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ABSTRACT 

Following release to the environment, crude oil becomes subject to weathering processes 
which remove the simple, volatile hydrocarbons leaving an unresolved complex mixture 
(UCM) comprising the more environmentally persistent components. Aromatic UCMs 
have been reported in a wide variety of environmental matrices. Recent studies indicate 
such material, particularly monoaromatic hydrocarbons, is sufficiently bioavailable to 
marine organisms (e. g. mussels) to elicit toxicological responses. However, little else is 
known about the environmental fate and composition of petroleum-derived aromatic 
UCMs. The overall aim of this work was to investigate aromatic UCMs with particular 
emphasis on their biodegradability, water solubility and composition. 
To assess persistence in the environment, an 'aromatic' UCM was isolated from Tia Juana 
Pesado crude oil (Venezuela) and this UCM exposed to the hydrocarbon degrading 
bacterium Pseudomonas fluorescens (Texaco). Five synthesised alkylcyclohexyltetralins 
and an alkylcyclohexylnaphthalene, proposed previously as 'average' structures for some 
aromatic UCM components, were also exposed under the same conditions. After 50 days, 
biodegradation of the compounds had not exceeded 20%, the most resistant (-2% 
biodegradation) being those with C3-C5 alkyl chains. These latter results were comparable 
to those observed for the 'aromatic' UCM (-2%). Using North Sea oil or n-hexadecane as 
co-substrates, the synthetic compounds were also exposed to a natural consortium of 
bacteria to provide more environmentally realistic conditions. After 119 days the branched 
chain C5 homologue (-60%) and the naphthalene (-12%) still remained, yet under these 
severe conditions the components of the North Sea crude oil co-substrate were extensively 
degraded with even the highly bioresistant pentacyclic hopanes exhibiting biodegradation. 
Aqueous solutions of an 'aromatic' and 'monoaromatic' UCM were produced (at 25 'C) 
using a generator column technique. These 'solubilised' UCM fractions may represent 
UCM hydrocarbons which are bioavailable, and which are most toxic to aquatic organisms. 
An altered UCM was clearly evident in the aqueous phase extracts, suggesting that many 
of the compounds in the original aromatic and monoaromatic UCMs exhibited similar 
physicochemical properties and mole fractions. However, higher molecular weight 
hydrocarbons were absent from the generated 'solutions', indicating a solubility cut-off 
point based predominantly on molecular weight. The molecular weight distribution 
differed significantly for the 'solubilised' aromatic and monoaromatic UCMs, indicating 
that Raoult's Law may describe a critical control in the dissolution of complex mixtures. 
Comprehensive two-dimensional gas chromatography-time of flight-mass spectrometry 
(GCxGC-ToF-MS) analysis was used to provide vastly increased separation power and 
characterisation of a water 'soluble' monoaromatic UCM. Over 1200 compounds were 
separated by the chromatography, of which about 500 had distinct mass spectra from the 
ToF-MS analysis. A detailed characterisation of some of these monoaromatic UCM 
hydrocarbons via comparison to mass spectra registered in the NIST library permitted the 
identities of over 100 monoaromatic UCM components to be inferred. Compounds 
identified include novel alkylated homologues of benzene, indene, indan, tetralin, 
biphenyl, diphenylmethane and tetrahydrophenanthrene. 
This study has shown that a UCM appeared to be comprised of the geochernically minor 
isomers and analogues of known major crude oil constituents. This finding is extremely 
important given that the narcotic toxicity of petroleum hydrocarbons is additive. As UCMs 
often account for a large proportion of crude oil mass, these persistent residues may also 
contribute significantly to the observed narcotic toxicity of crude oil. 
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Chapter 1 

Introduction 

A review of the current knowledge concerning unresolved complex mixtures (UCMs) of 
hydrocarbons in the environment, in particular those comprised of aromatic hydrocarbons, 

is presented. The available literature indicates that these hydrocarbon UCMs are ubiquitous 
in environmental samples contaminated with crude oil and with some refined petroleum 
fractions. Whilst UCMs are generally associated with weathered crude oil residues they are 

also present in fresh crude oils. Weathering processes, particularly biodegradation, serve to 

enhance UCM concentrations in oils through removal of the chromatographically 

resolvable components. Studies of the molecular composition of these resistant UCM 

compounds are reviewed. Due to the persistent nature of UCM hydrocarbons, their 

behaviour and impacts, particularly on the marine environment, are discussed, and the 

underlying principles for the current study are presented. 
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1.1 Introduction 

Today, the world's oceans receive a wide range of contaminants, many of which enter the 

marine environment via isolated or chronic discharges. One of the pollutant classes with 

the highest media profile is crude oil, perhaps due to the effects associated with large 

isolated spillages frequently resulting from oil tanker accidents. Crude oil has become an 

intrinsic part of global society, providing energy for power, heating and powering motor 

vehicles and as a raw material. This global dependence has led to the continued rise in the 

transportation of crude oil and petroleum derived products, estimated to be in the region of 

150,000 tonnes per annum. (National Research Council, 2003). This in turn, has resulted in 

the continued release of petroleum hydrocarbons to the marine environment. Current 

estimates (National Research Council, 2003) suggest in excess of 1.3m tonnes reach the 

marine environment annually. However, the ecological impact of this is difficult to assess 

as this represents thousands of individual releases. Furthermore, the effect of each spill is 

dependent upon the volume and type of crude oil spilled, weather conditions and the 

environment into which it enters (National Research Council, 2003; Heubeck et aL, 2003). 

Although they do not necessarily have the most environmentally profound effects, large oil 

spills gain most media attention (Table 1.1). Such accidents are exemplified by the 

grounding of the TIV Exxon Valdez in Prince William Sound, Alaska in March, 1989, 

where approximately 36,000 tonnes of Alaskan North Slope crude oil was released into 

one of the most fragile ecosystems on the planet. The immediate result of major accidents 

such as these are the powerful visual effects of crude oil in the environment, such as oil 

covered animals and their subsequent high mortality rates (e. g. Heubeck et aL, 2003; 

Figure 1.1). In 1999 the tanker Erika sank in the Bay of Biscay, releasing 20,000 tonnes of 

heavy fuel oil which polluted 400 krn of the French Atlantic coast, killing 44,000 seabirds. 

In addition to animals, detrimental effects to the health of oil spill clean-up workers have 

also been reported in the immediate aftermath of major spillages (e. g. Bosch, 2003). Whilst 
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pollution effects of this magnitude are not everyday occurrences and inputs of oil to the sea 

have been significantly reduced in recent years (e. g. ITOPF, 2002; National Research 

Council, 2003), tanker accidents still occur with a worryingly regularity (Clark, 2001). 

Most recently, the Prestige sank off the coast of NW Spain causing another major oil spill. 

Table I. I. Summary of some of the largest, most environmentally significant 
and most recent oil tanker spills, edited from Clark (2002). 

Date Tanker Location Spillage (t) 

19/07/1971 A tlan tic Empress Off Tobago 287000 

16/03/1978 Amoco Cadiz Brittany, France 223000 

11/03/1991 Haven Genoa, Italy 144000 

18/03/1967 Torrey Canyon Scilly Isles, UK 119000 

03/01/1993 Braer Shetland Isles, UK 85000 

15/02/1996 Sea Empress Milford Haven, UK 72000 

16/04/1992 Katina P Off Maputo, Mozambique 72000 

04/03/1989 Exxon Valdez Prince William Sound, Alaska 37000 

13/11/2002 Prestige Off NW coast of Spain >30 000a 

12/12/1999 Erika Off Brittany, France 20 000b 

16/01/2001 Jessica San Cristobal Island, Galapagos I OOOC 

'Prestige oil spill data added from Bohannon and Bosch (2003), Serret et aL 
(2003 ). b Erika oil spill data added from Le Hir and Hily (2002) and Le Moigne 
(2003). 'Jessica spill data added from Kingston et al. (2003). 

OP048 

Photo by US Environmental Protection 
Agency 

Figure I. I. Photograph of an oiled seabird, typical of the media images 
associated with crude oil spills in the environment, yet contamination of the 
marine environment with unresolved complex mixtures of oil derived 
hydrocarbons has received comparatively little media attention (but see Jones, 
2003). 
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Of course, petroleum hydrocarbon releases to the environment are not simply limited to 

major oil tanker accidents. In fact the latter only account for an estimated 7.5% of annual 

crude oil inputs to the marine environment (calculated from National Research Council, 

2003). In addition, considerable amounts of petroleum products are discharged into the 

marine environment through runoff, industrial and sewage effluents, stormwater drains, 

general shipping activities, and natural oil seeps (Zheng and Richardson 1999; National 

Research Council, 2003; Readman et al., 2002). 

1.2 Unresolved Complex Mixtures (UCMs) of hydrocarbons 

The long-term ecological impacts of crude oil releases are less obvious and less well 

understood. Crude oil is an exceedingly complex amalgamation of thousands of individual 

compounds each with distinct physico-chemical characteristics (Readman et aL, 1992; 

Schwarzenbach et aL, 2003). Long-term impacts are thought to depend largely on the fate 

and behaviour of these complex hydrocarbon mixtures in the environment. Resolved peaks 

corresponding to abundant n-alkane constituents (e. g. Figure 1.2a) typically dominate gas 

chromatograms of fresh (undegraded) crude oils. Whilst many compounds differ 

significantly from each other in terms of their physico-chemical properties, the sheer 

number of compounds in crude,, oil means it is inevitable that many, homologous (or 

pseudohomologous) and isomeric compounds will exhibit very similar properties. This 

includes a continuum of compounds with closely similar boiling points. When examined 

by gas chromatography such components have similar retention characteristics and are 

effectively unresolved. These have become known as Unresolved Complex Mixtures 

(UCMs; Thompson and Eglinton, 1978; Frysinger et aL, 2003). UCMs are present in the 

gas chromatograms of all oils but are especially apparent in chromatograms of weathered 

oils (e. g. Gill and Robotham, 1989; Gough and Rowland, 1990; Button et aL, 1992; 

Readman et al., 1996; Gogou et al., 2000; Ziolli and Jardim 2003; Figure 1.2b). 
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Figure 1.2. Gas chromatograrns of (a) fresh Forties crude oil; (b) biodegraded 
Tia Juana Pesado crude oil. The former chromatogram. is normalised on the 
largest resolved component peaks, effectively masking the large unresolved 
complex mixture of hydrocarbons under the baseline. In the chromatogram of 
the biodegraded oil the removal of the resolved compounds by bacteria has left 
a residue, which is normalised on the apex of the unresolved feature (UCM), 
making it much more pronounced. 



UCMs produce a raised baseline in the gas chromatogram of the hydrocarbon fraction 

(Readman et aL, 2002) and are colloquially known as a 'hump' (e. g. Gough and Rowland, 

1990; Rowland et aL, 2001; Smith et aL, 2001). These 'humps' are clearly visible in gas 

chromatograms of weathered crude. Although fresh oils contain UCMs, the latter are 

generally suppressed by the high abundance of a few individual compounds such as n- 

alkanes (e. g. Button et aL, 1992; Figure 1.2a). It is only when these resolved compounds 

are removed via weathering processes that the UCM becomes the predominant feature in 

the gas chromatograms. 

The weathering of complex mixtures such as crude oil is complicated and the dynamics 

inter-linking such processes, their dependence and effects upon each other, is convoluted 

and not fully understood (Jezequel et aL, 2003). However, it is known that these processes 

are most effective in the removal of crude oil hydrocarbons when they are acting in unison. 

Owing to their different physico-chemical properties, once released into the envirorunent 

crude oil hydrocarbons weather at different rates and behave in different ways (Readman et 

al., 1992; Gogou et aL, 2000; Schwarzenbach et aL, 2003). Those most susceptible to 

weathering processes are removed rapidly leaving the more resistant hydrocarbons to 

persist in the environment for longer periods of time. Initially the most significant process 

is volatilisation (Readman et aL, 1992). The weathering of remaining components then 

proceeds via processes such as dissolution, biodegradation and photooxidation, (Readman 

et al., 1992; Readman et al., 1996; Gogou et al., 2000; Chaineau et al., 2003; Jezequel et 

aL, 2003). Volatile hydrocarbons of low molecular weight and those that are readily 

biodegradable are thus the most susceptible to weathering processes. Examples include the 

n-alkanes (up to C44) and low molecular weight aromatic compounds such benzene, 

toluene, ethylbenzene, xylene (BTEX) and naphthalene (e. g. Atlas, 1981; Leahy and 

Colwell, 1990; Atlas and Bartha, 1992; Alexander, 1999). 
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Weathering of crude oil generally coincides with an increase in the UCM contribution to 

the hydrocarbon burden of environmental samples (e. g. Seymour and Geyer, 1992; 

Chaineau et aL, 2003). The remaining UCM hydrocarbons are therefore the most persistent 

in the environment, sharing similar physical and chemical characteristics (e. g. Fung et aL, 

2004). This has led to the presence of UCMs in environmental samples being widely used 

as an indication of petrogenic hydrocarbon inputs (e. g. Gill and Robotham, 1989; Readman 

et aL, 1996; Wakeham, 1996; Ahmed et aL, 1998; Gonzalez-Barros et aL, 1998; Zheng 

and Richardson 1999; Gogou et aL, 2000; Doskey 2001; Yunker and Macdonald, 2003; 

Ziolli and Jardim 2003). For example, Kingston et aL (2003) used UCMs in sediment 

samples from the Galapagos Islands to distinguish sites contaminated by fresh crude oil 

from the Jessica cargo in 2001 from those which were contaminated by previous pollution 

events (e. g. general port activities in the area during the years preceding the tanker spill). 

1.2.1 Origins of UCMs 

UCMs are known to be present in what are termed "fresh" as well as weathered crude oils, 

accounting for up to 30% of the mass of some fresh oils (Revill, 1992; Table 1.2). 

Therefore, (although the subject has been rarely addressed), it is assumed that UCM 

generation occurs at some time during the genesis of the other (resolved) hydrocarbons of 

crude oil. Killops and AI-Juboori (1990), Revill (1992) and Warton (1999) have provided 

possibly the most comprehensive reviews of the origins of UCM hydrocarbons available to 

date. 

In an effort to verify the origin of UCM hydrocarbons experimentally, Revill (1992) 

subjected polythene to hydrous pyrolysis (350'C, 24 and 48 hr), which is a technique 

widely advocated for laboratory simulation of the catagenic stage of oil formation (e. g. 

Lewan et aL, 1979; Lewan et aL, 1986; Lewan and Williams, 1987). GC analysis of the 
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urea non adduct fraction of the organic extracts of the pyrolysates revealed the presence of 

quite significant UCMs, with longer pyrolysis times increasing the amount of unresolvable 

material. Natural catagenesis of kerogen (an ill-defined natural macromolecular precursor 

of crude oil) was suggested to produce at least a proportion of the UCM hydrocarbons 

found in crude oils. Killops and AI-Juboori (1990) also suggested that the UCM 

hydrocarbons are derived from kerogen during petroleum generation in the same way as 

the resolved components (e. g. n-alkanes). Warton et al. (1999) suggest that saturated 

compounds and the alkyl substituents attached to aromatic rings may have a common 

origin. They proposed that saturated hydrocarbons are formed by defunctionalisation of 

natural products containing the same carbon skeleton, such as carboxylic acids and 

alcohols. Alkylaromatic hydrocarbons were suggested to form via alkylation of the 

aromatic system by such functionalised compounds followed by defunctionalisation to 

form hydrocarbons (Warton, 1999; Warton et aL, 2002). Wilkes et aL (1998) also propose 

that alkylaromatic hydrocarbons arise from the addition of acylium carbocations (from 

carboxylic acids) onto aromatic rings. Hydrocarbon UCMs may even be generated during 

different steps of catagenesis. For example, the decarboxylation of UCMs of carboxylic 

acids in biodegraded oils following their palaeosterilisation at high temperatures (>80 'C) 

(cf Wilhelms et aL, 2001; Watson et aL 2002). 
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1.3 Environmental occurrence of UCMs 

Petroleum hydrocarbon contamination is often highest in environmental samples collected 

near sites of concentrated anthropogenic activity e. g. cities and ports (Bomboi and 

Hernandez, 1991; Connell et al., 1998; Gogou et al., 2000; Tsapakis et al., 2002; Wetzel 

and Van Vleet, 2003; Yunker and Macdonald, 2003). Other places include point sources of 

pollution such as river discharges and off shore production (Mason 1988; Maldonado et 

al., 1999). Despite the persistence of UCM hydrocarbons in crude oil residues, these 

recalcitrant mixtures are presumably still subject to processes such as slow dissolution, 

flocculation and adsorption to particulate matter. This can lead to their transport across 

large distances, resulting in their occurrence in regions far away from the source of 

pollution. Bums et aL (2001) suggest that ocean currents are able to transport organic 

material, including discrete tar balls, very long distances. Gogou et aL (2000) and Doskey 

(2001) suggest atmospheric transport to be a significant source of hydrocarbons to deep- 

sea areas. Ternois et aL (1998) observed large UCMs in the hydrocarbon extracts of a 

sediment trap survey which was conducted in the remote Indian Ocean sector of the 

Southern Ocean. Consequently petrogenic hydrocarbons appear ubiquitous in their nature 

being present in virtually all environmental samples. 

Initially, UCMs documented in the literature were reported to be predominantly associated 

with the aliphatic fractions of crude oil. This was perhaps due in part to the use of GC- 

flame ionisation detection (FID) and GC-mass spectrometry (MS) to analyse the saturated 

(aliphatic) fractions of environmental samples, which then frequently exhibited 'aliphatic' 

UCMs. Also, initial attempts to characterise UCMs focused on the aliphatic fractions (e. g. 

Gough, 1989; Gough and Rowland, 1990; Revill, 1992; Revill et al., 1992). As a result, 

aliphatic UCMs have been widely reported in the saturated fraction of environmental 

samples including sediments (e. g. Wade et al., 1994; Wakeham, 1996; Zheng and 

Richardson 1999; Gogou et al., 2000; Lopez et al., 2000; Doskey 2001; Meniconi et al., 
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2002; Reddy et aL, 2002; Wetzel and Van Vleet 2003), aerosols (e. g. Preston and Merrett, 

1991; Preston et aL, 1992; Mendez et aL, 1993; Bi et aL, 2002; Tsapakis et aL, 2002), 

sediment traps (e. g. Ternois et aL, 1998; Bums et aL, 2001; Bums et aL, 2003) urban 

runoff (e. g. Wade et aL, 1994) and the water column (e. g. Requejo and Boehm 1985; 

Maldonado et al., 1999). They have also been reported in mussels (e. g. Farrington et al., 

1988; Fung et aL, 2004), oysters (e. g. Gold-Bouchot et aL, 1995), fish (e. g. Ahmed et aL, 

1998) and even terrestrial mammals such as wolves (Gonzalez-Barros et al., 1998). 

1.3.1 Aromatic UCMs 

More recent studies have revealed that aromatic UCM hydrocarbons are also common in 

crude oil residues and environmental samples. One of the main reasons for the previous 

lack of reports was the techniques employed for analysis of aromatics (Wang and Fingas, 

1997; Smith, 2002). Aromatic compounds are commonly monitored using non- 

chromatographic fluorescence techniques. When chromatographic techniques are used, 

selected ion monitoring (SIM) methods, designed to measure the molecular ions of priority 

pollutant aromatic hydrocarbons (e. g. PAH), are most often utilised due to regulatory 

requirements for PAH determination (e. g. Boxall and Maltby, 1995; Shailaja and D'Silva 

2003). These methods essentially 'filter' the total aromatic hydrocarbon data, leaving the 

aromatic UCM undetected. In many cases, when GC analysis exhibits an aromatic UCM in 

the chromatograms of environmental samples, these are not mentioned when the data is 

discussed (e. g. Wakeham 1996; Lopez et al., 2000) or if the data are discussed they are not 

quantified (e. g. Bomboi and Hernandez, 1991). Recent indications that the aromatic UCM 

is the most toxic fraction of weathered crude oil residues (e. g. Smith 2002; Smith et aL, 

2001; Rowland et aL, 2001; Wraige, 1997) are perhaps responsible for an increasing 

number of reports of the presence of aromatic UCMs in environmental samples. 
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However, before this recent and growing interest, several earlier studies reported aromatic 

UCMs in a broad array of environmental matrices worldwide (Table 1.3). For example, in 

sediments (e. g. Atlas, 1981; Jones et aL, 1983; Readman et aL, 1986; Fowler et aL, 1993; 

McMillen et al., 1995; Readman et al., 1996; Le Dreau et al., 1997; Reddy et al., 2002), in 

the water column (Requejo and Boehm 1985; Douabul and Al-Shiwafi, 1998), in urban 

runoff (e. g. Bomboi and Hernandez, 1991), in soils (e. g. Chaineau et aL, 2003), and in 

urban aerosols (e. g. Aceves and Grimalt, 1993a and b). Aromatic UCMs have also been 

reported in bivalves (e. g. Farrington et aL, 1982; Soler et aL, 1989; Fowler et aL, 1993; 

Wraige, 1997; Rowland et aL, 2001; Smith, 2002) and fish (e. g. Fowler et aL, 1993). The 

range of concentrations of aromatic UCMs found in some environmental samples is 

summarised in Table 1.3. Though this is a limited summary of a data-deficient research 

area, the available information suggests aromatic UCMs are quantitatively important in 

environmental samples. In fact aromatic UCMs frequently account for the majority (up to 

98%) of the aromatic hydrocarbon burden in such samples, far outweighing the PAR 
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1.4 Environmental impacts of petroleum derived hydrocarbons 

1.4.1 The bioaccumulation of petroleum derived hydrocarbons in aquatic organisms 

The impacts of crude oil and some of its known constituents (individual hydrocarbons or 

simple mixtures) on marine organisms have been studied for many years. These studies 

have generally found that petroleum hydrocarbons, once released into the environment, can 

accumulate to varying degrees in aquatic organisms. Certain chemicals can accumulate in 

organisms via direct uptake from the surrounding medium (e. g. seawater) by gills or skin 

(bioconcentration) or by ingestion of particle-bound chemicals (bioaccumulation) as well 

as via the food chain (biomagnification) (Franke et aL, 1994; Ziolli and Jardim, 2002). 

Even when standard ecotoxicity tests indicate no detectable acute or chronic effects, 

bioaccumulation and biomagnification are regarded as hazard criteria in themselves. Some 

effects are only recognised in the later phases of life. Multi-generation effects may 

manifest themselves only in higher trophic levels of a food web (Franke et aL, 1994; 

Clarke et aL, 2000; Ziolli and Jardim, 2002). Factors which are thought to influence 

bioaccumulation in organisms include diffusion behaviour through cell membranes, 

metabolism in organisms, accumulation behaviour of the metabolites, accumulation in 

specific organs and tissues, uptake and depuration kinetics (Franke et aL, 1994). Although 

many studies focus on the effects of individual or simple mixtures of hydrocarbons on 

aquatic organisms, these are not necessarily environmentally realistic scenarios. 

Investigations have highlighted significant differences in the uptake rate of an individual 

compound from the rates observed for the same compound present in a complex mixture 

(Dauble et aL, 1986). Dauble et aL (1986) suggest that competitive interactions for biotic 

transport may occur among the mixture constituents, particularly if compounds possess 

similar physical or chemical properties. The presence of chemicals of similar size and form 

are suggested to result in saturation of the hydrophobic binding sites. 
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Typical organisms used for monitoring the bioaccumulation of petroleum hydrocarbons 

include fish (e. g. Neff et al., 1985; Readman et al., 1992) and bivalves (mussels and 

oysters) (e. g. Donkin et al., 1991; Widdows et al., 1995; Donkin et al., 2003). However, 

aquatic organisms such as bivalves are most susceptible to oil pollution events, as they are 

unable to avoid oil spills and possibly because they are unable to rapidly depurate or 

metabolise hydrocarbons. For example, Readman et al. (1992) observed much lower 

concentrations of petroleum hydrocarbons in fish compared with bivalves in the Arabian 

Gulf following the crude oil releases during the 1991 Gulf War. Neff et al. (1985) also 

observed much lower concentrations of petroleum hydrocarbons in plaice (Pleuronectes 

platessa) than in oysters (Crassostrea gigas) collected from the same impacted site. This 

was attributed to the ability of plaice to rapidly metabolise and excrete these compounds. 

The persistent nature of some crude oil component hydrocarbons in the environment has 

led to concerns regarding their bioavailability to aquatic organisms. Ahmed et al. (1998) 

suggested that, due to their stability, petroleum and petroleum hydrocarbons in the marine 

environment, when ingested by marine organisms, might be retained for long periods. This 

observation is supported by Neff et al. (1985) who found that oysters accumulated 

petroleum hydrocarbons to high concentrations and were slow to depurate them over a 27- 

month period. Furthermore, Soler et al, (1989) have shown that aromatic hydrocarbons 

bioaccumulate to higher concentrations in older mussels. This indicates that rates of 

elimination or metabolism are much slower than those of accumulation. 

1.4.2 Toxicity of petroleum derived hydrocarbons in aquatic organisms 

The bioaccumulation of petroleum hydrocarbons in aquatic organisms following a spill or 

from low level chronic discharges has been shown to elicit significant sublethal and lethal 

responses. Rudolph et aL (2001) found that long term exposure of sublethal concentrations 

were as deleterious to organisms as periodic exposures to higher concentrations. Thus, 
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evaluation of contaminant profiles in shellfish can provide advantages over measurements 

in water and bottom sediment samples. For example, mussel-based measurements are a 

reflection of pollutant bioavailability to successive consumers in the food chain. These 

allow an assessment of the sublethal or lethal effects of pollutants on organisms at higher 

trophic levels (Clarke et al., 2000). Bioaccumulation of petroleum hydrocarbons has been 

frequently reported to trigger ecotoxicological effects in aquatic organisms such as fish 

(e. g. Neff et al., 1985; Khan, 1998; Neff et al., 2000; Rudolph et al., 2001; Shailaja and 

D'Silva, 2003; Bhattacharyya et al., 2003), mussels (e. g. Wraige, 1997; Rowland et al., 

2001; Smith et al., 2001; Smith, 2002; Erben et al., 2003), crustaceans (e. g. Neff et al., 

2000; Erben et al., 2003), mysids (e. g. Barron et aL, 1999a and b; Neff et aL, 2000), 

amphipods (e. g. Boxall and Maltby, 1995; Page et aL, 2002), octopus (Long and Holdway, 

2002), and daphnia (Bhattacharyya et al., 2003). Other organisms associated with aquatic 

environments, have also been studied, such as amphibians (e. g. Huang et al., 2003) and 

birds (e. g. Andres, 1999). It should be noted that sublethal responses affected by exposure 

to petroleum hydrocarbons might be species dependent or more significant in particular 

aquatic organisms (Long and Holdway, 2002). For example, Neff et al. (2000) monitored 

the toxicity of water soluble fractions (WSFs) of fresh and weathered crude oils to a 

variety of aquatic organisms including clownfish (Amphiprion clarkii), tropical penaeid 

shrimp (Penaeus vannamei), sea urchin larvae (Arbacia punctulata), silverside minnows 

(Menidia beryllina), and mysids (Americamysis bahia). The acute toxicities of the 

generated WSFs varied for the different species, reflecting the different sensitivities to the 

hydrocarbons in crude oil WSFs. However, the relative sensitivities of the organisms were 

very similar for a particular WSF, indicating that the relative sensitivities to different 

components of the WSFs are similar. The life stage of a specific organism may also 

determine how susceptible it is to impairment by petroleum hydrocarbons (Barron et al., 

1999b; Long and Holdway, 2002). Furthermore, the sublethal responses of organisms at 

early life stages may lead to mortality later in life by increasing vulnerability to disease, 
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parasitism, or predation (Heintz et aL, 1999). The WSFs of crude oils, especially fresh oils, 

are generally assumed to contain abundant low molecular weight hydrocarbons such as 

BTEX. However, for many years large UCMs have also been clearly evident in the WSFs 

of both fresh and weathered crude oils (e. g. Boylan and Tripp, 1971; Boehm and Fiest, 

1982; Sydnes et aL, 1985; Ali, 1994). Although these soluble UCMs are rarely mentioned 

or discussed, their toxicological impacts should be considered. 

Petroleum hydrocarbons have been frequently shown to bioaccumulate in specific or target 

organs of the body. This 'storage' can render them harmless and in other cases can lead to 

problems associated with a particular organ. For example, Neff et aL (1985) observed that 

plaice contaminated with petroleum concentrated the hydrocarbons in liver and muscle 

tissue. Although the hydrocarbons were bioaccumulated to relatively low concentrations, a 

variety of sublethal histopathologic (microscopic anatomical changes in diseased tissue) 

and biochemical alterations were evident. These included severe lesions of the digestive 

tract and liver, which would have led to impaired digestion and absorption of food. Khan 

(1998) reported very similar effects in winter flounder (Pleuronectes americanus) 

following exposure to petroleum hydrocarbons. A wide range of adverse effects have been 

observed in organisms as a result of petroleum hydrocarbon contamination and 

accumulation. Whilst these are not general to all organisms, some of the most common 

sublethal conditions include external lesions, cell damage, lack of food in the digestive 

tract, neurosensory disruption, behavioural and developmental abnonnalities, reduced 

fertility, physical deformities and the generally poor condition of the organism (Green and 

Trett, 1989; Khan, 1998; Carls et al., 1999; Heintz et al., 1999; Shailaja and D'Silva, 

2003). Bhattacharyya et al. (2003) suggest that oil spilled on the surface of water may also 

limit oxygen exchange and coat the gills of aquatic organisms. This can cause problems for 

aquatic organisms with their oxygen-supply and respiration. Benthic organisms may be 

affected by oil settling on the sediment surface and accumulating in the sediment. 
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Whilst bioaccumulation of crude oil hydrocarbons is known to cause detrimental effects in 

aquatic organisms, the composition of the ingested oil will have a considerable effect on 

the severity of these responses. There have been a large number of investigations into 

determining just which components of crude oil are responsible for the majority of the 

toxicological effects. These studies have highlighted particular compounds and groups of 

compounds which are thought to elicit many of the observed problems. The components 

which have attracted the most interest are those readily identifiable by GC-MS analysis of 

environmental samples and tissue extracts. In particular, ecotoxicological studies have 

indicated that polycyclic aromatic hydrocarbons (PAHs) can accumulate in organisms and 

cause toxicological (carcinogenic or mutagenic) responses (e. g. Eickhoff et aL, 2003; 

Hutchinson et al., 2003). This observation has led to the inclusion of 16 PAHs on the 

Environmental Protection Agency (EPA) priority pollutants list. More recently, attention 

has shifted to lower molecular weight aromatic hydrocarbons such as benzene and 

naphthalene and their alkylated derivatives, which have also been found to accumulate in 

aquatic organisms to toxic levels (e. g. Page et aL, 2002; Erben et aL, 2003; Huang et al., 

2003). Some of these studies have indicated that oils with lower concentrations of resolved 

aromatic hydrocarbons can be highly toxic and that PAHs are not necessarily the major 

toxicants (Barron et al., 1999a; Rudolph et al., 2001). Neff et al. (2000) observed that 

monoaromatic hydrocarbons accounted for 86-95% of the acute toxicity of the WSF of 

fresh oils. Although the concentrations of monoaromatic hydrocarbons were reduced in 

weathered crude oils, the WSF still accounted for 34-86% of the total toxicity. Whilst 

spilled oil is known rapidly to lose the acutely toxic hydrocarbon fractions via weathering, 

sufficient amounts of low molecular weight aromatic hydrocarbons appear to be resistant 

to weathering and capable of eliciting toxic responses. 

The toxicity of monoaromatic and other low molecular weight aromatic hydrocarbons is 

unsurprising considering the processes controlling the bioavailability of hydrocarbons to 

18 



aquatic organisms. The fraction of crude oil that dissolves into natural waters is 

predominantly responsible for the acute toxic effects observed in marine organisms. The 

lipophilic nature of the dissolved hydrocarbons allows them to partition across cell 

membranes in the organisms into fatty tissue and cell centres (Ziolli and Jardim, 2002). 

Lower molecular weight hydrocarbons (monoaromatics) are generally more soluble in an 

aqueous medium than those of higher molecular weight (e. g. PAHs). Eickhoff et al. (2003) 

observed that the water solubility' and chemical structure of a suite of PAHs appeared to 

be important factors in the affect of PAH exposure and bioconcentration in Dungeness 

crabs (Cancer magister). An increase in PAH molecular weight results in an 

accompanying decrease in solubility which may prevent its bioaccumulation to 

toxicological levels. Monoaromatic hydrocarbons are much more water soluble, and 

therefore make a greater contribution to the overall toxicity of a complex mixture such as 

crude oil (Neff et al., 2000). Bioaccumulation and toxicological effects are primarily 

controlled by the bioavailability of the substance of concern, and studies should therefore 

only test within the range of water solubility of the substance (Dauble et al., 1986; Franke 

et al., 1994). As a result most toxicity studies use generated water soluble fractions (WSFs) 

of the test substrate to provide a more environmentally realistic assessment of toxicological 

impacts (e. g. Carls et al., 1999; Heintz et al., 1999). 

1.4.3 Bioaccumulation and toxicity of UCMs in aquatic organisms 

Previous studies (e. g. Neff et al., 2000; Page et al., 2002) have shown that the toxicity of 

crude oil is greater than the contribution made by the GC resolvable (saturate and 

aromatic) constituents. The cause of this toxicity has been attributed to other components, 

with a number of cases suggesting that hydrocarbons present in the UCM were responsible 

(e. g. Neff et al., 2000; Page et al., 2002). In particular, soluble hydrocarbons of a low 

molecular weight are considered good candidates for a contribution to this toxicity. Despite 

A review of the factors affecting the water solubility of hydrocarbons is presented in Chapter 2 
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the reduction in crude oil toxicity with increased weathering (due to the removal of the 

most soluble but often the most toxic compounds) residual hydrocarbons were still found 

to exhibit a substantial toxicity (Chaineau et aL, 2003). This is evidence for the toxicity of 

UCMs which are the dominant feature of weathered crude oils. 

This concept has led to a number of studies focusing on the environmental fate and impacts 

of unresolved complex mixtures of hydrocarbons. If UCMs are to be held accountable for 

this observed toxicity, they need to be shown to bioaccumulate in marine organisms. 

Investigations have shown that UCMs are indeed present in the organic extracts of tissue 

taken from a wide variety of organisms. For example, Farrington et aL (1982) found that 

the aromatic UCM concentration in the mussel, Mytilus edulis, decreased slowly over time 

following exposure to an oil spill. Extracts quickly became dominated by the aromatic 

UCM as resolved components were rapidly depurated. The authors suggested that 

compounds contributing to the UCM appeared to be among the most persistent indicators 

of oil contamination. Most frequently aliphatic UCMs are reported in organisms, (e. g. 

Fung et al., 2004). Recently, aromatic UCMs have been observed on an increasing basis in 

aquatic organisms such as mussels, Mytilus edulis (e. g. Farrington et al., 1982; Gold- 

Bouchot et al., 1995; Wraige, 1997; Smith et al., 2001; Rowland et al., 2001; Smith, 

2002). Soler et al. (1989) report the presence of significant aromatic and monoaromatic 

UCMs in mussels collected from the legs of an oil production platform in Amposta (W. 

Mediterranean). Monoaromatic UCMs have also been reported in studies by Smith (2002) 

and Rowland et al. (2001). These occurrences of UCMs imply that their bioaccumulation 

may lead to biornagnification through food chains or webs to higher trophic levels. 

Significantly, Farrington et al. (1982) found that long-term exposure of bivalves to chronic 

oil inputs resulted in longer persistence of petroleum hydrocarbons when moved to a clean 

environment to depurate. 
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Until very recently, no specific research had focused on the environmental and 

toxicological impacts of UCMs, perhaps due to the complex nature of such mixtures. 

Owing to the continued release of crude oils and petroleum-derived materials into the 

environment, it is essential that the toxicological effects of UCMs are understood. Previous 

work by Thomas (1995) indicated that the aliphatic UCM isolated from a lubricating oil 

feedstock was non-toxic. This was attributed to the low water solubility of the saturated 

hydrocarbon UCM components. It is not known how general these findings are for other 

aliphatic UCMs. Studies by Wraige (1997), Barron et aL (1999a), Rowland et aL (2001) 

and Smith (2002) have addressed the toxicity of aromatic UCMs to aquatic organisms. 

Having studied a suite of oils, Barron et aL (1999a) found the most toxic was that with the 

lowest aromatic content, but with the largest UCM. An environmentally weathered oil 

containing a large UCM was found to exhibit sublethal and lethal responses in the mysid 

shrimp (Mysidopsis bahia) (Barron et aL, 1999b). Gold-Bouchot et aL (1995) observed 

toxic effects in oysters containing a UCM, with damage to the digestive and gills system 

increasing linearly with UCM accumulation. The authors concluded that it is difficult to 

assign toxic effects to individual compounds, due to the complex nature of UCMs. 

A few studies have indicated the presence of contaminant UCMs in aquatic organisms 

exhibiting poor health. However, the first study directly associating the toxicological 

impacts of aromatic UCMs was conducted by Wraige (1997). Mussels (Mytilus edulis) 

used in Scope for Growth (SfG) studies by Widdows et al. (1995) were found to have 

concentrations of aromatic hydrocarbons in the body tissue which were inversely related to 

the SfG measurements. Gas chromatographic analysis of the aromatic fractions of the 

mussel tissue by Wraige (1997) indicated they were dominated by UCMs (Smith 2002; 

Figure 1.3). 
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Figure 1.3. Gas chromatogram of the aromatic hydrocarbon fraction of mussels 
(Mytilus edulis) from Whitby, UK, 1990 (Smith, 2002). * internal standard djo 
phenanthrene. 

The collection of fresh mussels from the impacted sample sites allowed a comparison 

between the concentration of total toxic hydrocarbons present in the mussel tissue 

(Widdows et aL, 1995) and the aromatic UCM burden determined by Wraige (1997). Table 

1.4 sununarises the data, which indicates a strong correlation (r2 = 0.99, n= 3) between 

aromatic UCM concentration and total toxic hydrocarbons; albeit for a very small dataset. 

Table 1.4. Concentrations of 'total toxic aromatic hydrocarbons' (Widdows et 
aL, 1995) determined by HPLC-UV analysis compared to 'aromatic UCM 
hydrocarbons' (Wraige, 1997) determined by GC-MS in mussels (Mytilus 
edulis) from impacted sites in the UK. 

Sample site Total toxic hydrocarbons Aromatic UCM hydrocarbons 
(tLg 1ý) (Pg 16 

Teesmouth (UK) 77.7 83-94 

Whitby (UK) 390 365-496 

Cleethorpes (UK) 124.9 102-136 
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Figure 1.4. Synthetic alkyltetralins (I-V) and alkylnaphthalene (VI) suggested 
to contain the structural features of some aromatic UCM components. 
Compounds I-III were synthesised by Smith (2002) and compounds IV-VI by 
Sturt (2000). All were purified by HPLC by the present author as described in 
Chapter 5. 

Rowland et aL (2001) and Smith (2002) possibly provided the first studies that directly 

monitored the toxic responses elicited by aromatic UCMs. Mussels (M. edulis) were 

exposed to a monoaromatic UCM, isolated from Gullfaks (North Sea) crude oil. An 

increase in monoaromatic UCM body burden was accompanied by a decrease in the 

mussel feeding rate. Mussels accumulated 90 ýtg g" wet weight tissue (equivalent to 350 

ýtg g" dry weight) of the monoaromatic UCM, which caused a 40% decrease in the feeding 

rate compared with control populations. Similar studies were conducted using synthetic 

dialkyltetralins thought to be representative components of monoaromatic UCMs based on 

structures for 'average' monoaromatic UCM hydrocarbons proposed by Thomas (1995)2 

(Figure 1.4; Wraige, 1997; Smith et aL, 2001; Smith, 2002). Of these, 6-cyclohexyltetralin 

(I) produced a 50% reduction in feeding rate and 7-cyclohexyl-l-methyltetralin caused a 

70% reduction in feeding rate in 24 hours. These hydrocarbons (Figure 1.4) appeared to be 

at least as toxic to mussels as the monoaromatic UCM isolated from Gullfaks crude oil. 

2 The reasons behind the proposition of these structures are reviewed in Section 1.5. 
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Recently, Donkin et aL (2003) extracted the toxicants from contaminated mussels (Mytilus 

edulis) collected from impacted sites around the UK. The mussels chosen for study had 

low SfG (Widdows et aL, 1995). The extracts were then fractionated using open column 

chromatography and HPLC. The use of a mini-mussel assay allowed the effects of each of 

the isolates on mussels to be monitored for toxicological impacts. The greatest reduction in 

feeding rate was observed in mussels exposed to a HPLC fraction dominated by 

'monoaromatic' hydrocarbons, appearing as a UCM when examined by GC-MS. 

Hydrocarbons often exert their toxicity to mussels and similar organisms through a 

common mode of action, usually referred to as non-specific narcosis (McCarty, 1987a; 

Verhaar et aL, 1992). Thus, the toxicity of a mixture of compounds acting by the same 

mechanism is that of concentration addition (Deneer et aL, 1988; Peterson, 1994). 

Compounds present below their individual 'no-toxic-effect' concentrations contribute to 

the joint toxicity of the mixture when the compounds act through the same toxic 

mechanism. This 'additive' effect helps to explain the observed ecotoxicological effects of 

aromatic and monoaromatic UCMs, which contain thousands of hydrocarbons each 

probably at a very low concentration within the mixture. 

1.5 Composition of UCMs and characterisation of their components 

If some of the components of UCMs could be identified, such information might allow a 

partial explanation of the additive toxic effects. Gas chromatography (GC) combined with 

mass spectrometry (MS) is the most widely used analytical technique employed in the 

structural determination of crude oil hydrocarbons. Fractionation of crude oils and their 

subsequent analysis by GC-MS have led to many compounds (both aromatic and aliphatic) 

being characterised. Initially, UCMs observed in the gas chromatograms were considered 
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rather a hindrance to accurately measuring the resolved components, particularly if the 

resolved component was small relative to the UCM (Killops and Readman, 1985; 

Farrington et aL, 1988). The complexity of UCMs has, until the recent availability of 

certified reference material, rendered them difficult to quantify and virtually impossible to 

resolve chromatographically. This has prevented identification of a substantial proportion 

of UCM Petroleum hydrocarbons (Gough and Rowland, 1990; Ziolli and Jardim, 2003). 

Analyses of aromatic UCMs using standard analytical techniques are usually only capable 

of confirming the 'aromatic' nature of the components (Jones et aL, 1983). However, 

scientists have begun attempts to determine the detailed composition of UCMs, with some 

success. Initial studies, focusing on aliphatic UCMs isolated from crude oils, indicated that 

they contained large proportions of alkyl substituted 'T-branched' alkanes (Gough and 

Rowland, 1990). The techniques used to study aliphatic UCMs have been documented and 

reviewed extensively in other work (e. g. Gough, 1989; Gough and Rowland, 1990; Killops 

and Al-Juboori, 1990; Revil, 1992; Thomas, 1995; Wraige, 1997; Warton, 1999; Smith, 

2002) and will not be discussed herein. 

The composition of aromatic UCMs has only come under scrutiny in more recent years, 

and is possibly even more important owing to the observed toxicity of aromatic, and in 

particular monoaromatic, UCMs (e. g. Rowland et al., 2001; Donkin et al., 2003). UCMs 

have been fractionated to generate class specific isolates (e. g. 'aromatic' or 

6monoaromatic'), all still exhibiting a UCM when analysed by standard GC methods. The 

sub-fractions have often appeared almost as complex as the 'parent' UCM (e. g. Killops 

and Readman 1985; Wraige, 1997; Smith 2002). Smith (2002) and Wraige (1997) both 

provide comprehensive reviews of the attempts and results of much of the work regarding 

characterisation of aromatic UCMs. Briefly, Killops and Readman (1985) and Wraige 

(1997) isolated 'aromatic' UCMs using high performance liquid chromatography (HPLC). 

In both cases the UCMs appear to be principally 'monoaromatic' in nature (-80% as 
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determined by GC and HPLQ. The identification of branched chain alkanes as possible 

aliphatic UCM components, led to the suggestion that branched chain alkylated aromatics 

might also be abundant components of aromatic 'humps' (Jones et al., 1983). Killops and 

Al-Juboori (1990) studied the bulk composition of an 'aromatic' UCM using proton (H) 

and carbon (13 C) NMR spectroscopy, infra-red (IR) spectroscopy, ultra-violet (UV) 

spectroscopy, elemental analysis, electron impact (El)-MS and chemical ionisation (Cl)- 

MS. The data indicated the UCM was composed of aromatic hydrocarbons containing 

large proportions of alkyl substituents. Other studies of 'aromatic' UCMs (Farrington et 

aL, 1982; Douabul and Al-Shiwafl, 1998; Revill, 1992) also found evidence for large 

proportions of mono- and di-aromatic hydrocarbons. These were in fact also highly 

aliphatic in nature, possibly containing cyclo-aliphatic constituents (e. g. Warton, 1999). 

Revill et aL (1992) and Warton (1999) suggest that the data were consistent with the 

presence of alkylated naphthenoaromatic hydrocarbons. As both branched alkanes and an 

alkyl aromatic hydrocarbon exhibited significant resistance to biodegradation, it was 

suggested that they were sufficiently resistant to weathering processes to be considered as 

candidate UCM components (Gough, 1989; present study). 

Warton et aL (1999) and Thomas (1995) also used chemical oxidation techniques in 

conjunction with the bulk analytical techniques described above, to try to further 

characterise 'aromatic' and 'monoaromatic' UCMs. This allowed partial structural 

elucidation of some UCM hydrocarbons by 'retro-structural analysis' back to the 

unoxidised UCM compounds. Thomas (1995) used ruthenium tetroxide to oxidise a 

hydrotreated heavy cycle oil. GC-MS analysis revealed the presence of ct, co-dicarboxylic 

acids and branched dicarboxylic acids as well as monocarboxylic acids in the products, 

indicating that substituted tetralins (tetrahydronaphthalenes) might be UCM components. 

The study allowed the proposition of an 'average' aromatic UCM hydrocarbon structure 

(Figure 1.5). The observations reported by Warton (1999) and Warton et aL (1999) 
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indicated that components of a 'monoaromatic' UCM isolated from Leatherjacket-I crude 

oil (Gippsland Basin, Australia) contained straight, branched and isoprenoidal side chains 

as well as cyclohexyl groups and bicyclic components attached directly to the aromatic 

ring system. These compounds were suggested to include alkylbenzenes, toluenes and 

xylenes, as well as alkyltetralins and alkylindans, thus confirming the findings of Thomas 

(1995). Further support for the proposal of these compounds as 'monoaromatic' UCM 

components was provided by previous reports. These highlighted the occurrence of 

alkylated aromatic hydrocarbons (e. g. Dutta and Harayama, 2001) and in particular highly 

alkylated tetralins in crude oils (Williams et al., 1988; Forster et al., 1989; Alexander et 

al., 1992). 

To better resolve UCMs however, it became clear that a more powerful analytical 

technique capable of resolving individual components and compound classes was required. 

Gas chromatography x gas chromatography (GCxGC) permits the chromatographic 

separation of mixtures of compounds simultaneously on two different stationary phases. 

The system provided a method of resolving a mixture in two dimensions, but was initially 

used in 'fingerprinting' studies (e. g. Frysinger et aL, 2003) until a suitably specific detector 

was available. In the last few years, time-of-flight mass spectrometers (ToF-MS), have 

proven sufficiently fast to be coupled to GCxGC systems and presently GCxGC-ToF-MS 

provides a powerful technique for the separation of complex mixtures combined with a 

method for characterising the resolved compounds. A detailed review of GCxGC and 

GCxGC-ToF-MS analysis and its application to UCMs is presented in Chapter 4. 
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(1995) on the basis of oxidative characterisation of a heavy cycle oil. 
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1.6 Environmental fate and transport of UCMs 

The environmental fate of fresh crude oils has been studied extensively. Many of the 

weathering processes which cause significant changes in hydrocarbon composition 

(dissolution, evaporation, chemical and photo-oxidation and biodegradation) are well 

documented (Requejo and Boehm, 1985; Neff et aL, 2000; Dutta and Harayama, 2001; 

Readman et aL, 2002). Despite their obvious importance, the long term fate and behaviour 

of UCMs in the environment has attracted little attention beyond speculation. UCMs have 

been termed 'persistent' contaminants in the environment due to their dominance in 

weathered crude oil residues. Many scientists have suggested the persistent nature of 

UCMs is indicative of petroleum compounds that are resistant to microbial degradation and 

other weathering processes (e. g. Zheng and Richardson, 1999; Doskey 2001). However, 

few experimental data have been provided to support this assumption. 

In 1969 the barge Florida went aground near West Falmouth, releasing -700 000 L of No. 

2 fuel oil into Buzzards Bay. Thirty years later Reddy et al. (2002) observed dominant 

UCMs in marsh sediments collected from Wild Harbour, West Falmouth, USA, indicating 

the resistance of these complex mixtures to degradative processes. However, comparison 

to original analyses (1973) should be treated with care as the original samples were not 

analysed using the GCxGC technique employed in the 2002 study. McMillen et al. (1995) 

conducted over 50 laboratory biodegradation experiments using oily sludges, oil-spiked 

soils and site soils collected from areas of previous hydrocarbon spills. Following the 

initial removal of the resolved hydrocarbons a large UCM comprised of both saturated and 

aromatic compounds remained. Continued exposure resulted in much greater 

biodegradation of the saturated UCM fraction (73%) compared with the aromatic UCM 

fraction (36%). Supporting this, Aceves and Grimalt (1993a) report degradation of the 

aliphatic UCM in aerosol samples stored in a refrigerator for a period of 2 years, but 

observed no degradation of the aromatic UCM in that time. The sources and physical- 
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chemical properties of petroleum hydrocarbons are known largely to control their transport 

and fate in the marine environment (Gogou et aL, 2000). However, the complex nature of 

UCMs makes determining these properties extremely challenging, hence an understanding 

of their fate in the environment is difficult to establish. The most important weathering 

processes include evaporation, dissolution, dispersion into the water column, formation of 

water-in-oil emulsions, photochemical oxidation, microbial degradation, adsorption to 

suspended particulate matter and sedimentation to the sea floor (Neff et aL, 2000). The 

effects of these processes on aromatic UCMs must be studied to achieve a comprehensive 

understanding of their environmental impact. 

1.7 This study 

Owing to their persistent nature and widespread occurrence in the environment and the 

apparent toxicity of monoaromatic UCMs towards certain aquatic organisms, UCMs have 

sparked considerable interest in the scientific and public community, as exemplified in a 

recent article in New Scientist magazine (Jones, 2003). In addition, a number of legislative 

and govermnental organisations have begun to acknowledge the occurrence and potential 

hazardous effects of petroleum derived UCMs in the environment and even to human 

health (e. g. Envirorunent Agency, 2003) 

Thus far however, little attention has been paid to the environmental fate of these 

compounds, and no one has been fully able to analytically characterise the component 

hydrocarbons. The present study aims to address these omissions in the knowledge of 

unresolved complex mixtures of petroleum derived hydrocarbons in the environment. 

Chapter I has reviewed the existing literature for the origins and occurrence of aromatic 

UCMs. The attempts to resolve and characterise component hydrocarbons from UCMs 
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have been documented. Evidence for the environmental impacts of aromatic and 

monoaromatic UCMs was presented and discussed, and the lack of knowledge regarding 

their enviromnental fate highlighted. 

Chapter 2 aims to provide information about the behaviour and fate of UCMs in the 

environment. The persistence of aromatic UCMs in the environment was determined by 

measuring the resistance of an aromatic UCM isolated from biodegraded Tia Juana Pesado 

(Venezuela) crude oil to biodegradation by the known hydrocarbon degrading bacterium 

Pseudomonas fluorescens. A suite of alkyleyclohexyltetralins (Figure 1.4., I-V) and an 

alkylcyclohexylnaphthalene (Figure 1.4, VI) were exposed to the same micro-organisms to 

determine the resistance of these hydrocarbons to biodegradation. This provided compound 

specific comparisons to the aromatic UCM data and further evidence for the candidacy of 

compounds IN as 'model' monoaromatic UCM components. The 'model' monoaromatic 

compounds were additionally exposed to a natural consortium of bacteria collected from an 

impacted site. This was intended to provide a more environmentally realistic view of the 

behaviour of these hydrocarbons. These studies also included the use of single compound 

(hexadecane) and complex mixture (crude oil) co-substrates allowing the resistance of the 

alkylcyclohexyltetralins to be measured relative to known resistant crude oil components. 

Chapter 3 investigates the water solubility characteristics of a pure hydrocarbon and of 

both an 'aromatic' and a 'monoaromatic' UCM, isolated from Tia Juana Pesado crude oil, 

by generating aqueous solutions of the test substrates. The water solubility of a compound 

or mixture is directly related to the physico-chemical properties of the constituent 

hydrocarbons. Solubility is a dominant parameter in determining the bioavailability of 

hydrocarbons to aquatic organisms and therefore of ecotoxicological effects. The water 

solubility of 6-cyclohexyltetralin (Figure 1.4,1) was determined, so that the dissolution 

behaviour of a single compound, having structural characteristics similar to those 
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tentatively assigned to the molecular composition of aromatic UCM components, could 

also be studied in relation to the isolated UCMs. Study of this compound also provided 

calibration of the method, based upon data reported by Smith (2002). 

Chapter 4 outlines a potential method for the increased resolution and characterisation of 

UCMs. The aqueous solution of 'monoaromatic' UCM generated by methods described in 

Chapter 3, was analysed using GCxGC-ToF-MS, employing apolar Is' dimension and polar 

2 nd dimension GC columns. Mass spectra of hundreds of the now resolved UCM 

compounds were compared with published library spectra and Mass FrontierTm software 

was used to help validate the proposed structures by generating fragmentation pathways 

from the parent compound to the major ions observed in the mass spectra. As a result 16 

compounds were characterised in detail, with the identification of hundreds of other 

components as isomers and homologues being inferred from the data. 

Chapter 5 presents the experimental details relevant to Chapters 2-4 

Chapter 6 provides a summary of the major findings of this study, and suggests possible 

areas for future scientific research. 
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Chapter 2 

Biodegradation experiments 

An n-alkane (n-pentacosane, n-C25), an 'aromatic' unresolved complex mixture (UCM) of 
hydrocarbons from a biodegraded crude oil, and a series of alkylcyclohexyltetralins 

previously proposed to be structurally representative of some UCM compounds, were 

exposed to the common aerobic bacterium, Pseudomonas fluorescens (Texaco), in the 
laboratory at room temperature for up to 50 days. These conditions led to the rapid 

oxidation of the n-alkane (9 days) whereas the synthetic aromatic compounds proved to be 

significantly resistant to biotransformation, as did the aromatic UCM hydrocarbons from 

the crude oil. 

In the second part of the study, a series of the alkylcyclohexyltetralins with a fresh North 

Sea crude oil or excess n-hexadecane as co-substrates were exposed to a natural microbial 

population in seawater. Rapid oxidation of n-alkanes and the other major resolved 

components of North Sea crude oil was observed. Some of the alkylcyclohexyltetralins 

proved to be quite resistant to biotransformation, suggesting they might accumulate as 
biodegraded oil residues in the environment and may indeed be suitable candidates for 

UCM compounds. 
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2.1 Introduction 

Hydrocarbons originally from crude oil are found in many environmental compartments, 

including seawater, soils, ground water, rivers and sediments (Environment Agency, 1998, 

National Research Council, 2003). Ultimately this material accumulates in the world's 

oceans and marine sediments, which can be thought of as the major sinks. Nevertheless, 

the absence of gross pollution on the sea surface and shores indicates that considerable 

destruction of oil takes place. This means that there must be processes at work in the 

environment, which facilitate the removal of pollutant petroleum hydrocarbons. 

Immediately after an oil spill, physical weathering (such as evaporation, dispersion and 

dissolution) alter the chemical, physical and toxicological properties of the spilled oil (e. g. 

Wang et aL, 1994; Clark, 2001; National Research Council, 2003). After initial 

weathering, microbial degradation is the principal route for removal of oil from the 

environment (Cerniglia, 1992; Wang et aL, 1995). An understanding of this process is 

essential if the fate of crude oil in the environment is to be determined. 

Persistence in the environment is an important consideration in assessing the toxicity of a 

compound or mixture of compounds. The persistence of hydrocarbons in the environment 

is dependent upon their resistance to the common removal processes that occur in these 

ecosystems. However, the particular conditions and characteristics of an environment into 

which hydrocarbons are introduced will also affect the degree of efficiency of the removal 

processes (Alexander, 1999). The biodegradation of both individual hydrocarbons and 

hydrocarbon mixtures (e. g. crude oil) in the laboratory and in the field has been studied 

since the 1940's (e. g. ZoBell, 1945; McKenzie and Hughes, 1976; Atlas, 1981; Fedorak 

and Westlake, 1981; Jones et aL, 1983; Connan, 1984; Bayona et aL, 1986; Rowland et al., 

1986; Haigler et aL, 1992; Peters and Moldowan, 1993; Bragg et aL, 1994; Fayad and 

Overton, 1995; Heath et aL, 1997; Wang et aL, 1998; Olson et aL. 1999; Kanaly and 

Harayama, 2000; Leblond et aL, 2001). In the case of extensive or prolonged exposure to 
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microbial activity, most hydrocarbons eventually undergo some degree of biodegradation. 

The complete or ultimate degradation of hydrocarbons results in the formation Of C02 - SO 

called mineralisation (Alexander, 1999). However, complete microbial degradation does 

not always occur. In these cases compounds are transformed, rather than metabolised, into 

compounds such as acids and ketones. 

2.1.1 Biodegradation of crude oils 

Oil-contaminated environmental samples commonly contain mixtures of hydrocarbons. 

These mixtures, which can vary in their complexity, may contain hydrocarbons from a 

single (e. g. petroleum) or multiple sources. Although numerous studies have demonstrated 

the biodegradation of individual hydrocarbons, Haigler et aL (1992) suggest that a 

comprehensive understanding of the microbial degradation of complex mixtures of 

hydrocarbons has not been reached. The degradation of mixtures of hydrocarbons often 

proceeds in a different way to that of the individual component hydrocarbons (Raymond et 

al., 197 1; Atlas, 198 1; Atlas and Bartha, 1992; Beckles et aL, 1998; Olson et al., 1999). 

Olson et aL (1999) investigated the biodegradability of a suite of aliphatic and aromatic 

compounds both individually, and as composite mixtures. It was observed that the 

degradability of the compounds increased when they were present as mixtures rather than 

as individual substrates. This phenomenon is known as co-oxidation or co-metabolism, and 

can facilitate the oxidation and degradation of non-growth substrates by microbes. Co- 

oxidation/co-metabolism is defined as actively growing microbes oxidising a compound, 

but not utilising either material (e. g. carbon) or energy derived from the oxidation. Crude 

oils are possibly the most complex mixtures of organic chemicals on the planet, comprising 

hundreds of thousands of hydrocarbons (Environment Agency, 1998; Alexander, 1999; 

OSPAR Commission, 2000; Clark, 2001; National Research Council, 2003). Therefore, the 
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biodegradation of crude oils may be expected to differ significantly from that of individual 

hydrocarbons due to the occurrence of co-oxidation processes. Co-oxidation processes 

appear to play an important role in natural environments where mixed groups of bacteria 

and mixed substrates, such as petroleum, co-exist (e. g. Volkman et aL, 1984; Bayona et aL, 

1986; Atlas and Bartha, 1992; Alexander, 1999). Thus, the petroleum degrading potential 

of an ecosystem should be estimated using a complex mixture of hydrocarbons, typical of 

those found in nature, as some of the hydrocarbons may influence the metabolism of others 

(e. g. Cooney et aL, 1985). 

