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FLOW OF POWER LAW FLUIDS 

WITH APPLICATION TO OIL DRILLING 

E. J. CARTER 

ABSTRACT 

The thesis is concerned with a theoretical study of 
the flow behaviour of inelastic power law fluids in two different 
types of flow situation. These are: 

1. The creeping motion of a sphere moving through an expanse of 
liquid. 

2. The combined steady and oscillatory flow of a liquid through a 
straight tube of circular cross section. 

The first part of the work is devoted to the 
prediction of the drag correction factor for a sphere falling slowly 
through a bounded inelastic power law fluid. The analysis is carried 
out for the case when the outer spherical boundary has a finite or 
infinite radius. A perturbation technique is used to produce the 
resulting equations for a slightly power law fluid which are solved 
using the finite element method. An asymptotic expansion is used to 
provide an analytical far field solution for the infinite outer 
sphere case. 

The second part considers the combined steady and 
oscillatory flow of an inelastic power law liquid in a tube. The 
analysis is carried. out for the case when both the steady flow rate 
and the oscillatory flow rate are known. An expression for the 
pressure gradient reduction in the tube is then derived. The 
resulting partial differential equation is solved by finite 
difference techniques. An analytical solution for the pressure 
gradient is also obtained using a perturbation analysis for the case 
when the fluid inertial effects are small. 
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CHAPTER 1 

INTRODUCTION 

Since ancient times the study of the deformation and 
flow of matter has been both a subject of speculation and of 

practical application. A discipline, drawing its inspiration from 

mathematics and engineering and epitomised by such a person as 
Archimedes (285-215 BC), who was one of the early workers in this 

field. The modern mathematical foundations were laid down in the 
17th Century when Robert Hooke presented his law relating the stress 

and strain in an elastic solid and Isaac Newton formulated his law of 
friction for viscous fluids. At this time materials were classified 
either as Hookean solids or as Newtonian fluids. Newton, however, 
had considered only situations involving simple shear in the fluid 

and the generalisation of his work to include arbitrary types of flow 

was carried out by G. G. Stokes. In 1849 Stokes derived the now 

celebrated Navier-Stokes equations. Between the work of Hooke and 
Newton and that of Stokes and Navier lay all the development of the 

science of fluid mechanics created by such mathematicians as 
D'Alembert, Lagrange and Johannes and Daniel Bernouili by developing 

and extending the fundamental work of Euler. The subject was then 
further developed by such scientists as Helmholtz, Kelvin and 
Rayleigh during the 19th Century. 

With the coming of the industrial revolution 
predicting and using the behaviour of fluid flows became very 
important. Understanding played a subservient role to application 
and empirical relationships were widely used. Equally important, new 
materials were being produced with properties very different from 
those previously considered. It was this development in material 
technology which finally demonstrated the inadequacy of the old way 
of classifying substances. Experimental work by Bingham and Green 
(1919) on oil paints and, later, German research on the flow of 
colloidal solutions, showed that a whole class of fluids existed 
whose behaviour could not be described by Newton's law of friction. 
The oil. paints exhibited a yield stress, the colloidal solutions a 
shear rate dependent viscosity. In 1924 Ostwald considered the flow 
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of a pseudoplastic fluid over a wide range of shear rates. In order 
to account for this behaviour Ostwald proposed the idea of a 

structural viscosity. This interest in the underlying structural 
foundations of flow phenomena has continued to the present day. 

Molecular theories have recently attracted a lot of interest and 

stand as alternatives to the more usual continuum mechanics approach 
(Bird1 (1977)). 

Materials were also examined which were found to 

possess both viscous and elastic behaviour. These materials were 

classified according to their response to small applied stresses. 

This classification is still used today. Materials not continually 

changing their shape when subjected to small applied stresses were 

classified as elastico-viscous solids. Materials which did change 
shape continually when subjected to a small applied stress (however 

small) were classified as visco-elastic fluids. These fluids have a 
'memory' of past events and the ability to store energy when work is 

done on them. Elastic properties are exhibited by many different 

types of fluid including emulsions, suspensions and polymer 

solutions. 
This growth of knowledge marked the beginning of a 

new science - rheology - and in 1929 the (American) Society of 
Rheology was founded. 

In Chapter 2, in order to facilitate the 

understanding of the studies in this thesis, and to put them into 

their rheological perspective, some general aspects of the-theory of 
deformation and flow of a homogeneous and continuous material are 
considered. In particular " the important work of J. G. Oldroyd 

concerning the characterisation and formulation of rheological 
equations of state is discussed. The generalised Newtonian fluids 
and the more general Oldroyd four constant fluids, the simple fluid 
of Coleman and Noll and the Rivlin-Ericksen fluids are considered. 
In the second part of the chapter the applicability of the 

generalised Newtonian fluids in the oil drilling industry is 
discussed. It is established that, in the flow regime in which drill 

cuttings are transported to the surface, or when they settle after 
drilling is halted, the power law fluid accurately models many modern 
drilling fluids. 
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In order to introduce the numerical techniques used 

in Chapter 5 the Galerkin formulation for the finite element method 

is discussed in Chapter 3. The finite element method is a 

discretization technique which enables the approximate solution of a 

partial differential equation to be obtained at discrete points in 

its domain of definition. This is achieved by solving a set of 

simultaneous linear equations constrained by the relevant boundary 

conditions. The Galerkin formulation for the finite element method 

was chosen because of its proven success in fluid flow problems 

(Refer T. J. Chung2 (1978)). 

In Chapter 4 an analysis of the creeping flow of a 

power law fluid past a sphere is presented. The analysis is carried 

through for both a finite and an infinite expanse of fluid. This 

fluid is considered to be slightly power law (i. e. to have a power 
law index near 1). Its governing equation is derived using a 

perturbation analysis about n=1. An expression is derived for the 

drag force on the sphere, first in a finite, and then in an infinite, 

expanse of fluid. Using the latter expression for the drag force on 

the sphere the drag correction factor is shown to be a linear 

relation of the power law index. This linear relation is known to 

within a constant which is dependent on derivatives of the stream 
function of the power law fluid. Thus, in order to determine the 

drag correction factor the governing equation of the fluid must be 

solved, numerically, to obtain the stream function. The outer 
boundary condition required in the case of an infinite expanse of 
fluid was obtained by first deriving an expression for the asymptotic 
far field stream function and then using the field matching 
technique. 

In Chapter 5, the numerical solution for the stream 
function was obtained by decoupling the governing equation into a 
system of two second order partial differential equations. These 

equations were then solved using the Galerkin formulation of the 
finite element method. In this chapter the full numerical procedure 
for obtaining the drag correction factor for a sphere falling slowly 
in a slightly power law fluid is presented. In addition the 

validation of the program and the numerical procedures used to obtain 
intermediate results are discussed. The work of other researchers in 

this area is commented upon and the result obtained in this chapter 

-3- 



is compared with their predictions. 
In Chapter 6, a theoretical study of the pulsatile 

flow of a power law fluid through a long, straight horizontal pipe of 

circular cross section is presented. Experimental work has shown 

that when a sinusoidal pressure gradient is superimposed onto the 

steady flow of visco-elastic fluid in a straight tube the mean flow 

rate is increased for a given mean pressure gradient. This 

phenomenon has been called 'flow enhancement' and is of considerable 

industrial interest. In the conventional pulsatile flow apparatus 

the mean pressure gradient is controlled and the mean flow rate 

measured. In our study the mean flow rate and the pulsatile flow 

rate are assumed known and the mean pressure gradient is evaluated. 

The relevant equation of motion is solved numerically by using a 
finite difference scheme. A perturbation analysis was also carried 

out for the case when fluid inertia is small and the results obtained 

are compared with the corresponding numerical results. 
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CHAPTER 2 

RHEOLOGICAL BUATIONS OF STATE 

2.1 Introduction 

This thesis is concerned with two flow situations: 

(i) a sphere falling slowly through an infinite 

expanse of power law fluid. j 
(ii) the pumping of a power law fluid through a long 

horizontal pipe, of circular cross section, under the action of a 

pulsatile pressure gradient with a non-zero mean. 
Both of these flow situations have industrial 

significance. The first flow situation is of particular importance 

to the oil drilling industry since many oil drilling fluids conform 

to the power law model and drill cuttings may be modelled, to a first 

approximation by spheres. The industrial significance of the second 
flow situation is self evident and is discussed in Chapter 6. 

To facilitate the understanding of the studies in 

this thesis and to put them into their rheological perspective some 

general aspects of the theory of deformation and flow of a 
homogeneous and continuous material (fluid) are considered. First, 

sane basic principles are stated and discussed and then some 
equations of state are considered. These equations of state are 
divided into two classes, those describing the generalised Newtonian 
fluids and those describing more general fluids - namely the Oldroyd, 
Simple and Rivlin-Ericksen fluids. The chapter concludes with a 
short discussion of the use of the generalised Newtonian fluids to 
the oil drilling-industry. 

2.2 Characterization and Formulation 

Firstly, equations of state are obtained which 

specify the rheological properties of an arbitrary element of the 

fluid. 
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Secondly, the behaviour of the fluid in bulk, under 
the given initial and boundary conditions and the body forces 

operating, is predicted. This is achieved by solving, the equation 
of motion in conjunction with the equation of continuity. 

In this thesis the component notation is used 
throughout. According to this approach a tensor is synonymous with 
its set of components, this set transforming covariantly, 
contravariantly or in mixed mode under a transformation of the co- 
ordinate system used. A tensor may accordingly be written as Ti j, 
Tij, Tij or Tij. 

The simplest model of a fluid is the Newtonian fluid 
given by (8) 

6° =o and =(. t) 

where 
e ýk ýý"_) 

(t) 
rate of strain tensor 

P; k = Cauchy stress tensor 

p= an arbitrary isotropic pressure 

I "k = the metric tensor of a fixed coordinate system xi 

'q =a scalar constant (the fluid viscosity) 

pik = extra stress tensor 

The extra stress tensor is that part of the stress tensor associated 
with changes in shape of the fluid element. In terms of the velocity 
vector vii the rate of strain tensor is given by: 

e %r. 
The equation of motion and the equation of continuity 

are given respectively by: 

p `, pr`= D=ý C2"ß"? 
Dr 
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and 

+p ý- =o (2. s) 
Dt 

where p is the fluid density, F is the body force per unit mass, v 

is the fluid element velocity and D/Dt is the material derivative. 

For an incompressible fluid D, 0 /Dt = 0. 

A Newtonian fluid is quite inadequate for describing 

the complex Theological behaviour of many fluids. The most 

interesting fluids are the visco-elastic fluids. Under a shearing 

deformation these fluids behave neither as a perfectly elastic solid 

nor as a perfectly viscous fluid. The work done in a shearing 
deformation of such a visco-elastic fluid is neither totally 

dissipated as heat nor is it totally conserved. The conservation of 

work done manifests itself in many interesting phenomena including 

the die-swell effect, Weissenberg rod climbing and various strain- 

recovery effects. Visco-elastic fluid behaviour is still not fully 

understood, a fact that is witnessed by the numerous modern papers on 
the subject. 

Very important developments took place in continuuum 
theoretical rheology during the 1950's and onwards. Progress in this 

country was largely due to the pioneering work of the late J. G. 

Oldroyd3 and was inaugurated by him in his paper of 1950. This paper 
comprehensively discusses the general principles for the formation of 
equations of state and the application of the general theory through 
the construction of models. 

The principles to be satisfied in constructing a 
model were stated by Oldroyd as follows: 

(1) the equation must describe fluid properties 
independently of the frame of reference. 

(2) the behaviour of any fluid element is to be 
dependent only upon its own deformation history. 

Note (1) The usual convention of summing over repeated 
suffixes is complied with. 

Note (2) A suffix following a comma indicates a covariant 
derivative 
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(3) the behaviour of any fluid element is to be 
independent of any translatory or rotational motion of the fluid as a 

whole. 
The system of co-ordinates used by Oldroyd was that 

proposed by H. Hencky'4 in 1925, namely the system of convected co- 
ordinates. These co-ordinates are related to surfaces in the fluid 

which transform continuously with the fluid during its motion. They 

are independent of ' time and label the material points of the fluid. 
More significantly they allow the principles for constructing fluid 

models to be satisfied. 
The visco-elastic behaviour of fluids can be modelled 

by mechanical analogy. Dashpots and springs may be taken as 
perfectly viscous and perfectly elastic elements respectively and 
various parallel and series combinations can be constructed. In many 
visco-elastic fluids memory effects are important and the 

superposition principle of L. Boltzmann5 (1876) becomes applicable. 
Oldroyd6 (1958) discusses a material which in simple shearing flow 
may be rheologically modelled by a viscous and an elastic element in 

series where the latter has the elastic after-effect properties 
consistent with Boltzmann's principle. 

Oldroyd's work provides a constructive framework and 
guiding principles for the formulation of equations of state. Other 
workers, notably -Rivlin and Ericksen7 (1955), Green and Rivlin8,9 
(1957,1960) and Coleman and Noll10-12 (1960,1961,1961) have 
approached the problem of formulation in a different way from 
01droyd. 

A significant simplification is achieved if only 
those motions are considered in which non-linear effects in the 
elastic and viscous deformation process may be ignored. These 
motions are those in which small deformations (solids) or small rates 
of strain (fluids) only occur. Such circumstances arise in 
experiments widely used by physical chemists to study the molecular 
structure of fluids and in rheological experiments when -small 
amplitude oscillatory flows are considered. 

The general linearized equations of state for an 
incompressible fluid are given by K. Walters13 (1960) as 

l i. K 
p 

d'ZK 'i" P/ZK (2.6) 
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where E 0) 

E'ýk =2 (E- t') 
,; k (x, t")d&' (2.7) 

100 Nz) ( E) dz (2") 
oZZ 

and 
= the relaxation time 

ýI Z) - the relaxation spectrum over t 

follows. 

A brief description of some equations of state now 

2.3 Equations of State 

2.3.1 The Generalised Newtonian Fluids 

The models discussed here are empirical and 
formulated by allowing the viscosity to be dependent either upon the 

rate of strain or upon the extra stress tensor. 

The viscosity of a fluid is a scalar quantity and, if 

made dependent upon the rate of strain, it must be a function of the 
invariants of the rate of strain tensor e(fl. These invariants are 
It II and III. For an incompressible fluid I= Div v=0, while for 

a shearing flow III =0 (see R. B. Bird14 1977, page 207). Thus the 
viscosity I may be written as: 

where 
ý(k) 

zý== ]Z 
and 

i= shear rate 

Thus the Newtonian fluid may be generalised to give 

(i ) 
pik ý1ýýý ýLu 

particular fluid models being formed by taking different functions 
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The models considered here are: 

the Bingham fluid, 

the power law fluid, 
the Herschel-Bulkley fluid, 

Robertson-Stiff fluid, 
The Casson fluid. 

The Ellis model is included as an example where the viscosity is 

consiaered to be a function of the extra stress. 

The Bingham Fluid 

In this model 

= 00 'L < 'C0 (2-12) 

where 
ýº 

magnitude of h;, k 
shear rate 

Z> Zo (ý . 13) 

and Zn, ýtto are two parameters, the first one being identifiable, as 
the yield stress of the fluid. Since, for a generalised Newtonian 
fluid, 

iW e. (2.14) 
then 

-C 

and 
=-co - /'U 00 

The Power Law Fluid 
In this model 1<' where K and n are 

parameters. K is called the consistency factor and n the power law 
index. 

But 

ie 

K is the viscosity when the shear rate is 1s-1, effectively it 
indicates how viscous a fluid is at rest. When n=1 the model reduces 
to a Newtonian fluid. 
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The Herschel-Bulkley Fluid 

This is a three parameter model given by: 

It allows for a yield stress and a power law relationship between 

shear stress and shear rate when this yield stress is exceeded. 

The Robertson-Stiff Fluid 

This is also a three parameter model and is given by: 

z 

The Newtonian fluid (B=1, C=O), the Bingham fluid (B-1, U O) and the 

power law fluid (B 1, C=O) are all special cases of this fluid. 

Z= Zo+ Kin (2.19) 

2.20) 

The Casson Fluid 

This model was first used in 1959 to describe the 
flow of pigment-oil suspensions in shearing flows. It is given by: 

1/2 
+C2.21 

w 
and z ýý (2.2t) 

When is very large (the viscosity at infinite shear 
rate). The degree of shear thinning is given by C, the Casson slope. 

The Ellis Fluid 

In this case 

r-' 10 

_ I+ (. li_ (2. z) 

where 
zero shear-rate viscosity 

- shear stress at which 1 
2 2(o 

2.3.2 More General Fluids 

The Oldrovd Fluids 

This class of fluid arose from the general discussion 
presented by J. G. Oldroyd6 in his 1958 paper. The 4 constant model 
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equation of state is given by: 

pý \ý ý Dýk+ re(ý) :: 2 e(I) 
`+ 21A, e iý) ýk (2. Ztý. ) do0 

ý9 t 

where the material constants , 
Ao A and Assatisfy the 

inequalities 

>° (z. 25) 
0 

9aß>>, >ýý_> 0 (z. 16) 

and 19/ 10 t is a time derivative which does not imply any dependence 

on absolute motion in space. 
This model produces realistic values for shear stress 

and first normal stress difference over a fairly wide range of shear 
rates. However, a zero second normal stress difference is predicted 
in simple shear flows. 

The Simple Fluid of Coleman and Noll 
This fluid was proposed by B. Coleman and W. Noll in 

1961. The equation of state was given by: 

where 
p: k ýx, t) = p-ýý' %9 Lý (2.2 7) 

and F is a functional of the Cauchy deformation tensor Cik. The 
equation of state has been given with respect to a fixed co-ordinate 
system. 

Since a visco-elastic fluid necessarily has a fading 

memory this behaviour must be incorporated in the model through the 
functional F. Coleman and Noll specified an influence function h(t- 
t') and used it to define a norm, ; Cik I I, of the strain history, 
where 

1 11 C ýk 
II 

=C cis (2-2m) 
0 

Here s= t-t', where t is the current time and t' an earlier time. 
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Finally they were able to approximate their functional by: 

l' 

00 ký 

C: i 1 
- 1193 -@0 

-F O It DER 
11 cl13 (z.. 30) 

To a first order approximation the equation of state may be written 

as: 
Pýrc 4v< - F''ZK (2-3 I) 

where 

pik = M, (t-t') C t') CIE, (2.32) 

These equations are called the equations of finite linear elasticity. 
In 1966 A. S. Lodge15 showed the simple fluids to be a 

special case of Oldroyd's visco-elastic fluids. 

The Rivlin-Ericksen Fluids 

These fluids may be considered to be approximations 
to the simple fluids. The models are valid for retarded motion or 
rapidly fading memory (K. Walters16 1970). The equations of state 
are constructed on the assumption that the stress is a function of 
the velocity gradients and the acceleration gradients up to the (n- 
1)th. The stress is deduced to be a function of the first n Rivlin- 
Ericksen tensors Aj), where AJ) = 2ej ). 

The lower order Rivlin-Ericksen fluids can be shown 
to be equivalent to 

(2.33) 

PI k'aQ. 

C" 

(First order) 

J (I) 
-I- 4 ý(3 ý2 

ý. 
eJk (Second order) 
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and 

li ) (º) (2) Wj 
2 °e+ e. +2 oe2, e + 4- 'me3 'e eJk 

(I) ý (/) " (1)4ý(3) 
ý'gý, ejýk'21ß2 tk 

fý1 " (z) (: ) " G) 
(2-3, S) 

+4o? S(e C ejK+ e` ej (Third order) 

where o(1, oC 2, C4 3, o( 5 and ßl3 1, ß2 are all material 

constants. 

2.4 Some Industrial Applications of the Generalised 

Newtonian Fluids 

2.4.1 Introduction to Oil Drilling Fluids 

The oil drilling fluids used today are both 

rheologically complex and highly developed to perform many different 

tasks. A far from exhaustive list of these tasks would include the 

following: 
Cleaning of the hole. 
Cooling and lubricating the bit and drill string. 
Preventing cave-in of the drilled formation. 
Suspending drill cuttings when drilling has stopped 
(e. g. to change the bit). 

Transporting cuttings to the surface during drilling. 

With the highly deviated boreholes currently being drilled, 
rheological studies of oil drilling fluids are of more interest to 
the drilling industry than at any previous time. This was the 
stimulus that prompted the studies of Chapters 4-6 of this thesis. 

The base material for a drilling fluid is either a 
clay/water dispersion, an oil/water emulsion or a polymer. A very 
wide range of additives has been developed and a drilling fluid is a 
mixture of its base fluid and many of these additives. The drilling 
situation determines which formulation is most suitable for the 
drilling fluid to be used and practical field experience is vital at 
this stage. 

The most commonly used drilling fluids are the 
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water/clay based ones since oil based drilling fluids are expensive 

and polymer based drilling fluids degrade, both biologically and 

under high temperatures. To the water/clay base barium sulphate 
(barite) and a suitable polymer are usually added. The barite is a 

weight material ensuring adequate pressure at the bit, the polymer is 

a viscosity modifier. 
Although very varied, drilling fluids are, as a rule, 

non-Newtonian, pseudoplastic and thixotropic. 

A detailed reference for the formulation, nature and 

function of oil drilling fluids is the book 'Drilling and Drilling 

Fluids' by G. V. Chilingarian and P. Vorabutr17 (1981). - 

2.4.2 The Field Aaolication of Model Fluids 

A fluid model is required which is easily applied at 
the well-site. No model is valid over the whole of any of the flow 

regimes and engineering approximations are resorted to. From this it 

can be seen that the use of sophisticated models is unsuitable in the 

field and major efforts have been focused instead on the use of 

simple models allied to computer facilities at the well-site. 
The Bingham fluid has long been used as the standard 

model but has recently been partly replaced by the power law model 
which still continues to gain favour. The Herschel-Buikley and 
Robertson-Stiff fluids are also beginning to achieve proper 
acceptance in the field while in the last five years the Casson model 
has also been used. 

Figure 1 (after F. Bagshaw, Company Report of Kelco 
Oil Field Products) shows the shear stress - shear rate relationship 
for one of their commercial drilling fluids. The instrument used to 
achieve this being a Fann viscometer. A Bingham fluid and a power 
law fluid were constructed from the data to represent the real 
drilling fluid. The shear stress - shear rate behaviour of these 
fluids is also given on the figure to allow comparison. The Kelco 
drilling fluid may be taken as fairly typical. The power law fluid 

provides a better representation than the Bingham fluid over the 

annular shear-rate range. This is particularly true over the lower 

end of that range. At shear rates above 300 s-1 the simpler Bingham 
fluid provides an equally good representation of the behaviour of the 

- 15 - 



oil drilling fluid. In the field the parameters of the Bingham fluid 

are fixed by readings taken at just two shear rates, namely 400 s-1 

and 900's-1 . 
The power law fluid has enjoyed wide usage in the 

field only in the last ten years or so. It usefully describes the 

upward flow regime of many modern drilling fluids. However, neither 
the Bingham fluid nor the power law fluid properly describes the flow 

situation at the bit where the very high shear rates are experienced 
(R. Lauzon, K. Reid18 (1979) ). 

The more simple clay/water mixtures can approach 

plastic behaviour while many polymer based drilling fluids exhibit 
power law behaviour. However most drilling fluids exhibit both a 
yield stress and a non-linear shear stress - shear rate relationship 
when the yield stress has been exceeded (M. Zamora and R. Bleier19 
(1976)). 

The Herschel-Bulkely and Robertson-Stiff fluids are 
suitable in this case and were used by the oil drilling industry for 
the first time in 1976. Robertston and Stiff20 (1976) showed their 

model to be significantly better than the power law fluid, for the 
three different drilling fluids they considered, at describing the 

shear stress - shear rate behaviour over a shear rate range of 5s-1 
to 1000s-1. However, obtaining the parameters for this model is not 
without its difficulties (Zamora, Bleier19 (1976)). 

A drilling fluid may best be represented, over a wide 
shear rate range, by several power-law regions. - Such composite 
power-law behaviour can be described by the Casson fluid, used by the 
oil-drilling industry since 1979. Its main advantages (R. Lauzon, 
K. Reid18 (1979)) are that it is valid from very low to very high 
shear rates and is easily implemented in the field. 

D. McEachern2l (1966) used the Ellis model to 
describe his experimental. results for the laminar flow of dilute 
polymer solutions in an annulus and found it to be superior to the 
power-law fluid. The polymer solutions used were of a type relevant 
to the oil-drilling industry but as yet the Ellis fluid has been 
little, if at all, used in the field. 

A further discussion of the types of rheological 
behaviour found in drilling fluids is given by M. Slawomirski22 
(1975). 
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CHAPTER 3 

THE GALERKIN FORMULATION FOR THE FINITE ELEMENT METHOD 

3.1 Introduction 

In this chapter the Galerkin formulation of the 

finite element method is described in sufficient detail to explain 

its application in Chapter 5. The modern use of this method started 
in the 19)40's when the techniques were applied to the structural 
design of aircraft. From these beginnings the method has developed 

to the point where today it is applied extensively by engineers to 

solve a wide range of problems. 
In Chapter 5 the numerical procedures used to obtain 

the drag correction factor for a sphere falling slowly through an 
infinite expanse of power law fluid are presented. These procedures 

require the solution of the governing equation of a power law fluid. 

This is a fourth order partial diffential equation. The solution is 

obtained by decoupling it into a pair of second order partial 
differential equations and applying the finite element method within 

an iterative routine. Due to its past use in fluid dynamics (Chung 
(1978)) the Galerkin formulation of the method was the one 
implemented. This formulation, due to both Bubnov and Galerkin, is 
often called the method of weighted residuals. 

3.2 The Galerkin Formulation 

Let the equation to be solved approximately by the 
Galerkin method be 

Aý=-ý 
where A is a differential operator. 

(3 
. 

Equation (3.1) is defined over a physical region,. )., with boundary 
r, and is solved subject to the relevant boundary conditions on r. 

The approximate solution, ü, is expressed as a linear combination of 
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a set of n linearly independent functions, ¢Si, which satisfy the 

boundary conditions. 
i. e. ^ 

LA =Z Cý 0Z (3. z) 
c=ý 

where ci :i=1,..., n are constants. 
The functions di : i=1,..., n are called the basis, or shape, 
functions and 

ü is called the nth trial function. The coefficients 

ci must be such that, as n increases, the resultant sequence of trial 

functions is convergent to the true solution. The Galerkin 

formulation is a particular method for deriving the coefficients ci. 
Since u is an approximation to the true solution u 

ON -ý=r (3.3) 
A 

where r is called the residual and equals the error incurred when u, 

and not u, occurs in equation (3.1). An inner product <r, wi> is now 
constructed where wi : i=1 ..., n is a set of weighting functions to 
be defined. The residual, r, is now forced to zero, in an average 

sense, over A by setting 

<r, wi> =0 i-1,..., n ( 3.4-) 

The weighting functions may be chosen in different ways and this has 
led to four different methods: the method of moments, the method of 
least squares, the collocation method and the Galerkin method. In 
the Galerkin method we set 

b`ýý = ýý (3'S) 
and 

Thus 

far 

r 

Equations (3.7) are solved simultaneously for ci : i=-t ,..., n and 
these values are then substituted into equation (3.2) to give the 

approximate solution of the given differential equation. 
In order to implement the work above, the basis 

functions Oi : i=1 ..., n must be known. The construction of these 
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functions is described in' the next section. 

3.3 Constructing the Finite Element Mesh and the Local 

Basis Functions 

Due to the symmetry of the flow situation considered 

in Chapter 5, our problem may be considered to be a two dimensional 

one from the outset. Consequently, the implementation of the finite 

element method is discussed only over plane regions A. 

First the plane region is subdivided into an 

equivalent set of finite elements. The simplest example would be the 

subdivision of a rectangular area, by means of a grid, into a 

collection of squares or rectangles. These squares or rectangles 
form the finite elements and the grid forms the finite element mesh. 
If the plane area has a curved boundary then the collection of 

squares and rectangles will not coincide exactly with it. A better 

approximation will be produced if a mesh of quadilateral elements is 

used. In practice, many hundreds (or thousands) of elements may be 

used and a close approximation to the physical region of interest can 
be obtained. 

Nodes are now allocated to each element in the mesh. 
A node is always allocated to each element vertex and may also be 

allocated to the element mid-side or its interior. Eight noded and 
four noded quadrilateral elements are often used. 

It is necessary to construct the finite elements and 
the mesh because the basis functions 6i : i=1 ,..., n are difficult to 
define as functions over the whole of the physical area. However, by 
means of a local coordinate system attached to each finite element, 
local basis functions may be easily defined. Using these local basis 
functions, equations equivalent to (3.7) but valid only over each of 
the finite elements separately can be obtained. When these equations 
have been obtained for every one of the finite elements, the results 
may be combined to obtain the required equation (3.7). 

