alum shale
6. Solberga oil

FIGURE 4.43. M/Z 74 CHROMATOGRAM FOR THE OXIDATION PRODUCTS OF UCMS ISOLATED FROM THE SILJAN RING SAMPLES
(J&W DB-5, 25m, 40-300°C @ 5°C/min., He carrier gas)
(numbers refer to n-acid chain length)
FIGURE 4.44. M/Z 99 CHROMATOGRAM FOR THE OXIDATION PRODUCTS OF UCMS ISOLATED FROM THE SILJAN RING SAMPLES

(J&W DB-5, 25m, 40-300°C @ 5°C/min., He carrier gas)
FIGURE 4.45. M/Z 99 CHROMATOGRAM FOR THE OXIDATION PRODUCTS OF UCMS ISOLATED FROM THE SILJAN RING SAMPLES (J&W DB-5, 25m, 40-300°C @ 5°C/min., He carrier gas)
results shown in Figure 4.46. Taking into consideration the previous data (e.g. biomarker analysis) it is not surprising that the two Fjacka shale samples (samples 1 and 2) do not correlate as well as might at first be expected. The strong correlation between the Alum shale and the organic layer of the Fjacka is surprising but it is unclear what effect the high maturity of the Alum shale will have upon UCM composition. It is worth remembering that in the previous case studies (section 4.4.3) reproducibility was shown to be 80% and while this means that the relative clustering of samples 1, 2 and 5, 6 may be affected, the difference between samples 3 and 4 will remain great. Most notable, however, is the strong dissimilarity of the two seep samples (3 and 4), both with each other (44% similar) and with the rest of the samples (only 27% similar).

Comparison of the chromatographic data using the Peak match program, which produces fewer variables (only those peaks present in all samples), produced essentially the same results (Figure 4.47).

It is unclear at present as to why the two seep samples are so different from the other samples. Indeed, when this data set was analysed with the samples discussed earlier (section 4.4), the extreme difference of these two samples caused all 17 other samples to correlate so strongly that they coincided on the 2-D plot. It is conceivable that these differences are caused by some effect during
KEY TO SILJAN RING SAMPLES

Sample # Identity
1 Fjacka Shale (Organic rich layer)
2 Fjacka Shale (Whole shale)
3 Stained Calcareous nodule
4 Stained Coral reef
5 Alum Shale
6 Solberga Oil

LEGEND:

- Organic
- Limestone and stones
- Orgamic
- Quarry Locations
FIGURE 4.46. RESULTS OF STATISTICAL ANALYSES OF THE UCM OXIDATION PRODUCTS FOR THE SILJAN RING SAMPLES: CHROMATOGRAMS COMPARED USING THE DBMATCH PROGRAM (for sample identities and locations see key opposite)
KEY TO SILJAN RING SAMPLES

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Identity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fjocka Shale (Organic rich layer)</td>
</tr>
<tr>
<td>2</td>
<td>Fjocka Shale (Whole shale)</td>
</tr>
<tr>
<td>3</td>
<td>Stained Calcareous nodule</td>
</tr>
<tr>
<td>4</td>
<td>Stained Coral reef</td>
</tr>
<tr>
<td>5</td>
<td>Alum Shale</td>
</tr>
<tr>
<td>6</td>
<td>Solberga Oil</td>
</tr>
</tbody>
</table>
FIGURE 4.47. RESULTS OF STATISTICAL ANALYSES OF THE UCM OXIDATION PRODUCTS FOR THE SILJAN RING SAMPLES: CHROMATOGRAMS COMPARED USING THE PEAK MATCH PROGRAM (for sample identities and locations see key opposite)
oxidation, but it would appear too strong a coincidence for both seep samples to be affected rather than one seep and one shale sample. In addition, both samples gave good recoveries of material after oxidation (Table 4.10) and a reasonable distribution of oxidation products (Figures 4.42-4.45) which might not be expected if say over or under oxidation had occurred. Thus, with the information available at present, there is no reason to suspect that these differences are anything but genuine.

4.5 SUMMARY

Oxidative degradation of UCMs, followed by multivariate statistical analysis of the oxidation product profiles has been used in an attempt to fingerprint hydrocarbon residues in cases where conventional biomarker analysis has proved inconclusive. Initial validation of a microscale method gave good reproducibility, and the method appears to correlate sediment hydrocarbons with the likely source oil, based on evidence from known oil spills (Section 4.4.3). Results from the analysis of Sullom Voe sediments suggests that the low level of hydrocarbon contamination present in these samples is due mostly to a chronic accumulation of general background hydrocarbons. Subsequent attempts to correlate two oil seep samples in the Siljan ring region, Sweden, with their possible source, failed to produce any correlation, but instead suggested a large difference between the seep samples and any of the suggested sources.
However, the differences observed do appear to be supported by the biomarker analysis.
CHAPTER FIVE

OVERALL CONCLUSIONS AND FUTURE RESEARCH

This study has extended present knowledge of UCM composition and suggested a mechanism for UCM formation. Furthermore, quantitative and statistical analysis of UCM oxidation products has been shown to be useful for oil identification. There is still much to be learned about UCMs and the subject should provide a fruitful area for further research. Some possible approaches are suggested.
Now, in perusing what follows, the reader should bear in mind not only the general circuit as adumbrated above, with many sidetrips and tourist traps, secondary circles and skittish deviations but also the fact that far from being an indolent partie de plaisir, our tour was a hard, twisted teleological growth whose sole raison d'être (these French clichés are symptomatic) was to keep my companion in passable humour from kiss to kiss.

V.V. Sirin, Taina (p. 260)
translated from the Russian by
Vivian Darkbloom as Tatyana (p. 19)
5.1 OVERALL CONCLUSIONS

Although crude oil has been used and studied for many years, very little is still known about the majority of its components. For example, if we consider a heavy asphaltic crude oil (Tia Juana Pesado, Venezuela) the fractions of the oil we know little or nothing about in terms of composition (asphaltenes, aliphatic and aromatic UCM and polar compounds) total 95% of the crude (Figure 5.1). Central to this are the aliphatic and aromatic UCMs (21% and 33% of the oil, respectively) since it is these fractions that often assume a greater importance due to weathering and refining. While this oil is an "extreme" example, with respect to petroleum typically produced worldwide, the aliphatic UCM can account for 15-20% of a fresh "average" crude oil.

Despite the ubiquitous and often abundant nature of the UCM, little is known of its detailed composition (especially for the aromatic UCM) and of possible precursors to UCM compounds, although a petrogenic origin is widely accepted.

The main aims of this study were threefold:-

(1) To elucidate the UCM composition by analysis of an
FIGURE 5.1. TIA JUANA PESADO CRUDE OIL COMPOSITIONAL DATA
aromatic UCM.

(2) To investigate possible precursor compounds, which during catagenesis may yield a UCM.

(3) To use information about aliphatic UCM composition in conjunction with multivariate statistical techniques to investigate the fingerprint potential of UCMs.

Due to the difficulty of removing resolved aromatic compounds (cf. urea adduction) an in-reservoir biodegraded crude oil, Tia Juana Pesado (Venezuela) was chosen as this exhibited an aromatic fraction which was 95% unresolved by GC (KI 1200-KI 3500+). Conventional GCMS indicated the presence of alkylbenzene and naphthenoaromatic compounds, however, no detailed molecular structural information could be deduced and the data was not quantitative.

With only limited information having been gained from GC and GCMS analysis, the aromatic UCM was subjected to analysis by a variety of techniques including IR, UV, UVF, \(^1\)H- and \(^13\)C-NMR, FDMS and elemental analysis. IR and NMR proved useful in determining bulk characteristics, which suggested a highly aliphatic nature for the aromatic UCM and little evidence for long chain alkylbenzene structures, contradicting the historical view that these were major components of the aromatic UCM. These techniques also
provided good evidence for the presence of naphthenoaromatic compounds. FDMS allowed the distributions of a wide range of compound classes to be examined. However, no one group appeared to dominate the UCM, although instrument resolution was insufficient to prevent overlap between various compound classes.