The biodegradation of crude oils is not a phenomenon restricted to hydrocarbons released 

into the enviromnent. The process occurs naturally in oil wells and reservoirs and can 

influence the compositional differences observed in crude oils drilled from different oil 

fields (Volkman et aL, 1984; Rowland et aL, 1986). However, the biodegradation of 

petroleum hydrocarbons in such conditions is now thought to be the result of anaerobic 

metabolism (e. g. Corman et al., 1997; Taylor et al., 2001; Larter et al., 2003). This is a 

major contrast to oil biodegradation in the wider environment which is usually aerobic. 

Any crude oils released into the enviromnent will exhibit unique characteristics; thus, 

crude oil spills have to be assessed on an individual basis, as the composition will vary in 

each case. The biodegradation of fresh crude oil will be considerably different to that of a 

previously weathered crude oil. A fresh crude oil will undergo significant alteration in a 

relatively short period of time following release into the environment. The relative 

distributions of saturated, aromatic and polar compounds change as biodegradation 

progresses (e. g. McMillen et aL, 1995). Although metabolism of all hydrocarbon types is 

generally simultaneous, the rates of degradation can vary significantly (Fedorak and 

Westlake, 198 1; Jones et al., 1983; Alexander, 1999; Olson et al., 1999). In contrast, 

weathered crude oils, which have previously been exposed to degradative processes, are 
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dominated by recalcitrant hydrocarbons which exhibit greater resistance to further 

physical, chemical and biological processes. Tbus, the fate of the component hydrocarbons 

in a mixture of the complexity of petroleum is extremely complicated and its degradation 

requires a diverse range of bacterial taxa (Atlas, 1981). 

The degradation characteristics of crude oil constituents have been investigated in detail 

both in the field and in the laboratory (e. g. McKenzie and Hughes, 1976; Atlas, 1981; 

Fedorak and Westlake, 1981; Jones et aL, 1983; Connan, 1984; Bayona et al., 1986; 

Rowland et aL, 1986; Atlas and Bartha, 1992; Gough et aL, 1992; Peters and Moldowan, 

1993; Bragg et aL, 1994; Wang et aL, 1994; Geerdink et aL, 1996; Wang et aL, 1998; 

Olson et aL, 1999; Jensen et aL, 2000; Leblond et al., 2001; Watson et al., 2002). The 

general pattern of susceptibility to aerobic biodgradation is: n-alkanes degraded before 

branched alkanes (e. g. isoprenoids), smaller aromatic molecules degraded before larger 

ones, and alkylated polycyclic aromatic hydrocarbons (PAHs) degraded more slowly than 

the parent compounds (Huesemann, 1995; Garrett et aL, 1999). Alkyl branching or 

substitution within each structural class of hydrocarbons generally increases resistance to 

microbial attack. The degradation of alkylated components of crude oil (e. g. alkyl PAHs) 

also strongly depends on the number, position, and type of the substituents (e. g. Bayona et 

aL, 1986; Garrett et aL, 1999). Such relationships have been observed in many studies 

investigating crude oil, giving a characteristic pattern of biodegradation (e. g. Solanas et al., 

1984; Novak et aL, 1995; McMillen et aL, 1995; Leblond et al., 2001). 

Biodegradation of hydrocarbons decreases with an increasing number of substituents (e. g. 

Rowland et aL, 1986; Prince et aL, 1999; Holder et aL, 1999; Leblond et al., 2001), For 

example, Solanas et al. (1984) observed a clear preferential degradation of the less 

substituted aromatics in the CI-C4 alkyInaphthalenes. The order of resistance was CO < Cl 

'< C2 < Cn (where n= carbon number of alkyl substituents on an aromatic nucleus). The 
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presence of one or more methyl groups on an aromatic ring decreases the number of ring 

positions which can be oxidised (Budzinski et aL, 1998; Leblond et aL, 2001). 

The susceptibility of hydrocarbons to biodegradation also depends on the position of any 

alkyl substituents (e. g. Prince et al., 1999; Holder et al., 1999; Leblond et al., 2001). For 

example, biodegradation of methyl substituted PAH was found to depend on the position 

of the methyl substituent, with compounds containing unsubstituted a and P adjacent 

positions being more readily degraded (Alexander, 1999). For compounds with long alkyl 

chains (e. g. linear alkyl benzenes), biodegradation usually proceeds more rapidly if the 

alkyl group is joined to the aromatic ring at the last position (co position) and not an a 

carbon of the hydrocarbon chain (Figure 2.1; Alexander, 1999; Swisher, 1987). 

1-1 

CD"" CY9 
'lýý 

Linear(cocarbon) 
attachment 

Linear (a carbon) 
attachment 

Figure 2.1. Comparison of different C9 alkyl substituents on the same 
compound. It is likely that the branched compound would be more resistant to 
biodegradation because the alkyl moiety is linked near the centre of the chain 
rather than at the end like the linear compound. 

l! 'll-, 

C5 linear alkyl 
substituent 

1! 5:: ý- 

C5 Branched 
alkyl substituent 

Figure 2.2. Comparison of different C5 alkyl substituents on the same 
compound. It is likely that the branched compound would be more resistant to 
biodegradation as P-oxidation of the alkyl moiety, which removes two carbon 
atoms at a time, cannot proceed because of the isopropyl group. 
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The type of substituents present on a hydrocarbon can also significantly affect 

biodegradability. For example, Alexander (1999) reports that aromatic compounds with 

branched alkyl substituents (e. g. alkylbenzene sulfonates, ABS used as surfactants), are 

likely to be more resistant to microbial degradation than those with linear substituents (e. g. 

Figure 2.2). The presence of branching on an alkyl substituent will prevent P-oxidation 

occurring as a C2 unit cannot be removed. 

Other studies investigating the biodegradation characteristics of crude oil hydrocarbons 

have highlighted the preferential degradation of particular hydrocarbon isomers (e. g. 

Volkman et al., 1984; Rowland et al., 1986; Peters and Moldowan, 1993; Fayad and 

Overton, 1995; Bost daL 2001; Watson et aL, 2002). For example, Volkman et aL (1984), 

observed that biodegradation of alkyInaphthalenes was dependent on the position of the 

alkyl substituents. Those alkyInaphthalenes containing adjacent substituents were the most 

resistant. Furthermore, isomers exhibiting P-substituents were more rapidly degraded than 

those with a-substituents. 

2.1.2 Formation and biodegradability of unresolved complex mixtures (UCMs) 

When crude oil is subjected to severe biodegradation, most GC resolvable compounds are 

removed. Gas chromatograrns of biodegraded crude oil are dominated by a 'hump' or 

unresolved complex mixture (UCM) of hydrocarbons containing few identifiable 

compounds (e. g. Killops and Al-Juboori, 1990; Gough et al., 1992; Button et al., 1992; 

Wang et aL, 1994; McMillen et aL, 1995; Dutta and Harayarna, 2000; Frysinger et aL, 

2003). This enrichment of the unresolved complex mixture (UCM) through microbial 

degradation has been noted in recent sediments affected by oil spills (e. g. Button et aL, 

1992; Wang et al., 1994; McMillen et al., 1995) and in laboratory degraded crude oils (e. g. 

Jones et aL, 1983; Killops and Al-Juboori, 1990). Analysis indicated that both aliphatic 
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and aromatic UCMs were enriched during this process (Volkman et aL, 1984), with the 

aromatic UCM becoming pronounced more slowly than the aliphatic UCM (McMillen et 

aL, 1995). Weathered petroleum has been observed to undergo further biodegradation, 

with more aliphatic and aromatic compounds being removed. However, a mixture of 

recalcitrant aliphatic and aromatic material (UCM) was still present at the end of the study 

(Novak et al., 1995). Gough et al. (1992) observed an -20% removal of an aliphatic UCM 

(isolated from a lubricating oil) by Psuedomonas fluorescens over a period of 25 days. 

Hence, crude oil UCMs are thought to comprise both aliphatic and aromatic compounds, 

which are relatively inert to microbial degradation. 

Meredith et al. (2000), reported the presence of n-alkanoic and hopanoic acids in oils and 

an unresolved complex mixture of branched and cyclic components in the gas 

chromatogram of carboxylic acid fractions from reservoir degraded oils. It was found that 

this acidic UCM appeared to increase in concentration with an increase in the extent of 

hydrocarbon biodegradation. This indicates that the products of microbial degradation of 

crude oil hydrocarbons may include unresolved complex mixtures of acids, which appear 

to be much less readily degradable than their parent compounds, thus contributing to the 

observed increase in the acidic UCM. This degradation may result in the production of the 

observed hopanoic acids in the acidic UCM. Whilst aromatic steroids are thought to be 

extremely resistant to microbial degradation, analysis has shown that even some of these 

compounds may be susceptible to biodegradation (Volkman et aL, 1984; Peters and 

Moldowan, 1993). 

2.1.3 Environmental factors affecting biodegradation 

The rate and extent of petroleum hydrocarbon biodegradation is significantly determined 

by environmental conditions. Petroleum hydrocarbons released to one environment may 
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persist indefinitely, whereas under another set of conditions the same hydrocarbons can be 

completely biodegraded within a few hours or days (Atlas, 1991; ESGOSS, 1994; 

Environment Agency, 1998; Clark, 2001; National Research Council, 2003). Thus, 

enviromnental factors can have a large influence on the fate of released oil. A brief review 

of the main factors affecting biodegradation of hydrocarbons in the environment is made 

below. 

The persistence of petroleum pollutants will initially depend on the quantity and 

composition of the hydrocarbon mixture (Atlas, 1991; ESGOSS, 1994; Clark, 2001; 

National Research Council, 2003). The quantity of oil released into an environment will 

determine how large the impact will be on the ecosystem, with small releases being 

removed quite rapidly (Fayad and Overton 1995; Environment Agency, 1998). The 

composition of the hydrocarbon mixture will also affect the rate of biodegradation. In a 

fresh crude oil simple aliphatic and aromatic compounds will undergo a rapid rate of 

removal by bacteria. However, severely degraded crude oils, where the majority of the 

compounds will be significantly resistant to biodegradation, will remain in the environment 

for much greater lengths of time. For example, in January 1993 the MV Braer was wrecked 

off Shetland and shed its load of 84 700 t of naturally (in-reservoir) biodegraded 

Norwegian Gullfaks crude oil (ESGOSS, 1994). The weathered Gullfaks crude oil cargo 

was characterised by a low saturated and a high aromatic (especially PAH) hydrocarbon 

content: material typically exhibiting a significant degree of resistance to degradation 

processes. High concentrations of oil have been found in fine deepwater sediments, 

indicating little degradation had occurred within the three years following the spill 

(Environment Agency, 1998). This is as expected given the in-reservoir degraded nature of 

the crude oil. The rough weather conditions may have led to high levels of emulsification 

and adsorption of crude oil to particulate material mixed into the water column. 
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The input of petroleum hydrocarbons to an ecosystem generally results in a rise in the 

population of hydrocarbon degrading microorganisms (e. g. Atlas, 1981; Leahy and 

Colwell, 1990). However, previous hydrocarbon inputs to an area or body of water can 

effect the rate and extent of biodegradation of further crude oil inputs to a system (Cooney 

et aL, 1985; Atlas and Bartha, 1992; Alexander, 1999; National Research Council, 2003). 

In environments subject to frequent or continuous inputs of petroleum hydrocarbons, the 

microbial population will be dominated by high numbers of hydrocarbon-utilising bacteria 

acclimatised to growth on crude oil substrates. Further inputs of petroleum hydrocarbons to 

previously contaminated environments will be met with increased removal rates compared 

with pristine enviromnents. 

The physical conditions or energy level of an impacted site will affect the biodegradation 

of hydrocarbons. Physical processes, such as wind and wave action, increase the mixing of 

hydrocarbons within a water column, leading to the formation of water-in-oil and oil-in- 

water mixtures and emulsions. These processes generally increase the surface area 

available for colonisation by hydrocarbon-degrading microorganisms, thereby facilitating 

biodegradation (e. g. Atlas, 1991; Atlas and Bartha, 1992; Stewart et aL, 1993; Clark, 2001; 

National Research Council, 2003). For example, following the Nakhodka oil spill in Japan 

(1997), some oil washed up on beaches above the high tide line and, being out of reach of 

wave action, was protected under rocks. GC-MS analysis of material collected one year 

after the spill found it was mostly undegraded (Ohashi et aL, 1999). 

The temperature of an environment can significantly affect the rate at which 

microorganisms are able to degrade petroleum hydrocarbons. The rate of microbial 

degradation generally decreases with decreasing temperature (e. g. Leahy and Colwell, 

1990; Atlas, 1991; Atlas and Bartha, 1992; Garrett et al., 1999). This is sometimes known 

as the Q10 effect, where the rate of activity falls by half for every I OIC drop in temperature 
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(Atlas, 1991; Stewart et aL, 1993; Garrett et aL, 1999; National Research Council, 2003). 

However, the biodegradation of crude oils is found to follow a similar pattern from tropical 

to arctic environments, and thus temperature might limit the rate, but not the final extent of 

biodegradation (Garrett et aL, 1999). Temperature will also effect the physical state of the 

petroleum hydrocarbons. At low temperatures the viscosity of crude oil increases which 

reduces biodegradation and evaporation of toxic low molecular weight hydrocarbons 

(Leahy and Colwell, 1990; Atlas and Bartha, 1992; National Research Council, 2003). 

These compounds then remain in high concentrations at the site of the spill and tend to 

exhibit increased levels of water solubility compared to other crude oil components. Once 

dissolved in water these compounds are potentially toxic to the natural microbial 

community (Atlas and Bartha, 1992; National Research Council, 2003). 

The availability of oxygen is essential for the aerobic biodegradation of petroleum 

hydrocarbons by microorganisms (Cooney et aL, 1985; Leahy and Colwell, 1990; Atlas 

and Bartha, 1992; Alexander, 1999; Wackett and Hershberger, 200 1; Clark, 200 1; National 

Research Council, 2003). However, in certain environments such as soils, sediments and 

groundwaters it can be the limiting factor, with oxygen concentrations in such systems 

varying according to the soil or sediment type and whether water logging has occurred 

(Atlas, 1991). For example, Novak et aL (1995) observed an increase in the degradation 

rate of weathered crude oils when oxygen availability was increased. Bacterial activity can 

also reduce oxygen levels in a system to such a level that further degradation is either 

extremely slow or does not occur at all. This scenario is characteristic of a large input of 

substrate (e. g. an oil spill) to a system, where microbial activity can increase rapidly, 

thereby utilising available oxygen faster than it can be replaced by diffusion from the 

atmosphere (ESGOSS, 1994; Alexander, 1999; Clark, 2001). Whilst anaerobic 

biodegradation of a wide range of petroleum hydrocarbons does occur (e. g. Rueter et al., 

1994; Coates et al., 1997; Caldwell et al., 1998; Elshahed et al., 2001; Annweiler et al., 
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2002), this process proceeds at a much slower rate than aerobic biodegradation (e. g. Atlas 

and Bartha, 1992; Chang et aL, 1997). However, Peters and Moldowan (1993) suggest in 

terms of geological time the difference in rate may not be critical, with the extent of 

biodegradation being comparable between the two processes and this has recently received 

considerable support (Wilhelms et al., 2001). 

' Nutrient availability can also play a key role in the rate of hydrocarbon biodegradation. In 

most aqueous environments hydrocarbon degradation is limited by sub-optimal levels of 

bioavailable nutrients such as nitrogen and phosphorus (Atlas and Bartha, 1992; 

Alexander, 1999; Prince et al., 1999; Head and Swannell, 1999; National Research 

Council, 2003). The addition of fertilisers to nutrient limited systems significantly 

increases the degradation rate of hydrocarbons (e. g. Bragg et aL, 1994; Hoff et aL, 1995; 

Abbott et al., 1999; Ohashi et aL, 1999; Swannell et aL, 1999). For example, Prince et aL 

(1999) observed that nutrient addition to an impacted arctic shoreline (Spitzbergen) was 

followed by an increase in microbial activity (oxygen consumption, carbon dioxide 

evolution, and an increase in biomass), which resulted in the biodegradation of oil. Watson 

et aL (2002) concluded that biodegradation of crude oil in seawater, without nutrient 

addition, leads only to limited biodegradation. 

A comparative study on the biodegradation of petroleum hydrocarbons found that a 

consortium of marine bacteria was more efficient at degrading branched alkanes and 

aromatic compounds than a freshwater consortium under the same conditions (Holder et 

aL, 1999). Shiaris (1989) and Mille et aL (1991) studied the effect of salinity on the 

biodegradation of petroleum hydrocarbons. Maximum levels of biodegradation occurred at 

salt concentrations equivalent to seawater (35 g L"' NaCl). Salt concentrations either higher 

or lower than this inhibited degradation. More recently two hydrocarbon degrading 

consortia isolated from crude oil and mangrove sediments were found to be capable of 
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degrading petroleum hydrocarbons over a wide range of salinity (0 - 100 g L"). However, 

salinities over twice that of normal seawater (35 g L") decreased the biodegradation rates 

(Diaz et al., 2000). Alexander (1999) suggests that high salinity values can affect microbial 

processes. However, there appears to be no strong argument that typical salinity levels of 

estuaries and oceans are a major deterrent to biodegradation. 

A slower rate of petroleum hydrocarbon biodegradation is generally observed in soil and 

sedimentary environments. Microbial activity is thought to be constrained by adsorption of 

hydrocarbons to particulate material, which reduces bioavailability (e. g. Young, 1984; 

Manilal and Alexander, 1991; Atlas and Bartha, 1992; Drake et aL, 1995; Alexander, 

1999). It has also been suggested that adsorption of hydrocarbons onto soil surfaces and/or 

their diffusion into soil micropores can cause differences in the patterns of degradation 

observed in aqueous systems (Drake et aL, 1995). Atlas and Bartha (1992) suggest that 

petroleum spilled on soils is largely adsorbed to particulate material, decreasing its 

toxicity, but contributing to its persistence. 

2.1.4 Mechanisms of hydrocarbon biodegradation 

The bacterial oxidation of crude oils requires enzymatic transformation of the hydrocarbon 

components. Individual bacteria contain thousands of enzymes, many of which are 

involved in the catabolism of wide range of hydrocarbons (Wackett and Hershberger, 

2001). Although particular strains of bacteria use limited numbers and types of organic 

compounds as growth substrates, different species of bacteria are able to biodegrade 

different hydrocarbons, and many are able to develop modified enzymes capable of 
.I 
degrading 'new'. compounds as substrates. The metabolic pathways of hydrocarbon 

biodegradation have been reviewed in detail (e. g. Gibson and Subramanian, 1984; Swisher, 
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1987; Alexander, 1999; Wackett and Hershberger, 2001) and are only summarised briefly 

herein. 

The initial oxidative bacterial attack on n-alkanes is generally at one end of the 

hydrocarbon chain (terminus), commonly known as co-oxidation (Britton, 1984; Swisher, 

1987; Atlas and Bartha, 1992; Alexander, 1999). Several pathways may be used (e. g. 

Figure 2.3, a-c) depending on (i) the particular microorganisms involved, (ii) hydrocarbon 

chain length, (iii) other structural features of the hydrocarbon, and (iv) the operating 

conditions. A major pathway proceeds via the primary alcohol, yielding the corresponding 

aldehyde, and the carboxylic acid (Figure 2.3; Swisher, 1987; Atlas and Bartha, 1992; Setti 

et aL, 1993; Alexander, 1999). Although less common, initial attack on an alkane may also 

occur at a central carbon atom, commonly known as sub-terminal oxidation (Britton, 1984; 

Swisher, 1987; Atlas and Bartha, 1992). Following the formation of a carboxyl group, 0- 

oxidation continues the biodegradation process (Britton, 1984; Swisher, 1987), shortening 

the chain by two carbons at a time. 

H, H, H, 

a 
H, H, H, b H, H, H, H, H, 

"'D H, H, 
R-C - C-C-1. R-C-C-C-CH R-C-C-C R-C-C-C 

c H, H, H 
R-C-C-C-OOH 

ýAý 

Figure 2.3. co-oxidation via three pathways (a-c), reproduced from Swisher 
(1987). 

Branching at chain ends can severely hinder initial (o-oxidation and in some cases prevents 

or hinders normal P-oxidation (Britton 1984; Swisher, 1987). In this case the P-oxidation 

process can be adapted to nonlinear substrates. When the branching is on the P carbon it 

becomes blocked to normal P-oxidation and a-oxidation may proceed. P-oxidation resumes 
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when the next normal 0 position is unsubstituted. Details of the mechanism of normal a- 

oxidation have been reviewed by Britton (1984) and Swisher (1987). 

Cycloalkanes may also be open to mid-chain attack analogous to the sub-terminal 

oxidation of linear alkanes (Figure 2.4). For example, a significant number of microbial 

species can oxidise cyclohexane to cyclohexanol (using monooxygenase) and, via 

dehydrogenation, to cyclohexanone (Trudgill, 1984; Atlas and Bartha, 1992; Wackett and 

Hershberger, 2001). Complete degradation proceeds with the insertion of an oxygen atom 

between the carbon bearing the carbonyl oxygen and the adjacent carbon (Baeyer-Villiger- 

type). After generation of the lactone, the ring is cleaved by hydrolysis of the ester and the 

open chain carboxylic acid is then mineralised (Figure 2.4; Atlas and Bartha, 1992; 

Wackett and Hershberger, 2001). 

OH 0 

0 
33 

ö5--- 

»- 

cyclohexane cyclohexanol cyclohexanone 

(0 
LO 

H 

OH 

lactone 

Figure 2.4. Cycloaliphatic compounds are metabolised aerobically via 
hydroxylation and Baeyer-Villiger-type oxygen insertion reactions. Taken from 
Wackett and Hershberger (2001). 

The resonance stability of aromatic ring structures requires metabolic action to overcome 

higher activation energies than occur during the hydration of non-aromatic double bonds. 

(Atlas and Bartha, 1992; Wackett and Hershberger, 2001). Two of the common routes for 

benzene ring degradation are outlined below (Gibson and Subramanian, 1984; Swisher, 

1987; Atlas and Bartha, 1992; Iqbal and Mason, 1999). Initially, catechol or a substituted 

catechol is formed in an enzyme catalysed oxidation with molecular oxygen. The ring is 

then opened between or adjacent to the two hydroxyl groups. In the first case (ortho 
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cleavage) a dicarboxylic acid is formed which is converted by three successive molecular 

rearrangements into 0-ketoadipic acid. This can then be split by the normal P-oxidation 

process. In the second, or meta pathway, the initial rupture of the ring occurs adjacent to 

the two hydroxyl groups, leading to the formation of formic acid, acetaldehyde, and 

pyruvic acid, all of which are common cell metabolites. The meta pathway is frequently 

involved in the biodegradation of substituted catechols (Figure 2.5). 

Alkylaromatics can undergo initial oxidation at the end of the alkyl group, with the chain 

being degraded by the P-oxidation process. Once the oxidation reaches the ring, 

degradation then proceeds by one of the catechol pathways described in Figure 2.5. 

However, the initial attack may also be on the ring, particularly when the alkyl chain is 
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HC., ý, 

C02H H2CI 
, 

C02H 
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CC 
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bH 
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11 02H 
- ------- + and Pyruvic acid 
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H H2 

H3C 

20 

short (e. g. Swisher 1987; Atlas and Bartha, 1992; Cemiglia, 1992). 

Figure 2.5. Two of the common routes of aerobic biodegradation of aromatic 
rings. (a) ortho cleavage pathway, (b) meta cleavage pathway. Diagram 

reproduced from Swisher (1987). * Indicates the bond on the aromatic ring 
where initial microbial attack occurs. 

,., 
The metabolism of PAHs is similar to that of single-ring benzenoid aromatic 

hydrocarbons. The degradation of one ring leads to the formation of a catechol on the next 

ring, where the process is repeated (Wackett and Hershberger, 2001). Microbial attack can 

occur simultaneously on any of the PAH rings (Alexander, 1999). In the case of 
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compounds containing alicyclic rings fused to aromatic rings (e. g. tetralin or indan), initial 

degradation is suggested to proceed via the alicyclic moiety, with subsequent degradation 

of the aromatic ring (Wackett and Hershberger, 2001). 

In environments where there is no oxygen present, the anaerobic degradation of 

hydrocarbons may occur. Instead of using 02 in the degradation of organic compounds, 

anaerobes use other electron acceptors such as nitrate, sulphate, ferric iron or C02 

(Alexander, 1999) often with the production of methane (Elshahed el al., 2001). A review 

of the mechanisms involved in the anaerobic biodegradation of hydrocarbons is beyond the 

scope of this study. However, information about this method of microbial degradation is 

available (e. g. Swisher, 1987; Ructer et al., 1994; Schmitt et al., 1996; Coates et al., 1997; 

Caldwell et al., 1998; Gieg et al., 1999; Grishchenkov et al., 1999; Yerushalmi et al., 

1999; Kropp et al., 2000; Wilkes et al., 2000; Elshahed et al., 200 1). 

2.1.5 Mono culture - Pseudomonasfluorescens 

Bacteria capable of degrading petroleum hydrocarbons are widely distributed in marine, 

freshwater, sedimentary, and soil habitats (Atlas, 1981; Atlas and Bartha, 1992; Alexander, 

1999; Clark, 2001; Wackett and Hershberger, 2001; National Research Council, 2003). 

Taxonomic studies (e. g. Fedorak and Westlake, 1981; Atlas and Bartha, 1992) have shown 

that many microbial populations isolated from both natural and oil impacted environments 

contain Pseudomonas species. Furthermore, Bartha and Atlas (1977) identified 

Pseudomonas spp. as one of the most important (based on frequency of isolation) genera of 

hydrocarbon utilisers in aquatic environments. Thus, Pseudomonas spp. have frequently 

been isolated and used in studies investigating the biodegradation of individual or mixtures 

of petroleum hydrocarbons (e. g. Solanas et aL, 1984; Bayona et aL, 1986; Robson and 

Rowland, 1987; Button et al., 1992; Rocha et aL, 1992; Haigler et aL, 1992; Setti et aL, 
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1993; Al-Hadhrami et aL, 1995; Shim and Yang, 1999; Leblond et al., 2001). Many other 

studies have used the Pseudomonas fluorescens strain in particular (e. g. Beech and 

Gaylarde, 1989; Gough, 1989; Caldini et aL, 1995; Sepic et aL, 1996; Wilson and Bradley, 

1996 a and b; Chang et aL, 1997; Heath et aL. 1997; Yuan et aL, 2000; Barathi and 

Vasudevan, 2001). These studies have reported that Pseudomonas fluorescens is an 

efficient degrader of both aliphatic and aromatic hydrocarbons, and can be used to study 

the fate of hydrocarbons in the enviromnent. 

2.1.6 Natural bacterial consortium 

The use of single strains (mono-cultures) of bacteria in the study of hydrocarbon 

degradation can provide useful information on the general susceptibility of hydrocarbons 

to microbial degradation. However, they are not necessarily indicative of environmental 

conditions where bacteria are present in mixed populations (Atlas and Bartha, 1992). 

Individual organisms generally metabolise only a limited range of substrates, therefore it is 

likely that assemblages of different bacterial species with broader enzymatic capabilities 

have a greater capacity to degrade complex hydrocarbon mixtures (Atlas and Bartha, 1992; 

Sugiura et aL, 1997; Alexander, 1999; Yuan et aL, 2000; National Research Council, 

2003). The use of mixed cultures of bacteria to study the biodegradation of individual and 

mixtures of hydrocarbons has been frequently reported (e. g. Fedorak and Westlake, 1981; 

Cooney et aL, 1985; Maue and Dott, 1995; Sugiura et aL, 1997; Holder et aL, 1999; 

Marquez-Rocha et al, 1999; Olson et aL, 1999; Diaz et aL, 2000; Yuan et aL, 2000). 

Sugiura et aL (1997) observed that a microbial consortium exhibited higher activity than a 

mono-culture for crude oil biodegradation. The mono-culture could not degrade certain 

PAH compounds yet the consortium was able to degrade the same PAH to varying 

degrees. It appears that mixed cultures degrade crude oil hydrocarbons more 

comprehensively. Therefore an accurate assessment of their fate in the environment should 

be measured using natural microbial communities. 
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2.1.7 Review of the biodegradation legislative tests 

The persistence of a compound or mixture within the environment is generally defined in 

terms of its resistance to biodegradation. The persistence of a substance reflects not only 

the potential for long-term exposure of organisms but also the potential for the substance to 

reach the marine environment and to be transported to remote areas. Whilst there is much 

legislation regarding crude oil and petroleum products in the environment (e. g. OSPAR, 

European Community), there is, as yet, none specifically detailing or governing unresolved 

complex mixtures of hydrocarbons. For example mineral oils and hydrocarbons of 

petroleum origin are Black List substances under the EC Directive on Dangerous 

Substances (76/464/EEC). 

To determine the persistence of substances in the environment a suite of standard 

biodegradation tests have been developed and proposed by organisations such as OECD 

(Organization for Economic Cooperation and Development), ISO (International 

Organization for Standardization) and MITI (Ministry of International Trade and Industry, 

Japan). The OECD biodegradability testing methods are classified into groups, i. e., ready 

biodegradability tests (OECD 301A-F), inherent biodegradability tests (OECD 302A-C), 

and seawater tests (OECD 306 series). Ready biodegradability is the complete degradation 

of organic chemicals to natural inorganic components and biomass without formation of 

persistent and toxic metabolites. Inherent biodegradation refers to test conditions that are 

designed to promote biodegradation, and which provide information on the potential for a 

substance to be biodegraded (Battersby et aL, 1999; OSPAR Commission, 2002) 

.I- Biodegradation can also be classed as either 'primary' where microbial attack causes a 

change in the chemical structure resulting in the loss of some specific property, or 

'ultimate' biodegradation which is the complete mineralisation of a substance (Battersby et 

aL, 1999). The Coordinating European Council (CEC) has developed a test (CEC-L-33-A- 

11: j 93) which was originally intended to measure the biodegradability of hydrocarbons, 
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specifically two-stroke motor oils, in water. This method measures 'primary' 

biodegradation and can lead to an overestimate of the role of biodegradation. The 'ready' 

biodegradability tests (e. g. OECD 301 series) measure 'ultimate' biodegradation and can 

lead to an underestimate of the biodegradability of an oil product (Battersby et aL, 1999). 

These interpretations should strictly only be applied to pure substances, whilst petroleum 

products are in fact complex mixtures of many different organic compounds. A summary 

of the most commonly used biodegradation tests is presented in Table 2.1. 

Table 2.1. A review of the available techniques used for testing 
biodegradability has been summarised by Shell Global Solutions 
(Biodegradability testing at Shell Global Solutions, 
http: //www. shellglobalsolutions. com/analytical/techniques/bio 

- 
test. htm, 2003). 

The table below summarises some of the biodegradation tests, which have 
relevance to the studies here. 

Test Guideline 

DOC die away (OECD 301A) This 'ready' biodegradability test is suitable for water-soluble 
substances - biodegradation is measured as loss of 
dissolved organic carbon (DOC) over 28 days. 
A variety of 'ready' biodegradability tests chosen as being 

Carbon dioxide evolution (OECD suitable for water soluble and insoluble substances and 
301 B and 301 E; ISO 14593) volatile materials - biodegradation is measured as 

mineralisation to carbon dioxide over 28 days, 
This 'ready' biodegradability test is suitable for water soluble 

Closed bottle (OECD 301 D) and insoluble substances - particularly suitable for volatile or 
inhibitory substances. Biodegradation is measured as 
oxygen uptake in closed bottles over 28 days. 
This'ready' biodegradability test is suitable for water soluble 

Manometric respirometry (OECD and insoluble substances and can also be used for volatile 
301 F) materials. Biodegradation is measured continuously as 

oxygen uptake over 28 days. The oxygen is replenished 
automatically. It is particularly suitable for measuring the rate 
of biodegradation (kinetics). 
This 'inherent' biodegradability test is suitable for non-volatile 

Semi-continuous, activated- substances soluble in water at concentrations greater than 
i 

sludge test (OECD 302A) 20 mg U as dissolved organic carbon (DOC). Units are fed 
on daily basis with sewage, with and without test substance. 
Biodegradation is measured as removal of DOC over a2 to 
6 week period. 

Biodegradability in sea water Test methods are similar to OECD guidelines 301A and 
(OECD 306) 301 D, but use seawater as the test medium. 
Oil biodegradability (CEC L-33-A- This test measures the primary biodegradability (loss of 
93) parent material) of oil products in an aqueous medium. 

Biodegradation is measured as the loss of infrared (IR) 
absorbance in solvent extracts over 21 days. 
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The Office of Prevention, Pesticides and Toxic Substances (OPPTS 835.3110,1998), of 

the United States Environmental Protection Agency, states that normally these tests last for 

28 days. The pass levels for 'ready' biodegradability are 70 percent removal of DOC and 

60 percent of ThOD (theoretical oxygen consumption) or ThCO2 (theoretical carbon 

dioxide production) for respirometric methods. Specific chemical analysis can also be used 

to assess 'primary' degradation of the test substance. The pass levels are lower in the 

respirometric methods because some of the carbon from the test chemical is incorporated 

into new cells; thus, the percentage Of C02 produced is lower than the percentage of carbon 

being used. OPPTS (1998) states that chemicals reaching a pass level after the 28-day 

period are deemed not readily biodegradable. OECD guidelines for the testing of chemicals 

recommend that biodegradation of more than 20% is evidence for 'inherent primary 

biodegradability', and biodegradation above 70% is evidence for 'inherent ultimate 

biodegradability'. 

Whilst organisations such as OECD and ISO propose detailed methods for the 

measurement of biodegradability of substances, it is organisations such as the OSPAR 
ý ýI 

Commission which have the power to adopt these tests for regulatory data generation. 

OSPAR lists oils and hydrocarbons of petroleum origin as substances that shall be subject 

to 'programmes and measures', and individual hydrocarbons and certain compounds 

1, classes (e. g. PAHs, PCBs) are listed on either the current OSPAR 'List of Chemicals for 

Priority Action' or the 'List of Substances of Possible Concern'. 

The OSPAR selection procedure identifies certain hazardous substances on the basis of 

their intrinsic hazardous properties of persistence, liability to bioaccumulate and toxicity 

(P, B and T). The P, B and T criteria used for the selection of the Substances of Possible 

Concern by OSPAR are described in DYNAMEC (OSPAR Commission, 2002). 
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The cut-off values for each of these criteria are as follows: 

Persistency (P): ................................... Half-life (ty. ) of 50 days and 

Liability to Bioaccumulate (B): .......... log K,,,, ý: 4 or BCF ý: 500 and 

Toxicity (T) ......................................... TLq: acute L(E)C5o: 5 I mg L", long-term 
NOEC: 5 0.1 mg L-1. 

Where BCF is the 'bioconcentration factor', L(E)C50 is the acute toxicity lethal 
concentration for 50% fatality of a population, and NOEC is the 'no observed effect 
concentration'. 

For persistence, the principal criterion is that the substance has a half-life in the freshwater 

or marine environment of 50 days or more. OSPAR state that the half-life should be used 

as the first and main criterion for determining whether substances should be regarded as 

persistent in the context of the Hazardous Substances Strategy. 

OSPAR concludes that many of the ready and inherent biodegradability tests accepted as 

standard methods of monitoring persistence do not provide half-life data on the substances 

studied. In contrast the biodegradation experiments carried out as part of the present study 

provide half-life data on the individual hydrocarbons and hydrocarbon mixtures. 

The OSPAR Commission also acknowledges the importance and benefits in using models 

to estimate the biodegradability or persistence of substances in the environment. For many 

chemicals no experimental data are available at all, which makes their inclusion onto lists 

of Priority action or possible concern difficult to justify. Fortunately, models are available 

such as the SYRACUSE BIOWIN used herein (Section 2.3.4). Such models can be used to 

estimate the potential for biodegradation in the environment. 
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2.1.8 Aims of the present study 

Gough (1989) investigated the biodegradability of proposed aliphatic UCM components 

("T-branched" alkanes) with the bacterium Pseudomonas. fluorescens (strain Texaco). The 

studies used C25 hydrocarbons so that any variations in biodegradability could be ascribed 

solely to molecular structure rather than differences in molecular weight. The results 

indicated that different hydrocarbon structural types underwent different rates and extents 

of degradation. In particular, an increased resistance to biodegradation was noted for more 

highly branched hydrocarbons, suggesting that steric factors may be a controlling factor in 

hydrocarbon sedimentary distributions. It was also found that an aliphatic UCM was 

partially degraded, initially at a rate comparable to that observed for candidate aliphatic 

UCM compounds, and that the UCM appeared degraded "as a whole", i. e. no significant 

reduction in the proportion of resolved compounds vs. unresolved compounds was 

observed (Figure 2.6). 
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Figure 2.6. Summary of data obtained by Gough (1989) from biodegradation 
studies using P. fluorescens. More highly branched hydrocarbons (candidate 
aliphatic UCM compounds) and the aliphatic UCM appear to have increased 
resistance to biodegradation than straight and simply branched alkanes. 
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In the present study, a series of synthetic alkylcyclohexyltetralins (Wraige, 1997; Sturt, 

2000; Smith et aL, 2001; Section 5.6 and 5.7) an isolated aromatic UCM (Section 5.4), and 

for reference n-pentacosane, were exposed to aerobic bacteria in well-defined laboratory 

tests (Section 5.8). Firstly, 6-cyclohexyltetralin (1, Figure 2.7), four 7-cyclohexyl-l- 

alkyltetralins (II-V, Figure 2.7), 7-cyclohexyl-l-nonylnaphthalene (VI, Figure 2.7) and n- 

pentacosane, were exposed for 50 days to a mono-culture (Section 5.8.1). The bacterial 

strain used was Pseudomonas fluorescens (Texaco) which was isolated from a 

contaminated metal working fluid by Beech and Gaylarde (1989). The aim here was not to 

carefully select an unusual bacterial species capable of degrading the target compounds as 

is the case in bioremediation or biomimetic studies (e. g. certain Sphingomonas spp; 

Hernaez et aL, 1999). Rather the aim was to investigate whether a common environmental 

aerobe was capable of degrading the monoaromatic tetralins and diaromatic naphthalene 

(I-VI, Figure 2.7) as easily as it degrades some other hydrocarbons (cf Gough et aL, 

1992). Secondly, an isolated aromatic UCM (Figure 2.8) was exposed to the same bacterial 

strain under the same conditions, to determine the resistance of the component 

hydrocarbons to further biodegradation. 

In the environment, consortia of bacteria may biodegrade hydrocarbons that are resistant to 

degradation by one species. Therefore, three of the alkylcyclohexyltetralins and the 

alkylcyclohexylnaphthalene were also exposed for up to 119 days to a consortium of 

aerobic bacteria isolated from a hydrocarbon-polluted environment (Whitley Bay, Tyne 

and Wear, UK; Section 5.8.2). This consortium has been shown previously to extensively 

degrade crude oil under these conditions (Watson et aL, 2002). The study involved 

incubations with two co-substrates (i) n-hexadecane (n-C16) and (ii) fresh North Sea crude 

oil. These studies using the consortium of bacteria were conducted at the University of 

Newcastle by C. Aitken. All data analysis and processing was completed by the author (A. 

Booth) at the University of Plymouth. 
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Figure 2.7. Synthetic alkyltetralins (I-VI) suggested as 'average' aromatic 
UCM components. Compounds I-111 were synthesised by Smith (2002) and 
compounds IV-VI by Sturt (2000) and purified with recovery by HPLC by the 
present author as described in Chapter 5. 
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Figure 2.8. Gas chromatogram of the combined 'aromatic' fractions isolated 
from in-reservoir biodegraded Tia Juana Pesado crude oil (Venezuela) by open 
column chromatography (Section 5.4). 
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2.2 Results 

2.2.1 Biodegradation studies with Pseudomonasfluorescens 

2.2.1.1 Biodegradation of n-pentacosane (n-C25) 

The biodegradation of n-pentacosane (n-C25) by P. fluorescens (Texaco) at 22-25 'C for 0- 

9 days is illustrated in Figure 2.9, along with the data for abiotic controls. The study used 

n-C26 as an internal standard so the data could be adjusted for sample loss during work-up 

(Section 5.8.1). The aim of the present investigation was to illustrate the well-known 

capability of Pseudomonas fluorescens for rapid biodegradation of n-alkanes and to 

confirm that the experimental conditions were comparable to previous studies (e. g. Gough 

et aL, 1992). The rapid decrease in n-C25 concentration due to biodegradation was indeed 

observed during the first few days of exposure. Furthermore, comparison of the data from 

the current study to that of Gough et al. (1992) indicates analogous results and therefore 

experimental conditions were achieved (Figure 2.9). The viability of the bacteria used was 

monitored throughout the experiment (Section 5.8.1.2). At every stage, samples were taken 

and incubated over night. In each case bacterial growth was visually evident, confirming 

that the bacteria were viable throughout the experiment (Figure 2.10). 

2.2.1.2 Biodegradation of the synthetic alkylcyclohexyl-tetralins and naphthalene 

Figure 2.11 shows thý mean (+ standard deviation) proportion of the 

alkylcyclohexyltetralins and alkyleyclohexylnaphthalene (I-VI) recovered in triplicate 

experiments after exposure to Pseudomonas fluorescens for a 50-day period (Section 

5.8.1). Compounds I and II appear to have suffered the greatest losses (67% and 56% 

degradation respectively), whereas compound V and the C9 cyclohexylnaphthalene (VI) 

have hardly been affected (2% and 1% degradation respectively). Also shown for 

comparison are the data for the degradation of n-C25. However, comparison of individual 

compounds (I-VI) at day 50 to the data for the respective abiotic controls indicates only 
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slight differences. Thus, the removal of compounds I-VI, unlike n-C25 appear to be 

dominated by abiotic losses, probably due to evaporation. 

120 

100 

c cc W 
0 
Q 
cc 

80 

0 

60 
0 

fm 40 
c 

KL 
20 

0 

Time (days) 

Booth 

Gough 

Booth 
Control 
Gough 
Control 

Figure 2.9. Comparison of the degradation rate of n-pentacosane (n-C25) using 
Rfluorescens deten-nined in this study with those observed in a similar study 
by Gough et al. (1992). 
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Figure 2.10. Digital photograph of healthy, uncontaminated, P. fluorescens 

colonies grown from the viability test sample taken on day 50. Bacteria 
transferred to a slide, and the photograph taken through a microscope. 

59 

0 10 15 20 25 30 



- 

\IIZ 

CD 
c4 
T- 

AJOAODGU 8Bv4u83JGd 

0 

i L CD 
i U) 

LO 
(N 

0 

0 

0 

13 

a) 
E 
I. - 

ýj OL) 

0 

'G 7ý -Z; 

,a 

ý4, = ýc 

> Cý3 , Z: 0= 

60 

C: ) C: ) Q CD (D 
Q Co Co qe (4 
v- 



To determine the o%erall degree of' biodegradation expenenced by each compound, the 

data for day 50 %%ere compared to those tor the ablotic controls. Figure 2.12 shows the 

percentage loss of' each of the hydrocarbons that can be attnbuted to biotic processes. 

These biotic losses are all - 200o mer 50 days for each ofthe compounds. 
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Figure 2.12. Biodegradation ot'comFx)unds I-VI (n 3) at day 50 ofthe study. 
The %alues were calculated by comparison to the control values. This indicates 
the percentage difference between the tinal sample recovenes (biotic and 
abiotic loss) and the control recoveries (abiotic loss). 

2.2.1.3 Biodegradation of an 'aromatic' UCNI 

F igure 2.13, sho%%s the mean (t standard de% at, on) proportion of the *aromatic* 17CM 

(Section 5.4) recovered in triplicate experiments after a 41 day exposure period with R 

Asorescens (Section 5.8.2). The 'aromatic' UCM appears to have undergone very little 

biodegradation (-5"o degradation) during this time. Also shown for comparison are the 

data tor the degradation ot'compound IV (this study) and an aliphatic UCM exposed to the 

same bacterium by Gough (1989). Unlike compounds I-VI, few abiotic losses appear to 

have occurred to the hydrocarbons in the aromatic I 1CM. 
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Figure 2.13. Biotlegradation of' the aromatic UCM hydrocarbons by 
Neudornoff(Is 1114ort.. %, Results are presented as the percentage ofmaterial 
rcco%crcd with time. Aromatic LJCM hydrocarbons, a= Aliphatic UCM 
hydrocat-K)ns (deternimed bv Gough, 1989). A= 7-cyclohexyl-l- 
isoamylletralin (Compound IV). 

'I he o% erall degree ofbiodegradation undergone by the 'aromatic' 1JCM hN drocarbons was 

deternimed by comparing the data tor day 41 to that ofthe corresponding ablotic control. 

Figure 2.14 sho%%s the percentage loss of' 'aromatic' UCM hydrocarbons which can be 

attributed to biotic processes. Also included t*or companson are the data for compound I 

and IV (Figure 2.7) and also for the aliphatic LJCM studied by Gough (1989). These values 

represent the fraction ol'the total hydrocarbons that were lost as a result ot'biotic processes 

alone. 
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Figure 2.14. Biodegradation of the 'aromatic' UCM hydrocarbons (n=3) at day 
41 of the study. The values were calculated by companson to the control 
values. This indicates the percentage difference between the final sample 
recoveries (biotic and abiotic loss) and the control recoveries (abiotic loss). 
Also included for comparative purposes are the data for compounds I and IV, 
determined in this study and that of the aliphatic UCM hydrocarbons as 
determined by Gough (1989). Replicate data for the latter study were 
unavailable. 
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Figure 2.15. optical density values for each sample, used as a measure of 
bacterial activity and growth (if occurring). Optical density was measured 
using two spectrophotometers, (a) Cecil CE 1010 (1000 series) and (b) Unicarn 
Helios Epsilon. 
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The results of the optical density measurements undertaken to monitor bacterial growth 

(Section 5.8.1.2) are summarised graphically in Figure 2.15. The graphs indicate that 

initially high values reduced quickly before remaining quite constant for the majority of 

the study. This indicates that the bacteria were either in a logarithmic growth phase or in 

decline (Tortora et aL, 1998). 

2.2.2 Biodegradation studies with a mixed bacterial consortium (Whitley Bay, Tyne 

and Wcar, UK) and n-hexadecane co-substratc 

The results of the biodegradation of synthetic compounds 1 (45 [tg), 11 (34 ýtg), IV (59 [tg) 

and VI (39 pg) at 20 IC in the presence of -1000 x excess of n-C16 are surnmarised in 

Figure 2.16, which shows how each of the compounds were affected by exposure to the 

Whitley Bay consortium of bacteria over a 119-day period. Compounds I and II appeared 

to suffer the greatest losses (both 100 % degraded by day 119), whereas compounds IV and 

VI were still present at day 119 (32% and 61% degraded with respect to starting 100%). 

Shown also, for comparison, are data for the biodegradation of n-hexadecane. The results 

show that the bacterial consortium had removed >90 % of n-hexadecane by day 28 and had 

completely degraded it by day 119. Comparison of the recovery values for individual 

compounds at day 119 to their respective abiotic control values indicates significant 

differences, illustrating removal dominated by biotic losses. 
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Figure 2.16. Graph showing the degradation of the alkyltetralins (1,11, IV) and 
alkylnaphthalene (VI) after exposure to the Whitley Bay bacterial consortium 
for 28 and 119 days. The degradation of the hexadecane (n-C 16) co-substrate is 
also shown. Open symbols correspond to control data points. 

To detennine the degree of biodegradation that the compounds 1,11, IV and VI had 

undergone, the recovery data for day 28 and day 119 were compared to those of the abiotic 

control values. Figure 2.17 shows the percentage losses of each of the synthetic 

alkyltetralins and the alkyInaphthalene which can be attributed to biotic processes. The 

biotic losses vary considerably between the different compounds. After 28 days all of the 

compounds showed evidence of biodegradation, with compounds I and 11 being the most 

heavily degraded (82 % and 59 % respectively) and compound IV exhibiting the most 

resistance to biodegradation under these conditions (<20% degradation). A similar trend in 

susceptibility can be seen in the results at day 119, with compounds I and 11 being 

completely degraded and compounds IV and VI still present in significant quantities (IV = 

50 %; VI = 29 % remaining). 
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Figure 2.17. Summary of the biodegradation of compounds 1,11, IV and VI 
(mean ± range, n=2) in presence of 1000 x excess n-hexadecane, by a mixed 
consortium of bacteria at day 28 and day 119 compared to values for abiotic 
controls. Compounds III and V where not used in the present study. 

2.2.3 Biodegradation studies with a mixed bacterial consortium (Whitley Bay, Tyne 

and Wear, UK) and North Sea crude oil co-substrate 

The results of the biodegradation of synthetic compounds 1 (45 ýig), 11 (34 [tg), IV (59 Vg) 

and VI (39 pg) at 20 'C in the presence of 45 mg of North Sea crude oil are summarised. in 

Figure 2.18, which shows how each of the compounds were affected by exposure to the 

Whitley Bay consortium over a 119-day period. Compounds I and 11 again appeared to 

have suffered the greatest losses (both 100 % degradation by day 119), whereas 

compounds IV and VI are still present at day 119 (82% and 94% degradation respectively). 

Comparison of individual compounds at day 119 to their respective controls indicates 

significant differences in their recoveries, thus these results appear to be dominated by 

biotic losses. However, the recovery of the control samples is quite low, reflecting 
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difficulties in the analysis owing to co-elution of the target compounds with compounds 

present naturally in the crude oil co-substrate. 
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Figure 2.18. Graph showing the degradation of the alkyltetralins (1,11, IV) and 
alkylnaphthalene (VI) after exposure to the Whitley Bay bacterial consortium 
for 28 and 119 days in the presence of North Sea crude oil. Open symbols 
correspond to control data points. 

It is therefore important to determine the degree of biodegradation that the compounds 1,11, 

IV and VI had undergone compared to that of the abiotic controls so that an accurate 

measurement of the extent of biodegradation could be reported. The recovery data for both 

day 28 and day 119 were compared to those of the abiotic control values. Figure 2.19 

shows the percentage losses of each of the alkyltetralins and the alkylnaphthalene, 

attributed to biotic processes. 
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Figure 2.19. Summary of the biodegradation of compounds 1,11, IV and VI 
(mean ± range, n=2) in presence of North Sea crude oil, by a mixed consortium 
of bacteria at day 28 and day 119 compared to values for abiotic controls. 
Compounds III and V where not used in the present study. 

The biotic losses appear to vary considerably between the different compounds as was also 

seen in the n-hexadecane study (e. g. Figure 2.16), with again compounds I and 11 

undergoing the greatest losses and compounds IV and VI being the most resistant to 

biodegradation. Adjustment of the biodegradation values to the abiotic controls shows that 

less material has been biodegraded than initially appears from Figure 2.18. After 28 days 

all of the compounds showed some evidence of biodegradation, with compounds I and 11 

most heavily degraded (82 % and 64 % respectively) and compound IV exhibiting the most 

resistance to biodegradation under these conditions (only 14 %). A similar trend in 

susceptibility was seen in the results for the day 119 experiment, with compounds I and 11 

being completely degraded and compounds IV and VI still present in significant quantities 

(IV = 64 %; VI = 12 % remaining). 
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2.2.4 North Sea crude oil degradation by a mixed bacterial consortium (Whitley 

Bay, Tyne and Wear, UK) 

Analysis of the degradation of the fresh North Sea crude oil used in the experiments 

indicated significant alteration of the hydrocarbon components over 119 days. This is 

important since the data illustrate the relatively high degrading potential of the mixed 

bacterial consortium. Figure 2.20, shows the GC-MS selected ion chromatograms of the 

abiotic control and the day 28 and 119 samples. The data show that the North Sea crude oil 

had undergone significant alteration even by day 28. All of the major components such as 

the resolved n-alkanes had been removed, and it appears that the common C19 and C20 

acyclic isoprenoid compounds (pristane and phytane) had been degraded. At day 28 each 

of the synthetic compounds, considered 'average' aromatic UCM components, were still 

present. By day 119 degradation had proceeded to such an extent that an enrichment of the 

hopanes (pentacyclic terpanes) can be clearly observed. However, two of the 'average' 

compounds (IV and VI) had still not undergone complete mineralisation. 
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Figure 2.20. GC-MS m1z 85 selected ion chromatograms illustrating 
distributions of model compounds (I, II, IV and VI) and crude oil hydrocarbons 
in incubations with Whitley Bay consortium of aerobic bacteria: a. Sterilised 
day 28 control; b. Biotic day 28 incubation; c. Biotic day 119 incubation. I. S. = 
internal standard (n-pentacosane). R. S. = recovery standard (squalane). 
Hopanes = C29-33 hopanes (Watson et al., 2002). 
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Examination of the sterane and hopane biomarkers over the course of the study showed 

that by day 28 the steranes (Figure 2.21), and the diasteranes (Figure 2.22) had appeared to 

begin to undergo biodegradation. The C27 steranes have been highlighted in Figure 2.21, 

and for example, the aPP20S isomer seems to be preferentially degraded to the aPP20R 

isomer. By day 119 both isomers appeared to have undergone biodegradation compared to 

the C28 and C29 steranes. The C27 diasteranes are highlighted in Figure 2.22, and it can be 

seen that the aPP20S isomer seems to be degraded preferentially to the aPP20R isomer, 

and by day 119 both isomers appeared to have undergone biodegradation compared to the 

other resolved compounds. Figure 2.23 shows that even the hopane biomarkers (C30 - C33)1 

seem to have undergone some biodegradation by day 119. These compounds have been 

proposed as resistant biomarkers suitable for monitoring crude oil degradation (e. g. Wang 

et aL, 1994; Wang and Fingas, 1997; Wang et aL, 1998). From Figure 2.23 the aP22R 

isomer appears to have been degraded preferentially to the a022S isomer, with the C33 

hopanes being degraded more rapidly than the C31 and C32 hopanes. 

C27 Steranes 
C28 Steranes 

C29 Steranes 

ctPP20R a P20S 

64 55 56 57 58 59 60 611 62 63 64 

Retention Time (min) 

Figure 2.21. GC-MS M/z 218 selected, ion fragmentograms illustrating 
distributions of sterane biomarkers with the Whitley Bay consortium of aerobic 
bacteria: a. Sterilised day 28 control; b. Biotic day 28 incubation; c. Biotic day 
119 incubation. Degradation of the aPP20S C27 sterane isomer compared to the 
aPP20R C27 sterane isomer appears to have occurred. 
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Figure 2.22. GC-MS m1z 217 selected ion fragmentograms illustrating 
distributions of diasterane biomarkers with the Whitley Bay consortium of 
aerobic bacteria: a. Sterilised day 28 control; b. Biotic day 28 incubation; c. 
Biotic day 119 incubation. Degradation of the aPP20S C27 diasterane isomer 
compared to the aPP20R C27 diasterane isomer appears to have occurred. 
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Figure 2.23. GC-MS m1z 191 selected ion fragmentograms illustrating 
distributions of hopane biomarkers with the Whitley Bay consortium of aerobic 
bacteria: a. Sterilised day 28 control; b. Biotic day 28 incubation; c. Biotic day 
119 incubation. Preferential degradation of the aP22R C32 hopane isomer 
compared to the aP22S C32 hopane isomer appears to have occurred. 
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2.3 Discussion 

2.3.1 Mono-culture studies 

The rapid biodegradation of n-pentacosane (n-C25) in the present study by Pseudomonas 

fluorescens is not only in agreement with the observations of Gough et aL (1992), but also 

with the general findings of most investigations into the biodegradation of different 

aliphatic hydrocarbons by this bacterium (e. g. gepic et aL, 1996; Jensen et aL, 2000). For 

instance, Heath et aL (1997) showed that a n-C20 to n-C60 alkane mixture exposed to P. 

fluorescens was rapidly degraded by 80% after 14 days. The most resistant hydrocarbons 

were in the range n-C40-60. Heath et aL (1997) reported that n-pentacosane used in the 

experiment decreased rapidly within 3 days (88% removal) and was completely degraded 

after 14 days of incubation. These results suggested that the conditions used in the present 

study were appropriate for a comparison of the relative degradation rates of different 

compound classes. Indeed, the data shown in Figure 2.9 are clearly in agreement with this; 

a rapid degradation of n-C25 being recorded within 5 days. 

In contrast, under the same conditions, the synthetic compounds I-VI were resistant to 

biodegradation by P. fluorescens. Compared with the abiotic controls, the maximum extent 

of degradation for any compound after 50 days was 18.1 ± 3% (n--3) for compound I 

(Figure 2.12). The statistical differences between the extent of degradation at day 50 for 

most of the pairs of compounds were significant (I/11, II/III, IV/V P=0.01) except for III/IV 

and VNI where the extent of biodegradation was not statistically different from each other 

at any level (Table 2.2). Thus 7-cyclohexyl-l-n-propyltetralin (III) and 7-cyclohexyl-l- 

isoamyltetralin (IV) were both equally resistant to degradation, as were 7-cyclohexyl-l-n- 

nonyltetralin (V) and 7-cyclohexyl- I -n-nonylnaphthalene (VI). 
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Table 2.2. Summary of the t-test statistical analysis. statistically different, x= not 
statistically different. 

1-11 11-111 III-IV lv-v V-Vl 
t= 5.49 9.88 0.53 4.21 1.01 
P=0.01 (critical value = 2.92) x x 
P=0.1 (critical value = 1.75) x x 

Abiotic losses (volatilisation) were considerable however for the C16 and C17 alkyltetralins 

(I and 11), as expected for relatively low molecular weight compounds. Such compounds 

are also probably susceptible to comparable rapid evaporation in the natural environment. 

Budzinski et al. (1998) observed significant abiotic losses of dimethyinaphthalenes (50- 

70%) compared to trimethyinaphthalenes, dibenzothiophenes and phenanthrenes (<30%) 

using a similar experimental method to that used in the present study. These losses were 

attributed to evaporation and oxidation. In the present study the C19, C2, and C25 

alkyltetralins (III-V) were much less volatile (mean recovery of abiotic controls ý! 100%) 

and these were also more bioresistant than I and 11 (Figure 2.12). In all the biotic 

experiments the bacteria remained viable (though not rapidly growing) even after 50 days, 

as monitored by plating on agar and also by examination by spectrometry (Figure 2.10; c.. f 

Heath et aL, 1997). Under the same conditions n-C25 was rapidly degraded (Figure 2.9) as 

was also observed previously under very similar conditions (Gough et al., 1992). Under 

such conditions, C25methyl-branched alkanes were also readily degraded (95% in 25 d), 

whereas C25 polymethyl branched and so-called highly branched acyclic isoprenoids were 

more slowly degraded (but up to 41% degradation in 25 d; Gough et aL, 1992). Under 

these conditions a C257-branched alkane and 7-branched alkylbenzene were also found 

to be resistant (e. g. alkylbenzene; 39% degradation in 25 d). Thus, to P-fluorescens, under 

the conditions specified, some of the alkyltetralins (in particular 111, IV and V) appear to 

satisfy the criteria for classification as persistent monoaromatic pollutants, and thus as 

potential components of monoaromatic UCMs in the environment. The diaromatic 7- 

cyclohexyl-l-nonylnaphthalene also exhibited significant resistance to biodegradation by 
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P. fluorescens, and may be illustrative of some of the compounds found in the diaromatic 

fractions of oil UCMs. 

