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Abstract

Many statistical surveillance systems for the timely detection of outbreaks of infec-
tious disease operate on laboratory data. Such data typically incur reporting delays
between the time at which a specimen is collected for diagnostic purposes, and the
time at which the results of the laboratory analysis become available. Statistical
surveillance systems currently in use usually make some ad-hoc adjustment for such
delays, or use counts by time of report. We propose a new statistical approach that
takes account of the delays explicitly, by monitoring the number of specimens iden-
tified in the current and past m time units, where m is a tuning parameter. Values
expected in the absence of an outbreak are estimated from counts observed in recent
years (typically 5 years). We study the method in the context of an outbreak detec-
tion system used in the United Kingdom and several other European countries. We
propose a suitable test statistic for the null hypothesis that no outbreak is currently
occurring. We derive its null variance, incorporating uncertainty about the estimated
delay distribution. Simulations and applications to some test data sets suggest the
method works well, and can improve performance over ad-hoc methods in current
use.
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1 Introduction

Laboratory-based statistical surveillance systems for the detection of outbreaks of infectious

disease have been in operation since at least the 1990s, and are in routine use in many

countries (Farrington et al., 1996; Hulth et al., 2010). In such systems, an observation

originates when a symptomatic individual submits a biological sample (typically of blood,

saliva, urine or faeces), which we shall call a specimen. The specimen is then sent off for

analysis, which can take days before the causative organism is identified and classified. The

identified organism is then reported to the surveillance centre. The time elapsed between

the date of specimen and the date of report is the reporting delay.

The duration of the reporting delay depends primarily on the time it takes to identify

the infectious organism in the biological sample. This varies according to the complexity

of the biological investigations required. For example, the median delay for Norovirus is 11

days, whereas for uncommon salmonella serotypes it can be 3 weeks, owing to the detailed

serotyping required (Noufaily et al., 2015).

One advantage of obtaining a detailed classification of the causative organism is that

cases occurring in an outbreak may be linked. A disadvantage is that a great number of

different organism types must be treated separately (Enki et al., 2013). Furthermore, the

reporting delay causes a delay in implementing control measures, though there is also merit

in not rushing to control what may turn out to be a short-lived problem. As with much

else in outbreak detection, the key is to strike an effective balance between the different

aspects of a system’s performance.

The detection of infectious disease outbreaks is a rapidly evolving field, with new meth-

ods continually being developed such as that of Guillou et al. (2014). The many statistical

issues and techniques involved have been regularly reviewed (Sonesson and Bock, 2003;

Buckeridge et al., 2005; Shmueli and Burkom, 2010; Unkel et al., 2012). None of the meth-

ods reviewed deal in any detail with adjustments for reporting delays. In this paper, we

focus on the laboratory-based statistical surveillance system used in England, Wales and

Northern Ireland (or rUK, rest of the United Kingdom without Scotland) by Public Health

England since the early 1990s. This employs a relatively simple Poisson-based regression

method (Farrington et al., 1996), which has recently been upgraded (Noufaily et al., 2013),
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applied to data from the LabBase database. This system and variants of it is also widely

used in Europe (Hulth et al., 2010). It is essentially an elaboration of the Shewhart chart

method (Shewhart, 1931). It has proved effective as an adjunct to more traditional methods

of surveillance, which rely on the alertness of a network of epidemiologists; see Enki et al.

(2013) for examples of outbreaks detected. In this system, as in other laboratory-based

systems, analyses are based on counts by date of report. This inevitably causes distortions

that may amplify the false positive rate. For example, batching of reports causes spikes

in counts by date of report when there may be none by date of specimen. A worthwhile

improvement to the system would thus be to switch to analyses based on counts of or-

ganisms by date of specimen. This, however, would require an adjustment involving the

delay distribution, since the count by current date of specimen is necessarily incomplete in

current and recent weeks.

Much of the statistical work on the analysis of reporting delays, and on the estimating

disease incidence in the presence of reporting delays, was undertaken in the context of

AIDS epidemiology (Brookmeyer and Gail, 1988; Cox and Medley, 1989; Brookmeyer and

Damiano, 1989; Brookmeyer and Liao, 1990; Pagano et al., 1994; Green, 1998). New

applications and methodological developments nevertheless continue to arise (Midthune

et al., 2005; Noufaily et al., 2015). It is convenient to think of the data as arising in

two processes: specimen collection with rate µ(s) and reporting of results with rate ρ(t),

linked by the delay distribution, f(s, u) denoting the probability density of a delay u =

t − s conditional on a specimen being collected at s. These quantities are linked by the

convolution

ρ(t) =

∫ t

−∞

µ(s)f(s, t− s)ds.

This relationship, frequently expressed in discrete rather than continuous time, and ex-

panded to accommodate covariates, has been used to model the delay distribution f(s, u)

(Brookmeyer and Liao, 1990), or alternatively to infer µ(t) when the delay distribution is

known, using the technique of back-projection (Brookmeyer and Gail, 1988). A common

feature of these techniques, however, is that the target parameter is the incidence rate µ(s),

rather than the eventual total but as yet unobserved number of events (in our case, the
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number of specimens collected) of which µ(s) is the expectation. Thus, back projection

usually involves a degree of smoothing, induced by parametric or step function curves, or

non-parametric smoothing (for example, see Rosenberg and Gail (1991) and Becker et al.

(1991)). However, when the aim is to detect outbreaks, smoothing must be used sparingly,

lest the outbreaks are smoothed out.

Closer to our intended application are the methods of Lawless (1994) for predicting

‘occurred but not reported’ (OBNR) events, again with application to AIDS surveillance

(among others). Translated into our context, his focus is on estimating the current number

of specimens collected, based on those reported and knowledge of the delay distribution.

This leads to estimators of the form N̂(s,∞) = N(s, t)/F̂ (t−s) where N(s, t) is the number

of specimens collected at time s and reported by time t ≥ s and F (u) is the cdf of the delay

distribution. Related approaches have been proposed by Donker et al. (2011) and Hohle

and an der Heiden (2014) to adjust infectious disease outbreak data for reporting delays.

