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Abstract

Surveillance data collected on several hundred different infectious organisms over

twenty years have revealed striking power relationships between variance and mean

in successive time periods. Such patterns are common in ecology, where they are

referred to collectively as Taylor’s power law. In this paper, these relationships are

investigated in detail, with the aim of exploiting them for the descriptive statistical

modelling of infectious disease surveillance data. We confirm the existence of vari-

ance to mean power relationships, with exponent typically between 1 and 2. We

investigate skewness to mean relationships, which are found broadly to match those

expected of Tweedie distributions, and thus confirm the relevance of the Tweedie

convergence theorem in this context. We suggest that variance and skewness to

mean power laws, when present, should inform statistical modelling of infectious

disease surveillance data, notably in descriptive analysis, model building, simula-

tion and interval and threshold estimation, the latter being particularly relevant to

outbreak detection.

Key words: exponential dispersion model, infectious disease, power law, surveil-

lance, Taylor’s Law, Tweedie family.

1 Introduction

This paper is devoted to an exploration of variance to mean relationships in surveil-

lance data on infectious diseases, focusing on implications for descriptive statistical

modelling. The paper stems from a recent epidemiological study that suggested clear

power relationships between mean and variance (Enki et al 2013). The present paper

is devoted to a further exploration of these patterns.

Enki et al (2013) undertook a review of the UK statistical surveillance system

for outbreak detection, encompassing the 3,303 different organism types reported to

the UK LabBase database over the 20 year period 1991 to 2011. Our investigations

revealed striking linear relationships between the logarithm of the variance and the
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logarithm of the mean of the number of organisms detected in successive six-monthly

time periods, which appears to be present for virtually all of the organism types

for which sufficient data were available. Such variance to mean power laws have

previously been observed for measles and whooping cough (Keeling and Grenfell

1999). Our data suggest they are ubiquitous for infectious diseases, whatever the

mode of transmission.

It is desirable to use statistical models that correctly account for the variance

to mean relationship (see for example McCullagh and Nelder 1989, pages 328-332).

Thus, investigating the variance to mean relationship is a useful preparatory step

for statistical modelling: for example, a Poisson or quasi-Poisson model might be

indicated if the variance is proportional to the mean. In the case of exponential

family models, the variance function largely determines the distribution. In turn,

quantiles of this distribution may be important in some applications, notably for

determining threshold values, as needed for detecting outbreaks of infectious dis-

eases. These considerations apply to individual data sets; in our case we have access

to data on hundreds of different organisms. The existence of power variance to

mean relationships for virtually all these organisms is of intrinsic interest, may help

in elucidating underlying mechanisms, and should inform the statistical modelling

framework used represent the data.

Power variance to mean relationships are instances of Taylor’s power law, re-

viewed in Kendal (2004). Taylor’s law originally related to the observation that

populations within territories partitioned into quadrats exhibit a variance to mean

power relationship of the form

var(X) = φE(X)p

where X is the population count within a quadrat (Taylor 1961). Various mecha-

nisms, discussed in Kendal’s review, have been advanced to explain such empirical

power laws, which have been observed in very different contexts. For example, they

have been shown to result from certain types of birth and death processes with im-
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migration (Anderson et al 1982, Keeling 2000). Keeling and Grenfell (1999) showed

that simulations with their stochastic, pulsed realistic age-structured SEIR model

produce power variance to mean relationships at higher incidences. It has also been

suggested that Taylor’s law is the empirical manifestation of the asymptotic limiting

behaviour of exponential dispersion models, which in turn is linked to the properties

of the Tweedie family of distributions (Kendal 2004, Kendal and Jørgensen 2011).

Finally, note that the power laws considered here relate to abundances, and should

not be confused with power laws governing other features, such as spatial spread

(Brockmann et al 2006, Meyer and Held 2014).

In the present paper we do not seek to investigate in any detail the underlying

mechanisms which generate power laws in infectious disease surveillance data. We

do, however, study the evidence that the data conform to Tweedie distributions,

as one might expect if the observed power relationships are the result of Tweedie

convergence.

The paper has three aims: first, to investigate in greater detail and with greater

rigour the empirical evidence for power laws in observed variance to mean relation-

ships in infectious disease surveillance data; second, to explore whether these data

conform to the limiting behaviour of exponential dispersion models; and third, to

seek to exploit the observed variance to mean relationships for the purposes of de-

scriptive statistical modelling. In Section 2, we describe the data and present the

evidence for a variance to mean power law. In Section 3, we briefly review the

Tweedie family of exponential dispersion models. In Section 4 we investigate the

evidence that our data conform (in an asymptotic sense) to this family. In Section

5 we discuss the use of the power law and Tweedie models for infectious disease

modelling, notably outbreak detection. These methods are applied to surveillance

data in Section 6. The paper ends with a discussion of the potential and limitations

of this approach in Section 7.
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2 Variance-mean power relationships in infectious

disease surveillance data

We used weekly counts of infectious organisms reported to Public Health England’s

LabBase database between week 1 of 1991 and week 26 of 2011. This is a com-

puterized database of reports of infectious disease organisms identified in biological

specimens (taken from samples of blood, faeces, or urine) collected by laboratories

in England, Wales and Northern Ireland. These specimens are obtained primarily

for diagnostic purposes, rather than for routine screening. The laboratory identi-

fication of causative organisms in the specimens analysed is highly accurate, but

the weekly counts generally represent only a small proportion of infections, except

perhaps in some outbreaks. The laboratory protocols and classifications used have

changed over time, so that for some organisms data are not available for the entire

20 year period. Our data were arranged by week of collection of the specimen from

which the infection was identified. There is an overall increasing trend in numbers of

isolates and numbers of organisms reported over time; more details of these trends

and other aspects of these data may be found in Enki et al (2013). These data form

a key resource for outbreak detection in England, Wales and Northern Ireland. A

similar system is operated in Scotland by Public Health Scotland.