An assessment of the biodegradability of the aromatic fraction of an unresolved complex 

mixture of hydrocarbons has not been made previously. In this study an aromatic fraction 

of the weathered crude oil Tia Juana Pesado (Venezuela) was isolated using open column 

chromatography and exposed to P. fluorescens under the same conditions as the synthetic 

compounds (I-VI). The main aims of this study were to determine whether an aromatic 

UCM from previously weathered crude oil was susceptible to further degradation, and to 

quantify the results observed for the synthetic compounds (I-VI). Figure 2.14 shows that 

there was little or no (further) degradation of the hydrocarbons in the aromatic UCM under 

these conditions. This observation is not unexpected, as UCMs are persistent in the 

environment following the biodegradation of simple GC resolvable compounds. Reddy et 

aL (2002) suggest that many of the compounds in the UCM may be too structurally 

complex to be biodegraded. Clearly, under the conditions used here, the synthetic 

compounds INI were nearly as resistant to biodegradation as the aromatic UCM 

hydrocarbons remaining in a fraction of UP crude oil after it had been biodegraded 

naturally over geological time. In fact compound IV (7-cyclohexyl-l-isoamyltetralin) 
1 

11 

exhibited nearly identical resistance to biodegradation by P. fluorescens as the naturally 

occurring hydrocarbons in the aromatic UCM. The suggestion (Smith et aL, 2001) that 

some of the components occurring within the monoaromatic UCM may be highly branched 

alkyltetralins or structurally similar compounds is thus consistent by the above findings. 
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2.3.2 Mixed culture studies 

Previous studies have shown that a consortium of bacteria isolated from seawater and 

sediments of Whitley Bay and Cullercoats, UK was capable of extensively and rapidly 

degrading the hydrocarbons of crude oil (Watson et aL, 2002). Indeed, incubations of 

artificially weathered Light Arabian crude oil with the bacteria for up to 80 days showed 

that even the polycyclic hopanoid alkanes, which are amongst the most resistant resolved 

alkanes of crude oils, are partially degraded to the corresponding hopanoic acids by this 

consortium (Watson et aL, 2002). Thus, incubation with an inoculum of these bacteria 

should provide an indication of susceptibility to biodegradation in a typically polluted 

enviromnent. 

In biodegradation studies using the mixed culture isolated from Whitley Bay and either n- 

C16 or North Sea crude oil as co-substrates compounds I and 11 appeared to be significantly 

more biodegraded than compounds IV and VI (Figures 2.17 and 2.19). This trend is very 

similar to that observed in the biodegradation experiments conducted with Pseudomonas 

fluorescens. However, biodegradation in the monoculture study was less significant than 

following exposure to this more aggressive mixed consortium. Although compounds I and 

II were completely degraded by the end of the study (119 days), significant amounts of 

compounds IV and VI remained undegraded by the consortium after this lengthy period. 

The data, however, should be treated with caution. Figures 2.16 and 2.18 show the 

percentage recovery of the compounds 1,11, IV and VI after 28 and 119 days. Compounds I 

and II are both completely removed by day 119, but may have reached this zero point prior 

to sampling at day 119. This makes the assignment of accurate degradation rates to these 

compounds difficult. In the case of the crude oil co-substrate study (Figure 2.18), the 

recovery of the control samples is quite low, reflecting difficulties in the analysis owing to 

co-elution of the target compounds with compounds present naturally in the crude oil co- 
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substrate. However, the study using n-C16 as a co-substrate exhibited very high (- 140%) 

recovery values for the controls at day 119. It is unknown why this occurred as the control 

values for the samples taken at day 28 are approximately 100%, as expected. As the day 0, 

28 and 119 samples and controls were all analysed at the same time instrumental error can 

be discounted as the reason for the unexpectedly high control values observed at day 119. 

The removal of the n-alkanes and acyclic isoprenoids of the North Sea crude oil co- 

substrate by the above bacterial consortium appeared to be at least as rapid as the 

degradation of n-pentacosane by Pseudomonasfluorescens. The extent of oil degradation 

was assessed as 'heavy' on well-accepted environmental or in-reservoir scales of 

biodegradation reported by Volkman et aL (1984), Peters and Moldowan (1993) and Wang 

et aL (1994). This is reflected in the removal of the n-alkanes and acyclic isoprenoids and 

the alteration of some tetracyclic steranes, observed in the chromatograms. Quantification 

by selected ion monitoring GC-MS showed that there was no reliably measurable alteration 

of the total C29-33 hopanes over the time period of this study (Figure 2.23). However, 

preferential degradation of some isomers was observed (Figure 2.23) indicating significant 

degradation of the oil. Watson et aL (2002) observed 1-3.5% alteration of hopanes after 80 

days with concomitant production of hopanoic acids. It is unlikely that the present method 

would allow reliable measurement of such small losses but the relative degradation of 

isomers is clear. These compounds have been used as 'conservative' hydrocarbon 

biomarkers (Wang et aL, 1994) but it is clear that even these polycyclics are degraded 

somewhat by this consortium. Figure 2.24 shows ratios of individual alkyltetralin/C30 

hopane, where a decrease in the ratio is a measure of the relative extent of biodegradation 

of the alkyltetralin (e. g. McMillen et aL, 1995). All of the compounds were shown to 

biodegrade, but compound IV was shown to undergo the least transformation relative to 

control values. 
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Figure 2.24. Comparison of the alkyltetralin/C30 hopane ratios with time. C30 
hopane is considered resistant to biodegradation by the Whitley Bay bacterial 
consortium over the time period of this experiment (c. f. Wang et al., 1994; 
Watson et al., 2002). 

Analysis of the biodegradation of different components and component classes of the 

North Sea crude oil allows the alkyltetralins to be positioned on the scale suggested by 

Peters and Moldowan (1993). An adjusted version of the biodegradation scale published by 

Peters and Moldowan (1993) is shown in Figure 2.25. The authors used the differential 

resistance to biodegradation of biomarker types to rank the extent of biodegradation of oils 

by comparing their relative amounts. From this they were able to suggest a scale on which 

crude oils could be ranked according to their degradation based on the relative abundances 

of the various hydrocarbons classes. Figure 2.25 shows the effects of various levels of 

biodegradation, ranked from 1-10. The authors suggest that a sharp division occurs 

between ranks 5 and 6, once the isoprenoids are removed, but prior to degradation of the 

steranes. The alkyltetralins were also ranked herein on the scale suggested by Volkman et 

al. (1984), and the adjusted scale can be seen in Table 2.3. Volkman et al. (1984) presented 

a revised nine point scale which ranked oils according to the extent which the hydrocarbon 

10 day 0 ratios 
0 day 28 ratios 
El day 119 ratios 
0 day 28 control ratios 
0 day 119 control ratios 

78 



distribution had been altered by biodegradation. This observed resistance to biodegradation 

was perhaps not unexpected as alkylaromatic hydrocarbons in crude oils had previously 

been shown to be rather resistant to biodegradation (e. g. Dutta and Flarayarna, 2001). 

Extent of Destruction of Compound Class 
Biodegradation Alkyl 

Rankina n-Paraffins Isoprenoids Sterane Tetralins 

Light 
1 

Moderate 
4 

5 

Heavy 
6 

(6) 

(6) 

7 

Very Heavy 
8 

Hopane Diasteranes Aromatics 
I 

C26-C29 

9 

Severe 
10 

1= Lower homologs of n-paraff ins depleted. 
2= General depletion of n-paraff ins. 
3= Only traces of n-paraffins remain. 
4= No n-paraff ins, acyclic isoprenoids intact. 
5= Acyclic isoprenoids absent. 
6= Steranes partly degraded. 
7= Steranes degraded, diasteranes intact. 
8= Hopanes partly degraded. 
9= Hopanes absent, diasteranes attacked. 

10 = C26-C29 aromatic steroids attacked. 

26-Norhopanas 

Figure 2.25. Biodegradation scale of Peters and Moldowan (1993) illustrating 
the relative position of' the bioresistant alkyltetrafins (e. g. compound IV) 
compared with other widely used biornarker classes. 
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Table 2.3. The effects of biodegradation on the composition of saturated and aromatic 
hydrocarbons in a typical mature paraffinic oil (Volkman et aL, 1984). 

Level Chemical composition 
Extent of 

biodegradation 
I Abundant n-alkanes Not degraded 
2 Light-end n-alkanes removed Minor 
3 >90% n-alkanes removed 
4 Alkylcyclohexanes and alkylbenzenes removed; acyclic Moderate isoprenoid alkanes and naphthalene reduced 
5 Isoprenoid alkanes and methylnaphthalenes removed; 

selective removal Of C2-naphthalenes 
6 C14-CI6 bicyclic alkanes removed; alkyltetralins altered Extensive 
7 >50% (20R) - Sa(H), 14a(H), 17a(H) steranes removed Very extensive 
8 Distribution of steranes and triaromatic steroids altered; 

demethylated hopanes abundant 
Severe 

9 No steranes; demethylated hopanes predominate Extreme 

Bost et aL (2001) suggested that the order or pattern of degradation of different classes of 

biomarkers can differ between oils, which may indicate that the composition of the carbon 

source exerts control on microbial consortia. This may explain why degradation of some of 

the steranes was observed with respect to other known bioresistant hydrocarbon markers. 

In another oil, with a different suite of hydrocarbons components and concentrations 

different trends in biodegradation may have been observed. 

It is therefore suggested that the alkyltetralins studied here show a much higher resistance 

to biodegradation than the acyclic alkanes, and are comparable in this respect to the 

steranes. As with the previous experiments (P. fluorescens) abiotic losses were substantial 

for compounds I and II. Interestingly, the same order of average bioresistance (IV>II>I) 

was observed with both the consortium of bacteria and P. fluorescens (Figures 2.12 and 

2.17). It is also interesting to note that there appeared to be slightly increased degradation 

of the synthetic compounds when they were present as part of a complex mixture, except 

for compound IV. This is shown by a comparison of the oil co-substrate study and the n- 

C16 co-substrate study. Figure 2.26 shows the extent of degradation for the compounds 

studied U, 11, IV and VI) at days 28 and 119. At day 28 compounds I, II and VI are all 

more degraded in samples containing the North Sea crude oil than in the samples 
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containing excess n-hexadecane. This observation supports the occurrence of co-oxidation 

processes during the biodegradation of complex mixture of hydrocarbons such as crude oil 

(e. g. Volkman et al., 1984; Cooney et al., 1985; Bayona et al., 1986). However, the 

opposite appears to be the case for compound IV. 

120 
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80 

60 

40 

20 

0 

4Day28nC16 -MDay280il 

LIý19nC16 MDay1190il 

vi 

Figure 2.26. Comparison of the extent of biodegradation, relative to the abiotic 
controls, of the model compounds 1,11, IV and VI when incubated with n- 
hexadecane and North Sea oil at days 28 and 119. 

2.3.3 Comparison to legislative tests 

When the data in this study are compared to the current legislation regarding the 

persistence of substances in the environment (Section 2.1.7) it is clear that after exposure 

to the P., fluorescens mono-culture, compounds I-VI and the aromatic and aliphatic UCMs 

are all less than 20% biodegraded after at least 28 days (Table 2.4). Thus, under the 

conditions employed in this study these substances are deemed resistant to 'inherent 

primary biodegradation' in the environment (OECD 301 series tests). When the half-life 

(TI/2) of the compounds is calculated (Table 2.5) all of the compounds have half-lives 
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greater than 50 days which would qualify them as environmentally persistent according to 

the OSPAR Commission (2002). 

Table 2.4. Summary of the percentage degradation of compounds INI and 
aromatic (TJPAR01) and aliphatic UCMs at day 50, after exposure to the 
bacterium Psuedomonasfluorescens, and compounds I, II, IV and VI at day 28, 
after exposure to the Whitley Bay consortium. 

Percentage degradation with 
respect to control (n = 3) at 

day 50, A fluorescens 

Percentage degradation with 
respect to control (n = 3) at 

day 28, Whitley Bay 
consortium 

1 18.1 82.9 
11 11.4 64.0 
111 1.5 n/a 
IV 1.9 14.3 
V 4.5 n/a 
VI 3.9 51.3 
TJPARO1 2.4 n/a 
Aliphatic UCM (Gough) 17.9 n/a 

Where n/a = not available for study, I= 6-cyclohexyltetralin, II = 7- 
cyclohexyl-l-methyltetralin, III 7-cyclohexyl-l-propyltetralin, IV = 7- 
cyclohexyl-l-isoamyltetralin, V 7-cyclohexyl-l-nonyltetralin and, VI = 7- 
cyclohexyl-l-nonylnaphthalene. 

Table 2.5. Summary of the calculated half-lives (days) of compounds I-VI and 
the aromatic and aliphatic UCMs when exposed to Pseudomonasfluorescens, 
and compounds 1,11, IV and VI when exposed to the Whitley Bay consortium. 

Calculated biodegradability Calculated biodegradability half- 
half-life (t, 12), P. fluorescens life (t, 12), Whitley Bay consortium 

140 30 
220 39 
1720 n/a 

IV 1350 175 
V 560 n/a 
vi 640 49 
TJPAR01 1050 n1a 
Aliphatic UCM (Gough) 140 n1a 

Where n/a = not available for study, I= 6-cyclohexyltetralin, II = 7- 
cyclohexyl-l-methyltetralin, III = 7-cyclohexyl-l-propyltetralin, IV = 7- 
cyclohexyl-l-isoamyltetralin, V= 7-cyclohexyl-i-nonyltetralin and, VI = 7- 
cyclohexyl- I -nonylnaphthalene. 
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When compounds I, II, IV and VI were exposed to a natural consortium of bacteria 

(Whitley Bay) a greater extent of degradation was observed. Whilst compounds I, II, and 

VI are biodegraded by more than 20% after 28 days compound IV is still less than 20% 

biodegraded (Table 2.4), indicating that it would be classed as a persistent substance 

resistant to 'inherent primary biodegradation' by the OECD 301 series tests. Compounds II 

and VI are still less than 70% biodegraded, thus there is evidence for 'primary' but not 

'ultimate' inherent biodegradability. Only compound I can be classed as being susceptible 

to ultimate inherent biodegradability during the experiments undertaken in this study. The 

calculated half-life of the compounds (Table 2.5) indicates that compound IV is again 

sufficiently resistant to biodegradation to be classed as environmentally persistent and 

compound VI is on the very limit of classification, having a half-life of 49 days. However 

it must be stressed that these data were not generated using one of the accepted standard 

tests, and the experimental procedures employed in this study are different from those 

tests, in particular the use of a mono-culture to measure biodegradation. 

2.3.4 Modelling the biodegradation of the alkyltetralins and an alkylnaphthalene 

A standardised test of chemical biodegradability has been devised by the Japanese Ministry 

of International Trade and Industry (MITI test; Tunkel et aL, 2000). This has been adopted 

by the Organisation for Economic Co-operation and Development (OECD) as a regulatory 

test for industrial chemicals. Increasingly, computer modelling of the test results is used to 

predict the biodegradability of chemical pollutants. The test involves incubation at 25 *C of 

test chemicals with a mixed consortium of aerobic bacteria cultured from a number of 

industrial and sewage effluent sludges, natural river, lake and seawaters and sediments. 

The composition of the consortium is not standardised. Compounds are tested at 100 gg 

mL71 concentrations for 14-28 days under conditions in which aniline is degraded by at 

least 65% in 28 days. The effects of the MITI test conditions on chemical biodegradation 
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have been shown to be predictively modelled with 81% accuracy for a validation set of 295 

chemicals by a modelling program known as BIOWIN (v 4.00; Tunkel et aL, 2000). 

BIOWIN v 4.00 is one of the ten stand-alone programs that form the EPI (Estimation 

Programs Interface) SuiteTm developed by the Environment Protection Agency's (EPA) 

Office of Pollution Prevention Toxics and Syracuse Research Corporation (SRC). This 

model has been used to predict the MITI biodegradability of the alkyltetralins IN and the 

alkyInaphthalene (VI). Although the MITI conditions are rather different to those involved 

in the present experiments it is important to place the biodegradation of the alkyltetralins 

and alkylnaphthalene in the context of a regulatory test, particularly as regulation of 

hydrocarbon mixtures is increasing (e. g. Environment Agency, 2003). On a scale where a 

value of >0.5 indicates that a compound is 'readily degradable' and a value of <0.5 

indicates 'not readily degradable', compounds INI were all classified as "not readily 

degradable" in the non- linear BIOWIN model (1,0.16; 11,0.16; 111,0.17; IV, 0.19; V, 

0.08; VI, 0.11). For reference, n-C25 had a calculated value of 0.9 and was classified as 

"readily degradable". The value of 7-cyclohexyl-l-pentyltetralin (unbranched version of 

compound IV) was determined as 0.18. This indicates that branching on an alkyl chain can 

significantly reduce the susceptibility of a hydrocarbon to biodegradation. Thus, the 

generally resistant nature of the model alkyltetralins and alkylnaphthalene and in particular 

the resistance of compound IV observed in the laboratory experiments, is also predicted by 

the BIOWIN (v 4.00) model. 

BIOWIN v 4.00 is based upon original versions of the modelling software, adding two new 

predictive biodegradation models to the four already available in previous versions. 

Initially, the program used fragment constants developed using linear and non-linear 

regressions and evaluated biodegradation data (Howard et al., 1992). Version 3 of the 

software added new expert survey data, and uses a slight revision of the previous 

fragments and molecular weight. This allows calculation of the probability of rapid 
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biodegradation from experimental data and an estimate of the primary and ultimate 

biodegradation times for complete degradation (days, weeks, months, longer) using 

evaluations of 200 chemicals by 17 biodegradation experts (Boethling et aL, 1994). The 

biodegradation of the alkyltetralins (I-V) and alkylnaphthalene (VI) was also predicted 

using these models and the results, along with those from the MITI test are surnmarised in 

Table 2.6. The results of the other predictive models indicate that all of the alkyltetralins 

and the alkylnaphthalene are quickly biodegraded, with ultimate biodegradation (complete 

mineralisation) predicted within weeks to months. These results somewhat contradict those 

of the MITI predictive tests, especially the standard linear and non-linear models which 

predict slow biodegradation of all the compounds. The ultimate and primary 

biodegradation models provide data that is more consistent with that determined by 

experimentation with the microbial consortium. Primary biodegradation is predicted to 

occur within 'days-weeks', and the experimental data indicate that all compounds studied 

had undergone some degradation after 28 days (Figure 2.26). Ultimate biodegradation is 

predicted to occur within the 'weeks-months' timeframe, which again is observed in most 

cases with the experimental data. Compounds I and II are completely degraded after 119 

days (-3 months) and compound VI had undergone over 80% degradation in the same 

period (Figure 2.26). Only compound IV appears to differ significantly from the predicted 

data. The use of the BIOWIN v 4.00 highlights the advantages and limitations of using 

predictive software to determine the biodegradability of hydrocarbons in the environment. 

Whilst predictive software can be a useful tool in supporting and complementing 'real' 

data, alone it does not provide sufficiently reliable data to qualify as a substitute for 

experimentally generated results. 
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2.3.5 Previous studies of biodegradation of tetralin 

A review of the literature available for alkyltetralin biodegradation suggests that only 

tetralin has been extensively studied previously. It is clear that even the unsubstituted 

compound is rather resistant to the action of aerobic bacteria. Schreiber and Winkler 

(1983) reported that none of the 41 strains investigated utilised tetralin as sole carbon 

source in pure culture although Pseudomonas stutzeri strain AS39 grown on salicylate was 

found to metabolise the hydrocarbon poorly, but only when present as a vapour. The 

authors concluded that the organism utilised an adaptation from the well-known 

naphthalene degradation pathway. If this is also the case for IN, it is possible that the 

cyclohexyl substitution on the aromatic ring may hinder attack. The rather slow 

degradation of the cyclohexyl-substituted naphthalene (VI, Figure 2.26. ) suggests this may 

indeed be the case. Sikkema and de Bont (1991) reported the isolation of a further eight 

bacteria which could grow on tetralin but even species known to degrade tetralin were 

unable to do so when the compound was added to the aqueous phase. Of 28 strains, only 4 

could utilise tetralin as sole carbon source and, again, only when the substrate was added in 

the vapour phase or in a 2-phase system with fluorocompound 40. A further 4 species 

isolated from hydrocarbon-polluted areas were a mixture of Gram-negative and positive 

species but all eight grew very slowly on tetralin. More recently, Hernaez et aL (1999), 

isolated a new bacterial strain (tentatively assigned as Sphingomonas macrogoltabidus) 

from Rhine river mud by enrichment in a liquid, carbon-free minimal medium to which 

tetralin was again added via the vapour phase. Obviously vapour phase addition is not an 

environmentally realistic scenario for less volatile higher homologues. 

Thus, the resistance of the present synthetic dialkyltetralins to a pure culture of P. 

fluorescens and a natural consortium of hydrocarbon degrading bacteria is consistent with 

previous findings for tetralin with single bacterial strains. 
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2.3.6 Biodegradation of the alkylcyclohexyltetralins (I-VI) 

Using the mechanisms reported for the aerobic biodegradation of aliphatic and aromatic 

compounds in Section 2.1.4, it may be possible to postulate the method of biodegradation 

for the alkylcyclohexyltetralins (I-VI). Microbial attack could be towards the aromatic 

ring, creating a dihydrodiol, where two OH groups are introduced, usually on adjacent 

carbon atoms (Gibson and Subramanian, 1984; Iqbal and Mason, 1999; Wackett and 

Hershberger, 2001). However, it could also occur on either of the alicyclic rings 

(compounds I-V) forming hydroxy or keto derivatives, which would undergo further 

degradation. Finally, oxidation could begin on the alkyl chain (compounds II-VI). 

Terminal attack is the most likely mechanism, but compounds with larger alkyl groups 

(e. g. V and VI) could also under go sub-terminal oxidation (Swisher, 1987). The possible 

modes of microbial attack on the alkylcyclohexyl tetralins (I-V) are summarised in Figure 

2.27. 

a 

H 

Figure 2.27. Three possible oxidation products of 7-cyclohexyl-l- 
propyltetralin. (a) Original compound, (b) Aromatic oxidation, (c) Oxidation of 
either of the cycloalkane constituents, (d) oxidation of the alkyl chain which 
can occur at the end (terminal) or before the end (subterminal) of the chain. 
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Biodegradation is thought not to occur via the aromatic ring as there is only one place 

where two adjacent carbon atoms are free for the oxidation to the dihydrodiol (Figure 

2.27b). Furthermore, once the ring has been opened the presence of the cycloalkane and 

the hexa-cycle substituent would present a branching system, which may prevent 

degradation. 

The core structure of compounds IN is identical and yet there are significant differences in 

their degradation rates. As the alkyl chain is the only structural difference between the 

compounds it is suggested that this exerts the greatest influence on their degradation. 

However, it is unclear whether the alkyl chain itself is the target of oxidation or whether it 

hinders the degradation of either the aromatic or cycloalkane components. To help 

determine the effects of the alkyl chain, 3-dimensional models were created of the 

compounds studied (I-VI). Details of the modelling software and process have been 

reported in Section 5.3. Computer modelling indicates the alkyl chains on compounds II- 

VI do not appear to hinder attack of the aromatic or the cycloalkane groups, nor are they 

hindered to attack themselves. Figure 2.28 shows the 3-dimensional model of 7- 

cyclohexyl-l-isoamyltetralin. It is therefore suggested that the main mechanism of 

biodegradation of the alkylcyclohexyltetralins is via the alkyl chain. 

6-cyclohexyltetralin is the most rapidly degraded of the compounds I-VI, and does not 

contain an alkyl chain. In this instance it is possible that degradation is occurring on the 

fused cycloalkane group of the tetralin-base structure. The presence of an alkyl chain (e. g. 

compounds Il - V) may hinder attack of the cycloalkane group, or it may be easier to 

attack than the latter and degradation proceeds on the alkyl chain itself. The faster rate of 

degradation observed for 7-cyclohexyl-l-nonyltetralin compared to compounds with 

shorter alkyl chains may be due to the increased length of the alkyl chain being more 
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accessible to microbes in the mono-culture expenment. The longer chain may also promote 

sub-terminal or even multiple site oxidation. 

Figure 2.28.3-dimensional model of 7-cyclohexyl-l-isoamyltetralin, created 
using ChemDraw 4.0, Chem3l) 4.0 and WebLab Viewerlite software packages. 
The alkyl chain does not hinder biodegradation of other parts of the molecule, 
nor is it hindered itself. A skeleton structure of the compound drawn has also 
been placed over the 3D molecule. 

Further evidence for microbial attack on the alkyl chain is provided by the branched 

compound, 7-cyclohexyl-l-isoamyltetralin (IV). The results indicate that this compound 

exhibits a greater resistance to biodegradation than those with linear substituents. It is 

possible that the branching in compound IV, particularly as it is at the end of the alkyl 

chain, hinders biodegradation, by preventing the onset of P-oxidation (e. g. Britton, 1984; 

Swisher, 1987; Alexander, 1999). These results are consistent with the observations of 

hydrocarbon structure reported in other studies (e. g. Budzinski et al., 1998; Garret et al., 

1999; Holder et al., 1999; Alexander, 1999; Leblond et al., 2001). 

In the case of the microbial consortium experiments, it is possible that there are sufficiently 

diverse species of bacteria to allow a combination of some or all of these methods of 
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microbial attack to occur. The microbial consortium may also contain species of bacteria 

more specialised or suited to the biodegradation of the alkylcyclohexyltetralins and 

alkylcyclohexylnaphthalene than Pseudomonas fluorescens used in the mono-culture 

studies. This would then result in the greater and possibly more comprehensive 

degradation of compounds I-VI. It must be stated that these are proposed degradation 

products, and, depending on which micro-organisms are present and their relative 

abundance and activity, different products may be formed. The microbial populations of 

individual environments and the abiotic factors at those sites will determine what products 

will actually be formed. 
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2.4 Conclusions 

The low biodegradability of the tetralins in the present study by a common, known 

hydrocarbon degrader (P. fluorescens), and literature evidence for the comparative 

bioresistance of tetralin, supports suggestions from previous oxidative degradation and 

toxicological studies, that alkyltetralins are sufficiently bioresistant to be present in some 

monoaromatic UCMs of biodegraded crude oils. Experiments with a wider consortium of 

bacteria known to efficiently degrade GC detectable components of a weathered Light 

Arabian crude oil (Watson et aL, 2002) were conducted in order to further investigate the 

bioresistance of alkyltetralins. The alkyltetralins, exhibited 15-80 % degradation after 28 

days with 60% of the branched chain C5 homologue remaining even after 119 days. Under 

these severe conditions a North Sea crude oil was extensively degraded and of compounds 

accepted as markers of oil degradation only the very bioresistant pentacyclic hopanes were 

largely undegraded. This places some of the alkyltetralins as resistant to all but heavy 

biodegradation on accepted scales of biodegradation (Peters and Moldowan, 1993), and 

further supports their candidacy as bioresistant pollutants and possibly representative of 

components of monoaromatic UCMs of hydrocarbons. In the same respect, the synthetic 

alkylcyclohexylnaphthalene also exhibits significant resistance to biodegradation and may 

be representative of the diaromatic compounds contributing to the aromatic hydrocarbon 

UCMs. 

However, the data generated in the biodegradation experiments using the Whitley Bay 

consortium should be treated with some caution. In particular, the low control values in the 

crude oil co-substrate study caused by co-elution of the target compounds with crude oil 

constituents and the inexplicable high control values in the study using the n-C16 CO- 

substrate should be taken into consideration. Additionally, a more frequent sampling 

regime is necessary for accurate d egradation rates to be assigned to the study compounds. 
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Chapter 3 

Water solubility experiments 

The water solubility of a compound is one of the most important physicochernical 
properties effecting its fate and behaviour in the aquatic environment. Aqueous solutions 
of 6-cyclohexyltetralin were prepared to calibrate a generator column technique at 25 `C in 

distilled water. The water solubility determined (109 ±3 Vg L") compared very well with 

a previous study. Aqueous solutions of an 'aromatic' and 'monoaromatic' unresolved 

complex mixture isolated from in-reservoir biodegraded Tia Juana Pesado (TJP) crude oil 

and, considered to be an 'average' aromatic UCM hydrocarbon structure, were prepared 

using the same method. 

The data indicated that the generator column technique was not ideal for achieving 

reproducible solutions of complex hydrocarbon mixtures such as UCMs. However, the 

most 'soluble' components of the 'aromatic' and 'monoaromatic' UCMs entered the 

aqueous phase, forming secondary UCMs in the aqueous extracts. Characterisation of these 

solubilised UCM fractions may allow the most bioavailable and toxic UCM components to 

be identified and measured. 
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3.1 Introduction 

The physical and chemical characteristics of crude oil change almost instantly when it is 

spilled in the marine environment. This is due to processes such as evaporation, dispersion, 

emulsification, dissolution, photooxidation, sedimentation, and biodegradation'. The fate 

of a hydrocarbon in the environment is primarily controlled by the physicochemical 

properties of the substance and the prevailing environmental conditions (Mackay et aL, 

1991; Tolls et aL, 2002). Immediately following a spill, evaporation of crude oil 

(particularly volatile compounds, b. p. <200 'C) is considered the most important 

weathering process, with up to 50% of the initial volume lost within the first few days 

(Jordan and Payne, 1980; National Research Council, 1989; Readman et aL, 1992; 

Nicodern et aL, 1997; ITOPF, 1999; Neff et aL, 2000). Heavier crude oils will lose a much 

smaller volume over the same period (Michel, 2001; National Research Council, 2003). 

Harsh weather conditions can increase the rate of evaporation and lead to emulsification. 

This is the formation of various states of water in oil, often called "chocolate mousse" or 

"mousse". For example, high waves quickly formed a stable mousse containing 50-70% 

water from the oil spilled by the Amoco Cadiz (Gundlach et al., 1983) and the Exxon 

Valdez (Galt et al., 1991). These emulsions can significantly change the properties and 

characteristics of spilled oil in aqueous environments, including increases in the spill 

volume, density and viscosity (ITOPF, 1999; National Research Council, 2003). 

Dissolution or solubilisation is also an important physical weathering process which affects 

crude oil and other organic compounds released into aqueous environments (e. g. Jordan 

and Payne, 1980; Shiu et aL, 1988; Readman et aL, 1996). Although the low water 

solubility of hydrocarbons has led to many of them being deemed virtually 'insoluble' in 

water, in reality all compounds are found to dissolve to some extent (Boylan and Tripp, 

1971; Eganhouse et aL, 1996; Neff et aL, 2000). Solubility is the amount of an oil or 

petroleum product that will dissolve in the water column on a molecular basis (National 
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Research Council, 2003). When the molecules of a compound are partitioned so that its 

concentration reflects equilibrium between the pure material and aqueous solution, it is 

said to have reached saturation concentration. This saturation concentration in the aqueous 

phase is known as the water solubility of the compound (Tolls et aL, 2002; Miller et aL, 

1984; Mackay et aL, 1980; Schwarzenbach et aL, 2003). The water solubility of a given 

compound is typically classed as the amount that can be dissolved in I litre (1000 mL) of 

pure water at a given temperature. 

Partitioning of hydrocarbons into water is thought to only account for a small proportion of 

oil loss compared with evaporation (Shiu et aL, 1990; Riazi and Edalat, 1996; Hibbs et aL, 

1999). Evaporation is considered to be 100 times faster than dissolution for aromatics and 

10,000 times faster for alkanes, although the ratio will depend significantly upon 

environmental conditions and crude oil composition (Jordan and Payne, 1980; National 

Research Council, 1989; Cline et aL, 1991; ITOPF, 1999). However, it is important 

because the soluble components of crude oil, particularly small aromatic compounds which 

can comprise up to 20% of a crude oil, are thought to be the most toxic to aquatic 

organisms (e. g. Seymour and Geyer, 1992; Neff et aL, 2000; Rowland et aL, 2001; Smith, 

2002; Tolls et aL, 2002). Solubility is also an important criterion for establishing other 

effects of oil partitioning. For instance, Banerjee (1984) and Tolls et al. (2002) suggest that 

solubility (and the somewhat related octanol-water partition coefficient) is required for the 

calculation of bioconcentration factors, sediment adsorption coefficients, toxicity, and 

biodegradation rates. Additionally, the water solubility of a chemical is an important 

characteristic for establishing potential for movement and distribution within the 

environment (Mackay et aL, 1980; Miller et aL, 1984; Page et aL, 2000; Tolls et aL, 2002). 

Biological processes affecting crude oil in the environment have been discussed in detail in Chapter 2. 
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Table 3.1 surnmarises the relative importance of dissolution on the different sources of 

petroleum hydrocarbon inputs into the environment. In particular, dissolution is most 

effective in the removal of gasolines, light distillates and low molecular weight fractions of 

crude oil spilled in the oceans (water-soluble fractions dominated by one- to three-ringed 

PAH). Dissolution from persistent oil slicks and stranded oil, however, can continue for 

years after an initial spill (National Research Council, 2003). 

Table 3.1. Table summarising the relative importance of the process of 
dissolution of petroleum hydrocarbons. Adapted from the National Research 
Council (2003). L= Low, M= Medium, H= High. 

Inputtype Persistence Dissolution 

Seeps years m 

Spills 

Gasoline days m 

Light distillates days H 

Crudes months M 

Heavy distillates years L 

Produced water days M 

Vessel operation months M 

Atmospheric days M 

Land based unknown L 

Table 3.1 is of course a very qualitative evaluation of the importance of solubilisation. 

Quantitative and detailed compositional data are more useful, for instance, for computer 

modelling oil spill fate/prediction. Although some progress has been made in 

understanding processes such as evaporation, (e. g. Jordan and Payne, 1980; Hibbs et aL, 

1999) more knowledge is required about other processes, including dissolution, which 

have been the subject of limited study thus far. 
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3.1.1 Mechanism of dissolution of organic compounds in aqueous solutions 

When a pure liquid or solid solute comes into contact with water at a defined temperature, 

the solution will approach a unique, constant saturation concentration, that is, the 

solubility. When the solute is a mixture, an equilibrium is achieved for each component, 

between the aqueous and organic phases (Shiu et aL, 1988). The process of solubilisation 

of an apolar hydrophobic organic compound in water is complex. Schwarzenbach et aL 

(2003) provide a detailed review of the mechanisms involved in the solubilisation of 

hydrophobic organic compounds in an aqueous medium. These are reviewed briefly below: 

The water surrounding a nonpolar solute is thought to maintain, but not enhance, its 

hydrogen-bonding network. In doing this, water molecules are able to host an apolar solute 

of limited size without losing a significant number of H-bonds. Thus, if a small apolar 

organic solute is introduced to water it will primarily undergo van der Waals interactions. 

This should not result in the breaking of H-bonds among the water molecules, which 

would lead to a loss in enthalpy (Schwarzenbach et aL, 2003). Examples of such 

compounds include monoaromatics such as benzene, methylbenzene, dimethylbenzene and 

short chain alkanes such as n-pentane and n-hexane. Larger compounds such as PAHs 

exhibit greater positive excess enthalpies (Schwarzenbach et aL, 2003). Thus, most 

hydrocarbons only acquire a weak energy gain when dissolved in water, due to attractive 

dispersion forces. This amount of energy is far outweighed by the expenditure of energy 

required to accommodate apolar hydrocarbon molecules in the hydrogen-bonding network 

of the water molecules (Tolls et aL, 2002). With increasing apolar solute size, water is not 

able to maintain a maximum of hydrogen bonds among the water molecules involved 

(Tolls et aL, 2002; Schwarzenbach et aL, 2003). Thus, it can be summarised that the 

solvation of an organic solute in water is dependent not only upon the size of the molecule, 

but also the van der Waals and hydrogen-bonding interactions. 
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3.1.2 Toxicity dependence upon the water solubility of a hydrocarbon 

When a hydrocarbon mixture, such as crude oil, is spilled in the marine environment, its 

partitioning or dissolution behaviour into the water column is of considerable interest and 

concern (e. g. Shiu et aL, 1990; Siron et aL, 1991; OSPAR Commission, 2000; Michel, 

2001). Whilst the amount of oil that dissolves in the water is usually small (<I ppm, 

ITOPF, 1999), this is the fraction to which many aquatic organisms are exposed (Shiu et 

aL, 1990; Siron et aL, 199 1; Neff et al., 2000). However, the level of exposure will depend 

upon individual organisms. Readman et aL (1992) suggest lower levels of contamination 

observed in fish from the Arabian Gulf compared to bivalve molluscs could be due to the 

fish being able to avoid oil spills and/or because they are capable of rapidly metabolising 

or depurating ingested oil. Chemicals dissolved in the ambient water are considered more 

bioavailable to organisms than chemicals in solid or adsorbed forms (National Research 

Council, 2003). Therefore, the extent to which aquatic organisms are exposed to toxicants 

such as petroleum hydrocarbons is largely controlled by the water solubility of the toxicant 

(May et aL, 1978b; Siron et aL, 1991; Michel, 2001; National Research Council, 2003). 

The degree to which a substance can be absorbed into the tissues of organisms and so 

influence their physiology is termed 'bioavailability' (OSPAR Commission, 2000). As 

well as the properties of a substance (e. g. its solubility in water) it is suggested that 

bioavailability also depends on the habitats and feeding mechanisms of the organisms 

concerned (OSPAR Commission, 2000; National Research Council, 2003). When an 

aquatic animal is exposed to a nonpolar organic compound dissolved in the ambient water, 

the chemical partitions across permeable membranes into tissue lipids. This continues until 

an equilibrium, approximated by the octanol/water partition coefficient (K,,,, ) for the 

chemical is reached. At this equilibrium the rates of absorption into and desorption from 

the lipid phase of the organism are equal (National Research Council, 2003). Hydrocarbons 
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of crude oil origin (e. g. some PAH) and crude oil itself have been found to bioaccumulate 

in organisms via this process (e. g. Siron et aL, 1991; Franke et aL, 1994; Neff et aL, 2000; 

Ziolli and Jardim, 2002). 

3.1.3 Factors affecting the solubilisation of hydrocarbons 

3.1.3.1 Structural features of hydrocarbons 

The structures of individual hydrocarbons can have a significant impact on their water 

solubility. Factors that have been found to affect the water solubility include size/surface 

area, aromaticity, polarity and degree of substitution. Tbree factors that are very closely 

linked to each other are molecular weight, molecular size and surface area. In general, as 

the molecular weight of a hydrocarbon increases, a corresponding decrease in the water 

solubility occurs (e. g. McAuliffe, 1966; Dunnivant and Elzerman, 1988; de Maagd et aL, 

1998; Tolls el aL, 2002; Schwarzenbach et aL, 2003). Thus, lower molecular weight 

hydrocarbons such as alkylbenzenes and alkylxylenes are often found in elevated 

concentrations in contaminated water samples, compared with larger PAH compounds 

(e. g. Eganhouse et aL, 1993). Tolls et aL (2002) determined the water solubility of a series 

of CIO-C19 saturated hydrocarbons, including linear, branched and cyclic alkanes. Water 

solubility was found to decrease with increasing carbon number. Furthermore, the 

relationship was found to be linear (Figure 3.1), indicating that the solubility of the n- 

alkanes was decreased by a constant increment for each additional CH2 unit. Tolls et aL 

(2002) also compared solubility data for n-decane, cyclodecane and decahydronaphthalene, 

all CIO hydrocarbons, and demonstrated that a small variation in molecular weight resulted 

in a significant change in the water solubility (Table 3.2). 
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Figure 3.1. Plot of the logarithm of the water solubility (distilled water at 25 
"C) of the n-alkanes decane, undecane, dodecane, tridecane and pentadecane 
versus molecular weight. Diagram reproduced from data reported by Tolls et 
aL (2002). 

Table 3.2. Summary of the water solubility values (distilled water at 25 1, C) 
determined for a set of Clo hydrocarbons (decane, cyclodecane and 
decahydronaphthalene. Data reproduced from Tolls et aL (2002). 

Compound name Compound structure Molecular Water solubility 
weight (gg L") 

n-decane 142 46 

cyclodecane 140 330 

decahydronaphthalene 
CID 

136 850 

Water solubility is driven by the solute-water interactions and the free energy penalty to 

build the cavity around the solute (e. g. Schwarzenbach et aL, 2003). The latter is 

energetically unfavourable due to entropy loss of water (the -cavity can no longer be 

populated by water molecules) and a partial loss of favourable water: water interactions. In 
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general, this phenomenon will become more significant with increasing molecular size and 

surface area. Tolls et aL (2002) suggest that rather than molecular weight, the molecular 

size and/or surface area is a more accurate descriptor. When comparing different alkanes, 

molecular size is actually the primary determinant of water solubility. Increasing molecular 

size results in a decrease in water solubility, attributed to the increased free energy penalty 

for cavity formation in water. Indeed, molecular size and surface area measurements of 

hydrocarbons have routinely been analysed for their effect on water solubility (e. g. 

Sherblom et aL, 1992; Page et aL, 2000). For example, Silla et aL (1992) studied the effect 

of compound surface area or molecular area of a suite of 82 hydrocarbons, esters, ethers, 

alcohols and ketones including linear and branched homologues. The results showed that 

water solubility of a compound correlated well with its molecular surface area for groups 

of compounds. 

A common way of expressing the bulk size of the molecules of a given compound is to use 

"molar volume" (Schwarzenbach et aL, 2003), derived from the molar mass and the liquid 

density at a given temperature. Schwarzenbach et aL (2003) suggest that within a 

homologous series of hydrocarbons, correlations between molar volume and water 

solubility are clear. However, even sets of quite closely related compounds such as n- 

alkanes and highly branched alkanes, or primary, secondary and tertiary aliphatic alcohols, 

exhibit different linear relationships (Schwarzenbach et aL, 2003). Thus, differences can 

arise from factors such as the shape of compounds (e. g. linear vs branched alkanes) and the 

number and type of substituents (e. g. aliphatic alcohols). 

The effect of branching on a hydrocarbon can be viewed in two ways. First, for a given 

carbon number, the effect of branching is thought to reduce the surface area (Silla et al., 

1992; Figure 3.2). Second, branching on a fixed length hydrocarbon chain will increase the 
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carbon number and thus the branching acts as substituents on the parent hydrocarbon 

(Figure 3.3). 

Figure 3.2. Comparison of an C9 n-alkane and a C9 branched alkane. 

-11ý 
Figure 3.3. Comparison of a C9 n-alkane and a trimethyl branched/substituted 
C9 alkane (C12 in total). 

Within a series of dodecane isomers (C12) Tolls et al. (2002) observed a trend of increasing 

solubility with an increasing degree of branching. Silla et al. (1992) also studied the 

influence of branching on solubility. Linear compounds were less soluble in water than the 

corresponding branched compounds with the same carbon number. The authors attributed 

these observations to the linear compounds having a higher molecular surface area. 

Structurally similar organic compounds, with differing degrees and types of substitution, 

are found to exhibit significantly different water solubility values (e. g. McAuliffe, 1966; 

Dunnivant and Elzerman, 1988; Smith, 2002; Schwarzenbach et aL, 2003). In particular, 

Schwarzenbach et aL (2003) suggest the presence of polar substituents (e. g. hydroxyl or 

nitrogen groups) results in hydrogen-bond interactions between the water molecules and 

the organic solute, leading to a decrease in the enthalpy and an increase in the entropy. The 

result can be a significant increase in water solubility of several orders of magnitude (e. g. 

Boylan and Tripp 1971; Siron et aL, 1991; Silla et aL, 1992). For example, Silla et aL 

(1992) observed that the presence of polar groups on organic compounds increased their 

water solubility compared with the saturated hydrocarbon homologues. Siron et al. (1991) 
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also found that water soluble fractions of crude oil were dominated by highly polar 

components. 

In contrast, the presence of apolar hydrocarbon substituents (e. g. C2. C31 C4 etc) may 

reduce the water solubility of a compound. Dunnivant and Elzerman (1988) observed a 

decrease in the solubility of polychlorinated biphenyl (PCB) congeners, with an increase in 

chlorine substitution. Lee et al. (1979a) and Sokol et al. (1992) also observed that aqueous 

solutions of PCB congeners were dominated by mono- and di-chlorinated biphenyls. This 

indicates that increasing substitution, in this case chlorination, can reduce the water 

solubility of a compound. 

An increase in the size of an apolar substituent has also been found to reduce its water 

solubility (e. g. Sherblom et aL, 1992; Kuo, 1994; Page et aL, 2000; Smith, 2002). For 

example, Smith (2002) observed a decrease in the solubility of a suite of 

alkylcyclohexyltetralins with increasing chain length of the alkyl substituent. Sherblom et 

aL (1992) report the same phenomenon with a suite of long-chain linear alkylbenzenes 

(LABs). Kuo (1994) observed phenanthrene and dibenzothiophene to be depleted in 

preference to their methylated homologues, indicating that substitution of hydrocarbons 

results in a decrease in their water solubility. This decrease becomes more pronounced 

with an increase in the size of the substituent, indicating a close link to the resulting size of 

the compound (Page et aL, 2000). 

Dunnivant and Elzen-nan (1988) observed that PCB congeners with no substitution at the 

ortho-position were significantly less soluble than those with the same number of chlorine 

substituents but with at least one in that position. Sherblorn et aL (1992) investigated the 

position of the phenyl substitution on the alkyl chain in a series of linear alkyl benzenes. 

The authors found that the position of the phenyl group on a branched alkyl chain affected 

103 



the water solubility of the compound. Thus, the position of substituents on a compound 

(particularly aromatics) can also affect the level of solubility. 

For a given carbon number, ring formation and increasing unsaturation of compounds is 

also found to increase the solubility of hydrocarbons in water (e. g. McAuliffe 1966; 

Eganhouse and Calder, 1976; Kuo, 1994). For example, McAuliffe (1966) observed that 

butene was more soluble than butane, and benzene was found to be more soluble than 

cyclohexane. Thus, the presence of one or more aromatic rings in a hydrocarbon structure 

can significantly affect the water solubility of the compound (e. g. Figure 3.4). Indeed, 

aromatic hydrocarbons are up to several orders of magnitude more soluble than saturated 

compounds with similar carbon numbers, due to the increased polarity of ring closure (e. g. 

McAuliffe 1966; Eganhouse and Calder, 1976; Kuo, 1994; de Maagd et al., 1998). 
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Figure 3.4 Comparison of the water solubility (room temperature) of a suite of 
C6-C8 n-alkanes, cycloalkanes and aromatics as a function of their molar 
volumes. Reproduced from McAuliffe (1966). 
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3.1.3.2 Environmental conditions 

A combination of environmental factors such as high temperatures, intensive solar 

radiation (photooxidation) and a high rate of mixing of the local water column, are 

suggested to accelerate the weathering (e. g. dissolution) and degradation processes of oils 

(Badaway et aL, 1993). Wave action will break slicks up and disperse the oil as small 

droplets in the water column. The aqueous concentrations of the compounds will increase 

more rapidly due to the larger surface area of the droplets (Hibbs et aL, 1999; Hibbs and 

Gulliver 1999). Once in solution, crude oil is then mixed to low concentrations (Seymour 

and Geyer, 1992). Six months after the Amoco Cadiz spill oil concentrations in the water 

column were found in the ranges of 3-20 pg L" offshore and 2-200 ýtg L" nearshore 

(Gundlach et aL, 1983). Thus, crude oil or hydrocarbons released into high-energy systems 

will be dispersed rapidly. In contrast, oil trapped along a shore in protected waters can 

sometimes persist for long periods of time, as it is sheltered from such weathering 

processes (Gundlach et aL, 1983; Seymour and Geyer, 1992). 

The dispersion and subsequent solubilisation of crude oil hydrocarbons is also dependent 

to some degree on other weathering processes, in particular, evaporation. If evaporation is 

slow, compounds will remain in the slick where they continue to dissolve, thus increasing 

the aqueous concentrations. The opposite occurs if evaporation is high, with smaller more 

volatile components (also generally the most soluble), being removed. In this case, only 

low aqueous concentrations are formed (Shiu et aL, 1988 and 1990; Hibbs and Gulliver, 

1999). Thus, the removal of volatile hydrocarbons due to weathering processes can reduce 

the total solubility of the remaining crude oil mixture. 
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Table 3.3. Comparison of the water solubility values deten-nined for a series of 
alkylcyclohexyltetralins in distilled water at 25 'C and 15 'C. Data reproduced 
from that published by Smith (2002). 

Compound 
Water solubility pg L-1 Water solubility pg L-1 
(distilled water, 25 OC) (distilled water, 15 'C) 

6-cyclohexyltetralin 109 6 95 ±5 

7-cyclohexyl- I- 
45 4 40 ±2 

methyltetralin 

7-cyclohexyl- I -propyltetralin 23) ±3 17 ±2 
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Figure 3.5. Summary of data obtained by Smith (2002) from solubility studies 
using a generator column technique. Water solubility increases with increasing 
temperature, but decreases with increasing salinity and molecular size. 

The effect of temperature can also influence the amount of material that will dissolve into 

an aqueous medium. May et al. (1978a and b) observed that the water solubility of 

benzene, naphthalene and nine PAHs increased as the temperature of the aqueous medium 

increased. Other researchers e. g. Dickhut et aL (1986), Shiu et aL (1988 and 1990), Wolfe 

et al. (1998) and Smith (2002) have also reported this effect. However, Schwarzenbach et 

aL (2003) suggested that for the majority of liquid compounds, the change in solubility 
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with increasing temperature is relatively small, varying typically by less than a factor of 2 

over a temperature range of 0-30 *C. This is evidenced by Smith (2002) who reported 

statistically significant but small differences in the water solubility of a series of 

alkylcyclohexyltetralins at different temperatures (Table 3.3 and Figure 3.5). 

However, for large apolar compounds (e. g. PAHs and PCBs) the effect of temperature on 

water solubility can be significant (Schwarzenbach et aL, 2003). Wolfe et aL (1998) 

observed dramatically reduced concentrations of naphthalene in the WSF of Prudhoe Bay 

crude oil generated at 12 "C compared with those at 20 *C. Tbus, lower temperatures can 

greatly inhibit aqueous partitioning of crude oil hydrocarbons. Seymour and Geyer (1992) 

report that crude oil spilled into Arctic and Antarctic conditions will undergo severely 

reduced weathering action via dissolution, biodegradation and photodegradation due in 

part to the reduced temperatures in these regions. 

Crude oil and other hydrocarbons are often released into saline enviromnents such as 

seawater and estuaries. In general, the presence of inorganic ionic species in natural waters 

(i. e. Na+, K+, Mg 2+ 
, Ca2+, Cl", HC03-, S04 2') decreases the water solubility of nonpolar 

compounds (Schwarzenbach et aL, 2003). May et al. (1978b) observed the water solubility 

of benzene, naphthalene and nine PAHs decreased as the salinity of the aqueous medium 

increased. This "salting out" effect has also been reported in other studies (e. g. Sutton and 

Calder, 1974; Shiu et al., 1988 and 1990; Wolfe et al., 1998; Smith, 2002). For example, 

Smith (2002) reported significant differences in the water solubility of a series of 

alkylcyclohexyltetralins at different salinities (Table 3.4 and Figure 3.5). 

107 



Table 3.4. Comparison of the water solubility values determined for a series of 
alkyleyclohexyltetralins in distilled water at 25 *C and seawater (35'/(,,, ) at 25 
"C. Data reproduced from that published by Smith (2002). 

Compound Water solubility pg L-1 in Water solubility pg L-1 
distilled water at 25 OC in seawater at 25 *C 

6-cyclohexyltetralin 

7-cyclohexyl- I -methyltetralin 
7-cyclohexyl- I -propyltetralin 

109 6 75 ±3 
45 4 27 ±3 

23 3 13 ±2 

Thus, dissolved ions compete successfully with organic compounds for the water 

molecules. The water solubility of larger organic compounds is affected to a greater extent 

than smaller and/or polar compounds (Schwarzenbach et aL, 2003). Sutton and Calder 

(1974) suggested that this process may be important in estuarine regions where fresh water 

containing dissolved organic compounds mixes with seawater. The rise in salinity of the 

fresh water may result in the "salting out" of the hydrocarbons in the river water. The 

solubility of organic compounds in pure and saline waters (at constant temperature) can be 

related by the Setschenow equation (e. g. May et aL, 1978b; Rossi and Thomas, 1981; 

Rawling, 1998). 

log 
S' 

= KC 
sp. 

Where Sp,, is the water solubility of the compound in pure water, S, is the water solubility 

of a compound in water of salinity C (mol L"'). K corresponds to the Setschenow solubility 

constant. 
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3.1.4 Review of methods available for determining water solubility of hydrocarbons 

in water 

3.1.4.1 Long-term dissolution 

In experimental studies, the long-term dissolution method is frequently used to generate 

water-soluble fractions (WSFs) of hydrocarbons (e. g. Boylan and Tripp, 1971; Lee et aL, 

1979a; Sherblom et al., 1992; Eganhouse et al., 1996; Luthy et al., 1997). This method 

involves the careful placement of the neat target material in water and its slow dissolution. 

Importantly, this method allows the formation of WSFs that do not contain micro- 

emulsions, which can lead to erroneous results. Whilst some studies have used 

equilibration times of a few days (Sherblom et al., 1992) several months are typically 

required (Lee et aL, 1979a; Ghosh et aL, 1998) making this method time consuming. Other 

limitations to this technique include the need for large quantities of water due to the low 

solubility of organic compounds. Additionally, substrate losses from the aqueous phase 

during transfer, concentration and adsorption to container walls is also likely (Stolzenburg 

and Andren, 1983). 

3.1.4.2 Shaking / stirring methods 

A common method employed for the generation of water-soluble fractions of organic 

compounds and mixtures is the 'shake flask method'. This involves equilibrating an excess 

amount of the organic material with water by gentle shaking or stirring (e. g. Banerjee, 

1984; Bennett et aL, 1990; Siron et aL, 1991; Wolfe et aL, 1998; Page et aL, 2000; Ziolli 

and Jardim, 2003). Whilst this method is much faster than the long-term dissolution 

technique, it can still take days to reach equilibrium, and is subject to the same limitations 

(Stolzenburg and Andren, 1983). Additional experimental difficulties include: incomplete 

equilibration of the hydrocarbons with the aqueous medium; the formation of micro- 
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emulsions; dispersion rather than true dissolution; and microcrystal suspensions (May et 

aL, 1978a; Billington et aL, 1988; Bennett et aL, 1990; Sokol et aL, 1992; ). 

3.1.4.3 Water miscible co-solvents 

Water miscible co-solvents (e. g. methanol or acetone) are sometimes used in the 

generation of aqueous solutions of hydrocarbons (e. g. Gschend and Wu, 1985; Pinal et aL, 

1990; Rao et aL, 1990; Potter and Pawliszyn, 1994; Nzengung et aL, 1996). Hydrocarbons 

are dissolved in the co-solvent prior to addition to the aqueous medium. This method is 

useful for enhancing the movement of sparingly soluble organic compounds (Nzengung et 

d, 1996). However, the solvent has a significant impact on the solubility of organic 

compounds (Pinal et aL, 1990), and can alter the physical/chemical/biological properties of 

the matrix studied (Ghosh et aL, 1998; Schwarzenbach et aL, 2003). As a result, systems 

generating water soluble fractions of hydrophobic organic compounds may not be 

environmentally realistic. This can lead to higher than expected amounts of the solute 

being present in the aqueous phase. 

3.1.4.4 Generator column technique 

The 'generator column technique' is finding increased usage for the determination of 

accurate water solubility values. This is based on the coupled column liquid 

chromatographic method first proposed by May et al. (1978a). Water is pumped through a 

column containing glass beads coated with the target substrate, allowing the generation of 

known or measurable concentrations of sparingly soluble organic compounds. May et al. 

(1978a) determined that the precision of replicate measurements was better than ±3%. 

The technique is becoming more popular due to its increased repeatability (e. g. 

Stolzenburg and Andren, 1983; Miller et al., 1984; Dickhut et al., 1986; Shiu et al., 1988; 

110 



Mackay et al., 1991; Sokol et al., 1992; Coyle et al., 1997; Ghosh et aL, 1998; Sijm et al., 

1999). See also Section 5.9 and Figure 5.7. 

After an initial Purge volume of 100-500 mL equilibrium is established, the hydrocarbon 

concentration is independent of flow rate between 0.1 and 5 mL miff 1 (e. g. May et aL, 

1978a; Dunnivant and Elzerman, 1988). Adsorption losses of hydrocarbons to containers 

and transfer tools are minimised because the volume between the generator column and the 

extraction vessel is only a few [tL. Furthennore, the walls of the transfer lines are pre- 

saturated with the substrate being studied during the column conditioning process. This 

reduces the possibility of adsorptive losses of the substrate. Other advantages include the 

elimination of emulsification, microcrystals and evaporation problems (Billington et al., 

1988; Sokol et al., 1992). However, the method still carries certain limitations, with 

solubility data in the submicromolar range still remaining scattered (Dickhut et aL 1986). 

Furthermore, Mackay et aL (1991) suggest depletion of the more soluble components, 

especially of complex mixtures, may occur at the water inlet end of the column. Therefore, 

the mixture in the column is unlikely to remain as homogenous as that initially coated onto 

the glass beads. 

3.1.5 Mixtures of organic compounds 

3.1.5.1 Simple mixtures of organic compounds 

Due to the complex nature of environmental samples, recent studies have begun to 

investigate the water solubility of hydrocarbons and other organic compounds when they 

are present as simple mixtures (e. g. Dickhut et aL, 1986; Luthy et al., 1997; de Hemptinne 

et al., 1998; Ghosh et al., 1998). Many of these studies have focused on known organic 
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pollutants, in particular polychlorinated biphenyl (PCB) congeners (e. g. Ghosh et al., 1998; 

Luthy et al., 1997; Sokol et al., 1992; Lee et al., 1979). 

The ability to observe the change in distribution of components with time, is an advantage 

of analysing mixtures of compounds, rather than single substrates (Ghosh et aL, 1998). 

Compound distribution in an aqueous solution obtained from a hydrocarbon mixture is 

found to be different from the distribution in the mixture itself. Often, different compounds 

become more predominant, with others becoming only minor components of the generated 

solution (e. g. Sokol et aL, 1992; Luthy et aL, 1997; Ghosh et aL, 1998). Thus, lower 

molecular weight compounds would be expected to dissolve more rapidly and to a greater 

extent than higher molecular weight compounds. For example, Ghosh et aL (1998) 

observed that over time PCB congener mixtures eluting from a generator column initially 

became depleted in the lower molecular weight material. Higher molecular weight material 

dissolved out in increasing amounts after this occurred. 

Luthy et al. (1997) also observed that the WSF was dominated by a higher concentration of 

the less substituted compounds (most soluble), compared with the pure PCB mixture. 

Lower water solubility values are often reported for a compound diluted in a mixture (e. g. 

hydraulic oil) than those determined for the pure compound (e. g. Lee et aL, 1979a; Sokol 

et al., 1992; Luthy et al., 1997). This significant reduction in comPound aqueous 

dissolution, with decreasing mole fraction in a mixture, is consistent with a 'Raoult's law' 

relationship (see below). 

3.1.5.2 Complex mixtures of organic compounds 

There are a number of studies concerning the water solubility of complex mixtures of 

hydrocarbons, such as crude oils, in the environment (e. g. Bennett et al., 1990; Mackay et 
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al., 1991; Badaway et al., 1993; Eganhouse et al., 1993; Ali, 1994; Eganhouse et al., 1996; 

Luthy et aL, 1997; Page et al., 2000). These studies indicate that the interaction of 

components in such mixtures can cause significant changes in the solubilities of their 

constituents. The degree of the effect depends upon chemical types, phase, and 

composition of the mixture involved (Coyle et al., 1997). 