Some further aspects of this procedure are now 
discussed. Four noded plane quadrilateral elements have local basis 
functions defined over them which allow for a bilinear variation with 
respect to the local coordinate system. This local coordinate system 
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is defined in Fig. 2(a). The nodes have been labelled locally, that 

is with respect to the element and not with respect to the grid. 
Numbering nodes with respect to the grid is called global node 

numbering. The local coordinates of the vertices of the finite 

element, and a typical interior point, are given in Fig. 2(b). In 

Fig. 2(c), it is shown that every finite element can be represented 
by a square with centre the origin, if the local coordinate system is 

referred to normal rectilinear axes with equal scales. The local 

shape functions are given by 

<$(e) 4 (1-u)(i- ri 

(3 ) 

. 1. u) 
4ý 3 

4 t. 

for all points within the element and on its boundary, and zero at 
all exterior points. We have 

(e) _I at node i (3-9) 
L_0 at the other nodes 

Also 

over the element (e). Fran equation (3.9) and (3.10) we have 

te) A (0) 
CZZU- L 

3. ýi) 

where 
üi(e) is the approximate value of u at the ith node of the 

element (e). Thus 
4 

lei ^ fei 1Q) (3. s2) u= uý ýt 

In Chapter 5, the finite elements used are isoparametric. That is we 
assume equations (3.12) to be true for the global coordinates 
(U(e), V(e)) of a point in element (e). 
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i. e. 
(3" º3) 

and eý 
4 

_I v" (e) l (e) (3.14) 

where (Ute), Vie)) are the global coordinates of the ith local node 

of element (e). 

3.4 Constructing the Stiffness Equation 

3.4.1 The General Method 

Green's theorem in the plane is applied to equations 
(3.7) and the resulting equations are applied to each of the finite 

elements in turn. After using equation (3.12), implementing the 

necessary changes of variable and carrying out the numerical 
integration we obtain, for each element (e) 

5(e)ü 
C¬) (e) (3. t 5) 

where 
ü(e) 

_[U 
(e) :.. ß, 2,3, c}' (3 

. 16) L. ý 

, 
Qýeý eý 

(3-17 ý 

S(e) is the element stiffness matrix,. t(e) the element load vector. 
The element stiffness equations are used to construct the full 
stiffness equation given by 

where 
su (3"ý8) 

ü=Lü-ý_I.... 
INl (3-19) 

N= total number of nodes in mesh 
and 

A 
ui is the approximate value of u at the ith globally 

numbered node of the mesh. 
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3.14.2 An Examale 

The following example shows how equation (3.18) is 

derived from equations (3.15). We consider the very simple- two 

element mesh given in Fig. 2(d). In this figure the global labels of 

the nodes are shown on the outside of the mesh, the local labels are 

shown on the inside. The element stiffness matrices are S(1) and 

S(2) and the full stiffness matrix is S. The matrix S(e) contributes 

S(e) ý to SGK), G') where G(e) and GJ(P) are the global node numbers 

corresponding to local node numbers i and j in element (e). The 

elements in S are obtained by adding together the contributions made 
by S(1) and S(2) separately. For example 

5 =, 3_ 51,3 +5=, 1 
(3 -2.0) 

If neither element has a contribution to make then that element in S 

is zero. For example 

Sµ, ß =0 (3.11 

Two important points to note are 
(i) If the element stiffness matrices are symmetric 

then it follows that the full stiffness matrix is also symmetric. 
(ii) The full stiffness matrix will be banded (i. e. 

its non-zero elements will be grouped about the leading diagonal). 
The width of the band depends upon the way in which the global 
numbering of the nodes is carried out. 

The stiffness matrices used in the numerical work 
presented in Chapter 5 were, in some cases, of such a high order that 
techniques were developed to modify them so that only the non-zero 
elements were considered. 

Details of the boundary conditions and their 
implementation are given in Chapter 5. 
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(HAFER 4 

THEORY OF THE MOTION OF A SPHERE IN A POWER LAW FLUID 

4.1 Introduction 

The ability of a drilling fluid to convey cuttings 

from a well is not fully understood and this is particularly so in 

highly deviated wells where difficulties are frequently experienced 
in cleaning the hole. The cuttings travel with a lower velocity than 

the drilling fluids and these cuttings can accumulate in the well 
bore. If this is not kept to a minimum then it can lead either to 

the degradation of the cuttings or the drill string may get lodged in 

the hole. Experimental, work by P. Reynolds23 (1982) has shown that, 

in a power law fluid, the settling velocity of an irregular shaped 

particle may be adequately represented by the settling velocity of a 

sphere having the same volume and density. In the case of the fluid 

model, it has been-well established by the oil drilling industry 

that, in the shear rate range of interest, many modern drilling 

fluids exhibit power law behaviour. Therefore, in this thesis we 
have studied the problem of the flow of a power law fluid past a 

stationary sphere. The effect of fluid inertia is ignored and the 

fluid is considered to be slightly power law. That is its power law 
index is near unity. 

The theoretical studies of this problem have, in the 

past, been based mainly on perturbation and variational methods 
(Acharya et a124 (1976)). Wasserman and Slattery25 (1964) used 
variational principles applied to inelastic power law fluids to 
obtain upper and lower bounds of the drag correction factor as the 

power law index varied from 1.0 to 0.2. These bounds have been 
improved by Mohan and Venkateshwarlu26 (1976), by Yoshioka and 
Adachi27 (1973) and by Cho and Hartnett28 (1983). Chhabra29 (1983) 
has commented on the results of Cho and Hartnett and has provided a 
comparison of their results with experimental values. 

More recently Crochet et a130 (1984) and Gu Dazhi and 
Tanner31 (1985) have used a finite element analysis. Crochet et al 
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considered a sphere in a cylinder geometry with the ratio of the 

radius of the cylinder to the radius of the sphere being equal to 50. 

Gu Dazhi and Tanner used a sphere within a sphere configuration and 

an -extrapolation technique to obtain the drag force on the falling 

sphere when the fluid is infinite in extent. They note that wall 

effects are important for a slightly power law fluid but for a power 

law index less than, or equal to 0.5 they are negligible. The 

analysis in this chapter, although valid only when the power law 

index is near unity, uses a field matching technique to solve the 

equations when the fluid is unbounded. The use of this technique was 

influenced by a paper by Tiefenbruck and Lea132 (1979). Other 

workers who have used discretization techniques include Bush and 
Phan-Thien33 (1985). In their case the drag force on a sphere in 

creeping motion through a Carreau fluid was calculated. 

4.2 The Governing Equations for a Slight1y Power Law 

Fluid 

We consider the slow flow of a power law fluid 

between two concentric spheres. The inner sphere is fixed and the 

outer sphere is given an instantaneous velocity U in the positive z 
direction. A spherical polar coordinate system (r, 9, A) is used 

with its origin at the centre of the fixed sphere. Since the flow 

situation is axi-symmetrical a velocity distribution of the form 

Vr = Vr (r, 0), V0 VA(r, 9) 
, 

v4=0 (4'. I) 

may be assumed. We consider first the case when the outer sphere has 
a finite radius and later extend this work to the case of an outer 
sphere with an 'infinite' radius. The schematic diagram of the flow 

situation used when the outer sphere has a finite radius is given in 
Fig. 3. 

In spherical polar coordinates the equation of 
continuity for axi-symmetrical flow is given by 

ýt 

11 

ät' 
\r2 

\tr /". 
k" 

Ä ý9(\/9 
sine): O (4'2) 
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We may therefore define a stream function q1 by the equations 

'ý Lk vr 
r2 s, r%a as 

(4.3) 

v-1 41 (4.4 
rS%n9 ör 

ý 

where Vr and V9 satisfy the equation of continuity. When inertial 

terms are neglected the equations of motion become 

_1a 

(rý' 
rrr 1. 

Ia (rr 
Sin A 

ar ri äF tJ rSinßýÄ 

and 

_ 
ap 

__ 
Ii3a (-c 

AStn91- 
co F6' 

r ae ý3 a(- 
Z'ýp ý 

'+ 't'S-A 69 ( \e/r4.6 \) 
where T ik is the stress tensor. The equation of state is 

-r 
Ilk 

(4.7) 

where Yik is the rate of strain, tensor with magnitude ' and 

viscosity 

where K is a constant and n is the power law index. When n=1 the 

equation of state refers to a Newtonian fluid and 

The governing equation for a Newtonian fluid is derived from 

equations (4.2) - (4.6) and (4.9). Full details of the derivation 

are given in Appendix 1. The resulting equation is 

E" :0 (4.10) 

where 

fI 

E N' = El (E_ý) (4"iß) 
and 

3Z 

ar fz 88 S; nA 39 
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The governing equation for a power law fluid is derived from 

equations (4.2) - (14.7) and (4.10). Equation (14.7) can be rewritten 

as 

K 

where II is'the second invariant of ickand is given by 

+ 4- 2i 
2 

rc 98 
X04 

Substituting the components of the rate of strain tensor from 

equation (4.13) into the equations of motion (4.5) and (4.6) 

K 
r-. (2 

(r lZ 
öý 

ý l 
1 

G S"ýh 1 

r Sýn9 äý Ör9 
/ r I 

(n-I1 Örr ýU 
ý, 

ýrg azr 

C 2I ý9 1 
C 

T_i Tr 
rII 

and 

sl+ 
ýý ý b- ") 

(i9 
ý s r z f . r e r a6 

= 
r ar 

(4. J(. ) 
Since a slightly power law fluid is cons idered then we can ignore 
terms of order (n-1)2 and higher in our analysis. 
Using 

a ap _a (4. l ) C r/ rl aý aý 8! a 
fron equations (4.15), (14.16) and (4.17) we obtain 

I-ý 
- 

rr 1 (c; e ýrB 
r+ ee eLVö ý` 

irr 
r9 

4CI 
1a irr aI + ý! e air 

20u ar rr be] 
+ rº -I_trrl e"r -ý 

! (5 
. Ab a, rB 

)_ ( i4 6 iLe) 

6ri! rs6h'9 a 
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arL 
I)r )- j" r 
r Prl 

( 
re -sine 

(e 

+ n-I ar öre ý11 
+ öee öII 

2 aF I[ öF IL 

n-i 

-IL ar rl ör rB 5%n6 re yee +i 

Cot 8 (4L" 1 g) 

Which may be written in the form 

ap ae, _ n-I a C. -ärDI_ 'gip'+ as$' 
(4.19) Eye a1 

a]7 

ý'- aa 
where 

j A. ý äý(ý3öreý+si�e ä 
Aýýe9 ýneý 

. 
ýý ýtý (u. zo) 

1Ö B ' r2irr) + 
a ýý S. n6ý I 

ý8 - öae 4 (4,. 2tß 
t Fur , r's ne de r 

örr ßf9 öII ýý.. ZL) 
'. _ - ar + a clI A 

and 

D=r 
öre all 

+ 
iae_ aII 

Ir 3r a ý9 

Following closely the analysis for a Newtonian fluid (see Appendix 1) 

equation (4.19) may be written as 

E 4'ý ) F(4') s; h e --z - 

where C, ID, I 
de ar IC ör IC a9 

(". ) 

z. zs) 
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Since n is near unity we may use a perturbation analysis to solve 

equation (4.24). The stream function, therefore, is given by 

cýN + 

where 
LPI, / is the Newtonian stream function 

and /NN is the non-Newtonian stream function contribution 

Substituting equation (1426) into equation (14214) and equating powers 

of (n-1) we have, on ignoring terms of order (n-1)2 and higher and 

using equation (4.10) 

ýµ C7 
H#I = 2F 

N-, (4.27) 

The boundary conditions forri,, jare similar to those for the 
Newtonian case (as shown in Appendix'2) and are given by 

°4. zs ) ýNN'r_ 0. `ýIM r- b 

jr: ' Tr r=b a 
t, 4N . aýNNI =o Cý"3ý 

In the infinite outer sphere case the boundary conditions for 
tlrN are discussed in the asymptotic far field section. 

We shall now derive F( T N) which is required in equation (4.27). 
The following expressions are for a Newtonian velocity field 

- 
avr (4-31) 

rr at- 

ý ý4.32 fee 2( 
VA 

. ý- Ur Cf 8r 

iSýý =zý.! + \J C& .) (4-" 33) 
and 

Cr 

ire 
_ 'ra. -L. 

! ayr) 

ar(ýýq r- (' a9 
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From Appendix 3 equation (A3.11) 

(4'35) `ý'N= U° (A 
tß 

Q+C 
Q +"S'9 r 

and 1ý N is given in terms of Vr and Vg by. equations (14.3) and (4.4). 
Substituting these expressions into equations (4.20) and ('4.21) we 
have 

"Ä (10Dä 
+B at 

1) 
S- n9 (4.36) 

r 
z 2Vý5D ßa)CosA (4.37, 

rý at r/ 

We now need to define the following 

G_ 2y (- 3Q° -B +2DÄ, Cuse (4.38 
' r 

ý'2 ' fee z -i G' (4.39) 

G3 Gs (4.40) 

Cl. 
4= ýr 8= 

3uA 
oý 4 

h8 +Dr 'S' 4'41) 
r 

Pl = 3 Gei 
+2 ýT4 (4'42) 

Z 

GS _ 
aö ýr =U (2 A Q`S 

, ý. 
Z 2a 42 

�{. 
2) C coso 4.43) 

ar a rs 

(rb_ därr 2U 3q a4 IDr S; hA (4'44) 
a9 a r4 r2. 

G-c ir9 
= -3 

U- 4- Aa 
-I- D S; n9 (4-45 

Dr aä r 

Gg .aýra: -3j A4 4Dr Cos 8 (4'46 
60 a r4 c 

s_ä irr 2U r- 6OA A`- b6a1+ Case (4.41) 
Tr 

a 1` 
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3 (IIA. a! 
+ 

2ß 

2 -c 
(4-49) 

ilrr 49) 

3 ýg 

3U (2oA 6 (t.. So) 
4 r a 

S - 
alörp_ 

- 
A _ 3U Lý, ýt45 .+. 

DCos (' (4"S1ý 

a1öro 
_ _ (T 

L4- 

_ : 
aIC 

= GG5+ 4G-, 3 (4. c ) 

ar 

Let 
_ 

aII 
: 3 Cr, Cr, + 4.6-4 Cre (4'S4') 

3 öA 

P4 a1II +1cG _ 3GS, +3CGy+ 4St, ý 
(4. ý5) 

ar' _ 

PS = 
ýsI 3G. 52+3G, 

6GS+4. 
G55*4-GgG, 

Let 
arýý (4"S: ) 

P6 aýII = 3GS3+3& + 46, S+LLG$ (u. S7) 
aal 

C_ ac, 
p* 

ae dr 

Finally we have 

F(tpw)_ C, ý- PZ 
+ 

P= (u., sq) 

Having obtained an analytical expression for F( ' N) we may now solve 

equation (4.27). and obtain the non-Newtonian perturbation stream 
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function, 4 
NN, subject to the boundary conditions of equations 

(4.28)-(4.30) 

4.3 Derivation of the Drag Force on a Sphere Moving 

Slowly Through a Slightly Power Law Fluid 

4.3.1 Finite Outer Sphere Drag Force Calculation 

The orientation of the components of the total stress 
tensor at the surface of the sphere are given in Fig. 4. The total 

stress tensor, 7T ik, is given by 

r; K= P9K`f'tZK (4'60) 

where -_ `K is the extra stress tensor 

51K is the unit tensor 

The drag force, FD, acting on the inner sphere is given by 

lT 

Fp = zrraz (i'ro, s; h G-Trrr5; n6Cos9)j dß (4.6ii 
ra 

0 
Integrating by parts we have 

7T 

Fp =2 
("'+ z6d8 0- 

f 
re 

4.62 
ae 

)(rc 

0 

From equations (4.3), (1+. 4) and the no slip condition on r=a we 
obtain 

Öý 
r'Q- 

aý :0 aý r- a 

(4.63) 

Substituting equation (4.3) into equation (4.31) gives 
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_2 _z 
öq-+ Ia ra`ý 

_o 
(4.64) 

-11 l 
äff 

T. a 
= 

sn 
r3 ae r2ap ar r 

0 
Therefore 

=p (1-. 6s) rrr. Q 

The drag force, FD, on the inner sphere is now given by 
n 

FO = llt 1 zre+ 
ýe>I 

sýý, =8 d9 (4.66) 

o r. 0. 
Similarly, fran equations (4.32) and (4.33) 

_Xo 
(4.67) ýe 

e ra a "4 4 
r: o. 

Therefore, on substituting equations (4.64) and (4.67) into equation 
(4.114), we have 

Zv 1r: 

a orA 
(4.64) 

From equations (4.3), (4.4) and (4.34), using the no slip conditions 
on r=a we obtain 

f6 

LQ 

aº Sýrº e 
r_a 

Fran equation (4.6) we have 

!? I (z 
r3) 

(4. '70) 
rÖ el 

r. a 
i3 ar \ re rza 

Substituting equations (4.13) and (4.69) into equation (4.70) we 
obtain 

-I ýp 
= 

(. R . 1< [ 24 
+(n-l 

e-A a4)l 
äA (r: 

ci 2 stn6 ar3 `arg Q are 
r: a r: a 

Fran equations (4.13), (4.66) and (4.68) - (4.71) we have 
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FD znkQ I=2! a3__ 1 
,. 

C 
1] sr3aarJ 

0 

[o. 
c; e ý_a 

ZL aat_ 33 
äZý S; hedO (cß "7 2) 

°' ör2 r. a 

We now define the non-dimensional variables °4 2, °ý 3, ý2 and 83 by 

the equations 

vo? 
Z _ 

ä1 N (4-73) 

ä rZ. r= A 

u a3 LPN (4.74) 
Q3-rr: 

u_ 
aZý Nýº (4.75) 

(ýz rZ r= 4 

uý3 _ 
a3ýNA (4. -74) 

In equation (4.72) we require the evaluation of the term 

Z1 1 
Fran equations (4.73), (4.75) and (14.26) 

j%I- n-i n -ý I-ý -7 
W 

rm 0. 

Using Taylor!: s,. expansion 

A -I V% N', 2 öLý' _1 

-- 
U of= f(h_I)N °12 Cý2l 

fy 2 ö r=te (4. '79) 
By ignoring terms of order (n-1)2 and higher we obtain 

u V% l 
öl'ý ý; a 
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Using equation (4.35), equation (4.73) becomes 

V* 
,j =- 

V at 
ýL 

-t- ß r+ C 
1+ 

U of Aar r4 
J5; � W 

If 

:a 
är: ra Qi 

all r=a 

Therefore (4. R1 

+6DIGil (4.? 2) 
The coefficients A, C and D are expressed in terms of d, the ratio of 
the diameter of the outer sphere to the inner sphere. These 

expressions are derived in Appendix 3 and are given in equations 
(A3.31), (A3.29) and (A3.28). Using these equations we obtain 

3d(2d`+zcl +zd1-3d-3) Shh29 (tj. "83) 
(d-i)3 ( t7d + 4-d2 ) 

By definition d>1 and of 2 is negative. Thus equation (4.80) 
becomes 

2UW 

r=a 

Equation (4.72) may, therefore, be rewritten as 

D: TTKä 
(ä h )"ýiý ýot3-2ý 

+(vº-º)ýot3-jof=ý$; h 8 S; ýade 
0 

IT 

ä9 

Since, for a slightly power law fluid, n-1 is near zero we may use 
the approximations 

C- 
z 

, n-1 _I+ (h_, )(o, (- Q0 (4-84) 

and 
( Sirº9 )I-h =I 

t49 (Sing) (4-97) 
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It is convenient to let 

u-" 88) of = oc 
i 

c, -- %, A- 
z( 

oc3 oc3 sh O (4.89) 

Substituting equations (4.86) - (4.89) into equation (4.85) we obtain 

n 
7r 

FD: RKä(Cl. U)[(-z'<')c; 
v& 

° (4.9°) 

u 
Tj 

+ TtKa _ (n-iý -2p,, SinBdo > 
Cl. 0 

From equations (4-35), (4.74) and (4.89) we obtain 

__ý 
Ua X ä3 

-ý 
[ A4L+Sr+. C''+Dý" Cß, 

a3örraaZ aM. r- a 
Therefore 

oc3 =3 A- 1ZpC4.42) 

From equations (4.82) and (4.88) 

('x"93) 
2 

In equation (4.90) we require the evaluation of the integrals Ii and 
12 given by 

n 

'I 51 ý3 8 0l 8-3 
0 

and 

c 

( 4. "g4. ) 
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From Appendix 4, equation (A'4.13) 

3 ý09ý. ý[ý"Q5ý 

Substituting equations (4.92) - (4.95) into equation (4.90) we obtain 

_K az ä ýý r 3ýT A+ 2C 
D 

zr (r -1)t(SA+2c)(5 
(2. A. +zc+ 12. o) -S 

+. [{- A+2C+4 D] 

4- Ti (r _ t) 1(i :2 
p2) s; r (ý d 8] (4-96) 

where A2 and p3 are defined by equations (4.75) and (14.76) and are 
evaluated numerically by the method described in Chapter 5. 

It should be noted that when the fluid is Newtonian 
(i. e. when n-1) the coefficients A and C are given by equations 
(A3.31) and (A3.29) and the drag force on the sphere becomes 

24.7r u '10 a d(I+d +-ds+d +dg) (4.97) 
(d-1)3(4+7d-'-adz) 

where K=10 is the Newtonian viscosity. 

4.3.2 The Drag Force for the Case of an 
Infinite Outer S here 

The drag force for the infinite outer sphere problem 
can be obtained from the finite outer sphere case by letting d=b/a 
tend to infinity. In this case the constants A, C and D have been 
derived in Appendix 3 and are given by 

A= 1/2 (4L. 98) 
C1 ý4-" QQ 
D. 0 ýý. /oo) 
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By substitution into equation (4.96) the drag force becanes 

(L)" 
oa 

n 
(ß3`'2p2,5; nad9 J 

(4-4os) 

60 

which may be written as 

6 Tr a2 ý1 4- "X02 "C) 
na 

where 7r 

* 1171) 

.9 
ei + +b 2 

c 

However the drag force for a general power law fluid is usually 
expressed in the form 

FD 12 TT AZ k (.,, nF 
(n) (4-104) 

2a 

where F(n) is a function of n only and independent of the geometrical 

constants. On comparison with our expression for FD in equation 
(. 102) we have 

_(^) 
_+ 

(n-i)o( 4.105 

i. e. 
2T%-l 

-I 
.F 

(V%) _II -} (v%-1) Ocl Zh (y.. /0 q 

Ignoring terms of order (n-1)2 and higher we have 

2n-1'c 4'"/07) 
and 

2) (4 " /a$) 

- 37 - 



Finally we have 

F(n) =+ (ý, -ý)ß (ý.. ýoqj 

where, on using equation (14.106), we have 

IT 

93 i (g -2ß: )S; "6 2+2t6 I" 3 
0 

where it should be noted that P2 and 83 are as defined in equations 
(4.75) and (4.76) and are functions of 8 only. 

is a constant which is related to f2 and 83 and 

can therefore be obtained by solving equation (1+. 27) numerically and 

using equations (4.75) and (4.76). The outer boundary condition for 

equation (4.27) was found using a matching technique over a suitable 
imaginary sphere placed at a distance of ten or twenty times the 

radius of the inner sphere. However, to implement this technique we 

require the far field solution for the stream function. 

4.4 The AsvmDtotic Far Field Stream 
Function for an Infinite Outer Sphere 

The governing equation for a slightly power law fluid 
is given by equations (4.27) and (4.59). The asymptotic far field 
region is valid when r is large. In this region the stream function 
is given by 

_J 
4.111 Y' =- 

Un 2 [1 a-:! 
.T [2r 2Ä -}- msz 1$ý n2 ýi 

A 

From equations (4.36), (4.37) and (4.58) we obtain 

A_ aua sý�tý (v.. iýz) 

gý 3 UO case (zß.. 113 
r3 
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r 

ý r3 
and ignoring terms of order 1/rm where m>4 then equation (4.42) 

reduces to 

ýý. ý7 v 106 

By substituting these expressions into equation (4.59) and using 

equation (4.27) 
VOL 

aN r 

This equation was solved analytically by using a separable solution 

of the form 

4Hf4 _ g(r)s n'e 4.112, 

Substituting into equation (4.117) we obtain 

01 .- Ua 
1 r2/(dr tr 

Let 
Z 

By inspection, a particular integral of equation (4.119) is given by 

and equation (4.121) may be written as 

3Ualo I- (I4 . Iu) 
1 ýýý9 r 
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By inspection a particular integral of equation (4.122) is given by 

I (r) _mr f+ rý r (y.. 12 3 

Canparing terms in equation (4.122) we obtain 

3Va(r lr+S; n29 
(4.. I? 4) 

fl ýZl 

as a particular integral of equation (4.119). The complementary 
function, which satisfies E4' =O has the form 

gar ý`rZ4 Dý r4ý sýn2 B (tý" I25) 
ý- r 

where A', B', Cl and D' are constants to be determined since 

4'NN 
- tý , + ýP (4 

" ! Z6) 

Then 

B? r+G'r*4 D'r4+ 3r. 3.3voºcLo r} Sinýtý 
NN -' r 4,2 

From equations (L4.111) and (4.12T) the asymptotic far field value for 

Lji is given by . 

_ Va Q 3r+-l S.. n, '9 
2 zr 2Q a 

/ý1 

D( +(r-ý) +ßc-.;. Cr-4r"+ 3var43v2 r s"h, 8 

X14.. 1 zg) 
As r--, 00 we require that Zr sin2 90 equation (4.128) may be 
written as 

L) % G. 
[I 

4 CL 3 CL 
L ßr3 ?r 

-(rº ý) v ("ý3+ g: 
+ C'+-p'r+_va+3U ) 

r 

(4. ' q) 
For 4' to tend to the required limit 

C= DI _o (4. I3Q 
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and 'NN is given by 

tý =3 (n-')(A'ýý 8*t-+Uar4 2varlosrýý; nze (4.. 131) 
NN cý r 

where -3 

and 
ß; =±ß 

The asymptotic far field is known to within the value of two unknown 

constants A* and B*. 

The paper by Tiefenbruck and Lea132 (1982) has shown 
that, when the outer sphere has an infinite radius, reasonable 
results for the drag force on the inner sphere can be obtained by 

matching the asymptotic far field into an imaginary spherical surface 

concentric with the inner sphere. The radius of this imaginary 

sphere must be greater than 10 times that of the inner sphere. The 
drag force over its surface is found using equation (4.96). The term 

A*/r was assumed small compared with B*/r for the matching radius 
used and was ignored. This assumption was justified by the fact that 

when the term was removed from the numerical routines the calculated 
values for the velocity field were unaffected. 

The detailed method for obtaining the drag correction 
factor numerically, and the results achieved, are given- in the next 
chapter. 

- 41 - 



CHAPTER 5 

THE NUMERICAL SOLUTION FOR THE MOTION OF A SPHERE 
FALLING THROUGH AN INFINITE POWER LAW FLUID 

5.1 Introduction 

This chapter describes the numerical method that is 

used to solve the fourth order partial differential equation (4.27) 

which is presented in Chapter 4. This equation will be solved for 

both the finite outer sphere case and the infinite outer sphere case. 
For the numerical solution we rewrite the fourth 

order partial differential equation in the following way 

EYN 
MA! 

and z> 

2 

where F(ýN) is given by equation (4.59). It should be noted that 
ONN does not represent the non-Newtonian vorticity vector. 

5.2 Boundary Conditions 

We shall now require the boundary conditions for 
NN- Some of the boundary conditions for +NN have already been 

presented in Chapter 4 but, for completeness, we shall also present 
the full boundary conditions. 

5.2.1 Finite Outer Schere Case 

Fran equation (5.1) we have 

+ s: r, e ö1 a__1 
arz rz . d9`s-AG ae 

(s"3) 
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From equation (4.28) we have seen that t}'NN I r=a = 0. Therefore the 
first and second derivatives of t' NN with respect to ID- evaluated on 

r=a are zero. Hence the boundary condition for CJNN on r=a is given 
by 

Nv f=Q , ýz r-a 

Using a central finite difference scheme, we may approximate L47NNr=a 

by the formula 

ýwN ýa+dý, Aý-1ýi'wN ia, A1+ ý%Nºr ýcº- dr, 0ý 
GY NN 

I 
r: ai (d r) 

(s"s) 

However, since ö' 
NN/dr; r_a =0 then 

4' (Q+c1ýý A)'ý' ' 
(a- Ä1 B) ýS'6ý 

Therefore, on using the result YNN! 
r=a =0 equation (5.5) simplifies 

to 

is '`ý HÄW 
(a+drl; ) (5.1) 

NN ý-: a (d ýýz 

Similarly, the boundary condition for CJ NN on r=b is given by 

C%rNN1r=6 2 *7 '4 (6-dr, 9)/(dr)2 (s. 8) 

To determine the boundary condition for U. T NN on & =0 we have to 
express cS NN in a different form. Using equations (4.3) and (4.4) 
equation (5.3) may be rewritten in the form 

ttNN .= sine a VrNN (S'q) 
arL ae 1 

where V rNN is the non-Newtonian radial velocity component. By 
symmetry about 9 =0 we have 
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aVCNNfýa. o (S., o) 
From equation (4.28) we also have INN'r-a= 0 which implies that the 

first and second derivatives of ' NN with respect to r on 0 =0 are 
both zero. Therefore, we have 

18=, o (c. ,,, NN 

In a similar way, we may show that 

cSNN ap 
(s. l2) 

9 =7T 

The complete boundary conditions for solving the partial differential 

equations (5.1) and (5.2) are therefore given by 

THM 
Jrc 

- 
ý4 I 

r= b0 

ANN lezo = ýNNie_, =0 (5. ý3) 

L*-7 NNIC=(16 = 2-q'NN ýp Q+Jr, 9) 

and (dr) 

mt4 (6 
L-7N N r_ 6_ z'-I- 

( .)2 
5.2.2 

-Infinite 
Outer Sphere Case 

In this case the boundary conditions for q "NN and 
W NN are similar to those in equations (5.13). However, the 
boundary conditions on r=b are no longer required since ý NN and ANN 
are known for large r to within a constant B*. The new boundary 
conditions for ý'k NN and I, JNN are discussed in Section 5.3 and are 
given by 

LI"N Ir= 
R 

[B*R+ R41R L3 
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and 
__3 

rß 
ý, 2( Rý Sýný 8 (5.15) 

NN 
I 
r= RzRL 

where R is the radius of the matching spherical surface and B* is a 

constant which has to be determined by the iterative technique 

discussed in Section 5.3. 