Our application to outbreak detection differs from these in that our aim is not primarily

to estimate what the current (but as yet unobserved) total is, but to decide prospectively,

on the basis of the current evidence, whether what we observe departs from what one might

expect if no outbreak were occurring. To our knowledge, the only attempt to account for

reporting delays in outbreak detection is Salmon et al. (2015). This method, based on the

algorithm of Noufaily et al. (2013), involves looking back at recent weeks using multiple tests

to assess whether an outbreak was occurring. The method thus contains a retrospective

element. Our aim is to develop a system that can be used prospectively, based on a single

test statistic constructed from recent observations.

To inform the models developed in the present paper, we studied the delay distributions

for a dozen pathogens of contrasting characteristics reported in LabBase (Noufaily et al.,

2015). We found that the delay distributions have extremely long tails, the hazard of

reporting remaining approximately constant in this upper region, though most delays are

less than eight weeks. The median delay was typically 2 to 3 weeks. We found evidence

that the delay distribution had changed over the 10-year study period for some organisms,

in different ways for different organisms. We also found some weak dependence on season

and recent frequency. These findings are broadly in keeping with those of other laboratory-
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based surveillance systems (Jones et al., 2014).

In Sections 2 to 4, we describe the proposed modelling procedure, the selection of a key

tuning parameter m, and estimators for the test statistic and its null variance. In Section

5 we study our proposal by simulations, and in Section 6 we apply it to data from the rUK

(Farrington et al., 1996; Noufaily et al., 2013).

2 Analyses by Date of Specimen

We treat the data as arising in discrete time, with weekly time units (other units can be

used). Let nid denote the number of isolates of a given organism for which a specimen

is collected in week i and reported in week i + d, where d is the delay between specimen

collection and report of the identified organism. Let dmax denote the maximum delay

considered, beyond which reports are deemed to be of little relevance for outbreak detection.

Thus, d belongs to the set {0, 1, 2, . . . , dmax}, and we shall ignore all isolates with delay

greater than dmax.

Let Nid denote the number of isolates with specimen taken at time i and reported by

week i + d, that is, reported in weeks i, i + 1, . . . , i + d. Thus, Nid =
∑d

s=0 nis. Also

let Ni = Ni,dmax
be the total number of isolates with specimen taken in week i. Let µid

denote the expectation of Nid, if there is no outbreak in week i. Similarly, let µi denote

the expectation of Ni, if there is no outbreak in week i. Thus,

µid = E
{

Nid| No outbreak at i
}

, µi = E
{

Ni| No outbreak at i
}

Let pd = P (D = d) denote the probability mass function of the delays D and fd = P (D ≤

d) = p0 + · · · + pd. Later in the paper, we discuss a specific implementation involving the

quasi-Poisson algorithm of Farrington et al. (1996) and recently improved versions of it

(Noufaily et al., 2013). Our present focus, however, is how to incorporate delays into the

detection mechanism.

Suppose that the current week is t. At this point, our observation on Nt is incomplete:

we only observe nt0 = Nt0. If counts are Poisson and the delay distribution is multinomial,

then nt0|Nt ∼ Bin(Nt, p0), and so we could estimate Nt by nt0/p0. However, the variance

of this estimator (assuming that p0 is known) is Nt(1− p0)/p0, and if p0 is close to 0 as will
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often be the case, this will be large. Instead, we shall make use of lagged observations at

times t−m, t −m + 1, . . . , t, for some suitable, preferably small integer m ≥ 0, which we

shall call the lag. This will reduce the uncertainty resulting from incomplete observation,

at the cost of introducing some bias (and hence some delay in detection) at the start of an

outbreak. Discussion of the best choice for the lag m is deferred until the next section.

We propose to use the following test statistic T , computed in week t:

T =
t

∑

s=t−m

Ns,t−s − νt(m)

where

νt(m) =
t

∑

s=t−m

µs,t−s =
t

∑

s=t−m

µsft−s.

The quantity νt(m), here taken as fixed, is assumed to be estimable independently from the

Ns,t−s. The statistic T is the score test statistic for the null hypothesis that no outbreak

has begun in the past m weeks under the Poisson model

Ns ∼ P (θµs); s = t−m, . . . , t,

where θ > 0, θ > 1 denoting the presence and θ = 1 the absence of an outbreak (or more

accurately, an aberrance). Thus it will be efficient for detecting an outbreak of this form

in its m+ 1th week; inevitably, it will be less efficient for detecting an outbreak before its

m+ 1th week, whence the need to keep the lag m small.

In order to obtain the variance of T it is necessary to make some distributional assump-

tions about the counts Ni and the delays. We shall assume that Ni has variance φµi, as

might arise from a quasi-Poisson or gamma-Poisson (and hence negative binomial) model.

This assumption is supported by empirical evidence (Enki et al., 2013); the dispersion pa-

rameter φ is estimated using the Pearson chi-square. We also assume that, conditional on

Ni, nij has variance ψNipj(1− pj), j = 0, 1, . . . , dmax and that for j 6= k the covariance of

nij and nik is −ψNipjpk. Thus, the distribution of (ni,0, . . . , ni,dmax
) is overdispersed with

respect to the multinomial M(Ni, p0, . . . , pdmax
). With these assumptions, we obtain

var(Nt,d) = ψµtfd + (φ− ψ)µtf
2
d ,
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and hence var(T ) = ψνt(m) + (φ− ψ)δt(m), where

δt(m) =
t

∑

s=t−m

µsf
2
t−s.

Note that if ψ = φ, then var(Nt,d) = φµt,d and so the partial sums Nt,d have the same

degree of overdispersion as Nt; if ψ < φ the overdispersion is less. In practice, the effect of

the delays is to increase variability, corresponding to ψ > φ.

Mirroring the assumptions made in Farrington et al. (1996) and Noufaily et al. (2013), it

will be convenient to replace the counts and their means by their 2
3
powers, this representing

the transformation of a Poisson variate to symmetry, and to use a normal approximation

in order to obtain prediction limits, upon which the outbreak detection threshold will be

based. In addition, νt(m) has to be estimated. Thus, we shall use

T ∗ =
(

t
∑

s=t−m

Ns,t−s

)
2

3

− ν̂t(m)
2

3 .

With the 2
3
transformation, the variance of T ∗ under the null hypothesis is, approxi-

mately,

var(T ∗) ≃
4

9
ν

1

3

t (m)
{

ψ +
(φ− ψ)δt(m) + var(ν̂t(m))

νt(m)

}

.