Whilst the information gained from these techniques was useful, they yielded limited detailed structural information. As a result, an alternative approach was adopted which utilised chemical degradation of the UCM compounds. Oxidation with CrO₃ produced good yields of recovered material (>80%) of which 25% was resolved by GC. The major oxidation products were n-monocarboxylic acids (C₇-C₂₃) with some odd over even predominance. These could result from oxidative cleavage at benzylic or tertiary carbons. The presence of ketones and lactones as minor oxidation products is seen as evidence for methyl branching of the aliphatic side chain.

The lack of specificity of CrO₃ as an oxidant led to an alternative more specific reagent, RuO₄, to be used. This oxidant is known to attack aromatic rings specifically whilst leaving aliphatic side chains intact. RuO₄ oxidation produced good yields of recovered material (48-98%) but surprisingly few resolved components (5% by GC) which were predominantly n-carboxylic acids C₉-C₂₂ with a strong even over odd predominance. Interestingly, certain chain
lengths were absent, namely C_{17}, C_{19} and C_{21} which, due to the mode action of RuO_{4}, correspond to actual chain lengths of C_{16}, C_{18} and C_{20} respectively. In addition, the m/z 74 mass chromatogram, used to detect carboxylic acid methyl esters, exhibited a strong UCM. The composition of this unresolved portion was investigated by first isolating the acid fraction via a hydrolysis and back extraction and then subjecting the isolated fraction to NMR, GCMS and other bulk characterisation techniques. These confirmed the presence of acids and the possibility of diacids being present. These diacids could reasonably be expected to occur due to the presence of naphthenoaromatics in the UCM, and this was further supported by the presence of dimethylphthalate in the chromic acid oxidation products. There was also evidence from GCMS of the RuO_{4} oxidation products that the aliphatic side chains could possess cyclic moieties. Thus, it is proposed that the aromatic UCM consists of mainly naphthenoaromatic compounds with branched aliphatic side chains which may or may not contain a cyclic moiety. Such compounds consisting of a tetralin structure with a monoalkyl branched side chain, terminating in 0-2 cyclohexyl rings between C_{20} and C_{30} were shown, via a purpose written computer program, to be able to exist as at least, 1,213 isomers. Under typically employed GC conditions (DB-5 (J&W), 25m, 40-300°C 5°C min-1), C_{20} to C_{30} n-alkanes require 17 minutes (1020 seconds) for complete elution. In this region, baseline peak width was estimated at ca. 10 seconds, thus allowing for elution of 102
compounds with baseline resolution. Therefore, it is apparent that compounds of this type could readily account for the unresolved nature of the UCM. These findings are in agreement with those of Rossini et al. (1953) who, after exhaustive research into petroleum hydrocarbons (API Research Project 6), proposed that mononuclear, and at higher molecular weights, dinuclear aromatic compounds "consisting of one [or two] aromatic ring[s], with one, two or three cycloparaffin rings, probably most frequently condensed, together with paraffin side or connecting groups as appropriate ..." were the major aromatic compounds. Thus, nearly 40 years after this work was first published, the methods used in this study appear to confirm their conclusions.

A common principle within organic geochemical studies is that of "retro-analysis", i.e. to start with a known structure and attempt to formulate ideas about possible precursor compounds. Similarly, the structural information gained from the aliphatic (Gough 1989; Gough and Rowland, 1990) and the aromatic UCM (this study) would appear to lend itself to this type of approach. Acceptance of a petrogenic origin for the UCM suggests that formation of this complex mixture occurs during catagenesis and that the precursor compounds are in some way associated with the kerogen.

Laboratory maturation of kerogen (hydrous pyrolysis)
produces resolved compounds which often are associated with a significant UCM, although this is frequently ignored. While this suggests that the UCM does indeed have kerogen based precursors, it does not yield information as to what type of structures these may be. In order to investigate this further, two types of material were subjected to artificial maturation to see if one or both could yield a UCM.

The first, a man-made polymer (Alkathene) yielded both resolved and unresolved compounds with the latter containing both saturated and unsaturated components. Conventional analytical techniques indicated that the saturated unresolved compounds contain a high degree of branching and/or cyclicity, while the unsaturated fraction appeared to be predominantly alkenes with some aromatics, and a much reduced level of tertiary centres. Thus, from this evidence, it certainly appears that the saturated UCM consists of structures similar to those proposed by Gough and Rowland (1990) i.e. a cyclic moiety with a branched alkyl side chain. Chemical oxidation of this UCM produced a series of resolved compounds, a result similar to that from petrogenic UCMs. However, these resolved components contain a relatively high proportion of n-diacids and ca. 70% resolved material (compared with 20% from petrogenic UCMs). Both these factors suggest a degree of over oxidation, possibly due to this UCM comprising more simply branched structures than petrogenic UCMs.
The second material subjected to artificial maturation was cutan, isolated from the cuticle of *Agave americana*. This type of macromolecule, proposed to be geochemically resistant, has received wide interest as an alternative means to kerogen formation. Many workers have subjected this material to hydrous pyrolysis and shown the formation of resolved compounds but, again, the presence or otherwise of a UCM appears to have been ignored. The experiments in this study indeed produced a series of *n*-alkanes in high abundance, but removal of these showed the presence of a UCM. This unresolved portion could be further fractionated into hydrocarbon and non-hydrocarbon fractions, of which the latter appeared to contain the more significant UCM. Instrumental analysis of the non-hydrocarbon fraction indicated the presence of functionalised compounds (aldehydes, ketones etc.) while the hydrocarbon fraction comprised branched, cyclic and to a lesser extent aromatic compounds.

Chemical oxidation of the hydrocarbon fraction again produced a series of resolved components but again these included a relatively high proportion of *n*-diacids, though these were not as dominant as in the Alkathene experiments. Importantly, the oxidation products also included γ-lactones and ketones which were absent in the Alkathene experiment, but have been found in every oil UCM oxidised to date.
These experiments show that a polymethylenic chain will, upon artificial maturation yield a UCM. However neither of the UCMs produced in this study are exactly like those of oils, the cutan macromolecule appears to contain structures and/or functionalities which, when pyrolysed produce a UCM more similar to those in oils than the Alkathene.

Thus, it would appear possible that the type of organic matter incorporated into the kerogen structure plays an important role in UCM formation and composition. If this is the case, the UCM should contain some palaeoenvironmental information which may then allow different UCMs to be distinguished on the basis of their content or in this case, oxidation products.

The correlation of biodegraded oils, both with each other and their source rocks, or with a fresh crude oil has long been a problem in exploration geochemistry and pollution studies. Commonly, the so called biomarkers have been used, but these may be altered beyond recognition in heavily degraded oils. However, a common feature of biodegraded and weathered oils is a prominent UCM and in this study it is UCM composition via chemical oxidation, that has been used to correlate sediments contaminated with oil with the likely source oil. This involves comparison of complex chromatograms necessitating the use of multivariate statistical techniques and various purpose written computer programs. This approach has two major advantages; first it
allows a large number of samples to be compared relatively quickly and secondly, the final analysis/result is non-subjective.

Application of this method to a variety of environmental case studies and reproducibility tests produced encouraging results, with samples known to be the same correlating well. A surprising result from these studies is that analysis of the data by principal components analysis, a technique previously thought to be unsuitable, produced results which are in close agreement with those from multidimensional scaling. This allows the variables responsible for the majority of variation, namely the n-acids to be identified. Removal of these components from the data matrix with subsequent re-analysis by PCA produces some different but not altogether unreasonable correlations within the samples. This indicates that in some cases the n-acids are responsible for the similarity between samples but in others they produce a difference which may be misleading. Thus the UCM "fingerprinting" method may be subject to similar problems as those associated with biomarker analysis in that a confused result occurs when mixtures are present.

