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UNRESOLVED COMPLEX MIXTURES OF AROMATIC HYDROCARBONS IN 
THE MARINE ENVIRONMENT: 

TOXICITY, SOLUBILITY AND PHOTODEGRADATION STUDIES 
by 

Emma Louise Smith 

ABSTRACT 

Unresolved complex mixtures (UCMs) of aromatic hydrocarbons have been found in a 
wide range of environmental matrices at high concentrations. However, limited 

consideration has been given to the potential detrimental effects of the accumulation of 
these compounds in the marine environment. In particular, there is a need to evaluate these 
compounds in the light of recent evidence that points to the long term effects of oil in the 
marine environment. The overall aim of this work was therefore to investigate unresolved 
complex mixtures of aromatic hydrocarbons in the marine environment with particular 
emphasis on assessment of toxicity, aqueous solubility and photodegradation behaviour. 
A previously established link between the reduced Scope for Growth (SFG) of mussels 
with the concentration of 2-3 ringed aromatic hydrocarbons in mussels from petroleum 
impacted sites was found also to correlate well with concentrations of aromatic 
hydrocarbon UCMs in mussel tissues found at the same sites. This suggests that aromatic 
hydrocarbon UCMs or components within may be responsible for the observed effects. 
To determine whether an aromatic hydrocarbon UCM was capable of eliciting a toxic 
response in mussels, a monoaromatic UCM was isolated from a Gullfaks (North Sea) 
produced crude oil. At the highest nominal aqueous concentration tested, mussel feeding 

rate was reduced by -40 % in the 24 hour exposure period, during which the mussels 
accumulated a body burden similar to the body burden of monoaromatic UCM 
hydrocarbons in wild mussel populations, previously shown to exhibit reduced SFG. 
Recent studies of hydrocarbon UCM composition using chemical degradation methods 
have led to the proposition of alkylcyclohexyltetralins as `average' structures for some 
monoaromatic UCM hydrocarbons. The aromatic hydrocarbon 7-cyclohexyl-l- 
methyltetralin was synthesised herein in good yield and purity. This compound reduced 
mussel feeding rate by 50% during the 24-hour exposure period. 
The aqueous solubility of a compound is an important physicochemical parameter that 
influences behaviour within the marine environment and is thought to be a limiting factor 
in the onset of measurable toxicological response. The aqueous solubilities of three 
`model' aromatic UCM hydrocarbons were determined in distilled water at 25°C using a 
generator column set-up. The effects of salinity and temperature on aqueous solubility 
were also investigated. An aqueous solution comprising an aromatic UCM was also 
generated. 
Another influence on the fate of aromatic hydrocarbons in the environment is the action of 
sunlight (phototransformation). Therefore aqueous solutions of three model aromatic UCM 
hydrocarbons were exposed to light simulated under environmental conditions. The half- 
lives of these compounds suggested that if these compounds are indeed representative of 
the aromatic UCM phototransformation may influence its fate in the marine environment. 
The results of this study have furthered knowledge on the environmental behaviour of 
unresolved aromatic hydrocarbons, and suggest that these compounds should be 
considered in the long term impacts of oil in the environment and also warrant further 
study. 
Parts of this work have been published and the author (Smith, E. L. ) was awarded the 
Procter and Gamble Eurorcar prize at the 3`d World Congress of the Society of 
Environmental Toxicology and Chemistry, 21-25 May 2000, Brighton, for the best 
presentation by a young scientist. 
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8.0 Summary and suggestions for future work 
Table 8.1 Summary of experimental data pertaining to model 231 

monoaromatic UCM hydrocarbons and an isolated 
monoaromatic UCM 
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LIST OF COMMON ABBREVIATIONS 

13C NMR 13Carbon nuclear magnetic resonance spectroscopy 
'H NMR Proton nuclear magnetic resonance spectroscopy 

CI Chemical ionisation 

DCM Dichloromethane 

DEPT Distortionless enhancement by polarisation transfer 

EI Electron impact 

FID Flame ionisation detector 

GC Gas chromatography 

GC-MS Gas chromatography -mass spectrometry 

HPLC High performance liquid chromatography 

IR Infra-red 

K.. W Octanol-water partition co-efficient 

LC50 Concentration of toxicant which results in 50 % mortality 

LBB Lethal body burden 

MS Mass spectrometry 

NMR Nuclear magnetic resonance spectroscopy 

PAH Polycyclic aromatic hydrocarbon 

QSAR Quantitative structure activity relationship 

rbf Round-bottom flask 

RSD Relative standard deviation 

SFG Scope for Growth 

SIM Selected ion monitoring 

TEC50 Tissue concentration to reduce toxicant induced response by 50 % 

TEL Total extractable lipid 

TLC Thin layer chromatography 
TMS Trimethylsilyl 

TOE Total Organic Extract 

UCM Unresolved Complex Mixture 

UV Ultra-violet 

WAF Water accommodated fraction 

WEC50 Aqueous concentration to reduce toxicant induced response by 50% 

WSF Water soluble fraction 
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Is the cup half empty, or is the cup half full? 
Does the sun rise at dawn, or does the earth just spin along? 
Or is it all perspective on how we see the world? 
How many countless life forms are on a little ball that twirls? 

Are we intrinsically separate beings? 
Or could we possibly be parts of the same thing? 
Water feeds the plants and the sunshine makes them grow, 
So how can anyone be an island on their own? 

Does life make me happy, or does it bring me down? 
Do I have what I need, or do I just want what's around? 
Am I seeing the truth, or do I just see wool? 
Well is the cup half empty or is the cup half full? 

`Twenty Questions' - The Beastie Boys, The Sounds of Science 

xv' 



Chapter I. Introduction 

This chapter presents a review of present knowledge of unresolved complex mixtures 

(UCMs) of aromatic hydrocarbons in the marine environment. The review suggests that 

UCMs occur in a wide range of environmental samples and often at concentrations well 

above background. Research carried out to determine the molecular composition of the 

aromatic UCM is also reviewed. The behaviour and possible detrimental effects of these 

compounds in the marine environment are discussed, and the rationale behind the work 

undertaken in this study is presented. 
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1.1 Unresolved complex mixtures of hydrocarbons 

Considerable quantities of crude petroleum and refined petroleum products are introduced 

into the marine environment each year (estimated 2.5 million tonnes; Clark, 1992) through 

runoff, industrial and sewage effluents, shipping activities and spillage (Volkman et al., 

1992). In fact, residual hydrocarbons arising from the transport and use of petroleum are 

one of the most common pollutants in the marine environment (Bouloubassi et al., 2001). 

Crude oils are very complex mixtures of hydrocarbons and substituted derivatives of 

hydrocarbons. Once released into the marine environment they are rapidly `weathered', 

being altered by processes such as evaporation, dissolution, dispersion, photochemical 

oxidation, microbial biodegradation, water-oil emulsification and adsorption onto 

suspended particulate materials (Wang & Fingas, 1997). The effect of these processes is to 

reduce the concentration of volatile constituents, to lower the total hydrocarbon 

concentrations, and thereby increase the relative proportions of higher molecular weight 

compounds, including the so-called polar N, S and 0-containing residues. Perhaps the 

most obvious physical result of extensive weathering of crude petroleum is the production 

of black tarry residues (Atlas, 1995). However, coincident with this overall effect are 

significant changes in the hydrocarbon profiles of the liquid petroleum components. These 

are most obvious when the gas chromatographic (GC) profiles of weathered petroleums are 

examined (Figure 1.1). The total hydrocarbon fraction from unweathered crude petroleum 

is usually dominated by obvious homologues of resolved n-alkanes, with lesser amounts of 

branched (including isoprenoid) and cyclic alkenes, and alkylaromatics (such as benzenes, 

naphthalenes and phenanthrenes) (Figure 1.1. b). In contrast, the gas chromatograms of 

aliphatic and aromatic fractions from weathered oils are dominated by unresolved complex 

mixtures (UCMs) of liquid hydrocarbons, sometimes known as hydrocarbon `humps' 
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a) 

time (mins) 

b) 

time (Wins) 

Figure 1.1 Gas chromatograms of a) weathered crude oil; b) fresh crude oil 

(Wraige, 1997) 

3 

iý 
.t1iit"ati! 

ti$$ 



(Figure 1.1. a) (Killops & Al-Juboori, 1990). UCMs are common features of gas 

chromatograms of weathered and biodegraded oils, but due to normalization on the 

resolved compounds in chromatograms of undegraded oils, UCMs are a less obvious 

feature of gas chromatograms of fresh crude oils. Nonetheless, UCMs constitute 21-33 % 

even of fresh crude oils (Table 1.1), as demonstrated by physical isolation of UCMs by 

clathration of fresh oils, followed by gravimetry of the clathrates (Revill et al., 1992). 

Furthermore, Revill (1992) was able to produce an UCM of liquid hydrocarbons by heating 

polythene in the laboratory at 330 °C for 3 days. The products were chemically similar to a 

proportion of the UCM hydrocarbons of crude and refined lube oils. It therefore seems 

likely that the UCM derives from the catagenesis of kerogen; ancient geological matter 

generally considered to form from petrified biological compounds such as proteins and 

lipids, and other processes associated with oil formation, in the same way as the resolved 

components, such as the n-alkanes, rather than being produced during the weathering 

process (Killops & Al-Juboori, 1990; Revill, 1992). The implication of these studies is that 

the potential contribution of UCM hydrocarbons to the environment via fresh, refined and 

weathered petroleum residues is enormous. 
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1.2 Compositional studies of aromatic hydrocarbon UCMs 

Among the analytical techniques available for structural determination of crude oil 

hydrocarbons, gas chromatography (GC) in combination with mass spectrometry (GCMS) 

is by far the most widely used. Fractionation of crude oil and subsequent GCMS analysis 

has allowed the characterisation of nearly 300 compounds comprising `aliphatic', 

`aromatic' and so-called biomarker compounds (reviewed by Peters & Moldowan, 1993). 

Nevertheless, many components of crude oil still remain uncharacterised since the majority 

cannot be resolved by GC, and these appear as `humps' or unresolved complex mixtures 

(UCMs) in gas chromatograms (Figure 1.1. a). UCMs result from the co-elution of complex 

mixtures of thousands of hydrocarbons with similar physical and chemical properties - 

though the exact number is unknown (Thompson & Eglinton, 1978). 

Although the exact structural composition of any one UCM hydrocarbon has not been 

determined, a number of studies have attempted to identify structural components of 

hydrocarbon UCMs, and some have proposed model structures (e. g. Killops & Al-Juboori, 

1990; Gough, 1989; Revill, 1992; Revill et al., 1992; Thomas, 1995). These studies have 

been reviewed (Revill, 1992; Thomas, 1995; Wraige, 1997) therefore discussion here is a 

synopsis of studies relevant to aromatic UCM hydrocarbons. 

Killops & Readman (1985) reported fractionation of aromatic components from a total 

neutral fraction from a recent estuarine sediment exhibiting a high degree of petroleum 

contamination, using normal phase high performance liquid chromatography (HPLC). The 

bulk of the unresolved components were present in the third eluting fraction (equivalent to 

3 aromatic double bonds) indicating that the aromatic UCM in this sediment was 

principally monoaromatic in nature. Wraige (1997) also found that the aromatic 

hydrocarbon UCMs isolated by similar procedures, from mussels from petroleum-impacted 

sites, were mainly monoaromatic (-80 % as determined by GC and HPLC). 
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Killops & Al-Juboori (1990) investigated the chemical composition of a UCM from a 

heavy biodegraded crude oil (West Sak, Alaska). Bulk UCM characteristics were defined 

using proton (1H) and carbon (13C)-nuclear magnetic resonance (NMR) spectroscopy, 

infra-red (IR) spectroscopy, ultra-violet (UV) spectroscopy, elemental analysis, electron 

impact (EI)-MS, chemical ionisation (CI)-MS, thin layer chromatography (TLC) and 

various size fractionation techniques. Spectroscopic and spectrometric investigations (IR, 

NMR and MS) of the bulk total hydrocarbon fraction showed the predominance of 

aliphatic structures. The proportion of carbon atoms that were aromatic was approximately 

only 10%. Chromic acid oxidation of the UCM yielded several classes of identifiable 

compounds amongst which n-alkanoic acids in the range C5-C, g predominated. These 

suggested that n-alkyl chains up to -C19 were present in the UCM. The composition of 

oxidation products suggested that the aromatic compounds comprised chiefly alkyl 

substituted benzenoid structures with an average molecular weight of 300. 

Revill (1992) investigated the aromatic fraction of a different biodegraded crude oil (Tia 

Juana Pesado, Venezuela) from which most of the resolved components had been removed 

by in-reservoir bacterial action. Analysis of the aromatic UCM by various methods 

(elemental analysis, UV, IR and NMR) again produced evidence that for the majority of 

compounds in the `aromatic' UCM a large proportion of the carbon was in fact highly 

`aliphatic' in nature, and the presence of only one or two aromatic rings. UV spectroscopy 

showed evidence for both mono- and di-aromatic compounds, and IR spectroscopy 

indicated highly aliphatic structures, confirmed by 'H-NMR. Revill et al. (1992) suggested 

that in general the evidence was consistent with alkylated naphthenoaromatic compounds. 

Since elemental analysis and spectroscopic studies provided only limited compositional 

information a number of recent studies (e. g. Thomas 1995, Warton, 1999) have used 

oxidative degradation techniques in conjunction with bulk analytical techniques to 

characterise aromatic hydrocarbon UCMs. Chemical degradation studies of UCMs 
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followed by instrumental analysis have allowed partial structural elucidations of some 

hydrocarbon UCMs. This approach, termed `retro-structural analysis' by some workers 

(Thomas, 1995), involves the use of selective oxidising agents which attack specific 

structural features in the UCM hydrocarbons giving rise to products, the structures of 

which can be related back to the parent UCM molecule. For example, it has long been 

known that aromatic compounds can be selectively degraded using ruthenium tetroxide 

(Ru04). Ru04 is a regio-selective oxidant, in theory attacking only ipso-carbons on 

aromatic rings. Alkyl substituents are thus preserved in the oxidation products as 

carboxylic acids, whereas the aromatic carbons are oxidised further to carbon dioxide. This 

has recently been successfully applied to aromatic UCMs (Thomas, 1995; Warton et al., 

1999). Using this technique to characterise a range of aromatic UCMs from crude and 

refined oils Thomas (1995) found that oxidation produced organic solvent-soluble acids 

and other more resolved products, the quantities of which allowed an estimation of the 

proportion of alkyl substituents on the aromatic rings to be made. Similarly, the proportion 

of water-soluble acids and diacids gave a measure of the short chain alkyl substituents and 

alicyclic rings respectively, with the amount of carbon dioxide produced being 

proportional to the aromatic content. Results indicated that substituted tetralins were 

quantitatively significant components and allowed the proposition of an average structure 

for some aromatic UCM compounds (Figure 1.2. ) 

Upon a similar Ru04 based chemical oxidation of a monoaromatic UCM from a 

Cretaceous biodegraded Leatherjacket crude oil from Australia, Warton et al. (1999) also 

found that the dichloromethane (DCM) soluble products were mainly monocarboxylic 

acids and the water soluble products mainly dicarboxylic acids. They also proposed that 

the oxidation products represented the alkyl moieties that were attached to aromatic rings 

in the unoxidised crude oil fractions. The results indicated that species with n-alkyl groups 

attached to the aromatic ring were present in the initial aromatic fraction-which confirmed 
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the findings of Thomas (1995) and earlier studies (e. g. Revill, 1992). Observations 

indicated that compounds present in the original monoaromatic UCM fraction contained 

straight, branched and isoprenoid side chains, n-alkyl chains and a -cyclohexyl groups and 

bicyclic components attached to monoaromatic compounds. Warton et al. (1999) 

concluded that alkylindane and alkyltetralin structures, as well as components with three or 

more fused rings, of which one was aromatic, were present in the original UCM. These 

conclusions were consistent with the work carried out by Revill (1992) and Thomas (1995) 

and lend support to the occurrence of substituted alkyltetralins in a variety of crude oil 

UCM aromatic hydrocarbons fractions. 

Whilst the individual components of the aromatic hydrocarbon UCM have, as yet, not been 

characterised it is apparent that there are similarities in the general findings between the 

studies on their exact nature. For the purposes of this study the general model aromatic 

UCM structure (Figure 1.2) proposed by Thomas (1995) using the retro-structural analysis 

approach in conjunction with Fourier transform-ion cyclotron resonance spectroscopy to 

examine the total oxidation products is considered the best currently available model. 
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1.3 Environmental occurrences of aromatic UCM hydrocarbons 

A wide variety of instrumental techniques are currently used in the analysis of oil 

hydrocarbons which include gas chromatography (GC), gas chromatography-mass 

spectrometry (GCMS), high performance liquid chromatography (HPLC), infra-red (IR), 

ultraviolet (UV), nuclear magnetic resonance (NMR) and fluorescence spectroscopy. 

Wang & Fingas (1997) have summarised the most commonly used analytical methods for 

oil and petroleum products. 

Owing to the widespread use of GC-flame ionization detection (FID) to study 

environmental samples contaminated with petroleum `aliphatic' UCMs (i. e. UCMs 

comprising non-aromatic hydrocarbons as defined by open column chromatography 

isolation methods) have been reported in many environmental matrices, and their presence 

has been widely used as an indicator of petroleum contamination (e. g. Thompson & 

Eglinton, 1978; Risebrough et al., 1983; Mason, 1988; Macias-Zamora, 1996). The 

presence of aromatic UCMs is however much less widely documented, mainly because the 

concentrations of aromatic compounds are usually measured using non-chromatographic 

fluorescence techniques, or selected ion monitoring (SIM) methods where molecular ions 

are selected to measure only priority pollutant polyaromatic hydrocarbons (PAHs) (Wang 

& Fingas, 1997). These methods effectively leave the aromatic UCM hydrocarbons 

undetected. However, aromatic UCMs have been reported in some environmental samples 

where GC-FID or total ion current GCMS methods have been used. Such aromatic 

hydrocarbons from polluted sediments appear as GC `humps' which are absent from 

chromatograms of hydrocarbons of unpolluted sediments (Jones et al., 1983). 

Venkatesan et al. (1982), Le Dreau et al. (1997), and Readman et al. (1996) all reported 

aromatic hydrocarbon UCM concentrations in sediments (Table 1.2). Aromatic UCMs 

have also been reported in mussels (Soler et al., 1989; Wraige, 1997), urban aerosols 
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(Aceves & Grimalt, 1993), urban runoff (Bomboi & Hernandez, 1991), fish (Fowler et al., 

1993), and dissolved/dispersed in water (Douabul & Al-Shiwafi, 1998). Examples of 

aromatic UCMs from environmental samples are shown in Figure 1.3. In all of the 

examples shown UCMs dominate the aromatic fractions, and this is commonly the case in 

polluted environmental samples such as sediment and biota when appropriate analytical 

methods are used. The concentrations of aromatic UCMs in some selected environmental 

samples are summarised in Table 1.2. Such data, whilst limited, suggest that aromatic 

UCMs are a quantitatively important environmental burden. For example, concentrations 

of up to 7172 µg g"1 dry weight have been found in mussels from Cape Town Harbour, 

South Africa (Mason, 1988), accounting for up to 98% of the aromatic compounds present 

in some samples. However, the toxicological impacts (if any) of the occurrence of these 

UCMs in organisms and sediments appear to have been virtually ignored. 
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a) 

b) 

c) 

UCM 

.:.: 

Figure 1.3. Examples of gas chromatograms of the aromatic fraction from 

different environmental matrices exhibiting an unresolved complex mixture 

a) urban aerosol <0.5 µm, Barcelona (Aceves & Grimalt, 1993) 

b) urban runoff, Legzpi (Bomboi & Hernandez, 1991) 

c) dissolved/dispersed, Arabian Gulf (Douabul et al., 1998) 
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Figure 1.3. (continued. ) Examples of gas chromatograms of the aromatic fraction 

from different environmental matrices exhibiting an unresolved complex 

mixture 

d) sediment, Gulf of Fos, France (Le Dreau et al., 1997) 

e) oysters, Mina Abdullah (Anderlini et al., 1981) 
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1.4 Circumstantial field evidence for the environmental impact of aromatic 

unresolved hydrocarbons 

In the fate and risk assessment of persistent organic contaminants and related compounds 

in Victoria Harbour, Hong Kong, Connell et al. (1998) found that the effects of the 

concentrations of compounds giving an unresolved complex mixture could not be 

evaluated due to the lack of environmental guidelines. However, it was suspected that they 

would add to the adverse effects accounted for by other known contaminants. 

Accumulation of contaminants in marine sediments contributes to the degradation of 

marine systems, which are manifested as toxicity, bioaccumulation, and population and 

community level disruptions in benthic biota (Burgess & McKinny, 1999). Chemicals can 

be accumulated in marine organisms via direct uptake from the surrounding medium by the 

gills (bioconcentration), by ingestion of particle-bound chemicals (bioaccumulation) or via 

the food web (biomagnification) (Franke et al., 1994). Uptake of hydrocarbons has been 

demonstrated from aqueous, dietary and sedimentary pathways. Retention of hydrocarbons 

in lipophilic cellular compartments may result in disruption in membrane functions or 

alterations in energetic processes, leading to impairment of the adaptive capability of an 

organism within its natural habitat (Capuzzo, 1985). However, the presence of a xenobiotic 

compound in an ecosystem does not in itself indicate an adverse effect. Connection must 

be established between levels of exposure or tissue concentrations and adverse effects 

(Farrington, 1991). 

Since the introduction of the International `Mussel Watch' programme (Goldberg, 1978) 

mussels have been widely used as ̀ sentinel' organisms to monitor the state of the marine 

environment (e. g. Gray, 1992; Petrovic, 2001), Mussels are sessile, filter feeders and 

dominant members of coastal and estuarine communities with a wide geographical 
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distribution. As such they represent a useful tool for monitoring spatial and temporal trends 

of contamination (extensively reviewed by NAS, 1980). 

Marine bivalves are ideally suited to field based monitoring programmes as they remain in 

a fixed location attached to solid substrates such as rocks. They filter large volumes of 

water and so can accumulate considerable quantities of pollutants, including petroleum 

hydrocarbons, within their tissues. Mussels thus represent a substrate in which it is easier 

to detect and quantify environmental contamination (Burns & Smith, 1991). They are also 

easy to collect and transport, being relatively unaffected by transplantation and handling 

stress. Their physiology is well documented and their physiological health can be readily 

determined in the laboratory or field situations (Widdows & Donkin, 1992). Together these 

attributes have resulted in the widespread use of mussels as sentinel organisms or 

`bioindicators' to monitor the state of the marine environment. 

Physiological responses are dependent upon the bioavailability, uptake and distribution of 

contaminants within the body and can therefore be considered as representative of the 

fitness of the whole organism (GESAMP, 1995). The rate of growth is a fundamental 

measure of physiological fitness and provides one of the most sensitive measures of stress 

in an organism (Widdows, 1994). Direct measurement of growth is not practical in the 

case of marine bivalves due to the presence of a shell and a large proportion of total 

production can be lost in the form of gametes when spawning (Widdows, 1985). However, 

the integration of physiological responses such as feeding, food absorption, respiration, 

excretion and production, termed Scope for Growth (SFG) can be considered the growth 

potential of an animal and then represent the bioenergetic status of an organism or 

population under specific conditions (Widdows, 1985,1994; Widdows and Donkin, 1992; 

Smaal & Widdows, 1994). The Scope for Growth technique has been extensively reviewed 

(Martin et al., 1984; Widdows, 1985; Donkin & Widdows, 1986; Wade et al., 1998) and 
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has been shown to be consistently reliable as an indicator of general stress in mussels 

(Gray, 1992). 

SFG is a measurement of the energy balance of mussels determined from the rate of food 

uptake and its assimilation efficiency. This energy balance is strongly indicative of the 

health of the mussel since a high positive energy balance is achieved only when a wide 

range of biochemical processes within the organism are functioning correctly. The 

assessment of SFG under field conditions provides an indication of the physiological 

condition or health of the animals, which in turn may reflect differences in environmental 

quality (Donkin & Widdows, 1986). Determination of SFG provides an instantaneous 

measure of the energy status of animals which can range from maximum positive values 

under optimal conditions, declining to negative values when the animal is severely stressed 

and utilising body reserves, i. e. when dealing with chronic pollution (Widdows et al., 

1995a, 1995b). 

The concept of SFG has been used to assess the sub-lethal biological effects of pollutants 

on a variety of marine organisms and has proved particularly useful when combined with 

the analysis of chemical contaminants in attempts to identify cause and effect relationships 

(Figure 1.4). This approach has been successfully applied by Gilfillan et al. (1977), Martin 

et al. (1984) and Widdows et al. (1990,1995a 1995b). The coupling of SFG measurement 

to tissue residue chemistry thus provides a toxicological interpretation of contaminant 

concentrations in the tissue and enables identification of the cause of effects observed in 

the field (Widdows & Donkin, 1989). 

Widdows et al. (1987; 1995 a, b) have demonstrated significant correlations between SFG 

and the concentration of 2-3 ringed aromatic hydrocarbons in mussels as determined by 

high performance liquid chromatography with UV detection (HPLC-UV). Widdows et al. 

(1987) exposed Mytilus edulis in a mesocosm study to 28 gg L" and 125 µg L"1 of oil for 8 

months and demonstrated a marked reduction in SFG for mussels exposed to both oil 
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concentrations, principally caused by reduction in feeding rate and food absorption 

efficiency. Analysis of tissues revealed a significant correlation between log tissue 

concentration of aromatic hydrocarbons (2-3 ring aromatics) and SFG. 

prediction of effect 

scope for growth 

mussed 
water f food ---#- filtration --*. oonsumption -* absorption 

pseudofaeces faeces respiration 
excretion 

bioooncentratlon mechanisms 

water concentration J --ý tissue concentration --*j etbcts 

94 
diagnosis of cause 

Figure 1.4 Scope for Growth (SFG) as part of the individual energy budget, in an 

ecotoxicological framework (Smaal & Widdows, 1994) 

A similar relationship was demonstrated in an eight-year field study (Widdows et al., 

1995a). Mytilus edulis was used to monitor the degree of chemical contamination 

(petroleum hydrocarbons and organics) and the associated sub-lethal biological effects (in 

terms of Scope for Growth) in the vicinity of the Sullom Voe terminal, Shetland Isles over 

several years. Widdows et al. (1995a) found that the spatial and temporal change in 

concentration of aromatic hydrocarbons within the mussel reflected the major sources of 

oil inputs (i. e. oil spillages due to tanker loading operations). A significant correlation (r = 
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+0.89) between the net quantity of oil spilled at Sullom Voe, Shetland, U. K., one month 

before sampling, and the aromatic hydrocarbons accumulated in mussel tissues a month 

later, was found. The log of this concentration furthermore displayed a significant negative 

relationship with SFG (r = -0.83). This relationship was present over three orders of 

magnitude and without any threshold effect, suggesting a simple mode of toxicity based on 

the loading of body tissues and the absence of any physiological adaptation. Figure 1.5 

shows the inverse relationship between SFG and the log concentration of aromatic 

hydrocarbons in mussel tissue reported by Widdows et al. (1995a). The decline in SFG at 

most contaminated sites was attributed primarily to low clearance rates or feeding rates, 

which is the component of the energy budget most responsive to pollution. 
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Figure 1.5 Relationship between mean Scope for Growth (SFG) and the log 

concentration of 2- and 3-ring aromatic hydrocarbon in the tissues of Mytilus edulis 

collected from sites in Shetland during the period 1982-1989 (Widdows et a!., 1995a) 
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Furthermore, Widdows et al., (1995b) found that SFG in mussels in twenty-six east coast 

U. K. sites, sampled in 1990, was inversely related (r = -0.41) to the log tissue 

concentration of aromatic hydrocarbons despite diverse sources of pollution (Figure 1.6). 

Hydrocarbon contamination was measured by HPLC-UV, and expressed as `2-3 ringed 

aromatics' as this group of compounds was thought to represent the major toxic component 

of the bioaccumulated petroleum hydrocarbons. 
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Figure 1.6 Link between reduced Scope for Growth and `total toxic hydrocarbons' as 

calculated from the measurement of aromatic hydrocarbons ('2-3 ringed') by HPLC- 

UV (Widdows et at, 1995b) 

However, the HPLC-UV method did not provide a high degree of chromatographic 

resolution or an absolute measurement of individual compounds but measured groups of 

compounds with similar physicochemical properties. The gas chromatographic profiles of 

such HPLC fractions have rarely been reported. However, a gas chromatographic study by 

Limit of 

21 



Wraige (1997) indicated that the aromatic fractions of mussels taken from three of the east 

coast sites (Whitby, Teesmouth and Cleethorpes) in 1995, originally studied by Widdows 

et al. (1995b) by HPLC-UV in 1990, were in fact dominated by UCMs. Thus, it is unclear 

whether the toxic burden of so-called `2-3 ringed aromatic hydrocarbons' represents 

compounds which are resolved by GC and identifiable by GCMS (e. g. PAH priority 

pollutants) or whether it might in reality comprise UCMs of aromatic hydrocarbons. To 

investigate this possible connection between `total toxic hydrocarbons' (measured as 2- 

and 3-ringed aromatic hydrocarbons by HPLC) and the concentration of aromatic UCM 

hydrocarbons further, mussel tissue collected in 1990 from one of the original sites 

(Whitby) was re-examined herein. The mussel tissue was analysed firstly by the original 

HPLC-UV method, to ensure no degradation of the sample had occurred upon storage, and 

secondly by a two-phase extraction method followed by GCMS (details are given in 

Chapter 7) previously used by Wraige (1997). HPLC analysis of the mussel tissue 

collected from Whitby in 1990 revealed that no degradation had occurred during storage, 

as the data were comparable to the original data. The gas chromatogram of the aromatic 

hydrocarbon fraction of the total organic extract (TOE) of mussels from Whitby, U. K. 

sampled in 1990, is shown in Figure 1.7. Clearly the chromatogram is dominated by an 

unresolved complex mixture and the amount of aromatic UCM hydrocarbons found at this 

site was 396-408 . tg g"1 dry weight. Thus, in mussels from Whitby collected in 1990, 

which showed reduced Scope for Growth, the aromatic compounds were actually 

dominated by an aromatic UCM, the concentration of which closely matches the `total 

toxic hydrocarbon burden' (390 . tg g"1) determined by Widdows et al. (1995) by HPLC. 

The concentration also closely matches the concentration of aromatic UCM hydrocarbons 

(365-496 µg g") found in mussels taken from this site in 1995 by Wraige (1997). 
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Figure 1.7 Gas chromatogram of the aromatic hydrocarbon fraction of mussels 

(Mytilus edulis) from Whitby, U. K., 1990 (Smith, present study) 

GC details : HP] (12 mx0.2 mm id) column, He carrier gas, 409C-3009C @ 109C min"', 

hold 10min; * internal standard d, o phenanthrene. 

Although this preliminary analysis was conducted on mussels from only one site, a further 

correlation was also found (Figure 1.8) between the values of `total toxic hydrocarbons' 

determined by Widdows et al. (1995b) at sites with reduced SFG and aromatic UCM 

concentrations by Wraige (1997). These data are shown in Table 1.3. The concentrations of 

aromatic hydrocarbon UCMs determined by Wraige (1997) ranged from 83-496 gg g" dry 

weight, most of which were monoaromatic. No aromatic hydrocarbon UCM was detected 

in mussels from an unimpacted ̀ control' site in Cornwall in 1995. The concentrations of 

resolved aromatic hydrocarbons in these samples were low in comparison (e. g. total 

alkylnaphthalenes 0.053 µg g'' dry weight; Whitby, 1995). The concentrations of aromatic 
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UCMs correlated well (r2 adjusted = 0.94, n= 8) with the total toxic hydrocarbon burden as 

determined by HPLC-UV in mussels from the same sites in 1990 (Figure 1.8. ). 

Table 1.3 Concentrations of `total toxic hydrocarbons' (Widdows et al., 1995) 

compared to `aromatic UCM hydrocarbons' (Wraige, 1997; *Smith, this study) in 

mussels (Mytilus edulis) from U. K. east coast sites with reduced Scope for Growth 

`Total toxic Aromatic UCM hydrocarbons 
Sample Site hydrocarbons' (µg g') 

(µg g") 1990 1995 
(1990) 

Teesmouth 77.7 not determined 83,94 

Whitby 390 *396,408 365,496 

Cleethorpes 124.9 not determined 102,136 

N. B. The term `total toxic hydrocarbons' is derived from the measurement of 2- and 3- 
ringed PAHs (by HPLC) which is converted to a total toxic hydrocarbon value (by GC) 
using a factor of 7.1 (Widdows et al., 1982,1995). 
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Figure 1.8 Relationship between the concentration of 'total toxic hydrocarbons' 

(Widdows et al., 1995) and `aromatic UCM hydrocarbons' (Wraige, 1997; Smith, 

present study) in Mytilus edulis from U. K. east coast sites with reduced `Scope for 

Growth' 

The re-examination of mussels collected from Whitby in 1990 by the more specific GCMS 

method herein has thus demonstrated that high concentrations of aromatic UCMs are 

present (Figure 1.7, this study; Wraige 1997). A review of the literature indicated that at 

least one other study had noted the relationship between concentrations of aromatic 

hydrocarbons detected by HPLC and GC. Murray et al. (1983) demonstrated a significant 

relationship between HPLC and GC indicators of the concentrations of aromatic 

hydrocarbons in mussel tissue (r = 0.99, n= 11) where gas chromatograms were also 

dominated by unresolved compounds (Figure 1.9). They suggested that the combined 

effects of factors such as selective accumulative weathering and biodegradation resulted in 

an aromatic hydrocarbon fraction in mussels which is a `complex mixture of polyalkyl and 

cycloalkyl substituted rings'. 
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Figure 1.9 a) Gas chromatogram of the `aromatic hydrocarbon' fraction separated 

from contaminated mussels by open column chromatography. b) The relationship 

between HPLC and GC indicators of the concentrations of aromatic hydrocarbons in 

mussel tissues. Values are presented as µg g"1 dry weight. The correlation is 

significant (p< 0.001, r= 0.99) and the best line of fit has a slope of 0.93 and intercept 

of 1.2 µg g'1 (Murray eta[., 1983) 
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Another two reports provide further circumstantial evidence that UCMs accumulated in 

marine organisms may be responsible for the observed impaired health effects (Gilfillan et 

al., 1977; Gold-Bouchet et al., 1995). Gilfillan et al. (1977) measured the long-term effects 

of an oil spill on populations of the clam Mya arenaria from different sites in Casco Bay, 

Maine. Two years after the spill there was no correlation between toxic response 

(measured in terms of carbon flux, which is effectively Scope for Growth) and the total 

body burden of hydrocarbons (dominated by an aliphatic UCM). It was therefore suggested 

that when dealing with low concentrations of a highly weathered oil the total hydrocarbon 

content, of either sediments or animal tissues, is not an accurate measure of the stress 

imparted by the oil. However, the reduction in carbon flux was found to correlate with 

elevated body burdens of aromatic hydrocarbons. Gilfillan et al. (1977) assumed that the 

activity influencing the carbon flux was contained in the aromatic lower molecular weight 

portion of the unresolved envelope in the gas chromatogram, and used the ratio of the 

maximum height of the low molecular weight side of the unresolved envelope to the high 

molecular weight residual hydrocarbons to indicate the amount of lower molecular weight 

aromatics present. This peak height ratio correlated directly with the carbon flux data. 

Gold-Bouchet et al. (1995) correlated UCM hydrocarbon concentrations with adverse 

effects in wild populations of oysters from Tabasco, Mexico. They suggested that 

histopathological lesions exhibited in oysters were related to the concentration of 

hydrocarbon UCMs within the organisms. Concentrations of UCM were linearly correlated 

with damage in the digestive diverticulum (r = 0.71) and damage to the gills (r = 0.60). At 

a concentration of 70 µg g" UCM (not stated whether dry or wet weight) 28 % of the 

population showed damage to the gills, and 45 % of the population exhibited damage in the 

digestive diverticulum. The authors recognised the difficulty in assigning toxic effects to 

the UCM due to its complex nature, but no details of the UCM measurement methods were 

given. 
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1.5 Responses of marine organisms to petroleum hydrocarbons 

The effects of petroleum hydrocarbons on aquatic animals have been reviewed by Connell 

& Miller (1981), and more specifically in mussels by Bayne et al. (1982). Oil entering the 

marine environment may affect organisms in a number of ways including; direct lethal 

toxicity, changes in physiological/behavioural activity, effects of direct coating, 

incorporation of hydrocarbons into organism tissues, and alteration of habitat (Moore & 

Dwyer, 1974). Marine animals exhibit variations in their sensitivities to oil. For adult 

stages of a variety of species lethal effects from water-soluble fractions occur in the 1-100 

ppm (mg L") range, whereas larval and juvenile life stages are usually more sensitive, with 

lethal concentrations often in the 0.1-1 ppm range (GESAMP, 1993). The lower boiling 

point, more soluble, aromatic fractions have been consistently implicated as the primary 

cause of mortality (Moore & Dwyer, 1974). 

