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Kristsana Seepanomwan

Mental Imagery in Humanoid Robots

Abstract

Mental imagery presents humans with the opportunity to predict prospective happenings
based on own intended actions, to reminisce occurrences from the past and reproduce
the perceptual experience. This cognitive capability is mandatory for human survival in
this folding and changing world. By means of internal representation, mental imagery
offers  other  cognitive  functions  (e.g.,  decision  making,  planning)  the  possibility  to
assess information on objects or events that are not being perceived. Furthermore, there
is evidence to suggest that humans are able to employ this ability in the early stages of
infancy.

Although materialisation of humanoid robot employment in the future appears to be
promising,  comprehensive  research  on  mental  imagery  in  these  robots  is  lacking.
Working within a  human environment  required  more than  a  set  of  pre-programmed
actions. This thesis aims to investigate the use of mental imagery in humanoid robots,
which could be used to serve the demands of their cognitive skills as in humans. Based
on empirical data and neuro-imaging studies on mental imagery, the thesis proposes a
novel neurorobotic framework which proposes to facilitate humanoid robots to exploit
mental imagery. Through conduction of a series of experiments on mental rotation and
tool use, the results from this study confirm this potential.

Chapters 5 and 6 detail experiments on mental rotation that investigate a bio-constrained
neural network framework accounting for mental rotation processes. They are based on
neural mechanisms involving not only visual imagery, but also affordance encoding,
motor  simulation,  and  the  anticipation  of  the  visual  consequences  of  actions.  The
proposed model is in agreement with the theoretical and empirical research on mental
rotation. The models were validated with both a simulated and physical humanoid robot
(iCub),  engaged in solving a typical  mental  rotation task.  The results  show that the
model is able to solve a typical mental rotation task and in agreement with data from
psychology  experiments,  they  also  show  response  times  linearly  dependent  on  the
angular  disparity  between  the  objects.  Furthermore,  the  experiments  in  chapter  6
propose  a  novel  neurorobotic  model  that  has  a  macro-architecture  constrained  by
knowledge on brain, which encompasses a rather general mental rotation mechanism
and incorporates a biologically plausible decision making mechanism. The new model
is  tested  within  the  humanoid  robot  iCub  in  tasks  requiring  to  mentally  rotate  2D
geometrical images appearing on a computer screen. The results show that the robot has
an  enhanced  capacity  to  generalize  mental  rotation  of  new  objects  and  shows  the
possible  effects  of  overt  movements  of  the  wrist  on  mental  rotation.  These  results
indicate that the model represents a further step in the identification of the embodied
neural mechanisms that might underlie mental rotation in humans and might also give
hints to enhance robots' planning capabilities. 

In  Chapter  7,  the  primary  purpose  for  conducting  the  experiment  on  tool  use
development  through  computational  modelling  refers  to  the  demonstration  that
developmental characteristics of tool use identified in human infants can be attributed to
intrinsic motivations.  Through the processes of sensorimotor learning and rewarding
mechanisms, intrinsic motivations play a key role as a driving force that drives infants



to  exhibit  exploratory  behaviours,  i.e.,  play.  Sensorimotor  learning  permits  an
emergence of other cognitive functions, i.e., affordances, mental imagery and problem-
solving.  Two  hypotheses  on  tool  use  development  are  also  conducted  thoroughly.
Secondly, the experiment tests two candidate mechanisms that might underlie an ability
to  use  a  tool  in  infants:  overt  movements  and  mental  imagery.  By  means  of
reinforcement  learning  and  sensorimotor  learning,  knowledge  of  how to  use  a  tool
might  emerge  through  random  movements  or  trial-and-error  which  might  reveal  a
solution (sequence of actions) of solving a given tool use task accidentally. On the other
hand,  mental  imagery  was used  to  replace  the  outcome of  overt  movements  in  the
processes of self-determined rewards. Instead of determining a reward from physical
interactions, mental imagery allows the robots to evaluate a consequence of actions, in
mind, before performing movements to solve a given tool use task.

Therefore,  collectively,  the  case  of  mental  imagery  in  humanoid  robots was
systematically  addressed  by  means  of  a  number  of  neurorobotic  models  and,
furthermore, two categories of spatial problem solving tasks: mental rotation and tool
use.  Mental  rotation evidently involves the employment of  mental  imagery and this
thesis confirms the potential for its exploitation by humanoid robots. Additionally, the
studies on tool use demonstrate that the key components assumed and included in the
experiments  on  mental  rotation,  namely  affordances  and  mental  imagery,  can  be
acquired by robots through the processes of sensorimotor learning. 
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Quote

Intelligence does not by any means appear at once derived from mental development, 

like a higher mechanism, and radically distinct from those which have preceded it. 

Intelligence presents, on the contrary, a remarkable continuity with the acquired or 

even inborn processes on which it depends and at the same times makes use of.

Thus, it is appropriate, before analysing intelligence as such, to find out how the 

formation of habits and even the exercise of the reflex prepare its appearance.

J. Piaget
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Chapter 1

Introduction

1.1 Sensorimotor Experience and Mental Imagery

During life, humans and other animals acquire knowledge by repeating the process of

action-perception countless times. This process is called sensorimotor learning and it

plays an important role in the acquisition of other cognitive capabilities (Piaget, 1952).

Human infants learn many skills starting from little knowledge and by the age of two

are able to use tools. Their motor and cognitive skills develop simultaneously with and

rely strongly on, the maturation of their body as well as the brain. Complex skills can be

acquired  only  if  their  underlying  capability  (cognitively  and  physically)  have  been

mastered. 

Tool  use forms a good example of a cognitive skill  that demonstrates cognitive

development  through  sensorimotor  learning.  Because  of  the  constraints  of  their

immature bodies, human infants stay helpless for many months after birth. They play

with objects from the early period of infancy. However, they start to use tools at about

the age of 8 months (McCarty, Clifton, & Collard, 2001). This might be because, at

about  this  age,  their  musculo-skeletal  system,  in  particular  the hands and arms,  are

strong enough to hold an object (i.e., a tool) for a period of time. In addition to the

physical constraints, the infants must develop knowledge of how to manipulate objects

with their hands. However, an insight of how to use a tool is not applicable in infants

aged less than 18 months (Rat-Fischer et al., 2012).
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In addition, the insight of how to use a tool can be viewed as possible through the

use of mental imagery (e.g., the expectation of an action's outcome) to guide the action

selection process. There is evidence that shows that human infants are able of exploiting

this capability in tool use scenarios, after they have mastered the corresponding actions

(e.g.,  Schlesinger  &  Langer,  1999).  During  this  sensorimotor  stage,  they  not  only

practice their actions but also observe the change in the environment which is caused by

particular actions they make and form an association among them. As a consequence,

infants are able to distinguish between possible and impossible outcomes of actions at a

young age (Schlesinger & Langer, 1999, Möhring & Frick, 2013). Mental imagery can

be viewed as a by-product of sensorimotor learning. 

Another renown example on cognitive skills that clearly involves mental imagery is

the case of mental rotation. Since it was first described by Shepard and Metzler in 1971,

mental  rotation  has  attracted  enormous  research  interest  in  the  field  of  cognitive

psychology. This is in part due to the attempts to understand why comparing objects

using imagery seems to reflect the same physical rules as overt rotation, considering that

humans  are  capable  of  using  imagery  that  is  not  limited  by  the  laws  of  physics

(Kosslyn, 1996). When participants were asked to perform a classical mental rotation

task while performing a manual rotation (e.g., on a custom joystick) in both congruent

and incongruent conditions with respect to the direction of rotation of the mental image.

The results show that response times and error rates were lower when the direction of

the two rotations (manual and mental) was congruent, whereas they were higher when

the direction of the two rotations were inconsistent (Wexler, Kosslyn, & Berthoz, 1998;

Wohlschläger,  2001).  This  evidence  indicated  a  connection  between  sensorimotor

processes and mental imagery.

Mental imagery refers to internal representations of objects and situations (Kosslyn,
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1980; Shepard & Cooper, 1982). This internal representation or mental image contains

spatial  information corresponding to  a  depicted stimulus.  According to these mental

images,  humans  can  assess  spatial  properties  of  perceived objects  (e.g.,  shapes  and

sizes) that are demanded by other cognitive functions (e.g., decision making, planning).

Mental imagery also plays a key role in associative learning and memory (Paivio,

1969) as mediators or as an image-evoking value. Increasing of objects' concreteness

makes memory and learning more efficient. Paivio (1969: page 243) stated that “Images

are regarded as symbolic processes which are linked developmentally  to  associative

experiences involving concrete objects and events”. According to this view, an ability to

create and manipulate mental images could be assumed as the result of experience with

objects and events during life or sensorimotor learning.

1.2 Motivation of The Thesis

Since this thesis concerns research on endowing mental imagery capability in humanoid

robots, this section will point out a promising stepping stone between these two. It is a

concept of embodied cognition (Pecher & Zwaan, 2005; Pezzulo et al., 2011; Wilson,

2002) which primarily focuses on a central role that the body plays in the processes of

cognitive acquisition. In humanoid robots, having a form of human body could offer

them a possibility  to  acquire  knowledge about  their  world through the processes  of

sensorimotor learning like in humans. Furthermore, to be more than a human-like robot,

mental imagery could emerge in the robot's brain as by-product of the the sensorimotor

experience.

An embodied  view on human  cognition  concerns  three  aspects  involving body,

brain and environment (Pfeifer & Bongard, 2006). The key idea is that the body and the
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brain  permitted  humans  (and  other  animals)  to  make  movements  which,  as  a

consequence,  could  modify  their  environment.  This  scheme  considers  how  humans

explore and obtain knowledge about their world through their body. Cognition in this

vein is an association between actions and perceptions that an individual experiences

during its life.

Embodied cognition highly concerns two types of cognitive processing, including

top-down and bottom-up mechanisms. It is true that the brain controls the body, but the

body  is  not  just  a  collection  of  output  devices.  Every  movement  and  perception

acknowledge by the brain effects thought in terms of interconnected neuronal circuits.

The top-down cognition such as categorisation, decision making and language can be

acquired properly only if they integrate with bottom-up information from the body. For

example, the deaf are unable to speak properly because they have a deficit in some parts

of the hearing system (Rodda & Grove, 2013). The loss of auditory information causes

deaf people of not to be able to imitate proper sounds in their pronunciation, which

results in impaired or loss of speech. However, deaf are able to learn sign language

using information from visual system instead. The knowledge about sign language is an

association between particular forms of body postures taken from visual perception and

their meaning was given by the sign language instructors. By this way, deaf are able to

express their thought through their body postures and facial expressions instead of using

verbal language.

In robots, the concept of embodied cognition offers a promising way to construct

true intelligence by replicating the way humans acquire their knowledge into robotic

platforms.  According  to  this  approach,  building  intelligent  robots  which  acquire

knowledge through their body, brain and interaction with their environment seems to be

possible.
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There is a big obstacle in the design of cognition in robots. Unlike humans, the

hardware and software parts of robots are completely separated. For instance, a robotic

platform might be constructed by a robotic company while a control program might be

implemented by a neuroscientist.  Even though there is  a standard interface between

software and hardware, these two entities are not mutually connected like the brain and

the body of living organisms. Humans can sense every single touch applied on their

body which is not found in robots at the moment. A humans’ body grows up from baby

size to adult size, which is not possible to model in machine. Actuators in a robotic

system cannot be developmentally improved in performance or grow like the musculo-

skeletal  system  of  animals  and  humans.  In  particular  the  spinal  cord  which  links

sensations and motor commands from/to body parts to/from the brain has developed

before birth. Most intelligence systems concentrate only on the parts of computations

and algorithms in computers,  and pay a  little  attention to  the part  of  body.  Robots'

controllers  have  determined  only  on  actuators'  and  sensors'  values,  which  serve  as

outputs and inputs to a control system. Intelligence in this way is top-down processing,

from computation to actions, which is not enough to model human cognitions.

The  problem  of  biological  body  and  maturation  seems  too  difficult  to  tackle.

Cangelosi  and Schlesinger  (2015) suggested that cognitive development  in robots is

more likely to be possible if starting with baby robots. Human infants, at birth, have a

small  number  of  acquired  cognitive  functions  and  through  development  of  their

sensorimotor,  their  cognitive  skills  become  more  and  more  developed.  In  robots,

starting from having little knowledge and gradually acquiring in the same way as the

human  infants  do,  could  be  a  promising  way  to  tackle  true  intelligence  in  a

developmental fashion (Asada et al., 2001).

Following the scheme of embodiment  seems convincing to  make robots acquire

8



knowledge  through  their  body,  brain,  and  interaction  with  their  environment,  like

humans. To make the motivation more clear,  the following provides answers to two

obvious questions:

Why humanoid robots?

Humanoid robots have become of increasing interest in many fields. Humanoid robots

provide a unique feature which offers a human-like body structure (e.g., Metta et al.,

2008).  It  is  important  that  this  unique  feature  permits  a  demonstration  of  cognitive

acquisition  in  a  similar  way  that  humans  perform.  This  is  an  important  aspect

underlying successfully acquired high level cognitive functions in humans. In particular,

most of human activities in daily life are usually carried out by hands. There is evidence

that the largest part of the motor area is dedicated to control movements of the hands

(Purves et al., 2013). Hands are very important for humans’ intelligence and evolution

(Wilson, 1998). It is relatively difficult to make a point that other kind of robots (e.g.,

dogs,  wheels,  that do not have hands) acquires higher-level cognitive functions in a

developmental and embodied way, as in humans. At least those robots usually have no

manipulating arms, hands or fingers, thus they can not manipulate objects efficiently. In

terms  of  applications,  humanoid  robots  are  well  suited  to  the  tasks  that  normally

humans perform (e.g.,  housekeeping tasks).  Many humanoid robotic  platforms have

been designed and dedicated to perform these tasks as human communities appear to

have a  greater  number  of  elderly  people  (Broekens et  al.,  2009,  Bemelmans  et  al.,

2012). Using humanoid robots as caregivers or servants seems promising to provide the

needs of this service. 

Why do humanoid robots need mental imagery?

In terms of situated cognition and action sequencing, the use of mental imagery could

allow humanoid  robots  to  work  together  with  humans  in  the  humans'  environment.
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Since daily activities require a proper sequence of actions rather than a one stop action,

robots without the capability to exploit mental imagery will not be particularly useful in

real world situations. 

Humanoid robots with mental imagery skills could crucially increase their planning

abilities. Such robots, indeed, could “think” in advance the consequence of potential

actions  by mentally simulating the effect of them and,  accordingly,  could choose to

explicitly perform the more suitable one to reach a given goal. 

1.3 Objectives

The  aims  of  this  thesis  are,  firstly,  to  reveal  the  possible  bio-constraint  neural

mechanisms which underlie humans' cognitive processing through the particular case of

mental imagery.  Secondly,  the research tends to allow a humanoid robot to perform

tasks in a more human-like way. In which, the ability to use mental imagery will be

integrated  into  their  problem  solving  processes.  Finally,  a  developmental  robotics

approach to model human cognitive acquisition will be simulated and assessed through

the use of humanoid robots as a synthetic tool.

1.4 Contribution to Knowledge

According to the design and implementation of several cognitive robotic/neurorobotics

models capable of handling spatial problem solving tasks (i.e., mental rotation and tool

use), this thesis provides four main contributions to the field of cognitive robotics.

• Scientific  understanding  of  neuro-cortical  mechanisms  underlying  mental

rotation.
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• Novel bio-constraint neurorobotics frameworks linking motor processes, mental

imagery and spatial problem solving.

• Novel demonstration of integrating mental imagery capability into a humanoid

robotic platform.

• Novel mechanism permitting an autonomous cognitive acquisition in humanoid

robots.

The detail of each contribution listed above will be found in the final chapter.

1.5 Structure of the Thesis

The thesis contains eight chapters. Chapter 1-4 provide an overview of the experimental

and robotics literature used in the thesis. Chapter 5-7 describe experimental studies,

results and discussion of the findings, followed by conclusions and suggested future

work in the final chapter. 

Chapter 2 presents background knowledge on the possible link between sensorimotor

learning and other cognitive functions such as mental imagery, mental rotation and tool

use.  The  chapter  points  to  the  fact  that  by  having  experience  with  objects  in  the

environment during life, agents acquire knowledge not only on what they can do but

also the expectation of what will happen if they perform that action. The chapter also

explains how the creation of mental imagery was linked to the processes involved in

sensorimotor learning.

Chapter 3 provides an introduction to robots and AI. A literature review on cognitive

and neurorobotics and on a variety of studies using robots as a platform to acquire and

express high level cognition are presented. The details on a variety of applications using
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this new kind of robotic platforms as a synthetic approach to understand cognition, are

also revealed.

Chapter  4 details  the  techniques  which  were  applied  to  create  mental  imagery  in

humanoid robots. The description of TRoPICALS, a computational model account for

sensorimotor  compatibility  effect,  population  coding  neural  networks,  learning

algorithms and the humanoid robot iCub are included. 

Chapter 5 details two mental rotation models. The first model accounts for the mental

rotation processes which are based on neural  mechanisms involving visual  imagery,

affordance encoding and forward models processing. The second model highlights the

importance of motor processes and proprioceptive inputs in the performance of mental

rotation tasks. 

Chapter 6 reports another two models of mental rotation which generalise the mental

rotation ability to unseen objects. It is demonstrated that the third and fourth model are

able to generalize mental rotation skills to novel objects. This is an important result with

respect to the previous version of the model (chapter 5). An innovation of these models

is represented by the mechanism used to monitor the overall mental rotation process and

to make the decision about the response to produce. To this end, the model incorporates

the  mutual  inhibition  model  (Usher  & McClelland,  2001;  Bogacz  et  al.,  2006)  that

allows a more accurate and biologically-plausible reproduction of the decision making

processes  of  the  participants  in  target  psychological  experiments.  This  chapter

demonstrates how endowing the controller of a humanoid robot with some functional

features of the human brain mental rotation areas makes it able to show some level of

generalisation of mental image rotation. 

Chapter 7 demonstrates the role of sensorimotor learning and mental imagery in an

acquisition of  tool  use competence.  In this  chapter,  tool  use development  in  human
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infants was studied and replicated in a simulated infant robot (the iCub simulator). The

underlying techniques extend the previous approach to include intrinsic motivations,

dynamic movement primitives and reinforcement learning. 

Chapter 8 closes the thesis by summarising the main contributions of all experimental

studies.  The details  of contribution to knowledge and a list  of future work are also

provided. 
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Chapter 2

Background on Mental Imagery

This chapter tends to point to the possible link between sensorimotor learning and other

cognitive functions such as mental imagery, mental rotation and tool use. It gives a brief

review  on  sensorimotor  learning  from  the  perspective  of  motor  neuroscience.  In

particular,  mental imagery is  viewed as underlying by forward models in  the motor

areas of the brain. Literature reviews on mental imagery and example applications in

robots are also provided. 

2.1 Sensorimotor Learning

In the principles of sensorimotor learning (Wolpert,  Diedrichsen, & Flanagan, 2011),

there are three key elements that play an interactive role in the acquisition of new motor

skills  in  humans,  including  components,  processes,  and  representations  of  motor

learning processes. These authors, first, pointed to the importance of underlying motor

components in a way that, in order to learn new motor skills properly, one has to have

basic  components  required  to  do  so.  For  example,  an  ability  to  extract  contextual

information  task-specific  from sensory  stream can  be  done  only  if  one  has  a  well

developed visuo-motor system that controls movements of the eyes for saccading. This

contextual  information  will  be  supplied  to  a  decision  making  system to  produce  a

response  movement  corresponding  to  the  perceived  sensory  stream.  The  response

movement is created with a different control mechanism, e.g., predictive, reactive, or

bio-mechanical  control.  Second,  the  processes  of  motor  learning  are  an  error-based
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process which consider the difference between actual and desired movements in the

refining of the motor commands, or reinforcement learning which uses a scheme of

rewards  and  punishments  to  guide  the  learning.  Finally,  in  this  framework,  the

representations of motor repertoire can be viewed as a combination of motor primitives,

or  the  refinement  of  the  whole  motor  repertoire  through  the  processes  of  credit

assignment which criticise the source (basic components) of motor error. Wolpert et al.

also highlight the impact of conducting this kind of research in real-world situations

increasing both the scale and complexity of the system.

Moreover,  Krakauer and Mazzoni (2011) mention two different processes of the

human  sensorimotor  learning,  including  motor  adaptation  and  skill  learning.  The

difference in motor performances is caused by the way humans weight these processes.

The  authors  interpreted  sensorimotor  learning  as  the  process  of  practicing  sensory-

guided motor behaviour that results in the improvement of the motor's performance. The

studies  of  a  goal-directed  arm  movement  in  humans  include  both  low-level  motor

commands and high-level cognitive control. In addition, the authors provide a taxonomy

for sensorimotor learning which mapped the proposed processes to specific brain areas.

For example, the motor adaptation was linked to the cerebellum. The skill learnings is

linked to the prefrontal cortex, basal ganglia, and the motor cortex. There is an interplay

between a sensory prediction unit and a forward model as an error-based paradigm. In

contrast,  the skill  learning used success-based exploration to guide movements.  The

skill learning processes tend to reduce the error caused by the forward model that maps

sensory data to motor commands. By feedback with this error to the forward model, its

parameters can be modified through trial and error processes.
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2.2 Internal models

The term “internal model” was defined by Wolpert and colleagues in 1995 as "a system

that mimics the behaviour of a natural process" (Wolpert, Ghahramani, & Jordan, 1995:

page 1880). This notion came from the idea that the central nervous system internally

simulates the outcome of the motor system to support high order cognitive functions

such as planning, motor control, and learning. In general, internal model involves two

different kinds of prediction. The first internal model involves the forward model which

produces  the  system's  next  state  when  given  the  current  state,  together  with  motor

command. The latter is the inverse model, which does the opposite computation: when

provided with a current state it generates corresponding motor command (see Figure

2.1).

Grush proposed the framework for information-processing named "the emulation

theory of  representation" (Grush,  2004).  This  was used to  synthesise how the brain

simulates and processes its internal representation of the body and environment. The

framework applies  forward models  and kalman filters  to  form internal  models.  The

internal models provide information about the body and environment to the brain. They

emerge in parallel  and use the same information about body and environment as of

sensorimotor  learning.  The  frameworks  are  able  to  address  visual  imagery,  motor

imagery, and planning capabilities which are developed by using the estimated outcome

of different motor commands. The information provided by the forward models was

used to  simulate  feedback input  that  can  solve the problem of  feedback delay in  a

physical control system. Grush claims that other cognitive functions such as reasoning,

theory of mind and language can be synthesised by using this framework.

It  is  possible  to  do  a  mapping between motor  neurons  and the  internal  models

(Miall,  2003). The idea was centred on the concept of mirror neurons in the ventral
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premotor cortex of monkeys and in the posterior parietal cortex of humans. There are

three different types of neurons in these areas that respond for visual inputs and actions.

The first one is the neuron that codes visually guided actions. These neurons activated

before and during actions performed by the monkey but not for the observed actions.

The second one is canonical neurons that appeared to code for objects' affordance. The

last  one  is  the  mirror  neuron  that  codes  both  observed  and  executed  actions.  In

monkeys, these neurons encode intended action on an object e.g., grasp for food. Miall

suggests that forward models are the mapping from motor commands to the change of

the  environment.  Instead,  the  inverse  ones  are  mapping  from visual  input  into  the

corresponding motor commands. 

                          (a)                                                      (b)                                                      (c)

Figure 2.1 A schematic diagram of pathways activated during three observations: (a)  visually guide

reach. (b) observation of action. (c) execution of imitated action (from Miall, 2003)

According  to  the  schematic  diagram  proposed  in  Miall  (2003),  we  interpreted

mental imagery as possible through forward models e.g., the transformation of motor

commands in F5 into the next state of visual consequence in PF,  (see Figure 2.1c). The

circuits  shown  in  Figures  2.1a  and  2.1b,  illustrated  a  transformation  of  the  visual

perception into motor command. Thus, these indicate inverse models. 
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2.3 Mental Imagery  in Psychology and Neuroscience

Mental imagery is an internal representation of an experienced object that is formed in

response to the perception of the objects' cue e.g., hearing or reading its name, seeing its

shape. Mental imagery is viewed as simulated experience on objects which is possible

from all sensory modalities such as visual, auditory and olfactory (Ganis, 2013).

Mental  imagery  concerns  cognitive  processes  for  the  creation,  inspection  and

manipulation of mental representation of objects or events (Paivio, 1969; de Borst et al.,

2012).  Alternatively,  the  term  mental  imagery  is  treated  as  the  processes  of  re-

elaboration and interpretation of perceived stimuli (Di Nuovo et al., 2014).

Mental imagery occurs in all sensory modalities. However, visual mental imagery is

the most influential and well-studied case. There are a large number of neuro-imaging

studies on mental imagery that target primarily the scenario related to the use of visual

mental imagery (Ganis, 2013). Visual perception is the most powerful perceptual system

that humans and animals use to explore their world. People experience their world based

mainly on the use of visual exploration. Without visual mental imagery, we are not able

to understand the world around us, since objects and events are normally folded (Ganis,

2013). Henceforth, the term mental imagery used in this chapter refers to visual mental

imagery or mental images linking to the experience of seeing.

One important aspect of mental imagery is it occurs when there is no stimulus being

perceived  (Kosslyn, 1980). To be more precise, Kosslyn et al. (2006: page 4) defined

mental imagery as "a mental image occurs when a representation of the type create

during the initial phase of perception is presented but the stimulus is not actually being

perceived; such representations preserve the perceptible properties of the stimulus and

ultimately give rise to the subjective experience of perception." This definition refers to
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re-experience or depiction of percept stimuli e.g., when people heard a named object. In

order  to  answer  questions  related  to  known  objects,  the  vast  majority  of  human

participants reported vividness of the objects in their mind's eye. For example, a vivid

image of a German shepherd dog will appear in our mind if we are asked to observe the

shape of its ears. Pictures of a pea and a tennis ball will appear if  we are asked to

differentiate between their size (Kosslyn, 1980). With these mental images, people can

assess  and determine  the  spatial  properties  of  the  objects  in  order  to  support  other

cognitive  functions  e.g.,  decision  making.  However,  this  view  was  attacked  by

propositional or verbal description of imagery (Pylyshyn, 1973), but it is not of interest

here. Since this thesis treats mental imagery as images, and the two ideas (depictive,

propositional) can be viewed as supplementary to each other to fulfil a form of human

thought (Anderson, 1978).

The term mental  imagery  in  this  thesis  refers  to  visual  mental  imagery,  the  re-

experience of visual stimuli. This thesis concerns mental imagery in robots, however it

is  relatively  difficult  to  construct  mental  imagery  from  other  modalities.  Like  in

humans, visual mental imagery is more easy to understand, since it is common that, the

robots will perceive the world through their eyes (cameras) as much as humans.

According to Kosslyn (2006), mental imagery involves the use of long-term and

working memory, since it is a process that simulates the experience of an object. When

hearing a named of experienced objects, its relevant information will be retrieved and

reconstructed in working memory as visual buffering.

There are common parts of the brain that activate in response to all mental imagery

modalities, and specific parts that activate selectively depending on a specific type of

imagery (Zvyagintsev, 2013). Behavioural data showed that the use of mental imagery

will be impaired if one has damage to specific parts of the brain. These areas include
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posterior left hemisphere which responsible for image generation (Farah, 1984).

Albers et al. (2013) suggest that early visual cortex (V1-V3) are required in both

top-down as  visual  input  processing,  and bottom-up as  mental  imagery  creation.  In

order to maintain and manipulate mental image in working memory, the visual cortex

will be used as a "blackboard" which provides specific information about the mental

items. In this study, one group of participants maintained visual working memory of

visual  stimuli,  while  another  group were instructed to  imagine objects.  The authors

found  a  similarity  of  the  early  visual  cortex  activation  from the  two  groups  when

scanned the activity of brain by using fMRI technique.

Primary visual cortex (V1) is not always necessary for mental imagery (Moro et al.,

2008). There are only some particular types of imagery that require precise, detailed

imagery that are more likely to involve V1 (Bridge et al., 2012). According to Bridge et

al. (2012), a patient with near-complete V1 damage was reported having vividness of

visual  mental  imagery.  The  patient  claimed  that  he  could  imagine  house  and  face

stimuli,  but  it  was  difficult  to  imagine  a  checkboard,  the  detailed  stimulus.  The

neuroimaging data of this patient showed a spread of activation in parietal and frontal

cortex instead of V1 when compared to normal subjects. The authors explained this data

as the brain has  some spare parts  that  can substitute  V1.  In this  case these are  the

parietal and prefrontal areas. 

Eye  movements  are  commonly  involved  in  visual  perception.  Oculomotor

behaviour during mental image exploration and perception might be similar. The study

conducted  by  Bourlon  et  al.  (2011)  tested  this  hypothesis.  The  study  revealed  that

participants were asked to imagine a map of France and say that a given name (towns or

regions) is located to the left or right of Paris. After that, the participants were shown

the real  map and asked again similar  questions.  In  both cases,  the  participants'  eye
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movements were recorded. The results  indicated that movements of the participants'

eyes during the mental imagery condition resembles behaviour involved as in the case

of visual  exploration.  The authors  concluded that  the mechanism involved in  visual

exploration might be shared with that of the search in visuo-spatial mental images. 

This evidence supports the claim that visual mental imagery and visual cognition

share some underlying processes. In addition, Ganis and colleagues (2004) reported that

more than 90% of the cortical activations during visual perception is overlapped with

that of during visual mental imagery. 

Mental imagery also presents a topic of potential relevance to the field of clinical

disorders. Pearson et al.  (2013) focus on this point by providing a review of mental

imagery measures and assessments in clinical disorders. From their review, there are

four important stages of mental imagery that can be assessed in clinical research i.e.,

image generation, image maintenance, image inspection and image transformation. The

four stages are also viewed as cognitive aspects of mental imagery. The review suggests

that mental imagery is  the main cause of much clinical disorder e.g.,  social  phobia,

schizophrenia, depression, post-traumatic stress disorder (PTSD), and bipolar disorder.

However, other aspects such as working memory also take an effect in the disorder. The

review also suggests that working memory is important in the study of clinical disorder.

In order to conduct reliable measurements researcher should consider effects of working

memory load that might involve in the study of stages of mental imagery. For example,

in the assessment of bipolar disorder, instructions that require patients to maintain high

working memory load may lead to the deficit of mental image creation which results in

incorrectly identify causes of the disorder. 

The important aspect suggested from this review is that mental “image generation”

was found to be the cause of many disorders. Therefore, the potential treatment should
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be conduct in order to correct the way patient generate mental image e.g., training to

create positive mental images (prospective) of future events (cited in Pearson et  al.,

2012) in order to help patients with depression disorders.

In  addition,  the  authors  also  propose  a  guiding  framework  for  assessing  the

particular stage of mental imagery. They claim that their framework can help clinical

psychologists  to  select  the  right  measures  and domains  (mental  imagery stages)  for

assessing the use of mental imagery for specific disorder experiment. The framework

offers an opportunity to move forward the understanding of the role of mental imagery

in clinical disorder. However, this review does not include research about the effect of

brains' impairments and the clinical disorders, or the deficits of mental imagery.

2.4 Mental Imagery in Robots

A few experiments have been conducted to demonstrate the use of mental imagery in

robotic systems. Roy et al. (2004) interpreted mental imagery (mental model) in terms

of physical simulation. In their study, a set of representations and procedures were used

to maintain the mental model of object permanence for a conversation robot to use in

situated spoken dialogue. The Open Dynamic Engine (ODE), a computer simulation for

rigid body dynamics, was used to create mental images of current physical situations

e.g., object in the scene. An idea of an object permanence in this work refers to the use

of  the  ODE,  physical  simulation.  The  idea  is  that  information  provided  by  this

simulation can be used to refer to objects, even they are out of the robot's sight. The

robot and its human partner could talk about an out of sight object in their conversation.

Despite this work mentioned about mental imagery, there is no discussion of how this

simulation exists in the robot's cognitive or neural system.

Hoffmann (2007) demonstrate that a mobile robot together with a neural network
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model  can learn to  anticipate  a perception of  spatial  information of  objects.  Mental

images  of  this  work  refer  to  the  prediction  (next  step)  of  sensory  inputs  that  were

changed according to the control commands. After the robot is able to generate these

mental  images  or  sensorimotor  information,  it  was  tested  with  two  tasks:  distance

estimation  and recognizing a  dead end.  This  work also applies  a  Gaussian  Mixture

Model to improve the quality of mental images created by the network.  The results

show that the model is able to predict a very similar number of steps (distance) required

in order to move toward the obstacle comparing to the real movements. Secondly, the

author  claims  that  by  using  the  predict  visuomotor  information  obstacle  avoidance

behavior can be acquired by the robot. However, visuomotor of this work refer to the

use of distance sensors, not visual information, thus, it serves as a cognitive (topology)

map rather than visual mental imagery.

In  relation  to  Piaget's  theory  of  child  development,  Nishimoto  and Tani  (2009)

demonstrate that the emergence of inner representation or mental imagery is possible

through the processes of sensorimotor interaction. Motor imagery of this work restrict to

the prediction (next state) of visuo-proprioceptive information of a miniature humanoid

robot (SONY QRIO). Through the dynamic of multiple time scales neural networks

(MTRNN,  Yamashita  &  Tani  (2008))  the  task  behavior  (visuo-proprioceptive

trajectories) can be imitated as joints' angle of the robot using topology preserve map (a

population coding). The authors introduce tasks that require the robot to learn to acquire

both  primitive  actions  and  actions  sequencing  in  order  to  achieve  goal-directed

behaviors. The results show that feed-back from a forward model as a mental simulation

of action can help the robot to generate equivalent goal-directed behaviors comparing to

the use of physical interactions. 

Mohan et al. (2011) introduce the idea of how a couple interaction between internal
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models and actions generation of a cognitive architecture can generate goal-directed

behavior for a robot. This work uses a mobile robot, GNOSYS, which is a 4 wheels

robot with one articulated arm and a gripper, to manipulate objects within its working

space. Mental imagery of this work refers to an ability to predict the outcome of actions

as mental space which are derived from 3 types of forward (internal) models. The robot

will always place in a playground environment, the task is to learn to grasp a ball from

the different location in which some of them require an ability to use a tool or actions

sequencing. The authors claim that, after successfully learn to generate spatial maps of

the  workspace  as  mental  maps,  the  robot  should  be  able  to  exploit  the  maps  for

identifying subgoals of one complex goal directed behavior. Despite this work is in its

initial  phase,  it  seeks  to  answer  interesting  questions  e.g.,  how  can  the  robot

reduce/distribute  a  high  level  goal  into  temporally  chunked  atomic  goals  for  the

different internal models? what happens if the constraints in some environments do not

allow the goal to be realized? 

In robotic system, mental imagery can be interpreted as the result of actions that are

simulated within a cognitive system of a robot. Kaiser and colleagues (2010) proposed a

model architecture that predicts a visual sensory change according to the change of the

robot's posture and its current visual field. Their model consisted of a chain of forward

model like architecture, with feed forward neural networks, together with a principle

component analysis (PCA) module. This endows the model with a capability of visual

prediction, in which a new motor command can generate the prediction change of a

robot's gripper.

Di Nuovo et al. (2013) proposed a neural network model capable of self-generating

a training set.  This work took inspiration from a concept of mental practice in sport

science. The model has two sub networks within a modular architecture, a feed forward
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network  for  controlling  a  robot,  and  a  recurrent  network  for  generating  predicted

outcome that was used in a mental simulation process. The two networks were trained

in parallel  and used the same inputs. The key idea is that output from the recurrent

network will  be use as additional output for training the feed-forward network.  The

authors  called  this  scheme  “simulated  mental  practice”.  The  task  is  to  control  the

simulation of  a  humanoid robot which learns  to throw a ball  a  given distance.  The

model  collects  an  initial  training  set  from  25  samples  of  throwing  with  different

velocities. The result showed that the robot's throwing performance improves with an

additional training set provided by the self-generated network. 

Based on an inspiration that animals form “cognitive maps” and use them to plan

possible actions in navigation tasks rather than following stimulus-response paradigm.

Chersi and coworker (2013) propose a biologically realistic model that explain the way

mental simulation can be applied in a spatial navigation problem. The model consists of

three main components: the hippocampus which is a collection of neurons replicating

place cells, the ventral striatum, and the sensory-motor cortex. The task is to control a

virtual  rat  (in  a  computer  simulation)  to  explore  a  complex  maze  in  order  to  find

rewards e.g., cheese, water. The cognitive maps are formed within the hippocampus and

modulated by spatial and sensory information. The idea is that the cognitive maps can

also  be  modulated  by  mental  simulation  of  actions.  Since,  the  cognitive  maps  and

sensory states are used in the processes of action selection, therefore, thus the action can

be varied based on motor imagery. The result shows that the simulated rat can navigate

through the maze and be able to find the rewards.