This expression is derived using first-order Taylor expansions and mirrors that obtained

in Farrington et al. (1996), and indeed reduces to it when m = 0 and p0 = 1, that is,

when there are no reporting delays. The uncertainty in the µ̂s is incorporated in the

term var(ν̂t(m), the estimation of which will be described in Section 4. To quantify the

magnitude of departure from the null hypothesis, we use the following exceedance score:

Z∗ =
T∗

zα

{

var(T ∗)
}

1

2

,

where zα is the (1− α)% quantile of the standard normal density.

Throughout, quantities are starred to indicate that they involve the 2
3
transformation;

in Farrington et al. (1996) the exceedance score was defined without this transformation.

If Z∗ > 1, the organism count exceeds the upper (1− α)% prediction limit under the null

hypothesis. In this case the organism is classified as currently aberrant, and is investigated

further to decide whether an outbreak is occurring.
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3 Choosing the Lag m

How should the lag m be chosen? Clearly, the longer the median reporting delay, the larger

m will need to be to achieve a good power to detect an outbreak lasting at least m + 1

weeks. On the other hand, the larger m is, the longer it may take to detect the outbreak,

since outbreak counts will initially be combined with non-outbreak counts, thus diluting

the impact of the outbreak.

Suppose that, at time t, the outbreak is in its k + 1th week, where k ≤ m, with mean

count θµs for s = t − k, . . . , t, whereas weeks t −m, ..., t − k − 1 are non-outbreak weeks

with mean count µs. Then
∑t

s=t−mNs,t−s has mean νt(k,m, θ) where

νt(k,m, θ) =
t−k−1
∑

s=t−m

µsft−s + θ
t

∑

s=t−k

µsft−s.

Thus, νt(k,m, 1) = νt(m) for k ≤ m. For the moment, assume that νt(m) is known, so

there is no variability associated with its estimation, and that ψ = φ = 1. The threshold

on the 2
3
power scale for declaring an aberrance at time t is then, approximately,

νt(m)
2

3 +
2

3
zανt(m)

1

6 .

Assume also that
∑t

s=t−mNs,t−s has variance νt(k,m, θ) when an outbreak is occurring,

and that the outbreak lasts for at least m+ 1 weeks. The power for detecting an outbreak

of (relative) size θ in its k + 1th week at time t is

Pt(k + 1,m, θ) = 1− Φ
{

zα

( νt(m)

νt(k,m, θ)

)
1

6

−
3

2

νt(k,m, θ)
2

3 − νt(m)
2

3

µ(k,m, θ)
1

6

}

.

Suppose first that k = m. Then νt(m,m, θ) = θνt(m) and so the power is

Pt(m+ 1,m, θ) = 1− Φ
( 1

θ
1

6

{

zα −
3

2
(θ

2

3 − 1)νt(m)
1

2

})

.

Since νt(m) increases with the lag m, it is clear (if unsurprising) that Pt(m + 1,m, θ)

increases with m when θ > 1. It can also easily be shown that the power increases with θ,

as expected. Suppose now that k = m = 0. Then νt(0, 0, 1) = µtp0, and so the power drops

as p0 gets smaller. This is why it is advisable, at least when p0 is small, to use m > 0.

In order to separate out the temporality of detection and the probability of detection,

we define the detection delay conditionally on detection. Thus, the detection delay is the
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expected number of weeks until the outbreak is detected, minus 1, conditionally on it having

been detected by week m+ 1. The minus 1 is included so that the detection delay is zero

when the outbreak is detected in its first week. We shall assume that the outbreak-free

incidence is stationary, and hence drop the subscripts t; for example we replace µt by µ.

First, let πk+1(m, θ) be the probability of first detecting an outbreak in its k + 1th week,

k = 0, . . . ,m. Thus,

πk+1(m, θ) = Pt(k + 1,m, θ)
k
∏

i=1

{1− Pt(i,m, θ)}.

The overall power to detect the outbreak at any time up to its m+ 1th week is

P (m, θ) =
m
∑

k=0

πk+1(m, θ),

and the detection delay (conditional on detection by outbreak week m+ 1) is then

τ(m, θ) =

∑m
k=0 kπk+1(m, θ)

∑m
k=0 πk+1(m, θ)

.

We illustrate the trade-off between the power to detect the outbreak by its m + 1th

week and the conditional detection delay, using the above equations with values µ = 10

and θ = 2, 3 and µ = 1, θ = 4, 5, and the delay distribution with probability mass function

(p0, . . . , p4) = (0.15, 0.5, 0.2, 0.1, 0.05), which is typical of that observed for many organisms

(ignoring the long upper tail). The results are in Table 1.

Table 1: Power and detection delay (τ) for weekly frequencies µ = 10 and µ = 1.

µ = 10 µ = 1

θ = 2 θ = 3 θ = 4 θ = 5

lag m Power τ Power τ Power τ Power τ

0 0.216 0 0.508 0 0.163 0 0.260 0

1 0.708 0.89 0.988 0.82 0.497 0.87 0.717 0.85

2 0.961 1.43 1.000 0.96 0.824 1.53 0.960 1.34

3 0.998 1.70 1.000 1.09 0.968 1.93 0.998 1.57

4 1.000 1.87 1.000 1.21 0.997 2.16 1.000 1.72
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As expected, both the power for detecting the outbreak, and the (conditional) detection

delays τ increase as the lag m increases. Also as expected, for a given value of m, the power

is higher when θ or µ are larger.

These illustrations can be used to get some idea of the performance to be expected

from the system. The choice of m ought to ensure that the power to detect an outbreak

is acceptable over a useful range of values (µ, θ), with θ reducing as µ increases. The

illustrations above suggest that m = 2 gives power in excess of 80% in relevant scenarios.

We also need to ensure that, for those outbreaks detected, the detection delay is not so

long as to render intervention pointless. In these illustrations, the choice m = 2 gives a

detection delay τ of the same order as the mean reporting delay (1.4 weeks). A detection

system with m = 2 should therefore have reasonable performance for this and similar delay

distributions. The choice of the lag m will be more fully evaluated in simulations, taking

into account the uncertainties associated with estimation.

4 Estimators

In order to evaluate the test statistic T ∗ and its null variance, we need an estimator of νt,

the expectation of
∑t

s=t−mNs,t−s in the absence of an outbreak, and the variance of that

estimator. A key requirement is that the method should be robust to changes in the delay

distribution over time.