5.3 The Numerical Method 

5.3.1 The Galerkin Formulation 

written as 

From equation ('4.12) equations (5.1) and (5.2) may be 

a, ±t,, s. ne a' aANN _ ý- (c. i) 
ar. 2 r1 ýe s, naý NN 

and 
1 ANN ý. s. heaa ANN =F (tN s, e 

a,. ý rýýe Sine 59 2. 
These equations have to be solved subject to the boundary conditions 

given in equations (5.13) - (5.15). The domain in the (r, 6) plane 

over which the finite element mesh is to be constructed is defined by 

0,,. < 6< IT and a<r<R, where a is the radius of the inner sphere 
and R is the radius of the imaginary spherical matching surface (Fig. 

5). 

In order to remove the apparent numerical singularity 
on the boundaries @= 0 and () =n equations (5.16) and (5.17) were 
transformed using the change of variables 

r= eZ 
x_- Cos 8 /5" X 91 

The transformed equations are 

aNN_aý ýN + (g - Xi) öý 4_2 sNý (. 2o) az aZ ax 
and 

a 
NN - 

c4TNA1 +(f-xý vtrN _QI 
(2Z x) (S" 21) 

aZ aZ ax 
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The finite element mesh is bounded by Z= log a, Z= log R, X= -1 
and X=1. A regular finite element mesh was constructed over the 
(Z, X) plane (refer Program 1). From equation (5.18) it follows that 

in the (r, a) plane the mesh has elements which, in the r direction, 

increase in size away from the inner sphere where both NN and W NN 
have their least variation. A typical mesh is shown in Fig. 6. 

Let the finite element mesh constructed have N nodes 

and let { 4z: i =1,:., N} be a set of global shape functions (refer 

Section 3.2). Then 

Ö 
`P ,ý ý/M (ý_ýNN`4 

ý`fý/_ cC5.12 ) 

aZ aZ 1. azI a az 
and 

X-L 
14A 4Z 

aX ax x 
By Green's theorem in the plane 

(4. t1Ndr ( 5.24. ) 
öz ýz äz 

f7 
and 

- 
ý'x 77 

r (S. ZS ) 
where .. t1 is the area of the finite element mesh, r' is its boundary 

and (a'NN/öZ)nz and (aý&/Wnx are normal derivatives of q"NN on 
r (i. e. 64'NN/ön 

on ). 
The boundary conditions for Ö'NN//n (and ö u) NN/än) 

on P are automatically satisfied when the boundary conditions for 

NN (and 41 NO are satisfied. The test for this condition is given 
by Strang and Fix314 (1973). Following A. J. Davies35 (1980) the 
functions 95i were chosen to be zero at all nodes on the boundary P. 
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Therefore 

I( ä4'. )dJ. =o (s "z6) 
jt, aI a T. 

and 
ö (, _X: ) a_NN j SL =o (S. '17 ) 

ax ax 

On multiplying equation (5.20) through by 41, integrating over SI and 

using equations (5.26) and (5.27) we obtain 

111.1 dgwN 21 ý+ 2X aLNW 
. 

aZ aZ ax ax aX ` 

v-wo 2Z (C. ,2 8) 

SL 
for i_1,2,..., N. 

Similarly, we obtain 

atzrNw ä`b6 (ý-XZ) ANN 
+ zX ` roi 4; 

-x ax 

41 

äz .. 
for i=l,... 9N 

Equations (5.28) and (5.29) were applied over each element in turn. 
The global shape functions were replaced by the local shape functions 
{4 : j=1,2,3,4} and the approximations 

ý ,. Ný =A z 3 4 . cs3ý) ý NN , , , and 
. 
JýN I L1 J: 1, .1L. J. (5.31) 

were substituted into equations (5.28) and (5.29). For boundary 

elements the local shape functions associated with nodes on 'were 

set to zero. The integrals over the elements were approx imated by 
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the four point Gaussian quadrature rule. The resulting local 

stiffness matrices were combined, as described in Section 3.4, to 

form the global stiffness matrix, S. The element load vectors were 

similarly combined to form the global load vectors LfNN and LCJNN" 
The matrix equations obtained were 

and 

5 
NN -L+ NN 

(S' 3 2) 

S HN =L CSN, r (5.33 

where 
N thN is the column vector [ JNN, 

--*Y4' NNI 

I 
and W' NN is the column vector [ CNN 

,"""'w NN 

Here I' 
NN and C NN 

are the values of 
INN 

and (JNN, respectively, at 
the ith node of the mesh. 

In order to show how the boundary conditions L 
NN are 

implemented numerically, equation (5.32) is written as 

11 

5LI... 5ý;,. 
"... "Sý+ "` L`ýý,, (5.34) ýNN 

............ 

SNi sm 
TN 

LýgNrI 

Let the ith node of the mesh lie on r and let 

_V ýS"31 ) 
NN 

where the value of V is given by equation (5.13) or (5.14). Equation 
(5.34) was modified in the following way 

511. 
.. ..... 

S 
lN `'l t 

T Nº1 

t L 
14 j 

.... 
S; .... 

....... 
S. º ... S; N ý' NN 

. 
K S;; (5.3 6) 

5N1 5 
Nf ''IJ 

.1 

N Lot, 
L 
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where K is chosen to be 1024 (a suitably large number). Therefore 

ý' Si 
T ... + Ksip4 . .. + 5zNIýNIN -kS;; V 5.37) 

NH g 

Since the terms containing K are dominant then equation (5.37) 
becanes 

K 5<i tý'NN '! ' K 5<< U 5.38) 
But Sii ý0 and hence 

`ýNN V (5.39 

Therefore when equations (5.36) are solved simultaneously, the 

solution is constrained by the boundary conditions as required. The 
boundary conditions for W NN were implemented in exactly the same way 
as those for NN" 

5.3.2 The Matching Technique 

We have already seen from equation (4.131) that 

Y'NN for large r is known to within a constant B*, when the term in 
A* is ignored, and is given by 

Zr ioj r) S; n2A 
(5.440 ýNN 

4`/ 

Substituting qNN 
from equation (5.40) into equation (5.3) then ANN 

is also known for large r in terms of the same constant B* and is 
given by 

(. ýTNN - 
(ý 

+2L r) S rý 2a (S. 41) 
Z 

The iterative technique that is used to determine the unknown 
constant B* is now discussed. 

The value of B* can be obtained in one of two ways. 

(i) We consider a ýkNN/ ör to be continuous across 
some imaginary spherical surface r=R 
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i. e. a 4NN 

_ 

qNN (5"l,. z) 

ör r=0 - ar -z P+ 1 

(ii) We consider öANN/ ar to be continuous across 
the imaginary boundary r=R 

i. e. 
a LJ Nd 

to jl5' Cß' 3, 
r R- R+ 

The value of B* can be obtained either by matching a ýNN/ ar or by 

matching ö ANN/ör across the imaginary spherical boundary r=R. 
Obviously we can only satisfy the derivatives of the stream function 

for a particular value of 6. In our case, this was chosen to be 
9= n/2. We shall now discuss these two methods in detail. 

(i) We consider 

a+N_Q_ 
- 

ar r' 
a=II 

a4-NN TF r. %+ 

a=i 

5.44) 

Now 7 NNZr=R+ is given by equation (5.140). Hence, on differentiating 

equation (5.40) with respect to r and substituting into equation 
(5.1+2) we obtain 

ý I-Pti d=3 g* 4 3+ 2 loý r (5.45 
IT Ir: 

a_ 4 
e Wh 

By rearranging this equation we may express B* as 

a*_4a 
_KN 

-3-2 19 r 
(5" ý) 

3 77 r=ß- 

It should be noted that a 'PNN/ ar; 
r-R_ must be determined from the 

numerical stream function using a forward finite difference 

approximation. 

(ii) We consider a ONN/ ar to be continuous across 
the matching surface r-R. 
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ti tint4 
r: 

0: fr/Z B -- Tr/7. 

We can determine ü NNN/dr; e _0I*s by differentiating equation (5.141). 

On substituting into equation (5.143) we obtain 

rz P. - 
aýg : BIZ 

I*-3 rý 
-1 r 

(S"4.8) 

On rearranging this equation we may express B* as 

*Zý1öwwN f__, LA) 9r 
3öýB 1TIz 

(5.49) 

We again note that Ö c, 3NNEö r is the derivative of the numerical 
g_ ýs 

solution for ANN and can be evaluated by a forward difference 

scheme. 
Equations (5.46) and (5.49) offer two possible 

methods for evaluating the constant B*. The constant, however, can 

only be determined by an iterative procedure with an initial guess 

being made for B*. We chose B* = -1.5 as our initial guess, which is 

based on the Newtonian solution. The exact iterative procedure which 

was used to solve the differential equation (4.27) is described in 

Fig. 7. The reference to 'update I in this figure refers to the use 

of equation (5.46) or (5.49). However, we were not able to obtain 

convergence from either of these two methods for calculating B*. It 

was found that the average of these two equations gave rise to a 

convergent solution - i. e. we used 

B*_ i ä"NN 
r-. R- .. 

rt a`' 
r: Q--. -'2ý9r 

3 ar a_, qa 3 ar o: 1lz 2 

to calculate B* iteratively. 

When the solution has converged the numerical values 

for 4NN' 1NN and their derivatives are known for all r. In 

particular, at r=a. The non-Newtonian drag correction factor can 
therefore be evaluated from equations (4.109) and ('4.110) where the 

constants P2 and ß3 are defined by equations (4.75) and (4.76). It 
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appears therefore, that, in order to calculate the drag force, we 

require the second and third derivative of the stream function at 

r=a. However, from equation (5.3) we have 

öZ' 1114 (5. sº) 
CJNu 

and 

Ir_a 

6rz ý_a 

aa3 ANN 
r 

(s" s2 ) 
r= A a ý_a, ar 

Therefore, the drag coefficient can be evaluated in terms of WNN; r=a 

and 6 WNN/ä ri r=a 

5.4 Results 

5.4.1 Results for the Case when the Outer Sohere has a 

Finite Radius 

In order to test the program validity, the drag force 

on the inner sphere was produced for the case of a Newtonian fluid 

when the outer sphere had a finite radius. This drag force is given 

theoretically by equation (4.97) where d is defined to be the ratio 

of the radii of the inner and outer spheres. For values of d between 

2 and 100, the numerical value obtained for the drag force on the 

inner sphere agreed to within 0.5% with the value calculated using 

equation (4.97). In all cases, this accuracy could be achieved using 

a finite element mesh having 20 elements in the 0 direction and 40 

elements radially. 
The program was modified for the case of a slightly 

power law fluid when the outer sphere had a finite radius. In this 

case, the drag correction factor F(n, d) was calculated numerically 

for d-2,10,40 and 100. When d was 100, a finite element mesh with 

20 elements in the ß direction and 100 elements radially was used to 

obtain a stable value for F(n, d). The values are given in Fig. 8 and 
Table 1. In Fig. 8 the results of Lockyer, Davies and Jones37 (1980) 

are also presented. These results have been obtained by means of a 

finite difference method. In order to approximate the flow situation 
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when the outer sphere has an infinite radius, a value of d 

significantly greater than 100 would need to be used. In both the 

finite element and the finite difference method, this is impractical 
due to rounding errors, demands on the computer memory and running 

costs. Therefore to overcome these difficulties, a matching 
technique was developed. 

5.4.2 Results for the Case when the Outer Sphere has an 
Infinite Radius 

In order to check our program, the drag force on the 

inner sphere, when the fluid was Newtonian and the outer sphere had 

an infinite radius, was obtained numerically. When a finite element 

mesh having 20 elements in the direction and 140 elements radially 

was used this value was within 1% of the drag force value calculated 

using Stokes law. Approximately 4000 iterations were required for a 

convergent solution. 
The drag correction factor F(n) was then calculated 

for the case when the fluid was slightly power law and the outer 
sphere had an infinite radius. Results were obtained for the case 
when the matching surface had a radius of 10 times and 20 times the 

radius of the inner sphere and are presented in Figs. 9 and 10 and 
Tables 2 and 3. 

For a grid having 20 elements in the ß direction and 
100 elements in the radial direction and using a matching radius of 
10 times that of the inner sphere we obtained a value of 

Fl(n) _ -1.49911 

and hence F(n) is given by equation (4.109) as 

F(n) =1-1.49911 (n-1) 

It is evident from Fig. 9 that the value for Fl(n) has not reached 
equilibrium and it is likely that more radial elements are required. 
It appears from Fig. 9 that the value of'F'(n) for a mesh having 20 
elements in the 0 direction, 70 radial elements and a matching radius 
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10 times that of the inner sphere differs very little from the value 

F'(n) for a, mesh having 20 elements in the 9 direction, 140 radial 

elements and a matching radius 20 times the radius of the inner 

sphere. This implies that F'(n) is independent of the matching 

radius chosen for a given density of the finite elements. 

5.5 Discussion 

In Fig. 11 we present a comparison of our expression 

in equation (5.54) with the drag correction factor predictions of 

other workers (Chhrabra36 (1985)). Most of the theoretical curves 1- 

7 were produced using a variational principle method. In 1980 

Lockyer et a137 solved the slow flow of a sphere moving through a 

power law fluid using numerical techniques. However, the analysis 

was restricted to power law constants near unity and the use of a 

finite outer sphere. This result is presented in curve 8. Using 

finite element techniques Tanner31 (1985) extended the work of 

Lockyer to the case where the theory was valid for any power law 

index n (see curve 9). However, the work was carried out for a 

finite outer sphere with an outer to inner diameter ratio of 20 to 1. 

A similar approach was used by Crochet30 (1984) who considered the 

solution for a sphere moving inside a cylinder with a diameter ratio 

of 50 to 1 (see curve 10). Although the work of Tanner and Crochet 

was valid for any power law index n it was, however, restricted to 

the use of a finite outer boundary and a direct comparison is not 

possible with curves 1 to 7 which were produced for the flow of a 

sphere in an infinite expanse of liquid. The work considered in this 

chapter, is valid for the case of an infinite outer sphere and is 

presented in curve 11. We also present the drag correction factor 

for a finite outer sphere, d=100, obtained by using the finite 

element technique (curve 12) and good agreement was obtained with the 

result of Lockyer in curve 8. 

Since our analysis is only valid for a power law 

index near unity, then we can also make a comparison with the work of 
Tanner and Crochet, when n is near unity. Assuming that the drag 

coefficient is linear with n in the region 0.9 to 1.0 then F'(n) 

produced by Tanner has a value of -1.4, which is of lower magnitude 
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than our infinite outer sphere value of -1.4991 as expected. We also 

note that for all values of n, the curve produced by Crochet lies 

above that produced by Tanner. The result is to be expected since 
Crochet has chosen an outer cylinder to inner sphere diameter ratio 

of 50 to 1, in comparison with the outer sphere to inner sphere 

diameter ratio of 20 to 1 used by Tanner. 

The oil drilling industry relies heavily on the 

ability of an oil drilling fluid to transport rock cuttings from the 

bottom of an oil well to the surface. This is obviously important 

for good hole cleaning properties, since a high settling velocity can 
lead to drilling problems. It is therefore important to be able to 

accurately predict the settling velocity of a particle moving through 

an oil drilling fluid. It has been shown (Reynolds23 (1982) - 
private communication), that the settling velocity of spherical 

particles provide an adequate prediction of the settling velocity of 

rock particles of the same mass and volume. The work considered in 

this chapter will obviously be a useful contribution to the 

understanding of the mechanism necessary for the transport of rock 

cuttings. 
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CHAPTER 6 

PULSATILE FLUID FLOW THROUGH A STRAIGHT HORIZONTAL 
PIPE OF CIRCULAR CROSS SECTION 

6.1 Introduction 

An experimental investigation carried out by Barnes 

et a138 (1971) has shown that when a sinusoidal pressure gradient is 

superimposed on a steady flow of visco-elastic liquid in a straight 
tube of circular cross section the mean flow rate is increased for a 
given mean pressure gradient. That is flow enhancement occurs during 

the pulsatile flow of a visco-elastic liquid through a straight tube. 
Flow enhancement associated with pulsatile flow is of 

considerable industrial interest. For example, some mechanical pumps 
produce a pulsatile gradient as a side effect. These fluctuations 

are usually deliberately smoothed out and the liquid is, in effect, 
pumped under a steady pressure gradient. If, however, flow 

enhancement occurs during the pumping process it may well be 

advantageous to dispense with smoothing the flow. 
The possibility of deliberately increasing flow rates 

by pulsing is attractive only if the advantages gained are not offset 
by the increase in power required to maintain the pulsations. This 
question has been addressed by Edwards et a139 (1972) and Phan-Thien 
and Dudek40 (1982). These workers have shown that when a power law 
fluid is used, then there is no economic advantage to be gained in 
pulsating the flow. 

An analysis of the pulsatile flow behaviour has been 

carried out for several different visco-elastic fluids. These 
include the second, third and fourth"order Oldroyd fluids (Walters 

and Townsend41 (1968), Barnes et al (1971)), the Goddard-Miller 
fluids (Davies et a142 (1978)) and the generalised Maxwell fluids 
(Phan-Thien43,44 (1978,1980)). The experimental results of Barnes 
et al show that the mean flow rate increased with pulsatile frequency 

when the ratio of the pulsatile pressure amplitude to the steady 
pressure gradient was held constant. These results are in 
contradiction with the theoretical predictions obtained by Walters 
and Townsend and Davies et al. They are, however, in some agreement 
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with the theoretical predictions of Phan-Thien. 

A conventional apparatus was used by Barnes et al in 

which the mean pressure gradient was controlled and the mean flow 

rate was measured. With this arrangement whenever a comparison of 

the experimental results is made with theory the amplitude of the 

pulsatile pressure gradient must be measured. This measurement is 

difficult to obtain accurately and can, therefore, be subject to 

error. This is particularly true at high frequencies due to the 

greater effect of inertia in the transducer connecting tube. An 

alternative apparatus has been constructed by Chakrabati and Davies145 

(1980) who have carried out experimental work in which the mean flow 

rate and the pulsatile flow rate were controlled and the pressure 

gradient was measured. Their apparatus is shown, schematically, in 

Fig. 12. 
The following points regarding their experiment are 

worth noting: 
(1) a known steady flow rate was controlled by 

the constant movement of a piston in a resevoir of an Instron machine 

and so no smoothing was necessary. 
(2) the oscillatory device took the form of a 

moving oscillatory piston in a sealed chamber and therefore the 

oscillatory flow rate was known exactly. 
(3) the pressure transducer was activated by the 

pressure of a light, low viscosity oil in the connecting tubes. This 

light oil was able to faithfully follow the pressure variations in 

the straight tube. The pressure amplitude measurement, however, is 

not required for the comparison- of experimental results with 
theoretical predictions but can be used as a check for the 

consistency of data. 
It has been shown by Davies et a142 (1978) that flow 

enhancement is strongly dependent on the shape of the viscosity - 
shear rate curve. Therefore it is important to choose a model which 
has the correct viscosity behaviour. The Goddard-Miller model used 
by these authors had a power law viscosity function to predict flow 

enhancement behaviour but the theory was restricted to small 
oscillatory amplitudes. Townsend46 (1973) has carried out his 

analysis using an Oldroyd four constant model, the theory being valid 
for any oscillatory pressure amplitude. The Oldroyd model, however, 
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does not give a realistic viscosity function. In this Chapter we 

shall be concerned with an inelastic power law fluid analysis which 
is not restricted to small amplitudes and which also includes the 

effects of fluid inertia. The relevant equations of motion will be 

solved numerically. A perturbation analysis was also carried to 

provide analytical expressions for the flow enhancement when the 

effects of fluid inertia are small. 

6.2 Pulsatile Flow Analysis 

6.2.1 Basic Equations 

The numerical analysis given here initially follows 

the work of Edwards et a139 (1972). As a first check against the 

validity of the numerical procedures we rederived the numerical 

results of these authors. The program was then modified to allow for 

the case when the pulsed flow rate behaviour is known. 
A cylindrical polar co-ordinate system- (r, 9, z) was 

used with the positive z-axis in the direction of flow. It was 
assumed that the length of the tube was large compared to its radius 
and, consequently, edge effects were ignored. 

A velocity field of the form 

Vr =0 
' 

Va O Vr = w(r, k) (6. i) 

was assumed. This velocity field automatically satisfies the 
equation of continuity. When body forces are omitted the equations 
of motion become 

ý] ,° 
aw ap 

-LrerZ rLJ 
at =- az ra'r 

a°6. 
z -t) 

ap_o 
TO 

where Zr= _ -k 
n-I 

i'rz 
(6.3) 
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Here j 
ij is the rate of strain tensor and 'C ij is the stress 

tensor. From equations (6.1) and (6.3) we obtain 

-C -kI 
aw `h W (6.4-) 

rz ad IÖr 

and the equation of motion becomes 

)W n" aW)(,,. 
S) T-r at 

where ö p4 z is a function of t only. 

6.2.2 The Case for Steady Flow 

When the flow is steady w=w(r) only and a w/ö t=0. 

The equation of motion becanes 

r ap 
=kI_ 

aw �. ' aw (16-C) 

aZ ar ̀ý t örý 7 
Integrating equation (6.6) with respect to r we obtain 

(. 7) r4 -P, 
(-, W)" 

T-r 

where -ö w/ ar is positive. The mean flow rate, Q, is given by 

a 

(6. e Q. 7t a2 u Jtrrr w jr 

0 
where ü is the mean velocity of the fluid and a is the radius of the 

circular pipe. Integrating by parts and using the no slip condition 

at the pipe walls we obtain 
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2_s lW dr (6.9) 
a_r 

(- 
-) ör 

0 

From equations (6.7) and (6.9) using ö p/ö r=0 

QlC zK (.. iý 1 Jr u= -- bz 
0 

and so 

- _tZk 3rfý n 

öZr al 

we shall denote the steady pressure gradient by -ps and so 

Pr 
3r S' fl (6. i2ý _ 2CAM k 

s a-t nJ 

6.2.3 The Case for Pusatile Flow 

In the case of pulsatile flow we let 

Cosr.. rý, (6. s2) 
aZ 

where CJ is the frequency in radians per second and Cr is the ratio 
between the Wt-essu. c Pt 
9ý 

pulsed fte amplitude and the steady fýe 

aaplit e. The pressure gradient is now a function of time i. e. 

_ 
ap P(t) (6.14) 
az 

and the equation of motion becomes 

PAW _ P(t)_! IrkRaIr 
_ 

IWIn-I\ (6"ßs) 
r ar !6rI 

The equation can now be non-dimensionalised using the following 

changes of variable 
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tst ' T= R"r' ' 
('. l') 

zrc vº a 

to give 

t I I 

rT R n+I R aR l a ala 

where 
_ P(T) 

ri U. ý, ka PS(T) (6"ýS) 

ant 

p (T) = I+E cos 2.7r -r (6"i9) 

and 

of . C 3ýfý (6'2O) 
Thus 

( pt" +i 
c4ij, 6. äV 

R LV _Z 6eP*+ ja aV n-ý 
ý "ý 

(`. 2I) 

ur K Tc -A Tr aR ` ý 
Defining a Reynold's n nber by 

We T 
h Ü. 2_n a, h 

gC 
n+i 3K 

we have 

Fat aV 
_ 2a P#(T)+- av av l I (x. 23 

6T' $ 2 TR G I 

where F=a c''t Rt 
is dimensionless (6.24. ) 

2 7r ti 

Equation (6.23) has to be solved subject to the boundary conditions 

V(1)T) 0 T>, o 

W) aV _ 0 T >, o ß. z5) 
aye a=ý 

V 
r=o 
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These boundary conditions correspond to the physical conditions 

(i) there is no slip at the pipe wall 
(ii) the fluid shear rate along the tube axis is 

zero 
(iii) the fluid is considered, initially, to be at 

rest 

6.2.4 The Numerical Method for the Case when the Pressure 

Gradient is known 

Equation (6.23) was solved using the explicit 

difference scheme employed by Edwards et al (1972). The domain was 

divided by intervals AR and AT, the velocity at any point being 

VI, J where I indicates the radial position and J the time step. The 

radius, R=0 to R=1, was divided into N-1 intervals giving 

AR= 1/(N-1). 

In order to improve the numerical accuracy of the 

scheme we follow Edwards et al and use forward and backward 

differences as follows 

IöP, INI"-ý` R p. 
(ak' 

v LV 
ß&dz 

f nRý aRl 
; 

1aR ý94, 
N 

Rda1, (aß 
Rea aa 

And (C 
.2) 

aCR ýv av '^ -I I ßß aý ýR rR Zv av 
n" 

(R-61 I ýv n-ý (6.21) 
R R DR aRIaI öIR DR L R R-ýa a 

Equation (6.26) was derived using a backward difference approximation 
for a V/ 6R while equation (6.27) was derived using the corresponding 
forward difference aproximation. The two approximations given by the 

equations were then averaged to give 
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.aQ av I av ^' `) 
R arz aR as 

n, I 

-RR ^-ý 
/Rý'2Rý/v2jý'T yZýýIVz+'ý7'- YI, 

JI 

n-ý 

)(Vr - v=-,, T)I Vz, s A forward difference was used for a V/ aT 

(ay )= 
-L (4.2_q) aT 

_Iz hT 
(V-s 

Sf, - ý_, 
7 

Substituting equations (6.28) and (6.29) into equation (6.23) we have 

an explicit finite difference scheme for VI, J+1 in terms of VI-1, J, 
VI, J and VI+1, J, valid except when I1 and I=N. These values of 

I correspond to the pipe centreline (R 0) and the pipe wall (R = 1) 

On the pipe wall, by boundary condition (i) of 

equation (6.25) 

'4J,. o 7>. 1 ((. 3o) 

On the pipe centreline equation (6.28) has a 

singularity since R=0. This singularity is removed using 
L'Hopitals theorem. By this theorem 

rI1 
äR ýR s, 

() 
ýR äa `R as as t1z äR i(L L 

Using a forward difference approximation for) V/ aRIa V/3 R In-1 and 
a backward difference approximation for 2a/öR we have 

wm Iý (p, ýv 

okbP, aRlaäl Raio 

2 
"-1 

ham) 

- Cv=, ý -V _ý, r) I v=, - v1_1,? ) ( 6.32) 
From boundary condition (ii) of equation (6.25) 
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V, 41 
VI-I 

17 
( f. -33) 

when I=1. Substituting equation (6.33) into equation (6.32) we 

obtain 

(aräVdV ti. ý 4_ n-ý 
um 

Aeo a öR 1R ýQ 
I 

ýR 
, 

ýa ntý 
V=ýS- 1/i, S1Iv2,1 

ýý, 
ýI 

(6.34) 

Thus VI, J can now be approximated numerically for 1. I. N and 
14J<U where U is sane fixed upper limit for J. 

To confirm the correctness of the program the results 

of Edwards et al were rederived. 

6.2.5 Modifying the Numerical Method for the Case when the 

Flow Rate is known 

Equation (6.23) was now modified and expressed in 

terms of the flow rate rather than the pressure gradient since in our 

case it is the flow rate, and not the pressure gradient, which is 
known as a function of time. Using equation (6.16) the flow rate 
fron equation (6.8) can be expressed as 

I 

Q_ (. S) foL2vRdR 
p 

Therefore 

Az 
.R o(R (&. 36) 

)7 oa-r 
Integrating equation (6.23) with respect to R and using equation 
(6.36) we have 

C2' 
_ 

4.1r oc a2 a1 P4 (T) 
J lo 

2Tf'a2ýlRav I aýI 6'37 

ap g0 
We define a non-dimensional flow rate Q* by 
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Q. TrA U Qfr ý6.39ý 

Substituting equation (6.38) into equation (6.37) we obtain 

F * äQ av )1 ( av ý-ý ý6.39 

IG F CK aA 
Eliminating the unknown pressure gradient from equations (6.39) and 

(6.23) we obtain 

ýv n"1 
F o( 

öy_ F°l aQ2 ay 
_ 8 9T 8dT aR R-. aR R: i 

öQ ?V aV n-I 

where experimentally it is known that 

Q0 :1+E cos 2ir-r 
(6.4l) 

and so 
äQ 

-- 
27r E s; r ZJr -r c6.4i aT 

Equation (6. '42) when substituted into (6.40) gives an equation which 

can be solved to give the velocity-profile at time T. Hence we can 
numerically determine (öV/6R)R_1 V/ ö R; R_1 

which on substitution 
into equation (6.39) will give the value of P*(T). 