2.5 Mental Rotation

Mental rotation, first described by Shepard and Metzler (1971), has attracted enormous
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research interest in the field of cognitive psychology. This is in part due to the attempts

to understand why object comparison using imagery seems to obey the same physical

principles as overt rotation, considering that humans are capable of using imagery that is

not limited by the laws of physics (Kosslyn, 1996).

In a typical mental rotation experiment of cognitive psychology, a participant has to

mentally rotate an object perceived in a picture to decide if it is the same as a target

object or different from it (i.e. a flipped version of it), and then indicate the answer by

pressing one of two buttons (Shepard & Metzler, 1971; Wexler, Kosslyn, & Berthoz,

1998).  In  this  kind  of  task,  participants  normally  report  that  in  order  to  make  the

decision  they  mentally  rotate  one  object,  clock-wise  or  counter  clock-wise,  until  it

visually matches or mismatches the target object. The actual existence of this process is

supported by the main result of mental rotation experiments: the reaction time to press

one of the two buttons, and the error rate of the answers, increase with the angular

disparity  between the rotated object  and the target  object.  Mental  rotation has been

widely investigated not only in cognitive psychology, but also in cognitive neuroscience

and computational modelling (Kosslyn, 1996; Zacks, 2008). Initially, it was proposed

that the brain mechanisms underlying mental rotation mainly involve visual and spatial

perception  systems  (Shepard  &  Metzler,  1971;  Corballis  &  McLaren,  1982).  More

recently,  behavioural  (Wexler,  Kosslyn,  &  Berthoz,  1998;  Wohlschläger,  2001)  and

neuroscientific  experiments  (Georgopoulos  et  al.,  1989;  Lamm  et  al.,  2007)  have

suggested the idea that mental rotation relies on a mentally simulated action (Michelon,

Vettel, & Zacks, 2006) rather than on a purely visual and spatial imagery skill. Brain-

imaging evidence on the brain areas most involved in mental rotation support the idea

that mental rotation indeed depends on a strong integration of sensorimotor processes

and covert mental simulation of motor movements.
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Early attempts to explain brain mechanisms underlying mental rotation processes

relied upon a visuo-spatial perception hypothesis (Shepard & Metzler, 1971; Corballis

& McLaren, 1982). According to this view, mental rotation is performed on the basis of

processes mainly involving the internal manipulation of the visual and spatial features

of objects. This view makes the prediction that these processes mainly implicate brain

areas underlying visual and spatial perception. Contrary to this, recent behavioural and

neuroscientific evidence also indicates an important involvement of motor processes,

beside the perceptual ones. In this respect, several behavioural works show interference

between action planning/execution, and mental rotation processes (Wexler, Kosslyn, &

Berthoz, 1998; Wohlschläger & Wohlschläger, 1998; Wohlschläger, 2001). In a typical

experiment participants are asked to perform a classical mental rotation task (Shepard &

Metzler,  1971)  while  performing  a  manual  rotation  on  a  custom  joystick  in  both

congruent and incongruent conditions, with respect to the direction of rotation of the

mental image. The results show that RTs (and error rates) are faster (lower) when the

direction of the two rotations (manual and mental) is congruent, whereas they are slower

(higher) when they are inconsistent (Wexler, Kosslyn, & Berthoz, 1998; Wohlschläger,

2001). This supports the idea that motor processes play a key role in mental rotation, as

otherwise it would be difficult to explain why the production of overt motor actions

interferes with mental rotation only when the two are incongruent.

Single cell recordings in the motor cortices of monkeys also supplies direct neural

evidence for the involvement of motor processes in mental rotation (Georgopoulos et

al.,  1989).  In  humans,  a  number  of  neuroscientific  studies  using  different  research

techniques, such as transcranial magnetic stimulation (TMS), event-related potentials

(ERPs), and functional magnetic resonance imaging (fMRI), show an involvement of

lateral  and  medial  premotor  areas  (lateral  premotor  cortex/precentral  gyrus  and
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supplementary motor area) during mental rotation (Lamm et al., 2007; Richter et al.,

2000). The fMRI study of Richter and colleagues (Richter et al., 2000), for example,

shows a significant correlation between the hemodynamic response in lateral premotor

areas  with  the  response  time  of  participants  involved  in  the  classical  Shepard  and

Metzler mental rotation task (Shepard & Metzler, 1971). This result suggests that mental

rotation  is  an  imagined  (covert)  object  rotation  action  rather  than  an  image

transformation relying exclusively upon visuo-spatial processing. This claim has been

further confirmed by other studies (cf. Wohlschläger, 2001; Lamm et al., 2007; Lamm,

Fischmeister, & Bauer, 2005).

Importantly,  despite  these  consistent  results  about  the  involvement  of  motor

processes  during  mental  rotation,  we  still  lack  a  comprehensive  hypothesis  of  the

specific  brain  mechanisms  involving  motor  simulation  that  might  underlie  mental

rotation processes. One proposal that might help to explain the role of premotor areas

during  mental  rotation  pivots  on  the  concept  of  affordance  (Gibson,  1986)  and  its

behavioural  manifestations  (Tucker  &  Ellis,  2001),  brain  correlates  (Rizzolatti  &

Craighero, 2004), and models (Caligiore et al., 2010; Fagg & Arbib, 1998). According

to this perspective, affordances are the possible actions that objects and the environment

offer  to  a  certain agent.  In  particular,  the visual  presentation of  objects  triggers  the

activation of internal representations (the representations of affordances) needed for the

on-line guidance of actions over them, within the parietal-premotor circuits (Grafton et

al.,  1996;  Grèzes  &  Decety,  2001).  In  this  respect,  the  activation  of  affordance

representations might be involved in the mental rotation processes, as in-brain it plays a

key role in the first stage of motor preparation.

According  to  the  mental  rotation  experiments  in  human  children  studies,  a

traditional  finding  indicates  that  the  link  between  motor  performance  and  mental
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rotation are more pronounced in children than in adults. However, the empirical study

by Krüker and Krist (2009) showed the opposite results, i.e., the motor process was less

pronounced in the participants aged 5-6 years, whilst it became stronger in 7 year old

children and adults. This suggests that motor processes and mental images are linked.

The link becomes increasingly stronger through the experience of object manipulation

during life which results  in improvements in the performance of mental rotations or

even the prediction of object movements in space. The speed of mental rotation also

depends on age and improves with development (Kail, Pellegrino, & Carter, 1980).

Another hypothesis on how motor areas might participate in mental rotation comes

from neuroscience theories (Grush, 2004), neuroscientific evidence (Miall, 2003), and

computational  architectures  (Wolpert  &  Kawato,  1998)  on  motor  control  based  on

forward  models.  This  perspective  suggests  that  preparatory/planning  covert  motor

processes  play  a  key  role  in  the  mental  simulation  and  understanding  of  the

environment. The same brain motor areas are involved in overt action execution. This

view would suggest that mental rotation involves the same motor areas and mechanisms

used in the physical execution of active rotations of objects (e.g., manual rotations), and

the imagined anticipation of their sensory consequences.

Both views would give important indications on the possible involvement of motor

areas  in  mental  rotation  phenomena.  Wexler  and  colleagues  (Wexler,  Kosslyn,  &

Berthoz, 1998) stated the hypotheses that “transformations of mental image are at least

in part guided by motor processes.” (Wexler, Kosslyn, & Berthoz, 1998, page 77). This

view also supports the existence of a relationship between affordance learning (motor

processes) and forward model (mental image). The dual task paradigm (Kosslyn, 1996)

is the best example that supports the view of shared location between motor processes

and mental rotations in motor cortex.  Affordances can be generated from the initial
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configuration of a body, in terms of motor commands, by a forward model on the basis

of a goal-related information (Thill et al., 2013). However, both views would still be

limited.  In that mental rotation is a complex process which requires the coordinated

operation  of  several  distinct  elemental  cognitive  processes.  These  processes  include

(Lamm et al., 2007) (a) stimulus encoding and mental image generation, (b) planning

and execution of the mental rotation, (c) comparison (matching) of the rotated stimulus

with the target stimulus, and finally (d) execution of the same/different response.

2.5.1 Brain areas and neural mechanisms involved in mental rotation

Various areas of the human brain have been shown to be involved in mental rotation

through  functional  magnetic  resonance  imaging  (fMRI)  techniques.  A meta-review

(Zacks,  2008) summarises  the main areas  that  several  studies  have found to play a

relevant role (Figure 2.2).

Figure 2.2 The key brain areas involved in mental rotation and considered in the model. The green-

yellow coloring highlights increasingly active areas. Left: brain lateral left hemisphere. Centre: posterior

brain view. Right: brain lateral right hemisphere.

Most brain imaging studies scanning the human brain during the performance of the

mental  rotation  task  show a  prominent  activity  of  the  posterior  parietal  cortex  and
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posterior-occipital cortex. In particular, the areas around the intraparietal sulcus (more

specifically, the superior parietal lobule, Broadman Area BA7, and the inferior parietal

lobule, BA 40), and the areas surrounding the parieto-occipital sulcus (parieto-occipital

arcus, BA 19) (Carpenter et al., 1999; Harris & Miniussi, 2003; see Zacks, 2008, for a

review). The activity of some of these areas also correlates with the amount of mental

rotation  requested  in  the  different  task  trials  and  dependent  on  the  object-target

orientation disparity. Posterior parietal cortex receives input related to both visual and

somatosensory information (Rizzolatti, Luppino, & Matelli, 1998), and on this basis it is

capable of elaborating information about the location and orientation of target objects in

peripersonal  and  extrapersonal  space,  and  their  relation  to  own body  (Andersen  &

Bruneo,  2002;  Colby  &  Goldberg,  1999),  in  large  part  employing  eye-centred

coordinate frames modulated by own body postures (Snyder et al.,  1998). Posterior-

occipital cortex includes high-level visual areas encoding complex visual features, in

particular related to movement (e.g., involving global and own movement, Braddick et

al.,  2001).  Based  on  this  evidence,  these  areas  are  thought  to  play  a  key  role  in

implementing the proprioceptive and visual information integration and transformation

supporting the core processes of the dynamic mental rotation processes (Zacks, 2008).

Other brain regions that consistently activate during the mental rotation experiment

involve the supplementary motor area and the premotor cortex, in particular involving

the medial precentral gyrus (BA6) (Johnston et al., 2004; Cohen & Bookheimer, 1994;

Lamm et al., 2007; Zacks, 2008). These areas encode a repertoire of actions at a more

abstract level with respect to primary motor cortex,  and play important functions in

motor planning and execution (Jeannerod et al., 1995). The  activation of these areas

strongly supports the involvement of motor processes in mental rotation, putatively to

implement motor mental simulation. This possibility is corroborated by the fact that the
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supplementary motor area has been strongly involved in motor imagery (Stephan et al.,

1995). Some studies also reveal an activation of primary motor areas, primarily linked

to the production of the final response (button press) rather than to the main mental

simulation processes (Richter et al., 2000).

Kosslyn et al. (1998) and Zacks (2008) have also shown the activation of prefrontal

areas,  in  particular  the  inferior  lateral  prefrontal  cortex  (inferior  precentral  sulcus,

BA44/45).  This  region,  part  of  Broca's  area  responsible  for  speech  production,  is

involved in motor production and action recognition (Rizzolatti et al., 1996). Given its

high-level within the motor hierarchy, this area might orchestrate mental rotation at a

high-level, as suggested by its role in motor imaging (Grafton et al., 1996).

Several components of the model are formed by neural maps using, in specific or

abstract ways,  population codes. Neural maps are suitable to model cortical areas as

they capture their important 2D topological organisation and also facilitate the analysis

and  visualisation  of  the  processes  occuring  within  them  (Caligiore  et  al.,  2014).

Population  codes  (Pouget,  Dayan,  &  Zemel,  2003)  are  based  on  the  idea  that

information  (on  stimuli  and  actions)  is  encoded  in  the  brain  on  the  basis  of  the

activation of populations of units, organized in neural maps having a broad response

field. In particular, each unit responds maximally to a certain value of the variables to

encode and then progressively less intensely to more distant values. This response can

be  obtained  with  short-lateral  excitatory  connections  and  long-lateral  inhibitory

connections, or in a more abstract fashion (as for most maps) with Gaussian functions.

To implement the decision making process involved in the mental rotation task, the

model uses a mutual inhibition model (Usher & McClelland, 2001; Bogacz et al., 2006).

In this  model (closely related to the architecture and neural competition that can be

implemented by population-code maps) different decision options are represented by
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neural units that accumulate over time the evidence (support) on the goodness of the

different options, compete through reciprocal inhibitory connections of the units, and

finally produce a decision when the activation of one of them reaches a given threshold.

This model (together with other analogous models, e.g. Bogacz et al.,  2006) is very

important,  as  it  allows  the  reproduction  of  the  reaction  times  often  recorded  in

psychological experiments (Erlhagen & Schöner, 2002; Caligiore et al., 2010; Caligiore

et  al.,  2008).  It  is  one of the most  accredited models of decision making processes

taking place in the human brain (Bogacz, 2007).

In the brain, several processes needed to acquire and express mental rotation (e.g.,

learning from experience, and selection of cortical contents) are putatively implemented

by cortical areas working in close cooperation with sub-cortical regions, in particular

basal  ganglia  and  cerebellum  with  whom  they  form  whole  integrated  systems

(Alexander, DeLong, & Strick, 1986; Middleton & Strick, 2000; Caligiore et al., 2013;

Baldassarre,  Caligiore,  & Mannella,  2013).  For  simplicity,  the  model  reproduces  in

abstract ways such processes, e.g. to implement the decision making processes and the

mapping  of  the  object  representations  to  the  corresponding  arm  postures,  without

explicitly simulating these sub-cortical systems.

2.6 Mental Rotation Models

Surprisingly, there are only a small numbers of papers concerning the replication of

mental rotation in a computation model. Most of them focused on rotation invariant and

object  recognition  by  using  neural  networks  (e.g.,  Kulkarni,  Yap  &  Byars,  1990;

Fukumi et al., 1992; Fukumi, Omatu, & Nishikawa, 1997; Rowley, Baluja & Kanade,

1998). In relation to our work, Sasama et al. (2009) proposed a back-propagation neural

network model of mental rotation. Their model is a three layer neural network that takes
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two images as inputs and produces one binary vector as outputs. The task is to report the

angular  difference  between  the  two  input  images  together  with  a  response  answer

(match/mismatch). By definition, this is acceptable as a characteristic of mental rotation

tasks. The images used in a training set are a pair of 2D image maps size 13x13 pixels.

Each image can be a version of alphabet letter or a random image. In the training period,

each pixel  of the two images will  be fed as input  values  (range 0.0 -  1.0) into the

network, while the output will be a desired disparity between the two images. By using

back-propagation learning, the network can create an association between the two inputs

and its disparity. 

Inui  & Ashizawa  (2010)  proposed  a  computational  neuroscience  model  for  3D

mental  rotation.  They  leverage  related  regions  of  the  brain  that  are  responsible  for

mental rotation and object recognition into connected subsystems. The model consists

of three main parts i.e., parietal network, temporal network and visual cortex. The task

is to compare the two 3D objects (each one is two connected lines) and to create a new

mental image. A radial  basis function (RBF) neural network was used to underlie a

comparison process in the temporal network. The two stick-like objects will be fed to

the visual cortex as perceived image. One is a target object which will be stored in a

memory, while another one is for rotation. The RBF network was trained to generate a

level of matching between the two objects. When the level of matching is low, it triggers

the parietal network to send a rotation command to the visual cortex. The direction of

rotation was guided by the rotation command, and the new image will be regenerated

internally in the visual cortex. The new image will be fed to the temporal network again

as a continuing step in mental rotation. On the other hand, if the level of matching is

high it indicates that the disparity between the two objects is small. In more detail, each

cycle of repeating image rotation processes, the level of matching gradually increases.

34



The  rotation  will  stop  when  the  level  of  matching  is  high  enough  and  reaches  a

threshold value of a gating network. The gating network acts as a cut off circuit in the

model that, the authors claimed, replicates the characteristic of inhibition signals from

the temporal network to depress neurons' activity in the parietal network. This work

shows that the rotation cycle depends on the angular different between the two objects. 

The last two works reviewed in this section provide insight into the possibility of

creating mental rotation by means of computational modelling. Unfortunately, there is

no image rotation process in Sasama et al. (2009), and there is a lack of any further

information about response times, in both papers.

2.7 A Comprehension of Infants' Tool Use

An ability to use a tool in human infants was found at different age, due to the nature of

individual differences or causal cognition. However, significant evidence indicates that

infants appeared to start and master their knowledge regards tool using, at the period of

8  to  24  months,  the  sensorimotor  stage  4  to  6  (Piaget,  1952;  McCarty,  Clifton,  &

Collard, 2001).

The mechanism which drives infants to play with objects or to explore their body is

believed to be the case of intrinsic motivations (Ryan & Deci, 2000), and the benefit

that play gives to the infants is the acquiring of knowledge about their body and the

world.  This  is  a  cyclical  process,  in  which  motivation  drives  action,  actions  cause

changing in the infants' perceptual space and those changes will, for example, trigger

the motivations such as fun or surprise.  There are  at  least  two different views with

regards to a motivation system. The first view is a motivation as rewarding scheme

(Oudeyer & Kaplan, 2007). This is done by considering that there are critics inside and

outside of an agent which generate rewards. If the critic acts outside the agent, this will
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be called extrinsic motivation. In contrast, if the critic is inside the agent, the reward is

considered as self-generated. This is an intrinsic motivation system. The second view is

a motivation as a driving force (Schlesinger, 2013). There is no critic in this scheme.

The rewards are determined by the agent itself. This motivation can be viewed as neural

activation which is kept on activating when preferred situation occurred, and will be

depressed when nothing interesting happens or practiced actions have been mastered.

Schlesinger  and Langer  (1999)  pointed  to  important  evidence  regarding infants'

developing tool use actions and expectation. Infants exhibit tool use behaviours at an

early age and these actions develop through developmental stages from subjective to

objective (subjective, transitional and objective). When an infant was in the subjective

state of tool use,  it cannot solve a given tool use problem due to the lack of required

action  (i.e.,  pulling).  Because,  this  is  a  beginning  stage,  the  pulling  action  has  not

developed yet. Infants at this stage may instead play with the tool, or ignore it and try to

reach for the toy with their hands. The second stage is transitional. At this stage infants

can use the tool to retrieve the goal object but they exhibit the same action in both cases

of tool use events (i.e., contact or noncontact). Therefore, it seems likely that a spatial

relation between the tool and goal object does not affect the infants' action selection.

Finally, infants at the objective stage solve the tool use problem properly. They can shift

to use other strategies (e.g., offer the tool to the experimenter) if they do not know how

to retrieve the toy in the case of non-contact. These three stages of tool use actions

reflect individual difference in infants'  tool use performance.  In addition to tool use

actions, infants also observe the outcome of a currently perform action through visual

perception. These processes, later, can be used to form an ability of expectation. The

infants can distinguish the difference between possible and impossible tool use events

through the practice of this observation. This study restricted tool use problem to relying
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only on pulling action, but put more focus on the infants' expectation on the tool use

events. It used two types of tool use problems including supporting and surrounding.

The case of supporting refers to  the use of a rectangular cloth as tool.  The case of

surrounding was a hook that used as tool to retrieve the object. The different in the tasks

that used cloth or hook, can be determined easily by the infant due to the big different in

their appearance. The evidence shows that, at an early age, infants spontaneously pull

tablecloths, blankets in order to reach a goal object. Therefore, it is possible to claim

that supporting tool use actions are developed before surrounding. The expectation of

actions outcome can be viewed as the use of mental imagery in young infants.

The problem of tool use in human infants during the period from 8 to 24 months is

highly dependant on the condition of spatial gap between the tool and toy. All infant

participants can succeed in the retrieving when the tool and the toy are connected (Rat-

Fischer et al., 2012). The point is that only older infants can achieve the case of large

spatial gap. As suggested by psychologists, the full understanding of how to use tool

starts at the age around 18 months.

In the experiment on infants' tool use development conducted by Rat-Fischer et al.

(2012), infants aged 14 to 22 months were tasked to retrieve an out-of-reach toy put on

a table using a provided rake-like tool. The aim of this study is to examine how tool use

understandings in infants develop with age. The authors suggested that the infants start

to have this knowledge on reaching 18 months of age. The key difficulty in this kind of

tool use is the spatial relation between the tool and the toy. All infants can successfully

retrieve the toy and the tool when they are physically connected. The success rate varied

when the spatial gap between the two objects increased. However, in this study, only the

condition of large spatial gap, tool in hand, that truly reflect the understanding of tool

use in infants.  In addition, by providing a demonstration session to infants that fail to
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solve  the  task, the  infants  can  benefit  from  the  demonstration  indicated  by  the

spontaneous  success  on  a  further  test,  but  this  happen  only  in  the  infants  aged  18

months and older. This suggests that observation of a tool use demonstration can fulfil

the sensorimotor experience of the infants, but it appears that this benefit only happens

when the infant has initial knowledge of how to use tool. It is worth noting that at the

age of older than 24 months, the infants have no problem in solving a tool use task with

large spatial gap.

In Lockman (2000), banging movements or instrumental hammering produced by

infants during the second half year of age are interpreted as practice of the actions they

have learnt, in order to initially distract their perception, effect their world, and drive

sensorimotor  learning.  In  this  view,  tool  use  is  possible  through  the  processes  of

perception-action routines. A tool causes change to a contact object and the infants use

this to explore their environment. 

2.8 Tool Use in Robots

Stoytchev (2005) applied a behavior-based approach to fill-in an affordance table which

will be used as action repertoire for a robot. New entries to the table will be added when

an  observation  function  detects  interesting  events  (e.g.,  an  attractor  was  moving).

Affordances in this work refer to the differences in an objects' parameters (e.g., colour

code,  positions  in  3D coordinates)  and the  outcome of  each performed action.  The

robotic system is a wheel-based mobile robot with a manipulator arm and a gripper, on

top of it. The task is to use a given stick, by grasping its handle with a gripper, as a tool

to move an out-of-reach object (i.e., a hockey puck) to specific locations on a table top.

This  work  is  one  of  only  a  few  robotic  studies  that  tend  to  demonstrate  tool  use

competence in robots. The action selection was simply searching on a look-up table, as
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there is no evidence of other cognitive functions involved during exploration, learning,

and testing phases. Furthermore,  the vision system of this  model was remote to the

robot (a camera was fixed on a ceiling). Thus, it is difficult to follow that the robot

acquires affordance knowledge by itself, considering that images taken from the remote

camera are much different from the usual view of the robot itself. 

In  term  of  action  simulation  and  action  selection,  Schillaci  et  al.  (2012)

demonstrated the use of inverse-forward models to underlie reaching movements in a

humanoid robot. Based on forward models as predictors, the robot can select proper arm

movement in order to minimise the distance between end-point of the hands and a target

position in space. Note that, the left hand of the robot was attached with tool, so the end-

point of the two arms are difference. 

Tikhanoff et al. (2013) demonstrate another example of tool use ability in the iCub

robot. This work shows that the robot can select different tools corresponding to the

affordance of an object it is going to manipulate. Affordance of objects in this work

refer to the angular difference between the selected tool and a toy. The tool use scenario

is an object retrieval task, in which a toy will be placed far from the robot at different

locations on a table with two types of tool provided i.e., the rake and the hoe. The robot

will choose different tools depending on the position of the toy that directly affects its

affordance. However, this work primary focuses on tool use applications and underlying

components from a roboticist point of view, there is no focus or an understanding of tool

use ability with respect to psychology literature.
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Chapter 3

Background on Cognitive Robotics and Neurorobotics

3.1 Introduction

Robots  are  commonly  acknowledged as  a  hardware system that  typically  consist  of

sensors,  actuators,  processors,  and  control  mechanisms.  Indeed,  robots  are  also

perceived as an artefact that is able to do some pre-defined actions corresponding to its

perceived information. 

A robot  is  a  tool  invented  by  humans  to  perform  unwanted  tasks  for  humans

(Rahimi  &  Karwowski,  1992).  What  separates  robots  from  other  artefacts  is  their

special characteristics in terms of senses, processes, and acts. Robots can move their

parts  to  do  their  tasks,  for  example  robotic  arms  or  manipulators  in  industrial

manufacturing (Siegwart, Nourbakhsh, & Scaramuzza, 2011). Robots are programmed

to  perform  some  specific  tasks  and  follow  each  step  of  a  fixed  instruction

unquestioningly. That is good in terms of accuracy for a simple routine task, while it

lacks flexibility and adaptability for a complex (for robots) task, unlike the way living

things have done to perform their tasks. 

In order to make a robot smart, its body must be taken into consideration, because

most of the necessary equipment in a robotic system is installed in the body. The design

of the robot’s body must concentrate on the task that robots will perform and most of

the robot designers tend to make it as suitable as possible. In other words, the good

design of the robot’s body would give the robot an efficient ability  in working and

moving through the use of well designed mechanical structures, actuators and materials.
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Robotic scientists mainly optimise their robots to include intelligent capabilities. In

particular,  some  robots  were  designed  to  work  in  the  real  environment  (Siegwart,

Nourbakhsh,  & Scaramuzza,  2011)  and  therefore  in  order  to  sense  the  world,  they

require  sensors  to  be  their  senses.  A well-designed robot’s  body should  provide  an

optimal place and space to install the number of sensors needed in their task. In addition

there  are  many  sensor  types  that  could  be  used  in  robots  to  measure  surrounding

properties such  as  light  sensor,  range  sensor,  temperature,  direction  and  inclination

sensor. The robot designer can install many of the sensors in their robot if it necessary.

Furthermore,  an  image  processing  module  is  one  of  sensors  that  acts  as  a  visual

perception in animals (Horn, 1986; Vernon, 1991), by using digital cameras instead of

biological eyes. The visual perception or seeing is very useful and helpful to animals

because it is a long range sensor and helps the animal to understand the whole of the

current the situation they face. The current performance of the image processing module

is  still  far  from  the  visual  perception  system  in  animals.  However,  many

scientists/engineers are undertaking research in the field of visual perception and have

often reported a good progression (Azad, 2009). Therefore an ability of a robot to see

would be achieved, if the researcher found the right way to create a powerful image

processing module. 

3.2 Cognitive Robotics and Neurorobotics

The current perspective on AI and robots concerns intelligence that derived from having

body, not by the knowledge of a  roboticist  (Asada et  al.,  2001; Pfeifer  & Bongard,

2006).

A major limitation of the traditional pre-programmed robots is adaptability, despite

having limited in-built intelligence. Robots often encounter tasks that require real-time
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reactions according to the current states of the environment and itself. The accuracy of

action  selections  depends  on  the  level  of  accuracy  of  its  internal  representations.

However, the real world is complex and it is therefore extremely hard or impossible to

collect and store all  possible situations that the robots will  face in advance (Schaal,

1999; Weng, 2004). Consequently, most robots fail,  when dealing with unpredictable

dynamic environments.  The role  of  cognitive control  integrated with the concept  of

embodiment, might offer robotic scientists an improved approach to implement adaptive

capability  into  their  robots,  in  which  it  might  fulfil  the  gap  through  mechanisms

underlying the learning processes. 

In  robots,  the  concept  of  embodied  cognition  offers  a  promising  way  for

constructing true intelligence, by replicating the way humans acquire their knowledge

into  robotic  platforms.  Following  this  direction  seems  convincing  to  make  robots

acquire knowledge, through their bodies, brains and interaction with their environment. 

Brain-inspired  mechanisms  have  been  considered  as  an  important  aspect  in

cognitive architectures, since many researchers claimed that it is well suited to adaptive

controllers. The review also follows the perspective of embodied cognition and focuses

mainly on cognitive robotics/architectures that are contributed in the development. 

3.2.1 Cognitive Robotics

Cognition means "faculty of knowing" in Latin (Purves et al.,  2013). To develop an

artefact housing the same ability of "knowing" akin to human beings is fundamentally

challenging. Cognitive robotics refers to a research program within the field of robotics,

that aims to construct autonomous systems emphasising levels of human cognition as

appropriate  responses.  Cognitive  robotics  is  a  multi-disciplinary  research  area

underpinned  by  a  number  of  fields  such  as  computational  neuroscience,  cognitive
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science, artificial intelligence, developmental psychology, to name but a few (Asada et

al.,  2009;  Dominey  & Warneken,  2011).  Indeed,  the  overarching  goal  of  cognitive

robotics  is  to  advance  the  understanding  of  human  cognition  (D'Mello  & Franklin,

2011;  Krichmar,  2012)  through  the  use  of  bio-inspired  mechanisms  in  designing

artificial cognitive systems (Cangelosi, 2010), and building robotic agents capable of

acquiring  and  representing  different  forms  of  human  cognitive  phenomena  such  as

perception, sensorimotor coordination, categorization, language, memory, thought and

learning  (Cangelosi,  2010).  The  contribution  of  cognitive  robotics  is  a  synthetic

approach  to  science,  especially  developed  to  demonstrate  the  reality  of  natural

intelligence, by dedicating itself as tools for proving cognitive hypotheses. 

The extent of the term cognition, high level cognition, or human cognition is hard to

define. Indeed, "Cognitive Robotics" has different meanings to different individuals and

communities  and as  such  this  topic  has  been researched in  different  directions  and

research  methods.  In  contrast,  others  might  concentrate  on  embodied  cognition

underlined by the concept of embodiment, which is based on the interaction between

robots  and their  environments.  Cognitive robots  are  also  widely  used to  investigate

cognition by means of an embodied computational model (Metta & Cangelosi, 2011).

D'Mello and Franklin (2011) have pointed to the necessity of using cognitive robotics to

fulfil  the extent of computational models of cognition.  Indeed, the authors state that

computational architectures such as SOAR, and ACT-R are useful to  simulate some

forms of human cognition with related mechanisms of the human brain. However, these

models lack the reality of senses and actions. In this context, using a cognitive model

and connecting to cognitive robots could extend the understanding of cognition.
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3.2.2 Neurorobotics

While  cognitive  robotics  considers  embedding  cognitive  abilities  into  robots,

neurorobotics focuses on a more specific research direction. This is concerned with the

replication  of  neural  network characteristics  as  control  mechanisms to drive robots’

behaviours and a greater focus on embodied autonomous systems. Neurorobots can be

used to test and prove brain models designed by neuroscientists. The following three

contributions directly apply to the field of neurorobotics: neural network based or brain-

inspired  mechanisms,  autonomy,  and  embodiment  (Kaplan,  2008).  Neural  networks

have a long standing contribution to the study of neural processing in the brain. From

multi-layer perceptron to spiking neural networks and to biological neural networks,

there is a large number of proposed models in the field of artificial intelligence and

brain-inspired  intelligence.  However,  contributions  in  the  field  of  neurobotics  are

relatively  sparse.  A large  body  of  research  has  explored  various  ways  to  produce

suitable  control  systems for  the  neurorobots.  For  example,  Bouganis  and  Shanahan

(2010)  studied  sensorimotor  learning,  otherwise  known  as  motor  babbling,  in  a

humanoid robot (the iCub) through the use of neural network based techniques. They

prepare  a  neural  network  control  model  with  spiking  neurons.  A  Spike  Timing

Dependent Plasticity (STDP) mechanism was used to adjust the weight vectors of the

model, during a period of motor babbling (learning). The experiment aimed to move an

arm of the iCub approaching to specific positions in space autonomously, by providing

visual information and joint angles of the robot as inputs to the model. This work is an

illustration of the use of three key contributions in the field of neurorobotics as the robot

acquired the sensorimotor knowledge using motor babbling procedures. 

From  findings  from  the  related  fields  that  study  human  cognition  such  as

neuroscience, cognitive science, and developmental psychology, Tikhanoff, Cangelosi
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and  Metta  (2011)  demonstrated  the  use  of  a  humanoid  robot  simulation  as  a

developmental neurorobotics platform in performing and acquiring cognitive abilities in

an adaptive manner. Their study used neural networks and a collection of training sets to

form a  number  of  models  of  cognitive  abilities.  By  teaching  the  robot  through  an

embodiment strategy, this work demonstrated that the robot can manipulate objects both

autonomously and adaptively as well as understand a human's utterance instructions.

Interaction with objects, environment and an instructor in training periods underlies the

success of this work. There are three main tasks that the authors used to teach the robot:

learning to reach, learning to grasp, and learning to integrate speech and action. In the

first training, learning to reach, a feed-forward neural network was used to associate a

relationship between objects' position in space (x, y, z coordination) and specific joints'

angle  of  the  right  arm  of  the  robot.  This  training  tends  to  replicate  a  human-like

reaching, based on a technique of visuo-motor interaction. After training, the robot can

recognise the position of an object in a stationary space and is able to reach to the

position.  In  the  second  experiment,  learning  to  grasp  it  is  more  complex  than  the

previous experiment, since grasping for an object required a sequence of actions. The

authors applied a recurrent neural network  to the control architecture as the outputs

from the previous step which would be fed back to the supplied inputs of the network.

This  scheme  provides  an  additional  input  or  memory  of  a  previous  action  to  the

network. Grasping for an object is a crucial aspect when a robot has to manipulate it.

This experiment continues from reaching using separated networks, when the robot has

successfully reached to a specific position that an object is placed, then it starts to grasp.

In the last experiment, the robot is required to learn to manipulate an object according to

human instructions and its visual perception. The visual input of a seen object will be

mapped to a speech signal that identifies object's properties such as colours and shapes.
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The control architecture of this experiment also uses a feed-forward neural network to

which its’ outputs are connected to the two networks of the previous experiments. The

instructions used in this experiment consist of the combination of an action and specific

object properties such as, reach blue ball, grasp red ball and drop green cube into basket.

Indeed, this  work provides the model description that underpins an idea of learning

through action manipulation or embodiment. The authors also proposed that the robot

can  understand  human  instruction  but  is  restricted  by  an  initial  vocabulary.  The

combination of action-object-name in the last experiment shows that the model is able

to replicate the way children learn speech from sound. This work fully demonstrates the

use of neural networks to create human-like cognitive abilities in robot platforms. 

Alnajjar et al. (2013) demonstrate the construction of a neural network model of

working memory to handle cognitive tasks in a SONY humanoid robot. Cognitive tasks,

such  as  cognitive  branching  and  switching  were  defined  as  processes  that  needed

higher-order cognitive mechanisms in the frontal lobe. A working memory was formed

using a hierarchical model of Multi-Timescale Recurrent Neural Network (MTRNN).

The basic idea underlying this type of neural network is that not only determining the

distance between nodes in neural space but also the types of neurons and its difference

time properties. Moreover, the working memory is formed within a hierarchy of context

neurons. Through using working memory, the authors show that the robot can reproduce

sequences of learned tasks (to move its index finger pointing to specific positions in

sequence). Indeed, after performance of some interrupting tasks assigned by a human

instructor,  the robot  can resume to continue and complete  its  previous  task (after  a

thorough learning trial). In addition, by varying the number of learning trials, the model

can acquire two types of memory: static and dynamic. The two types of memory show

significant  differences  in  memory  encoding  capacity  in  context  layers.  The  authors
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theorised that, their work has the potential to scale up to obtain various kinds of higher-

order  cognitive  mechanisms.  This  work  provides  an  insight  into  the  possibility  of

mimicking a biologically similar working memory in humanoid robots. 

Caligiore  et  al.  (2008)  propose  a  neural  network  model  of  affordances  and

compatibility  effects.  This  work  is  based  on  evidence  from  behavioural  and

neuroimaging  that  illustrates  that  perceiving  objects  activates  related  motor  areas

(affordances). Signals from the prefrontal cortex as top-down bias signal will compete

with  bottom-up  signals,  from affordances.  In  this  theory,  when  the  two signals  are

different, for example, a participant was asked to form precision grip on a showing of

large object, in this case a response time will be larger (slower). Indeed, a precision grip

is compatible with small or natural objects while a power grasp is for large or artefact

objects. This work replicates the compatibility effect in a robotic platform. A simulation

of a robotic arm was used as a simulated participant. The task is to control the robot arm

reaching and grasping for different objects.  The neural network model comprises of

several neural maps that are formed by population coding. Two routes of information

processing (i.e.,  dorsal and ventral pathway) were simulated by incorporating related

areas  in  the  prefrontal  and  visual  cortex.  Through  the  use  of  the  dynamic-field

competitive processes  which considers  the  time used to  form a  most  salient  cluster

activity in the neural maps, this model can also produce a simulated response time. The

result showed that the model can reproduce the experimental result of Tucker and Ellis

(2001). This work contributes to the model of brain-inspired mechanisms which has

demonstrated an ability to replicate the cognitive processes in the brain.