Since reports with delays greater than dmax are rare and irrelevant for outbreak de-

tection, we can assume that the Ni are fully observed at past times i < t − dmax. The

correct specification of the model for the µs is clearly important. We propose to use the

quasi-Poisson methods of Farrington et al. (1996) and Noufaily et al. (2013) and regress

the baseline counts Ni on time and season at i (assuming that t− i > dmax), with seasonal

effects represented by Fourier terms rather than constant factors, to obtain estimates of µ̂s

of µs, s = t−m, . . . , t and of φ. The model is as follows:

E(Nt) = µt, var(Nt) = φµt,

with

log(µt) = β1 + β2t+
K
∑

r=1

{

γr1 cos
(2πt

52

)

+ γr2 sin
(2πt

52

)

}

.
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We shall use K = 4 Fourier terms, so the model for µt has ten parameters.

To estimate the delay distribution, we assume that it has changed little over the time

interval [t − dest, t) where dest > dmax. This interval is chosen to be short relative to

the period over which changes in the delay distribution have been observed empirically

(Noufaily et al., 2015). We shall estimate the average delay distribution from data on

delays for specimen counts Ns with s ∈ [t− dest, t− dmax). For a given current week t, set

n =
t−dmax
∑

s=t−dest

Ns

and define, for r ≤ dmax,

p̂r =
1

n+ ǫ

(

t−dmax
∑

s=t−dest

Nsr +
ǫ

dmax + 1

)

, f̂r = p̂0 + · · ·+ p̂r.

The ǫ (typically ǫ = 1
2
) is there to avoid zero estimated delay probabilities.

As explained in section 2, we use a quasi-multinomial model for the delays. Thus, the

variance-covariance matrix of the vector p̂T = (p̂m, p̂m−1, . . . , p̂0) is the (m + 1) × (m + 1)

matrix ψW , say, where

Wii =
pi(1− pi)

n
, Wij = −

pipj
n

if i 6= j

and ψ is the dispersion parameter described in the previous section. We use an estimator

evaluated at the current time, conditional on (Nt−m,m, . . . , Nt−1,1). We evaluate the Pearson

chi-squared goodness of fit statistic:

X2 =
m
∑

k=1

k
∑

j=0

(nt−k,j −Nt−k,kpj/fk)
2

Nt−k,kpj/fk

with df = 1
2
m(m + 1) degrees of freedom. If for some k, 1 ≤ k ≤ m, Nt−k,k = 0, then the

corresponding term is omitted from the calculation of X2 and the degrees of freedom are

reduced by k. Then set

ψ = max
(X2

df
, φ

)

.

Thus ψ ≥ φ and any overdispersion associated with the delay distribution tends to increase

the variability of the counts, as observed in practice. When the data are very sparse, we

set ψ = φ. This estimator allows for fluctuations in the delay distribution which may
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spuriously inflate T ∗: in such cases ψ will be large. The purpose of allowing for such

fluctuations is to increase the robustness of the system to short-term changes in the delay

distribution.

We take p̂r and f̂r as the estimators of pr and fr. This yields an estimator of νt:

ν̂t =
t

∑

s=t−m

µ̂sf̂t−s.

It remains to find var(ν̂t). It is easier to work with the pr rather than the fr. We can

rewrite

νt =
m+1
∑

s=1

γspm+1−s = γTp

where γT = (µt−m, µt−m + µt−m+1, . . . , µt−m + · · ·+ µt). Also, we can write

fTdiag(µ) = pTM

where M is the matrix with

Mij = µt−m+j−1 if i ≥ j, 0 otherwise.

So the first column of M consists of µt−m, the second column of a zero followed by µt−m+1,

and the last column is all zeroes except for µt in the last position.

We now obtain var(ν̂t). Suppose that the regression of the baseline counts on time and

season at time t involves q covariates xt,1, . . . , xt,q and let X denote the (m+ 1)× q design

matrix at times t −m, . . . , t. Let fT = (fm, . . . , f0), and let diag(µ) denote the diagonal

matrix with diagonal elements µt−m, . . . , µt. Let V denote the variance-covariance matrix

of the q parameters estimates, and suppose that the model involves the log link

log(µs) =

q
∑

j=1

βjxs,j.

Let

A = (MX)V (MX)T .

Then we have

var(ν̂t|p̂) ≃ p̂TAp̂.
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Thus, unconditionally,

var(ν̂t) = var
(

E(ν̂t|p̂)
)

+ E
(

var(ν̂t|p̂)
)

= var
(

E(γ̂T p̂|p̂)
)

+ E
(

var(ν̂t|p̂)
)

≃ var
(

γT p̂
)

+ E
(

p̂TAp̂
)

= ψγTWγ + ψtr(WA) + pTAp

where in the last line we have used the identity E(xTAx) = tr(V A) + µTAµ for a random

vector x with mean µ and covariance matrix V . The last term pTAp is var(ν̂t|p); the other

terms represent the inflation of the variance resulting from estimating the delay distribution.

The variance estimator is obtained by substituting estimated quantities throughout the

expression for var(ν̂t). Likewise we obtain var(T ∗).

5 Simulations

In this section, we check by simulations the proposed methods for incorporating reporting

delays in outbreak detection, for a range of settings relevant to the rUK LabBase data.

5.1 Generating the data

We generated data over a total 322 weeks, where weeks 1 to 310 are used as baseline weeks,

and weeks 311 to 322 are ‘current’ weeks, which may include outbreaks; the detection

algorithm will be applied to these current weeks iteratively. We set the maximum delay

to be dmax = 25 weeks and ignored all specimens reported after a delay of 25 weeks. A

delay of 0 weeks means that the organism is reported in the same week that the specimen

is taken.

We based the delay distribution on a discretized version of the Weibull density

f(d) =
k

η
dk−1e−dk/η,

where the delay d > 0, η > 0 is a scale parameter and k > 0 is a shape parameter. The

mode is then (η(k − 1)/k)(1/k). The distribution function is F (d) = 1 − exp(−dk/η) and

the hazard function is h(d) = kd(k−1)/η. For some simulations, we obtained a time-varying
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hazard by replacing η by ηt = η exp(−α(t−322)), where t is the week of specimen collection,

and α governs the change over time. The relative hazard over a 1-year period (with k = 2)

is δ = exp(52α); expressed in terms of δ, we have α = log(δ)/52. The year-on ratio of

modes is δ−
1

2 .