2.1 Empirical variance to mean relationships

We explored the variance to mean relationship in successive 6-month periods. First,

we de-seasonalised the data where appropriate. This was done by fitting a quasi-

Poisson generalized additive model with log link, smooth trend and a seasonal factor

with levels γj, j = 1, . . . , 12. The de-seasonalised data are then obtained from the

weekly counts yi as follows:

zi = yi exp(γ̄ − γs(i))
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where γ̄ is the average of the γj and s(i) is the seasonal level for week i. We only

applied this seasonal adjustment for 1015 organisms with nonzero counts in every

season; for other organisms, too sparse to apply a meaningful seasonal adjustment,

we used zi = yi. We then grouped the data in 41 6-monthly periods. Within each

calendar year there are two such periods, indexed by k = 1 for the period January

to June, and k = 2 for July to December.

If Taylor’s law is deemed to apply to the weekly counts yi with

log{var(yi)} = α + p log{E(yi)}

then

log{var(zi)} = αs(i) + p log{E(zi)}

with αs(i) = α + (2 − p)(γ̄ − γs(i)). Now let Wjk denote the set of weeks i within

period k of year j, and assume that E(zi) is roughly constant for i ∈ Wjk. We fit

the model

log{var(zi)} = αk + p log{E(zi)}, i ∈ Wjk

which describes a linear relationship with two intercepts, corresponding to k = 1, 2.

When the data are sparse, and are not de-seasonalised, we just used one intercept.

Perry (1981) showed that simple regression of the logarithm of the empirical

variance against the logarithm of the empirical mean (as used in Enki et al 2013)

produces a negatively biased estimate of p (that is, p̂ is too low), and suggested

that a gamma generalised linear model be used instead. This produces the same

point estimates as the approach of Jørgensen et al (2011) using unbiased estimating

equations.

Accordingly, we applied the gamma model to the 1737 different organism types

with sufficient data to estimate the regression parameters, with two intercepts when

de-seasonalized, and a single intercept when not.

In all cases, the empirical relationship between log variance and log mean is lin-

ear. Figure 1 shows the plots, together with the gamma regressions, for six common
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organisms. The full set of 1737 plots is in the Supplementary Materials. Figure 2

shows caterpillar plots of values of p̂, along with approximate 95% confidence in-

tervals. The variances of the estimates p̂ were obtained using the scale parameters

for the gamma regression models based on Pearson’s chi-square statistic, which are

consistent provided that the p have been consistently estimated (McCullagh and

Nelder 1989, page 296). On the left is the caterpillar plot for all 1737 organisms.

The strange appearance of the leftmost tail of the plot is the result of sparse organ-

ism counts: when there is a single count in a six-month period, then the estimated

mean and variance are identical. In the extreme case where this is true of all six-

monthly periods, the dispersion (and hence the width of the confidence interval) is

zero. The caterpillar plot on the right of Figure 2 is restricted to the 374 organisms

for which the count in every six-month period is at least 2. These caterpillar plots

show that most values of p lie between 1 and 2, and few other than those affected

by the sparseness issue just described have 95% confidence intervals entirely located

outside this range.

We repeated the analysis with an annual rather than 6-monthly grouping of the

data (and consequently a single intercept). The slopes are similar to those obtained

with 6-monthly periods, as shown by the scatterplot in Figure 3, except for the

organisms with larger slopes. We suspect that residual periodicity may contribute

to inflating the variances in the analysis based on annual data. These results confirm

the striking linear relationships between log variance and log mean observed by Enki

et al (2013). These are strongly suggestive of power variance-to-mean relationships,

with exponent typically lying between 1 and 2. These observations lend empirical

support for Taylor’s law over an extremely wide range of different micro and macro-

organisms.
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Figure 1: Empirical relationship between log variance and log mean for six organisms:

observed values (dots) and regression lines (with different intercepts for different

seasons).

2.2 Serial dependence

Throughout the paper, we focus on the marginal distribution of the counts, and

ignore any correlation between successive weekly counts. Since the data relate to

infectious diseases, which are transmitted directly or indirectly over time, this re-

quires some justification. For 1774 organisms with sufficient data to do so (including

the 1737 organisms to which we fitted regressions as described above), we obtained

roughly stationary residuals by fitting a quasi-Poisson generalized additive model

with log link, smooth trend with knots every 26 weeks, and a 12-level seasonal fac-

tor for the 1015 organisms with non-zero counts in every season. Let µi denote the

expected value in week i from this model; the residual was defined as

ri = (yi − µ̂i)µ̂
−

1

2

i .
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Figure 2: Caterpillar plot of estimated values of slopes and corresponding 95% con-

fidence limits. Left: all organisms; Right: excluding sparse organisms.

We then obtained correlograms for the 1774 organisms; these are in the Supplemen-

tary Materials. Similar results were obtained with residuals based on log(yi + 1).

The correlograms show that for the majority of organisms, there is little serial de-

pendence. The Ljung-Box portmanteau test applied to the first 30 lags gives a

p-value greater than 0.05 for 1127 (64%) of organisms. Furthermore, owing to the

large sample size, autocorrelations are flagged as significant even when close to zero.

Figure 4 shows the histogram of the 1774 lag 1 autocorrelations ρ1. Of the 647

organisms with significant serial correlation, 269 (42%) had negative lag 1 auto-

correlations. These typically occur for uncommon organisms. Many of the large

positive lag 1 autocorrelations correspond to organisms such as Cryptosporidium,

Norovirus, Respiratory Syncytial Virus and Rotavirus with substantial seasonality

which is incompletely removed by the seasonal factor, often owing to fluctuating

amplitude or periodicity. In a few cases, notably Influenza A and B, the autocorre-

lation is substantial and not due to residual periodicity. However, the great majority

of organisms display little serial correlation: for 84% of organisms −0.1 ≤ ρ1 ≤ 0.1,

and for 95% −0.2 ≤ ρ1 ≤ 0.2. We comment on these observations in the Discussion.
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Figure 3: Scatter plot of estimated slopes: bi-annual vs annual grouping.