Cangelosi  and  collaborators  (Cangelosi  &  Riga,  2006;  Tikhanoff,  Cangelosi  &

Metta, 2010; Peniak et al., 2011) have demonstrated the use of various neural network

techniques  such  as  back-propagation  (BP),  Hebbian  learning,  Kohonen  competitive
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learning, back-propagation through time (BPTT) and multi-timescale recurrent neural

networks (MTRNN) to underpin notions of self-generated cognitive acquisition in both

robots and agents. In addition, the experimental results confirm that neural networks are

a vital area of research in robot learning.

3.3  Cognitive  Robotics  and  Neurorobots:  A Synthetic  Approach  to

Understand Cognition

This  subsection  reviews  research  from different  areas  that  contribute  to  the  use  of

cognitive neurorobotics and describe in detail some seminal models. The purpose is to

explore the research trend of this field, and to provide some useful mechanisms for the

future work.  It  consists  of  cognitive development,  learning,  imitating,  and language

grounding in robots.

3.3.1 Cognitive Development

Lungarella  et  al.  (2003)  survey  the  relevant  research  in  the  field  of  developmental

robotics.  They point  to  the importance of  having a body by means of  embodiment.

Robots do not need to have precise models of the world; indeed they assert that more

importance  should  be  given  to  the  result  of  the  interaction  between  simple  robotic

systems and environment (Brooks, 1991). The authors suggest many schemes that are

integral in the construction of developmental robots. For example, development is an

incremental  process,  development  as  a  set  of  constraints,  development  as  a  self-

organising process, and social interaction. This review also provides a list of research

directions  in  the  field,  including  autonomous  learning  and  the  research  trend  that

realises  characteristics  of  human-like  features  as  crucial  aspects  to  acquire  human
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intelligence. 

Weng (2004) interpreted a developmental robot as the robot that generates its brain

through interaction with the surrounding environment and humans online in real-time.

He introduces the concept of Self-Aware Self-Effecting (SASE) agent, and the paradigm

of an autonomous mental development (AMD). SASE defines internal representation of

the world as the brain of the model which can be adapted by the interaction with internal

sensors  and  internal  effectors.  The  author  argues  that  the  SASE agent  differs  from

traditional models in that it can update the internal representation of the world to acquire

a developmental ability. An autonomous development system consists of two parts, the

first is the prerequisite or task-specific programs and the second is task-nonspecific or

developmental  programs.  In  this  scheme,  during  operation,  the  autonomous  system

interacts with human users to update its performance through training and testing phases

via  the  developmental  programs.  The author  tested  the  proposed schemes with  two

robots  (SAIL and  Dev)  and  claimed  that  the  robots  can  automatically  update  and

generate  their  own  internal  representation.  He  also  postulated  that  the  scheme  of

autonomous development system and SASE can be considered as a starting point of the

new direction of developmental robots. 

Acquiring a new skill, even in human beings, often begins with a limited capability.

The new skill can be mastered when the humans’ body and their brain are developed.

During developmental stages,  human children learn many skills  both physically and

cognitively through playing and social interaction. In a credible game, hide and seek,

children at the age of 3-4 years old are able to start playing but in a very limited ability,

particularly when hiding. That is because of the children's lack of perspective taking

ability. They play the game by using only the knowledge of objects and places they have

had. For example, which object that they can get in, which objects that can stay under.
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Trafton  et  al.  (2006a)  realised  this  characteristic  and  demonstrated  that  a  cognitive

ability to play the game of hide and seek can be created and deployed in a robotic

platform. They hypothesised that a computational model that replicates what humans

used in their cognitive processes (e.g., representations, algorithms) should work well

with humans rather than a computational model that does not. They also stated that

thinking or reasoning in humans are not formed in mathematic formats, rather people

developed the understanding of surroundings by a combination of spatial, temporal, and

propositional  knowledge.  The perceptual  abilities  in  children  age  3-4  are  extremely

limited and they will be learned later (e.g.,  aged 5.5). Therefore, this  work uses the

example of “how do children learn to play hide and seek?” from two children of two

different ages, namely 3.5 and 5.5. The 3.5 year-old child is in a situation that she learns

to play the game while another child already knows how to play the game. They found

that the two children use different hiding methods. For example, the child aged 3.5 just

closes her eyes in order to hide as an initial concept of hiding. The child aged 5.5 seems

to have a well develop perceptual ability. However by giving the child some suggestions

such as “You might not want to hide in the open”, the child aged 3.5 can learn not hide

in  open  areas.  A computational  model  of  this  work  was  programmed  on  ACT-R

cognitive  architecture  and deployed on the  hardware  of  a  real  robot.  The cognitive

architecture such as ACT-R leverages the mechanisms underlying humans'  cognitive

processing. Through the implementation of a control system on the ACT-R benefits the

researcher in which the model can be tested and monitored to eliminate unexpected

behaviours that might be harmful to people. After the modelling step, the computational

model can be deployed in both robotic platforms of simulation and physical robots. The

robot  used in  this  work is  an  indoor type  wheel  robot  (nomad200),  it  has  a  digital

camera  with  CMVision  (http://www.cs.cmu.edu/~jbruce/cmvision)  and  16  distance
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sensors  to  recognise  objects  and  places,  and  using  the  dead  reckoning  method  to

compute  its  current  position.  The  robot  consists  of  pre-programmed  non-cognitive

capabilities such as map generation, localisation, and path planning to assist movements

in  an  indoor  environment.  The  authors  focused on using  a  real  robot  because  they

believed that a real interaction between robots and humans can not be captured using

computer simulations. In this work, by using a speech recognition engine (ViaVoice) the

interaction between humans and robot can be done via spoken language. The spoken

language, as a regular expression, will be parsed by a parser and reformed to a format

that is suitable for the model. In essence, speech is phrased into appropriate commands.

The model includes several types of learning such as new knowledge acquisition, links

between  knowledge,  production  rules,  and  a  compact  form  of  explanation  based

learning.  The model  simulated  the situation  that  when the  robot  gets  stuck in  local

minima, like a child aged 3.5, it provided some suggestions that can help the situation. It

is important to note that this work replicated only hiding behaviour. The authors claim

that a strategy to perform finding can be derived from the hiding strategy.

3.3.2 Learning

It is widely accepted that complex behaviours corresponding to a changing situation

found  in  animals  cannot  be  pre-programmed  for  robotic  systems.  Indeed,  such

behaviours  should  be  collected  and  created  through  adaptive  or  developmental

processes  during  interaction  with  the  world  (Weng,  2004;  Pfeifer  & Gomez,  2005;

Pfeifer & Bongard, 2006). During the developmental period, human children and non-

human  primates  acquire  a  plethora  of  new  skills  and  knowledge  through  social

interaction, including naming objects, playing games, observation actions, and joining

cooperative tasks. To create adaptive robotic systems that can grow and scale up its
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ability  akin  to  the  human  children,  robot  scientists  need  to  consider  the  adaptive

processes  underlying  children's  thought.  In  addition,  the  need of  physical  body and

vision systems of the robot will be raised as most of the processes of acquiring new

skills in the human children has been achieved through observations and representations

e.g.,  others'  actions,  object  movements.  Though  there  are  a  number  of  presented

simulators  that  offer  an  ability  to  conduct  experiments  with  robot  learning,  the

interaction between humans and robots such as cooperative tasks and shared intentions

cannot be thoroughly tested in simulators. Dominey and Warneken (2011) demonstrate

cooperation between a human and a robot in a shared workspace. The robot system

consists  of  a  6-DoF arm and  a  gripper  which  can  manipulate  objects  in  catch  and

moving positions.  A camera fixed to a  wall  is  used to observe the result  of actions

performed by the human and the robot arm. Spoken language is used to communicate

between a human co-operator and the robot.  By using the CSLU Rapid Application

Development  toolkit  (http://cslu.cse.ogi.edu/toolkit)  as  a  language  processor,  one

sentence will be extracted into a command format which is directly used as a specific

step of a task and stored in the robot's internal representation forms. It is applied to

trigger the system based on the current situation of the robot or the human. The authors

discuss  the  importance  of  actions  sequence  representation  in  store  and  recall  to

incorporate during the task. The robot's internal representation or "world model" can be

changed through specific  commands underpinned by vision and proprioception.  The

main focus of this work is also the internal representation which consists of three sets of

action sequences called “Me Intention”,  “You Intention”,  and “We intention” which

underpins cooperative tasks. The task is a turn taking scenario in which the human co-

operator will say a sentence such as “I do this” follow by showing the robot an action of

moving an object from one place to another. To this end, the action is reversed when
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telling the robot to move the object from its current place back to the beginning position

by saying “You do this”. “Me intention” stores only the robot actions, “You Intention”

stores  the  human coordinator  actions  and the  “We intention”  stores  both actions  in

sequence. By using this technique the turn taking game of moving objects between a

human and a robot can be constructed. Dominey and Warneken (2011) claimed that by

observing the human coordinator demonstrating how to play the game 4-5 times, the

robot can participate in the game in the same way as human children do. The vision

system in this work is not a part of the robot as it acts like a third person observer. This

work demonstrates an assistance action by the robot when the human acts like he is

stuck in the game. By swapping the “Me Intention” and “You Intention” the robot can

invite the human to play the game and it can swap to reverse the respective roles. 

The  “A-not-B  error”  reflects  the  basic  processing  mechanisms  in  the  early

development  period  of  human  children.  Decision  making  of  the  children  at  the

sensorimotor stage (age 0-24 months) can be easily explained by the basic Hebbian

processes (Munakata & Pfaffly, 2004), which involves repeatedly showing a child two

objects which are called “A” and “B” in turn at specific locations. Indeed, object “A” is

located on the left while “B” is located on the right. Children appear to bind a strong

association between an object's name and its location rather than the visual identifying

features. The process and resultant outcome remains the same even when swapping the

location of the two objects; i.e., “A” was placed on the right and “B” was in the left. In

this  respect,  interaction  profiles  between  children’s  bodily  states  and  features  of

perceived  objects  must  be  unique  in  order  to  benefit  the  child  in  recognising

sensorimotor  experiences.  Morse  et  al.  (2010)  replicated  an  experiment  in  human

children  into  a  humanoid  platform (the  iCub robot).  They  demonstrated  the  use  of

robotic platforms as cognitive tools. The authors explain what mechanisms underpin
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children’s  behaviours.  In  the  “Modi  experiment”,  the  children  ability  of  mapping  a

linguistic  label  to  objects  and its  spatial  location  were  tested.  This  experiment  was

originally  conducted  by  Smith  and  Samuelson  (2010)  who  conducted  four  main

experiments with a human child. In the first experiment,  an experimenter shows the

child two different objects by putting them on a table in sequence some 3-4 times. The

two objects are typically toys which are different in shape and colour. Each of them was

presented at a specific location, left or right, in front of the child. The child was asked to

pay  attention  to  a  specific  location  (by  the  experimenter’s  hand  waving)  with  the

pronunciation of the word “Modi”. At the end of this experiment, the child was shown

both objects at the same time and asked which one is the “Modi”. In the second more

complex experiment, the presentation of objects was swapped. An object that was first

shown on the left was shown on the right at the second experiment followed by the

word on an empty space with the word “Modi” as in the first experiment. This setting

raised a difficulty in comparison to the second experiment because of a location conflict

of the object that the child has learnt. Unsurprisingly, the correct answer is dropped

compared to the first  experiment.  The third and fourth experiments were mostly the

same as the first and second experiment respectively, except that the word “Modi” is

pronounced when an object still appeared in front of the child. The result showed that

the latter experiments cause a stronger conflict to the child’s internal representation of

the link between the object and the word “Modi”. In Morse et al.  (2010) these four

experiments  were simulated on the iCub.  Neural  networks were used to  manipulate

sensorimotor and additional inputs from an instructor. The majority of the network is

underpinned  by  self-organizing  maps  (SOM)  which  is  called  “hub”.  By  means  of

competitive learning of SOM which provides a clustering ability, sensory inputs from

different modalities can accompany cognitive skills such as object categorisation. The
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robot recognised objects by using different colour and shape profiles. There are three

types of inputs associated in this work, namely spatial location of present objects (left,

right),  objects'  visual  features  (colour,  shape),  and  a  linguistic  label  from  a  tutor

(speech). The output of the model is a control of a hand pointing to a location of object

that the robot believed to be a “Modi”. The idea underlying this work is that, looking at

a specific location (left or right) influences the particular joints' angle underlying the

gaze control of the robot (the robot was set to look for a salient object in its stationary

space). To different locations, the joints' values will be different. When the robot looks

at  the  left  object,  the  model  mapped  current  states  of  motors  to  the  objects  visual

features. Through repetition of this process several times over, the Hebbian learning of

the model creates an association between these two input modalities. In addition, the

coming of linguistic labels will be the third input that the model has to associate with its

previous knowledge. This is demonstrated by the experimental results both in children

and in the robot. Saying the word “Modi” while an object is in sight creates a strong

association between the object’s features and bodily configurations. 

3.3.3 Imitation

In order to collaborate with humans, robots need imitation skills. Imitation skills are

believed to be a mechanism underlying developmental processes. Schall (1999) focuses

on  imitation  learning  as  a  promising  route  to  autonomous  humanoid  robots.  This

hypothesis is inspired by the fact that it is impossible to undertake manual coding to

control a large number of DoF in the humanoid robots. Therefore, a learning approach

should be one alternative way to overcome this issue. The author points out that an

important mechanism underlying learning is a functional connection between perception

and  actions.  Based  on  the  concept  of  mirror  neurons,  this  connection  could  be
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determined as neural  mechanism of imitation.  Samples  of  imitation learning system

from different viewpoints have been reviewed and described. For instance, behavioural

sciences reported that human infants have an ability to replicate perceived facial gesture

since  birth  (innate).  The definition  of  true  imitation  is  also  provided,  which  should

comprise of three features i.e., a demonstrated movement is new for the imitator, the

imitator  replicates  the  same  movement  and  achieves  the  same  goal.  Secondly,  a

predictive forward model with supervised neural networks was proposed as a learning

mechanism of sensorimotor transformation. The visual perception of the demonstrator's

movements is converted to represent in neural spaces that can be mapped to the internal

representation of an agent’s own movement. From cognitive neuroscience, based on the

study of a monkey brain, the pathway of imitation learning roughly interprets as lying in

three areas: Superior Temporal Sulcus (STs), 7b, and F5. STs is suitable to extract the

attention  and  goals  of  others.  F5  (the  mirror  neurons  area)  is  responsible  for  the

execution of  goal  related movements.  Lastly,  an  imitation  learning system from the

viewpoint of robotics, leverages pathways of information processing and comprises of

three  main  parts:  motor  command  generation,  movement  primitives,  and  learning

systems. Visual input contains information of objects and the posture of a demonstrator.

Consequently, the demonstration movement will be extracted into a sequence of state-

action-state transitions. The state-action-state will  be converted into symbolic if-then

rules which are suitable to program a robot. The author suggests the three important

keys needed for imitation learning in robots are: a theory of motor learning, a compact

state-action  representation,  and  the  interaction  of  perception  and  action.  Imitation

learning offers a benefit to robotic applications in which it helps reducing the size of

possible actions or a search space.

Infants use the imitation learning ability to understand other people’s thought of
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actions (e.g., goals, intention) and learns from them through social interaction. Demiris

and Meltzoff (2008) analyse imitation skills in infants in order to design a mechanism

that will be used in robots. They focus on two key features which play an important role

in infant learning: initial conditions, and developmental mechanisms. Initial conditions

are believed to be equipped within the infants since birth, and during life they acquire

and master new skills through developmental processes. In a robot, the authors designed

the two key ideas that underlie imitation mechanisms as in the infants. First, to capture

the way infants realise demonstrator's actions for robots' perceptual system, and second,

to  design  the  internal  models  which  are  capable  of  acquiring  new  skills  during

development. They suggested certain scenarios that might be useful in designing robots

that are capable of learning from observation. In the beginning, the initial conditions for

the robot can be achieved by pre-programming in the same way as infants born with

innate  skills.  Initial  conditions  must  be  able  to  assist  the  robots  in  comparing  their

current state with a goal state of the demonstrators. This ability underpins imitation in

which it drives robots' actions toward a specific goal action. The comparison has to be

done by using representations  of  visual  and proprioception during imitation.  Robots

have to have a good visual perception system that can recognise people actions as in

visual neural system of infants. The information about the demonstration must remain in

a memory system of the robots. In infants, during the developmental period, imitation

skills  can  be improved.  For  example  older  infants  can  understand the  demonstrator

intentions  to  do  actions  not  just  replicate  the  observed  action.  Some  researchers

(Meltzoff, 2007) stated that infants can improve their imitation skills by the use of a

self-learning  development  phase,  in  which  bodily  states  are  associated  with  mental

states. Robots can achieve this ability by replicate the self-learning system. Lastly, the

authors  suggest  that  the combination of inverse and forward models  in assisting an
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ability of understanding others as the concept of internal predictor. A forwards model

provides a prediction of the next state which will assist a motor command selection.

After compensation with a goal state, the signal from the forward model will be fed

back  to  an  inverse  model  to  adjust  the  parameter  of  the  selected  actions.  These

processes appear to replicate the concept of mirror neuron systems. It underlies action

executions and at the same time carries out perceived actions from the demonstrator.

This work provides ideal mechanisms and useful evidence for constructing imitating

robots. 

The finding of mirror neurons (Gallese et al.,  1996) has inspired the concept of

empathy  (or  understanding  other's  intention),  and  imitation.  Through  social  action

mirroring in  primates,  Saegusa et  al.  (2011) shows the experiment  of  imitation that

demonstrates how robots replicate human actions based on the observation of object

movements caused by itself  and by a human.  The experiment  set-up starts  by first,

letting the  robot  do some motor  babbling actions  to  explore its  own bodily  control

scheme (hand and arm) using visuo-motor perception and auto generate actions. This

process creates an association between motor outputs and the resulting hand positions.

Following this the robot was set to observe the effects of objects when performing a

particular action on it. Finally, the robot identifies humans' actions as its own actions.

The sensory input of this work is predominately obtained by visual and proprioceptive

sensing known as “active perception”. There are three types of actions performed by the

robot on an object: hold, place, and take regarding object manipulation. The authors

have shown that after observing a human performance on object manipulation, the robot

can replicate  the  same action.  This  work offers  an alternative method of  intelligent

control by means of imitation rather than hand-coding. 
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3.3.4 Language Grounding

Language plays an important role in cognition and learning. In the dual hierarchy of

language and cognition vision (Perlovsky, 2011), language is suggested to be acquired

during development, experience with linguistic symbols and sounds are grounded in the

embedded model of language and cognition. Moreover,  observing object movements

makes  an  agent  realise  the  meaning  of  action  words  (Marocco  et  al.,  2010).  For

example,  motion  verbs  such  as  rolling  and  sliding  can  be  mapped  to  a  specific

dynamical result from different objects. 

In autonomous cognitive systems such as robots or agents, language grounding and

grounding transfer are important aspects allowing the system to acquire new skills or

meaning  of  linguistic  symbols.  When  interacting  with  changing  environments,  this

ability will provide online acquisition for further suitable actions. Cangelosi and Riga

(2006)  presented  a  study  of  sensorimotor  grounding  and  grounding  transfer  in

epigenetic  robotics.  Linguistic  ability  can be formed through imitating basic  actions

from one cognitive agent to another. A computational model of this work is based on a

feed-forward  neural  network  with  error  back-propagation  training  technique.  Two

simulated  robots  are  used  as  cognitive  agents  to  demonstrate  the  imitation  through

communication,  actions,  and  language.  One  robot  was  set  as  a  demonstrator;  it

autonomously  performs  predefined  basic  actions.  Another  one  is  known as  learner,

which is controlled by a neural network. The network controller of this robot consists of

three  training  stages:  basic  grounding  (BG),  higher  order  grounding  1  (HG1),  and

higher order grounding 2 (HG2). In the training of basic grounding, all joint values of

the demonstrator will be passed to output units of the neural network as a preferred

action. Input units are mapped to specific action names using a verbal instruction parser.

There  are  8  action  names  used  in  this  stage:  CLOSE_LEFT_ARM,
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CLOSE_RIGHT_ARM,  OPEN_LEFT_ARM,  OPEN_RIGHT_ARM,

LIFT_LEFT_ARM,  LIFT_RIGHT_ARM,  MOVE_FORWARD,  and

MOVE_BACKWARD. This training will be repeated for 50 epochs. Following this, the

network allows the learner robot to imitate the demonstrator actions corresponding to

the name of actions. Therefore, when an action name is fed as inputs to the network, it

can produce a desired motor configuration to control the learner robot. This training

stage demonstrated the understanding of grounding of basic actions in the learner robot.

The next step of training is higher order grounding. This stage shows the transfer of

basic actions to higher ones. The higher order action of this stage consists of 5 action

names:  GRAB,  PUSH_LEFT,  PUSH_RIGHT,  OPEN_ARMS,  and  ARMS_UP.  The

combination of two basic actions creates a new higher order action; for example, the

action  GRAB  is  a  combination  of  the  basic  action  CLOSE_LEFT_ARM  and

CLOSE_RIGHT_ARM.  Therefore,  each  higher  order  action  will  be  trained  by

following two steps. In the first step, it begins with feeding one basic action name (e.g.,

CLOSE_LEFT_ARM) to the network and captures the output values. Note that there is

no training in this step. After that feed, a higher order action (e.g., GRAB) to the input

units of the network and set the output units with the capture value of the previous step.

The succeeding step will be the same but using a different basic action for GRAB; in

this case will be repeated with feeding of CLOSE_RIGHT_ARM. In the higher order

grounding 2 training, it is the same process as in the training of HG1 except that it is a

combination of basic action and higher order action 1, and will be done after finishing

the network can learn the higher order action 1. This work provides a useful mechanism

underlying the ability of linguistic grounding transfer in robots. To this end, new actions

can  be  formed  when  the  robot  has  some  definitions  of  basic  actions  and  symbols

connected to it. 
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To sum up,  cognitive science involves the study of the human mind, psychology

considers human behaviour/cognitive development, and neuroscience also studies the

human brain. Human cognition appears to be the best example for the study of high

level cognition. In its extreme, D'Mello & Franklin (2011) suggest that cognitive models

should be designed after humans. Cognitive science provides the basic understanding of

the human mind and human thinking. Cognitive scientists model cognitive architecture

following the components that are believed to underlie human cognition. Psychologists

create theories of the mind that predict human behaviours, conduct the experiment and

revise their cognitive models. This principal provides a clear directional approach to an

improved model.  Psychologists  and cognitive scientists  often work together  to fulfil

each other’s knowledge. However, it is not necessary that every intelligent system has to

follow  this  scheme.  Some  systems  rely  mainly  on  traditional  artificial  intelligence

approaches and focus on high level cognition such as decision making and ignore any

biologically  aspects,  but  they  can  show an  excellent  performance,  such  as  a  chess

program that can beat the cognitive ability of a human world champion. 
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Chapter 4

Tools for Modelling Mental Imagery

This  chapter  describes  tools  and  mechanisms  which  were  applied  to  model  mental

imagery  in  humanoid  robots.  Including,  the  description  of  TRoPICALS  -  a

computational model account for sensorimotor compatibility effect, population coding

neural networks, learning algorithms and the humanoid robot iCub.

4.1 TRoPICALS

TRoPICALS (Caligiore  et  al.,  2010)  is  a  computational  model  of  object  affordance

designed to account  for action-language and stimulus-response compatibility  effects,

studied  experimentally  in  cognitive  psychology  (Tucker  &  Ellis,  2001;  2004).  It

achieves  this  based on an  architecture that  considers  the prefrontal  cortex as  a  key

source  of  the  top-down  control  of  the  areas  that  participate  in  the  selection  of

affordances and execution of actions. 

The account of compatibility effects given by TRoPICALS is based on four general

brain  organisation  principles  incorporated  in  its  architecture:  (a)  the  two-route

organisation of the sensorimotor brain into the ventral and a dorsal neural pathways; (b)

the  guidance  of  action  selection  based  on  prefrontal  cortex  “instructions”;  (c)  the

selection of actions within premotor cortex based on the competition between different

affordances with bias from prefrontal cortex; (d) the capability of language to trigger

internal  simulations  of  the  referents  of  words  (Barsalou et  al.,  2008).  The acronym
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“TRoPICALS”  summarises  these  principles:  Two  Route,  Prefrontal  Instruction,

Competition of Affordances, Language Simulation. The model reproduces compatibility

effects as an agreement or disagreement (compatibility or incompatibility) of top-down

PFC bias with the available affordances of objects which produces slow or fast reaction

times.  TRoPICALS  provides  a  broad  framework  to  account  for  several  types  of

affordance related compatibility effects involving grasping, reaching and language, and

is capable of generating novel testable predictions, including some predictions on the

possible outcomes of compatibility experiments with Parkinson patients (see Caligiore

et  al.,  2013;  the  latter  predictions  are  relevant  as  Parkinson patients  have  damaged

excitatory and inhibitory neural circuits linking prefrontal cortex to premotor cortex via

supplementary motor cortex).

The TRoPICALS consists of many parts as shown in figure 4.1. It leverages the

cortical components of the two pathways of information processing: dorsal and ventral.

In  this  scheme,  the  brain  takes  information  through  the  visual  cortex  and  primary

auditory cortex and passes the “where” information through the dorsal pathway, while

the ventral is responsible for the “what” information. The ventral pathway consists of

Prefrontal  Cortex  (PFC),  Superior  Temporal  Cortex  (STC)  and  Ventral  Occipito-

Temporal  Cortex  (VOT).  The  dorsal  pathway  consists  of  Premotor  cortex  (PMC),

Parietal Cortex (PC), Visual Cortex (VC) and Somatosensory Cortex (SSC). However,

the two pathways are partially linked.
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Figure 4.1 The TRoPICALS’s model architecture (from Caligiore et al., 2010)

In this model, as a replication of the brain’s functions, the PFC is responsible for

high  level  cognitive  ability  such  as  decision  making.  The  PMC  is  responsible  for

generating motor outputs. The VC extracts abstract information from perceived images,

in addition it has the function of edge detection and feature extraction. The PC consists

of  three  components  that  are  responsible  for  objects’ affordances  representation,  for

example  representation  of  object  shape,  object  position.  Connections  between

components  in  the  model  are  indicated  with  arrows.  The  connections  are  typically

weight vectors that underpin information transformation between specific pairs of maps.

It appears to have three types of connection namely, hand coded connection, Hebbian,

and Kohonen. The hand coded connections are predefined weight values, while Hebb,

and Kohonen refer to the weights that need training by Hebbian learning and Kohonen

competitive  learning  respectively.  Information  processing  in  the  TRoPICALS  is

considered as cross-modal association. The information from different modalities e.g.,

visual and auditory, involves many components in both pathways.
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4.2 Population Coding

According to TRoPICALS, information is stored and represented in neural maps based

on the concepts of population codes. Population coding is an interpretation of neural

processes  across  clusters  of  neurons  in  particular  areas.  Information  appears  to  be

encoded by population of neurons rather  than single cells.  It  is  believed that  visual

cortex encodes many features of perceived stimuli e.g., orientation, colours, directions

through clusters  of  cells.  For  example the "place  cells"  in  a  rat's  hippocampus that

identify a location of the rats in a maze environment. Firing characteristics of neurons,

even in an individual neuron, are complex however it may serve as an insight on how to

understand information processing in the brain. Observation of single cells in the visual

area of the monkey’s brain (Hubel & Wiesel, 1968) showed selective firing according to

a specific stimulus e.g., orientation. Moreover, when monkeys grasp for an object in

front of them, researchers (Georgopoulos et al., 1982) found that single cells will be

sensitive  to  a  particular  direction  that  their  hand  were  approaching.  This  firing

characteristic can be interpreted as neural codes mapping to a particular direction or

orientation  as  well.  However,  firing  rates  or  number  of  spikes  is  not  persistence.

Repeated showing the same stimuli to the monkeys results in different firing patterns or

a different number of spikes. To overcome this issue, neuroscientists (Pouget, Dayan &

Zemel, 2000) proposed the use of Gaussian tuning curves to simplify the characteristic

of  neural  firing  (in  both  rate  codes  and  temporal  codes).  The  tuning  properties  of

individual cells when interpreted as a map of neurons (neural space) can represent some

information e.g., preferred direction.

A standard model was also studied by Pouget, Dayan & Zemel (2000) as a captured

pattern of neural firing in the monkey's visual field. There are two characteristics of

neural activation concerned in the standard model: an average response over population

65



of neurons, and a noise term. Therefore the simulated firing rate can be described by the

following equation:  

   ri = fi(s) + ni    (4.1)

Where ri is a number of spike of neuron i according to stimulus s. fi(s) denotes average

response and  ni is a noise term. The average response over the noise signal made the

standard model more likely to the activity of neural population. With Gaussian tuning

curves, information will be distributed over a number of neurons. Each neuron responds

to the same information (input feature) with different level of activation. 

Unlike the model of artificial neurons in layered neural networks, population coding

neural networks do not aim to overcome decision making or pattern classification. On

the other hand, it is suitable to encode and represent information that researchers have to

find optimal methods to decode the stored information in this kind of networks. 

4.3 Learning Algorithms

4.3.1 Hebbian: Supervised Learning

The  Hebbian  learning  rule  was  derived  from the  famous  quote  “the  cells  that  fire

together wire together” postulated by Donald Hebb in 1949. The key idea is focusing on

the existence of connections, synapses, between two neurons i.e., pre- and post-synaptic

neurons. If the two neurons are connected, in order to make the post-synaptic neuron

fire,  an  activation  of  the  pre-synaptic  neuron  and  a  current  action  potential  of  the

synapse have to meet a proper constraint, by means of multiplication. If the result is

high enough to reach a setting threshold then the post-synaptic neuron will be fired. 

In  computation,  the  term  synapse  refers  to  a  connection  weight  between  two

neurons which are normally represented by the constant value  wij. The two equations
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below illustrate  how the  connection  weight  is  changed and updated.  Note  that,  the

equation 4.2 is  called Oja rule (Oja,  1982),  a  Hebbian like equation that solves the

problem of the basic Hebb rule causing a weight growing without bound.

∆wij   =   η ai (aj - wij)                                                               (4.2)

w(t)ij  =   w(t-1)ij  +  ∆wij                                                          (4.3)

where  ∆wij denotes  the  weight  change from neuron  i to  neuron  j,  ai and  aj denote

activation potential of neuron i and j respectively, η denotes the learning rate, and w(t)ij

is a weight value at a particular time step.

In this thesis, several cortical areas of the brain are modeled as 2D neural maps.

Hebbian learning was applied to learn the relation between specific neural maps e.g.,

information in the V1 that influences the neurons' activity of the parietal cortex. Figure

4.2 illustrate an example of the connection between two neural maps i.e.,  input and

output.

Figure 4.2 An example of a 2D Hebbian network with all neurons from the input layer connect to all
neurons of the output (all-to-all connection). 

In order to avoid drawing too many arrows as connection weight between the maps,

the three arrows are used to illustrate sample connections from one neuron of the input
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map to other three neurons of the output. 

This kind of network requires pairs of input output to be its training patterns in

order to learn the relation between them. After successfully trained, the feed forward

process that propagates input information through the connection weights can generate

desired output as a prediction. The feed forward process can be calculated using the

equation below:

y j=F (∑i
x i∗w ji)   (4.4)

where  yj is  a  final  activation  of  the  output  neuron j.  F is  a  transfer  function  (e.g.,

sigmoid  or  hyperbolic  tangent)  that  transforms the  summation  of  all  input  neurons'

activity xi with their connection weights wji to the output neuron yj.

4.3.2 Kohonen: Competitive Learning

A Kohonen  Self  Organizing  Map  (SOM) (Kohonen,  1990)  is  a  well-known neural

network leaning technique. It is an unsupervised learning technique that is able to adjust

the weight values without any desired output. This means only a set of inputs is needed

in order that the SOM will generate an output map. 

At the heart of SOM, there are two important steps needed. First is the calculation

of the best matching units (BMU), typically using Euclidean distance technique. The

BMUs will be the central unit of each cluster in the map (output). Typically, in a two

dimension  SOM map,  each  neuron  will  be  located  in  a  specific  position  (e.g.,  x,y

coordination) with a random activity level. The latter step is a weight updating. For each

training cycle, the input to the SOM network will be changed and these two techniques

will form salient clusters in the map. It is important to note that,  the output map is

unpredictable.  Therefore  an  output  map  needs  a  manual  interpretation.  The  SOM
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learning rule can be implemented using the following equation:

w(t)i  =   w(t-1)i  +  Θ(t-1) i η(t-1) i (v(t-1) i -w(t-1 ) i)            (4.5)

where  w(t)i  denotes current weight value of neuron i at time t,  w(t-1)i  denotes an old

weight value of the neuron i,  Θ denotes the amount of influence on the distance between

neuron i and the best matching neuron in a map, η denotes the learning rate, v denotes

input value to the neuron i. Note that, Θ  and η decrease over time.

A  major  processing  characteristic  of  SOM  is  clustering.  It  transforms  high

dimensional  inputs  to  represent  in  a  low  dimension  known  as  data  visualisation;

normally in 2 or 3 dimensions. Each input will be represented in a unique area in the

SOM map.  We can  apply  this  characteristic  to  create  a  neural  map  that  represents

identities among a number of input maps. A unique cluster and its input can be used for

the  mapping  of  a  new  training  set  for  another  learning  process.  In  much  work,  a

functional purpose of a SOM map is to provide an ability of complex mapping between

input modalities.

Figure 4.3 An example topology of the Kohonen network.
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Connection weights of the SOM network refer to the lateral connection (dashed

arrows in Figure 4.3) within the output map. They play a central role in this kind of

network  and  training  processes  are  involved  mainly  in  this  layer.  The  connection

between the input and output maps (one-to-one connection) is only used to propagate

the input signals in the training processes of the SOM. In Figure 4.3, the dashed arrows

are used to show one sample that one neuron of the output map is connected to other

neurons within the map including itself. The readout process for using the SOM

In addition, the algorithm for training Kohonen network can be listed as below:

1. Initialize the lateral connection weights with small random values.

2. Randomly select training input.

3. Calculate the best matching unit (BMU).

4. Update the connection weight (using Eq. 4.5).

5. Repeat step 2 for N iterations e.g., 10,000.

After training, the feed forward processes follow the similar processes as stated in

Eq. 4.4. However, the actual activation of each output neuron (yi) has to be normalized

using the below equation:

y j= y j /max ( y)   (4.6)

where max is a function returning the value of the output neuron that has maximum

activation.

4.4 The humanoid robot iCub

Throughout this thesis, the humanoid robot iCub, physical and simulator, were used as

simulated participants to reproduce empirical psychology data as a synthesis tool. The

iCub (Metta et al., 2008; http://www.robotcup.org), (Figure 4.4a), is a humanoid robot
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platform that is an ongoing project led by the Italian Institute of Techonology (IIT),

Italy. The humanoid robot, iCub, is designed to behave akin to a 3-4 year old human

child. It is an open system under GNU GPL/FDL licenses, allowing other researchers to

freely customise their own iCub or even create a new one. Approximately 20 iCubs

have  been  distributed  to  many  robotic  laboratories  worldwide  (mostly  in  Europe).

Figure 4.4b illustrates the iCub simulator developed by Tikhanoff et al (2008).

  

                                                        (a)                                                                               (b)

Figure 4.4 The iCub humanoid robot: (a) Real robot, (b) Simulated robot.

The iCub is approximately 1 metre tall, weighs about 22 kilograms and consists of

human like body structures i.e., two eyes, one head, two arms, two legs, and a torso. The

configuration of  joints  and sensors  are  carefully  examined and placed in  acceptable

positions akin to the layout of a human. The robot has been designed to participate in

the domain of cognitive robotics. Its main benefit is offering an opportunity to prove

cognitive  models  with  a  physical  robot  in  the  real  world,  and  provides  a  clear

reproducible  experiment.  It  consists  of  a  number  of  motors  and  sensors  which  are

connected to a central computer (PC104), located in the robots head. The PC104 acts as

a central hub to distribute commands and collect data to and from particular devices.

There are a set of ready to use pre-defined actions to generate desired actions in the

iCub.  In  order  to  interface  with  the  iCub,  communication  with  YARP processes  is

required.  YARP runs on top of the iCub's network and manages the communication
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between user programs and the PC104. In this  way, many researchers can share the

iCub’s facilities. 

At  the  IIT,  the  iCub's  inventor  team continues  integrating  and  improving  more

reliable human like sensors into the new iCub such as tactile sensors and finger tips.

However, the fact that the iCub cannot walk has lead to two major works on redesigning

its motor system, for legs and ankles (Tsagarakis et al., 2011). This redesign is working

towards  the  creation  of  a  platform  to  enable  the  iCub  to  move  around  (iKart,

http://www.icub.org).