The early success of the method led to it being applied in an attempt to correlate two oil seep samples from the Siljan Ring region, central Sweden with their proposed sources. This area is of interest due to the presence of
oil staining in a predominantly igneous region. While the samples are predominantly UCMs, the method fails to find any real correlations, except that the two samples of staining are very different from any of their proposed sources.

The UCM is quantitatively important in most oils and for this reason more detailed studies of the compounds present should be carried out, both to increase our knowledge of oil composition in general and for a better understanding of oil formation. As this study has shown, artificial maturation of polymethylenic chains can yield a UCM, but the end result is different depending upon the starting material. A combination of structural and source information may lead to the UCM supplying additional geochemical information, not only as a fingerprint but about maturity or palaeoenvironment.

5.2 PROPOSALS FOR FUTURE RESEARCH

Suggestions for further research suggested here follow on from the results of this study and as such relate to the three general areas covered by this work, namely, UCM composition, origin and possible geochemical information.

1. Further information on UCM composition, both aliphatic and aromatic, is required. For the aliphatic UCM, alternative oxidants should be investigated. These
are few, but one is chromyl chloride (CrO$_2$Cl$_2$) which is soluble in aprotic solvents (e.g. DCM; Cainelli and Cardillo, 1984). In addition, other bulk characteristics could be determined by techniques such as NMR and FDMS (or FIMS).

For the aromatic UCM, ruthenium tetroxide proved a good oxidant due to its specificity but there was a very significant proportion of the oxidation products which were oxidised but still unresolved. These were only briefly investigated in this study but are obviously important with respect to UCM structure. One method of analysis might be to adduct the n-acids with urea and then examine the unresolved fraction by either instrumental techniques (e.g. NMR, FABMS) or chemically by further oxidation.

2. It appears that all UCM studies so far, have concentrated on the whole fraction but the UCM is unresolved because it is such a complex mixture. If, however, it could in some way be fractionated, it may be possible to achieve better resolution or oxidation. One method may be GPC and this was pursued to some extent by Gough (1989). This would produce a fractionation by size which may then yield more specific information when analysed. A second technique is the so called GC "heart-cut" (e.g. Schaefer and Holtkemeier, 1988). This generally
involves taking a small cut from the GC analysis and then re-analysing this fraction isothermally on a different stationary phase, or on a slow temperature ramp. Coupled with mass spectrometry this could prove to be a very powerful tool. Thirdly, the technique of micro-scale distillation (e.g. Mayo et al., 1991) could prove a viable way of fractionating the UCM.

3. A method which may be useful in order to resolve some compounds from the aliphatic UCM is catalysed rearrangements, e.g. the Wagner-Meerwein rearrangement. Although generally used for functionalised compounds, alkanes, when treated with a Lewis acid and an initiator can undergo rearrangement (March, 1985) e.g. a C_{10} tricyclic compound will be converted to adamantane (Nomura et al.; March, 1985).

4. A feature of this study was the attempted comparison of degraded oils with relatively fresh ones which necessitated isolation of the UCM by urea and thiourea adduction. While urea adduction is a relatively straightforward and well established technique, thiourea adduction tends to be more unpredictable in nature. While alternatives to urea exist (i.e. molecular sieves) there appears to be none for thiourea. Zeolites are an obvious starting point, and although there are none commercially available with
the correct pore size (7.5-8 Å) it may be possible through collaboration with other institutions to design and synthesise appropriate candidates. Another promising area may be the use of "silicalite" (e.g. Fisher et al., 1991). Since both urea and thiourea appear to remove some UCM, it is necessary to establish the effects of these techniques on the resulting oxidation product profile but this cannot be achieved until the two methods are sufficiently standardised.

5. The use of two aliphatic polymers in this study to produce UCMs has shown that this type of material may play a role in UCM (and oil) formation. Further studies should now be undertaken involving different polymers, both abiogenic (e.g. a highly cross linked polythene) and biogenic (e.g. algaenans, suberans etc.) and possibly mixtures to try and understand the types of precursor structures involved. Also, further characterisation of the unsaturated and non-hydrocarbon fractions produced in this study may help to show the mechanisms by which these UCMs formed.

6. A parameter often important in petroleum geochemistry is that of maturity. Little, if anything, appears to be known about how maturity affects the UCM in terms of composition and if any information is contained within the UCM which could be used as a maturity
parameter. There are reported occurrences of igneous dykes artificially maturing organic matter through the oil window (e.g. Ambler, 1989) and a suite of samples, moving towards the dyke would provide a maturation sequence in which the UCM could be analysed.

7. The fingerprinting studies in Chapter 4 indicate that the lactone and ketone oxidation products may contain some specific information, possibly for maturation and palaeoenvironmental studies. If these could be isolated from the rest of the oxidation products, analysis using chiral GC columns (e.g. cyclodextrin stationary phases) may prove interesting.

8. The case studies in Chapter 4 involved the comparison of biodegraded oils with their possible fresh crude oil precursor. It has been generally assumed that little change occurs, with respect to the bulk of the UCM, during biodegradation of the oil but this is by no means certain. Thus, a suite of samples of known biodegradation states, or even one produced in the laboratory, should be obtained and the UCM from each oxidised and the resulting products compared.
CHAPTER SIX

EXPERIMENTAL DETAILS

This chapter describes the analytical procedures used in this study.
6.1 GENERAL PROCEDURES

All glassware was pre-cleaned in either chromic acid or a solution of "Neutracon" (2%), rinsed thoroughly in hot tap water and distilled water and dried (110°C).

Solvents were Rathburns (Walkerburn, U.K.) HPLC or glass distilled grades and purity was routinely checked by rotary evaporation (Buchi, 40°C; 100 cm³), transfer to a vial, evaporation to 50 μl (N₂) and analysis of an aliquot (0.5 μl) by gas chromatography (GC).

Silica gel (BDH, 60-120 mesh) and aluminium oxide (BDH, Grade 1, neutral) adsorbents used for chromatographic separations were Soxhlet extracted (DCM, 24 hr) and dried (40°C) prior to activation. Adsorbents with the required percentage water were prepared according to Gough (1989) by activation (12 hr; SiO₂ @ 185°C, Al₂O₃ @ 450°C), cooling in a desiccator, addition of water (millipore grade) and homogenisation by mechanical shaking (3-5 hr). TLC plates were prepared on solvent-washed glass plates (20 cm x 20 cm) spread with an aqueous slurry of silica gel (Merck 60 G, kieselgel). Argentatious TLC plates were prepared similarly from a slurry of silica gel made with an aqueous solution of silver nitrate (10% w/v). Freshly spread plates were dried (120°C, 1 hr), pre-eluted (ethyl acetate,
the top 5 cm of adsorbent was removed and the plate re-activated (120°C, 1 hr) prior to use. Argentatious plates were stored in the dark.

Concentrated hydrochloric acid, mercury, anhydrous sodium sulphate, cotton wool and anti-bumping granules were all pre-extracted (DCM) prior to use.

6.2 ISOLATION OF ALIPHATIC AND AROMATIC UCM HYDROCARBONS

The lubricating oil used in this study was the same as that used by Gough, (1989), (Silkolene 150). Samples of Sullom Voe sediment (Garths Voe), Ninian Crude oil, Mersey sediment (Dungeon's lane) and Tia Juana Pesado crude oil were supplied by the Field Studies Council Research Centre (F.S.C.R.C.), and a sample of the Esso Bernicia fuel oil was supplied by the operator of the Sullom Voe oil terminal.