Biota may also exhibit sub-lethal responses to chronic hydrocarbon contamination such as 

decreased productivity via reduced fecundity, delayed sexual maturity, small mean brood 

sizes and abnormal embryo development (Neff, 1976). Boylan & Tripp (1971) suggested 

that changes in the behaviour of marine organisms, such as disruption in normal feeding 

sequences, sex attraction, host recognition, symbiotic relations, and other intrinsic social 

interactions, may be caused by the presence of sub-lethal concentrations of soluble oil 

fractions. Sub-lethal effects of petroleum hydrocarbons are thought to occur in the range of 

1-100 ppb (µg L"1) (Moore & Dwyer, 1974). It is believed that low concentrations of 

hydrocarbons that cause disruption and interfere with physiological and behavioural 

processes, are also likely to damage reproductive potential and the ability to colonise 

habitats, increase susceptibility to predation and parasitism, and lead to changes in the 

populations of individual species, resulting in shifts in species composition and diversity 

(GESAMP, 1980). Effects, such as suppression of growth, may be expected to impair 
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ecological efficiency, reduce competitive ability and in some cases increase susceptibility 

to predation. 

Following a spill of crude or refined oil, several physical, chemical and biological 

processes, collectively called `weathering', interact to change the physical and chemical 

properties of the oil, and thereby influence its effect on marine ecosystems. The most 

important `weathering' processes include; spreading, evaporation, dissolution, dispersion 

into the water column, formation of water in oil emulsions, photochemical oxidation, 

microbial degradation, adsorption to suspended particulate matter and sedimentation to the 

sea floor (Neff et al., 2000). One effect of these weathering processes is to increase the 

abundance of the unresolved components within hydrocarbon fractions as the resolved 

components are preferentially degraded. 

The role of weathering in determining petroleum toxicity is not well understood. 

According to Bobra (1983) there is no simple answer to the question of whether or not 

weathering reduces the toxicity of oil, as it depends on the definition of toxicity. 

Weathering results in aqueous solutions which give lower LC50 values (the aqueous 

concentration required to produce a 50% lethality in the test organism), suggesting they are 

more toxic than solutions of fresh oils. However, weathering of oil also markedly reduces 

its aqueous solubility, and thus fresh oils can generate aqueous solutions which are more 

toxic although at higher concentrations. 

Soto (1974 and references therein) found, in agreement with observations by other 

researchers, that extracts from aged or weathered crude oil did not show significant 

biological effects. However, more recent studies have shown that weathered oil can elicit 

biological responses (Heintz et al., 1999; Barron et al., 1999). Heintz et al. (1999) found 

that highly weathered oil from the Exxon Valdez was more toxic to pink salmon embryos 

than the unweathered oil. The authors attributed the enhancement in toxicity to elevated 

concentrations of larger PAHs in the weathered oil compared to the fresh oil. However 
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when Barron et al. (1999) examined the water-accommodated PAH content of three 

naturally weathered Californian crude oils by SIM GCMS, they unexpectedly found that 

toxicity to the mysid shrimp (Mysidopsis bahia) did not correlate with PAH content. The 

published total ion current GCMS chromatograms of the oils show that the fractions tested 

in their study were in fact dominated by UCMs. 

In studying the effects of the toxicity of three offshore Australian crude oils and a diesel 

fuel to marine animals, Neff et al. (2000) found that the water-accommodated fractions 

(WAFs) of a middle weight crude oil and diesel fuels were higher than predicted on the 

basis of their concentrations of total MAHs (monoaromatic hydrocarbons), PAHs 

(polyaromatic hydrocarbons), and phenols. This indicated that `other' components of the 

WAF contributed to the toxicity, and it was suggested that these components may include 

the UCM and polar compounds, but no evidence was provided. 

Work by Thomas et al. (1995) and Payne et al. (1995) suggests that the aliphatic UCM is 

non-toxic. Payne et al. (1995) found that the aliphatic component of the complex mixture 

detected in sediment contaminated with an aliphatic oil-based drilling mud was relatively 

non-toxic to flounder. The `aliphatic' UCM in the total ion chromatogram of the muscle 

extract from the flounder had a Kovats index GC range similar to the cuttings obtained 

from exploratory wells off Canada and the Arctic using aliphatic hydrocarbon based 

drilling fluids, suggesting the non-toxic nature of the accumulated UCM. Thomas et al. 

(1995) tested the toxicity of a saturated aliphatic UCM isolated from the hydrocarbon 

feedstock of Silkolene 150 lubricating oil (1 mg L"') by measuring mussel feeding rate. 

The relatively non-toxic nature of the saturated aliphatic UCM compounds was attributed 

to their low aqueous solubility. 

A survey of the literature found no comparable reports on the toxicity of aromatic 

unresolved complex mixtures. However, Wraige (1997) studied the impact of two 

synthesised aromatic hydrocarbons considered to represent ̀average' structures within an 
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aromatic UCM. These were found to reduce mussel feeding rate considerably (> 50% 

compared to controls) during a 24 hour exposure period. 

The limited data available thus suggest that aliphatic UCM hydrocarbons may not be 

toxicologically significant or contribute in only a minor way to the toxic hydrocarbon 

burden in marine ecosystems. However, the known toxicity of many resolved aromatic 

hydrocarbons (Donkin et al., 1989; Pelletier et al., 1997), including two model aromatic 

UCM hydrocarbons suggests that the corresponding aromatic UCM may be more toxic 

than its aliphatic counterpart and therefore should be studied. 

Marine molluscs exhibit various sub-lethal responses to petroleum hydrocarbons including 

decreased feeding rate and absorption efficiency, and increased respiration (Widdows et 

al., 1987; Bayne, 1982; Donkin, 1992) which have been used in field monitoring 

programmes as part of the Scope for Growth measurement (Section 1.4). A reduction in 

mussel feeding rate is caused by reduced pumping of the lateral cilia of the gill (Axaik & 

George, 1987). The cilia are under neuronal control (Paparo, 1972), therefore the 

mechanism of feeding rate reduction is consistent with a non-specific mode of narcotic 

action (Donkin et al., 1989). 

Non-specific narcosis is considered to be a minimum or `baseline' effect in organisms as 

many reactive chemicals are more toxic than predicted from non-specific Quantitative 

Structure Activity Relationships (QSARs) owing to additional modes of toxic action. A 

review of the classification of modes of toxic action of organic chemicals is given by 

Verhaar et al. (1992). 

Narcosis is defined as a non-specific reversible disturbance of the functioning of the 

membrane caused by the accumulation of pollutants in hydrophobic phases within the 

organism. The disturbance of membrane function results in decreased activity and a 

diminished ability to react to stimuli, and can ultimately lead to death (van Wezel & 

Opperhuizen, 1995). The exact mechanism(s) of narcosis and the site(s) of toxic action 
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remain unknown but it appears that the effect occurs when a target site has accumulated a 

sufficient volume of a chemical to interfere with normal structure and function. Therefore, 

it is argued that all compounds have the potential for `baseline' non-specific narcotic 

activity. 

For many groups of compounds, toxicity, expressed in terms of aqueous exposure required 

to produce an effect, increases through a homologous series until a molecular weight is 

reached at which the rate of toxicity declines. Several explanations have been proposed for 

the observed cut-off effect, most commonly, it is attributed to the low solubility of larger 

hydrophobic molecules. Despite the fact that such compounds have a high partition 

coefficient, their aqueous solubility is so low that insufficient toxicant accumulates at the 

site of toxic action to induce a response (Veith et al., 1984; Donkin et al., 1989). For 

example, the solubility of alkanes decreases until minimum solubility is reached at about 

CIO (decane), at which point a sharp discontinuity in solution occurs. The longer chain 

alkanes no longer exist in true solution (molecular dispersion) but are present as aggregates 

in suspension. According to Seeman (1972) these aggregates may be extremely large, since 

they may be filtered out by 0.45 micron-pored filter, and therefore may not be absorbed 

into the aqueous compartments of the body. This would lead them to be treated as foreign 

bodies by the cell membranes which would phagocytose (engulf and ingest the foreign 

bodies with cells such as white blood cells) or pinocytose (introduce the fluids into a cell 

by invagination of the cell membrane, followed by formation of vesicles within the cells) 

the aggregates. 

This theory explains the observation that mussels have been shown to accumulate 

compounds which elicit no toxic response. For example, researchers have detected large 

quantities of aliphatic hydrocarbons ranging from Cie-C3o alkanes, and large quantities of 

aliphatic hydrocarbons in marine mussels. Field studies linking biological effects to 

contaminant concentration have shown limited correlation between accumulated aliphatic 
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compounds and the observed impaired health effects. Laboratory studies investigating the 

effect of aliphatic and aromatic hydrocarbons (Donkin et al., 1989,1991) demonstrated 

that the total body concentration required to reduce mussel feeding rate by 50 % was much 

greater for four ring aromatic hydrocarbons than for mono or diaromatic compounds. This 

meant that despite efficient accumulation of all the compounds tested a cut-off effect was 

observed. These authors suggested that this effect was either indicative of a molecular size 

related cut-off at the site of toxic action or by sequestration of the higher molecular weight 

compounds within the mussel tissue in a toxicologically unavailable form, such as crystals 

or lysosomes. Therefore, the theory that only compounds which are present in the 

bioavailable dissolved phase may interact with the target site is plausible. It was suggested 

by Shaw (1979) that aquatic organisms take up and store different chemical and size 

fractions in different ways and that the differences in chemical make-up as a function of 

droplet size will be reflected in bioavailability. It was proposed that there would be 

enhancement in the dispersed phase of the more soluble components, meaning that 

particulate oil that contains alkanes could be taken up as food by filter feeders and small 

grazers whereas sub-particulates rich in aromatics could enter the circulatory system 

through the gills. Baumard (1999) also observed different accumulation behaviour of 

PAHs from sediments by mussels. It was concluded that the more water soluble 

compounds were preferentially accumulated in the water and entered though the gills in a 

dissolved form whereas the heavier molecular weight compounds were preferentially 

absorbed from filtered particles where they passed through the digestive system. According 

to van Praet (1980) the similarity between the chemical composition of hydrocarbons 

observed in sediments and related organisms reveals nonselective contamination of 

invertebrates caused by direct pinocytosis of insoluble hydrocarbons and phagocytosis by 

polluted feeding. This may also explain why aliphatic UCMs are present in high levels in 
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mussel tissue but cannot be correlated to toxic effects observed in the field. However how 

this relates to aromatic UCMs is unknown. 

1.6 The bioavailability of UCM hydrocarbons to organisms in the marine 

environment 

Routes of exposure of contaminants to organisms can include whole sediment, overlying 

water and interstitial water (assuming no feeding), which can further be subdivided into 

particulate, colloidal and dissolved aquatic phases (Burgess et al., 1999). In the 

environment it is well established that nonpolar organic contaminants readily associate 

with particle and colloidal phases, and to a much lesser extent the truly dissolved phase. 

Despite the majority of these contaminants being associated with the particulate and 

colloidal phases, the dissolved phase is considered the primary bioavailable phase to 

aquatic organisms (Burgess et al., 1999) 

Hydrocarbons can exist in seawater in a variety of forms: truly dissolved, solubilised in 

micellar structure (accommodated), hydrocarbon droplets of colloidal dimensions- 

(accommodated), adsorbed to detrital material, adsorbed onto or incorporated within living 

particles, and particulate hydrocarbon residues as tar ball flakes. Over the world's oceans 

the concentrations of hydrocarbons in surface and near surface waters range from 1-100 µg 

L"1. In open seas, without significant oil contamination, 1 µg L" is considered typical, 

whilst in affected areas, such as tanker routes, concentrations up to 500 µg L" have been 

reported (Boehm et al., 1980). 

Upon analysis of dissolved filterable hydrocarbons (dissolved material, particles of 

colloids less than I gm, and solubilised material present in colloidal micellar structures) 

found in environmental samples Boehm et al. (1980) detected levels in the p. g L" range as 
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expected. However, further examination of the gas chromatograms of particulate and 

dissolved hydrocarbons revealed a dissimilar pattern for the aliphatic and aromatic 

hydrocarbons. An unresolved complex mixture was present in the particulate component of 

the aliphatic fraction but not the aromatic fraction, which showed a UCM in the dissolved 

fraction. This suggests that aromatic unresolved components are more soluble than their 

aliphatic counterparts, which is consistent with observations for resolved aliphatic and 

aromatic compounds, and indicates that the aromatic unresolved complex mixture is more 

bioavailable than the aliphatic UCM. This supports work carried out by Soler et al. (1989) 

who examined the concentrations of aliphatic and aromatic UCMs in mussels at offshore 

oil platforms in the North Sea. They found a consistent increase in the concentrations of 

unresolved hydrocarbons, both aliphatic and aromatic, in mussels living closer to the leg 

surface. In the most recently established mussels there was a significant decrease in the 

concentration of unresolved aliphatic hydrocarbons with water depth as compared to a 

more even distribution of unresolved aromatic hydrocarbons. The explanation offered by 

the authors was that on introduction to the sea surface the aromatic compounds, being 

more soluble, could be rapidly accommodated into the water column. 

There are no reports of levels of aromatic UCMs in seawater although there are a few 

reports of aliphatic UCMs in water samples (Table 1.4). As expected most of the aliphatic 

UCM is associated with particulate matter rather than being dissolved, although Bayona et 

al. (1991) reported concentrations of 38 µg L'' in surficial waters and 68 . tg L'' in 

wastewaters. As aromatic hydrocarbons are more soluble than aliphatic hydrocarbons of 

comparable molecular weight one would expect the concentrations of dissolved aromatic 

UCM hydrocarbons to be higher than those reported for aliphatic UCMs. 

Although no data were found to substantiate this a few reports have noted the presence of a 

UCM in the aromatic fraction of aqueous samples. For example, Boylan & Tripp (1971) 

noted the presence of a high boiling point envelope (UCM) in the aqueous extract of 
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Kuwait crude oil and suggested that when concentrated and retained by marine mammals 

this may present a health hazard. Boehm et al. (1982) also observed an unresolved 

complex mixture in water samples taken from the area around the Ixtoc blowout. A gas 

chromatogram of the water soluble fraction of Ecofisk crude oil studied by Sydnes et al. 

(1985) exhibited a UCM, along with those of the water accommodated fraction of three 

weathered middle distillate oils exposed to mysids by Barron et al. (1999). 

Table 1.4 Reported concentrations of aliphatic UCMs in environmental water 

samples 

Dissolved Particulate 
UCM UCM Water sample Region Reference 

concentration concentration 
(jig L-) (µg L-1) 

63 2145 wastewater Barcelona Bayona et a!. 
38 1222 surficial seawater coast, (1991) 

- 13-49 bottom seawater Mediterranean 

0.221-0.932 - subsurface Northwestern Maldonado et 
- 26-3299* surficial spm Black Sea al. (1999) 

30-1100" 0-200m depth Puget Sound Bates et al. 
Estuary (1987) 

0.01-0.65 surficial seawater Water marshes Al-Saad et at 
of Iraq (1993) 

* µg g' particulate organic carbon 
µg g"1 dry weight 

Theoretically, within a homologous series of hydrocarbons, toxicity is greatest for those 

compounds with the highest molecular weight (Bobra et al., 1983). However the lower 

molecular weight components are considered responsible for acute toxic effects owing to 

their greater aqueous solubility and therefore greater bioavailability, enabling penetration 
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to sites of toxic action (Bobra et al., 1983; GESAMP, 1993). Higher molecular weight 

components such as aliphatic UCM hydrocarbons are considered insufficiently soluble in 

water to have much influence upon toxicity (Bobra et al., 1983; Peterson, 1994). Oudot 

(1981) suggested that with respect to unresolved complex mixtures their chemical and 

biological inertness, in conjunction with their low solubility, would limit any potential 

toxicity, but recognised further investigation was necessary in determining the impact of 

degraded petroleum. 

Aromatic hydrocarbons typically have greater aqueous solubilities than aliphatic 

hydrocarbons of comparable molecular weight (McAuliffe, 1966; Verscheuren, 1983). 

Given the solubility and associated toxicity of a number of resolved low molecular weight 

aromatic hydrocarbons (e. g. Donkin et al, 1989,1991) it seems likely that a proportion of 

the lower molecular weight aromatic UCM would have sufficient aqueous solubility to be 

considered as non-specific narcotic toxicants. Therefore, it is anticipated that the aromatic 

UCM may be of greater toxicological significance than the less soluble aliphatic UCM 

hydrocarbons. The circumstantial evidence provided herein supports this contention but to 

date this has not been investigated. 

Whilst sediment bound UCMs have generally been considered non-bioavailable and fairly 

inert, uptake by organisms may make a significant contribution to contaminant body 

burden contributing to narcosis based toxicity attributed to hydrophobic organic 

compounds. Based on this possibility Le Blanc et al. (1999) initiated studies on the 

chemical and biological bioavailability of UCM compounds. Upon sixty day incubation of 

New York harbour sediment with XAD resins (used to estimate the desorbable fraction) 

they found a 5-30% desorption of sediment bound UCM, with the desorbed fraction 

containing a greater degree of lower molecular weight more soluble hydrocarbons than the 

sediments. However no details of whether this UCM was aliphatic or aromatic were given. 
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1.7 Aims of the present study 

Aromatic hydrocarbon UCMs are widespread in the marine environment and, when 

appropriate methods of analysis are used, are shown to dominate the aromatic fractions of 

marine sediments and biota, constituting approximately 20% of the total hydrocarbon body 

burden in mussels from a number of impacted sites (Wraige, 1997). However, little 

attention has been paid to the possible detrimental effects caused by the accumulation of 

these compounds. 

Chapter 1 reviews the existing field evidence for the environmental impact of aromatic 

unresolved complex mixtures. This evidence suggests a link between the concentrations of 

aromatic UCMs in mussel tissues and measured reduced Scope for Growth in mussels at 

petroleum-impacted sites. At present there is no information on the possible effects of 

accumulation of these compounds within marine organisms, though several workers have 

raised the possibility that such effects may exist (e. g. Neff et al., 2000). The aim of the 

work described in Chapter 2 was to isolate a monoaromatic hydrocarbon unresolved 

complex mixture from a crude oil and to investigate the potential toxicological effects of 

the UCM using a well accepted mussel feeding rate assay, as feeding rate is a sensitive 

parameter in the SFG measurement. 

The research reviewed in Chapter 1 also shows that a few recent studies have allowed the 

proposition of tentative structures for some aromatic UCM hydrocarbons. Experimental 

work with UCMs is complicated by their inherent complex nature, therefore the use of 

single compounds allows a simpler means of assessing UCM behaviour. The aim of the 

work described in Chapter 3 was to synthesise and purify aromatic compounds having 

structural characteristics similar to those tentatively assigned to the molecular composition 

of aromatic UCM components, to allow experimental studies to be conducted designed to 

investigate the behaviour of these compounds in the marine environment. 
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The toxicity of two `model' aromatic UCM hydrocarbons, 6-cyclohexyltetralin and 7- 

cyclohexyl-l-propyltetralin, has been previously studied (Wraige, 1997) using a mussel 

feeding rate assay. The aim of the work in Chapter 4 was to assess the toxicity of the 

compound 7-cyclohexyl-l-methyltetralin synthesised in Chapter 3, by the same method to 

determine the generality of this effect. A further aim was to gain an insight into the 

toxicological impact of monoaromatic UCMs (as studied in Chapter 2) by comparing the 

response of mussels to these `models'. 

Aqueous solubility is an important physicochemical parameter that affects the behaviour of 

xenobiotics in the marine environment. So-called toxicity `cut-offs' based on aqueous 

solubility are also well recognised. Therefore, the aim of the work described in Chapter 5 

was to determine the aqueous solubility of the three model aromatic hydrocarbons, 6- 

cyclohexyltetralin, 7-cyclohexyl-l-methyltetralin and 7-cyclohexyl-l-propyltetralin. The 

aqueous solubilities of these compounds were assessed under a variety of conditions 

(salinity and temperature) to allow an insight into the possible behaviour of these 

compounds in the marine environment, and to assess their compliance with 

solubility/toxicity cut-off theory. A further aim was to attempt to generate an aqueous 

solution of a real monoaromatic UCM isolated from crude oil. 

Crude oil is subject to a variety of weathering processes upon entering the marine 

environment, including biodegradation and photodegradation. UCM hydrocarbons are 

considered resistant to biodegradation but the influence of photodegradation has not 

previously been studied. The chemical oxidation of an aliphatic UCM has been shown to 

increase toxicity (Thomas, 1995). Some aromatic compounds are susceptible to 

photodegradation in the marine environment and the products may be more water-soluble 

and more toxic than the parent hydrocarbons. Thus aromatic UCM hydrocarbons may 

possibly photodegrade in the marine environment and this process may influence their 

toxicity. Therefore, the aim of the work in Chapter 6 was to assess the photodegradation 
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transformation behaviour of the synthesised monoaromatic compounds, 6- 

cyclohexyltetralin, 7-cyclohexyl-l-methyltetralin and 7-cyclohexyl-l-propyltetralin under 

simulated environmental conditions. 

Chapter 7 presents the experimental details relevant to the previous chapters and Chapter 

8 presents the conclusions of this study as a whole, and suggests areas for future work. 
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Chapter 2. Isolation and toxicological assessment of a monoaromatic hydrocarbon UCM 

Milligram quantities of an unresolved complex mixture of monoaromatic hydrocarbons 

were isolated from a biodegraded crude oil, Gullfaks (North Sea). The toxic effects of the 

isolated UCM were determined by a mussel feeding rate assay. The UCM reduced mussel 

feeding rate by -40 % over a 24-hour exposure period compared to unexposed controls. 

The findings indicate that monoaromatic UCM hydrocarbons may have adverse effects in 

organisms in the marine environment. 

41 



2.1 Introduction 

One of the most important properties of a toxic pollutant is the extent to which it is able to 

accumulate in the tissues of organisms. Over a long period of time pollutants present in the 

environment at low concentrations may accumulate within the body of aquatic species by 

various mechanisms. The weathering of crude petroleum typically produces oils rich in 

unresolved complex mixture (UCMs) of both aliphatic and aromatic hydrocarbons. The 

aliphatic UCM fraction is usually more abundant and is often cited as a measure of 

petroleum contamination following measurement by GC-FID. Whilst weathered or 

biodegraded crudes may contain substantial proportions of aromatic UCM hydrocarbons 

these are rarely measured in environmental samples due to the common practice of 

monitoring priority pollutants polyaromatic hydrocarbons by SIM GCMS. However 

aromatic UCMs have been shown to occur in a wide variety of matrices within the marine 

environment (Venkatesan et al., 1982; Readman, 1986; Soler, 1989; Fowler, 1993, Le 

Dreau, 1997; Wraige, 1997; Douabul & Alshiwafi, 1998). Although unresolved complex 

mixtures of aromatic hydrocarbons accumulate in the marine environment, limited 

attention has been paid to the possible detrimental effects of these compounds. 

The physiological responses of mussels, particularly feeding rate, have been used to 

monitor the impact of hydrocarbons in both field and laboratory studies (Donkin & 

Widdows, 1986; Widdows et al., 1987; Donkin et al., 1991). Observed adverse health 

effects in organisms have been found to correlate well with concentrations of aromatic 

hydrocarbons but poorly with total hydrocarbons data (Gilffilan et al., 1977; Widdows & 

Donkin, 1989), the latter of which is often dominated by an aliphatic UCM. It is therefore 

considered that aliphatic unresolved hydrocarbons are accumulated without incurring a 

toxicological response. This is supported by laboratory assessments. Thomas et al. (1995) 

and Payne et al. (1995) found no observable effects when organisms were exposed to 

aliphatic UCMs. The limited data available thus suggest that aliphatic UCM hydrocarbons 
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may not be toxicologically significant or contribute in only a minor way to the total toxic 

hydrocarbon burden. However, the known toxicity of many resolved aromatic 

hydrocarbons as compared to resolved aliphatic compounds suggests that aromatic UCMs 

are potentially toxic. 

Coincidentally, the use of HPLC-UV methodologies in studies that link the concentrations 

of accumulated aromatic hydrocarbons to a toxic response (e. g. Widdows et al., 1995b) 

may have led to an underestimation of the importance of aromatic UCMs in impacted 

marine organisms. The limited evidence made available by the re-examination of a stored 

sample of mussel tissue by GCMS herein (Chapter 1), from a site shown to have reduced 

Scope for Growth (Widdows et al., 1995), and analysis of the same population of mussels, 

collected 5 years after the initial study (Wraige, 1997), certainly supports the contention 

that some of the aromatic UCM components at least, exhibit toxic effects. These 

preliminary data indicated that monoaromatic UCMs may dominate the aromatic fractions 

of tissues of mussels with impaired health and pointed towards a correlation between 

reduced SFG in mussel populations and the concentration of unresolved aromatic 

hydrocarbons (Chapter 1). Clearly the toxicity of monoaromatic UCM hydrocarbons 

requires investigation. 

2.2 Aims 

The aims of the work carried out in this chapter were to isolate a monoaromatic UCM and 

to carry out a mussel feeding rate assay using the isolated UCM in order to test the 

hypothesis that components of the aromatic UCM may be responsible for the reduced 

Scope for Growth (SFG) found in mussels at petroleum-impacted sites. 
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2.3 Isolation of a monoaromatic UCM 

A major problem in the isolation of a monoaromatic UCM from a fresh crude oil is how to 

effect efficient removal of the resolved components. Therefore, in the present study an in- 

reservoir biodegraded produced crude oil was chosen, from which many of the GC 

resolved components had been removed by natural bacterial action, leaving an oil with a 

prominent UCM. Since the UCM hydrocarbons are thought to be resistant to 

biodegradation, at least until most of the resolved components have been removed, the 

UCM of a biodegraded oil should be similar to that of a fresh crude. Killops & Al-Juboori 

(1990), Revill et al. (1992) and Warton et al. (1999) all used biodegraded crude oils in 

their compositional studies on aromatic UCMs for the same reason. The crude oil used in 

the current study was a Gullfaks (North Sea) crude. Petroleum from the Gullfaks field has 

suffered variable degrees of biodegradation in-reservoir mediated by aerobic bacteria 

(Horstad et al., 1990). The particular production oil used herein was very similar, if not 

identical, to that spilled by the Braer in January 1993, which released >84,000 tonnes of 

the oil into the marine environment around Shetland, U. K. The sample was a produced 

crude which was provided by the operators of the same terminal (Mongstad, Norway) from 

which the Braer was loaded a few days later. The gas chromatogram of the oil (Figure 

2.3a) revealed a small proportion of both C6_10 volatile and C15_20 semi-volatile resolved 

compounds overlying an unresolved complex mixture (84 %). 

The strategy adopted for the isolation procedure of the monoaromatic UCM was similar to 

that used by Killops & Readman (1985) and Wraige (1997) for environmental samples. 

The whole procedure is illustrated in Figure 2.1. Each stage was repeated several times in 

order to purify a suitable quantity of the monoaromatic UCM for the toxicological assay. 

Full experimental details are given in Chapter 7. Briefly, Gullfaks (North Sea) produced 

crude oil was placed in a 50m1 round bottomed flask and rotary evaporated (50°C, 10 min). 
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OIL SAMPLE 

ROTARY EVAPORATION 

OIL SAMPLE MINUS LOW 
MOLECULAR WEIGHT 

COLUMN CHROMATOGRAPHY I`ALIPHATICS' 

`AROMATICS' `POLARS' 

NORMAL PHASE HPLC 

UCM (MONOAROMATIC) 

Figure 2.1 Isolation of monoaromatic hydrocarbon unresolved complex mixture 
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Removal of resolved volatile hydrocarbons was monitored by GCMS. The results of this 

operation on oil composition are shown in Figure 2.3b. Samples of rotary evaporated oil 

were fractionated into `aliphatic' (Figure 2.3c) and `aromatic' (Figure 2.3d) hydrocarbon 

fractions using open column chromatography. A high sample: adsorbent ratio (1: 200) was 

employed in conjunction with fully activated silica to achieve good separation of aliphatic 

and monoaromatic compounds. The method adopted was the same as used by Wraige 

(1997) in the analysis of UCMs from mussel tissue from petroleum impacted sites as it was 

designed to effect a good separation between aliphatic and monoaromatic compounds. 

Typical gas chromatograms of the aliphatic and aromatic hydrocarbon fractions after 

separation by open column chromatography are illustrated in Figure 2.3. 

Preparative normal phase HPLC separation of the `aromatic' fraction was carried out using 

three Hypersil 8 µm Hyperprep HSAPS columns fitted with a guard column, and 

monitored by a UV detector operating at 254nm. The mobile phase/solvent gradient was 

100% hexane from 0-40 minutes, changing to 100% DCM from 40-41 minutes, and 

remaining at 100% DCM from 41-60 minutes. The mobile phase took approximately 20 

minutes to pass through the system, hence the chromatogram in Figure 2.2. shows a time 

from 0-80 minutes. Consecutive fractions were collected beginning at UV absorption 

minima (as shown in Figure 2.2. ), in a manner similar to that of Killops & Readman 

(1985). 
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Figure 2.2 Normal-phase HPLC chromatogram of aromatic hydrocarbons of 

Gullfaks produced crude illustrating fractionation 

(254 nm; F1-F 14 refer to collected fractions) 

The collected fractions were examined by GCMS. Preliminary investigations found that 

typically 15 mg could be loaded onto the system to yield a monoaromatic fraction (F2,22- 

29 min; Figure 2.2) consisting almost entirely of a UCM (> 95 %) and limited resolved 

compounds (< 5%) (Figure 2.3e). This fraction constituted around 10 % (n = 10) of the 

whole oil and was found to comprise monoaromatic constituents as evidenced by the 

presence (GCMS fragmentography) of monoaromatic steroids (m/z 253) and alkylbenzenes 

(m/z 91), as observed previously by Killops & Readman (1985). Later eluting fractions 

contained di- and tri-aromatics such as alkylnaphthalenes (m/z 128,142,156,170), 

alkylphenanthrenes (m/z 192) and triaromatic steroids (m/z 231) as monitored by GCMS. 
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Figure 2.3. Gas chromatograms of products from each stage of the 

monoaromatic UCM isolation procedure 
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2.4 Concentration-response studies of the effect of an isolated monoaromatic UCM 

upon mussel feeding rate 

2.4.1 Experimental approach 

The mussel bioassay was chosen from the many biological endpoints available because it 

is widely used in the calculation of Scope for Growth, which has been shown consistently 

to be one of the most sensitive measures of pollution induced stress. The mussel feeding 

rate assay used was that of Wraige (1997) adapted from Donkin et al. (1989). Full 

experimental details are given in Chapter 7. A brief synopsis of the method follows. 

Mussels of 10 - 20 mm were collected from Whitsand Bay, U. K., a site known to be free 

from petroleum contamination (Wraige, 1997). Mussels were cleaned of epibionts and 

allowed to acclimate to laboratory conditions for 7 days in open flow tanks with 

recirculating seawater. A monoaromatic hydrocarbon UCM isolated from a crude oil as 

described in Section 2.3 was used as the test substrate (toxicant). Toxicant solutions (0,25, 

50,100 and 200 µg L') were prepared using 45 µm filtered seawater. The toxicant was 

dissolved in a minimal volume (100 µL) of carrier solvent (acetone) to aid dispersion. 

Control solutions were prepared in a similar manner using acetone only. At this 

concentration acetone has no detectable effect on mussel feeding rate (Donkin et al., 1989). 

This was injected directly into a vortex created by a magnetic stirrer and the solutions were 

stirred for 2 hours prior to use. Groups of 7 mussels (12 - 14 mm) were exposed to 1.4 L of 

toxicant in a glass round bottomed vessel for 24 hours. Control vessels (0 µg L'') 

containing seawater and acetone (0.001%) were assembled in parallel. Mussels were 

continuously fed with an algal culture of Isochrysis galbana by means of a peristaltic pump 

to ensure that their valves remained open and the animals were filtering. Gentle water 

movement was provided by a Teflon magnetic stirrer bar. Duplicate tests were performed 

at each exposure concentration. 
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Feeding rates were calculated from the rate at which algal cells were cleared from 

suspension in the static test system. After exposure, mussels were transferred into 

individual glass beakers each containing 200 mL of toxicant. A control beaker was also set 

up containing no mussels. To each vessel a predetermined volume of algal culture was 

added to give a concentration of 24 - 30000 cells mL"I, and the water gently stirred to 

ensure an even distribution of algae within the beaker. Mussels were allowed a 30 minute 

acclimatisation period to open their shells and to resume feeding. After 5 minutes (time 0), 

a 20 mL aliquot was removed and cell numbers were counted in triplicate, using a model D 

Coulter counter set to measure particles greater than 3 µm. After a further 15 minutes, 

another 20 mL aliquot was removed and cell numbers were counted in the same manner. 

Feeding rates were calculated using the decrease in cell numbers over the 15 minute period 

using: 

Feeding rate (L h"1) = (v x 60 / t)(1nM1-1nM2) 

Where v= volume of water in beaker (L) 

t= time period of measurement (h) 

M1 = cell count at to (mean of triplicate measurement) 

M2 = cell count at ti (mean of triplicate measurement) 

Mussels were dissected and stored in solvent-rinsed jars at -17 °C pending analysis. Tissue 

was extracted by alkaline digestion (NaOH), followed by extraction into hexane (x 3). 

Extracts were concentrated and then analysed by GCMS. The amount of the aromatic 

UCM accumulated by the animals, and observable in the gas chromatograms, was 

quantified using an external calibration graph. The monoaromatic UCM isolated from 

Gullfaks oil was analysed by GCMS over a range of concentrations in triplicate to give a 

calibration graph. Quantification was performed using ChemstationTM (Hewlett Packard) 

software. The total area of the chromatogram was calculated using AREASUM 

parameters. Resolved components were integrated manually as no one set of parameters 
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adequately quantified the peaks present, and the unresolved component was then calculated 

from total area in the chromatogram minus the resolved area. The unresolved component 

present in extracted mussel tissue was calculated from the calibration graph from the 

calibrated weight of the isolated monoaromatic UCM (Figure 2.4. ). 

600- 
R2 = 0.9986 

500- 
RZ=0.9988 

x 400 , -' 

300 

200- 

100- 

R 0.9936 'ýýý` ------" 
2= 

0 0.5 1 1.5 2 2.5 

Concentration (mg mL'') 
" resolved peaks   total area " ucm = total - resolved 

Figure 2.4 External calibration graph used to quantify the monoaromatic UCM 

hydrocarbons accumulated by mussels exposed to toxicant solutions. 

2.5 Results 

The isolated fraction (Figure 2.3e) from the crude oil sample was monoaromatic in nature. 

Extracted ion chromatograms performed on the HPLC fractions showed that Fraction 2 

contained no methylbiphenyls or methylnaphthalenes, but monoaromatic compounds such 
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as a series of monoaromatic steroids (Mackenzie et al., 1982) monitored by ion 

fragmentography (m/z 253). This is consistent with the results of Killops and Readman 

(1985) who found that the majority of the UCM of a biodegraded Alaskan oil was 

monoaromatic, and Wraige (1997), who determined that the majority of the aromatic UCM 

in U. K. mussels was monoaromatic (-80 %) by similar procedures. The aromatic fraction 

of Gullfaks oil constituted on average 35 % (n = 10) of the total oil sample. The isolated 

monoaromatic UCM accounted for 30% (n = 10) of the aromatic fraction and thus 

accounted for about 10 % (n = 10) of the total oil. Since the Braer released >84,000 tonnes 

of a similar crude into the marine environment, the respective monoaromatic UCM 

entering the environment from that spill could be estimated to be about 8,400 tonnes. The 

isolated monoaromatic UCM contained <5% `resolved' components. Inspection of the 

gas chromatogram (Figure 2.3e) reveals that no one component is particularly resolved 

above the unresolved complex mixture, but the integration procedure, which was found to 

be consistent between samples (RSD 5.75 %, n= 7), includes any distortions above the 

basic `hump' shape as `resolved'. Mass spectra of the seemingly `resolved' components 

were similar to those of the UCM (i. e. no distinction of these components could be made) 

indicating that these were similar structures. This is consistent with similar findings by 

Warton et al., (1999). Therefore, a monoaromatic unresolved complex mixture had been 

successfully isolated from a crude oil. Furthermore, the isolated monoaromatic UCM could 

be used to carry out toxicological studies, to determine if compounds in this mixture, 

present in the environment in high concentrations, are responsible for observed effects in 

wild populations of mussels. 

Mussels (M. edulis) were exposed to aqueous solutions of the isolated monoaromatic UCM 

for 24 hours to observe its effect on feeding rate. A summary of the effects of aqueous 

exposure and total body burden of the isolated monoaromatic UCM upon mussel feeding 

rate are presented in Table 2.1. Feeding rates for both the control and toxicant exposed 
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animals are expressed as means ± standard deviation (n = 7). Concentration-response 

curves for the effect of the isolated monoaromatic hydrocarbon UCM on mussel feeding 

rate over 24 hours, expressed in terms of nominal aqueous concentration and total body 

burden, are shown in Figures 2.5 and 2.6, respectively. Values are plotted as mean feeding 

rate ± standard deviation (n = 7) and a reduction in feeding rate is apparent. 

Table 2.1 The effect of an isolated monoaromatic hydrocarbon UCM upon mussel 

feeding rate over a 24 h exposure period 

Nominal aqueous 
concentration 

(µg L-) 

Total body burden 
of toxicant 

(µg g' wet weight) 

Mussel feeding rate (L hr-'-)- 
mean ± std dev. 