We discretized this distribution by setting

pij = (Fi(j + 1)− Fi(j))/Fi(26), for j = 0, 1, ..., 25 and i = 1, 2, ..., 322,

where pij is the probability of a delay j for a specimen taken in week i, and Fi(d) is the

cdf of the Weibull with parameters ηi and k.

In a first set of simulations, we assumed there was no seasonality. The total number

Ni of specimens collected in week i = 1 . . . 310 (with delay up to 25 weeks) was simulated

as Ni ∼ Poisson(µ) where µ is a pre-specified incidence parameter. For the 12 ‘current’

weeks i = 311, ..., 322, we simulated Ni ∼ Poisson(µ + bµ1/2) where b controls the size of

the outbreak (if there is no outbreak, b = 0). In addition, we undertook simulations with

seasonality in which Ni ∼ Poisson(µi) in weeks i = 1, . . . , 310 with

µi = exp
{

θ1 + θ2 sin
(2πi

52
+ θ3

)

}

.

The parameters θ1 and θ2 were chosen so as to obtain pre-specified maxima and minima

of the µi. The phase θ3 was chosen so as to start the outbreak in week 311 at different

points of the seasonal cycle. For the 12 current weeks i = 311, . . . , 322, we simulated

Ni ∼ Poisson(µi + bµ
1/2
i ).

Finally, we generated nid, the number of specimens taken in week i and reported in

week i+ d from the multinomial distribution with index Ni and probabilities pi0,...,pi25.

5.2 Applying the algorithm

The first step is to estimate the delay distribution from the simulated data in ‘recent’ weeks

(only recent weeks are used to reduce the impact of past variation in the delay distribution).

Thus, we use data from some past week S to week 285. We do not use data after week

285 as these are incomplete (we don’t have the full delay distribution for these). To ensure
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that sufficient data are available to estimate the delay distribution, we set S = min{259,

the latest week s such that the sum of the Ni for i between s and 285 is at least 100}. We

then calculate

p̂j =
(

285
∑

S

nij +
ǫ

26

)

/
(

285
∑

S

Ni + ǫ
)

with ǫ = 1
2
and set f̂j = p̂0 + p̂1 + ...+ p̂j (with f̂0 = p̂0).

Next, we select the lag m; in fact, we will only actually need p̂j for j = 0, 1, ..,m. We

compute the response in the ‘current’ week (which iterates from week 311 to week 322) as

the total number of organisms with specimen date in the current week and the m weeks

preceding it. For example, if the current week is week 311 and the lag is m = 2, the

response is y311 = n311,0 + (n310,1 + n310,0) + (n309,2 + n309,1 + n309,0). If for the ‘current’

week i, yi = 0, we conclude straight away that there is no outbreak in week i, and that the

current value does not exceed the threshold; there is no need to complete the other steps.

If yi > 0, we proceed as follows.

First, we estimate the expected counts (by specimen date) for current week and the m

previous weeks. This is done by applying the detection algorithm of Noufaily et al. (2013)

just once for the current week; the same run is used to obtain the expected value in the m

previous weeks, by adjusting the trend and season covariates. The expected value of the

response variable is then obtained by combining the expected counts with the estimated

delay distribution.

For example, if the current week is week 311 and m = 2, application of the detection

algorithm gives the expected counts µ̂311, µ̂310 and µ̂309. The expected value of the response

y311 is then ν̂311 = µ̂311f̂0 + µ̂310f̂1 + µ̂309f̂2. The test statistic is T ∗ = y
2/3
311 − ν̂

2/3
311 and its

variance is obtained as described in Section 5, using the design matrix X, the dispersion

parameter φ, the matrix of estimated expected counts M , and the covariance matrix V of

the estimated regression parameters obtained from the detection algorithm. In the absence

of systematic week-to-week variation, we set ψ = φ. Thus for week 311, we have

var(T ∗) ≃
4

9
ν̂

1

3

311

{

φ+
var(ν̂311)

ν̂311

}

.

The upper threshold U for T ∗ is then obtained, under the null hypothesis that there is no

outbreak, where T ∗ is approximately normal with mean 0 and variance var(T ∗). In these
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simulations we use the 0.99 quantile as the upper threshold in order to keep the number

of runs to an acceptable level, unless specified otherwise; in practice a higher threshold

may be advisable, especially if many different organisms are investigated, as is the case in

LabBase. Thus, in current week 311, the upper threshold is U = ν̂
2/3
311 + z0.99

√

var(T ∗). An

aberrance is flagged if

X =
T ∗

U − ν̂
2/3
311

> 1.

This procedure is iterated for ‘current’ weeks 311 to 322.

5.3 Choice of simulation scenarios

The parameter values used to define the simulation scenarios are based on the features

of the LabBase data (Enki et al., 2013; Noufaily et al., 2015). For the simulations with-

out seasonality, we considered a wide range of weekly incidences: µ = 100, 10, 1, 0.1, for

organisms with short (k = 2 and η = 2) and long (k = 2 and η = 8) reporting delays,

assumed to be stationary (so δ = 1). For the simulations with seasonality, we investigated

two sets of scenarios: in the first, min{µi} = 10 and max{µi} = 20, and in the second,

min{µi} = 100 and max{µi} = 200. Guided by the theoretical investigation of Section 3,

we used lags of m = 2 and m = 4. The short reporting delays are typical of organisms such

as Norovirus; the longer delays are typical of organisms requiring additional serotyping,

such as Salmonella enterica serovar abony. We considered situations with no outbreaks

(b = 0) and outbreaks of different relative sizes (b = 1, 2, 3, 4). For the simulations with

seasonality, the outbreak was started either at a trough or at a peak. The algorithm was

run for the 12 ‘current’ weeks, with 1000 runs for each scenario.