Isolation of aliphatic and aromatic UCMs from oil samples followed the scheme outlined in Figure 6.1. This involved fractionation of the oil by open column liquid solid chromatography (70 cm x 2 cm i.d.) packed with a hexane slurry of silica gel (60-120 mesh; 5% H₂O-SiO₂; 40g) under aluminium (Grade 1 - neutral; 1.5% H₂O-Al₂O₃; 20g). Lubricating oil (ca. 2g) was applied in hexane (2 cm³) and TJP (ca. 200 mg) was pre-adsorbed onto aluminium oxide and added to the top the column. The column was eluted with
FIGURE 6.1. ISOLATION OF ALIPHATIC AND AROMATIC UCMs
hexane (178 cm3), DCM (200 cm3) and methanol (200 cm3) to provide aliphatic, aromatic and polar fractions respectively. TJP Crude was chromatographed according to the method of Davies and Wolff (1990) by elution with hexane (170 cm3) to yield an aliphatic fraction and hexane/toluene (3:1; 170 cm3) and hexane/toluene (1:1; 170 cm3) to yield an aromatic fraction. Following solvent evaporation (Buchi, 40°C) and N$_2$ blow down, the fractions were weighed.

The aliphatic fraction derived from column chromatographic separation was further purified by argentatious TLC with hexane as the mobile phase. The plate was visualised with dichlorofluorescein (0.5% in methanol) and examined under UV light (364 nm). The alkane band was removed, transferred to a small column, and the alkanes desorbed with hexane (2 column volumes) and DCM (1 column volume) and weighed. The separation efficiency of the silver ion TLC plates was monitored by simultaneous analysis of a standard mix consisting of n-eicosane (n-C$_{20}$), n-eicos-1-ene (n-C$_{20}$), 1-phenyldecan and anthracene, (R$_f$ values 0.7-0.8, 0.5-0.6, 0.5-0.6, 0.3-0.35 and 0.05-0.2, respectively).

Normal and monomethyl branched alkanes were removed from the total alkane fraction by urea adduction. The total alkanes (ca. 50 mg) were dissolved in hexane/aceton (2:1, 10 cm3) and a saturated solution of urea in methanol added dropwise (ca. 1 cm3). Solvent was removed (N$_2$ blow down)
and the process repeated twice. Non-adduct was recovered by the addition of hexane (10 cm³), ultrasonic agitation (Soniprep bath, 30 s) and centrifugation (2,000 rpm, 10 min). The supernatant was filtered through a defatted cotton wool plug and the process repeated with fresh solvent. The extracts were combined, evaporated (Buchi, 40°C) and the UNA alkanes weighed.

The urea adduct (UA) was recovered by the addition of water (millipore grade, 10 cm³), transfer to a separating funnel and extraction with hexane (3 x 10 cm³). The extract was dried (anh. Na₂SO₄), solvent removed (Buchi, 40°C; N₂ blowdown) and UA fraction weighed.

The UNA fraction provided the aliphatic UCM. The aromatic UCM was the aromatic fraction taken directly from column chromatography.

6.3 ISOLATION OF ENVIRONMENTAL UCM HYDROCARBONS

Sediment samples were supplied frozen in aluminium containers. The thawed samples were solvent extracted following the methods of Douglas et al. (1981). Sediment (ca. 50 g wet weight) was extracted with methanol (40 cm³) by ultrasonic agitation (Soniprep 150 probe, 2 x 5 min, stirring in between) and the organic extract separated by centrifugation (2,000 rpm, 15 min) and decantation. This procedure was repeated using DCM/methanol (7:3); DCM/methanol (4:1) and finally DCM. The solvent extracts
were combined and placed in a separating funnel, water (millipore grade, 30 cm³) was added, and the organic fraction collected. The aqueous layer was further extracted with DCM (3 x 15 cm³), the solvent extracts combined, dried (anh. Na₂SO₄), concentrated (Buchi, 40°C, N₂ blowdown) and weighed. The total alkane fraction of each sediment and reference oil were isolated directly by argentatious TLC, and urea adduction.

The Ninian crude oil UNA fraction still contained predominantly resolved compounds (acyclic isoprenoids) and was therefore subjected to thiourea adduction, according to the method of Rubinstein and Strausz, (1979). The aliphatic UNA fraction (50 mg) was de-sulphurised with spongy copper (Blumer, 1957), and dissolved in chloroform (12.5 cm³) and a saturated solution of thiourea in methanol added (1 cm³). The solution was warmed to achieve complete dissolution of the thiourea crystals and the solution allowed to cool slowly at ambient temperature and then at 4°C. This caused the formation of needle shaped crystals. Non-adducted hydrocarbons (TUNA) were recovered by the addition of hexane, (10 cm³) and ultrasonic agitation (Soniprep bath, 30s) and the supernatant filtered through defatted cotton wool. The above procedure was repeated with a further 12.5 cm³ chloroform (forming needle-like crystals) and 5 cm³ chloroform (forming rhombic crystals). The thiourea adducted (TUA) fraction was recovered by solubilisation of the crystals in warm water (millipore grade, 5 cm³) followed
by extraction with hexane (2 x 10 cm³), drying (anh. Na₂SO₄) and concentration (Buchi, 40°C, N₂ blowdown). The thiourea non-adducted (TUNA) fraction was utilised as the UCM.

6.4 OXIDATION OF HYDROCARBON UCMs AND MODEL COMPOUNDS

6.4.1 CHROMIUM TRIOXIDE OXIDATIONS

Aliphatic and aromatic UCM material was oxidised with chromium trioxide (CrO₃, Aldrich) following the method of Gough (1989). The sample (ca. 50 mg) was added to glacial acetic acid (May and Baker, AR grade, 10 cm³) in a two necked RBF (25 cm³) equipped with a reflux condenser. The solution was pre-heated to 70°C (± 2°C, water bath) with stirring for 5 min, followed by the addition of the oxidant (CrO₃) at a 10:1 molar ratio of oxidant to substrate, assuming 352 g mole⁻¹ (C₅H₁₁) for the aliphatic fraction and 344 g mole⁻¹ (C₆H₄) for the aromatic UCM. The solution was maintained at 70°C, with stirring (60 min), cooled (iced water bath), and transferred to a separating funnel with water (millipore, 10 cm³) and DCM (10 cm³). The organic layer was removed and the aqueous layer re-extracted with DCM (2 x 10 cm³). The combined organic extract was back washed (millipore grade water, 2 x 10 cm³), dried (anh. Na₂SO₄) and the volume reduced to near dryness (Buchi, 40°C). The extract was then hydrolysed using methanolic KOH (10% KOH/Methanol w/v) under reflux (30 min), cooled at ambient temperature, acidified to pH 1 (conc. HCl), water
added (millipore grade, 5 cm³) and the total hydrolysed material extracted into DCM (1 x 10 cm³, 2 x 5 cm³). The combined extracts were dried (anh. Na₂SO₄ column), methylated using BF₃/methanol complex (BDH, 14%, 10 cm³) under reflux for 5 min and the total methylated products recovered by addition of water (10 cm³) and extraction with DCM (1 x 10 cm³, 2 x 5 cm³). The Combined DCM extract was backwashed with water (2 x 10 cm³), dried (anh. Na₂SO₄ column) and solvent removed (Buchi, 40°C; N₂ blow down).

In certain cases, oxidation was carried out on 2 mg of UCM, necessitating scaled down apparatus (Wheaton; Figure 6.2). Oxidation was carried out following the method above except that the oxidation was carried out in 1 cm³ of glacial acid, solvent volumes were kept to a minimum and all solvent removal was by N₂ blowdown only. As many of the steps as possible were carried out in the same glassware.

6.4.2 RUTHENIUM TETROXIDE OXIDATIONS

The aromatic UCM (ca. 50 mg) in chloroform (4 cm³) was placed in a conical flask (100 cm³) and ruthenium(III) chloride trihydrate (2.6 mg), sodium periodate (3.4 mg), acetonitrile (4 cm³) and water (6 cm³) added. The flask was then sealed as much as possible whilst still including a mechanical stirrer, and kept at 35°C for 24 hours (Figure 6.3). The reaction supernatant was transferred to a separating funnel for extraction and the solid residue
FIGURE 6.2. MICROSCALE (WHEATON) GLASSWARE USED TO OXIDISE 2 MG SAMPLES

FIGURE 6.3. EQUIPMENT USED FOR RUTHENIUM TETROXIDE OXIDATIONS
extracted with DCM (2 x 10 cm³) by ultrasonic (Soniprep bath, 30s) and centrifugation (2000 rpm, 10 min). The combined extracts were dried (anh. Na₂SO₄) and filtered through a thin layer of pre-extracted fullers earth in a buchner funnel. The filtrate was methylated as before, dried (anh. Na₂SO₄) and weighed.