Figure 5 shows the caterpillar plots of p̂ in two subgroups, according to whether

serial dependence was or was not significant at the 5% level in the portmanteau

test. Power variance to mean relationships with slopes p̂ > 1 are observed in both

groups.

2.3 Factors associated with the power parameter

Figure 6 shows the estimated power parameters p plotted against the logarithm of

the median of the 41 seasonally-adjusted counts; organisms for which the median of

the seasonally-adjusted counts was less than or equal to 0.05 were grouped into a

single category with median 0.05 (the median value of p for these was 1.07). The loess

curve superimposed on the scatterplot suggests that the power p tends to increase

slightly with the median adjusted count, though the spread of values is considerable

at all medians. At low median adjusted counts p is centrally located a little above 1,

corresponding to the quasi-Poisson model. The four outliers with values of p close
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Figure 4: Autocorrelations at lag 1 for 1774 organisms.

to or above 2.5 are Rotavirus, Cryptosporidium Sp, Herpes simplex virus untyped

and Escherichia coli untyped; residual periodicity may have contributed to inflating

these values. There is also a single outlier with a negative p, corresponding to

Neisseria meningitidis type B (types A and C had values of p close to 1). Table 1

gives the values of p for some specific organisms (in some cases averaged over the

values for distinct subtypes). There is no evident relationship with the mode of

transmission.

Figure 7 shows the power parameters p plotted against the log seasonal amplitude

A, defined as

A = max{γs : s = 1, . . . , 12} −min{γs : s = 1, . . . , 12}

where the γs are the seasonal factors used to remove seasonality from the data prior

to analysis. When no seasonal factor was fitted we set A = 0. The loess plot shows

some positive dependence between A and p. That there should be any relationship

might appear strange, since A measures an effect that has been removed from the
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Figure 5: Caterpillar plot of estimated values of slopes and corresponding 95% con-

fidence limits. Left: organisms with significant serial correlation; Right: organisms

with no significant serial correlation.

data prior to analysis. Our interpretation, supported by visual inspection of the

residuals, is that it reflects residual periodicity remaining after adjustment. Residual

periodicity can occur when the seasonal peaks vary slightly in amplitude and timing,

and will tend to inflate the estimated values of p. An alternative interpretation is

that highly seasonal organisms also have higher values of p owing to the mechanism

driving the seasonality.

Finally, Figure 8 shows the power parameter p plotted against the lag 1 autocor-

relation ρ1. The loess plot shows some positive dependence between p and ρ1, driven

by the higher positive values of ρ1 outside the main cluster of the data. However,

once again the interpretation of the plot is complicated by the residual periodicity

previously mentioned, which is related both to p and to ρ1. The overall Spearman

correlation between p and ρ1 is 0.189. Splitting the data according to the median

log seasonal amplitude A = 0.45, the correlation in the A > 0.45 group is 0.325,

whereas in the A ≤ 0.45 group it is 0.067. The contrast between the two values is

consistent with the view that the correlation is to some degree an artefact induced
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Figure 6: Scatter plot of estimated powers p against logarithm of median seasonally-

adjusted count. The full line is a loess curve.

by residual periodicity. An alternative interpretation is that serial correlation con-

tributes to higher values of p through the underlying mechanism driving both the

spread of infection and the seasonality.

3 Tweedie models, asymptotics and scaling

Exponential dispersion models have densities (or probability mass functions) of the

form

p(y; θ, φ) = c(y;φ) exp[{θy − κ(θ)}/φ],

where θ is the canonical parameter, φ > 0 is the scale parameter, and κ is the

cumulant function for the underlying probability measure. The expectation of Y

is E(Y ) = µ = κ′(θ), and its variance is var(Y ) = φV (µ) where V (µ) is the unit

variance function. Within this class, the Tweedie models are those with power

variance function V (µ) = µp for p ∈ (−∞, 0]∪ [1,∞); there are no such exponential

dispersion models with p ∈ (0, 1). For more details, see Jørgensen (1997).
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Table 1: Estimated values of p for selected organisms

Bordetella pertussis 1.06 Mycobacterium tuberculosis 1.13

Campylobacter jejeuni 1.12 Norovirus 1.63

Chlamydia trachomatis 1.81 Pseudomonas aeruginosa 1.65

Clostridium difficile 1.24 Rubella virus 1.37

Cytomegalovirus 1.36 Salmonella enteritidis 1.27

Escherichia coli O157 1.27 Salmonella typhimurium 1.21

Epstein Barr Virus 1.14 Staphylococcus aureus 1.80

Herpes Simplex Virus 1 1.36 Streptococcus A 1.31

Herpes Simplex Virus 2 1.49 Streptococcus B 1.61

Influenza A virus 1.64 Taenia 1.26

Influenza B virus 1.81 Toxoplasma 1.21

Measles virus 1.11 Varicella Zoster Virus 1.19

Of particular interest to us are the Tweedie models with p ≥ 1. The exponent

p = 1 corresponds to (scaled) Poisson models, values p ∈ (1, 2) to compound Poisson-

gamma models, namely Poisson mixtures of gamma densities, which have an atom

at 0 and are continuous above 0, while p = 2 corresponds to gamma models. The

values p > 2 correspond to stable distributions, including for instance the inverse

Gaussian distribution (p = 3). The Tweedie models with p close to 1 are multimodal

(Dunn and Smyth 2005).

With the sole exception of the case p = 1, Tweedie models are continuous above

0, and hence are not suitable for direct modelling of infectious disease counts. They

are nonetheless highly relevant owing to the Tweedie convergence theorem. This

states that a random variable cY where Y belongs to an exponential dispersion

family whose variance function V (µ) ∼ c0µ
p as µ tends to zero (or infinity), con-

verges in distribution to the Tweedie model with power parameter p as c tends to

0 (or infinity) (Jørgensen 1997, pages 148-149). Thus, a wide range of exponential
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Figure 7: Scatter plot of estimated powers p against fitted log seasonal amplitude A.

The full line is a loess curve. Seven points with A > 6 have been omitted

dispersion models may be approximated by Tweedie models. It has been suggested

that this theorem provides the theoretical basis underpinning the empirical evidence

for Taylor’s law (Kendall 2004). This contention will be discussed briefly in Section

7.