Banerjee (1984) and Sherblom et aL (1992) observed that mixtures of structurally related 

liquids (e. g. chlorobenzenes) were found to display near ideal behaviour. Deviations from 

ideality were found to occur with mixtures containing a diverse range of compounds, e. g. 

crude oil. Thus, the behaviour of a compound in a mixture may not correspond to that 

predicted from pure component data. The solubility of individual components can also be 

affected by interaction in the aqueous phase with other dissolved components. 

Some of the trends observed in the dissolution of complex mixtures can be explained. 

Eganhouse et al. (1993) observed water soluble fractions of crude oil in groundwater 

dominated by a complex mixture of monoaromatic hydrocarbons. This indicates that 

dissolution of a complex mixture can give rise to another complex mixture of organic 

compounds in the WSF. However, alteration in the relative proportions of the compounds 

in the aqueous phase, compared with the initial organic mixture, often occurs (e. g. Shiu et 

al., 1988 and 1990; Siron et al., 1991; Eganhouse et al., 1996; Smith, 2002). A strong 

enrichment of lower molecular weight hydrocarbons with higher solubility values (e. g. 

monoaromatics) is typically observed. For example, Smith (2002) reported that lower 

molecular weight compounds dominated the WSF of a monoaromatic UCM. The solubility 

of crude oil decreases, and the parent mixture eventually undergoes a significant 

compositional change as the more soluble components become depleted (Shiu et al., 1988; 

Eganhouse et al., 1996; Schwarzenbach et al., 2003). 
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The water solubility of complex mixture components is generally different from the 

solubility of the compounds when measured individually (Coyle et al., 1997). In some 

cases, water solubility of individual compounds increases when they are present in a 

mixture. For example, Sherblorn et aL (1992) observed that the water solubility of two n- 

alkylbenzenes significantly increased when they were present in a mixture of other linear 

alkylbenzenes. This enhanced water solubility is indicative of cosolute or other 

multicomponent influences occurring in a mixture of structurally similar compounds. 

In contrast, when compounds are present as part of a complex mixture containing many 

structurally different components (e. g. crude oil) the water solubility can also be reduced. 

Page et aL (2000) report that the solubility of naphthalene and its substituted homologues, 

when present as part of a crude oil, was much less than that of the pure compounds. This 

phenomenon can be explained by 'Raoult's law', which states that the solubility of a 

compound present in an ideal mixture is equal to the solubility of the pure compound 

multiplied by its mole fraction in the mixture. Thus, as the mole fraction of a component in 

a mixture decreases, so does the water solubility of that component (Luthy et al., 1997). In 

the case of crude oil, where a compound (e. g. naphthalene) is just one of thousands, the 

mole fraction is very small, hence the apparent reduction in water solubility compared with 

the pure compound. The solubility of weathered crude oils is much lower and falls more 

slowly than fresh crude oils. This can result in a relative enrichment of less volatile and 

less soluble hydrocarbons such as PAHs. Under these conditions, Hibbs et aL (1999) 

suggest that such compounds continue to dissolve into water, resulting in high 

concentrations. This too is consistent with 'Raoult's law', where the mole fraction of the 

less soluble material increases as the more soluble material dissolves or evaporates. As a 

result, there is a potential for high aqueous concentrations of low solubility, low volatility 

compounds. 
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3.1.6 Solubility data reported in publications 

A number of authors have expressed concern with the reliability of much of the published 

data regarding the dissolution of hydrocarbons and hydrocarbon mixtures (e. g. Pontolillo 

and Eganhouse 2001; Eganhouse and Pontolillo 2002; Tolls et al., 2002; Schwarzenbach et 

al., 2003). For example, Pontolillo and Eganhouse (2001) and Eganhouse and Pontolillo 

(2002) have published a comprehensive review of available water solubility and octanol- 

water partition coefficient (Kow) data for hydrophobic organic compounds. The review 

highlighted significant problems: errors in reporting of data and references, and poor data 

quality and/or inadequately documented procedures. Data compilations were found to be 

dominated by non-original data and also liable to omissions. Pontolillo and Eganhouse 

(2001) suggest that the cumulative effect of these errors is to obscure the extent and 

reliability of the original database, therefore, making deduction of reliable solubility or K,,,,, 

values difficult. 

These problems are compounded by the fact that water solubilities determined by different 

methods and/or different laboratories may vary by as much as an order of magnitude 

(Pontolillo and Eganhouse 2001; Schwarzenbach et aL, 2003). Discrepancies are more 

evident with decreasing solubility of a compound. These can reflect the increased difficulty 

in experimentally determining solubility for very hydrophobic compounds (Tolls et aL, 

2002; Schwarzenbach et aL, 2003). Furthermore, small amounts of hydrocarbons present 

in the water as microemulsions can exceed the fraction of dissolved hydrocarbon and lead 

to erroneous results (Tolls et aL, 2002). It is suggested that the true KO, and solubility 

values for many compounds are still unknown. Worryingly, solubility and K,,., values are 

increasingly estimated using computational software rather than experimental 

determination. The data used to develop such software is based on that reviewed by 

Pontolillo and Eganhouse (2001) who found it to be flawed and unreliable. 
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3.1.7 Aims of the present study 

From the foregoing discussion it is clear that determination of the solubility of crude oil- 

derived hydrocarbon mixtures is a difficult but important goal, particularly as the 

solubilised fraction is toxic to many marine organisms (e. g. Neff et aL, 2000). The 

solubility of the major volatile hydrocarbons of fresh crude oil, e. g. BTEX chemicals, has 

been quite well studied (e. g. Page et aL, 2002; Erben et aL, 2003; Huang et aL, 2003). 

However, the loss of such compounds by evaporation may mean that under some 

circumstances higher molecular weight complex mixtures, particularly containing aromatic 

hydrocarbons dominate the WSF. Very few studies of the latter appear to have been made. 

Smith (2002) investigated the water solubility of a series of alkylcyclohexyltetralins (I-III, 

Figure 3.6), thought to be representative of some crude oil UCM components, using a 

generator column technique at different temperatures and salinities. A cursory examination 

of a UCM was also made (Smith, 2002). 

6-cyclohexyltetralin 

III 

7-cyclohexyl-l-methyltetralin 7-cyclohexyl-l-propyltetralin 

Figure 3.6. Alkylcyclohexyltetralins I-III proposed as monoaromatic UCM 
components. The water solubility of these compounds were determined using a 
generator column by Smith (2002). 

In the present study, the solubilisation of an isolated aromatic UCM (Section 5.4) and an 

isolated monoaromatic UCM (Section 5.5) was examined using the generator column 

method (Section 5.9). For reference, and calibration with the methods of Smith et aL 

(2001), the water solubility of 6-cyclohexyltetralin previously synthesised by Wraige 

(1997) was also determined (Sections 5.6 and 5.9). 
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3.2 Results 

3.2.1 Water solubility of 6-cyclohexyltetralin 

The aim of this initial experiment was to investigate the reproducibility of the generator 

column method for the determination of the water solubility of an individual hydrocarbon 

between operators. The water solubility of 6-cyclohexyltetralin (Section 5.9.1), determined 

using a generator column in distilled water at 25 *C, is presented in Table 3.5. Glass beads 

coated with 6-cyclohexyltetralin were packed into the generator column and distilled water 

was eluted through the column at I mL min-' (Sections 5.9.2 and 5.9.3). An internal 

standard (7-cyclohexyl-l-methyltetralin) was added to the aqueous solutions prior to 

extraction (Section 5.9.4). Analysis was by GC and quantification was achieved using 

calibration graphs. Also shown are data from Smith (2002), who conducted the same 

experiment with 6-cyclohexyltetralin (and also with 7-cyclohexyl-l-methyltetralin and 7- 

cyclohexyl-l-propyltetralin). Values are reported as the mean ± standard deviation (n 

10). 

Table 3.5. Water solubilities of 6-cyclohexyltetralin, 7-cyclohexyl-l- 
methyltetralin and 7-cyclohexyl-l-propyltetralin as determined by the 
generator column method in distilled water at 25 *C. 

Compound Water solubility pg L"' 
mean ± st. dev. (n=10) 

6-cyclohexyltetralin (this study) 109 ±3 

6-cyclohexyltetralinb 109 6 

7-cyclohexyl- I -methyltetralinb 45 4 

7-cyclohexyl- I -propyltetralinb 23 3 

' denotes data reported by Smith (2002) in similar experiments. 

The mean water solubility of 6-cyclohexyltetralin determined in the present study was 

found to be not statistically different (Students t-test) from that determined by Smith 
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(2002). Figure 3.7 shows the concentration (ýtg L-1) of the 6-cyclohexyltetralin dissolved 

into each of the successive 50 mL aliquots collected from the generator column. The first 

500 mL of effluent was discarded, as this was the period used to reach equilibrium in the 

system. The results indicate that the concentration of 6-cyclohexyltetralin remained 

constant once equilibrium had been achieved. 

120 
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40 

0 
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0 
500-550 550-600 600-650 650-700 700-750 750-800 800-850 850-900 900-950 950-1000 

Column effluent fraction (mL) 

Figure 3.7. Comparison of the concentration of 6-cyclohexyltetralin in each of 
the successive 50 mL water soluble fractions produced from the generator 
column. 

3.2.2 Water solubility of the aromatic UCM 

The water solubility of an aromatic UCM (isolated from Tia Juana Pesado crude oil, 

Section 5.4) was determined using a generator column in distilled water at 25 'C, and is 

presented in Table 3.6. Glass beads coated with the aromatic UCM were packed into the 

generator column and distilled water was eluted through the column at I mL min' 

(Sections 5.9.2 and 5.9.3). The first 500 mL were discarded as this is the accepted volume 

used to reach equilibrium in the system (e. g. May et al., 1978a; Ghosh et al., 1998). The 

next 500 mL (500-1000 mi) of water effluent was collected as 50 mL aliquots. An internal 
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standard could not be used owing to coelution with the aromatic UCM, therefore external 

calibration was used to quantify the concentration of the aromatic UCM in the aqueous 

solutions. I mg of aromatic UCM was added to 500 ml, of pure distilled water and 

extracted in the same manner as the aqueous solutions collected from the generator column 

(Sections 5.9.5). Analysis was by GC and concentrations were determined using 

calibration graphs. The volume of effluent from 1000 mL to 5500 mL was collected as 500 

mL aliquots, and the results are also summarised in Table 3.6. Values are reported as the 

mean ± standard deviation (n = 9). 

Table 3.6. Water solubility of an aromatic UCM isolated by open column 
chromatography from Tia Juana Pesado crude oil, as determined by the 
generator column method in distilled water at 25 IC. 

Test Substrate Water solubility pg L" 
mean +- st. dev. (n=10) 

Aromatic UCM 3715 ± 2812 
(50 mL aliquots, 500 - 1000 mL) 

Aromatic UCM 293 ± 342 (500 mL aliquots, 1000 - 5500 mL) 

Clearly the 'dissolution' of the complex mixture of aromatic hydrocarbons in the UP 

UCM has not been reproducibly achieved, despite the use of a calibrated generator column 

method. The variability in both the initial 50 mL and the later 500 mL aliquots was large. 

The water solubility of the 500 mL fractions appears to be an order of magnitude lower 

than those measured in the 50 mL fractions initially collected from the generator column. 

Although a 'compositional equilibrium' in the effluent is unexpected given the large 

number of different hydrocarbons in the UCM, a total hydrocarbon 'concentration 

equilibrium' could be expected. The results of this study suggest that such a 'concentration 

equilibrium' had not been achieved when sample collection began. 
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Figures 3.8a and 3.8b show the concentration ([tg U) of the isolated aromatic UCM 

dissolved into each of the successive 50 mL aliquots (Figure 3.8a) and 500 mL aliquots 

(Figure 3.8b) collected from the generator column. 
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Figures 3.8a and 3.8b. Comparison of the aqueous concentration of aromatic 
UCM with increasing water volume through the generator column. Figure a is 
the 50 mL extracts, and Figure b is the 500 mL extracts. 
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Figure 3.9 shows the GC-MS chromatograms of the generated aqueous fractions (50 mL) 

of the aromatic UCM. Chromatograrns of the original material and the procedural blank are 

also shown. There is a significant chromatographic difference between the aromatic UCM 

isolated from Tia Juana Pesado crude oil and that present in the WSF. The chromatograms 

indicate that a significantly reduced number of compounds are present above the 

instrumental limits of detection in the water soluble fraction. When compared with the 

original material, the UCM is greatly reduced in size and component number. Figure 3.10 

is a comparison of the water-soluble fraction (750-800 mL) and the original aromatic 

UCM. The 750-800 mL fraction was chosen as it is the middle aliquot in the senes 

collected. The diagram clearly shows that only a small proportion of the hydrocarbons in 

the original aromatic UCM were water soluble above the limits of analytical detection. 

interestingly, there also seem to be significantly more resolved peaks in the water soluble 

fraction, compared with the original aromatic UCM material. 

- Aromatic UCM 

Aqueous soluble 
fraction (750-800 mL) 

or 

I1III1T 

5 10 15 20 25 30 35 

retention time (min) 

Figure 3.10. Comparison of the chromatograms of the original aromatic UCM 
material and the generated water soluble aromatic UCM fraction (750-800 
mL). 
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Figure 3.11 shows the GC-MS total ion current chromatograms of the generated 500 mL 

aqueous fractions (1000 - 5500 mL) of the 'solubilised' aromatic UCM. Chromatograms 

of the original material, the procedural blank and the residual material remaining on the 

column are also shown. The chromatograms indicate that there is a significant difference 

between the material in the original aromatic UCM and that present in the WSFs. Fewer 

compounds appear to be present in the water soluble fraction above the limits of analytical 

detection, indicating fewer components occur in the soluble UCM. Figure 3.12 shows a 

comparison of the water-soluble fraction (3000-3500 mL) and the original UCM. The 

3000-3500 ml, fraction was chosen as it is the middle aliquot in the series collected. It is 

evident that only a small proportion of the hydrocarbons in the original aromatic UCM 

were water soluble over the limits of analytical detection. Furthermore, an increased 

number of resolved compounds can be seen in the chromatogram of the WSF, compared 

with the original UCM- 

. ýi 
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35 

Figure 3.12. Comparison of the chromatograms of the parent aromatic UCM 
material and the generated water soluble aromatic UCM fraction (2500-3000 
mL). 
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3.2.3 Water solubility of the monoaromatic UCM (50 ml and 500 ml aliquots) 

Since the generator column method appears unsuccessful in supplying reproducible 

solutions of the total aromatic UCM, it was decided to investigate the dissolution of a 

somewhat less complex fraction. The water solubility of a monoaromatic UCM, isolated 

from the aromatic fraction of Tia Juana Pesado crude oil using HPLC (Section 5.5), was 

therefore determined using a generator column in distilled water (25 'C). The 

monoaromatic UCM was coated to glass beads and packed into the generator column. 

Distilled water was eluted through the column at I mL min". The first 500 mL was 

discarded whilst the system reached equilibrium (e. g. May et aL, 1978a; Ghosh et aL, 

1998). The next 500 mL (500-1000 ml) of effluent was collected as 50 mL aliquots, and 

the volume of effluent from 1000 mL to 5500 mL was collected as 500 mL aliquots. An 

internal standard could not be used owing to coelution with monoaromatic UCM 

components, therefore external calibration was used for quantification. I mg of 

monoaromatic UCM was added to 500 mL of distilled water and extracted in the same 

manner as the aqueous solutions collected from the generator column. Analysis was by GC 

and concentrations were determined using calibration graphs. The results are summarised 

in Table 3.7, with the values reported as the mean ± standard deviation (n = 9). 

Table 3.7. Water solubility of a monoaromatic UCM isolated by open column 
chromatography from Tia Juana Pesado crude oil, as determined by the 
generator column method in distilled water at 25 IC. 

Test Substrate Water solubility Itg L" 
mean ± st. dev. (n=9) 

Monoaromatic UCM 213.0 ± 30 (50 mL aliquots, 500-1000 mL) 

Monoaromatic UCM 
57 ± 21 (500 mL aliquots, 1000-55OOmL) 
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The dissolution of the monoaromatic hydrocarbons in the UP UCM appears less variable 

for both the 50 mL and the 500 mL aliquots than that determined for the total aromatic 

UCM hydrocarbons. However, the standard deviation values are still too large for the 

calibrated generator column method to be deemed reproducible in the production of 

aqueous solutions of a monoaromatic UCM. The water solubility of the 500 mL fractions 

appears to be an order of magnitude lower than those measured in the 50 mL fractions 

initially collected from the generator column. Although a 'compositional equilibrium' in 

the effluent is unexpected given the large number of different hydrocarbons in the UCM, a 

total hydrocarbon 'concentration equilibrium' could be expected. The results of this study 

suggest again that a 'concentration equilibrium' had not been achieved when sample 

collection began. 

Figures 3.13a and 3.13b show the concentration ([tg L") of the monoaromatic UCM 

present in the 50 mL aliquots (Figure 3.13a) and 500 mL aliquots (Figure 3.13b) collected 

from the generator column. Figures 3.13a, and 3.13b show in more detail the variation in 

the monoaromatic UCM in the generated water soluble fractions. The material in both the 

50 mL and 500 mL fractions appears to decrease in concentration with increasing volume 

of water through the column. 
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Figures 3.13a and 3.13b. Comparison of the aqueous concentration of 
monoaromatic UCM with increasing water volume through the generator 
column. Figure a is the 50 mL extracts, and Figure b is the 500 mL extracts. 
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Figure 3.14 shows the GC-MS chromatograms of the extracted 50 mL WSFs (500-1000 

mL) of the monoaromatic UCM. Chromatograms of the original material and the 

procedural blank are also shown. The chromatograms represent the water soluble material 

present in the 50 mL fractions when dissolved in 100 [tL of dichloromethane (DCM). 

Analysis of I pL of this solution using GC-MS produced chromatograms bordering on the 

limits of instrumental detection, indicating that very little material was present in these 

fractions. There was still a significant chromatographic difference between the original 

monoaromatic UCM and the material present in the WSF. The chromatograms indicate 

that only a few compounds are present in the WSFs above the instrumental limits of 

detection. Therefore, it is unclear whether a UCM is present in the WSFs but below the 

limits of analytical detection, or whether it is absent. As the analytical response of the 50 

mL water soluble fractions of the monoaromatic UCM is so low, it is difficult to compare 

the chromatograms of the WSFs to that of the original monoaromatic material. To 

determine the influence of impurities, Figure 3.15 shows a comparison of the water-soluble 

fraction (750-800 mL) and the procedural blank chromatograms. The 750-800 mL fraction 

was chosen as it is the middle aliquot in series collected. The two chromatograms show 

significant differences, which indicates that some material from the monoaromatic UCM 

did dissolve. However, the compounds present appear to be in the form of resolved peaks 

rather than an unresolved complex mixture. 
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Figure 3.15. Companson of the chromatograms of the procedural blank and the 
generated water soluble monoaromatic UCM fraction (750-800 mL). 

Figure 3.16 shows the GC-MS chromatograms of the extracted 500 mL water soluble 

fractions (1000-5500 mL) of the monoaromatic UCM. Chromatograms of the original 

material and the procedural blank are also shown. The chromatograms provide clear 

evidence for a substantial difference between the original monoaromatic UCM and the 

UCM present in the WSFs. In the WSFs, the UCM is notably reduced in size, indicating a 

reduced number of compounds present compared with the original material. Figure 3.17 

shows a comparison of the water-soluble fraction (2000-2500 mL) and the original 

monoaromatic UCM. The 2000-2500 mL fraction was chosen for the clear UCM exhibited 

in the chromatogram. Also shown for comparison are the retention times of the synthetic 

monoaromatic UCM hydrocarbons 6-cyclohexyltetralin (1), 7-cyclohexyl-i-methyltetralin 

(11), 7-cyclohexyl-l-isoamyltetralin (IV), and 7-cyclohexyl-l-nonylnaphthalene (VI). The 

diagram reveals that only a limited number of hydrocarbons in the original monoaromatic 

UCM are water soluble above the limits of analytical detection. Furthermore, some of 

these compounds become increasingly resolved in the chromatograrn of the WSF 
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compared with the original UCM. The retention times of the synthetic monoaromatic UCM 

components, in particular 6-cyclohexyltetralin and 7-cyclohexyl-l-methyltetralin, fall 

within the region of the observable soluble monoaromatic UCM. 7-cyclohexyl-l- 

isoamyltetralin elutes towards the end of the soluble monoaromatic UCM whilst the 7- 

cyclohexyl- I -naphthalene elutes in the region beyond the majority of the soluble 

monoaromatic UCM hydrocarbons. 

Chromatograms of WSFs of both the aromatic and monoaromatic UCMs are shown in 

Figure 3.18. For comparison the retention times of the synthetic monoaromatic UCM 

compounds 6-cyclohexyltetralin (I), 7-cyclohexyl-l-methyltetralin (11), 7-cyclohexyl-l- 

isoamyltetralin (IV) and 7-cyclohexyl- I -nonylnaphthalene (VI), are shown. Study of these 

chromatograms highlights a distinct difference in the most soluble components in each of 

the two source UCMs. The aromatic water soluble fraction appears to be dominated by 

higher molecular weight material, whereas the monoaromatic water soluble fraction is 

dominated by lower molecular weight material. There is very little overlap between the 

two UCMs. Whilst the diaromatic model compound 7-cyclohexyl-l-nonylnaphthalene 

eluted away from the monoaromatic UCM region, its retention time falls in the middle of 

the water soluble aromatic UCM. Due to its diaromatic nature, a retention time later than 

the soluble monoaromatic UCM is unsurprising. 
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3.3 Discussion 

Smith (2002) showed that a series of alkyleyclohexyltetralins, which varied only in chain 

length, had water solubilities between 23 and 109 [ig 1; 1 (distilled water at 25 'C). The 

solubility was found to decrease with increasing chain length. Reported values are of the 

order of 100 Itg L", decreasing by approximately 50 % with every CH2 unit added to the 

alkyl chain. Specifically, the water solubility of 6-cyclohexyltetralin was reported as 109 

[tg L" (± 6, n= 10). The results of the present study using the synthetic monoaromatic 

compound 6-cyclohexyltetralin are in agreement with the data reported by Smith (2002). 

Using the same generator column technique (Section 5.9), the present study also 

determined the water solubility of 6-cyclohexyltetralin as 109 [ig L*1 (± 3, n= 10), 

indicating the method is fully reproducible. Furthermore, the results are consistent with the 

general observation that hydrocarbons are sparingly soluble in water (e. g. National 

Research Council, 2003). 

Under the conditions employed here, a significant proportion of both the aromatic and 

monoaromatic UCMs isolated from weathered Tia Juana Pesado crude oil was water 

soluble (Sections 5.4 and 5.5). Smith (2002) conducted a preliminary experiment 

investigating the solubility of a monoaromatic UCM and determined a value of 560 [tg L" 

from a single analysis. The TPH concentrations for the aromatic and monoaromatic UCMs 

in the present study were 3715 ± 2812 pg 1: 1 (50 mL) and 293 ± 342 pg L-1 (500 mL), and 

213 ± 30 pg 1: ' (50 mL) and 57 ± 21 pg 1: 1 (500 mL) respectively, where each value is the 

mean of at least 9 determinations. Such values may be considered low when compared 

with the reported water solubilities of whole or fresh crude oils (e. g. Ziolli and Jardim, 

2002). However, fresh crude oils contain high proportions of small volatile hydrocarbons 

(e. g. BTEX) which have high water solubilities (e. g. Neff et aL, 2000). By their nature, 

UCMs will'be dominated by larger, less soluble hydrocarbons. Thus, UCMs can be 

expected to be less soluble than fresh crude oils. 
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Ziolli and Jardim (2002) studied the dissolution of different Brazilian crude oils and found 

that the concentrations varied by over an order of magnitude from 4.9 - 47 mg C Ul. This 

indicates that the solubility of a crude oil or hydrocarbon mixture is highly dependent upon 

its chemical composition. Previous studies (e. g. Tolls et aL, 2002) have suggested that 

determination of the water solubility of hydrocarbons can often result in problems with 

regard to the limits of analytical detection. This is exemplified by the results from the 50 

mL fractions prepared from the monoaromatic UCM. The amount of material present in 

the fractions is too little for suitable analytical quantification. The effect of using crude oil 

fractions, rather than a whole oil must also be taken into consideration. In a whole oil there 

are a large number of polar compounds, which are more water soluble than their 

hydrocarbon homologues. These compounds may be expected to dissolve to higher 

concentrations in the aqueous phase leading to high TPH values for whole oils (e. g. Boylan 

and Tripp 1971; Siron et aL, 1991; Silla et aL, 1992). 

Polar compounds may also act as co-solvents or co-solutes, thus increasing the water 

solubility of the non-polar hydrocarbons (e. g. Mackay et aL, 1991; Schwarzenbach et aL, 

2003). In the fractions studied here, these polar components are removed during the open 

column chromatography procedure. It is therefore expected that the TPH concentration in 

the WSFs will be reduced compared with the whole oil. Furthermore, the co-solvency 

effect may be greatly reduced or removed completely (e. g. Mackay et aL, 1991; 

Schwarzenbach et al., 2003). Shiu et aL (1988) report that crude oil solubility decreases, as 

the more soluble components are depleted (e. g. BTEX) during weathering processes. As a 

result, the solubility of weathered crude oils was found to be significantly lower than fresh 

crude oils (e. g. Neff et aL, 2000). As the fractions used in the present study are isolated 

from a weathered oil, the water solubility may therefore be expected to be lower than that 

of a fresh crude oil. 
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The presence of a predominant UCM in the WSFs of crude oil and crude oils fractions 

have been previously reported (e. g. Barron et al., 1999a; Page et al., 2000; Smith, 2002; 

Ziolli and Jardim 2003). Barron et al. (1999a) observed WSFs prepared from weathered 

oils exhibited substantially larger UCMs and fewer resolved peaks than WSFs generated 

ftom ftesh oils. Barron et al. (I 999a) also noted UCM elution times indicative of aCI O-C30 

carbon range. In the present study, the approximate carbon range for the original aromatic 

and monoaromatic UCMs, and the respective WSFs has been calculated using both the 

Kovat's and the Lee retention indices (Figure 3.19). Graphs of the determined Kovat's 

retention index (Figure B 1) and Lee retention index (Figure B2) are presented in Appendix 

B. The Lee index (Lee et al., 1979b) is based upon unsubstituted aromatic compounds 

(naphthalene, phenanthrene, chrysene) and Kovat's index is based upon the saturated 

alkanes (CIO-C30)- 

Carbon Number 
10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 

Aromatic UCM 

original -4 

Aromatic UCM 
WSF 

Monoaromatic 
UCM original 

Monoaromatic 
UCM WSF 

Carbon number range determined using the Lee retention index 

Carbon number range determined using the Kovats retention index 

Figure 3.19. Comparison of the carbon ranges of the UCMs for both the 
aromatic and monoaromatic WSFs and the original aromatic and 
monoaromatic mixtures. Values have been calculated using both the Lee 
retention index and the Kovats retention index. 
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As the water-soluble UCMs are thought to be comprised predominantly of substituted 

aromatic hydrocarbons, neither of the indices is an 'ideal' reference for the determination 

of their carbon ranges. Compounds in the water-soluble UCMs are expected to exhibit 

retention times influenced by both aromatic and aliphatic components. Under these 

conditions the Lee retention index appears to be a more accurate reference than Kovat's 

retention index, therefore only the former will be discussed in detail herein. 

Figure 3.19 shows that the water-soluble aromatic UCM has an approximate carbon range 

Of C12-C21. The higher molecular weight compounds (C19-C2, ) are indicative of component 

hydrocarbons that contain at most four aromatic rings, with some degree of alkylation. The 

lower end of the range may represent highly substituted monoaromatic compounds (e. g. 

hexylbenzene, C12) or alkylated naphthalenes (e. g. dimethyl- or ethylnaphthalene, C12)- 

However, it is suggested that a combination of both types of compounds is most likely in 

such a diverse mixture. In the case of the water-soluble monoaromatic UCM, an 

approximate carbon range Of CIO to C17 is proposed by the Lee index (Figure 3.19). The 

lower end of the range (CIO) is indicative of substituted monoaromatics such as 

alkylbenzenes, indans, indenes and tetralins. The upper end of the carbon range is 

suggested to represent similar monoaromatic hydrocarbons but with a greater degree of 

alkylation. It is therefore possible that some of the synthetic UCM compounds 

(alkylcyclohexyltetralins) are also representative of such components. 

Barron et aL (1999a) observed that the WSFs of a middle distillate oil contained two- and 

three-ring PAH, but four- and five-ring PAH were absent. The results of the present study 

using the aromatic UCM indicate very similar findings with an absence of higher 

molecular weight PAH compounds. CI-C4 alkyl naphthalenes were the predominant PAHs 

in the WSFs analysed by Barron et al. (1999a). The presence of alkylbenzenes with up to a 

C6 alkyl chain was also reported as dominant components. The alkylbenzenes and the 
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alkyInaphthalenes identified have carbon number ranges Of C6-CI2 and CIO-CI4 

respectively. The results of this study indicate similar compounds may be typical 

components of the water-soluble fractions generated. 

Figure 3.20 shows that there is a significant difference in the total petroleum hydrocarbon 

(TPH) concentration between the WSFs of the aromatic and monoaromatic UCM. Owing 

to the longer generation times, it is suggested that the 500 mL WSFs represent the more 

accurate picture of the continued dissolution of a crude oil into an aqueous phase. The 

reduced solubility of the monoaromatic UCM (57 pg L-1) compared with the aromatic 

UCM (293 pg UI) may be due in part to the compound types present in the two mixtures 

composition). Whilst the monoaromatic UCM will contain predominantly 

monoaromatic hydrocarbons, the weathered nature of the oil means it will be depleted in 

volatile compounds. 

7000 

6000 

:7 
5000 

4000 
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< 2000 

1000 

0 

Figure 3.20. Comparison of the 'water solubility' of the aromatic and 
monoaromatic UCMs (n=9). Values were determined at 25 'C in distilled 
water. 

The compounds in the original monoaromatic UCM which do not enter the aqueous phase 

in amounts amenable to analytical detection are suggested as those with significant degrees 
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of substitution. These compounds, though mono- or di-aromatic, may be characterised by 

larger molecular weights and surface areas due to the large size or number of substituents. 

This would result in lower volatility, and lead to a marked decrease in the water solubility 

of such compounds. In particular, saturated hydrocarbons (e. g. alkanes) are known to have 

very low solubilities compared with aromatic compounds of a comparable carbon number 

(e. g. McAuliffe 1966; Eganhouse and Calder, 1976; Kuo, 1994; de Maagd et aL, 1998). 

Therefore, substitution of aromatic hydrocarbons with large saturated groups would be 

expected to significantly reduce the water solubility of the resultant compound. The 

aromatic UCM WSF will probably still contain the monoaromatic compounds but also 

many PAH and their substituted homologues. It is possible that many of these compounds 

are characterised by higher water solubilities due to a greater degree of aromaticity and 

limited alkylation. Highly substituted PAHs, however, may be too insoluble to contribute 

to the aromatic UCM. 

The results can be explained in further detail using 'Raoult's law'. A di- or triaromatic 

compound may possibly be more soluble than a highly substituted monoaromatic 

compound with a comparable carbon number. However, the increased aromaticity of PAH 

compounds may not solely be sufficient to render them more soluble than monoaromatic 

compounds with lower carbon numbers. 'Raoult's law' states that the water solubility of an 

individual compound within a mixture is a function of the compound's solubility and its 

mole fraction within the mixture. Thus, the mole fraction of a particular compound within 

a mixture must be taken into consideration. In the case of the aromatic UCM, the presence 

of PAH compounds will reduce the mole fraction of the smaller monoaromatic 

compounds. Therefore, compared to the monoaromatic UCM, their water solubility will be 

reduced. The concentration of individual compounds withinýthe mixture will exacerbate 

this effect. Those components present in higher concentration will have a larger mole 

fraction within the mixture. A high mole fraction may increase a compound's solubility 
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within the mixture sufficiently to raise it above other hydrocarbons that exhibit a higher 

solubility as a pure compound. Thus, according to 'Raoult's law', it is possible for a 

hydrocarbon with a lower individual water solubility than another hydrocarbon to be more 

soluble when they are both present in a complex mixture such as petroleum. 

Shiu et aL (1988) suggest increased weathering of crude oil results in a decrease in the 

solubility of the mixture and, therefore, TPH concentration. The weathering process 

removes the smaller, more volatile comPonents (e. g. BTEX), which are generally the most 

soluble (Shiu et aL, 1988). This results in an increase in the mole fraction of the more 

envirorunentally persistent compounds in the remaining weathered mixture. However, 

these compounds generally have much lower individual water solubility. Therefore, it is 

not unexpected that the concentration of the TPH in the WSF is lower than that derived 

from a fresh crude oil containing more volatile compounds with higher individual water 

solubility. The dissolution of petroleum products can be significantly affected by the 

degree of weathering a crude oil has undergone (e. g. Ziolli and Jardim, 2003). 

Operation of 'Raoult's law' can be seen more readily upon comparison of the WSFs of the 

aromatic and monoaromatic UCMs. The range of the two UCM retention times shown in 

Figure 3.18 indicates that each WSF is dominated by different solubilised material. In 

particular, the hydrocarbons dominating the soluble aromatic UCM are characterised by 

compounds with substantially higher average molecular weight, than those dominating the 

soluble monoaromatic UCM. It should be noted that the hydrocarbons present in the 

original monoaromatic UCM fraction are also present in the original aromatic UCM, as the 

former is an isolate of the latter. Increasing the number of aromatic rings on a compound 

will increase its polarity, and thus its solubility. This effect however, may be far 

outweighed by the reduction in solubility due to the effect of increasing molecular size. If 

'Raoult's law' is considered, it is possible to explain why the soluble aromatic UCM is 
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dominated by higher molecular weight, though less soluble material, rather than the low 

molecular weight hydrocarbons present in the soluble monoaromatic UCM- It is suggested 

that the compounds dominating the WSFs of the monoaromatic UCM have a much higher 

mole fraction when present here than when in the aromatic UCM. This is because of the 

reduced number of compounds in the monoaromatic mixture. In the original aromatic 

UCM many of the larger PAH compounds may be present at a concentration greater than 

the monoaromatic components. Their higher mole fraction within the mixture may be 

sufficient to raise the relative solubility of these compounds above that of the 

monoaromatic components. Thus, compounds that are the most dominant in the WSF of 

the monoaromatic UCM may not be the same as those in the aromatic UCM. 

The physicochemical characteristics of the compounds may also significantly influence the 

solubility of a compound in a mixture, as they determine the pure water solubility. This 

effect becomes more evident when the soluble monoaromatic UCM is compared with that 

of the original material. A dominance of lower molecular weight compounds in the WSF is 

apparent (Figure 3.17). The compounds in the original mixture must differ primarily by the 

degree and type of substitution, as they are predominantly monoaromatic. The results 

indicate that compounds with lower molecular weight, Le. those with the least substitution, 

are the most soluble. This trend of reduced solubility with increasing size or number of 

alkyl substituents has been previously reported (Sherblom et aL, 1992; Kuo, 1994; Page et 

aL, 2000; Smith, 2002; Schwarzenbach et aL, 2003). In the case of the monoaromatic 

UCM, the physicochemical properties of the compounds appear to exert the greatest 

influence on solubility. This may indicate that the mole fraction of most components are 

similar. 

The TPH concentrations in the water-soluble fractions of both the aromatic and 

monoaromatic UCMs exhibit large standard deviations, indicating this method was subject 
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to significant problems when applied to highly complex mixtures such as UCMs. 

Interestingly, the distribution of the soluble material remains similar in all of the aliquots 

collected from an individual column, but the total UCM hydrocarbon concentration varies 

greatly. Whilst the low concentrations of organic material in the WSF extracts can make 

analytical measurement problematic, other factors may be also contributing. For example, 

de Maagd et aL (1998) suggest that the relative standard deviation of a measured water 

solubility increases, as the solubility decreases. The authors report a 26 % standard 

deviation for the water solubility of pure chrysene. Alkyl substituted aromatic 

hydrocarbons are suggested to be components of the aromatic and monoaromatic WSFs in 

the present study. The presence of alkyl chains will serve to lower the water solubility of a 

compound compared with the unsubstituted parent hydrocarbon. Furthermore, the carbon 

number range for the soluble UCMs, estimated by the Lee index, indicate that some of the 

component hydrocarbons are also quite large (particularly in the aromatic UCM). Thus, in 

a mixture as complex as crude oil, where most of the compounds are sparingly soluble, 

large standard deviations in the data would be expected. The dynamic nature of the 

solubilisation of complex mixtures using a generator column, together with other complex 

processes affecting the solubilisation of hydrocarbons, will also contribute to the large 

standard deviation seen in the measured values. Another possible reason is that the system 

could be acting in the same way as a chromatographic column in a HPLC system, whereby 

the material on the column could be eluting as a series of 'peaks'. This could give rise to 

the significant differences in concentration between the collected aliquots, as some could 

contain more hydrocarbons than others. It is also possible that the system has led to the 

culturing of a microbial population within the column. Bacteria present in the system 

would be provided with suitable conditions for growth, including a carbon source and a 

constant temperature of 25 'C. This could also have contributed to the observed erratic 

nature of the results in a number of ways. Bacteria adhering to the UCM material could 

prevent normal dissolution of the hydrocarbons into the passing water. Secondly, it is also 
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possible that any UCM hydrocarbons which dissolve in the aqueous phase become more 

bioavailable to the microbes and could undergo some degree of degradation. Finally, the 

integration of UCMs present in the aqueous extracts at low concentration and the use of a 

UCM for calibration will also confound the problem, as such chromatographic features can 

be difficult to measure accurately and consistently. 

A comparison of the retention times of the synthetic compounds 6-cyclohexyltetralin (1), 7- 

cyclohexyl-l-methyltetralin (II), 7-cyclohexyl-l-isoamyltetralin (IV) and 7-cyclohexyl-l- 

nonylnaphthalene (VI) to those of the water-soluble aromatic and monoaromatic UCMs is 

shown in Figure 3.18. The retention times of 6-cyclohexyltetralin (I) and 7-cyclohexyl-l- 

methyltetralin (II) coincide with those of the water soluble monoaromatic UCM, indicating 

that these compounds may be typical of those in the monoaromatic WSF. Compounds I 

and II contain 16 and 17 carbon atoms respectively, which is concurrent with the carbon 

number range determined for the UCM. 7-cyclohexyl-l-isoamyltetralin (IV), having a 

longer C5 branched alkyl chain, has a retention time corresponding to the very end of the 

water-soluble monoaromatic UCM chromatographic range (Figure 3.18). Compounds such 

as this may represent those typical of a "solubility cut-off' for the monoaromatic material, 

where the physicochernical characteristics of the compound render it too insoluble for 

analytical detection. 7-cyclohexyl-l-isoamyltetralin is C21, which is outside of the range 

determined by the Lee index for the aqueous monoaromatic UCM (CIO-CI7). However, the 

close proximity of its chromatographic elution to that of the monoaromatic UCM, indicates 

that the carbon range may actually be greater than estimated by the Lee index. Therefore, 

the Lee index, although a useful guide, does not accurately account for substituted 

aromatic compounds as it is based upon the unsubstituted parents. The diaromatic 

compound 7-cyclohexyl- I -nonylnaphthalene has a considerably longer retention time than 

the range of the monoaromatic UCM. Not unexpectedly, the retention time of this 

compound coincides with the middle of the water soluble aromatic UCM (Figure 3.18), 
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which is known to contain diaromatic compounds. Despite a detailed GC-MS study of both 

the aromatic and monoaromatic UCM water soluble fractions, none of the synthetic 

alkylcyclohexyltetralins (I-V) were found to be present. However, if the mole fraction of 

such compounds in the UCMs is very small, they may be present in concentrations below 

the analytical limits of detection. Thus, the existence of the synthetic compounds cannot be 

ruled out entirely. 

Ziolli and Jardim (2003) prepared WSFs of two Brazilian crude oils, and found in both 

cases the GC-MS chromatograms exhibited a large UCM. The WSFs were found to 

contain many low molecular weight hydrocarbons. These included alkylbenzenes and 

naphthalenes that the authors suggested would be highly susceptible to bacterial attack, and 

thus not persistent in the environment. However, the water soluble UCMs generated in the 

present study are prepared from isolated fractions of weathered Tia Juana Pesado crude oil, 

previously shown to be resistant to further biodegradation (Chapter 2). The water soluble 

UCMs in the present study may be expected to be persistent in the environment. This has 

implications with regard to the ecotoxicological impact of such material ohce present in the 

environment. Neff et al. (2000) have suggested that monoaromatic hydrocarbons are the 

main contributors to the acute toxicity of WSFs of fresh crude oils observed in aquatic 

organisms. The authors also reported that the toxicity of WSFs of crude oils could not be 

accounted for entirely by the toxicity contributed by the resolved components. They 

suggested that constituents of the UCM might be responsible for this additional toxicity. 

Whilst many of the volatile monoaromatic hydrocarbons are lost during weathering 

processes, a sufficient amount remains and contributes to monoaromatic UCMs observed 

in crude oil residues. It is therefore suggested that some of these compounds may be 

responsible for detrimental effects in aquatic organisms. Carls et al. (1999) and Heintz et 

al. (1999) report that chronic exposure of Pacific herring and pink salmon embryos to WSF 

of a weathered crude oil at concentrations, as little as, 1 gg 1: 1, were sufficient to cause 
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significant sublethal effects. Even allowing for the irreproducibility of the methods, the 

present study indicates that monoaromatic UCMs are capable of dissolving into the water 

column to concentrations far exceeding this value (57-213 ýtg L"). 

Rowland et aL (2001) and Donkin et aL (2003) have previously reported that 

monoaromatic UCMs are indeed toxic to marine organisms. The present study indicates 

that perhaps only a proportion of the material in the monoaromatic UCM is sufficiently 

water soluble to reach the site of toxic action. Therefore, whilst the monoaromatic UCM 

has been shown to be toxic to marine organisms, perhaps only a percentage of the 

hydrocarbons can be responsible for the observed toxicological impacts. Banerjee (1984) 

suggests that the behaviour of a toxic component within a complex mixture will be 

different from the pure toxicant. The toxicity of a WSF derived from a mixture of 

compounds, will be less than that of a corresponding solution of the most toxic component. 

However, as the present study shows, the aqueous phase generally contains only a 

selection of the components present in the parent oil. The ratio of constituents in the 

aqueous phase will not therefore be the same as in the parent oil product (e. g. Bennett et 

aL, 1990). From a toxicological viewpoint this is important, as some toxic compounds may 

be present in higher concentration in the aqueous phase, than in the parent material. 

Therefore, the toxicity of a complex mixture of hydrocarbons dissolved in the water 

column may be difficult to predict, as it is potentially different from that of the parent 

material. 

To determine if any changes occurred over time in the composition of the generated WSFs 

of the aromatic UCM, certain compounds were identified from the GC-MS 

chromatograms. Their presence was monitored in the fractions collected. Compounds were 

identified from their characteristic base ion fragments generated in the mass spectral 

detection step of the analysis (Killops and Killops, 1993). In the aromatic WSFs a range of 
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unsubstituted and alkylated PAHs were observed (Figure 3.21). In the first fraction 

collected (500-1000 mL) a wide range of compounds are identifiable, including 

phenanthrene, fluorene, dibenzothiophene and their alkylated homologues, as well as a 

series of alkylnaphthalenes. In the later fractions, the absence of the lower substituted 

homologues and lower molecular weight compounds was noted (e. g. alkyInaphthalenes, 

phenanthrene and fluorene). Instead, higher molecular weight compounds dominated the 

later WSFs. Whilst some compounds were not present in the later eluting fractions, other 

higher homologues not previously seen, became evident. For example, the 

trimethylphenanthrenes were absent in the early eluting fractions, but were clearly present 

in those eluting later. Again, these observations can be explained if 'Raoult's law' is 

considered. In the early eluting fractions the lower molecular weight and most soluble 

compounds are present in the aqueous phase. These compounds could be expected to 

deplete over time through dissolution, reducing their mole fraction in the UCM. 

Conversely, the mole fraction of other less soluble compounds (e. g. 

trimethylphenanthrenes) would increase, raising their relative solubility. Thus, it is not 

unexpected for them to become observable in the later eluting water-soluble fractions. 

It is evident from these observations that the dissolution of hydrocarbons from a complex 

mixture such as crude oil is a dynamic process. It is suggested, therefore, that given a 

sufficient period of time, a significant number and range of UCM components may be 

expected to enter the aqueous" phase. Despite these findings, the dissolution of 

hydrocarbons with very low pure compound solubility may still be constrained by their 

physicochernical properties. Such compounds may not enter the aqueous phase in 

concentrations high enough for routine analytical detection. 
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soluble fractions of the aromatic UCM over time. 
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3.4 Conclusions 

The results of the present study confirm that a large number of components of both an 

aromatic and a monoaromatic UCM are 'water soluble'. UCMs with chromatographic 

profiles different from those of the UCM substrates tested were observed in the aqueous 

phase extracts. Weathered crude oil residues, typically characterised by dominant UCMs, 

are known to be resistant to degradation, and therefore persistent in the environment. 

Fractions of these UCMs, in particular the monoaromatic hydrocarbons, have been shown 

to be toxic to marine organisms (Rowland et aL, 2001; Donkin et aL, 2003). The 

dissolution of these persistent, toxic monoaromatic UCM hydrocarbons in the present 

study confirms their potential bioavailability to aquatic organisms. The technique used in 

the study and the data collated indicate that hydrocarbons may continue to dissolve in the 

water column, long after an initial crude oil spill. Over time such hydrocarbons may 

dissolve into aqueous systems to high concentrations compounding the effect on marine 

organisms (e. g. Crowe et aL, 2004). A second UCM generated in the WSFs comprised a 

large number of compounds at similar concentrations. This implies such components have 

comparable solubilities and mole fractions within the mixture. The monoaromatic 

hydrocarbons in the WSF fraction, therefore, are thought to exhibit similar 

physicochemical properties, and are suggested to be C4-C II substituted monoaromatics (i. e. 

total carbon range Of CIO-C17). The synthetic alkyltetralins, already shown to be 

bioresistant (Chapter 2) and toxic (Rowland et aL, 2001) have retention times that compare 

well to either the soluble monoaromatic (1,11 and IV) or aromatic (IV and VI) UCMs. The 

present study and that made by Smith (2002) have shown that these compounds are water 

soluble when pure. This provides further evidence for the candidacy of alkyltetralins as 

representative components of some monoaromatic UCMs. 
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The dissolution of hydrocarbons from a complex mixture is a dynamic process, with the 

most soluble compounds being evident in the earliest fractions. The less soluble 

compounds are found to become more predominant in the later fractions. The most soluble 

components become exhausted from a mixture through dissolution into the aqueous phase 

and their mole fraction also decreases. The concentration/mole fraction of other 

components in the mixture then increases, raising their solubility. Over a sufficient period 

of time, a significant number of UCM components may be expected to enter the aqueous 

phase. However, dissolution of hydrocarbons with very low solubilities may still remain 

below the limits of analytical detection. 

This study has highlighted the need for care when investigating the water solubility of 

hydrocarbon mixtures, in particular the influence mole fraction can exert on solubility. The 

fractionation of a mixture alters the mole fraction of the components, generally enhancing 

the dissolution of compounds compared with the original mixture. This can lead to 

abnormally high solubility values when fractions rather than whole mixtures are analysed. 

The chemical composition of a mixture will affect its dissolution (e. g. Barron et aL, 

1999a), and this must be taken into consideration when estimating or predicting the 

dissolution characteristics of a complex mixture. The distribution or concentration of 

mixture components can have a significant bearing on their water solubility within a 

mixture. 

Finally, the study has highlighted serious deficiencies in the generator column technique 

for the production of aqueous solutions of highly complex mixtures. Whilst this method 

has been shown to produce very repeatable data for individual test compounds, the results 

of the present study using aromatic and monoaromatic UCMs indicate this is not the case 

for complex mixtures of compounds. It is'suggested that a much gentler transition from the 

analysis of single compounds to complex mixtures is required in future studies. 
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Chapter 4 

Characterisation of the water soluble fraction of a 
monoaromatic UCM 

The water 'soluble' monoaromatic UCM generated in Chapter 3 provided an opportunity 

to study the composition of what is predicted to be some of the most bioavailable and toxic 

UCM components. Resolution and characterisation of a water 'soluble' monoaromatic 

UCM was achieved using comprehensive gas chromatography x gas chromatography - 
time-of-flight - mass spectrometry (GCxGC-ToF-MS) analysis. Over 1200 compounds 

were separated by the chromatography, of which about 500 had distinct mass spectra. 

From a detailed characterisation of some of these monoaromatic UCM hydrocarbons via 

comparison to mass spectra registered in the NIST library the identities of over 100 

monoaromatic UCM components were inferred. The monoaromatic UCM hydrocarbons 

identified included highly alkylated homologues of benzene, indene, indan, tetralin, 

biphenyl, diphenylmethane and tetrahydrophenanthrene. Importantly, the study indicated 

that UCMs comprise the geochemically minor isomers and analogues of known major 

crude oil constituents. Thus, UCMs may contribute significantly to the observed additive 

narcotic toxicity of resolved crude oil hydrocarbons. 
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4.1 Introduction 

Until recently, the limitations of available analytical techniques have prevented all but a 

partial resolution and identification of crude oil components. In particular, mainly those 

compounds present in high concentrations lend themselves to chromatographic resolution. 

Such compounds have been successfully characterised using conventional 

chromatographic and detection techniques such as gas chromatography - mass 

spectrometry (GC-MS). 

As a result, the large proportions of both fresh and weathered crude oils which are 

unresolvable (UCMs) have remained unidentified using conventional analytical 

techniques. This chromatographic feature or 'hump' is produced when standard analytical 

techniques (e. g. GQ are incapable of separating the many thousands of minor organic 

compounds present in a crude oil. The sheer number of compounds, together with their 

similar physical and chemical properties result in overlapping peaks, which produce the 

characteristic UCM feature. 

A review of the previous techniques employed to resolve and identify the component 

hydrocarbons of the UCM was presented in Chapter 1. None of these studies were capable 

of resolving fully or of fully characterising the UCM hydrocarbons. A comparatively 

recent, but significant development, is the transfer of portions of the eluent partially 

separated on one chromatographic column, to a second chromatographic system. If the 

second system has a different method of separation (i. e. a column with a different 

stationary phase), compounds coeluting on the first column may be separated on the 

second. This technique became known as 'heart-cutting', hyphenated GC-GC 

(Schoenmakers et aL, 2000; Phillips and Xu, 1995), or multi-dimensional gas 

chromatography (MDGC). The technique has proved useful, but is limited as only portions 

of first-dimension chromatograin eluent can be transferred to the second dimension (Liu 
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and Phillips, 1991; Venkatramani and Phillips, 1993; Schoenmakers et aL, 2000; de Boer 

and Law, 2003; Johnson et al., 2003; Marriott et al., 2003). Thus, heart-cutting can only 

improve the resolution of a selected group of sample components from a single 'cut' due to 

the slow chromatography of the second dimension (Schoenmakers et aL, 2000; Adahchour 

et aL, 2003). If the entire sample were transferred, the final chromatograin would be 

equivalent to a single mixed-phase column and not two separate chromatographic steps. 

Sequential heart-cutting techniques can be used to analyse an entire sample. However, a 

loss of first dimension resolution occurs, and a very long analysis time is required (Liu and 

Phillips, 1991). It is therefore only possible to perform a small number of discrete heart-cut 

transfers in each analysis, and the gain in total peak capacity is limited (Marriott et aL, 

2003). Whilst heart-cutting is classed as multidimensional gas chromatography, it cannot 

be termed 'comprehensive' due to its inability to provide second-dimension 

chromatography to the entire sample (Johnson et aL, 2003; Marriott et aL, 2003). 

4.1.1 Gas chromatography x gas chromatography (GCxGC): A two-dimensional 

analytical approach 

It was not long before the first fully comprehensive multi-dimensional gas 

chromatographic system was developed. This was first pioneered by Professor John 

Phillips (Liu and Phillips, 1991) in the early 1990s. In this development the entire sample 

injected into the first column also passes through the second column and into the detector. 

The sample is subject to independent chromatography in two dimensions, therefore the 

technique is termed 'comprehensive' (Gaines et aL, 1999; Dallilge, 2003; Hamilton and 

Lewis, 2003). This overcomes the problems associated with GC-GC heart cutting (Johnson 

et aL, 2003), and can be classed as a state-of-the-art analytical technique. Indeed, the First 

International Symposium on Comprehensive Multidimensional Gas Chromatography was 

held as recently as 6-7 March 2003 in Volendam, The Netherlands. 
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Liu and Phillips (1991) first used a thermal desorption modulator to generate high-speed 

chromatograms sampled from a continuously flowing stream. In this case, the flowing 

stream was the eluent from a slower chromatographic column (Is' dimension). A second 

column is placed orthogonal to the inlet GC's retention time axis to form a two- 

dimensional data space (Venkatramani et aL, 1996; Gaines et aL, 1999; Schoetimakers et 

aL, 2000; Dallilge, 2003). Effluent from the first column is transferred to the second 

column via the thermal modulator. The modulator effectively 'digitises' the first dimension 

chromatogram and then focuses the sample material in a series of sharp, equidistant 

concentration pulses (Schoenmakers et aL, 2000). The eluent flow from the first column 

enters the modulator, where it is divided into a series of individual 'heart-cuts' or 

concentration pulses corresponding to approximately one peak width of time (i. e. just a 

few seconds). 

These concentration pulses are then sequentially placed onto the second column, which has 

a different stationary phase, subjecting the material to a second chromatography step. The 

second column/system is made fast enough to generate at least one complete 

chromatogram during the time required for a peak to elute from the primary instrument 

column (Liu and Phillips 1991; Phillips and Beens, 1999; Marriott et aL, 2003). Each time 

a single datum would normally be recorded in the primary chromatogram, a complete high- 

speed secondary chromatogram is recorded (Venkatramani and Phillips, 1993). During this 

time the modulator prevents continuous elution from the first dimension, and accumulates 

material for the next concentration pulse by cooling the eluent (Liu and Phillips, 1991; 

Venkatramani and Phillips, 1993; Reddy et aL, 2002; Marriott et aL, 2003). Upon 

completion of a secondary chromatogram, the modulator is heated to IOOT above the GC 

oven temperature, volatilising the accumulated sample from the first column. The carrier 

gas then transfers the material to the second column; thus the modulator effectively acts as 
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an injector for the second chromatography step. As a result, the primary retention axis is 

still calibrated in minutes (standard operating speed) but the secondary axis is calibrated in 

seconds (Phillips and Xu, 1995). Frysingcr and Gaines (2002) discuss the concept of 

modulation in further detail. 

I 

7 

0 

Figure 4.1. Diagram showing how a GCxGC system fitted with apolar (Pt 
dimension) and polar (2"d dimension) columns separates hydrocarbons in a 
mixture based on their volatility and polarity. 

The key to the separation of compounds is the use of the product resolving power of two 

stationary phases (Liu et al., 1994). These must differ in their retention characteristics so 

that compounds not separated on the primary column are likely to be separated on the 

secondary. Typically, an apolar first-dimension and a polar sccond-dimcnsion arc 

employed (Figure 4.1). This gives a volatility-based separation, producing a boiling point 

clution order across the x-axis. A polarity-based separation results in class-type separation 

along thcy-axis (e. g. Frysingcr etal., 2003). This column combination has resulted in the 

resolution of up to 10 peaks that coelutc under normal onc-dimensional conditions (Gaines 

el aL, 1999). Thus, the system has potential for the separation of complex mixtures of 

hydrocarbons which exhibit coclution on onc-dimcnsional chromatography (e. g. UCMs). 
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Figure 4.2 shows a schematic of the comprehensive two-dimensional gas chromatograph 

using a thermal desorption modulator. In order to achieve high-speed chromatography the 

second column is much shorter than the first. However, to increase the resolution of the 

chromatography on the fast second dimension the column is generally narrower (Liu el aL, 

1994; Shellic et aL, 2001; Adahchour el aL, 2003). 

The three important factors that make GCxGC possible are: 

(1) The modulator continuously 'chopping up' and accumulating the eluent from the first 

dimension, and cffcctively 'injecting' it in sharp pulses into the second dimension. 

(2) Iligh-spccd chromatography in the second dimension, allowing generation of a 

complete chromatogram in the time taken for a peak to clute from the first dimension. 

(3) Chromatography on two different stationary phases, allowing comprehensive two- 

dimensional separation of compounds about a plane. 

The GCxGC technique produces a two-dimensional contour plot chromatograrn (e. g. 

Figure 4.3). Each substance forms a peak on the plane defined by two retention times (one 

from each column). The computer generates a two-dimensional chromatograrn by plotting 

each successive secondary chromatogram horizontally at the primary column retention 

time corresponding to the modulation pulse (e. g. Liu and Phillips, 1991; Gaines et aL, 
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Figure 4.2. Schematic of a GCxGC system. 1, injector; M, modulator; D, 
detector; I", first-dimension column; 2 nd, second-dimension column. 



1999; Xu et al., 2001; Frysinger et al., 2003). The two-dimensional nature allows 

substantially increased chromatographic peak capacity compared with a one-dimensional 

chromatogram generated on either column individually (Liu and Phillips, 1991; Liu et al., 

1994; Phillips and Beens, 1999; Gaines et al., 1999, DallCige, 2003). Under high-resolution 

conditions, Phillips and Xu (1995) have produced chromatograms of petroleum containing 

4000 peaks. 

Figure 4.3. Portion of a two-dimensional (volatility vs polarity) contour plot for 
those compounds with fragment ions of m1z 145 and 160 (>90% abundance) 
present in the water soluble monoaromatic UCM sample analysed in the 
current study using GCxGC-ToF-MS. The retention times on both axes have 
been selected to provide the most detail for the central portion of the 
chromatogram. The background is blue. Low abundance peaks are white and 
high abundance peaks are red. 

These two-dimensional chromatograms have also proven to be diagnostic in the 

identification of mixture components. Venkatramani and Phillips (1993) were possibly the 

first to recognise the ordered nature of hydrocarbons in GCxGC chromatograms. The 

authors observed that the aliphatics, monoaromatics and naphthalenes forin distinct bands 

of peaks on the chromatographic plane resulting from their diffenng polarities. It is this 
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order to the chromatograms that aids in the identification of compounds (Phillips and 

Beens, 1999; Frysinger and Gaines, 1999; Gaines et aL, 1999; Dalltige, 2003). 

The identification and ordering of chemical classes in petroleum products has subsequently 

been determined in more detail (e. g. Venkatramani and Phillips, 1993; Gaines et aL, 1999; 

Schoenmakers et aL, 2000; Dallilge, 2003; Frysinger et aL, 2003). The n-alkanes and 

branched alkanes are least polar, and have the shortest second-dimension retention times. 

These are followed by the cycloalkanes, beginning with the monocyclics. Then the 

monoaromatic hydrocarbons beginning with the alkylbenzenes, and including the 

alkylindans and alkyltetralins. The subsequent band of compounds typically includes the 

diaromatic alkyInaphthalenes and alkylbiphenyls. The compounds with the greatest 

second-dimension retention times are the alkylphenanthrenes and other PAHs. 