We used the same finite difference scheme to solve 

equation (6.40) as we used to solve equation (6.23). However 

equation (6.40) is insufficient to determine the V-profile uniquely 

since the steady flow rate component is not considered. To overcome 
this the V-profile was adjusted at the end of each cycle to give a 

new V-profile consistent with Q*. The new V-profile was expressed 
in terms of the original V-profile by 

V(R) 
New = V(A) 

oar4 
C(R) - (6.43) 

where C(R) is a correction term. At the pipe wall, i. e. when R-1, 
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the correction term must be zero since V is held zero here by the no 

slip condition. A maximum error of X was assumed at the central 

axis of the pipe, i. e. when R-O, and C(R) was taken to be linear in 

R. Thus 
C(R) _ ý(I- R) (6.44) 

Substituting equation (6.38) into equation (6.35) gives 

2V(a)R4R (6.45) Q 

Thus, at the end of each cycle we require that 

Q*_2 V(a)1,6 p' t4 R C6.40 
01 

On substituting equation (6.43) and (6.44) into equation (6.146) we 

obtain I 

Qit _ 2v(R) 2 dR +X (6 
"47) 

OBIG 3 

which may be written more concisely as 

Q= QNuM -t' 
3 (6. ta) 

giving 

3ý4- QNýMý (6"y. 9) 

The adjustment of the velocity-profile was carried out at a number of 
different time steps, from one time step to the full cycle. 

When using equation (6.39) the normalised pressure 

gradient PS(T) was calculated for each T step and it was found that, 

under certain circumstances, numerical instabilities were present. 
These instabilities gave rise to alternating sign changes in the 

pressure values. A routine was incorporated into the program to 

count the number of sign alterations in each cycle. It was found 

that repeatable data could be obtained provided that not more than 5% 

of the data suffered sign changes. In most cases, the instability 

could either be removed or reduced to give repeatable results by 

decreasing & T. For some combinations of N, E and F, however, it 

was not possible to obtain convergence of the solution. Such cases 
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are indicated in Tables 4 and 5 It was found that for stable, or 

sufficiently stable, solutions that no more than three cycles were 

required before flow became fully developed and independent of the 

starting condition. 
Finally, a Fourier analysis was carried out over the 

values of P*(T) in the third cycle. The fundamental amplitude and 

higher harmonics were calculated. 
The following results were plotted 

(i) The variation of the normalised mean pressure 

gradient with F with N in the range 0.3 to 1.0 for given(-. The 

value of E being 0.5,1,5 or 10. The results are plotted in Figs. 

13 - 16 and the values are tabulated in Tables 4-7. 

(ii) As for (i) but the phase angle variation was 

considered. The results are plotted in Figs. 17 - 20 and the values 

are tabulated in Tables 13 - 16. 

(iii) As for (i) but the amplitude variation of the 

pulsed flow was considered. The results are plotted in Figs. 21 - 24 

and the values are tabulated in Tables 17 - 20. 
(iv) The normalised mean pressure gradient against 

E was considered with F in the range 5 to 100, N being held constant 

at 0.5. The results are plotted in Fig. 25 and the values are 
tabulated in Table 21. 

In order to check the correctness of the pressure 

gradient data, we substituted these values as input data to our 

original program. The flow rate output data gave good agreement with 
the known flow rate waveform. In order to check the case when F is 

small (i. e. when fluid inertia is small) a perturbation analysis was 

carried out which we shall now consider. 

6.3 Pulsatile Analysis for Smal Fluid Inertia 

6.3.1 ExDressinn the Flow Rate in Terms of the Pressure 

Gradient 

A velocity distribution of the form 

w (rar). wo(r, E)-t'Pw, (rb E)+P2Wz(r, t)+... (6-SO) 

was assumed. The boundary conditions which must be satisfied are 
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W0(0))'1 (a, E ): Ws(a)ý): O tzo 

and 

-wo(at): 
fir' (0. b) = 

ai(o 
)_ 0 t>1 

a 

Substituting equation (6.50) into equation (6.8) gives 

Q()=Q'It)+PQ, (L-)+ P" Qa(E)+... 

(6. st) 

(16. T2) 

(4-S3) 

Throughout analysis terms of orderp3 and higher will be ignored. 

We have from equation (6.16) that V w/'5- 

Substituting this into equation (6.50) gives 

iir, E) -ý .... (G " S4) +ftV 

Substituting V(r, t) from equation (6.54) into equation (6.15) and 

using Taylor's expansion gives 

DL (I* ÖV0 
a- Al 

L" )= P(t) 4krI 
Lo I rº-1/ a Vo 

+l, naV, 

at at rar ar aIr ar 
i 

}if LV %+n -ý 
(WV, 1 er) 1j an (b . SS) pnl 11 ar 2 av0 jr a 

The coefficients of p 0, 
)o1 and p2 are now compared as follows: 

Coefficient of a0 

Fran equation (6.55) 

P(» Uk 7 
a r ýI o 

V% .1 a vo l= o (6"S6) ) 
r r 

Multiplying through by r and integrating with respect to r we obtain 

n ,l 

rI Leo aVo 
_-r2 

NO 
+ A(s) (6"S7) 

br FF 

- 68 - 



where A(t) is an arbitrary function of time. 
Fran equations (6.52) we have 

R)= (6.58) 

Rearranging equation (6.57) and using equation (6.58) we obtain 

ate, '- c%^ PI f1 ý-I (6 "s q) ö (zk) týº 

which allows for both positive and negative values of P(t). 
Integrating equation (6.. 59) with respect to r and satisfying the 
boundary condition 

we obtain 

Vo( r L-)_ n ý`-ý 
cif-rte' P PIS" 6.6 

On substituting V= w/ü into equation (6.8)and 
integrating by parts we obtain 

0 

Substituting equation (6.61) into equation (6.62) and integrating we 
obtain 

3h+1 i_Vi 
a PIPI (6-63) 

(2k')'/h (3º, 4.1) 
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Coefficient of P 

Comparing the first order coefficient in jo in 

equation (6.55) we obtain 

ÖV o 
ýV, 

0 I r%-I eV1 )ün 

Dt ar ar 
(6.6 4. ) 

Substituting equation (6.61) into equation (6.64) and integrating 

with respect to r we obtain 

1 1+ nz 1-h 
ödl 

_ 
2. rýna n ný1 

fýn hd 1_h 
ar 2 3n-+1 

pI 
db(P1P1 / 

+ a(&) r-2+ 
n 

(6.65) 

The boundary condition which must be satisfied is given by equation 
(6.52) 

When n> 1/2 B(t) must be zero, but when n< 1/2 then 

B(t) can remain arbitrary and it seems that a further boundary 

condition is required in order to obtain a unique solution in this 

case. However, the power low fluid predicts an infinite viscosity 

when the shear rate is zero. In general at low shear rates power low 

fluids behave as Newtonian fluias and when n=1 (the Newtonian case) 
then the last term in equation (6.65) is B(t)/r and B(t) must be 

zero. Hence B(t) is zero for all values that n may take. 
On integrating equation (6.65) with respect to r and 

then satisfying the boundary condition V, (Q, t) =0 we obtain - 

n $4 It !? z+? 

V (2V. r (r+I) 3 n+ t, 
` 3n-ti) 

I-n 
-_n IN n dE (pi 

On substituting V1(r, t) from equation (6.66) into 

OL 

0 
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we obtain 

i. e. 

Q, (t) = 

Q, ýt) _ 

4+ 
Tr aMn 

ýýKý'ýº^(3n. 1)(Zn+ý) 

_7Ta4ý ^n 
ý 

. k)j'/ (3n+i)(2M+ý) 

. 
L. i 

IN ol .1 -1 

dE 
(eI lZI V% 

ý/"d 
PI" PI 

cu (i } 

(`. 68) 

(`. 69) 

Coefficient of f2 
Comparing terms of order p2 in equation (6.55) we 

have 

övý av, k� ä "-' )v2 
at 

n r ýý 
I 

ar 
l 

äV0 f ör 

Substituting VO from equation (6.61) and V1 from equation (6.66) into 

equation (6.70) and integrating with respect to r we obtain 

Z tý%ý +'/n ! 4, /n Z 1+ 3Iý 

- 
(2k)/m (h +ý)s 4- 3 n+J (3� )2 

PfpIM 
'- 

(oTE 
\ 

JJ 
P 

zN '' 3/" 
0. t=l"- zi%+, ) rn 

(Zh+ý Z 

1_1 i 

"/P! 
i/hd 

ýf PýPý I 
dE dE 

('. 1I) 

where the constant of integration is zero for reasons previously 
discussed. 

The flow rate Q2(t) is given by substituting ö V21 är 

fron equation (6.71) into 

Q'(6) ar (6'12) 
0 
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to give 

n+3 
Q2 (Q= 7t f8n+3G r1-ß) IPI 

2(zK)3(n(3n+')(Sn ý3) 2n+i 
-P 

+ZP h_ý dP ~_'d PIP 
tý d 

Equation (6.73) simplifies -to 

sn ý3 

('zk)3/+'(3n+1)2(5ºi43)(2w4.1) 

+ 1PIv"-I dý (Iplllh)] ( 6. -74) Pd 
On carrying out the differentiation it can be seen that when P(t)=O 

then Q2(t) becomes infinite for 3/4 <n<1. 
The final expression for Q(t) is obtained by 

substituting the equation for Q0, Q1 and Q2 derived above into 

equation (6.53) to give 
3n+ I 

*1rn an PIPI _ pirQ nIPI (iei" 
L 

QCE ý 
Zk /N (3n+l 

2k " 3n+l 2n+I P G{E 

+ /d r 1PIn` 
Z 

/0 Tr n (Srt + 3)4A -. ýr'-") IN h 

/n 2ZP `dt l 
Jý 

(2 i (3'1 +') (c +3)(Zn {ý 

+ IP I Tý"-' dZ 'k. 

The mean flow rate is given'by 

cýý _ ýQo>+ <QS)+ <Q2> (6. fl) 
where <> denotes the time average value, over one cycle of 
oscillation of the expression contained within the brackets. Hence 

h+) 

Tr na ^ <PP r-ý\ ý6. -n) 
(ZK) (3n4') 

- 72 - 



An + 

_JoTra n2n PI'S"C, ( PI '/h 
3n+, tnit) dt l 

)ý 

and 

»+3 -1 1 
P27r n (8n+3) a '', ý 2n-1) ll 

dt`IPIýýJL% 

(: ZK) 
3"" (3n+ i )2 (fin +3XZn +1) 

P 

ýLp! - dt lJ 

The expression for <Q2> can now be simplified by using integration by 

parts on the first term. We obtain 

IPI" d IPI IPidP dE (`. °) 
P 0(17 f, np dt 

L- 

IPI i IPI (6. gß) 
n (n -i) P 

i. C. -1 %-1 

pI dN dE _ýý (ß"g2) 
dt(I 

PI 
2(i-h) P 

Therefore 

-1 
cl IPI^) d (IPI' 

P 'CTL dt 

3 n-ý)> dZ ý 11 )I (Pý h 
2(` dE2 2(I-n) P 83) 

_4/ýPIdP 
P dt 7 

Adding this to the second component gives 

\P 
Irrn ýF3n + 

-An3 
<IPI 

ý(IeI'41)> 

4. (21t) (3n+1)2 (5'n+3)(2 )P dt 
C6. SS") 
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6.3.2 Expressing the Pressure Gradient in terms 

of the Flow Rate 

In the experiment carried out by Chakrabati and 
Davies the flow rate was known and the pressure gradient was 

measured. Hence, we require to make P(t) the subject of equation 
(6.75). This was achieved using a Taylor's series expansion as 
described below. 

Equation (6.75) can be written as 

ý(ý)_ -ýoPIPý'ý"-"+ ý-PeýPýpýýý^-id ýpIPA� 

+-f¢Zp2 -(n-ý) ýPIý ä' Pi Pý-ý'-ý 

P J- 

Cpý dt 

z (P P% 

0-ti 
', -1 ))] ( 6.2r. ) 

dýC C 
where 

3h4.1 
_ 

Ti hAn (6.97) 

0 (2 k)/n (3 %f1) 

[ýH+i 

4 Tina 
(ZK) ß" 41)(2n+I) 

.iZL 7Tn (8n . 3) a 11 (16. ? 9) 
(21. c ý3ý" (3 h4 %)2(Sn+3) (? h +1) 

we allow P(t) to be given by 

PEE)= Pocý)+P0F()+p2PZcý) C6. go) 
where PO, P1 and P2 are functions of t which must be determined. 
From equation (6.81) it is evident that we need to evaluate the term 
pIP; -1+1/n to order 10 

2 and the term ; P; -1fI/n to order p. From 
equation (6.90) we have 
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PIP. (Pa+PP, +P PZ)IP. +PP,. +P=F. 1" (6. qi) 
1-1 

Using a Taylor's series expansion and ignoring terms of order p3 and 
higher we have 

1 
PIPPo 1Po In + 1° P, IPo 

(_Lp2. ip0Jn 
+P2 -ý+ P, Poýn-ýl (6"q2) 

2n2 p/ 
0 

I Similarly the term iPi'l'4" n, is given, to order f, by 

Pn -I (p In -I+ r Iah Iýe i n-I 

0 

Substituting equations (6.90), (6.92) and (6.93) into equation (6.86) 
we obtain 

P, IPC I"-ý-f- P, IPo Cn 
+ Pýý Pz IP0 In-. + 

I-n 

PI Pol" )] 0 

+-k, P JP- I' n: 
PIP. In-. p 
0 

[dt( 

PIPI-, ) i 

o 
CTE 

-E- zlPblA-1d (IPol�-Id 
01Pol0%"ýý 

(6.94 
dg 

By grouping terms we obtain 

Q(f) =. C', 
A 1, 

a PC IPo I" + (coi?. 
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ý- I- -1d L-1 

P° . I+ [p'a 
n 

erP z ýý11Po1" +*e I-n) 
I IPoII/�-, Ln2 rýz po 

PIP, ý" dip p) 
n pa dt o0 

I 

-ý- 
_ý 

`Polr'-) d 

CP. 
1P 

o1 
^-1 

n dF 

Po 

+ 2ýQ2IPoI -Id 
P. i -' _Idp (P. 1 

n-I 

'-, 

(1 »]' (6.95 

But Q(t) is a fixed quantity and independent of the fluid inertia. 

Therefore, the coefficients of p and p2 must vanish in equation 
(6.95) giving 

Qýý) _ oP0 
I P0 I 

n_' ( 6"qß') 

which, on rearrangement gives 

Po =nQIQ I` (6, q7) 

,ý 0 

Substituting equation (6.87) into equation (6.97) gives 

2k (3n. s) 
n 

QI0In-, (6.98 

By comparing terms of order r2 in equation (6.95) we obtain 
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^ Cl P. lPo l-1 O 6.99 1 ,I 
Po Po ý 

ý dt 

which, on rearrangement, gives 

Pn 
&1 (Pp IPpI ^) (6. ioo) 
w, dEl 

Using the expression for ko and k1 given by equations (6.87) and 
(6.88) we have 

3n+I ýtQ(b) 
. to1) P' 

1T c2 (Zn41) 

By comparing terms of order p2 in equation (6.95) and dividing 

through by ; Ppl-1+1/n we obtain 

2 
-, M) P, 

n n2 JnP 3-t\ 00 

i -I 1 

,I(. p (p, )P 
dt' o 

+ý 2d Pd Po Pýo (6. Ioz) 

Substituting P1, from equation (6.100) into this equation and grouping 
terms gives 

Ipo11 - d2 
ý (P-1p. 1 ., = -2. 

( -41 
'ko aC- 

Pr I" r(0Ir0I')) +Pt 
10 

0 
ýcltl 
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Substituting the expressions for k0, k1-and k2 from equations (6.87), 

(6.88) and (6.89) gives 

7 -+a1 1 _nQ h Pi 
-n 

ýPoýn 

G14 `z 

(P4 Pal 
ýM 31 n+3 

j 

r 
ýZKý ý3ntýýýZý xs 

-ý (-"-ý dt (Pb I pal Po 

( 

O Ii -I Po I Po -, (v" 1°4) 
IF ) 4. (I )] 

dt dt 
Substituting equation (6.97) into equation (6.1014) gives 

n+ 1 1-n r-Z 3rº- 3Z 

n 3n+. ) 7T [QQ'l+ Ln P-4 
- 

2K (in+1) (Sn+3) Q IQ 

ý-. -QIQI (6.1oS) 
dý` 

Equation (6.105) simplifies to give 

- hhiI h+ý 
ºYn zA3ý-3 of 3 1Z 

PZ = (3 ) IQQ 
-ý z (1- h)Q 

2k (-Zn ý3) 
ý, 

1 (- 

Substituting the expression for PO, P1 and P2 given in equations 
(6.97), (6.100) and (6.106) into equation (6.90) we obtain 

P(E) _ 2kNn; ')» QIQJ 
'+ 

vi VN 
r, 1 

TT A 

2k (2n{ý)ý Sri 4-3) 

/o 
(, 1m+1) Q' 

Tr c, (Z)%+%) 

G? C'ýtl Z (ý -r) Qý Z (6.10? ) 
alai 

and NO is now expressed in terms of Q(t). Substituting equation 
(6.38) into equation (6.107) and using equation (6.41) it is evident 

that a singularity occurs in P(t) when Q(t) =0 and t-- >v 1. The mean 
theoretical pressure gradient, P(t) is, using equation (6.107) given 

by 
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P (ý) tic can+. )h <I (ý ý'-t 
nn 3n+ß 

31%-3 IL 
p IL n n+l (3 n+%) 7r cx < 0011+22 

2k(2h+I) (Sn+3) Q )Ql (6. so8) 
or, using equation (6.90) 

P(t) _< P0> + 10 < Pz> (b. lo9) 

6.3.3 Non-Dimensional Analysis 

Let 

, oiPz= P$p* (o. io) 

T= "t (6. WWW) _Tr 

where P. is the mean steady pressure gradient given by equation 
(6.12). 

Using equations (6.106) and (6.38) 

10= 
P= = 

nf1 s I-n M-i 3r%-3% u µ2 La% A (3 r%4, 
) TT a 7r 

2k (2n4 ý) (5n+3)7["oa=" ýº ^Q 

i 

x2h _1ýý 
G1 )Z_ Q* 

NJ 

Q11I"'IOrr 

(C. 11-Z) 

Q*n p i)I-nCLni1ý2 in"ýiýý'*I1ZQ# n2J 

9k (z"fi)z(Sn t3) rti ýº"' (ýýýQ, ýý n-i 

(b. I13) 

Dividing equation (6.113) through by Ps, using equations (6.20), 
(6.22), (6.24) and (6.110) and simplifying we obtain 

PZ it cFi (3rß t) n 

256 (Zr 0)Z(Sn*3 
3/2. Ch-s (a*') =Q*Q*" .ý 

it -i 
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Using equation (6.98) we obtain 

('. is5 ) Po 2K 3=± )r, QYI Q* rN-1 
^a 

Therefore 
rt 

° PS 

Finally the normalised pressure gradient is given by 

p 

PS 

Fran equation (6.109) we have 

p'` =ýP*>t<? 
*) ('. i'8) 

and 

P*=ýý ýQ )+F 1) h l2 (n-' i: ý *) QQ 
ýi 

2n+ý 1f ý1 ýt ý ý- t 

(w, q) 
Therefore, the normalised mean pressure gradient is given by 

1I 

3/z(^''iCQ )Z Q Q. dT P=C? ýa ( dT-4-ZSL 
(2n+ý)ý(Sn+3) Q*1 

0 0 ý6. l20) 

Since Q* =1+E Cos 21'r T then it appears that a singularity occurs 
in the second integrand when E>1. However, this is not the case 
since rewriting this expression we have 

11 
Z`�-1)`2Ad 'ýZ 

PT _'' G )QT 

v 
Q-x IQ Iý-. -Z Q*ý Q*iY I 

0 

(6. I Zi) 
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3ý n- i) Q Q' I-n 1_3 di 
-n 

_3(Q Q*nc}T (b, ý23) 
0 

The second integral in (6.120) becomes 

3 (h-1)(Q* D )2 
_= v-I 

)di 

C 

d. r 
z 

G 

IQ IQ 
0 

and the normalised mean pressure gradient is given by 

JT+F (3 nt I) n Q, ý Q, "d T P $12 ý2nt1) ýSnt3ý 

o0 
(6.126) 

The results fran equation (6.126) are plotted in Figs. 13 - 16. 

6.4 Results and Discussion 

As expected there is total agreement in the Newtonian 

case, between the data derived numerically and that obtained using 

the perturbation theory. There is also good agreement between the 

two sets of data when the fluid inertia is zero (i. e. when F=O). 

This is evident from Figs. 13 - 16 and from Tables 4-7 and Table 
12. 
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The numerical variation of the normalised mean 

pressure gradient against F for E= 10.0 and E= 5.0 is small. 
Therefore for this reason it is difficult to know whether there is 

good agreement between the perturbation analysis and the numerical 
data. However, for the case when E=1.0 or 0.5 the variation of 
the mean pressure gradient with F is more pronounced and the 

disagreement between the two relevant curves is more noticeable. 
Since the range of validity of the perturbation theory and of the 

numerical procedure is uncertain then this disagreement might be 

removed by using a modified perturbation theory which takes into 

account higher order terms and a numerical procedure which is free of 
instabilities. It should be noted that, since terms of third order 

and higher were ignored in the perturbation theory then the variation 

of mean pressure gradient against F is quadratic. The modified 

perturbation theory mentioned might be obtained by including terms of 
third (and possibly fourth) order and ignoring all higher order 
terms. 

The downwards direction of variation of the mean 

pressure gradient with F, predicted by the perturbation theory, is 

consistent with the corresponding numerically derived variation of 
these quantities. Also, trends similar to those evident in the 

complete, numerically derived curves, have been observed from the 

results of the experimental work carried out by Chakrabati and Davies 
already mentioned in the introduction to this Chapter. However, 
Davies47 (private communication 1986) has recently shown that similar 
trends occur when elasticity is included in the theory. 

Figures 17 - 20 show the relationship between phase 
angle and F for various E and N. The variation of the phase angle 
with F shows the same trend with N for all E, being more pronounced 
for larger E. As F gets large then, in all cases, the phase angle 
tends to a 900 lag. 

Figures 21 - 24 show the relationship between the 
fundamental pressure amplitude and F for various values of E and N. 
The variation of the pressure amplitude with F shows the same trend 

with N for all E. For large F the pressure amplitude, for each value 
of E, appears to be independent of N and proportional to a power of 
F. 
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Finally, Fig. 25 shows the relationship between the 

normalised mean pressure gradient and e for various values of F when 
N=0.5. In general the flow enhancement increases with increasing 

and decreasing fluid inertia. Interestingly, however, when E=1 then 
the flow enhancement is practically independent of the fluid inertia. 

The work presented in this chapter has shown the 

effect of a realistic viscosity function and the effect of fluid 
inertia on the flow enhancement and pressure gradient reduction 
predictions. It is hoped that this work will be extended to include 
the effect of elasticity. However, it is important to choose a model 
which gives good predictions for steady shear behaviour and 
oscillatory shear flow behaviour. 

In the oil drilling industry, large positive 
displacement mechanical pumps are used to circulate the drilling 
fluid. These pumps use an oscillatory mechanism which results in a 
pulsatile pressure gradient imposed on the fluid. The properties of 
the fluid will obviously be affected by the superposition of an 
oscillation on the steady flow. This type of flow behaviour also 
occurs in the removal of rock cuttings from the recovered oil 
drilling fluid. Due to the cost of this fluid it is necessary to 
separate the drill cuttings from it enabling re-circulation to take 
place. This is achieved by passing the contaminated oil drilling 
fluid over a vibrating table. The work presented in this Chapter 
will obviously be relevant in describing the pulsatile flow behaviour 
of fluids used in the oil drilling industry. 
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APPENDIX 1 

THE GOVERNING EQUATION FOR A SPHERE 

FALLING SLOWLY THROUGH A NEWTONIAN FLUID 

The constituitive equations for a Newtonian fluid 

are, using spherical polar coordinates and taking the symmetry of 
Fig. 3 into account: 

Zrr 21 avr (Al. 1) 
ör 

Ze0-_21(+ -- 
Vc1 (AI. 

-) T" 7 J 

Z44 = -Zý 
( f_ 

-ý- 
Ud Coy 8) (A1.3) 

re -1(rI (V&)+ dar) (As. -) F6 

The equations of motion, ignoring the inertial terms are: 

rr Zr rý rs; nG aa(trQ 5'^e) 

_ 
(ree + -C, 6 (A! "5) 

r 
and 

t'Son6 a9 (r00s; ne) }-- 
ae 

- zq, coke (Au. 6) 

r 

- 'Al - 



The equation of continuity is 

Iz ar 
r1 yr + fin g (Ve Sin e) =0 

(A1.7) 
ra`I rs 0 

From the Stoke's streamline formulation 

r ''S; N0 ate 
Ve 

r S*. n t9 D f- 

From the equation of continuity 

our +L 
aVe 

4 Cote V9 o (A1.9 
aý rrr 

Using 

Zt)6, + Zýý -2 r) 
Vr- 

+1a 
Ve Ve Co! (ALSO) 

Lr ra6 f' r- 

=2%a Vr (At. 11) 

the equations of motion become 

r-1 
W- 

ýý 
[5; 

n0 
(r V'F 

ör' ýz Tr ar rs-,, e a6 Tr- r 

V f- )]-. I- ? ! yr (A 1.12) 

a rar 
i. e. 

=p2a 
r'3 

Vor 
4- 

= 
Sine ra' l+ Fi äff' l af' / 5-: 

ne 
rIr 6r 

and 
(A1. a3) 

f2 
(, r l/ ý ä6 

2as, e aýe+ ýr -2 ýýe +v644e + Sin t3 ö6 

(Al. 14) 
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Written in terms of ý the equations of motion become 

__zö r3 
a( 

- 
C J Ö*' 

3 sin 
ýr ar ar` ýý aa 

ý4, 
+r eT (r äc rZ arýý 

. D file (Al. ýs) 
- 

(- 
- Sih0 ?ä r as ýzs; h J e 

ý- (I r3 
j% S; ne 

Z 

OQr 

Cf-1' 

ar 

I a saha a ýý1 (Aý. I6) 

V-u- s; a ýa as s; ý ej 

and 

6 I r` ("l-S*l E3 ör 

ý'- äý ý 
ý 

rZ s, he 2 cý 

za c; e ai aw 
+ s; ýa as r ýeý rs: �a 

ýý 
aý 

ý ý 
r s, n G ae s; ý aaa r3ae 

____ - 3r 
(4 i. ii) 

( 
ýZs; ha of 2 a rI arae s; ne ae 

_- + 
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S; n6 
a( - ý`-ý 

z S rA 
a8 Öe V% ß ar 

+ zýý ea'e ýý- 
ýýsýý ý8 r; sýn8 ae2 ýls; h a ar 

CA1"i8) 
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i. e. 
r2 a3ý' 

_2a Lp 
17 ae rZs; PIa 2r3 Dr 

-a a_t 
- sip, 

+. - c0f eaP+-- -1 r'-s. ne 
ýa 

elEar Brae s; H t9 / 

+ 2__ _ 31" 
_ 

ä__ z w&2o 
v-) (9 a f3Siº1e ýBZ 1'='Siº'1fý Ör 
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3z U 
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_, a3ý +Ee aLý i ý3ý 
r ýs; ýe araeý rý s; ý a aýaý r2. O ýezaý 

2 - 07 ý --2C(fQ rZs, º, e arge r1s; he ýa i s, nO GO2 
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+i a1 Ia-aa 
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Now 
i -2 r aZý 

_ 
äý 

^ý r s' a 

3 rah ('1 ý9ar 
) 

re(ýa 

(. 5., aI äff' ))(At-24) 
r45; ý8 ýa ao s; na 38 

-i a3ý1- 
('y5i y) (9 ? ftCO +_____ -- r'"S', n6 ä82f1 
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Therefore 

är ý' ýZs: tea ar as c' na at aýs; ýe aal 
(Al. 26) 

2 Z, 
Eliminating p from equations (Al. 23)and (A1.26) by setting zap 

aý0 '3r äe 
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Therefore `1 

Z ýa 
Cs; 

ýý ýe l rý rZ ae 
(iS 

g ad 
ýý 

lý aC 
(Al. -z9) 

0 (Al. 3o) 

where 

E3* - 2r2 r2- aO Sl"a ýO 
Equation (A1.31)is the governing equation for the Newtonian fluid. 

-A6- 



APPENDIX 2 

DERIVING THE BOUNDARY CONDITIONS FOR + 
NN WHEN ME 

OUTER SPHERE HAS A FINITE RADIUS 

The boundary conditions derived here first are true 

for both Newtonian and power law fluids. The stream function, , 
refers therefore to either fluid. 