Tweedie models are attractive also by their scaling properties: it may be shown

that the Tweedie models correspond precisely to those exponential dispersion models

with V (1) = 1 which are closed under scale transformations, that is, for which

V (cµ) = g(c)V (µ) for some function g, for all c > 0. Such a property is natural

for counts of infectious diseases: if Y is the number of cases per time unit, the

statistical properties of Y should not depend in fundamental respects on the time

unit chosen. Note that this scaling invariance only applies to the power parameter

p: unsurprisingly, the scale parameter φ is scale-dependent.

Let Twp(µ, φ) denote the Tweedie model of power p with mean µ and scale

parameter φ. If Y ∼ Twp(µ, φ) then κ2 = var(Y ) = φµp. We shall also be interested
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Figure 8: Scatter plot of estimated powers p against lag 1 autocorrelation. The full

line is a loess curve.

in its skewness. The third central moment of Y is κ3 = pφ2µ2p−1 and its skewness is

ρ3 =
κ3

κ
3/2
2

= pφ
1

2µ
p

2
−1.

These relationships are preserved when iid variables are aggregated. Thus, suppose

that Yi ∼ Twp(µ, φ), i = 1, . . . , n, are independent and let Z = Y1 + Y2 + · · ·+ Yn.

Then Z ∼ Twp(µZ , φZ) where µZ = nµ and φZ = n1−pφ. For example, the skewness

of Z is pφ
1/2
Z µ

p/2−1
Z . Thus, aggregating independent counts of disease in successive

equal time periods will preserve the key power relationships. As noted previously,

successive counts can often reasonably be considered to be independent, or only

weakly dependent. The practical implication is that power relationships may validly

be examined by aggregating data over several time units (in our case, weeks).
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4 Evidence for convergence to Tweedie models

In this section we examine further evidence that Tweedie models provide an ad-

equate description of count data for infectious diseases, in an asymptotic sense.

Clearly, Tweedie models other than the Poisson (corresponding to p = 1) can only

be approximate, since they are continuous above zero. It has already been estab-

lished in Section 2 that our infectious disease data exhibit the variance to mean

relationship typically expected of Tweedie models. Here we consider the empirical

skewness to mean relationship, to examine whether it displays the Tweedie power

relationship elucidated in Section 3.

4.1 Empirical skewness to mean relationships

We shall use the following sample skewness coefficient (Joanes and Gill 1998) for a

sample of size n:

ρ̂3 =

√

n(n− 1)

(n− 2)

1
n

∑n
i=1 (xi − µ̂)3

{ 1
n

∑n
i=1 (xi − µ̂)2}3/2

.

If in a period of n weeks there is just a single weekly count of 1, the others being

zero, then µ̂ = n−1 and ρ̂3 = n1/2. Thus, for rare organisms in which the count is

0 or 1 in every six-month period, the Tweedie skewness to variance relationship is

exactly satisfied with p = 1 and φ = 1. If Taylor’s law is deemed to apply to the

weekly de-seasonalised data zi , then

log{ρ3(zi)} = αs(i) + (
p

2
− 1) log{E(zi)}

where s(i) is the seasonal level for week i. Accordingly we fitted a normal errors

generalised linear model to the empirical skewnesses, with logarithmic link and the

linear predictor just described. When the data were not de-seasonalised (owing to

sparseness) we just fitted a single intercept.

There is considerable scatter in the estimated skewness coefficients, making an

assessment of the skewness to mean relationships more difficult than for the variance
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to mean relationships, a difficulty compounded by the curvilinear shape of the the-

oretical functional dependence. Nevertheless, for many organisms the asymptotic

relationship implied by the Tweedie model does appear to hold, as exemplified by

the six organisms displayed in Figure 9. The full set of 1724 plots (comprising the or-

ganisms for which sufficient data were available) is in the Supplementary Materials.

Figure 10 shows caterpillar plots for the values of p estimated from the skewness to
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Figure 9: Empirical relationship between skewness and log mean for six organisms

(in 6-monthly periods): observed values (dots) and regression curves (with different

intercepts for different seasons).

mean relationships, with approximate 95% confidence limits. These values typically

lie between 0.5 and 2.5. The confidence intervals are quite wide, however, and are

affected by the sparseness of the data for some organisms.
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Figure 10: Caterpillar plot of estimated values of p and corresponding 95% confidence

limits based on log(mean) vs skewness. Left: all organisms; Right: excluding sparse

organisms.

4.2 Bias correction

Sample skewness evaluated from small samples may be prone to bias. Accordingly,

we repeated the analyses with intervals of 1 year, rather than 6 months, so as to

increase the typical sample size from which the sample skewness is calculated. We

also applied a first-order bias correction to the skewness coefficient (Pewsey 2005):

ρ3 =

√

n(n− 1)

n− 2

{

β1 +
3

8n
(β1(7 + 5β2)− 4β3)

}

+ o(n−1),

where

βk =
µk+2

µ
(k+2)/2
2

, µk =
1

n

n
∑

i=1

(xi − µ)k.

Figure 11 shows the corresponding caterpillar plots for p with annual groupings,

with and without bias correction. Increasing the sample size narrows the confidence

intervals and brings most values p < 1 closer to 1. Applying the skewness correction

produces a marked increase in the estimated values of p.

Note that if the sample skewness has relative bias that is constant as the mean

µ varies, then the estimate of p obtained by regressing the sample skewness against
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Figure 11: Caterpillar plot of estimated values of p and corresponding 95% confidence

limits based on log(mean) vs skewness for annual data. Left: without bias correction;

Right: with bias correction.

log(µ) will be largely unaffected, owing to the log-linear relationship between them;

a constant relative bias will be reflected in the estimated intercept. Thus, what

matters primarily for our purposes is the dependence of the relative bias on the

mean, rather than the magnitude of this bias.