(n = 7) 
0 0 0.41 f 0.05 

0 0.44±0.07 

25 3.1 0.44 t 0.06 

3.2 0.40±0.05 

0 0 0.43 t 0.05 

0 0.43 t 0.04 
50 10.2 0.39 f 0.07 

18.3 0.36±0.05 

0 0 0.46 ± 0.07 

0 0.45 ± 0.07 

100 46.1 0.35 ± 0.05 

70.3 0.35 ± 0.06 

0 0 0.44 ± 0.03 

0 0.46 ± 0.04 

200 81.0 0.31 ± 0.04 

89.9 0.25 ± 0.05 
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Figure 2.5 Concentration (aqueous)-response curve for the effect of an isolated 

monoaromatic hydrocarbon UCM upon mussel feeding rate over 24 h 

(values plotted as mean ±sd, n=7, except control value exposure 0 ftg L" n=56) 
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Figure 2.6 Concentration (tissue)-response curve for the effect of an isolated 

monoaromatic hydrocarbon UCM upon mussel feeding rate over 24 h 

(values plotted as mean ±sd, n=7, except control value exposure 0 ftg L" n=56) 
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Statgraphics 4 was used for all data analysis. Data were tested for normality using 

standardised skewness and standardised kurtosis. All data were found to be parametric, 

thus a t-test was used to compare means and ANOVA used to test the distribution of the 

data. In all statistical analyses differences at the <5% level were considered significant. All 

the controls that were carried out on different days as part of different exposure tests were 

found not to be statistically different thus allowing direct comparison of the exposure 

vessels. Pooled exposure data were compared with pooled control data. All data were 

normally distributed and duplicate exposures were not significantly different (except at 200 

µg L"') and were therefore pooled. A summary of the pooled data is presented in Table 2.2. 

Table 2.2 Summary of the concentration-response data for the effect of an isolated 

monoaromatic hydrocarbon UCM upon mussel feeding rate, 24 h exposure 

Nominal aqueous Total body Mussel feeding Mussel feeding 

concentration burden of toxicant rate (L hr') rate expressed as 

(µg L"') (µg g'1 wet weight) (mean f std dev % of control 

(mean, n= 2) n =14) feeding rate 

0 0 0.42 t 0.06 100 

25 3.2 0.42 t 0.06 100 

0 0 0.43 t 0.05 100 

50 14.3 0.37 t 0.06 86 

0 0 0.45 f 0.07 100 

100 58.2 0.34 t 0.06 76 

0 0 0.45 f 0.04 100 

200 81.0 0.31 t 0.04 68 

89.9 0.25 f 0.05 55 
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Feeding rates were also expressed as a percentage of the control value (using a pooled 

value of the control feeding rates). Expressing results in this manner effectively eliminates 

the influence of other environmental variables. The results therefore describe a reduction 

that is attributable to the test substrate. The data show that the monoaromatic hydrocarbon 

UCM isolated from Gullfaks crude oil reduced mussel feeding rate by -40 % at the highest 

nominal concentration of 200 µg L"'. This aqueous concentration resulted in the 

accumulation of up to 90 µg g"' wet weight of the UCM in the 24 hour exposure period. 

This accumulation is equivalent to approximately 400 µg g' dry weight which is 

comparable to the amounts of monoaromatic UCMs found in mussels from impacted sites 

previously shown to have reduced SFG (e. g. Whitby, 392 . tg g"' dry weight). 

Figure 2.7d illustrates the accumulation of the isolated monoaromatic UCM within the 

mussel tissue as compared to control mussels (Figure 2.7c). UCM hydrocarbons are clearly 

visible in the total organic extract of the mussel tissue from exposed animals (Figure 2.7d), 

whereas no `hump' is present in the gas chromatogram of the total organic extract of 

control animals. This indicates that the accumulation of these components is responsible 

for the observed effect. The additional peaks present in the total organic extracts of the 

mussels from the feeding rate experiments are natural lipid compounds and are found in 

total organic extracts of other mussel tissue. Figure 2.7a shows the monoaromatic fraction 

isolated from mussels collected from Whitby in 1995. This site is where mussels were 

previously shown to have reduced Scope for Growth which correlated well with the 

aromatic content of the tissues (Widdows et al., 1995b). The gas chromatogram of the 

isolated monoaromatic UCM (Figure 2.7b) exposed to mussels compares well with that 

isolated from an environmental sample. 
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Figure 2.7 Gas chromatograms of 
a) monoaromatic hydrocarbon fraction isolated from mussels Whitby U. K. May 1995 
b) a monoaromatic UCM fraction isolated from Gullfaks North Sea crude oil 
c) total organic extract from control mussels 
d) total organic extract from mussels exposed to the monoaromatic UCM isolated 
from Gullfaks oil (b) 
O The additional peaks in c and d are natural lipid compounds present in the total organic 
extracts of other mussel tissue. GC conditions: Hewlett Packard MSD 5890,12m HP-1 
column, 40-300'U min-' at 5'C min-1. 
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2.6 Discussion 

Whilst the literature evidence is fragmentary and limited, it is clear from the review in 

Chapter 1 that aromatic UCMs of hydrocarbons occur widely in the environment. Use of 

non-optimum analytical methods partly accounts for the paucity of data. The common 

selected ion monitoring GCMS analytical methods often leave this fraction of pollutants 

undetected and unmeasured. Those measurements which have been made suggest that in 

certain environments quite high concentrations (e. g. up to 7000 µg g"1 dry weight in South 

African mussels; Mason, 1988) of aromatic UCM hydrocarbons may be present. The 

apparently rather resistant nature of these hydrocarbons to biodegradation, as evidenced by 

the occurrence of UCMs in biodegraded crude oils (e. g. Warton et al., 1999), is consistent 

with the observations of considerable environmental accumulation of aromatic UCM 

hydrocarbons. Clearly the origin of these UCM burdens lies in disposal of crude oil and 

refined fractions of petroleum into the environment. A review of the available information 

on aromatic UCMs in Chapter 1 suggested the possibility that the accumulation of these 

compounds within the marine environment may elicit sublethal effects within organisms 

that can be detrimental to the ecosystem as a whole. 

The UCM found within the aromatic fraction of a recent estuarine sediment was found to 

be mainly monoaromatic in nature (Killops & Readman, 1985). Wraige (1997) also found 

that this was the case for contaminated mussels, which contained aromatic UCMs at -10- 

40 % of the total hydrocarbons, of which -80 % was monoaromatic. Therefore, a 

monoaromatic UCM was isolated from produced Gullfaks crude to investigate the possible 

toxicological properties of these compounds. The monoaromatic UCM was isolated from a 

sample of Gullfaks (North Sea) produced crude (Figure 2.3) by open column 

chromatography and HPLC. GC resolved volatile components, such as toluene, present in 

the produced crude probably due to blending, were removed by rotary evaporation. This oil 
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is representative of that spilled by the Braer in January 1993 into the marine environment 

around Shetland (>84,000 tonnes) and appears to have been subject to in-reservoir 

biodegradation. A `hump' or UCM thus dominates the GC profile of the whole oil. This 

feature is clearly visible in the chromatogram of the monoaromatic fraction (Figure 2.3) 

and comprised about 10 % of the whole oil, as determined by gravimetry. The proportion 

of the isolated monoaromatic UCM of the oil was -10%. Given that an estimated 84,000 

tonnes of a similar oil was spilled from the Braer (EGOSS, 1994), an estimated 8,400 

tonnes of aromatic UCM was also introduced into the marine environment of the Shetland 

Islands, U. K. 

The isolated monoaromatic fraction from Gullfaks crude oil was exposed to mussels for 24 

hours to observe its effect on mussel feeding rate. At the highest nominal aqueous 

concentration (200 pg L"I) the isolated monoaromatic UCM reduced mussel feeding rate 

by -40%. A UCM was clearly visible in the total organic extract of the exposed mussels 

when compared to untreated controls (Figure 2.7) suggesting that this response was indeed 

due to the accumulation of these compounds within the mussel tissue at the site of toxic 

action. The feeding rate was statistically different (p 5 0.015) from control data at all 

exposure concentrations above 50 µg L"' and above, corresponding to an accumulation of 

approximately >_ 15 µg g -1 wet weight (-60 pg g'' dry weight) of the isolated 

monoaromatic UCM. 

From the gas chromatogram of the total organic extract of mussels exposed to the 

monoaromatic UCM (Figure 2.7d) it would appear that the accumulated UCM is similar to 

that of the isolated monoaromatic UCM (Figure 2.7b) to which they were exposed, as the 

UCM is present over the same retention time range. This suggests that no modification of 

the UCM occurred during the experiment, i. e. all the monoaromatic UCM components 

were accumulated in the mussel tissue rather than, for example, those components in the 

lower molecular weight range. However, at the higher molecular weight range the shape of 
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the UCM in the mussel tissue extract (Figure 2.7d) is somewhat masked by the presence of 

naturally occurring lipids, also present in the control mussel tissue extracts (Figure 2.7c). It 

is possible that the presence of these compounds in the gas chromatograms of tissue 

extracts may also have slightly interfered with the quantification of the UCM and this may 

account for the slight difference in the amounts determined to be accumulated by mussels 

exposed in duplicate to 100 µg L"'; and the difference in feeding rate, despite a similar 

level of accumulation at duplicate 200 µg L"' exposures. If the experiment were to be 

repeated it would be interesting to use normal phase HPLC, as in the isolation of the 

monoaromatic UCM, on the tissue extracts to remove these compounds to determine if this 

were the case. 

It is important to note that the 5% seemingly `resolved' components in the isolated 

monoaromatic UCM oil fraction (Figure 2.7b) cannot account for the observed decrease in 

mussel feeding rates. The tissue effective concentration of typical resolved monoaromatics 

required to reduced mussel feeding rate by 50 % (TECso) ranges from 35-94 µg g" wet 

weight for 1-phenylpentane to 1-phenyldecane (Donkin et al., 1989), whereas the 

concentrations of resolved monoaromatic in the mussels exposed to oil was less than 5µg 

g"' wet weight. Any resolved peaks found in the tissue extracts of exposed mussels (Figure 

2.7d) were also found in the control mussels (Figure 2.7c) indicating that they were either 

natural compounds present within the mussel tissue, or came from the extraction procedure 

itself, and so could not be responsible for the reduction in feeding rate. Clearly, the 

reduction in feeding rate suggests that monoaromatic UCM hydrocarbons are toxic at 

sublethal concentrations to mussels. It also appears that the isolated monoaromatic UCM 

as a whole rather than sub-components was responsible for the effect observed. 

It could be argued that marine organisms may not encounter levels of 200 µg L" in the 

marine environment or that 24 hours was a short exposure time. However, Engelhardt et al. 

(1985) noticed that the level of hydrocarbons accumulated in Arctic bivalves exposed to 
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dispersed petroleum was dose-time dependent. A 14 day exposure at 50 ppb (parts per 

billion) achieved a similar body burden to a6 hour exposure period at 5 ppm (parts per 

million). The author found that that behavioural abnormalities were related to the total 

body burden of hydrocarbons, occurring at both a 6-hour exposure to 50-100 ppm and after 

a 2-week exposure at 50 ppb. This suggests that the exposure of mussels to the isolated 

monoaromatic UCM at 200 µg L-' over 24 hours achieving a body burden of -90 . tg g"' 

wet weight and a reduction of feeding rate of -40 % was valid, and that the same response 

would occur in mussels achieving an equivalent body burden when exposed to a lower 

aqueous concentration over a longer time period, as might be expected to be the case in 

environmental situations. 

These results have important implications since mussel feeding rate is included in the 

calculation of the well known Scope for Growth index, widely used as a measure of mussel 

`health'. Scope for Growth at 26 east coast U. K. sites has previously been correlated with 

the concentrations of aromatic hydrocarbons (2-3 ring) as measured by HPLC. However 

the HPLC method did not differentiate resolved compounds such as PAHs from aromatic 

UCMs. When some of these sites were later analysed by GCMS they were found to contain 

high concentrations of aromatic UCMs (Wraige, 1997). The aromatic UCM in east coast 

mussels ranged from 83-496 . tg g'' of which most was monoaromatic in character (mean 

76 %) with none being detected at a clean site (Whitsand). Concentrations of typical 

resolved priority pollutants were found to be low in comparison, e. g. the concentration of 

alkylnaphthalenes in mussels from Whitby 1995 was only 0.053 µg g-1 dry weight. The 

levels of aromatic UCMs determined by Wraige (1997) were similar to the levels of `total 

toxic hydrocarbons' as calculated by Widdows et al. (1995a) for these sites. In fact others 

have noted that the concentration of aromatic hydrocarbons measured by HPLC correlate 

well (r=0.99, n=11) with aromatic UCMs determined by GC in mussel tissue (Murray et 

al., 1983). Upon reexamination of stored mussels collected from Whitby in 1990 by the 
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more specific GCMS method (Chapter 1), the high concentrations of aromatic UCMs 

originally present in 1990 (mean 389 µg g"1 dry weight), when the SFG measurement was 

made, were confirmed. Thus, the effects on SFG originally ascribed to PAHs determined 

by HPLC (Widdows et al., 1995b) were probably in part, if not entirely, due to aromatic 

UCMs which to date have been ignored. 

This conclusion may reflect a more general analytical problem. In order to increase sample 

throughput and to minimise costs, several toxicological studies employ the rather 

unspecific HPLC determination of aromatics. Similarly, owing largely to requirements for 

measurements of priority pollutant PAHs, workers employing GCMS methods routinely 

use selected ion monitoring (SIM) procedures which effectively `filter' out the aromatic 

UCM burden. It would be useful if, in further studies the aromatic burden at petroleum 

impacted sites was analysed for, to determine the validity of the potential correlation. 

The results obtained herein also suggest that mussels in Cape Town, South Africa contain 

levels of monoaromatic UCM hydrocarbons (489-7172 µg g" dry weight aromatic UCM; 

Mason, 1988) sufficient to induce a biological response. However, extrapolation of this 

result to reported data of aromatic UCMs from other researchers (although in itself limited 

due to the lack of reported data), may be limited due to different fractionation processes 

employed by different workers in the separation of `aliphatic' and `aromatic' 

hydrocarbons. In most studies the aim of the separation of hydrocarbons into `aliphatic' 

and `aromatic' fractions is to study compounds clearly resolved by GC, such as PAHs. 

Thus, the `cut' between monoaromatic and aliphatic hydrocarbons is often not clearly 

defined. In standard column chromatography Wraige (1997) found that monoaromatic 

compounds were classed with the aliphatic fraction. Killops (1986) also noted that the 

profiles of unresolved complex mixtures by GC analysis can be severely affected by the 

fractionation method employed. They observed a larger UCM present in the aliphatic 

fraction from column chromatography than from HPLC indicating that a proportion of the 

62 



aromatic UCM compounds were present in the aliphatic fraction. They suggested that even 

using HPLC the separation of monoaromatic from aliphatic in terms of unresolved 

compounds is not complete due to the complex nature of the compounds themselves. This 

is not surprising when one considers that compositional studies in aromatic UCMs have 

shown them to contain high amounts of branched and cyclic aliphatic moieties. Thus, 

inaccuracies in aliphatic/aromatic class separation of the UCM components may 

significantly affect the gas chromatograms of the resulting fractions and the conclusions 

drawn from them (Killops, 1986). However, the method used by Wraige (1997) to quantify 

aromatic UCMs in mussels was designed with this in mind and therefore also used in this 

study. 

Recent reports demonstrate that weathered or highly weathered crude oils characterised by 

UCMs are indeed toxic to other marine organisms. Barron et al. (1999) examined the water 

accommodated PAH content of three environmentally weathered oils collected from 

underground plumes of spilled oil at a coastal Californian oilfield by SIM GCMS and 

reported that toxicity to the mysid shrimp Mysidopsis bahia was unexpectedly not 

correlated with PAH concentration. The published total ion chromatograms of the oils 

showed that hydrocarbon fractions tested were dominated by aromatic UCMs. Heintz et al. 

(1999) found that highly weathered oil from the Exxon Valdez oil spill was more toxic to 

pink salmon embryos than the unweathered oil. The authors attributed the enhancement of 

toxicity to elevated concentrations of larger PAHs in the weathered oil. These PAHs were 

measured by SIM GCMS and a lowering of the recommended legal limits for certain PAHs 

in seawater was suggested. There is no reason to question their findings but an alternative 

explanation could be an increased toxic effect owing to the relative enhancement of 

aromatic UCM compounds brought about by weathering. Neff et al. (2000) studied the 

effects of weathering on the toxicity of three offshore Australian crude oils and a diesel 

fuel to marine organisms and suggested that the unresolved components may have 
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contributed to the toxicity they observed from the water accommodated fractions (WAFs) 

of these oils. They also reported that Hokstad et al. (1999) evaluated the chemical 

composition and Microtox toxicity of (WAFs) of fresh and weathered oils of four crude 

oils. Identifiable monoaromatic hydrocarbons (MAHs) contributed most to the toxicity of 

WAFs compared to fresh oils (as in the study by Neff et al., 2000). However, the source(s) 

of toxicity in the weathered oil was uncertain and may have been due to the presence of 

UCM compounds. The results of the study herein indicated that monoaromatic unresolved 

compounds may have been responsible for the observations by these workers. 

It was suggested by Glegg & Rowland (1996) that the unresolved monoaromatic 

hydrocarbons of Gullfaks crude oil would probably add to the burden of toxins found in 

mussels collected from Sheltand, 3,6 and 15 months after the Braer spill. However, this 

was not measured in their study. The finding herein that a monoaromatic UCM isolated 

from Gullfaks crude, similar to that spilt by the Braer suggests that an interesting area of 

further study would be to analyse for monoaromatic UCMs in marine organisms from this 

area in conjunction with an assessment of their biological impact. 

2.7 Summary 

Whilst aliphatic UCMs have been demonstrated to be non-toxic, aromatic UCMs have not 

been studied. Because aromatic UCMs can consist mainly of monoaromatic compounds 

the overall aim of this work was to conduct a laboratory based assessment into the 

toxicological impact of monoaromatic UCM hydrocarbons. 

An initial aim was therefore to isolate a monoaromatic unresolved complex mixture with 

which to conduct a toxicological assay. This was successfully achieved using open column 

chromatography and normal phase HPLC of Gullfaks crude oil. The monoaromatic UCM 

contained <5% resolved compounds and accounted for -10 % of the initial oil sample. 
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Characterisation using mass spectrometry showed that the isolated unresolved complex 

mixture was monoaromatic in nature. No ions for diaromatic compounds were found and 

these compounds were present in other HPLC fractions. Ions present in the mass spectra of 

the synthetic model monoaromatic UCM hydrocarbons (see Chapter 3) were also found in 

the mass spectral analysis of the isolated complex mixture, lending further support to the 

proposed structures. Suitable quantities (50 mg) were isolated with which to carry out 

toxicological assessment. As the Gullfaks oil was almost identical to that spilt by the Braer 

the fractionation procedure used herein isolated a monoaromatic UCM that is 

representative of those found entering the marine environment. 

The next aim was to determine what effect an isolated monoaromatic UCM had on mussel 

feeding rate, a sensitive parameter in the Scope for Growth measurement. At the highest 

nominal aqueous concentration (200. tg L"1) the mussels accumulated 90 µg g"' wet weight 

tissue and feeding rate was decreased by -40 % compared to controls within 24 h. It is 

assumed that mussel exposure to a lower concentration over a greater exposure time would 

also achieve a similar body burden and thus might produce similar effects, but this requires 

further investigation. This accumulation was equivalent to approximately 350 . tg g1 dry 

weight, which is comparable to levels found within the marine environment. This level is 

also comparable to the levels of `total toxic hydrocarbons' (390 µg g"1 dry weight) found at 

Whitby where reduced Scope for Growth had been reported (Widdows et al., 1995b). 

Results presented in this chapter support evidence (Chapter 1) that the aromatic UCM is a 

significant environmental burden and a forgotten pollutant within the marine environment, 

and suggests that the unexplained toxicity found by workers studying weathered oil may 

have been due, in part, to these monoaromatic UCM compounds. Experiments carried out 

with other UCMs and other biological endpoints should identify whether the toxicity of 

monoaromatic UCMs is common to many oils and other marine organisms. 
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Chapter 3. Synthesis of a model monoaromatic UCM hydrocarbon 

Recent studies of the compositional nature of aromatic unresolved complex mixtures have 

suggested that substituted alkyltetralins may be present. Therefore, 7-cyclohexyl-l- 

methyltetralin has been synthesised herein, in good purity and yield, by a seven stage 

synthetic pathway. Synthetic intermediates were characterised by GC, GCMS, IR and 

NMR. Two further compounds, 7-cyclohexyltetralin and 7-cyclohexyl-l-propyltetralin, 

were also isolated pure from the crude reaction products of a previous study. These 

synthetic compounds represent valuable test substrates for the investigation of 

environmental aromatic UCM behaviour. 
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3.1 Introduction 

Although crude oil is the major energy resource of the Western world, a substantial 

proportion of the hydrocarbons present in petroleum has yet to be identified. The number 

of compounds in such a mixture is very large. For example, the number of structures 

possible for alicyclic alkanes increases exponentially with carbon number, so for C30 

alkanes there are 4.11 x 109 possible structures (Altgelt & Boduszynski, 1994). Whilst 

most research has focused on the GC resolvable hydrocarbon components, which are thus 

identifiable by GCMS, the unresolved components, known as the unresolved complex 

mixture (UCM), are in fact very abundant as a group. These unresolved components are 

seen as a `hump' in GC chromatograms and constitute a significant environmental burden 

in petroleum impacted sites (see Chapter 1). 

Since the pioneering attempts of American Petroleum Institute scientists to unravel the 

composition of Ponca City crude oil in the 1950s, comparatively few studies of the major 

unresolved hydrocarbons of crude oil have been published. Instead, detailed knowledge of 

the chromatographically resolved hydrocarbons of petroleum has been accrued (e. g. Peters 

& Moldowan, 1993; Altgelt & Boduszynski, 1994). Conventional instrumental techniques 

alone have been unable to elucidate the composition of these UCMs. However a few recent 

investigations into the composition of the UCM have been carried out. 

These recent studies have shown that it is the monoaromatic fraction of the aromatic UCM 

that is quantitatively important (Killops & Al-Juboori, 1990; Revill, 1992; Thomas, 1995; 

Warton, 1999). This also appears to be the case for pollutant aromatic UCM hydrocarbons 

accumulated in sediments (Killops & Al-Juboori, 1990) and mussel tissue (Wraige, 1997). 

Most recent studies of the unresolved hydrocarbon composition have been based on the 

principle of oxidative or pyrolytic degradation of UCM hydrocarbons followed by 

deuteration or derivatisation of the resulting UCM `fragments', and analysis of the 

resulting products by GCMS (e. g. Warton, 1999) or ICR (inductively coupled resonance)- 
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MS (Thomas, 1995). These products have indicated structural information about the 

original components and a so-called `retro-structural' approach has suggested that amongst 

these monoaromatic compounds alkyl substituted tetralins may be important. "Retro- 

structural analysis" involves the reconstruction of the products of oxidation to reveal the 

original molecule or `average' molecule. Whilst Gough (1989) proposed alkylbenzene 

structures with branched side chains, Revill (1992), Thomas (1995) and Warton (1999) all 

considered that the oxidation products were more consistent with the general structure of 

an alkylcyclohexyltetralin where R (see Figure 3.1) represents a straight or branched alkyl 

chain. Oxidation of such compounds generates normal and branched aliphatic acids and 

diacids, as observed for aromatic UCMs (Sturt, 2000) 

[:::: 

P 

Figure 3.1 Proposed structure of model aromatic UCM hydrocarbons (based on 

Thomas, 1995 and Warton, 1999) 

68 



3.2 Aims 

Previous characterisation of aromatic UCMs, principally by oxidative methods, followed 

by GCMS and ICR-MS, has allowed several structures of model aromatic UCM 

hydrocarbons to be proposed (Gough, 1989; Revill, 1992; Thomas, 1995 and Warton, 

1999). Such compounds are not available from commercial sources, and little if anything, 

is known about the environmental behaviour of hydrocarbons of this type. The aim of this 

work was therefore to: synthesise suitable quantities of such hydrocarbons to assess the 

potential toxic effects to the mussel, Mytilus edulis (Chapter 4); to allow investigation of 

the aqueous solubility of UCM components (Chapter 5); and to allow investigations into 

the effects of photolytic attack on model UCM hydrocarbons (Chapter 6), in order to gain 

an insight into the behaviour of monoaromatic UCMs in the environment. 

3.3. Synthetic Strategy 

The `model' monoaromatic UCM hydrocarbon, 7-cyclohexyl-l-methyltetralin (A, Figure 

3.2) was synthesised using the synthetic pathway shown in Figure 3.3. This approach has 

previously been applied by Wraige (1997) to the synthesis of 6-cyclohexyltetralin and 7- 

cyclohexyl-l-propyltetralin and by Sturt (2000) to the synthesis of 6-cyclohexyltetralin, 1- 

(3'-methylbutyl)-7-cyclohexyltetralin and 1-n-nonyl-7-cyclohexyltetralin. The method 

used was a modification of the Haworth synthesis which is commonly used to synthesise 

aromatic hydrocarbons (Vogel, 1989; March, 1985). This involved the combination of an 

aromatic hydrocarbon with an aliphatic dibasic acid by a Friedel-Crass acylation reaction 

to form a keto acid. The keto acid may then be reduced to an acid by the Clemmensen 

reduction, the product of which is cyclised to a tetralone using polyphosphoric acid. 

Addition of the alkyl substituent to the cyclised carbonyl may be performed by means of a 
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Grignard reaction producing a tertiary alcohol, which may be dehydrated via an acid- 

catalysed reaction. The alkene mixture so formed is easily hydrogenated to yield the target 

compound, in this case 7-cyclohexyl-l-methyltetralin. The products of each stage of the 

synthetic pathway were characterised by GC, GCMS, infrared spectroscopy (IR) and 

nuclear magnetic spectroscopy (NMR). In interpreting MS, IR and NMR spectra, 

correlation charts and chemical shift data were consulted (e. g. Smith & Busch, 1999; 

Stuart, 1996; Breitmaier, 1993). It was important that the identity and purity of the final 

product were assigned as small amounts of impurities may have influenced subsequent 

experimentation. Two further compounds, 6-cyclohexyltetralin (B, Figure 3.2) and 7- 

cyclohexyl-l-propyltetralin (C, Figure 3.2) were also purified in milligram quantities for 

subsequent aqueous solubility and degradation studies from previously synthesised crude 

reaction mixtures (Wraige, 1997). Full experimental details are given in Chapter 7. 

0"""o 

(A) 7-cyclohexyl- I -methyltetralin 

(B) 6-cyclohexyltetralin (C) 7-cyclohexyl-l-propyltetralin 

Figure 3.2 Model monoaromatic UCM compounds 
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Figure 3.3 Reaction scheme for the synthesis of model monoaromatic UCM 

hydrocarbons 

71 



3.4. Synthesis of 3-benzoyl(4'-cyclohexyl)propanoic acid 

3.4.1 Preparation 

3-benzoyl(4'-cyclohexyl)propanoic acid (I) was formed in good yield (65%) via a Friedel- 

Crafts acylation of phenylcyclohexane using succinic anhydride, with aluminium chloride 

as a catalyst, and tetrachloroethane as the solvent. A total ion chromatogram of 3- 

benzoyl(4'cyclohexyl)propanoic acid as the trimethylsilyl (TMS) ester is shown in Figure 

3.4. Integration of the peak areas showed the crude keto acid (I) to be >98% pure by GC 

with no impurity >1%. Therefore further purification was deemed unnecessary. 
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3.4.2 Characterisation 

Confirmation of the structure was provided by mass spectrometry where the molecular ion 

(M'", m/z 332) was observed in the electron impact mass spectrum of the TMS ester 

(Figure 3.5). The ease of loss of the methyl group of the TMS group accounts for the 

relatively low intensity of the molecular ion, and fragmentation produces the ion at m/z 317 

(M+*-CH3), characteristic of TMS esters. The base peak at m/z 187 results from benzylic 

cleavage to leave the cyclohexylbenzoyl fragment. 
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Figure 3.4 Gas chromatogram of 3-benzoyl(4'-cyclohexyl)propanoic acid (as TMS 

ester) 
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Figure 3.5 Mass spectrum of 3-benzoyl(4'-cyclohexyl)propanoic acid (as TMS ester) 
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Figure 3.6 Infra-red absorbance spectrum of 3-benzoyl(4'-cyclohexyl)propanoic acid 

(KBr disc). 

Figure 3.6 illustrates the infra-red spectrum of (I) and shows a characteristic broad 

absorption band at 3423 cm-1 owing to the OH stretch of the carboxylic acid group. The 

keto group (C=O) absorption at 1679 cm'' is shifted to a lower absorption than the C=O 

stretch of the carboxylic acid group (1712 cm-1) due to conjugation with the adjacent 

aromatic ring. The other features of this spectrum are strong bands at 2924 cm" and 2853 

cm-1 due to aliphatic C-H stretching vibrations, and a weaker band at 3039 cm" due to the 

aromatic C-H stretch. Peaks in the spectrum below 1600 cm-1 may be tentatively assigned 

as due to C-C stretch in the aromatic ring (para-substituted at 819 cm"' ), the aliphatic C-H 

bend (-1350 - 1500 cm-1), the C-O stretch of the carboxylic acid group (-1200-1300cm"), 

and the OH band of the acid group (938 cm-1). 
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The 'H NMR spectrum (Figure 3.7a) exhibited two doublets between 7 and 8 ppm 

corresponding to the aromatic protons f and g, confirming the presence of a 1,4-di- 

substituted benzene. The methylene protons of the acid side chain (b, c) are present as two 

triplets (3.3 ppm, 2.8 ppm). The resonance from i was observed downfield from the other 

cyclohexyl protons as a broad multiplet at 2.6 ppm due to the proximity of the benzene 

ring. The other methylenic cyclohexyl protons (j, k, 1) were observed as two multiplets at 

1.8 and 1.4 ppm probably due to the axial and equatorial positioning on the cyclohexyl 

ring. The 13C-NMR spectrum of 3-benzoyl(4'-cyclohexyl)propanoic acid (Figure 3.7b) 

revealed 12 resonances corresponding to 16 carbon atoms. The two carbonyl carbons (a 

and d) are present at the characteristic chemical shifts of 179 ppm (a) and 197 ppm (d). 

There are four aromatic resonances relating to the six carbons in the aromatic ring (e, f, h, 

g). The ipso carbons on the aromatic ring were assigned as e and h, with the deshielding 

effect of the carbonyl carbon d causing the downfield shift of e (154 ppm) in comparison 

to h (134 ppm). The other four aromatic carbons were accounted for by f and g at 127 and 

128 ppm, with each resonance representing two magnetically equivalent carbons, indicated 

by the increased intensity of their signal. Six carbon resonances were present in the 

aliphatic region. The resonance at 45 ppm was attributed to the tertiary carbon (i) in the 

cyclohexyl ring, shifted furthest downfield owing to its proximity to the aromatic ring. The 

methylene carbons j and k were assigned on the basis of their intensity, and the methylene 

carbons on the butanoic side chain (b, c) were apparent at 33 ppm and 28 ppm. The 

remaining methylene carbon I of the cyclohexyl ring was present at 26 ppm. These 

assignments were supported by the DEPT sequence (Figure 3.7c) which exhibits 

resonances caused by five methylene carbons (b, c, j, k, 1), three methine (f, g, h, ) and four 

quaternary carbons (a, d, e, h). 
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Figure 3.7 Assignment key for the NMR spectra of 3-benzoyl(4'-cyclohexyl)propanoic 

acid 

Figure 3.7a Proton NMR spectrum of 3-benzoyl(4'-cyclohexyl)propanoic acid 
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Figure 3.7b 13Carbon NMR spectrum of 3-benzoyl(4'-cyclohexyl)propanoic acid 

rg 

Figure 3.7c DEPT NMR spectrum of 3-benzoyl(4'-cyclohexyl)propanoic acid 

3.5 Synthesis of 4-phenyl(4'-cyclohexyl)butanoic acid 
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3.5.1 Preparation 

3-benzoyl(4'-cyclohexyl)propanoic acid (I) was converted into 4-phenyl(4'- 

cyclohexyl)butanoic acid (II) via a Huang-Minlon modification of a Wolff-Kischner 

reduction (Huang-Minlon, 1946) using hydrazine hydrate with potassium hydroxide and 

ethylene glycol as the solvent. 4-phenyl(4'-cyclohexyl)butanoic acid was obtained in good 

yield (83 %) and purity (>98 % by GC) as evidenced by the gas chromatogram of the 

product as the TMS ester (Figure 3.8. ) 

I 

3.5.2 Characterisation 

N2H4/KOH 

II 

The mass spectrum (Figure 3.9. ) indicated a relatively weak molecular ion M+' at m/z 318, 

and an ion at m/z 303, which corresponds to M+'-15, i. e. the loss of a methyl group from 

the TMS group. These were accompanied by the base peak m/z 186 resulting from y-H 

rearrangement (cleavage of the butanoic acid substituent), and the ion at m/z 117 

(COOTMS+) from ß cleavage (cleavage at the esteric carbon). This fragmentation pattern 

is commonly known as the McLafferty rearrangement and occurs in compounds containing 

an unsaturated functionality, in this case the carbonyl group, along with a y-H. 

78 



t 

a 

Figure 3.8 Gas chromatogram of 4-phenyl(4'-cyclohexyl)butanoic acid (as TMS ester) 
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Figure 3.9 Mass spectrum of 4-phenyl(4'-cyclohexyl)butanoic acid (as TMS ester) 
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The IR spectrum presented in Figure 3.10 was similar to that of 3-benzoyl(4'- 

cyclohexyl)propanoic acid (Figure 3.6) but revealed that reduction of the keto group had 

indeed occurred, indicated by the loss of absorption previously assigned to the keto group 

at 1679 cm" 1. 
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Figure 3.10 Infra-red spectrum of 4-phenyl(4'-cyclohexyl)butanoic acid (KBr disc). 

Further evidence for the reduction of 3-benzoyl(4'-cyclohexyl)propanoic acid is provided 

by the NMR spectra (Figure 3.11). The 'H NMR spectrum together with assignments is 

shown in Figure 3.11 a. In the aromatic region a multiplet (7.3 ppm) represents the protons 

f and g. In the aliphatic region the two triplets at 2.6 and 2.3 ppm are due to the protons b 

and d of the butanoic side chain. These have been assigned by their relative proximity to 

the carboxylic acid group and the benzene ring. The proton c is present as a quintet at 1.9 

ppm and the hydrogen i of the cyclohexyl ring is seen as a broad multiplet at 2.4 ppm 
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whilst the remaining protons of the cyclohexyl ring (j, k, 1) are seen as two multiplets at 

1.8 and 1.4 ppm. 

The absence of the resonance at 197 ppm in the 13 C NMR spectrum (Figure 3.11 b) is 

consistent with the absence of the carbonyl carbon. The adjacent aromatic carbon e has 

been shifted upfield to 146 ppm as there is no longer a carbonyl carbon to exert any effect, 

whereas the resonance due to h is present at 138 ppm, and f and g resonate at 126 and 127 

ppm. In the aliphatic region c has also been shifted upfield as it no longer experiences the 

effect of a carbonyl group. The methine carbon (i) of the cyclohexyl group, easily 

distinguished by the DEPT sequence (Figure 3.11 c), was again found at 44 ppm. The other 

aliphatic carbons are found between 20 and 40 ppm and were assigned based on their 

distance from the aromatic ring or carboxylic acid group. These assignments are supported 

by the DEPT sequence which exhibits resonances caused by six methylene carbons (b, c, 

d, j, k, 1), three methine carbon (f, g, i) and four quaternary carbons (a, e, h). 
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Figure 3.11 Assignment key for the NMR spectra of 4-phenyl(4'-cyclohexyl)butanoic 

acid 

f, g 

10 B6420 PPM 

Figure 3.11a Proton NMR spectrum of 4-phenyl(4'-cyclohexyl)butanoic acid 
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Figure 3.11b 13Carbon NMR spectrum of 4-phenyl(4'-cyclohexyl)butanoic acid 
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Figure 3.11c DEPT NMR spectrum of 4-phenyl(4'-cyclohexyl)butanoic acid 
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3.6 Synthesis of 7-cylcohexyl-l-tetralone 

3.6.1 Preparation 

Synthesis of 7-cyclohexyl-l-tetralone (III) was achieved by cyclisation of 4-phenyl(4'- 

cyclohexyl)butanoic acid (II) with hot polyphosphoric acid (March, 1985; Vogel, 1989). 

The gas chromatogram (Figure 3.12) shows the product was formed in reasonable purity 

(>94 % by GC), and the reaction proceeded with high yield (80%). 

0 

II 

3.6.2 Characterisation 

PPA 0 
0 

III 

The mass spectrum of 7-cylohexyl-l-tetralone (III) (Figure 3.13) showed the molecular 

ion M+' at m/z 228 (base peak), along with diagnostic ions m/z 200 (M+'-CO) and m/z 185 

(M+'-CH3O). 