Let the inner sphere have a radius a and the outer 

sphere a radius b. Using equations (4.3) and (4.14) and the no slip 

condition on the inner sphere, we obtain 

.6q, 
_= 

a`k 
_o (42"x) 

ar 4 as ra 
and 

.'1_ Const (A2.2) 

The constant is arbitrary and without loss of generality is chosen to 

be zero. Therefore 

qIf-=a =o (Az. ) 

Fran Fig. 3 and the no slip condition on the outer sphere, we obtain 

and 

VO 
r_ 6 -Us; n9 (A2-4) 

VI I(-= 
6=U cos ß (A z" 5) 

Fran equations (4.3), (4.4), (A2.4) and (A2.5), we obtain 

61P 
Z-ub2Son9C. oso (A2.6) 

and 
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.. r-6 
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Equation (A2.6) can be rewritten as 

W. ubÖs;,, te 
ate r_b 2 3D 

and 2 
ý, - L-6- S. "g+ cons 

r_ 
ý 

2 

Frcm equation (4.4), we obtain 

atp _ aLp 
ar g=o ýr r TT 

Fran equations (A2.3) and (A2.10) 

T 
Ie 

_o 
= ql 

0 _tt- 

Fran equations (A2.9) and (A2.11) we hve 

_ --L U b2 Si nZA 
`f" 

1 
r-_ _6 

2 

(Az. ) 

(A2"Q) 

(A2"la) 

(AZ. Il) 

(Az . 12 ) 

Let now refer to the stream function for the power law fluid. Let 

the Newtonian stream function be q "N- Thus 

`sIr- 
=. 

-1 U LZ s; vz 9 

a+4 -o r_a ar 

2 sin 
ar r 

a ýN aý'a o öc- 0 =o öý 0_tr- 

(A2.13) 
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Using equation (4.26) we obtain 

tN1r- 
01 

tý, 

r. ' 

a`PHN ýý 
NN I_=A 

öý 
I 

r-b e) r 
and 

60 9=0 30 
-- Tr 

ýA2. t4) 

the required boundary conditions for l/ NN when the outer sphere has a 

finite radius. 
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APPENDIX 3 

DERIVIWx THE NEWTONIAN STREAM FUNCTION 

WHEN THE OUTER SPHERE HAS A FINITE OR AN INFINITE RADIUS 

The Newtonian stream function, qjN, was obtained by 

solving equation (A1.31) under the boundary conditions for t? N 
derived 

in Appendix 2. A variable separable solution of the form 

'-PN - F(r)s; hý 0 (43. ') 

was assumed. Substituting equation (A3.1) into equation (A1.29) we 

obtain 

d2 
_2 

lr Chi Z )Fro 
dr dc r. 

Let 

d2 )F(r) 
- Fi(r) (A3.3) 

Then equation (A3.2) may be rewritten as 

dZ 
_2 irZ fz F ur o (P .I) 

By inspection, a solution is given by 

Cr 2 
(P S) 

where a and c are arbitrary constants. From equations (A3.3) and 
(A3.5) we have 

(-! ý! 
z- 

2-1 )F(r. Q 4- d ýZ (A3.6) 
cr 
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By inspection, a particular integral is given by 

Fp(r)= b"r+ 8 "r-'+ 

and the complementary function is given by 

aý *z FC (t) .r -F Cr 

where a*, b*, c* and d* are arbitrary constants. Let 

(A3"1) 

(A3.8) 

Ua3A Q 2 
U CL 

G C -z 
and 

Cl 
' 

-_UD 
Then za 

(FP jr) # Fcý (r)ý 
i. e. 

q- _ -z Uýº1 A+ B +Crlý, Dr4 }sýhZtý 
ä 

The constants A, B, Ca nd D are now derived. From equations (A2.1), 

W-3), (A2.7), (A2.12) and (A3.11) we obtain 

A+ B+C+D= o (A3. ßl) 

- A-$-842C+4-D =o (A3.13ý 

A4ßd24 CGi3-s-tds _6(? . ý4) 
and 

-p + t3 d" + zC d3+ L4- b cis =Z d3 (ALLS) 

Eliminating A, we have 

2B+3C-ß-SD -o (A3.16) 

from (A3.12) + (A3.13) 

- 
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25-+3Cd#SDd3 =3d (i 
. s-i) 

Fran (A3.14) + (A3.15) 

3C(d-ý)+SD(d3-, i)=3d (A3. t ) 

from (P3.17) - (A3.16) 

(d-i)B +(Cl 3-I)C+ (ds-. )D = CO (Al. i9) 

fron (A3.12) - (A3.14) and 

(c11-1) ß+ (d 3-1) 2C + 4-(d51i) D=2d3 (A3.2. o 

from (A3.13) - (A3.15). 

Subtracting equation (A3.19) from (A3.20) we obtain 

c{3)C+ 3( d5-j) D d3 (A3 

Therefore 

Cd3- 
3D (A3"ZZ) 

ß, i3-1 

Substituting equation (A3.22) into equation (A3.18) we obtan 

3 
ds- 3 (dI I) D+S D(d3-') = 3d A3. z3 

1 +d +d'' 

But 

cl 
3-I = (d-I)(c1t4d+%) 

and 

Transposing equation (A3.23) we obtain 

Dd d2d34 d4 _4 = 
-3d(I+d) (143. zß) 

(d`º ý 
-A12- 



which may be written as 

7- 
44 

and 

3c[ +ä 

d- º) 4-d Z+-7 
(3. a) 

C 

By back substitution into equations (A3.18), (A3.16) and (A3.12) we 

obtain 

ý_dýq+qd -+" 1. ý- d+y. d 3+ u-d ̀ ý) (ý 3" z9 } 
(d-ß)3(q-+7d+qd2 ) 

Fý _ ICI _1)3(4+7d +4d2) 

and 

2c3(1+d1-d2) A= 
(ý-) )3(4+7d+4LdZ) 

and the expression for Il'N is known. 

For an unbounded Newtonian fluid d--boo and we obtain 

A_ 1 
2 

B=-2 

C 
D=O 

(AI-30) 

(A3.3' 

(Pt3.3z) 

(n. 31) 

(b3.3U. ) 
(A3.35) 
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APPENDIX 4 

EVALUATING THE INTFRAL 12 

The integral, 12, is given by 

1T 

Z2 = 
Jn3e (05 S; nZQ de (A 4"1) 

O 

Now 

d cosy -- cl 0 (A4-- Z) 
Therefore 

ý2 = (t-cýsýo) (o9(i-ws ý) d wso (ý4.3) 

s=rº 
Let 

Then 

IZ = ýi-x2) ýogýý- x2ýd x (A4.5) 

Integrating by parts 

l09XZ) -+ I (A4", ) 
'- 3 

where 

ix 

=4 
x2(3- X) dx (ALO) 

1 X2. 3 

10, 

By repeatedly expressing the numerator of the integrand in terms of 
the denominator we find that 

- A14"- 



(Al'q) T= 20+ 3 ýLoj2-Co9x`I I 
9 

Now 

ýX _ x3) [09 (, - uZ) _? LO5 (s_xý)I -- ? t, (ý-xt)I 
Y =_, 3 _, 

3x=3 
(A 4. io) 

=3 ýý +Xýx-ý-"- 3 ýýýýý-Xýx_ý+ 3 (ojýI+X)x=-1 

+? to9(I-X)x_-ý 
3 

=±12 --1- 
3 

oi 

Therefore 

Z=- 
Zo 

+g 
Co, 

2q 3 

(Ati.. 11) 

(Att. 12) 

(A4.13) 
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NOMENCLATURE 

a the radius of the fixed inner sphere. 

: the radius of the circular pipe. 

ci the coefficient of 4i in the expansion for 

as a linear combination of shape functions. 

e: element e of the finite element mesh. 

ejJ) rate of strain tensor. 

gik the metric tensor of a fixed coordinate 

system xl. 

h(t-t') the influence function used by Coleman and 
Noll. 

kp, k1, k2 : functions of a, K and n. 

1 load vector. 

1(e) element load vector. 

n power law index of a power law fluid 

material constant of a Herschel-Bulkley 
fluid. 

p an arbitrary isotropic pressure. 

Pik : Cauchy stress tensor. 

pfik extra stress tensor. 

-Ps steady pressure gradient; 

-N1: '-- 



r radial distance. 

residual, Aü - Au. 

u the solution to a differential equation. 

Aa trial function, an approximation to u. 

U(e) : local approximation to u in element e. 

Ui(e) local approximation to u at the ith local 

node of element e. 

(u, v) : local coordinates. 

ü mean fluid velocity. 

v fluid velocity vector. 

Vi 
,k covariant derivative of vi. 

w: z component of fluid velocity vector. 

w0, w1, w2 coefficients of p °, p1 and P2 in the 

perturbation expansion of w about p=0. 

wi : weighting function. 

A: material constant for the Robertson-Stiff 
fluid. 

a differential operator. 

coefficient in the equation for %kN. 

At : coefficient in the equation for 'NN. 

A* coefficient in the final equation for I NN. 
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Al :a function of y ik, r and e 

A(t) a function arising from integration with 

respect to r. 

B coefficient in the equation for qIN. 

a material constant for the Robertson-Stiff 

fluid. 

B1 : coefficient in the equation for qNN- 

B* : coefficient in the final equation for ýkNN" 

B, :a function of y ik, r and e. 

B(t) a function arising from integration with 

respect to r. 

C: a material constant for the Robertson-Stiff 

fluid. 

a material constant for the Casson fluid. 

coefficient in the equation for 4*'N" 

Cik : the Cauchy deformation tensor. 

C' : coefficient in the equation for t NN" 

C1 :a function of Erik, r and 19 . 

Cl : an expression used in the analytical 

expression for F( 9 N). 

C(R) : the correction term applied to V(R)ORIG" 

D : coefficient in the equation for qN. 

D' coefficient in the equation for ýPNN' 

N3' 



D1 a function of ik, r and e. 

D1* : an expression used in the analytical 

expression for F( N)" 

E2 : the differential operator of the governing 

equation for a Newtonian or a power law 

fluid. 

F: a non-dimensional variable relating ca, Re 

and ü. 

FD the drag force on the inner sphere. 

F(n) the drag correction factor for a sphere 
falling slowly through an infinite power law 

fluid. 

F(n, d) : the drag correction factor for a sphere 
falling slowly through a finite power law 

fluid. ' 

F(ý'ý) a function of 

F[Cik] a functional of Cik" 

G1,...., G8 expressions used in the analytical expression 
for F(AN). 

Gi(e), Gj(e) global node numbers corresponding to local 

node numbers i and j in element (e). 

12 an integral which must be determined 
numerically. 

K consistency factor for the power law fluid. 

material constant for the Herschel-Bulkley 
fluid. 

N4 



L4NN : load vector for'4'NN" 

L wNN : load vector for NN" 

N(t ) relaxation spectrum over -c 

P11 
...., P5 expressions used in the analyical expression 

for F(9N)" 

P(T) : pressure gradient. 

P*(T) : the T dependent factor of P(T) 

PO, P1, P2 : coefficients of10 0, 
'1 

2 in the 

perturbation expansion of P about p equals 

zero. 

the mean flow rate of the fluid. 

Q* : the flow rate non-dimensionalised with 
respect to the mean flow rate. 

QNUM numerical value of Q* before correction. 

Qp, Q1, Q2 coefficients of p°, p1 and .p2 in the 
perturbation expansion of Q about p equals 
zero. 

R: non-dimensional variable. 

Re Reynolds number. 

S stiffness matrix. 

S(e) element stiffness matrix. 

Sij(e) i, jth member of S(e). 
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S1, ...., S6 expressions used in the analytical expression 
for F(4' ). 

T non-dimensional variable. 

Tip, T1 , TiJ : covariant, contravariant and mixed tensors. 

U instantaneous velocity of the outer sphere. 

(U(e), V(e)) : global coordinates of a point in element (e). 

(U1(e), Vi(e)) : global coordinates of the ith local node of 

elemet (e). 

V non-dimensional variable. 

V(R)ORIG numerical value of V(R) before correction. 

V(R)NE numerical value of V(R) after correction. 

VrNN the non-Newtonian radial velocity component. 

Vr, V9 , VO components of the fluid velocity vector in 

spherial polar coordinates. 

Vr, V0, Vz components of the fluid velocity vector in 

cylindrical polar coordinates. 

V0, V1, V2 the coefficients of, O, 
p1 and P2 in the 

perturbation expansion for V about p equals 
zero. 

X variable of transformation. 

Z: variable of transformation. 
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0< :a function of the power law index of the 

power law fluid. 

material constant for an E llis fluid. 

oC ý, of 5 : material constants for the third order 
Rivlin-Ericksen fluids. 

D 2, p( 3 material constants for the third order 
Rivlin-Ericksen fluid. 

the second and third deriv atives of 
ýNN 

with 
respect to r when r-a. 
material constant for the third order Rivlin- 
Ericksen fluid. 

2: material constant for the third order Rivlin- 
Ericksen fluid. 

second derivative of 4JNN with respect to r 
when r=a. 

3 third derivative of 
ýNN 

with respect to r 
when r=a. 

fluid shear rate. 

Sik unit tensor. 

ratio between the pulsed flow rate amplitude 
and the steady flow rate amplitude. 

the fluid viscosity. 

° 
Newtonian viscosity. 

material constant for the Ellis fluid. 
material constant for the Oldroyd four 

constant fluid. 

a constant in the assumed linear relation of 
C(R) with R. 
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A2 material constants for the Oldroyd four 

constant fluid. 

o viscosity at infinite shear rate for a 
Bingham fluid. 

material constant for the Oldroyd four 

constant fluid. 

TVik : total stress tensor. 

A fluid density. 

Z the relaxation time. 

the magnitude of the extra stress tensor. 

Zig the extra stress tensor. 

'Co : material constant for a Herschel-Bulkley 
fluid. 

yield stress for a Bingham fluid. 

t112 
material constant for an Ellis fluid. 

a shape (basis) function. 

04(e) local shape functions for element (e). 

q'I 
stream function. 

N: Newtonian stream function. 

NN non-Newtonian contribution to the stream 
function. 

NN coloumn vector of + NN values at node points 
of finite element mesh. 
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: the frequency of the imposed pulsatile 

pressure gradient (rads s'1). 

: equal to E2 I. 

N equal to E2 Y N* 

ANN equal to E2 '% NN " 

ANN column vector of values of 'NN at the nodes 

of the finite element mesh. 

r the boundary of JL 

J: a physical region in the (r, 6) plane. 

D/Dt : material derivative. 

'04 t: a derivative independent of absolute motion 
in space. 

- 
4/ bz : pressure gradient in tube. 

ý+ NNI Ön: normal derivative of NN" 

ý ANN/ ön: normal derivative of C"NN" 

I, II, III : the invariants of the rate of strain tensor. 

<. >: average value taken over one cycle. 

<r, wi> : the inner product of r with wi. 
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FIGURE 1 

THIS FIGURE SHOWS THE RELATIONSHIP BETWEEN SHEAR 

STRESS AND SHEAR RATE FOR A COMMERCIAL DRILLING 

FLUID. 

THE SAME RELATIONSHIP IS ALSO SHOWN FOR 
(i) THE BINGHAM FLUID 

AND (ii) THE POWER LAW FLUID 

CONSTRUCTED TO REPRESENT THE DRILLING FLUID. 
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FIGURES 2(a) - 2(d) 

FIG. 2(a): THE LOCAL COORDINATE SYSTEM FOR A 

TYPICAL FINITE ELEMENT. 

FIG. 2(b): THE LOCAL COORDINATES OF THE 

VERTICES OF A TYPICAL FINITE 

ELEMENT AND OF ONE OF ITS INTERIOR 
POINTS. 

FIG. 2(c): A TYPICAL FINITE ELEMENT REFERRED 

TO A RECTILINEAR COORDINATE SYSTEM 

WITH EQUAL SCALES. 

FIG. 2(d): A SIMPLE TWO ELEMENT MESH. 
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FIGURE 3 

THIS FIGURE SHOWS A SCHEMATIC DIAGRAM FOR THE FLOW 

SITUATION WHEN THE OUTER SPHERE HAS A FINITE RADIUS. 
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FIGURE 4 

THIS FIGURE SHOWS THE ORIENTATION OF THE COMPONENTS 

OF THE TOTAL STRESS TENSOR AT THE SURFACE OF THE 
INNER SPHERE. 
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FIGURE 5 

THIS FIGURE SHOWS THE DOMAIN IN THE (r, 9) PLANE, 

OVER WHICH THE FINITE ELEMENT MESH IS CONSTRUCTED, 

WHEN THE OUTER SPHERE HAS AN 'INFINITE' RADIUS. 



MOVING 
SPHERE 

REGION OF FINITE ELEMENT MESH 

THE FLUID FILLS THE VOLUME 
BETWEEN THE FIXED AND THE 
MOVING SPHERE 



FIGURE 6 

THIS FIGURE SHOWS A FINITE ELEMENT MESH IN THE (r, 8) 

DOMAIN WHEN THE OUTER SPHERE HAS AN 'INFINITE' 

RADIUS. THE BROKEN LINE SHOWS THE POSITION OF THE 

MATCHING SURFACE THE RADIUS OF WHICH IS 10 OR 20 

TIMES THAT OF THE INNER SPHERE. 
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FIGURE 7 

THIS FIGURE SHOWS THE ITERATIVE PROCEDURE USED TO 

CALCULATE AND PRINT Fl(n) WHEN THE FLUID IS SLIGHTLY 

POWER LAW AND THE OUTER SPHERE HAS AN 'INFINITE' 

RADIUS. 



INPUT FINITE 
ELEMENT MESH 
DATA 

CONSTRUCT THE 
STIFFNESS MATRIX S 

CONSTRUCT THE 
LOAD VECTOR 2f 

SET 4'=`}'N 
C=ýN 

ý15 

APPLY THE BOUNDARY] 
CONDITIONS FOR CJ.,,, 

GAUSS-SEIDEL 
ITERATIONS 

CONSTRUCT THE 
LOAD VECTOR , e, 

APPLY THE BOUNDARY 
CONDITIONS FOR qNN 

GAUSS-SEIDEL 
ITERATIONS 

UPDATE p. 

CALCULATE THE 
INTEGRAL I 

CALCULATE AND 
PRINT F' (n) 

END 



FIGURE 8 

THIS FIGURE SHOWS THE RELATIONSHIP BETWEEN F(n, d) AND 

n FOR A SLIGHTLY POWER LAW FLUID WHEN d TAKES THE 

VALUES 2,10,20,40 AND 100. 

TWO SETS OF RESULTS ARE PRESENTED: 

(i) THE FINITE ELEMENT RESULTS. 

(ii) THE RESULTS OF LOCKYER, DAVIES AND JONES 

OBTAINED USING FINITE DIFFERENCE METHODS. 
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FIGURE 9 

THIS FIGURE SHOWS THE RELATIONSHIP BETWEEN Fl(n) AND 

THE NUMBER OF RADIAL ELEMENTS USED IN THE FINITE 

ELEMENT MESH. THE MATCHING SURFACE USED HAD A RADIUS 

OF EITHER 10 OR 20 TIMES THAT OF THE INNER SPHERE. 
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FIGURE 10 

THIS FIGURE SHOWS THE RELATIONSHIP BETWEEN F(n) AND n 
FOR VARIOUS NUMBERS OF RADIAL ELEMENTS USED IN THE 

FINITE ELEMENT MESH. THE MATCHING SURFACE USED HAD A 

RADIUS OF EITHER 10 OR 20 TIMES THAT OF THE INNER 

SPHERE. 
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FIGURE 11 

THIS FIGURE SHOWS A COMPARISON OF THE RESULTS 

OBTAINED FOR THE DRAG CORRECTION FACTOR, F(n), WITH 

THE RESULTS OF OTHER WORKERS. 

CURVE 

1,3 J. C. SLATTERY48 

2 Y. TOMITA49 

4,6 M. L. WASSERMAN, J. C. SLATTERY25 

4,5 Y. I. CHO AND J. P. HARTNETT28 

7 A. FARAROURI, R. C. KINTNER50 

8 M. A. LOCKYER, J. M. DAVIES AND T. E. R. JONES37 
9 G. U. DAZHI AND R. J. TANNER31 

10 M. J. CROCHET, A. R. DAVIES AND K. WALTERS30 
11 FINITE ELEMENT RESULT (OUTER SPHERE 

'INFINITE') 
12 FINITE ELEMENT RESULT (d = 100) 
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FIGURE 12 

THIS FIGURE SHOWS A SCHEMATIC DIAGRAM OF THE 

APPARATUS OF CHAKRABATI AND DAVIES45 IN WHICH THE 

MEAN FLOW RATE AND THE PULSATILE FLOW RATE ARE 

CONTROLLED AND THE PRESSURE GRADIENT IS MEASURED. 
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FIGURES 13 - 16 

THESE FIGURES SHOW THE VARIATION OF THE NORMALISED 

MEAN PRESSURE GRADIENT WITH F WITH N IN THE RANGE 0.3 

TO 1.0 FOR GIVEN EPSILON. THE VALUE OF EPSILON IS 

0.5,1,5 OR 10. THE CONTINUOUS LINES REFER TO 

NUMERICAL DATA, THE BROKEN LINES TO. RESULTS OBTAINED 

FROM PERTUBATION THEORY AND THE DOTTED LINES TO THE 

RESULTS WHEN FLUID INERTIA IS ZERO. 
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FIGURES 17 - 20 

THESE FIGURES SHOW THE VARIATION OF THE PHASE ANGLE 

WITH F WITH N IN THE RANGE 0.3 TO 1.0 FOR GIVEN 

EPSILON. THE VALUE OF EPSILON IS 0.5,1,5 OR 10. 
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FIGURES 21-24 

THESE FIGURES SHOW THE VARIATION OF THE FUNDAMENTAL 

PRESSURE AMPLITUDE WITH F WITH N IN THE RANGE 0.3 TO 

1.0 FOR GIVEN EPSILON. THE VALUE FOR EPSILON IS 0.5, 

1,5 OR 10. THE SLOPE OF THE GRAPH TENDS TO 1 FOR 

HIGH VALUES OF F FOR ALL EPSILON. 



O 
C 

Lt) 

O 

Z 
0 
J 
cn 
a 
w 

0 

oat- N 
11 
1 ooo 

z 

LL 

0 

.- 

C3 o 0or, ä 

N 

W 

a 
0 
H 
L. 

3anli-idwV 9anSS3dd 
-iVIN3wVQNnd 



C) 
I- 

0 
Z 
O 
N 
a 
w 

Cl 
0 

In 
6 

oor d6 
z 

C3 cS C) 

LL 

0 

N 
(V 

W 

L4 

3anlrldwV 38nss3dd 
-1ViN3INVC1Nn=i 



D 

LL 

m 
N 
W 

(. 7 

V- 

0 

-1b. LN3wVGNni 
3onli-ldV4V 38nss3dd 



O 

LL 

N 

M 
C:, 
H 
Ltd 

.. 

0 

3an. ll-ldwV 3bnss38d 
1V. LN MVGNnj 

I- r- 



FIGURE 25 

THIS FIGURE SHOWS THE VARIATION OF THE NORMALISED 
MEAN PRESSURE GRADIENT WITH EPSILON WHEN N=0.5 AND F 
IN THE RANGE 5 TO 100. 
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TABLES 1-3 

TABLE 1 TABULATION OF F'(n, d) AGAINST d (REFER FIGURE 
8). 

TABLE 2 TABULATION OF NO AGAINST NUMBER OF RADIAL 
ELEMENTS IN THE FINITE ELEMENT MESH. THE 
RADIUS OF THE MATCHING SURFACE IS 10 TIMES 
THAT OF THE FIXED SPHERE. 

TABLE 3 AS FOR TABLE 2, EXCEPT THAT THE RADIUS OF THE 
MATCHING SURFACE IS 20 TIMES THAT OF THE FIXED 
SPHERE. FOR TABLES 2 AND 3 REFER FIGURE 9. 



TABLE 1 

(MESH PARAMETERS 100120 

VALUE OF d F' (n d 

2 
10 
20 
40 
60 

100 

1.76936 

-0.39778 
-0.74215 

-0.96722 
-1.06053 
-1.14473 

TABLE 2 

(MATCH RADIUS OF 10) 

MESH* PARAMETERS F' (n 

10*20 -0.71128 
20*20 -1.09128 
40*20 -1.33409 
50*20 -1.3876 
70*20 -1.45035 
100*20 -1.49911 

TABLE 3 

(MATCH RADIUS OF 20) 

MESH PARAMETERS FI(n 

10.20 -0.58647 
20.20 -0.97847 
40'20 -1.24522 
50'20 -1.30509 
70*20 -1.37626 
100*20 -1.43143 
140.20 -1.46893 



TABLES 4-7 

TABULATIONS OF THE NUMERICAL VALUE OF THE NORMALISED 
MEAN PRESSURE GRADIENT AGAINST F WITH N IN THE RANGE 0.3 

TO 1.0 FOR GIVEN EPSILON. FOR TABLES 4-7 THE VALUE OF 
EPSILON IS 0.5,1,5 AND 10 RESPECTIVELY. REFER FIGURES 
13-16. 



NORMALISED MEAN PRESSURE GRADIENTS 

TABLE 4 (EPSILON=0.5) 

F 0.5 1 5 10 50 100 
N 

1.0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 
0.9 0.99401 0.99396 0.99269 0.99017 0.98076 0.98166 
0.7 0.98567 0.98553 0.98178 0.97472 0.93755 0.94064 
0.5 0.98220 0.98197 0.97611 0.96557 0.87644 0.89554 
0.3 " 0.98514 0.97632 0.96442 0.77136 0.80799 

TABLE 5 (EPSILON=1.0) 

F 0.5 1 5 10 50 100 
N 

1.0 1.0000ö 1.00001 1.0000 1.00000 1.00000 1.0^000 
0.9 0.97072 0.97069 0.96321 0.95611 0.94944 0.95459 
0.7 0.92544 0.92462 0.89857 0.87487 0.85709 0.87561 
0.5 * 0.89767 0.84746 0.80095 0.78187 0.81415 
0.3 " « 0. E1482 0.73250 0.74078 0.77536 

TABLE 
_6 _(EPSILON=5.0) 

F 0.5 1 5 10 50 100 
N 

1.0 1.00000 1.00000 0.99999 0.99999 1.00000 0.99998 
0.9 0.82467 0.82426 0.81839 0.81667 0.84228 0.86467 
0.7 0.55725 0.55552 0.53988 0.53994 0.60622 0.66333 
0.5 0.37237 0.36810 0.34611 0.35069 0.43482 0.49442 
0.3 0.24461 0.23556 0.21211 0.22543 0.28344 0.31057 

TABLE 7 (EPSILON=10.0) 

F 0.5 1 5 10 50 100 
N 

1.0 1.00000 1.00000 0.99999 1.00000 0.99999" 0.99998 
0.9 0.76938 0.76895 0.76322 0.76210 0.79214 0.82056 
0.7 0.45218 0.45010 0.43745 0.44083 0.51236 0.57189 
0.5 0.26191 0.25671 0.24481 0.25444 0.33128 0.37780 
0.3 0.14712 0.13725 0.13544 0.14699. 0.18570 0.20046 



TABLES 8-11 

TABULATIONS OF THE THEORETICAL MEAN PRESSURE GRADIENTS 

AGAINST F FOR N IN THE RANGE 0.3 TO 1.0 FOR GIVEN 

EPSILON. FOR TABLES 8-11 THE VALUES OF EPSILON ARE 0.5, 

1,5 AND 10 RESPECTIVELY. THE MEAN PRESSURE GRADIENTS 

HAVE BEEN DERIVED USING THE PERTURBATION ANALYSIS. 

REFER FIGURES 13-16. 



NORMALISED MEAN PRESSURE GRADIEUTS 
DERIVED USING THE PERTURBATION ANALYSIS 

TABLE 8__(TPSILON=0.5) 

F 1 3 6 8 10 15 
IT 
1.0 1.0 1.0 1.0 1.0 1.0 1.0 
0.9 0.9941 0.9936 0.9921 0.9904 0.9884 0.9811 
0.7 0.9860 0.9846 0.9799 0.9750 0.9687 0.9469 
0.5 0.9830 0.9808 0.9732 0.9654 0.9553 0.9201 
0.3 0.9855 0.9828 0.9736 0.9642 0.9520 0.9097 

TABLE 9 (EPSILON=1.0) 
F 1 3 6 8 10 15 

N 
1.0 1.0 1.0 1.0 1.0 1.0 1.0 
0.9 0.9709 0.9678 0.9574 0.9466 0.9328 0.8846 
0.7 0.9252 0.9178 0.8927 0.8666 0.8331 0.7169 
0.5 0.8990 0.8885 0.8530 0.8162 0.7688 0.6045 
0.3 0.8994 0.8878 0.8485 0.8078 0.7554 0.5735 

TABLE 10 (EPSILON=5.0) 

F 1 3 6 8 10 15 r 
1.0 1.0 1.0 1.0 1.0 1.0 1.0 
0.9 0.8244 0.8206 0.8078 0.7944 0.7773' 0.7178 
0.7 0.5564 0.5419 0.4931 0.4425 0.3775 0.1515 
0.5 0.3707 0.3410 0.2408 0.1368 0.0032 
0.3 0.2429 0.1968 0.0412 

TABLE 11 (EPSILON=10.0) 

F 1 2 3 4 68 
N 
1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 0.7688 0.7672 0.7647 0.7611 0.7508 0.7364 0.7 0.4495 0.4428 0.4316 0.4160 0.3713 0.3087 0.5 0.2559 0.2400 0.2137 0.1767 0.0723 0.3 0.1372 0.1090 0.0619 



TABULATION OF THE THEORETICAL NORMALISED MEAN PRESSURE 

GRADIENTS (WHEN FLUID INERTIA IS IGNORED) WHEN N IS IN 

THE RANGE 0.3 TO 1.0 AND EPSILON HAS THE VALUES 0.5,1, 

5,10,50 AND 100. 