To investigate these effects in more detail, and their possible impact on our

observations, we undertook simulations of the sample skewness ρ̂3 from Tweedie

distributions, using sample sizes n = 26 and n = 52, corresponding to typical six

monthly and annual groupings, respectively. We also investigated the impact of the

first-order bias correction to the skewness coefficient. Each value was obtained from

100 000 runs, using the R package tweedie (Dunn 2014). The relative biases in ρ̂3

for φ = 1 are in Table 2; a broadly similar dependence of relative bias on the mean

was observed with φ = 0.5 and φ = 2 (not shown). The simulation results show

that skewness is generally estimated with negative bias, as suggested by Joanes and

Gill (1998). As expected, the relative bias is less in absolute value with greater

sample size, and (generally but not universally) with bias correction. However, for
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the uncorrected skewness, the bias becomes more negative as µ increases for p close

to 1. Thus, for values of p close to 1, the trend in the plot of skewness against log(µ)

will tend to be too steeply negative, resulting in an underestimate of p. For larger

values of p, applying a bias correction increases the dependence of the relative bias on

the mean (while reducing its absolute value). Thus, applying a skewness correction

is likely to reduce the bias in p for p close to 1 (thus increasing the estimated p̂) but

will make matters worse for larger p. The magnitude of the bias for the estimated

variance is very much smaller than for the skewness (results not shown).

Figure 12 shows a scatterplot of the values of p estimated from the variance to

mean relationship against those estimated from the skewness to mean relationship,

using 6-monthly groupings. The Spearman correlation is 0.84. Similar results were

obtained with annual groupings (correlation 0.85). The insights provided by the
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Figure 12: Scatter plot of estimated slopes: variance-based vs skewness-based, with

6-monthly groupings.

simulations help explain the appearance of Figure 12, and suggest that the imperfect

correspondence of the values of p estimated from the variance and from the skewness
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are due, at least in part, to mean-dependent bias in the estimation of the skewness,

especially for low µ. For less common organisms, a further contributing factor may

be that the asymptotic conditions for convergence to Tweedie distributions are not

met.

Overall, these results lend some support to the view that the empirical variance

to mean power relationship reflects asymptotic convergence to Tweedie distributions,

at least insofar as third moments are concerned. This would suggest, in turn, that

Tweedie distributions may perhaps be used to approximate the distributions of

infectious disease counts for the purpose of estimating quantiles.

4.3 Birth, death and immigration processes and the Tweedie

distribution

For human infections for which a specific birth and death process, for example an

SIR or SIS model, is believed to apply, a more powerful analysis may be undertaken

with a model representing that process, rather than the more empirical Tweedie

models described above. This is particularly true when the data exhibit substantial

positive autocorrelation attributable to the transmission process, which our mod-

elling approach ignores. However, convergence to a Tweedie distribution does not

necessarily follow from observance of a power relationship between variance and

mean.

We illustrate this point with a specific branching process model with immigra-

tion, in a simulation suggested to us by a referee. Applications of the model may

be found in Held et al (2005), Held et al (2006) and Paul et al (2008). A simple

version of the model for a count yi in week i is

yi ∼ Poisson(λyi−1 + ν).

The model is stationary when the offspring mean λ (which is equal to the lag 1

autocorrelation) is 0 ≤ λ < 1; the parameter ν is the immigration rate. We simulated
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data from one such model, chosen to obtain the wide range of means that we observed

in our data. We fixed the immigration rate at ν = 5, but allowed λ to vary between

runs, taking values whose frequencies are represented by samples from the beta

density λ ∼ Beta(1, 4). 1000 runs of 1000 values from each sample were obtained.

This generates an approximate power variance to mean relationship with power

parameter p = 1.5, as shown in Figure 13.
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Figure 13: Left: scatterplot of log variance against log mean, with regression line of

slope 1.5. Right: scatterplot of skewness against log mean, and line corresponding

to Tweedie model with parameter 1.5.

However, the corresponding Tweedie model with p = 1.5 bears no relationship

to the scatterplot of skewness against log mean. (As the immigration rate ν, and

hence the process mean, is increased, the model converges to the Tweedie model

with p = 1.5, in keeping with asymptotic theory.) Thus, it is perfectly possible for

a birth and death process model to produce a power variance to mean relationship

that does not fit the Tweedie framework which we have found useful for our data.

Empirical investigations of variance and skewness to mean relationships can help to

decide which modelling approach is most appropriate.
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5 Power laws and Tweedie models for infectious

disease modelling of surveillance data

In this and the next section, we focus on the descriptive statistical analysis of in-

fectious diseases from surveillance systems. We ignore any serial dependence, which

may be due to the transmission process or, as is often the case, to extraneous factors

such as the surveillance system itself. These methods are particularly relevant for

infections whose spread in human populations is not primarily governed by SIR and

SIS models, but by factors such as food contamination and breakdown of health

and safety precautions. Typically, descriptive analyses of counts of infectious dis-

eases from surveillance systems have been based on the Poisson or negative binomial

distributions, the latter resulting from gamma mixtures of Poisson distributions to

produce overdispersion models in which the variance is proportional to the mean

(McCullagh and Nelder 1989, page 199). Where surveillance of relatively common

infections is involved, overdispersion relative to the Poisson is typical, perhaps ow-

ing to variations in reporting rates from different locations. It is convenient in such

circumstances to use a quasi-Poisson model, with dispersion estimated from the

data.

The preceding sections indicate that such models may not be appropriate for in-

fectious disease counts in surveillance data, if examination of the variance to mean

relationship suggests that the variance is proportional to a power p of the mean

with p > 1. Tweedie models with p > 1 are not discrete, and hence not directly

appropriate. One option is to use discrete counterparts of the Tweedie model, such

as Tweedie-Poisson mixtures or Hinde-Demétrio models (Jørgensen 1997, pages 165-

170, Kokonendji et al 2004), for which the unit variance function is approximately

proportional to µp for large µ. A simpler option is to adopt a quasi-Tweedie mod-

elling approach, in which the variance is (at least approximately) proportional to a

power of the mean with exponent p ≥ 1, but without explicitly specifying the like-

lihood. Quasi-Tweedie models can be fitted within the quasi-likelihood generalised
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linear modelling framework, using the following quasi-deviance contribution for the

count in week i (McCullagh and Nelder 1989, page 327) when p 6= 1, 2:

di = 2
{ 1

1− p

(

yi
2−p − yiµi

1−p
)

+
1

p− 2

(

yi
2−p − µi

2−p
)}

.