Although this order to the chromatograms is useful for the identification of compound 

classes, it does not enable the complete characterisation of components. However, the 

generation of two complete sets of retention data for all constituents in a sample provides 

additional information for compound identification, particularly when compared with 

authentic reference compounds (Liu et aL, 1994; Dallflge, 2003; Frysinger et aL, 2003). A 

retention time match in two dimensions should be considered reliable for peak 

identification because coelution in two-dimensions is less likely than in one-dimensional 

gas chromatography (Gaines et aL, 1999; Phillips and Beens, 1999; Reddy et aL, 2002; 

Frysinger et aL, 2003). Furthermore, coelution in two-dimensions generally occurs from 

the overlap of related isomers. 

Further developments in the technique have allowed increased separation. For example, 

initial studies housed both chromatographic columns in the same GC oven. Because the 

second dimension separation is very fast Oust a few seconds) the chromatography therefore 
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takes place under essentially isothermal conditions (Schoem-nakers et aL, 2000). The most 

up to date instruments now commonly house the second column in a separate insulated 

secondary oven. This can be temperature programmed independently of the main GC oven 

controlling the primary column (Reddy et aL, 2002; Frysinger et aL, 2003; Marriott et aL, 

2003). In some cases a third oven housing the modulator unit is also installed inside the 

main GC oven, where it can be controlled independently (e. g. Reddy et aL, 2002; 

Frysinger et aL, 2003). 

4.1.1.1 Applications of GCxGC 

Despite its recent development, GCxGC has already been used extensively, especially in 

the analysis of complex mixtures. As a result, GCxGC is increasingly used in the analysis 

of crude oils and other petroleum derived complex hydrocarbon mixtures (Blomberg et aL, 

1997; Frysinger and Gaines, 1999). For example, Venkatramani and Phillips (1993) used 

GCxGC to analyse a kerosene sample isolated from crude oil. Phillips and Xu (1995) also 

used GCxGC to analyse kerosene samples. In both cases, the technique allowed a detailed 

separation of the component hydrocarbons of kerosene to be achieved. Frysinger et aL 

(1999) and Hamilton and Lewis (2003) have used GCxGC to study the composition of 

gasolines, providing useful data about the sample composition. This included the 

identification of alkylbenzenes, toluenes and xylenes and other aromatic compounds. 

Blomberg (2002) used GCxGC to study both heavy catalytically cracked cycle oil, and a 

light gasoil. Liu and Phillips (1991) used GCxGC to study the composition of a coal 

liquids sample. Gaines et aL (1999) have even used GCxGC to aid in the identification of 

oil spill sources. The technique was used to analyse a spill sample and two potential source 

samples, and allowed association of the spill to the correct source. Following this, 

Frysinger and Gaines (2002) used GCxGC in the forensic analysis of ignitable liquids in 

fire debris, with the aim of fingerprinting source materials. 
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GCxGC has also found other applications apart from petroleum analysis. Xu et aL (2001) 

and Johnson et aL (2003) used GCxGC to study the alkenone composition of Black Sea 

sediments. Analysis provided complete separation of coeluting isomers and other sample 

compounds. Dalltige (2003) used GCxGC to determine the pesticide content of vegetables, 

and also to study the composition of cigarette smoke. Hamilton and Lewis (2003) used 

GCxGC to study the organic content of aerosols collected from an urban area. Liu et aL 

(1994) achieved separation of pesticides present in human serum. Marriott et al. (2003) 

provide a comprehensive review of the application of GCxGC to the analysis of selected 

environmental toxins including dioxin, polychlorinated biphenyls and PAHs. 

4.1.1.2 Limitations in the identification of compounds resolved using GCxGC 

It is undeniable that GCxGC provides the opportunity for substantially greater separation 

and more information about sample composition than has previously been possible using 

conventional one-dimensional GC techniques. However, analysis is limited to group-type 

profiling using a fast flame ionisation detector (FID) to generate ordered chromatograms. 

Identification of individual components is generally only possible using authentic reference 

compounds (e. g. Gaines et al., 1999; Reddy et al., 2002; Frysinger et al., 2003; Hamilton 

and Lewis et al., 2003). Thus, for extremely complex mixtures such as petroleum, GCxGC 

only allows accurate identification of groups of compounds (e. g. benzenes, toluenes and 

xylenes, naphthalenes). Essentially, the technique provides a detailed chromatogram, but 

no method for the characterisation of components. Indeed, Shellie et al. (2001) suggest that 

the use of GCxGC can only truly be justified if separated peaks can be positively 

identified. 
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4.1.2 Gas chromatography x gas chromatography-time of flight-mass spectrometry 

(GCxGC-ToF-MS): A three-dimensional analytical approach 

The need for mass spectrometric (MS) detection to identify the resolved peaks generated 

by GCxGC analysis has been proposed (Schoeninakers et aL, 2000; Frysinger et aL, 2003; 

Marriott et aL, 2003). The addition of an MS detector is considered to act as a third- 

dimension capable of generating the mass spectra for the separated analytes (e. g. Frysinger 

and Gaines, 1999). Mass spectrometry using a relatively slow-scanning quadrupole 

instrumcnt has bccn rcportcd for GCxGC (Frysingcr and Gaincs, 1999; Frysingcr et aL, 

2002). However, the analysis had to be slowed excessively (-7 hrs) to get just one 

reasonable scan across the peaks. Whilst the benefits of mass spectral identification of 

components were evident, conventional quadrupole mass spectrometers are too slow to act 

as detectors for the high-speed chromatograms eluting from the GCxGC second dimension 

(Shellie et aL, 2001; Hamilton and Lewis, 2003; Sinha et aL, 2003). A data acquisition rate 

of 50 Hz or more is required to properly record the very narrow peaks (60-6000 ms) 

eluting from the second column (Adahchour et al., 2003). 

Time-of-flight mass spectrometry (ToF-MS) offers a mass spectral detector with a high 

data acquisition rate (e. g. Phillips and Beens, 1999; Schoenmakers et aL, 2000; Shellie et 

aL, 2001). ToF-MS was developed over 50 years ago, and a detailed review of the 

technique is provided by Cotter (1997). However, its coupling to a GCxGC system has 

only recently been achieved (van Deursen et al., 2000; Shellie et aL, 2001). ToF-MS is 

capable of recording spectra at a rate of ý50 s'I, which is equivalent to -10 mass spectra 

per peak (Shellie et aL, 2001; Dalluge et aL 2002a; Sinha et aL, 2003). Additionally, ToF- 

MS uses the complete spectrum for identification, rather than the two to four qualifier ions 

used in conventional MS detection (Dalluge et aL, 2002a; Focant et aL, 2003). Thus, ToF- 

MS provides identical mass spectral patterns over a complete chromatographic peak 

(spectral continuity) for the same component (Focant, et aL, 2003; Welthagen et aL, 2003). 
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This results in better peak purity and promotes the use of deconvolution algorithms 

(Hamilton and Lewis, 2003). 

The ToF-MS data processing software is capable of performing mass spectral 

deconvolution of two coeluting compounds. The deconvolution algorithm allows the mass 

spectra to be mathematically separated to obtain 'clean' spectra (Dalluge ef aL, 2002b; 

Focant et aL, 2003; Zrostlikova et aL, 2003). However, there are certain requirements for 

this to be achieved. First, the coeluting peaks must only be partially overlapping, with their 

apices separated by at least three scans (Adahchour et aL, 2003; Dalluge, 2003). Second, 

the mass spectra of each of the coeluting analytes must display characteristic m1z values 

(Dalluge, 2003). The deconvolution software used in the mass spectrometric acquisition 

can therefore be viewed as an additional tool to aid separation of mixture components 

(Adahchour et aL, 2003). This process can permit a 3- to 10-fold increase in the number of 

identifiable peaks compared with GCxGC-FID alone. Further detail regarding this process 

is presented by Dalluge et aL (2002a). 

GCxGC-ToF-MS offers an analytical technique that exhibits superior separation and more 

accurate peak assignments than previously possible (Shellie et aL, 2001). The coupling of 

ToF-MS supplies mass spectral data for all compounds separated by GCxGC. These 

dcconvoluted mass spectra can provide supplementary information in the preliminary 

classification of compounds into chemical classes (Welthagen et aL, 2003). Additionally, 

GCxGC-ToF-MS has much lower detection limits (5-50x) making it significantly more 

sensitive than one-dimensional GC or conventional MS techniques (e. g. Focant et aL, 

2003; Sinha et aL, 2003; Zrostlikova et aL, 2003). 

The GCxGC-ToF-MS technique has already -seen use in the analysis of complex mixtures. 

Dalluge et aL (2002a) and Zrostlikova et al. (2003) monitored pesticides in vegetable and 
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fruit samples. Adahchour et aL (2003) analysed trace-level flavour compounds in food 

extracts, whilst Shellie et aL (2001) separated and identified previously coeluting 

components in lavender essential oil. GCxGC-ToF-MS has also been used to analyse the 

composition of cigarette smoke (Dalluge et aL, 2002b), and the organic material present in 

aerosols (Welthagen et aL, 2003). Sinha et aL (2003) and Focant et aL (2003) have used 

complex samples containing fuel components, pesticides, halogenated compounds and 

natural products to test the effectiveness of the GCxGC-ToF-MS technique. 

4.1.3 GCxGC and GCxGC-ToF-MS analysis of UCMs 

Despite its recent development, comprehensive GCxGC has already seen application in the 

resolution of many complex mixtures. This has included two studies of petroleum derived 

UCMs (Reddy et aL, 2002; Frysinger et aL, 2003). However, GCxGC-ToF-MS has yet to 

be employed in the analysis and characterisation of UCM hydrocarbons, although 

Welthagen et aL (2003) suggest it would be perfectly suited to this task. 

Reddy et aL (2002) first used GCxGC to study the composition of a weathered crude oil 

UCM. The UCM was analysed without any prior fractionation into hydrocarbon classes, 

and so represents a whole oil analysis. The study indicated the presence of aliphatic 

compounds such as one and two ring cycloalkanes, monoaromatic hydrocarbons including 

alkylbenzenes, alkylindans; and alkyltetralins, and the diaromatic alkylnaphthalenes and 

alkylbiphenyls. Larger alkylated PAHs were also observed including fluorenes and 

phenanthrenes. Thus GCxGC separation was able to resolve hundreds of compounds, 

providing information on the group type composition of the UCM. 

Following this preliminary study, research focused specifically on using GCxGC to fully 

resolve a UCM present in petroleum contaminated sediment (Frysinger et aL, 2003). Prior 
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to analysis the UCM was fractionated into saturates, monoaromatics, diaromatics and 

triaromatics using silica gel column chromatography. The use of authentic standards 

allowed identification of a few UCM components and inference of others. The ordered 

nature of the chromatograrn also aided in class type identification of compounds. 

In the triaromatic fraction, Frysinger et aL (2003) identified specific methyl and dimethyl 

phenanthrene isomers based on the standards, and inferred the occurrence of other Cj- and 

C2-phenanthrene isomers. In the diaromatic fraction, identification of specific 

alkylnaphthalenes allowed bands of alkylnaphthalene isomers with C3-C6 substituents to be 

proposed. The diaromatic fraction also contained a large number of unidentified peaks, 

tentatively attributed as alkylbiphenyls and alkylbenzothiophenes. In the monoaromatic 

fraction, C8-C14 substituted alkylbenzenes were identified and the presence of alkylindans 

and alkyltetralins inferred. A very large number of peaks were evident in the alkylbenzene 

region, indicating the long alkyl chains give rise to many different isomers. In many cases 

these peaks appeared to be coeluting or partially co-eluting with each other. 

Whilst polar columns generally provided good separation of compound classes, Frysinger 

et aL (2003) observed certain compound classes were coeluting due to similar polarities 

(e. g. naphthalenes and biphenyls). The chromatograms also contain coeluting compounds 

along the first dimension, probably due to large numbers of isomers exhibiting very similar 

volatility characteristics. Thus, it appears that fractionation of the UCM prior to analysis 

still resulted in mixtures to complex for complete resolution to be achieved. The use of 

authentic standards only permitted accurate identification of a few components, but was 

effective in mapping the location of compound classes. Whilst the GCxGC technique has 

provided the best separation of UCM hydrocarbons to date, full characterisation of 

components was impossible. Frysinger et al. (2003) suggest complete characterisation of 

resolved UCM components can only be achieved with mass spectral analysis. 
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4.1.4 Aims of the present study 

Rowland et aL (2001) and Smith (2002) have previously shown that the monoaromatic 

hydrocarbons of a crude oil UCM appeared the most toxic to the blue mussel (Mytilus 

edulis). It is these monoaromatic UCM hydrocarbons that hold the greatest interest from an 

enviromnental perspective. Water soluble UCM hydrocarbons are considered to be those 

which are bioavailable to aquatic organisms, and therefore responsible for the observed 

toxicological impacts reported by Rowland et al. (2001). A study of the water solubility 

characteristics of the monoaromatic UCM isolated from Tia Juana Pesado (TJP) crude oil 

is reported in Chapter 3. Using a 'generator column' technique, water saturated with the 

water soluble components of the monoaromatic UCM was produced (Section 5.9). 

The present investigation employed GCxGC-ToF-MS analysis to study the composition of 

the water soluble fraction of the monoaromatic UCM (Section 5.10). The study had three 

main aims. First, that GCxGC would provide a quick method for resolving the sample 

components. Second, that ToF-MS would provide clear mass spectra of each resolved 

component, aiding identification. Third, that identification of some unknown compounds 

could be achieved by comparison of mass spectra to those in a library (NIST library). It 

was expected that this would lead to an indication of those compounds responsible for the 

observed toxicity of the UP monoaromatic UCM. 
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4.2 Results 

The two-dimensional chromatogram generated by GCxGC-ToF-MS analysis of the water 

soluble monoaromatic UCM sample (Section 5.9) is presented in Figures 4.4 and 4.5. 

Individual peaks are spread about the chromatographic plane depending upon the 

component volatility and polarity, and abundance is represented by the peak height. A one- 

dimensional chromatogram of the first dimension (apolar column) is also shown in the 

background for comparison. The column bleed peaks, which elute below the 

monoaromatic hydrocarbons, have been removed from the chromatogram for clarity, 

however, the saturated impurities remain. Clearly, the monoaromatic UCM hydrocarbons 

are better resolved using the two-dimensional chromatography rather than conventional 

one-dimensional GC. 

Figures 4.6a and 4.6b focus on the area of the GCxGC-ToF-MS chromatogram 

corresponding to the UCM hydrocarbons. The one-dimensional chromatogram is shown in 

the background, confirming the unresolved nature of the sample when analysed by one- 

dimensional gas chromatography. In all chromatograms the background is blue, with low 

intensity peaks coloured white and high intensity peaks coloured red. The chromatograms 

indicate that large numbers of individual hydrocarbons contribute to the UCM. From their 

close proximity to one another it can be inferred that these compounds have very similar 

volatility and polarity properties. There is also a range in compound abundance, with a few 

components clearly present in higher concentration (red peaks) in the sample than others 

(white peaks). 

For comparison the water soluble monoaromatic UCM sample was also analysed by 

conventional GC-MS. The I-D chromatograrn of the sample is shown in Figure 4.7. This 

shows the unresolvable nature of the complex mixture of hydrocarbons present in the 

sample when analysed by this technique. 
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Figures 4.6a and 4.6b. GCxGC-ToF-MS 2-D chromatograms of the water 
soluble monoaromatic UCM. Figure 4.6a focuses in on the compounds 
responsible for the UCM, which can be seen in I-D at the back of the 
chromatogram. Figure 4.6b shows the water soluble monoaromatic UCM in 
more detail, with the I -D chromatogram shown in the background. 
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The ChromaToFr" v. 2.01 data processing software (Leco Corporation, USA) is able to 

deconvolute regions within the chromatograrn that have unique mass spectra (Section 

5.10). These regions are then assigned an individual 'peak marker' denoting the compound 

causing the observed mass spectrum. The software can be adjusted to plot up to 5000 

individual peaks, based on those components which are most abundant. In the present 

study the instrument was adjusted to plot the 2500 most intense peaks. A plot of the 'peak 

markers' assigned for the water soluble monoaromatic UCM hydrocarbons is presented in 

Figure 4.8. From the current sample, the instrument was able to determine 1860 regions 

with unique mass spectra above the limits of analytical detection. Of the 1860 peaks 

identified, a proportion corresponded to the stationary phase material 'bleeding' from the 

column. Other peak markers were identified as a series of alkanes; impurities introduced 

when the soluble monoaromatic UCM was generated. Those peaks corresponding to the 

column bleed material and the saturated impurities are highlighted in Figure 4.8. 

The mass spectra of the column bleed and saturated compounds are typically characterised 

by diagnostic base ions, which can be used for their identification. These base ions have 

been summarised in Table C. I. (Appendix Q. Peak markers corresponding to the column 

bleed (538 peaks; Figure C. 1, Appendix C) and the saturate impurities (70 peaks; Figure 

C. 2, Appendix Q were identified and removed. These are presented in appendix C as 

individual plots. Some of the diagnostic base ions for the column bleed compounds are 

also characteristic of other hydrocarbons. Care was taken to ensure only those compounds 

eluting in the column bleed region were removed and that any peaks which were possible 

UCM components were retained. Removal of the column bleed and saturated impurities 

left 1252 peaks considered as water soluble monoaromatic UCM components. 
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The mass spectra associated with these 1252 peak markers were compiled as a unique 

NIST library. The MS Search function in v. 2.0. of the NIST software allowed the data to 

be viewed as single library, permitting analysis of the individual mass spectra. Some mass 

spectra exhibited a poor degree of clarity, providing inadequate diagnostic data for 

compound identification. However, a good proportion of the spectra appeared sufficiently 

6clean' for potential identification of the compound to be achieved. The 'library editor' 

facility of the NIST software permits individual mass spectra to be added or removed from 

a library. Thus, it was possible to edit the 1252 component UCM library, removing 

unclear/poor spectra. Only those spectra that appeared most likely to enable compound 

identification were retained in the final UCM library (total 490). A peak marker plot of 

these remaining 490 compounds is presented in Figure 4.9. All compounds elute before 

1800 seconds on the first dimension, thus, the x-axis has been reduced for enhanced clarity. 

A number of compounds appear to have very early retention times on the second (polar) 

dimension, but elute late on the first dimension. These have been highlighted on Figure 

4.9. Such compounds are thought to have second-dimension retention times longer than the 

8-second modulation time and actually elute very early on the next chromatogram. This 

6wrapping over' onto the next elution cycle has been observed previously (e. g. Phillips and 

Xu, 1995; Shellie et aL, 2001) and is discussed in more detail in Section 4.4.3. 
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The mass spectrum for each of the UCM components contains a characteristic base ion. 

This is the most common ion fragment produced during mass spectrometry of a particular 

compound. As groups of related compounds typically have the same base ion they can be 

particularly diagnostic in compound identification. The number of mass spectra exhibiting 

each particular base ion has been calculated, and Figure 4.10 shows their distribution 

within the 490 unknown compounds. Each column represents at least one compound class, 

indicating the UCM contains a broad range of hydrocarbon structures. However, the 

distribution is most concentrated between those compounds with base ions of m1z 157 and 

m1z 210, indicating these groups of compounds are the most abundant in the UCM. 

Table 4.1 lists the 15 most abundant base ions, and the number of compounds exhibiting 

each base ion. This is also presented as a percentage of the 490 'clean' mass spectra. The 

most abundant base ion is 169, accounting for nearly 7% of all of the compounds present. 

Those compounds with base ions of 169,183,195,163, and 209 make up the five most 

abundant hydrocarbons in the UCM, accounting for 28.3% of the 490 compounds. 

Figure 4.11 summarises the molecular weight ranges of the ten most abundant base ions as 

determined from their mass spectra. Those compounds with a base ion of 163 exhibit the 

largest diversity of molecular weights, ranging from 178 to 290 mass units. Compounds 

exhibiting base ions of 209 and 161 mass units had the most limited molecular weight 

ranges. The molecular weight range across all ten base ions was determined, with the 

lowest being 172 and the largest 290 mass units. 
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Table 4.1. Summary of the 15 most abundant base ions in the mass spectra 
generated by GCxGC-ToF-MS analysis of the water soluble monoaromatic 
UCM. 

Base ion 
(M/Z) 

No. of compounds 
with base ion 

Percentage of total (490) 
compounds 

169 34 6.9 
183 32 6.5 
195 29 5.9 
163 22 4.5 
209 22 4.5 
157 19 3.9 
167 18 3.7 
171 16 3.3 
159 15 3.1 
161 15 3.1 
181 15 3.1 
105 12 2.4 
143 12 2.4 
249 12 2.4 
91 11 2.2 

SEEN 

maximum range of the ten most abundant base ions 
[-- ---- --T 

160 ISO 200 220 240 260 280 300 

molecular weight 

Figure 4.11. Summary of the molecular weight ranges for the ten most 
abundant base ions. The molecular weight range of the compounds is shown by 
the blue bars, with the base ion characteristic to those compounds listed on the 
individual bars. A maximum range for the 10 base ions is also included. 
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4.3 Characterisation of water soluble monoaromatic UCM hydrocarbons: Results 

and Discussion 

The 490 mass spectra in the 'UCM library' were divided into sub-libraries, each containing 

those compounds sharing the same base ion (mlz). Comparison of these mass spectra with 

those listed in the NIST 'main library' aimed to bring about the positive identification of 

some UCM hydrocarbons. For each individual mass spectrum in the 'base ion libraries', 

the NIST software was able to search the 'main library' for the 100 best matches. From 

these, the most accurately matching spectra could be selected. In many cases, sufficiently 

accurate mass spectral matches were not observed, and for some of the base ions, the NIST 

software suggested no suitable compounds at all (e. g. mono- or diaromatic hydrocarbons). 

However, some good matches between unknown compounds and NIST library spectra 

were found. In fact, sufficient matches were found to provide two compound 

identifications for some base ion groups, allowing inference of other homologues within 

the base ion group. A knowledge of the fragmentation patterns in spectral data was also 

used to help in the identification and classification of compounds (e. g. Welthagen et aL, 

2003). 

Whilst some the most abundant base ion groups (e. g. m1z 169,183,163,209) did not yield 

positive matches for the unknown UCM components, others (e. g. 195,167,159,181) at 

times provided good mass spectral matches to NIST library compounds. Eight of the base 

ion groups, which provided some of the best library match data have been summarised and 

discussed below. In each case, a peak marker plot of the base ion is presented, with 

compounds having the same molecular weight highlighted. Two compounds are selected 

for characterisation in each case. 
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Frequently, more than one NIST library spectrum provided a good match for an unknown. 

In these cases, knowledge of the sample origin helped to distinguish between candidate 

compounds. The oil was fractionated into saturates, aromatics and polars using column 

chromatography, and the aromatic fraction used for further study. Therefore, those matches 

to compounds which are saturates or that contain hetero atoms (e. g. oxygen and nitrogen) 

could be ruled out. The constraints on the NIST library search could be set to look only for 

compounds containing carbon and hydrogen (hydrocarbons). 

183 



4.3.1 Compounds with a base ion of nVz 91 

A peak marker plot of the compounds exhibiting a m1z 91 base ion is presented in Figure 

4.12. Figure 4.13a shows the mass spectrum of A (retention time 1020,4.24), whilst Figure 

4.13b shows the mass spectrum of I -propyloctyl-benzene. This is proposed as the best 

match from the NIST library for A. Figure 4.14a shows the mass spectrum of B (retention 

time 1276,4.22), with Figure 4.14b showing the mass spectrum of I-propyldecyl-benzene. 

This is suggested as the best match from the NIST library for B. 

8 

7 

6 

E4 

0+- 
Soo 

Unknown B 

Unknown A 

mw 232 mw 246 mw 260 

600 700 800 900 1000 1100 1200 1300 1400 1500 
1 st Dimension 

Figure 4.12. Peak marker plot of the compounds present in the water soluble 
monoaromatic UCM exhibiting a base ion of m1z 91. Those compounds 
displaying the same molecular weight are grouped together. 
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In both cases, the mass spectra of the NIST library compounds exhibit an excellent match 

to the mass spectra of the unknown compounds. This indicates that linear alkylbenzenes 

(LABs) may indeed be components of the monoaromatic UCM. Their persistence in the 

environment has led to extensive study, particularly in terms of toxicity, as they are the 

parent material in linear alkylbenzene sulphonate (LABS) surfactant manufacture (e. g. 

Takada and Ishiwatari, 1990; Raymundo and Preston, 1992; Preston and Raymundo, 1993; 

Hellou et aL, 1994; Ellis et aL, 1996; Femandez et aL, 2002). 

Alkylbenzenes are also constituents of crude oil, with those compounds containing a lesser 

degree of alkylation being most frequently reported (e. g. ýimekovd et aL, 1970; Matisova 

et aL, 1991; Dixit and Ram, 1996; Pal et aL, 1998). However, highly alkylated benzenes 

have also been observed (e. g. Radke et aL, 1984; Matisova et aL, 1991; Ellis et aL, 1996; 

Golovko et aL, 2000; Frysinger et aL, 2003). Frysinger et aL (2003) identified a series of 

alkylbenzenes (CS-C14 substituted) in a monoaromatic UCM using GCxGC analysis and 

authentic standards. A large number of peaks for each alkyl chain length were apparent, 

indicating many isomers, some possibly containing branched chains. 

The n-alkylbenzenes of a comparable molecular weight to A and B exhibit a base ion of 

m1z 92 (e. g. Ellis et al., 1992) rather than nVz 91. Furthermore, they would be readily 

susceptible to biodegradation (Dutta, and Harayama, 2001) making them unlikely 

constituents of a UCM. LABs such as I-propyloctyl-benzene and I-propyldecyl-benzene 

still exhibit long straight alkyl chains, which could be susceptible to biodegradation 

(Takada and Ishiwatari, 1990; Dutta and Harayama, 2001). However, internal isomers 

where the phenyl group is attached near the middle of the chain are more resistant to 

biodegradation than those substituted at the end (Takada and Ishiwatari, 1990; Raymundo 

and Preston, 1992). Internal isomers are thought to be more sterically hindered and less 

accessible to bacteria than external isomers (Swisher, 1987; Alexander, 1999). 
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In the case of I -propyl octyl -benzene (mw 23 2), the phenyl group is attached to aCII chain. 

Assuming the external isomers at positions 4,5 and 6 (*) are susceptible to biodegradation, 

the internal isomers at positions 1,2 and 3 (red) would be the most resistant to 

biodegradation (Figure 4.15). These internal isomers are most likely to represent 

compound A and the other peaks with molecular weight of 232. This indeed appears to be 

the case, as there are three peaks in the peak marker plot with molecular weight of 232 

(Figure 4.12), and three possible internal isomers. Analysis of the mass spectra of the other 

two peaks indicates good matches for 1-butylheptyl -benzene and I -pentylhexyl-benzene 

isomers. 

6>13i2342*6* 

Figure 4.15. Diagram indicating the internal (red) and external (*) isomers of a 
C 11 alkylbenzene. 

The phenyl group in I -propyldecyl -benzene (mw 260) is attached to aC 13 chain. Here, the 

bioresistant internal isomers are at positions 1,2,3 and 4 (Figure 4.16). Compound B and 

the other peaks with molecular weight of 260 most likely correspond to these internal 

isomers. With four peaks in the peak marker plot having molecular weight of 260 (Figure 

4.12), and four possible interrial isomers, this appears to be the case. The mass spectra of 

the other three peaks provided good matches for I -buty1nonyl -benzene and I -pentyloctyl- 

benzene, and a reasonable match for I -hexylheptyl-benzene. 

6* '-ý7* 

Figure 4.16. Diagram indicating the internal (red) and external (*) isomers of a 
C13 alkylbenzene. 
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Significant branching along the chain would provide high resistance to biodegradation 

(Alexander, 1999). Indeed, Gough (1989) observed significant resistance to biodegradation 

by the branched alkylbenzene 9-(2-phenylethyl)heptadecane. Compounds A and B are 

from a highly weathered crude oil UCM, in which only bioresistant compounds would be 

present. Thus, compounds A and B may be internal LABs or exhibit some degree of 

branching on the alkyl chains which would further increase their resistance to 

biodegradation. Unfortunately no examples of highly branched alkylbenzenes (BABs) exist 

in the NIST library for mass spectral comparison. 

BABs have, however, been reported in crude oils and other fossil fuels (e. g. Vella and 

Holzer, 1992; Golovko et aL, 2000), including those exhibiting an isoprenoidal side chain 

(Figure 4.17; Ostroukhov et aL, 1982; Schwark and Pfittmann, 1990; Gorchs et aL, 2003). 

Vorob'eva and Petrov (1998) observed phytanyInaphthalenes with an isoprenoidal chain in 

crude oil. In all cases mass spectra were not reported. The branching, particularly terminal 

branching (e. g. Figure 4.17) increases the resistance to biodegradation (Britton, 1984; 

Swisher, 1987). 

Tenninal branching 

Phytol 

Figure 4.17. I-Methyl-4-(1,5,9-trimethyl-decyl)-benzene, possibly formed by 
ring closure and aromatisation of phytol (Golokov et aL, 2000). The molecular 
weight is 274, similar to that of the compounds in the present study. 

The water solubility of Clo and C18 substituted LABs is 40.4 and 9.6 ýtg L" respectively 

(Fernandez et aL, 2002). This fonner value corresponds well to the water solubility of the 

monoaromatic UCM, determined as 57 ± 21 gg L-1 (Chapter 3). Fernandez et al. (2002) 

also observed that LABs are toxic, inducing a narcotic affect in the aquatic crustacean 

188 



Daphnia magna. This toxic effect was found to be additive, the same mode of action as 

proposed for the monoaromatic UCM by Rowland et aL (2001). 

Hellou. et aL (1994) observed alkylbenzenes (mlz 91 and 105) in the mussel tissue of winter 

flounder (Pseudopleuronectes americanus) exposed to Hibernia crude oil. Analysis 

revealed these compounds had molecular weights of 232,246 and 260, the same as those 

present in the water soluble monoaromatic UCM analysed herein (Figure 4.12). The 

aromatic hydrocarbon TIC chromatograms of the fish extract also exhibited a dominant 

UCM. Thus, such compounds appear, to be soluble, bioavailable and toxic to aquatic 

organisms, typical of the properties of some monoaromatic UCMs (Rowland et aL, 2001; 

Donkin et aL, 2003). 

The evidence suggests that compounds A and B, together with the other components 

exhibiting a m/z 91 base ion, are alkylbenzenes. NIST library mass spectra matches 

indicate they are LABs, and the internal isomers of these compounds may be sufficiently 

bioresistant to be present in the monoaromatic UCM. However, it is likely that compounds 

A and B contain an even greater degree of branching than internal LABs. Comparison with 

authentic reference compounds is required to confirm their exact structures. 
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4.3.2 Compounds with a base ion of Wz 105 

A peak marker plot of the compounds exhibiting a m1z 105 base ion is presented in Figure 

4.18. Figure 4.19a shows the mass spectrum of C (retention time 1220,4.42), whilst Figure 

4.19b shows the mass spectrum of I -methylundecyl-benzene. This is proposed as the best 

match from the NIST library for C. Figure 4.20a shows the mass spectrum of D (retention 

time 1340,4.44), with Figure 4.20b showing the mass spectrum of 1-methyldodecyl- 

benzene. This is suggested as the best match from the NIST library for D. 
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Figure 4.18. Peak marker plot of the compounds present in the water soluble 
monoaromatic UCM exhibiting a base ion of m1z 105. Those compounds 
displaying the same molecular weight are grouped together. 
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As these compounds are isomeric to the alkylbenzenes with a m1z 91 base ion discussed in 

Section 4.3.1, only information specific to these two compounds will be discussed herein. 

The phenyl group in 1-methylundecyl-benzene (mw 246) and 1-methyldodecyl-benzene 

(mw 260) is attached to the second carbon atom of the alkyl chain. These are external 

isomer positions, which are typically more susceptible to biodegradation than internal 

isomers (Swisher, 1987; Takada and Ishiwatari, 1990; Raymundo and Preston, 1992; 

Alexander, 1999). 

Internal isomers of these compounds correspond to the LABs discussed in Section 4.3.1, 

which exhibit a base ion of m1z 91 rather than m1z 105. Study of the NIST library mass 

spectra shows that LABs with the phenyl group at position one (n-alkybenzenes) have a 

base ion of m1z 92. Those at position two have a base ion of m1z 105, and those in more 

central positions exhibit m1z 91 base ions. Thus, if compounds C and D are alkylbenzenes 

they must be substituted at the two-position, making them external isomers. 

If compounds C and D are external LAB isomers, such structures must be sufficiently 

bioresistant to preserve them in the monoaromatic UCM. This is possible given that that 

LABs used in the manufacture of LAS surfactants are still sufficiently persistent in the 

envirorunent to cause concern (e. g. Takada and Ishiwatari, 1990; Preston and Raymundo, 

1993; Hellou et aL, 1994; Ellis et aL, 1996; Fcmandez et aL, 2002). 

Although the mass spectra of LABs exhibit the best NIST library matches for compounds 

exhibiting m1z 91 and m1z 105 base ions, an absence of spectra for branched alkylbenzenes 

(BABs) in the library prevented comparison with such compounds. Since significant 

branching of the alkyl chain would increase the bioresistance of these compounds 

(Alexander, 1999), such structures should be considered. Figure 4.21 shows an 

isoprenoidal branched compound isomeric to 1-methyldodecyl-benzene. Fragmentation at 
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the same point is likely, although other minor fragment ions may be observed due to the 

branching. 

Terminal branching 

Figure 4.21. Rearrangement of the alkyl carbons in 1-methyldodecyl-benzene 
(mw 260) gives the isoprenoidal branched (1,5,9-Trimethyl-decyl)-benzene 
(mw 260) above. 

If compounds C and D are part of a homologous series of methylalkylbenzenes, only one 

isomer giving a m1z 105 base ion is possible for each molecular weight (assuming no 

branching on the chain occurs). The peak marker plot in Figure 4.18 indicates that there are 

two compounds at each molecular weight exhibiting a base ion of m1z 105. This means 

there is either a branched isomer present, or a homologous series of a different compound 

with very similar volatility and polarity characteristics. Given the number of possible 

branched isomers, it seems unlikely that only one would be present at each molecular 

weight. Furthermore, the mass spectra of the other compounds in the peak marker plot 

exhibit a different fragmentation pattern to the LABs, indicating another homologous 

series of compounds. 

Two other types of compound also exhibit a m1z 105 base ion, alkyltoluenes and 1,2-di-n- 

alkylbenzenes. Alkyltoluenes (Figure 4.22) have previously been reported in crude oil (e. g. 

Ellis et aL, 1992; Ellis et aL, 1995; Dutta and Harayama 2001). Unfortunately, the NIST 

library only has examples with C6 alkyl substituents so mass spectral comparison with the 

compounds in the peak marker plot (Figure 4.18) was not possible. 

Branched and linear alkyl chains are possible, but the absence of large numbers of isomers 

suggests the compounds are not branched alkyltoluenes. Even so, there are three possible 
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linear alkytoluene isomers (Figure 4.22). Ellis et aL, (1995) observed that the abundance of 

the different alkyltoluene isomers in crude oils was not dependent upon oil maturity, but 

appeared more dependent upon the type of source rock. It is therefore unclear which 

alkyltoluene isomer is most likely to be observed in the monoaromatic UCM sample. 

JR 

ortho (2-) 

. 4- meta (3-) 

para (4-) 

Figure 4.22. (1) Structure of the alkyltoluenes, which give a characteristic base 
ion (mlz) 105. R represents an alkyl chain of any length. (II) Three possible 
linear alkyltoluene isomers. 

1,2-di-n-alkylbenzenes identified in Amposta crude oil (Sinninghe Damste et aL, 1991) 

have two linear alkyl chains attached to the benzene ring. The reported mass spectra 

exhibit close similarities to those compounds in the peak marker plot. However, the 

number of possible isomers for each molecular weight was much greater than the number 

seen in the peak marker plot. It is therefore suggested that the compounds in the peak 

marker plot correspond to a homologous series of LABs substituted at the two-position and 

another homologous series of hydrocarbons, possibly a linear alkyltoluene isomer. In both 

cases compounds with a branched chain are possible, but the data seem to indicate such 

compounds are not present due to the small number of isomers in the peak marker plot. 
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4.3.3 Compounds with a base ion of tWz 143 

A peak marker plot of the compounds exhibiting a m1z 143 base ion is presented in Figure 

4.23. Figure 4.24a shows the mass spectrum of E (retention time 740,6.16), whilst Figure 

4.24b shows the mass spectrum of 1-methyl-3-propyl-IH-indene. This is proposed as the 

best match from the NIST library for E. Figure 4.25a shows the mass spectrum of F 

(retention time 908,6.92), with Figure 4.25b showing the mass spectrum of 3-butyl-l- 

methyl-IH-indene. This is suggested as the best match from the NIST library for F. 
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Figure 4.23 Peak marker plot of the compounds present in the water soluble 
monoaromatic UCM exhibiting a base ion of m1z 143. Those compounds 
displaying the same molecular weight are grouped together. 
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The mass spectra of the unknown compounds E and F exhibit very good matches to those 

suggested NIST library compounds. Such compounds may represent a homologous series 

of methyl-alkyl-indenes in the monoaromatic UCM. Although not widely reported, 

alkylindenes have been identified as constituents of crude oils (e. g. Matisova et aL, 1991; 

Robert et aL, 1994; Frysinger and Gaines 1999). Unfortunately, none of the studies 

reported mass spectra and assignment of the final structures was not possible in all cases. 

Matisova et aL (1991) observed nine alkylindenes in a Russian crude oil, with the 

substitution ranging from C1 to C4. A C4 substituted indene has a molecular weight of 172, 

identical to that of component E in the UCM. In fact, it is possible that unknown 

compound E is one of the indene isomers identified by Matisova et aL (1991). Frysinger 

and Gaines (1999) reported alkylindenes in a diesel fuel following analysis by GCxGC- 

MS. The authors observed longer retention times for the alkylindenes on the second- 

dimension than those observed for the alkylbenzenes. This is attributed to the presence of a 

second ring containing an additional double bond in the structure. These features increase 

polarity and thus, retention time. Although very similar in structure, the alkylindans also 

have shorter second-dimension retention times than the alkylindenes. This is caused by 

reduced polarity, resulting from the absence of the polar double bond seen in the indene 

structure. Thus the indene and indan compounds form separate groups/bands on the two- 

dimensional chromatogram (Frysinger and Gaines, 1999). 

The ordered nature of compound class distributions across two-dimensional 

chromatograms can be applied in the present study. The proposed alkylindenes in the peak 

marker plot (Figure 4.23) also exhibit longer second-dimension retention times than the 

alkylbenzenes identified in Sections 4.3.1 and 4.3.2 (Figures 4.12 and 4.18). Their 

identification is further supported by comparison with the retention time of the alkylindans 
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in Section 4.3.4 (Figure 4.26). Expectedly, the alkylindans exhibit a retention time just less 

than that of the proposed alkylindenes, due to their reduced polarity. 

Compounds E and F appear to be part of a homologous series of 1-methyl-3-alkyl-IH- 

indenes occurring in the monoaromatic UCM. The peak marker plot (Figure 4.23) indicates 

a large number of structural isomers, particularly for those compounds with a molecular 

weight of 186. Although branching of the C3 chain on the methyl-propyl-IH-indenes is 

possible, it would prevent the loss Of C21-15 (ethyl), required for generation of a m1z 143 

base ion. Therefore, only linear methyl-propyl- I H-indenes isomers are suitable candidates, 

of which there are forty two. In contrast, branching of the alkyl chain on butyl-methyl- I H- 

indenes (isobutyl) does permit formation of a m1z 143 base ion via loss Of C3H7 (propyl). 

The possibility of branched as well as linear substituents means there are 84 possible 

structural isomers of butyl-methyl-IH-indene. Whilst, substitution of the methyl and alkyl 

groups can be on either ring, it is not known how many of the possible isomers actually 

exhibit a m1z 143 base ion. As the number of possible isomers far exceeds that of the 

compounds in the peak marker plot (Figure 4.23), it is suggested that not all of the isomers 

exhibit a m1z 143 base ion. 

There are many more compounds in the peak marker plot with a molecular weight of 186 

than 172. Not only are there more compounds with a molecular weight of 186 possible but, 

due to branched isomers, such structures would probably be more resistant to 

biodegradation (e. g. Alexander, 1999). As the sample studied herein is derived from a 

biodegraded crude oil, a higher abundance of branched compounds over linear isomers 

would be expected. 

A single compound, with a molecular weight of 214, is evident in the peak marker plot 

(Figure 4.23). Unfortunately the mass spectrum is not clear, and the NIST library does not 
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contain a reference compound with a molecular weight of 214 and a m1z 143 base ion to 

permit comparison. Given the ordered nature of two-dimensional chromatograms, the 

similarity of the second-dimension retention time (polarity) to that of the other components 

indicates all compounds are part of the same homologous series. From its molecular weight 

(214), the compound is suggested to be one of the hexyl-methyl- I H-indene isomers. 

Interestingly, there appears to be a molecular weight 'cut-off point, with only one 

compound exhibiting a greater molecular weight than 186. This may be indicative that 

compounds with longer alkyl chains were more accessible to bacteria and thus subject to 

increased biodegradation. More likely, this may represent a water solubility 'cut-off, 

where compounds in this homologous series, above the molecular weight of 186, were not 

solubilised by the generator column method. 
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4.3.4 Compounds with a base ion of tWz 159 

A peak marker plot of the compounds exhibiting a m1z 159 base ion is presented in Figure 

4.26. Figure 4.27a shows the mass spectrum of G (retention time 716,5.26), whilst Figure 

4.27b shows the mass spectrum of 2,3-dihydro-1,1,5,6-tetramethyl-IH-indene. This is 

proposed as the best match from the NIST library for G. Figure 4.28a shows the mass 

spectrum of H (retention time 724,5.54), with Figure 4.28b showing the mass spectrum of 

1,2,3,4-tetrahydro-1,6,8-trimethyl-naphthalene. This is suggested as the best match from 

the NIST library for H. 
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Figure 4.26. Peak marker plot of the compounds present in the water soluble 
monoaromatic UCM exhibiting a base ion of m1z 159. Those compounds 
displaying the same molecular weight are grouped together. 
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The mass spectra of the unknown compounds G and H exhibit very close similarities to 

their suggested NIST library match compounds. However, the library matches indicate that 

compounds with a nilz 159 base ion may not represent a single homologous series. In this 

case, there is evidence for the presence of both 2,3-dihydro-tetramethyl-IH-indenes 

(indans) and tetrahydro-trimethyl-naphthalenes (tetralins) in the water soluble 

monoaromatic UCM sample. Alkylindans and alkyltetralins have been frequently 

identified in crude oil (e. g. Radke et aL, 1984; Matisova et aL, 1991; Robert et aL, 1994; 

Dixit and Ram 1996; Bastow et aL, 1998; Berthod et aL, 1998; Pal et aL, 1998; Gaines et 

aL, 1999). Sadly, none of the studies reported mass spectra and assignment of the final 

structures was not possible in most cases. 

Generally mono- or dimethyl substituted indans and tetralins are more commonly reported 

(e. g. Williams et aL, 1988; Berthod et aL, 1998; Pal et aL, 1998) than the more highly 

substituted homologues proposed for G and H in this study. Bastow et aL (1998), who 

observed highly substituted pentamethyl-tetralins in crude oil, suggested that an increase in 

substituents would result in their reduced abundance in a crude oil. This low abundance 

may be the reason for the infrequent reports of such compounds. Furthermore, compounds 

that contribute to UCMs are generally present in low abundance within a crude oil, thus 

highly substituted indans and tetralins could be expected in the UCM sample studied 

herein. Indeed, Radke et aL (1984) observed di- and trimethyltetralins in very low 

abundance in chromatograms exhibiting dominant UCMs. Other isomers and higher 

homologues may be present but are 'lost' amongst the UCM due to their low abundance. 

Matisova et aL (1991) identified 82 alkylindans and alkyltetralins in a Russian crude oil, 

with substitution ranging from C, to C5 for the indans and from CO to C4 for the tetralins. 

C4 substituted indans and C3 substituted tetralins both have molecular weights of 174. This 

is identical to components of the water soluble monoaromatic UCM. It is therefore possible 
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that unknown compounds G and H are two of the indan/tetralin isomers identified by 

Matisova et aL (199 1). 

Frysinger and Gaines (1999) have reported indans and tetralins in the GCxGC-MS analysis 

of diesel fuels. The ordered nature of the 2-dimensional chromatograms generated aided in 

compound class identification. The saturated ring in the indan and tetralin structures 

increases their polarity with respect to that of the alkylbenzenes. Thus, the alkylindans and 

alkyltetralins have longer second-dimension retention times than the alkylbenzenes 

(Frysinger and Gaines, 1999). In contrast, alkylindenes have longer retention times than 

alkylindans and alkyltetralins, as an additional double bond renders them more polar. In 

the current study, comparison of the peak maker plot (Figure 4.26) to that of the 

alkylindenes (Figure 4.23, Section 4.3.3) and alkylbenzenes (Figure 4.12, Section 4.3.1) 

reveals the same distribution. However, if the peak marker plot in Figure 4.26 contains a 

mixture of alkylindans and alkyltetralins there is little noticeable difference in their second- 

dimension retention time. This indicates that both types of compound exhibit very similar 

polarity. 

Trimethyl-indans and tetramethyl-tetralins both exhibit a high degree of substitution, 

which increases resistance to biodegradation (e. g. Bayona et al., 1986; Garrett et al., 1999). 

Indeed, during a 28 day biodegradation study of Arabian crude oil, 1,1,3-trimethyl-indan 

was the least degraded (-9%) of all the components monitored (Del'Arco and Franca, 

1999). Given the biodegraded nature of the sample studied, such bioresistant compounds 

are perhaps reasonable candidates as components of the monoaromatic UCM. 

Compounds G and H seemingly correspond to a homologous series of tetramethyl-indans, 

a homologous series of trimethyl-tetralins or a mixture of both. The peak marker plot 

(Figure 4.26) indicates that a number of structural isomers are present, particularly for 
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those compounds with a molecular weight of 174. In the case of the C4-indans, there are at 

least 119 structural isomers (including branched and linear), although it is not known how 

many of them exhibit a m1z 159 base ion following electron impact MS analysis. There are 

at least 70 C3-tetralin structural isomers (including branched and linear). However, some of 

these, such as those with a linear C3 chain (1-propyl-tetralin and 6-propyl-tetralin; NIST 

library) do not fragment to a m1z 159 base ion. Thus, in both homologous series of 

compounds, the total number of isomers with a molecular weight of 174 far exceeds the 

number of compounds observed in the peak marker plot (Figure 4.26). It is possible that 

either the C3-tetralins or the C4-indans, but most likely a combination of both, are present 

in this UCM sample given its complexity. The use of authentic reference compounds could 

perhaps confirm the characterisation of these compounds. 

Only three compounds with molecular weights greater than 174 were observed (Figure 

4.26). Their second-dimension retention times were similar to that of the other compounds, 

which indicates they are part of the same homologous series. A similar 'cut-off' point to 

that of the alkylindenes (Section 4.3.3) was also seen in this peak marker plot (Figure 

4.26), although the molecular weight 'cut-off point for the alkylindans/tetralins appeared 

to be slightly lower than that of the alkylindenes. Alkylindenes contain an additional 

double bond, which increases their polarity and this in turn would increase their water 

solubility compared to alkylindans/tetralins of a similar molecular weight. Hence they 

possess a higher 'cut-off point. 
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4.3.5 Compounds with base ions of iWz 167 and m1z 181 

A peak marker plot of the compounds exhibiting m1z 167 and m1z 181 base ions is 

presented in Figure 4.29. Figure 4.30a shows the mass spectrum of 1, whilst Figure 4.30b 

shows the mass spectrum of 2,2'-dimethylbiphenyl, proposed as the best NIST library 

match. Figure 4.31a shows the mass spectrum of J, with Figure 4.31b showing the mass 

spectrum of 1,1'-(3,3-dimethylbutylidene) bis-benzene. This is suggested as the best match 

from the NIST library for J. Figure 4.32a shows the mass spectrum of K and Figure 4.32b 

the mass spectrum of 3,5-dimethyl-l-(phenylmethyl)-benzene from the NIST library. 

Figure 4.33a shows the mass spectrum of L, whilst Figure 4.33b shows the mass spectrum 

4-isopropyl-biphenyl, suggested as the best match from the NIST library. 
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Figure 4.29. Peak marker plot of the compounds present in the water soluble 
monoaromatic UCM exhibiting base ions of nilz 167 and m1z 181. Those 
compounds displaying the same molecular weight are grouped together. 
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Those compounds with m1z 167 or m1z 181 base ions appear to correspond with 

compounds exhibiting very similar physicochemical properties, given their y-axis retention 

times on the peak marker plot (Figure 4.29). Indeed, when plotted together they form a 

band of compounds increasing in molecular weight by 14 mass units from 182 - 252. 

Thus, it was proposed that both groups corresponded to the same homologous sequence(s) 

of compounds. Comparison of unknown mass spectra (I - L) to NIST library references 

indicated that this was the likely scenario. Unknowns I-L exhibited to close mass spectral 

matches to two types of compound, alkylbiphenyls and alkyldiphenylmethanes. Library 

compounds 1,1'-(3,3-dimethylbutylidene) bis-benzene and 3,5-dimethyl-l-(phenylmethyl)- 

benzene are examples of alkyldiphenylmethanes. 

Adams and Richardson (1953) were possibly the first to identify biphenyl and one of its 

methylated homologues (3-methylbiphenyl) in crude oil. Since then, low molecular weight 

alkylbiphenyls (e. g. CI-C3 substituted) have been frequently observed in crude oils (e. g. 

White and Lee, 1980; Alexander et al., 1986; Blanco et al., 1991; Alexander et al., 1994; 

Lai and Song, 1995; Pal et al., 1998; Jiang and Li, 2002). In contrast, higher substituted 

homologues are only rarely reported (e. g. Mair and Mayer, 1964; Yew and Mair, 1966; 

Trolio et aL, 1999). Unfortunately, very limited data regarding alkyldiphenylmethanes is 

available in the literature (e. g. Anders et aL, 1975; Lacotte et al., 1996; Trolio et al., 1996; 

Trolio et al., 1999; Jiang and Li, 2002). 

Whilst they have been suggested as common constituents of crude oil (Trolio et aL, 1996), 

diphenylmethane and its alkylated homologues generally occur in low abundance (e. g. 

Jiang and Li 2002). The concentration of alkylated biphenyls is also typically low in crude 

oils. For example, Yew and Mair (1966) determined a range of 0.0006-0.0063%, whilst 

Adams and Richardson (1953) estimated that the quantity of biphenyl in the crude oil was 

~0.003%. Such low abundance may explain why alkylated biphenyls are present in the 
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UCM studied herein. Interestingly, Lacotte et al. (1996) observed small amounts of alkyl 

diphenylmethanes and biphenyls were released from the asphaltene matrix during 

biodegradation. These compounds appear to have been trapped in the asphaltene matrix 

prior to the degradation. In heavily biodegraded crude oils where UCMs predominate, this 

may be a source of UCM components. 

Cumbers et al. (1986) identified all of the possible, methyl-, ethyl- and dimethyl-biphenyl 

isomers in a range of Australian crude oils. Isomers substituted at the meta position(s) were 

the most abundant, whilst ortho-substituted isomers the least. The order of stability for 

methyl-, ethyl- and dimethyl-biphenyls is reported as meta>para>ortho (Cumbers et aL, 

1987). The authors suggest the thermodynamic stability of the individual isomers is 

responsible for this distribution pattern. A similar isomeric distribution for alkylbiphenyls 

has been reported in other studies investigating thermodynamic stability of crude oils (e. g. 

Alexander et aL, 1986; Cumbers et aL, 1987; Alexander et aL, 1994). 

Trolio et aL (1999) studied the effect of crude oil biodegradation on the isomeric 

distribution of alkylbiphenyls and alkyldiphenylmethanes. CI-C2 biphenyls and C, 

dipheny1methanes with substitution at the para-position became more abundant with 

increasing biodegradation, indicating that they are the most bioresistant. The trimethyl- 

biphenyls are even more resistant to biodegradation due to their increased substitution, but 

the order of resistance between individual isomers was less obvious. However, the most 

sterically hindered conformations, suggested by Trolio et aL (1999) as those with ortho- 

substitution, were considered the least susceptible to biodegradation. This positional effect 

of the substituents upon the rate of microbial degradation has previously been observed for 

alkylated PAH (e. g. Budzinski et aL, 1998; Alexander, 1999; Holder et aL, 1999; Leblond 

et aL, 200 1). 
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Trolio et aL (1999) observed that C2-biphenyls and Cl-diphenylmethanes (mw 182) were 

absent in highly biodegraded crude oils, but that C3-biphenyls (mw 196) were still present. 

A similar trend is apparent in the peak marker plot (Figure 4.29), where only one 

compound of molecular weight 182 but nine peak markers exhibiting molecular weights of 

196 occur. There are 19 possible C2-biphenyl and Cl-diphenylmethane (mw 182) isomers. 

In contrast, 68 C2-diphenylmethane and C3-biphenyl (mw 196) isomers are possible. The 

compounds in the peak marker plot (Figure 4.29) could correspond to isomers exhibiting 

substitution at the ortho-position, as they are the most bioresistant (Trolio et aL, 1999). 

The number of alkylbiphenyl and alkyldiphenylmethane isomers far exceeds those seen in 

the peak marker plot (Figure 4.29). However, as the present sample is heavily biodegraded, 

removal or depletion of meta- and para-substituted isomers and preservation of the least 

abundant ortho-isomers could be expected to have occurred. This would result in those 

isomers which are abundant in non-biodegraded crude oils (e. g. Trolio et aL, 1999) being 

depleted or removed leaving only the bioresistant isomers initially present in low 

abundance. This provides the ideal conditions for the occurrence of a UCM. Thousands of 

compounds in low abundances, many of which are isomeric, all sharing very similar 

physicochernical properties. The peak marker plot (Figure 4.29) clearly indicates that only 

a few of the possible biphenyl and diphenylmethane isomers appear to remain in heavily 

biodegraded crude oils and UCMs. 

It should be noted that not all of the alkylbiphenyl and alkyldiphenylmethane isomers 

present in the water soluble monoaromatic UCM analysed in the present study will be in 

the peak marker plot (Figure 4.29). It might be easy to assume that the mass spectra of 

structural isomers are very similar. However, mass spectral comparison of 

dimethylbiphenyl isomers in the NIST library indicates that whilst some isomers do exhibit 

almost identical mass spectra (e. g. 2,2' and 2,3') others show major differences. Therefore, 
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mass spectra can be diagnostic for individual dimethylbiphenyl isomers. Study of the NIST 

library mass spectra also indicated that not all dimethylbiphenyl isomers exhibit a base ion 

of m1z 167. In some cases, the molecular ion (182) is also the base ion, and these isomers 

would not appear in the peak marker plot (Figure 4.29). The trimethylbiphenyls can have 

base ions of m1z 181 or m1z 196 (also the molecular ion), although deviations from this can 

occur when substitution involves an ethyl or propyl group. 

Hellou et aL (1994) monitored the bioaccumulation of crude oil in the mussel tissue of 

winter flounder. UV fluorescence and GC-MS analysis indicated the presence Of C2- 

biphenyls, but they were difficult to identify amongst the few resolved hydrocarbons in the 

sample. It was suggested that alkylbiphenyls occurred in the unsaturated UCM present in 

the mussel extract. Such components of crude oil appear to be bioavailable to marine 

organisms, and may contribute to the toxicity of UCMs reported by Rowland et al. (2001) 

and Donkin et aL (2003). 

Those compounds present in the water soluble monoaromatic UCM with base ions of m1z 

167 and m1z 181 appear to correspond to either a homologous series of alkylbiphenyls, 

alkyldiphenylmethanes, or a mixture of both. Reddy et aL (2002) and Frysinger et aL 

(2003) used GCxGC analysis to confirm the presence of alkylbiphenyls in a petroleum 

derived UCM, although characterisation of individual compounds was not possible. Trolio 

et aL (1996) suggest that methyldiphenylmethane isomers all have similar mass spectra, 

which in turn are similar to the C2-biphenyls. Furthermore, the retention times of both 

compound types are very similar, making identification of -individual compounds 

extremely difficult. Thus, the use of authentic reference compounds is essential for 

thorough characterisation. 

211 



4.3.6 Compounds with base ions of ntl, - 195 and m1z 210 

A peak marker plot of the compounds exhibiting m1z 195 and m1z 210 base ions is 

presented in Figure 4.34. Figure 4.35a shows the mass spectrum of M, whilst Figure 4.35b 

shows the mass spectrum of 1,2,3-tnmethyl-4E-propenyl-naphthalene, proposed as the best 

NIST library match. Figure 4.36a shows the mass spectrum of N, with Figure 4.36b 

showing the mass spectrum of 1,2,3,4-tetrahydro-9-propyl-anthracene. This is suggested as 

the best match from the NIST library for N. Figure 4.37a shows the mass spectrum of 0 

and Figure 4.37b the mass spectrum of 3,4-di ethyl -biphenyl from the NIST library. Figure 

4.38a shows the mass spectrum of P, whilst Figure 4.38b shows the mass spectrum 1,2,3,4- 

tetrahydro-9,1 O-dimethyl-anthracene, suggested as the best match from the N IST library. 
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Figure 4.34. Peak marker plot of the compounds present in the water soluble 
monoaromatic UCM exhibiting base ions of m1z 195 and m1z 210. Those 
compounds displaying the same molecular weight are grouped together. 
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Those compounds exhibiting base ions of m1z 195 and m1z 210 have very similar y-axis 

retention times on the peak marker plot (Figure 4.34), indicative of compounds sharing 

similar physicochernical properties. For those compounds with a molecular and base ion of 

m1z 210, an abundant ion with a mass of 195 was also evident in the spectrum. When these 

two ions were plotted together they form a band across the x-axis of the peak marker plot 

(Figure 4.34), which increases in molecular weight by 14 mass units from 210 - 266. Both 

base ion groups appeared to be part of the same homologous series of compounds. Indeed, 

comparison of the unknown mass spectra M-P to those in the NIST library reference 

indicates that both groups exhibit a close match to alkylbiphenyls, 

alkyltetrahydroanthracenes and alkyInaphthalenes. 

The only compound registered in the NIST library with a molecular weight of 210 and a 

base ion of m1z 195 is 1,2,3-trimethyl-4E-propenyl-naphthalene (Figure 4.35b). Whilst this 

compound is a good mass spectral match for component M, the double bond in the alkyl 

chain is unlikely to be representative of typical components in crude oil or of UCM 

compounds. The unsaturated bond is too unstable and readily biodegradable for such a 

compound to occur in a biodegraded crude oil. Rather, compound M is suggested to 

correspond to an isomer or homologue of one of the compounds proposed for N-P. 

The alkylbiphenyls have been previously discussed in Section 4.3.5 with regard to their 

occurrence in the water soluble monoaromatic UCM. Only information specific to the 

particular examples given in this section will be discussed further. Tetrahydroanthracenes 

and the isomeric tetrahydrophenanthrenes, classed as hydroaromatics, have been reported 

in a wide variety of natural organic materials. This includes kerogen (Radke et aL, 1986), 

coal tar pitch (Blanco et aL, 1991), coal-derived oils (Marsh et aL, 1984), coal extracts 

(White and Lee, 1980) and , oil shales (Borrego et aL, 1997). However, 

tetrahydroanthracenes and tetrahydrophenanthrenes are only rarely reported in crude oils 

215 



(e. g. Pankova et al., 1977; Armstrong et al., 1991; Killops, 1991) although other 

hydroaromatic compounds such as indans and tetralins are frequently identified in crude 

oils (Radke et al., 1984; Matisova et al., 1991; Bastow et al., 1998; Gaines et al., 1999). 