THEORETICAL NORMALISED MEAN PRESSURE GRADIENTS 
(FLUID INERTIA IS IGNORED) 

TABLE 12 

EPS 0.5 1 5 
N 
0.3 0.9858 0.9002 0.2537 
0.4 0.9839 0.8963 0.3090 
0.5 0.9833 0.9002 0.3768 
0.6 0.9841 0.9104 0.4593 
0.7 0.9862 0.9261 0.5592 
0.8 0.9895 0.9465 0.6798 
0.9 0.9942 0.9713 0.8251 
1.0 1.0000 1.0000 1.0000 

10 

0.1536 
0.2020 
0.2652 
0.3472 
0.4537 
0.5915 
0.7698 
1.0000 



SABLES 13-16 

TABULATION OF THE FUNDAMENTAL PHASE ANGLES FOR THE 
NORMALISED PRESSURE GRADIENTS AGAINST F WITH N IN THE 

RANGE 0.3 TO 1.0 FOR GIVEN EPSILON. FOR TABLES 13-16 

THE VALUES OF EPSILON ARE 0.5,1,5, AND 10 

RESPECTIVELY. REFER FIGURES 17-20. 



FUNDAMEIlTAL PHASE ANGLES FOR THE 
NORMALISED PRESSURE GRADIENTS. 

TABLE 13 (EPSILON=0. 

F 0.5 1 5 10 50 100 
N 

1.0 14.555 27.256 64.964 73.240 82.686 84.817 
0.9 15.888 29.432 66.578 74.235 83.108 85.146 
0.7 19.471 34.959 70 034 76.430 84.023 85.878 
0.5 25.244 42.893 73.984 76.729 84.980 86.731 
0.3 " 55.070 78.798 82.207 85.663 87.517 

TABLE 14 (EPSILON=1.0) 

F 0.5 1 5 10 50 100 
N 

1.0 14.554 27.255 64.973 73.253 82.686 84.817 
0.9 15.577 28.987 66.233 74.033 83.120 85.223 
0.7 18.169 33.056 68.784 75.654 84.069 86.093 
0.5 * 38.514 71.547 77.486 85.175 87.037 
0.3 * * 75.018 79.840 86.527 88.043 

TABLE 15 (EPSILON=5.0)_ 

F 0.5 1 5 10 50 1n0 
N 

1.0 14.555 27.256 64.964 73.240 82.686 84.817 
0.9 16.553 30.492 67.320 74.877 83.611 85.607 
0.7 21.126 37.361 71.581 77.976 85.422 87.140 
0.5 26.331 44.374 75.470 80.901 87.088 88.377 
0.3 31.750 51.139 79.126 83.574 88.358 89.150 

TABLE 16 (EPSILON=10.0) 

F 0.5 1 5 10 50 100 
N 

1.0 14.555 27.256 64.964 -73.253 82.686 84.812 
0.9 17.615 32.138 68.244 75.435 83.839 85.776 
0.7 25.230 42.788 73.797 79.351 85.994 87.553 
0.5 34.613 53.408 78.478 82.758 87.803 88.812 
0.3 44.879 63.042 82.427 85.592 88.953 89.466 



TABLES 17-20 

TABULATION OF THE FUNDAMENTAL AMPLITUDES OF THE 
NORMALISED PRESSURE GRADIENTS WITH N IN THE RANGE 0.3 TO 
1.0 FOR GIVEN EPSILON. FOR TABLES 17-20 THE VALUES OF 
EPSILON ARE 0.5,1,5 AND 10 RESPECTIVELY. REFER 
FIGURES 21-24. 



FUNDAMENTAL AMPLITUDES FOR THE 
NORMALISED PRESSURE GRADIENTS. 

TABLE 17 (EPSILON=0.5) 

F 0.5 1 5 10 50 100 
N 

1.0 0.51774 0.56745 1.38809 2.50434 10.81144 20.82173 
0.9 0.47073 0.52375 1.35566 2.46539 10.74772 20.71905 
0.7 0.37723 0.43819 1.28780 2.38013 '10.61056 20.50891 
0.5 0.28454 0.35592 1.21336 2.28110 10.45428 20.27707 
0.3 " 0.27920 1.12640 2.15994 10.28515 20.01692 

TABLE 18 (EPSILON=1.0 

F 0.5 1 5 10 50 100 
N 

1.0 1.03547 1.13491 2.77587 5.00853 21.62289 41.64345 
0.9 0.95753 1.06244 2.72651 4.94801 21.42151 41.29931 
0.7 0.80463 0.92106 2.62549 4.82373 21.02242 40.66699 
0.5 * 0.77856 2.51421 4.69301 20.63118 40.13605 
0.3 * " 2.38546 4.55598 20.24588 39.72621 

TABLE 19 (EPSILON=5.0) 

F 0.5 1 5 10 50 100 
N 

1.0 5.17735 5.67447 13.8809 25.0434 108.1144 208.2172 
0.9 4.52314 5.07056 13.3857 24.3117 106.0478 205.0170 
C. 7 3.49215 4.14046 12.4938 22.9658 102.4726 200.1439 
0.5 2.74466 3.48359 11.7022 21.7795 99.9814 197.6141 
0.3 2.19497 3.00483 11.0069 20.7643 98.7472 196.6952 

TABLE 20 (EPSILON=10.0) 

F 0.5 1 5 10 50 100 
N 

1.0 10.3547 11.3489 27.7619 50.0831 216.2289 416.4166 
0.9 8.51607 9.66984 26.4788 48.2292 211.2660 408.8970 
0.7 5.90482 7.38512 24.2991 44.9993 203.2164 398.4077 
0.5 4.29174 6.04360 22.5082 42.3934 198.5377 394.1187 0.3 3.30455 5.22265 21.07021 40.5053 196.8544 . 392.9862 



TABLE 21 

TABULATION OF NORMALISED MEAN PRESSURE GRADIENT WITH 
EPSILON WITH F IN THE RANGE 5 TO 100 AND N EQUAL TO 0.5. 
REFER FIGURE 25. 



NORMALISED MAY PRESSURE GRADIENTS 

EPS 0.1 0.5 
F 
5 . 99808 . 97611 
10 . 99776 . 96557 
50 . 99515 . 87644 
100 . 99237 . 89554 

TABLE 21 (AF-0.5) 

1 

. 84746 

. 80095 

. 78187 

. 81415 

2 

. 55845 

. 54965 

. 61896 

. 67739 

3457 10 

. 45035 . 38794 . 34611 . 29200 . 24481 

. 44856 . 38994 . 35069 . 29946 . 25444 

. 53056 . 47442 . 43482 . 38116 . 33128 

. 59396 . 53662 . 49442 . 43435 . 37780 



PROGRAM 1 

THIS PROGRAM GENERATES THE NODAL POINTS AND THE 

GEOMETRICAL DATA FOR THE FINITE ELEMENT MESH. THE FILE 

FOLLOWING THE PROGRAM REPRESENTS A TYPICAL OUTPUT FILE 
CONTAINING THIS DATA. 



C 
C 

C THIS PROGRAM GENERATES 
C THE NODAL POINTS AND GCO'. 1ETR ICAL DATA 
C FOR THE FINITE ELEMENT MESH 
C 
C 

INTEGER I, J, TOTNOD, V1, N, h1, NX, NY, ISTAR, IFINI, 
WI, W2, V13, W4, W5, NELX, DOFNOD, D IMEN, ELTYP, NEL, NODEL 

DOUBLE PRECISION L, V2, V3, D, NXD, NYD 
DIMENSION V1(4000), V2(4000), V3(4000), 

" W1(4000), W2(6400), %V3(6400), %V4(6400), W5(6400) 
COAti\1oN/A/W1, W2 
Ccn. JN/R/W3, W4 
ca, 4AoN/ C /W5 
CChü\1ON/ D/V1 
CQrtMON/E/V2 
COMMON/F/V3 
DATA NX/101/, NY/21/, TOTNOD/2121/, DIMEN/2/, 

" NEL/2000/, DOFNOD/1/, ELTW/1/, NODEL/4/, NOUT/6/ 
DO 10 I=1, TOTNOD 
V1(I)=I 

10 CONTINUE 
C 

N=1 
L=O. ODO 
DO 20 J =1 NX 
ISTAR=N 
IFINI=N+NY-1 
DO 30 I=ISTAR, IFINI 
V2(I)=L 

30 CONTINUE 
N=N+NY 
NXD=NX*1. ODO 

C L=L+0.6931472/(NXD-1) 
C L=L+2.9957323/(NXD-1) 
C L=L+3.401 1974/ (NXD-1 ) 
C L=L+3.6888795/(NXD-1) 

L=L+2.30258/(NXD-1) 
C L=L+4.09434/(NXD-1) 

20 CONTINUE 
C 

N=1 
DO 40 I=1, NX 
. =0 
STAR=N 

JFIN I=N+NY-1 
DO 50 J=JSTAR, JFINI 
N YD=N Y* 1 .O DO 
D=-2 *M/ (NYD-1)+1 
V3 (j ) =D 
M=M+1 

50 CONTINl. C 
N=N+NY 

40 CONTINUE 
WRITE (NO UT, 8 010) TOTNOD, DI AMEN 



DO 60 1=1, TOTNOD 
AYR ITE (NOUT, 8020) V1 (I) , V2( 1), V3( 1) 

60 CONTINUE 

C 
DO 70 1=1, NEL 
171 (I)=I 

70 CONTINUE 
C 

NELX=NX-1 
M=1 
N=O 
DO 80 I=1, NELX 
JSTAR=N+1 
JFINI=N+NY-1 
DO 90 J =J STAR, JF IN I 
W2 (j )=M 

M=M+1 
N=N+1 

90 CONTINUE 
hl, =, M+1 

80 CONTINUE 
C 

DO 100 I=1, NEL 
W3( I)=1W2( I)+1 
W4(1)=W3(I)+NY 
W5( I)=W2( I)+NY 

100 CONTINUE 
C 

WRITE(NOUT, 8010)ELTW, NEL, NODEL 
DO 110 I=1, NEL 
WR IT E(NOIIT, 8010)W1 (1), V/2( I ), 113(I), %V4(I), 1ºf5(1) 

110 CONTINUE 
C 

VRITE (NOUT, 8 010) DOFNOD 
C 

STOP 
8010 FOR7AAT(1615) 
8020 FORMAT(15,6D12.5) 

END 



TILE DATA FILE FOR 
A FINITE ELEMENT MESH 

TOTAL NUMBER OF NODES IN FE MESH 
DIMENSIONAL 1TY OF PROBLEM 

16 2 

NODAL GECNIETRY 

-------------- 
GLOBAL NODE NU\7BER AND 

COORDINATES OF NODE 
1 0.000000+00 0.10000D+01 
2 0.00000D+00 0.33333D+00 
3 0.000000+00-0.33333D+00 
4 0.00000D+00-0.100000+01 
5 0.76753D+00 0.10000D+01 
6 0.76753D+00 0.333330+00 
7 0.76753D+00-0.33333D+00 
8 0.76753D+00-0.10000D+01 
9 0.15351D+01 0.10000D+01 

10 0.15351D+01 0.33333D+00 
11 0.15351D+01-0.33333D+00 
12 0.15351D+01-0.10000D+01 
13 0.23026D+01 0.10000D+01 
14 0.23026D+01 0.33333D+00 
15 0.23026D+01-0.33333D+00 
16 0.23026D+01-0.10000D+01 

ELEMENT GE OME TR Y 
--------------- 

ELEMENT TYPE, NLA*BER OF ELEMENTS 
AND NUMBER OF NODES PER ELEMENT 

194 

NIMIER OF ELEMENT AND TIE GLOI3AL 
N (Mt3E RI NG CF IT'S VERTEX NODES 

11 2 6 5 
22 3 7 6 
33 4 8 7 
45 6 10 9 
56 7 11 10 
ti 7 8 12 11 
79 10 14 13 
8 10 11 15 14 
9 11 12 16 15 

DEGREES OF 
FREEDOM PER NODE 

1 



PROGRAM 2 

THIS PROGRAM CALCULATES THE DRAG CORRECTION FACTOR FOR A 
SPHERE FALLING THROUGH AN INFINITE EXPANSE OF SLIGHTLY 
POWER LAW FLUID. 



C 
C 
C 
C THIS PROGRAM CALCULATES THE DRAG CORRECTION 
C FACTOR FOR A SPHERE FALLING SLOWLY THROUGH 
C AN INFINITE EXPANSE OF POWER LAW FLUID. 
C 
C 

INTEGER*4 BDCND, BTYPES, DIF, DIMEN, DOFEL, DIAG, ILO, ISTIF, 
* DOFNOD, ELNUl, ELTOP, ELTYP, IIBAND, I, IABSS, CI, 
* ICOORD, ILOAD, ICNT, LL, IPFINI, SP, TCI, 
* IDTPD, IELK, IELTOP, IFUN, IGDER, IPTR, IPSTAR, 
* IGEOM, IJAC, IJACIN, ILDER, INF, IP, 
* IQLAD, ISTEER, (TEST, IWl, GHT, REG, NN, KK1, KSP, SN, 
*J, J A13SS, J COORD, LAST, I RN, I LOCAL, 11, POD, KOUNT, 
* JDTPD, JELK, JELTOP, JGDER, JGEU, ',, JJAC, 
* JJACIN, JLDER, JNF, JP, K, NELE, I LV, I LEC, 
* NF, NIN, NODE L, NODN MI. , NOUT, N)P, 
* STEER, TOTDOF, TOTELS, TOTNOD, 000, COWTI, COWT2, COWT3, 
* SCD1 , tCD2, IMID, JMID, 
* IF, JF, COWT, ILN, IBEV, IRIi, 
* ICP, ICCP, INTRA, INTRB ' 

DOUBLE PRECISION ABSS, DEN MA, 5U19, STIF, RRQ, SINARG, VNI, N, 
* COORD, DET, DTP D, E U: , ETA, F LN, GDER, DEN011B, TY, 
* GDERT, GEOM, JAC, JACIN, LDER, P, PD, QUOT, DIV, 
* SCALE, WGHHT, X, XI, XX, Y, YY, LOAD, LEC, LV, LO, 
* Y, "GA, FI1 , 

N2, MID, F, R, RQ, TQ, tv. GDER(2,4) 
, 

IW, SLOPE, ARGLOG, 
* FMlD, PI, LN, BEV, RH, U, Q1rtVAA, S LOP , FN, RSTAR, GS TAR, RMARG, 
* ON. 1/AB, S(5), GU, TTT, RRR, G1, G2, G3, G4, G5, G6, G7, G8, IPOINT, 
* S1, S2, S3, S4, S5, S6, A1, B1, P1, P2, P3, P4, P5, P6, BETAP, JTC4, 
* C1 , DI, COEFF, XE(3000,4,4) 

, 
YE(4,4) 

, ALPIIA, 
* DGU(40) , 

DANEVV(40) 
, 
DRGU(40) 

, DRANEW(40) LMULT1 LMULT2 
LOGICAL FIRST 
DIMENSION ABSS(2,9), ILOCAL(9), 

* DTPD(4,4), 
* ELK(4,4), FLN(4), CDER(2,4), GDERT(4,2), GEM I(4,2), 
* JAC(2,2), JACIN(2,2), LDER(2,4), P(2,2), PD(2,4), 
* STEER(4), VGHT(9), h7ID(2,2), F(4,2), R(2), LN(4), LV(4), 
* FI4ýD(4,4), BEV(4), LEC(4), LO(6561) 

C PROBELM SIZE DEPENDENT ARRAYS 
DIMENSIW LOAD(6561), GU(6561), COORD(6561,2), 

* ELTOP(6561,6), NF(6561,1), COEFF(3000,9), 
* ANE4V(6561), RH(6561), RSTAR(6561), GSTAR(6561), 
* OuVAA(81), CMVAB(81), INTRA(81), 
* INTRB(81), 

* IW(81), BCD1(5,81), 1CD2(5,81), 
* BDCND(2,2,81), REG(6562), IRN(65620), DIAG(6561), 
* STIF(65620) 

CQ%'J%IDN/A/ E LTOP 
CC('AMON/ß/DIAG 
COAVON/C/COORD 
CCn' I ON /D/ RH, ANEW, NF 

.. G-1T N/E/AISS, BCD1 , ECD2, BDCND, BEV, DTPD, 
* ELK, F, FM0, FIJN, GDER, 
* GDERT, GEQM, GU, INTRA, INTRB, IW 
CCnMON/F/JAC, JACIN, LD R, LN, LOAD, MGDE1:, IllID, 

* MIVAA, cAIVAB, P, PD, R, S, STEER, 



* Wl, W2, WGHT, REG, IRN 
Ca'MON/G/STIF, COEFF 
COMMON IH/ GS TAR, RSTAR 
COMINON/ I /XE 

COMMON /J/ YE 
DATA IA[SS /2/, ISTIF/65620/, 

* IDTPD /4/, IELK /4/, 
* IFLN /4/, IGDER /2/, IGEO`Vi /4/, IJAC /2/, 
* IJACIN /2/, ILDER /2/, IP /2/, ISTEER /4/, 
* IWGHT /9/, JABSS /9/, JCOORD /2/, ILV/4/, ILEC/4/, 
* JDTPD /4/, J ELK /4/, JGDER /4/, J GEG1A /2/, 
* JJAC /2/, J JACIN /2/, J LDER /4/, J NF /1/, JP /21, 
* SCALE /1. OD+25/, ILOAD/6561/, 
* IMID /2/, JhIID/21, IF/4/, JF/2/, ILO/6561/ 

C PROBELP0 SIZE DEPENDENT DATA STATEMENTS 
DATA ICOORD/6561/, IELTOP/6561/, INF/6561/, 

* JELTOP/6/, LMULT1/0.5/, LMULT2/0.5/, 
* IRH/6561/, IBEV/4/, ILN/4/, 
* RR/10.0/, BETA/-1.5/, COLNT/21/, 
* ALPHA/0.0/ 

DATA NIN /5/, NOUT /6/ 
C WGA(XX, YY) = 1.0*((DSIN(YY)**2)/34.0)*(90*XX**2-372/XX) 

11v'GA(XX, YY)=-0.5*(-2*13E3/XX+10*DD*XX**2) *DSIN(YY) **2 
H1(XX, YY)=0.0000D0 

C 112(XX, YY)=-(DSIN(YY)**2*2.0) 
H2(XX, YY)= -(DSIN(YY)**2*0.5*RR**2) 

C t13(XX, YY)=-0.5*(BETA*RR+RR**2)*DSIN(YY)**2 
l13 (XX, YY)=(3* (ALPtiA/RR+RR*BETA+2*RR*ALOG(RR)) /4.0) *DS IN(YY) **2 

C H3(XX, YY)=-(DSIN(YY)**2*RR**2)/2.0 
C H3(XX, YY)=0.0000 
C SET ITEST FOR FULL CHECKING 

ITEST =0 
P 1=4. OD0*DATAN(1 ODO) 

C 
AA=2*RR**3*(1+RR+RR**2)/(RR-1)**3/ 

* (4+7*RR+4*RR**2) 
1313=-6*RR* (1+RR+RR**2+RR**3+RR**4) / 

* (RR-1)**3/(4+7*RR+4*RR**2) 
CC=RR*(9+9*RR+4*RR**2+4*RR**3+4*RR**4)/ 

* (RP. -1) **3/ (4+7*RR+4*RR**2) 
DIS-3 *RR* (1 +RR) / (RR-1) * *3 / (4+7 *RR+4* Ri * *2 ) 
FN=24*RR*(1+RR+RR**2+RR**3+RR**4)/ 

* ((RR-1)**3*(4+7*RR+4*RR**2)*1.0) 
ARGLOG=2*AA+2*CC+12*DD 
DIV=4*(5*AA+2*CC)/3.0 
SLOPE=2*(0.75*(2*DLOG(ARGLOG)/3.0-5/9.0) 

* +(4*AA+2*CC+4*DD)/DIV) 
AA=0.5 
Rß=-1 .5 
CC=1.0 
Dc o. 0 
ARGLOG=2*AA+2*CC+12*DD 
DIV=4*(5*AA+2*CC)/3.0 
SLOPE=2*(0.75*(2*DLOG(ARGLOG)/3.0-5/9.0) 

* +(4*AA+2*CC+4*DD)/DIV) 
C 
C INPUT OF DATA FROM FINITE ELEMENT MESH 



C 
C 

(1) NODAL GEOLAIE TR Y 

OPEN(FILE= I LLDATA', UNIT=7, STATUS=' UKNOWN' ) 
READ(NIN, 8010) TOTNOD, DIMEN 
14RITE(7,8010)TOTNOD 
DO 1010 I =1 , TOTT'JOD 
READ(NIN, 8020) NODt4UrI, (000RD(NODNUI, J ), )=1, DIAIEN) 

1010 CONTINUE 
C 
C 
C 

(2) ELEMENT TOPOLOGY 

READ (NIN, 8010) ELTYP, 
WRITE(7,8010)TOTELS 
DO 1020 I=1, TOTELS 
READ (N IN, 8010) ELNlM, 
E LTOP (E LN IJU, 1,1) = ELTYP 
ELTOP(ELNW, 2) = NODEL 

1020 CONTINLE 
C 

TOTELS, NODEL 

(ELTOP (ELNIM, j +2) ,J =1 NODEL) 

-READ (NIN, 8010) DOFNOD 
13TYPE5=1 
DO 2324 1=1 , COWT 
J=1+3 
BCD1 (1, J )=I 
1CD2(1, J)=I+TOTNOD-COLNT 

2324 CONTINUE 
DO 1075 J =1 , COLNT 
11=1+3 
FDCND(1,1,1))=BCD1(1,11) 
BDCND(2,2, J) )=1CD2(1 

,Jl) 
1075 CONTINUE 

CCC=COLNT+ 3 
K=COWT+3 
DO 2071 1=1 COWT 
INTRA(I)=BCDI(1, I+3)+COWT 
INTRl3(I)=BCD2(1,1+3)-COLNT 

2071 CONTINUE 
1YRITE(1,8010) (INTRA(I), I=1, COUNT) 
WRITE(1,8010) (INTRB(I), I=1, COLNT) 
TOTCOF =0 
DO 1050 I =1 , 

TOTNOI) 
DO 1040 J=1, DOFNOD 
TOTDOF = TOTUOF +1 
NF(I, J) = TOTDOF 

1040 CONTINUE 
1050 CONTINUE 

C 
C ASSEMBLY OF THE MODIFIED STIFFNESS MATRIX 
C: (ONLY NON-ZERO ELEMENTS ARE INCLWED) 
C 

I PTR=1 
C 1=1 
WRITE(1,8023) 
11F=1 

COW1=COINT-1 
ITOTC2=TOTELS-COU, 4T+2 
I Ti , 1C=TOTNOD-COLNT 



NNN=O 
DO 23 1=1, TOTNOD 
TCI=CI-I 
IF(TCI. GT. 0.00001)GO TO 231 
C I=C I+50 
V, RITE(1 , 8010) 

231 IPSTAR=IPTR 
REG(I)=IPTR 
tRN(IPTR)=1 
IPTR=IPTR+1 
IF(I. LE. COLNT)GO TO 6765 
IF(I. GT. ITNC)GO TO 7765 
ITT=I-1-(COLNT+NNN*COL. NT) 
IF(ITT. NE. 0)GO TO 8765 
JjF=1+NNN*(CO T-1) 
JJ L=J J F+2* (COUNT-1 )-1 
NNN=NNN+1 

8765 DO 24 J =J J F, J jL 
CALL DIRECT (J ,E LTOP ,IE LTOP ,JE LTOP , NF ,I NF ,J NF, 

* DCFNOD, STEER, ISTEER, (TEST) 
DO 25 K=1,4 
IF(STEER(K). EQ. I)GO TO 15 

25 CONTINUE 
GO TO 24 

15 CONTINUE 
DO 30 K=1,4 
IPFINI=IPTR-1 
DO 26 L=IPSTAR, IPFINI 
IF(IRN(L). EQ. STEER(K))CO TO 30 

26 CONTINUE 
IPN(IPTR)=STEER(K) 
IPTR=IPTR+1 

30 CONTINUE 
24 CONTINUE 

CA TO 7799 
7765 DO 224 J=ITOTC2, TOTELS 

CALL DIRECT (J 
,E LTOP 

,I ELTOP ,JE LTOP 
, NF ,I 

N7 
,J NF 

, * DCFNOD, STEER, I STEER, I TEST) 
DO 225 K=1,4 
IF(STEER(K). EQ. I)GO TO 215 

225 CONTINUE 
GO TO 224 

215 CONTINUE 
DO 230K=1,4 
IPFINI=IPTR-1 
DO 226 L=IPSTAR, IPFINI 
IF(IRN(L). EQ. STEER(K))GO TO 230 

226 COk`: TINUE 
IFN( IPTR)=STEER(K) 
IPTR=IPTR+1 

230 CONTINUE 
224 CONTINUE 

GO TO 7799 
6765 DO 1224 J =1 , ICOW1 

CALL DIRECT(J 
, 
ELTOP, IELTOP, JELTOP, NF, INF, JNF, 

* DCFNOD, STEER, ISTEER, ITEST) 
DO 325 K=1 

,4 



IF(STEER(K). EQ. I)GO TO 315 
325 CONTINUE 

GO TO 1224 
315 CONTINUE 

DO 330 K=1 ,4 
IPFINI=IPTR-1 
DO 326 L=IPSTAR, IPFINI 
IF(IRN(L). EQ. STEEP(K))GO TO 330 

326 CONTINUE 
IF NN( IPTR)=STt: R(K) 
IPTR=IPTR+1 

330 CONTINUO 
1224 CONTINUE 
7799 LAST=IPSTAR+8 

23 CONTINUE 
REG(TOTNOD+1)=1PT12 
ITOT1=TOTNOD+1 
DO 474 1=1, ITOT1 
WRITE(7,8010)REG( I) 

474 CONTINUE 
CI=1 
WIZITE(1 , 

8037) 
DO 36 I=1, TOTNOD 

-TCI=C1-1 
IF(TCI. GT. 0.00001)GO TO 361 
CI=CI+400 
WRITE(1,8010) 

361 IP1=REG(I) 
1P2=REG( 1+1)-1 

K=0 
DO 31 J=IP1, IP2 
1: =K+1 
ILOCAL(K)=IRN(J) 

31 CONTINUO 
KK1=K-1 
DO 32 SP=1, KK1 
P =0 
KSP=K-SP 
DO 33 NN=1, KSP 
IF( ILOCAL(NN4). LE. ILOLAL(NN+1)) CO TO 33 

`; = I LOCAL(NN) 
I LOCAL (NN)=ILOCAL (NN'+1 ) 
ILOCAL (NN+1)=X 
f, M=1 

33 CONTINUE 
IF(M. EQ. 0)GO TO 34 

32 CONTINUE 
34 K=0 

DO 35 J=IP1,1P2 
K+1 
IEN(J )=ILOCAL(K) 

35 CONTINUE 
36 COINTINUE- 

I PEND=J -1 
IPEND1=IPEND+1 
IPENDT=IPEND+TOTNOD 

WRITE(7,8010)IPEND 



Y: RITE(7,8010) IPENDI 
WRITE(7,8010) IPENDT 

C CALCULATION OF SEMI-BANDWIDTH 
FIRST = TRLE. 
D IF=COWT+1 
IIBANU` = DIF +1 
WRITE(1,8038) 
V, 'RITE(1 , 8010) HBAND 
DOFEL=NODEL*DOFNOD 
CALL VECNUL(STIF, ISTIF, ISTIF, ITEST) 
CALL MATNUL(MID, IMID, JMID, DIMEN, DIPMIEN, ITEST) 
CALL MATNUL(P, IP, J P, D INIEN, D IMEN, ITEST) 

CALL MATNUL(F, IF, JF, DOFEL, DIMEN, ITEST) 
CALL QQUA4(VGIIT, IWGHT, AI3SS, IABSS, JABSS, NQP, ITEST) 
C1=1 
WRITE(1,8043) 
DO 1100 NELE=l, TOTELS 
TCI=CI-NELE 
IF(TCI. GT. 0.00001)00 TO 1101 
CI=CI+200 
WRITE(1,8010)NELE 