This requires the power parameter p to be fixed. In a first stage, p is estimated using

the gamma regression method described in Section 2. If the data are too sparse to

allow this, or if p̂ < 1, then take p = 1 and fit a quasi-Poisson model; otherwise, set

p = p̂.

Dunn and Smyth (2005) argue that assuming that p is fixed has little impact on

inferences for the Tweedie model, owing to the fact that p is orthogonal to µ and φ.

We show that this is also true of quasi-Tweedie models, in which p is taken as fixed.

First, note that the quasi-loglikelihood contribution for a single observation yi is

qli =
1

φ

{ 1

1− p

(

yiµ
1−p
i − y2−p

i

)

+
1

p− 2

(

µ2−p
i − y2−p

i

)

}

.

Let β denote the regression parameters for the µi. The quasi-score function contri-

bution for β is the first derivative of qli with respect to β:

Ui(β|p) =
1

φ
(yi − µi)µ

−p
i

∂µi

∂β
.

Suppose now that p is consistently estimated by some estimator p̃ (in the present

context, p̃ is the slope of the gamma regression described in Section 2). The param-

eters β are then estimated by solving U(β̂|p̃) = 0, where U(β|p) =
∑n

i=1 Ui(β|p).

Expanding in Taylor series to first order around the true values β and p gives

0 = U(β̂|p̃) = U(β|p)− I(β|p)(β̂ − β) +
∂U(β|p)

∂p
(p̃− p) +Op(1),

where I(β|p) = E
{

− ∂2U(β|p)/∂β2
}

. Rearranging, we obtain

β̂ = β + I(β|p)−1U(β|p) + I(β|p)−1∂U(β|p)

∂p
(p̃− p) +Op(n

−1).

As E{Ui(β|p)} = 0, the second term on the right of this equation is Op(n
−1/2). Since

∂Ui(β|p)

∂p
= −

1

φ
(yi − µi)µ

−p
i log(µi)

∂µi

∂β
,
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it follows that E{∂Ui(β|p)/∂p} = 0. Hence ∂U(β|p)/∂p is Op(n
1/2). Now (p̃− p) is

op(1) by assumption, so the third term in the expansion of β̂ is op(n
−1/2). In other

words, estimation of p only influences β̂ by a factor op(n
−1/2), rather than Op(n

−1/2),

and thus has relatively little bearing on the estimation of β.

Tweedie models are likely to be useful in other ways relevant to infectious disease

surveillance data. For example, the evaluation of statistical techniques for infectious

disease surveillance is often based on simulations using Poisson or negative binomial

distributions. A more realistic option, especially for more common infections, may

be to simulate data from Tweedie distributions, rounding the results to the nearest

integer to obtain counts, or from their discrete counterparts.

Finally, a key advantage of the quasi-Tweedie approach is that the true but un-

known distribution, though not Tweedie, can nevertheless be approximated by a

Tweedie density, by virtue of the Tweedie convergence theorem, at least when the

means µ are large, which is the setting in which the approach is likely to be most

fruitful (if counts are low, the appropriate limit when µ tends to zero is typically

Poisson). The evaluation of Tweedie densities is discussed by Dunn and Smyth

(2005, 2008). This circumvents a disadvantage of the quasi-likelihood approach:

no distribution is presumed, which makes it difficult to obtain reliable prediction

intervals for individual observations. This convergence property is likely to be par-

ticularly useful in regression-based outbreak detection, where the upper threshold

estimated under the null hypothesis that no outbreak is occurring is obtained us-

ing a prediction interval. For example, the outbreak detection system in use since

the early 1990s at Public Health England, and applied to the LabBase data de-

scribed above, uses a quasi-Poisson regression method, with the upper prediction

limits based on a normal approximation or the quantiles of the negative binomial

distribution (Farrington et al 1996, Noufaily et al 2013). These limits are compared

to those obtained with the asymptotic Tweedie distribution in the next section.

26



6 Application to infectious disease surveillance data

We compared the upper prediction limits obtained for several organisms using (a)

normal approximations, (b) negative binomial quantiles, and (c) Tweedie approxi-

mations. The organisms were selected to obtain a range of values of the exponent p,

which was estimated using the gamma model of Section 2 applied to adjacent six-

monthly periods. We used upper 99.5% prediction limits: organisms with counts

above these thresholds are deemed aberrant and undergo further investigations. The

algorithm is designed to detect the following types of aberrations: sudden changes

in level, sudden changes in trend, and sudden changes in the phase or amplitude of

seasonal fluctuations.

For methods (a) and (b) we applied the algorithm of Noufaily et al (2013). In

brief, to obtain the upper prediction limit at week t a quasi-Poisson generalised linear

model (with log link, linear time effect and factorial seasonal effect) is applied to the

observed counts in recent years, but excluding the most recent six months, lest these

counts are contaminated by a current outbreak. This gives estimates of the expected

value µt at time t and of the dispersion φ, from which the limits (a) and (b) are

derived from the 0.995-quantiles of the normal (after a suitable transformation) and

negative binomial distributions. See Noufaily et al (2013) for details. The algorithm

is implemented in the R package surveillance (Höhle 2007).

For method (c), we replaced the quasi-Poisson model with a quasi-Tweedie gen-

eralised linear model (with pre-estimated p) to obtain the expected value µt at t

and the dispersion φ (which is different from that obtained for methods (a) and

(b)). The quasi-Tweedie model was fitted using the function glm within R (R de-

velopment Core Team 2014); suitable code is provided in the Appendix. The upper

prediction limit was then obtained as the 0.995 quantile of the Tweedie Twp(µt, φ)

density, using the function qtweedie within R package Tweedie (Dunn 2014).