In certain circumstances, the oxidised material was separated from the unoxidised byargentatious TLC as previously described.

6.5 HYDROUS PYROLYSIS

Hydrous pyrolysis of Alkathene was performed by Dr. S. Petch (Newcastle University, U.K.) at 350°C for 24 hours and 48 hours, and on a sample of the aliphatic biopolymer from Agave americana at 350°C for 48 hours. In each case the samples were placed in stainless steel bomblets and distilled water (5 cm³) added. The bomblets were placed in a Parr bomb (500 cm³) to which distilled water (150 cm³) was added. The bomb was sealed and heated to the required temperature for the time chosen. On cooling, the contents of the bomblet were filtered (Buchner funnel, pre-extracted filters) and the bomblet washed successively with distilled water, methanol and DCM. The solid residue was similarly washed with DCM (75 cm³). The aqueous and organic layers were separated and the aqueous/methanol phase washed with dichloromethane (3 x 50 cm³). The combined organic fraction
was concentrated (Buchi, 35°C), transferred to a vial and blown down (N₂).

A similar sample to that above of the hydrous pyrolysate (365°C, 72 hours) from A. americana cutan was obtained from Dr J. W. de Leeuw (Delft University, The Netherlands).

Pyrolysate UCMs were isolated by urea adduction.

6.6 ANALYSES

6.6.1 ELEMENTAL ANALYSIS

Elemental analysis (C, H, N, S) of the aromatic UCM was performed by Dr. R. Raiswell (Department of Earth Sciences, University of Leeds) on a Carlo Erba 1106 elemental analyser.

6.6.2 GAS CHROMATOGRAPHY (GC)

Gas chromatography was carried out on a Carlo Erba 5300 Mega series gas chromatograph fitted with a 25 m fused silica capillary column (0.32 mm i.d.) coated with DB-5 stationary phase (J&W inc. U.S.A.). The oven was typically programmed from 40°C to 300°C at 5°C min⁻¹, and held at 300°C for 10 minutes. Hydrogen was the carrier gas (2 cm³ min⁻¹, measured at 250°C). For FID, the detector parameters were optimised for response to n-alkanes to (Temperature, 320°C;
H₂, 45 KPa; Air, 180 KPa).

For FPD (sulphur selective), response was optimised for dibenzothiophene to (Temperature, 200°C; H₂, 142 KPa, [100 cm³ min⁻¹]; Air, 1.75 kg/cm³ [120 cm³ min⁻¹]; Excitation, 6.0; INPUT, 10; LINEAR, OUT; Attenuation, 16).

Column performance was monitored daily by injection of an alkane mixture which included n-hexadecane, n-heptadecane, pristane and a range to n-dotriacontane and occasionally, a Grob-type mix was also injected to monitor column activity.

All chromatograms were recorded using a Shimadzu C-R3A chromatopac computing integrator. Estimates of percentage resolved compounds versus percentage unresolved were determined electronically using a time slice area program (Appendix I).

6.6.3 GAS CHROMATOGRAPHY-ELECTRON IMPACT MASS SPECTROMETRY (GC-EIMS)

Analyses of selected samples were performed using a Carlo Erba 5300 mega series gas chromatograph coupled to a Kratos MS25 double focusing magnetic sector mass spectrometer. GC conditions were as in Section 6.6.1 except that helium was used as carrier gas with the capillary column led directly
via a heated transfer line to the mass spectrometer source (ionisation voltage, 40eV; Filament emission current, 400µA; Source temperature, 250°C). Spectra (50-500+ Daltons) were collected each second using a Tektronix data system with DS90 software (rev. 5).

6.6.3.1 SELECTED ION MONITORING (SIM)

For certain examples, concentrations of biomarker compounds were determined using selected ion monitoring for the fragment ions m/z 191 and m/z 217, with quantification by comparison of peak areas with that from 2,2,4,4-tetra deutercholestane (m/z 221; Dr G Wolff, Liverpool University) assuming relative response factors of 1. Measurements were carried out on a Hewlett Packard MSD GCMS system (injector temperature, 250°C; auto injection, 0.5µl; electron multiplier, 200 mV; scan rate, 1.72 cycles/s with Chemstation software.

6.6.4 FIELD DESORPTION MASS SPECTROMETRY (FDMS)

FDMS was performed by M-SCAN Inc., USA and V.G. Analytical Ltd., U.K., using a VG ZAB-2SE double focusing mass spectrometer (accelerating voltage, 8KV; extraction voltage, 5KV; mass range, 50 - 1550 Daltons). Calibration was either CsI in FAB mode or polystyrene. The sample (250nl, neat or in solvent (DCM), was applied to the probe
wire by syringe and 4-5 scans averaged to give the final spectrum.

6.6.5 ULTRA VIOLET SPECTROSCOPY

UV absorbance spectra for selected aromatic fractions were recorded using a Perkin Elmer Lambda 7 UV/visible spectrometer. Samples in hexane were measured against a solvent blank.

6.6.6 ULTRA VIOLET FLUORESCENCE SPECTROSCOPY

UVF spectra were recorded using a Perkin Elmer MPF-3 fluorescence spectrometer in synchronous scanning mode (initial \(\lambda_m = 200 \text{ nm} \), \(\Delta \lambda = 43 \text{ nm} \); Mille et al., 1988).

6.6.7 NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

\(^1\text{H}-\) and \(^{13}\text{C}-\text{NMR}\) spectra of samples were in deuteriated chloroform (TMS reference) were recorded using a Jeol 270 MHz high resolution FT-NMR.

6.6.8 INFRA RED SPECTROSCOPY

IR spectra of either neat liquid films (NaCl discs) or solutions (CCl₄) were recorded on a Perkin Elmer 298 infra red spectrometer. Spectra were calibrated with a polystyrene film.

228
6.7 PREPARATION OF AUTHENTIC COMPOUNDS

Isomeric mixtures of 7-hexylnonadecene (7-HN), 9-(2-cyclohexylethyl)heptadecene (9-CEH) and 9-(2-phenylethyl)heptadecene (9-PEH) were prepared by Mr A Tonkin (Polytechnic South West, U.K.) following the method of Gough (1989). Each isomeric mixture was then hydrogenated by bubbling hydrogen through the sample in hexane, over a catalyst (5% Pd on carbon; 1 mg/5 mg of sample; Table (6.1). The purity of the products was monitored by GC (Table 6.1) and IR.

6.8 UCM FINGERPRINTING

The overall procedure is outlined in Figure 6.4.

6.8.1 ANALYSIS OF SAMPLES

Each sample of oxidation products was weighed using a 6 decimal place balance with a reproducibility previously found to be ± 0.0061% (± standard deviation 0.00031) and then solvent (DCM; 50 µl mg⁻¹) and two standards (d₄-naphthalene and perylene; 5 µg mg⁻¹ each) added prior to analysis by GCMS. Mass chromatography was then used to measure n-carboxylic acids (m/z 74), γ-methyl-γ-lactones (m/z 99) alkyl ketones (m/z 58) and the two internal standards d₄-naphthalene (m/z 136) and perylene (m/z 252). Each mass chromatogram was integrated using the DS90
<table>
<thead>
<tr>
<th>Starting Material</th>
<th>Amount (mg)</th>
<th>Amount Catalyst (mg)</th>
<th>KI* Starting Material</th>
<th>Amount Recovered (mg)</th>
<th>KI Products*</th>
<th>GC Purity</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-HN</td>
<td>66.1</td>
<td>13</td>
<td>2359*</td>
<td>65</td>
<td>2359*</td>
<td>2360</td>
</tr>
<tr>
<td>9-CHE</td>
<td>46.8</td>
<td>9</td>
<td>2410</td>
<td>42.2</td>
<td>2420</td>
<td>2420</td>
</tr>
<tr>
<td>9-PHE</td>
<td>43.3</td>
<td>8.5</td>
<td>2435</td>
<td>31.6</td>
<td>2447</td>
<td>2444</td>
</tr>
</tbody>
</table>

* measured using an n-alkane standard mix (n-C₆-C₂₀)

J & W DB-5 40-300°C @ 5°C min⁻¹, H₂ carrier gas

* suggests already hydrogenated

TABLE 6.1: PREPARATION OF AUTHENTIC REFERENCE COMPOUNDS
FIGURE 6.4. OUTLINE OF THE PROCEDURE USED FOR UCM FINGERPRINTING
software to give retention time, scan number, peak area and peak height of each significant (> 2% above baseline) component.