Analysis by IR spectroscopy revealed the loss of absorptions at 3423 cm" and 1708 cm", 

indicative of the carboxylic acid group, and the introduction of an absorption at 1685 cm-1 

consistent with the presence of a ketone group (vC=O). The infra red spectrum of the 

tetralone (Figure 3.14) also showed spectral bands expected from the aliphatic and 

aromatic features of the compound. From the aliphatic part of the molecule the strong C-H 
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Figure 3.12 Gas chromatogram of 7-cyclohexyl-I-tetralone 
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Figure 3.13 Mass spectrum of 7-cylohexyl-1-tetralone 

M` 

85 



100 

.4 

76 

aro 

VC-C 

e pa 

alp 
VC-H 

1685 

1) C=O 

M 

!D 
4000 3E00 2400 8000 1600 1600 

Wave ffiffibe r cm'' 
Deo 

Figure 3.14 Infra-red spectrum of 7-cylohexyl-l-tetralone (liquid film using NaCl 

disc) 

stretches at 2923 and 2850 cm's are visible, and the weaker band at 3032 cm"' due to the 

aromatic C-H stretch is present. 

The 'H-NMR spectrum is presented in Figure 3.15a together with the assignments. The 

aromatic protons i, j and g are found between 7 and 8 ppm. The singlet corresponding to g 

is present at 7.9 ppm, shifted downfield from the doublets corresponding to i and j at 

7.3ppm and 7.1 ppm respectively, due to the shielding effect of a carbonyl in aß position. 

In the aliphatic region the two triplets assigned to b and d at 2.9 and 2.7 ppm are shifted 

downfield compared to the quintet at 2.1 ppm corresponding to c due to the proximity of 
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both the carbonyl and the benzene ring. The two multiplets at 1.8 and 1.4 ppm represent 

the protons of the cyclohexyl moiety (1, m, n), except for k which is present further 

downfield, because of the deshielding effect of the adjacent aromatic ring, as a broad 

multiplet at 2.5 ppm. 

The 13C-NMR spectrum (Figure 3.15b) contained thirteen resonances and was interpreted 

in conjunction with the DEPT sequence (Figure 3.15c). The carbonyl carbon a was present 

at the characteristic chemical shift of 199 ppm in the 13C spectrum but absent from the 

DEPT sequence, consistent with a quaternary carbon. In the aromatic region there were 5 

resonances attributed to the 6 carbons in the benzene ring. Those at 147 ppm and 142 ppm 

were not present in the DEPT sequence, i. e. were quaternary carbons, and were therefore 

assigned to e, f and h. It is likely that the resonance at 147 ppm was due to f owing to the 

influence of the adjacent carbonyl group, and that e and h resonate at 142 ppm due to their 

similar chemical environments. Thus, the resonances at 132 ppm, 129 ppm and 125 ppm 

correspond to the remaining aromatic carbons g, i, and j. Likewise, the methine carbon 

present at 44 ppm can be allocated to the resonance of carbon k of the cyclohexyl ring. 

Remaining carbons present in the cyclohexyl ring were present in the region between 20 

and 40 ppm and were tentatively assigned on the basis of intensity and proximity to the 

ketone group. 
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Figure 3.15a Proton NMR spectrum of 7-cylohexyl-l-tetralone 

Figure 3.15b 13Carbon NMR spectrum of 7-cylohexyl-l-tetralone 

g, I, j 

Figure 3.15c DEPT NMR spectrum of 7-cylohexyl-l-tetralone 

Ior m 
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3.7 Synthesis of 7-cyclohexyl-l-hydroxy-l-methyltetralin 

3.7.1 Preparation 

An alkyl substituent was added to the tetralone via a Grignard reaction, a method which 

has been widely used previously (Vogel, 1989). This involved nucleophilic attack of the 

carbonyl by methyl magnesium bromide which reacted to form the tertiary alcohol. 

Grignard reactions are extremely moisture sensitive, therefore moisture was excluded by 

carrying out the reaction under a blanket of nitrogen, using glassware that had been oven 

dried at 120°C overnight, and employing calcium chloride guard tubes. 

III 

3.7.2 Characterisation 

CH3MgBr O 

lip Et20 

HO CH3 

IV 

7-cyclohexyl-l-hydroxy-l-methyltetralin (IV) was synthesised in good yield (78 %) and a 

purity of 94 %. The gas chromatogram of the TMS ester of the reaction product is 

presented in Figure 3.16. The reaction products were identified using mass spectrometry 

(Figure 3.17). The target alcohol was identified by the diagnostic ions m/z 301 (M+'-CH3) 

either from loss of a methyl group from the trimethylsilyl derivative or loss of the newly 

added methyl group, and the peak at m/z 226 (M+'- HO+TMS). IR analysis of the reaction 

products (Figure 3.18) showed a band at 3366 cm's, characteristic of an OH stretch, 

indicating that the Grignard reaction was successful. 
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Figure 3.16 Gas chromatogram of 7-cyclohexyl-l-hydroxy-l-methyltetralin (as TMS 

ester) 
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Figure 3.17 Mass spectrum of 7-cyclohexyl-l-hydroxy-l-methyltetralin 
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Figure 3.18 Infra-red spectrum of 7-cyclohexyl-l-hydroxy-l-methyltetralin (liquid 

film using NaCl disc) 

The 1H, 13C and DEPT sequence spectra all show that the Grignard reaction was successful 

and the methyl chain had been added to the cyclohexyltetralin `base' structure in the ß 

position. The 'H spectrum (Figure 3.19a) indicates the introduction of the methyl group by 

a singlet present at 1.5 ppm (a). The aromatic protons i, j and h are present with the singlet 

representing g shifted downfield due to the hydroxyl group in the ß position. The protons 

at positions e and I present at 2.4 and 2.7 ppm are shifted downfield from the rest of the 

aliphatic protons present as a broad multiplet between 1-2 ppm due to the proximity of the 

aromatic ring. 13C-NMR and DEPT studied in combination allowed full characterisation of 
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the reaction product (Figure 3.19b, c). The key feature of the 13C and DEPT spectra is the 

introduction of a methyl carbon in the aliphatic region of the spectrum which can be 

assigned to the carbon of the methyl substituent (a). The downfield shift of b compared to 

the rest of the carbons is due to the deshielding effect of the neighbouring hydroxyl group. 

The 6 carbons of the aromatic ring are found between 120-150 ppm. The quaternary 

carbons f, g and k are not present in the DEPT sequence leaving the three resonances for i, 

j and h. The other CH carbon (1) is distinguished by the DEPT sequence at 44 ppm. The 

rest of the CH2 carbons (c, d, e, m, n, o) are present as 6 resonances in the aliphatic region 

with e being shifted downfield due to the proximity of the aromatic ring. 
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Figure 3.19 Assignment key for the NMR spectra of 7-cyclohexyl-l-hydroxy-l- 

methyltetralin 
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Figure 3.19a Proton NMR spectrum of 7-cyclohexyl-l-hydroxy-l-methyltetralin 
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Figure 3.19b 13Carbon NMR spectrum of 7-cyclohexyl-l-hydroxy-l-methyltetralin 

i, j, h 

c, d, m, n, o 

Figure 3.19c DEPT NMR spectrum of 7-cyclohexyl-l-hydroxy-l-methyltetralin 
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3.8 Synthesis of an isomeric mixture of 7-cyclohexyl-l-methyl-3,4- 

dihydronaphthalene (Va) and 7-cyclohexyl-l-methenyltetralin (Vb) 

3.8.1 Preparation. 

The alcohol, 7-cyclohexyl-l-hydroxyl-l-methyltetralin (IV) was dehydrated to an isomeric 

mixture of alkenes, 7-cyclohexyl-l-methyl-3,4-dihydronaphthalene (Va) and 7-cyclohexyl- 

1-methyenyltetralin (Vb) using orthophosphoric acid. The crude reaction products (thick 

brown oil) were further purified using open column chromatography on fully activated 

silica and elution with hexane resulting in a clear oil. 

O "'PO' OO 
HO CH3 

IV Va Vb 

3.8.2 Characterisation 

The gas chromatogram of the reaction products (Figure 3.20) contained one major peak. 

The mass spectrum (Figure 3.21) demonstrated a molecular ion at m/z 226 along with a 

peak at m/z 224 (M+'-2). It is likely that 7-cyclohexyl-l-methyl-3,4-dihydronaphthalene is 

the dominant product as this places the double bond in the alicyclic moiety which is the 

more stable of the two positions. This was confirmed by NMR spectroscopy. Confirmation 

that the alcohol (IV) had been dehydrated was provided by IR spectroscopy. The IR 

spectrum of the purified alkene mixture (Figure 3.22) no longer exhibited an absorption 

band at 3366 cm"' due to the OH group but instead a small band is present at 3021 cm 

relating to vC=C. 

The 'H NMR spectra exhibits a singlet at 2.1 ppm relating to the carbon a of the methyl 

group substituent and a multiplet at 5.8 ppm relating to the alkene proton c, thus indicating 

that 7-cyclohexyl-l-methyl-3,4-dihydronaphthalene (Va) was the dominant product. The 
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Figure 3.20 Gas chromatogram of 7-cyclohexyl-l-methenyltetralin and 7-cyclohexyl- 

1-methyl-3,4-dihydronaphthalene. 
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Figure 3.21 Mass spectrum of 7-cyclohexyl-l-methenyltetralin and 7-cyclohexyl-l- 

methyl-3,4-dihydronaphthalene. 
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Figure 3.22 Infra-red spectrum of 7-cyclohexyl-l-methenyltetralin and 7-cyclohexyl- 

1-methyl-3,4-dihydronaphthalene (liquid film using NaCI disc) 

singlet due to a has also been shifted downfield due to its proximity to the double bond. 

The aromatic protons (i, h and j) are present as a multiplet at 7 ppm and the aliphatic 

protons (m, n and o) are found as two broad multiplets between 1.1 and 2 ppm. The triplet 

at 2.7 ppm accounts for the proton at position e and the protons for d and I are seen as two 

multiplets between 2.2 and 2.6 ppm. Although the 13C spectrum (Figure 3.23b) shows 6 

resonances between 130 and 160 ppm, which would account for the six carbons of the 

aromatic ring, the DEPT sequence exhibits three CH carbons, relating to h, i and j, and a 

further CH carbon relating c. In the aliphatic region the CH carbon (1) and CH3 carbon (a) 

were identified at 44 ppm and 28 ppm using the DEPT sequence. As a quarternary carbon, 

UvT 
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b is missing from the DEPT sequence. The rest of the CH2 carbons are only seen as 4 

resonances suggesting that overlapping has occurred. 
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Figure 3.23 Assignment key for the NMR spectra of 7-cyclohexyl-l-methenyltetralin 

and 7-cyclohexyl-l-methyl-3,4-dihydronaphthalene. 

a 

Figure 3.23a Proton NMR spectrum of 7-cyclohexyl-l-methenyltetralin and 7- 

cyclohexyl-l-methyl-3,4-dihydronaphthalene. 
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Figure 3.23b 13Carbon NMR spectrum of 7-cyclohexyl-l-methenyltetralin and 7- 

cyclohexyl-l-methyl-3,4-dihydronaphthalene. 

I 

Figure 3.23. c DEPT NMR spectrum of 7-cyclohexyl-l-methenyltetralin and 7- 

cyclohexyl-l-methyl-3,4-dihydronaphthalene 
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3.9 Synthesis of 7-cyclohexyl-l-methyltetralin 

3.9.1 Preparation 

The purified alkenes (V) were hydrogenated to the target compound, 7-cyclohexyl-1- 

methyltetralin (VI), by bubbling hydrogen through a solution of the alkenes in the presence 

of Adam's catalyst. Isolation of the target compound from any diaromatic compounds 

formed was achieved by Ag+ open column chromatography. 7-cyclohexyl-l-methyltetralin 

was synthesised in good yield (75 %) and purity (>99% by GC) as shown in Figure 3.24. 

O -- 
H2 

V VI 

3.9.2 Characterisation 

The mass spectrum of 7-cyclohexyl-l-methytetralin presented in Figure 3.25 shows the 

molecular ion M+' at ? Wz 228, and an ion at m/z 213 (M+'-15) corresponding to cleavage at 

the tertiary centre leading to loss of a methyl group. Figure 3.26 illustrates the relatively 

simple infrared spectrum of 7-cyclohexyl-l-methyltetralin. Aliphatic C-H stretches were 

observed at 2924 and 2850 cm-1 and the aromatic C-H stretch was visible at 3001 cm's, 

although they are poorly resolved. The group of bands around 1450 cm"' are likely to be 

due to 6C-H deformations of CH2 and CH3 groups in the molecule, with the absorption at 

816 cm"' probably being due to the aromatic substitution. Confirmation of the synthesis of 

7-cyclohexyl-1-methyltetralin was provided by 13 C, DEPT and 1H NMR spectroscopy. The 

'H NMR spectrum is presented in Figure 3.27. a. The aromatic protons (h, i, j, ) are present 

as a multiplet at 7 ppm. The single small peak at 7.24 ppm is due to residual chloroform. 
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Figure 3.24 Gas chromatogram of 7-cyclohexyl-l-methyltetralin 
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Figure 3.25 Mass spectrum of 7-cyclohexyl-l-methyltetralin 
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Figure 3.26 Infra-red spectrum of 7-cyclohexyl-l-methyltetralin (liquid film using 

NaCl disc) 

The doublet at 1.3 ppm is due to the protons of the methyl group (a). The multiplets at 2.5, 

2.7 and 2.9 ppm are likely to be due to the protons 1, b and e, shifted downfield from the 

rest of the protons in the aliphatic region due to the adjacent aromatic ring. As the multiplet 

at 2.7 ppm is approximately twice the size of the other two it is more than likely to be e, 

the larger signal accounting for the two protons present. The rest of the protons cannot be 

distinguished but are accounted for by two broad multiplets from 1.4-1.9 ppm. 

The 13C spectrum in Figure 3.27. b. revealed the six resonances in the aromatic region of 

the aromatic ring. The quaternary carbons f, g, and h at 145,142 and 134 ppm can be 

distinguished via the DEPT sequence (Figure 3.27. c. ). Thus h, i and j are present at 129, 

127 and 125 ppm. In the aliphatic region of the spectrum the DEPT sequence was also 
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used to determine the methine carbons b and 1 (33 and 44 ppm) and the methyl carbon a 

(22 ppm). The carbons b and I are shifted downfield due to the effect of the adjacent 

aromatic ring. Remaining methylene carbons between 15 and 40ppm c, d, e, m, n, o could 

not be unequivocally assigned and have therefore been grouped together. 
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Figure 3.27 Assignment key for the NMR spectra of 7-cyclohexyl-l-methyltetralin 

a 

Figure 3.27a Proton NMR spectrum of 7-cyclohexyl-l-methyltetralin 
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Figure 3.27b 13Carbon NMR spectrum of 7-cyclohexyl-l-methyltetralin 

h, i, J 

b/I 

Figure 3.27c DEPT NMR spectrum of 7-cyclohexyl-l-methyltetralin 
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3.10 Isolation of 6-cyclohexyltetralin and 7-cyclohexyl-l-propyltetralin 

Crude reaction products were provided by Wraige (1997) for the isolation of two further 

model aromatic UCM hydrocarbons. 6-cyclohexyltetralin was purified from crude reaction 

products by Ag+ silica chromatography. The gas chromatogram in Figure 3.28 shows the 

purity of 6-cyclohexyltetralin (>98 %). The mass spectrum (Figure 3.29) of 6- 

cyclohexyltetralin showed an intense molecular ion at m/z 214. Also present was an 

abundant ion at m/z 171 corresponding to a loss of 43 (M+'-43), typical of the simple 

cleavage of aliphatic chains and resulting in the cyclohexyl substituted tropylium ion at m/z 

171. These are consistent with previous assignments of Wraige (1997). The crude alkene 

mixture of 7-cyclohexyl-l-propenyltetralin and 7-cyclohexyl-I-propyl-3,4- 

dihydronaphthalene provided by Wraige (1997) was hydrogenated and purified in the same 

manner as 7-cyclohexyl-l-methyletralin (Section 3.9.1). The gas chromatogram in Figure 

3.30 demonstrates that this compound which was synthesised with a yield of 80% was >98 

% pure. The mass spectrum in Figure 3.31 exhibited the molecular ion M+'at m/z 256 and 

the base peak m/z 213 (M+'-43) corresponding to cleavage at the tertiary centre and loss of 

the propyl chain. IR and NMR was also performed on these samples. The spectra were the 

same as those reported by Wraige (1997) where full characterisation had already been 

documented. 
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Figure 3.29 Mass spectrum of 6-cyclohexyltetralin 
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Figure 3.30 Gas chromatogram of 7-cyclohexyl-l-propyltetralin 
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Figure 3.31 Mass spectrum of 7-cyclohexyl-l-propyltetralin 
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3.11 Summary 

7-cyclohexyl-l-methyltetralin has been synthesised in good yield (-500 mg) and purity 

(>99% by GC). Intermediates at each stage of the synthetic pathway were characterised by 

GC, GCMS, IR and NMR. Pure 6-cyclohexyltetralin and 7-cyclohexyl-l-propyltetralin 

were also isolated from crude reaction products supplied by Wraige (1997). These 

synthesised compounds are thought to be good models for the components present within 

the aromatic UCM as suggested by previous characterisation studies. To illustrate how the 

alkyltetralin compounds synthesised as `model' monoaromatic UCM hydrocarbons 

compare to an environmental aromatic UCM, Figure 3.32 shows the gas chromatograms of 

these compounds compared to the monoaromatic fraction isolated from mussels collected 

at a petroleum impacted site. The retention times of the compounds are within the range of 

the extracted monoaromatic UCM indicating they may have similar characteristics. Indeed, 

ions present in the mass spectra of these synthetic model compounds were found in the 

mass spectral analysis of the isolated monoaromatic UCM, further lending support to the 

proposed structures. 

These model monoaromatic UCM hydrocarbons are unavailable from commercial sources 

and were synthesised in quantities large enough to allow thorough structural 

characterisation, and pure enough for subsequent toxicological (Chapter 4), aqueous 

solubility (Chapter 5), and photodegradation studies (Chapter 6) to be made. These should 

increase our understanding of the fate, effects and reactions of aromatic UCM 

hydrocarbons in the marine environment. 

109 



m a C 
0 
a 
a 

N 

U 
l7 

048 12 16 20 24 28 32 36 40 44 48 52 56 60 

Time (minutes) 

Figure 3.32 Gas chromatograms showing a typical unresolved complex mixture 

(UCM) of monoaromatic hydrocarbons isolated from mussels collected from Whitby, 

U. K. (Wraige, 1997) and the three synthetic alkyltetralins (I = 6-cyclohexyltetralin, 

II = 7-cyclohexyl-l-methyltetralin, III = 7-cyclohexyl-1-propyltetralin) 

*= internal standard, d12 tetralin p= biogenic tetraenes. 

GCMS details: HP1 (12m x 0.2mm W. ) column; He carrier gas; 40 Y, -300 0(-'@ 5 T' min 1 

hold 10 min 
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Chapter 4. Toxicological assessment of a model monoaromatic UCM hydrocarbon 

7-cyclohexyl-l-methyltetralin, synthesised as part of this study, was assessed for its 

potential toxic effects using a mussel feeding rate assay, and was found to reduce mussel 

feeding rate significantly over a 24 hour exposure period. These results were consistent 

with those obtained previously for 6-cyclohexyltetralin and 7-cyclohexyl-l-propyltetralin 

by Wraige (1997) and were compared to the isolated monoaromatic UCM (Chapter 2). 
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4.1 Introduction 

The effects of petroleum hydrocarbons on aquatic animals have been reviewed by Connel 

& Miller (1981), and more specifically in mussels by Bayne et al. (1982). Lethal effects 

occur in the 1-100 mg L-1 range whereas sub-lethal effects of petroleum are thought to 

occur in the 1-100 µg L"' range. The ecotoxicological testing of crude oils and petroleum 

products has been reviewed by Betton (1994). Lethal toxicity is expressed as the LC5o 

value, which is defined as the exposure concentration of a chemical at which a 50% 

mortality is observed for the population being studied. The LC50 values of contaminants 

with the same mode of toxic action, e. g. narcosis, have been inversely correlated to their 

hydrophobicity (Könemann, 1981; Veith et al., 1983). The lethal body burden (LBB) or 

critical body residue has been proposed as an alternative for, or as an addition to, the LC50 

value to quantify toxicity. The LBB is defined as the molar concentration in the organism 

at lethality. It is hypothesised that the LBB does not depend on hydrophobicity and reflects 

the intrinsic toxicity of the chemical. 

The chemicals usually associated with this hypothesis of constant effective tissue 

concentrations are non-polar narcotics, such as hydrocarbons. These do not affect any 

specific organ, organ system or biochemical pathway but cause a reversible disjunction 

called narcosis. The foremost theories propose that narcotic molecules affect sites in the 

cell membranes, so that the membranes become inoperative, inducing paralysis and 

subsequent death, but the exact mechanism of narcosis is unknown. If it is assumed that all 

the membranes have a similar number of sites of toxic action, which are equally sensitive, 

and all compounds causing non-specific narcosis are equipotent, the anaesthetic effect in 

organisms should occur, as a result, at the same tissue concentration of the compound 

(Pawlisz & Peters, 1993). 
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Therefore, for acute toxicity to aquatic organisms, individual compounds are considered 

equally toxic on the basis of their internal molar concentration (Peterson, 1994). The 

difference in measured toxicity amongst hydrocarbons results from their equilibrium 

partitioning behaviour between water and organisms. Thus, the toxicity of a compound is 

related to the internal dose received by an organism. The advantage in the measurement of 

the LBB is that it is assumed to be less dependent on experimental conditions, e. g. the time 

of exposure, exposure concentration and attainment of equilibrium conditions. Pawlisz & 

Peters (1993) suggested that an average value of 3.1 mmol kg'' was a useful approximation 

of the lethal internal burden for narcosis when estimating toxicity for the internal 

concentration of unstudied narcotic compounds. 

The usefulness of lethal toxicity data is limited for the prediction of the ecological impact 

of petroleum hydrocarbons in chronically polluted situations. In contrast, the aim of a 

sublethal toxicity test is to determine whether exposure to a pollutant under a given set of 

conditions stresses the individual to a point which renders it less fit for survival (Axiack, 

1991). Whilst lethal body burden data have been reported in the literature and been 

established to occur at a relatively constant body burden of 2-8 mmol kg-1 (McCarty et al., 

1986), only a limited number of studies have reported body residue data for sublethal 

toxicological endpoints (Call et al., 1985; McCarty et al., 1986; Mortimer & Connel, 

1994). However, in these studies the body burdens of toxicants were not analysed, but 

calculated from the knowledge of aqueous solubility coupled with bioconcentration factors 

When Donkin et al. (1989,1991) investigated the effect of aliphatic and aromatic 

hydrocarbons on mussel feeding rate they measured the accumulated body burden of the 

toxicant in the mussels at the end of each feeding rate determination, and demonstrated that 

the TEC50 (the tissue concentration when a 50 % effect is observed) occurred at a relatively 

constant tissue concentration of toxicant of 0.1-0.5 mmol kg-1. This was true of the 

compounds in the log Kos,, range 2.5-5.0, irrespective of chemical structure or 
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physicochemical properties. Thus, the difference found in the water concentration based 

toxicity of these compounds was attributed to differences in bioconcentration factors. 

Donkin et al. (1989,1991) observed that compounds with a log Kota larger than 5 were not 

toxic to mussels. The observation of a cut-off in toxicity has been previously reported 

(Konemann, 1981; Hermens et al., 1984), but these observations may have been due to 

experimental conditions as they were based on aqueous solubility data. Nonetheless, 

Donkin et al. (1989,1991) showed that a cut-off in toxicity occurred despite efficient 

accumulation of compounds. 

Upon exposure to a monoaromatic UCM isolated from Gullfaks crude oil, mussel feeding 

rate was found to decrease by -40% of the control mussels at the highest aqueous exposure 

of 200 µg L't (Chapter 2), which suggested that monoaromatic UCM hydrocarbons may be 

responsible for toxicological effects observed in the field where unresolved monoaromatic 

hydrocarbons dominate the aromatic fractions of impacted sites. The gas chromatogram of 

the mussel tissue extracts from exposed mussels indicated that the UCM accumulated 

within this tissue was the same as the isolated monoaromatic UCM it was exposed to, in 

that the `humps' were present over a comparable retention time. However the cut-off in 

toxicity for compounds with a logK0,, >5 despite accumulation into mussel tissue observed 

by Donkin et al. (1989,1991), suggests that some of the monoaromatic UCM compounds 

may have been accumulated without causing an effect. As this monoaromatic UCM is 

inherently complex in nature, interpretation of the data in comparison to other 

toxicological studies is hindered by this and the lack of knowledge on its physicochemical 

and molecular characteristics. 

Current available evidence based on spectroscopic and degradative studies, reviewed in 

Section 1.2, suggests than alkyltetralins may be quantitatively important. A study by 

Wraige (1997) using 6-cyclohexyltetralin and 7-cyclohexyl-l-propyltetralin as model 

aromatic UCM hydrocarbons, found these compounds to be toxic to mussels, resulting in 
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reduced feeding rates. 6-cyclohexyltetralin reduced mussel feeding rate by 80 % of the 

control feeding rate at the highest exposure concentration of 100 µg L-' where it was 

accumulated to -150 µg g"' wet weight mussel tissue during the 24 hour exposure period. 

7-cyclohexyl-l -propyltetralin was accumulated to -213 µg g-1 wet weight mussel tissue at 

the highest nominal aqueous concentration of 100 µg L"1 and reduced feeding rate by -65 

% of the control feeding rate after a 24 hour exposure. TEC50 values were determined at 

0.206 and 0.539 mmol kg"' for 6-cyclohexyltetralin and 7-cyclohexyl-l-propyltetralin. 

Wraige (1997) concluded that these results were consistent with those reported by Donkin 

et al. (1989,1991) who demonstrated that the TECso of a range of aliphatic and aromatic 

hydrocarbons occurred at a relatively constant tissue concentration of toxicant at 0.1-0.5 

mmol kg"', and suggested that this indicated that some of the aromatic UCM might be 

capable of eliciting a similar effect. Although these model compounds have yet to be 

unequivocally identified as hydrocarbon components of UCMs they appear at least to 

contain structural features consistent with the present limited knowledge of monoaromatic 

UCM composition (e. g. Thomas, 1995). 

4.2 Aims 

Previous research has shown that proposed model monoaromatic UCM hydrocarbons 6- 

cyclohexyltetralin and 7-cyclohexyl-l-propyltetralin were toxic to the mussel Mytilus 

edulis as measured by ciliary feeding activity (Wraige, 1997). Furthermore, toxicological 

testing of an isolated monoaromatic UCM using the same assay as that in the present study 

(Chapter 2) showed that this too reduced mussel feeding rate. The work described in the 

present chapter aimed to investigate the generality of the toxicity of these alkyltetralins and 

provide a study of the effects of decreasing size of the alkyl substituents on toxicity. By 

defining more clearly the molecular size - toxicity relationships for this class of 
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compounds an indication would be provided as to which sub-components of the aromatic 

UCMs are toxic. 

4.3 Experimental Approach 

The experimental approach was effectively the same as Donkin et al. (1989) and Wraige 

(1997) so that results could be compared to other aromatic hydrocarbons and two 

previously studied `model' monoaromatic UCM hydrocarbons. This method was also 

employed in Chapter 2 to assess the effects of a monoaromatic hydrocarbon unresolved 

complex mixture isolated from a crude oil. 

In successive experiments mussels were exposed to 6-cyclohexyltetralin (25 µg L"1) and 7- 

cyclohexyl-l-methyltetralin (12.5,25,50 and 100 µg L"'). Toxicant solutions were 

prepared by adding the toxicant in acetone to filtered seawater (0.001% v/v) to give the 

required exposure concentration. Solutions were stirred for 2 hours prior to use. Controls 

(0 µg L"') comprised filtered seawater and acetone only (0.001% v/v) which have 

previously been shown to elicit no effect (Donkin et al., 1989; Wraige, 1997; Smith, 

present study). These controls were prepared and carried out in parallel to each exposure 

experiment. Groups of seven mussels, shell length 12mm, were exposed to 1.4 L toxicant 

or control solutions in glass beakers for 24 hr. Two vessels were prepared for each toxicant 

concentration. Gentle water movement was maintained by using a magnetically driven 

Teflon stirrer bar (10mm) and care was taken to position the animals as far away from the 

stirrer bar as possible. The animals were fed with an algal culture (Isochrysis galbana) for 

the duration of the exposure period in order to ensure that their valves remained open and 

the animals were filtering. For the purposes of determining feeding rate, animals were 

transferred from the exposure vessel into individual 250 mL glass beakers each containing 

200 mL toxicant solution at the same exposure concentration. The animals were allowed an 

116 



acclimatisation period of 30 minutes to open their valves and resume pumping prior to the 

addition of algae. Algal culture (a volume pre-determined to give a cell concentration of 

24000-30000 cells mL-1) was then added to each beaker and the water gently stirred 

manually using a glass rod to ensure an even distribution of algae within the beaker. An 

aliquot (20 mL) was then immediately taken from each beaker and the cell count 

determined in triplicate per aliquot using a Coulter Counter set to measure particles greater 

then 3µm in diameter. A further aliquot was taken after 15 minutes and the decline in cell 

concentration over 15 minutes calculated. Mussels subjected to the same hydrocarbon 

exposure levels were grouped together, dissected and extracted to determine the body 

burdens of accumulated compounds. Immediately prior to extraction an internal standard 

was added to the tissue for quantitation. Tissue was extracted by alkaline digestion 

(NaOH), followed by extraction into hexane (x 3). Extracts were then concentrated and 

analysed by GCMS. Compounds were quantified using integration software and internal 

standard calibration. 

4.4 Results 

Data were tested for normality using standardised skewness and standardised kurtosis. All 

data were found to be parametric, thus a t-test was used to compare means and ANOVA 

used to test the distribution of the data. In all statistical analyses differences at the <5% 

level were considered significant. Statgraphics 4 was used for all data analysis. 

The aim of the first experiment was to repeat the measurement of toxicity of 6- 

cyclohexyltetralin reported by Wraige (1997), to establish the reproducibility of the assay 

between different operators. Mussels were exposed to 25 µg L"1 6-cyclohexyltetralin. This 

was the aqueous exposure concentration which had previously caused accumulation of this 
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compound within the mussel tissue to the extent that feeding rate was reduced by 50 % 

(Wraige, 1997). 

Feeding rates for both control and toxicant animals are expressed as means ± standard 

deviations (n = 7) and as a percentage of the control value (Table 4.1) No significant 

difference was found between each of the duplicate exposures or between controls, 

therefore the data from each exposure concentration were pooled (Table 4.2). The data in 

Table 4.2 show that 6-cyclohexyltetralin reduced feeding rate by 52 % compared to 

controls. These results are consistent with those of Wraige (1997) who found a 47 % 

decrease in 24 hours at this aqueous exposure concentration. The feeding rate of the 

control animals in the present study was slightly lower than that of Wraige (1997) but no 

significant difference was noted between the feeding rate of exposed animals from the 

present study and that of Wraige (1997) when compared as a reduction of the control 

value. The lower control values may be attributable to seasonal variation in the feeding rate 

of mussels. 

Table 4.1 The effect of 6-cyclohexyltetralin upon mussel feeding rate over a 24 h 

exposure period 

Nominal aqueous Total body Mussel feeding Mussel feeding 
concentration burden rate rate expressed as 

(µg L-) (µg g'1 wet (L hr-1) a% of control 
weight) Mean ± sd feeding rate 

(n=7) 
uU0.43 ± 0.05 100 

0 0.43 ± 0.05 100 

25 39.5 0.22±0.05 51 

36.7 0.23 ± 0.06 53 
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Table 4.2 Comparison of effect of 25 µg L-1 6-cyclohexyltetralin upon mussel feeding 

rate over a 24 h exposure period from present study with Wraige (1997) 

Nominal Total body Mussel Mussel 
aqueous burden feeding rate feeding rate Reference 

concentration (µg g'1 wet (L hr-') expressed as a 
(µg L'1) weight) Mean ± sd % of control 

(n =14) feeding rate 
0 0 0.43 ± 0.05 100 

25 38.1 0.23 ± 0.05 52 Present study 

0 0.49 ± 0.04 

25 41.5 0.23 ± 0.06 47 Wraige (1997) 

A summary of the results indicating the effects of aqueous exposure and total body burden 

of mussels exposed to 7-cyclohexyl-l-methyltetralin (synthesised in the present study; 

Chapter 3) upon mussel feeding rate is presented in Table 4.3. Concentration-response 

curves for the effect of 7-cyclohexyl-l-methyltetralin on mussel feeding rate over 24 

hours, expressed in terms of nominal aqueous exposure and total body burden, are shown 

in Figures 4.1 and 4.. 2 respectively. Values are plotted as mean feeding rate ± standard 

deviation (n = 7) except for pooled control values (n = 56). A significant (70 %) reduction 

in feeding rate was observed over the 24 hour exposure period. 
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Table 4.3 The effect of 7-cyclohexyl-l-methyltetralin upon mussel feeding rate over a 

24 h exposure period 

Nominal aqueous 

concentration 

(µg L'1) 

Total body burden of 

toxicant 

(µg g' wet weight) 

Mussel feeding rate 

(L hr-') 

mean ± std. dev. 

(n = 7) 

0 0 0.40±0.06 

0 0.46±0.07 

12.5 10.8 0.35 ± 0.06 

12.8 0.30 t 0.05 

0 0 0.41 t 0.07 

0 0.45 ± 0.05 

25 30.1 0.31 ± 0.05 

35.5 0.28 ± 0.07 

0 0 0.45 ± 0.05 

0 0.41 ± 0.07 

50 55.5 0.22 ± 0.06 
59.3 0.16±0.07 

0 0 0.41±0.04 

0 0.45 ± 0.05 

100 140.2 0.14±0.05 

151.1 0.10 ± 0.06 
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Figure 4.1 Concentration (aqueous)-response curve for the effect of 7-cyclohexyl-l- 

methyltetralin upon mussel feeding rate over 24 h 

(values plotted as mean ±sd, n=7, except control value exposure Ogg L-' r1=56) 
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Figure 4.2 Concentration (tissue)-response curve for the effect of 7-cyclohexyl-l- 

methyltetralin upon mussel feeding rate over 24 h 

(values plotted as mean ±sd n=7, except control value exposure 0 pg L'' n=56) 
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Mussel feeding rates measured for replicate experiments at each concentration were 

compared and no significant differences were found, therefore the data were pooled. A 

summary of the pooled data is presented in Table 4.4. Mussel feeding rate was reduced by 

up to 70% of the control value at the highest nominal aqueous concentration of 100 µg L" 

which resulted in an accumulation of approximately 145 µg g"' wet weight of 7- 

cyclohexyl-1-methyltetralin. 

Table 4.4 Summary of the concentration-response data for the effect of 7-cyclohexyl- 

1-methyltetralin upon mussel feeding rate 

Nominal aqueous Total body Mussel feeding Mussel feeding 

concentration burden of toxicant rate rate expressed as 

(µg L'1) (µg g"' wet weight) (L hr') % of control 

mean (n = 2) mean f std. dev. feeding rate 

(n 14) 
0 0 0.43 ± 0.07 100 

12.5 11.8 0.33±0.06 76 

0 0 0.43 ± 0.06 100 

25 32.8 0.29 ± 0.06 68 

0 0 0.43 ± 0.07 100 

50 57.4 0.19±0.07 44 

0 0 0.43 ± 0.05 100 

100 145.6 0.12 ± 0.05 29 
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Donkin el al. (1989,1991) obtained TEC50 estimates for aliphatic and aromatic 

hydrocarbons by applying the relationship y=a+ (3 logio x fitted by least squares 

regression. The data obtained in the present study was treated the same way and the pooled 

body burden data transformed by loglo was plotted against feeding rate (Figure 4.3. ) A 

TEC50 value for the effects of 7-cyclohexyl-1-methyletralin upon mussel feeding rate was 

obtained by applying the relationship y=a+ß login x fitted by least squares regression of 

data in Table 4.4. A TEC5o estimate of 58 µg g"1 (mg kg') wet weight was obtained which 

translates to a TEC50 value of 0.254 mmol kg-1. 
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Figure 4.3 Concentration (logiotissue)-response curve for the effect of 7 cyclohexyl-l- 

methyltetralin (7-CHT) upon mussel feeding rate over a 24 h exposure period 
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The TEC50 value of 0.254 mmol kg"' is compared with results from Wraige (1997) in Table 

4.5. To further compare the effect of 7-cyclohexyl-l-methyltetralin upon mussel feeding 

rate with those observed by Wraige (1997) for 6-cyclohexyltetralin and 7-cyclohexyl-l- 

propyltetralin, concentration-response curves for both nominal aqueous concentration and 

total body burden were plotted (Figures 4.4 - 4.6). Mussel feeding rate is expressed as a 

percentage of the control to eliminate any differences due to the feeding rate of controls. 

This enabled the direct comparison of the three compounds, which represent a homologous 

series of compounds with increasing alkyl chain length. 