For all methods, we switched off the reweighting mechanism in the standard

version of the outbreak detection algorithm. This mechanism downweights high

27



baseline values, in order to reduce the impact of past outbreaks. It was switched off

because it would need to be modified for the quasi-Tweedie model, thus complicating

the comparison of the three methods.

For all organisms, the expected values obtained using the quasi-Poisson and

quasi-Tweedie models are virtually identical. The upper prediction limits obtained

using the normal approximation for the quasi-Poisson and negative binomial quan-

tiles were also very close.

For organisms with p close to 1, the upper prediction limits based on Tweedie

quantiles were very similar to those obtained using the other two methods. Figure 14

shows the results for Acinetobacter baumanii, with p = 1.05, and Varicella zoster

virus, with p = 1.19. Figure 15 shows the results for two organisms with intermediate
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Figure 14: Weekly count (dots), expected values and upper thresholds for quasi-

Tweedie (full lines) and quasi-Poisson (dotted lines). Left: Acinetobacter baumanii;

right: Varicella zoster virus.

values of p: Cytomegalovirus (p = 1.36) and Chlamydia trachomatis (p = 1.82).

Here, the Tweedie upper prediction limits are generally higher than those for the

quasi-Poisson, the difference increasing with the mean frequency and with p. For

Cytomegalovirus, note that the system detects the abrupt change in level around
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week 875, after which performance is degraded until the algorithm adjusts to the

new level. Figure 16 shows the results for two organisms with high values of p:
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Figure 15: Weekly count (dots), expected values and upper thresholds for quasi-

Tweedie (full lines) and quasi-Poisson (dotted lines). Left: Cytomegalovirus; right:

Chlamydia trachomatis.

Bacteroides fragilis (p = 2.14) and Cryptosporidium sp (p = 2.49). Here, the

Tweedie upper prediction limits can be very different from those for the quasi-

Poisson. Typically they are higher, except in the troughs of the seasonal cycles. The

practical consequence of these observations is that, when p is high, the false positive

rate (that is, the proportion of non-outbreak weeks in which organism counts are

flagged as aberrant) will tend to be too large using the standard outbreak detection

algorithm, if as suggested in Section 4, the distribution of the organism of interest is

well approximated by a Tweedie distribution. However, organisms with p less than

about 1.4 should not be unduly affected unless the mean frequency is very high.

The Tweedie thresholds in Figures 14 to 16 are plug-in estimates, obtained as-

suming that p, in particular, is known. Each is the 0.995-quantile of the Tweedie

density with parameters p̃, µ̂ and φ̂. We investigated the impact of estimating p

on these thresholds by a Monte Carlo method based on the approach of Lawless
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Figure 16: Weekly count (dots), expected values and upper thresholds for quasi-

Tweedie (full lines) and quasi-Poisson (dotted lines). Left: Bacteroides fragilis;

right: Cryptosporidium sp.

and Fredette (2005). First, 1000 bootstrap estimates pb, b = 1, ..., 1000 of the power

parameter p were obtained by bootstrapping the gamma regression described in Sec-

tion 2. For each value of pb the model was refitted, yielding estimates µb and φb.

Then 1000 random variables ybr, r = 1, ..., 1000 were generated from the Tweedie

distribution with parameters p̃, µ̂ and φ̂ (the original estimated values, as used in

the plug-in method) and the values ubr = F (ybr; pb, µb, φb) were calculated, where

F is the Tweedie cumulative distribution function. The 0.995-quantile v of the ubr

was obtained, and the adjusted threshold was taken as Q(v; p̃, µ̂, φ̂) where Q is the

Tweedie quantile function. All calculations were undertaken in R using the package

tweedie (Dunn 2014). This procedure is time-consuming, because a large simula-

tion sample is required to estimate high quantiles accurately. We applied it to the

most recent week for each of the six organisms in in Figures 14 to 16. The rela-

tive difference between the thresholds obtained using the plug-in method and the

method allowing for estimation of p was always less than 0.8% (on average it was

0.2%). Since estimating p has so little impact on the thresholds, we recommend the
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much simpler and quicker plug-in method.

7 Discussion

Analysis of extensive surveillance data on a large number of distinct organisms

provides strong evidence that the variance to mean relationship may be described by

power laws in virtually all instances, the power parameter p typically lying between 1

and 2, with some exceptions. Further investigation of skewness to mean relationships

provides some evidence to suggest that they conform asymptotically to Tweedie

distributions, as predicted by the Tweedie convergence theorem. The strength of

evidence is somewhat reduced by the problem of mean-dependent bias in estimating

sample skewness. Nevertheless, we tentatively conclude that Tweedie distributions

can be used to approximate distributions of counts.

From an epidemiological standpoint, these power relationships are of intrinsic

interest, in that they potentially provide insight into infectious disease dynamics. It

would be interesting to know whether the power relationships we have observed are

also present in infectious disease surveillance data from other countries. Contrasting

data sets obtained in different contexts may help to clarify whether the observed

patterns stem from underlying mechanisms, the specificities of different reporting

systems, or purely stochastic effects.

Our focus has been entirely on exploiting variance to mean and skewness to mean

relationships for descriptive statistical modelling purposes. We have not sought to

explore the underlying mechanisms which produce such power relationships. It is

known that birth and death processes produce such relationships (Anderson et al

1982, Keeling 2000), while Faddy (1997) explicitly constructed a family of statistical

models for count data based on birth processes, which exhibits a range of variance

to mean behaviours. We have instead focused on the suggestion of Kendal (2004)

and Kendal and Jørgensen (2011) that the Tweedie convergence theorem provides a

purely mathematical explanation for such observed patterns, in terms of asymptotic
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limiting behaviour. Our data appear to provide some support for this contention.