6.8.2 COMPUTER MANIPULATION OF DATA

The data for each sample were downloaded to an IBM compatible PC from the Data General datasystem via a KERMIT file transfer program. The retention times (scan number) and peak height information for each class of compound in each sample was then used in two purpose-written computer programs (Appendix III). The first, "PEAK MATCH", provided information on those peaks present in all samples, while the second, "DBMATCH", compared each sample with all others and any peaks absent in a sample were assigned a height of zero. Thus, in each case, all the samples effectively had the same number of components. A window of ± 5s retention was used for a positive match.

The heights for the resulting "matched" peaks were formed into a data matrix of n rows and p columns, where n = number of peaks and p = number of samples. The compound classes were arranged as distinct groups down the columns, in the order n-carboxylic acids, γ-lactones and ketones, with the peaks in each class in elution order. This data matrix was constructed on the Polytechnic South West PRIME mainframe computer and transferred to an IBM mainframe at
FIGURE 6.5. OUTLINE OF THE PURPOSE WRITTEN PEAK MATCH PROGRAM
(Y = Yes, N = No)
FIGURE 6.6. OUTLINE OF THE PURPOSE WRITTEN DBMATCH PROGRAM
(Y = Yes, N = No)
Plymouth Marine Laboratory (PML) via the Isocept file transfer procedure. Inter-sample Euclidean distances were then calculated, using a purpose-written program (M. Carr, PML; Appendix IV) within the SAS statistical package, according to:

$$D_{jk} = \left(\sum_{n=1}^{N} (X_{nk} - X_{jk})^2 \right)^{1/2}$$

where D_{jk} = Euclidean distance between samples j and k

X_{jk} = value of the ith variable for sample j

X_{nk} = value of the ith variable for sample k

The resulting distance matrix was split and the lower triangle used as input to cluster analysis and multidimensional scaling programs, producing similarity dendrograms and two-dimensional scatter plots, respectively.

The initial data matrix was also used in principal components analysis using a commercially available software package, UNSCRAMBLER II (ver. 3.13; CAMO A/S, Trondheim, Norway).
REFERENCES
REFERENCES

Polar constituents isolated from Green River oil shale.

Nature (London), 330, 342.

Pasteur University, Strasbourg.

APPENDIX ONE

UCM INTEGRATION
APPENDIX ONE

The percentage of resolved and unresolved peaks in GC chromatograms was estimated by electronic integration using the Shimadzu C-R3A integrator. This involved manual peak detection and use of the "time slice area measurement" function and programming the integrator in BASIC to sum integral areas for each "time slice".

i) RESOLVED PEAKS

Parameters:
- width: 5
- drift: 10 000
- attenuation: 5
- method: 0840
- slope: automatic
- minimum area: 5 000 - 20 000

Time program: 0.01 L. on
 2.00 L. off

ii) TOTAL (UCM + resolved peaks; for a UCM extending from 12 minutes to end of run)

Parameters:
- width: 50
- drift: 1 x10¹¹
- attenuation: 5
- method: 4010
- slope: automatic
- minimum area: 5 000

Time program: 0.01 L. on
 2.00 L. off
 12.00 pk. U
 36.00 pk. D
 60.00 pk. off

BASIC program:
10 PRINT MAXSL
20 S=0
30 FOR I=1 TO MAXSL
40 S=S+SLAR (I)
50 NEXT I
60 PRINT S
70 END

263
APPENDIX TWO

CALCULATION OF T-BRANCH ISOMERS
APPENDIX TWO

The possible numbers of structural isomers of naphthenoaromatic compounds with monoalkyl branched side chains were calculated using a purpose written (C.A. Lewis, 1991) program in "Quick Basic".

```plaintext
**************************************************************************
/* PROGRAM T-BRANCH CALCULATES THE NUMBER OF ISOMERIC T-BRANCHED ALKANES, */
/* EXCLUDING STEREOISOMERS, BETWEEN THE LIMITS CHOSEN */
/* WRITTEN BY C.A. LEWIS, POLYTECHNIC SOUTH WEST, U.K. 1991 */
/* FREE FOR NON-PROFIT, AS LONG AS HEADER RETAINED */
/* VERSION 2.00 */
/* 11/10/91 */
**************************************************************************

DECLARE FUNCTION GTTIXLS (in$, prompt$)
DECLARE FUNCTION GTINTX (In, min, max, prompt$)
CLS
low% = 10: high% = 35: Totalisomers = 0
outdevice$ = "ST": filename$ = "TBRANCH.DAT": asym$ = "S"

prompt$ = "Lowest carbon number alkane"
low% = GTINTX(low%, 9, 100, prompt$)

prompt$ = "Highest carbon number alkane"
high% = GTINTX(high%, low% + 1, 101, prompt$)

prompt$ = "Is the molecule asymmetric or symmetric (A or S)?"
asyms = UCASES(GTTXLS(asyms, prompt$))

IF asyms = "A" THEN
    MaxChain = INT((high% - low%) / 3)
    asyntitles$ = "MOLECULE TOTALLY SYMMETRICAL"
ELSEIF asyms = "A" THEN
    asyms = "T"
    prompt$ = "Is the molecule asymmetric at both ends (Y or N)?"
    asyms = UCASES(GTTXLS(asyms, prompt$))
END IF
ELSE
    PRINT "You blew it"
END IF

Blankspace = 9 + (4 * MaxChain)

Startover;
prompt$ = "Output data to disk, printer or screen (0, P or S)"
outdevice$ = UCASES(GTTXLS(outdevice$, prompt$))
outnum = FREEFILE

SELECT CASE outdevice$
CASE "0"
    filename$ = GTTIXLS(filename$, prompt$)
    OPEN filename$ FOR OUTPUT AS outnum
CASE "P"
    outdevice$ = "Prt$
    OPEN outdevice$ FOR OUTPUT AS outnum
    PRINT outnum, CHR$(27) + CHR$(64); 'reset printer
    PRINT outnum, CHR$(27) + CHR$(77); 'set width, 255 special
    PRINT outnum, CHR$(27) + CHR$(50); 'font
    PRINT outnum, CHR$(27) + CHR$(106) + CHR$(10); 'line spacing
    PRINT outnum, CHR$(27) + CHR$(81) + CHR$(10); 'left margin
    PRINT outnum, CHR$(27) + CHR$(78) + CHR$(4); 'right margin
    PRINT outnum, CHR$(27) + CHR$(79) + CHR$(4); 'bottom margin
    FOR I = 1 TO 6
        PRINT outnum, =
NEXT I

**************************************************************************
```
CASE "S"
 outdevice$ = "scrn:"
 OPEN outdevice$ FOR OUTPUT AS #outnum
CASE ELSE
 PRINT "Sorry that is unacceptable, try again"
 outdevice$ = "S"
 GOTO Startover
END SELECT