Table 4.5 TEC50 values for the effect of model aromatic UCM hydrocarbons 6- 

cyclohexyltetralin, 7-cyclohexyl-l-methyltetralin and 7-cyclohexyl-l-propyltetralin 

upon mussel ciliary feeding activity 

TEC50 µg gt TECso µmol g"t 
Test Compound wet weight wet weight Reference 

(upper and lower 95 (upper and lower 95 
% confidence limits) % confidence limits) 

6-cyclohexyltetralin 41.4 0.206 Wraige (1997) 

(42.1 - 46.2) (0.196 - 0.216) 

7-cyclohexyl-l- 58 0.254 Present study 
methyltetralin (39.8 - 79.4) (0.174 - 0.348) 

7-cyclohexyl-1- 138 0.539 Wraige (1997) 

propyltetralin (91.0 - 204.2) (0.355 - 0.797) 
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Figure 4.5 Comparison of concentration (logioaqueous)-response curves for curves for 

the model aromatic UCM hydrocarbons, 6-cyclohexyltetralin, 7-cyclohexyl-1- 

propyltetralin (Wraige, 1997) and 7-cyclohexyl-l-methyltetralin (present study) 
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When the three synthesised compounds are compared in terms of nominal aqueous 

exposure (Figure 4.4) it can be seen that to induce a 50% reduction in mussel feeding rate a 

higher concentration is needed in the aqueous phase with increasing alkyl substitution. 

Water effect concentrations (WEC50), i. e. the aqueous concentration required to produce a 

50 % response, were calculated using a least squares regression of the data and applying 

the relationship y=a+ß logio x (Figure 4.6). The WECSO values for 6-cyclohexyltetralin, 

7-cyclohexyl-l-methyltetralin and 7-cyclohexyl-l-propyltetralin were 24,42, and 62 µg U 

1 respectively. 
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Figure 4.6 Comparison of concentration (tissue)-response curves for the model 

aromatic UCM hydrocarbons, 6-cyclehexyltetralin, 7-cyclohexyl-l-propyltetralin 

(Wraige, 1997) and 7-cyclohexyl-l-methyltetralin (present study) 

When the effects of the three synthesised compounds upon mussel feeding rate are 

compared in terms of total body burden (Figure 4.5) a higher body burden is required to 

achieve a 50 % reduction in feeding rate with increasing chain length on the `base' 
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cyclohexyltetralin structure. To achieve a 50 % reduction in mussel feeding rate 6- 

cyclohexyltetralin, 7-cyclohexyl-1-methyltetralin and 7-cyclohexyl-l-propyltetralin were 

accumulated to 44,58 and 138 µg g-1 respectively, i. e. 7-cyclohexyl-l-propyltetralin was 

accumulated to more than double the amount of the other two compounds. 

A further aim of this study was to compare the behaviour of the `model' monoaromatic 

UCM hydrocarbons, 6-cyclohexyltetralin, 7-cyclohexyl- I -methyltetralin and 7-cyclohexyl- 

1-propyltetralin with that of the isolated monoaromatic UCM (Chapter 2). Therefore, 

graphs were plotted comparing the concentration response to mussel feeding rate in terms 

of both aqueous exposure and body burden to gain an understanding of the effect of the 

isolated monoaromatic UCM as compared to resolved compounds (Figures 4.7-4.12). 
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Figure 4.7 Comparison of concentration (aqueous)-response curves for the model 

aromatic UCM hydrocarbons, 6-cyclehexyltetralin, 7-cyclohexyl-l-propyltetralin 

(Wraige, 1997), 7-cyclohexyl-l-methyltetralin and an isolated monoaromatic UCM 

(present study) 
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In terms of aqueous exposure, a greater aqueous concentration of the isolated 

monoaromatic unresolved complex mixture was required to induce a response in the 24 

hour exposure period in comparison to the model monoaromatic UCM hydrocarbons 

(Figure 4.7), i. e. the isolated monoaromatic UCM was not as toxic in terms of WEC50 

compared to the model UCM hydrocarbons. The WEC50 of the isolated monoaromatic 

UCM was calculated by plotting the loglo nominal aqueous concentration against feeding 

rate and applying the same relationship as previously applied to the model UCM 

hydrocarbons (Figure 4.8). The isolated monoaromatic UCM appears to follow a similar 

trend to that of 6-cyclohexyltetralin and 7-cyclohexyl-l-methyltetralin, whereas 7- 

cyclohexyl-1-propyltetralin demonstrated a much sharper gradient. 
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Figure 4.8 Comparison of concentration (log, oaqueous)-response curves for the model 

aromatic UCM hydrocarbons, 6-cyclehexyltetralin, 7-cyclohexyl-l-propyltetralin 

(Wraige, 1997), 7-cyclohexyl-l-methyltetralin and an isolated monoaromatic UCM 

(present study) 
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The WEC50 for the isolated monoaromatic UCM was calculated at a mussel feeding rate of 

0.22 L h"1 to be 518 µg L''. However, as seen in Figure 4.9 the 95 % confidence limits are 

large in this range due to the extrapolation of the data, and therefore the accuracy of this 

approach may be somewhat limited. 
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Figure 4.9 Concentration (log, oaqueous)-response curve for an isolated 

monoaromatic UCM upon mussel feeding rate over a 24 hour exposure 

(illustrating 95% confidence limits) 

When the response in feeding rate is plotted against total body burden (Figure 4.10) it can 

be seen that the isolated monoaromatic is comparable to the model compounds. The tissue 

concentrations required to induce a response are only slightly greater for the isolated UCM 

than for 6-cyclohexyltetralin and 7-cyclohexyl-l-methyltetralin but less than that for 7- 

cyclohexyl-l-propyltetralin. At an accumulation of 75 gg g' wet weight, mussel feeding 
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rate was reduced by 60,53,28 and 35 % for 6-cyclohexyltetralin, 7-cyclohexyl-l- 

methyltetralin, 7-cyclohexyl-l-propyltetralin and the isolated monoaromatic UCM, 

respectively. This indicates that if the isolated monoaromatic UCM was accumulated to the 

same extent as the model compounds a comparable reduction in feeding rate would be 

observed. 
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Figure 4.10 Comparison of concentration (tissue)-response curves for the model 

aromatic UCM hydrocarbons, 6-cyclehexyltetralin, 7-cyclohexyl-1-propyltetralin 

(Wraige, 1997), 7-cyclohexyl-l-methyltetralin and an isolated monoaromatic UCM 

(present study) 

From the log plot of mussel feeding rate versus body burden (Figure 4.11) an estimate of 

the TEC50 of 500 µg g"' wet weight was calculated. This is much higher than those 

determined for the model UCM compounds (7-cyclohexyl-l-propyltetralin, 138 µg g"' wet 

weight). Calculation of the TEC50 in this manner was also subject to large variability, 

similar to the determination of the WEC50 value (see Figure 4.9), in that a 50 % reduction 
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in mussel feeding rate was not reached during the 24 hour exposure period and thus 

confidence limits due to the extrapolation of the data are large. 
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Figure 4.11 Comparison of concentration (log, otissue)-response curves for the model 

aromatic UCM hydrocarbons, 6-cyclehexyltetralin, 7-cyclohexyl-l-propyltetralin 

(Wraige, 1997), 7-cyclohexyl-l-methyltetralin and an isolated monoaromatic UCM 

(present study) 

To examine the uptake of 6-cyclohexyltetralin, 7-cyclohexyl-l-methyltetralin, 7- 

cyclohexyl-l-propyltetralin and the isolated monoaromatic UCM by mussels during the 24 

hour exposure period a graph of nominal aqueous exposure against total body burden was 

plotted (Figure 4.12). 7-cyclohexyl-l-propyltetralin accumulated to the greatest extent 

within mussels exposed to toxicant solutions, whereas the isolated monoaromatic UCM 

accumulated the least. At the highest nominal aqueous concentration of 200 µg L"' mussel 
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accumulated approximately 90 pg g"' whilst the model compounds achieved this in 24 

hours at a nominal aqueous concentration of 50 µg L-'. Figure 4.12 also shows that the 

accumulation of 6-cyclohexyltetralin and 7-cyclohexyl-l-methyltetralin from the aqueous 

solution are very similar, but larger amounts of 7-cyclohexyl-l-propyltetralin were 

accumulated without inducing an increase in toxic response. 
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Figure 4.12 Relationship between nominal aqueous concentration and total body 

burden of 6-cyclohexyltetralin, 7-cyclohexyl-l-propyltetralin (Wraige, 1997), 7- 

cyclohexyl-1-methyltetralin and the isolated monoaromatic UCM (present study) 
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4.5 Discussion 

Previous work carried out with 6-cyclohexyltetralin and 7- cyclohexyl-l-propyltetralin, 

proposed as `model' aromatic UCM hydrocarbons, found them to be toxic as measured by 

mussel feeding activity (Wraige 1997). A repeat experiment carried out with 7- 

cyclohexyltetralin at 50 µg L"', which was previously shown to induce a 50% reduction in 

mussel feeding rate over 24 hour exposure (Wraige, 1997), confirmed these findings and 

demonstrated that the assay was reproducible between different operators. A further 

`model' aromatic UCM hydrocarbon, 7-cyclohexyl-l-methyltetralin, synthesised herein in 

good yield and purity (Chapter 3) was also found to reduce feeding rate by up to 70 % 

during the 24 hour exposure period. 

The WEC50 values for 6-cyclohexyltetralin, 7-cyclohexyl-l-methyltetralin and 7- 

cyclohexyl-l-propyltetralin were determined from the data as 24,42 and 62 µg L" 

respectively; whilst the isolated monoaromatic UCM was calculated at 518 µg L"'. It can 

be seen in Figure 4.7 that the isolated monoaromatic UCM does not induce as much of a 

response at the same nominal aqueous exposures as the model compounds, but the 

calculated WEC50 value is subject to large errors due to the extrapolation of the data. In 

comparing the effect of the model compounds it is apparent that an increase in alkyl 

substitution increases the nominal aqueous concentration required to achieve a 50% 

response, thus 7-cyclohexyl-l-propyltetralin has the highest WEC50. As the UCM has a 

greater WEC50 this may be indicative of the isolated monoaromatic UCM containing 

compounds similar to the models but with greater chain lengths as hypothesised by 

compositional studies (e. g. Thomas, 1995). 

There has been much criticism about the practicality and usefulness of water concentration 

as a measure of potential toxicity in environmental quality objectives (van den Heuvel, 

1991) It has been demonstrated that the internal potency of many organic chemicals, in 
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particular those acting by non-specific narcosis, occurs at a relatively constant level, the 

difference in observed toxicity being due to difference in uptake kinetics. 

A reduction in mussel feeding rate is caused by reduced pumping of the lateral cilia of the 

gill (Axaik & George, 1987). The cilia are under neuronal control (Paparo, 1972), thus the 

mechanism of feeding rate reduction is consistent with a non-specific mode of narcotic 

action (Donkin, 1989). If narcosis occurs when the internal narcotic concentration reaches 

some constant then the time required to reach this state should be unimportant (Pawlisz & 

Peters, 1993). Therefore, exposure was related to feeding rate in terms of body burden as 

well as aqueous exposure. The TEC50 value calculated for 7-cyclohexyl-l-methyltetralin 

was 58 µg g' (0.254 mmol kg"'). The effect observed for this synthesised compound was 

comparable to data from Wraige (1997) who observed TEC50 values of 41.4 µg g"' (0.206 

mmol kg"') and 138 µg g"1 (0.539 mmol kg') for two other model UCM compounds, 6- 

cyclohexyltetralin and 7-cyclohexyl-l-propyltetralin. The data are also comparable with 

data from Donkin et al. (1989,1991). These authors found that a range of aliphatic and 

aromatic hydrocarbons reduced the feeding rate of mussels and had TEC50 values in the 

16-82 . tg g"' (0.1-0.43 mmol kg"') range. This demonstrated that for compounds with a log 

Ko, of 2.65-5.0 the TEC50 value for feeding rate reduction occurred at a relatively constant 

tissue concentration, indicating that differences in aqueous concentration based toxicity 

values of these compounds actually reflect differences in bioaccumulation. 

Although a much higher aqueous concentration of the isolated monoaromatic UCM was 

required to reduce the feeding rate of mussels, in terms of tissue concentration the isolated 

UCM tested appeared to follow a similar trend to the model compounds (Figure 4.10). A 

comparable reduction in feeding rate is observed at similar accumulated tissue 

concentrations, for example, at an accumulation of 75 µg g"' wet weight, mussel feeding 

rate was reduced by 60,53,28 and 35 % for 6-cyclohexyltetralin, 7-cyclohexyl-l- 

methyltetralin, 7-cyclohexyl-l-propyltetralin and the isolated monoaromatic UCM, 
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respectively. This observation is consistent with current theories that for any chemical 

causing toxicity primarily by narcosis the toxicant concentrations should be relatively 

constant at the site of toxic action. However the TEC50 value calculated for the isolated 

monoaromatic UCM was 500 µg g"1, which is much greater than for the model compounds 

although this may have been due to the extrapolation of the data outside of the range of the 

observed response. 

Differences in toxicity based aqueous data may have been influenced by differences in 

bioaccumulation. A difference in uptake between the model aromatic hydrocarbons and the 

isolated monoaromatic UCM was observed. 6-cyclohexyltetralin and 7-cyclohexyl-l- 

methyltetralin showed a similar relationship between total body burden and nominal 

aqueous concentration, 7-cyclohexyl-l-propyltetralin showed a greater uptake, compared 

to the monoaromatic UCM which showed a slower uptake despite a higher exposure 

concentration. This suggests that the UCM was slow to reach equilibrium within the tissue. 

This is not necessarily surprising with a 24 hour exposure period. However one would 

perhaps expect a similar relationship to occur through the series of model compounds, but 

in fact the opposite was observed. Another possibility is that not all of isolated UCM may 

have been bioavailable to the mussels, and only that which was present in a truly soluble 

form entered into the tissues in the 24 hour exposure period. Upon examination of the gas 

chromatograms of the tissue extract of the exposed mussels, the `hump' accumulated 

within the tissues does not appear to be different from the original test substrate. One might 

expect to see a shift in the profile of the UCM if this was the case, although this cannot be 

ruled out as the higher molecular weight range was slightly masked by the presence of the 

natural compounds present in the mussel extract. This emphasises the difficulty in working 

with such complex mixtures of undefined compounds, i. e. how does one detect subtle 

changes within the UCM profile. It would certainly be useful to carry out the toxicological 

assessment of the isolated monoaromatic UCM over a longer exposure time period and 
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possibly higher exposure concentrations to more accurately assess the importance of these 

effects on the uptake and toxicity of the monoaromatic UCM compounds, and more 

accurately determine values for WEC50 and TEC5o, 

If a cut-off effect, as demonstrated by Donkin, (1989,1991) was observed for the UCM 

one would expect to see greater accumulation of these compounds within organisms 

without inducing a response. However, in terms of tissue concentration the isolated UCM 

tested appeared to follow a similar trend to the model compounds (Figure 4.10). A 

comparable reduction in feeding rate is observed at similar accumulated tissue 

concentrations, for example, at an accumulation of 75 . ig g"1 wet weight, mussel feeding 

rate was reduced by 60,53,28 and 35 % for 6-cyclohexyltetralin, 7-cyclohexyl-l- 

methyltetralin, 7-cyclohexyl-l-propyltetralin and the isolated monoaromatic UCM, 

respectively. This indicates that if the isolated monoaromatic UCM was accumulated to the 

same extent as the model compounds a comparable reduction in feeding rate would be 

observed. However a log plot of the body burden against mussel feeding rate shows that 

the reduction in feeding rate per increment of accumulated pollutant is not as marked for 

the isolated monoaromatic UCM as for the model monoaromatic UCM compounds. This 

possibly suggests that not all of the monoaromatic UCM contributed to the toxic response 

and thus a larger quantity is needed to accumulate in total for a similar amount to 

accumulate at the site of toxic action as the model compounds. 

Hansch et al. (1989) suggested that the use of weight of toxicant per unit weight of animal 

as a means of expressing concentration for toxicological purposes should have been 

abandoned years ago, and advocated the use of relative biological activity as the best 

parameter for allowing meaningful comparisons between compounds. The parameter for 

relative biological activity is log 1/C (where C is the molar concentration of an organic 

compound) producing a standard biological response in a well defined system at a constant 

time interval. 
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The TEC50 value for 7-cyclohexyl-l-methyltetralin expressed in molar terms is 0.254 

mmol kg-1, which equates to a relative biological activity of 0.595. The relative biological 

activity of 6-cyclohexyltetralin can be calculated as 0.686 and that for 7-cyclohexyl-l- 

propyltetralin as 0.268. This approach is fine for ranking individual compounds but not 

possible for complex mixtures such as the isolated monoaromatic UCM. However, Killops 

& Al-Juboori (1990) suggested that the aromatic UCM consisted of compounds with an 

average molecular weight of 300. This is a reasonable value when one considers that the 

model compounds, found by gas chromatography to be within the lower molecular weight 

end of the hump (Figure 3.22), have molecular weights of 214,228 and 256. If the 

calculated TEC50 value of 500 . tg g-1 is used then the relative biological activity of the 

isolated monoaromatic UCM is 0.85. The effects observed for the synthetic compounds 

and the isolated monoaromatic UCM are similar to those observed for other hydrocarbons 

with similar physicochemical properties (reviewed by Donkin et al., 1991) and have been 

summarised in Table 4.6. A comparison of the data in Table 4.6 suggests that the model 

UCMs hydrocarbons and the isolated UCM fit well within this data set. 6- 

cyclohexyltetralin and 7-cyclohexyl-l-methyltetralin have biological activities (0.686 and 

0.595) at roughly average values of the data set, being similar to naphthalene (0.619) and 

1-phenylheptane (0.698), whilst 7-cyclohexyl-l-propyltetralin has a slightly lower 

biological activity (0.268). The isolated monoaromatic UCM actually shows a higher 

biological activity (0.85) similar to chloronapthalene (0.85). This suggests that the isolated 

monoaromatic UCM behaves in the same way as the resolved monoaromatic compounds, 

probably by the addition of the small effect of each component. However in terms of 

TEC50 expressed in µmol g'' the TEC50 value for the isolated monoaromatic UCM is much 

larger than that of the other aromatic compounds, perhaps suggesting that only a proportion 

of the monoaromatic UCM is responsible for the effects. 
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Theoretically it can be hypothesised that as narcotic effects occur at a relatively constant 

body burden of toxicant each molecule of narcotic toxicant is functionally equivalent at the 

site of toxic action. Therefore when equal numbers of molecules reach the site of toxic 

action a similar toxicological response will be produced. It is thus expected that mixture 

toxicity in terms of body burden is likely to be concentration additive (McCarty, 1986). 

Several studies have demonstrated that narcotic toxicants are concentration additive when 

present as a mixture. In other words, the toxicity of a mixture of compounds acting by the 

same mechanism (in this instance non-specific narcosis) may be calculated by expressing 

the concentration of each individual compound as a fraction of the effective concentration 

(e. g. Hermens et al., 1984,1985; Deneer et al., 1988). Information on the joint effects of 

sub-lethal toxicity is scarce although there is conjecture that as the concentration of 

toxicants in a mixture are reduced to the level of no-effect the potential for addition is 

reduced (Hermens et al., 1984). Hermens et al. (1984) found that although joint toxicity at 

a sub-lethal level was lower than at a lethal level the toxicity of the mixture remained 

higher than that of the individual chemicals and was still rather near concentration 

addition. Thus the monoaromatic UCM, consisting of hundreds of compounds is likely to 

achieve an effect through the addition of all of its constituents. 

Donkin et al. (1989,1991) reported no measurable effect upon mussel feeding rate for 

either fluoranthene or 1-phenyldecane, and no consistent response for pyrene. It was 

suggested that these results were anomalous as the compounds had relatively high aqueous 

solubility (263 . tg L"' and 135 µg L"') and that the apparent lack of toxicity despite 

efficient accumulation was due to sequestration or some other mechanism which reduced 

concentrations at the active site. 1-Phenylundecane was considered to have too low a 

solubility at 5 pg L" and be indicative of a solubility cut-off. Thus, a cut-off effect was 

occurring despite very efficient bioaccumulation of all compounds tested which could be 

indicative of a molecular size related cut-off at the site of toxic action (e. g. associated with 
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binding membrane proteins) or of sequestration into a toxicology unavailable form (e. g. 

crystals or in lysosomes). Donkin et al. (1989,1991) suggested a solubility cut-off of 70 

µg L-1 for such compounds on the reduction of mussel feeding rate. It would therefore be 

useful to study the aqueous solubility of the model compounds along with the 

monoaromatic UCM to determine if all, or only part, of the monoaromatic UCM is capable 

of causing the effects observed. 

It was suggested herein that a longer exposure time would be suitable for studying 

monoaromatic UCM hydrocarbons as they do not appear to reach equilibrium within the 

24 hour period. Theoretical considerations suggest that the time taken to reach the site of 

toxic action is irrelevant, therefore the exposure conditions are irrelevant. However, this is 

related to the concentration of the compound actually at the site of toxic action. When 

Wraige (1997) exposed mussels to 4-propyloctane, utilising the same approach as the 

present study, although the total body burden increased linearly with exposure period, no 

further reduction in mussel feeding rate was found after 24 hours, when the concentration 

in the gill tissue had reached steady state. This demonstrated the relationship between the 

concentration of toxicant in the gill tissue, the presumed site of toxic action, and the 

observed reduction of mussel ciliary feeding activity upon exposure to narcotic toxicants. 

The gill is the major site of uptake of chemicals from the water phase by aquatic animals 

(Hayton & Barron, 1990). Exchange at the gills is presumed to be as a result of diffusion 

across the epithelium separating water and blood (Barber et al., 1988) and is relatively 

rapid. Initial uptake of a pollutant by the gills is followed by a slightly less rapid transfer to 

the circulatory fluid, followed by a much slower transfer to, and accumulation in, storage 

lipid reserves, until equilibrium or saturation storage capacity is reached (Farrington, 

1991). It was therefore suggested that TEC50 values may vary and increase with longer 

exposure times when the gill tissue has reached saturation and bioaccumulation into the 

tissue continues. Wraige (1997) suggested that to maintain the sensitivity of the TEC50 
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value exposure times were kept to 24 hours. The 24 hour exposure used herein indicates 

that the TEC50 value obtained for the model UCM compound 7-cyclohexyltetralin was 

therefore a meaningful measurement. However the isolated monoaromatic UCM is an 

extremely complex mixture, and as it accumulated more slowly than the model UCM 

hydrocarbons into the mussel tissue as a whole, so this might therefore be the case for 

accumulation into the gill tissue. It would be interesting to study the accumulation of the 

isolated monoaromatic UCM into the gill over a range of time periods to deduce at what 

exposure steady state is reached. If indeed the gill is the site of toxic action it would be 

useful to study pollutants in mussel tissues at impacted sites in the gill tissue rather than the 

tissue as a whole to determine the compounds that are responsible for the observed effects. 

It would be interesting to find how the UCM as a whole, and in particular the 

monoaromatic UCM, is reflected in this measurement. 

4.6 Summary 

The aim of the present study was to investigate the toxicity of the synthesised model 

monoaromatic UCM hydrocarbon 7-cyclohexyl-l-methyltetralin and compare the results 

with a previous study by Wraige (1997) in order to examine the effect of alkyl substitution 

of the `base' cyclohexyltetralin structure on toxicity. These compounds are thought to be 

good models of monoaromatic UCM components according to currently available data and 

this study aimed to determine how the model compounds fitted in with existing theories on 

toxicological response. A further aim was to compare the toxicity elicited by the model 

compounds in terms of nominal aqueous concentrations and total body burden with the 

response found for the isolated monoaromatic UCM (Chapter 2). 
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As an initial study a repeat experiment was carried out with 6-cyclohexyltetralin at an 

aqueous exposure of 50 µg L"1. This was previously shown to have reduced the feeding rate 

of mussels by 50%. A comparable reduction was observed which was statistically 

significant meaning that the results were reproducible and thus results from a further model 

monoaromatic UCM hydrocarbon and the isolated monoaromatic UCM could be compared 

with previous data. The test procedure was a modification of the procedure of Donkin et al. 

(1989,1991) by Wraige (1997). This procedure had been standardised with 

butylcyclohexane meaning results from all the studies were comparable. 

7-cyclohexyl-1-methyltetralin, synthesised herein (Chapter 3) in good yield and purity was 

exposed to mussels for 24 hours and a significant reduction (70 %) in feeding rate was 

observed. The WECSO values of the three model compounds and the isolated monoaromatic 

UCM were calculated as 24,42,62, and 518 µg L"1 respectively. The models suggest an 

increase in alkyl substitution causes an increase in the WEC50 suggesting that the 

monoaromatic UCM may contain larger structures than the models. Variations in aqueous 

exposure based expressions of toxicity are generally attributed to differences in the kinetics 

of uptake of chemicals tested. Therefore, prior to steady state, the toxicity of slower 

accumulating chemicals increases with increasing exposure time (Donkin et al., 1989). It 

would appear that the monoaromatic UCM is slowly accumulated within mussel tissue, 

suggesting that it had not achieved steady state. This would also contribute to its high 

WEC50 value. 

A TEC50 value of 58 µg g'1 was calculated for 7-cyclohexyl-l-methyltetralin, which related 

to 0.254 mmol kg"'. This was comparable to previous data on various aromatic 

hydrocarbons as well as two model aromatic hydrocarbons. A TEC50 value for the isolated 

monoaromatic UCM was calculated at 500 µg g"'. This is much larger than for the model 

compounds, although as mussel feeding rate was not reduced over 50 % in the exposure 

experiment (Chapter 2), therefore large errors are incurred in the extrapolation of the data. 
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However, at an accumulation of 75 µg g"1 mussel feeding rate was reduced by 60,53,28 

and 35 % for 6-cyclohexyltetralin, 7-cyclohexyl-l-methyltetralin, 7-cyclohexyl-l- 

propyltetralin and the isolated monoaromatic UCM, suggesting that if the monoaromatic 

UCM was accumulated to the same extent as the model UCM compounds a comparable 

reduction in feeding rate would be observed. This result supported the use of model 

compounds to understand the UCM, and supports the current theories of a constant internal 

potency and mixture toxicity. The accumulation into the mussel tissue of the UCM was 

much slower than for the model compounds, suggesting that it had not reached a steady 

state and required prolonged exposure to achieve this, or that only part of the 

monoaromatic UCM was bioavailable towards the mussels. When compared in terms of 

relative biological activity the isolated monoaromatic UCM has a value similar to those 

determined for other resolved compounds. Mixture toxicity in terms of body burden is 

likely to be concentration additive. Thus it might be expected that all of the components of 

the UCM add to the toxicity of the mixture. The similarity in mussel feeding rate response 

to total accumulated body burdens of the model aromatic UCM compounds and the 

isolated monoaromatic UCM, as evidenced in Figure 4.10 certainly supports this 

contention. 

Therefore although the model UCM compounds are capable of reducing the feeding rate of 

mussels, and so is the isolated monoaromatic UCM, it is not obvious from the results 

whether sub-components, or all of the monoaromatic UCM hydrocarbons, are responsible 

for the observed reduction. Although if the models are indeed representative of the 

monoaromatic UCM then the lower molecular weight proportion of the monoaromatic 

UCM is certainly important. 
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Chapter 5. Aqueous solubility studies of model monoaromatic UCM compounds and an 

isolated monoaromatic UCM. 

The aqueous solubility of a compound is an important physicochemical characteristic in 

determining its fate and behaviour in the marine environment. Aqueous solubility of 

hydrophobic compounds determined by the classical stirring method is impeded by their 

intrinsic nature, therefore the aqueous solubilities of the model aromatic UCM 

hydrocarbons were determined using a generator column method. Aqueous solubility was 

determined over a range of temperatures and salinities. A generator column containing the 

monoaromatic UCM isolated from a crude oil was set up to determine whether solutions of 

a monoaromatic UCM could be generated. 
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5.1 Introduction 

Many ecotoxicological effects assessments are made on the basis of estimation techniques 

known as Quantitative Structure Activity Relationships (QSARs). These attempt to 

statistically relate the biological activity of a compound to its physicochemical properties 

(Cronin and Dearden, 1995). The use of QSARs in the prediction of aquatic toxicity has 

been reviewed (e. g. Nirmalakhandan & Speece, 1988; Donkin & Widdows 1991; Donkin, 

1994; Cronin & Dearden, 1995) 

The octanol-water partition coefficient (commonly used as log K..,, ) occupies a key 

position in the early stages of the environmental assessment of a new chemical. It is often 

used to assess environmental partitioning and screen for bioconcentration in fish (reviewed 

by Brooke et al., 1986). Log KoW is generally considered the best measure of 

hydrophobicity and as such is widely accepted as a characteristic QSAR for unreactive 

non-ionisable compounds whose mode of toxic action is non-specific narcosis, such as 

hydrocarbons. A review of QSARs and the role played by partitioning and lipophilicity is 

provided by Dearden (1985). Although log 1( is the most commonly used parameter to 

describe narcosis, QSARs using water solubility have also been successfully correlated to 

observed effects (e. g. Abernathy et al., 1986). 

For organic chemicals causing toxicity primarily by narcosis, Fergusonian theory suggests 

that at the site of toxic action, toxicant concentration should be relatively constant for the 

biological response in question (McCarty, 1986). This means that the toxicity to aquatic 

organisms of individual compounds is considered to be equal on the basis of their internal 

molar concentration (Peterson 1994). The difference in measured toxicity amongst 

hydrocarbons is a result of their equilibrium partitioning behaviour between water and the 

organism. 
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Studies on mussels show that some chemicals can be accumulated to considerable 

concentrations without causing a narcotic effect (Donkin et al., 1989,1991). Anaesthetic 

potency increases with lipid solubility, however a point is reached where a further increase 

in lipid solubility no longer causes a toxic effect to be observed, this is known as the effect 

cut-off (Seeman 1972). This occurs as a consequence of reduced water solubility such that 

insufficient amounts enter the organism to elicit a toxic response. Response cut-offs are an 

established characteristic of narcotic toxicity. 

If a chemical is significantly soluble in water it can be transported directly to aquatic 

organisms which can accumulate it across their body. This is a major route of uptake for 

gill breathing animals. Wraige (1997) suggested that the gill was the site of toxic action for 

mussels. Wraige (1997) found that upon exposure to 4-propyloctane mussel feeding rate 

was related to the concentration in the gill tissue. No further decrease was found once the 

concentration in the gill had reached steady state, which was estimated to take 24 hours. 

In general terms, lower molecular weight compounds are more soluble than higher 

molecular weight compounds but the higher molecular weight compounds have a higher 

acute toxicity. In addition, aromatic compounds are more soluble than aliphatic compounds 

of comparable molecular weight, and this enhanced solubility is likely to be the reason 

why aromatic fractions are more toxic than aliphatic fractions and have been consistently 

implicated in laboratory and field studies as the likely cause of observed effects (e. g. 

Widdows et al. 1987; Widdows et al., 1995a). This suggests that the aromatic UCM, or 

components within it, will be more soluble than an aliphatic UCM of comparable 

molecular weight and a review of the literature in section 1.6 suggests aromatic UCMs 

may exist in a dissolved form. 

A reduction in Scope for Growth in mussels exposed to petroleum has been demonstrated 

to occur primarily by feeding rate reduction. The responsiveness of mussel ciliary feeding 

rate to hydrocarbons has been reported by Donkin et al. (1989,1991) who found that a cut- 
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off in toxicity occurred at 70 µg L"1. Compounds with an aqueous solubility below 70 µg 

L" failed to induce a significant response in feeding rate despite greater accumulation into 

mussels than the more soluble toxic compounds. For the hydrocarbons studied Donkin et 

al. (1989,1991) suggested that whilst log K.,,, was a good predictor of toxicity and 

bioconcentration, aqueous solubility was a better indicator of cut-off point. This cut-off 

effect has been attributed to the low aqueous solubility of large hydrophobic molecules so 

that, although they have high partition coefficient, they are not soluble enough to get to the 

site of toxic action. In terms of molecular size this equated to the C, 1 compound, undecane, 

for aliphatic compounds, and the four-ring compound, pyrene, for aromatic compounds. 

In Chapter 4 the mussel toxicological assay developed by Donkin et al. (1989,1991) with 

some minor modifications (Wraige, 1997) was applied to the model aromatic UCM 

hydrocarbon 7-cyclohexyl-1-methlytetralin and this was found to reduce feeding rate by up 

to 70 %, indicating this compound is likely to have an aqueous solubility greater than 70 

pg L"'. In Chapter 2 the same assay was used to assess a monoaromatic UCM isolated from 

a crude oil, and a reduction in feeding rate was observed (-40%). It is not known where 

this cut-off affects the toxicity of monoaromatic UCMs. It may be that those components 

within the UCM which have sufficient solubility were responsible for the observed 

decrease in mussel feeding rate observed in Chapter 2 and the larger molecular weight 

components were accumulated without causing a toxic response. 
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5.1.1. Methods for determination of aqueous solubility 

The methods used for the determination of aqueous solubility and log Kota can be divided 

into two main classes: - estimation methods and direct determination. 

5.1.1.1 Estimation methods 

The estimation of aqueous solubility and log K0 has been extensively reviewed 

(Yalkowsky, 1992). A number of methods have been developed for the prediction of these 

values from chemical structure. These methods are based on a constructionist fragment 

methodology where the structure is divided into fragments (atoms or larger functional 

groups), and the value of each fragment (or group) is added together to give an estimated 

value. The Leo fragment and ClogP methods use a group contribution method and the SRC 

(Syracuse Research Corporation) software uses multiple regression to quantify the weights 

of different structures on the principle of least squares deviation. Estimates of the log K,,, 

and aqueous solubility of the model aromatic UCM compounds were calculated using an 

established computer program (values provided by Prof. John Dearden, Liverpool John 

Moores University) and are summarised in Table 5.1. Aqueous solubility data suggest that 

these compounds are not soluble enough (< 70 µg L") to induce a response in mussel 

feeding rate. Previous work with 6-cyclohexyltetralin and 7-cyclohexyl-l-propyltetralin 

(Wraige, 1997) and 7-cyclohexyl-1-methyltetralin (this study, Chapter 4) has shown these 

compounds to be toxic as measured by mussel feeding rate activity even though their 

estimated solubility suggested otherwise. The log KO,, estimates suggest that the model 

UCM hydrocarbons may be described as highly hydrophobic (log K> 6) although it is 

possible that these values are overestimates. The data used to derive fragment contributions 

for both chemical group and regression equations are derived from experimentally 

measured values of a limited set of chemicals so the applicability of such models is not 

universal (Gombar & Enslein, 1996). As these fragments are generally derived from 
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relatively small molecules their applicability to larger more hydrophobic molecules, such 

as the model aromatic UCM hydrocarbons, is questionable, especially when it is known 

there may be considerable errors using estimation methods for compounds with log K. ow > 

6 (Chessels, 1991). Therefore, although these estimation methods provide a useful guide, it 

is desirable to directly determine the aqueous solubility of the model aromatic UCM 

compounds. 

Table 5.1 Estimates of log K0, and aqueous solubility for three model monoaromatic 

UCM hydrocarbons (data provided by Prof. J. Dearden, Liverpool John Moores 

University) 

Estimated 
Compound Estimated log K»W aqueous solubility 

µg L-' 
6.61 

6-cylohexyltetralin 6.33b 152` 
6.774 60d 

7-cyclohexyl-1- 7.27a 
methyltetralin 6.85b 22.4 d 

7.19d 

7-cyclohexyl-l- 7.73' 3` 
propyltetralin 7.91 b 2a 

8.17d 

a Leo fragment 

b C1ogP 

microQSAR 
d SRC 
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5.1.1.2 Direct determination 

The classic procedure for directly determining aqueous solubility of a compound is the 

slow stirring method. Saturated solutions are prepared by adding an excess of the solute to 

be measured to water. This is mechanically stirred for 24 hours and the aqueous 

concentration determined. However, difficulties are encountered in the direct measurement 

of highly hydrophobic compounds owing to their inherent nature. Problems encountered 

include, the incomplete equilibration of hydrocarbons with aqueous media, dispersion 

rather than true dissolution (accommodation), failure to remove suspended microcrystals, 

and adsorptive losses from solution. This method is clearly unsuitable for the direct 

determination of the aqueous solubility of model aromatic UCM hydrocarbons. The use of 

the `generator column' method (Wasik et al., 1983) to measure aqueous solubility offers a 

number of advantages over other methods as the procedure is rapid, precise and suitable 

for hydrophobic compounds (Yalkowsky & Banergee, 1992). A detailed description and 

critical evaluation of the technique has been presented by May (1978) and May et al. 

(1978). The generator column method is designed to avoid problems with adsorption onto 

container walls and offers the potential for generating known solubilities of slightly soluble 

organic compounds. With this technique water can be saturated reasonably quickly by 

passing it through a temperature controlled generator column packed with inert material on 

which the test compound is coated. The flow rate is slow enough to avoid colloidal 

dispersions while the larger interfacial area between the organic and aqueous phase allows 

rapid equilibration to take place. As the system walls become equilibrated errors due to 

adsorption are minimised. Generator columns have been used to generate saturated 

solutions of very sparingly soluble compounds with concentrations reaching as low as 

0.000074 pgL-l for octachlorodibenzodioxin (Shui et al., 1988). Modified columns have 

also been used to measure log K,,,, values of up to 8.29 (Woodburn et al., 1984). 
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5.2 Aims 

Consideration of the physicochemical properties of the model monoaromatic UCM 

hydrocarbons would suggest that these compounds are not water soluble enough to be 

toxic and impair mussel feeding rate. However, previous work (Wraige, 1997) and work in 

the present study (Chapter 4) indicates otherwise. The WEC50 values calculated for 7- 

cyclohexyl-l-methyltetralin and 7-cyclohexyl-l-propyltetralin (42 and 62 4g L"1 

respectively) are above the estimated values for their aqueous solubility (22.4 and 2-3 µg 

L"' respectively). Therefore, the aims of this study were to measure the aqueous solubility 

of 6-cyclohexyltetralin, 7-cyclohexyl-l-methyltetralin and 7-cyclohexyl-l-propyltetralin. 