This section draws on the iCub robot research as it is the most advance humanoid

platform to date. There is a plethora of research in the field of cognitive robotics that

involves  the  use  of  the  iCub platform in  both  simulation  and  the  physical  as  their

cognitive tools. In this context, the iCub can be considered as an important aspect to

further  understanding the  theories  of  cognition.  Research  with the iCub spans  from

learning sensorimotor  transformation  such as  reaching,  grasping,  crawling,  drawing,

archery skills to high level cognitive abilities such as imitation and language. 

The difference between simulated and physical version of the iCub can be listed in

terms  of  advantage  and  disadvantages.  The  iCub  simulator  provides  accessible  and

convenience of use to users. There is no need of maintenance, space, power supply, and

there is no risk of breaking the robot's parts. In addition, interfacing, commands, and

networks required for using the simulator are also identical to the real one. Importantly,

the simulator is free of charge. The disadvantage can be the limits of handling a variety

and accurately of physical interactions. 

On  the  other  hand,  the  real  iCub  obviously  offers  real  world  conditions  e.g.,

physical interactions with objects and humans. Researchers that tend to implement real

world robotic application have to target on this version of the iCub. To some community
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(e.g., roboticists), conducting experiments with real robots can be seen as tackling more

challenge than doing that in the simulator. Because this has to deal with effects from the

law of physics e.g., gravity, force, torques, inertia, friction, etc. The disadvantage can be

the case of difficulty and complexity of use/settings, and can be unaffordable for some

researchers due to its cost. 
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EXPERIMENTAL STUDIES

Overview

This Ph.D. thesis aims at permitting the use of mental imagery in humanoid robots. This

additional  section  tends  to  provide  a  logical  connection  linking  all  empirical

experiments conducted throughout the thesis. The use of mental imagery in humanoid

robots has been demonstrated through a number of neurorobotic models engaged in

solving the  two spatial  problem-solving tasks  i.e.,  mental  rotation  and tool  use.  By

means of information/cognitive processing, mental rotation obviously involves the use

of mental imagery, while in the tool use, we suggested that mental imagery can be used

as an imagined outcome of action required in the process of self-determined reward. In

particular, the proposed neurorobotic models were designed and constructed based on

brain-like processing mechanisms and followed the concept of embodiment. 

In sum, the studies in  chapter 5 are an initial work that explore the possibility of

exploiting mental imagery in humanoid robots through a typical mental rotation task.

Chapter 6 extends the capability of the initial work by focusing on two main aspects

i.e.,  generalisation  and  a  more  precise  bio-constraint  mechanisms  that  might  get

involved in the solving of mental rotation in the brain. Finally,  chapter 7 confirms an

assumption that all relevant cognitive functions used in the previous experiments i.e.,

motor skills, affordances, and mental imagery can be acquired through the process of

sensorimotor learning. In addition, chapter 7 extends the extent of using mental imagery

in humanoid robots from the case of mental rotation to tool use. In which,  tool use

understanding and mental imagery can be seen as emerged through the processes of
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sensorimotor learning. There is evidence suggests that infants exhibit tool use behaviors

at an early age, and this capability is gradually developed from subjective to objective

stage of development. (Schlesinger & Langer, 1999). In addition, according to Piaget's

theory of child development, the age of 18 months is the beginning of the sensorimotor

stage 6 that infants begin to have an ability of using mental imagery (Piaget, 1952).

Thus,  the demonstration of  how to use a  tool  (e.g.,  Rat-Fischer  et  al.,  2012)  might

provide missing information about actions and outcomes of how to solve the task to the

infants. In which, the infants might fulfill their understanding of how to solve a given

tool use task through the use of mental imagery. 
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Chapter 5

Modelling Mental Rotation

This chapter presents the two initial experiments on a neurorobotic model of mental

rotation whose macro architecture was broadly linked to brain areas. This model was

able  to  solve  a  simple  mental  rotation  task  of  2D  visually-perceived  objects  in  a

simulated humanoid robot, the iCub (Tikhanoff et al., 2008). In addition, the model was

developed within an “embodied cognition” theoretical framework for which high-level

cognition  processes  rely  on  the  same areas  of  the  brain  used  to  process  analogous

sensorimotor information (Borghi & Cimatti,  2010). According to this view, off-line

cognition, such as mental rotation and imaging, is body based: “even when decoupled

from the environment, the activity of the mind is grounded in mechanisms that evolved

for interaction with the environment—that is, mechanisms of sensory processing and

motor  control”  (Wilson,  2002).  The  models  departed  from  another  model  –

TRoPICALS  –  developed  within  the  “computational  embodied  neuroscience”

framework  aiming  to  establish  detailed  links  between  embodied  cognition  and

behaviour  and the brain system-level mechanisms underlying them (Caligiore et  al.,

2010; Caligiore et al., 2013; TRoPICALS focused on compatibility effects, Tucker &

Ellis, 2001, and affordance processing, Gibson, 1986; Rizzolatti & Craighero, 2004). 
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5.1 Experiment 1: A Cognitive Robotic Model of Mental Rotation

In this experiment we propose a computational model, investigating a neural operational

hypothesis  on how the information processing taking place in parietal  and premotor

areas might be involved in mental rotation. This operational hypothesis is based on the

integration  of  affordances  and  forward  model  accounts  for  mental  rotation.  These

processes  include  (Lamm  et  al.,  2007):  (a)  stimulus  encoding  and  mental  image

generation,  (b)  planning  and  execution  of  the  mental  rotation,  (c)  comparison

(matching) of the rotated stimulus with the target stimulus, and finally (d) execution of

the same/different response. Combining these two perspectives within the model allows

us to deal with all the levels of complexity required by a mental rotation task (not only

the processes “a-b” indicated above (mental rotation proper), but also “c-d” (control and

exploitation of the mental rotation processes). 

To this purpose, the model leverages on the computational model “TRoPICALS”

(Caligiore et al., 2008; 2010; 2012) developed to study affordance compatibility effects

(Tucker & Ellis, 2001). The TRoPICALS model is a good starting point to design a

model of mental rotation as it reproduces some key functions of the parietal-premotor

circuit,  which are crucial  for stimulus encoding and extraction of object affordances

(process “a”). TRoPICALS also includes important features of the prefrontal-premotor

circuit, pivotal for managing other aspects of mental rotation (processes “c” and “d”).

However, it cannot perform mental image rotations, as it lacks the necessary feedback

circuits. In this respect, to address the core mental rotation process (process “b”) the

model proposed here enhances the functions of TRoPICALS by developing two new

key features. First, it is endowed with premotor-parietal feedback loops that allow it to

implement mental rotation and sensory prediction based on forward models. Second, it
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is endowed with an improved visual and motor system allowing it to scale up to more

realistic 3D environments and robotic setups. 

The  rest  of  this  section  is  organized  as  follows.  Sec.  5.1.1  discusses  the  main

features of the model, the learning algorithms used to train it, and the robotic set up used

validate it. Sec. 5.1.2 presents and discusses the results. Sec. 5.1.3 drives the discussion

and proposes future work to improve the model.

5.1.1 Methods

A. Neural Architecture

The model proposed here represents an operational hypothesis on how visual and motor

neural processes might interplay during mental rotation. To this purpose it extends some

features of the TRoPICALS model (Caligiore et al., 2010). Figure 5.1 shows the model

architecture which consists of three main parts corresponding to specific areas of the

brain mainly involved during mental rotation tasks (Lamm et al., 2007; Richter et al.,

2000): the parietal cortex (PC), the premotor cortex (PMC), and the prefrontal cortex

(PFC). These areas are represented by distinct neural maps activated using population

code methods (Pouget, Dayan, & Zemel, 2003; Deneve, Latham, & Pouget, 1999). The

population code hypothesis postulates that information, e.g., on stimuli and actions, is

encoded in the brain on the basis of the activation of populations of neurons organized

in  neural  maps,  having  a  broad  response  field.  In  particular,  each  neuron responds

maximally to a certain value of the variables to encode, and then progressively less

intensely to values (based on a Gaussian function).

The neurons of the PC map (32 x 32 neurons) encode the shape and orientation of

the object that has to be mentally rotated (Caligiore et al., 2013). The PMC consists of 2

neural maps PMC_1 (31 x 105 neurons) and PMC_2 (10 x 20 neurons), encoding motor
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programs related to different arm parts  (Wolpert  & Kawato,  1998). PMC_1 neurons

encode  a  specific  wrist  posture  of  the  robot  corresponding  to  a  specific  object

orientation encoded in PC. PMC_2 neurons encode the two different hand postures that

the robot  produces to accomplish the mental  rotation results  (i.e.,  to indicate  if  two

objects are same or different). In more detail, the model works with 2 different types of

object, each with 13 different orientations. Therefore, the neurons of the PMC_1 map

encode 26 possible wrist postures.

Figure 5.1 The model of mental image rotation. Each box represents the model’s components. The arrows

represent information flows from one component to another. The arrows accompanied by the letter “C”

are the connections learned by SOM learning rule (dashed arrows) or by Hebbian learning rule (solid

arrows). ©2013 IEEE

The PFC also has two maps, implementing the working memory (PFC_1, 32 x 32

neurons) and the matching process area (PFC_2, 32 x 64 neurons) (Fuster, 2001). The

visual input for the model is the image of a simulated camera of one of the eyes of a

simulated iCub robot. This image goes through an edge detection module to extract

edge information of the two objects shown in front of the robot. The edge information

for the object on the left will be passed to the PC, while the one for the “target object”

on the right will be for PFC_1. The target object is used as a reference for rotational

purposes. The robot has to mentally rotate the object encoded by PC to check if it is the
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same or it is different with respect to the target object stored within PFC_1. PFC_2 is

the  core  for  the  matching  process.  It  is  formed  by a  Kohonen self-organizing  map

(SOM)  (Kohonen,  2001)  which  takes  inputs  from  the  PC  and  PFC_1.  A  major

processing  characteristic  of  the  SOM  is  clustering.  It  transforms  high  dimensional

inputs into low dimensional ones. Each input will then be represented in a unique area

in the SOM map. We exploit this characteristic to create a neural map that represents

pairs of stimuli. At the end of the matching process, PFC_2 neurons trigger PMC_2

activation whose neurons in turn encode the answering behaviour.

The mental rotation process is mainly based on the interactions between the PC and

the PMC_1. Consistently with the concept of affordances,  the visual features of the

object  (shape and orientation)  encoded by the PC cause a specific cluster of neural

activity in PMC_1. This pattern encodes the motor response to the seen object (i.e., a

specific wrist rotation either clockwise or counter-clockwise, represented in terms of the

posture assumed by the robot’s wrist). Conversely, the PMC_1-PC circuit works as a

forward model, based on which cluster of activity in PMC_1 causes a change of the

image orientation in the PC.  

B. Learning process

Connections between maps are trained using Hebbian learning and SOM competitive

learning.  Hebbian  learning  is  widely  accepted  as  a  biologically  plausible  learning

mechanism mainly  involving  cortical  areas  (Doya,  2000).  This  learning  mechanism

underlies  some  developmental  phenomena.  One  example  is  the  critical  period  of

learning (Munakata & Pfaffly, 2004), where synaptic efficacy cannot be modified and

re-form after it has been settled. 

At the beginning of the simulation, the weights of all the connections (C1, C2, C3,

C4, and C5) are randomly set  within the range [0,  0.1].  Then the simulated mental
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rotation  experiment  follows  4  steps:  1)  Stimulus  encoding,  assigning  the  edge

information of the left stimulus to PC. 2) Execution of the mental rotation, repeating the

interaction between affordances (PC-PMC_1 circuit) and forward model (PMC_1-PC

circuit;  C1,  C2  connections)  processes.  3)  Comparison,  performing  the  matching

process of the mental image and the target image in the SOM map (PFC_2; C3, C4

connections). 4) Answer triggering, executing of the same/different response (PFC_2-

PMC_2 circuit; C5 connection).

The  connections  C1  are  used  to  simulate  affordance  learning  through  the

transformation of information from PC to PMC_1 (Fagg & Arbib, 1998). The training

set consists of pairs of the left stimulus (within PC) and a specific cluster of activity

(Gaussian tuning curve) which represents the affordance provided in PMC_1 (i.e., the

robot's wrist angle). For each pairs, the C1 connections are trained by using the Hebbian

learning rule (Eq. 4.1).

After training C1, an image of an object from the PC causes a specific cluster of

activity in PMC_1, that represents a wrist posture. Through training the network learns

how to rotate the robot’s wrist corresponding to the orientation of a seen object. 

The connection C2 is responsible for forward model learning. In contrast  to the

affordance processing, this connection causes the formation of an image representation

in  PC from the  cluster  of  activity  in  PMC_1.  For  instance,  a  cluster  of  activity  in

PMC_1  that  is  caused  by  an  image  of  object  rotated  90  degrees  in  PC  (during

affordance processing)  causes a 75 degrees rotated image back in  PC. This training

strategy allows the network to create a series of rotating images. Note that the training

set causes an image to gradually change to become the same as an image of object of 0

degrees. This corresponds to the central position in PMC_1 map, which refers to the

target position. When a rotation of an input image is greater than 0 degrees, the image
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will be rotated on the right (clockwise). In contrast, if the angle is less than 0 degrees,

the image will be rotated on the left (counter-clockwise). The C2 connections are also

trained with the Hebbian learning rule. 

The process of mental image rotation consists of the repetition of the interaction

between  the  affordance  process  (connection  C1)  and  the  forward  model  process

(connection C2), until an image in the PC reaches the 0 degrees target rotation. Each

cycle of the interaction causes a rotated image, which can be considered a mental image

because the actual input object orientation does not change. 

The connections from PC and PFC_1 to SOM PFC_2 (C3, C4) are responsible for

the matching process. When the network generates a mental image in the PC, having a 0

degrees rotation,  then the process of learning is triggered.  The connections link two

maps, one is PFC_1 (target image), which is set at the beginning of the simulation, and

another is PC (the mental image). A training set for PFC_2 is a combination of all the

possible neural representations for the stimuli of each input. A neural activity in PFC_2

forms a salient cluster with respect to the two specific inputs. As there are two possible

images in each map, four clusters will be formed. To train PFC_2, the SOM learning

rule (Eq. 4.3) was used.

The PFC_2 SOM map is trained in advance. In this way, a response of PMC_2 can

be fixed for each input couple from PC and PFC_1.

The answer  triggering  process  uses  the  connection  C5 from PFC_2 to  PMC_2.

When  two  images  are  “similar”  the  robot  chooses  the  “YES”  answer,  otherwise  it

chooses the “NO” answer. The term “similar” means “it is approximately the same”.

The mental rotation ends when the position of cluster of activity in PMC_1 is close to

the central position. The most salient cluster in PFC_2 is used to produce the answer.

Given the four possible combinations of inputs in the matching process, two of them are
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responsible for a "SAME" answer, while the remaining two for the "MIRROR" answer.

Therefore,  two regions  in  PFC_2 with respect  to  the  same image from the  PC and

PFC_1 cause one cluster in PMC_2. While two other regions within PFC_2 represent

different images of the two input maps. In this process, PMC_2, is responsible for the

answer triggering, the motor response to press two answer buttons or to produce some

utterance  such  as  “YES”  or  “NO”.  In  the  current  version  of  the  model  this  motor

command  is  still  not  used  to  supply  a  control  signal  for  the  iCub  but  is  directly

interpreted as the response of the system. 

After learning, an action potential of each neuron in the PMC_2 map is calculated

by using a dynamic competition method (Doya, 2000).  As the connections  within a

neural map are based on an all-to-all pattern, each neuron in the map sends/receives

signals  to/from  every  neuron.  The  dynamic  competition  process  causes  dynamic

activities within the map, based on a distance between neurons following the rule of

long-range  inhibition  and  short-range  excitation.  Neighbouring  neurons  which  are

activated with high potential will receive excitatory signals and tend to form clusters of

activity. In contrast, the neurons which are far from the active neuron in the neural space

will receive an inhibition signal and their action potential will be depressed. 

The dynamic competition is also used as a method to calculate an agent’s response

time,  e.g.,  to  compare  the  model  results  with  reaction  time  data  in  psychology

experiments.  Unlike  a  simple  feed-forward  process  in  layered  neural  networks,  the

dynamic competition process will be repeated until the action potential of at least one

neuron in the neural  map reaches  a  specific  threshold.  This  process can be used to

calculate the response time based on the action potential of an individual neuron that is

most  sensitive  to  a  particular  input.  In  detail,  the  number  of  repeating  dynamic

competition processes was recorded and used as a simulated response time. One cycle
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of repeating the process will be assumed to be equal to 1 millisecond (Caligiore et al.,

2008).

C. The simulated participant (the iCub robot)

According to the view of embodied cognition (Pecher & Zwaan, 2005; Pezzulo et al.,

2011), our cognitive capabilities to recognise and understand things have been shaped

by  the  interaction  processes  between  body,  brain  and  environment.  In  addition,

cognition is based on internal representations and simulations of real world actions and

our perception (Barsalou, 1999). 

Cognitive robotics platforms, such as humanoid robots, are being increasingly used

to  model  embodied  cognition  and  cognitive  development  in  humans  by  means  of

embodiment (Caligiore et al., 2008; 2010; Cangelosi & Schlesinger, 2015). Following

this  approach,  a  simulation  model  of  the  humanoid  robot  iCub was  used  to  model

psychological experiments on the embodiment bases of mental rotation. 

Each arm of the iCub has 16 joints. This experiment uses the joint number 5 of the

right arm which directly affects the robot wrist’s angle. If the robot holds an object with

the right hand, rotating the wrist will only change orientation in the object plane.

Figure 5.2 The iCub simulator and its environment. ©2013 IEEE

D. Stimuli and Simulated Mental Rotation Task

The visual stimuli use an abstract object, coloured in red, similar to an upside down

letter L as shown in Figure 5.3. In this experimental set up, two versions of these stimuli
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are used, each producing a mirror image of the other, and will be called object-A and

object-B. The objects are displayed in the space in front of iCub simulator (Figure 5.2).

During  the  process  of  affordance  training,  only  one  stimulus  is  shown  in  the  left

position, with the experimenter varying the orientation of the object and assigning a

corresponding  target  position  of  the  robot's  wrist  angle.  In  the  testing  session,  two

stimuli are displayed in the left and in the right positions. In each trial, the rotation of

the left image is systematically varied, while the right one is presented with a 0 degrees

orientation and can involve the two objects A and B.

object-A                         object-B

Figure 5.3 The two stimuli used for the simulated mental rotation task. Both stimuli are coloured in red

for edge detection. ©2013 IEEE

The edge detection method is used as an early visual processing stage. The image is

centred on a single object, and the red colour filter is applied. The edges of the object

are  extracted  with  the  Canny  edge  detection  technique  (Canny,  1986),  using  the

OpenCV library. The output from the edge detection process consists of binary data

which can be directly assigned as an activity level to PC and PFC_1 at the beginning of

the simulation. Note that the eye position of the iCub was fixed, the object of interest

will  be  extracted  and put  in  the  centre  of  the  image maps  e.g.,  V1 throughout  the

experiment.

Regarding the motor response, there is a limitation of the iCub’s wrist angle, which

can  rotate  in  the  range  of  [-90;  90]  degrees.  Counter-clockwise  orientations  are

indicated  by positive  values,  while  clockwise  orientations  are  indicated  by  negative
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values. For example, in Figure 5.3 object-A has a 45 degrees orientation while object-B

a -45 degrees one.

5.1.2  Results

The right object is always shown at a 0 degree rotation, while the left object can vary in

orientation  between  90  and  -90  degrees.  Therefore  the  maximum angular  disparity

between the two stimuli is 90 degrees. Varying them by 15 degrees (0, 15, 30, 45, 60,

75), as we did, this will typically require a maximum mental rotation in the map PMC_1

of 6 steps. However, in the experiment the maximum number of rotation cycles is set to

10 as in some cases the model cannot rotate the image to a preferred orientation at the

first cycle, thus requiring extra rotations. When the number of rotation cycles is equal to

10, it indicates that the model cannot correctly perform the mental image rotation of the

left stimulus and will be forced to do the next step (matching process) by using the last

image.  The  interaction  between  affordance  and  forward  model  processes  leads  the

model to obtain a linear relationship between the angular disparity and a number of

steps used in rotation.

The experiment is conducted using two groups of inputs, one for a recognition test

and another for a  generalization test.  In the recognition test,  orientations of the left

stimulus are the same as in the training set by varying 15 degrees per pattern from 90 to

-90.  As  there  are  two  possible  objects  and  each  of  them  can  have  13  possible

orientations, this test has exactly 13x4=52 different pairs of stimuli to be used as input.

The generalization test refers to testing the model with unseen orientations. The left

stimulus in this test changes 5 degrees from 90 to -90 but skip the cases of repeated

values of the previous test. Therefore, the generalization test has (37x4)-52 = 96 pairs of

stimuli to be used as input. Both tests were repeated 52 times to record the consistency

of the model performance. The result shown in Figure 5.5a is a series of mean values of
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response time of the recognition test.

     
(a)   (b)

Figure 5.4 Mental image rotation steps. a) Rotational steps in the case that the model is able to create a

series of image changes to reach the 0 degrees default orientation; b) the model is unable to rotate the

seen object. ©2013 IEEE

Figure 5.4a shows the mental rotation steps (PC) and the matching (PFC_2) and

answering (PMC_2) processes for a successful trial. In this example the mental rotation

process takes 4 steps to rotate an image of a stimulus of 60 degrees to an image of

stimulus of 0 degrees. The mental rotation process ends when the rotated image reaches

0 degrees orientation. After that, the matching process within PFC_2 is performed by

using as input, the neural activity of target image in PFC_1, and the rotated image in

PC. The neural activation representing the matching process within PFC_2 is showed in

the third column of the last row in Figure 5.4a. The answering process of PMC_2, is

indicated in the fourth column of the last row on Figure 5.4a. The cluster of activity

formed in the left side of the map will cause the answer "YES" to be chosen. The blank

panels indicated that the rotational steps needed in this sample are less than 10.
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In contrast, Figure 5.4b shows one case in which the model cannot rotate the left

stimulus of -90 degrees of object-A into the 0 degrees default position. The model fails

to rotate the image within 10 cycles, and has to do the matching process by using the

last (un-rotated) image in PC. This scheme is similar to a guessing process in human

subjects, when the time to do a mental rotation task is over. When the model fails to

rotate the image after 10 cycles: each cycle, the image in the PC is the same. This case

might be caused by a similarity effect of the edge information of objects in the training

set. Indeed, the edge information of object-A and object-B of 90 and -90 degrees which

are similar in pattern, as they mostly lie on the horizontal axis in the centre of the map.

This means the model has to learn to  match 4 similar  inputs related to 4 separated

clusters (on the left-most or right-most of the map). Hence, the model cannot learn to

match the case of object-A of -90 degrees to a correct cluster. Therefore, when the left

stimulus is object-A of -90 degrees, the affordance process causes a cluster of activity in

PMC_1 which is not exactly the preferred position (it is a nearby position). Then the

forward model, using that cluster, causes the same image back in the PC.

The model has successfully reproduced the findings of human subjects in a typical

mental rotation task. Indeed, in experiments with human RTs profile often shows an

inverse v-shaped profile as the one found in the simulations we ran. Fig. 5a shows the

RTs profile of the recognition test where the model performed simulated mental rotation

tasks with different orientations of the left stimulus. From the figure it is possible to

observe how RTs increase as the angular disparity increases. 

As indicated by the RTs profile, the mental rotation performance with the object-A

produces higher RTs than with object-B. This characteristic is affected by the training

strategy that fed a sequence of patterns in the training sets. The patterns of object-A are

fed into the network in a training period before object-B. This makes the model more
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sensitive to object-B than to object-A. However, this characteristic might be prevented

by using a random feed, instead of a sequential feed of training patterns. This behaviour

of the model might be also considered a prediction for a possible experiment with real

subjects,  where  these  are  allowed  to  manipulate  different  objects  at  different  times

before the test.    

The recognition test achieves 98% correct answers (51 out of 52) on rotating object

A and  100%  on  rotating  objects  B.  While  in  the  generalization  test  with  unseen

orientations, the success in rotation is 95.8% (92 out of 96) and 96.8% (93 out of 96)

respectively for object B and object A. These results are always the same, over 52 trials.

The overall success rate is 96.6%. The angular disparity between the two stimuli affects

the response time of the model in the same fashion as human subjects. Increasing the

difference in degrees of rotation causes the model to require a higher number of rotating

cycles: this increase the simulated response time. The experimental result show that the

model can rotate most of the possible pairs of objects except for one case of object-A of

-90 during recognition test, 2 cases of object-A of -85 and 70, and 2 cases of object-B of

55 and 70 degrees during the learning stage. Dash circles in both graphs of Figure 5.5

are used to point an orientation of the stimulus that cannot be rotated. When an image of

that stimulus is shown, the model cannot change it into a new preferred image rotated

15 degrees.

The Figure 5.5b reports the comparison of RTs profiles between the recognition test

and generalization test on object-A. The figure indicates that some unseen orientations

in  the  learning  test  took  more  RTs  than  ones  in  the  recognition  test,  although  the

disparity is smaller. At each step of image rotation, a new image is gradually changed

approaching the 0 degrees target object rotation. When the model is shown an unseen

object orientation, this causes longer reaction times due to the intermediate angle of
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rotation not matching the discrete 15 degrees increment images shown during training.

For example, when the model is shown an image with 55 degrees rotation, the RTs will

be greater than the performance of 60 degrees one. This is because at first the model

keeps rotating the image of 55 degrees stimulus into an image of 60 degrees stimulus

for some steps (55 is closer to 60 than 45 according to the training patterns), and only

after doing this it goes back to follow the incremental 15 rotating strategy. 

The reasons leading the model to produce a noisy RTs profile for the generalization

test (Figure 5.5b) could be explained as follows. If in the first cycle the starting image in

PC is  unseen the feed-forward process,  through the connection C1, could activate a

neural cluster within PMC_1 representing an unpredictable position.  As a result,  the

mismatched salient cluster in the map PMC_1 creates an incorrect image back to the

PC. These processes are repeated, by chance, and the mental rotation ends when the

position of the cluster of activity in PMC_1 is close to the central position. This process

leads the model to produce a noisy RTs profile for the generalization test as shown in

Figure 5.5b.  To sum up,  the similarity  of  unseen object  orientations  of  the  training

patterns is the main explanation for this effect. However, this is a common effect that

can be found when working with neural networks. One way to solve this effect is to use

more precise training patterns.
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(a)

(b)

Figure 5.5 RTs profiles of the simulated mental rotation task. (a) The rotation of different stimuli affects

the RTs profile; (b) Series of some unseen (gray bars) and seen (black bars) stimulus orientations of

object-A; notice that some unseen orientations (-85, -70, -55, -35. -20) show greater RTs than ones in the

training set (-90, -75, -60, …). ©2013 IEEE

5.1.3 Discussion

The model proposed in this chapter accounts for the mental rotation processes based on

neural mechanisms involving visual imagery, affordance encoding and forward models
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processing. In this respect, the proposed approach is in agreement with the theoretical

and empirical research on mental rotation,  about the interplay between covert  motor

processes and the creation of a mental image during mental rotation task. Remarkably,

the model is validated within the simulated humanoid robot iCub engaged in solving a

typical mental rotation task. 

The model also presents some limits which are however, all addressable in future

work. Here we briefly discuss the main limitations and propose a solution for each of

them. First of all, in the current version of the model mental rotation mainly depends on

the interplay between affordance and forward model processes, ignoring the role of the

wrist  proprioceptive  signals.  This  means  that  the  robot's  wrist  movements  do  not

influence  the  mental  rotation  processes.  Recent  research  (Chu & Kita,  2008;  2011)

points  out  that  the  performance  of  mental  rotation  tasks  can  be  improved  by  the

assistance of hand movements, or gestures called “co-thought gestures”. These studies

also suggest that spontaneous gestures during performing mental rotation task provide a

rich  sensorimotor  experience  of  the  solving  strategy  in  human  subjects.  Gestures

improve the internal representation of a spatial transformation of objects. Following this

hypothesis, we will modify the current model by adding proprioceptive units that should

act as an internal representation of gestures or hand movements. In more details, we will

introduce a more direct effect of proprioception on mental rotation by modifying the

parietal  area  by  introducing  a  somatosensory  map  (SS)  whose  neurons  encode  the

proprioceptive signal. SS might be a dynamical field map (Erlhagen & Schöner, 2002)

combining  the  forward  model  signal  with  the  proprioceptive  signal.  When  the  two

signals  are  different  there  would  be  an  interference  effect  and  the  dynamical

competition would take more time to be solved (increasing RTs). The new version of the

model should be able to account for other data which link overt movements and mental
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rotations (Wohlschläger & Wohlschläger, 1998; Wohlschläger, 2001). 

Secondly, humans can create mental images and perform mental image rotation on a

variety of objects, even on unseen abstract object (Shepard & Metzler, 1971; Wexler,

Kosslyn, & Berthoz, 1998). Unlike humans, the model proposed here can only work

with the objects of a training set. However it should be able to work with any kind of

object. This will be done by separating the object orientation from the “object identity”.

We think that this could be possible using an inferotemporal cortex (IT) map whose

neurons encode objects independently of their orientation, similarly to what happens in

humans. This map could be connected to PC together with SS (encoding the posture

proprioceptive  signal):  this  would  allow  PC  to  encode  the  combinations  of  object

identity (IT) and particular wrist posture (SS) so as to allow the system to imagine the

rotation of any type of object after being suitably trained. 

Overall, also considering these possible improvements, the proposed neuro-robotic

model  of  mental  rotation  provides  a  useful  computational  framework  to  study  the

integration between mental rotation capabilities and embodied cognition.
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5.2 Experiment 2: Motor Processes and Mental Rotation

In this experiment, we propose a new model that can address one of the two key issues

raised in  the previous  study (i.e.,  proprioception).  This  investigates  the  inclusion  of

overt  wrist  movements  during  performing  a  mental  rotation  task,  as  it  had  been

suggested that, in humans, movements of the hands can help increase performance of

solving a typical mental rotation task.

5.2.1 Methods

A. The simulated mental rotation experiment: task, participant, and stimuli 

A mental rotation task used in this work follows the typical mental rotation tasks that

have been used in the field of experimental psychology, for example by Shepard &

Metzler (1971), Chu & Kita (2008; 2011). The goal is to let a simulated participant

make a judgement on whether a pair of stimuli is the same or a mirror version of each

other. The stimuli are stylized geometrical shapes. At each trial, the stimuli can change

in terms of  object  type and orientation.  After  the  simulated participant  produces  an

answer, a new trial will be started by changing the current pair of stimuli and/or their

rotation. 

The  simulated  humanoid  robot  iCub  (Tikhanoff  et  al.,  2008)  was  used  as  a

participant  to  model  the  targeted  psychological  experiments.  The  iCub  simulator

provides  visual  perception  via  simulated  cameras  and  can  perform  actions

corresponding to specific motor commands. During the mental rotation task the model

has  to  compare  two  visual  stimuli  having  different  orientations  as  in  the  target

experiments.
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Within the perspective of embodied cognition, the robot platform used in this work

provides to the model with perception and action capabilities through simulated cameras

and motor outputs. Here a small subset of the sensorimotor possibilities of the iCub

simulator was used to demonstrate the possibility of performing the mental rotation task

within  a  robotic  embodied  setup.  However,  in  future  work  we  will  consider  the

implementation of more complex mental rotation tasks and the role of gestures. In these

cases, the rich perception and multiple degrees of freedom of the iCub platform will

allow the investigation of sophisticated cognitive skills related to object recognition,

management of mental images (creation/rotation), and problem solving.

During  the  experiment,  pairs  of  target  and  comparison  object  images  having

different orientations are used. The objects are displayed in the space in front of the

iCub. For the training, the rotation of the comparison object is varied by 30°, so that

each stimulus can assume seven orientations (-90°, -60°, -30°, 0°, 30°, 60°, 90°). During

the process of affordance training, only one comparison stimulus is shown in the left

position, with the experimenter varying the orientation of the object and assigning a

corresponding position for the robot's wrist angle. In the testing session, two stimuli are

displayed,  the  comparison  stimulus  at  the  left  and  the  target  stimulus  at  the  right

positions.

After training, the generalization ability of the model is tested using 196 pairs of

stimuli supplied in sequence. The experiment has been repeated 10 times to test the

consistency of the model. Each time the pair of stimuli is changed, the model internally

rotates the left stimulus to match it with the right one and produce an answer. Three

types of information are recorded during the experiment: the RTs, which are the result

of  a  neural  dynamical  competition  (see  Sec.  C. and  cf.  Caligiore  et  al.,  2010,  and

Erlhagen & Schöner, 2002); the answer for the current mental rotation task (see Sec.
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C.); the successful degree of rotation (see Sec. C.). When the number of rotation cycles

reaches 10,  this indicates that the model cannot correctly perform the mental image

rotation of the left stimulus and so it is forced to do the matching process by using the

last rotated image.

B. Neural Architecture

The neural  network model  (Figure  5.6)  proposed in  this  experiment  investigates  an

operational  hypothesis  about  the  interplay  of  the  visual  and motor  neural  processes

during  mental  rotation.  To  this  purpose,  the  model  extends  some  features  of  the

TRoPICALS model.  TRoPICALS (Caligiore  et  al.,  2010;  2013)  is  a  computational

model  of  affordance  control  designed  to  account  for  action-language  and  stimulus-

response compatibility effects studied experimentally in cognitive psychology (Tucker

& Ellis,  2001;  2004) It  does  this  based  on an architecture  that  considers  prefrontal

cortex  as  a  key  source  of  the  top-down control  of  the  areas  that  participate  to  the

selection of affordances and execution of actions. 

The account of compatibility effects given by TRoPICALS is based on four general

brain organisation principles incorporated in its architecture (Caligiore et al., 2010): (a)

the two-route organisation of the sensorimotor brain into the ventral and a dorsal neural

pathways; (b) the guidance of action selection based on prefrontal cortex “instructions”;

(c)  the  selection  of  actions  within  premotor  cortex  based  on  a  neural  competition

between different  affordances with bias from prefrontal  cortex;  (d) the capability  of

language to trigger internal simulations of the referents of words (Barsalou et al., 2008).

The  acronym  “TRoPICALS”  summarises  these  principles:  Two  Route,  Prefrontal

Instruction, Competition of Affordances, Language Simulation. The model reproduces

compatibility effects on the basis of the agreement or disagreement (compatibility or

incompatibility)  of  the  top-down  bias  from  prefrontal  cortex  with  the  available
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affordances  of  objects  as  this  produces  respectively  fast  or  slow  reaction  times.

TRoPICALS provides a broad framework to account for several types of affordance

related compatibility effects involving grasping, reaching and language, and is capable

of  generating  novel  testable  predictions,  including some predictions  on  the  possible

outcomes of compatibility experiments with Parkinson patients (see Caligiore et  al.,

2013; the latter predictions are relevant as Parkinson patients have damaged excitatory

and inhibitory neural circuits linking the prefrontal cortex to the premotor cortex via

supplementary motor cortex).

The architecture of the model presented here is shown in Figure 5.6. It consists of

four parts corresponding to the main areas of the brain involved in mental rotation tasks

(Lamm et al., 2007; Richter et al., 2000): the parietal cortex (PC), the premotor cortex

(PMC), the prefrontal  cortex (PFC), and the primary motor cortex (M1). The dorsal

pathway through the circuit PC-PMC is responsible for the “how” sub-task in this case,

i.e., for the pre-activation and selection of affordances of the seen objects. The ventral

pathway via PC-PFC is instead the circuit that recognizes objects (“what” sub-task).

The matching and answer triggering processes are the result of the integration of the

maps PC, PMC, and PFC. The M1 is responsible for overt control of the robot's wrist

movement.  Repeating  processes  within  PC  and  PMC  drive  mental  image  rotation,

which is supported by the interaction between affordance processing and forward model

actions. The proprioceptive input from the robot's wrist posture (PC) plays a key role in

the forward model used during mental rotation.

Each  cortical  area  is  formed  by  two  neural  maps  encoding  information  using

population code methods (Pouget, Dayan, & Zemel, 2003). Population code methods

claim that information (e.g., on stimuli and actions) is encoded in the brain on the basis

of  the  activation  of  populations  of  neurons  having  a  broad  response  field  and
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topologically organized in neural maps. In particular, each neuron of a map responds

maximally to a certain value of the variables to encode, and then progressively less

intensely to less similar values (based on a Gaussian-like function).

PC  is  formed  by  two  distinct  areas:  the  posterior-parietal  cortex  (PP)  and  the

somatosensory cortex (SS). The neurons of the PP map (32 x 32 neurons) encode the

shape and the orientation of the object that has to be mentally rotated (Rizzolatti &

Craighero, 2004). 

Figure 5.6 The model of mental image rotation. Each box represents the model’s components. The arrows

represent information flow from one component to another. Arrows accompanied by the letter “C” are the

connections learned by SOM learning rule (dash-dot arrows) or by Hebbian learning rule (solid arrows).