PRINT #outnum, "NUMBER OF T-BRANCH ALKANES, EXCLUDING STEREOISOMERS"
PRINT #outnum, SPC(5); asymtitteS
PRINT #outnum, "CARBONS": SPC(2);
FOR i = 1 TO MaxChain
 PRINT #outnum, USING "##"; i;
 PRINT #outnum, SPC(2);
NEXT i
PRINT #outnum, SPC(4); "Total"
PRINT #outnum, STRINGS(Blankspace + 9, "+")
FOR i = low% TO high%
 Sumsomers = 0
 IF asym$ = "S" THEN
 MaxChain = INT((i - 1) / 3)
 ELSEIF asym$ = "A" THEN
 MaxChain = INT((i - 1) / 2)
 ELSEIF asym$ = "AA" THEN
 MaxChain = i - 1
 END IF
 PRINT #outnum, SPC(3);
 PRINT #outnum, USING "##"; i;
 PRINT #outnum, SPC(4);
 FOR j = 1 TO MaxChain
 Numisomers = CINT((i - j + .001) / 2) - j
 IF asym$ = "S" THEN
 Numisomers = CINT((i - j + .001) / 2) - j
 ELSEIF asym$ = "A" THEN
 Numisomers = i - (j * 2)
 ELSEIF asym$ = "AA" THEN
 Numisomers = MaxChain - j + 1
 END IF
 Sumsomers = Sumsomers + Numisomers
 PRINT #outnum, USING "##"; Numisomers;
 PRINT #outnum, SPC(2);
 NEXT j
 PRINT #outnum, SPC(Blankspace - 4 - (4 * MaxChain));
 PRINT #outnum, USING "##"; Sumsomers
 Totalisomers = Totalisomers + Sumsomers
NEXT i
PRINT #outnum, SPC(Blankspace + 3); "======"
PRINT #outnum, SPC(Blankspace + 4);
PRINT #outnum, USING "###"; Totalisomers
PRINT #outnum, "Total isomers including unbranched parent = ";
PRINT #outnum, USING "####"; Totalisomers + high% - low% + 1
IF outdevice$ = "lpt1:" THEN
 PRINT #outnum, CHR$(12)
END IF
CLOSE
END
APPENDIX THREE

BASIC PROGRAMS TO COMPARE CHROMATOGRAMS
APPENDIX THREE

Two BASIC programs were written to compare the peaks present in a chromatogram by retention time. These programs are available for free, non-profit use provided proper credit is given.

1) Peak Match. Compares chromatograms and records only those peaks present in all samples.

300 INPUT "DO YOU WANT TO PROCESS YOUR DATA NOW? ", P$
310 IF P$="Y" THEN 330
315 IF P$="N" THEN 1080
320 END
330 CLS
335 INPUT "NUMBER OF SAMPLES ?", M
336 INPUT "NUMBER OF PEAKS ?", N
337 CLS
340 PRINT "PROCESSING DATA"
345 PRINT
350 PRINT
355 REM READ DATA FROM DISK TO MAIN PROGRAM
360 OPEN ":", #1, "A:\BASIC\DATA"
365 DIM SRT1(M), SRT2(M), RRT1(M), RRT2(M)
367 DIM SA1(M), SA2(M)
369 DIM RRTX(M), SCAND(M), RTC(M)
370 DIM RT(M, N), A(M, N), CAR(M, N)
375 FOR J=1 TO M
380 FOR I=1 TO N
390 INPUT #1, RT(J, I), A(J, I)
395 IF RT(J, I)>1700 THEN 420
400 NEXT I
405 IF RT(J, I)>1700 THEN 420
410 NEXT J
415 REM M=No OF SAMPLES, N=No OF PEAKS
420 REM RT=RET. TIME, A=AREA, S=STANDARD
425 PRINT
430 REM ADJUSTMENT OF RET. TIMES
435 OPEN ":", #2, "A:\BASIC\MATCHED PEAKS"
440 OPEN ":", #3, "A:\BASIC\NON-MATCHED PEAKS"
445 OPEN "A:\BASIC\MATCHED PEAKS" FOR OUTPUT AS #2
450 OPEN "A:\BASIC\NON-MATCHED PEAKS" FOR OUTPUT AS #3
455 CLOSE #1
460 DIM CRT(M, N)
465 FOR J=1 TO M
470 PRINT CRT(J, I)
475 RRT1(J)=CRT(J, I)-SRT1(J)
480 RRT2(J)=CRT(J, I)-SRT2(J)
485 SCAND(J)=SRT2(J)-SRT1(J)
490 RTC(J)=RRTX(J)/SCAND(J)
490 NEXT J
500 FOR J=1 TO M
510 FOR I=1 TO N
520 CRT(J,I)=((RT(J,I)-SRT1(J))*RTC(J))+RRT1(J)+RT(J,I)
525 IF CRT(J,I)>1700 THEN 540
530 NEXT I
540 NEXT J
550 FOR I=1 TO N
560 CRT(1,X)=RT(1,I)
565 IF CRT(1,X)>1700 THEN 580
570 NEXT I
580 REM COMPARISON OF RETENTION TIMES AND PEAK MATCHING
585 INPUT "REQUIRED SCAN WINDOW ?", W
590 Z=0
600 X=1
610 J=1
620 FOR I=1 TO N
630 D=CRT(1,X)-CRT(J,I)
640 IF D>W THEN 720
650 IF D<-W THEN 800
660 CRT(J,K)=CRT(J,I)
670 A(J,K)=A(J,I)
675 REM TO COMPARE SAME PEAK NEXT SAMPLE
680 P=J
690 J=P+1
700 IF J>M THEN 900
710 GOTO 620
720 NEXT I
740 REM TO MOVE TO NEXT PEAK IN REFERENCE
750 L=X
760 X=L+1
770 IF X>N THEN 1020
780 GOTO 610
790 REM TO PRINT NON-MATCHED PEAKS
800 FOR J=1 TO M
810 PRINT #3,J,CRT(J,X),A(J,X)
820 NEXT J
860 GOTO 740
900 REM USE OF MATCHED PEAKS
910 Z=Z+1
920 FOR J=1 TO M
930 CAR(J,K)=A(J,K)/SA1(J)*1000
940 NEXT J
960 FOR J=1 TO M
970 PRINT #2,J,CRT(J,J),CAR(J,J)
980 NEXT J
1000 GOTO 740
1020 PRINT "END OF PEAK MATCHING"
1025 Q=N-Z
1030 CLOSE #2
1035 CLOSE #3
1040 PRINT
1050 PRINT "MATCHED PEAKS ARE STORED IN B: MATCHED PEAKS"
1060 PRINT
1070 PRINT "NON-MATCHED PEAKS ARE STORED IN B: NON-MATCHED PEAKS"

267
1080 PRINT
1090 INPUT "DO YOU REQUIRE OUTPUT AT THIS TIME?", O$
1100 IF O$="Y" THEN 1150
1105 IF O$="N" THEN 1610
1110 END
1150 REM OUTPUT OF RESULTS TO PRINTER
1160 REM OUTPUT OF MATCHED PEAKS
1170 LPRINT "", "MATCHED PEAKS"
1180 LPRINT
1190 LPRINT "", "CORR. SCAN NO.", "", "CORR. PEAK AREA"
1200 LPRINT
1201 Z=1
1205 LPRINT "SAMPLE "; Z
1206 LPRINT
1220 OPEN "I", #2, "B: MATCHED PEAKS"
1250 IF EOF(2) THEN 1300
1260 INPUT #2, J, CRT(J, K), CAR(J, K)
1270 IF J=Z THEN LPRINT "", CRT(J, K), "", CAR(J, K)
1280 GOTO 1250
1300 CLOSE #2
1305 IF Z>M THEN 1330
1310 LPRINT "SAMPLE "; Z
1315 LPRINT
1320 GOTO 1220
1330 CLOSE #2
1340 LPRINT
1350 PRINT "END OF MATCHED PEAKS"
1360 PRINT
1370 INPUT "DO YOU REQUIRE NON-MATCHED PEAKS?", B$
1380 IF B$="Y" THEN 1400
1390 GOTO 1610
1400 REM OUTPUT ON NON-MATCHED PEAKS
1410 LPRINT "", "NON-MATCHED PEAKS"
1420 LPRINT
1430 LPRINT "", "CORR. SCAN NO.", "", "NON-CORR.
1440 LPRINT
1445 Z=1
1450 LPRINT "SAMPLE "; Z
1451 LPRINT
1455 DIM PRT(M, X), P(M, X)
1460 OPEN "I", #3, "B: NON-MATCHED PEAKS"
1490 IF EOF(3) THEN 1530
1500 INPUT #3, J, PRT(J, X), P(J, X)
1510 IF J=Z THEN LPRINT "", PRT(J, X), "", P(J, X)
1520 GOTO 1490
1530 CLOSE #3
1535 Z=Z+1
1540 IF Z>M THEN 1570
1545 LPRINT "SAMPLE "; Z
1550 LPRINT
1555 GOTO 1460
1570 CLOSE #3
1580 PRINT
268
2) DBMATCH. Compares each chromatogram with all others and any peak not present is inserted with an integral value of zero.