Therefore, the occurrence of tetrahydroanthracenes and tetrahydrophenanthrenes in crude 

oil is not necessarily unexpected. Perhaps their scarcity in the literature may be due to such 

compounds not typically being monitored or sought after in crude oil samples. 

Alkylbiphenyls with a molecular weight of 210 posses a C4-substitution. The two C4- 

biphenyl mass spectra available in the NIST library demonstrate that a base ion of m1z 195 

can be generated by the presence of both methyl- and ethyl-substituents. However, higher 

molecular weight compounds in the series (224,238,252) must contain longer alkyl chains 

rather than more substituents in order to preserve the m1z 195 base ion. Indeed, 

hexamethyl-biphenyl has a molecular weight of 238, but a base ion of m1z 223 rather than 

m1z 195 (NIST library). Nine compounds in the water soluble monoaromatic UCM sample 

studied exhibited a molecular weight of 238 and a base ion of m/z 223. From comparison 

to the NIST library, these compounds appear to correspond to C6-biphenyls or C5- 

diphenylmethanes (Section 4.3.5). 

Whilst alkyltetrahydroanthracenes provide good matches in some cases, such compounds 

are unlikely to occur in crude oils. Not only is anthracene rather unstable (Killops and 

Killops, 1993), there is also a lack of suitable precursor molecules. Hence, anthracene and 

its alkylated homologues are hardly ever observed in crude oils. In contrast, phenanthrcne 

is not only much more stable, but there are large numbers of biomarker precursors 

containing this structure e. g. steranes, diasteranes and terpanes (Radke et al., 1986; Killops 

and Killops, 1993; Peters and Moldowan, 1993). Therefore, the compounds identified in 

the monoaromatic UCM studied are thought to correspond to alkyltctrahydrophenanthrenes 

(e. g. Figure 4.39) derived from biological sources. Indeed, Killops (1991) reports the 
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occurrence of a C4-tetrahydrophenanthrene, in both crude oil and its source rock organic 

matter. However, the abundance of these compounds were significantly reduced in the oil 

comPared to the source rock. 

Owing to the limited literature regarding the occurrence of tetrahydrophenanthrenes in 

crude oil, discussion of their isomeric distribution is difficult, and analogies to other 

compounds must be drawn. Radke et aL (1982 and 1986) observed the 2- and 3- 

methylphenanthrene isomers (P-substituted) exhibited greater abundance than the I- and 9- 

methylphenanthrene isomers (a-substituted). The two ethyl-tetrahydrophenanthrene 

isomers in Figure 4.39 (11 and 111) show substitution at both the P- and the a-positions. 

1 11 11 

10 

4L . )2 

P-alkylation a-alkylation 

Figure 4.39. Possible substitution positions of tetrahydrophenanthrene (I), and 
two possible isomers of ethyl- 1,2,3,4-tetrahydrophenanthrene, indicating both 
P (II) and a (III) substitution of the ethyl group. 

a-substitution results in increased strain between the ethyl group and the substituent on the 

adjacent aromatic ring (*). The reduced strain in P-substitution results in higher thermal 

stability of these conformations and leads to their greater abundance (Radke et aL, 1986). 

For tetrahydrophenanthrene, positions 2,3,6 and 7 are P, whilst positions 1,8,9 and 10 

are a. Positions 4 and 5 are even more sterically hindered (Figure 4.39). A similar 

distribution of a- and P-substituted isomers has been observed for alkylnaphthalenes (e. g. 

Alexander et aL, 1985; Alexander et aL, 1986; Strachan et aL, 1988; Bastow et aL, 1998). 
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Biodegradation also affects the isomeric distribution of compounds exhibiting a- and 

substitution. Volkman et aL (1984) observed that dimethy1naphthalenes exhibiting 

substitution were the most susceptible to biodegradation. This is in complete contrast to the 

pattern observed with thermal stability. Additionally, Volkman et aL (1984) observed that 

adjacent substitution (particularly methyl groups) on an aromatic ring is the most resistant 

to biodegradation. Thus increased steric hindrance appears to result in greater 

bioresistance. This preferential biodegradation of the abundant P-substituted isomers could 

lead to preservation and enrichment of minor a-substituted isomers. The resulting mixture 

could contain both isomeric conformations at low concentration. This process, therefore, 

may be one of the contributing factors in the enhancement of UCMs in 

weathered/biodegraded crude oils. It further supports the suggestion that 

tetrahydrophenanthrenes are components of the UCM studied herein. 

There are 59 possible isomers of the C2-tetrahydrophenanthrenes (mw 210), although those 

with substituents in the 4 and 5 positions are unlikely owing to severe steric hindrance. 

Assuming the presence of both a- and P-substituted compounds, this still leaves 40 feasible 

isomers, which can account for the 30 compounds with a molecular weight of 210 in the 

peak marker plot in (Figure 4.34). Additionally, C4-biphenyls containing substituents no 

larger than methyl or ethyl groups can also contribute to those compounds with a 

molecular weight of 210 (Figure 4.34). Thus, both compounds easily account for the 

number of isomers observed. Alkylbiphenyls have already been proposed as components 

of the UCM sample studied (Section 4.3.5). It is suggested that the compounds in the peak 

marker plot (Figure 4.34) correspond to a mixture of both alkylbiphenyls and 

alkyltetrahydrophenanthrenes. However, the use of authentic reference compounds is 

required to confirm their occurrence, and characterise individual components. 
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4.4 Discussion 

GCxGC-ToF-MS analysis (Section 5.10) has provided a more detailed, though still 

preliminary chromatographic characterisation of UCM compounds than previously 

possible and diagnostic mass spectral data have been obtained for these now resolved 

components. Sections 4.3.1 - 4.3.6 have provided evidence that alkyl- benzenes, indenes, 

indans, tetralins, biphenyls, diphenylmethanes and tetrahydrophenanthrencs occur in the 

'water soluble' UCM. Many of these compound classes might be regarded as biomarkers 

because the alicyclic parts of their structures resemble the sub-units of biological 

precursors (Killops and Killops, 1993; Peters and Moldowan, 1993; Gahm et aL, 1998). A 

significant number of the components identified in the present study appear to be 

previously unidentified isomers or homologues, with many appearing to be more highly 

substituted derivatives of known crude oil constituents. The number of potential isomers 

increases vastly with an increase in the complexity of hydrocarbon structures. Indeed, a 

rise in the number of isomers with greater substitution or chain length has been observed as 

an increase in the number and density of peaks in the later stages of the first dimension 

(Venkatramani and Phillips, 1993; Hamilton and Lewis, 2003). This may be one reason 

behind the occurrence of a UCM in a one-dimensional gas chromatogram of weathered 

crude oil. 

GCxGC allowed the entire sample to undergo separation on two different phase columns. 

This resulted in greatly increased peak capacity compared to one-dimensional gas 

chromatography (Frysinger et aL, 1999; Dalltige, 2003; Hamilton and Lewis, 2003; 

Marriott et aL, 2003). The ordered nature of the chromatograms generated using the 

apolar/polar GCxGC column combination has aided in the identification of compound 

groups. However, this increased separation power enables the generation of many more 

high quality mass spectra when mass spectrometric detectors are coupled to the system 

(Dalluge et aL, 2002a). Thus, it is the power of the ToF-MS detector, which really provides 
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diagnostic data for each of the resolved compounds. This not only helps in confirming the 

presence of compound classes identified from the chromatogram, but goes some way to 

allowing characterisation of individual UCM components (e. g. Welthagen et aL, 2003). 

Identification of individual compounds was still reliant upon the availability of mass 

spectra listed in the NIST library and in the literature. For the majority of cases in the 

present study, sufficiently accurate library mass spectra matches were unavailable, 

resulting in misidentification occurring in the automated processing. Manual data 

processing and library searches helped to correct this but proved to be very time- 

consuming. Nonetheless, this was very worthwhile as the data may prove representative of 

crude oil UCMs in general. If so, this may have important regulatory considerations for the 

toxicological effects observed for UCMs (e. g. Rowland et aL, 2001; Donkin et aL, 2003). 

Despite the instrument software being programmed to acquire 2500 peaks from the sample 

analysed, only 1860 peaks were identified. These included over 500 peaks which 

corresponded to bleed ions from the GC columns. Removal of these left 1252 peaks 

attributed as UCM hydrocarbons. The identification of only 1252 peaks suggests all the 

resolved sample components were detected. However, the water solubility study in Chapter 

3 showed only a proportion of the compounds in the original monoaromatic UCM were 

sufficiently soluble for analytical detection. 

A large number of the 1252 identified peaks exhibited mass spectra that appeared 

unsuitable for characterisation. In many cases, these spectra were 'noisy', appearing be an 

amalgamation of abundant fragment ions from more than one compound (e. g. Figure 

4.40a). This indicates that even with GCxGC, co-elution of compounds may still occur, 

and that the software is unable to deconvolute single mass spectra in all cases. Indeed, 

coelution of structural isomers has also been acknowledged in some GCxGC studies of 

petroleum (Gaines et aL, 1999). Furthermore, many chromatograms have fragmentation 
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patterns which do not appear to correspond to a single compound containing only carbon 

and hydrogen atoms (Figure 4.40b). In the case of Figure 4.40b abundant ions are present 

at masses of 159 and 167. This mass difference of 8 atomic units cannot be fragment ions 

from the same compound, providing further evidence for co-elution of UCM components. 

Removal of these non-diagnostic mass spectra resulted in 490 components deemed suitable 

for characterisation. 
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Figure 4.40a. Mass spectrum of the peak at a retention time of 988,6.14, which 
contains multiple abundant ions, indicating co-elution of compounds. Figure 
4.40b. Mass spectrum of the peak at a retention time of 868,5.54, containing 
ions which cannot be accounted for by standard fragmentations of compounds 
comprised only of C and H atoms. 

When the 490 peak markers were plotted (Figure 4.9), all of the components exhibited 

short first-dimension (volatility) retention times. In the case of hydrocarbons, those with 

the lowest molecular weight are generally the most soluble. Indeed, all hydrocarbons in the 

water soluble monoaromatic UCM elute before 1800 seconds in a chromatographic 

analysis that lasts 3500 seconds. Given the nature of the sample, it was no surprise to find 

that larger less soluble compounds, which are also less volatile, were absent from the 

sample. A GCxGC comparison of the original monoaromatic UCM (Sutton, unpublished) 

to that of the soluble fraction analysed in the current study highlights this absence of high 

molecular weight hydrocarbons (Figure 4.41). 
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Comparison of the second-dimension retention times for the two samples is effectively a 

measure of the polarity of a particular compound. Hydrocarbons can exhibit subtle 

differences in polarity depending upon their structure. For example, the presence of 

aromatic rings increases the polarity of a hydrocarbon with respect to those containing no 

double bonds (i. e. saturated). Therefore, compounds with higher polarities, such as 

aromatic hydrocarbons, are more soluble than saturated compounds (e. g. alkanes) of a 

comparable carbon number (McAuliffe 1966; Eganhouse and Calder, 1976; Siron et al., 

1991; Kuo, 1994; Schwarzenbach et al., 2003). 
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Figure 4.41. Comparison of the peak marker plots of the original 
monoaromatic UCM ( \) and the water soluble fraction of the monoaromatic 
UCM (0). Peak marker data for the original monoaromatic UCM provided by 
Sutton (unpublished data). 

Figure 4.41 highlights differences in the retention times for the compounds present in the 

two samples. The water soluble monoaromatic UCM appears to be dominated by 

components which have longer retention times on the second axis than the original 

monoaromatic UCM. This indicates the water soluble monoaromatic UCM is dominated 

by the most polar hydrocarbons occurring in the original monoaromatic UCM- As the 

sample is considered to contain predominantly monoaromatic hydrocarbons, a narrow 
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range of polarities could be expected. However, the range of second-dimension retention 

times is quite broad, indicating that the sample actually contains a mixture of compounds 

with a wide range of polarities. Identification of compound classes in Sections 4.3.1 - 4.3.6 

indeed showed that a wide range of both monoaromatic and diaromatic hydrocarbon 

classes were present in the sample, accounting for this broad polarity range. The n-alkanes 

in the water soluble monoaromatic UCM are thought to have been enriched compared to 

the original monoaromatic UCM as part of the dissolution process (Section 5.9). 

Additionally, the reduced number of compounds in the water soluble fraction may have 

permitted their detection by the GCxGC-ToF-MS system. 

Although an automated NIST library search was completed during the data acquisition, a 

manual library search using elemental constraints proved to be more accurate. However, 

owing to this manual post-processing, some of the peak markers corresponding to 

members of the homologous series' proposed in Sections 4.3.1 - 4.3.6 may have been 

omitted. First, the selection of individual mass spectra for further characterisation was 

based upon visual interpretation of those most likely to provide good library matches. 

Thus, any coeluting compounds are likely to have been omitted. Second, the method used 

to group the compounds into different series focused upon the base ions in the mass 

spectra. During the study it became evident that not all compounds in a homologous series 

exhibited the same base ion (Sections 4.3.1 - 4.3.6). Some of the isomers or compounds 

from a particular series may still be present in the mixture, but due to differing base ions 

they will not occur in the peak marker plots (Sections 4.3.1 - 4.3.6). 

A proportion of the data generated still remains not fully processed, and a large amount 

unreported due to limitations with both time and report length. Only a few of the base ion 

groups have been analysed and presented in detail (Sections 4.3.1 - 4.3.6). This limitation 

with time was the most significant, particularly because the data processing was conducted 
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manually rather than with computer software. Whilst processing software does exist, it was 

unavailable for use in the current study. Such software would certainly have increased the 

data processing efficiency and allowed the study of many other groups containing peaks 

and associated mass spectra that appear promising for group type identification and 

characterisation of individual compounds. 

4.4.1 The molecular weight range of the water soluble monoaromatic UCM 

The Lee index (aromatic) was used to determine a carbon number range of CIO to C17 for 

the water soluble monoaromatic UCM in Chapter 3. Figure 4.11 shows that the molecular 

weight of the 10 most abundant base ions ranges from 172 - 290 mass units. Whilst it is 

difficult to relate this directly to the Lee index retention data, calculated in Chapter 3, basic 

comparisons can be made. Calculations suggest a molecular weight of 172 will most 

probably correspond to a C13 hydrocarbon, whilst a molecular weight of 290 more than 

likely represents a C22 hydrocarbon. A definite difference between the two ranges is 

apparent, with the Lee index range (CIO-C17) being lower than that estimated from the data 

in Figure 4.11 (C13-C22). As the Lee index is based on unsubstituted aromatic 

hydrocarbons, deviations will be expected for alkylated aromatic hydrocarbons, and this 

appears to be the case. Indeed, all compounds in the peak marker plots shown in Sections 

4.3.1 - 4.3.6 are alkylated aromatics, with molecular weight ranges that fall within those 

determined in Figure 4.11. This allows a more accurate molecular weight range to be 

determined for the hydrocarbon components in the monoaromatic UCM. 

From Figure 4.11 it is evident that many of the most abundant base ions exhibit 

significantly different molecular weight ranges. Some have broad molecular weight ranges 

whilst other are very limited. If the core structure for each of the compounds in a series 

remains the same, an increase in molecular weight is indicative of greater alkylation. 

Where the molecular weight range is only small, these abundant base ions are suggested to 
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correspond to: (i) a suite of different compound types all exhibiting the same base ion and 

molecular weight, or (ii) a suite of isomers of the same compound. 

4.4.2 Modelling the biodegradation, water solubility and aquatic toxicity of the 

proposed monoaromatic UCM hydrocarbons 

The Enviromnent Protection Agency's (EPA) Office of Pollution Prevention Toxics 

(OPPT) and the Syracuse Research Corporation (SRC) developed the EPI (Estimation 

Programs Interface) SuiteTM. The EPI SuiteTM is comprised of ten stand-alone programmes, 

which can be used to estimate a variety of environmentally important characteristics for 

individual chemicals. Those of interest to the present study allow estimation of the 

biodegradability (BIOWIN v 4.00), water solubility (WSKOWWIN v 1.40) and aquatic 

toxicity (ECOWIN v 0.99g). The BIOWIN program has been used and discussed in detail 

previously (Chapter 2, Section 2.3.3). The WSKOWWIN and ECOWIN programs are 

reviewed briefly below. 

WSKOWWIN generates the log octanol-water partition coefficient (Kow) of an organic 

compound from its structure, and uses this to estimate the water solubility. A detailed 

description of the methodology used to calculate the water solubility is provided by 

Meylan et aL (1996) but is beyond the scope of the present study. The ECOWIN 

programme estimates the structure-activity relationships (SARs) of a chemical based on 

structure, and uses this to predict the aquatic toxicity. SARs are developed for chemical 

classes based on measured data sets. Toxicity values for submitted chemicals are 

calculated by inserting the estimated Kow into a regression equation. The ECOWIN 

program is a computerised version of the analytical procedures currently practised by the 

Office of Pollution Prevention and Toxics (OPPT). 
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The EPI SuiteTM programs were used herein to estimate the biodegradation, water 

solubility and aquatic toxicity of the compounds proposed to be present in the UCM in 

Sections 4.3.1 - 4.3.6. The results are surnmarised in Table 4.2, and the compound 

structures (A-R) listed in Figure 4.42. The biodegradation estimates are based upon the 

Japanese MITI (Ministry of International Trade and Industry) test, where fragment 

constants were developed using multiple linear and non-linear regression analyses (Tunkel 

et aL, 2000). The estimated water solubility values correspond to the solubility of the 

hydrocarbon in distilled water at 25'C ([tg I: '). The estimated aquatic toxicity values 

represent the concentration (gg 1: 1) that would cause a 50% mortality rate (LC50) in a test 

population of fish over a 14-day period. This is termed the baseline toxicity. 

The compounds identified in Sections 4.3.1 - 4.3.6 should meet certain criteria if they are 

to be proposed consistent with the observed properties of water soluble monoaromatic 

UCM components. First, due to the biodegraded nature of the UCM sample, the 

compounds should be significantly resistant to biodegradation. Second, as the sample 

analysed is the water soluble fraction, the compounds should exhibit values comparable to 

that determined for the monoaromatic UCM (Chapter 3). Third, previous work (Rowland 

et aL, 2001; Donkin et aL, 2003) has shown monoaromatic UCMs are toxic to certain 

marine organisms (mussels). Thus, some of the compounds should be toxic to some 

aquatic organisms. 

All of the compounds, except A and B, were deemed not readily biodegradable, confirming 

their candidacy with respect to this parameter. Compounds A and B are proposed as linear 

alkylbenzenes, and may be too susceptible to biodegradation to be considered as possible 

UCM components. It was suggested in Section 4.3.1 that branched alkylbenzene 

homologues may be more bioresistant and therefore more representative of UCM 

compounds. The same parameters were calculated for a branched alkylbenzene (Q, Table 
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4.2 and Figure 4.42) of comparable molecular mass to linear alkylbenzene B. The branched 

alkylbenzene (Q) was deemed not readily degradable. This provides further evidence for 

the occurrence of branched rather than linear alkylbenzenes in the UCM. 

For comparison the same parameters were also calculated for the synthetic compound 6- 

cyclohexyltetralin (R, Table 4.2 and Figure 4.42). This compound has been previously 

proposed as an 'average' structure for components of the aromatic UCM (Thomas, 1995; 

Section 1.5), and has been used in previous UCM studies as a model compound (e. g. 

Rowland et aL, 2001; Smith, 2002). The present study has also employed this compound to 

study the biodegradation (Chapter 2) and the water solubility (Chapter 3) characteristics of 

an 'average' UCM compound. The calculated biodegradability has been previously 

discussed in Chapter 2, with the not readily biodegradable result being consistent with 

aromatic UCM component properties. 

Compounds A-R exhibit a relatively broad range of estimated water solubility values. All 

compounds except the alkylbenzenes (A-D and Q) are above the value determined 

experimentally for the monoaromatic UCM (57 pg L") under the same conditions (Chapter 

3). The alkylbenzenes are approximately an order of magnitude less soluble than the 

monoaromatic UCM. However, the water solubility of the monoaromatic UCM is an 

average value based on the contribution of all the hydrocarbon components. Therefore 

some compounds will have higher individual solubilities and others will be lower. Despite 

their water solubility being lower than the average monoaromatic UCM value, the 

alkylbenzenes still appear sufficiently soluble to occur in the sample. Additionally, 

branched compounds of the same molecular weight are generally more soluble than linear 

homologues, due primarily to a reduction in compound surface area (Silla et al., 1992; 

Tolls et aL, 2002; Schwarzenbach et aL, 2003). This provides further evidence for the 

occurrence of branched rather than linear alkylbenzenes. 
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Figure 4.42. Summary of the chemical structures of hydrocarbons A-R 
proposed as water soluble monoaromatic UCM components. The full 
nomenclature for each of the compounds is given in Table 4.2. 
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Only a proportion of the monoaromatic UCM components have to be toxic for the mixture 

to elicit toxicological effects. The water solubility of alkylbenzenes B-D appears at the 

limit required to be toxic to aquatic organisms. However, toxicity studies of alkylbenzenes 

have been conducted, which indicate that such compounds do pose a toxicological risk to 

aquatic organisms (Hellou et aL, 1994; Fernandez et aL, 2002). All other compounds, 

including the branched alkylbenzene (Q) and 6-cyclohexyltetralin (R), appear sufficiently 

soluble to cause a 50% mortality rate in fish over a 14-day period. 

The estimated water solubility of 6-cyclohexyltetralin (R) is 60.45 gg L" and that 

determined experimentally in Chapter 3 in the present study is 109 gg L"'. This indicates, 

in the case of this compound, the WSKOWWIN program is capable of accurately 

predicting the water solubility of compound to within less than an order of magnitude of 

the 'real' value. Thus, computer-based models can be very useful tools, but this study 

shows that there is no substitute for 'real' data. The predictive EPI SuiteTM software used 

in this study provides complementary information to the data generated by the GCxGC- 

ToF-MS analysis. It provides an indication or estimate of some of the important parameters 

required for a positive identification of the component hydrocarbons in the monoaromatic 

UCM. Although helpful in this respect, it does not provide sufficiently reliable data to 

qualify as a substitute for experimentally generated results. 

4.4.3 Considerations when using GCxGC-ToF-MS to analyse complex mixtures 

The software is capable of identifying the 5000 most abundant peaks in a single analysis. 

However, this was restricted to 2500 to prevent inundation of too much data given the time 

constraints of the present study. Furthermore, the water soluble monoaromatic UCM 

contains only a small fraction of the compounds present in a whole oil, and 2500 peaks 

was deemed sufficient to provide a suitable separation of the sample. However, if a 
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detailed analysis of a complex mixture such as whole crude oil is required, a limit of 5000 

peaks may not even be sufficient to identify all of the components within the sample. 

Those compounds present in lower abundance would not be recognised in the data 

processing and the quantity of data generated for each analysis would be very large. 

Therefore, complete resolution and identification of components and a manageable data set 

requires fractionation into simplified mixtures containing much fewer compounds. This 

approach was used in the present study, and appears to have been successful. 

It is widely acknowledged that GCxGC using an apolar/polar column combination 

generates an ordered two-dimensional chromatograrn which can help in the identification 

of compounds (e. g. Venkatramani and Phillips, 1993; Frysinger et al., 1999; Gaines et aL, 

1999; Phillips and Beens, 1999; Dalltige, 2003). However, this is not always a reliable 

method of characterising complex samples, and is mainly limited to the identification of 

compound classes rather than individual components. The sample is comprised 

predominantly of monoaromatic and some diaromatic compounds, which share very 

similar physicochemical properties, ftirther limiting the utility of the ordered 

chromatograms. Thus, none of the clear 'banding' of compound classes observed with 

more chemically diverse samples (e. g. Frysinger and Gaines 1999; Phillips and Beens, 

1999) is evident in the chromatograin (Figures 4.8 and 4.9). Indeed, identification of 

compound classes within the water soluble monoaromatic UCM would have been virtually 

impossible without the use of mass spectra. Ideally, a suite of authentic reference 

compounds would be analysed to confirm the presence of those compounds proposed in 

Sections 4.3.1 - 4.3.6. Unfortunately, time constraints, access to the GCxGC-ToF-MS 

instrument and availability of such reference compounds has prevented the opportunity to 

undertake this task. In many cases reference compounds would require laboratory synthesis 

and characterisation prior to analysis; which would also be time consuming. 
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The 'wrapping over' of the most polar compounds appears to have occurred. Owing to 

second-dimension retention times longer than the 8s modulation period, these compounds 

elute very early in the subsequent second-dimension chromatogram (e. g. Phillips and Xu, 

1995; Shellie et al., 2001). For example, a compound with a retention time of 9s will 

appear as a peak with an apparent retention time of 1s on the next chromatogram. This 

situation presents a variety of potential problems. A loss of ordered chromatograms occurs, 

with polar compounds eluting early on the second-dimension axis. Furthermore, 'wrap 

over' could lead to coelution with apolar compounds (e. g. alkanes) which naturally elute in 

this region. Finally, in mixtures displaying a diverse array of compound types, 'wrap over' 

may not be identified unless mass spectral detection or reference compounds are used to 

accurately characterise these compounds. 

Another issue to consider is the allocation of peak markers by the data processing software. 

It is likely that closely distributed peak markers correspond to isomers of the same 

compound. However, it is possible that more than one peak marker is being attributed to a 

single compound, especially as many of the peak markers are located extremely close to 

each other. If multiple allocation is occurring, it could lead to over estimation in the 

number of compounds present in the mixture. 

The isolation and dissolution of a monoaromatic UCM has resulted in a mixture containing 

a limited selection of compounds, all of which share very similar physicochemical 

characteristics. This can be seen in the Figure 4.8, as a large proportion of the 

chromatographic space is not utilised. The absence of very low polarity saturate 

hydrocarbons means that only half of the second-dimension space is utilised. Furthermore, 

the absence of insoluble high molecular weight hydrocarbons results in only half of the 

first dimension being utilised. This means that separation of the sample components is not 

being optimised. However, the technique is not solely limited to the use of apolar and polar 
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column combinations (Marriott et aL, 2003). Whilst, a volatility separation on the first 

dimension is generally the best approach, the second dimension phase can be altered to 

optimise the two dimensional separation of the mixture. In fact different combinations of 

stationary phases will produce a different distribution of compounds in the same mixture 

(Focant et aL, 2003; Phillips and Xu, 1995; Phillips and Venkatramani, 1993). The second- 

dimension phase can therefore be selected based upon known characteristics of the mixture 

being studied. For instance, a polar phase will provide group type separation of 

components (Blomberg et aL, 1997). A chiral phase could be utilised for the separation of 

isomers via shape selectivity within a particular compound group (Frysinger et aL, 2003). 

4.4.4 Limitations to characterisation and necessity of authentic reference 

compounds 

Whilst comparison of unknown mass spectra to those in the NIST library has provided a 

tentative identification of some UCM components, this method of characterisation is 

subject to certain limitations. It appears that many of the components in the water soluble 

monoaromatic UCM have mass spectra that do not suitably match any of those listed in the 

NIST library, making identification of such compounds impossible. However, those 

compounds identifiable from library matches can provide an indication of unmatched 

compounds which exhibit similar fragmentation patterns, base ions and retention 

characteristics. Many compounds, including those from different compound classes can 

exhibit very similar chromatographic retention times and mass spectra. This makes 

confident or accurate characterisation of compounds very difficult. Even those components 

exhibiting good matches to library compounds cannot be identified with complete certainty 

based solely on mass spectral similarity. Finally, the current study employed a ToF-MS 

detector to generate the mass spectral data. Qualitative differences between the mass 

spectrum of a known compound analysed by ToF-MS and that reported in the NIST library 
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have been noted by Shellie et aL (2001). Mass discrimination between the ToF-MS and the 

library spectrum method was suggested as the reason for the differences. Sinha et aL 

(2003) suggest the difference in ionisation sources between the two MS systems also 

compounds the problem. As the majority of the spectra listed in the NIST library are likely 

to have been generated from traditional MS analysis, this must be considered in the 

identification of compounds. Thus, positive characterisation of an unknown compound is 

only achievable with the analysis of reference compounds on the GCxGC-ToF-MS 

instrument to generate two-dimensional retention data and mass spectra (e. g. Liu et al., 

1994; Schocninakers et al., 2000; Dalhige, 2003; Frysinger et al., 2003). Indeed, Sinha el 

al. (2003) suggest designing a personalised library from compounds of interest to generate 

more suitable mass spectral matches. 

4.4.5 Model monoaromatic and diaromatic UCM hydrocarbons 

A suite of alkylcyclohexyltetralins, presented and discussed in Chapters 1,2 and 3, were 

previously proposed as 'average' monoaromatic compounds containing structural features 

typical of some UCM components (Thomas, 1995; Wraige, 1997; Smith et aL, 2001; 

Smith, 2002). No mass spectral matches to the exact isomers of compounds (I-VI) were 

seen in the water soluble monoaromatic UCM sample. However, the alkyltetralins (Section 

4.3.4), alkylbiphenyls (Section 4.3.5) and the alkyltetrahydrophenanthrenes (Section 4.3.6) 

all exhibit many of the structural features suggested previously (ibid). Not only do they all 

contain some degree of alkylation, but they are also of a comparable molecular weight. In 

addition, the combination of aromatic and saturated rings within the same structure is 

common to both the observed and 'model' hydrocarbons. Whilst none of the exact isomers 

of compounds INI were observed, it appears that the basic structures proposed by Thomas 

(1995) and developed by Wraige (1997) and Smith (2002) are certainly representative of 
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some of those compounds which have now been identified in a monoaromatic UCM by 

GCxGC-ToF-MS. 

4.5 Conclusions 

The GCxGC technique has allowed a detailed separation of a petroleum-derived 

unresolved complex mixture (UCM) of hydrocarbons isolated from Tia Juana Pesado 

crude oil and solubilised using a generator column technique. It is unlikely that even 

comprehensive two-dimensional chromatography has enabled complete resolution of the 

UCM sample. However, no analytical technique has previously provided the degree of 

separation of UCM hydrocarbons observed herein. The recent addition of a time-of-flight 

mass spectrometer (ToF-MS) to the system has provided a method for identifying these 

newly resolved UCM components. The increased separation provided by GCxGC has 

resulted in good quality mass spectra for complex mixture components. In the present 

study the technique was able to resolve 1252 compounds considered components of a 

water soluble monoaromatic UCM. Of these, 490 had associated mass spectra deemed 

suitable for characterisation. Sections 4.3.1 - 4.3.6 detail the characterisation of 16 of these 

490 compounds. Importantly, the tentative assignment of many more peaks as isomers and 

homologues these compounds was possible, totalling 114 compounds. 

Petroleum-derived UCMs are considered environmentally persistent as they are produced 

or enhanced during the biodegradation of crude oil. Rowland et aL (2001) indicated that 

the UCM was toxic to aquatic organisms, with the most toxic fraction appearing to 

comprise predominantly monoaromatic hydrocarbons (Donkin et aL, 2003). The water 

soluble monoaromatic UCM analysed in the present study is considered a better model of 

the bioavailable fraction of the monoaromatic UCM. Thus, it may be that compounds 

proposed in this study are typical of those contributing to the toxicity observed by Rowland 
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et al. (2001) and Donkin et al. (2003). Not only are they water soluble and therefore 

bioavailable to aquatic organisms, the highly substituted nature of these compounds is 

consistent with their bioresistant nature. 

The identification of UCM hydrocarbons by comparison to NIST library mass spectra 

alone cannot be considered conclusive. Mass spectra listed in the NIST library will have 

been produced using standard MS instruments. Qualitative differences between library 

mass spectra and those generated by a ToF-MS instrument can lead to difficulties in 

accurately assigning compounds. Furthermore, close similarities between mass spectra of 

different compounds, or even from different compound classes can prevent precise 

identification of an individual component. These factors have highlighted the necessity in 

using authentic reference compounds to achieve reliable characterisation. Reference 

compounds, when analysed under the same conditions as the sample mixture, will provide 

a reference library. For each compound two independent retention times and mass spectra 

generated by ToF-MS will be recorded. This information should be sufficient to accurately 

identify UCM components. 

Whilst GC x GC-ToF-MS provides an extremely powerful analytical technique, somewhat 

ironically its greatest disadvantage is the generation of vast quantities of data. The more 

complex the sample analysed, the more data is produced. In the case of petroleum-derived 

UCMs, which appear to contain many thousands of compounds, data processing has the 

potential to be very time consuming. 

In conclusion, it is suggested that in GCxGC-ToF-MS, an analytical technique has finally 

been developed with the potential to enable complete characterisation of UCMs. Indeed, 

perhaps the term UCM, borne from the analysis of weathered crude oils by one- 

dimensional gas chromatography is no longer applicable. With comprehensive multi- 

237 



dimensional gas chromatography 'partially resolvable complex mixtures' (PRCMs) might 

be considered a more appropriate description. The task of complete characterisation may 

not be straightforward, but using GCxGC-ToF-MS and a library of reference compounds it 

could be achieved. Given the widespread distribution of UCMs in the environment, the 

implication of identifying representative members of the toxic UCM compounds are 

substantial. 
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Chapter 5 

Experimental Procedures 

This chapter describes the experimental procedures conducted and the analyses performed 

as part of this study. 
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5.1 General procedures 

All glassware was pre-cleaned by soaking in 'Decon-90' (2%) overnight, rinsed with hot 

tap water, oven dried (120 T, overnight) and finally rinsed with dichloromethane to 

remove any residual organics prior to use. 

Solvents were obtained from Rathburn Chemicals Ltd., Scotland, and used once solvent 

purity had been determined by GC analysis. Typically, 100 mL of solvent was rotary 

evaporated, diluted in I mL dichloromethane, and then I ýLL was analysed by gas 

chromatography. The pass level was dependent upon the experimental procedure in use 

(Le. the amount of solvent used), however, the solvent was rejected if impurities were of a 

concentration sufficient to be observable against a test mixture (see Sections 5.2.1 and 

5.2.2). 

Silica gel (Si02, Aldrich, grade 645,60-100 mesh) and aluminium oxide (A1203, BDH, 

England; grade 1, neutral, 150 mesh) adsorbents used for open column chromatographic 

separations were soxhlet extracted (DCM, 24 hr) and oven dried (40 'C, overnight) before 

being stored in a desiccator. Preparation of the adsorbents was by activation (160 'C 

overnight), cooling in a desiccator, followed by deactivation with addition of Milli-Q grade 

water (Section 5.4) and homogenisation by mechanical shaker (1 -2 hr). 

Anhydrous sodium sulphate and cotton wool were pre-extracted (DCM, 24 hr), dried, and 

oven dried (160 *C, overnight) prior to use. Anhydrous sodium sulphate was stored in a 

desiccator. 
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5.2 General instrument details 

5.2.1 Gas chromatography (GC) 

Instrument: Hewlett Packard HP5890 series 11 gas chromatograph fitted with a Hewlett 

Packard auto-sampler and a flame ionisation detector (FID) 

Column: HP-1 fused silica capillary column, 30 rn x 0.25 mm id x 0.25 ýLm film 

thickness 

Injector: Autosplitless injection (250 'C), I ýtL injection 

Carrier gas: Helium 85 kPa head pressure 

Detector: Flame ionisation detector (FID) 

The oven temperature was typically programmed from 40-300 *C @ 10 *C min7l and held 

for 10 min. Data and chromatograms were monitored and recorded using Turbochrom 

Navigator (6.1.1.0.0: K20) software. Column performance was monitored with the use of a 

test mixture containing alkanes (pristane and heptadecane), aromatics (anthracene and 

phenanthrene) and an acid (octadecanoic acid methyl ester). The test mixture was analysed 

at 0.01 mg mL7', and the column deemed suitable for use if there was baseline resolution of 

the anthracene and phenanthrene isomers, and baseline resolution of the pristane and 

heptadecane compounds. 

5.2.2 Gas chromatography-mass spectrometry (GC-MS) 

Instrument: Hewlett Packard GC-MSD. Comprising a HP5890 series II gas 

chromatograph fitted with a Hewlett Packard HP7673 auto-sampler and 

HP5970 mass selective detector 

Column: HP-IMS fused silica capillary column, 30 mx0.25 mm id x 0.25 ýLm film 

thickness 

Injector: Autosplitless injection (250 "C), I ýtL injection 
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Carrier gas: Helium (40 kPa head pressure) 

The oven temperature was typically programmed from 40-300 ̀ C @ 10 'C min7l and held 

for 10 min. Data and chromatograms were monitored and recorded using Hewlett Packard 

ChemStation (version B. 02.05) software. Column performance was monitored with the use 

of a test mixture containing alkanes (pristane and heptadecane), aromatics (anthracene and 

phenanthrene) and an acid (octadecanoic acid methyl ester). 

Mass spectrometer operating conditions: 

Ion source temperature: 280 IC 

Ionisation energy: 70 eV 

Full Scan: mass range 50 - 550 Daltons 

Fragmentation: Electron impact (EI) 

5.3 Computer modelling of hydrocarbon structures 

Two-dimensional structures of synthetic compounds INI (Figure 5.1) were drawn with 

CambridgeSoft ChemDrawo 4.0. These structures were then imported into the 

CambridgeSoft Chem3l)'ý 4.0 software package where the energy of each molecule was 

minimised using an energy function. Energy functions are also called 'force fields' because 

the force acting on a molecule due to its conformation can be found by differentiating the 

energy function. In the present study the MM2 force field function (Allinger, 1977) was 

used to determine the minimum energy conformation of the synthetic compounds. This 

function, and modifications of it, have been commonly used to calculate the theoretical 

conformation of compounds based upon minimum energy (e. g. Broeker and Houk, 1991; 

Broeker et aL, 1991; Goodman et aL, 1994). The resulting structures were imported into 

the WebLab Viewerlite software package as individual MDL MolFiles. A 'solvent' surface 

was selected and applied to each of the molecules, and a suitable visual orientation was 
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determined. Individual molecules were then saved as JPEG images. The final image of 7- 

cyclohexyl- I -isoamyltetralin is presented in Chapter 3. 

6-cyclohexyltetralin 
(Base) 

I -methyl-7-cyclohexyltetralin 
(Methyl) 

III 
I 

1 -n-propyl-7-cyclohexyltetralin 
(Propyl) 

IV 
I? 

C,, Hlg 

vi 

CjHI9 

1-(T-methylbutyl)-7- I -n-nonyl-7-cydohexyltetralin I -n-nonyl-7-cyclohexylnaphthalene 
cyclohexyltetralin (Nonyl) (Cg-naphthalene) 

(Isoamyl) 

Figure 5.1. Two-dimensional structures of the synthetic alkyltetralins (I-VI) 
suggested as 'average' structures for some aromatic UCM components. 

5.4 Isolation of an aromatic UCM hydrocarbon fraction 

The aromatic UCM fraction was isolated from Tia Juana Pesado, (TJP) crude oil (in- 

reservoir biodegraded, Venezuelan) using the method reported by Davies and Wolff 

(1990). Isolation of the aromatic fraction (TJPAROl) of UP was via open column 

chromatography, which also yielded an aliphatic fraction (TJPALI) a heavy aromatic 

fraction (TJPAR02) and a polar fraction (POLAR) (Figure 5.2). 
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Tia Juana Pesado Crude Oil 

Si0, /AI103 (2: 1, w/w) eluted 1W 
with hexane, hexane/toluene Open column chromatography 
(3: 1), hexane/toluene (1: 1), (aliphatic, aromatic-1, aromatic-2, polar) 
and DCM 

HP5890 GC/HP5970 MSD 14r, 
HP-IMS column (30 mx Gas chromatography -mass spectrometry 
0.25 mm x 0.25 [tm) 

I 

Figure 5.2. Schematic of experimental protocol - open column chromatography 

Tia Juana Pesado crude oil (5 x ca. 1.0 g) was dissolved in hexane (-7 ml-) and rotary 

evaporated (Buchi, 40 'C) to near dryness with x 10 w/w A1203 (BDH, England; grade 1, 

neutral, 150 mesh). Remaining solvent was allowed to evaporate at room temperature. The 

oil was loaded onto a sintered. glass column silica/alumina (0.6 g CM-3 Si02 [Sigma-Aldrich 

Co. Ltd.; grade 645,60 - 100 mesh], 5% w/w H20 deactivated; A1203,1.5 % w/w H20 

deactivated; 50 % w/w A1203 : Si02). Deactivation was by addition of Milli-Q water and 

shaking for two hours (500 motions min-). The silica and alumina were each slurried using 

hexane and packed into the column, alumina above silica. The UP on alumina was added 

to the top of the column (Figure 5.3) and eluted. with three column volumes (330 cm 3) each 

of hexane (TJPALI), hexane/toluene (3: 1; TJPAROI), hexane/toluene (1: 1; TJPAR02) 

and dichloromethane (POLAR) to provide fractions of the crude oil. The fractions were 

then rotary evaporated to near dryness (Buchi, 40 'C), and transferred to pre-weighed vials 

before gently blowing to dryness (NA The 3: 1 hexane/toluene fraction was used as an 

'aromatic' UCM for the biodegradation study. 
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Glass column 

Sample (TJP crude 
oil on alumina) 

Hexane slurried 
alumina (A1203) 

Sand 

Hexane slurried 
silica (Si02) 

Filte 
Sand 

Figure 5.3. Apparatus used in open column chromatography Tia Juana Pesado 
crude oil fractionation. 

Collected fractions were analysed using GC-MS (Section 5.2.2) with an Agilent Ultra-I 

column (12.5 mx0.20 mm x 0.33 ýtrn) utilising a 72 min GC method (40-300 'C @5 'C 

min-', isothermal period of 10 min). 

The gravimetric data from the fractionation of the Tia Juana Pesado crude oil by open 

column chromatography are summarised in Table 5.1. The residual fraction of the oil 

remaining on column was calculated by the difference between the mass of the total 

recovered fractions and initial on column mass of TJP crude oil. The gravimetric data 

reported in Table 5.1 are also surnmarised as percentages of the whole oil (Table 5.2, 

Figure 5.4). The TJPAROI fractions from each of the columns were analysed individually 

using GC-MS to confinn their similarity before combining (Figure 5.5). 
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Table 5.1. Gravimetric data for fractions isolated by open column 
chromatography of Tia Juana Pesado crude oil. 

Column Number 1 2 3 4 5 Total Mass 
(mg) 

Initial Mass on 1104 1106 1051 1052 1007 5319 
Column (mg) 
Aliphatic (mg) 484 518 529 401 390 2323 

Aromatic 1 (mg) 161 167 159 152 154 793 

Aromatic 2 (mg) 49 57 52 47 46 250 

Polar (mg) 73 91 89 67 67 387 

Total Recovered 768 833 828 667 657 n/a Fractions (mg) 

Residual (mg) 336 273 223 385 351 1567 

Table 5.2. Summary of the percentage composition of Tia Juana Pesado crude 
oil. 

Mean UP Composition 

Fraction mean % 
(n = 5) 

Std 
dev % rsd 

Aliphatic 44 5 12 

Aromatic 1 15 0 2 

Aromatic 2 5 0 7 

Polar 7 1 14 

Total Recovered 71 7 9 
Fractions 
Residual 30 7 22 
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Figure 5.4. Relative proportion of each fraction of TJPAROl whole oil from 

open column chromatography (n = 5). 
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Figure 5.5. Examples of total ion current gas chromatograms of TJPAROI 
isolated from (a) column 5, (b) column 2 and (c) the combined TJPAROI 
fractions from all of the columns. 
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5.5 Isolation of a monoaromatic UCM hydrocarbon fraction 

The so-called 'monoaromatic' fraction was to be defined and isolated using normal phase 

high performance liquid chromatography. Determination of the retention time envelope 

(beginning and end of fraction collection) of the fraction was to be based on comparison 

with the retention times of known monoaromatic compounds on an amino propyl (3 x 25 

cm xI cm, NH2.8pm Hypersil'ý HS APS-2 in series) stationary phase. The 'monoaromatic' 

fraction was thus to be defined by the retention times of benzene (4 double bond 

equivalents, DBE; start of collection) and indene (6 DBE; end of collection). However, 

when the TJPAROI fraction isolated by open column chromatography was analysed by 

HPLC by the above method it was found not to contain the monoaromatic hydrocarbon 

components of the crude oil. Analysis of the saturate fraction collected during the open 

column chromatography procedure showed that the monoaromatic components of the 

crude oil had actually eluted in this fraction rather than in the aromatic fraction. The 

elution of the lower molecular weight aromatic hydrocarbons, particularly those with long 

alkyl side chains, in the saturate fraction is not uncommon in such open column 

chromatographic procedures (e. g. Robert et aL, 1994; Dutta, and Harayama, 2000; Dutta 

and Harayarna, 200 1; Frysinger et aL, 2003). 

5.5.1 Isolation of monoaromatic UCM hydrocarbons - open column 

chromatography 

As the 'monoaromatic' fraction required for study was identified in the aliphatic (saturate) 

fraction of the crude oil, a further open column chromatography step was introduced to 

isolate these aromatic compounds. The chromatography was performed using 60 x3 cm 

i. d. sintered glass columns. Columns were slurry packed with fully activated silica gel (60- 

100 mesh, Sigma Aldritch) in pentane, on a 50: 1 mass ratio to the sample. A layer of 

washed sand was placed on top of the silica gel. The aliphatic oil fraction was dissolved in 
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a minimum amount of pentane and transferred carefully to the top of the column using a 

Pasteur pipette. The aliphatic compounds were then eluted from the column with three 

column volumes of pentane. The remaining aromatic compounds (TJPAROX) were eluted 

with three column volumes of dichloromethane. Fractions were collected in 500 mL round 

bottom flasks and solvent was removed by rotary evaporation (Buchi, 40 'C) until samples 

were almost dry. Samples were then transferred to pre-weighed 7 mL vials and the 

remaining solvent removed with a gentle stream of nitrogen. 

The gravimetric data from the second open column chromatography step of the aliphatic 

fraction are surnmarised in Table 5.3. The residual fraction of the oil remaining on column 

was calculated by the difference between recovered fractions and initial on column mass of 

TJP. This data is summarised as percentage composition in Table 5.4. 

Table 5.3. Masses of hydrocarbon fractions generated by open column 
chromatography of the aliphatic fraction of UP crude oil. The mass of the 
residual fraction is determined by difference. 

Column Number 12 Total mass 
(mg) 

Initial mass on column 1040 796 1836 (mg) 
Aliphatic (mg) 823 589 1412 

Aromatic (mg) 212 199 411 

Residual (mg) 5 7 13 

Table 5.4. Summary of the percentage composition of the aliphatic fraction of 
Tia Juana Pcsado crude oil. 

Mean composition 
Mean 

Fraction (n = 2) Stdev % rsd 
percentage 

Aliphatic 77 45 
TJPAROX 23 3 14 

Residual 10 43 
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5.5.2 Isolation of monoaromatic UCM hydrocarbons - HPLC 

The separation and retention times of aromatic hydrocarbons on amino propyl (NH2) 

HPLC columns, operated under the conditions used herein, is primarily based upon the 

double bond equivalent (DBE) value of an individual compound. In general, retention time 

increases with an increase in the DBE value of a series of compounds. However, the 

retention time can also be affected by the presence of substituent groups and further by the 

degree of substitution and the size of the substituents present on a compound. Generally, a 

more highly substituted aromatic compound will have its retention time shifted so that it 

elutes earlier than a more condensed form, e. g. benzene (condensed) will have a longer 

retention time than and nonyl benzene (substituted). It is therefore unlikely that the isolated 

'monoaromatic' fraction will consist wholly of truly monoaromatic compounds. Highly 

substituted polyaromatic hydrocarbons (e. g. di-, tri-, and tetra-aromatic) will have reduced 

retention times (compared to unsubstituted homologues) which may result in their elution 

in the 'monoaromatic' fraction. 

The double bond equivalent value for a compound was determined using the equation 

below. The start and end point of the fractions was defined by analysis of a suite of 

standards with different DBE values (Figure 5.6). Thus, the 'monoaromatic' fraction was 

defined as that material eluting between benzene (4 DBE) and indene (6 DBE). A 

'diaromatic' fraction was defined as those hydrocarbons eluting between naphthalene (7 

DBE) and fluorene (9 DBE) (Table 5.5). 

DBE = (no. carbon atoms - (no. hydrogen atoms / 2)) +1 

DBE = (nC-(nH /2)) +1 

e. g. for benzene: DBE = (6 - (6 / 2)) +1 

DBE =4 
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a CC) (): 3 
Benzene Tetralin Inclene 
(4 DBE) (5 DBE) (6 DBE) 

CTJC 

0 

Naphthalene 6-cyclohexylnaphthalene 
(7 DBE) (8 DBE) 

10 

CT"'C 

6-cyclohexyltetralin 
(6 DBE) 

Fluorene 
(9 DBE) 

Figure 5.6. Molecular structure and 'double bond equivalent' (DBE) values of 
hydrocarbons used to determine the retention times of a 'monoaromatic' and 
'diaromatic' fraction of UP oil. 

Table 5.5. Summary of retention times used to determine the 'mono-' and 
'diaromatic' fractions of TJPAROX. 

Fraction Start time of cut End time of cut 
(min) min) 

Monoaromatic 30.06 36.78 
Diaromatic 36.78 54.95 

5.5.2.1 Preparative HPLC conditions 

Preparative HPLC isolation of the 'monoaromatic' fraction of UP oil was perfonned using 

a Hewlett Packard high performance liquid chromatograph (1050 series), with 3x amino 

propyl (Hypersilo HSAPS-2) stainless steel columns (25 cm x 10 mm) in series. 

TJPAROX samples were fractionated using a 100 min method (0-40min 100% hexane, 40- 

45 min 100% hexane - 100% DCM, 45-65 min 100% DCM, 65-70 min 100% DCM - 

100% hexane, 70-100 min 100% hexane for column equilibration). Samples were 

dissolved in hexane and injected onto the column in amounts of approximately 30 mg per 
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analysis. Fractions were collected in round bottom flasks and solvent was removed via 

rotary evaporation (Buchi, 40 *C) until almost dry. Samples were then transferred to pre- 

weighed 7 mL vials and the remaining solvent removed using a gentle stream of nitrogen. 

A mixture of authentic aromatic hydrocarbons (Figure 5.6) was analysed periodically to 

monitor any changes in compound retention time. 

The percentages of 'monoaromatic' and 'diaromatic' hydrocarbons in the TJPAROX 

fraction were determined via mass balance. Hydrocarbons with DBE values higher than 9 

were collected as a residual fraction, and their mass was also determined (Table 5.6). 

Table 5.6. Gravimetric summary of isolated fractions of TJPAROX Also 
shown are the envelope/cutting times of the fractions as determined by the 
analysis of known compounds. 

Mass Percentage Percentage 
Fraction Cut Time (min) of of whole oil (mg) TJPAROX 

TJPALI n/a 90 100 44 

Monoaromatic 30.06 - 36.78 16 18 8 

Diaromatic 36.78 - 54.95 23 26 11 

Residue 20.00-30.06 / 54.95-75.00 40 44 19 

Table 5.6 shows that the monoaromatic fraction isolated from the TJPAROX fraction of 

the crude oil by open column chromatography comprises approximately 18% of the 

aliphatic fraction, and therefore 8% of the whole oil by weight. 
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5.6 Synthesis of model monoaromatic UCM hydrocarbons 

The cyclohexylalkyltetralins (I-V) and cyclohexylalkylnaphthalene (VI) were synthesised 

previously (Wraige, 1997; Sturt, 2000; Smith, 2002). However, some of these compounds 

were synthesised as mixtures that required further purification herein. The 

alkylnaphthalene (VI) was formed as a by-product in the synthesis of 7-cyclohexyl-l- 

nonyltetralin (V) and was isolated by column chromatography of the products from the 

Grignard reaction as described by Sturt (2000). 

5.7 Purification of synthetic monoaromatic hydrocarbons by HPLC 

The synthesis procedures used by Sturt (2000) and Smith (2002) for the 

alkylcyclohexyltetralins (I-V) and the alkylcyclohexylnaphthalene (VI) resulted in the 

presence of impurities in the final samples. Prior to use in experimental studies herein, 

compounds INI were individually purified using preparative HPLC. 

Purification was performed using a Hewlett Packard high performance liquid 

chromatograph (1050 series), with a single amino propyl (Hypersile HSAPS-2) stainless 

steel column (25 cm x 10 mm). The compounds INI were individually injected on to the 

column with separation of synthetic compounds and the impurities in the samples achieved 

by a 40 min method (0-40min 100% hexane). Samples were dissolved in hexane to a 

concentration of 50 mg mL", and 100 gL (5 mg of each compound) was injected on 

column. All peaks were collected in individual vials. The largest component was assumed 

to be the target compound in each case. Purified samples were blown to dryness using a 

gentle stream of nitrogen, and the mass determined. Samples were then dissolved in 

dichloromethane to a concentration of I mg mL", and diluted to 0.01 mg mL-1 for analysis 

by GC-MS. Analysis by GC-MS (Section 5.2.2) confin-ned that the target compounds (I- 

VI) had been isolated (Table 5.7). 
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Table 5.7. Results from HPLC purification of alkyltetralins (I-V) and 
alkylnaphthalene (VI). 

Compound Purity 

I (6-cyclohexyltetralin) 95.6 

II (7-cyclohexyl- I -methyltetralin) 100 

III (7-cyclohexyl- I -propyltetralin) 100 

IV (7-cyclohexyl- I -isoamyltetralin) 87.3 

V (7-cyclohexyl- I -nonyltetralin) 100 

VI (7-cyclohexyl- I -nonylnaphthalene) 100 

5.8 Biodegradation experimental procedures 

The biodegradation experiments involved two main studies, one with a mono-culture, 

Pseudomonasfluorescens (Texaco) and one with a mixed culture of bacteria isolated from 

a natural site (Whitley Bay, Tyne and Wear, UK). 

5.8.1 Pseudomonasfluorescens mono-culture studies 

The biodegradation experiments were based on the methods of Gough et al. (1992) and 

Heath et aL (1997). All glassware was sterilised by autoclave (121 *C, 20 min) or dry heat 

(160 T, 60 min). Following sterilisation, all glassware was rinsed with dichloromethane, 

to remove any residual hydrocarbons. The bacterium Pseudomonasfluorescens (Texaco) 

was originally isolated from a metal working fluid waste by Beech and Gaylarde (1989). A 

pure culture of the bacterium was grown from stock used previously (Gough, 1989; Heath 

et aL, 1997). The culture was grown in a nutrient broth (13 g OXOID in I litre de-ionised 

water) for 24 h at 37 T. 
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5.8.1.1 Reagents and inoculum 

A minimal salt solution was prepared by dissolving the following salts (w/v); 0.5% NH4CI; 

0.3% K2HP04; 0.2% Na2S04; 0.1% NH4N03; 0.1% KH2PO4 and 0.01% MgS04.7H20 in 

1000 mL deionised (Milli-Q) water and sterilised by autoclave (121 T, 20 min). 10 mL of 

the sterilised minimal salts solution was added to each of 60 conical flasks (25 mL). This 

number of flasks allowed for triplicate samples to be taken at each sampling time. An 

approximately equimolar mixture of the individual hydrocarbons (I-VI, or n-pentacosane) 

or crude oil aromatic UCM, was dissolved in hexane to a concentration of I mg mL" 

(aromatic UCM 10 mg mL") and 100 gL was injected into each culture flask. Lastly, 0.5 

mL of bacterial inoculum was then added, and the flasks sealed with sterile non-absorbent 

cotton wool. Incubation (up to 50 d) was perfonned aerobically on a shaking water bath 

maintained at a minimum of 22 T and covered with foil to prevent any action caused by 

light. Control flasks containing minimal salts solution and the hydrocarbon substrate but no 

bacterial inoculum, were incubated under the same conditions to monitor any abiological 

losses. 

5.8.1.2 Measurement of bacterial viability and monitoring bacterial growth 

Two biotic cultures were set aside and used solely to monitor bacterial viability and 

monitor bacterial growth. On each day of sampling, using sterile techniques, a solution 

sample was streaked onto a nutrient agar plate. This was incubated for 24 h at 30 *C and 

any bacterial growth observed was taken as evidence of viability. 

Estimating the turbidity is a practical way of monitoring bacterial growth. As bacteria 

multiply in a liquid medium, the medium becomes turbid, or cloudy with cells (Tortora et 

aL, 1998). Turbidimetry is the term given to any procedure in which the concentration of 

cells in a suspension is estimated by passing a beam of light through the suspension and 
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comparing the intensity of the transmitted light with that obtained with a cell-free control. 

Light transmitted by a suspension is of lower intensity than that of the control due mainly 

to light scattering (Singleton and Sainsbury, 2001). Turbidimeters (e. g. colorimeters and 

absorptiometers, acting as spectrophotometers) consist essentially of a colourless, 

transparent sample holder (cuvette), a means of passing a narrow beam of monochromatic 

light through the cuvette, and a photoelectric cell to measure the intensity of the 

transmitted light (Koch, 1994; Isaac and Jennings, 1995; Singleton and Sainsbury, 2001). 

A measure of the decrease in transmitted light (turbidity) is the optical density (OD) or 

absorbance - given by log(Io/I) where Io is the intensity of the incident light, and I the 

intensity of the transmitted light (Koch, 1994; Isaac and Jennings, 1995; Tortora et al., 

1998; Singleton and Sainsbury, 2001). When the bacteria are in logarithmic growth or 

decline, a graph of absorbance versus time will form an approximately straight line 

(Tortora et al., 1998). 

In the present study the optical density of the solutions was measured using two different 

spectrophotometers (a) Cecil CE 1010 (1000 series) and (b) Unicam. Helios Epsilonto 

monitor any bacterial growth. Samples containing only the minimal salts solution and the 

test substrates but no bacteria were used as blanks to determine a 'zero' value. All samples 

were analysed in I cm 3 quartz cuvettes. 

5.8.1.3 Hydrocarbon Extraction 

Pentacosane (n-C25) was used as an internal standard during extraction and analysis 

procedures in order to monitor any losses of the synthetic compounds. The n-C25 was 

dissolved in hexane to a concentration of I mg mI; ' and 100 ýtL was injected into each 

conical flask immediately after bacterial exposure prior to extraction. For the study of the 

degradation of n-C25, n-hexacosane (n-C26) was used as the internal standard. 
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Dichloromethane (10 mL) was added to each flask and left to stand for 5 minutes to kill the 

bacteria and also to extract the hydrocarbons from the minimal salts solution. Flask 

contents were transferred to glassware suitable for centrifugation, and extracts were 

recovered by centrifugation (2500 rpm, 20 min). The hydrocarbon extraction procedure 

was repeated twice more and the extracts combined. After drying (anhyd. Na2SO4; 30 

min), extracts were evaporated to near-dryness (Buchi, 30 "C), transferred to vials and 

gently blown down to dryness (N2). Samples were made up in dichloromethane (1 mL) and 

diluted 10 x prior to analysis by gas chromatography (synthetic compounds only diluted, 

Section 5.8.1.3). 

5.8.1.4 Gas chromatography 

Extracts from the P. fluorescens biodegradation study were examined by GC (Section 

5.2.1, except HP-1 fused silica capillary column 12 rn x 0.2 mm id x 0.33 [tm film 

thickness and oven temperature was programmed from 40-300 @ 10"C min7l and held for 

10 min). Quantification was made by comparison of peak areas with calibration data and 

internal standard recoveries. The aromatic UCM samples were measured relative to a 

series of solutions of known UCM concentration (cf Gough et aL, 1992). 