For each scenario, we obtained (a) the proportion of runs for which an aberrance was

flagged in that ‘current’ week (when b = 0, this is the weekly false positive rate; when

b > 0 it is the power); (b) the cumulative proportion of runs for which an aberrance was

detected between week 311 and the ‘current week’ inclusive (these are cumulative false

positive rates when b = 0 and cumulative powers when b > 0); and in the presence of an

outbreak (b > 0) (c) the mean number of weeks to detection (between 1 and 12 weeks) for

outbreaks detected by or including week 322.
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We also investigated the impact of moderate variation over time of the delay distribu-

tion, as quantified by the year-on relative hazard (δ = 0.85(0.05)1.15), on the weekly false

positive rate, that is, the probability of detecting an aberrance when there is no outbreak

(that is, when b = 0). In these scenarios, we used the variance inflation factor ψ described

in section 4 and the 0.995 quantile.

5.4 Simulation results

The results of the simulations with no seasonality are presented in detail for µ = 10 and

µ = 1; the detailed results for µ = 100 and µ = 0.1 are available in the Supplementary

Materials. Figure 1 shows the false positive rates and powers for µ = 1 and µ = 10, for

short reporting delays; Figure 2 shows the corresponding plots for long reporting delays.

The power rises rapidly to a plateau in week m+1. Figures 1 and 2 show that good power

is achieved for both values of m for short delays with b ≥ 3, but the higher value of m

incurs a cost in speed of detection. Figure 2 shows that, for long delays, too low a value

of m results in low power. With these delay distributions, good results are obtained with

m = 2 for short delays, and with m = 4 for long delays. The power curves for µ = 100 are

steeper than for µ = 10; those for µ = 0.1 are flatter than for µ = 1 (see Supplementary

Materials). The cumulative power of detection by 12 weeks is typically in excess of 99% for

outbreaks with b ≥ 2 in all scenarios, with conditional times to detection typically under 4

weeks (details in Supplementary Materials).
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(b) lag m = 4

Figure 1: False positive rates (solid lines) and power curves for outbreaks of sizes b = 1

(long dashes), 2 (short dashes), 3 (dots and dashes), 4 (dots), with µ = 1 (left) and 10

(right) and short delays.

Table 2 shows the false positive rate for different values of µ when m = 2 with short

delays. For these calculations, the adjustment involving the computation of ψ was incorpo-

rated into the model. The value δ = 1 corresponds to a stationary delay distribution. The

false positive rates vary between 0.4% and 0.9%, in line with the nominal value of 0.5%.

When δ > 1, corresponding to shortening delays, the false positive rate increases; when

δ < 1, corresponding to lengthening delays, the false positive rate decreases. The effect

is only apparent when µ = 100. Thus, results are not unduly affected by changing delay

distributions unless the weekly incidence is very high.

The results of the simulations with seasonality for outbreaks starting at a peak, for

long delays, are shown in Figure 3. The results are similar to those without seasonality. To

keep the false positive rate at a constant level, it is necessary to represent seasonality with

Fourier terms, rather than piecewise constant terms, in the model for the µ. The results
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(b) lag m = 4

Figure 2: False positive rates (solid lines) and power curves for outbreaks of sizes b = 1

(long dashes), 2 (short dashes), 3 (dots and dashes), 4 (dots), with µ = 1 (left) and 10

(right) and long delays.

Table 2: False positive rates for annual relative hazards δ = 0.85(0.05)1.15 and incidence

µ, for m = 2 and short delays.

relative hazard δ

µ 0.85 0.9 0.95 1 1.05 1.10 1.15

100 0.001 0.001 0.002 0.005 0.007 0.012 0.018

10 0.003 0.002 0.004 0.004 0.005 0.003 0.005

1 0.004 0.006 0.006 0.004 0.008 0.006 0.005

0.1 0.003 0.004 0.006 0.009 0.010 0.005 0.009
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Figure 3: With seasonality: false positive rates (solid lines) and power curves for outbreaks

of sizes b = 1 (long dashes), 2 (short dashes), 3 (dots and dashes), 4 (dots); outbreaks begin

at a peak. µ varying seasonally from 10 to 20 (left) and from 100 to 200 (right), with long

delays.
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for outbreaks starting at a trough are similar to those for outbreaks starting at a peak; see

the Supplementary Materials.

We also undertook simulations with seasonality and short delays, and outbreaks starting

either at a peak or at a trough. The results are very similar to those obtained without

seasonality; see Supplementary Materials.

6 Implementation for the rUK Data

We applied the new algorithm to the 12 organisms previously studied by Noufaily et al.

(2015). The values of m were chosen as the smallest values such that pr < 0.10 for

r > m. Thus, for the five rare salmonellas (serovars abony, braenderup, brandenburg,

infantis and senftenberg) with relatively long delay distributions we used m = 4. For the

common salmonellas (serovars enteritidis PT 24 and tythimurium DT 104) and Acine-

tobacter baumanii the delays are a little shorter, so we used m = 3. For the remaining

organisms (Campylobacter jejuni, Chlamydia sp, Giardia lamblia and Norovirus) the delays

are shorter still and so m = 2.

We used LabBase data by date of report and date of specimen from 2004 to 2011; the

data are described in Noufaily et al. (2015) and Enki et al. (2013). We dropped the last

6 months, for which the data by date of specimen are truncated owing to the reporting

delays and hence incomplete, and sought to detect aberrations in the last 52 weeks of the

remaining data, using the counts in earlier weeks as baselines. First, we ran the standard

algorithm (Noufaily et al., 2013) as it is currently used, on the weekly counts by date of

report. Second, we ran the same algorithm retrospectively on the weekly counts by week of

specimen with reporting delays d ≤ 25 weeks. Since full information is available (by virtue

of the fact that the last 6 months’ data are excluded), this analysis is unaffected by reporting

delays. Note that this analysis cannot be undertaken prospectively for outbreak detection:

our purpose is to obtain a ’gold standard’ analysis unaffected by reporting delays. Finally,

we ran the new algorithm as if the data were accruing prospectively, and thus subject to

reporting delays.

Table 3 shows the number of weeks (out of the 52 investigated) which were flagged by

each of the three algorithms. The weeks flagged differ: the standard algorithm (whether

21



run by date of report, or retrospectively by date of specimen) flags individual 1-week spikes,

whereas the new algorithm smooths these by taking m+1-week totals and is therefore less

likely to detect them. On the other hand, the new algorithm is more likely to detect longer

runs of moderately elevated counts.

Table 3: Numbers of weeks flagged as aberrant in 52 weeks’ data.