The neurons of the SS map (31 x 100 neurons) elaborate the proprioceptive signal

related to the robot wrist orientation (Caligiore et al., 2010). The PMC region is formed
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by 2 neural maps PMC_1 (31 x 100 neurons) and PMC_2 (10 x 20 neurons). The two

maps encode motor programs related to different arm parts (Rizzolatti & Craighero,

2004; Caligiore et al.,  2008): PMC_1 neurons encode the wrist  posture of the robot

corresponding to the object orientation encoded in PP. PMC_2 neurons encode the hand

posture that the robot produces to accomplish the mental rotation results (i.e., to indicate

if two objects are same or different). The PFC (Fuster, 2001) also consists of 2 maps

implementing  a  working  memory  encoding  the  target  stimulus  (PFC_1,  32  x  32

neurons)  and  performing  the  matching  process  (PFC_2,  64  x  64  neurons;  cf.

Baldassarre, 2002, and Baldassarre, 2003, for  an embodied neural-network  model of

planning based on visual imagery and using a goal-matching mechanism).

The visual input for the model is the captured image from one “eye” (camera) of the

simulated iCub robot. The edge information for the object on the left is passed to the PP,

while the one for the target object on the right is sent to the PFC_1. The target object is

used as a reference for the rotational process. The robot has to mentally rotate the object

encoded by PP and check if it is the same or it is different with respect to the target

object encoded in PFC_1. For each image, PP pre-activates all possible wrist postures in

PMC_1. This pre-activation is equal to 0.2 and represents the possible actions afforded

by the current image in PP. At the same time, PFC_1 supplies a bias signal to PMC_1 to

lead to the full activation, equal to 1.0, of one desired final wrist posture among the ones

afforded by PP. This posture corresponds to the desired final orientation of the object

that the robot has to (mentally) accomplish to overlap the image within PP with the

target image within PFC_1. In parallel with these processes, the PFC_2 performs the

matching  process.  PFC_2  is  formed  by  a  Kohonen  self-organizing  map  (SOM;

Kohonen, 2001) which takes inputs from PP and PFC_1 and represents each possible

combination of their activation as a whole cluster.  This represents the current situation
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used by PFC to decide what to do (cf. Caligiore et al., 2010). The winning clusters of

PFC_2 cause the PMC_2 activation, in turn encoding the answer of the system.

M1 consists of two areas M1_1 and M1_2. M1_1 is a SOM map (64 x 64 neurons)

responsible for encoding a combination of the current posture from SS and the desired

posture from PMC_1. The neural activation of M1_1 feedbacks to SS as reference copy

of  the  motor  program  during  the  mental  rotation  process  (see  below).  M1_1  also

triggers a wrist rotation movement through M1_2. M1_2 is a neural array formed by 10

x 30 neurons grouped in three separated clusters (N1, N2, N3). The activation of N1

causes a 30° clockwise rotation of the wrist; the activation of N3 causes a 30° counter-

clockwise rotation of the wrist; the activation of N2 does not lead to any rotation of the

wrist.

C. The simulated mental rotation process

This  section  briefly  summarizes  how  the  model  reproduces  the  mental  rotation

processes.  The  following  points  refer  to  the  model  functioning  after  the  learning

processes, illustrated in Sec. D., have terminated. 

Affordance-based action pre-activation (C1): 

The left object image encoded by PP neurons pre-activates all the possible write

postures within PMC_1 at the same time. Since one object could assume 7 different

orientations, we have 7 different clusters of neurons pre-activated within PMC_1. This

affordance-based pre-activation of possible actions mimics the preparatory processes for

actions present when people see an object.

Action selection (C6): 

PFC_1 supplies a bias signal to PMC_1 to lead the full activation (with a level of

neural  activation  of  1.0)  of  one  affordance/action  among  the  elicited  ones  so

transforming it  into the representation of a  specific  desired final wrist  posture.  This
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cluster represents the desired posture that the robot has to (mentally) reach to mentally

rotate and overlap the image within PP with the target image within PFC_1.

Mental rotation by the inverse model (C7, C8) and the forward model (C10, C2): 

The desired wrist posture encoded by PMC_1 and the current wrist posture encoded

by the SS are combined within M1_1 (C7, C8). Together with C9 connections, this

forms an inverse model (inverse models map the current state and the desired state into

the action needed to move from the former to the latter one). M1_1 and SS form a

forward model (forward models map the current state and planned action into the future

state).  In  particular,  the  winning  cluster  within  M1_1  evokes  a  cluster  within  SS

corresponding to the next anticipated wrist posture (C10). In turn, this cluster within SS

activates the new rotated image within PP (C2), so causing a mental rotation step. In

particular,  the connection C2 from SS to PP underlies the process  of mental  image

generation  based  on  the  anticipated  proprioception.  After  a  specific  proprioceptive

cluster in SS has been formed, this causes the corresponding image back to PP so that a

progressive sequence of clusters in SS will cause a corresponding progressive rotation

of the image in PP. 

In line with empirical evidence (Chu & Kita, 2008; 2011) the current proprioceptive

signal that affects the mental rotation processes based on the  activation of SS depends

on both the signal from M1_1 (C10) related to the planned action. This process might be

disturbed  by  the  current  actual  posture  that  is  does  not  move  (Figure  5.6).  In  this

respect,  we assume that  attention mechanisms not  explicitly  simulated here  (Logan,

1996;  Roelfsema,  Lamme,  & Spekreijse,  1998)  might  drive  the  system to  be  more

focused on the mental rotation task rather than on the wrist condition. This assumption

is supported by recent evidence showing the presence of reciprocal interference between

mechanisms  of  mental  rotation  and  the  deployment  of  visual-spatial  attention
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(Pannebakker et al., 2011). The effect of the attention focus assumed here is simulated

by  setting  (within  SS)  a  weaker  signal  from current  proprioception  than  from  the

forward model.

The  mental  rotation  in  this  work  is  achieved  through  a  training  strategy  that

considers  the  angular  difference  between  the  two  stimuli  of  the  task.  When  the

orientation of the left object is greater than that of the right target object, the model

generates a mental image of the left object rotated 1 step (30°) clockwise. In contrast,

the  model  performs  a  1  step  counter-clockwise  rotation  when  the  left  object’s

orientation is smaller than the right one. The RTs expressed by the model, proportional

to the discrepancy of orientation between the target and the rotated object, are strongly

dependent on the specific mechanisms assumed here to perform mental rotation. These

mechanisms are consistent with what might happen in the human working memory of

subjects engaged in mental rotation tasks. The model always uses the last image in PP to

perform the matching process. The maximum number of rotation cycles is set to 10,

more than needed by a maximum rotation, as in some cases the model cannot rotate the

image of one position in the first cycle and so requires extra rotations.

D. Learning process

Connections between maps are trained using Hebbian learning and SOM competitive

learning (summarised in Table 5.1), which are widely accepted as biologically plausible

learning  mechanisms  involving  cortical  areas  (Doya,  2000).  The  specific  Hebbian

learning method used in this model is the Oja rule (Oja, 1982).
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Table 5.1 The parameters used in the network.

Connection Type number of patterns Training cycles Type of output
C1 Hebb 14 84 Cluster of activity
C2 Hebb 14 84 Image
C3 & C4 Kohonen 98 10,000 Cluster of activity
C5 Hebb 196 1,176 Cluster of activity
C6 Hebb 14 84 Cluster of activity
C7 & C8 Kohonen 196 10,000 Cluster of activity
C9 Hebb 98 1,960 Cluster of activity
C10 Hebb 98 1,960 Cluster of activity

Now we describe  the  training  phases  leading  the  model  to  perform the  mental

rotation task. Learning of the inverse model (C7, C8, C9) and of the forward model

(C10, C2). The aim of the inverse model learning phase is to obtain the values of the

connection  weights  between  SS-M1_1,  between  PMC_1-M1_1 and  between  M1_1-

M1_2, needed to perform a wrist rotation (encoded by M1_2) driving the current wrist

posture (encoded by SS) towards the desired wrist posture (encoded by PMC_1). The

learning phase pivots on the following “motor babbling procedure” done with the object

rotated by the robot: (a) The robot assumes a random wrist posture within [-90°, 90°],

which is encoded by a Gaussian cluster within SS; (b) The random generator randomly

decides the direction of rotation (DR) and the number of rotations (NR). For example, if

DR = 1 and NR = 3, the robot rotates its wrist clockwise through 90° (3 x 30°). DR = 1

causes the activation of the neuron N1 of M1_2. NR = 3 implies that N1 is activated for

three sequential steps. We assume that “one time step” is the time the robot needs to

rotate its wrist through 30°; (c) The value of the wrist rotation is used to compute the

total rotation (in this case 3 x 30° = 90°) and, based on the current posture, this is used

to activate the PMC_1 map as a possible desired wrist posture; (d) PP neurons encode

the current object orientation; (e) At the end of each step the Kohonen rule is used to

update the connection values (C7, C8) in order to obtain different cluster within the

M1_1 representing all the combinations of the desired final wrist posture (PMC_1) and

the current wrist posture (SS); (f) Aside the SOM M1_1, at the end of each step we also
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train the forward model  (C10,  C2).  Each SOM cluster  (M1_1) is  associated by the

Hebbian rule, with the following wrist posture cluster (SS) which is in turn associated

(Eq.  4.1),  with  the  corresponding  object  orientation  (PP)  (this  corresponds  to

performing a rotation with an object in the hand and associating the felt proprioception

with the seen object image); (g) At the end of each step the clusters activated within the

SOM M1_1 are associated to M1_2 activated neuron (C9) using Eq. 4.5. The use of the

SOM M1_1 is necessary to learn all the possible combinations between current posture

(SS), the desired posture (PMC_1), and control signal (M1_2) needed to accomplish the

desired posture. Overall there are 7 possible desired postures encoded in PMC_1 and 7

x 14 possible combinations to be encoded in M1_1.

Learning the affordance-based action pre-activation (C1): 

The training pattern is formed by 2 series of rotating images which differ by 30

degrees of orientation per step. Each image is loaded in PP as the activity level of a set

of neurons in the map. The aim of the training process is to create a mapping between

the input image (PP) and the corresponding wrist postures of the robot encoded by a

cluster of active neurons (Gaussian tuning curve) within PMC_1. The signal from PP

pre-activates the clusters within PMC_1 with a value of 0.2 (this activation is obtained

by opportunely setting the maximum value of the C1 connection weights). This means

that the object can pre-activate several actions based on the seen object affordances. The

signal from PFC_1 allows the full activation, and hence the selection, of one cluster

(one desired posture) according to the organism's goal,  in our case the target image

within PFC_1. The training process is implemented using the Hebbian learning rule (Eq.

4.2).

Learning action selection (C6):

The training pattern is formed by 2 series of rotating images which have a 15°
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different orientation per step. Each image is loaded into the PFC_1 map as the activity

level of a set of neurons in the map. An important difference with respect to the pre-

activation of affordances training phase discussed above, is that here the aim of the

training process is to create a mapping (through Eq. 4.2) between the specific target

image  (PFC_1)  and  the  specific  wrist  posture  of  the  robot  encoded  by  clusters  of

activities (Gaussian tuning curve) within PMC_1. In this way the signal from PP pre-

activates within PMC_1 all the 7 possible desirable wrist postures related to the seen

object,  whereas the signal from PFC_1 supplies the crucial  bias  signal to select  the

desired wrist posture related to the target object.

Learning the matching and the answering processes (C3, C4, C5): 

The connections from PP and PFC_1 to the SOM PFC_2 (C3, C4) are responsible

for the matching process. When the network generates a mental image in the PP having

the same orientation as the target image encoded by PFC_1, then the process of learning

is triggered. The connections link two maps: one is PFC_1 (target image), which is set

at the beginning of each mental rotation and then kept fixed, and another is PP (the

current mental image). A training set for PFC_2 is a combination of all the possible

neural representations of PFC_1 and PP. PFC_2 forms a winning cluster of neuron for

each  two  specific  inputs.  As  there  are  14  possible  images  in  each  input  map,  196

clusters will be formed. To train PFC_2 the SOM learning rule (Eq. 4.5) was used. 

The answer  triggering  process  uses  the  connection  C5 from PFC_2 to  PMC_2.

When  two  images  fed  to  PFC_2  are  similar  the  robot  chooses  the  “YES”  answer,

otherwise it chooses the “NO” answer (the term “similar” meaning “approximately the

same”). The mental rotation ends when the cluster of alternative neurons in M1_2 is

close to the “stay still” cluster (N2).  When this  happens, the most salient cluster in

PFC_2 is used to produce the answer. Given the 196 possible combinations of inputs in
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the matching process,  half  of  them are  responsible  for  a  "Same" answer,  while  the

remaining half for the "Mirror" answer. Therefore, 98 regions in PFC_2, with respect to

the same image from the PP and PFC_1, activate one cluster in PMC_2, while the other

98 regions represent different images of the two input maps and so activate a second

cluster. In the current version of the model, the PMC_2 motor command is still not used

to supply a control signal for the iCub but is directly interpreted as the response of the

system.

After learning, an action potential of each neuron in the PMC_2 map is calculated

by using a dynamic competition method (Erlhagen & Schöner, 2002). To this purpose

PMC_2 is endowed with within-map all-to-all connections. The connections follow the

rule  of long-range inhibition and short-range excitation.  This  pattern of  connections

causes a dynamic competition process within the map. Neighbouring neurons which are

activated with a high input will receive excitatory signals and tend to form a winning

cluster of activity. In contrast, other neurons far from the winning cluster in the neural

space will receive an inhibition signal and their activity will be depressed.

The dynamic competition is used as a method to calculate the agent’s RTs so as to

compare the model results with RTs data in psychology experiments (Caligiore et al.,

2010). Unlike a simple feed-forward process in layered neural networks, the dynamic

competition process will be repeated until the action potential of at least one neuron in

the neural map reaches a specific threshold. The number of cycles needed to achieve

this threshold is used as simulated RTs (one cycle is assumed to correspond to 1 real-

time millisecond).

5.2.2 Results

The two stimuli  of the simulated mental rotation task were varied in  seven angular

positions in the range [-90°; 90°] with a step of 30°. Therefore, the maximum angular
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disparity between the two stimuli was 180° and required six rotational steps to mentally

overlap the left stimulus to the right target one. When the number of rotation cycles was

equal to 10, this indicated that the model could not correctly perform the mental image

rotation of the left stimulus and so it was forced to do the matching process by using the

last image.

Figure 5.7a shows the mental rotation steps (PP) and the matching (PFC_2) and

answering (PMC_2) processes for a successful trial. In this example the mental rotation

process takes 5 steps to rotate an image of a stimulus at -60° so as to match it to an

image of a target at 90°; both stimuli are object-A. The mental rotation process ends

when the rotated image reaches 90°. After that, the matching process within PFC_2 is

performed by using as input the neural activity of the target image in PFC_1, and the

rotated image in PP.  The neural  activation representing the matching process within

PFC_2 is shown in the third column of the last row in Figure 5.7a. The neural activity

within PFC_2 shown in the figure is the level of action potential  of each particular

neuron (within the range 0.0-1.0). A salient cluster that is indicated by the black spot is

the answer of the map. After applying a filtering process, the cluster with most activity

in PFC_2 is used as an input to PMC_2. The answering process of PMC_2 is indicated

in the fourth column of the last row in Figure 5.7a. The cluster of activity formed in the

left side of the map will cause the answer "YES" to be chosen. The blank panels in

Figure 5.7a indicate that the rotational steps needed in this sample are less than 10. 

In contrast, Figure 5.7b shows one case in which the model cannot rotate the left

stimulus of 0° into the 60° position of the target stimulus: as indicated by the panels

“Mental” and “Target” in Figure 5.7b, the final rotated object image is incorrect. The

model fails to rotate the image within 10 cycles, and so is forced to trigger an action by

using the last  image in  PP.  This  process  is  similar  to  a  guessing process  in  human
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subjects when the time to perform the mental rotation task is over. The model's failure

of this case might be caused by a mismatch cluster in SS caused by a noisy cluster

position in M1_1. 

Possible failures in rotation and response of the model mainly come from the map

M1_1 and connection C9 and C10. Because there are many possible patterns in M1_1,

these might overlap in part so generating incorrect or noisy activations in M1_2 and SS.

This property of the model simulates the error responses found in human subjects as a

consequence of incorrect working memory reconstructions of the rotated object images.

After testing the model with all possible pairs of stimuli used in the training set, the

model achieves a 97.95% (192 out of 196) success rate (rotation of the left stimulus to

match the target). The overall percentage of correct responses is 85.7% (168 out of 196).

As indicated by the RTs profiles shown in Figure 5.8a, when the angular disparity is

high the required number of cycles of rotation and RTs also increases.  The angular

disparity (x-axis) is calculated by using the difference in orientation between the two

stimuli. A 0° disparity corresponds to the left stimulus orientation being equal to the one

of the right target object (but can be from a different type of object). As indicated by the

RTs profile, there is no significant effect from the different types of object that are used

in rotation.

There are three types of errors incurred by the model. The first is from the situation

where  the  model  cannot  rotate  the  left  stimulus  to  match  the  right  one  within  10

rotational cycles. An error of this type causes a higher RTs than in normal cases, and

also an incorrect response. Secondly, as the connections from SS to PP underlie mental

imagery, a possible error in SS directly affects a mental image in PP. In some cases this

leads to a successful rotation by chance. In detail, when active neurons in M1_1 cause

an incorrect cluster in SS, this might be the cluster that causes the image of the target. In
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this case, the number of rotations will be less than usual. Last, even when the model can

successfully rotate the left stimulus the answer might not always be correct. The first

two errors are caused by a wrong neuron activity within M1_1 while the last error is

caused by PFC_2. 

As  we  mentioned  before  that  important  empirical  evidence  shows  that  mental

rotation processes are embodied in that they involve the same brain structures involved

in  overt  sensorimotor  processes.  In  particular,  various  experiments  show  that  the

performance of overt actions interferes or facilitates mental rotation processes (Wexler,

Kosslyn, & Berthoz, 1998; Wohlschläger & Wohlschläger, 1998; Wohlschläger, 2001).

We ran an experiment with the model to start to investigate these phenomena, which are

illustrated in the following. 

The proprioceptive signal in SS has been simulated by using the current wrist angle

of the robot. This process acts as a cluster pre-activating the map SS. When the position

of  the  pre-activated  cluster  and  of  the  cluster  caused  by  M1_1  are  the  same,  or

overlapped, this should support the rotational processes and so the RTs are expected to

be reduced. In contrast, if they are different the dynamic competition process should

take a longer time to activate the most salient cluster within the map.

The results, illustrated in Figure 5.8b indicate that the model produced different RTs

profiles when matching, mismatching, or no proprioceptive signals were supplied (as in

the simulations presented above) to SS. In the matching conditions the signal from the

current  wrist  posture pre-activated the same cluster in SS as the one proprioceptive

signal. In contrast, in the mismatching condition a random cluster is sent to SS, so the

competition within SS has to use more cycles to form a salient cluster and this slows

down the RTs. However, the perturbed proprioceptive input does not affect the accuracy

of the response. Therefore, in the current setting the signal from the wrist proprioception
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affects only RTs.

    

    (a)     (b)

Figure 5.7 Mental image rotation steps: (a) rotational steps in the case that the model is able to create a

sequence of rotated images to reach the target orientation; (b) case in which the model is unable to rotate

the seen object. The matching and answering processes are represented by the neural activation of the two

bottom-right graphs in both (a) and (b).

     

(a)              (b)

Figure 5.8 The comparison of response time profiles with different proprioceptive signals. (a) Difference

of response time profiles between different pairs of stimuli; AA denotes that the left stimulus is object-A

and the target object-A, while AB, BA, and BB denote the other possible combinations. (b) Difference of

response times when supplying a matching, mismatching, or no proprioceptive signal (corresponding to

the normal operation of the model) to SS.

Although preliminary, the results of the experiment represent an important starting
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point to design future extensions of the model directed to fully account for the relations

existing between covert and overt mental rotation processes.

5.2.3 Discussion

Various studies support the view presented here for which mental rotation processes rely

heavily on sensorimotor brain structures that play an important part in over action. In

this respect, however, it is possible that the degree of interaction of the two classes of

processes change during development.  For example,  in studies of mental rotation in

human children an interesting finding indicates that the link between motor performance

and mental rotation are more pronounced in children than in adults (Funk, Brugger, &

Wilkening, 2005; Frick et al., 2009). However, the empirical study by Krüger and Krist

(2009) showed opposite findings in which the motor process was less pronounced in the

participants  aged 5-6 years  than in  7 year  old children and in  adults.  The speed of

mental rotation also depends on age and improves with development (Kail, Pellegrino,

& Carter, 1980). These phenomena might be addressed in future experiments testing the

model at different phases of learning or considering other types of learning processes

like reinforcement learning (e.g., Barto and Sutton, 1998),  applicable in a modelling

neurorobotic  context  as  here (Ognibene,  Rega,  & Baldassarre,  2006;  Herbort  et  al.,

2007), that allow overcoming the limitations of associative forms of learning as those

used here (Caligiore et al., 2008). 

Other important aspects not considered here are related to other types of feedback

beside proprioception. In this respect, the visual input of seen hands, not modelled here,

plays  a  central  role.  Indeed it  might  be  combined with the  proprioceptive  signal  to

produce a matching/mismatching effect as the one shown here for proprioception in SS.

The role of seen gestures has not been studied in depth yet, so there is no evidence on

whether people benefit from such an input when dealing with mental rotation problems.
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Some researchers (e.g., Goldin-Meadow, 2005) claim that even blind people produce

gestures when they talk. This might suggest the importance of motor processes over

perceived  image  of  the  hands  or  objects.  In  addition,  motor  processes  and  visual

perception of moving hands might be seen differently in different contexts. In particular,

attention  mechanisms  may  lead  the  subject  engaged  in  the  mental  rotation  task  to

neglect the seen hands to better focus on the task (Pannebakker et al., 2011). The model

might face this problem by sending an additional visual input to PC, an important locus

for the integration of proprioceptive and visual information (Hagura et al., 2009).

The model generates errors but in its current version it does not do so in relation to

the angular disparity and hence the difficulty of the rotation task is as it happens in

human subjects. This limitation might be investigated in future work. For example, at

the moment the model  can process only two types of objects  and this  might  create

mental  rotation  processes  that  do  not  degrade  with  the  number  of  rotation  steps.

Endowing the model with the capacity to rotate any type of object  might make it more

prone to errors when the rotation task becomes more challenging. To permit the rotation

of unseen objects, the object orientation detection function might be separated by the

object identification one, e.g., using an inferotemporal cortex (IT) map whose neurons

encode objects identities independently of their orientation (Goodale & Milner, 1992).

Due to  individual  differences,  people  can  apply  a  variety  of  strategies  to  solve

mental rotation tasks such as:  using their  own hand to indicate the movements of a

stimulus,  imagining  rotation  of  the  stimulus  itself,  or  even  using  non-rotational

strategies. There is no right or wrong strategy to solve mental rotation tasks. In future

work, the integration of some of these abilities and strategies might be incorporated in

the model to account for the variety of human performances in solving mental rotation

tasks.
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Chapter 6

Generalisation on mental rotation skills

Despite the model proposed in chapter 5 is able to solve a typical mental rotation task,

the model has significant limitations: it lacks mental rotation generalisation capability

for novel objects; it  generates error rates related to mental rotation tasks that do not

reflect  the  inherent  difficulty  of  the  tasks  themselves,  due  to  the  decision  making

component of the model being based on a rigid non-biologically plausible mechanism,

which leads the model to an abrupt drop in performance when the images to be rotated

become increasingly complex; it does not fully exploit  the sensorimotor possibilities

rendered by its robotic embodied nature (e.g., to investigate the relation between mental

rotation and interference/synergy with current proprioception and gestures). These are

relevant topics studied in the following literature  (e.g., Wexler, Kosslyn, & Berthoz, A.,

1998;  Wohlschläger  &  Wohlschläger,  1998).  Finally,  the  model  was  tested  with  a

simulated robot using the iCub simulator.

This chapter propose a new neurorobotic model of mental rotation that builds upon

the prior model (chapter 5) and overcomes its limitations. Specifically the new model

has some generalisation capabilities to transfer the mental rotation processes acquired

with a small set of 2D visual training stimuli to novel 2D visual objects. Moreover, it

employs a flexible decision making mechanism, based on biologically plausible models

of decision making (Usher & McCelland, 2001; Bogacz et al., 2006), that reproduces an

error rate that varies gradually with the difficulty of the task. Further, its mental rotation

capabilities  could  be  challenged  with  overt  movements  of  the  robot,  congruent  or
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incongruent with the covert mental rotation process, to investigate the effects on mental

simulation. The model is tested through implementation on the iCub humanoid robot

(Sandini,  Metta,  & Vernon,  2007;  Metta  et  al.,  2008).  This  is  relevant  not  only  to

facilitate the inclusion in the model of some issues relating to embodied cognition, but

also to test the robustness of the model to the variable conditions of the environment

and of the robot. For example, in the tests presented, the images from the robot camera

changed  in  different  trials  due  to  luminance  changes  within  the  environment,  the

variable response of the camera and the accuracy limitations of the camera motors.

6.1 Experiment 3: Mental Rotation and Generalisation Skills

In  this  experiment  we  propose  a  new  model  of  mental  rotation  in  robots  that

substantially improves the model proposed in chapter 5 (Seepanomwan et al., 2013a;

2013b) to overcome the limitations presented above. In detail, the model can generalise

the mental rotation ability acquired by the training procedure by performing mental

rotation and matching on stimuli never seen before. Moreover, in the new model the

error  rate  can be recorded according to  the difficulty  of  the task since the decision

making part of the model is based on a flexible stochastic system allowing the model to

face  increasingly  difficult  and  novel  objects  while  exhibiting  abilities  that  do  not

degrade abruptly.

The proposed model has been deployed and tested on the real humanoid robot iCub

(Metta et al., 2008), instead of its simulator (Tikhanoff et al., 2008). This is an important

advance  with  respect  to  the  previous  version  of  the  model.  Real  world  robotic

applications, indeed, have to be robust with respect to the variable conditions of the

environment, electronics and mechanics of the robot. For example in our case, even

with the same configuration of the environment and of the robot setting, the image from
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the  cameras  of  the  robot  slightly  changes  at  two  different  time  steps  because  of

changing light  intensity,  variable  responses  of  the  cameras,  and limited  accuracy of

actuators that affect the position and orientation of the cameras.

6.1.1 Methods

A. The iCub humanoid robot, the stimuli, and the mental rotation task

The iCub humanoid robot:

The iCub is used here as a participant of a typical psychological experiment on

mental  rotation  (Shepard  &  Metzler,  1971;  Wexler,  Kosslyn,  &  Berthoz,  1998).  It

perceives visual stimuli via its eyes (web cameras). The cameras are set to 640x480-

RGB mode. iCub is a many degrees of freedom (DoFs) robot and here we use the joint

number  5  of  the  right  arm  affecting  the  robot  wrist  angle.  In  the  mental  rotation

experiment we devised here the robot does not hold real objects. However, during the

acquisition of the mental rotation skills the robot moves its wrist in order to assume the

wrist orientation useful to hold the mentally rotated object and read the wrist position

through its encoder.  Within the model the mental rotation process is affected by the

overt action (i.e., the wrist movement and posture), in line with recent evidence about

the role of the overt actions on mental rotation processes in humans (Wexler, Kosslyn,

& Berthoz, 1998; Wohlschläger, 2001).

Stimuli:

Figure 6.1 illustrates the three sets of stimuli shown to the robot on a computer

screen during the mental rotation. The stimuli are coloured in red to make it easier for

their detection by the iCub’s camera. They are carefully designed to represent different

levels of difficulty in the mental rotation task. Each set (a, b, c) consists of three original

objects (the left object in each pair) which can assume four orientations (-90°, -45°, 0°,
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and 45°) and can have the main of the mirror appearance. Each image shown to the

robot  is  formed  by  one  object  shown two times:  the  right  object  is  the  one  to  be

mentally rotated (henceforth “rotated object”) while the left one is the target (henceforth

“target object”). Thus, each original object can be used to generate 64 different pairs of

stimuli. Stimuli of the set (a) and (b) contain a clear orientation main axis. Stimuli from

set (a) are used for training while those from set (b) for testing. Stimuli from set (c)

represent a second more difficult test set as they do not have a clear orientational axis. 

1 2 3

a) Training and recognition test

4 5 6

b) Generalization test 1

7 8 9

c) Generalization test 2

Figure 6.1 Stimuli used for training and recognition test (a) and for generalization tests (b, c). Each image

is formed by one object shown two times, here with a 0° orientation and with main appearance.

The mental rotation task:

As in typical mental rotation experiments with humans (e.g., Shepard & Metzler,

1971; Wexler, Kosslyn & Berthoz, 1998) the robot has to compare two visual stimuli

that can be different in orientations and appearance (main or mirror), and has to decide

if they are the same or different. In this kind of task human participants normally report

that in order to make a decision, they mentally rotate one object, clock-wise or counter
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clock-wise,  until  it  visually  matches  or  mismatches  with  the  other  one  (Shepard  &

Metzler,  1971;  Wexler,  Kosslyn  & Berthoz,  1998).  The  simulation  of  this  problem

solving  strategy  is  the  core  process  of  the  model.  The  stimuli  are  displayed  on  a

computer screen in front of the robot as showed in Figure 6.2 (bottom right).

Once the robot has been trained to acquire the mental rotation ability (see this Sec.

on  learning),  it  is  tested  in  three  conditions:  the  recognition  test  (Recog);  the

generalization test 1 (Gen-I); and the generalization test 2 (Gen-II). Since in each test

the model uses three different objects to create pairs of stimuli, the number of repeats

showing the task for each test is 64 x 3 = 192.

B. The model: architecture, functioning and learning

Model architecture:

The model consists of several parts, as illustrated in Figure 6.2, corresponding to the

main brain areas mainly involved in mental rotation processes (Lamm et al.,  2007).

These are the primary visual cortex (V1), the parietal cortex (PC), the premotor cortex

(PMC),  the primary motor  cortex (M1),  and the prefrontal  cortex (PFC).  Each area

accomplishes several functions and is formed by several subcomponents. In particular:

V1 is a 32 x 32 neural map. PC is formed by three distinct areas: the posterior-parietal

cortices (PP_1) and (PP_2), and the somato-sensory cortex (SS). PP_1 is formed by

three neural maps (32 x 32), PP_2 by one neural map (32 x 32) and SS by 4 units. The

units of PP_1 and PP_2 encode, respectively, the current and the next orientation of the

rotated object during mental rotation (Rizzolatti & Craighero, 2004), whereas SS units

encode the proprioceptive signal related to the robot wrist orientation (Caligiore et al.,

2010).

PMC is  formed by 2  components:  PMC_1 (four  units)  and PMC_2 (one  unit).

PMC_1 encode the desired orientation of the wrist to hold the rotated object in a certain
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orientation. The orientation of the target object is the final orientation that the rotated

object (PP_1) has to assume through the mental rotation process. The unit of PMC_2

encodes the answer resulting from the matching process: this leads the robot to use its

sound system to say “YES” or “NO” (see below). M1 consists of two areas, M1_1 (4 x

4 units) and M1_2 (three units). The units of M1_1 combine the signals from current

(SS) and desired orientation (PMC_1) to trigger a wrist movement through the units of

M1_2: the selection of n1 causes a 45° clockwise rotation of the wrist; the selection of

n3 causes a 45° counter-clockwise rotation; the selection of n2 dos not lead to  any

rotation. Finally, PFC is formed by PFC_1 and PFC_2, each formed by one neural map

(32 x 32 units). PFC_1 is a working memory used to store the target object orientation,

whereas PFC_2 is involved in the decision making process (Fuster, 2008). Most of the

components of the model are formed by neural maps activated using population code

methods (Pouget & Dayan, & Zemel, 2003). The population code theory claims that

information (e.g., on stimuli and actions) is encoded in the brain on the basis of the

activation of populations of units organized in neural maps having a broad response

field. In particular, each unit responds maximally to a certain value of the variables to

encode, and then progressively less intensely to values (based on a Gaussian function).

Some processes needed to acquire and exhibit mental rotation skills as, for example,

supervised  learning  and  action  selection,  which  are  possible  thanks  to  the  close

interaction between the cortical areas shown in Figure 6.2 and subcortical regions not

shown  in  Figure  6.2.  This  mainly  includes  the  cerebellum  and  the  basal  ganglia

(Alexander, Delong, & Strick, 1986; Middleton & Strick, 2000; Caligiore et al., 2012).

The  model  computationally  reproduces  some  of  the  functions  of  these  cortical-

subcortical circuits without explicitly simulating the subcortical areas involved. 

118



Model learning:

The input image is centred on the target or on the rotated object separately, and a red

colour filter is applied. The edges of each object are extracted with the Canny edge

detection technique (Canny, 1986), using the OpenCV library. The output from the edge

detection process is used to activate the input units of V1. The rotated image goes to the

three maps of PP_1 whose units encode the current stimulus (shape and orientation of

the  rotated  object).  In  particular,  only  one  of  the  three  maps  of  PP_1  is  activated

according to the planned wrist movement supplied by M1_2 (see below). If PP_11 is

chosen the image has to be rotated clockwise by PP_2, if PP_12 is chosen the image has

to be rotated counter-clockwise by PP_2, whereas if PP_13 causes no rotation in PP_2.

This  way  of  integrating  visual  and  proprioceptive  information  agrees  with  the

computational  hypothesis  on  how  the  parietal  regions  implement  the  spatial

transformation based on gain neural fields (Pouget & Sejnowski, 1997; Caligiore et al.,

2008).

Except for the initial step of the mental rotation process, when the units of PP_2

encode the rotated object as PP_1, during mental rotation the units of PP_2 encode the

predicted orientation of the rotated object. At the beginning of the rotation PP_2 causes

the activation of units within SS. This activation pattern encodes the wrist orientation

that the robot would assume to hold the object represented in PP_2 as each of the four

SS units encodes one of the four possible orientations of the objects.

The edge information on target object is sent to PFC_1. The target object is used as

the  goal  of  the  mental  rotation.  PFC_1  supplies  a  signal  to  PMC_1  through  the

connection C1 causing a pattern of activation in PMC_1. This pattern represents the

desired posture that the robot has to (mentally) reach to make a mental rotation useful to

overlap the image within PP _2 with the target image within PFC_1.
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The signal from SS is combined with the signal from PMC_1 to activate M1_1.

This encodes a combination of wrist posture useful to hold the current object (from SS)

and the desired wrist orientation to hold the target object (from PMC_1) to select a wrist

rotation by M1_2. In particular, M1_1 integrates information from SS and PMC_1 by

signal multiplication: each unit in PMC_1 connects to all units in a particular row of

M1_1, while each unit in SS does the same to a particular column of the 16 units in

M1_1, the four diagonal central units are connected to n2, six units at the top right area

are connected to n3,  and six units  in the bottom left  area are connected to n1. The

process of action selection described here abstracts  the action selection mechanisms

involving motor cortex-basal ganglia loops (Alexander,  Delong, & Strick,  1986).  As

units  in  SS  and  PMC_1  are  activated  by  Gaussian  functions,  the  M1_1  has  a  2-

dimensional Gaussian activation calculated as follows:

m11k=pmc1i∗ss j (6.1)

M1_2 units activate as follows:

ni=G( || M 11- wi ||) (6.2)

where  ni denotes the activity level of output unit  i in M1_2,  G is a Gaussian transfer

function,  M1_1 refers to  a  vector  of neural  activity in M1_1, and  wi is  a vector of

connecting  weight  between  units  in  M1_1  and  a  particular  unit  (ni)  in  M1_2.  The

following equation is used to calculate the probability value that a unit in  ni M1_2 is

selected (softmax function (Whiteson, Taylor,  & Stone, 2007)):

P(ni)=exp  (
ni

τ
)/∑

i=1

3

exp  (
ni

τ
) (6.3)

where P is a probability function that gets activation of unit ni as input and generates a

probability value according to the activity level of all units in M1_2, τ is the temperature

parameter, set to 0.3, which regulates the sharpness of the selection.

The signal from M1_2 is used as input for PP_1 to select the suitable direction of
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the mental rotation through the selection of PP_11, PP_12, or PP_13 within PP_1. The

activation of the units of the selected map in PP_1 causes a rotated image in PP_2. The

feedback connection PP_2-PP-1 is used to update the input of PP_1 after each rotation

step, in order to have a rotated image in one of the three maps of PP_1 (see Baldassarre

(2003)). Forward and bidirectional planning based on reinforcement learning and neural

networks in  a simulated robot (Butz,  Sigaud, & Gérard,  2003; Ziemke, Jirenhed, &

Hesslow, 2005; Grush, 2004). PP_1 and PP_2 work as a forward model with a feedback

connection  from  the  predicted  state  (PP_2)  to  the  current  state  (PP_1)  allowing  a

sequence of mental rotations ending when the matching process is triggered.