UCMs are considered `insoluble' and therefore non-toxic, although circumstantial 

evidence (Chapter 1) suggests that aromatic UCMs may exist in a dissolved form. An 

isolated monoaromatic UCM reduced mussel feeding rate by -40 % at the highest nominal 

aqueous concentration of 200 µg L-' (Chapter 2). It was not obvious whether all or only a 

proportion of the isolated monoaromatic UCM was responsible for the reduction. 

Therefore a further aim of this study was to use the generator column method to see if an 

aqueous solution of the isolated monoaromatic UCM could be generated. 

5.3 Experimental Approach 

The model monoaromatic UCM hydrocarbons 6-cyclohexyltetralin, 7-cyclohexyl-l- 

methyltetralin and 7-cyclohexyl-l-propyltetralin were synthesised in good purity and yield 

as described in Chapter 3 and a monoaromatic UCM was isolated from a crude oil as 

described in Chapter 2. 

The generator column set-up is illustrated in Figure 5.1. Each generator column consisted 

of a high pressure liquid chromatography steel column 30 cm x 0.46 mm i. d. with 2 µm 
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stainless steel frits at both ends, dry packed with glass beads 60-80 mesh coated with the 

test compound. Previous workers have used a variety of column sizes packed with either 

glass beads or Chromosorb packing (typically 60-80 mesh). The glass beads were added to 

the test compound dissolved in solvent which was removed by rotary evaporation followed 

by a gentle stream of nitrogen to give a 0.005% coating. Previous workers have used 

coatings from 0.003% (Friensen et al., 1990) up to 2% (Dickhut et al., 1986). Once 

packed the generator column was attached to a pump by means of Teflon tubing and 

attachments, and water was supplied from a water reservoir. Temperature control (25 and 

15 °C) was by means of a dip chiller unit and a water bath in which the generator column 

and the water reservoir were immersed. This was covered with insulation balls to minimise 

any fluctuations in temperature and evaporation of water with time. A 3L beaker 

containing either MilliQ water or seawater (salinity 35%o), to which mercuric chloride was 

added for sterilisation, acted as a water reservoir. Temperature and salinity were monitored 

throughout the experiments. 

Water was pumped through the column at a rate of 1 mL min -1. The first 500 mL of 

solution was discarded to allow the system to equilibrate before measurement, consistent 

with Dunnivant & Elzermann (1988). Effluent from the column was collected directly into 

a 100 mL separating funnel containing 25 mL DCM. Once the samples had been collected 

an internal standard was spiked into the water in 100 µL acetone (for the model UCM 

hydrocarbons) and the funnel stoppered. Each funnel was shaken for 5 minutes with care 

so as not to form an emulsion. The DCM fraction was separated off and the water samples 

further extracted with another 25 mL DCM. The DCM extracts were combined and passed 

through an anhydrous sodium sulphate column. Analysis was performed using GCMS 

operated in selected ion monitoring mode (SIM) for model UCM compounds 6- 

cyclohexyltetralin, 7-cyclohexyl-l-methyltetralin and 7-cyclohexyl-l-propyltetralin, and in 

full scan mode for the monoaromatic UCM. 

152 



teflon tubing 

-f direction of flow 

Figure 5.1 Illustration of 

determination. 

generator column set-up for aqueous solubility 

153 



5.4 Results 

5.4.1 Validation of experimental set-up by determination of aqueous solubility of 

anthracene. 

To validate the method anthracene was chosen as a test compound as its aqueous solubility 

had previously been determined by this and other methods. There are many reports in the 

literature of the aqueous solubility of anthracene determined using a generator column. 

These are summarised in Table 5.2. The majority of the authors report an aqueous 

solubility of approximately 40 µg L"' in distilled water at 25 °C. The disparity of other 

measurements has been suggested to occur from the use of non-specific analytical 

techniques such as UV detection, combined with the presence of small quantities of 

phenanthrene in commercial samples of anthracene, leading to a greater response, and thus 

increasing the reported aqueous solubility (May et al., 1978). 

Table 5.2 Reported aqueous solubility of anthracene as determined by generator 

column method (distilled water, 25 °C) 

Reference Reported value 
µg L" 

May et al. (1978) 44.6 
Mackay & Shui (1975) 73 ± 0.5 

Schwarz (1977) 41 ± 0.3 

De Maagd et al. (1999) 93 ± 12 
May & Wasik (1978) 43.4 

Billington et al. (1988) 44.3 
Wasik et al. (1983) 44.6 

Walters & Luthy (1984) 69.8 
Vadas et al. (1991) 58 

Lu et al. (1978) 30 
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The effect of salinity and temperature on the aqueous solubility of anthracene has also been 

studied by using a generator column technique (Whitehouse, 1984; May et al., 1978). 

These values are presented in Table 5.3. Thus, method validation also extended to the 

effect of temperature and salinity on the measurement of aqueous solubility. 

Table 5.3 The effect of temperature and salinity on the reported measurement of 

aqueous solubility of anthracene determined by the generator column method. 

Reference Reported Value 

µg L-' 

Temperature 

oC 

Salinity 

ppt 

May et al. (1978) 42.2 ± 0.6 25 0 

29.1 ±0.1 18.3 0 

17.5 ± 0.3 14.1 0 

Whitehouse (1984) 44.19 ± 0.713 25.3 0 

32.40 ± 0.178 25.3 36.5 

23.70±0.356 17 0 

17.39±0.321 17 36.5 

17.70±0.231 12.9 0 

12.19±0.178 
12.9 36.5 

The results from the anthracene generator column are summarised in Table 5.4 and can be 

compared to previously reported values from the literature (Table 5.2). It can be seen that 

the values obtained in this study compare well with previous measurements. Results are 

also comparable to measurements carried out by Whitehouse (1984) and May et al. (1978) 

over a salinity and temperature range (Table 5.4). Thus, the method employed herein was 

judged to be suitable for the aqueous solubility determination of the model aromatic UCM 

hydrocarbons over a temperature and salinity range. 
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Table 5.4 Aqueous solubility of anthracene as determined by generator column 

method 

Aqueous solubility µg L" 
mean ± st. dev. 

Conditions 
Present study Whitehouse 

(n =10) (1984) 

Distilled water 25 °C 45 ±2 44 

Seawater 25 °C 29 ±1 32 

Distilled water 15 °C 22 ±1 27 (17 °C) 
17 (12 °C) 

5.4.2 Determination of the aqueous solubility of model aromatic UCM compounds. 

The aqueous solubility of the model aromatic UCM hydrocarbons determined at 25 °C in 

distilled water is summarised in Table 5.5. Values are reported as the mean ± standard 

deviation (n = 10). 6-cyclohexyltetralin was found to have the greatest water solubility at 

109 µg L"1 and a decrease in solubility was observed with increasing chain length of the 

alkyl substituent on the cyclohexyltetralin structure (methyl, 45 µg L"'; propyl, 23 µg L"1). 

All the values are greater than those predicted by the computer software (Table 5.1). Only 

6-cyclohexyltetralin is of sufficient solubility to cause toxicity as described by Donkin et 

al. (1989). However, only 7-cyclohexyl-l-propyltetralin was below its WEC50 value 

(calculated in Chapter 4 to be 62 . tg L"). Although the toxicity tests were not carried out at 

25 °C in distilled water but at 15 °C in seawater, the cut-off described by Donkin et al. 

(1989,1991) of 70 µg L"' was based on solubility data at 25 °C in distilled water. 
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Table 5.5 Aqueous solubility of model aromatic UCM hydrocarbons, 6- 

cyclohexyltetralin, 7-cyclohexyl-1-methyltetralin and 7-cyclohexyl-l-propyltetralin as 

determined by generator column method in distilled water at 25 °C 

Aqueous solubility µg L-1 
Compound mean ± st. dev. (n =10) 

6-cyclohexyltetralin 109±6 

7-cyclohexyl-1-methyltetralin 45 ±4 

7-cyclohexyl-1-propyltetralin 23 ±3 

The aqueous solubility of the model aromatic UCM hydrocarbons determined at 25 °C in 

seawater is summarised in Table 5.6. Values are reported as the mean ± standard deviation 

(n = 10). Seawater reduces solubility of the model hydrocarbons as compared to distilled 

water. This is consistent with salting-out theory. The effect is more pronounced with 

increasing alkyl substitution on the cyclohexyltetralin base structure with 7-cyclohexyl-l- 

propyltetralin being reduced by almost half of its aqueous solubility in distilled water. 

Table 5.6 Aqueous solubility of model aromatic UCM hydrocarbons, 6- 

cyclohexyltetralin, 7-cyclohexyl-l-methyltetralin and 7-cyclohexyl-1-propyltetralin as 
determined by generator column method in seawater at 25 °C 

Compound Aqueous solubility µg L"' 
mean ± st. dev. (n =10) 

6-cyclohexyltetralin 75 ±3 

7-cyclohexyl-l -methyltetralin 27 ±3 

7-cyclohexyl-1-propyltetralin 13 ±2 
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The aqueous solubility of the model aromatic UCM hydrocarbons determined at 15 °C in 

distilled water is summarised in Table 5.7. Values are reported as the mean ± standard 

deviation (n = 10). A decrease in temperature caused a decrease in aqueous solubility. 

Table 5.7 Aqueous solubility of model aromatic UCM hydrocarbons, 6- 

cyclohexyltetralin, 7-cyclohexyl-l-methyltetralin and 7-cyclohexyl-l-propyltetralin as 

determined by generator column method in distilled water at 15 °C 

Aqueous solubility ug L"' 
Compound mean ± st. dev. (n= 10) 

6-cyclohexyltetralin 95 ±5 

7-cyclohexyl-1-methyltetralin 40 ±2 

7-cyclohexyl-1-propyltetralin 17 ±2 

The aqueous solubility of the model aromatic UCM hydrocarbons determined at 15 °C in 

seawater is summarised in Table 5.8. Values are reported as the mean ± standard deviation 

(n = 10). The action of increasing salinity and decreasing temperature caused the greatest 

decrease in aqueous solubility. 

Table 5.8 Aqueous solubility of model aromatic UCM hydrocarbons, 6- 

cyclohexyltetralin, 7-cyclohexyl-l-methyltetralin and 7-cyclohexyl-l-propyltetralin as 

determined by generator column method in seawater at 15 °C 

Aqueous solubility ug L"1 
Compound mean ± st. dev. (n= 10) 

6-cyclohexyltetralin 56 ±3 

7-cyclohexyl- 1 -methyltetralin 21 ±2 

7-cyclohexyl-1-propyltetralin 9±2 
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A summary of the aqueous solubility data generated for the model UCM hydrocarbons, 6- 

cyclohexyltetralin, 7-cyclohexyl-l-methyltetralin and 7-cyclohexyl-l-propyltetralin is 

presented in Table 5.9. These data are also shown graphically in Figure 5.2 along with the 

estimated data from the Syracuse software (Table 5.1). The estimated data from the 

software package are actually very similar to the values of aqueous solubility determined at 

15 °C in seawater for 6-cyclohexyltetralin and 7-cyclohexyl-l-methyltetralin, although still 

underestimates the aqueous solubility of 7-cyclohexyl-l-propyltetralin. 

Table 5.9 Summary of aqueous solubility data for model UCM hydrocarbons 6- 

cyclohexyltetralin, 7-cyclohexyl-l-methyltetralin and 7-cyclohexyl-l-propyltetralin. 

Aqueous solubility µg L' 
mean ± std. dev. (n = 10) 

Compound 
25°C 25°C 15°C 15°C 
0 %0 35%. 0 %0 35%. 

6- 109±6 75±3 95±5 56±3 
cyclohexyltetralin 

7-cyclohexyl-l- 45 ±4 27 ±3 40 ±2 21 ±2 
methyltetralin 

7-cyclohexyl-1- 23 t3 13 ±2 17 ±29±2 
propyltetralin 
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Figure 5.2 Comparison of the aqueous solubility of model aromatic LLCM 

hydrocarbons 6-cyclohexyltetralin, 7-cyclohexyl-l-methyltetralin and 7-cyclohexyl-l- 

propyltetralin as determined by estimation and direct methods under variable 

environmental conditions 

In order to clarify the effects of salinity, temperature and the length of the alkyl chain 

substituent on the aqueous solubility of these compounds, Table 5.11 documents the 

reduction factor in the aqueous solubility of 6-cyclohexyltetralin, 7-cyclohexyl-1- 

methyltetralin and 7-cyclohexyl-l-propyltetralin measured in distilled water at 25 °C by 

these processes. The reduction factorl in aqueous solubility measured in distilled water at 

25 °C by salinity and temperature was calculated by dividing the aqueous solubility 

measured at a different temperature or salinity by the aqueous solubility measured in 

distilled water at 25 °C. This allowed the relative effects of temperature and salinity on the 

aqueous solubility of these compounds to be determined and highlighted differences 

between the compounds. 
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Table 5.10 Reduction factor in the aqueous solubility of the `model' aromatic UCM 

compounds measured in distilled water at 25 °C by salinity and temperature 

Reduction factor in aqueous solubility measured in distilled water at 

Compound 25 °C by salinity and temperature 

Effect of temperature Effect of salinity Effect of temperature 
and salinity 

25°C -> 15°C 0 ppt -+ 35 ppt 25°C -+ 15°C 
O ppt -> 35 ppt 

6- 

cyclohexyltetralin 1.15 1.46 1.96 

7-cyclohexyl-1- 

methyltetralin 1.12 1.6 2.14 

7-cyclohexyl-l- 

propyltetralin 1.3 1.7 2.5 
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5.4.3 Generation of an aqueous solution of an isolated monoaromatic UCM 

The aim of this experiment was to see if it was possible to generate an aqueous solution 

from the monoaromatic UCM isolated from a crude oil, shown to reduce mussel feeding 

rate (Chapter 2). Figure 5.3b shows the gas chromatogram of the DCM extract of water 

passed through a generator column coated with the isolated monoaromatic UCM (shown in 

Figure 5.3a) after 500 mL had passed through the column and the solution was assumed to 

have reached equilibrium. The generated solution is dominated by a large unresolved 

complex mixture. It can be seen that the UCM in both samples is present over a similar 

retention time range, but in the generated solution the UCM maxima occurs at 31 minutes 

compared to 35 minutes for the isolated monoaromatic UCM. It would also appear that a 

proportion of the compounds (shown by the dotted red line) are not present in the 

generated solution. These are the higher molecular weight compounds, which one might 

expect to be relatively insoluble. The water sample extract clearly shows that a UCM is 

present, suggesting that most of the monoaromatic UCM hydrocarbons are indeed soluble. 

The gas chromatogram also shows some resolved peaks, but these were identified as 

phthalates, thought to have contaminated the sample in the work up of the aqueous 

solution. Ali (1994) investigated sources of contamination. Sample contamination may be 

experienced at any step in a preparation procedure and a number of potential sources have 

been reported. The most common contaminants were found to be phthalate plasticisers. 

The unresolved components were measured and an external calibration graph used to 

quantify (see chapter 2) the amount of monoaromatic UCM hydrocarbons present in the 

aqueous solution. This gave a concentration of 560 . tg L". 

162 



b) 

1 
Il) 
G 

0. 
0 

a) 

14) 
C 
0 
C. 
N 

0 

10 

10 

* 

20 30 40 

Time (minutes) 

UCM 

50 

20 30 40 50 

Time (minutes) 

* phthalate plasticiser contamination 

proportion of UCM not present in generated solution 

60 70 

60 70 

Figure 5.3. Gas chromatograms of a) isolated monoaromatic UCM b) generated 

solution from isolated monoaromatic UCM 

163 



5.5. Discussion 

The aqueous solubility in distilled water at 25 °C was determined for the model aromatic 

UCM hydrocarbons, 6-cyclohexyltetralin, 7-cyclohexyl-l-methyltetralin and 7-cyclohexyl- 

1-propyltetralin as 109 ± 6,45 ± 4,23 ±3 µg L"' respectively. To investigate the effect of 

salinity on the aqueous solubility the same experiment was conducted using seawater. The 

aqueous solubility of 6-cyclohexyltetralin, 7-cyclohexyl-l-methyltetralin and 7- 

cyclohexyl-1-propyltetralin in seawater at 25 °C was determined as 75 ± 3,27 ± 3,13 ±2 

µg L"' respectively. This led to a reduction factor in aqueous solubility from distilled water 

at 25 °C of 1.46,1.6 and 1.7 for each of the compounds respectively, meaning that 

increasing salinity reduced aqueous solubility, with the effect increasing through the 

compounds, in relation to increasing length of the alkyl substitution on the 

cyclohexyltetralin structure. Rossi & Thomas (1981) also noticed that the magnitude of the 

salting-out effect increased with increasing molar volume. The presence of alkyl groups on 

aromatic compounds generally decreased the solubility according to an increase in molar 

volume. In general it is believed that aromatic hydrocarbons enter aqueous solution in a 

manner similar to other non-electrolytes, that is their dissolution is attended by a net 

decrease in entropy. This has been interpreted as being due to the increasing structuring of 

water molecules in proximity of the solute. Addition of salt to a non-aqueous non- 

electrolyte solution results in either a decrease in solubility (salting-out) or an increase 

(salting-in). Such effects are believed to result from the disruption or enhancement, 

respectively, of structured water (Eganhouse & Calder, 1976). Therefore salting-out is the 

process that has taken place in this instance. 

To investigate the effect of temperature on the aqueous solubility of the model compounds 

the same experiment was conducted at 15 °C giving an aqueous solubility of 95 ± 5,40 ± 

2,17 ±2 µg L"' for 6-cyclohexyltetralin, 7-cyclohexyl-l-methyltetralin and 7-cyclohexyl- 
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1-propyltetralin respectively. This resulted in a reduction factor of 1.15,1.2 and 1.3 for the 

compounds respectively in relation to their aqueous solubility in distilled water at 25 T. 

Thus decreasing temperature also caused a decrease in aqueous solubility which was 

greater for 7-cyclohexyl-l-propyltetralin than for 6-cyclohexyltetralin. May et al. (1978) 

reported a decrease in the solubility of PAHs with a decrease in temperature, and Dickut et 

al. (1986) reported that the aqueous solubility of six polychlorinated biphenyls (PCBs) 

increased exponentially with temperature over a 0.4-80 °C range. A decrease in aqueous 

solubility with increasing salt concentration and decreasing temperature is considered 

normal behaviour (Whitehouse, 1984). The effect of temperature on aqueous solubility was 

not as marked as salinity for the model aromatic UCM hydrocarbons within the range 

examined. This was in contrast to anthracene, examined in this study and by others 

(Whitehouse, 1984), which showed a greater decrease in aqueous solubility with respect to 

temperature rather than salinity over this range. Gearing and Gearing (1982) also reported 

that PAHs are more sensitive to small changes in temperature than salinity. The likely 

cause of the observed difference between anthracene and the model UCM hydrocarbons is 

that anthracene is a solid at room temperature whereas the model compounds are oily 

liquids. Therefore an increase in temperature will have a greater effect on the solubilisation 

of anthracene. 

Aqueous solubility was also determined in seawater at 15 °C resulting in an aqueous 

solubility of 56 ±3 µg L'' for 6-cyclohexyltetralin, 21 ±2 µg L"' for 7-cyclohexyl-l- 

methyltetralin and 9±2 µg L"' for 7-cyclohexyl- I -propyltetralin. The effect of salinity and 

temperature together caused the biggest reduction in aqueous solubility but the reduction 

factor for this was not the sum of the two effects individually. 

The aqueous solubility data for the model monoaromatic UCM compounds 6- 

cyclohexyltetralin, 7-cyclohexyl-l-methyltetralin and 7-cyclohexyl-l-propyltetralin were 

all found to be below 70 µg L" in seawater at 15°C. Although the toxicity tests were 
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carried out at 15 °C in seawater the effect cut-off noted by Donkin et al. (1989,1991) was 

deduced from data calculated at 25 °C in distilled water. Even then, only 6- 

cyclohexyltetralin has an aqueous solubility above this level. To examine the relationship 

between aqueous solubility and the toxicity of the model UCM compounds, the results of 

this study were plotted (Figure 5.4) along with data from Donkin et al. (1989,1991) and 

Wraige (1997). It would appear that the graph highlights the cut-off effect in toxicity 

caused by low aqueous solubility. This observation is consistent with theories of narcotic 

cut-off, which suggest that it is primarily due to aqueous solubility declining more rapidly 

with increasing molar volume than solubility in the hydrophobic active site increases. 

Consequently the aqueous phase contains insufficient compound to deliver a toxic load by 

partition into the active site (Donkin et al., 1991). 
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Figure 5.4. The relationship between aqueous solubility and biological effect TEC50 - 

a synthesis of the data of Donkin et a! (1989,1991) and Wraige (1997) with the 

present study 
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This suggests that increasing branching on the cyclohexyltetralin base structure will mean 

that the compound will not have sufficient solubility to reach the site of toxic action and 

will accumulate in the tissues without inducing a further response. In Chapter 4 it was seen 

that 7-cyclohexyl-l-propyltetralin was accumulated to a far greater extent by mussels than 

6-cyclohexyltetralin and 7-cyclohexyl-l-methyltetralin, and also far more than the isolated 

monoaromatic UCM. So although exposure to 7-cyclohexyl-l-propyltetralin reduces 

mussel feeding rate it would appear that the solubility limit is being reached whereby more 

of the compound is accumulated without causing a response. This suggests that the 

compound accumulates in areas other than at the site of toxic action. If indeed the gill is 

the site of toxic action then one would expect to see a concentration in the gill tissue 

comparable to the other model compounds. The cut-off of 70 µg L'' suggested by Donkin 

et al. (1989,1991) has effectively been extended by the model monoaromatic UCM 

compounds, as 7-cyclohexyl-l-propyltetralin, with an aqueous solubility of 23 ±3p. g L" 

was able to elicit a response, although it would appear a proportion of this was 

accumulated without causing an effect. This would account for the higher TEC50 value 

observed for this compound. 

This also suggests that compounds within the monoaromatic UCM with a solubility less 

than 7-cyclohexyl- I -propyltetralin will become increasingly limited in their ability to reach 

the site of toxic action. However some of the components, at least, must be soluble enough, 

in order to have reduced mussel feeding rate (Chapter 2). 

A generator column was set up in a similar manner to that used for determining the 

aqueous solubility of the model compounds but containing glass beads coated with the 

isolated monoaromatic UCM (Chapter 2). Generator columns are usually used for the 

determination of the aqueous solubility of single compounds, however, Ghosh et al., 

(1998) used the generator column method to study an industrial mixture of polychlorinated 

biphenyls (PCBs) as a novel method for generating media for toxicological testing. Their 
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study showed that all congeners of the PCB mixture were to some degree water soluble at 

each measured concentration. 

The effluent from the generator column contained an aqueous solution that was 

characterised by a large UCM (Figure 5.3). It would appear that not all of the original 

isolated monoaromatic UCM that was coated on the beads was found in the solution. A 

proportion of the higher molecular weight components were not present suggesting they 

are relatively insoluble. The amount of monoaromatic UCM hydrocarbons present in 

solution was calculated at 560 µg L''. This would appear high in comparison to the model 

compounds. However, when Barron et al. (1999) prepared WAFs of weathered distillate 

oils, which included a predominant UCM, the concentration over a similar range, being 

600-900 . tg L"', was considered indicative of dissolved and not particulate or emulsified 

oil. 

According to Raoult's Law the solubility of a compound present in an ideal mixture is 

equal to the solubility of the pure compound multiplied by its mole fraction in the mixture. 

However mixture solubility may deviate from ideal behaviour. Previous investigations of 

aqueous concentrations of mixtures have found that interaction between components in a 

mixture can result in complex deviations from ideal solution behaviour. Reported 

deviations from ideal behaviour have resulted in enhanced, reduced and ideal aqueous 

concentrations for different components in the mixtures studied (Sherblom et al., 1992). In 

studying the multicomponent solubility of hydrocarbons in water Leinonen & Mackay 

(1973) found that the solubility of each hydrocarbon component was greater by 6-35 % 

than the value expected by prediction on the basis of the solubility of the hydrocarbon 

component being proportional to its mole fraction in the hydrocarbon phase. Further to this 

Burris and Maclntyre (1985) suggested that the aqueous phase of a contaminant resulting 

from the equilibration of an organic mixture (such as petroleum) of dissimilar components 

with water could be 2-3 times larger than predicted by ideal behaviour. Therefore the 
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monoaromatic UCM may not behave like an ideal mixture and enhancement of the 

components may have occurred. 

The exact structure of the components in the monoaromatic UCM may also be extremely 

important. Sutton & Calder (1975) investigated the solubility of several alkylbenzenes and 

observed that solubility was a function of molar volume and solute-solvent interactions. 

This has been observed for the model monoaromatic UCM hydrocarbons. For 

monosubstituted alkylbenzenes, such interactions were related to the size of the alkyl 

substituent. For polysubstituted alkylbenzenes, such interactions were also influenced by 

the proportions of the substituents on the ring. For alkylnaphthalenes a similar effect was 

observed, however 2-ethylnaphthalene was more soluble than 2-dimethylnaphthalene, 

although they have similar molar volumes. It was suggested that the ethyl group may fit 

more easily into the water structure than the two methyl groups or, was more soluble due 

to the extra flexibility of the ethyl side chain. 

5.6. Summary 

The aqueous solubility of anthracene, 6-cyclohexyltetralin, 7-cyclohexyl-l-methyltetralin 

and 7-cyclohexyl-1-propyltetralin has been determined in distilled water (25 °C and 15°C) 

and in seawater at the same temperatures (except anthracene 25 °C only). 

Anthracene was found to have an aqueous solubility of 45 ±2 . tg L" in distilled water at 

25 °C, 29 ±1 µg L"' in seawater at 25 °C, and 22 ±I µg Ul in distilled water at 15 °C. 

These results compared well with previously reported data and validated the system for the 

determination of the aqueous solubility of the three model aromatic UCM compounds at 

different temperature and salinity. 
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6-cyclohexyltetralin was found to have an aqueous solubility of 109 ±6 µg L'1 in distilled 

water at 25 °C, 75 ±3 µg L'1 in seawater at 25 °C, 95 ±5 µg L'' in distilled water at 15 °C, 

and 56 ± 3µg L-1 in seawater at 15 °C. 

7-cyclohexyl-1-methyltetralin was found to have an aqueous solubility of 45 ±4 µg L", in 

distilled water at 25 °C, 27 ±3 µg L'' in seawater at 25 °C, 40 ±2 µg L'' in distilled water 

at 15 °C, and 21 ± 2µg L'1 in seawater at 15 °C. 

7-cyclohexyl-l-propyltetralin was found to have an aqueous solubility of 23 ±3 4g L'' in 

distilled water at 25 °C, 13 ±2 µg L'1 in seawater at 25 °C, 17 ±2 gg L"' in distilled water 

at 15 °C, and 9±2 µg L'1 in seawater at 15 °C. 

The results are consistent with normal behaviour in that a decrease in aqueous solubility 

was observed with an increase in salinity and decrease in temperature. These effects were 

largest for 7-cyclohexyl-l-propyltetralin, which is consistent with a larger molar volume. 

Salinity exerted the largest effect on the aqueous solubility of the model aromatic UCM 

hydrocarbons compared to temperature for anthracene. This was thought to occur owing to 

anthracene being in solid form at room temperature compared to the model compounds 

which are oily liquids. 

These solubility values extend the measured effects of soluble hydrocarbons on mussel 

feeding rate according to previously established QSAR for Mytilus edulis (Donkin et al., 

1991). When the data were compared to the data of Donkin et al., (1989,1991) it was 

found that a cut-off effect could be visualised in the form of a plot of water solubility 

against the body burden when a 50 % reduction in mussel feeding rate occurred. 7- 

Cyclohexyl-l-propyltetralin has a relatively low aqueous solubility in water and appears to 

represent the start of the cut-off. This was supported from the observation in Chapter 2 that 

7-cyclohexyl-l-propyltetralin was accumulated to the greatest extent in the mussel tissue 

without inducing more of a response. 
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The isolated monoaromatic UCM appeared to be appreciably soluble (compared to the 

model UCM hydrocarbons); however, it has been reported that equilibration of liquid 

organic mixtures with water may result in concentrations in the aqueous phase that differ 

significantly from those predicted on the basis of assumptions of ideal solution behaviour 

(Burris & Maclntyre, 1985). The UCM present in the generated solution did not contain all 

of the compounds present in the isolated monoaromatic UCM as evidenced by Figure 5.3. 

The higher molecular weight compounds were not present, suggesting they are not capable 

of being soluble enough to reach the site of toxic action. This result indicates that the 

reduction in feeding rate by the isolated monoaromatic UCM (Chapter 2) was caused by 

only a proportion of the compounds present, i. e. those compounds that are soluble enough 

to reach the site of toxic action. 
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Chapter 6. Photodegradation studies. 

Previous studies have shown that some aromatic hydrocarbons are photodegraded in the 

marine environment. Recently, the photoenhancement of the toxicity of water- 

accommodated fractions of weathered oil to marine organisms has been reported. 

However, the potential for unresolved complex mixtures of aromatic hydrocarbons to 

photodegrade does not appear to have been previously considered. As a preliminary study 

the photodegradation kinetics of 6-cyclohexyltetralin, 7-cyclohexyl-1-methyltetralin and 7- 

cyclohexyl-l-propyltetralin were therefore determined herein under exposure to simulated 

sunlight from a xenon arc lamp, using solutions from a generator column. The reactivities 

suggest that phototransformation of real aromatic UCMs should now be studied. 
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6.1 Introduction 

Petroleum compounds may degrade by various weathering mechanisms in the marine 

environment. Photooxidation is one of the major causes of compositional changes in crude 

oil spilled onto seawater, yet the phenomenon has been poorly characterised (Dutta et at, 

2000). Environmental photolysis (or photodegradation) is defined as a chemical reaction 

that occurs only in the presence of light. These reactions, which may occur in surface 

waters, on soil, and in the atmosphere, are driven by sunlight, which has a significant 

photon flux only above 290 nm in the near UV (Mill, 1999). Compounds that absorb 

UV/visible light can react photochemically by reaching an excited state through the direct 

absorption of light (direct photolysis) or by accepting energy from an excited donor 

molecule (sensitised photolysis). Reactions can also occur with reactive oxygen species, 

such as singlet oxygen and hydroxyl radicals, formed from photochemical reactions with 

other organic molecules such as humic acids (Kim et al., 2000). For direct photooxidation 

to take place there must be spectral overlap between radiation from the light sources (i. e. 

the sun in environmental terms) and the light absorption by the chemical in question. 

Mononuclear aromatics being inactive in the UV region above 290 nm mostly undergo 

indirect photolysis. However, some monoaromatic compounds may undergo direct 

photolysis due to the formation of charge transfer complexes (Belt et al., 1998) between 

the aromatic hydrocarbons and oxygen, leading to a shift in the absorption band towards 

longer wavelengths. 

Many environmental pollutants interact with solar radiation in the near UV region in a 

manner which greatly increases their toxic effects (Davenport et al., 1994). Photomediated 

toxicity of environmental contaminants may occur by two mechanisms. In vitro 

photomodification of a contaminant in environmental media may occur to produce a 

photoproduct that is more toxic than the parent compound. This may happen when oxygen 
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is introduced, which often causes the product to be more polar and more water-soluble. In 

vivo sensitisation (indirect photosensitised oxidation) can occur where an organism 

bioaccumulates photoactive chemicals and the toxic effects are manifested upon exposure 

of the organism to solar radiation (Cleveland et al., 2000). 

Photooxidation mainly affects the aromatic components of crude oil (Ali, 1994). They are 

particularly sensitive to this process compared to the saturated compounds which are 

resistant (Garret et al., 1998). Photooxidation rates of aromatic hydrocarbons in the marine 

environment have been shown to be significant, and to normally result in oxygenated 

products (reviewed by Ali, 1994). Studies have shown that photoproducts of petroleum 

hydrocarbons are toxic to marine animals (Jaquot, 1996 and references therein). In fact, it 

has long been established that the oxidation of aromatic components of oil increases its 

toxicity (Larson et al., 1977,1979), with the formation of carboxylic acids, aromatic 

ketones, alcohols and aldehydes. Polar oxidation products of hydrocarbons have also been 

shown to accumulate in tropical mussels (Burns, 1993) and it has been suggested that these 

products may contribute to decreasing physiological performance. 

In contrast, the postulated mechanism of photosensitisation is absorption of UV energy by 

the chemical within the organism causing subsequent tissue injury, with no change in the 

chemical structure taking place. Light energy excites the photosensitising chemical to a 

triplet energy state; this energy is then transferred to molecules within the cell or cell 

membrane, rapidly generating reactive oxygen species and causing tissue damage. The 

potential for photoenhanced toxicity by this mechanism has been reviewed by Barron & 

Ka'aihue (2001). These phototoxic components of oil appear to be restricted to specific 

polycyclic aromatic hydrocarbons (Mekenyan et al., 1994). Photoenhanced toxicity of 

other compounds may occur but appears to be limited to the photomodification of 

chemicals in water (i- e formation of more toxic and reactive chemicals) rather than 

activation of tissue residues. 
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Chemical oxidation of an aliphatic UCM caused an increase in toxicity and reduction in 

mussel feeding activity (Thomas et al., 1995). The relatively non-toxic nature of the 

aliphatic UCM was attributed to low aqueous solubility. Chemical oxidation was thought 

to form products with greater aqueous solubility but of sufficient hydrophobicity to be 

narcotic toxicants. Therefore, it might reasonably be assumed that some or all of the 

aromatic UCM has the potential to photodegrade, with the possible generation of toxic 

products, but to date this has not been investigated. This suggests it would be pertinent to 

study the possible oxidation of aromatic UCM compounds under environmental 

conditions, i. e. by photodegradation. 

Although there are many reports in the literature of the photodegradation behaviour of 

organic compounds in solution (e. g. Belt et al., 1998), very few have adequately simulated 

environmental conditions. One of the main limitations has been the use of inappropriate 

light sources which do not provide light of a suitable spectral quality and stable light 

intensity or maintain a constant temperature for the illumination period, thus preventing 

kinetic studies. Natural sunlight comprises a broad range spectrum of radiation. Radiation 

of wavelengths below 290 nm, which are the most energetic, are largely absorbed by ozone 

in the upper atmosphere. Therefore, for a photochemical reaction taking place at the earth's 

surface, wavelengths greater than 290 nm are most important. 

Ideally, solar radiation should be used for experiments in environmental photochemistry. 

However, because of restrictions arising from the changes in intensity, both on a daily and 

a seasonal basis, and variation in wavelength distribution depending on latitude and 

general weather conditions, use of natural sunlight is inconvenient (Kirk 1986). Artificial 

radiation sources are preferred as they offer greater stability and reproducibility than 

outdoor studies utilising natural light. Artificial lights can be filtered to simulate solar 

radiation, and in this respect suitably filtered xenon lamps have been widely advocated 

(reviewed by Ali, 1994). Lamps produce a lot of heat during operation and require a good 
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cooling system (Zepp, 1982). Miller & Zepp (1983) noted that an increase in sample 

temperature can lead to an increased rate of photolysis. Therefore experiments should be 

ideally conducted under isothermal conditions during the entire irradiation period. Other 

important factors that need to be taken into consideration are the concentration of the initial 

substrates, the light intensity and the reaction times, because these may affect the yields 

and types of products. 

6.2 Aims 

Although photooxidation is now recognised as an important factor of oil weathering its 

possible influences on UCM components have yet to be studied (Killops, 1986). The main 

aim of the work in this chapter was to assess the photodegradation potential of synthetic 

model aromatic UCM hydrocarbons under environmentally realistic conditions. A further 

aim was to define the kinetics of photolysis of the model aromatic UCM compounds 6- 

cyclohexyltetralin, 7-cyclohexyl-l-methyltetralin and 7-cyclohexyl-l-propyltetralin using a 

previously verified irradiation system. 

6.3 Experimental Approach 

Model aromatic UCM hydrocarbons 6-cyclohexyltetralin, 7-cyclohexyl-l-methyltetralin 

and 7-cyclohexyl-l-propyltetralin were synthesised in good yield and purity as described 

in Chapter 3 (details Chapter 7). The initial aqueous concentration of a test substrate is an 

important factor which may affect the percentage yield and type of products formed 

following photoxidation. Concentrations should be environmentally realistic and not 

exceed the solubility limit of the test compound. The use of polar co-solvents may also 

affect photodegradation behaviour. Therefore, aqueous solutions of the synthetic model 
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aromatic UCM hydrocarbons for the present study were produced using a generator 

column, as described earlier in Chapter 5 (details Chapter 7). This allowed the formation of 

stable solutions, not exceeding the aqueous solubility of the compound of interest. Samples 

were generated directly into quartz photolysis tubes and alternate samples used for 

exposure and dark controls. Samples were exposed to a Heraeus Suntest CPS xenon arc 

lamp for 5,10,15 and 20 hour exposure periods. This lamp accurately simulates the 

spectrum of radiation that reaches the Earth's surface from the sun as it filters out energetic 

wavelengths below 290 nm (Figure 6.1). The use of a xenon lamp is advantageous as it can 

shorten irradiation time and maximise product yields. For each time period five samples 

were placed under the lamp and a further five samples were covered in foil to act as dark 

controls. To maintain a constant temperature during irradiation the quartz tubes were held 

in a specially designed stainless steel tank (Parker & Leahey, 1988) partially filled with 

glycerol, in a metal holder. The tank was cooled by circulating thermostatted water. 