From a statistical standpoint, our findings potentially provide a more accurate

descriptive representation of the variability associated with surveillance data on

infectious diseases. We advocate the explicit use of observed variance and skew-

ness to mean relationships, and the Tweedie convergence theorem, for four related

purposes in infectious disease modelling. In the first instance, an examination of

these relationships (at least if data are plentiful), after removing seasonal variation,

can provide useful information and ought to become a routine element of the de-

scriptive statistical investigation of infectious disease surveillance data. This should

also inform model choice. Second, quasi-Tweedie generalised linear models (the

term quasi-Tweedie solely denoting a power variance to mean relationship) should

perhaps be more commonly used for descriptive modelling purposes. Third, model

evaluation using simulations based on Poisson and negative binomial models is likely

to underestimate the extent of random variation and skewness in infectious disease

counts; simulations using discretised Tweedie distributions or their discrete coun-

terparts might be more realistic. And finally, the calculation of thresholds and

prediction intervals, notably in outbreak detection systems, may be more accurate

if based on asymptotic Tweedie distributions, at least when p is appreciably greater

than 1.

For infections with p close to 1, Poisson, quasi-Poisson or negative binomial

models are likely to be adequate. However, for organisms with higher values of

p, we have shown in Section 6 that there are benefits in adopting the methods

we propose. While these may be impractical for the purposes of large multiple

routine surveillance systems, more focused organism-specific surveillance systems

may benefit from making use of the empirical relationships suggested by the data.

It would also be useful to explore suitable discrete models, rather than rely on

quasi-Tweedie methods.

We have focused entirely on marginal variance and skewness to mean relation-

ships, ignoring any serial dependence in the data. In our surveillance data, such
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dependencies were generally rather weak, and for this reason we feel our approach

is justified for many infections. Many of the instances of significant positive serial

dependence are most likely unrelated to the transmission mechanism, resulting for

example from residual periodicity. In infectious diseases, seasonality is often subject

to variation in amplitude and period. The surveillance system may also induce reg-

ular spikes and troughs. These effects are not wholly removed using fixed seasonal

cycles: more flexible methods of seasonal adjustment are required. Beyond such

spurious effects, the empirical finding that autocorrelations are often quite close to

zero (or negative) can be attributed to two main factors: the modes of transmis-

sion, and the nature of the surveillance data. First, very many organisms are not

primarily transmitted directly from person to person by close contact. For example,

many are primarily food, water or airborne from zoonotic or environmental reser-

voirs, as for Campylobacter, Escherichia coli, Listeria monocytogenes, Legionella,

and most salmonellas. The temporal autocorrelation for such infections in humans

is weak, cases arising primarily sporadically, or occasionally in point and common

source outbreaks with perhaps only a limited element of subsequent person-to-person

transmission. However, we also observe low autocorrelations for organisms that are

directly transmitted by close contact, such as Varicella zoster virus, Bordetella per-

tussis and Measles virus. The reason is most likely that our data include only cases

of disease of sufficient clinical severity to warrant a biological specimen being col-

lected for identification: these cases thus represent only a small proportion of actual

infections, and selection effects may erase the underlying serial dependence.

There were, however, some exceptions, notably Influenza A and B, for which the

autocorrelation is significantly positive in line with known transmission dynamics.

For these infections, ignoring the transmission mechanism, while generally produc-

ing consistent estimates, may be inefficient. Furthermore, our finding that serial

dependence is generally weak may not apply to other data on infectious diseases,

obtained from more complete reporting systems. If, in an investigation focused on a

particular infection, substantial non artefactual serial correlation is observed which
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is related to the mode of transmission, it ought to be incorporated in statistical

models. For example the models of Paul et al (2008) and Finkenstdt and Grenfell

(2000) may perhaps be adapted, if required, to encompass greater flexibility in the

power variance to mean and skewness to mean relationships they generate. It may

also be beneficial in some circumstances to incorporate further complexities, such

as cross-correlations between distinct infections of specific interest.
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Appendix

The following R code may be used for fitting the quasi-Tweedie model, for a specified

numerical value of p. First, set up the following list to specify the variance function.

varp<-list(

varfun=function(mu){mu^p},

validmu=function(mu){all(mu>0)},

dev.resids=function(y,mu,wt){

2*wt*((1/(1-p))*(y^(2-p)-y*mu^(1-p))+(1/(p-2))*(y^(2-p)-mu^(2-p)))},

initialize=expression(mustart<-ifelse(y==0,0.001,y)

)

The model is then fitted with a call to R function glm, using

family=quasi(link="log",variance=varp).
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Table 2: Relative bias for sample skewness (uncorrected and bias-corrected) for

different values of µ and p for sample sizes n = 26 and n = 52, with φ = 1

sample skewness sample skewness

uncorrected bias corrected

n = 26

µ 0.1 1 10 100 0.1 1 10 100

p = 1 0.025 -0.156 -0.169 -0.178 -0.215 -0.086 -0.082 0.091

p = 1.2 -0.098 -0.161 -0.178 -0.178 -0.200 -0.103 -0.093 -0.091

p = 1.4 -0.186 -0.176 -0.176 -0.176 -0.219 -0.126 -0.097 -0.091

p = 1.6 -0.225 -0.195 -0.186 -0.178 -0.227 -0.153 -0.118 -0.098

p = 1.8 -0.241 -0.219 -0.202 -0.194 -0.225 -0.183 -0.150 -0.132

p = 2 -0.244 -0.245 -0.244 -0.245 -0.214 -0.214 -0.213 -0.215

n = 52

µ 0.1 1 10 100 0.1 1 10 100

p = 1 0.038 -0.084 -0.097 -0.105 -0.077 -0.022 -0.022 0.028

p = 1.2 -0.071 -0.089 -0.096 -0.094 -0.089 -0.030 -0.023 -0.017

p = 1.4 -0.120 -0.101 -0.097 -0.097 -0.106 -0.045 -0.026 -0.022

p = 1.6 -0.143 -0.114 -0.106 -0.100 -0.112 -0.059 -0.039 -0.027

p = 1.8 -0.152 -0.133 -0.122 -0.112 -0.110 -0.080 -0.062 -0.056

p = 2 -0.151 -0.153 -0.152 -0.153 -0.100 -0.103 -0.101 -0.102
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