Old system run Old system run New system run

Organism name prospectively retrospectively prospectively

by report week by specimen week by specimen week

Acinetobacter baumanii 0 0 1

Campylobacter jejeuni 0 14 6

Chlamydia sp 0 0 0

Giardia lamblia 0 1 4

Norovirus 1 0 0

Salmonella abony 2 1 1

Salmonella braenderup 3 4 10

Salmonella brandenburg 1 0 3

Salmonella enteritidis PT21 0 0 0

Salmonella infantis 2 1 1

Salmonella senftenberg 2 0 0

Salmonella typhimurium DT104 1 1 2

Figures 4, 5 and 6 show the time series for three organisms. The top graph shows

the time series by date of report with the values flagged prospectively using the standard

system as it is currently operated. The middle graph shows the time series Nt (by week

of specimen) with the values flagged retrospectively using the standard system. The lower

graph shows the time series of m+ 1-point moving totals, that is the values for each week

t of Nt−m + · · ·+Nt, along with the values flagged prospectively using the new system.

Figure 4 shows the current system by date of report failing to detect a rise in Campy-

lobacter jejuni, which is unusual relative to the recent past. The rise is detected both by

the system run retrospectively and by the new system; there is evidence of a slight delay in

detection using the new system. The failure to detect anything using the current system
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is due to the higher variability in the counts by date of report: for example the high peaks

close to week 200 are entirely artefactual. Figure 5 shows the current system detecting

a peak close to a trough in seasonal Norovirus activity. The peak is not present in the

series by week of specimen: it results from batching of reports, and so is spurious. Neither

the standard system run retrospectively nor the new prospective system detect anything

as there is no genuine outbreak to detect. In Figure 6 all three systems repeatedly flag

a large peak in Salmonella braenderup incidence. The new system also detects a smaller

peak before the main one. Figures for the other nine organisms are in the Supplementary

Materials.
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Figure 4: Campylobacter jejuni : Time series of counts (full lines) and weeks flagged (dots).

Top: standard algorithm applied prospectively by week of report; middle: standard algo-

rithm applied retrospectively by week of specimen (gold standard); bottom: new algorithm

applied prospectively, line represents 3-point moving totals (see text). The algorithms were

applied to the 52 weeks to the right of the vertical dotted line.
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Figure 5: Norovirus: Time series of counts (full lines) and weeks flagged (dots). Top:

standard algorithm applied prospectively by week of report; middle: standard algorithm

applied retrospectively by week of specimen (gold standard); bottom: new algorithm ap-

plied prospectively, line represents 3-point moving totals (see text). The algorithms were

applied to the 52 weeks to the right of the vertical dotted line.

7 Discussion

We have sought to adapt a widely used regression-based outbreak detection algorithm to

incorporate the effect of reporting delays, which are an unavoidable feature of laboratory-

based reporting systems. Our solution is to base detections not just on the current count,

but also on the most recent m counts, where m is a small value related to the spread of

the reporting delay distribution.
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Figure 6: Salmonella braenderup: Time series of counts (full lines) and weeks flagged (dots).

Top: standard algorithm applied prospectively by week of report; middle: standard algo-

rithm applied retrospectively by week of specimen (gold standard); bottom: new algorithm

applied prospectively, line represents 5-point moving totals (see text). The algorithms were

applied to the 52 weeks to the right of the vertical dotted line.

The value of m should be chosen in relation to the delay distribution, but should be

kept as low as possible to keep the conditional detection delay to a minimum. In our

applications, we have found that values of m between 2 and 4 are suitable, based on an

ad-hoc rule such that pr < 0.10 when r > m; the estimated values of fm were typically in

excess of 80%. A more formal method for choosingm might be desirable, though ultimately

this choice involves a trade-off between power and detection delay. This trade-off could also

depend on the severity of the infection and the costs of delaying detection, which would

most likely vary between infections.
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Using several weeks’ data in this way has the additional benefit of making it less likely

to flag 1-week spikes in reports which, whether genuine or not, are of little practical public

health interest since there is no opportunity to implement any control measures. The new

system, on the other hand, can better detect longer runs of moderately elevated counts. The

new system may need a different choice of threshold to accommodate these differences, so

as to keep the number of detections to a manageable level. Further experimentation with

the number of Fourier terms used to model seasonality (if these are used) may also be

advisable.

A key problem in devising the proposed algorithm was how to handle changes in the

delay distribution. This is important because the system may flag a report either because

the as yet unobserved total number of specimens taken in that week is high, or because

the delays are shorter than expected.We dealt with this problem in two ways. First, the

delay distribution was estimated from relatively recent data (typically data from the past

year). Second, we incorporated an adjustment to account for overdispersion of the currently

observed delays relative to the estimated distribution, represented by our ψ parameter.

An alternative, but more complicated, approach would be to model changes in the delay

distribution explicitly, for example using the method of Brookmeyer and Liao (1990). Our

preference for a simple yet robust system was guided by the need to automate the processing

of hundreds of different organisms each week.
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SUPPLEMENTARY MATERIAL

Supplementary graphs of false positive rate and power, for µ = 100 and µ = 0.1
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(a) lag m = 2
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(b) lag m = 4

Figure 7: False positive rates (solid lines) and power curves for outbreaks of sizes b = 1

(long dashes), 2 (short dashes), 3 (dots and dashes), 4 (dots), with µ = 0.1 (left) and 100

(right) and short delays.
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(a) lag m = 2
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Figure 8: False positive rates (solid lines) and power curves for outbreaks of sizes b = 1

(long dashes), 2 (short dashes), 3 (dots and dashes), 4 (dots), with µ = 0.1 (left) and 100

(right) and long delays.