5.8.2 Whitley Bay consortium mixed culture studies 

The biodegradation experiments were based on the method of Watson et aL (2002) and 

performed on compounds I, II, IV and VI. These compounds were supplied by the author 

to C. Aitken (University of Newcastle) where the experiments were conducted. All data 

analysis and processing was completed by the author (A. Booth) at the University of 

Plymouth. Culturing of the bacterial inoculum has been described previously (Watson et 

aL, 2002). Briefly, seawater was collected from St. Mary's Island (Whitley Bay, Tyne and 
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Wear, UK) and a marine sediment ('clean' sand) was collected from Cullercoats beach 

(Tyne and Wear, UK). Both were stored at 4 'C in the dark for 24h prior to use. 

5.8.2.1 Reagents and inoculum 

A total of thirteen (Flasks 1-13) 250 mL Erlenmeyer flasks were used for the experiment. 

All flasks contained 10 g marine sediment, 30 mL seawater, and a supply of nutrients as 

reported previously (Watson et aL, 2002). Flasks I-4,9 and 10 contained 45 mg North 

Sea oil, and test compounds 1 (45 jig), Il (34 ýtg), IV (59 pg) and VI (39 pg). Flasks 9 and 

10 were sterilised by autoclaving and the addition of 500 pg mL'l sodium azide (Watson et 

aL, 2002). Flasks 5-8,11 and 12 contained 39 mg n-hexadecane and test compounds I 

(45 pg), 11 (34 99), IV (59 pg) and VI (39 gg). Flasks II and 12 were sterilised by 

autoclaving and the addition of 500 pg mLi sodium azide (Watson et aL, 2002). Flask 13 

contained only sediment, seawater and nutrients. The flasks were stoppered with non- 

absorbent cotton wool and incubated under aerobic conditions in the dark at room 

temperature on an orbital shaker (80 rev/min). The total contents of each of the flasks were 

extracted and analysed after 0 (Flask 13), 28 (Flasks 1,2,5,6,9,11) or 119 days (Flasks 3, 

4,7,8,10,12). Thus Flasks 9 and II acted as 28 day sterilised controls and Flasks 10 and 

12 as 119 day sterilised controls. After removal from the incubator the flasks were placed 

in the freezer until extraction and analysis could be completed for all samples 

simultaneously. Flask 13 containing only the sand, seawater and nutrients, was plugged 

with non-absorbent cotton wool and placed in the freezer straight away. 

5.8.2.2 Hydrocarbon extraction 

The samples in each of the flasks were removed from the freezer and allowed to thaw 

before spiking with squalane (ca 200 gg, Aldrich, UK) as a recovery standard (R. S. ) prior 
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to extraction. The contents of each flask were then transferred to a 250 mL round bottom 

flask and each sample hydrolysed by reflux (IM KOH, 1 hr; Watson et aL, 2002). Samples 

were then allowed to cool and the contents transferred to separating funnels, acidified 

(HCI) to pH 2 and extracted (x 3) with aliquots (50 mL) of DCM. Extracts were rotary 

evaporated to -5 mL, dried with anhydrous sodium sulphate and then divided equally into 

two portions. One portion was retained for analysis of acid biodegradation products 

(Aitken, 2003) and is not discussed further here. The other was used for hydrocarbon 

analysis as described herein. Prior to analysis by gas chromatography (Section 5.8.2.3), n- 

C25 (100 ýtg) was added to this portion as an internal standard (I. S. ). 

5.8.2.3 Gas chromatography 

Extracts from the bacterial consortium biodegradation study were examined using GC 

(Section 5.2.1, except HP-5MS fused silica capillary column 30 mx0.25 mm id x 0.25 ýtm 

film thickness; oven temperature programmed at 50 "C for 2 minutes then from 50-300 *C 

at 4T min7l and held for 20 min). Quantification was made by comparison of peak areas 

with calibration data and internal standard recoveries. GC-MS analyses were performed as 

previously described (Section 5.2.2, except oven temperature programme was the same as 

above) Analyses were carried out in both selected ion monitoring and (selected samples 

only) full scan mode. 
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5.9 Water solubility behaviour of isolated aromatic UCM fractions and a synthetic 

hydrocarbon 

5.9.1 Test materials 

6-cyclohexyltetralin, previously synthesised in good yield (Wraige, 1997) and purified to > 

98 % by Smith (2002) was used as a test substrate. The 'aromatic' UCM was isolated from 

Tia Juana Pesado (Venezuela) crude oil as described in Section 5.4, and a 'monoaromatic' 

sub-fraction isolated as described in Section 5.5. 

5.9.2 Experimental procedure 

A generator column technique (Figure 5.7), based upon that originally devised by May et 

aL (1978), and used by Smith et aL (2001) was employed to determine the water solubility 

of the test substrates. Individual generator columns consisted of stainless steel HPLC 

columns (25 cm x 4.6 mm. i. d. x 1/4' o. d. ) with stainless steel frits at either end. These were 

then dry-packed with glass beads (size 60-80 mesh; Alltech Associates), coated with the 

test compound or UCM fraction. Prior to coating, the beads were washed in a soxhlet 

thimble (3 x 100 mL of dichloromethane; hexane; acetone; and Milli-Q water) and dried in 

an oven (120T overnight). The glass beads were then stored in a dessicator until required. 

All test substrates (35 mg) were dissolved in 50 mL of hexane to which 7g of the glass 

beads were added. The solvent was removed by gentle rotary evaporation and left to dry 

overnight in a fume cupboard. This resulted in a 0.005 % coating of the test materials on 

the beads. After the beads were dry packed into the generator column it was attached to a 

HPLC pump (Waters Associates, Milford, Massachusetts, isocratic chromatography pump, 

model 590) using Teflon tubing attachments, connected to a Milli-Q water reservoir. 
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The system was maintained at 25 'C by means of a water bath, which contained the 

submersed generator column and the Milli-Q water reservoir. The temperature of the water 

bath was monitored using a Squirrel datalogger (SQ32-4U, Grant Instruments) equipped 

with two probes. The water reservoir comprised 2x2L sealed glass bottles, containing 

Milli-Q water which was topped-up as required. 

I 

1 Pump 
Teflon tubing 2 Water bath 

3 Milli-O reservoir 
4 Generator column Flow direction 
5 Collection vessel 
6 Extracting solvent 

Figure 5.7. Schematic of the generator column apparatus used in the 
determination of water solubility. 

5.9.3 Generation of aqueous solutions 

Once connected to the system, the generator column was initially flushed with 500 mL of 

water to allow equilibration of the system before measurement. Water was pumped 

through the generator column at a rate of I mL min-. Generated solutions were collected at 
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either 50 minute (50 mL) or 500 minute (500 mL) intervals, with the former being 

collected in 100 mL separating funnels and the latter in 500 mL separating funnels. Ten 

consecutive samples were collected in each case. 

5.9.4 Extraction of aqueous solutions of 6-cyclohexyltetralin 

7-cyclohexyl-l-methyltetralin (100 [tL of a 0.1 mg L-1 solution in hexane) was used as an 

internal standard and added into the water fractions collected from the generator column as 

described above (Section 5.9.3). The samples were then extracted using DCM (3x 25 mL), 

gently shaking the separating funnel for approximately 5 minutes, whilst taking care not to 

form an emulsion. Extracts were then combined and dried using an anhydrous sodium 

sulphate sintered glass column. Analysis was performed using GC-MS (Section 5.2.2) 

operated in selected ion monitoring mode (SIM ions 214 and 228). Determination of the 

concentration of solubilised 6-cyclohexyltetralin was achieved by comparison to a 

calibration curve of the same material generated by analysis of concentrations at 0.001, 

0.005,0.01 and 0.05 mg mUl (Appendix A, Figure A3). Quantification of the internal 

standard was measured against an external calibration curve of the same material generated 

from analysis of concentrations at 0.001,0.005 and 0.01 mg mL" (Appendix A, Figure 

A4). 

5.9.5 Extraction of aqueous solutions of aromatic and monoaromatic UCM fractions 

For determination of the water solubility of the isolated aromatic and monoaromatic UCMs 

it was not possible to accurately use an internal standard in the extraction procedure. The 

inherent nature of the UCMs used in this study i. e. that they could not be 

chromatographically resolved using the gas chromatographic techniques employed 

(Sections 5.2.1 and 5.2.2), meant that addition of an internal standard would result in its 
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co-elution with other compounds present naturally within the UCM. Instead of an internal 

standard, results were quantified using an external calibration. The generator column was 

removed from the system and 500 mL of Milli-Q water was collected in a separating 

funnel. To this I mg of either the aromatic or 'monoaromatic' UCM was added (dissolved 

in 100 RL of hexane). The external calibration sample was extracted in the same manner 

and analysed using GC-MS (Section 5.2.2). Quantification was determined against a 

calibration curve of the same material generated from the analysis of triplicate samples of 

concentrations (0.1,0.25,0.5,0.75, and 1.0 mg ml: '; Appendix A, Figure Al and A2). 

Samples containing the test substrates were extracted as reported in Section 5.9.4 and 

analysis performed using GC-MS operated in full scan mode (Section 5.2.2. ). 

5.10 Comprehensive gas chromatography (GCxGC) coupled to time-of-flight (ToF) 

Mass Spectrometry (MS) 

The material collected in the solubility experiments conducted as part of this research was 

studied in order to gain a detailed understanding of the hydrocarbon composition of the 

water soluble monoaromatic UCM. Owing to its complex nature, the material was analysed 

by the latest chromatographic and mass spectrometric methods available; gas 

chromatography x gas chromatography-time of flight mass spectrometry (GCxGC-ToF- 

MS). The low concentration of the water soluble monoaromatic UCM (-57 pg L") meant 

each 500 mL aliquot collected contained on average -30 pg of organic material. A 

concentration of 10 mg m1: 1 was required for analysis of a complex mixture by GCxGC- 

ToF-MS. Since individual aliquots did not contain sufficient material to achieve suitable 

analysis, five of the aliquots which contained the most UCM hydrocarbons were pooled 

together to create a composite sample, to give an approximate amount of 150 Vg (0.15 mg) 

of UCM hydrocarbons. Dilution of this material in 10 ýd of solvent (hexane) gave a 

concentration of approximately 15 mg mL", which was sufficient for analysis by GCxGC- 
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ToF-MS. Details of the individual water soluble monoaromatic UCM aliquots combined to 

create the sample are reported in Table 5.8. 

Table 5.8. Summary of the water soluble monoaromatic UCM composite 
sample, created from the 500 mL aqueous aliquots for analysis by GCxGC- 
ToF-MS. Amounts of material in each extract were determined by external 
calibration of a monoaromatic UCM (Section 5.9.5). 

Water soluble monoaromatic 
Concentration of UCM Amount of UCM 

UCM aliquot 
hydrocarbons in the hydrocarbons in the 

fraction (gg L-) sample (gg) 
1000- 1500 mL 76 38 

1500-2000 mL 39 19.5 
2000-2500 mL 83 41.5 
2500-3000 mL 32 16.5 
3500-4000 mL 64 32 
Composite sample n/a 147.5 

The composite sample of the water soluble monoaromatic UCM material was analysed on 

a Pegasus 4D (Leco Corporation, USA) GCxGC-ToF-MS system, based on a HP 6890 Gas 

Chromatograph (Agilent Technologies, Wilmington, DE, USA) interfaced to a Pegasus III 

time-of-flight mass spectrometer (LECO, St Joseph, MI, USA). The system used the 

following parameters: injector 250 *C; transfer line 3001C, ion source 280 *C, EM 1900 V. 

The first-dimension column was a 10 in x 180 ýLrn x 0.18 ýtm DB-5 (apolar; J&W 

Scientific, Folsom, CA, USA), and the second-dimension column was a 1.9 mx 100 ýtm x 

0.1 ýtm DB-17 (polar). The first-dimension oven was programmed at 70 *C for 0.5 min, 

then raised from 70-285 "C at 5 *C min7l and held at this temperature for 10 min. The 

second-dimension oven was programmed at 100 "C for 0.5 min, then raised from 100-300 

T at 5 IC mirf 1 and held at this temperature for 12 min. The modulator temperature was 

offset by 30 'C, hot pulse time 1.0 s, cool time between stages 3.0 s; EPC control in 

constant flow I mL mid'. The carrier gas was helium. Prior to analysis the sample was 
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dissolved in 10 gl of hexane. I RI of the sample was injected (splitless) into the GCxGC- 

ToF-MS system via an Agilent Technologies 7863 Series Autosampler. 

The ToF-MS system was used to produce mass spectral data, and operated at a spectrum 

storage rate of 50 Hz (50 spectra s-1). The mass range monitored was from 45-500 Daltons. 

The automated data processing was achieved using LECOO ChromaToF TM software 

(version 2.01, Leco Inc., USA). The software completes the peak finding routine, the 

deconvolution of mass spectra from partially coeluting compounds and a preliminary NIST 

library search. 

Identification of unknown compounds within the sample was based on NIST library mass 

spectral matches. Whilst this could be achieved using system computer software, it was 

found in the present study that a manual approach to identifying library matches proved 

more effective but was time consuming. The common use of library mass spectra to 

identify unknown compounds in samples is now being applied to samples analysed by 

GCxGC-ToF-MS (e. g. Shellie et aL, 200 1). 
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Chapter 6 

Conclusions and future work 

This chapter summarises the main conclusions of the studies presented herein and suggests 

directions for further work 
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6.1 Conclusions 

Unresolved complex mixtures (UCMs) of hydrocarbons, comprised of environmentally 

persistent compounds (Seymour and Geyer, 1992; Readman et aL, 1996; Gogou et aL, 

2000; Schwarzenbach et aL, 2003), are widespread, occurring in sediments, aerosols, the 

water column and most poignantly in marine organisms such as molluscs and fish (e. g. 

Requejo and Boehm 1985; Preston et aL, 1992; Fowler et aL, 1993; Maldonado et aL, 

1999; Meniconi et aL, 2002; Reddy et aL, 2002). Whilst bioaccumulative, aliphatic UCMs 

are not considered detrimental to the health of marine organisms (e. g. Thomas, 1995). In 

contrast, aromatic UCMs, which can also bioaccumulate to high concentrations in marine 

organisms (e. g. Neff et aL, 2000; Page et aL, 2002) exhibit non-specific narcotic toxicity. 

Recent studies (e. g. Rowland et aL, 2001; Donkin et aL, 2003) have linked the 

monoaromatic hydrocarbon UCM fraction with observed impaired health in mussels. 

Despite growing environmental concerns, little is known about the composition of 

aromatic UCMs. The overall aims of the present study were to obtain more information 

about the environmental behaviour and the chemical composition of these seemingly 

persistent compounds. 

The specific objectives of the current study were therefore: 

* to determine the environmental persistence of an aromatic UCM and synthetic aromatic 

hydrocarbons by conducting biodegradation experiments 

to generate and compare aqueous solutions of aromatic and monoaromatic UCMs, to 

provide an indication of their bioavailability 

to use a state-of-the-art GCxGC-ToF-MS instrument to attempt to better resolve an 

aromatic UCM and to better characterise the component hydrocarbons. 

In the first assay, an aromatic UCM isolated from Tia Juana Pesado (TJP) crude oil 

(Venezuela), and a suite of synthetic alkylcyclohexyltetralins and an 
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alkylcyclohexylnaphthalene were exposed to the known hydrocarbon degrading bacterium, 

Pseudomonasfluorescens (Texaco). After an exposure period of 50 days, biodegradation 

had not exceeded 20% for any of the model compounds. The most resistant compounds 

(-2% biodegradation) appeared to be those with alkyl chains Of C3-C5 length, particularly 

those which were branched. In the case of the aromatic UCM an exposure period of 41 

days resulted in negligible biodegradation (-2%), comparable to that of some of the 

synthetic compounds. 

The second assay used a natural consortium of aerobic bacteria isolated from a 

hydrocarbon-polluted enviromnent (Whitley Bay, Tyne and Wear, UK). In these studies, 

four of the synthetic compounds were exposed to the consortium with both North Sea oil 

and n-hexadecane as co-substrates. The synthetic compounds exhibited 15-80% 

degradation after 28 days. By 119 days, two were completely degraded, but 60% of the 

branched chain C5 homologue still remained. Under these severe conditions the North Sea 

crude oil co-substrate was extensively degraded with even the highly bioresistant 

pentacyclic hopanes undergoing some degradation. Thus, some of the 

alkylcyclohexyltetralins are resistant to all but heavy biodegradation on accepted scales 

(Peters and Moldowan, 1993), and this further supports their candidacy as structural 

representatives of some bioresistant components of aromatic UCMs. However, the data 

generated for the control samples in the biodegradation experiments using the Whitley Bay 

consortium should be treated with some caution. Additionally, a more frequent sampling 

regime is necessary for accurate degradation rates to be assigned to the study compounds. 

For compounds to be bioavailable to filtering aquatic organisms, they are generally 

dissolved in the surrounding water (i. e. water soluble). Therefore, the water solubility (at 

25 *C) of an aromatic and monoaromatic UCM was determined, using a generator column. 

In both cases, a secondary UCM was clearly evident in the aqueous phase extracts but the 
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method was rather irreproducible. Nonetheless, this indicates that under some conditions 

large numbers of compounds in the original aromatic and monoaromatic UCMs exhibit 

similar 'dissolution' characteristics. Their comparable solubilities imply that the 

compounds have analogous physicochemical properties and mole fractions within the 

parent UCMs. Some of the synthetic UCM compounds (alkylcyclohexyltetralins) had GC 

retention times that were within the range exhibited by the 'soluble' monoaromatic UCM 

gas chromatographic distribution. 

However, not all compounds in the aromatic and monoaromatic UCMs were present in the 

aqueous phase. The higher molecular weight hydrocarbons in each of the UCMs were 

absent from the generated solutions, indicating a solubility cut-off point probably based 

predominantly on molecular weight. Additionally, different molecular weight distributions 

were evident for the water 'soluble' aromatic and monoaromatic UCMs. The lower 

molecular weight hydrocarbons, which dominated the water soluble' monoaromatic 

UCM, appeared to be absent from the water 'soluble' aromatic UCM. However, these 

compounds must have been present in the original aromatic UCM, as it is from this that the 

monoaromatic UCM was isolated. The isolation of the monoaromatic hydrocarbons from 

the aromatic UCM produced a mixture containing a much narrower range of compound 

types. This fractionation procedure is suggested to have caused a significant increase in the 

mole fractions of the isolated monoaromatic UCM components. An increase in mole 

fraction, according to Raoult's law, results in a relative increase in water solubility. The 

differences in hydrocarbon composition of the aromatic and monoaromatic UCM are 

suggested to cause the disparity observed in their aqueous distributions. The aromatic 

UCM appeared to contain di- or polyaromatic hydrocarbons with high mole fractions, 

which were not present in the monoaromatic UCM. Thus, the dissolution of hydrocarbons 

from a complex mixture appears to be a dynamic process which is explicable by the 

application of Raoult's Law. 
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A composite sample of the water soluble monoaromatic UCMs produced with the 

generator column was analysed by GCxGC-ToF-MS. GCxGC achieved the separation of 

1252 compounds. The ToF-MS analysis of these components resulted in 490 good quality 

mass spectra deemed suitable for compound identification. A detailed characterisation of 

16 compounds is reported based upon mass spectral matches to compounds listed in the 

NIST library. The identities of many other peaks were inferred as isomers and homologues 

of these compounds making 114 in total. The compounds characterised include highly 

alkylated hornologues of benzene, indene, indan, tetralin, biphenyl, diphenylmethane and 

tetrahydrophenanthrene. Although many of these compound classes are commonly 

observed in crude oils, such highly alkylated versions are rarely, if ever, reported. The 

compounds identified by the GCxGC-ToF-MS analysis of a monoaromatic UCM appear to 

be the geochemically minor isomers and analogues of known major crude oil constituents. 

As narcotic toxicity of petroleum hydrocarbons is an additive effect (Deneer et aL, 1988; 

Peterson, 1994) this finding is extremely important. As UCMs in total, generally account 

for a larger proportion of crude oil mass than the major resolved components, these 

persistent residues may also contribute significantly to the observed narcotic toxicity of 

crude oil. 

In conclusion, the present study has reported on the behaviour of aromatic and 

monoaromatic UCM hydrocarbons in the environment in terms of biodegradability 

(persistence) and water solubility (bioavailability). This has been achieved by the study of 

model monoaromatic UCM hydrocarbons and isolated aromatic and monoaromatic UCMs. 

Weathered crude oil residues are characterised by dominant UCMs, considered resistant to 

biodegradation, and therefore persistent in the enviromnent. The biodegradation studies 

confirm that UCMs appear considerably resistant to further alteration by micro-organisms, 

except under severe conditions. Large numbers of hydrocarbons in aromatic and 

270 



monoaromatic UCMs appear sufficiently water soluble to be bioavailable to marine 

organisms. The monoaromatic UCM is of particular relevance as this has been shown to 

elicit toxicological responses in marine organisms. The water soluble monoaromatic UCM 

analysed by GCxGC-ToF-MS may be most representative of the bioavailable fraction of 

the monoaromatic UCM. The compounds identified from their mass spectra appear to be 

highly substituted, consistent with resistance to biodegradation. Furthermore, these 

compounds can be considered typical of those contributing to the monoaromatic UCM 

toxicity observed by Rowland et aL (2001). Thus it appears the term UCM is no longer 

accurate, and that further research in the characterisation of potentially resolvable complex 

mixtures (PRCMs) is warranted. 
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6.2 Future work 

In addition to the processes of biodegradation and dissolution, photodegradation provides 

another mechanism with the potential to degrade, alter or facilitate the removal of crude oil 

hydrocarbons released into the enviromnent. Many studies have highlighted the ability of 

high-energy wavelengths (e. g. UV) to degrade or alter organic compounds, perhaps 

influencing their toxicity (e. g. Nicodem et aL, 1997; Ziolli and Jardim, 2002). Previous 

work by Smith (2002) has shown that the synthetic model monoaromatic UCM compounds 

used in this study are susceptible to photodegradation. It was hoped that the effect of 

photodegradation on the composition of water soluble aromatic and monoaromatic UCMs 

could be conducted as part of this study. 

Unfortunately, the low water solubility of the UCM fractions combined with the limited 

sample volume capacity of the photodegradation apparatus meant the study was not 

feasible. Individual samples of 50 mL could be accommodated by the apparatus, which 

corresponded to <30pg of organic material prior to any effects caused by exposure to UV 

radiation. This amount of material is only just sufficient for analytical detection. Following 

irradiation, the samples would require extraction and fractionation into polar and 

hydrocarbon groups which would be virtually impossible with such small amounts of 

organic material. Furthermore, it was considered that the analytical instruments available 

would be unable to monitor any change in UCM composition caused by photolysis. It is 

therefore suggested that future work should address this important environmental process, 

and focus on the development of a technique that can monitor the effects of 

photodegradation at such low concentrations. Ideally, a method whereby large samples of 

water (e. g. 1000 mL) containing dissolved UCM components can be subject to controlled 

UV radiation should be developed. The amounts of organic material associated -with 

smnples of this size would pennit fractionation'and'detailed analysis of the organic 

composition. "I I 
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A review of the available methods for production of aqueous solutions of organic 

compounds was undertaken, with the most suitable deemed the generator column 

technique. This has proven to be reliable for the generation of aqueous solutions of 

individual compounds, as evidenced by the synthetic UCM hydrocarbon (6- 

cyclohexyltetralin) used in the present study. However, when applied to aromatic and 

monoaromatic UCM fractions the current study has indicated this method is not capable of 

generating reproducible data for highly complex mixtures. Future work, should therefore 

consider a more gradual transition from the use of single compounds, up to the study of 

highly complex mixtures such as UCMs. Further studies might also consider experimental 

trials of the available dissolution methods to determine which is the most reproducible and 

environmentally realistic in the case of complex mixtures. The fractionation of a UCM into 

compound classes (e. g. aromatics) will alter the mole fractions of the mixture components 

and this, in turn, has been shown to significantly effect the composition of the generated 

solution, often increasing dissolution. Thus, the use fractions isolated from complex 

mixtures may lead to environmentally unrealistic dissolution behaviour. Future research 

involving the production of aqueous solutions of organic compounds should therefore 

focus on the dissolution of the whole mixture as it would enter the environment. It is 

suggested that the fractionation and analysis of the organic material could be performed 

after the dissolution process. Such a method would require large sample volumes to ensure 

sufficient organic material is available for this procedure. However, solid phase extraction 

(SPE) presents a method that could be more amenable to the extraction of small amounts 

of organic material, and may permit fractionation of the sample at the same time. 

An important issue raised in the present study concerns the fractionation procedures and 

definitions used for petroleum-derived UCMs. Previous UCM research has reported a 

variety of techniques together with varying definitions of what constitutes, individual 
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isolated UCM fractions (e. g. aromatic or monoaromatic UCMs). Thus, it is suggested that 

a standardised approach or protocol for the fractionation and measurement of petroleum 

UCM isolates is essential. This would permit the inter-laboratory comparison of data and 

provide a much clearer view of the effects of UCMs in the environment. 

GCxGC-ToF-MS is already proving to be a powerful analytical technique for the study of 

complex mixtures such as petroleum-derived UCMs. However, it is still in its infancy and 

optimisation of the technique will be an essential part of any future work employing this 

instrument. For example, Phillips and Xu (1995) and Phillips and Venkatramani (1993) 

have shown that particular combinations of stationary phases will produce different 

distributions of compounds in the same mixture. Therefore, specific combinations can be 

utilised depending on the type of separation required from individual samples. 

Furthermore, this and other studies (e. g. Gaines et aL, 1999) have indicated that the 

technique is still not capable of completely resolving such complex mixtures (even when 

fractionated), as some coelution of structural isomers still occurs. Although some degree of 

sample fractionation appears necessary, there are other options to further increase the 

separation of components in a mixture. These include maximising the use of the 

chromatographic space available in order to optimise the separation of components or 

perhaps even the addition of a third-dimension chromatographic step using another 

stationary phase (e. g. a chiral phase). 

The current study has shown that identification of unknown UCM hydrocarbons by 

comparison to NIST library mass spectra alone, cannot be considered conclusive. There is 

a clear need for comparison to a library of authentic reference compounds if reliable 

characterisation is to be achieved. Ideally, a suite of compounds including isomers and 

homologues of the proposed components should be used. Many of the compounds 

identified in the current study are not commercially available and will require synthesis. If 
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analysed by the same GCxGC-ToF-MS technique, this would provide a library containing 

mass spectra and two-dimensional retention times for each individual compound. The mass 

spectra should be produced with the ToF-MS detector, effectively removing the qualitative 

differences observed between conventional MS and ToF-MS instruments. Comparison of 

such information should then be sufficient to identify unknown components of the UCM. 

However, further development of more efficient automated data processing software will 

be essential in the analysis of the huge quantities of data generated by GCxGC-ToF-MS. 

Quantitation of individual components within a mixture is also possible using the GCxGC- 

ToF-MS technique. Although it was not undertaken in the present study, future work 

should consider the determination of single component concentrations within UCMs. Such 

information will be required if the technique is to be used in the fingerprinting of crude oil 

residues. 

Another area for future work is continuation of the toxicity studies using mussels which 

have already bioaccumulated weathered petroleum UCMs. Studies could either use 

mussels exhibiting impaired health which have been collected from petroleum impacted 

sites (in vivo), or 'clean' mussels which are exposed to a weathered crude oil or an isolated 

aromatic UCM in the laboratory (in vitro). The affects of UCM bioaccumulation on the 

health of mussels can then be monitored as in previous studies (e. g. Rowland et aL, 2001; 

Smith, 2002; Donkin et aL, 2003). Following exposure/collection the bioaccumulated 

UCM compounds can be extracted from the mussel tissue and, following fractionation of 

the extract, can then be analysed by GCxGC-ToF-MS. This should provide the first data 

identifying the UCM components accumulated by aquatic organisms that are eliciting the 

observed toxicological effects. 

Whilst predictive software (e. g. EPI SuiteTM) can be a useful tool for estimating 

physicochemical and toxicological parameters for individual compounds, there is no 
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substitute for 'real' data. Therefore, future work may also consider studying the 

biodegradation, dissolution, photodegradation and toxicity of the aromatic UCM 

hydrocarbons identified in the current study. The creation of a simple mixture containing 

such compounds may help in the understanding of how these processes affect more 

complex mixtures such as weathered crude oil UCMs. Synthesis of the compounds 

identified in the water soluble monoaromatic UCM would be useful for their 

chromatographic and mass spectral information. Additionally, future research could 

replace the alkylcyclohexyltetralins, currently being used as "model" UCM compounds 

with genuine UCM hydrocarbons. 

276 



References 

277 



Abbott, J. E., Alleman, B. C., Drescher, M. J., Pollack, A. J., Zwick, T. C., Watson, G., and 
Bowling, L. (1999). Effects of nutrient addition on biodegradation of fuel- 
contaminated soils. In'In situ bioremediation o etroleum hydrocarbon and other )fp 
organic compounds. ' (Eds B. C. Alleman and A. Leeson. ) pp. 201-207. (Battelle Press: 
Columbus. ) 

Aceves, M. and Grimalt, J. 0. (1993). Gas chromatographic screening of organic compounds 
in aerosols: Il. Changes in hydrocarbon composition during storage. Journal of 
Chromatography A 655,133-140. 

Aceves, M. and Grimalt, J. 0. (1993). Seasonally dependent size distributions of aliphatic and 
polycyclic aromatic hydrocarbons in urban aerosols from densely populated areas. 
Environmental Science and Technology 27,2896-2908. 

Adahchour, M., van Stee, L. L. P., Beens, J., Vreuls, R. J. J., Batenburg, M. A., and Brinkman, 
U. A. Th. (2003). Comprehensive two-dimensional gas chromatography with time-of- 
flight mass spectrometric detection for the trace analysis of flavour compounds in 
food. Journal of Chromatography A 1019,157-172. 

Adams, N. G. and Richardson, D. M. (1953). Isolation and identification of biphenyls from 
West Edmond crude oil. Analytical Chemistry 25,1073-1074. 

Ahmed, M. T., Mostafa, G. A., Al Rasbi, S. A., and Askar, A. A. (1998). Capillary gas 
chromatography determination of aliphatic hydrocarbons in fish and water from Oman. 
Chemosphere 36,1391-1403. 

Aitken, C. (2003). PhD Thesis, University of Newcastle, Newcastle-upon-Tyne, UK. 
(Submitted). 

Al-Hadhrami, M. N., Lappin-Scott, H. M., and Fisher, P. J. (1995). Bacterial survival and n- 
alkane degradation within Omani crude oil and a mousse. Marine Pollution Bulletin 
30,403-408. 

Alexander, M. (1999). 'Biodegradation and bioremediation. ' (Academic Press: San Diego. ) 

Alexander, R., Kagi, R. I., Rowland, S. J., Sheppard, P. N., and Chirila, T. V. (1985). The effects 
of thermal maturity on distributions of dimethy1naphthalenes and 
trimethylnaphthalenes in some Ancient sediments and petroleums. Geochimica et 
CosmochimicaActa 49,3 85-395. 

Alexander, R., Cumbers, K. M., and Kagi, R. I. (1986). Alkylbiphenyls in ancient sediments 
and petroleums. Organic Geochemistry 10,841-845. 

Alexander, R., Bastow, T. P., Kagi, R. I., and Singh, R. K. (1992). Identification of 1,2,2,5- 
tetramethyltetralin and 1,2,2,5,6-pentamethyltetralin as racemates in petroleum. 
Journal of the Chemical Society - Chemical Communications 23,1712-1714. 

Alexander, R., Baker, R. W., Kagi, R. I., and Warton, B. (1994). Cyclohexylbenzenes in crude 
oils. Chemical Geology 113,103-115. 

Ali, L. N. (1994) The dissolution andphotodegradation ofKuwait crude oil in seawater. PhD 
Thesis, University of Plymouth, Plymouth, UK. 

Allinger, N. L. (1977). Conformational analysis. 130. MM2. A hydrocarbon force field 
utilizing V, and V2 torsional terms. Journal of the American Chemical Society 99, 
8127-8134. 

Anders, D. E., Doolittle, F. G., and Robinson, W. E. (1975). Polar constituents isolated from 
Green River oil shale. Geochimica et Cosmochimica Acta 39,1423-1430. 

278 



Andres, B. A. (1999). Effects of persistent shoreline oil on breeding success and chick growth 
in Black Oystercatchers. The Auk 116,640-650. 

Annweiler, E., Michaelis, W., and Meckenstock, R. U. (2002). Identical ring cleavage products 
during the anaerobic degradation of naphthalene, 2-methylnaphthalene, and tetralin 
indicate a new metabolic pathway. Applied and Environmental Microbiology 68,852- 
858. 

Armstrong, D. W., Tang, Y., and Zukowski, J. (199 1). Resolution of enantiomeric hydrocarbon 
biomarkers of geochernical importance. Analytical Chemistry 63,2858-2861. 

Atlas, R. M. (1981). Microbial degradation of petroleum hydrocarbons: an environmental 
perspective. Microbiological Reviews 45,180-209. 

Atlas, R. M. (1991). Microbial hydrocarbon degradation - bioremediation of oil spills. Journal 
of Chemical Technology and Biotechnology 52,149-156. 

Atlas, R. M. and Bartha, R. (1992). Hydrocarbon biodegradation and oil spill bioremediation. 
In'Advances in Microbial Ecology Volume 12. '(Ed K. C. Marshall. ) pp. 287-338. 
(Plenum press: New York. ) 

Badawy, M. I., Al-Mujainy, I. S., and Hernandez, M. D. (1993). Petroleum-derived 
hydrocarbons in water, sediment and biota from the Mina al Fahal coastal waters. 
Marine Pollution Bulletin 26,457-460. 

Banerjee, S. (1984). Solubility of organic mixtures in water. Environmental Science and 
Technology 18,5 87-5 9 1. 

Barathi, S. and Vasudevan, N. (2001). Utilization of petroleum hydrocarbons by Pseudomonas 
fluorescens isolated from a petroleum-contaminated soil. Environment International 
26,413-416. 

Barron, M. G., Podrabsky, T., Ogle, S., and Ricker, R. W. (1999a). Are aromatic hydrocarbons 
the primary determinant of petroleum toxicity to aquatic organisms? Aquatic 
Toxicology 46,253-268. 

Barron, M. G., Podrabsky, T., Ogle, R. S., Dugan, J. E., and Ricker, R. W. (1999b). Sensitivity 
of the Mysid Mysidopsis bahia to a weathered oil. Bulletin ofEnvironmental 
Contamination and Toxicology 62,266-27 1. 

Bastow, T. P., Alexander, R., Sosrowidjojo, I. B., and Kagi, R. I. (1998). 
Pentamethy1naphthalenes and related compounds in sedimentary organic matter. 
Organic Geochemistry 28,585-595. 

Battersby, N. S., Ciccognani, D., Evans, M. R., King, D., Painter, H. A., Peterson, D. R., 
Starkey, M., and Dmytrasz, B. (1999). 'A test method to assess the 'inherent' 
biodegradability ofoilproducts. '(CONCAWE) 

Bayona, J. M., Albaiges, J., Solanas, A. M., Pares, R., Garrigues, P., and Ewald, M. (1986). 
Selective aerobic degradation of methyl-substituted polycyclic aromatic hydrocarbons 
in petroleum by pure microbial cultures. International Journal ofEnvironmental 
Analytical Chemistry 23,289-303. ,, 

Beckles, D. M., Ward, C. H., and Hughes, J. B. (1998). Effect of mixtures of polycyclic 
aromatic hydrocarbons and sediments on fluoranthene biodegradation patterns. 
Environmental Toxicology and Chemistry 17,1246-125 1. 

279 



Beech, I. B. and Gaylarde, C. C. (1989). Adhesion of Desulfovibrio desutfuricans and 
Pseudomonasfluorescens to mild steel surfaces. Journal ofApplied Bacteriology 67, 
201-207. 

Bennett, D., Girling, A. E., and Bounds, A. (1990). Ecotoxicology of oil products: preparation 
and characterisation of aqueous test media. Chemosphere 21,659-669. 

Berthod, A., Wang, X., Gahm, K. -H., and Armstrong, D. W. (1998). Quantitative and 
stereoisomeric determination of light biomarkers in crude oil and coal samples. 
Geochimica et Cosmochimica Acta 62,1619-163 0. 

Bhattacharyya, S., Klerks, P. L., and Nyman, J. A. (2003). Toxicity to freshwater organisms 
from oils and oil spill chemical treatments in laboratory microcosms. Environmental 
Pollution 122,205-215. 

Bi, X., Sheng, G., Peng, P. A., Zhang, Z., and Fu, J. (2002). Extractable organic matter in PM10 
from LiWan district of Guangzhou City, PR China. Science of the Total Environment 
3000,213-228. 

Billington, J. W., Huang, G. L., Szeto, F., Shiu, W. Y., and Mackay, D. (1988). Preparation of 
aqueous solutions of sparingly soluble organic substances: 1. Single component 
systems. Environmental Toxicology and Chemistry 7,117-124. 

Blanco, C. G., Blanco, J., Bernad, P., and Guilldn, M. D. (199 1). Capillary gas chromatographic 
and combined gas chromatography-mass spectrometric study of the volatile fraction of 
a coal tar pitch using OV-1701 stationary phase. Journal of Chromatography 539,157- 
167. 

Blomberg, J., Schoerimakers, P. J., Beens, J., and Tijssen, R. (1997). Comprehensive two- 
dimensional gas chromatography (GCxGC) and its applicability to the characterisation 
of complex (petrochemical) mixtures. Journal ofHigh Resolution Chromatography 20, 
539-544. 

Blomberg, J. (2002) Multidimensional GC-based separationsfor the oil andpetrochemical 
industry. PhD Thesis, Vrije Universiteit Amsterdam, Amsterdam, Netherlands. 

Boehm, P. D. and Fiest, D. L. (1982). Subsurface distributions of petroleum from an offshore 
well blowout. The Ixtoc I blowout, Bay of Campeche. Environmental Science and 
Technology 16,67-74. 

Boethling, R. S., Howard, P. H., Meylan, W. M., Stiteler, W., Beauman, J. A., and Tirado, N. 
(1994). Group contribution method for predicting probability and rate of aerobic 
biodegradation. Environmental Science and Technology 28,459-465. 

Bohannon, J. and Bosch, X. (2003). Spanish researchers vent anger over handling of oil spill. 
Science 299,490. 

Bomboi, M. T. and Hernandez, A. (199 1). Hydrocarbons in urban runoff. their contribution to 
the wastewaters. Water Research 25,557-565. 

Borrego, A. G., Blanco, C. G., and Puttmann, W. (1997). Geochemical significance of the 
aromatic hydrocarbon distribution in the bitumens of the Puertollano oil shales, Spain. 
Organic Geochemistry 26,219-228. 

Bosch, X. (2003). Exposure to oil spill has detrimental effect on clean-up workers'health. The 
Lancet 361,147. 

280 



Bost, F. D., Frontera-Suau, R., McDonald, T. J., Peters, K. E., and Morris, P. J. (2001). Aerobic 
biodegradation of hopanes and norhopanes in Venezuelan crude oils. Organic 
Geochemistry 32,105-114. 

Boxall, A. B. A. and Maltby, L. (1995). The characterization and toxicity of sediment 
contaminated with road runoff. Water Research 29,2043-2050. 

Boylan, D. B. and Tripp, B. W. (1971). Determination of hydrocarbons in seawater extracts of 
crude oil and crude oil fractions. Nature 230,44-47. 

Bragg, J. R., Prince, R. C., Hamer, E. J., and Atlas, R. M. (1994). Effectiveness of 
bioremediation for the Exxon Valdez oil spill. Nature 368,413-418. 

Britton, L. N. (1984). Microbial degradation of aliphatic hydrocarbons. InMicrobial 
degradation of organic compounds. (Ed D. T. Gibson. ) pp. 89-129. (Marcel Dekker: 
New York. ) 

Broeker, J. L. and Houk, K. N. (1991). MM2 model for the intramolecular additions of acyl- 
substituted radicals to alkenes. Journal of Organic Chemistry 56,3651-3655. 

Broeker, U., Hoffmann, R. W., and Houk, K. N. (199 1). Conformational analysis of chiral 
alkenes and oxonium ions: Ab initio molecular orbital calculations and an improved 
MM2 force field. Journal of the Americal Chemical Society 113,5006-5017. 

Budzinski, H., raymond, N., Nadalig, T., Gilewicz, M., Garrigues, P., Bertrand, J. C., and 
Caumette, P. (1998). Aerobic biodegradation of alkylated aromatic hydrocarbons by a 
bacterial community. Organic Geochemistty 28,337-348. 

Bums, K. A., Greenwood, P. F., Summons, R. E., and Brunskill, G. J. (2001). Vertical fluxes of 
hydrocarbons on the Northwest Shelf of Australia as estimated by a sediment trap 
study. Organic Geochem istry 32,1241-125 5. 

Bums, K. A., Volkman, J. K., Cavanagh, J., and Brinkman, D. (2003). Lipids as biomarkers for 
carbon cycling on the Northwest Shelf of Australia: results from a sediment trap study. 
Marine Chemistry 80,103-128. 

Button, D. K., Robertson, B. R., McIntosh, D., and Juttner, F. (1992). Interactions between 
marine bacteria and dissolved-phase and beached hydrocarbons after the Exxon Valdez 
oil spill. Applied and Environmental Microbiology 58,243-25 1. 

Caldini, G., Cenci, G., Manenti, R., and Morozzi, G. (1995). The ability of an environmental 
isolate of Pseudomonasj7uorescens to utilize chrysene and other four-ring polynuclear 
aromatic hydrocarbons. Applied Microbiology and Biotechnology 44,225-229. 

Caldwell, M. E., Garrett, R. M., Prince, R. C., and Suflita, J. M. (1998). Anaerobic 
biodegradation of long-chain n-alkanes under sulfate-reducing conditions. 
Environmental Science and Technology 32,2191-2195. 

Carls, M. G., Rice, S. D., and Hose, J. E. (1999). Sensitivity of fish embryos to weathered crude 
oil: Part 1. Low-level exposure during incubation causes malformations, genetic 
damage, and mortality in larval pacific herring (Clupeapallasi). Environmental 
Toxicology and Chemistry 18,481-493. 

Cemiglia, C. E. (1992). Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 
3,351-368. 

Chaineau, C. H., Yepremian, C., Vidalie, U., Ducreux, J., and Ballerini, D. (2003). 
Bioremediation of a crude oil-polluted soil: Biodegradation, leaching and toxicity 
assessments. Water, Air, and Soil Pollution 144,419-440. 

281 



Chang, B. V., Wu, W. B., and Yuan, S. Y. (1997). Biodegradation of benzene, toluene, and 
other aromatic compounds by Pseudomonas sp. 8. Chemosphere 35,2807-2815. 

Clark, R. B. (2001). Oil Pollution. InMarine Pollution. '(Ed R. B. Clark. ) pp. 64-97. (Oxford 
University Press: Oxford. ) 

Clarke, S. C., Jackson, A. P., and Neff, J. M. (2000). Development of a risk assessment 
methodology for evaluating potential impacts associated with contaminated mud 
disposal in the marine environment. Chemosphere 41,69-76. 

Cline, P. V., Delfino, J. J., and Rao, P. S. C. (1991). Partitioning of aromatic constituents into 
water from gasoline and other complex solvent mixtures. Environmental Science and 
Technology 25,914-920. 

Coates, J. D., Woodward, J., Allen, J., Philp, P., and Lovley, D. R. (1997). Anaerobic 
degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum- 
contaminated marine harbour sediments. Applied and Environmental Microbiology 63, 
3589-3593. 

Connan, J. (1984). Biodegradation of crude oils in reservoirs. In 'Advance in Petroleum 
Geochemistry. '(Eds J. Brooks and D. Welte. ) pp. 299-335. (Academic Press: London. ) 

Connan, J., Lacrampe-Couloume, G., and Magot, M. (1997). Anaerobic biodegradation of 
petroleum in reservoirs: a widespread phenomenon in nature. Abstracts Part I, 18th 
International Meeting on Organic Geochemistry. 

Connell, D. W., Wu, R. S. S., Richardson, B. J., Leung, K., Lam, P. S. K., and Connell, P. A. 
(1998). Fate and risk evaluation of persistent organic contaminants and related 
compounds in Victoria Harbour, Hong Kong. Chemosphere 36,2019-203 0. 

Cooney, J. J., Silver, S. A., and Beck, E. A. (1985). Factors influencing hydrocarbon 
degradation in three freshwater lakes. Microbial Ecology 11,127-137. 

Cotter, R. J. (1997). 'Time-of-flight mass spectrometry: Instrumentation and applications in 
biological research. '(ACS Professional Reference Books: Washington, DC. ) 

Coyle, G. T., Harmon, T. C., and Suffet, I. H. (1997). Aqueous solubility depression for 
hydrophobic organic chemicals in the presence of partially miscible organic solvents. 
Environmental Science and Technology 31,3 84-3 89. 

Crowe, T. P., Smith, E. L., Donkin, P., Barnaby, D. L., and Rowland, S. J. (2004). Measurement 
of sublethal effects on individual organisms indicate community-level impacts of 
pollution. Journal ofApplied Ecology 41,114-123. 

Cumbers, K. M., Alexander, R., and Kagi, R. I. (1986). Analysis of methylbiphenyls, 
ethylbiphenyls and dimethylbiphenyls in crude oils. Journal of Chromatography 361, 
385-390. 

Cumbers, K. M., Alexander, R., and Kagi, R. I. (1987). Methylbiphenyl, ethylbiphenyl and 
dimethylbiphenyl isomer distributions in some sediments and crude oils. Geochimica 

I et Cosmochimica Acta 51,3105-3111. 

Dallage, J., van Rijn, M., Beens, J., Vreuls, 'R. J. J., and Brinkman, U. A. Th. (2002a). 
Comprehensive two-dimensional gas chromatography with time-of-flight mass 
spectrometric detection applied to the determination of pesticides in food extracts. 
Journal of Chromatography A 965,207-217. ' 

Dallage, J., van Stee, L. L. P., Xu, X., Williams, J., Beens, J., Vreuls, R. J. J., and Brinkman, 
U. A. Th. (2002b). Unravelling the composition of very complex samples by' 

282 



comprehensive gas chromatography coupled to time-of-flight mass spectrometry: 
Cigarette smoke. Journal of Chromatography A 974,169-184. 

DallUge, J. (2003) Multidimensionality in capillary gas chromatography: Selective sample 
preparation, comprehensive separation and mass spectrometric detection. PhD Thesis, 
Vrije Universiteit Amsterdam, Amsterdam, Netherlands. 

Dauble, D. D., Carlile, D. W., and Hanf, R. W. (1986). Bioaccumulation of fossil fuel 
components during single-compound and comPlex-mixture exposures of Daphnia 
magna. Bulletin of Environmental Contamination and Toxicology 37,125-132. 

Davies, N. J. and Wolff, G. A. (1990). The Mersey oil spill, August, 1989: A case of sediments 
contaminating oil? Marine Pollution Bulletin 21,481-484. 

de Boer, J. and Law, R. J. (2003). Developments in the use of chromatographic techniques in 
marine laboratories for the determination of halogenated contaminants and polycyclic 
aromatic hydrocarbons. Journal of Chromatography A 1000,223-25 1. 

de Hemptinne, J. C., Delepine, H., Jose, C., and Jose, J. (1998). Aqueous solubility of 
hydrocarbon mixtures. Revue De LInstitut Francais du Petrole 53,409-419. 

de Maagd, P. G. -J., ten Hulscher, D. Th. E. M., van den Heuvel, H., Opperhuizen, A., and Sijm, 
D. T. H. M. (1998). Physicochernical properties of polycyclic aromatic hydrocarbons: 
aqueous solubilities, n-octanol/water partition coefficients, and Henry's law constants. 
Environmental Toxicology and Chemistry 17,251-25 7. 

Del'Arco, J. P. and de Franga, F. P. (1999). Biodegradation of crude oil in sandy sediment. 
International Biodeterioration & Biodegradation 44,87-92. 

Deneer, J. W., Sinnige, T. L., Seinen, W., and Hermans, J. L. M. (1988). The joint acute toxicity 
to Daphnia magna of industrial organic chemicals at low concentrations. Aquatic 
Toxicology 12,33-38. 

Diaz, M. P., Grigson, S. J. W., Peppiatt, C. J., and Burgess, J. G. (2000). Isolation and 
characterisation of novel hydrocarbon-degrading euryhaline consortia from crude oil 
and mangrove sediments. Marine Biotechnology 2,522-532. 

Dickhut, R. M., Andren, A. W., and Armstrong, D. E. (1986). Aqueous solubilities of six 
polychlorinated biphenyl congeners at four temperatures. Environmental Science and 
Technology 20,807-810. 

Dixit, L. and Ram, S. (1996). Development of a derivative UV spectroscopic method for the 
analysis of principal aromatic components in fuels. Fuel 75,466-476. 

Donkin, P., Widdows, J., Evans, S. V., and Brinsley, M. D. (199 1). QSARs for the sublethal 
responses of marine mussels, (Mytillus edulis). The Science of the Total Environment 
109/110,461-476. 

Donkin, P., Smith, E. L., and Rowland, S. J. (2003). Toxic effects of unresolved complex 
mixtures of aromatic hydrocarbons accumulated by mussels, Mytilus edulis, from 
contaminated field sites. Environmental Science and Technology 37,4825-4830. 

Doskey, P. V. (200 1). Spatial variations and chron 
'0' 

logies of aliphatic hydrocarbons in Lake 
Michigan sediments. Environmental Science and Technology 35,247-254. 

Douabul, A. A. Z. and Al-Shiwafi, N. A. (1998). Dissolved/dispersed hydrocarbons in the 
Arabian region. Marine Pollution Bulletin 36,844-850. 

283 



Drake, E. N., Stokley, K. E., Calcavecchio, P., Bare, R. E., Rothenburger, S. J., Douglas, G. S., 
and Prince, R. C. (1995). Nutrient-stimulated biodegradation of aged refinery 
hydrocarbons in soil. In 'Monitoring and Verification ofBioremediation. ' (Eds R. E. 
Hinchee, G. S. Douglas, and S. K. Ong. ) pp. 19-28. (Battelle Press: Columbus. ) 

Dunnivant, F. M. and Elzerman, A. W. (1988). Aqueous solubility and Henry's law constant 
data for PCB congeners for evaluation of quantitative structure-property relationships 
(QSPRs). Chemosphere 17,525-541. 

Dutta, T. K. and Harayama, S. (2000). Fate of crude oil by the combination of photooxidation 
and biodegradation. Environmental Science and Technology 34,1500-1505. 

Dutta, T. K. and Harayama, S. (2001). Analysis of long-side-chain alkylaromatics in crude oil 
for evaluation of their fate in the environment. Environmental Science and Technology 
35,102-107. 

Eganhouse, R. P. and Calder, J. A. (1976). The solubility of medium molecular weight aromatic 
hydrocarbons and the effects of hydrocarbon co-solutes and salinity. Geochimica et 
CosmochimicaActa 40,555-561. 

Eganhouse, R. P., Dorsey, T. F., Phinney, C. S., and Westcott, A. M. (1993). Determination of 
C6-Clo aromatic hydrocarbons in water by purge-and-trap capillary gas 
chromatography. Journal of Chromatography 628,81-92. 

Eganhouse, R. P., Dorsey, T. F., Phinney, C. S., and Westcott, A. M. (1996). Processes affecting 
the fate of monoaromatic hydrocarbons in an aquifer contaminated by crude oil. 
Environmental Science and Technology 30,3304-3312. 

Eganhouse, R. P. and Pontolillo, J. (2002). Assessing the reliability of physico-chemical 
property data (K(,,, S, ) for hydrophobic organic compounds: DDT and DDE as a case 
study. SETAC Globe 3,34-35. 

Eickhoff, C. V., He, S. -X., Gobas, F. A. P. C., and Law, F. C. P. (2003). Determination of 
polycyclic aromatic hydrocarbons in Dungeness crabs (Cancer magister) near an 
aluminium smelter in Kitimat Arm, British Columbia, Canada. Environmental 
Toxicology and Chemistry 22,5 0-5 8. 

Ellis, L., Kagi, R. I., and Alexander, R. (1992). Separation of petroleum hydrocarbons using 
dealuminated mordenite molecular sieve. I. Monoaromatic hydrocarbons. Organic 
Geochemistry 18,587-593. 

Ellis, L., Singh, R. K., Alexander, R., and Kagi, R. I. (1995). Geosynthesis of organic 
compounds: 111. Formation of alkyltoluenes and alkylxylenes in sediments. 
Geochimica et Cosmochimica Acta 59,5133-5140. 

Ellis, L., Langworthy, T. A., and Winans, R. (1996). Occurrence of phenylalkanes in some 
Australian crude oils and sediments. Organic Geochemistry 24,57-69. 

Elshahed, M. S., Gieg, L. M., McInerney, M. J., and Suflita, J. M. (2001). Signature metabolites 
attesting to the in situ attenuation of alkylbenzenes in anaerobic environments. 
Environmental Science and Technology 35,682-689. 

Environment Agency (1998). 'Oil and gas in the environment. ' (The Stationary Office: 
London. ) 

Environment Agency (2003). 'Principlesfor evaluating the human health risksfrom petroleum 
hydrocarbons in soils. .4 consultation paper. ' (Environment Agency: Bristol. ) 

284 



Erben, R., Maguire, L, Lajtner, J., Barcot, M., and Pisl, Z. (2003). Effect of some monocyclic 
aromatic hydrocarbons on freshwater invertebrates. Bulletin ofEnvironmental 
Contamination and Toxicology 70,124-13 0. 

ESGOSS - The Ecological Steering Group on the oil spill in Shetland (1994). 'The 
environmental impact of the wreck of the Braer. '(Eds. Ritchie, W. and O'Sullivan, M. ) 
(The Scottish Office: Edinburgh. ) 

Farrington, J. W., Davis, A. C., Frew, N. M., and Rabin, K. S. (1982). No. 2 fuel oil compounds 
in Mytilus edulis: Retention and release after an oil spill. Marine Biology 66,15-26. 

Farrington, J. W., Davis, A. C., Frew, N. M., and Knap, A. (1988). ICES/IOC intercomparison 
exercise on the determination of Petroleum hydrocarbons in biological tissues (mussel 
homogenate). Marine Pollution Bulletin 19,372-380. 

Fayad, N. M. and Overton, E. (1995). A unique biodegradation pattern of the oil spilled during 
the 1991 Gulf War. Marine Pollution Bulletin 30,239-246. 

Fedorak, P. M. and Westlake, D. W. S. (1981). Microbial degradation of aromatics and saturates 
in Prudhoe Bay crude oil as determined by glass capillary gas chromatography. 
Canadian Journal ofMicrobiology 27,432-443. 

Ferndndez, C., Alonso, C., Garcia, P., Tarazona, J. V., and Carbonell, G. (2002). Toxicity of 
linear alkyl benzenes (LABs) to the aquatic crustacean Daphnia magna through 
waterborne and food chain exposures. Bulletin ofEnvironmental Contamination and 
Toxicology 68,637-643. 

Focant, J. -F., Sj6din, A., and Patterson Jr, D. G. (2003). Qualitative evaluation of thermal 
desorption-programmable temperature vaporization-comprehensive two-dimensional 
gas chromatography-time-of-flight mass spectrometry for the analysis of selected 
halogenated contaminants. Journal of Chromatography A 1019,143-156. 

Forster, P. G., Alexander, R., and Kagi, R. I. (1989). Identification of 2,2,7,8-tetramethyl- 
1,2,3,4-tetrahydronaphthalene in petroleum. Journal of the Chemical Society - 
Chemical Communications 5,274-276. 

Fowler, S. W., Readman, J. W., Oregioni, B., Villeneuve, J. -P., and McKay, K. (1993). 
Petroleum hydrocarbons and trace metals in nearshore Gulf sediments and biota before 
and after the 1991 war: An assessment of temporal and spatial trends. Marine Pollution 
Bulletin 27,171-182. 

Franke, C., Studinger, G., Berger, G., Bohling, S., Bruckmann, U., Cohors-Fresenborg, D., 
and Johricke, U. (1994). The assessment of bioaccumulation. Chemosphere 29,15 01- 
1514. 

Frysinger, G. S. and Gaines, R. B. (1999). Comprehensive two-dimensional gas 
chromatography with mass spectrometric detection (GCxGC/MS) applied to the 
analysis of petroleum. Journal offfigh Resolution Chromatography 22,251-255. 

Frysinger, G. S., Gaines, R. B., and Ledford, E. B. (1999). Quantitative determination of BTEX 
and total aromatic compounds in gasoline by comprehensive two-dimensional gas 
chromatography (GCxGC). Journal of High Resolution Chromatography 22,195-200. 

Frysinger, G. S. and Gaines, R. B. (2002). Forensic analysis of ignitable liquids in fire debris by 
comprehensive two-dimensional gas chromatography. Journal ofForensic Science 47, 
471-482. 

285 



Frysinger, G. S., Gaines, R. B., Xu, L., and Reddy, C. M. (2003). Resolving the unresolved 
complex mixture in petroleum-contaminated sediments. Environmental Science and 
Technology 37,1653-1662. 

Fung, C. N., Lam, J. C. W., Zheng, G. J., Connell, D. W., Monirith, I., Tanabe, S., Richardson, 
B. J., and Lam, P. S. K. (2004). Mussel-based monitoring of trace metal and organic 
contaminants along the east coast of China using Perna viridis and Mytilus edulis. 
Environmental Pollution 127,203-216. 

Gahm, K. -H., Lee, J. -T., Chang, L. W., and Armstrong, D. W. (1998). Chiral separations of 
indan, tetralin and benzosuberan derivatives by capillary electrophoresis. Journal of 
ChromatographyA 793,135-143. 

Gaines, R. B., Frysinger, G. S., Hendrick-Smith, M. S., and Stuart, J. D. (1999). Oil spill source 
identification by comprehensive two-dimensional gas chromatography. Environmental 
Science and Technology 33,2106-2112. 

Galt, J. A., Lehr, W. J., and Payton, D. L. (199 1). Fate and transport of the Exxon Valdez oil 
spill. 4. Environmental Science and Technology 25,202-209. 

Garrett, R. M., Haith, C. E., and Prince, R. C. (1999). Biodegradation of fuel oil under 
laboratory and arctic marine conditions. In 'In situ bioremediation ofpetroleum 
hydrocarbon and other organic compounds. ' (Eds B. C. Alleman and A. Leeson. ) pp. 
493-498. (Battelle Press: Columbus. ) 

Geerdink, M. J., van Loosdrecht, M. C. M., and Luyben, K. Ch. A. M. (1996). Biodegradability of 
diesel oil. Biodegradation 7,73-8 1. 

Ghosh, U., Weber, A. S., Jensen, J. N., and Smith, J. R. (1998). Dissolved PC13 congener 
distribution in generator column solutions. Water Research 32,1373-1382. 

Gibson, D. T. and Subramanian, V. (1984). Microbial degradation of aromatic hydrocarbons. 
In'Microbial degradation oforganic compounds. '(Ed D. T. Gibson. ) pp. 181-252. 
(Marcel Dekker: New York. ) 

Gieg, L. M., Kolhatkar, R. V., McInerney, M. J., Tanner, R. S., Harris, S. H., Sublette, K. L., and 
Suflita, J. M. (1999). Intrinsic bioremediation of petroleum hydrocarbons in a gas 
condensate-contaminated aquifer. Environmental Science and Technology 33,2550- 
2560. 