Glycerol was used as a coolant instead of water to avoid losses due to evaporation. The 

tank holding the tubes was positioned under the light source, with the aid of a laboratory 

jack, at a distance of approximately 20 cm from the lamp. The position of the tank on the 

jack and the jack underneath the lamp were carefully delineated and were consistent 

between different exposure times. Temperature was controlled using a Conair chiller unit 

(25 °C ±1 °C) and monitored using a squirrel data logger at the `in' and `out' flow 

terminals of the chiller unit. Before sample irradiation, the lamp and cooling system were 

switched on for an hour to allow the lamp to reach its maximum radiation intensity and for 

the glycerol to adjust to the required temperature. It was found that the chiller unit needed 

to be set at 20°C to give a stable temperature in the tank of 25°C. This temperature was the 

lowest achievable with the experimental set-up. Solutions could be easily generated at this 

temperature which is also the average temperature of the Arabian Gulf (Ali, 1994), thus 

mimicking realistic environmental conditions. The experimental set-up is shown in Figure 
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6.2. After irradiation, samples were removed from the stainless steel holder, covered in foil 

and stored in the fridge (4 °C) until work-up. Upon opening the photolysis vessels, they 

were immediately spiked with an internal standard. Internal standards were spiked at 

concentrations equivalent to half of the aqueous solubility of the compound under study. 

For example, after exposure, samples containing 7-cyclohexyl-l-methyltetralin at an initial 

concentration of 40 µg L-1 were spiked with 6-cyclohexyltetralin at a concentration of 20 

µg L-'. All aqueous solutions were extracted in a separatory funnel three times with DCM 

after irradiation. The combined organic phase was passed over anhydrous sodium sulphate 

to remove water. The extracted samples were concentrated by careful rotary evaporation 

followed by evaporation under nitrogen. All extraction and concentration steps were 

performed with minimum exposure to light. To study the photodegradation kinetics the 

DCM extracts were examined by SIM GCMS. 
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Figure 6.1 Spectral distribution of the emission spectra of the most important 

artificial radiation sources (Roof, 1982) 
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Figure 6.2 Schematic arrangement of photolysis experimental apparatus 
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6.4 Results 

When the concentrations of reactants are low, as in many environmental samples, 

experiments have shown that the photodegradation behaviour of many aromatic 

compounds can be described by a first order rate expression (Zepp et al., 1981): 

Ct=Coe kpt 

Where Ct = concentration of the compound at time `t' (µg L'') 

Co = concentration of the compound at time `0' (µg L"1) 

kp = first order rate constant of the compound (time-') 

t= irradiation time (h) 

Transforming the equation by taking natural logarithms (Ln) results in: 

Ln(Ct) = Ln(Co) Apt 

or, Ln(Ct) - Ln(Co) = -kpt 

or, Ln (Ct/Co) = -kpt 

Thus, if a plot of Ln(Ct/Co) versus time is linear then it can be concluded that the 

photodegradation reaction is pseudo first order and the slope is equal to the first order rate 

constant kP. Another useful parameter is the photodegradation half-life (ti/2) which 

corresponds to the time taken for the concentration of photoreactive compound to decline 

to half its original concentration (Co) 

Le. Ct = 0.5 Co 

therefore; 

Ln 0.5Co/Co = -kpt1n 

-0.693= -kpt1i2 

t112=0.693/kp 

As the samples in this study were well mixed and contained the chemicals of interest at 

very low concentrations their behaviour was assumed to comply with previous 
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observations for aromatic hydrocarbons and the above calculations performed on the data. 

Photolysis rate constants were calculated using first order kinetics by plotting Ln Ct/Co 

against time. Thus, the rate constant kp of each compound was derived from the 

experimentally determined concentration data. A graphical plot of Ln(Ct/Co) versus 

irradiation time yielded a linear regression line, the slope of which was equivalent to kp. 

The time taken for a 50 % reduction in the initial concentration of the compound, i. e. the 

half-life (ti/2) was calculated from the equation t1/2 = 0.693/kp 

Data were tested for normality using standardised skewness and standardised kurtosis. All 

data were found to be parametric, thus a t-test was used to compare means and ANOVA 

used to test the distribution of the data. In all statistical analyses differences at the <5% 

level were considered significant. Statgraphics 4 was used for all data analysis. 

6.4.1 Experiment 1. Photodegradation of 6-cyclohexyltetralin (distilled water, 25°C, 

0-20 hour exposure) 

The results of the exposure of 6-cyclohexyltetralin to simulated solar radiation over the 

range of exposure periods are given in Table 6.1. Results are given as the mean ± standard 

deviation of the five samples at each exposure period and expressed as a percentage 

relative to 0h (i. e. dark controls, 20 samples). Dark controls carried out at each exposure 

time were not statistically different and the data were pooled. The data were normally 

distributed and data from the 20 hour exposure were statistically different from dark 

controls. The concentration of 6-cyclohexyltetralin decreased exponentially with time from 

100% to 27% in 20 hours (i. e. Ct = Co e kpt; Figure 6.3). Values of Ln(Ct/Co) were 

calculated and plotted against the time of irradiation (Figure 6.4). A good fit of regression 

line was obtained (r2=0.9872) and the value of the photodegradation pseudo first order rate 

constant (kr) of 6-cyclohexyltetralin was determined as 0.068 h-1. This gave a value for the 

half-life of 6-cyclohexyltetralin as 10.3 h under the xenon lamp. 
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Table 6.1 Photodegradation of generated aqueous solutions of 6-cyclohexyltetralin in 

distilled water irradiated under xenon lamp at 25 °C. 

Irradiation time (h) Concentration (µg L") 

Mean ± std. dev. (n = 5) 

Concentration relative to 

0h (%) 

0 109.7 ± 8.5 (n=20) 100 

5 75.1 ±5.5 68 

10 50.9±5.5 46 

15 42.3 ± 7.0 39 

20 26.9±6.1 25 
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Figure 6.3 Photodegradation of generated solutions of 6-cyclohexyltetralin irradiated 

under xenon lamp (mean ± std. dev., n=5; except at 0 h, n= 20) 
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Figure 6.4 Photodegradation rate constant (kr) of 6-cyclohexyltetralin irradiated 

under xenon lamp. 
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6.4.2 Experiment 2. Photodegradation of 7-cyclohexyl-l-methyltetralin (distilled 

water, 25°C, 0-20 hour exposure) 

A summary of the photodegradation data obtained for 7-cyclohexyl-1methyltetralin is 

shown in Table 6.2. Results are given as mean ± standard deviation of the five samples at 

each exposure period and expressed as a percentage relative to 0 hour. Results from the 

photodecay of 7-cyclohexyl-l-methyltetralin are shown in Figure 6.5. The concentration of 

7-cyclohexyl-1-methyltetralin decreased from 100% to 17% after 20 hours of irradiation. 

The dark controls at each exposure time were not statistically different and therefore the 

data were pooled. The data were normally distributed and data from the 20 hour exposure 

were statistically different from dark controls (0 h). The photodegradation was found to 

follow first order reaction kinetics (Figure 6.6) and a good fit of regression (r2 = 0.9829) 

was obtained. The photodegradation rate constant (kp) was determined as 0.09 h'' with a 

half-life (tai, ) of 7.7 hours. 
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Table 6.2 Photodegradation of generated solutions of 7-cyclohexyl-l-methyltetralin in 

distilled water irradiated under xenon lamp at 25°C. 

Irradiation time (h) Concentration (µg L") 

Mean ± std. dev. (n=5) 

Concentration relative to 

0h (%) 

0 43.6 ± 5.3 (n=20) 100 

5 25.6 ± 4.5 59 

10 17.2 ± 5.0 39 

15 9.3±3.5 21 

20 7.6 ± 1.7 17 
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Figure 6.5 Photodegradation of generated solutions of 7-cyclohexyl-l-methyltetralin 

irradiated under xenon lamp (mean ± std. dev., n=5; except at 0 h, n= 20) 
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Figure 6.6 Photodegradation rate constant (kr) of 7-cyclohexyl-l-methyltetralin 

irradiated under xenon lamp. 
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6.4.3 Experiment 3. Photodegradation of 7-cyclohexyl-l-propyltetralin (distilled 

water, 25°C, 0-20 hour exposure) 

Table 6.3 summarises the effect of simulated solar radiation on 7-cyclohexyl-l- 

propyltetralin over time. Results are expressed as the mean of 5 samples ± standard 

deviation and as a percentage relative to 0 hour. The exponential decay of 7-cyclohexyl-l- 

propyltetralin is shown in Figure 6.7. This model aromatic UCM hydrocarbon was 

degraded by over 50 % in 5 hours. Dark controls were not statistically different and 

therefore the data were pooled. The sample data was normally distributed and data from 

the 20 hour exposure were statistically different from dark controls (0 h). From the slope of 

the graph (r2 = 0.9877) in Figure 6.8 the photodegradation rate constant (kr) of 7- 

cyclohexyl-l-propyltetralin was 0.14 h"1 giving a half life (t%) of 4.9 hours. 
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Table 6.3 Photodegradation of generated solutions of 7-cyclohexyl-l-propyltetralin in 

distilled water irradiated under xenon lamp at 25°C. 

Irradiation time (h) Concentration (µg L") 

Mean ± std. dev. (n=5) 

Concentration relative to 

0h (%) 

0 24.2 ± 5.7 (n=20) 100 

5 10.5 ± 2.5 43 

10 5.9 ± 1.6 24 

15 2.3 ± 1.3 9 

20 1.5 f 0.7 6 
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Figure 6.7 Photodegradation of generated solutions of 7-cyclohexyl-l-propyltetralin 

irradiated under xenon lamp (mean ± std. dev., n=5; except at 0 h, n= 20) 
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Figure 6.8 Photodegradation rate constant (kp) of 7-cyclohexyl-l-propyltetralin 

irradiated under xenon lamp. 

190 

05 10 15 20 

Irradiation time (hours) 



6.4.4 Comparison of results from the photodegradation of model monoaromatic UCM 

compounds 

The photodegradation of the three model aromatic UCM hydrocarbons was compared by 

plotting the percentage of the compound undegraded against irradiation time (Figure 6.9). 

6-cyclohexyltetralin degraded the slowest and 7-cyclohexyl-l-propyltetralin degraded the 

fastest. The kinetic treatment described in Section 6.4 was applied to all the model UCM 

compounds and Figure 6.10 shows a comparison of Ln(Ct/Co) plotted against time of 

irradiation. Photodegradation rate constants and half-lives are summarised in Table 6.4.6- 

cyclohexyltetralin degraded the slowest with a half-life of 10.6 hours under the xenon lamp 

whilst 7-cyclohexyl-l-propyltetralin degraded the fastest with a half-life of 4.9 hours. This 

indicates that an increase in alkyl substitution on these `model' aromatic compounds may 

be responsible for an increase in their photodegradation rate. 

Table 6.4 Photodegradation rate constants (kr) and half-lives of model aromatic UCM 

compounds in distilled water under xenon lamp at 25°C 

Compound Photodegradation Rate Half Life (t. /) (h) 

Constant (kr) (h"') 

6-cyclohexyltetralin -0.068 10.26 

7-cyclohexyl-l-methyletralin -0.090 7.70 

7-cyclohexyl-1-propyltetralin -0.141 4.9 
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Figure 6.9 Photodecay of generated solutions of three model aromatic UCM 

hydrocarbons irradiated under a xenon lamp 
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Figure 6.10 Photodegradation rate constants of three model aromatic UCM 

hydrocarbon irradiated under a xenon lamp 
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In order to relate the rate of degradation caused by the xenon lamp to the rate likely to 

occur in natural sunlight the light intensity from the calibrated Heraeus xenon lamp 

incident on the sample was compared to global radiation (e. g. Florida summer sunlight, 

latitude 30°N, 12 hour of light per day). Parker and Leahey (1988) derived a conversion 

equation which describes the relationship, assuming a 12 hour day, as: 

1 day Florida sunlight = (0.75 x 12 x (0.2014x102))/(0.335 x Z) 

where Z= the intensity of the xenon lamp incident on the sample surface (W M-2 ) 

The intensity of the lamp was measured herein using a spectroradiometer as 733 W m-2 at 

< 800 nm. This is consistent with Burhenne et al. (1999) who used a xenon lamp to study 

the photodegradation of quinolones and found the intensity to be 800 Wm'2. The equivalent 

Florida days and hours, determined using the above equation are shown in Table 6.5. 

Table 6.5 Xenon arc lamp exposure times and equivalent Florida summer sunlight 

days (summer, lat. 30°N, 12 h light day-) 

Equivalent Florida days 

Xenon arc exposure time (h) (d) (h) 

0.75 1.0 1 

5 6.7 80 

10 13.3 160 

15 20.0 240 

20 26.7 320 
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From Table 6.5 it can be seen that an exposure time of 15 hours under the xenon arc lamp 

is equivalent to 20 days of Florida sunlight. This implies that 6-cyclohexyltetralin would 

take 13 days to degrade under natural conditions to half its original value, whilst 50 % 

degradation of 7-cyclohexyl-l-methyltetralin would occur in 10 days and 7-cyclohexyl-l- 

propyltetralin would have a half-life of almost 7 days under these conditions. 

6.5 Discussion 

It has been reported that the xenon lamp experimental system used herein to determine the 

photodegradation rates of `model' aromatic UCM hydrocarbons, 6-cyclohexyltetralin, 7- 

cyclohexyl-l-methyltetralin and 7-cyclohexyl-l-propyltetralin, realistically simulates 

environmental conditions and provides a good model for the fate of pesticides (Parker & 

Leahey, 1988; de Betrand & Barcelo, 1991) and petroleum (Ali, 1994). Where Ct and Co 

are the concentrations of the compound at initial time (0 h) and at time t, k, is the first 

order photodegradation constant, and therefore, the photodegradation of 6- 

cyclohexyltetralin, 7-cyclohexyl-l-methyletralin and 7-cyclohexyl-l-propyltetralin can be 

described as pseudo first order rate, i. e. Ln (Ct/Co) = -kpt. The rate constants and half-lives 

for 6-cyclohexyltetralin, 7-cyclohexyl-l-methyltetralin and 7-cyclohexyl-l-propyltetralin 

are the first reported for such compounds and were found to be -0.068 h'' (t112 = 10.26 h), - 

0.090 h1 (t1/2 = 7.70 h), and -0.141 h"' (tli2 = 4.9 h), respectively. 6-Cyclohexyltetralin 

degraded the most slowly out of the three compounds whilst 7-cyclohexyl-1-propyltetralin 

degraded the fastest. It would appear from these three examples that alkyl group 

substitution benzylic to the aromatic ring of the tetralin structure affects photodegradation 

rate with the larger alkyl group leading to an increase in the photodegradation rate constant 

(kp) and a decrease in the half life (t112) of the compound. This is consistent with the 

observation by Garret et al. (1998) that greater size and increasing alkyl substitution 
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increase the sensitivity of aromatic compounds to photochemical oxidation. Light induced 

fragmentation and oxidation at the benzyl position of aromatic compounds has also 

previously been demonstrated (Ehrhardt & Petrick, 1985; Rontani, 1985). 

A survey of the literature also revealed that other workers found that similar types of 

compounds (i. e monoaromatic hydrocarbons) underwent photodegradation in their studies. 

For example, Ehrhardt & Petrick (1985) studied the photodegradation of alkylbenzenes as 

a homogenous solution and as a surface film in purified seawater and MilliQ. Ehrhardt 

(1992) later showed that as a group of compounds, alkyl substituted benzenes in the 

seawater soluble fractions of crude oil could be photooxidised in sunlight. Using the same 

experimental system as used herein, Ali (1997) demonstrated that in the absence of any 

sensitisers, certain compounds, such as C4 alkylbenzenes, of the water-soluble fraction of 

crude oil were photodegraded effectively. 

Low aqueous solubility can often make photolysis experiments practically difficult. Many 

studies use aqueous solutions of acetonitrile and water to overcome this problem (e. g. 

Friesian et al., 1996). The procedure used herein overcame this problem by using solutions 

from a generator column previously set up to measure the aqueous solubility of the 

compounds of interest, thus using saturated aqueous solutions and more accurately 

mimicking environmental conditions. The only other report of incorporating the generator 

column into a further experiment as a means of creating test solutions has been by Kim & 

O'Keefe (2000) who studied the photodegradation of polychlorinated dibenzodioxins 

(PCDDs). However, their study was carried out at 39-42 °C limiting its use as an 

environmental study. 

The results of the current study could be further related to environmental conditions by 

extrapolating the irradiation time under the xenon lamp to that of Florida midday sun. The 

half lives of 6-cyclohexyltetralin, 7-cyclohexyl-l-methyltetralin and 7-cyclohexyl-l- 

propyltetralin under the xenon lamp equated to 13,10, and 7 days of Florida midday sun 
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and compare well with a previous study by Ali (1994) who found that the half lives of 

alkylbenzenes were 4-12 days Florida midday sun. 

However, in the marine environment other conditions may affect the photodegradation of 

these compounds. For example, the use of seawater has been reported to increase the 

photodegradation of phenanthrene several times over that in distilled water (Fukuda et al., 

1988). Certain dissolved organic compounds in natural water such as humic substances 

may also affect photooxidation reactions (reviewed by Zepp, 1981). They can 

photosensitise a variety of reactions and thus become important determinants of the 

photochemical pathway of some compounds (Zepp et al., 1985). There can also be light 

absorbing material present which slows the photolysis rate for compounds which undergo 

direct photooxidation (Mill et al., 1981). 

The UV spectrum of the model compounds (Figure 6.11) shows no significant absorption 

above 290nm, which is the limit of radiation reaching the Earth's surface and the cut off in 

radiation emitted from the xenon lamp. This suggests that the compounds would not be 

directly photooxidised. However, direct photolysis is the only mechanism for photolysis of 

organic chemicals in pure water and in saturated hydrocarbon solutions (Kim et al., 2000). 

Sydnes et al. (1985) demonstrated that when toluene and dimethylbenzene were 

deoxygenated no photodegradation products were found. It was therefore suggested that 

the original photodegradation was found to occur over a charge transfer complex of 

toluene (or dimethylbenzene) with molecular oxygen. The formation of charge transfer 

complexes shifts the light absorption to higher wavelengths thus facilitating the 

photodegradation process. Ranby & Rabek (1975) found that the charge transfer complex 

of benzene and oxygen increases the absorption of benzene up to 340 nm. 

It is possible that this process occurred in the photodegradation of the model UCM 

aromatic hydrocarbons. However, the photoirradiation of toluene and dimethylbenzene as 

neat samples carried out by Sydnes et al. (1985) deviated from that observed in the natural 
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environment. Ali (1994) found that C4 alkylbenzenes irradiated within the seawater soluble 

fraction of Kuwait crude oil showed evidence of first order degradation, and suggested that 

the absorption of the compounds just within the wavelength emitted by the xenon lamp 

may have facilitated their degradation. Upon further inspection of the UV spectrum of the 

`model' compounds (Figure 6.11) it can be seen that the UVNis absorption for 7- 

cycloheyxl-l-propyltetralin (the compound with the fastest photodegradation rate) tails 

further into the wavelength range above 290 nm than that of 6-cyclohexyltetralin (the 

compound with the slowest degradation rate). Therefore, the mechanism may have been 

direct photodegradation with the faster degradation rate being due to the greater 

absorbance above 290 nm. 
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7-cyclohexyl-l-propyltetralin 

Figure 6.11 UV/Visible spectra (190-500 nm) of model monoaromatic UCM 

compounds (1 cm path length quartz cell). 

Owing to low aqueous solubility samples were analysed in acetonitrile: water (60: 40, v/v) solution. 
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As the `model' aromatic UCM compounds photodegraded then it is possible that a `real' 

monoaromatic UCM may photodegrade. Dutta & Harayama (2000) found that 

photooxidation of crude oil increased the concentration of alkanes in the samples and 

suggested these were formed by the cleavage of alkyl side chains from aromatic 

compounds found in the UCM. Therefore, a UV/Visible spectrum of the isolated 

monoaromatic UCM (Chapter 2) was taken and compared to the model compounds (Figure 

6.12). The absorbance of the isolated monoaromatic UCM tails into the higher wavelengths 

(i. e. above 290 nm), in a similar manner to the model compounds, indicating that it too will 

be likely to undergo direct photooxidation in the marine environment, possibly at a similar 

rate. 
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Figure 6.12 Comparison between the UV/Visible spectra (190-500 nm) of model 

monoaromatic UCM compounds and an isolated monoaromatic UCM (1 cm path 

length quartz cell). 

Owing to low aqueous solubility samples were analysed in acetonitrile: water (60: 40, v/v) solution 
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Whilst one might not expect compounds that accumulate in the marine environment, such 

as UCM hydrocarbons, to photodegrade, compounds such as polychlorinated 

dibenzofurans (PCDFs) and polychlorinated dibenzodioxins (PCDDs), which are persistent 

environmental contaminants, have been shown to undergo aqueous photodegradation under 

environmental conditions (reviewed by Friesian et al., 1996). These compounds have low 

quantum yields for direct photolysis at 313 nm and low molecular absorptivities above the 

solar cut-off at 290 nm, much like the `model' UCM compounds. 

Whist it was not the aim of the experiment to determine the photo-products from the 

photodegradation of the `model' aromatic UCM hydrocarbons, the DCM extracts were also 

run in full scan mode GCMS but this did not reveal any photodegradation products. This is 

not surprising since photooxidation products are likely to be far more polar than their 

parent compounds, and therefore would not be readily extracted or detected by the method 

employed. Polar compounds such as acids may have not been extracted into the DCM and 

remained in the aqueous phase. Volatile oxidation products that were extracted may have 

been lost during work and, whilst every care was taken to reduce this, procedures such as 

rotary evaporation and nitrogen blow down are inherently biased against the retention of 

volatile compounds. Also low molecular weight polar compounds are not readily 

amenable to GCMS using a non-polar column without prior derivatisation. Even using an 

optimised procedure to look for the products from the photodegradation of phenanthrene 

Ali (1994) was able to identify only 11.6 % of the products when phenanthrene, at an 

initial concentration ten times that of 7-cyclohexyl-l-methyltetralin, was degraded by 94 

%. 

As the isolated monoaromatic UCM exhibits a similar UV/Visible spectrum to that of the 

model UCM hydrocarbons that photodegraded, it would be interesting to see if this process 

also occurred upon irradiation of solutions of the isolated monoaromatic UCM; however 

the practicalities of carrying this out may be far more difficult than for the model 
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compounds. For example, subtle changes in the UCM distribution may not be detected by 

GCMS. Although, the use of a prior fractionation step such as normal phase HPLC would 

separate, for example, the original isolated monoaromatic `hump' from a possible oxidised 

chump, 

Chemical oxidation of an aliphatic UCM was found to increase its toxicity as measured by 

a reduction in mussel feeding rate (Thomas et al, 1995). Ecological effects due to the 

interactions of natural solar radiation and environmental contaminants may be exacerbated 

by recent increases in the levels of UV radiation reaching the earth (Cleveland et al., 

2000). Therefore, it would be interesting to expose a solution of an isolated monoaromatic 

UCM to the xenon lamp and then expose mussels to this solution to see if an isolated 

monoaromatic UCM exhibits photoenhanced toxicity. The toxicological assay used to 

study the effect of the isolated monoaromatic UCM was conducted using 1.4 L of toxicant 

solution in duplicate at each exposure concentration taken from toxicant solution of 10 L. 

The current set-up with the xenon lamp only permits 5x 50 mL samples to be irradiated at 

one time. Therefore methodology used herein would need modifying for this to be 

achievable. 

6.6 Summary 

Photooxidation is a potentially significant process in the degradation of spilled oil at sea. 

Moreover, a fundamental understanding of the effect of photochemical degradation on 

crude oil is a prerequisite for providing an accurate description of the recent history and 

potential fate of oil spilled within the marine environment (Garret et al., 1998). 

The degradation kinetics of the 6-cyclohexyltetralin, 7-cyclohexyl-l-methyltetralin and 7- 

cyclohexyl-1-propyltetralin as `model' aromatic UCM compounds were studied using a 

xenon lamp. The aqueous solutions used were provided by using the generator column 
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previously set up for the determination of the aqueous solubility of these compounds 

(Chapter 5). The use of aqueous solutions from a generator column as a test substrate is 

novel in that only one other report of this was found in the literature (Kim et al., 2000). 

The rate constants and half-lives for 6-cyclohexyltetralin, 7-cyclohexyl-l-methyltetralin 

and 7-cyclohexyl-l-propyltetralin are the first reported for such compounds and were 

found to be -0.068 h4 (t112 = 10.26 h), -0.090 h"1 (tii2 = 7.70 h), and -0.141 h"1 (ti/2 = 4.9 

h), respectively. These were related to environmental conditions (i. e. Florida summer 

sunlight days) to give half lives of 13,10 and 7 days which is similar to those found by Ali 

(1994) using the same experimental set up for alkylbenzenes (4-12 days) suggesting that 

these compounds may undergo photodegradation within the marine environment. 

The length of the alkyl chain substituent appears to be an important factor in the rate of 

degradation, with the compound with the longest chain length (7-cyclohexyl-l- 

propyltetralin) degrading the fastest. This is consistent with the observation by Garret et 

al., (1998) that greater size and increasing alkyl substitution increase the sensitivity of 

aromatic compounds to photochemical oxidation. The mechanism of photodegradation is 

uncertain, but may have been by the formation of a charge transfer complex with oxygen, 

or by direct photodegradation, with the compounds absorbing radiation just within the 

wavelength cut-off of the xenon lamp. 

Degradation products could not be identified using GCMS (apolar phase) indicating that if 

they were indeed recovered they were too polar for this technique, not inconsistent with the 

formation of oxygenated compounds e. g. acids. 

Comparison of the UVNisible spectra of the `model' UCM compounds with that of an 

isolated monoaromatic UCM were comparable in the >290 nm range suggesting that the 

monoaromatic UCM may behave in a similar manner to the model compounds, and 

supports their use as models. 
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Chapter 7. Experimental Details. 

This chapter provides the details of the experimental work carried out in this study. 
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7.1 General laboratory procedures 

All glassware was soaked in Decon 90TM, rinsed thoroughly with hot tap water, then rinsed 

with distilled water, and oven dried at 120 °C overnight. Glassware was covered with 

aluminium foil during storage, and solvent rinsed (x3) with clean solvent immediately 

prior to use. 

All solvents were HPLC or glass distilled grade (Rathburn Chemical Ltd, Walkerburn, 

U. K. ). Solvent purity was routinely monitored by analysing a 100 mL sample which was 

rotary evaporated (Buchi, 40°C), transferred to a vial, evaporated under nitrogen to 

approximately 0.5 mL, and analysed (0.5 µL aliquot) using gas chromatography (GC). 

Silica gel (Aldrich, 100 mesh) and aluminium oxide (BDH, grade 1, neutral, 150 mesh) 

adsorbents used for chromatographic separations were Soxhlet-extracted (DCM, 24 h). 

Adsorbents were activated (silica 24 h, 120 °C; aluminium oxide 12 h, 450 °C), cooled in a 

desiccator and deactivated by the addition of water (MilliQ). Typically, silica was 

deactivated to 5% w/w and aluminium oxide was deactivated to 1.5 % w/w. These were 

mechanically mixed for 2h to ensure complete homogenisation, and stored in a desiccator 

until use within 24 h. When fully activated silica was required the silica was removed from 

the oven, cooled in a desiccator and used immediately. 

Anhydrous sodium sulphate, cotton wool, antibumping granules, sand and Soxhlet 

thimbles were all Soxhlet-extracted (DCM, 24 h) prior to use. Hydrochloric acid and 

MilliQ water were extracted with DCM (x 3). Sodium hydroxide pellets were sonicated (10 

min x 3) in DCM. 
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7.2 Instrumental details 

7.2.1 Gas chromatography (GC) 

Instrument: Carlo Erba 5300 Mega series gas chromatograph 

Column: DB-5 fused silica capillary column, 25m x 0.32mm i. d. (J &W Inc. ) 

Injector: On-column 

Carrier gas: Hydrogen, flow rate 2 mL min-' 

All chromatograms were recorded using a Shimadzu C-R4A Chromatopac integrator. The 

typical oven temperature programme was 40 - 300 °C at 5 °C min-, held at 300 °C for 10 

minutes. Column performance was monitored by injection of an alkane mixture. 

7.2.2 Gas chromatography-mass spectrometry (GCMS) 

GC details: 

Instrument: Hewlett Packard MSD GC(5890) - MSD(5970) 

Column: HP-1 Ultra, fused silica column, 12 mx0.2 mm i. d. (Hewlett Packard) 

Injector: Autosplitless injection (250 °C) 

Carrier gas: Helium (40 kPa head pressure) 

The typical oven temperature programme was 40 - 300 °C at 5 °Cmin-', held at 300 °C for 

10 minutes. 

Mass spectrometer operating conditions: 

Ion source temperature: 280 °C 

Ionisation energy: 70 eV 

Full Scan: mass range 50 - 550 Daltons 
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Selected ion monitoring (SIM): 

Compound Ions 
mit 

Anthracene 178 

6-cyclohexyltetralin 145,171 

7-cyclohexyl- 1 -methyltetralin 145,171 

7-cyclohexyl-1-propyltetralin 171,213,214 

When selected ion monitoring was employed the mass spectrometer was tuned to 

maximise response at m/z 219 to give maximum sensitivity in the region of the ions being 

monitored. 

7.2.3 Nuclear magnetic resonance spectroscopy (NMR) 

A Jeol EX270 MHz high resolution (Fourier Transform) FT-NMR spectrometer was used 

to record 13C and 'H-NMR spectra of samples in deuterated chloroform (trimethylsilane 

reference). 

7.2.4 Infrared spectroscopy (IR) 

A Perkin Elmer FT-IR spectrometer operating at a resolution of 4 cm-1,32 sample scans, 

4000 - 400 wave numbers, was used to record infra-red spectra of compounds as liquid 

films (NaCl discs) or KBr discs. 
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7.3 Determination of aromatic UCM hydrocarbon concentrations in mussels from 

Whitby 1990 

7.3.1 Sample collection 

Mussels were previously collected from Whitby as part of a monitoring programme in 

1991 (Widdows et al., 1995b) and stored at -20 °C until analysed, ten years later. A repeat 

analysis of the mussel tissue was carried out using the original HPLC method of Widdows 

et al. (1991) to ensure no degradation had occurred during the storage period. 

7.3.2 Two phase extraction method 

The method used was a modification of that described by Rhead (1971). Mussel tissue was 

spiked with internal standard (deuterated phenanthrene 50 gg in 100 µL acetone) 

immediately prior to analysis. Phenanthrene (dio) was obtained from Aldrich Ltd and 

purity was greater than 99% as determined by GC. Wet mussel tissue (-30 g) was acidified 

to pH 1 using concentrated hydrochloric acid, and 15 mL of a mixture of n-pentane: 2- 

propanol (1: 4 v/v) was added. This mixture was sonicated (40 min). n-Pentane (120 mL) 

and MilliQ water (117 mL) were added and this mixture was shaken (5 min), followed by 

centrifugation at 2000 rpm (20 min). The upper pentane layer was decanted and retained. 

The procedure was repeated twice and the resulting pentane fractions combined, dried over 

anhydrous sodium sulphate overnight, concentrated to 1 mL by rotary evaporation and 

analysed by GC. 

7.3.3 Fractionation of mussel tissue by open column chromatography 

Mussel total organic extract (TOE) was fractionated into aliphatic and aromatic fractions 

using a modification of the method of Wraige (1997). A glass column (350 mm x 10 mm) 

was packed with a pentane slurry of silica (60-100 mesh, fully activated, 10g) under 
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aluminium oxide (grade 1, neutral, 1.5 % deactivated, 10 g). The sample was applied to the 

top of the column with a sample: adsorbent ratio of 1: 200. Sequential elution of the column 

with solvents of increasing polarity yielded the following fractions: 

Fraction 1 `aliphatic' 1.5 column volumes n-pentane (45mL) 

Fraction 2 `aromatic' 2 column volumes n-pentane: DCM (1: 1, v/v) (60 mL) 

These fractions were concentrated by rotary evaporation to I mL, followed by evaporation 

under a gently stream of nitrogen, and analysed using GCMS. 

7.3.4 Quantification of total unresolved and resolved hydrocarbons 

Quantification was performed using ChemstationTM (Hewlett Packard) software. The total 

area of the chromatogram was calculated using AREASUM parameters. Resolved 

components were integrated manually as no one set of parameters adequately quantified 

the peaks present, and the unresolved component was then calculated from total 

hydrocarbons minus the resolved hydrocarbons. The concentration of the unresolved 

component was calculated relative to the internal standard assuming a response factor of 1. 

Risebrough et al. (1983) found that values for the concentration of the UCM obtained 

using the response of n-C23 did not differ significantly from those obtained using the mean 

responses for n-alkanes within the range of the UCM. 
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7.4 Isolation of a monoaromatic hydrocarbon unresolved complex mixture 

7.4.1 Rotary evaporation of crude oil 

Gullfaks crude oil (5 g) was placed in a 50 mL round bottomed flask and rotary evaporated 

under water pump vacuum at 50 °C (10 min). 

7.4.2 Fractionation by open column chromatography 

Fractionation of 100 mg subsamples into aliphatic and aromatic fractions was performed 

using open column chromatography, with a sample: adsorbent ratio of 1: 200. A 350 x 10 

mm column containing 10 g fully activated silica over 10 g alumina (0.15 % deactivated) 

was eluted with 1.5 column volumes (45 mL) n-pentane to yield the aliphatic fraction, 

followed by 2 column volumes (60 mL) of n-pentane: DCM (1: 1, v/v) to remove the 

aromatic fraction. 

7.4.3 Normal-phase HPLC fractionation 

Normal-phase HPLC (Dionex GP40 gradient pump, Dionex Corp) was performed utilising 

3 Hypersil Hyperprep HSAPS-2 columns (250mm x 10mm x8 µm) in series with a guard 

column (ThermoHypersil). The mobile phase/solvent gradient was 0-40 minutes (100 % 

hexane), 40-41 minutes (gradient to100% DCM), at a flow rate of 1 mL min'. UV-Vis 

detection was performed at 254 nm (Dionex AD20 UV absorbance detector). It was 

determined that 15 mg on column was the maximal amount per run that allowed good 

separation and recovery of fractions. Fractions were collected corresponding to UV 

absorption minima and analysed by GCMS. This process was repeated to allow isolation of 

a sufficient quantity (50 mg) of the desired material (fraction 2; 22-29 minutes). 
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7.5 Investigations into the effect of an isolated aromatic unresolved complex mixture 

upon mussel feeding rate 

Toxicity experiments including the preparation of test solutions and exposure of mussels 

were conducted in a constant temperature room (15 °C). 

7.5.1 Test substrate 

The monoaromatic unresolved complex mixture was isolated from Gullfaks produced 

crude oil as described in Section 7.4 

7.5.2 Collection and maintenance of mussels (Mytilus edulis) 

Mussels of size 10-20 mm were collected from the intertidal zone at Whitsand Bay, 

Cornwall, U. K. This site is known to be relatively uncontaminated by petroleum 

hydrocarbons (Wraige, 1997). Mussels were cleaned of epibionts and held in open flow 

polythene tanks in recirculating seawater at 33 %o salinity, with an artificially produced 

tidal regime which aerially exposed the mussels for 2.5 h twice each day. The temperature 

of the system was maintained at 15 °C and mussels were continuously fed an algal culture 

of Isochrysis galbana. Mussels were acclimated to laboratory conditions for 7 days before 

use in any experiments. 

7.5.3 Preparation of toxicant solutions 

Test solutions were prepared using Eddystone Filtered Seawater (EFSW) which had been 

filtered to remove particles greater than 45 µm. 10 L glass aspirators were filled with 

EFSW and magnetically stirred to create a vortex. The test compound was dissolved in 

acetone and added by means of a syringe, discharging the solution directly into the 

seawater, ensuring that any emulsion was held in the vortex until it had dissolved. Acetone 
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was added to the control aspirators in the same manner. Previous studies by Donkin et al. 

(1989) and Wraige (1997) have demonstrated that at the concentration used (0.001 % v/v) 

acetone has no effect upon mussel feeding rate. The aspirators were stoppered and 

solutions stirred for 2h before use. 

7.5.4 Exposure of mussels to toxicant 

A modification of the method of Donkin et al. (1991) by Wraige (1997) was used. Groups 

of 7 mussels (12 mm ±2 mm) were placed in 2L tall glass beakers. 1.4 L of toxicant 

solution (prepared as described in Section 7.4.4. ) was added to each beaker. Water 

movement was maintained by a magnetic stirrer constrained within a glass dish to prevent 

contact with the mussels. The top of each beaker was covered with perforated aluminium 

foil through which the mussels were continuously fed with an algal culture of Isochrysis 

galbana, controlled by means of a peristaltic pump. For each exposure concentration two 

separate experiments were conducted along with controls for a 24 hour exposure period. 