The rotated image in PP_2 causes the activation of a new pattern in SS encoding the

wrist orientation corresponding to the object in PP_2. When the most activated units in

SS and in PMC_1 coincide, the central 0° rotation unit of M1_2 is strongly activated

and the mental rotation process terminates and the robot can give an answer. PMC_2’s

unit encodes the result of the matching process, that is the type of vocal signal the robot

produces to say “YES” or “NO” to indicate if the two objects are same or different.

PFC_1  is  connected  to  PFC_2  by  one-to-one  positive  connections  set  to  +1  (C7),

whereas PP_2 is connected to PFC_2 by one-to-one set to -1 (C8). Thus, the units of

PFC_2 encode the difference between the signals supplied by PFC_1 and PP_2. Same

images  have no or  a  little  un-overlapped units,  while  different  images  have  a  large

number of  non-overlapped units  so PFC_2 has a  higher  activation.  PFC_2 activates

PMC_2 through the connection C9. If the activity of PMC_2 unit exceeds a threshold

(5% of all active units in PFC_1) this indicates that the two objects are different and the

robot gives as answer "NO" otherwise “YES”. The maximum number of rotation cycles

is set to 15. If the number of rotation cycles achieves this number the model could not

perform the mental image rotation on time, so the answer is considered to be “NO”.
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Figure 6.2 The neural network model for mental rotation. Each box represents the model components.

The arrows represent information flows from one component to another. The arrows with the letter “C”

are the connections trained during the learning phase while those with a letter “C” are hardwired.

Model learning:

We assume that the system uses three random points, as an abstraction of the salient

features  of  the  complete  images  seen in  life,  to  train  C6.  In  this  way,  the  learning

procedure of the forward model is easier and faster. Figure 6.3 and Figure 6.4 illustrate

the  training.  Filled  dots  represent  an  image  encoded  in  PP_1  whereas  empty  dots

represent the desired image that PP_2 units should encode after the rotation. This latter

image is obtained by using “cvWarpAffine” the image transformation function of the

OpenCV library.

In Figure 6.3,  the left  panel  illustrates the creation of a  45° clock-wise rotation

image related to three dots, while the right one shows the opposite pattern of rotation.

Arrows, solid lines, and dashed lines in both panels are used to illustrate the direction of
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rotation. Small red circles are the centre of rotation. The placing of the three random

dots within the area of dashed square (23x23) was done to prevent the cases that the

rotated dots fall outside the large square (32x32).

Figure 6.3 Patterns generation for the forward model learning

The three random dots encoded by PP_1 are considered the input pattern of the

forward model (i.e., current state in Figure 6.4) while the predicted dots encoded by the

units of PP_2 are the output (i.e, predicted state in Figure 6.4). Only one of the three

maps of PP_1 is activated according to the wrist orientation decided by M1_2. One unit

within M1_2 is randomly selected and the selected wrist rotation is used to choose the

corresponding  map  of  PP_1,  which  is  activated  with  the  abstract  dots  image.  The

training of the forward model consists of creating an association between the current

image encoded by one of the PP_1 maps, and the next desired image encoded in PP_2

(connection C6) based on a simple delta rule:

Δ wij=η ( y i−aij) x j (6.4)

where  ∆wij is  the  weights  change of  the  connection  between unit  i  and j,  xj is  the

activation potential of input unit  j, yi is the activation potential of output unit  i, aij is

actual output between unit i and j, η is the learning rate which is set to 0.1.
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Figure 6.4 Forward model learning

The  acquisition  of  the  forward  model  for  mental  rotation  might  pivot  on  the

supervised  learning  processes  implemented  by  the  cerebellum (Doya,  2000)  and  in

particular  in  this  case,  by  the  parieto-cerebellar  and  motor-cereballar  cortical  loops

(Middleton & Strick, 2000; Caligiore et al., 2012). Note that, the predicted image in

PP_2 will be degraded over a number of rotations.

We now focus on the training of C2 (the training of C3 is done in the same way)

which mimics a sort of motor babbling process used by infants to acquire motor skills

(see Caligiore et  al.,  (2008)).  We assume that  the robot  holds  an object  and this  is

represented in PP_1 and PP_2. This means that in SS the unit corresponding to the wrist

orientation that the robot would feel to hold the object in PP_2 is activated. The units of

SS and PMC_1 have the Gaussian activation: 

ssi=G( ||PP - w i ||) (6.5)

pmc1i=G(|| PFC1 - wi ||) (6.6)

where  ssi and  pmc_1i are activity  level of output  unit  i  in the map SS and PMC_1

respectively, G refers to a Gaussian transfer function, PP is a vector of neural activity in

PP,  PFC_1 is a vector of neural activity in PFC_1, and  wi is a vector of connection

weights between two neural maps. A Kohonen learning rule (Eq. 6.7) is used to train the
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connections C2 by artificially selecting as the winning unit in SS the unit encoding the

wrist posture:

Δ wi=η ( x i−wi ) ;wi=wi+ Δwi (6.7)

w i=w i /∑
i=1

n

wi (6.8)

where ∆wi denotes the weights change of unit i, xi denotes activation potential of unit i,

η denotes the learning rate which is set to 0.1, and  wi is a current weight value. This

process is repeated for all the possible orientations that the objects of the training set can

assume. 

6.1.2 Results

The  results  reported  in  this  section  are  obtained  testing  the  model  10  times  and

averaging the results. Each time all connection weights are reassigned with different

random  values.  Two  types  of  information  are  recorded  during  the  experiment:  the

response time (RT), which is the number of mental image rotation steps, and the error

rates (ERs) of the “YES”-“NO” answers.

The graph of Figure 6.5a shows RTs profiles from the three tests: Recog, Gen-I, and

Gen-II. The result shows how the orientation disparity between the target and rotated

objects directly affects RT. In particular, the increase of the disparity causes a higher

number of repeated mental rotation steps to give an answer. This is in agreement with

the result from experimental psychology that often found RT linearly increasing with

the stimuli disparity (Shepard & Metzler, 1971). More in particular, the RTs of Recog

and Gen-I follow a similar trend while Gen-II is quite different. In this case the RT is

lower and it does not increase if the disparity is greater than 90°. Moreover, when the

disparity is equal to 0°, Recog and Gen-I do not cause any rotation whereas Gen-II

performs one rotation step on average.
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Figure 6.5b shows that the ERs for Recog is 18.70%, while it is equal to 24.70%

and to 54.30% for Gen-I and Gen-II respectively. When considered for each particular

disparity, as indicated in Figure 6.5c, ERs profiles at 135° disparity of Recog and Gen-I

drop significantly. The error rate of Gen-II at 0° is a the same level as Recog and Gen-I,

but increases drastically for a disparity of 45° and remains at that level for a disparity of

90° and 135°.

a) Response time profiles

b) Overall error rates

c) Error rate profiles

Figure 6.5 Experimental results
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6.1.3 Discussion

The results show how the model is able to generalize mental rotation skills to novel,

never seen objects. This is a remarkable result with respect to the previous version of

the model  (Seepanomwan et al.,  2013a; 2013b) and is an important achievement to

make the robot  able  to  work autonomously in  changing environments.  The forward

model circuits implemented by the parietal areas of the model are the core elements to

get this generalization skill. Moreover, the performance of the model during the mental

rotation  task  now exhibits  a  graceful  degradation  of  performance  to  the  increasing

difficulty of the task with respect to the previous version of the model. This implies that

the model  is  more accurate  at  performing the mental  rotation task.  The affordances

processing and the stochastic softmax action selection system implemented within the

premotor and motor areas of the model are the key elements allowing us to get this

improvement. For example, for the Gen-I test, where the stimuli are unseen and consist

of many details, the model is able to rotate and compare the two objects in a good way

achieving some levels  of  generalization with an acceptable error rate.  However,  the

performance  in  this  case  is  less  good  with  respect  to  the  Recog  condition.  This  is

because the current orientation pattern (SS) and the desired orientation pattern (PMC_1)

are less known, as the robot sees the objects for the first time. Thus, M1_1 and M1_2

have a greater uncertainty and the robot makes more errors. This process is even more

evident for the Gen-II test and indeed the error rate is greater. In this case the objects do

not activate a clear orientation pattern in SS and PMC_1, so causing a great degree of

uncertainty within the stochastic process which decides the wrist rotation in M1_2.

RT in the Gen-II test is the smallest because the stimuli of Gen-II cause a similar

activation of the units of PMC_1 and SS as the objects do not have a clear orientation.

As a consequence, M1_1 tends to always activate the central units. M1_2 will tend to
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select  the  “no  rotation”  unit  n2  and  the  mental  rotation  will  be  stopped  quickly.

Similarly, the ERs of Gen-II is the highest indicating that it interprets most of testing

stimuli incorrectly. In detail, it often answers “YES” instead of “NO” in  cases when the

two stimuli  are  different  because the square like shape of the objects  decreases  the

differences between the target and rotated objects.

The low ERs at 135° for Recog and Gen-I tests depend on the image reproduction

and matching processes. When the model decides to rotate the object, the new image in

PP_2 is slightly changed. This does not affect the overall shape of the object but the

details are removed. This benefits the case of stimuli that have major different parts, in

particular  those  of  the  Recog  and  Gen-I  (see  Figure  6.1).  By contrast,  stimuli  that

contain no major differences, as in Gen-II, are judged the same in most cases. 

6.2 Experiment 4: Generalisation, Decision Making and Embodiment

 Effects in Mental Rotation

This experiment,  in addition to  the tasks studied in previous model (chapter  5),  we

employ a flexible decision making mechanism, based on biologically plausible models

of decision making (Usher & McCelland, 2001; Bogacz et al., 2006), that reproduces an

error rate that varies gradually with the difficulty of the task. Further, its mental rotation

capabilities are challenged with overt  movements of the robot that are congruent or

incongruent with its covert mental rotation process to investigate the effects of mental

simulation. 

Several components of the model are formed by neural maps using, in specific or

abstract ways, population codes. Neural maps are suitable to model cortical areas as

they capture their important 2D topological organisation and also facilitate the analysis
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and  visualisation  of  the  processes  happening  within  them  (Caligiore  et  al.,  2014).

Population  codes  (Pouget,  Dayan,  &  Zemel,  2003)  are  based  on  the  idea  that

information (e.g., on stimuli and actions) is encoded in the brain on the basis of the

activation of populations of units organized in neural maps having a broad response

field. In particular, each unit responds maximally to a certain value of the variables to

encode and then progressively less intensely to more distant values. This response can

be  obtained  with  short-lateral  excitatory  connections  and  long-lateral  inhibitory

connections, or in a more abstract fashion (as for most maps) with Gaussian functions.

To implement the decision making process involved in the mental rotation task the

model uses a mutual inhibition model (Usher & McClelland, 2001; Bogacz et al., 2006).

In this  model,  closely related to the architecture and neural competition that can be

implemented by population-code maps,  different decision options are represented by

neural  units  that  accumulate  in  time the evidence (support)  on the goodness  of  the

different options, compete through reciprocal inhibitory connections of the units, and

finally produce a decision when the activation of one of them reaches a given threshold.

This  model  (together  with  other  analogous  models;  Bogacz  et  al.,  2006)  is  very

important  as  it  allows  the  reproduction  of  the  reaction  times  often  recorded  in

psychological experiments (Erlhagen & Schöner, 2002; Caligiore et al., 2010; Caligiore

et al.,  2008) and at  the same time is one of the most accredited models of decision

making processes taking place in the brain (Bogacz, 2007).

In the brain, several processes needed to acquire and express mental rotation (e.g.,

learning from experience, and selection of cortical contents) are putatively implemented

by cortical areas working in close cooperation with sub-cortical regions, in particular

basal  ganglia  and  the  cerebellum  with  whom  they  form  whole  integrated  systems

(Alexander, DeLong, & Strick, 1986; Middleton & Strick, 2000; Caligiore et al., 2013;
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Baldassarre,  Caligiore,  & Mannella,  2013).  For  simplicity,  the  model  reproduces  in

abstract ways such processes, e.g., to implement the decision making processes and the

mapping  of  the  object  representations  to  the  corresponding  arm  postures,  without

explicitly simulating these sub-cortical regions.

6.2.1 Methods

Simulated participants

The iCub humanoid robot was used to simulate the behaviour of the participants of the

mental rotation experiment (see more details in chapter 4).

The stimuli

Figure  6.6  shows  the  three  sets  of  2D  abstract  objects,  broadly  similar  to  those

employed by Hochberg & Gellman (1977), used as stimuli during the mental rotation

tasks.  The stimuli  were colored in  red to  make easier  their  detection by the  iCub's

camera. They were designed to create different levels of difficulty in the mental rotation

task. Each set (A, B, C) consisted of three objects which could assume six orientations

(90°, 60°, 30°, 0°, -30°, -60°) and could have a “basic” appearance (the one shown in

the  figure)  or  an  appearance  corresponding  to  the  “mirror”  image  of  the  basic

appearance.  The  stimuli  of  the  set  A and  B,  three  for  each  set,  contained  a  clear

orientation  main  axis  (we  will  see  this  is  important  to  perform  mental  rotation).

However, the stimuli of set B were formed by more features than the stimuli of set A.

Stimuli from set A were used for training the model and for a recognition test (Recog;

Figure 6.6a)  whereas  those  from set  B were used in  a  test  directed  to  measure the

generalisation  capabilities  of  the  model  (Gen1;  Figure  6.6b).  Stimuli  from  set  C

represented a second more difficult data set as they did not have as strong orientation

axis as the previous two sets. This set was therefore used for a second, more challenging
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generalization test (Gen2; Figure 6.6c). Figure 6.6d gives some examples of pairs of

stimuli shown to the robot during the tests Recog, Gen1 or Gen2 (each test involved

showing multiple pairs in different trials). In each object-pair image the object on the

left was the target object (henceforth called “target object”) and the object on the right

was the one to be mentally rotated (henceforth “rotated object”). Each object was used

to generate 144 object-pair images (144  = 22 x 6 x 6, here 22 is the number of the

possible combinations of the basic and mirror appearance of the target and the rotated

objects, and 6 is the initial possible orientations of the target and the rotated objects).

The number of object-pair images used in each test was therefore 432 (144 x 3, where 3

is the number of objects for each set), and  the one used in the three tests was 1296 (432

x 3).

The training of the model's basic ability to rotate objects, putatively acquired by the

real experiment participants before undergoing the experiment tests, was done on the

basis of images each formed by 3 dot-points randomly located in the image. This was

done because  preliminary  experiments  showed that  training  the  robot  with standard

objects (e.g., as those used to during tests) was computationally very demanding and

progressively converged to abilities as those acquired by the robot with the three-dot

simpler images.
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1 2 3
(a) Objects used for learning and for the recognition test

(Recog)

4 5 6
(b) Objects used for the generalization test 1 (Gen1)

7 8 9
(c) Objects used for the generalization test 2 (Gen2)

      

Recog Gen1 Get2
(d) Sample pairs of stimuli

Figure 6.6 (a) Stimulus set A used for training and for the recognition test (Recog). (b, c) Stimulus sets

used for the generalization tests (respectively Ge1 and Gen3). (d) Three object-pair images used during

the tests. In the three examples, the left object is the target object, here rotated 90° to the left, whereas the

right object is the object to be rotated, here having a 0° rotation (in all three examples the rotated object is

different from the target object).

The mental rotation task

The robot  was involved in  a  mental  rotation task similar  to  those typically  used in

mental  rotation  experiments  with  humans  (e.g.,  Shepard  &  Metzler,  1971;  Wexler,

Kosslyn, & Berthoz, 1998). In the task, two visual stimuli having different orientation

(90°, 60°, 30°, 0°, -30°, -60°) and appearance (“basic” or “mirror”) combinations, are

shown to the robot on a computer screen as illustrated in Figure 6.7 (bottom right). The
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robot has to compare the two stimuli and decide if they are the same or different. The

model does not have attention control, so the behaviour of scanning the target and the

rotated objects with the camera is hardwired and performed in sequence.

Figure 6.7 The neural network model controlling the robot in the mental rotation task. The bottom right

picture shows the robot in front of the screen where it sees the target and the rotated objects. Thin arrows

indicate hardwired connections (fixed connection in most cases are set to 1). 

Model architecture and functioning of its components

The model architecture (Figure 6.7) is formed by several components corresponding to

the main brain areas involved in the mental rotation processes. The components of the
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model architecture are the early visual cortical areas (VC), the parieto-occipital cortex

(POC), the posterior-parietal cortex (PPC), the premotor cortex (PMC), the prefrontal

cortex  (PFC)  and  the  primary  motor  cortex  (M1).  Each  component  is  formed  by

subcomponents performing different functions. VC is an image-processing component

that extracts the edges of objects from the current image in a way which is reminiscent

of early visual cortex processes (Hubel, 1988). POC is formed by five neural maps of 32

x 32 units  each:  POCi encodes the current  imaged orientation of the rotated object

during mental rotation; POCl, POCs and POCr anticipate the image of the rotated object

if  a  left/still/right  mental  rotation of  respectively -30°,  0°,  30° of  the current  image

encoded in POCi is performed. Based on the planned movement supplied by PMCm,

only one of these three possible  rotations is  performed (for example,  leading to  the

rotated object image, encoded in POCr). The selected image is relayed to POCp that

encodes the predicted rotated image depending on the performed rotation.

PPC is formed by three components. PPCp is formed by six units and encodes the

proprioceptive signal related to the robot wrist orientation corresponding to the current

actual or imaged orientation of the mentally rotated object encoded in POCp. PPCt is

formed by six units and encodes the target orientation of the wrist corresponding to the

orientation of the target object encoded in PFCt. PPCc (6 x 6 units) combines the signals

from the current imaged wrist orientation (PPCp) and its desired orientation (PPCt) to

select a desired movement in PMCm.

PMC is formed by two components. PMCm is formed by three units that encode

three  possible  movements  (taking  place  in  M1,  here  not  explicitly  simulated),  i.e.,

respectively:  Ml  = -30°  anti-clockwise  “left”  rotation  of  the  wrist;  Ms = 0°  “stay”

rotation; Mr = 30° clockwise “right” rotation. PMCd is explained below as dependent

on PFC.
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PFC is formed by four neural maps of 32 x 32 units each.  PFCt and PFCft are

working  memory  maps  used  to  store  information  about  the  target  object  having

respectively its visual appearance or an appearance corresponding to the target image

flipped along the main object axis of the object. PFCtm and PFCfm compute the amount

of overlap (matching) between the rotated object image and respectively the basic and

the flipped target object to support the decision making process implemented in PMCd. 

Finally, PMCd is formed by two units activated by “evidence” from PFC on the

current matching (overlap) of the predicted rotated image (POCp) with respectively the

target object (PFCt; the overlap of the two images is encoded in PFCtm) or with its

flipped  image  (PFCft;  the  overlap  is  encoded  in  PFCfm).  On  this  basis,  PMCd

implements a decision making process (neural competition) selecting a “YES” or “NO”

response  mimicking  the  decision  to  press  one  of  the  two  response  buttons  of  the

experiments with humans (below we give further details on this). Table 6.1 illustrates

the main features of the neural maps used in the model whereas Table 6.2 summarizes

the main features and functions of the connections between them.

Table 6.1 Key features of the neural maps of the model

Map Area Encoding        Number of neurons

POCi POC Current object mental image 32 x 32

POCl, POCs, POCr POC Possible rotated object image 32 x 32

POCp POC Predicted object image 32 x 32

PFCt PFC Target object image 32 x 32

PFCft PFC Flipped target object image 32 x 32

PFCtm PFC Target/object match 32 x 32

PFCfm PFC Flipped target/object match 32 x 32

PPCp PPC Proprioception of wrist 6

PPCt PPC Target wrist orientation 6

PPCc PPC Target-actual orientation combination 6 x 6

PMCm PMC Planned wrist movement 3

PMCd PMC Decision “YES/NO” 2
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Table 6.2 Key features of the connections of the model

Connection Type Weights values Function Areas

C1, C2, C3 All-to-all Trained with delta rule Mental image rotation POC

C4, C5, C6, C7 One-to-one 1.0 Relays of information POC

C8, C9 One-to-one -1.0 Mental image for matching        POC→PFC

C10 Hardwired Flipping transformation Target object flipping PFC

C11, C12 One-to-one 1.0 Image orientation for matching PFC

C13, C14 All-to-all 1.0 Info in support of ''YES/NO”    PFC→PMC

C15 One-to-one -0.5 Dynamic competition PMC

C16 All-to-all Trained with Kohonen Orientation→proprioception      POC→PPC

C17 All-to-all Trained with Kohonen Target→desired wrist angle        PFC→PPC

C18 All-to-all {0.0, 1.0} Info on predicted angle PPC

C19 All-to-all {0.0, 1.0} Info on desired angle PPC

C20 All-to-all {0.0, 1.0} Action selection         POC→PMC

CN1, CN2, CN3 All-to-all 1.0 Selection of rotation         PMC→POC

Model overall functioning:

Each trial of the robot test is divided in succeeding time steps. At each step the robot

performs a mental rotation. At each step, the robot perceives the image of the target

object and of the rotated object in the computer screen via its left eye (camera). To this

purpose, the eye gaze (centre of the camera) is first focused on the target object and then

on  the  rotated  object  with  a  hardwired  movement.  The  two  images  are  red-colour

filtered  and  the  edges  of  each  object  are  extracted  with  the  Canny  edge  detection

technique (Canny, 1986; OpenCV library). The output from the edge detection process

is used to activate the input units of VC. The target-object image activates the PFCt

map,  that  stores  the  target  image  as  a  working  memory  and  this  activates  PPCt,

encoding the current target (i.e., desired) wrist orientation corresponding to the current

target object orientation.

Within POC, in the first mental rotation step POCi activates POCs, corresponding

to an anticipated image after a planned rotation of 0° (i.e., no rotation/still object). From

the second mental rotation onward, POCi activates one of the POCl, POCs, POCr maps
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depending on the planned movement (PMCp) and corresponding to a possible wrist

rotation of +30° , 0° , -30° respectively.

The activation of PFCt is used as the goal image of the mental rotation. To this

purpose, PFCt activates PPCt through connection C17 causing a pattern of activation

within it representing the desired posture of the wrist, corresponding to the target object

orientation.  Within PPC, PMCc combines the signal from PPCp, encoding the wrist

posture corresponding to the current orientation of the rotated object, with the signal

from PPCt, encoding the target (desired) wrist orientation, to suitably select a movement

within PMCm. This  integration is  done with a signal  multiplication similar  to  what

happens in parietal cortex (Pouget & Sejnowski 1997; Pouget, Dayan, & Zemel 2003).

In particular, each unit in PPCt is connected to all units in the corresponding unit row of

PPCc, whereas each unit in PPCp is connected to all units of the corresponding unit

column in PPCc: the activation of a PPCc unit is obtained by multiplying the activation

of the two input signals (see Figure 6.7; all the connections of C18 and C19 are equal to

1 when present; see Salinas & Abbott, 1996, for a neural-network implementation using

only standard additive neural operations to obtain gain-field effects as those obtainable

with multiplication). In more detail, PPCp and in PPCt are one-dimesional population

codes  encoding  the  object  orientation  in  terms  of  wrist  posture.  PPCc  is  a  two

dimensional  map encoding,  with a  population  code,  the  combination of  information

from PPCp and PPCt as follows:

PPCc ji=PPCt j∗PPCpi (6.9)

PMCm units receive the following activation from PPCc:

AM k=∑ ji
(wkji∗PPCc ji) (6.10)

where AMk is the activity of units Ml, Ms, Mr of PMCm and  wji are the connection

weights  from  PPCc  to  PMCm.  The  connection  weight  wji have  a  particular
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configuration: the 6 main-diagonal units of PPCc are equal to one only towards unit Ms

in PMCm and zero otherwise. The 15 units at the top right of the main-diagonal are

equal to one only towards unit Mr and zero otherwise, and the 15 units at the bottom left

are equal to one only towards unit Ml and zero otherwise. PMCm units are activated on

the basis of a softmax function ensuring an output that sums up to one for the three units

and hence can be interpreted as a probability used to randomly select one of the three

corresponding actions (Ml, Ms, Mr):

p(M k )=exp( AM k / τ)/∑q
exp( AMq / τ) (6.11)

where p(Mk) is the probability of selecting action Mk, exp(.) is the exponential function,

and τ is the temperature parameter of the softmax function (set to 0.1) that regulates the

sharpness of the selection. The stochastic process of action selection used here abstracts

the winner-take-all action selection mechanisms possibly implemented in basal ganglia-

motor  cortex  loops  (Alexander,  Delong,  &  Strick,  1986;  Baldassarre,  Caligiore,  &

Mannella, 2013) used in most models of these loops (Doya, 2000). 

The signal from PMCm is used as input to POC to select the suitable direction of

the mental rotation through the selection of either POCl, POCs, or POCr predictions.

Therefore,  the  units  of  these  maps  activate  only  if  they  receive  an  input  from the

corresponding units  of both PMCm and POCi.  This is  neurally  implemented with a

summation of the two signals and a threshold of 1.5. The selection of the activation

pattern of one of these maps causes the prediction of a rotated image in POCp. In the

next rotation step, the rotated image in POCp is fed back to POCi and to PPC (and

hence  PMC)  to  cause  the  next  mental  rotation,  thus  implementing  a  repeated

reverberation  of  information  through  POC-PPC-PMC  implementing  the  visual  and

motor  mental  rotation  processes.  Reverberation  mechanisms  similar  to  these  and

pivoting on forward models  (here implemented by the POCi-POCl/s/r neural networks)
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have been extensively used in the past as a proxy to represent planning based on mental

imaging  in  bioinspired  computational  models  (Baldassarre,  2003;  Butz,  Sigaud,  &

Gérard, 2003; Ziemke, Jirenhed, & Hesslow, 2005; Grush, 2004).

We now focus  again on PMC and in particular  to  the decision  making process

implemented in PFC/PMCd. This process allows the model to decide if any internally

generated images of the rotated object which match the target object image or its flipped

image. To this purpose, PFCt and PFCft act as a working memory storing respectively

the target object image from VC and its flipped image (the latter is obtained through the

hardwired abstract connections C10). PFCtm is formed by units that activate only when

the units of the mentally-rotated object image in POCp match the units of the target

object  image  encoded  in  PFCt.  To  this  purpose,  PFCt  and  POCp are  connected  to

PFCtm  through  one-to-one  connections  with  weights  set  to  one  (C11  and  C8

respectively) and PFCtm units  activate with one only when their  input overcomes a

threshold of 1.5 and with zero otherwise. Similarly, based on connections C9 and C12,

PFCft computes the overlap between the rotated object image encoded in POCp and the

flipped target image encoded PFCft. 

The units of PFCtm are all connected to the unit of PMCd representing a YES reply

action (PMCdyes). Similarly, the units of PFCfm are all connected to the unit of PMCd

representing a NO reply action (PMCdno). The units of PMCd, forming a reciprocal

inhibition  model  of  decision  making,  implement  a  neural  dynamic  competition  as

follows (Usher & McCelland, 2001; Bogacz et al., 2006):

PMCd yes=−k PMCd yes−w PMCdno+PFC tm (6.12)

PMCdno=−k PMCdno−w PMCd yes+PFCd fm (6.13)

where  k is  a  decay rate  of  PMCd units  (PMCdyes,  PMCdno)  and  w is  the inhibitory

connection between the two PMCd units. For each mental rotation step, this dynamic
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competition makes ten cycles that allow the units of PMCd to accumulate evidence for

the YES or NO reply and to compete between them. When one of the two units achieves

the threshold of 1.2, the system is considered to have made a decision in favour of the

YES/NO reply corresponding to it. The time needed to solve this competition, measured

from the beginning of the mental rotation trial, is considered as the reaction time taken

by the system to perform the mental  rotation and to make a  decision (cf.  Usher &

McCelland,  2001;  Bogacz  et  al.,  2006;  Erlhagen & Schöner,  2002; Caligiore et  al.,

2010; Caligiore et al., 2008). The maximum number of mental image rotation steps for a

trial was set to 20 in the simulations: if the model did not give an answer within this

time  window  it  was  forced  to  give  a  random  answer  (but  this  happened  rarely).

Importantly, the accumulation of evidence lasted during the whole trial, i.e., the units of

PMCd were reset at the beginning of each trial, but not during it: this led the system to

rapidly accumulate evidence for a reply only in the presence of a large overlap of the

rotated object with the target object or its flipped version. 

Model learning

The model underwent two learning processes before being tested. These processes allow

the system to respectively acquire the core capacity needed to predict/imagine the visual

appearance of objects after a step of mental rotation (forward models: connections C1,

C2, C3), and to associate to a certain object image the corresponding object orientation

encoded,  in  an  embodied  fashion,  in  terms  of  corresponding  wrist  orientation

(connections  C16  and  C17).  These  learning  processes  are  intended  to  capture  the

processes  of  acquisition  of  the  general  capability  to  rotate  objects  that  the  human

participants  acquire  during life  before  undergoing the  psychological  experiments  on

mental rotation. 

The forward models of the system are implemented by connections C1, C2, and C3.
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The forward models were trained with images formed by three randomly positioned

black dots  abstracting  salient  features,  possibly  isolated  by  attentional  processes,  of

complete  images  seen  in  life.  Based  on  pilot  experiments  we  could  see  that  this

procedure ensured a fast training of the forward models. The filled dots shown in Figure

6.8 represent  the image encoded in POCi whereas  empty dots  represent  the desired

image that POCl/s/r units should encode after one rotation step. This latter image was

obtained by using “cvWarpAffine”, an image transformation function of the OpenCV

library.

During  training,  PMCm selected  a  rotation  action  at  random,  and  the  selected

rotation decided which of the forward models C1, C2 and C3 was trained. The three-dot

images (Figure 6.8, black dots) was encoded in POCi as an input pattern of the forward

model,  whereas the predicted rotated three-dot images (Figure 6.8, white dots) were

used as a desired output of POCl/s/r. Training was based on a delta rule (Eq. 6.4 in

experiment 3).

Figure 6.8 Illustration of the procedure used to train the forward models of the system. The left panel

illustrates the creation of a 30° clock-wise rotated image related to three random dots, whereas the right

panel shows the effect of the opposite rotation. Arrows and dashed lines indicate the direction of rotation:

the three full dots represent the image to be rotated whereas the three empty dots the resulting rotated

(predicted) image. Small circles represent the centre of rotation. The three random dots were generated

within the dashed square areas (23x23 pixels) to keep the image within the larger square image areas

(32x32).
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We now focus on the training of C16 (the training of C17 was done in the same

way). This was based on exploratory motor movements (“motor babbling”) possibly

mimicking  the  acquisition  of  motor  skills  in  humans  (Caligiore  et  al.,  2008a).  To

implement this process, the robot was assumed to hold in hand an object whose shape

was visually represented in POCp (and PFCt). The units of PPCp (similarly, the units of

PPCt) had a Gaussian activation computed as follows: 

PPCpA j=∑i
w ji POCp i (6.14)

I win=max (PPCpA)

PPCp j=G(dist (I win, I j))

where PPCpAj is the activation potential of unit  j of PPCp,  POCpi is the activation of

units i of POCp, wji is the  connection weight between the two units, max is a function

returning the index  Iwin of the unit of PPCp with maximum activation (winning unit),

dist is a function computing the distance (in the neural space) between the winning unit

and a given unit with index Ij. A supervised learning rule is used to train the connections

C16  (and  C17).  This  rule  exploits  some  of  the  mechanisms  of  the  (unsupervised)

Kohonen learning rule (Kohonen, 2001). Specifically, instead of selecting the unit with

the  highest  activation  as  winning  unit of  PPCp  (and  PPCt),  as  prescribed  by  the

unsupervised Kohonen learning rule, we selected the unit corresponding to the current

wrist  posture.  Based on this,  we updated the connection weights  C16 (and C17) as

follows on the  basis of the Kohonen learning rule:

Δw ji=ηPPCp j(POCp i−w ji) (6.15)

w ji=w ji /∑q
w jq (6.16)

where ∆wji is the weight update, η is the learning rate set to 0.1, PPCpj is the Gaussian

activation of output unit  j,  POCpi is the activation of the input unit  i, and  wji is the

current weight value. Equation 6.15 ensures that the connection weights reaching highly
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activated units of PPCp (PPCt) become progressively correlated with the input image.

Equation  6.16  normalizes  the  connection  weights  after  each  update.  After  learning,

when  an  object  image  with  a  clear  orientation  is  perceived  it  tends  to  cause  a

concentrated activation of a few PPCp units encoding the wrist posture corresponding to

it, whereas when a more difficult object is perceived the activation tends to be more

similar (“flat”) for all units.

6.2.3 Results and discussion

This section illustrates the results of the training and testing of the model. All results

reported here refer to averages of data obtained by training and testing the model ten

times. For each training and test,  the trained connection weights of the model were

assigned small random initial values. These might be considered equivalent to testing

ten simulated different participants with the mental rotation tasks. Three types of data

were recorded during the mental rotation tests. (1) The response times (RT): which is

the number of steps used by the decision making process to trigger the YES/NO answer,

and was measured for each disparity angle between the target and the rotated objects

(recall that for each mental rotation cycle the neural competition underlying the decision

making process performs up to ten cycles). (2) The error rates of the answers (ER):

which is the number of times the model gives a wrong answers (i.e., it replies YES in

correspondence to a flipped target object, or NO in correspondence to a basic target

object), measured for each disparity angle between the target and the rotated objects. (3)

The percent of correct responses (CR), averaged over all disparity angles.

Note  that  at  this  stage  of  the  model  development  we aimed at  reproducing the

behavioural target data from the experiments with human participants only qualitatively.

This, together with the knowledge on brain areas, allowed us to impose constraints on
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and  hence  guide,  the  construction  and  progressive  improvement  of  the  model

architecture, functioning, and learning mechanisms. Aiming to also reproduce the data

quantitatively, would have required us to run a large number of experiments with the

robot in order to tune the model parameters: this was practically very difficult and was

also  expected  to  produce  little  additional  knowledge  at  this  stage  of  the  model

development.

Mental rotation and generalization

Figure  6.9  illustrates  the  RT,  ER,  in  correspondence  to  different  disparity  angles

between the target and the rotated objects, and the CR, for the three tests Recog, Gen1,

and Gen2. The figure shows that, for all tests, RT and ER increase with the stimuli

disparity.  This  result  qualitatively  agrees  with  data  obtained  from experiments  with

humans (Shepard & Metzler, 1971; Wexler, Kosslyn, & Berthoz, 1998).

Figure 6.9 (b) shows that the model produces different ER profiles when tested with

different sets of stimuli. In particular, the ER of Recog and Gen1 are similar, whereas

those obtained with Gen2 are higher. This is also summarised by Figure 6.9c showing

that the CR averaged over all disparity angles is rather lower for Gen2, around 59%,

than for Recog and Gen 2, respectively around 79% and 86%. The greater RT for Gen2

for  most  disparity  values,  including  the  zero  disparity  value  not  requiring  mental

rotation, is due to a smaller difference, with respect to Recog and Gen1. Between the

activations of PFCtm and PFCfm. The smaller difference leads to a slower competition

between the PMCd units. A direct inspection of the behaviour of the model revealed the

nature of the errors with Gen 2. In some cases, the model gives an answer even when

the two images of the target/flipped target  and rotated object do not  have the same

orientation. This can happen when the number of overlapping units in PFCtm or PFCfm

are high enough to make the activity level of one of the two units in PMCd overcome
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the threshold. In other words, in these cases the two images are so similar that they

trigger a false recognition. On the other hand, in some other cases the model is able to

correctly rotate the object to match it with the target but the number of overlapping

neurons in PFCtm or PFCfm is too small. In these cases, the images are not similar

enough and so there is a failed recognition. In this case, the model requires additional

mental rotation steps to  accumulate enough evidence and trigger  an answer,  thus in

some (rare)  cases  arriving  to  the  trial  time-out  causing  a  random,  possibly  wrong,

answer.

These results show that the model was able to generalize the mental rotation ability

to the never seen objects of Gen1 and Gen2 image sets. This ability was acquired on the

basis of the Recog images used to train the image-wrist posture mappings (C16 and C17

connections), and the simple three-dot images used to train the forward models (C1, C2,

and C3 connections). The results of the tests with Gen1 and Gen2 specify and quantify

the  generalization  capabilities  of  the  system.  With  Gen1,  whose  novel  objects  have

many distinct  features  and  a  clear  orientation  axis,  the  model  is  able  to  rotate  and

compare the rotated and target objects in a good way, thus achieving RT and ER similar

to those of the training set (Recog) and an slightly lower overall performance (CR).