1101 KCOI. NT=O 
CALL DIRECT(NELE, ELTOP, I ELTOP, J ELTOP, NF, I? F ,J NF, 

* DCFNOD, STEER, ISTEER, ITEST) 
CALL ELGEOYI(NELE, ELTOP, IELTO?, JELTOP, COORD, ICOORD, 

*J COORD, GEOf+1, I CM A, J GEO\1, D IMEN, I TEST) 
CALL : tAT; 4i ! L(EU<, IEU<, JELK, D(FEL, D(FEL, (TEST) 
CALL VECNLL(0EV, IREV, DOFEL, (TEST) 
DO 1090 IQ UAD=1, NQP 
XI = ABSS(1, IQ UAD) 
ETA = ABSS(2, IQU. \D) 
CALL QUA'-4(F1N, IFUN, LDER, ILDER, J LCER, XI, ETA, ITEST) 
CALL MMATMUL(LDER, ILDER, J LDER, GEOM, 1 GEOh1, J GECPt1, J AC, 

* IJAC, JJAC, DIMEN, NODEL, DIMEN, [TEST) 
CALL MATINV(JAC, IJAC, JJAC, JACIN, IJACIN, JJACIN, DIh1EN, 

* CET, (TEST) 
CALL P. IATMUL(JACIN, IJACIN, JJACIN, LDER, ILDER, J LDER, GDER, 

* IGDER, JGDER, DIVEN, DIAMEN, NODEL, ITEST) 
CALL SCAPRD(FUN, IFUN, GEOi\11(1 , 1) ,I GEOr1, NODEL, ITS, (TEST) 
CALL SCAPRD(FLN, IFUN, GEG (1 

, 2) , IGEOrrI, NODEL, TQ, ITEST) 
DO 1212 1=1,4 
DO 1313 J=1,4 
DTPD( 1, J )=-GDER(1 ,I) *GDER(1 ,J )- 

*GDER(1 , J) *FUN( I )- 
*(1-TQ**2)*GDER(2, I)*GDER(2, J)+ 
*2*TQ*GDER(2, J )*FLN(I) 

1313 CONTINLE 
1212 CONTINUE 

QUOT = DET*iVIT(IQU D) 
DO 1080 I=1, DOFEL 
DO 1070 J =1 DCFEL 
DTPD(I, J) = DTPD(I, J )*QUOT 

1070 CONTINUE 
1080 CONTINUE 

CALL MATADD(ELK, IELK, )ELK, DTPD, IDTPD, JDTPD, L)cFEL, 
* DCFEL, (TEST) 

1090 CONTINUE 



DO 51 H=I, TOTNOD 
IF(KCOINT. EQ. NODEL)GO TO 1100 
DO 52 1=1,4 
IF(H. EQ. STEER(I))CA TO 56 

52 CONTINUE 
GO TO 51 

56 KCOINT <COLNT+1 
IPI=REG(H) 
IP2=REG(ti+l)-l 
DO 53 K=1,4 
DO 54 L=IP1, IP2 
IF(IRN(L). EQ. STEER(K))STIF(L)=STIF(L)+ELK(I,; K) 

54 CONTINUE 
53 CONTINUE 
51 CONTINUE 

1100 CONTINUE 
DO 774 I=1, IPEND 
WRITE(7,8011)STIF(I) 

774 CONTINUE 
DO 779 1=1, IPEND 
VtRITE(7,8010)IRN(I) 

779 CONTINUE 
DO 58 I=1, TOTNOD 
IP1=REG(T) 
IP2=REG( I+1)-1 

58 CONTINUE 
DO 59 I=1, TOTNOD 
IP1=REG(I) 
IP2=REG( 1+1)-1 

KO WT=1 
DO 60 L=IP1, IP2 
IF(IfN(L). LT. I)CO TO 61 
IF(IRN(L). CQ. I)a TO 62 

61 KO UJT O1PJT+1 
60 CONTINUE 
62 D IAG(1) KOINT 
59 CONTINUE 

I CP =TOTN'OD- 2 *COU-4T+ 1 
ICCP=TOTNOD-COLNT 
DO 1115 1 =1 ,2 
DO 1120 J =1 , COWT 
K=RDCND( I, I, J+3) 
ST IF(POD)=ST IF(POD) *SCALE 
POD=REG(K)+D IAG(K)-1 

1120 CONTINUE 
1115 CONTINUE 

DO 473 1=1, TOTNOD 
WRITE(7,8010)DIAG(I) 

473 CONTINUE 
IPA=COI. NT+1 
DO 1253 K=IPA, ICP, COWT 
POD=REG(K) +D IAG(K)-1 
STIF(POD)=STIF(POD)*SCALE 

1253 CONTINUE 

I Pß=2*COU`NT 
DO 1252 K=IPB, ICCP, COLC, 4T 
POD=REG(K)+DIAG(K)-1 



STIF( POD)=ST IF(POD) *SCALE 
1252 CONTINUE 

DO 68 1=1, TOTNOD 
IPI=REG( I) 
I P2=REG( I+1)-1 

68 CONTINUE 
C 
C ASSEMBLY OF THE LOAD VECTOR 
C FOR RIIS=F(R, THETA) 
C 

CALL VECt4UL(LO, ILO, ILO, ITEST) 
DO 2100 NELE=I, TOTELS 
CALL ELGEO; N(NELE, ELTO?, IELTOP, JELTOP, 000RD, ICOORD, 

*J COORD, GEQMM, I GEQ4i, J GEO., D IMEN, I TEST) 
CALL VECN LL(LV, ILV, DOFEL, ITEST) 
CALL DIRECT(NELE, ELTOP, IELTOP, J ELTOP, NF, INF, JNF, 

* DOFNOD, STEER, ISTEER, ITEST) 
DO 2091 IQU\D=1, NQP 
X1=AtSS(1, IQUAD) 
ETA=ABSS(2, IQ UAD) 
CALL QUAA94(FUN, IFUN, LDER, ILDER, J LDER, XI, ETA, ITEST) 
CALL AMATAtUL(LDER, I LDER, J LDER, GECrvl, I CEO(r1, J GEOt. 1, J AC, 

* IJAC, J JAC, DIMEN, NODEL, DIMEN, iTEST) 
DET=JAC(1,1)*JAC(2,2)-JAC(1,2)*JAC(2,1) 
CALL SCAPRD(FUN, IFUN, GEOPf1(1 , 1) , IGEQVM, lJODEL, F , (TEST) 
CALL SCAPRD(FLN, IFU, 4, GEO\1(1 , 2) ,I GEQ\I, NODEL, IQ, ITEST) 
QUOT=DET*WGIIT( IQUAD) 
RRR=DEXP(RQ) 
IF(TQ. EQ. 0)GO TO 45 
TY=DSQRT((1-TQ**2) /TQ**2) 
TTT=DATAN (T Y) 
GO TO 46 

45 TTT=PI/2.0 
46 G1=2*DCOS(TTT)*(-3*AA/RRR**4-ßB/RRR**2+2*DD*RRR) 

G2=-G1/2 
G3=G2 
G4=-3*DSIN(TTT)*(AA/RRR**4+DD*RRR) 
G5=2*DCOS(TTT)*(12*AA/RRR**5+2*GL/RRR**3+2*DD) 
G6=-2*DS INJ(TTT) * (-3*AA/RRR* *4-Gß/RRR* *2+2* DD*RRR) 
G7=-3*DS IN(TTT)*(-4*AA/RRf: **S+DD) 
G8-. 3 * DCOS (TTT) * (AA / RRR* *4 +D0* RF. f: ) 
S1=2*DCOS(TTT)*(-60*AA/RR), **6-6*BG/RRR**4) 
S2=-2*DSIN(TTT)*(12*AA/RRR**5+2*I, 6/RRR**3+2*DD) 
S3=-G1 
S4=-3*DSIN(TTT)*(20*AA/RpR**6) 
S5=-3*DCOS(TTT)*(-4*AA/RRR**5+DD) 
S6=-G4 
A1=-DSIN(TTT)*(10*DD*RRR+Dß/RRR**2) 
E1=2* (5*DD-313/RRR**3) *DCOS(TTT) 
P1=3*Gl**2/2.0+2*c **2 
P2=3*G1*G5+4*G4*G7 
P3=3*G1*G6+4*G4*GS 
P4=3*G1*51+3*G5**2+4*G4*54+4*G7**2 
P5=3*G1 *52+3*G6*G5+4*G4*55+4*C8*G7 
P6=3*G1*53+3*G6**2+4*G4*56+4*GS**2 
C1=G1*(P1*P5-P2*P3)/(P1**2)+G6*P2/P1 
C1=C1+(P6/P1-(P3/P1)**2)*G41RRR+G8*P3/(RRR*P1 



D1=(G4+RRR*G7)*P2/P1+RRR*G4*(P1*P4-P2**2)/(P1**2) 
D1=D1-G5*P3/(2*P1)-(G1/2.0)*(P1*P5-P3*P2)/(P1**2) 
COEFF(NELE, IQ UAD)=DSIN(TTT)/2.0*(C1-D1+P3*B1/P1 

« -P2*A1/P1) 
VN1=N-1 
00 7086 K=1 , DOFEL 
RFQ=2.0*RQ 
; %E(NELE, IQUAD, K)=FUN(K)*QUOT*UEXP(RPQ) 
YE( IQUAD, K)=FU4(K) 
LEC (K ) =F UN (K ) *COEFF(NELE, IQUAD) *QWT*DEXP(R1 ) 

7086 CONTINUE 
CALL VECADD(LV, ILV, LEC, ILEC, DOFEL, ITEST) 

20 91 CONTINUE 
DO 2222 L=1, DOFEL 
St=STEER(L) 
LO(SN)=LO(SN)+LV(L) 

2222 CONTINLE 
2100 CONTINUE 

DO 776 I=1, TOTXOD 
WRITE(7,8011)LO(I) 

776 CONTINUE 
DO 512 1=1,4 
UO 513 ) =1,4 
%RITE(7,8011)YE(I, J 

513 CONTINUE 
512 CONTINUE 

DO 514 1=1, TOTELS 
DO 515 J=1,4 
DO 516 K=1,4 
wRITE(7,8011)XE( I, J K) 

516 CONTINUO 
515 CONTINUE 
514 CONTINUE 

C 
COWT1=COWT+1 
COWT2=2 "COWT+1 
COWT3=TOTNOD-COLNT 
DE'CMA=COORD(COINT1 ,1) 
DENOMJ=DEXP(COORU(COINT2,1))-DEXP(COORD(1,1)) 
DENNc11B=DEXP(COORD(TOTNOD, 1) )-DEXP(COORRL(COWT3,1) ) 

C 
C CALCULATION OF THE NE. T( 4INJ PSI FIELD 
C 

DO 1255 I=1, TOTNOD 
IF(COORD(I, 2). EQ. 0)GO TO 14 
TY=DSQRT((1-COORD(I, 2) **2) /COORD(I 

, 2) **2 ) 
S INAWG=DATAN(TY) 
GO TO 17 

14 S INARG=P 1/2.0 
17 U=DSIN(SINARG) 

XY=DEXP(COORD( I, 1) ) 
ANEW( I)=-0.5* (AA/XY+[3ß*XY+ 

* CC*XY**2+DD*XY**4) *U**2 
Rt1(I)=ANEW(1) 
RSTAR(I)=ANEV/(I ) 

1255 CONTINtE 
2057 FOMAT(51H ----------------------------------------- 



C 
C 
C 

CALCULATION OF THE NEWTON I AN OMEGA FIELD 

DO 719 1=1, TOTNOD 
IF (COORD( 1,2) . EQ. 0) CD TO 9 
TY`-DSQRT((1-COORD(I, 2) **2) /COORU(I, 2) **2) 

SINARG=DATAN(TY) 
GO TO 10 

9 SINARG=PI/2.0 
10 GU(I)=WGA(DEXP(CODRD(1,1)), SINARG) 

GSTAR( 1)=GU( 1) 
719 CONTINUE 

C 
IPOINT=0.0000DO 
JTC=O 
ICNT=O 
WRITE(1,8050) 
\VR I TE(NOUT, 8050) 
WRITE(1,787) 
WRITE(1,8036)DENWA, DENOW`. B 

787 FORMAT(37H 
CLOSE(7) 
I DGIt--COU`WT- I COW 1/2.0 

C 
C 
C 
C 
C 

C 
C 
C 

C 
C 
C 

C 

MAIN ITERATIVE LOOP 

INTO ITERATIVE LOOP //) 

..... .... .......... 

CALCULAT ION OF Tt lE GOINUARY Oti? EGA VALUES 

725 DO 2073 1=1,000NT 
JC1=1+1*COLNT 
GNMVAA( I)=2*RH(JC1) /DENC'flA/DEtOVA 
O"IVAA( I)=-1 . 5*DS IN(S INARG) **2 
SINARG=DACOS(COORD(INTRB(I), 2)) 
a, IVAB(I)=0.1*IETA* DS IN(SINARG)**2 
IF(COORD(INTRB(I), 2). EQ. 0)CO TO 47 
TY=DSQRT((1-COORD( IPNTRI3(1) , 2) **2) /COORD( INTR! (I) 

, 2) **2) 
SI KARG--DATAN (T Y) 
GO TO 48 

47 SINARG=P I/2.0 
48 cr VAB(I)=(-3* (BETA-1+2*ALOG(RI: )) *DS IN(S INARG) **2) / (2.0*RR) 

G. %'AB( I)=2*RH( INTRI3( I)) /DENOMB/DENONIB 

* (RR-DENOVE3)**2*DSIN(SIrNARG)**2/DENC I; 
*J DENCNtF; 

DRGU(I)=(-3)*(3-BETA-2*ALOG(RR))*DSIN(SINARG)**2/(2.0*RR**2) 
DRANEW(I)=(3/4.0)*(-ALPHA/RR**2+IETA+2+2*ALOG(RR))" 

* DSIN(SINARG)**2 
2073 CONTINUE 

CALL VECNUL(LOAD, I LOAD, I LOAD, I TEST) 
DO 2074 1=1 , COWT 
J=I+3 
LOAD(BCD1 (1 , j)) =OM/AA( I) 
LOAD(tCD2(1' J ))=O\. VAB( 1) 

2074 CONTINUE 
LL=TOTNOD-COWT+1 
DO 1111 1=1, TOTNOD 
RI1(1)=LO(I) 



1111 CO'TINLE 
C 
C APPLICATION OF DIRICHLET BOUNDARY 
C CONDITIONS FOR OMEGA 
C 

DO 4115 1=1,2 
DO 4120 J =1 , 

COINT 
K= BDCND(I, I, J+3) 
X= COORD(K, 1) 
GO TO(4125,4135), I 

4125 POD=REG(K)+DIAG(K)-l 
RH(K)=STIF(POD)*LOAD(K) 
GO TO 4120 

4135 POD=REG(K)+D IAG(K)-1 
RH (K)=STIF(POD) *LOAD(K ) 

4120 CONTINUE 
4115 CONTINUE 

ICCP=COWT+COWT* (COUNT-1 ) 
DO 4253 %%=1 

, 
ICP, COUNT 

RH(K)=0.0000D0 
4253 CONTINUE 

DO 4252 K=COUNT, ICCP, COU'4T 
RH(K)=0.0000DO 

4252 CONTINUE 
C 
C GAUSS-SEIDEL ITERATICI FOR MIEGA 
C 

DO 755 1: =1 ,1 
DO 727 1=1, TOTNOD 
SU: '=0 
IPI=REG(I) 

P2=REG( 1+1)-1 
CNT=O 
DO 729 L=IP1, IP2 
IF(IRN(L). LT. I)GO TO 728 
IF(IRN(L). EQ. I)GO TO 729 
SU, 1=SU41+ST IF(L) *GU( IRN(L) ) 
GO TO 729 

728 CNT=CNT+1 
SUVI=SLM+STIF(L)*GU( IRN(L) ) 

7 29 CONTINUE 
IP3=IPI+CNT 
GU(I)=(RH(I)-SUV1) /STIF(IP3) 

727 CONTINUE 
755 CONTINUE 

8011 FORMAT(D21.14) 
C 
C ASSEMBLY OF LOAD VECTOR FOR RHS=OMEGA 
C 

CALL VECN UL(RH, IRH, IRH, ITEST) 
DOFEL=NODEL*DOFNOD 
CALL QQUA4(1VGIIT, IWGFHT, ABSS, IAr', SS, JABSS, Ui)P, ITEST) 
DO 6100 NELE=I, TOTELS 
CALL VECN UL(BEV, IBEV, DOFEL, ITEST) 
CALL DIRECT(NELE, ELTOP, IELTOP, J ELTOP, NF, IrF, J NF, 

* DOFNOD, STEER, I STEER, I TEST) 
DO 6091 IQUAD=I, NQP 



s(1)=0.00 
DO 6086 1=2,5 
S(I)=S(I-1)+GU(STEER(I-1))*YE(IQUAD, I-1) 

6086 CONTINUE 
DO 6085 K=1, DOFEL 
LN(K)=XE(NELE, IQUAD, K) *S (5 ) 

6085 CONTINUE 
CALL VECADD(BEV, IIEV, LN, ILN, DCFEL, ITEST) 

6091 CONTINUE 
CALL ASRHS(RH, IRH, BEV, I6EV, STEER, ISTEER, 

*NODEL, ITEST) 
6100 CONTINUE 

C 
C APPLICATION OF BOLNDARY 
C CONDITIONS FOR PSI 
C 

DO 6115 1=1,2 
DO 6120 J =1 , 

COUNT 
1: = BDCND(I, I, J+3) 
X= COORD(K, 1) 
IF(COORD(K, 2). EQ. 0)G0 TO 3 
TY=DSQRT((1-COORD(K, 2) **2) /COORD(K, 2) **2) 
Y= DATAN (T Y) 
GO TO 2 

3 Y=P I/2.0 
2 OD TO(6125,6135), i 

6125 POD=REG(K)+DIAG(K)-1 
RH(K)=STIF(POD)*H1(X, Y) 
GO TO 6120 

6135 POD=REG(K)+DIAG(K)-1 
Ril(K)=ST IF(POD) *113(X, Y) 

6120 CONTINUE 
61 15 CONTINUE 

DO 6253 K=1 , ICP, COLNT 
RH(K)=0.0000DO 

6253 CONTINUE 
DO 6252 ; C=COLNT, ICCP, COUNT 
RH (K) =0.0000DO 

6252 C(X4T I NUE 
C 
C GAUSS-SEIDEL ITERATION FOR PSI 
C 

DO 766 K=1 ,1 DO 827 I=1, TOTNOD 
S LM= o. 0 
IPI=REG(I) 
1P2=REG( 1+1)-1 
CNT=O 
DO 329 L=IPI, IP2 
IF(IRN(L). LT. 1)OD TO 828 
IF(IRN(L). EQ. I)GO TO 829 
SW=SIh4+STIF(L)*ANEW( IRN(L) ) 
GO TO 829 

828 CNT=CNT+1 
SIM=SU, 1+STIF(L) *Ar"NEW( IRN(L) ) 

829 CONTINUE 
IP3=IPI+CNT 



ANEW(I)=(RH(I)-SUvt)/STIF(1P3) 
827 CONTINUE 

C 
766 CONTINUE 

J TCC= J TC- I PO I NT 
IF(JTCC. GT. 0.001)00 TO 433 
J TC=J TC+20 
J TC4-=41OD(J TC, 40) 
IF(JTC4. LT. 00001. O)GO TO 434 
IF(JTC4. GT. 0.001)GO TO 435 

434 OPEN(F ILE='GUANEW2' , UPJIT=8, STATUS= '1N<NOGN' ) 
DO 756 I=1, TOTNOD 
WRITE(8,8011)GU(I) 

756 CONTINUE 
DO 747 1=1, TOTNOD 
WRITE(8,8011)ANEW(I) 

747 CONTINUE 
CLOSE(8)- 
GO TO 433 

435 OPEN(F ILE='GUANEW' , UNIT=9, STATUS=' Ii«Na%t4' ) 
DO 977 1=1, TOTNOD 
WRITE(9,8011)GU(I) 

977 CONTINUE 
DO 978 I=1, TOTNOD 
WRITE(9,8011)ANEVr(I ) 

978 CONTINUE 
CLOSE(9) 

433 OPEN' (FILE=' Fj TC' , UNIT=10, STATUS=' Uhd<NOadV' ) 
WRITE(10,8010)JTC 
CLOSE(10) 
DO 777 1=1, TOTNOD 
RH(I)=ANEW(I) 

777 CONTINUE 
IF( IPOINT. GT. 0.5)GO TO 7777 
WRITE(1,8041) 
WRITE(NOUT, 8041) 

C 
C CALCULATION OF THE INTEGRAL 'I' 
C 

7777 DO 1017 1=1,000'IT 
IVY'( I)=(GU( INTRA(I ))-GU( I)) /DEN( A 
IW(I)=(IW(I)-2*GU(I) ) 

1017 CONTINUE 
IVI(2)=4.0* IW(2) 
ICT1=COLNT-1 
ICT2=COINT-2 
IW(3)=2.0* IW(3) 
DO 1018 1=4, ICT1,2 
IW(I)=IW(I)*4.0+IW(1-2) 

101E CONTINUE 
DO 1019 1=5, ICT2,2 
RV(I)=IW(I)*2.0+1º'I( 1-2) 

1019 CONTINUE 
TOTAL=IW(1 )+IW( ICT2)+I%V( ICT1 )+IWV(C0LxJT) 
DELTA=2.0/ ((COU"JT-1) *1.0) 
AREA=DELTA*TOTAL/3.0 

C 



RP Ar. C=20.0000D0 
R1=DMOD( I PO I NT, R: 1ARG) 
SLOP=SLOPE+AREA/DIV+ALOG(2.0) 
ITER=IPO INT+1 
(POINT= IPOINT+1 

ALPHA=0.0 
OPEN (FILE=' F 13ETA' , UNIT=1 1 , STATUS=' Lt, KNOVvN' ) 
WVRITE(11,8011) BETA 
CLOSE(11) 

C 
C CALCULATION OF BETA 
C 

DO 479 1=1 COL. NT 
TC3 =COU'JT3+ 

DGU(I)=(GU(ITC3)-GU(INTRB(I)))/DENO11B 
DANE%V( I)_ (ANEV (I TC3) -ANEW( I NTRB ( I))) / DENGAB 

479 CONTINUE 
IETA=LIY, ULT1 *( (4/3.0) *DANE1'/( IDGU)-3-2*LOG(RR) ) 
BETA=BETA+L. tULT2*(3-2*LOG(RR)+(2/3.0)*RR**2*DGU(IDGU)) 

C 
IF(ALS(Rh9). GT. 0.005)G0 TO 39 
BETAP=BETA+0.1972246 
WRITE(1,8039)SLOP, AREA, ITER 
WRITE(1,2057) 

C 
C CGJPARING THE N1.1'; ERICAL DERIVATIVES FOR 
C OMEGA AND PSI WITH THE CORRESPONDING 
C TI IEORET ICAL VALIES 
C 

WRITE(18039)DGU(IDGU), DANEW(IDGU) 
WRITE(1,8039)DRGU(IDGU), DRANEW(IDGU) 

C 
WRITE(NOUf, 8039)SLOP, AREA, ITER 

39 IF(IPOINT. LT. 20000)GO TO 725 
STOP 

8050 FOEWT(//411-1 MATCH RADIUS 020 MESH 140X20 
8010 FOFö: 1AT(16I5) 
8023 FORMAT(//14H INTO LOOP 23 
8037 F OR-. 'IAT (14H INTO LOOP 36 ) 
8041 FOR AT(//4211 SLOPE INTGR 
8043 FOF-"., AT (17H STIFFNESS MATRIX ) 
8038 FOPMAT (7H HBAN'D ) 
8036 FOI AAT(11-1 , 

11OF10.5) 
8039 FOF AT(2F20.5,18) 
8020 FOF 1AT(I5,6F12.5) 

END 
SUBROUTINE ASRHS(RHS, IRHS, VALLE, IVALLE, STEER, ISTEER, 

* DOFEL, ITEST) 
C------------------------------------------------------------- 

INTEGER DOFEL, ERRA'ES, IERROF, IRHS, ISTEER, (TEST, IVALL. E, 
* K, L, STEER 

DOUBLE PRECISION RHS, Sf. NNVE, VALLE 
DIMENSIM R11S(IRHS), STEER(ISTEER), VALUE-(IVALUE) 
DATA SRNAtM: E /811 ASRIIS / 

IF (ITEST. EQ. -1) GO TO 1010 
IE RRO ;=0 
IF (ISTEER. LT. DcFEL) IERROI; =3 



1010 
DO 1030 '<=1 , DOFEL 
IF (STEER(K). EQ. O) 
L= STEER(K) 

1020 RI IS (L) = RI IS (L) + 
1030 CONTINUE 

IF ( IVALUE. LT. DCFEL) IERROI: =2 
IF (DOFEL. LE. O) IERROR =1 

TEST = ERFJvIES( ITEST, IERI'OR, 511TA1E) 
IF (ITEST. NE. 0) RETLRN 

GO TO 1030 

IF (ITEST. EQ. -1) CD TO 1020 
1ERROR =0 
IF (L. GT. IRI-IS) IERROR =4 
ITEST = EF: RWWES( ITEST, IERROR, SRNA". 7E) 
IF (ITEST. NE. 0) RETLRN 
VALUE(K) 

RETURN 
END 



PROGRAM A 

THIS PROGRAM CONTINUES THE RUN IN THE EVENT OF DOWN-TIME 
DURING THE RUNNING OF PROGRAM 2. 



C 
C 
C THIS PR I OGRAM CONTINUES THE RUN 
C IN THE EVENT OF D04'. t4-T IME 
C DIRING THE RUNNING OF THE PREVIOUS PROGRAM 
C 
C 

INTEGER BDCND, BTYPES, DIMEN, DCFEL, DIAG, 
* DOFNOD, ELNLi, ELTOP, ELTYP, I, IABSS, 
+ ILQAD, ICNT, LL, IELTOP, INF, JELTOP, 
* IQLWD, (STEER, 1TEST, IIWGHT, REG, j , JABSS, IRN, POD, 
* NF, NIN, NODEL, NODNIM, NOUT, NQP, J NF, K, NELE, 
* STEER, TOTDOF, TOTELS, TOTNOD, 000, COUVTI, COINT2, 
* COLNT3,000NT, ILN, IBEV, IRH, BCD1, BCD2, 
* ICP, ICCP, INTRA, INTRB 

DOUBLE PRECISION ABSS, DENM1A, SU'. 1, STIF, SINARG,, MULT1, MULT2, 
* COORD, DTP D, E U<, FUN, GDER, DENOMB, TY, BETAP, 
* GDERT, GEO%I, JAC, JACIN, LDER, P, PD, DIV, 
* SCALE, WGtiT, X, XX, Y, YY, LOAD, LO, GU, IPOINT, S(5), 
* WGA, H1 , H2, MID, F, R, 147GDER(2,4) ,IW, 5 LOP E, ARGLOG, 
* FMD, PI, LN, BEV, RH, cA1VAA, S LOP, FN, RSTAR, GSTAR, RMARG, 
* COEFF, XE(3000,4,4), YE(4,4) 

DIMENSION ABSS(2,9), 
* DTPD(4,4), 
* ELK(4,4) , FUN(4) , GDER(2,4) , GDERT(4,2) , GEOM(4,2), 
* JAC(2,2), JACIN(2,2), LDER(2,4), P(2,2), PD(2,4), 
* STEER (4), WGHT(9), MID(2,2), F(4,2), R(2), LN(4), 
* FýMMMD(4,4) , BEV(4) , LO(6561 ) 

C 
C PROBELM SIZE DEPENDENT ARRAYS 
C 

UTAIENSICN LOAD(6561), GU(6561), 000RD(6561,2), 
* ELTOP(6561,6), NF(6561,1), COEFF(3000,9), 
* ANEW(6561), RH(6561), RSTAR(6561), GSTAR(6561), 
* Q11VAA(81) 

, 4YNAB(81) 
, INTRA(81) 

, INTRB(81) 
, 

* IW(81), BCD1(5,81), BCD2(5, s1), 
* BDCND(2,2,81), REG(6562), IRN(65620), DIAG(6561), 
* STIF(65620) 

COrti o\1DN /A/E LTOP 
COh14MON/B/D IAG 
CO"i ON/C/COORD 
CU, "X0N/ D/RIi, ANEW, NF 
COMMON/E/ABSS, BCD1, BCD2, BDCND, BEV, DTPD, 

* ELK, F, FMD, FUN, GDER, 
* GDERT, GEM1, GU, INTRA, INTRB, IW 
CO's b11ON/ F/J AC, J AC IN, L DE R, LN, LOAD, h. GDE R, PlID, 

* ct VAA, O1VAB, P, PD, R, S, STEER, 
* Wl , W2, V'GHT, REG, I RN 
COhl. N1DN/G/5T IF, COEFF 
Ca MJN/H/GSTAR, RS TAR 
MINION/ I /XE 
CO, =N/J /YE 

C 
DATA IAI3SS/2/, ISTEER/4/, 

IWGHT/9/, JABSS/9/, JNF/1/, 
' SCALE /1. OD+25/, ILOAD/6561/ 

C 



C PROBELM SIZE DEPENDENT DATA STATEMENTS 
C 

DATA IELTOP/6561/, INF/6561/, JELTOP/6/, 
* IRII/6561/, IBEV/4/, ILN/4/, 
* RR/10.0/, BETA/-1.3/, COLNT/21/, 
* MULTI/0.5/, 1, /, ULT2/0.5/ 

C 
DATA NIN /5/, NOUT /6/ 

C 
C WGA(XX, YY) = 1.0*((DSIN(YY)**2)/34.0)*(90*XX**2-372/XX) 

WGA(XX, YY)=-0.5*(-2*BB/XX+10*DD*XX**2)*DSIN(YY)**2 
lil (XX, YY)=0.0000DO 

C t12(XX, YY)=-(DSIN(YY)**2*2.0) 
t12(XX, YY)= -(DSIN(YY)**2*0.5*RR**2) 

C 113(XX, YY)=-0.5*(BETA*RR+RR**2)*DSIN(YY)**2 
H3(XX, YY)=(3*(RR*BETA+2*RR*ALOG(RR))/4.0)*DSIN(YY)**2 

C H3(XX, YY)=-(DSIN(YY)**2*RR**2)/2.0 
C 113 (XX, YY) =0.0000 
C 
C SET ITEST FOR FULL CI-iECK ING 
C 

1TEST =0 
P I=4.000*DATAN(1 ODO) 

C AA=0.5 
C BB=-1.5 
C CC=1.0 
C DD=0.0 

9088 FON. °AT(10F10.5) 

C: READING DATAFILES CREATED BY 
C: THE PREVIOUS PROGRAM. 