7.5.5 Measurement of mussel feeding rate 

After the 24 h exposure period mussels were transferred individually to 300 mL beakers 

each containing 200 mL of toxicant solution (for each experiment a control vessel 

containing no mussel was also set up). A 30 minute acclimatisation period was allowed for 

the mussels to open their valves and resume pumping, after which time a predetermined 

volume of algal culture was added to each beaker giving a concentration of 24000-30000 

cells mL"'. Each beaker was carefully stirred with a glass rod to ensure an even distribution 

of the algal culture. After 5 minutes a 20 mL aliquot was removed using a syringe and 

placed in a 20 mL glass vial. After 15 minutes a further 20 mL aliquot was removed and 

the cell numbers of these samples determined using a model D Coulter counter set to 

measure particles greater than 3 µm. 
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7.5.6 Tissue analysis 

Mussel tissue was dissected and stored in solvent rinsed vials at -20 °C until required for 

analysis. The samples were thawed to room temperature and mussel tissue (typically 0.5 g) 

was placed in a stoppered centrifuge tube with 5 mL of 3M sodium hydroxide. These tubes 

were placed in a heated water bath at 60 °C for 20 minutes. Once cooled, 10 mL of n- 

hexane was added and the tubes vigorously shaken for 5 minutes. The samples were then 

centrifuged at 2000 rpm for 10 minutes and the upper n-hexane layer transferred to a 

conical flask. The hexane extract was dried over anhydrous sodium sulphate overnight and 

rotary evaporated to 1 mL, followed by evaporation under a gentle stream of nitrogen. The 

samples were then analysed by GCMS using external calibration. 

7.5.7 External calibration of aromatic unresolved complex mixture hydrocarbons 

The amount of the aromatic UCM accumulated by the animals and observable in the gas 

chromatograms was quantified using an external calibration graph. The monoaromatic 

UCM isolated from Gullfaks oil was run on the GCMS over a range of concentrations in 

triplicate to give a calibration graph. Quantification was performed using ChemstationTM 

(Hewlett Packard) software. The total area of the chromatogram was calculated using 

AREASUM parameters. Resolved components were integrated manually as no one set of 

parameters adequately quantified the peaks present and the unresolved component was 

then calculated from total hydrocarbons minus the resolved hydrocarbons. The unresolved 

component present in extracted mussel tissue was calculated using the calibration graph 

from the calibrated weight of isolated monoaromatic UCM. 
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7.6 Synthesis of a model monoaromatic UCM hydrocarbon 

7-cyclohexyl-l-methyltetralin was synthesised essentially using the methods of Wraige 

(1997) and Sturt (2000). 

7.6.1 Synthesis of 3-benzoyl(4'-cyclohexyl)propanoic acid 

Succinic anhydride (12 g, 0.12 mol), phenylcyclohexane (16 mL, 0.1 mol) and 1,1,2,2- 

tetrachloroethane (100 mL) were placed in a three-neck 250 mL round bottomed flask 

(rbf). The mixture was heated gently using an electric heating mantle (80 °C), with stirring 

by mechanical stirrer to dissolve the succinic anhydride, giving a clear yellow liquid. On 

cooling, 32 g (0.24 mol) of finely ground aluminium chloride was added in small portions 

over a 30 minute period. This was left stirring for 30 minutes during which time the 

mixture turned dark red and became more viscous. After this time the contents of the flask 

were poured into a 400 mL beaker half full of ice and rinsed with distilled water. 

Concentrated HCl (-5 mL) was added until no more dark red material was apparent and 

the mixture was a milky yellow colour. This mixture was then transferred to a 500 mL 

round bottom flask (rbf) ready for steam distillation. 

The mixture was distilled (2 h) with addition of water as necessary to keep the volume in 

the flask at around 300 mL. At this time the majority of the tetrachloroethane (-95 %) had 

been collected. Once cooled IM NaCO3 was added until all the HCl was neutralised, 

indicated by the cessation of effervescence and pH paper measurements. The alkaline 

mixture was steam distilled again until all the tetrachloroethane was recovered. 

The distilled mixture was placed in a beaker on a hotplate, further IM NaCO3 was added to 

dissolve the product, and Ig decolourising carbon was added. Precipitated alumina was 

removed by filtration using a heated filter funnel and the filtrate left to cool. This was 

slowly acidified with concentrated HCl which resulted in the formation of a creamy 

precipitate upon neutralisation. The product was obtained by vacuum filtration, washing 
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with water to remove any HCI, and left to dry in a drying cabinet (40 °C) overnight. 3- 

Benzoyl(4'-cyclohexyl)propanoic acid was synthesised in good yield (65 %) and purity 

(>98 % by GC) and fully characterised using GC, GCMS, IR and NMR. 

MS: m/z 332 (M+', 4 %); m/z 317 (M+*-CH3,29 %); m/z 187 (benzylic cleavage, 100 %) 

IR: 3423 cm-1 (vO-H); 3039 cm-1 (vCH aro); 2853 cm-1,2924 cm'' (vC-H); 1712cm"1, 

1679 cm-1(vC=O) 

13C-NMR: (ppm) 197.5,179.1,154.0,134.2,128.2,127.1,44.7,34.1,33.0,28.1,26.7, 

26.0 

1H-NMR: (ppm) d 7.9, d 7.3, t 3.3, t 2.8, br m 2.6, m 1.8, m 1.4 

7.6.2 Synthesis of 4-phenyl(4'-cyclohexyl)butanoic acid 

KOH (6 g, 0.1 mol) was dissolved in diethylene glycol (40 mL) by gentle heating. 

Hydrazine hydrate (3.2 mL, 0.0663 mol) and 3-benzoyl(4'-cyclohexyl)propanoic acid 

(11.5 g, 0.044 mol) were added and the mixture refluxed (1 h, 130 °C) to form the 

hydrazone. Once the hydrazone was formed the aqueous material was distilled off and 

collected in order to reach a high enough temperature for the decomposition of the 

hydrazone. This was achieved by reflux (4 h, 230 °C). The resulting material was left 

overnight to cool and then poured into a 200 mL beaker half full with ice and acidified 

with concentrated HCl to Congo Red whilst stirring with a glass rod. Upon neutralisation a 

brown sticky lump was formed which was extracted with diethyl ether (100 mL), water 

washed (3 x 50 mL) and dried over anhydrous Na2SO4 (-5 g). The resultant extract was 

treated with -1 g decolourising carbon, followed by hot filtration and rotary evaporation to 

yield 4-phenyl(4'-cyclohexyl)butanoic acid in good yield (83 %) and purity (>97 % by 

GC). The acid was characterised using GC, GCMS, IR and NMR. 

MS: m/z 318 (M+', 28%), 303 (M+'-CH3,41%), 186 (benzylic cleavage, 100%) 

IR: 3416 cm"' (vOH); 1708 cm"' (vC=O); 2922 cm", 2850 cm"' (vC-H). 
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13C-NMR (ppm) 180.3,145.8,138.4,128.4,126.8,44.1,34.5,33.4,27.1,26.9,26.0. 

1H-NMR (ppm) d 7.1, t 2.6, br m 2.4; t 2.3; q 1.9; m 1.8; m 1.4. 

7.6.3 Synthesis of 7-cyclohexyl-l-tetralone 

Polyphosphoric acid (36 g) was heated in a beaker to 90 °C on a hotplate whilst 4- 

phenyl(4'-cyclohexyl)butanoic acid (9 g, 0.346 mol) was warmed to 70 °C. These were 

mixed together and stirred vigorously using a glass rod at temperature (30 min). A further 

portion of polyphosphoric acid (12 g) was added and the mixture stirred for a further 10 

minutes to ensure the complete conversion to the tetralone. Once the mixture had cooled it 

was poured into a 100 mL beaker half full of ice. This was left to stand overnight to 

separate. The crude tetralone was extracted with diethyl ether, water washed (2 x 50 mL), 

then base extracted (2 x 20 mL; 5% NaOH) to remove any unreacted acid, and water 

washed until washings were neutral. The organic extract was then dried over Na2SO4 and 

solvent removed by rotary evaporation to give 7-cyclohexyl-l-tetralone in good yield (80 

%) and purity (>97 % by GC). This was characterised using GC, GCMS, IR and NMR. 

MS: m/z 228 (M+', 100 %), 200 (M+'-CO, 28 %), 185 (48 %) 172 (58 %). 

IR: 2925cm'', 2852cm"1 (vC-H); 1685cm'' (vC=O). 

13C-NMR (ppm) 198.7,146.7,142.0,132.3,128.7,125.0,44.1,39.2,34.3,29.3,26.7, 

26.0,23.3. 

'H-NMR(ppm)s7.9, d7.3, d7.1, t2.9, t2.7, brm2.5, g2.1, m 1.8, m 1.4. 

7.6.4 Synthesis of 7-cyclohexyl-l-hydroxy-l-methyltetralin 

Mg turnings (0.90 g, 3.7 mol) dried at 120 °C overnight were added to sodium dried diethyl 

ether, and iodomethane (3.92 mL, 0.063 mol) in sodium dried diethyl ether (7.5 mL) was 

added dropwise with gentle heating until a cloudy precipitate was formed. This indicated 

the formation of the alkylmagnesium iodide i. e. the Grignard reagent, to which 7- 
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cyclohexyltetralone (3.32 g, 1.45 mol) dissolved in diethyl ether (7.5 mL) was carefully 

added over a period of 30 minutes, followed by heating under reflux (1 h). Once the 

mixture was cooled it was poured into a beaker containing approximately 100 mL of ice 

with 20 mL saturated ammonium chloride. This was extracted with ether, water washed (3 

x 50 mL), dried over anhydrous Na2SO4, and the solvent removed by rotary evaporation. 

The tertiary alcohol was obtained in good yield (78 %) and purity (94 %) and the product 

was characterised using GC, GCMS, IR and NMR. 

MS: m/z 301 (M+'-CH3,100 %), 226 (M+'-HO+TMS, 55 %), 75 (35 %), 301 (26 %), 143 

(18%). 

IR: 3366 cm-1 (vOH); 2925 cm-1,2850 cm's (vC-H). 

13C-NMR: 146.2,142.6,133.6,128.7,125.6,124.6,70.7,40.4,39.9,34.5,30.6,29.5,26.9, 

26.1,20.5 

'H-NMR: s 7.4, m 7.0, m 2.8,2.5,1.9,1.4, s 1.5. 

7.6.5 Synthesis of 7-cyclohexyl-l-methenyltetralin and 7-cyclohexyl-l-methyl-3,4- 

dihydronaphthalene 

The alcohol 7-cyclohexyl-l-hydroxy-l-methyltetralin was dehydrated by reflux (1.5 h) 

with orthophosphoric acid (10mL). Once the mixture was cooled it was transferred to a 

separating funnel and saturated NaCl (5mL) added. The mixture was then extracted with 

diethyl ether (2 x 20 mL), and the extracts combined and the solvent removed to yield an 

isomeric mixture of alkenes. 

Crude reaction products (a thick brown oil) were cleaned using open column 

chromatography employing fully activated silica and elution with hexane to give a clear 

oily liquid. 

GC Purity: >98% 

MS: m/z 226 (M+', 100 %), 224 (M+*-2,39%) 143, (64 %), 129 (64 %) 
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IR: 3021 cm-' (vC=C), 2925 cm"', 2851 cm"' (vC-H). 

13C-NMR: 158.1,146.1,136.7,135.0,134.8,132.3,44.0,37.2,36.5,36.1,34.5,28.6 

1H-NMR: m 7.0, m 5.8, t 2.8, m 2.5,2.2, s 2.0, m 1.8,1.4 

7.6.6 Synthesis of 7-cyclohexyl-l-methyltetralin 

Hydrogen was bubbled through 100 mg of the purified alkene mixture dissolved in hexane 

(-. 7 mL) using palladium (50 mg) as a catalyst (3 h). After this time the catalyst was 

removed by filtration through a cotton wool plug and the solvent removed under a stream 

of nitrogen. This gave a yield of 75 %. Removal of trace amounts of unconverted alkenes 

was accomplished by elution through an Ag+ silica column with n-pentane. 

GC purity: >99 % 

IR: 3001 cm"' (vCH aro), 2924 cm"', 2850 cm"' (vC-H alip). 

MS: m/z 228 (M+', 61 %), 213 (M+'-CH3) 51 %), 145 (100 %), 129 (64 %), 128 (26 %) 

13C-NMR (ppm): 143.6,142.1,134.3,129.4,127.4,125.2,44.3,34.9,32.9,32.5,30.1, 

26.7,25.6,22.5,20.1 

'H-NMR (ppm): s 7.1, m 7.0, m 2.9, m 2.7, m 2.5, m 1.9,1.4, d 1.3 

7.6.7 Isolation of 6-cyclohexyltetralin 

6-cyclohexyltetralin was purified from crude reaction products by elution through an Ag+ 

silica column with n-pentane in good yield (78 %). 

GC purity: >98 % 

MS: m/z 214 (M+*, 100 %), 171 (99 %), 145 (46 %), 131 (49 %), 129 (68 %) 

IR: 3001 cm-1 (vCH aro), 2924 cm'', 2850 cm"' (vC-H alip). 

13C-NMR (ppm) 145.2,136.8,134.5,129.0,127.4,124.0,44.2,34.6,29.5,28.9,26.9, 

26.2,23.3. 

' H-NMR (ppm) m 7.1, m 2.9, br m 2.5, m 1.9, m 1.5 
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7.6.8 Isolation of 7-cyclohexyl-l-propyltetralin 

A crude mixture of the 7-cyclohexyl-l-propenyltetralin and 7-cyclohexyl-l-propyl-3,4- 

dihydronapthalene (Wraige, 1997) was subjected to silica column chromatography, further 

purified by Ag+ chromatography and hydrogenated (70.5 mg), to give 7-cyclohexyl-l- 

propyltetralin (56.6 mg) in good yield (80 %). 

GC purity: >98 %. 

MS: m/z 256 (M+', 14 %), 213 (100 %), 131 (29 %), 129 (16 %). 

IR: 3001 cm-' (vCH aro), 2924 cm"1,2850 cm"' (vC-H alip). 

13C-NMR (ppm) 145.2,141.4,134.4,128.9,127.0,123.8,44.3,39.3,37.4,34.6,34.5, 

29.4,27.4,27.0,26.2,20.7,19.8,14.3. 

'H-NMR; (ppm) q 6.9, br m 2.7, br m 2.4, m 1.3-1.7, t 0.9. 

7.7 Investigations into the effect of 7-cyclohexyl-l-methyltetralin upon mussel feeding 

rate 

The same procedure was followed as for investigating the effect of an isolated 

monoaromatic UCM described in section 7.5 with some minor alterations. Exposure 

concentrations were 0,12.5,25,50 and 100 . tg L''. Immediately prior to analysis mussel 

tissue was thawed to room temperature and spiked with an internal standard. 6- 

Cyclohexyltetralin was used for 7-cyclohexyl-l-methyltetralin and vice versa. The extracts 

were analysed by GCMS and the accumulated compound quantified using integration 

software and an internal standard calibration. 
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7.8 Investigations into the aqueous solubility behaviour of model aromatic UCM 

hydrocarbons 

7.8.1 Test materials 

Anthracene was obtained from Aldrich with a purity of > 99 % as determined by GC. The 

model aromatic UCM hydrocarbons, 6-cyclohexyltetralin, 7-cyclohexyl-l-methylteltralin 

and 7-cyclohexyl-l-propyltetralin were synthesised in good yield and purity (> 98 %) as 

described in section 7.6. An aromatic unresolved complex mixture was isolated from a 

crude oil as described in section 7.4. 

7.8.2 Experimental set-up 

Saturated solutions were prepared using a generator column set-up based on the original 

method of May et al. (1978). Each generator column consisted of a HPLC stainless steel 

column 30 cm x 0.46 mm i. d. with 2 µm stainless steel frits at either end, dry packed with 

glass beads 60-80 mesh (Alltech Associates) coated with test compound. Prior to coating 

with the test compound the beads were cleaned in a Soxhlet thimble with 100 mL each of 

distilled water, acetone and hexane respectively, placed in an oven at 120 °C overnight, 

then left in a dessicator until required. The size of the beads was measured using a 

microscope and were sized at 0.17 - 0.25 mm diameter corresponding to 60 - 80 mesh size. 

Test compounds (35 mg) were dissolved in 50 mL of hexane to which 7g of beads were 

added. The solvent was removed by rotary evaporation followed by a gentle stream of 

nitrogen to give a 0.005 % coating. Once packed the generator column was attached to a 

HPLC pump (Waters Associates Chromatography Pump, 6000A Solvent Delivery System) 

by means of Teflon tubing and attachments, supplied by a water reservoir. 

Temperature control (25 °C) was by means of a water bath in which the generator column 

and water reservoir were immersed. Temperature was monitored using a Squirrel 

datalogger (SQ32-4U, Grant Instruments) equipped with two temperature probes and set to 
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record every 10 minutes. A3L beaker acted as a water reservoir. This contained MilliQ 

water to which was added mercuric chloride (20 µg L"1) for sterilisation and covered in foil 

for protection. 

7.8.3 Generation of solutions 

The column was flushed with 500 mL water to allow equilibration of the system before 

measurement. This is consistent with previous studies (e. g. Dunnivant & Elzermann, 

1988). Water was pumped through the generator column at a rate of I mL min-'. The 

effluent from the column was collected directly into a 100 mL separating funnel containing 

25 mL DCM. Samples were collected every 50 minutes and 10 samples were collected per 

measurement. 

7.8.4 Extraction of solutions 

Once the sample had been collected an internal standard was spiked into the water in 100 

µL acetone and the funnel stoppered. Internal standards would preferably have been 

deuterated analogues of the analyte to be measured; however these compounds were not 

available commercially. The next choice was a compound of similar chemical structure 

and GC retention time, therefore the `model' compounds served as internal standards for 

one another. Each funnel was shaken for 5 minutes with care not to form an emulsion. The 

DCM fraction was separated off and the water sample extracted with a further 25 mL 

DCM. The DCM extracts were combined and passed through an anhydrous sodium 

sulphate column. Analysis was performed using GCMS operated in selected ion 

monitoring mode (SIM) (see Section 7.2.2). 
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7.8.5 Effect of salinity on aqueous solubility 

The effect of salinity was determined by carrying out the above procedure but replacing 

MilliQ water with filtered seawater at 35 96o. Salinity was monitored using a conductivity 

meter (WTW, Germany) utilising a conductivity cell TetroCon 325 calibrated with 

O. Olmol L"1 KC1. 

7.8.6 Effect of temperature on aqueous solubility 

The effect of temperature was determined by carrying out the above procedure at 15 °C by 

using a dip chiller unit (HetoFrig, Denmark) along with the water bath to achieve the 

required temperature. 

7.8.7 Modifications for generator column using isolated monoaromatic UCM 

The generator column method was employed in exactly the same way as for the model 

compounds. Distilled water was used at a temperature of 25 °C. Extracted samples were 

analysed in full scan and quantified using an external calibration graph (as in Chapter 2) 

7.9 Investigations into the photodegradation of model aromatic UCM hydrocarbons 

7.9.1 Test compounds 

6-Cyclohexyltetralin and 7-cyclohexyl-lpropyltetralin were purified from the crude 

reaction products from earlier studies (Wraige, 1997) as described in sections 7.6.7 and 

7.6.8.7-Cyclohexyl-l-methyltetralin was synthesised using the procedures described in 

Sections 7.6.1. - 7.6.6. 
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7.9.2 Preparation of model compound solutions 

Saturated solutions of the model UCM hydrocarbons, 6-cyclohexyltetralin, 7-cyclohexyl-l- 

methyltetralin and 7-cyclohexyl-l-propyltetralin were prepared using a generator column, 

as described in section 7.8.3. Solutions were generated directly into photolysis vessels, 

which were covered in foil until exposed. Solutions were generated using distilled water at 

25°C therefore the temperature of the samples did not need to be adjusted before exposure. 

The photolysis vessels were 25 cm long quartz tubes with an internal diameter of 1.8 cm 

and 19/26 mm socket ground glass joints with quartz stoppers. Each tube held 50 ml of 

sample to be irradiated or act as a control. Alternate samples were used as exposure and 

control vessels. 

7.9.3 Method of exposure 

Samples were exposed to a Suntest CPS xenon lamp which emitted radiation at 

environmentally realistic wavelengths (confirmed by measurement of its output spectrum). 

Radiation was emitted from a 1.8 kW xenon arc installed horizontally in a parabolic 

reflector and fitted with an UV filter with a radiation limit of 290 nm in the UV range, 

corresponding to natural sunlight. 

An arrangement was made so that 5 solutions in individual stoppered quartz tubes could be 

placed beneath the xenon lamp. After being filled with the generated solution of `model' 

UCM hydrocarbon, these tubes were tightly capped and sealed with PTFE tape to keep the 

tube tightly sealed and help minimise any volatilisation that might occur during irradiation. 

To maintain a constant temperature during irradiation the tubes were held in a specially 

designed stainless steel tank partially filled with glycerol in a metal holder. The tank was 

cooled by circulating thermostatted water (chiller thermo circulator model 05/CTCHG, 

Conair) through the tank. Glycerol was used instead of water to avoid loss of coolant due 

to evaporation. The tank holding the tubes was positioned under the light source with the 
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aid of a laboratory jack at a distance of approximately 20cm from the lamp. The position of 

the jack and tank were marked to maintain consistency between following exposures. The 

temperature of the glycerol during irradiation was monitored using a Squirrel datalogger 

(SQ32-4U, Grant Instruments) equipped with two temperature probes (positioned at the 

inlet and outlet of the water chiller unit) and set to record every 10 minutes. 

Before sample irradiation, the lamp and the cooling of the glycerol tank were switched on 

for an hour to allow the lamp to reach its maximum radiation intensity and to allow the 

glycerol to adjust to the temperature required. 

The radiation intensity of the xenon lamp incident on the reaction tubes was measured and 

the quartz tubes were subjected to an average radiation intensity of 733 W m"2. 

Samples were irradiated for 5,10,15 and 20 hours. 5 samples were carried out at each 

exposure period and 5 dark controls were also carried out in parallel for each exposure 

period. After the specified irradiation periods photolysis tubes were cooled in a 

refridgerator prior to the work-up procedure. 

7.9.4 Work-up of irradiated solutions 

Upon opening, each photolysis/control vessel was spiked with an internal standard. 6- 

cyclohexyltetralin was the internal standard for 7-cyclohexyl-l-methyltetralin and 7- 

cyclohexyl-l-propyltetralin; and for 6-cyclohexyltetralin, 7-cyclohexyl-l-methyltetralin 

was used. The concentration of internal standard used was half the expected concentration 

before photooxidation (i. e. half the aqueous solubility value). The spiked samples were 

carefully decanted into separating funnels (100 mL), each tube was rinsed with DCM (3 x 

5 mL), and rinsings added to the separating funnel. The aqueous sample was then solvent 

extracted (3 x 15 mL DCM). After phase separation the DCM extracts were combined and 

excess water removed using a large (5 x2 cm) anhydrous sodium sulphate column. The 

solvent was reduced by careful rotary evaporation to --5 mL, followed by evaporation 
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under nitrogen to -1 mL. Samples were analysed by GCMS operating in selected ion 

monitoring mode (see Section 7.2.2). 
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Chapter 8. Summary and further work 

This chapter summarises the main conclusions of the work presented herein and suggests 

directions for further work 
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8.1 Summary 

Considerable quantities (an estimated 2.5 million tonnes per year) of petroleum and 

petroleum fractions are introduced into the marine environment. Most research has 

concentrated on those hydrocarbon components which are resolved by GC and thus 

identifiable by GCMS. However, unresolved complex mixtures of hydrocarbons 

accumulate when petroleum is weathered. UCMs are therefore widespread in the marine 

environment occurring, for example, in molluscs, fish, sediment and water-borne particles. 

As such, the presence of a UCM or `hump' in the gas chromatogram of the aliphatic 

fraction of a sample is considered a marker for petroleum contamination. Although these 

unresolved aliphatic compounds are bioaccumulated to a large extent they do not appear to 

pose a threat to marine organisms. In contrast aromatic UCMs have not been extensively 

studied. Little is known of the composition of UCMs particularly regarding the aromatic 

component, the presence of which, in polluted samples, is often ignored and seldom 

reported. However, these compounds are present in samples at a high level and a survey of 

the literature indicates that they may be of environmental concern. The overall aim of this 

study was to therefore assess the possible impact of these compounds accumulating within 

the marine environment. 

A previously verified approach was used to determine the aromatic UCM concentration in 

mussel tissue from Whitby harbour collected as part of a monitoring programme in 1990 

and found to have reduced Scope for Growth. The mussel tissue was also analysed by 

HPLC as in the original monitoring scheme and found to have comparable levels of 2-3 

ring aromatic hydrocarbons, showing that no degradation of the sample had occurred 

during storage. Analysis by GCMS revealed that the sample was dominated by aromatic 

UCM hydrocarbons, the concentration of which was comparable to the amount found in 

the mussels in 1995. The amount of aromatic UCM found in the mussels correlated with 
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the amount of `total toxic hydrocarbons' at this and two other sites suggesting that the 

aromatic UCM may be responsible for the observed effects. This suggested the need to 

investigate the environmental behaviour of these compounds. 

The overall objectives of the current study were therefore 

" to isolate a monoaromatic unresolved complex mixture from a crude oil for 

toxicological testing 

" synthesise a `model' aromatic UCM hydrocarbon for toxicological testing 

" measure the aqueous solubility of three `model' aromatic UCM hydrocarbons 

" generate an aqueous solution from the isolated unresolved complex mixture 

" test the photodegradation potential of the model compounds under environmentally 

realistic conditions. 

The experimental data from the whole of this study are summarised in Table 8.1 

In order to investigate the toxicity of aromatic UCM hydrocarbons a monoaromatic UCM 

was isolated from a crude oil. Guilfaks (North Sea) produced crude oil was chosen as most 

of the resolved components had already been removed by in-reservoir biodegradation. This 

crude oil was also the cargo of the Braer which was spilled off Shetland in 1993. The 

isolated monoaromatic UCM (representative of a monoaromatic UCM entering the 

environment) was exposed to mussels to determine its effect on mussel feeding rate (a 

sensitive parameter in the Scope for Growth measurement). At the highest nominal 

aqueous concentration tested (200 µg L"') the monoaromatic UCM hydrocarbons were 

accumulated and filtering rate was significantly reduced (-40%) in 24 hours. It is assumed 

that exposure of mussels to a lower concentration over a greater exposure time would 

achieve a similar total body burden and thus exhibit a similar effect. The accumulated 

hydrocarbons were present in the same retention time range of the gas chromatogram as 
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those to which they were exposed indicating that the accumulation of monoaromatic UCM 

hydrocarbons was responsible for the reduction in mussel feeding rate. Mussels 

accumulated up to 90 µg g"' wet weight (-400 µg g"1 dry weight) of the monoaromatic 

UCM hydrocarbons, which is comparable to the amounts found at petroleum impacted 

sites with reduced Scope for Growth. This suggests that monoaromatic UCM hydrocarbons 

are not only a quantitatively important environmental burden but are also of some 

toxicological significance. Recent reports on the toxicity of weathered oils have not been 

able to identify all of the components responsible for the effects observed and the toxicity 

of the monoaromatic UCM hydrocarbons may be one of the factors overlooked. 

A model UCM hydrocarbon was synthesised in order to more conveniently study the 

behaviour of monoaromatic UCMs. 7-cyclohexyl- I -methyltetralin was synthesised in good 

purity and yield by a seven stage synthetic pathway, each stage being fully characterised 

by GC, GCMS, IR and NMR. Two further model monoaromatic UCM hydrocarbons, 6- 

cyclohexyltetralin and 7-cyclohexyl-l-propyltetralin, were isolated from the crude reaction 

products from a previous study. These compounds, unavailable from commercial sources 

were synthesised/isolated in quantities large enough to allow thorough structural 

characterisation and pure enough for subsequent studies to help increase the understanding 

of the fate, effects and reactions of monoaromatic UCMs within the marine environment. 

7-cyclohexyl-l-methyltetralin had a demonstrable narcotic effect causing a reduction in 

mussel feeding activity. At a nominal aqueous exposure of 100 µg L'' mussels 

accumulated up to 145 pg g'' wet weight of the compound which reduced mussel feeding 

rate by up to 70 % in the 24 hour exposure period. The result herein was compared to those 

of Wraige (1997) who used the same assay to assess the toxicity of 6-cyclohexyltetralin 

and 7-cyclohexyl-l-propyltetralin, to determine the generality of the toxicity of these 

alkyltetralins, and possibly indicate which subcomponents of the monoaromatic UCM 

were responsible for the observed reduction in feeding rate. 
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The WEC50 values (Table 8.1) of the model monoaromatic UCM hydrocarbons indicated 

that increasing substitution on the `base' cyclohexyltetralin structure increased the WEC50 

value. The larger WECso value for the isolated monoaromatic UCM was probably due to 

its slow accumulation into the mussel tissue suggesting it had not reached steady state 

within the tissues in the 24 hour exposure period. The TEC50 value for 7-cyclohexyl-l- 

methyltetralin was comparable to 6-cyclohexyltetralin and 7-cyclohexyl-l-propyltetralin 

studied by Wraige (1997) and other resolved aromatic hydrocarbons studied by Donkin et 

al., (1989,1991). At similar accumulated body burdens, e. g. 75 µg g" wet weight, the 

response in mussels followed a similar trend for the model monoaromatic UCM 

hydrocarbons and the isolated monoaromatic UCM, suggesting the joint toxicity of all the 

components of the monoaromatic UCM. However the larger TEC50 value calculated for the 

isolated monoaromatic UCM possibly indicated that not all of the UCM accumulated was 

responsible for the toxic effect observed. In theory, mixture toxicity, in terms of body 

burden is likely to be concentration-additive, thus the effect of the monoaromatic UCM is 

the effect of the addition of all its constituents. However a cut off in toxicity was noted by 

Donkin et al., (1989,1991) whereby compounds were accumulated but no response was 

observed. Thereby some of the monoaromatic UCM components could have been 

accumulated without causing a toxic response. This cut-off was associated with limited 

aqueous solubility, therefore the aqueous solubility of the model UCM hydrocarbons was 

determined using a generator column in distilled water and seawater at 25 °C and 15 °C 

(Table 8.1). An increase in salinity and decrease in temperature was found to reduce 

aqueous solubility. This is considered normal behaviour and was consistent with other 

reports of such effects on aromatic compounds. The aqueous solubility of the model 

compounds was lower than the cut-off suggested by Donkin et al., (1989,1991) of 70 µg 

L'', suggesting these compounds should not elicit a toxic response. When aqueous 

solubility was plotted against TEC50 a clear indication of the solubility cut-off was 
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observed. So although 7-cyclohexyl-1-propyltetralin induced a response in mussel feeding 

rate not all the accumulated compound was responsible for this effect, resulting in a higher 

TEC50 value, indicating a similar possibility for the monoaromatic UCM. A generated 

solution of the isolated monoaromatic UCM showed that these compounds were indeed 

soluble enough to be responsible for the toxic response, but also that not all of the 

compounds present in the isolated monoaromatic UCM were present in the generated 

solution. The higher molecular weight compounds were absent from the generated solution 

suggesting that these could be accumulated by mussels without inducing a toxic response, 

as they are not soluble enough to reach the site of toxic action. Therefore the use of the 

model UCM compounds has allowed a greater understanding of the mechanisms behind 

the toxicological response of the isolated monoaromatic UCM and have shown that these 

compounds as a group actually fit into the present theories on critical body burden, mixture 

toxicity and aqueous solubility cut-off. The results herein suggest that consideration should 

be given to monoaromatic UCM hydrocarbon burdens when toxicological examination of 

the effects of oil in the environment are made. 

In the environment photodegradation is a potentially significant process for aromatic 

compounds, which can also influence the toxicity of such aromatic compounds. The 

degradation kinetics of 6-cyclohexyltetralin, 7-cyclohexyl-l-methyltetralin and 7- 

cyclohexyl-l-propyltetralin were studied using a xenon lamp (Table 8.1). Comparison of 

the UV/visible spectra of the model monoaromatic UCM hydrocarbons with the isolated 

monoaromatic UCM suggests that the monoaromatic UCM may behave in a similar 

manner to the model compounds and be capable of photodegrading in the marine 

environment. 

In conclusion this study has reported on the behaviour of monoaromatic UCM 

hydrocarbons in the marine environment in terms of toxicity, aqueous solubility and 

photodegradation by the study of model monoaromatic hydrocarbons and an isolated 
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monoaromatic UCM. This has provided the first demonstrable evidence for the direct 

toxicity of isolated monoaromatic UCM hydrocarbons to marine organisms and suggests 

these compounds should be considered in the long term impacts of oil in the environment, 

and also warrant further study. 
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8.2. Further Work 

The re-examination of mussel tissue at a petroleum impacted site where reduced Scope for 

Growth was correlated with 2-3 ring aromatic hydrocarbons, as measured by HPLC, 

demonstrated that the aromatic fraction was dominated by aromatic UCMs. A further 

correlation between `total toxic hydrocarbons' and the levels of aromatic UCMs was found 

at 3 sites where measurements had been taken. In light of the result herein, that an isolated 

monoaromatic UCM reduced feeding rate when accumulated to levels similar to those 

found in mussels at impacted sites, a fruitful area of further work would be the analysis of 

aromatic UCMs, especially the monoaromatic fraction, at further sites where effects have 

been correlated to the concentration of aromatic hydrocarbons, measured by non-specific 

methods, to strengthen the evidence presented herein. As the monoaromatic UCM was 

isolated from Gullfaks crude oil which was similar, if not identical, to the crude spilt by the 

Braer around the Sheltand Islands, U. K. in 1993, it would certainly be prudent to 

investigate this area in relation to the levels of monoaromatic UCMs accumulated in 

organisms in conjuction with an assessment of biological status. 

It would also be interesting to conduct a Toxicity Identification Evaluation (TIE) approach 

at such sites. This involves not only the analysis of tissue extracts from polluted sites that 

exhibit an effect (e. g. SFG) to link with observed effects in the field, but also the 

fractionation of such extracts, followed by toxicological assessment, to determine the exact 

cause of the effect noted in the field. While TIE type procedures have been mainly applied 

to sediments, it would be useful if these procedures could be applied to mussel tissue, and 

the fractionation include separation of the UCM by methods similar to those used to isolate 

the monoaromatic fraction, to determine if the monoaromatic UCMs present in mussels 

elicits an effect. 
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Wraige (1997) suggested that the gill was the site of toxic action and once compounds had 

reached steady state in the gill they were bioaccumulated into the tissue without causing 

any further reduction in mussel feeding rate. If indeed the gill is the site of toxic action, 

analysis of contaminants should focus on the quantities present in the gill rather than total 

body burdens. If the mussel feeding rate assay for the isolated monoaromatic UCM were to 

be repeated, it would be useful to use either larger mussels or a larger population to 

provide enough tissue to study the accumulation in the gill. It would be interesting to find 

out whether or not the monoaromatic UCM hydrocarbons achieve saturation in the gill 

within 24 hours. It was assumed that a similar response would be observed if the mussels 

bioaccumulated a similar level of the monoaromatic UCM upon exposure to a lower 

aqueous concentration over a longer time period. Therefore once the time to reach 

saturation in the gill had been established an exposure for this time period would allow a 

more meaningful measurement of the TEC50 value. It would also be beneficial to use a 

fractionation step such as normal phase HPLC to remove any biogenic compounds 

extracted from the mussel tissue that might interfere with the analysis. 

A standardised approach to the fractionation and measurement of aliphatic and aromatic 

UCMs would be extremely valuable as it would allow the comparison of data between 

different researchers and allow a more meaningful assessment of the possible detrimental 

effects of the accumulation of such compounds. 

Other further work with monoaromatic UCM hydrocarbons should include the assessment 

of these compounds using different organisms and different biological endpoints to 

determine the sensitivity of organisms to these compounds, and the extent of their impact 

within the marine environment. It would also be worthwhile to isolate monoaromatic 

UCMs from different crude oils, using a similar procedure as that presented in this study, 

to find out whether the observed effect is universal for oils from different sources. 
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6-cyclohexyltetralin, 7-cyclohexyl-l-methyltetralin and 7-cyclohexyl-l-propyltetralin were 

used as `model' monoaromatic UCM compounds to further understand the toxicity and 

solubility of the monoaromatic UCM. These compounds were also found to photodegrade 

under a xenon lamp indicating that the monoaromatic UCM may also photodegrade. 

Compounds may photodegrade to produce more toxic products, therefore a worthwhile 

experiment would be to expose a solution of the isolated monoaromatic UCM to a xenon 

lamp followed by exposure of mussels to the solution, to ascertain whether or not the 

monoaromatic UCM exhibits photoenhanced toxicity. 

The model UCM compounds used herein were considered `good' models of the 

monoaromatic UCM based on current available data, and ions present in the mass spectra 

of these synthetic compounds were found in the mass spectral analysis of the isolated 

monoaromatic UCM, further lending support to the suggestion of these compounds as 

surrogates for the monoaromatic UCM. Additional studies of the aromatic UCM 

composition of a wide range of oils and oil residues would be worthwhile to determine 

whether such alkylated compounds or their analogues are widespread in oil, for example 

by preparative GC. This works by diverting the gas flow whilst a peak emerges at the 

detector allowing an analyte of interest to be trapped and collected, for example to `prep' 

out compounds from the unresolved complex mixture. Material collection in this manner 

can be subsequently analysed using GCMS techniques. If these compounds prove to be 

important then toxicological assays using other biological endpoints should be conducted. 
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