10 CLS
20 INPUT "NUMBER OF SAMPLES ?", M
30 INPUT "NUMBER OF PEAKS ?", N
40 CLS
50 PRINT "PROCESSING DATA"
60 PRINT
70 PRINT
80 REM READ DATA FROM DISK TO MAIN PROGRAM
100 DIM SRT1(M), SRT2(M), RRT1(M), RRT2(M)
110 DIM SA1(M), SA2(M)
120 DIM RRTX(M), SCAND(M), RTC(M)
130 DIM RT(M, N), A(M, N), CAR(M, N), CRT(M, N)
135 OPEN "I", #1, "A:\BASIC\DATA"
140 FOR J=1 TO M
150 FOR I=1 TO N
160 INPUT #1, RT(J, I), A(J, I)
170 IF RT(J, I)>1700 THEN 190
180 NEXT I
190 INPUT #1, SRT1(J), SA1(J)
200 INPUT #1, SRT2(J), SA2(J)
210 NEXT J
220 CLOSE #1
230 REM ADJUSTMENT OF RET. TIMES
232 TSRT1=0
234 TSRT2=0
236 FOR J=1 TO M
238 TSRT1=TSRT1+SRT1(J)
240 TSRT2=TSRT2+SRT2(J)
242 NEXT J
244 ASRT1=TSRT1/M
246 ASRT2=TSRT2/M
250 FOR J=1 TO M
260 RRT1(J)=ASRT1-SRT1(J)
270 RRT2(J)=ASRT2-SRT2(J)
280 RRTX(J)=RRT2(J)-RRT1(J)
290 SCAND(J)=SRT2(J)-SRT1(J)
300 RTC(J)=RRTX(J)/SCAND(J)
310 NEXT J
320 FOR J=1 TO M
330 FOR I=1 TO N
340 CRT(J, I)=((RT(J, I)-SRT1(J))*RTC(J))+RRT1(J)+RT(J, I)
345 CAR(J, I)=(A(J, I)/SA1(J))*1000
350 IF CRT(J, I)>1700 THEN 370
360 NEXT I
370 NEXT J
380 REM TO COMPARE EACH RUN WITH ALL OTHERS
385 INPUT "REQUIRED SCAN WINDOW ?", W
390 X=1
400 Y=1
405 OPEN "O",#2,"A:\BASIC\MATCHED"
410 FOR J=1 TO M
420 FOR I=1 TO N
425 D=CRT(X,Y)-CRT(J,I)
430 IF CRT(X,Y)>1700 THEN 1000
440 IF D>W THEN 1000
450 IF D<-W THEN 2000
460 PRINT #2,J,CRT(J,I),CAR(J,I)
470 Y=Y+1
480 GOTO 1020
1000 IF CRT(J,I)>1700 THEN 1030
1010 PRINT #2,J,CRT(J,I),CAR(J,I)
1020 NEXT I
1030 PRINT #2,J,CRT(J,I),CAR(J,I)
1040 Y=1
1045 PRINT "SAMPLE ",X","J","COMPLETED"
1050 NEXT J
1060 GOTO 3000
2000 PRINT #2,J,CRT(X,Y),0
2010 Y=Y+1
2030 GOTO 425
3000 CLOSE #2
3010 X=X+1
3020 IF X>M THEN 5000
3030 OPEN "I",#2,"A:\BASIC\MATCHED"
3040 FOR J=1 TO M
3050 FOR I=1 TO N
3060 INPUT #2,J,CRT(J,I),CAR(J,I)
3070 IF CRT(J,I)>1700 THEN 3090
3080 NEXT I
3090 NEXT J
4000 CLOSE #2
4010 GOTO 400
5000 PRINT "END OF PROCESSING"
5010 END
APPENDIX FOUR

CALCULATION OF EUCLIDEAN DISTANCES
APPENDIX FOUR

Prior to cluster and MDS analyses between sample Euclidean distances were calculated using a purpose written program (M. Carr, P. M. L., 1991) within the SAS statistical package on an IBM mainframe computer. The example shown is for a data matrix of 5 samples each with 84 peaks.

```sas
CMS FILEDEF XXX DISK STATDAT FILE A1;

DATA DATA1;
  INFILE XXX;
  INPUT SA1-SA5
  RUN;

PROC TRANSPOSE DATA=DATA1 OUT=DATA1;
RUN;

DATA DATA1;
  SET DATA1;
  DROP _NAME_;
RUN;

PROC MEANS DATA=DATA1 NOPRINT;
  OUTPUT OUT=DATA2 MEAN=ML-M84 STD=SDL-SD84;

DATA DATA2;
  SET DATA2;
  ARRAY MM{84} ML-M84;
  ARRAY SSDD{84} SDL-SD84;
  DO I=1 TO 84;
    MEAN=MM{I}; SDEV=SSDD{I}; OUTPUT;
  END;
  KEEP MEAN SDEV;
RUN;

PROC TRANSPOSE DATA=DATA1 OUT=DATA1;
RUN;

DATA DATA1;
  SET DATA1;
  DROP _NAME_;
RUN;

DATA DATA3;
  MERGE DATA1 DATA2;
RUN;

DATA DATA3;
  SET DATA3;
  ARRAY V{5} COIL-COL5;
  DO I=1 TO 5;
    V{I} = (V{I} - MEAN);
  END;
  DROP MEAN SDEV I;
RUN;
```

271
data data3;
set data3;
array v{5} col1-col5;
array dist{25} d1-d25;
do i=1 to 5;
do j=1 to 5;
 dist{ (i-1)*5+j }=(v{i}-v{j}) ** 2;
end;
end;
drop i j;
run;

proc means data=data3 noprint;
var d1-d25;
output out=data4 sum=s1-s25;
run;

data data4;
set data4;
array ss{25} s1-s25;
do i=1 to 25;
 ss{i}=sqrt(ss{i});
end;
drop i;
run;

data data5;
set data4;
array ss{25} s1-s25;
array cc{5} c1-c5;
do i=1 to 5;
do j=1 to 5;
 if j<1 then cc{j}=ss{ (i-1)*5 + j };
end;
output;
end;
keep c1-c5;
run;

cms filedef yyy disk statdat dissim al;
data _null_;
set data5;
file yyy;
if _n_>1 then put c1-c5;
run;
CONFERENCES AND PRESENTATIONS
CONFERENCES AND PRESENTATIONS

i) CONFERENCES

14th International meeting on Organic Geochemistry, September 18-22, 1989, Paris, France.

4th Workshop on the chemistry and analysis of environmental hydrocarbons, April 19-21, 1990, Strasbourg, France.

British Organic Geochemistry Society meeting, July, 1990, Bideford, Devon, U.K.

13th International symposium on capillary chromatography, May 13-16, 1991, Riva del Garda, Italy.

15th International meeting on organic geochemistry, September 16-20, 1991, Manchester, U.K.

ii) POSTERS

chromatography, Riva del Garda, Italy, 1991.

iii) ORAL PRESENTATIONS

iv) PUBLICATION