Instead, the objects of Gen2 are much more difficult to rotate and match as they have

many features matching both the target and the flipped-target images. In this case the

system performs more erratic rotations, resulting in a longer RT and several matching

and decision making errors resulting in higher ER.
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(a)

(b)

(c)

Figure 6.9 Performance of the model during the three mental rotation tests: (a) Response times (RT); (b)

Error rates (ER); (c) Correct response (CR).

The role of overt movements during mental rotation, and a prediction of the model

The  model  was  also  used  to  investigate  the  possible  effects  of  performing  overt

movements on the mental rotation processes. In this respect, empirical data (e.g., Chu &

Kita, 2011) shows that if the direction of the overt movement performed during the

mental rotation task is congruent with the direction of the mental rotation, participants

of  the  experiments  are  facilitated  to  solve  the  task  (lower  RT).  Vice  versa,  if  the

direction of the overt movement is opposite with respect to the direction of the mental
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rotation, people are struggle to solve the task (higher RT). Here we analysed how the

robot's overt wrist movement affected the mental rotation processes during the three

tests with the Recog, Gen1 and Gen2 images.

In  the  tests,  the  robot  performed  wrist  movements  that  were  either  congruent

(“match proprioception”) or incongruent (“mismatch proprioception”) with respect to

the movement direction of the rotated object. In particular, during mental rotation the

robot  wrist  movement  signals  were  recorded  through  the  wrist  encoder,  were

opportunely scaled and then were used to modulate the activation of the somatosensory

area PPCp of the model.  For example,  in  the match proprioception condition if  the

model mentally rotated the current image to the left the robot moved its wrist to the left.

In this case the same unit in PPCp was activated by two signals as a consequence of the

congruence between the orientation of the mentally-rotated object and the orientation of

the  physically-rotated  wrist,  i.e.,  the  signal  supplied  by  the  mental  rotation  process

arising  from  POCp  and  the  proprioceptive  signal  deriving  from  the  wrist  current

posture. Instead, in the mismatch proprioception condition if the model mentally rotated

the current image to the left, the robot moved its wrist to the right, and vice versa. This

resulted in a mismatch between the orientation of the mentally rotated object and the

physically rotated wrist. As a consequence, two opposite units in PPCp were activated

by the two signals. For example, if the mental rotation process implied the activation of

the POCp unit number 1 the proprioceptive signal caused the activation of the opposite

unit number 6. If the mental rotation process implied the activation of the unit number

2, the proprioceptive signal activated the opposite unit number 5, and so on. In line with

the  empirical  experiments  run  with  humans,  we  expected  that  when  the  movement

direction of the wrist matched the direction of mental rotation the resulting RT and ER

would have decreased while CR would have increased.

147



The results of the tests, shown in the graphs at the left side of Figure 6.10, indicate

that indeed the mismatch condition led to deterioration of the performance of the system

with respect to the baseline condition in particular producing longer RT (Figure 6.10a)

and in part higher ER for the cases with high disparity (Figure 6.10b), as also shown by

the overall lower CR (Figure 6.10c). Instead, contrary to our expectation the matching

condition did not lead to a relevant benefit. A closer observation of Figure 6.9a indicated

that the latter  result  was due to a “ceiling effect” for which the performance of the

baseline system was close to optimal and hence could not be improved by a congruent

proprioception.  This graph shows that  the duration of the RT for  different  disparity

values requiring a certain number n of mental-rotation steps is only slightly above n *

10. As the neural competition process underlying the system decision making runs for

ten cycles for each mental rotation cycle, which indicates that the system performance is

indeed close to being optimal.

So, why do empirical experiments show that a congruent proprioception can support

mental rotation? We formulated the hypothesis in which congruent proprioception can

improve mental rotation when this is made difficult by different factors such as noisy

initial images, unreliable mental rotation processes, or noisy mappings from images to

proprioception. To test this hypothesis we ran again the experiments by adding noise to

PPCp, in particular adding a flat noise ranging in [-0.5, +0.5] to each unit of PPCp at

each rotation  step (the  activation  of  the units  was however  cut  within  [0,  1]).  This

condition captures in an abstract way the situations mentioned above that could make

the mental rotation process more difficult. The expectation of these further tests was that

noise  added  to  PPCp would  have  deteriorated  the  performance  with  respect  to  the

baseline  condition  and  that  in  this  case  a  congruent  proprioception  could  indeed

improve the mental rotation process.
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      (a)

      (b)

      (c)

Figure  6.10  Comparison  of  the  results  when  supplying  the  model  with  match  and  mismatch  of

proprioceptive input from the robot wrist. (a) Response times. (b) Error rates. (c) Correct responses.

The graphs on the right side of Figure 6.10 show the results of the tests with noise.

The graphs show that noise increases RT with respect to the condition with no noise and

an  incongruent  proprioception  impairs  mental  rotation  RT  only  for  high  disparity

conditions  while  not  affecting  much  ER  and  CR.  Moreover,  now  congruent

proprioception improves the mental rotation process in terms of both RT and in part of

ER/CR, thus confirming our hypothesis.

To test the robustness of the results on the effects of proprioception, we ran again

the tests just described (with noise added to PPCp) with Gen1. The results, shown in

Figure 6.11,  confirm the overall  effects  found with the Recog dataset.  In particular,
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congruent  and  incongruent  proprioception  tend  to  respectively  improve  (for  high

disparity) and deteriorate the performance of the model in terms of RT (Figure 6.11a).

The effect is even more pronounced when measured in terms of ER and CR (Figure

6.11b and 6.11c respectively).

Figure 6.11 Comparison of the results when the model receives congruent or incongruent proprioception

in the case of the Gen1 image dataset.

The result  for which a proprioception coherent with mental rotation improves it

only in cases where mental rotation is made difficult by noise sources represents. This is

to the best of our knowledge, a prediction of the model. This prediction could be tested

in future psychological experiments by tuning the difficult of the mental rotation task,

e.g., by affecting the object images with noise.

Analysis of internal functioning of the model

This sub-section presents some analyses that illustrate the internal functioning of the

model  that  produced  the  performance  illustrated  in  the  previous  two  sub-sections.

Figure 6.12 illustrates the activation of key areas of the model when it perceives sample
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images, containing different target/rotated object couples, drawn from the Recog, Gen1

and Gen2 datasets. Figure 6.12a shows a trial where the model gives an answer for an

image of the Recog dataset using five steps of mental rotation. The graphs of the figure

allow the visualisation of key aspects of the functioning of the model during mental

rotation. PFCt encodes the edges of the still target object image (in this example it has

an horizontal axis) and PFCft encodes its flipped version. POCi encodes the input to the

forward models: at step 1 this corresponds to the image of the rotated object. POCp

represents  the  predicted  image  after  the  mental  rotation  (recall  that  at  step  1  this

corresponds to a no-rotation movement, so the predicted image is as the one of POCi).

PPCd encodes a combination of the desired wrist posture corresponding to the target

object  orientation and of the wrist  posture corresponding to  the rotated object.  This

combination  is  the  basis  on  which  to  trigger  the  proper  movement  at  the  level  of

PMCm. At step 1 this encodes a left (anti-clockwise) mental rotation. At step 2 this

mental rotation results in a predicted image of the “rotated object” (POCp) now actually

rotated anti-clockwise for 30°. Notice the effects of the following rotations (PMCm) on

the mental image of the system encoded in POCp. At step 2, the model does not rotate

the object  as  it  should (recall  that  PMCm performs stochastic  selections  of rotation

movements  based  on  their  evidence).  While  the  model  is  performing  these  mental

rotations, PFCtm and PFCfm compute the matching of the mental image (POCp) with

the target and its flipped version (PFCt and PFCf). Notice how from step 1 to step 4

PFCtm and PFCfm involve a similar number of active units and so the system decision

making process (PMCd) does not produce any response. When at step 5 the PFCtm

reveals a matching with the target that is substantially higher than the matching with its

flipped version (PFCfm), then the evidence in support of the YES reply accumulates,

overcomes the decision threshold and therefore the related action is triggered.
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Figure 6.12 Activation of different areas of the model, indicated in the top row of each graph panel, while

the system mentally rotates objects from the three datasets. (a) Recog. (b) Gen1.
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Figure 6.12 Activation of different areas of the model, indicated in the top row of each graph panel, while

the system mentally rotates objects from the three datasets. (c) Gen2.

Figure 6.12b shows an example of mental rotation of an image take from Gen1. The

mental-rotation process and the final decision made by the system, are fully correct,

based on the capacity of the system to properly rotate the object (see the sequence of

states of POCp during the mental rotation).

Figure 6.12c reports an example with an image from Gen2. In this case the image is

much more challenging and after some attempts to rotate the object mentally, the system

sees  a  strong  resemblance  between  the  rotated  object  and  the  target  image  and  so

produces a “YES” reply before successfully rotating the object (in this case the decision

is fortuitously correct).

Figure 6.13 reports the visualisation of some key areas of the system in the case of

mental rotation of the same object used and considered in Figure 6.12a, but this time

with  the  addiction  of  proprioceptive  information  to  PPCp  that  is  congruent  or

incongruent with the mental rotation process. 
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Figure 6.13 Activation of key areas of the model when it is supplied proprioceptive information in the

case  of  mental  rotation  of  the  same  object  used  in  Figure  6.12a.  (a)  Case  where  proprioception  is

congruent with mental rotation. (b) Case where proprioception is incongruent with mental rotation.
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Figure 6.13a shows how when proprioceptive information is congruent it can help

the system to more reliably perform mental rotation, so taking four steps (Figure 6.13a)

rather  than  five  (Figure  6.12a)  to  successfully  accomplish  the  mental  rotation.  This

better  performance is  due to the fact  that  with congruent  proprioception the system

performs a better mental simulation of the wrist rotation (comparing the activation of

PPCd in the two cases). Instead, Figure 6.13b shows how an incongruent proprioception

leads the system to accomplish the full rotation in an inefficient way (six steps) as the

mental rotation processes of the model are more erratic.
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Chapter 7 

The Role of Sensorimotor Learning and Mental Imagery

in the Development of Tool use

This chapter demonstrates that fundamental mechanisms such as mental imagery and

affordances, that were applied in the experiments of the two previous chapters, can be

acquired by robots through the processes of sensorimotor learning. The experiment of

this chapter involves a simple tool use scenario in which a humanoid robot learns to use

a tool in its hand to retrieve an out-of-reach object  through trial and error. The purpose

of this experiment is to extend the extent of exploiting mental imagery in humanoid

robots. The iCub simulator was used to simulate infant participants which will be called

“infant robots”. The Dynamic Movement Primitives (DMPs) framework underlies the

movements of the robots are underlie (Schaal, 2006). By applying learning mechanisms

of  reinforcement  learning  and  intrinsic  motivations  to  train  the  DMPs,  exploratory

behaviours  in  the  infant  robots  can  be  simulated.  Importantly,  the  experiment

demonstrates that mental imagery can be used as an alternative resource replacing the

use of overt movements in the learning of action sequencing. By mean of planning, the

robots can solve the tool use task without exhibiting overt movements. This chapter also

proposes  two  hypotheses  on  the  developmental  characteristic  of  tool  use  found  in

human infants. Both hypotheses focus on the age of the human infants as the main effect

of the development.  The first  hypothesis  interprets  the infants'  age as  different  in  a

number  of  acquired  motor  skills.  The  latter  treats  the  infants'  age  as  the  period  to

familiarise with a given tool use task before testing.
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7.1 Experiment 5: Tool Use Development in Infant Robots

7.1.1 Introduction

A simple tool use scenario, such as using a rake-like tool to retrieve an out-of-reach

toy, has proven too difficult for human infants aged younger than 18 months to solve

(Rat-Fischer  et  al.,  2012).  As  shown  in  their  empirical  data,  tool  use  performance

increased functions to the infants' age. In particular, older infants have a higher success

rate in the test than the younger ones. The authors also suggest that the infants begin to

have a comprehension of how to use tools at the age of 18 months. Before that age, e.g.,

14 or  16 months,  their  tool  use performance remains variant  and contingent.  Infant

participants aged younger than 18 months almost fail in the task that required tool use

understanding (e.g.,  when the tool's tip is located far from the toy). In addition,  the

demonstration of how to use a rake tool to retrieve a toy can help infants that fail in the

test  to  be  able  to  succeed  spontaneously  when  they  encounter  that  task  again.

Interestingly, it  was the age of 18 months that the infants can gain benefit from the

demonstration session.

According to Piaget's  theory of child  development,  the age of 18 months is  the

beginning of the sensorimotor stage 6 that infants begin to have an ability of using

mental imagery (Piaget, 1952). Thus, the demonstration (i.e., Rat-Fischer et al., 2012)

might provide missing information about actions and outcomes of how to solve the task

to the infants.  The infants might fulfil  their  understanding of how to solve the task

through the use of mental imagery. When they encounter the task again, only recalling a

suitable action that produces a proper outcome is required to complete the task.

The infants' tool use ability can be viewed as a development from their existing

manual skills (Kahrs, Jung & Lockman, 2013; Kahrs and Lockman 2014). Furthermore,
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this  ability  gradually  increases  function  to  the  experience  the  infants  have  on  the

exploration  on  object  manipulation  (Lockman,  2000;  Gibson  and  Pick,  2000).  In

agreement  with these views,  the  capability  of  using tools  of  younger  infants  seems

inefficient and varied comparing to the older ones. Due to their age, younger infants

should have less sensorimotor experience which limit the number of skills that can be

acquired directly. Some researchers assumed that, at the beginning, infants can exhibit

simple tool use competence using only simple sensorimotor knowledge such as action

and  perception  (Lockman,  2000).  While  in  the  later  stage,  tool  use  required  more

precise  knowledge  about  object-object  interactions  and the  ability  to  manipulate  an

internal representation of that knowledge (Guerin, Kruger, & Kraft, 2013).

Affordances play a central role linking together perception, action, and cognition

(Gibson,  1986).  However,  infants  are  not  endowed  with  an  ability  to  perceive

affordance  of  objects  at  birth.  To  understand  the  world  around  them,  through

affordances, the infants have to explore this capability. The outcome manifests as play

(E.J. Gibson, 1988).

Although literature regarding tool use in human infants suggests the use of mental

imagery, the work on robots suggested the important role of affordances (Stoytchev,

2005;  Tikhanoff  et  al.,  2013);  however,  there  are  no  computational  models  that

addressed these issues systematically thus far. This study is the first attempt to reveal

the role of both mental imagery and affordances in tool use competence.

The  model  aims  at  reproducing  a  characteristic  of  tool  use  development

(qualitatively) found in human infants. The key idea is that the development could be

characterised by a number of skills the infants have acquired. Young infants should have

a small number of motor skills due to the length of time (their age) they had in the

sensorimotor  learning  period.  Therefore,  their  tool  use  performance  should  be  very
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limited. In contrast, older infants performed the task better because they have a high

number  of  motor  skills.  The  reason  a  higher  number  of  skills  results  in  better

performance is that there is a higher chance that suitable skills for solving a given tool

use task consist in a higher set. In this framework, if there are no suitable skills, tool use

competence will not be possible. In addition, we also propose another hypothesis that

different periods of time (training trials) the infants used to familiarise with a tool use

scenario would result  in differences in tool use performance.  Similar to the case of

skills, young infants will have a small number of training trials while older infants will

have  a  higher  number  trials.  In  term of  development,  gradually  increasing  of  these

numbers, i.e., skills, training trials, should result in an increase of tool use performance.

The present model puts together the ideas on intrinsic motivations, sensorimotor

learning,  affordances,  mental  imagery  and  problem-solving.  In  particular,  intrinsic

motivation  serves  as  an  important  aspect  that  drives/guides  the  processes  of

sensorimotor learning, which benefits the acquisition and sharpening of tool use ability

in infant robots.

In this study, the ability to use a tool in robots is possible through affordances, while

the developmental characteristic is constrained by a number of motor skills acquired by

the robots. Importantly, mental imagery can be used to replace overt movements in the

problem-solving processes, i.e., action sequencing. The next section, methods, will give

more details on mechanisms underlying this framework including some definitions of

components used. Section III reports results obtained by the model and the final section

draws a conclusion.
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7.1.2 Methods

This section describes components and algorithms applied in the implementation of a

neurorobotic model account for tool use development in a humanoid robotic platform.

The iCub simulator will be used as simulated infant participants (Tikhanoff et al., 2008).

In  order  to  simulate  tool  use  competence  in  robots,  DMPs  were  used  to  underlie

movements/skills of the robots.

Hypotheses on tool use development:

According to Rat-Fischer et al. (2012), tool use performance is constrained by an

infant’s' age, whereby  an increase in age results in a better performance in the tool use

test. To simulate this finding in robots through computational modelling, we interpret

the age in motor skills and training trials.

• HP1) The infants' age as a number of acquired motor skills. 

This hypothesis refer to the variation of the number of skills different infant can

acquire. Simulated infants will have a different number of motor skills. For instance, the

youngest robots, aged 14 months, the youngest, will have 2 motor skills. This number

will be increased to be 3, 4, 5, and 6 for the infant robots aged 16, 18, 20, and 22

months, respectively. Note that all infants are assumed to have the same basic skills of

Pulling and Touching. The difference is  in  the interaction skills  in which additional

skill(s) will be selected randomly from the set of remaining interaction skills. Thus, it is

possible that robots from the same age group can have different skills. The individual

difference also characterised by this setting.

• HP2) The infants' age as a number of training trials. 

In this hypothesis, a number of training trials refers to the number of practice with

one of the two tool use situations (i.e., tool behind the toy, tool far from the toy) that the
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simulated infants at different ages practice/familiarise with before testing. For example,

0 and 2 trials will be used as corresponding to the infant robots aged 14 months which

exhibit  little  practice  (play)  with  the  tool  and  the  toy,  while  4,  6,  8  and  10  trials

correspond to  the  age  of  16,  18,  20 and 22 months,  respectively.  Increasing  of  the

number of training trials should increase the performance of using a tool in a sense that

the infant robots have more time to familiarise with a given tool use task.

Tool use scenarios:

There is a table, a rigid box, placed in front of the robot (see Figure 7.1). Tool use

scenarios will be set on top of this table. There will be a toy placed on the table at a

location that too far away from the robot's reach. The iCub simulator was set to hold a

rake-like tool permanently with its right hand. Tool use competence will require only

the right arm of the robot. The tool is coloured in green, consists of a long stick handle

and a flat rectangle tip. The tool was used to extend the length of reach of the robot.

Movements caused by the right arm will cause change on the tool directly.

However, demonstrating the processes of action acquisition of all possible actions,

or even focusing on one arm that move with a tool, can be a daunting task. Thus, only

two  types  of  actions  that  the  robot  exhibits  with  the  tool  will  be  considered  as

mandatory  for  our  initial  tool  use  scenarios.  They  are  “Pulling”  and  “Interaction”

actions. What makes each action different is its outcome. For example, pulling is an

action that make the toy moves to a reachable area while the interaction actions refer to

the  effects  when  the  tool  interacts  with  the  toy  e.g.,  touching,  moving.  In  detail,

interaction action can be varied in five different types of movement outcomes.

161



Figure 7.1 The iCub simulator and a sample tool use scenario

Interaction detection: 

Visual information taken from the robot's camera alone is not enough to determine the

interaction  between  two  objects  in  the  robot's  stationary  space  due  to  the  reduced

accuracy of the depth information and physical interaction calculated using 2D images

(1 camera). Thus, the present system uses positions of objects in 3D spaces provided by

the iCub simulator instead. In real robot, this technique might be replaced with other

mechanisms that are able to detect the depth and the interaction between two objects

e.g.,  3D camera system, or effects on the robot's arm itself such as touch and force

sensors.

IM-detector:

This mechanism was used to monitor interesting events caused by movements of

the robot. Depending on the type of interesting event that is set to the module, the IM-

detector will acknowledge the occurrence of that event to the system which will be used

to determine a reward of currently perform action.

Distal goals:

A set  of  neurons  underlie  this  mechanism.  It  will  be  trained,  through  network

connection C2, during the period of skill acquisition. Each was used as a distal goal of a

particular skill. A high activation of these neurons indicated that the corresponding skill
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has been obtained by the system already. The purpose of this mechanism is to prevent

the acquisition of the same skill, such as two movements that achieve the same goal.

Thus, even the IM-detector reports the arising of an interesting event; however, if the

distal goal is active the system will not learn to achieve that event.

Initial postures and tool use situations:

Initial  postures  refer  to  the  configuration  of  the  right  arm  of  the  robot.

Differentiation on the joints' value results in changing the robot's posture. To simplify

sensorimotor exploration and an acquisition of tool use competence, we assumed that

the robots already hold the rake tool in its right hand permanently, and will be facing

with only four different situations during their sensorimotor period. From the robot's

view, movements on its arm will affect its visual perception directly. As illustrated in

Figure  7.2,  the  four  postures  directly  cause  four  different  tool  use  situations,  the

different spatial gap between the tool's tip and the toy.

     

(a) Posture-1

     

(b) Posture-2

Figure 7.2 Four initial postures and four initial tool use situations. (a) Posture-1. (b) Posture-2.
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(c) Posture-3

   
(d) Posture-4

Figure 7.2 Four initial postures and four initial tool use situations. (c) Posture-3. (d) Posture-4.

Rewarding scheme: 

This work applies reward-based learning mechanisms to guide learning components

of the system, i.e., neural networks. As reward-based learning, teaching signals for a

training of the neural network components will be characterised by a specific reward

that was found during exploration. In the learning mode, only one type of event will be

monitored assume as the infants focus on that event in order to master it.

Interesting events: 

In  order  to  demonstrate  that  tool  use  ability  can  be  acquired  by  robots  in  a

reasonable amount of time, we have set a scheme that the change of the toy caused by

the interaction with the tool is suitable to make a simple tool use scenario. From this

interaction, six types of event are assumed to happen during exploration (movements of

the robot's arm with tool, see Figure 7.3):

• The  situation  that  the  toy  was  moved  (by  the  tool)  into  a  reachable  area
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(Retrieving, Pulling),

• The situation that the tool touched the top part of the toy (Touch),

• The situation that the toy was moved toward the robot (South),

• The situation that the toy was moved away from the robot (North),

• The situation that the toy was moved to the left (West), and

• The situation that the toy was moved to the right (East).

In human infants, they might get surprised when these events happen because the

object of desire (toy) was moved. So, intrinsic motivation is assumed to play a role here.

Note that the retrieving event is different from the others. This is because this event is a

situation that the infant can grab the toy directly, so it may be considered as causing an

external reward to the infants. While other events obviously cannot bring the toy into

reach, so they are assumed to cause internal rewards. Specifically, to make the outcome

of these situation more stable (from the robot's visual perception), the system was set so

that as soon as one of these events arises, the robot will stop moving (actuators). This

reduces  the  variation  of  the  toy's  position  that  is  changed  corresponding  to  the

interaction with the tool. Current parameters of the running DMP and the position of

objects will be used to initial the learning process.

Figure 7.3 Interesting events caused by the interaction between the tool and the toy. The arrows indicated
movement directions of the toy when interacting with the tool.
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Constraints on skill acquisition: 

By doing a preliminary observation on an occurrence of the interesting events from

different initial posture, we found that there is a constraint of physical interaction that

some events cannot be discovered if starting from some initial postures. Furthermore,

starting  from  some  initial  postures,  the  robot  cannot  learn  to  achieve  some  goals

(interesting events). For example, data in the first row column “Interesting events” of

table 1 indicates that starting from initial posture-1 cannot discover event-2, 4, and 6.

While  in  the  column “Skills”,  the  first  column means  that  skill-P (Pulling)  can  be

achieved only if  starting from initial  posture-1 and 2.  It  seems like data of the two

columns  (Interesting  events,  Skills)  are  very  similar  except  the  case  of  posture-2.

Starting from Posture-2 can be learned to achieve Skill-P even though the event-1 (the

toy enter a reachable area) cannot be discovered by this posture.

Table 7.1 Constraint for skill acquisition.

Initial
postures

Interesting events (IMEs) Skills (DMPs)

1 2 3 4 5 6 P T S N W E

Posture-1 1 0 1 0 1 0 1 0 1 0 1 0

Posture-2 0 1 1 0 1 0 1 1 1 0 1 0

Posture-3 0 1 1 1 1 1 0 1 1 1 1 1

Posture-4 0 1 1 1 1 1 0 1 1 1 1 1

1: yes, possible; 0: no, impossible

Model architecture:

Based on our computational models regarding mental rotation (Seepanomwan et al.,

2013a; 2013b), the present model on tool use development has been designed to include

four parts of the cortical area as illustrated in Figure 3. We believe that, by means of

information/cognitive processing, these brain areas might be involved in the emergence

of  tool  use.  In  addition,  the  model  consists  of  an  intrinsic  motivation  mechanism

through motivation activation unit and HIP. This mechanism plays a key role in shaping

what the system can learn and determining when the learning should be started.
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Figure 7.4 The model of tool use development

The model consists of several components corresponding to the cortical areas of the

brain which we believe are involved during an acquisition and performing of tool use.

They are  primary  visual  cortex  (V1),  parietal  cortex  (PC),  premotor  cortex  (PMC),

primary motor cortex (M1) and prefrontal cortex (PFC). In addition, we introduce the

role of motivations into the system through the motivation activation and Hippocampus

(HIP) components. These components serve as mechanisms that monitor coming events

and evaluate specific rewards to the system.

Specifically, the V1 is formed by a 320 x 240 neural map. It is used to store visual

information captured directly  from the robot's  camera.  PC is  responsible  for storing

spatial information on the tool and the toy that represents tool use situation. It is formed

by 320x240 neurons, the same size as of V1. Note that information from V1 is passed

through colour filtering processes before using neural activation of the PC. The PMC is

formed by 10 neurons responsible for affordance interpretation. M1 is also formed by
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10 units. Each neuron in the PMC has a direct link to one unit in M1. This means that

activation of the PMC's neurons causes execution of the M1's unit directly. The PFC

consists of two components which will be used for storing and manipulating mental

images.  HIP is formed by 6 neurons corresponding to 6 different goals used in this

work.

The term motivation activation used here refers to a mechanism that guides the

process  of  skill  acquisition  in  infant  robots.  In  humans,  by  means  of  motivation

activation, infants might get surprised when something that they are paying attention to

has changed. However,  in robots, it  is  of interest  how they can be interested in the

occurrence  of  an  unexpected  event,  and  how  they  can  distinguish  some  events  as

interesting  and  other  events  as  not.  To  simplify  this,  we  use  the  change  of  the

environment as a source of attraction. As a critic, the motivation activation mechanism

was applied to detect the change of the environment caused by movements of the robot.

Thus, the reward of 1 will be given to the system when movements of the robot have

revealed a focused goal, otherwise the reward will be 0. This mechanism is assumed to

work as dopamine neurons which are fired when an agent encounters novel/unpredicted

situations.

Information  propagates  among  neural  maps  through  connections.  There  are  4

connections and 3 types of learning algorithms involved in this study. C1 and C2 are

Hebbian connections while C3 is a special type of Kohonen learning which is learned in

a supervised fashion. Furthermore, this connection can propagate information in both

ways, i.e., form PFC_1 to PMC, and also from PMC back to PFC_1. A mental image

creation is possible through this connection. The C4 is a Q-learning connection; it is

responsible for accumulating knowledge about tool use competence exhibited during

training. Below are three training algorithms used in the model.
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Affordances in this work refer to actions/skills that are suitable to manipulate a

perceived tool use situation rather than an object in which suitable action(s) will be

available to robots when they encounter with familiar tool use situation. In more details,

affordances are an association between tool use situations and their suitable actions. The

perceived situation activates suitable actions that leads the robots to achieve a particular

goal. This association will be formed during skill acquisition. Note that one tool use

situation is able to activate more than one action, because it is possible that from one

tool use situation can lead to an achievement of different goals.

Mental  imagery emerges  also  through  the  processes  of  sensorimotor  learning

especially during the processes of skill acquisition. In this work, mental imagery refers

to the ability to predict next state of the intended action constraints by a being perceived

situation. It will be used to anticipate the planning of the robots. Ideally, the ability of

using  mental  imagery  will  be  used  to  replace  the  processes  of  action-perception  in

which the robot does not have to exhibit overt action instead it can use mental imagery

to fulfil the outcome of the intend action.

The model uses a supervised version of the SOM as a special connection that is

capable  of  propagating  information  in  both  direction  (bi-directional).  In  detail,  this

connection was trained using basic input-output training patterns, but in behaving it is

capable  to  generate  input  from  the  present  output  (feed-backward).  Note  that  this

characteristic is possible by using of one-to-one training patterns. The feed-backward

process will be used to generate a mental image.

Q-Learning is a reinforcement learning technique invented specifically for learning

of action sequencing (Watkins & Dayan, 1992). Like traditional reinforcement learning,

the q-learning process involves action, state, and reward to accumulate the knowledge

regards an encountering task. The reward is used as a guidance for selection of the next
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action.  Through  iteration  processes  of  rewarding  and  updating  mechanisms,  the  q-

learning can lead the system to achieve an optimal solution (obtain maximum reward).

In this work, the processes that underlie Q-learning were adapted to train connection

weights (Eq. 7.1) of the neural networks.

Δwwini=η((reward t−γ∗qMax t)−qWint 1) xit 1 (7.1)

where ∆wwin i is the change of the connection weight between unit i and a winning unit

win, η is a learning rate (η = 0.0001), rewardt is a reward that was given to the system at

time step t, qMaxt is a highest activation of output unit at time t, qWint is an activation of

output unit at time t that was selected using softmax function, γ is a discount factor

which is set to 0.8, and xi t-1 is the activation of input unit i at the previous time step t-1.

PMC was  used  as  motor  preparation  while  M1 serves  as  motor  execution.  The

direct  link  between  them  was  constructed  manually  in  a  sense  that  one  motor

preparation (i.e., affordance) activates one corresponding motor command (i.e., action).

Note that this like is not a connection. Ten neurons of this map were used to represent

affordance interpretation of the tool use situation.

Six neurons of the HIP were used to indicate whether or not the system can achieve

a particular goal from a being perceived tool use situation. As distal goals, one of these

neurons  (corresponding  to  one  specific  goal)  will  be  activated  if  the  system  has

mastered suitable actions to do so. This ensures that the system will not learn to acquire

the same action (using different PMC neuron) to achieve the same goal. Ideally, high

activation of these neurons means that a being perceived tool use situation is not new to

the robot. This characteristic can be trained using Hebbian learning through connection

C2.
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Definitions: 

Exploratory behaviours: 

As in human infants, the robots exhibit random movements in order to learn the

effects of their own actions on the environment. The rake tool was attached permanently

to its right hand. The toy was placed at a fixed position on a table, far away from the

robot's reach. In this scenario, the tool extends the length of the robot's reach, and it is

mandatory in retrieving the toy.  Random movements on the right arm with the tool

should be able to cause interaction between the tool and the toy. We believe that this

interaction leads to the acquisition of tool use ability.

Intrinsically motivated events (IMEs):

The term intrinsically motivated events refers to the events that distract the infants'

attention. In this work, we define manually that what the robot can detect will indirectly

refer to what skill the robot can discover. This work assumes that the IMEs are a source

of motivation that drive the infants to practice the underlying action that cause them

which will result as skills. The individual difference is set according to the number of

IMEs the robot can detect. Any interesting event is revealed by chance, thus different

robots  can  discover  different  events  and acquire  different  skills.  Furthermore,  some

skills may useful for solving a given tool use task while the others may not be. As a

consequence, it is possible that different infants from the same age group can or cannot

solve the same given tool use task.

Actions  can  be  distinguished  as  intrinsically  or  extrinsically  motivated  by

considering the intention behind them. For example, pulling action is an extrinsically

motivated action if the intention of doing pulling is to bring food back for consuming

such as when the infants are hungry. In contrast, if the intention is to bring other objects
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such as  toys  back for  play this  might  be the case of  intrinsically  motivated  action.

Therefore,  pulling  and  interaction  actions  of  this  work  will  be  determined  as

intrinsically motivated actions. These actions do not cause any external reward to the

infants; instead, they cause something interesting that distract the infants' attention such

as the toy was moving when touching with the tool. We assume that this kind of events

make the infants keep doing that actions in order to constantly make that particular

interesting events happened.

Skills:

We also assume that an interesting event is a source of pleasure to infants in a way

that  they  feel  joy  when  it  happens.  In  order  to  make  a  particular  event  happen

constantly,  they  have  to  practice  the  action  underlying  it.  Therefore,  as  soon as  an

interesting event happens, it is possible to say that the infants might repeat their recent

action in order to make the event happen again. This behaviour is assumed as play.

During this practice/play, other cognitive skills such as affordances and mental imagery

also emerge.

According  to  Rat-Fischer  et  al  (2012),  infants  see  the  tool  and  the  toy  as  one

composite  object  when  they  are  connected  visually  or  physically.  Grasping  on  the

handle of the tool is interpreted as grasping on a part of the toy. Therefore, all infants in

their study can succeed in the case that the tool and the toy are connected physically and

obtain high percentage in the case of visually connected (no spatial gap). From this

evidence, we assume that pulling is an action that infants develop before interaction

action since it seems to derive from a simple grasping and retrieving on a composite

object. Furthermore, doing pulling is not required a tool, in general.

However, when the tool is located far from the toy, pulling cannot bring the toy into

reach. In order to succeed in this situation, intermediate action, such as an action that
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can bring the tool goes behind the toy, is required. We propose that an experience on

object-to-object interaction leads to an acquisition of intermediate actions which will be

called interaction actions.

Model learning:

The model starts the learning processes by capturing the current tool use situation via

the robot's camera. The visual input consists of two objects, the toy and the tool. In

order to easier distinction between the two objects, they were set with a different colour.

The toy was coloured in red while the tool was coloured in green. The model uses a

colour-based detection and focuses only on the two colours. Therefore, only changing of

these two objects will affect the visual input or tool use scenarios. Thus, the tool is

moved by movements of the robot right arm, while the toy will be moved only when it

was touched by the tool. Tool use scenarios are variations between actions exhibited by

movements  of  the  robot's  arm  with  the  tool  and  the  interaction  with  the  toy.

Furthermore,  some movements might cause the situation that the toy is  moved in a

certain direction when touching with the tool, which will be considered as intrinsically

motivated events.

Learning Algorithms:

Learning processes of the model consist of 2 stages. The first stage (Figure 7.5)

refers to the period that an infant robot exhibits exploratory behaviour, while the latter

(Figure 7.6) refers to the period that the robot accumulates knowledge of how to retrieve

the toy based on the motor skills it has acquired.
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  #Skill Acquisition
  Initialisation

  10 free DMPs

  6 empty distal goals

  Set Acquired skill table = empty

  Set Desired skills table = 6 (it can be 2, 3, 4, 5, 6)

  Randomly enabling specific number of IM-detector

  A. Exploration

  Loop until Acquired skill table == Desired skill table

Randomly select one free DMP (1..10) as cDMP

Loop until the cDMP is marked as taken

Reinitialise the cDMP with one randomly select initial posture (1..4)

Adding noise to the goal parameters of cDMP

Perform movement (roll out the cDMP)

Monitor the interaction between the tool and the toy

If a new interesting event happened, cIMEs

stop moving and capture cDMP's parameters

switch to B. (Learning)

mark cDMP as taken

Update the Acquired skill table, disable current IM-detector

  B. Learning

  epoch = 0

  Loop until the cDMP stop improving (the competence's change < 0.05) or epoch == 10

For (initial posture = 1 to 4)

For (sample = 1 to 10)

Apply the initial posture to the robot

Restore cDMP

Generate the goal and shape parameters based on cDMP's parameters

Perform movement

Compute cost for each sample based on the achievement of cIMEs

Update cDMP (PIBB)

Train 10 times the affordance connection (C1) with the teaching signal of number of success/10

Calculate the DMP's competence

epoch++

  #Calculate the DMP's competency

  For (initial posture = 1 to 4)

Apply the initial posture to the robot

Restore cDMP

Perform movement (roll out the DMP)

If success

Train 10 times the distal goal connection (C2) with the teaching signal of 1

Train 50 times the SOM (C3)

  Competency value = number of success / 40

Figure 7.5 Learning algorithm on skill acquisition
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  #Action Sequencing

  Set the training_mode, 0: Training, 1: Testing

  Set the child_mode,  0: Reactive child, 1: Planning children

  Set the initial_posture, 1: Tool-behind-toy, 4: Tool-far-from-Toy 

  Set the number of trials [ 0, 2, 4, ..10]

  Loop trials 

Apply the initial_posture to the robot

For ( attempt = 1 to 5)

Get visual input as x0

Feed-forward the connection C1

Feed-forward the connection C4

Select one active neuron of PMC with softMax

If child_mode == 0

Perform movements

Else

Perform movement in mind through the connection C3

Get visual input as x1

Compute toy related reward

If training_mode == 0

Train the Q-learning  # Eq. 7.1

Figure 7.6 Learning algorithm on problem solving (Action sequencing)

Dynamic Movement Primitives (DMPs):

This work applied DMPs framework (Schaal, 2006) to form action primitives/skills

for the robots. Action primitives or movements of the robots will be encoded using a set

of linear  and non-linear  dynamic functions.  When rolled out,  DMPs can generate  a

series of joint angles that can be used directly to control actuators of a robotic system.