28



Cumulative power at 12 weeks and conditional detection delay

Table 4: Cumulative power at 12 weeks and conditional mean time to detection for µ = 100,

by outbreak size b, lag m and delay type.

lag m outbreak short delays long delays

size b

cumulative detection cumulative detection

power delay power delay

2 1 0.71 3.77 0.56 4.22

2 0.99 1.59 0.95 2.77

3 1 0.47 1 1.30

4 1 0.12 1 0.80

4 1 0.78 4.17 0.68 4.85

2 1 1.89 0.99 2.68

3 1 1.01 1 1.82

4 1 0.56 1 1.29
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Table 5: Cumulative power at 12 weeks and conditional detection delay for µ = 10, by

outbreak size b, lag m and delay type.

lag m outbreak short delays long delays

size b

cumulative detection cumulative detection

power delay power delay

2 1 0.72 4.08 0.52 4.23

2 0.99 1.85 0.93 2.99

3 1 0.65 1 1.56

4 1 0.24 1 0.90

4 1 0.73 4.17 0.68 4.69

2 1 2.12 0.99 3.01

3 1 1.14 1 1.94

4 1 0.62 1 1.45
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Table 6: Cumulative power at 12 weeks and conditional mean time to detection for µ = 1,

by outbreak size b, lag m and delay type.

lag m outbreak short delays long delays

size b

cumulative detection cumulative detection

power delay power delay

2 1 0.65 3.97 0.52 4.21

2 0.96 2.15 0.89 3.20

3 1 1.11 0.99 2.01

4 1 0.54 1 1.46

4 1 0.67 4.17 0.63 4.77

2 0.98 2.51 0.96 3.23

3 1 1.40 1 2.19

4 1 0.82 1 1.70
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Table 7: Cumulative power at 12 weeks and conditional mean time to detection for µ = 0.1,

by outbreak size b, lag m and delay type.

lag m outbreak short delays long delays

size b

cumulative detection cumulative detection

power delay power delay

2 1 0.59 3.84 0.45 4.53

2 0.90 2.86 0.75 3.87

3 0.98 1.96 0.90 3.10

4 1 1.20 0.96 2.50

4 1 0.62 4.49 0.56 4.66

2 0.89 3.33 0.86 3.75

3 0.97 2.32 0.96 3.08

4 1 1.67 0.99 2.52
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Supplementary graphs of false positive rate and power, with seasonality
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Figure 9: With seasonality: false positive rates (solid lines) and power curves for outbreaks

of sizes b = 1 (long dashes), 2 (short dashes), 3 (dots and dashes), 4 (dots); outbreaks

begin at a trough. µ varying seasonally from 10 to 20 (left) and from 100 to 200 (right),

with long delays.
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(b) lag m = 4

Figure 10: With seasonality: false positive rates (solid lines) and power curves for outbreaks

of sizes b = 1 (long dashes), 2 (short dashes), 3 (dots and dashes), 4 (dots); outbreaks begin

at a peak. µ varying seasonally from 10 to 20 (left) and from 100 to 200 (right), with short

delays.
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Figure 11: With seasonality: false positive rates (solid lines) and power curves for outbreaks

of sizes b = 1 (long dashes), 2 (short dashes), 3 (dots and dashes), 4 (dots); outbreaks begin

at a trough. µ varying seasonally from 10 to 20 (left) and from 100 to 200 (right), with

short delays.
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Supplementary graphs for 9 organisms
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Figure 12: Acinetobacter baumanii : Time series of counts (full lines); no weeks were flagged.

Top: standard algorithm applied prospectively by week of report; middle: standard algo-

rithm applied retrospectively by week of specimen (gold standard); bottom: new algorithm

applied prospectively, line represents 4-point moving totals (see main text). The algorithms

were applied to the 52 weeks to the right of the vertical dotted line.
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Figure 13: Chlamydia sp: Time series of counts (full lines); no weeks were flagged. Top:

standard algorithm applied prospectively by week of report; middle: standard algorithm

applied retrospectively by week of specimen (gold standard); bottom: new algorithm ap-

plied prospectively, line represents 3-point moving totals (see main text). The algorithms

were applied to the 52 weeks to the right of the vertical dotted line.
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Figure 14: Giardia lamblia: Time series of counts (full lines) and weeks flagged (dots). Top:

standard algorithm applied prospectively by week of report; middle: standard algorithm

applied retrospectively by week of specimen (gold standard); bottom: new algorithm ap-

plied prospectively, line represents 3-point moving totals (see main text). The algorithms

were applied to the 52 weeks to the right of the vertical dotted line.
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Figure 15: Salmonella abony : Time series of counts (full lines) and weeks flagged (dots).

Top: standard algorithm applied prospectively by week of report; middle: standard algo-

rithm applied retrospectively by week of specimen (gold standard); bottom: new algorithm

applied prospectively, line represents 5-point moving totals (see main text). The algorithms

were applied to the 52 weeks to the right of the vertical dotted line.
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Figure 16: Salmonella brandenburg : Time series of counts (full lines) and weeks flagged

(dots). Top: standard algorithm applied prospectively by week of report; middle: stan-

dard algorithm applied retrospectively by week of specimen (gold standard); bottom: new

algorithm applied prospectively, line represents 5-point moving totals (see main text). The

algorithms were applied to the 52 weeks to the right of the vertical dotted line.
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Figure 17: Salmonella enteritidis PT21: Time series of counts (full lines) and weeks flagged

(dots). Top: standard algorithm applied prospectively by week of report; middle: stan-

dard algorithm applied retrospectively by week of specimen (gold standard); bottom: new

algorithm applied prospectively, line represents 4-point moving totals (see main text). The

algorithms were applied to the 52 weeks to the right of the vertical dotted line.
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Figure 18: Salmonella infantis : Time series of counts (full lines) and weeks flagged (dots).

Top: standard algorithm applied prospectively by week of report; middle: standard algo-

rithm applied retrospectively by week of specimen (gold standard); bottom: new algorithm

applied prospectively, line represents 5-point moving totals (see main text). The algorithms

were applied to the 52 weeks to the right of the vertical dotted line.
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Figure 19: Salmonella senftenberg : Time series of counts (full lines) and weeks flagged

(dots). Top: standard algorithm applied prospectively by week of report; middle: stan-

dard algorithm applied retrospectively by week of specimen (gold standard); bottom: new

algorithm applied prospectively, line represents 5-point moving totals (see main text). The

algorithms were applied to the 52 weeks to the right of the vertical dotted line.
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Figure 20: Salmonella typhimurium DT104: Time series of counts (full lines) and weeks

flagged (dots). Top: standard algorithm applied prospectively by week of report; middle:

standard algorithm applied retrospectively by week of specimen (gold standard); bottom:

new algorithm applied prospectively, line represents 4-point moving totals (see main text).

The algorithms were applied to the 52 weeks to the right of the vertical dotted line.
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