Gill, R. A. and Robotham, P. W. J. (1989). Composition, sources and source identification of 
petroleum hydrocarbons and their residues. In 'Thefate and effects of oil infteshwater. ' 
(Eds J. Green and M. W. Trett. ) pp. 11-40. (Elsevier Science Publishing Ltd: London. ) 

Gogou, A., Bouloubassi, I., and Stephanou, E. G. (2000). Marine organic geochemistry of the 
eastern Mediterranean: 1. Aliphatic and polyaromatic hydrocarbons in Cretan Sea 
surficial sediments. Marine Chemistry 68,265-282.1 

Gold-Bouchot, G., Sima-Alvarez, R., Zapata-Perez, 0., and Guemez-Ricalde, J. (1995). 
Histopathological effects of petroleum hydrocarbons and heavy metals on the 
American oyster (Crassostrea virginica) from Tabasco, Mexico. Marine Pollution 
Bulletin 31,439-445. 

Golovko, A. K., Kontorovich, A. E., and Pevneva, G. S. (2000). Geochernical characterisation 
of oils of the West Siberia by the composition of alkylbenzenes. Geochemistry 
International 38,246-257. 

286 



Gonzalez-Barros, S. T. C., Pineiro, M. E. A., Lozano, J. S., and Yusty, M. A. L. (1998). Aliphatic 
hydrocarbons in wolf tissue samples from Galicia (N. W. Spain). Chemosphere 36, 
597-602. 

Goodman, J. M., James, J. J., and Whiting, A. (1994). MM2 force field parameters for 
compounds containing the diazoketone function. Journal of the Chemical Society - 
Perkin Transactions 11109-116. 

Gorchs, R., Olivella, M. A., and de las Heras, FXC. (2003). New aromatic biomarkers in 
sulphur-rich coal. Organic Geochemistry 34,1627-1633. 

Gough, M. A. (1989) Characterisation of unresolved complex mixtures of hydrocarbons. PhD 

Thesis, University of Plymouth, Plymouth, UK. 

Gough, M. A. and Rowland, S. J. (1990). Characterisation of unresolved complex mixtures of 
hydrocarbons in petroleum. Nature 344,648-650. 

Gough, M. A., Rhead, M. M., and Rowland, S. J. (1992). Biodegradation studies of unresolved 
complex mixtures of hydrocarbons: model UCM hydrocarbons and the aliphatic UCM. 
Organic Geochemistry 18,17-22. 

Green, J. and Trett, M. W. (1989). 'Thefate and effects of oil infreshwater. ' (Green, J. and 
Trett, M. W. ) (Elsevier Science Publishing Ltd: London. ) 

Grishchenkov, V. G., Townsend, R. T., McDonald, T. J., Autenrieth, R. L., Bonner, J. S., and 
Boronin, A. M. (1999). Degradation of hydrocarbons in crude oil by pure bacterial 
cultures under different redox conditions. In 'In situ bioremediation ofpetroleum 
hydrocarbon and other organic compounds. ' (Eds B. C. Alleman and A. Leeson. ) pp. 
209-214. (Battelle Press: Columbus. ) 

Gschwend, P. M. and Wu, S. C. (1985). On the constancy of sediment-water partition 
coefficients of hydrophobic organic pollutants. Environmental Science and Technology 
19,90-96. 

Gundlach, E. R., Boehm, P. D., Marchand, M., Atlas, R. M., Ward, D. M., and Wolfe, D. A. 
(1983). The fate of Amoco Cadiz oil. Science 221,122-129. 

Haigler, B. E., Pettigrew, C. A., and Spain, J. C. (1992). Biodegradation of mixtures of 
substituted benzenes by Pseudomonas sp. strain JS 150. Applied and Environmental 
Microbiology 58,2237-2244. 

Hamilton, J. F. and Lewis, A. C. (2003). Monoaromatic complexity in urban air and gasoline 
assessed using comprehensive GC and fast GC-ToF/MS. Atmospheric Environment 37, 
589-602. 

Head, 1. and Swannell, R. P. J. (1999). Bioremediation of petroleum hydrocarbon contaminants 
in marine habitats. Current Opinion in Biotechnology 10,234-239. 

Heath, D. J., Lewis, C. A., and Rowland, S*J. (1997). The use of high temperature gas 
chromatography to study the biodegradation of high molecular weight hydrocarbons. 
Organic Geochemistry 26,769-785., 

Heintz, R. A., Short, J. W., and Rice, S. D. (1999). Sensitivity of fish embryos to weathered 
crude oil: Part Il. Increased mortality of pink salmon (Oncorhynchus gorhuscha) 
embryos incubating downstream from weathered Ejcxon Valdez crude oil. 
Environmental Toxicology and Chemistry 18,494-503. 

287 



Hellou, J., Payne, U., Upshall, C., Fancey, L. L., and Hamilton, C. (1994). Bioaccumulation 
of aromatic hydrocarbons from sediments: A dose-response study with flounder 
(Pseudopleuronectes americanus). Archives ofEnvironmental Contamination and 
Toxicology 27,477-485. 

Hernaez, M. J., Reineke, W., and Santero, E. (1999). Genetic analysis of biodegradation of 
tetralin by a sphingomonas strain. Applied and Environmental Microbiology 65,1806- 
1810. 

Heubeck, M., Camphuysen, K. C. J., Bao, R., Humple, D., Rey, A. S., Cadiou, B., Brager, S., 
and Thomas, T. (2003). Assessing the impact of major oil spills on seabird 
populations. Marine Pollution Bulletin 46,900-902. 

Hibbs, D. E., Gulliver, J. S., Voller, V. R., and Chen, Y. F. (1999). An aqueous concentration 
model for riverine spills. Journal o Hazardous Materials A 64,37-53. )f 

Hibbs, D. E. and Gulliver, J. S. (1999). Processes controlling aqueous concentrations for 
riverine spills. Journal of Hazardous Materials A 64,57-73. 

Hoff, RZ, Blenkinsopp, S., Sergy, G., Henry, C., Foght, J., Wang, Z., Roberts, P., and 
Westlake, D. W. S. (1995). In'Proceedings of the 18th Arctic and marine oil Spill 
Program (AMOP) Technical Seminar. 'pp. 1233-1241. (Environment Canada). 

Holder, E. L., Miller, K. M., and Haines, J. R. (1999). Crude oil component biodegradation 
kinetics by marine and freshwater consortia. In 'In situ bioremediation ofpetroleum 
hydrocarbon and other organic compounds. ' (Eds B. C. Alleman and A. Leeson. ) pp. 
245-250. (Battelle Press: Columbus. ) 

Howard, P. H., Boethling, R. S., Stiteler, W., Meylan, W. M., Hueber, A. E., Beauman, J. A., and 
Larosche, M. E. (1992). Predictive model for aerobic biodegradability developed from 
a file of evaluated biodegradation data. Environmental Toxicology and Chemistry 11, 
593-603. 

Huang, H., Wang, X., Ou, W., Zhao, J., Shao, Y., and Wang, L. (2003). Acute toxicity of 
benzene derivatives to the tadpoles (Ranajaponica) and QSAR analyses. 
Chemosphere 53,963-970. 

Huesemann, M. H. (1995). Field desorption mass spectroscopy monitoring of changes in 
hydrocarbon type composition during petroleum biodegradation. In'Monitoring and 
Verification ofBioremediation. '(Eds R. E. Hinchee, G. S. Douglas, and S. K. Ong. ) pp. 
11-18. (Battelle Press: Columbus. ) 

Hutchinson, T. H., Field, M. D. R., and Manning, M. J. (2003). Evaluation of non-specific 
immune functions in dab, Limanda limanda L., following short-term exposure to 
sediments contaminated with polyaromatic hydrocarbons and/or polychlorinated 
biphenyls. Marine Environmental Research 55,193-202. 

International Tanker Owners Pollution Federation Limited (ITOPF) (1999). The oil spill. In 
'Resonse to marine oil spills. 'pp. 1.3-1.30. (Witherby & Co Ltd: London. ) 

International Tanker Owners Pollution Federation Limited (ITOPF) (2002). Historical Data - 
Statistics. http: //www. itopf. com/stats. html. 

lqbal, M. J. and Mason, J. R. (1999). Catabolic pathway characterization for the 
biotransformation of aromatic hydrocarbons. In 'In situ bioremediation ofpetroleum 
hydrocarbon andother organic compounds. '(Eds B. C. Alleman and A. Leeson. ) pp. 
535-540. (Battelle Press: Columbus. ) 

288 



Isaac, S. and Jennings, D. (1995). 'Microbial Culture. (BIOS Scientific Publishers Limited: 
Oxford. ) 

Jensen, T. S., Arvin, E., Svensmark, B., and Wrang, P. (2000). Quantification of compositional 
changes of petroleum hydrocarbons by GC/FID and GUMS during a long-term 
bioremediation experiment. Soil and Sediment Contamination 9,549-577. 

Jezequel, R., Menot, L., Merlin, F. -X., and Prince, R. C. (2003). Natural cleanup of heavy fuel 
oil on rocks: an in situ experiment. Marine Pollution Bulletin 46,983-990. 

Jiang, C. and Li, M. (2002). Bakken/Madison petroleum systems in the Canadian Williston 
Basin. Part 4: diphenylmethanes and benylcyclohexanes as indicators for oils derived 
from the Madison petroleum system. Organic Geochemistry 33,855-860. 

Johnson, C. G., Frysinger, G. S., Nelson, R. K., Gaines, R. B., Ohkouchi, N., Reddy, C. M., and 
Eglinton, T. I. (2003). Innovative methods for determining alkenone unsaturation 
indices. Marine Chemistry 83,5-22. 

Jones, D. M., Douglas, A. G., Parkes, R. J., Taylor, J., Giger, W., and Schaffner, C. (1983). The 
recognition of biodegraded petroleum-derived aromatic hydrocarbons in recent marine 
sediments. Marine Pollution Bulletin 14,103-108. 

Jones, N. (2003). Spills' lethal legacy lives on. New Scientist 178,16. 

Jordan, R. E. and Payne, J. R. (1980). Abiotic factors/processes. In 'Fate and weathering of 
petroleum spills in the marine environment! pp. 3-54. (Ann Arbor: Michigan) 

Kanaly, R. A. and Harayama, S. (2000). Biodegradation of high-molecular weight polycyclic 
aromatic hydrocarbons by bacteria. Journal ofBacteriology 182,2059-2067. 

Khan, R. A. (1998). Influence of petroleum at a refinery terminal on feral Winter Flounder, 
Pleuronectes americanus. Bulletin ofEnvironmental Contamination and Toxicology 
61,770-777. 

Killops, S. D. and Readman, J. W. (1985). HPLC fractionation and GC-MS determination of 
aromatic hydrocarbons from oils and sediments. Organic Geochemistry 8,247-257. 

Killops, S. D. and Al-Juboori, M. A. H. A. (1990). Characterisation of the unresolved complex 
mixture (UCM) in the gas chromatograms of biodegraded petroleums. Organic 
Geochemistry 15,147-160. 

Killops, S. D. (199 1). Novel aromatic hydrocarbons of probable bacterial origin in a Jurassic 
lacustrine sequence. Organic Geochemistry 17,25-36. ' 

Killops, S. D. and Killops, V. J. (1993). An introduction to organic geochemistry. ' (Longman 
Scientific & Technical: Hong Kong. ) 

Kingston, P. F., Runciman, D., and McDougall, J. (2003). Oil contamination of sedimentary 
shores of the Galapagos Islands following the wreck of the Jessica. Marine Pollution 
Bulletin 47,303-312. 

Koch, A. L. (1994). Growth Measurement. InMethodsfor General andMolecular 
Bacteriology! (Eds P. Gerhardt, R. G. E. Murray, W. A. Wood, and N. R. Krieg. ) pp. 
248-277. (American Society for Microbiology: Washington D. C. ) 

Kropp, K. G., Davidova, I. A., and Suflita, J. M. (2000). Anaerobic oxidation of n-dodecane by 
an addition reaction in sulfate-reducing bacterial enrichment culture. Applied and 
Environmental Microbiology 66,5393-5398. 

289 



Kuo, L. (1994). An experimental study of crude oil alteration in reservoir rocks by water 
washing. Organic Geochemistry 21,465-479. 

Lacotte, D. J., Mille, G., Acquaviva, M., and Bertrand, J. C. (1996). Arabian Light 150 
asphaltene biotransformation with n-alkanes as co-substrates. Chemosphere 32,1755- 
1761. 

Lai, W. -C. and Song, C. (1995). Temperature-programmed retention indices for GC and GC- 
MS analysis of coal- and petroleum-derived liquid fuels. Fuel 74,1436-145 1. 

Larter, S. R., Wilhelms, A., Head, I., Koopmans, M., Aplin, A., di-Primo, R., Zwach, C., 
Erdmann, M., and TeInaes, N. (2003). The controls on the composition of biodegraded 
oils in the deep subsurface - part 1: biodegradation rates in petroleum reservoirs. 
Organic Geochemistr 34,601-613. y 

Le Dreau, Y., Jacquot, F., Doumenq, P., Guiliano, M., Bertrand, J. C., and Mille, G. (1997). 
Hydrocarbon balance of a site which had been highly and chronically contaminated by 
petroleum wastes of a refinery (from 195 6 to 1992). Marine Pollution Bulletin 34,45 6- 
468. 

Le Hir, M. and Hily, C. (2002). First observations in a high rocky-shore community after the 
Erika oil spill (December, 1999, Brittany, France). Marine Pollution Bulletin 44,1243- 
1252. 

Le Moigne, M. (2003). Environmental effects of the Erika oil spill. Marine Pollution Bulletin 
46,530-533. 

Leahy, J. G. and Colwell, R. R. (1990). Microbial degradation of hydrocarbons in the 
environment. Microbiological Reviews 54,305-315. 

Leblond, J. D., Schultz, T. W., and Sayler, G. S. (2001). Observations on the preferential 
biodegradation of selected components of polyaromatic hydrocarbon mixtures. 
Chemosphere 42,333-343. 

Lee, M. C., Chian, E. S. K., and Griff in, R. A. (1979a). Solubility of polychlorinated biphenyls 
and capacitor fluid in water. Water Research 13,1249-1258. 

Lee, M. L., Vassllaros, D. L., White, C. M., and Novotny, M. (1979b). Retention indices for 
programmed-temperature capillary-column gas chromatography of polycyclic aromatic 
hydrocarbons. Analytical Chemistry 51,768-774. 

Lewan, M. D., Winters, J. C., and McDonald, J. H. (1979). Generation of oil-like pyrolyzates 
from organic-rich shales. Science 203,897-899. 

Lewan, M. D., Bjoroy, M., and Dolcater, D. L. (1986). Effects of thermal maturation on steroid 
hydrocarbons as determined by hydrous pyrolysis of phosphoria retort shale. 
Geochimica et Cosmochimica Acta 50, '19 

' 
77-1987. 

Lewan, M. D. and Williams, J. A. (1987). Evaluation of petroleum generation from resinites by 
hydrous pyrolysis. AAPG Bulletin - American Association of Petroleum Geologists 71, 
207-214. 

Liu, Z. and Phillips, J. B. (1991). Comprehensive two-dimensional gas chromatography using 
an on-column thermal modulator interface. Journal of Chromatographic Science 29, 
227-231. 

Liu, Z., Sirimanne, S. R., Patterson, D. G., Needham, L. L., and Phillips, J. B. (1994)., 
Comprehensive two-dimensional gas chromatography for the fast separation and 

290 



detennination of pesticides extracted from human serum. Analytical Chemistry 66, 
3086-3092. 

Long, S. M. and Holdway, D. A. (2002). Acute toxicity of crude and dispersed oil to Octopus 
pallidus (Hoyle, 1885) hatchlings. Water Research 36,2769-2776. 

Lopez, L., Mogollon, U., Aponte, A., and Bifano, C. (2000). Identification of anthropogenic 
organic contamination associated with the sediments of a hypereutropic tropical lake, 
Venezuela. Environmental Geochemistry andHealth 22,55-74. 

Luthy, R. G., Dzombak, D. A., Shannon, M. J. R., Unterman, R., and Smith, J. R. (1997). 
Dissolution of PCB congeners from an aroclor and an aroclor/hydraulic oil mixture. 
Water Research 31,561-573. 

Mackay, D., Bobra, A., Shiu, W. Y., and Yalkowsky, S. H. (1980). Relationships between 
aqueous solubility and octanol-water partition coefficients. Chemosphere 9,701-711. 

Mackay, D., Shiu, W. Y., Maijanen, A., and Feenstra, S. (199 1). Dissolution of non-aqueous 
phase liquids in groundwater. Journal of Contaminant Hydrology 8,23-42. 

Mair, B. J. and Mayer, T. J. (1964). Composition of the dinuclear aromatics, C12 to C14, in the 
light gas oil fraction of petroleum. Analytical Chemistry 36,351-362. 

Maldonado, C., Bayona, J. M., and Bodineau, L. (1999). Source, distribution, and water 
column processes of aliphatic and polycyclic aromatic hydrocarbons in the 
Northwestern Black Sea water. Environmental Science and Technology 33,2693-2702. 

Manilal, V. B. and Alexander, M. (199 1). Factors affecting the microbial degradation of 
phenanthrene in soil. Applied Microbiology and Biotechnology 35,401-405. 

Marquez-Rocha, F. J., Hemandez-Rodriguez, V., and Vazquez-Duhalt, R. (1999). Diesel 
removal from a contaminated soil by natural hydrocarbon-degrading microorganisms. 
In 'In situ bioremediation ofpetroleum hydrocarbon and other organic compounds. ' 
(Eds B. C. Alleman and A. Leeson. ) pp. 409-414. (Battelle Press: Columbus. ) 

Marriott, P. J., Haglund, P., and Ong, R. C. Y. (2003). A review of environmental toxicant 
analysis by using multidimensional gas chromatography and comprehensive GC. 
Clinica Chimica A cta 32 8,1-19. 

Marsh, M. K., Smith, C. A., Snape, C. E., and Stokes, B. J. (1984). Separation of aromatic 
species in coal-derived oils by alumina adsorption chromatography. Journal of 
Chromatography 2 83,173 -18 1. 

Mason, R. P. (1988). Hydrocarbons in mussels around the cape peninsula, South Africa. South 
Aftican Journal ofMarine Science 7, '139-151. 

Matisova, E., Juranyiova, E., Kuran, P., Brandsteterova, E., Kocan, A., and Holotik, S. (1991). 
Analysis of multicomponent mixtures by high-resolution capillary gas chromatography 
and combined gas chromatography-mass spectrometry I. Aromatics in a hydrocarbon 
matrix. Journal of Chromatography 552,301-312. 

Maue, G. and Dott, W. (1995). Degradation tests with PAH-metabolizing soil bacteria for in 
situ bioremediation. In 'Monitoring and Verification of Bloremediation. ' (Eds R. E. 
Hinchee, G. S. Douglas, and S. K. 'Ong. ) pp. 127-133. (Battelle Press: Columbus. ) 

May, W. E., Wasik, S. P., and Freeman, D. H. (1978a). Determination of the aqueous solubility 
of polynuclear aromatic hydrocarbons by a coupled column liquid chromatographic 
technique. Analytical Chemistry 50,175-179. 

291 



May, W. E., Wasik, S. P., and Freeman, D. H. (1978b). Determination of the solubility behavior 
of some polycyclic aromatic hydrocarbons in water. Analytical Chemistry 50,997- 
1000. 

McAuliffe, C. (1966). Solubility in water of paraffin, cycloparaffin, olef in, acetylene, 
cycloolefin, and aromatic hydrocarbons. Journal ofphysical chemistry 70,1267-1275. 

McCarty, L. S. (1987). Relationship between toxicity and bioconcentration for some organic 
chemicals. 1. Examination of the relationship. In'QSAR in Environmental Toxicology - 
IL'(Ed K. L. E. Kaiser. ) pp. 207-220. (D. Reidel Publishing: Dordrecht, The 
Netherlands. ) 

McKenzie, P. and Hughes, D. E. (1976). Microbial Degradation of Oil and Petrochemicals in 
the Sea. In 'Microbiology in Agriculture, Fisheries and Food! (Eds F. A. Skinner and 
J. G. Carr. ) pp. 91-108. (Academic Press) 

McMillen, S. J., Gray, N. R., Kerr, J. M., Requejo, A. G., McDonald, T. J., and Douglas, G. S. 
(1995). Assessing bioremediation of crude oil in soils and sludges. In 'Monitoring and 
Verification ofBioremediation. (Eds R. E. Hinchee, G. S. Douglas, and S. K. Ong. ) pp. 
1-9. (Battelle Press: Columbus. ) 

Mendez, J., Quej ido, A. J., Perez-Pastor, R., and Perez-Garcia, M. (1993). Chemonictric study 
of organic pollution in the aerosol of Madrid. Analytica Chimica Acta 283,528-537. 

Meniconi, M. F. G., Gabardo, I. T., Cameiro, M. E. R., Barbanti, S. M., da Silva, G. C., and 
Massone, C. G. (2002). Brazilian oil spills chemical characterization - case studies. 
Environmental Forensics 3,3 03 -32 1. 

Meredith, W., Kelland, S. -J., and Jones, D. M. (2000). Influence of biodegradation on crude oil 
acidity and carboxylic acid composition. Organic Geochemistry 31,1059-1073. 

Meylan, W. M., Howard, P. H., and Boethling, R. S. (1996). Improved method for estimating 
water solubility from octanol/water partition coefficients. Environmental Toxicology 
and Chemistry 15,100-106. 

Michel, J. (2001). Oil behavior and toxicity. In'An introduction to coastal habitats and 
biological resourcesfor oil spill response. p. 2.1-2.9. (National Oceanic and 
Atmospheric Administration: Seattle. ) 

Mille, G., Almallah, M., Bianchi, M., van Wambeke, F., and Bertrand, J. C. (1991). Effect of 
salinity on petroleum biodegradation. Fresenius'Journal ofAnalytical Chemistry 339, 
788-791. 

Miller, M. M., Ghodbane, S., Wasik, S. P., Tewari, Y. B., and Martire, D. E. (1984). Aqueous 
solubilities, octanol/water partition coefficients, and entropies of melting of chlorinated 
benzenes and biphenyls. Journal of Chemical and Engineering Data 29,184-190. 

National Research Council (1989). Chemistry and physics of dispersants and dispersed oil. In 
'Using oil spill dispersants on the sea. 'pp. 28-80. (National Academy Press: 
Washington, D. C. ) 

National Research Council (2003). 'Oil in the Sea 11L Inputs, Fates, and Effects. ' (National 
Academy Press: Washington, D. C. ) 

Neff, J. M., Boehm, P. D., and Haensly, W. E. (1985). Petroleum contamination and 
biochemical alterations in oysters (Crassostrea gigas) and plaice (Pleuronectes 
platessa) from bays impacted by the Amoco Cadiz crude oil spill. Marine 
Environmental Research 17,281-283. 

292 



Neff, J. M., Ostazeski, S., Gardiner, W., and Stejskal, 1. (2000). Effects of weathering on the 
toxicity of three offshore Australian crude oils and a diesel fuel to marine animals. 
Environmental Toxicology and Chemistry 19,1809-182 1. 

Nicodem, D. E., Conceicao, M., Fernandes, Z., Guedes, C. L. B., and Correa, R. J. (1997). 
Photochemical processes and the environmental impact of petroleum spills. 
Biogeochemistry 39,121-138. 

Novak, J. T., Schuman, D., and Burgos, W. (1995). Characterization of petroleum 
biodegradation patterns in weathered contaminated soils. In 'Monitoring and 
Verification ofBioremediation. '(Eds R. E. Hinchee, G. S. Douglas, and S. K. Ong. ) pp. 
29-38. (Battelle press: Columbus. ) 

Nzengung, V. A., Voudrias, E. A., Nkedi-Kizza, P., Wampler, J. M., and Weaver, C. E. (1996). 
Organic cosolvent effects on sorption equilibrium of hydrophobic organic chemicals 
by organoclays. Environmental Science and Technology 30,89-96. 

Office of Prevention, Pesticides and Toxic Substances (OPPTS). (1998). 'Fate, transport, and 
transformation test guidelines - OPYTS 835.3 110 ready biodegradability! (United 
States Environmental Protection Agency) 

Ohashi, T., Imano, S., Iwasaki, K., and Yagi, 0. (1999). Biodegradation of spilled oil of 
Nakhodka accident in Japan, 1997. In'In situ bioremediation ofpetroleum 
hydrocarbon and other organic compounds. '(Eds B. C. Alleman and A. Leeson. ) pp. 
233-238. (Battelle Press: Columbus. ) 

Olson, J. J., Mills, G. L., Herbert, B. E., and Morris, P. J. (1999). Biodegradation rates of 
separated diesel components. Environmental Toxicology and Chemistry 18,2448- 
2453. 

OSPAR Commission (2000). 'OSPAR Status Report 2000. '(OSPAR Commission: London. ) 

OSPAR Commission (2002). 'Provisional Instruction Manualfir the Dynamic Selection and 
Prioritisation Mechanismfor Hazardous Substances (DYNAMEC). '(OSPAR 
Commission) 

Ostoukhov, S. B., Aref ev, O. A., Makuschina, W. M., Sabrodina, M. N., and Petrov, A. A. 
(1982). Monocyclic aromatic hydrocarbons with isoprenoidal chain. Neflekhimiya 22, 
723-728. 

Page, C. A., Bonner, J. S., Sumner, P. L., and Autenrieth, R. L. (2000). Solubility of petroleum 
hydrocarbons in oil/water systems. Marine Chemistry 70,79-87. 

Page, D. S., Boehm, P. D., Stubblefield, W. A., Parker, K. R., Gilf illan, E. S., Neff, J. M., and 
Maki, A. W. (2002). Hydrocarbon composition and toxicity of sediments following the 
Exxon Valdez oil spill in Prince William Sound, Alaska, USA. Environmental 
Toxicology and Chemistry 21,1438-1450. iI 

Pankova, M. C., Milina, R. S., Belcheva, R. P., and Ivanov, A. S. (1977). Gas chromatographic 
separation and identification of bicyclic aromatic hydrocarbons in kerosene (b. p. 200- 
280'). Journal of Chromatography 137,198-20 1. 

PdI, R., JuhAsz, M., and Stumpf, A. (1998). Detailed analysis of hydrocarbon groups in diesel 
range petroleum fractions with on-line coupled supercritical fluid chromatography-gas 
chromatography-mass spectrometry. Journal of Chromatography A 819,249-257. 

293 



Peters, K. E. and Moldowan, J. M. (I 993). 'The Biomarker Guide: Interpreting molecular 
fossils in petroleum and ancient sediments. ' (K. E. Peters and J. M. Moldowan. ) 
(Prentice-Hall: Englewood Cliffs. ) 

Peterson, D. R. (1994). Calculating the aquatic toxicity of hydrocarbon mixtures. Chemosphere 
29,2493-2506. 

Phillips, J. B. and Xu, J. (1995). Comprehensive multi-dimensional gas chromatography. 
Journal of Chromatography A 703,327-3 34. 

Phillips, J. B. and Beens, J. (1999). Comprehensive two-dimensional gas chromatography: a 
hyphenated method with strong coupling between the two dimensions. Journal of 
Chromatography A 856,331-347. 

Pinal, R., Rao, P. S. C., Lee, L. S., Cline, P. V., and Yalkowsky, S. H. (1990). Cosolvency of 
partially miscible organic solvents on the solubility of hydrophobic organic chemicals. 
Environmental Science and Technology 24,639-647. 

Pontolillo, J. and Eganhouse, R. P. (2001). 'The searchfor reliable aqueous solubility (S,, ) and 
octanol-water partition coefficient (&w) datafor hydrophobic organic compounds: 
DDTandDDE as a case study. '(U. S. Geological Survey: Reston, Virginia. ) 

Potter, D. W. and Pawliszyn, J. (1994). Rapid determination of polyaromatic hydrocarbons and 
polychlorinated biphenyls in water using solid-phase microextraction and GC/MS. 
Environmental Science and Technology 28,298-305. 

Preston, M. R. and Merrett, J. (1991). The distribution and origins of the hydrocarbon fraction 
of particulate material in the North Sea atmosphere. Marine Pollution Bulletin 22,516- 
522. 

Preston, M. R., Chester, R., Bradshaw, G. F., and Merrett, J. L. (1992). PAIVlead relationships: 
A possible tool for the assessment of anthropogenic influence on marine aerosols. 
Marine Pollution Bulletin 24,164-166. 

Preston, M. R. and Raymundo, C. C. (1993). The associations of linear alkyl benzenes with the 
bulk properties of sediments from the River Mersey Estuary. Environmental Pollution 
81,7-13. 

Prince, R. C., Bare, R. E., Garrett, R. M., Grossman, M. J., Haith, C. E., Keim, L. G., Lee, K., 
Holtom, G. J., Lambert, P., Sergy, G., Owens, E. H., and Guenette, C. C. (1999). 
Bioremediation of a marine oil spill in the arctic. InIn situ bioremediation of 
petroleum hydrocarbon and other organic compounds! (Eds B. C. Alleman and A. 
Leeson. ) pp. 227-232. (Battelle Press: Columbus. ) 

Radke, M., Welte, D. H., and Willsch, H. (1982). Geochernical study on a well in the Western 
Canada Basin: relation of the aromatic distribution pattern to maturity of organic 
matter. Geochimica et Cosmochimica Acta 46,1 -10. 

Radke, M., Willsch, H., and Welte, D. H. (1984). Class separation of aromatic compounds in 

rock extracts and fossil fuels by liquid chromatography. Analytical Chemistry 56, 
2538-2546. 

Radke, M., Welte, D., and Willsch, H. (1986). Maturity parameters based on aromatic 
hydrocarbons: Influence of the organic matter type. Organic Geochemistry 10,51-63. 

Rao, P. S. C., Lee, L. S., and Pinal, R. (1990). Cosolvency and sorption of hydrophobic organic 
chemicals. Environmental Science and Technology 24,647-654. 

294 



Rawling, M. C. (1998) Particle-water interactions of hydrophobic organic micropollutants in 
marine systems. PhD Thesis, University of Plymouth, Plymouth, UK. 

Raymond, R. L., Jamison, V. W., and Hudson, J. O. (1971). Hydrocarbon cooxidation in 
microbial systems. Lipids 6,453-457. 

Raymundo, C. C. and Preston, M. R. (1992). The distribution of linear alkylbenzenes in coastal 
and estuarine sediments of the Western North Sea. Marine Pollution Bulletin 24,138- 
146. 

Readman, J. W., Preston, M. R., and Mantoura, R. F. C. (1986). An integrated technique to 
quantify sewage, oil and PAH pollution in estuarine and coastal environments. Marine 
Pollution Bulletin 17,298-308. 

Readman, J. W., Fowler, S. W., Villeneuve, J. -P., Cattini, C., Oregioni, B., and Mee, L. D. 
(1992). Oil and combustion-product contamination of the Gulf marine environment 
following the war. Nature 358,662-665. 

Readman, J. W., Bartocci, J., Tolosa, I., Fowler, S. W., Oregioni, B., and Abdulraheem, M. Y. 
(1996). Recovery of the coastal marine environment in the Gulf following the 1991 
war-related oil spills. Marine Pollution Bulletin 32,493-498. 

Readman, J. W., Fillmann, G., Tolosa, I., Bartocci, J., Villeneuve, J. -P., Catinni, C., and Mee, 
L. D. (2002). Petroleum and PAH contamination of the Black Sea. Marine Pollution 
Bulletin 44,48-62. 

Reddy, C. M., Eglinton, T. I., Hounshell, A., White, H. K., Xu, L., Gaines, R. B., and Frysinger, 
G. S. (2002). The West Falmouth oil spill after thirty years: The persistence of 
petroleum hydrocarbons in marsh sediments. Environmental Science and Technology 
26,4757-4760. 

Requejo, A. G. and Boehm, P. D. (1985). Characterization of hydrocarbons in a subsurface oil- 
rich layer in the Sargasso Sea. Marine Environmental Research 17,45-64. 

Revill, A. (1992) Characterisation of unresolved complex mixtures of hydrocarbons by 
degradative methods. PhD Thesis, University of Plymouth, Plymouth, UK. 

Revill, A. T., Carr, M. R., and Rowland, S. J. (1992). Use of oxidative degradation followed by 
capillary gas chromatography-mass spectrometry and multi-dimensional scaling 
analysis to fingerprint unresolved complex mixtures of hydrocarbons. Journal of 
Chromatography 589,281-286. 

Riazi, M. R. and Edalat, M. (1996). Prediction of the rate of oil removal from seawater by 
evaporation and dissolution. Journal of Petroleum science and Engineering 16,29 1- 
300. 

Robert, E., Beboulene, J. -J., Codet, G., and Enache, D. (1994). High-performance liquid 
chromatography coupled off-line with capillary gas chromatography: Application to 
the determination of the aromatics content in middle distillates. Journal of 
Chromatography A 683,215-222. 

Robson, J. N. (1987) Synthetic and bio'degradýtion studies ofsome sedimentary isoprenoid 
hydrocarbons. PhD The 

' 
sis, University of Plymouth, Plymouth, UK. 

Robson, J. N. and Rowland, S. J. (1988). Biodegradation of highly branched isoprenoid 
hydrocarbons: A possible explanation of sedimentary abundance. Organic 
Geochemistry 13,691-695. , 

295 



Rocha, C., San-Blas, F., San-Blas, G., and Vierma, L. (1992). Biosurfactant production by two 
isolates of Pseudomonas aeruginosa. WorldJournal ofMicrobiology and 
Biotechnology 8,125-128. 

Rossi, S. S. and Thomas, W. H. (198 1). Solubility behavior of three aromatic hydrocarbons in 
distilled water and natural seawater. Environmental Science and Technology 15,715- 
716. 

Rowland, S., Donkin, P., Smith, E. J., and Wraige, E. (2001). Aromatic hydrocarbon "humps" 
in the marine environment: Unrecognized toxins. Environmental Science and 
Technology 35,2640-2644. 

Rowland, S. J., Alexander, R., Kagi, R. I., Jones, D. M., and Douglas, A. G. (1986). Microbial 
degradation of aromatic components of crude oils: A comparison of laboratory and 
field observations. Organic Geochemistry 9,153-161. 

Rowland, S. J. and Revill, A. T. (1995). Chromatography in petroleum geochemistry. In 
'Chromatography in the petroleum industry. ' (Ed E. R. Adlard. ) pp. 127-14 1. (Elsevier 
Science B. V.: Amsterdam. ) 

Rudolph, A., Yanez, R., and Troncoso, L. (2001). Effects of exposure of Oncorhynchus mykiss 
to the water-accommodated fraction of petroleum hydrocarbons. Bulletin of 
Environmental Contamination and Toxicology 66,400-406. 

Rueter, P., Rabus, R., Wilkes, H., Aeckersberg, F., Rainey, F., Jannasch, H. W., and Widdel, F. 
(1994). Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate 
reducing bacteria. Nature 372,455-458. 

Schmitt, R., Langguth, H. R., Puttmann, W., Rohns, H. P., Eckert, P., and Schubert, J. (1996). 
Biodegradation of aromatic hydrocarbons under anoxic conditions in a shallow and 
gravel aquifer of the Lower Rhine Valley, Germany. Organic Geochemistry 25,41-50. 

Schoenmakers, P. J., Oomen, J. L. M. M., Blomberg, J., Genuit, W., and van Velzcn, G. (2000). 
Comparison of comprehensive two-dimensional gas chromatography and gas 
chromatography - mass spectrometry for the characterisation of complex hydrocarbon 
mixtures. Journal of Chromatography A 892,29-46. 

Schreiber, A. F. and Winkler, U. K. (1983). Transformation of tetralin by whole cells of 
Pseudomonas stutzer! AS39. European Journal ofAppliedMicrobiolov and 
Biotechnology 18,6-10. 

Schwark, L. and Pattmann, W. (1990). Aromatic hydrocarbon composition of the Permian 
Kupferschiefer in the Lower Rhine Basin, NW Germany. Organic Geochemistry 16, 
749-761. 

Schwarzenbach, R. P., Gschwend, P. M., and Imboden, D. M. (2003). 'Environmental Organic 
Chemistry. ' (John Wiley and Sons Inc: Hoboken, New Jersey. ) 

Sepic, E., Trier, C., and Leskovsek, H. (1996). Biodegradation studies of selected 
hydrocarbons from diesel oil. The Analyst 121,1451-1456. 

Serret, P., Alvarez-Salgado, X. A., and Bode, A. (2003). Spain's earth scientists and the oil 
spill. Science 299,511. 

Setti, L., Lanzarini, G., Pifferi, P. G., and Spagna, G. (1993). Further research into the aerobic 
degradation of n-alkanes in a heavy oil by a pure culture of a Pseudomonas sp. 
Chemosphere 26,1151-1157. 

296 



Seymour, R. J. and Geyer, R. A. (1992). Fates and effects of oil spills. Annual Review of 
Energy and the Environment 17,261-283. 

Shailaja, M. S. and D'Silva, C. (2003). Evaluation of impact of PAH on a tropical fish, 
Oreochromis mossambicus using multiple biomarkers. Chemosphere 53,835-841. 

Shellie, R., Marriott, P. J., and Morrison, P. (2001). Concepts and preliminary observations on 
the triple-dimensional analysis of complex volatile samples by using GC x GC- 
ToFMS. Analytical Chemistry 73,1336-1344. 

Sherblom, P. M., Gschwend, P. M., and Eganhouse, R. P. (1992). Aqueous solubilities, vapour 
pressures, and I-octanol-water partition coefficients for C9-CI4 linear alkylbenzenes. 
Journal of Chemical and Engineering Data 37,394-399. 

Shiaris, M. P. (1989). Phenanthrene mineralization along a natural salinity gradient in an urban 
estuary, Boston Harbour, Massachusetts. Microbial Ecology 18,135-146. 

Shim, H. and Yang, S. T. (1999). Biodegradation of benzene, toluene, ethylbenzene, and o- 
xylene by a coculture of Pseudomonas Putida and Pseudomonasfluorescens 
immobilized in a fibrous-bed bioreactormobilized in a fibrous-bed bioreactor. Journal 
ofBiotechnology 67,99-112. 

Shiu, W. Y., Maijanen, A., Ng, A. L. Y., and Mackay, D. (1988). Preparation of aqueous 
solutions of sparingly soluble organic substances: Il. Multicomponent systems - 
hydrocarbon mixtures and petroleum products. Environmental Toxicology and 
Chemistry 7,125-137. 

Shiu, W. Y., Bobra, M., Bobra, A. M., Maijanen, A., Sunito, L., and Mackay, D. (1990). The 
water solubility of crude oils and petroleum products. Oil & Chemical Pollution 7,57- 
84. 

Sijm, D. T. H. M., Schuurmann, G., de Vries, P. J., and Opperhuizen, A. (1999). Aqueous 
solubility, octanol solubility, and octanol/water partition coefficient of nine 
hydrophobic dyes. Environmental Toxicology and Chemistry 18,1109-1117. 

Sikkema, J. and de Bont, J. A. M. (1991). Isolation and initial characterization of bacteria 
growing on tetralin. Biodegradation 2,15-23. 

Silla, E., Tunon, I., Villar, F., and Pascual-Ahuir, J. L. (1992). Molecular surface calculations 
on organic compounds. Molecular area-aqueous solubility relationships. Journal of 
Molecular Structure (Theochem) 254,369-377. 

Simekovd, J., PronayovA, N., Pieg, R., and Ciha, M. (1970). Chromatographic analysis of 
primary light gasoline and Pbi-H fractions of Romashkino crude oil. Journal of 
Chromatography 51,9 1- 10 1. 

Singleton, P. and Sainsbury, D. (200 1). 'Dictionary of microbiology and molecular biology. ' 
(John Wiley & Sons: Chichester. ) 

Sinha, A. E., Prazen, B. J., Fraga, C. G., and Synovec, R. E. (2003). Valve-based comprehensive 
two-dimensional gas chromatography with time-of-flight mass spectrometric detection: 
instrumentation and figures-of-merit. Journal of Chromatography A 10 19,79-87. 

Sinninghe Damste, J. S., Kock-van Dalen, A. C., Albrecht, P., and de Leeuw, J. W. (199 1). 
Identification of long-chain 1,2-di-n -alkylbenzenes in Amposta crude oil from the 
Tarragona Basin, Spanish Mediterranean: Implications for the origin and fate of 
alkylbenzenes. Geochimica et Cosmochimica Acta 55,3677-3683. 

- 

297 



Siron, R., Giusti, G., Berland, B., Morales-Loo, R., and Pelletier, E. (1991). Water-soluble 
petroleum compounds: chemical aspects and effects on the growth of microalgae. The 
Science of the Total Environment 104,211-227. 

Smith, E. L., Wraige, E., Donkin, P., and Rowland, S. (2001). Hydrocarbon 'humps' in the 
marine environment: synthesis, toxicity and aqueous solubility of monoaromatic 
compounds. Environmental Toxicology and Chemistry 20,2428-2432. 

Smith, E. L. (2002) Unresolved complex mixtures of aromatic hydrocarbons in the marine 
environment: Toxicity, Solubility and Photodegradation studies. PhD Thesis, 
University of Plymouth, Plymouth, UK. 

Sokol, R. C., Bush, B., Woode, L. W., and Jahan-Parwar, B. (1992). Production of aqueous 
PCB solutions for environmental toxicology. Chemosphere 24,483-495. 

Solanas, A. M., Pares, R., Bayona, J. M., and Albaiges, J. (1984). Degradation of aromatic 
petroleum hydrocarbons by pure microbial cultures. Chemosphere 13,593-601. 

Soler, M., Grimalt, J. 0., and Albaiges, J. (1989). Vertical distribution of aliphatic and 
aromatic hydrocarbons in mussels from the Amposta offshore oil production platform 
(Western Mediterranean). Chemosphere 18,1809-1819. 

Stewart, P. S., Tedaldi, D. J., Lewis, A. R., and Goldman, E. (1993). Biodegradation rates of 
crude oil in seawater. Water Environment Research 65,845-848. 

Stolzenburg, T. R. and Andren, A. W. (1983). Determination of the aqueous solubility of 4- 
chlorobiphenyl. Analytica Chimica Acta 151,271-274. 

Strachan, M. G., Alexander, R., and Kagi, R. I. (1988). Trimethylnaphthalenes in crude oils and 
sediments: Effects of source and maturity. Geochimica et Cosmochimica Acta 52, 
1255-1264. 

Sturt, H. F. (2000) Molecular characterisation offluidised catalytic crackerfeedstocks using 
ruthenium tetroxide oxidation: A study of model hydrocarbons. PhD Thesis, University 
of Plymouth, Plymouth, UK. 

Sugiura, K., Ishihara, M., Shimauchi, T., and Harayama, S. (1997). Physicochemical 
properties and biodegradability of crude oil. Environmental Science and Technology 
31,45-51. 

Sutton, C. and Calder, J. A. (1974). Solubility of higher-molecular-weight n-paraffins in 
distilled water and seawater. Environmental Science and Technology 8,654-657. 

Swisher, R. D. (1987). Metabolic pathways and ultimate biodegradation. In'Surfactant 
Biodegradation. ' pp. 517-741. ý (Marcel Dekker Inc: New York. ) 

Sydnes, L. K., Hemmingsen, T. H., Skare, S., Hansen, S. H., Falk-Petersen, I. B., Lonning, S., 
and Ostgaard, K. (1985). Seasonal variations in weathering and toxicity of crude oil on 
seawater under arctic conditions. Environmental Science and Technology 19,1076- 
1081. 

Takada, H. and Ishiwatari, R. (1990). Biodegradation experiments of linear alkylbenzenes 
(LABs): Isomeric composition Of C12 LABs as an indicator of the degree of LAB 
degradation in the aquatic environment. Environmental Science and Technology 24, 
86-91. 

Taylor, P., Bennett, B., Jones, M., and Larter, S. R. (2001). The effect of biodegradation and 
water washing on the occurrence of alkylphenols in crude oils. Organic Geochemistry 
32,341-358. 

298 



Temois, Y., Sicre, M., Boireau, A., Beaufort, L., Miquel, J., and Jeandel, C. (1998). 
Hydrocarbons, sterols and alkenones in sinking particles in the Indian Ocean sector of 
the Southern Ocean. Organic Geochemistry 28,489-50 1. 

Thomas, K. V. (1995) Characterisation and environmental effects of unresolved complex 
mixtures of hydrocarbons. PhD Thesis, University of Plymouth, Plymouth, UK. 

Thompson, S. and Eglinton, G. (1978). Composition and sources of pollutant hydrocarbons in 
the Severn Estuary. Marine Pollution Bulletin 9,133-13 6. 

Tolls, J., van Dijk, J., Verbruggen, E. J. M., Hermans, J. L. M., Loeprecht, B., and Schuurmann, 
G. (2002). Aqueous solubility - molecular size relationships: A mechanistic case study 
using C10- to C19-alkanes. Journal of Physical Chemistry A 106,2760-2765. 

Tortora, G. J., Funke, B. R., and Case, C. L. (1998). 'Microbiology: An Introduction! 
(Benjamin/Cummings Publishing Company: Menlo Park, California. ) 

Trolio, R., Alexander, R., and Kagi, R. I. (1996). Alkyldiphenylmethanes in crude oils. 
Polycyclic Aromatic Compounds 9,137-142. 

Trolio, R., Grice, K., Fisher, S., Alexander, R., and Kagi, R. I. (1999). Alkylbiphenyls and 
alkyldiphenylmethanes as indicators of petroleum biodegradation. Organic 
Geochemistry 30,1241-1253. 

Trudgill, P. W. (1984). Microbial degradation of the alicyclic ring. In 'Microbial degradation 
of organic compounds. '(Ed D. T. Gibson. ) pp. 131-180. (Marcel Dekker: New York. ) 

Tsapakis, M., Lagoudaki, E., Stephanou, E. G., Kavouras, I. G., Koutrakis, P., Oyola, P., and 
von Baer, D. (2002). The composition and sources Of PM2.5 organic aerosol in two 
urban areas of Chile. Atmospheric Environment 36,3851-3863. 

Tunkel, J., Howard, P. H., Boethling, R. S., Stiieler, W., and Loonen, H. (2000). Predicting 
ready biodegradability in the Japanese Ministry of International Trade and Industry 
test. Environmental Toxicology and Chemistry 19,2478-2485. 

van Deursen, M., Beens, J., Reijenga, J., Lipman, P., and Cramers, C. A. (2000). Group-type 
identification of oil samples using comprehensive two-dimensional. Journal of High 
Resolution Chromatography 23,5 07-5 10. 

Vella, A. J. and Holzer, G. (1992). Distribution of isoprenoid hydrocarbons and alkylbenzenes 
in immature sediments: evidence for direct inheritance from bacterial/algal sources. 
Organic Geochemistry 18,203-210. 

Venkatramani, C. J. and Phillips, J. B. (1993). Comprehensive two-dimensional gas 
chromatography applied to the analysis of complex mixtures. Journal ofMicrocolumn 
Separations 5,511-516. 

Venkatramani, C. J., Xu, J., and Phillips, J. B. (1996). Separation orthogonality in temperature- 
programmed comprehensive two-dimensional gas chromatography. Analytical 
Chemistry 68,1486-1492. 

Verhaar, H. J. M., van Leeuwen, 'C. J., and Hermans, J. L. M. (1992). Classifying environmental 
pollutants. 1: Structure-activity relationships for prediction of aquatic toxicity. 
Chemosphere 25,471-49 1. 

Volkman, J. K., Alexander, R., Kagi, R. I Rowland, S. J., and Sheppard, P. N. (1984). 
Biodegradation of aromatic hydrocarbons in crude oils from the Barrow Sub-basin of 
Western Australia. Organic Geochemistry 6,619-632. 

299 



Vorob'eva, N. S. and Petrov, A. A. (1998). Advances in organic geochemistry (1993-1997) 
(From materials of international meetings). Petroleum Chemistry 38,362-368. 

Wackett, L. P. and Hershberger, C. D. (200 1). 'Biocatalysis and biodegradation: Microbial 
transformation of organic compounds. ' (ASM Press: Washington. ) 

Wade, T. L., Velinsky, D. J., Reinharz, E., and Schlekat, C. E. (1994). Tidal river sediments in 
the Washington, D. C. area. 11. Distribution and sources of organic contaminants. 
Estuaries 17,321-333. 

Wakeham, S. G. (1996). Aliphatic and polycyclic aromatic hydrocarbons in Black Sea 
sediments. Marine Chemistry 53,187-205. 

Wang, Z., Fingas, M., and Sergy, G. (1994). Study of 22-year-old, 4rrow Oil samples using 
biomarker compounds by GUNIS. Environmental Science and Technology 28,1733- 
1746. 

Wang, Z., Fingas, M., and Sergy, G. (1995). Chemical characterization of crude oil residues 
from an arctic beach by GC/MS and GC/FID. Environmental Science and Technology 
29,2622-2631. 

Wang, Z. and Fingas, M. (1997). Developments in the analysis of petroleum hydrocarbons in 
oils, petroleum products and oil-spill-related environmental samples by gas 
chromatography. Journal of Chromatography A 774,51-78. 

Wang, Z., Fingas, M., Blenkinsopp, S., Sergy, G., Landriault, M., Sigouin, L., Foght, J., 
Semple, K., and Westlake, D. W. S. (1998). Comparison of oil composition changes due 
to biodegradation and physical weathering in different oils. Journal of 
Chromatography A 809,89-107. 

Warton, B. (1999) Studies of the saturate and aromatic hydrocarbon unresolved complex 
mixtures in petroleum. PhD Thesis, Curtin University of Technology, Perth, Australia. 

Warton, B., Alexander, R., and Kagi, R. I. (1999). Characterisation of the ruthenium tetroxide 
oxidation products from the aromatic unresolved complex mixture of a biodegraded 
crude oil. Organic Geochemistry 30,1255-1272. 

Warton, B., Grice, K., Alexander, R., and Kagi, R. I. (2002). Subsurface carbocation processes 
revealed by detailed study of the aromatic UCM. Geochimica et Cosmochimica Acta 
66, A823. 

Watson, J. S., Jones, D. M., Swannell, R. P. J., and van Duin, A. C. T. (2002). Formation of 
carboxylic acids during aerobic degradation of crude oil and evidence of microbial 
oxidation of hopanes. Organic Geochemistry 33,1153-1169. 

Welthagen, W., Schnelle-Kreis, J., and Zimmermann, R. (2003). Search criteria and rules for 
comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry 
analysis of airborne particulate matter. Journal of Chromatography A 10 19,233-249. 

Wetzel, D. L. and Van Vleet, E. S. (2003). Persistence of petroleum hydrocarbon contamination 
in sediments of the canals in Venice, Italy: 1995 and 1998. Marine Pollution Bulletin 
46,1015-1023. 

White, C. M. and Lee, M. L. (1980). Identification and geochemical significance of some 
aromatic components of coal. Geochimica et Cosmochimica Acta 44,1825-1832. 

Widdows, J., Donkin, P., Brinsley, M. D., Evans, S. V., Salkeld, P. N., Franklin, A., Law, R. J., 
and Waldock, M. J. (1995). Scope for growth and contaminant levels in North Sea 
mussels Mytilus edulis. Marine Ecological Progress Series 127,131-14 8. 

300 



Wilhelms, A., Larter, S. R., Head, I., Farrimond, P., di-Primo, R., and Zwach, C. (2001). 
Biodegradation of oil in uplifted basins prevented by deep-burial sterilization. Nature 
411,1034-1037. 

Wilkes, H., Disko, U., and Horsfield, B. (1998). Aromatic aldehydes and ketones in the 
Posidonia Shale, Hils Syncline, Germany. Organic Geochemistry 29,107-117. 

Wilkes, H., Boreham, C., Harms, G., Zengler, K., and Rabus, R. (2000). Anaerobic 
degradation and carbon isotopic fractionation of alkylbenzenes in crude oil by 
sulphate-reducing bacteria. Organic Geochemistry 31,101-115. 

Williams, J. A., Dolcater, D. L., Torkelson, B. E., and Winters, J. C. (1988). Anomalous 
concentrations of specific alkylaromatic and alkylcycloparaffin components in West 
Texas and Michigan crude oils. Organic Geochemistry 13,47-59. 

Wilson, N. G. and Bradley, G. (1996). The effect of immobilization on rhamnolipid production 
by Pseudomonasfluorescens. Journal ofApplied Bacteriology 81,525-530. 

Wilson, N. G. and Bradley, G. (1996). Enhanced degradation of petrol (Slovene diesel) in an 
aqueous system by immobilized Pseudomonasfluorescens. Journal ofApplied 
Bacteriology 80,99-104. 

Wolfe, M. F., Schwartz, G. J. B., Singaram, S., Mielbrecht, E. E., Tjeerdema, R. S., and Sowby, 
M. L. (1998). Effects of salinity and temperature on the bioavailability of dispersed 
petroleum hydrocarbons to the Golden-Brown Algae, Isochrysis galbana. Archives of 
Environmental Contamination and Toxicology 35,268-273. 

Wraige, E. J. (19 97) Studies on the synthesis, environmental occurrence and toxicity of 
unresolved complex mixtures (TJCMs) of hydrocarbons. PhD Thesis, University of 
Plymouth, Plymouth, UK. 

Xu, L., Reddy, C. M., Farrington, J. W., Frysinger, G. S., Gaines, R. B., Johnson, C. G., Nelson, 
R. K., and Eglinton, T. I. (2001). Identification of a novel alkenone in Black Sea 
sediments. Organic Geochemistry 32,633-645.1 

Yerushalmi, L., Beard, A. G., Al-Hakak, A., and Guiot, S. R. (1999). Biodegradation of 
hydrocarbons in a biobarrier under oxygen-limited conditions. In 'In situ 
bioremediation ofpetroleum hydrocarbon and other organic compounds. ' (Eds B. C. 
Alleman and A. Leeson. ) pp. 439-444. (Battelle Press: Columbus. ) 

Yew, F. F. and Mair, B. J. (1966). Isolation and identification Of C 13 to C 17 alkylnaphthalene, 
alkylbiphenyls and alkyldibenzofurans from the 275' to 305* C. dinuclear aromatic 
fraction of petroleum. Analytical Chemistry 38,231-237. 

Young, L. Y. (1984). Anaerobic degradation of aromatic compounds. InMicrobial 
degradation of organic compounds! (Ed D. T. Gibson. ) pp. 487-523. (Marcel Dekker: 
New York. ) 

Yuan, S. Y., Wei, S. H., and Chang, B. V. (2000). Biodegradation of polycyclic aromatic 
hydrocarbons by a mixed culture. Chemosphere 41,1463-1468. 

Yunker, M. B. and Macdonald, R. W. (2003). Petroleum biomarker sources in suspended 
particulate matter and sediments from the Fraser River Basin and Strait of Georgia, 
Canada. Organic Geochemistry 34,1525 -1541 

Zheng, G. J. and Richardson, B. J. (1999). Petroleum hydrocarbons and polycyclic aromatic 
hydrocarbons (PAHs) in Hong Kong marine sediments. Chemosphere 38,2625-2632. 

301 



Ziolli, R. L. and Jardim, W. F. (2002). Operational problems related to the preparation of the 
seawater soluble fraction of crude oil. Journal of Environmental Monitoring 4,13 8- 
141. 

Ziolli, R. L. and Jardim, W. F. (2003). Photochemical transformations of water-soluble fraction 
(WSF) of crude oil in marine waters: A comparison between photolysis and 
accelerated degradation with Ti02 using GC-MS and UVF. Journal of Photochemistry 
andPhotobiologyA: Chemistry 155,243-252. 

ZoBell, C. E. (1945). The role of bacteria in the formation and transformation of petroleum 
hydrocarbons. Science 102,364-369. 

Zrostlikovd, J., Hajglovd, J., and Cajka, T. (2003). Evaluation of two-dimensional gas 
chromatography-time-of-flight mass spectrometry for the determination of multiple 
pesticide in fruit. Journal of Chromatography A 1019,173-186. 

302 



Appendix A 

303 - 



BON 4LOd 

to 

U, 

Wt 

CII) 

N 

T" 

0 

40. 

304 

00 Cy) CY) CY) CY) 0 
Ir» %- 0000 CD 

wwwwwww 
CD CD CD 0 N00 CD 
Ni (d le C%i d 



Co 
CD 
+ 
W 
M" 
1M 

x C» 

W c4 

CY) CY) CY) CY) CD CY) CY) co 0 CD 0 0 Q CD 
w w LU LU w LU LLJ w w C) Q 0 0 0 0 Cl 0 0 Q Lf) C) U) Q LO 0 0 0 

li cli C-i C4 C4 V: V: Ld d 
YaGJV MBOd 

305 

V.: 

V- 

Co 
cs 

-i 

E 

(0 

(L) 

le 
C; 

c4 

0 

, --Z, 

It) 

0 r. 
0 

ý 20 

U 
x 

1.90 



0 
Co 
Co 

00 t4 
ce. 

II 

lf- IM- is is to 0 

w 0 CD 01 0 0 0 CD 90 CD 0 0 
C*4 C-4 V: W: ui 

8GJV MBGd 

(0 
0 

an 
0 
c; 

0 
0 

m 

C. ) 
CM 
0 
6 

0 
0 

0 

"Ci 
0 «S 

u -0 

40 

.0 

306 



C*4 

C; 

c4 
Ln m 

Co Co Co 

w 
CD LO 0 V) 

ri ri C%i 

to (0 
CD 0 
ww 
00 
(Z Lo 
C. li Ti 

Ln 0 

w w 
0 0 

V8JV ABOd 
%- U0 0 

N- Q 

Co 
0 
CD 
c; 

CD 
ci 

Q 

0 
0 
0 

N 
0 
0 
0 

0 

m I 
ol 
C13 

40. 

0 

.0 

Eu 

307 



Appendix B 

308 



. 

C) 

. 

. 

. 

. 
. 

IIIIII 

Q to to me C14 0 co cc qq N0 co to C4 CD co WV C4 0 
IV c) 0 V) Cl) C") NN CM NN 

awl 
. 
JL U01juejeti 

N 

co 
CV) 

cc 
CV) 

N 

co 
N 

w 
04 

q* a- 

C'4 E 
C4 = z 
CD C C-4 0 

co m 

cm 

co 

to 

1 

N 

C 

"ti 
0 

9) cit 
ce 

g 

0 0 

0 c> e C> 
A 

vi 

N CD 

ce rn 
0 

vý m 

309 



Coco w4NQQowq* C*4aQ0coqec4oQocoqec4o 
CO) V) CW) V) V) NN CM NN T- T- T- V- T- 

GWIJL UOIJUG48H 

w 
c4 

Co c4 

Wt 
C14 

c4 
clq 

0 
c4 

Co 
T- 

(a L. 

C4 

0 
IV, 

Co 

to 

le 

C4 

0 

2N , CD 

1r) 
C14 

C; 

00 
6 eli 
On 

"o = 

er, 

ca 

Ic"r 
.-F. 

0 -0 0 .ý "o 

. R., 4 0, 

u JQ 0 g 
0 
cn Ei 

-. 6 ;. L4 'tT t= 

310 



Appendix C 

311 



Table C. I. Summary 
chromatographic peak 
impurities. 

of the diagnostic base ions used to identify those 
markers corresponding to column bleed and alkane 

Impurity Diagnostic mass spectral base ions 

Column bleed ions 

Alkanes 

56,57,73,135,207,253,281 

57,71 
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