The main application of this framework is to control a movement of a robotic arm

which requires smooth arbitrary trajectory. However, in order to use basic DMPs, one

need  to  supply  them  with  a  target  movement  (e.g.,  a  movement  recorded  from  a

demonstrator). The basic DMPs use supervised learning to train their parameter sets in

order to imitate the target movement. By minimising the error between generated and

observed trajectory, the DMPs can reproduce almost the same movement trajectory as

the  target  provided.  The benefit  of  the  DMPs framework was  not  just  imitating  an
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observed movement. follow up work has shown that the shape and the goals parameters

of the movement can be changed while in progress which makes the framework well

suited  to  control  a  robotic  arm  in  an  adaptive  way  (e.g.,  reaching  with  obstacle

avoidance). Note that shapes and goals parameters in this framework refer to the values

in joint space. To set these values while in progress usually requires inverse kinematics

solver that calculates joint angles from coordinate values (end point of a robotic arm).

Obviously,  this  technique  causes  the  problem  of  platform  dependency.  Two  core

equations (7.2 and 7.3) and two support functions (7.4 and 7.5) of this framework are

given as following:

ÿ t=α y(βy (g− y t)− ẏ t)+ f t (7.2)

f t(x t , g)=
∑i=1

N (ψi w i)

∑i=1
N (ψi)

x t(g− y0) (7.3)

ψi=exp(−hi(x−ci)
2) (7.4)

ẋ=−αx x (7.5)

The first part of Eq. 7.2 represents linear dynamical system (PD) which is perturbed

by  the  forcing  term  f.  This  equation  generates  trajectory  values  (yt)  which,  at  any

particular point in time, can be used directly to control an actuator. The forcing term f is

responsible for shaping the trajectory. It consists of a number of basis functions ( ψ )

together with their connection weight (w).  The calculation for this forcing term was

done by normalising the weight values and multiply by the canonical value  x, which

was decreased to zero over time by the factor - α , as stated in Eq. 7.5 The basis

function  (Eq.  7.4)  was  defined  as  a  Gaussian  function.  It  activates  around  x with

variance h and centre c.

Policy Improvement with Black Box optimization (PIBB):

Unlike a traditional use of the DMPs, there are no observed movements provided in
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this work. The system has to find the right move through the processes of trial and error

(as inspired by the way infants acquired their motor skills). This work applied the PIBB

algorithm  to  learn  the  movement  of  action  primitives.  By  using  the  black  box

optimisation  technique  (Stulp  &  Sigaud,  2012),  PIBB does  not  require  any  target

trajectory to compare; instead, it determines the rewards produced by several samples.

Initially, the PIBB creates a number of sample movements by adding random noises to

the current parameter sets (shapes, goals) of a DMPs. A reward assigned to each sample

can be calculated arbitrarily depending on tasks' specification. Ideally, each sample will

get a different reward. The new parameter sets of the actual control will be calculated by

averaging the parameters sets of all sample weighting by their rewards.

PIBB 's algorithm consists of 4 main steps i.e., adding noise, awarding, weighting

and averaging. They will be repeated until an outcome is satisfied or reach a maximum

step. Initially, the goal parameters of the DMPs (joints' angle) will be assigned using the

value of  a given smart  move,   while  the shape parameters  will  be calculated using

weight averaging technique borrowed from the basic DMPs. These initial values will be

called mean parameter set. After that, all these parameters will be add up with noise

terms which, when the DMPs roll out, will cause different movements.

Adding noise:

Μ0=weightAveraging (smart move) initial weights

Μik=Μi+N (μ ,σ ) (7.6)

The above equations were used to calculate random noises and add up to the mean

parameter set of the shape parameters. Where Μ 0 is an initial weight vector, which

will be used at the first epoch, i=0, k refers to a number of sample which is set to 10. N

is a set of random values generated by a multivariate Gaussian distribution function
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with takes mean vector μ and covariance matrix σ . This function will be called k

times and add its output vector to the mean parameter, Μ 0 . This process creates  k

sample movements.

Rewarding: 

The reward  Ji will be given when the preferred interesting event is happened, if the

movement caused by DMP can make that event happened then that sample i will get a

reward of 1; otherwise, there will be no reward for that sample, reward = 0.

Weighting:

pk=
exp (

−1
τ J k)

∑
k=1

K

exp(
−1
τ J k)

(7.7)

where  Pk is  a  probability  value  calculated  through  softmax  function  assigned  to  a

sample  k.  When  all  sample  were  rolled  out  and their  rewards  were  assigned,  each

sample will be given a probability value which calculated comparing to the summation

of all reward (softmax). Calculating a probability value for each sample from the reward

it obtained;

Averaging:

Μi+1=∑k=1
K p ikμ ik (7.8)

This step will calculate the new mean parameters based on weight averaging scheme.

The  new  mean  parameter  set  was  calculated  by  the  averaging  all  parameter  sets

weighting with their probability values.
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 Applying DMPs+ PIBB to learn action primitives:

The  main  idea  behind  the  PIBB algorithm  is  that  it  finds  a  new  set  of  a  policy’s

parameters  by  averaging  all  created  samples  based  on  their  rewards.  By  means  of

weight averaging, the new mean parameters will lead a system to the right direction,

approaching a goal. This process will be repeated until the maximum cycle is reached or

an action based on the new mean parameters gains enough reward (cause an interesting

event). PIBB algorithm is well suited to learn shape parameters in the DMPs framework.

Since the DMPs framework was applied to create actions, the PIBB was used to refine

them. Figure 7.7 illustrated the difference between basic and DMPs+PIBB. The left part

of  Figure  7.7  illustrated  that  basic  DMPs  learn  to  imitate  observed  trajectory  by

minimising its cost. In contrast, on the right part, goal direct DMPs learn to acquire new

motor skill by exploring.

Figure 7.7 The difference between basic and a reinforcement learning DMPs. 

The DMPs was applied to control movements of the iCub simulator, i.e., the right

arm. Since the iCub has 7 joints on the right arm to control (excluded the fingers), the

DMPs were designed to have 7 goal parameters corresponding to the number of the

179

DMPs
(Shapes, Goals)

Observed
Trajectory

Supervised
learning

Reinforcement
Learning (PIBB)

Robots, environment

Basic DMPs (Imitating) DMPs+PIBB (Exploring)

RewardsMovement
(Roll out)

Minimise trajectory cost Maximise rewards



joints, and 28 shape parameters (4 for each joint) to modify movement's trajectory of the

arm. Each joint can be controlled independently by changing these two parameter sets.

The PIBB processes will modify all the parameters corresponding to the outcome of

the DMP gradually. We propose a scheme that an interesting event leads the system to

search for proper parameters of a DMP that can constantly cause that event happened

through practice. Therefore, any new intrinsically motivated event will lead the system

to the acquisition of a new motor skill. Ideally, after training, each DMP (if assigned)

will be able to exhibit one useful movement as a skill. The term ‘useful’ means that the

movement can make one of the interesting events happen.  The system can detect 6

events as it was designed to have 10 (6+4) DMPs. The 4 extra DMPs are dedicated to

the case whereby only 1 DMP cannot meet the constraint of initial postures. Initially, all

DMPs will be assigned with random values to their shape and goal parameters. One

DMP will be selected randomly and rolled out to generate series of the joint's values it

encoded.  At this  state,  the visual  information does not take any effect to the action

selection.

Figure  7.8  illustrates  two  examples  of  the  network  connections  formed  by  the

system. During the processes of skill acquisition (DMPs+PIBB), all robots will encounter

all initial tool use situations. Both examples (Figures 7.8a and 7.8b) refer to the robots

that acquired all skills.  The difference between the two networks is indicated by the

different  connections  between  PC  and  PMC.  In  addition,  activation  of  the  PMC's

neurons, as affordance interpretation, should be different, however it is not shown in the

figure.  The thick arrows refer  to  the connections  which are strengthened by the Q-

learning and depending on the initial posture stored in the PC. In the example 1 (Figure

7.8a), during testing, when the robot encounter with initial tool use situation-1 the PMC

neuron number 2 will be activated with high activation. This means that the robot will
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be  more  likely  to  select  action-P  (due  to  the  selection  of  the  softmax  function).

Similarly, when the robot sees tool use situation number 4, PMC's neuron number 7 will

be active with highest  activation,  which should lead the system to exhibit  action-S.

Considering that if the outcome of action-S is similar to the tool use situation 1, the

system should exhibit action-P after this which should result in the success of retrieving

the toy.

In contrast, if the system is formed as example 2 (Figure 7.8b), it will not be able to

succeed in the case of tool far from toy. This is because, in the initial tool use situation

4, PMC's neuron number 5 will be active; however, it was mapped to the action-T which

normally not similar to the tool use situation 1. Thus, this system should fail in the test.

           PC                                  PMC           Skill                  PC                               PMC            Skill

   

          (a)  (b)

Figure 7.8 Examples of the network connection of the model after passing through the learning
processes. Note that the initial postures (the 4 images on the left) are represented in PC only one at a time.

Their images are used for clarification. (a) example 1. (b) example 2
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7.1.3 Results

According  to  the  two  hypotheses  on  tool  use  development  described  earlier,  two

simulations which are differentiated on two parameters (i.e., the number of IM-detector

and the number of training trials) as the age of simulated infants were conducted.

In the first simulation, the number of IM-detectors was varied from 2 to 6 (i.e., 2, 3,

4, 5 and 6) referred to the simulated infant robots aged 14 to 22 months (i.e., 14, 16, 18,

20  and  22).  The  acquisition  of  any  new  motor  skill  based  on  interesting  events

discovered  by the  robots,  thus  using  a  different  number  of  IM-detectors  affects  the

number  of  motor  skills  the  robots  can  obtain  directly.  Note  that  all  robots  in  this

simulation had been initialised with two basic skills, i.e., pulling and touching, and used

a fixed number of training trials i.e., 10, in the processes of action sequencing.

In the second simulation, the number of training trials will be varied on the number

of IM-detector instead. Using the number of training of 0 and 2 refers to the infants

robot aged 14 months, while 4, 6, 8 and 10 refer to the robots aged 16, 18, 20 and 22

months, respectively.  Note that infant robots in this simulation are able to detect all

interesting events (all IM-detectors are enabled), which means all motor skills can be

acquired and exhibited by these robots.

Since DMPs and PIBB underlie  the action acquisition processes,  this  leads  to a

variation  of  actions'  outcomes  in  which,  for  example,  two different  DMPs  that  are

responsible for the same action will never produce the same movement trajectory and

outcome.  In  other  words,  each  robot  can  be  differentiated  by  its  action  repertoire.

Therefore, in the same age group, each simulated infant may or may not have suitable

actions to solve a given tool use task.

Each infant robot will encounter only one tool use situation (either tool-behind-toy
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or tool-far-from-toy) and solves the task using both reactive and planning strategies. The

test of each tool use situation of each group will be repeated 30 times; thus, each group

consists of 60 individuals (30 repetitions x 2 tool use situations).

Figure 7.9 illustrates the results obtained from the first hypothesis. The top line of

the two graphs (Figures 7.9a and 7.9b) indicates the performance of tool use in the

situation that the tool located behind the toy. In this case, the performance of tool use of

all age groups is similar with high success rate about 90%. The youngest group appears

to be able to retrieve the toy at the highest success rate, 100%. This is because they have

only  two skills  in  their  action  repertoire,  i.e.,  pulling  and touching,  and due  to  the

affordance interpretation,  the situation that tool-behind-toy was more likely to cause

high activation on the skill-P. Thus, this benefits the first group, and leaves no space for

improvement.  So,  increasing  of  the  number  of  skills  will  not  result  in  better

performance.

In contrast, the bottom line of both graphs in Figure 7.9 shows the increase in tool

use performance when the number of skills is increased. Unlike the situation that tool-

behind-toy, skill-P is not suitable to retrieve the toy from the case of large spatial gap,

tool-far-from-toy.  In  the  youngest  group  that  only  have  the  skills  of  pulling  and

touching, obviously cannot solve the case of large spatial gap. However, it is possible

that,  sometimes,  performing  pulling  after  touching  can  succeed  in  this  case.  Thus,

performance  of  solving  the  case  of  tool-far-from-toy  starts  from  about  0%  at  the

youngest group and increases to  10, 40, 45 and 60 corresponding to the increasing of a

number of skills.
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                                                (a)                                                                              (b)

Figure 7.9 Tool use performance when varying the number of skills. (a) Reactive system. (b) Planning
system.

Figure 7.10 shows the results obtained from the second simulation (HP2). In this

test,  the  youngest  group,  which  has  no  training  period,  can  solve  the  case of  tool-

behind-toy  at  about  60%. In contrast  to  the  first  hypothesis,  approximately  20% of

individuals in this group, of this simulation can have an ability to solve the case of tool-

far-from-toy. Although, increasing of the number of training trials results in increasing

of the performance in both tests, the performance characteristic is not in a linear fashion.

It appears that, in the case of tool-behind-toy, using the number of training trials of 6

results in the highest performance.

                                               a)                                                                            b)

Figure 7.10 Tool use performance when varying the number of training trials. (a) Reactive system. (b)
Planning system.
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In both tests, the results obtained by the two systems, reactive and planning, seem

identical. This confirms that mental imagery can be used efficiently in replacing the use

of overt movements. However, comparing to the infant data reported by Rat-Fischer et

al.  (2012),  the  first  hypothesis  seems to  capture  the  main  characteristic  of  tool  use

development  better  than  the  second.  Thus,  from these  results,  we  suggest  that  the

development of tool use found in human infants might be caused by differences in the

number of motor skills they have mastered.

7.1.4 Discussion

This study simulates the infants' ages based on two different interpretations on their

tool use performance. The first hypothesis interprets the age as a number of acquired

motor skills while the latter differentiates the age as a period of experience/practice on

tool  use  scenarios  before  testing.  Even  the  results  reported  in  the  previous  section

showed a comparable characteristic of tool use performance (qualitatively) as exhibited

by our infant robots and the human infants (Rat-Fischer et al., 2012). However, we still

lack evidence that addresses a relationship between a number of acquired motor skills or

a period of experience and the infants' age. What actually underlie the performance of

tool use in human infants is still unknown.

Tool  use  scenarios,  captured  through  the  robot's  eye,  are  varied  subject  to  the

movements of the right arm of the robot. However, this does not simply mean that the

number of different tool use situations equals the number of action the robot had such as

2  to  6.  Because  the  effect  of  physical  interactions  between  the  tool  and the  toy  is

sometimes unpredictable, it is possible that two outcomes caused by the same action can

differ from time to time. Therefore, the Q-learning processes accumulate knowledge on

solving the tool use task from a variation of inputs, not from a static set.
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It  is  difficult  to  explain  why  human  infants  from  the  same  age  group  exhibit

different performances in their tool use task. We assume that this effect is caused by

individual  differences  whereby  the  infants  grew  up  in  different  environments  and

encounter different situations during their daily lives, which affect the opportunity to

discover  the means-ends examples  of  using a  tool.  Therefore,  from the different  of

sensorimotor learning they have different motor knowledge and might apply different

strategies to dealing with a given tool use situation.

Another  issue  to  be  discussed  in  this  section  regards  an  uncertainty  of  actions'

outcome whereby it affects the performance of the tool use exhibited by different robots

directly.  The uncertainty is  caused by the visual input  that  the robot  captured (after

performing each select/intend action) and used throughout the processes of training and

testing. The point is that the outcome (used as neural activation of the PC) can differ

when  exhibited  by  the  same  action.  This  is  according  to  the  effect  of  physical

interactions and that robots are allowed to discover a goal and practice an underlying

action themselves. As stated in the learning algorithm (Figure 7.5), the goal parameters

used to initiate each DMP is collected through a random movement. It was subject to

the chance that the combination of the random values that could make the tool cause an

interesting event. Even though the robot was set to stop its movement as soon as the

interesting event arises, the effect on the tool toy interaction will rarely be the same. In

most cases, they are different.

This work also demonstrates that mental imagery (an expectation of the actions'

outcome) can be used to replace overt movements in the acquisition of tool use ability.

Since, using mental images allows the robots to do planning to solve the task in mind,

this might be interpreted as an understanding of how to use tools. In such cases, the

infants  can  exhibit  movements  for  solving  a  being  perceived  tool  use  scenarios
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spontaneously.

To address the issues of the insight of how to use tools and the role of tool use

demonstration in future work,  new simulations will  be conducted which concentrate

more on the creation of mental images. In these simulations, the training trials of the

connection C3 will be varied subject to the period of time practice, the infants' age, not

using a static number of training trials as in the present study. This setting will create a

different quality of mental imagery. Infants that spend more time on practice will have

clear mental images of the expected actions outcome, while the infants who have little

practice will not be able to obtain the clear mental images.

In addition, the fact that demonstration can lead to the spontaneously success in the

tool  use  task  will  be  interpreted  as  additional  training  trails  to  the  training  of  the

connection C3. A system that has enough training cycles on this  connection (taking

from the demonstration session) should have a good quality of mental image which can

be used in the processes of self-determined reward.
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Chapter 8

Conclusion

This chapter summarises the main findings and contributions of all experimental studies

conducted throughout the thesis. The details of contribution to knowledge (mentioned in

chapter 1) and a list of future work are also provided. 

8.1 Summary on the Initial Models of Mental Rotation: Experiment 1, 2

The neurorobotic model proposed in chapter 5 accounts for mental rotation processes

based on neural mechanisms involving visual imagery, bottom-up and top-down control,

and mental imagery based on inverse and forward models. The model also highlights

the  importance  of  motor  processes  and proprioceptive  inputs  in  the  performance of

mental rotation tasks. In this respect, the proposed approach agrees with the most recent

theoretical and empirical findings on mental rotation (Lamm et al., 2007) and more in

general mental simulation (Pezzulo et al., 2010). 

Importantly, in addition to replicating the typical mental rotation data, the model is

able  to  account  for  other  data  which  link  overt  movements  and  mental  rotations

(Wohlschläger  &  Wohlschläger,  1998;  Wohlschläger,  2001).  This  recent  empirical

evidence shows that the performance of mental rotation tasks can be improved by the

assistance of hand movements, or gestures, called “co-thought gestures” (Chu & Kita,

2008;  Chu  & Kita,  2011).  Spontaneous  gestures  during  the  performance  of  mental

rotation provide a rich sensorimotor experience.  Following this  evidence,  the model
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includes  proprioceptive  areas  that  encode  the  proprioception  resulting  from  wrist

movements.  This  directly  affects  the  mental  rotation  processes  within  the  parietal-

premotor circuits. On this basis, the model suggests an operational hypothesis on the

specific  mechanisms through  which  covert  mental  rotation  processes  might  rely  on

overt ones on the basis of forward models. 

The model was also validated with the simulated humanoid robot iCub engaged in

solving a mental rotation task. This gave further support to the idea that the integration

of mental rotation capabilities with affordance and embodied processes is at the basis of

the successful performance of the mental rotation tasks. For its embodied nature, the

model presented here also sets the basis for investigating the role of co-thought gestures

(Chu & Kita, 2008; Chu & Kita, 2011) to support mental rotation tasks, as well as other

cognitive capabilities such as the use of communicative gestures and verbal language.

Overall  the  proposed  neurorobotic  model  provides  a  useful  computational

framework to study the integration between mental rotation capabilities and embodied

cognition, in particular to demonstrate the role of motor processes and forward models

in mental simulation tasks.

8.2 Summary on the Generalise Models of Mental Rotation: Experiment 3, 4

The work on generalisation skills (chapter 6) has presented a novel neuro-robotic model

to study the neural mechanisms possibly underlying mental rotation in humans. The

model presents some innovations with respect to previous models that further refine the

current hypotheses on such mechanisms. First, starting from the approach followed in

Caligiore et al. (2010), the model macro-architecture was constrained with knowledge

on the areas of brain involved in mental rotation obtained with brain imaging studies
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and other neuroscientific studies suggesting the mechanisms operating within them. In

this respect, the model was based on a more accurate analysis of the involved brain

areas.  This  led  to  the  isolation  of  four  key brain areas  forming the  mental  rotation

system and to propose four hypotheses on the key processes taking place within them.

The first two areas involve sensory associative areas. The first area of these, the parieto-

occipital  cortex,  is  proposed  to  perform  the  mental  manipulations  of  visual

representations  of  objects  under  the  influence  of  information  on  possible  rotation

actions received from motor areas. These processes rely on forward models that allow

the anticipation  of  the rotated  image that  would  result  from an actual  rotation of  a

concrete  object.  The  second  area,  the  posterior-parietal  cortex,  is  involved  in

implementing  the  mapping  between  the  object  images  and  the  corresponding

proprioception of the limb possibly holding it (e.g.,  to compute the wrist orientation

corresponding  to  a  certain  orientation  of  the  seen  objects),  and  to  combine  target

postures with current postures to decide the next mental rotation to perform. The third

and fourth areas involve frontal motor and planning cortex. In particular, the third area,

the premotor cortex, implements the preparation of possible rotation movements that are

then not executed with limbs but are used to drive internal mentally-imaged rotations.

The fourth and last  area,  the inferior lateral  pre-frontal  cortex,  supervises the whole

process by remembering the target object orientation, by monitoring the success/failure

of the mental rotation process, and finally by triggering the final response of the system

in concert with the premotor cortex.

This architecture and related mechanisms represents an further step with respect to

previous computational models (e.g., Sasama et al., 2009; Inui & Ashizawa, 2011) that

focused  on  the  mental  rotation  mechanisms  without  relating  them  to  the  other

supporting processes such as the matching processes and the decision making processes
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(Lamm et  al.,  2007).  The architecture  also represents  an  innovation  with respect  to

previous  neurorobotic  models  (Seepanomwan  et  al.,  2013a,  2013b)  that  did  not

distinguish  between  the  brain  areas  possibly  performing  visual  and  proprioceptive

processes, and that also used abstract monitoring and decision making mechanisms.

A second  innovation  of  the  model  in  comparison  to  other  neurorobotic  models

(Seepanomwan et  al.,  2013a,  2013b),  and shared  with  other  neural-network  models

(e.g., Sasama et al., 2009), involves a more general rotation process capable of rotating

different, possibly novel objects (to the condition that these are represented in terms of

edges). This resembles the generalisation capabilities of humans as shown by the classic

mental rotation experiments using unusual, novel object images (Hochberg & Gellman,

1977). In this respect, the model has shown that, at least for the type of 2D images used

here to test the model, the training set can be formed by very simple images (e.g., sets of

dots) as these are sufficient to allow the model to capture the spatial transformations

needed to perform mental rotations. The model also indicates that mental rotation of

novel objects is easier when these involve few distinctive feature, whereas it might incur

in longer reaction times and higher error rates with objects having several matching

features while rotated as this  causes problems to the matching and decision making

processes.

A third innovation of the model with respect to previous models is represented by

the mechanism used to monitor the overall  mental rotation process and to make the

decision about the response to produce. To this purpose, the model incorporated the

mutual inhibition model (Usher & McClelland, 2001; Bogacz et al., 2006) that allows a

more accurate and biologically-plausible reproduction of the decision making processes

of  the  participants  of  target  psychological  experiments.  This  allowed  the  model  to

reproduce  the  key  findings  of  experiments  on  mental  rotation  showing  increasing

191



reaction  times  and error  rates  in  relation  to  increasing  disparities  of  the  orientation

angles of the rotated and the target objects, whereas previous robotic models on mental

rotation reproduced less consistent reaction times and could not reproduce error rates

(see Seepanomwan et al., 2013a, 2013b).

Last,  the  embodied  nature  of  the  model,  tested  within  a  robot,  showed  the

robustness of the model with respect to noise caused by the use of real images and real

camera noisy movements. Moreover, it allowed the performance of experiments where

the information from the robot proprioception (wrist angle) was added to the mentally

simulated  proprioception,  thus  allowing  the  reproduction,  and  the  proposal  of  an

hypothesis on the possible underlying mechanisms, of psychological experiments where

participants perform movements while mentally rotating objects. This led to show that

over movements congruent with the performed mental rotation are useful only when

mental rotation is difficult due to uncertain images, image-proprioception matching, or

other sources of noise. To the best of our knowledge, this represents a prediction of the

model.  Notice  how the  model  allowed the  study of  these  phenomena as  its  mental

rotation  processes  are  strongly  embodied,  i.e.,  they  rely  on  the  same  mechanisms

underlying  sensory  and  motor  processes  (Clark,  1997;  Wilson,  2002;  Borghi  et  al.,

2013).  This  facilitates  the  integration  of  mental  and  sensorimotor  processes  and

information.

Although the model solves technologically rather simple tasks, the fact that it  is

embodied in a real agent makes it relevant for robotics. Mental rotation can be seen as

an instance of planning and as such it  could help to improve a robotic performance

(Lozano-Perez, 1987; Latombe, 1991; Baldassarre, 2003). Among planning problems,

mental rotation is peculiar in that it involves only two possible actions, i.e., clock-wise

and anti-clockwise rotations (at least when 2D images are considered). Moreover, the

192



transformations that it requires are independent of the objects being rotated (the same

holds for translations, Terekhov & O'Regan, 2013). As shown with the model, these two

features of mental rotation allow the acquisition of general forward models to support

planning processes that in principle can work with any type of object and can be based

on simplified problems. Moreover, it also allows a mechanism for action selection (i.e.,

the mechanism deciding where to rotate the object) based on the relation between the

rotated object and the target object, similar to cue-based planning strategies (Trullier et

al., 1997). In our model, this mechanism relied on the abstraction and integration of

information  related  to  the  rotated  and  target  objects,  processed  by  encoding  their

orientations in terms of corresponding wrist proprioception. Mechanisms as simple and

general as these might be used to inspire other planning strategies to solve manipulation

problems involving a low number of actions, e.g.,  not only rotations (Ciancio et al.,

2015;  Meola et  al.,  2015) but  also linear  translations in  open space and 3D mental

rotations.

8.3 Summary on Tool Use Development in Infant Robots: Experiment 5

The experiment conducted in chapter 7 implements tool use competence in humanoid

robots based on their ability to see affordances of tool use situations. The performance

of  using  a  rake-like  tool  to  retrieve  an  out-of-reach  toy  was  constrained  by  two

parameters,  i.e.,  a number of motor  skills  and a  number of training trials.  The first

parameter can be varied assuming as the robots acquire  new motor skills  gradually.

Starting from having a small number, they increase as they are growing up, as assumed.

The second parameter refers to the amount of time the robot spent to familiarise with a

given tool use task (before testing). This parameter will be changed during the period of

problem solving (Q-learning). The two parameters refer roughly to the age of the infant
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robots. Obtaining more skills or using more training trials makes the performance of

solving the tool use task more efficient. The ability to extract affordance value from a

given tool use task is mandatory for the model whereby the affordance was used to

indicate which actions are possible to handle as a perceived tool use situation.  This

allows the system to learn action sequencing within a reasonable period of time and

reflect motor knowledge obtained by the system. Different robots would have different

sets  of  motor  skills  and  also  different  numbers  of  training  trials;  thus  tool  use

performance is varied due to the variety of each individual robot.

The interaction between two objects (i.e., a rake-like tool in the robot's hand and a

toy on a table) can lead to the acquisition of knowledge of how to use the tool to retrieve

the toy. We suggest that knowledge about object interaction are encoded in motor areas

in term of affordance interpretation and skills. Selective activation of different motor

neurons in  response to  being a  perceive tool  use situation (affordances)  leads  to  an

execution of different movement (skill). Through the processes of Q-learning, a correct

sequence of actions suitable to solve the task can be discovered. In addition, the present

model  adopts  an  idea  on  intrinsic  motivations  to  guide  the  processes  of  cognitive

acquisition. As mechanisms drive the sensorimotor learning, intrinsic motivations play a

key role in the process of skill acquisition which affect the development of tool use

directly.

As constrained by the infants' age, the period of time spent during the sensorimotor

learning of different infants should differ. Older infants should have more time in the

sensorimotor period which results in the acquisition of a number of motor skills.  In

contrast, young infants should have a smaller number of skills. This number effects tool

use performance in a sense that there is more chance that suitable skills for solving a

given tool use task consisted of a bigger set than a smaller ones.
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Importantly,  the two simulations also consider the use of mental imagery in the

processes of action sequencing. By replacing the outcome of overt  movements with

mental images, the robot can accumulate the way to solve a given tool use task in mind.

The  results  confirm  that  using  mental  imagery  produces  similar  result  to  overt

movements.

This  experiment  explains  and demonstrates  how tool  use capability  can  emerge

from sensorimotor processes. Mental imagery and affordances are also possible through

sensorimotor learning. Both play a key role in an acquisition of tool use ability.  By

using the iCub simulator as a synthetic tool, the way knowledge of tools’ use in infants

developed can be assessed thoroughly.

8.4 Contribution to Knowledge

This section recalls, and provides more details of the contribution to knowledge stated

in the introduction chapter. 

• Scientific understanding of neuro-cortical mechanisms underlying mental

rotation.

Conducting  two  initial  experiments  on  mental  rotation  (chapter  5)  provided

basic knowledge on how to create and manipulate mental images over the neural

network model. The model reproduces some mechanisms, possibly performed in

the parietal-premotor circuits, implementing the object mental rotation processes

and some other mechanisms, possibly performed in prefrontal-premotor circuits,

implementing the decision making processes involved in mental rotation (see

Zacks, 2008 for more details on the biological mechanisms). 

To our  knowledge,  this  model  represents  the first  instance of  a  neurorobotic
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model of mental rotation, and a first hypothesis of the brain mechanisms that

may underlie this process.  The thesis revealed some sort of mental imagery in

brain-like mechanisms. The techniques applied in this work are acceptable as

biologically  plausible  mechanisms  (i.e.,  population  coding  neural  networks,

Hebbian  learning,  Kohonen  competitive  learning  and  dynamic  competition

processes).  Thus,  the thesis  also has revealed one possible  neural  processing

technique that might underlie mental rotation processes. To our knowledge, this

model represents the first instance of a neuro-robotic model of mental rotation,

and a first hypothesis of the brain mechanisms that may underlie this process.

• Novel  bio-constraint  neurorobotic  frameworks  linking  motor  processes,

mental imagery and spatial problem solving.

The proposed computational framework is in agreement with the most recent

theoretical  and  empirical  research  on  mental  rotation  (Lamm  et  al.,  2007),

including behavioural (Wexler, Kosslyn, & Berthoz, 1998; Wohlschläger, 2001),

and with findings on tool use development in human infants (Rat-Fischer et al.,

2012). It provides useful mechanisms to study the integration between mental

imagery capabilities and embodied cognition and demonstrates the role of motor

processes  and  affordances,  in  two  mental  simulation  tasks.  The  framework

suggests  a  specific  operational  hypothesis  on  how the  information  processes

taking  place  in  brain  sensorimotor  areas  interplay  and  form mental  imagery

capability. This framework first draws an idea from the affordance and forward

model  view,  integrates  and  specifies  them  to  make  them  applicable  to  the

explanation of mental rotation and tool use.

• Novel  demonstration  of  integrating  mental  imagery  capability  into  a

humanoid robotic platform.
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The  proposed  neurorobotic  models  were  validated  with  the  physical  and

simulated humanoid robot iCub, engaged in solving mental rotation and tool use

tasks. This also provides a demonstration that the integration of mental imagery

capabilities with the affordances and embodiment processes (developed in the

motor babbling training phase) leads to the acquisition of mental imagery. The

results confirmed that mental imagery capability can be obtained and exploited

by robots. 

In addition, the test with physical robots is relevant not only to facilitate the

inclusion in the model of some issues relating to embodied cognition, but also to

test the robustness of the model to the variable conditions of the environment

and of the robot. For example, the images from the robot camera changed in

different trials due to luminance changes within the environment, the variable

response of the camera and the accuracy limitations of the camera motors.

• Novel  mechanism  permitting  an  autonomous  cognitive  acquisition  in

humanoid robots.

The work on tool use (chapter 7) adopts an idea of using intrinsic motivations to

support the self-generation of goals without the intervention of external agents.

The intrinsic motivation system marks as relevant some changes happening in

the environment  as a  consequence of the robot exploratory action.  A change

marked  as  relevant  then  leads  the  robot  to  form a  goal  corresponding  to  it,

meaning  that:  (a)  the  world  state  resulting  from the  change is  stored  in  the

system memory; (b) the robot transiently focusses on that change and this guides

a reinforcement learning process that allows the robot to acquire the motor skill

that causes the change in a reliable fashion; (c) the representation of the world

state becomes able, if activated, to recall the execution of the skill that causes it.
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As mechanisms that drive the sensorimotor learning, intrinsic motivations thus

play a key role in the process of autonomous skill acquisition which directly

affect  the development  of tool  use.  In addition,  the experiment  conducted in

chapter 7 also provides an insight of how the fundamental cognitive skills such

as  affordances,  mental  imagery  and  problem  solving  emerged  through  the

processes of sensorimotor learning.

8.5 Future Work

The future research concerns three important issues which are considered as mandatory

for humanoid robots which are not addressed in the present studies. 

• Controlling of the information flow using neural-like mechanism

In the experimental studies conducted so far, the information flow between the

system components is in part managed by non-neural mechanisms. This involves

the cyclic flow of information from the sensory/proprioceptive components to

the motor components and vice versa e.g., as needed to implement sequences of

mental rotation steps. Although this process is commonly used in neural systems

to implement planning (e.g., see  Butz, Sigaud, & Gérard, 2003; Grush, 2004;

Ziemke,  Jirenhed,  & Hesslow,  2005),  it  is  not  biologically  plausible,  as  the

information  flows  are  not  managed  by  neural-like  mechanisms  (Baldassarre,

2003). To our knowledge, how to manage information flow and how to repeat

cycles  of  planning  using  dynamic  neural  systems  are  still  a  difficult  open

problem.

To address this issue, the future neurorobotic models will be implemented as a

Recurrent Neural Network (RNN) and will adopt particular training techniques
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such as reservoir computing/liquid state machine (LukošEvičIus & Jaeger, 2009)

to train them. These mechanisms could allow RNNs to form connections (flow

of  information)  among  neural  maps  automatically/randomly  and  only  the

readout signals will be trained, thus this could permit flexibility/adaptability of

the future models.

• Creating/Manipulating  mental  images  from  an  uncertainty  visual

information

This  research  issue  concerns  the  use  of  visual  information  taken  from  an

uncertainty visual system. Considering that when robots make movements, for

example, to do an assigned task, their visual perception will not stay still. The

visual  input  of  the  present  framework,  however,  was  supplied  from a  static

visual system i.e., a fixed camera. Since, the visual input was used directly as a

neural  activity  of  neural  maps,  and also  used  in  the  training  of  the  models'

connections,  thus,  it  need  to  be  persistent  and  aligned  in  a  proper

position/orientation during training and testing. This limits the performance of

the present models to be able to handle only a good form of visual stimuli and

familiar  situations.  The  future  research  will  take  into  account  biologically

plausible  mechanisms  that  are  able  of  saccading  and  extracting  objects  of

interest. These mechanisms should capable of autonomously formulating visual

information into a good form before passing them to the networks. In addition,

neural  maps  that  are  used  for  storing  mental  images  should  capable  of

maintaining  the  image  in  more  reality  manner  e.g.,  in  3  dimensional  spaces

rather than 2. 

• Mental imagery of their (humanoid robots) body, movements, and effects in

the environment
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The third issue considers mental imagery in a more practical domain e.g., mental

practice in sports. Human athletes use mental imagery to improve their future

performance. By imaging their own movements constraints by intended actions

or instructions from a coach, as mental practice, many studies confirmed that the

later performance of the athletes can be significantly improved with this practice

(Feltz & Landers, 1983; Driskell, Copper, & Moran, 1994). To tackle this issue,

a  humanoid   robot,  as  a  simulated  human athlete,  has  to  have  a  capable  of

imagine its own body and consequences on the environment, rather than merely

focusing on objects. To the best of our knowledge, this research issue is new and

fundamentally challenging. Conducting this research could possibly reveal some

interesting mechanisms permitting humanoid robots to exploit mental imagery in

more complex, useful, scenarios. 

Humanoid  robots  that  are  going  to  work  with  humans  and  in  the  human

environment will obviously encounter with a variety of situations. Thus, adaptive and

developmental capabilities are mandatory features for them. The present studies already

addressed some level of cognitive development through the processes of sensorimotor

learning,  however,  they  did  not  capture  the  case  of  adaptation.  The  future  work,

especially  on  the  use  of  RNNs  and  reservoir  computing,  could  offer  us  more

understandings on how to permit humanoid robots to acquire the ability of adaptation. 
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