OPEN(FILE='ABCD', UNIT=12, STATUS='UN<NO'N') 
READ(12,9088)AA 
READ(12,9088)BB 
READ(12,9088)CC 
READ(l 2,9088) DD 
CLOSE(12) 
FN=24*RR*(1+RR+RR**2+RR**3+RR**4)/ 

* ((RR-1)**3*(4+7*RR+4*RR**2)*1.0) 
A RGLOG=2*AA+2*CC+12*DD 

C 
DIV=4*(5*AA+2*CC)13.0 
SLOPE=2*(0.75*(2*DLOG(ARGLOG)/3.0-5/9.0) 

" +(4*AA+2*CC+4*DD)/DIV) 
C 
C WRITE(1,8036)DIV, SLOPE, ARGLOG 
C 
CI NP LET OF NODAL GEOS ETR Y 
C 

OPEN(FILE='LL1 TA', UNIT=7, STATUS='OLD') 
OPEN(FILE='FJTC', UNIT=10, STATUS='OLD') 
READ(10,8010)JTC 
OPEN(FILE='FBETA', UNIT=11, STATUS='OLD') 
READ(11,8011)BETA 
CLOSE(11) 
READ(7,8010)TOTNOD 
READ(7,8010)TOTELS 



I TOT1=TOTNOD+1 
DO 4 551 1=1 

,I TOT1 
READ(7,8010)REG(I) 

4551 CONTINUE 
READ(7,8010)IPEND 
READ(7; 8010) IPENDI 
READ(7,8010)IPENDT 
DO 4552 1=1, IPEND 
READ(7,8011)STIF(I) 

4552 CONTINUE 
DO 7559 1=1, IPEND 
READ(7,8010)IRN(I) 

7559 CONTINUE 
DO 4553 I=1, TOTNOD 
READ(7,8010)DIAG(I) 

4553 CONTINUE 
DO 4554 1=1, TOTNOD 
READ(7,8011)LO(I) 

4554 CONTINUE 
DO 754 1=1,4 
DO 753 J=1,4 
READ(7,8011)YE( I, J ) 

753 CONTINUE 
754 CONTINUE 

C 
DO 889 I=1, TOTELS 
DO 888 J=1,4 
DO 887 K=1 ,4 
READ(7,8011)XE(I, J, K) 

887 CONTINUE 
888 CONTINUE 

=889 CONTINUE 
J TC44. IOD(j TC, 40) 
IF(JTC4. GT. 0.01)GO TO 678 

OPEN(FILE='GUANEW2t, UNIT=9, STATUS='OLD') 
DO 4591 1=1, TOTNOD 
READ(9,801 1) GU( 1) 

4591 CONTINUE 
DO 4592 1=1, TOTNOD 
READ(9,8011)ANEW(I) 

4592 CONTINUE 
CLOSE(S) 
GO TO 611 

678 OPEN(FILE='GUANEW', UNIT=8, STATUS='OLD') 
DO 6543 1=1, TOTNOD 
READ(8 , 8011 ) GU( I) 

6543 CONTINUE 
DO 6542 I=1, TOTNOD 
READ(8,8011)ANEW(I) 

6542 CONTINUE 
CLOSE(9) 

611 CONTINUE 
CLOSE(7) 
READ(NIN, 8010) TOTNOD, DIMEN 
DO 1010 1=1, TOTNOD 
READ(NIN, 8020) NODNIM, (000RD(NODNLM, J ), J=1, DIMEN) 

1010 CONTINUE 



READ (NIN, 8010) ELTYP, TOTELS; NODEL 
DO 1020 1=. 1 , TOTELS 
READ (NIN, 8010) ELNIM, (ELTOP(ELNIM, J+2), J=1, NODEL) 
ELTOP (ELNUA, l) = ELTYP 
ELTOP(ELNUA, 2) = NODEL 

1020 CONTINUE 
READ (NIN, 8010) DOFNOD 
BTYPES=1 
DO 2324 1=1 COWT 
J=1+3 
BCDI (l ,j )=I 
I3CD2 (1 , j) 

= I+TOTNOD-COWT 
2324 CONTINUE 

DO 1075 j =1 COLNT 
JJ=j+3 
BEXND(1,1, JJ )=BCD1(1, JJ ) 
BDCND(2,2, JJ)=BCD2(l, 1J ) 

1075 CONTINUE 
CCC=CO WT+ 3 
K=COINT+3 
DO 2071 1=1 COLNT 
INTRA(I)=BCDI(1,1+3)+COLNT 
INTRB(I)=BCD2(1, I+3)-COWT 

2071 CONTINUE 
IIVRITE(1,8010) (INTRA(I ), I=1 , COWT) 
WRITE(1,8010) (INTRB(i), 1=1, COlNT) 
TOTDOF =0 
DO 1050 I=1, TOTNOD 
DO 1040 j =1 , DOFNOD 
TOTDOF = TOTDOF +1 
NF (1, J) = TOTDOF 

1040 CONTINUE 
1050 CONTINUE 

C 
ICP=TOTNOD-2*COINT+1 
ICCP=TOTNOD-COLNT 

C 
DO 1115 1=1,2 
DO 1120 J =1 , COWT 
K=13DCND( 1, I, J +3) 
POD=REG(K)+D IAG(K)-1 
STIF(POD)=STIF(POD)*SCALE 

1 120 CONTINUE 
1115 COJTINLE 

C 
IPA=COINT+1 
DO 1253 K=IPA, ICP, COWT 
POD=REG(K)+D IAG(K)-1 
STIF(POD)=STIF(POD)*SCALE 

1253 CONTINUE 
C 

1PB=2*COWT 
DO 1252 K=IP[, ICCP, COWT 
POD=REG(K)+D IAG(K)-1 
STIF (POD) =ST IF (POD) *SCALE 

1252 CONTINUE 
COWTI =COWT+1 



COU' T2=2 *COLNT+1 
CO WT3 =TOTNOD-CO WT 
DENCMA=0001 D(COLNT1 , 1) 
'DENG J=DEXP(COORD(COINT2,1))-DEXP(000RD(1,1)) 
DENQa. +C=DEXP (COORD(TOTNOD, 1)) -DEXP (COORq(COINT3,1) ) 
DO 12551=1, TOTNOD 
RH(1)=ANEW(1) 

1255 CONTINUE 
IPOINT=0.0000D0 
ICNT=O 

WRITE(1,8050) 
V'/R I TE(NOUT, 8050) 
VIRITE(1,787) 

787 FOP4. 'AT(37H INTO ITERATIVE LOOP 
J TC=O 

725 DO 2073 1=1, COWT 
J C1= I+1 *COWT 
0, t1VAA( I)=2*Rti(JC1 ) /DENO\AA/DEt QIIA 

C OMMVAA(1)=-1.5*DSIN(SINARG)**2 
C SINARG=DACOS(COORD(INTRB(I), 2)) 
C O'GNVAB(I)=0.1*BETA*DSIN(SINARG)**2 

IF(COORD(INTRB(I), 2). EQ. 0)GO TO 47 
TY=DSQRT((1-COORD(INTRB(I), 2) **2) /COORD( INTRB(I ), 2) **2) 
SINARG=DATAN(TY) 
GO TO 48 

47 SI NARG=P 1/ 2.0 
48 Qk1VAB(I)=(-3*(BETA-1+2*ALOG(RR))*DSIN(SINARG)**2)/(2.0*RR) 

C 48 YWAB( I )=2*RH( INTRB( I ))/DENO\1B/DENOfv1B 
C* (RR-DENOMB)**2*DSIN(SINARG)**2/DENOY, B 
C* /DENNG1B 

2073 CONTINUE 
CALL VECNUL(LOAD, ILOAD, ILOAD, ITEST) 
DO 2074 1=1 COWT 
J=1+3 
LO&D(BCD1(1, J ))=-O VAA(1) 
LOAD(BCD2(1, j ))=O'. WAB( I) 

2074 CONTINUE 
LL=TOTNDD-COWT+1 
DO 1111 1=1, TOT'OD 
RH( I)=LG(I) 

1111 CUSTINUE 
DO 4115 1=1,2 
GO 4120 J =1 , COWT 
K= CDCND(1, I, J+3) 
X= COORD(K, 1) 
GO TO(4125,4135), I 

4125 POD=REC(K)+DIAG(K)-1 
RH(K)=STIF(POD)*LOAD(K) 
GO TO 4120 

4135 POD=REG(K)+D IAG(K)-1 
RH(K)=STIF(POD)*LOAD(K) 

4120 CONTINUE 
4115 CONTINUE 

ICCP=COUNT+COLNT* (COWT-1 ) 
DO 4253 K=1 

, ICP, COWT 
RH(K)=O. 000ODO 

4253 CONTINUE 



DO 4252 K=COUNT, ICCP, COWT 
RII(K) =0.0000DO 

4252 CONTINUE 
DO 755 K=1,1 

, 
DO 727 1=1, TOTNOD 
S LAI=0 
IP1=REG(I) 
I P2=REG( 1+1)-1 
CNT=O 
DO 729 L=IP1, IP2 
IF(IRN(L). LT. I)00 TO 728 
IF(IRN(L). EQ. I)GO TO 729 
S1h1=511M+STIF(L)*GU( IRN(L)) 
GO TO 729 

728 CNT=CNT+1 
SU11=SUN+STIF(L)*GU( IRN(L)) 

729 CONTINUE 
IP3=IP1+CNT 
GU( I)=(RH( I)-SUN) /STIF( IP3) 

727 CONTINUE 
755 CONTINUE 

8011 FORAIAT(D21.14) 
C 
C 

CALL VECNLL(RH, IRH, IRH, ITEST) 
DOFEL=NODEL*DOFNOD 
CALL QQUA4(VVGHT, IWGHT, ABSS, IABSS, JABSS, NQP, ITEST) 
DO 6100 NELE=I, TOTELS 
CALL VECNLL(BEV, IBEV, DOFEL, ITEST) 
CALL DIRECT (NELE, ELTOP, IELTOP, J ELTOP, NF, INF, J NF, 

* DOFNOD, STEER, ISTEER, ITEST) 
DO 6091 IQUAD=1 NQP 
S(1)=0.00 
DO 6086 1=2,5 
S(I)=S(I-1)+GU(STEER(I-1))*YE(IQ UAD, I-1) 

6086 CONTINUE 
DO 6085 K=1, DOFEL 
LN(K)=XE(NELE, IQ UAD, K)*S(5) 

6085 CONTINUE 
CALL VECADD(BEV, IBEV, LN, ILN, DCFEL, ITEST) 

6091 CONTINUE 
C 
C ASSEMBLY OF STIFFNESS MATRIX 
C 

CALL ASRFIS(RH, IRH, BEV, IBEV, STEER, ISTEER, 
*NODEL, I TEST) 

6100 CONTINUE 
DO 6115 1=1,2 
DO 6120 J =1 COWT 
K= BDCND( 1, I, J+3) 
X= COORD(K, 1) 
IF(COORD(K, 2). EQ. O)cO TO 3 
TY=D5QRT((1-COORD(K, 2)**2)/COORD(K, 2)**2) 
Y=DATAN(TV) 
GO TO 2 

3 Y=P 1/2.0 
2 00 TO(6125,6135), 1 



6125 POD=REG(K)+DIAG(K)-1 
RI I(K)=STIF (POD)"H1(X, Y) 
GO TO 6120 

6135 POD=REG(K) +D IAG(K)-1 
RH(K) =ST IF (POD) *Ii3 (X, Y) 

6120 COAT I NUE 
6115 CONTINUE 

DO 6253 K=1 , ICP, COUNT 
kI1(K) =0.0000DO 

6253 CONTINUE 
DO 6252 K=COUNT, ICCP, COWT 
RH(K) =0.0000DO 

6252 CONTINUE 
DO 766 K=1,1 
DO 827 1=1, TOTNOD 
SLW=0.0 
IPI=REG( I) 
IP2=REG( 1+1)-1 

CNT=O 
DO 829 L=IP1, IP2 
IF(IRN(L). LT. I)GO TO 828 
IF(IRN(L). EQ. I)GO TO 829 
SUS, =S1? +STIF(L)*ANEVI (IRN(L)) 
GO TO 829 

828 CNT=CNT+1 
StJ41=SIM+STIF(L)*ANEW ( IRN(L)) 

829 CONTINUE 
IP3=IPI+CNT 

ANEW( 1)=(RH(I)-SIM)/ STIF(IP3) 
827 CONTINLE 
766 CONTINLE 

J TCC=J TC- I POINT 
IF(JTCC. GT. 0.001)GO TO 433 
J TC=J TC+20 
J TC4=MOD(J TC, 40) 
IF(JTC4. LT. 0.001)GO TO 434 
IF(JTC4. GT. 0.001)GO TO 435 

4 34 OPEN (FILE=' GU4NEW2' , UNIT=9 , STATUS=' U«NOº'iN' ) 
DO 756 1=1, TOTNOD 

WR ITE(9,8011) GU( 1) 
756 CONTINUE 

DO 747 1=1 , TOTNOD 
% RITE(9,8011)ANEW(I) 

747 CONTINUE 
CLOSE(9) 

GO TO 433 
435 OPEN(F ILE=IGU4NEW' , UNIT=8, STATUS='U'KNO N' ) 

DO 977 1=1, TOTNOD 
WRITE(8,8011)GU( I) 

977 CONTINUE 
DO 978 1=1 , TOTNOD 
WRITE(8,8011)ANEW(i) 

978 CONTINUE 
CLOSE(S) 

433 OPEN(FILE='FJTC', UNIT=10, STATUS='UNKNa%N') 
WRITE(10,8010)JTC 
CLOSE(10)' 



C 
C 
C 

DO 777 1=1, TOTNOD 
RH(1)=ANEW( I) 

777 CONTINUE 
IF( IPOINT. GT. 0.5)GO TO 7777 

WRITE(I. 8041) 
WRITE(NOUT, 8041) 

7777 DO 1017 1=1 COWT 
IW(I)=(GU(INTRA(I))-GU(I))/DENOMA 
IW(I)=(IW(I)-2*GU(I) ) 

1017 CQ"TINUE 
IW(2)=4.0*IW(2) 
ICTI=COLNT-1 
ICT2=COWT-2 
IW(3)=2.0* IV1(3) 
DO 1018 1=4, ICT1,2 
IW(I)=1W(I) *4.0+IW( 1-2) 

1018 CONTINUE 
DO 1019 1=5, ICT2,2 
IW( 1)=IW( 1) *2. O+IWd( 1-2) 

1019 CONTINUE 
C 

TOTAL= IW(1)+IW(ICT2)+IW(ICT1)+Iw(COINT) 
DELTA=2.0/((COU4T-1)"1.0) 
AREA=DELTA*TOTAL/3.0 
RMARG=20.0000D0 
RMS=Dh1OD( I PO INT, RMARG) 

C IF(ABS(Rh! ). GT. 0.01)GO TO 39 
C 
C 

SLOP=SLOPE+AREA/QIV+ALOG(2.0) 
ITER=(POINT+1 
I POINT= I POINT+ 1 

C 
C CALCULATION OF BETA 
C 

DO 479 1=1 COUNT 
TC 3 =CO lNT3 +1 

DGU( I)= (GU( I TC3) -GU( INTRD(I))) /DENa'. 1B 
DANEW(I)=(ANEW(ITC3)-ANEW(INTRB(I)))/DENa1B 

479 CONTINUE 

BETA= Lt. 7ULT1 *( (4/3.0) * DANEW (I DGU) -3-2 * LOG(RR) ) 
B ETA=B ETA+LMULT2 * (3 -2 * LOG(RR) + (2 / 3.0) * RR* *2 * DGU( I DGU) ) 

C 
C BETA=AREA/6.0+2.0945349 

IF(ABS(Rh1). GT. 0.005)GO TO 39 
BETAP=RETA+0.1972246 
WRITE(1,8039)SLOP, AREA, ITER 
WRITE(1,2057) 

C 
C Cc 1PARING THE NI. MERICAL DERIVATIVES FOR 
C OMEGA AND PSI WITH THE CORRESPONDING 
C THEORETICAL VALIES 
C 

WRITE(1,8039)DGU(IDGU), DANEW(IDGU) 



WRITE(1 , 8039)DRGU( IDGU), DRANEI'/( IDGU) 
C 

WRITE(NOUT, 8039)SLOP, AREA, ITER 
39 IF(IPOINT. LT. 20000)CO TO 725 

STOP 
8050 FORMAT(//41H MATCH RADIUS 020 MESH 140X20 //) 
8010 FOI '! AT (16 15 ) 
8023 FORI4'AT (/ / 14H INTO LOOP 23 ) 
8037 FORMAT (1411 INTO LOOP 36 ) 
8041 FOl; WAT(//42H SLOPE INTGR 
8043 FOF AT(17H STIFFNESS MATRIX. ) 
8038 FORMAT(7H HBAND ) 
8036 FORAIAT(1H , 11OF10.5) 
8039 FOaIAT(2F20.5,18) 
8020 FOWAT(15,6F12.5) 

END 
SUBROUTINE ASRHS(RIIS, IRHS, VALLE, IVALLE, STEER, ISTEER, 

* DOFEL, (TEST) 
C------------------------------------------------------------- 

INTFGER DOFEL, ERR+SES, IERROR, IRHS, ISTEER, (TEST, IVALIE, 
* K, L, STEER 

DOUBLE PRECISION RHS, SRNAME, VALLE 
DIMENSION RHS(IRHS), STEER(ISTEER), VA LUE(IVALUE) 
DATA SRNAME /8H ASRHS / 

IF (ITEST. EQ. -1) 00 TO 1010 
(ERROR =0 
IF (ISTEER. LT. DOFEL) IERROR =3 
IF (IVALUE. LT. DCFEL) IERROR =2 
IF (DOFEL. LE. 0) (ERROR =1 
TEST = ERR ES( ITEST, IERROR, SP`UU. 1E) 

1010 IF (ITEST. NE. 0) RETURN 
DO 1030 K=1 DOFEL 
IF (STEER(K). EQ. 0) GO TO 1030 
L= STEER(K) 

IF (ITEST. EQ. -1) GO TO 1020 
IERROR =0 
IF (L. GT. IRHS) (ERROR =4 
ITEST = ERRMES(ITEST, IERROR, SRNAME) 
IF (ITEST. N E. 0) RETURN 

1020 RHS(L) = RHS(L) + VALUE(K) 
1030 CONTINUE 

RETURN 
END 



PROGRAM 4 

THIS PROGRAM SOLVES THE DIFFERENTIAL EQUATION FOR 

PULSATILE FLOW. THE NORMALISED PRESSURE GRADIENTS ARE 

CALCULATED. THE NORMALISED MEAN PRESSSURE GRADIENTS AND 

THE FUNDAMENTAL NORMALISED PRESSURE GRADIENT AMPLITUDES 

AND PHASE ANGLES ARE OBTAINED. 
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C THIS PROGRAM SOLVES THE DIFFERENTIAL EQUATION 
C FOR PULSATILE FLOW. THE NORMALISED MEAN 
C PRESSURE GRADIENTS, THE FUNDAMENTAL PRESSURE 
C AMPLITUDE AND PHASE ARE OBTAINED. 
C 
C 

INTEGER«4 I, J , NC, COWT, L1, L2, L3, L4, 
* NR, NUf, J2, NCC, NRI, CTR, CTR2, NVAL, 
* NUT1 , NUTM1 , IX, J X, KX, MAX, 
«- MEM1 , MEM2, NLM, FLAG 

REAL*8 V(151,2), R(151), T(2), PI, QNLM, TOTAL, N, EPS, F, 
« DELT, DELR, W(2), MULTAE, NN, NNN, DRNI\N, DSGN3, DSGN4, 

INT(160), PSTAR(40010), GPAD, DRN, DSGN5, DSGN6, 

* AMMPL, GRR1 GR1 ARG, DIFFP (40010) 
, 
DSGN7, DSGN8, 

* MEAN, DSG41, DSGN2, PHASE, 

« x. 4(20) , h, F(20) ,; . EPS (20) , « ALPHA, AJ BIJ CIJ , EPSS, EPSTAR, 
* A1, A2, A3, A4, A5, B1, B2,113, B4,135 

CGAMON /A/INTO 
CO11110N/B/V 
CC1y. P. 1Oýl/C/PSTAR 
COh. 1h'ON/ E/T 
COMMON/D/ INT 
Cct/MON/E/DIFFP 

C 
DATA MN(1)/0.3D0/, MEPS(1)/0.1DO/, M. 1F(1)/0.5D0/, 

* MN(2) /0.5D0/, F. 1EPS(2) /0.5D0/, MF(2) /1 . ODO/, 
* MN(3)/0.7D0/, MYMEPS(3)/1. ODO/, MF(3)/2.0D0/, 
* 1ýN(4) /0.9D0/IVEPS(4) /5. ODO/, MF(4) /3.0D0/, 
* MN(5) /1 . 0D0/, MEPS(5) /10.0D0/ 

, MF(5) /5. OD0/, 
MF(6)/7. ODO/, 

* MF(7)/10. ODO/, 
* MF(8)/15. OD0/, 
+ RMF(9)/20. ODO/, 
+ MF(10)/30.0DO/, 
+ MF(1 1) /50. ODO/, 
* MF(12)/60. ODO/, 
* MF(13)/70. ODO/, 
*M 1F(14) /80.0D0/ 

, 
+ MF(15)/100. ODO/, 
+ NC/3/, NUT/1 OOO/, NR/20/ LAVAL/ 11 , h'AX/ 10000/ 

2333 FORMAT( //7X, I NUMER1 ) 
3333 FORMAT(41H OF CYCLES STEP/CYCLE RADIAL DIV. 
4444 FORMAT (1112,1115,1113) 

9999 FOE AT(30HH FOURIER COEFFICIENTS: A'S) 
7717 F01ý1AT(3OH FOURIER COEFFICIENTS: E'S) 
4445 FOR-, 1AT(5X, 'NO. OF SIM OSCILLATIONS IN PRESSIRE VALI. ES', 113) 

WRITE(6,2333) 
WRITE(6,3333) 
1: R ITE(6,4444)NC, NUT, NR 

1111 FOP! AT(1F13.3,1F14.3,1F14.3) 
2222 FORMAT (41H VISCOSITY EPSILON F) 

C 
C VARIABLE LIST 

NCC=NC+1 
NUT 1=N Uf+1 
N UTM 1=N IJr-1 



DELR=1.0/(UILE(FLOAT(NR))) 
NR1=NR+1 
DELT=1/(DBLE(FLOAT(NUT))) 
NRM1=NR-1 
COlNT=O 
P I=4. OD0"DATAN(1. ODO) 

C 
C INITIAL CONDITIONS 

DO 1 I=1 , NR 
V(I, 1)=0. ODO 

I COVT IN UE 
V(NR1,1)=O. ODO 

C RADIAL DIVISION 
R(1)=0.0D0 
DO 6 1=1, NR 
R(I+1)=R(I)+DELR 

6 COUNT IN UE 
C 

T(1)=0. ODO 
DO 1812 IX=4,4 
N=1"N( IX) 
ALPHA=((3. ODO*N+1. ODO)/N)**N 
NN=N-1 
NNN=N+1 
DRNNN=(1. ODO/DELR)**NNN 
DO 1944 J X=2,2 
EPS=MEPS (J X) 
DO 1957 KX=5,5 
F=, MF(KX) 
MtULTAE=2. ODO*ALPtiA*EPS*P I *F/8. ODO 
NR ITE(6,2222) 
1"1R ITE(6,1 11 1)N, EPS, F 
1'WRITE(6,9999) 
WRITE(6,7777) 
IYRITE(6,4321) 
%RITE(6,2057) 

2057 FORt, 4AT(5X, 43H ------------------------------------- 
WRITE(1,1111)N, EPS, F 

C: IMrPLEMENT ING FINITE DIFFERENCE SCHEME 

CTR=O 
7 CTR2=0 

Nl!, 1=0 
`. E'11=1 
FLAG=O 
Do 2 J=1, NUT 
T(2)=T(1)+DELT 
T(2)=2. OD0*P1*T(2) 
T(1)=2. ODO*P$*T(1) 
1 2=) +1 
V(NR1,2)=O. 0D0 
W(1)=V(2,1)-v(1,1) 
GRR1=(4. ODO*V(NR, 1)-V(NR%111))/(2.0D0*DELR) 
DSCN1=DABS (GRR1) **N 
DSGV2= DABS(w(1))**N 
V(1,2)=MULTAE*(-1. OD0) *DSIN(T(1))+2. OD0*DSIGN(DSCI\11, GRR1) 

+4. ODO*DSIGN(DSGN2, w(1))*(1. OD0/DELR)**NNN 



V(1,2)=V(1,2)*DELT*8. ODO/(F*ALPFIA)+V(1,1) 
DO 3 1=2, NR 
K2=1+1 
A) =A; ULTAE* (-1 . ODO) *DS IN(T(1))+2. OD0"DS IQN(USGN1 GRR1 ) 
DRN=DELR**N 

C 

C 

C 
C 

C 
C 
C 

DRN=1.0 D0 / DRN 
DSGN3=DABS(V(K2,1)-V(I, 1))**N 
DSCN4=V(K2,1)-V( 1,1) 
BIJ=(R(i)+DELR/2. ODO)*DSICN(DSCN3, DSQN4) 
DSCTI5=V( I, 1)-V( 1-1 

, 
1) 

DSGN6=DABS(DSCN5)**N 
C IJ =(R(I )-DELR/2. ODO) *DS IG4(DSG 6, DSCN5) 
V(I, 2)=Aj+(1. ODO/R(1))*DRNNN*(BI) -CIJ) 
V(I, 2)=V(I, 2)*DELT*8.0D0/(F*ALPHA)+V(I, 1) 
CONTINUE 

CTR=CTR+1 
IF(CTR. NE. NVAL)CO TO 17 
CTR2=CTR2+1 
CTR=O 
CALCULATING THE NON-DIMENSIONALISED FLOW RATE 
DO 12 L1=1, NR1 
INT(L1)=V(L1,2)*R(L1)*2. OD0 

12 CONTINUE 
INT(2)=4. ODO*INT(2) 
INT(3)=2. OD0*INT(3) 
DO 13 L2=4, NR, 2 
INT(L2)=INT(L2)*4. ODO+INT(L2-2) 

13 CONTINUE 
DO 14 L3=5, NRM1,2 
I NT(L3) =I NT(L3) *2.0DO+ I NT(L3-2 ) 

14 CONTINUE 
TOTAL=INT(1)+INT(NR)+INT(NRP, 11)+INT(NR1 ) 
QN 1.1,1=DE LR* TOTAL/ 3. ODO 
MODIFYING THE NON-DIMENSIONALISED VELOCITIES 
USING THE NON-DIMENSIONALISED FLOW RATE. 
DO 15 L4=1 , NR1 
EPSS=1. ODO+EPS*DCOS(T(2)) 
EPSTAR=3. ODO* (EPSS-QNU. 1) 
V(L4,2)=V(L4,2)+EPSTAR*(1. ODO-R(L4)) 

15 CONTINUE 
17 CONTINUE 

CALCULATING THE PIORMALISED 
PRESSURE GRADIENTS. 

GRAD= (4. ODO*V(NR, 2)-V(NRM1,2))/(2. OD0*DELR) 
DS(N7=DABS(GRAD)**N 
GRAD=DS I G4 (DS QJ7 , GRAD ) 
GR1=(4. ODO*V(NR, 1)-V(NRh11,1))/(2. ODO*DELR) 
DSCN8=DAL! S (GR1) **P4 
IF(J. GT. 1)GO TO 77 

PSTAR(1)=DS1a'l(DSGN7, GR1) 
PSTAR(1)=PSTAR(1)/ALPHA 
DIFFP(1)=0. OD0 

77 CONTINUE 
PSTAR(J2)=(F/16. ODO)*(-2. OD0*PI*EPS*DSIN(T(2))) 

0. I +G[. AD/ALPHA 



, DIFFP(J 2)=PS TAR (j 2)7-PS TAR (j 2-1 
T(1)=T(2)/(2. OD0"PI) 
DO 44 KK=1, NR1 
V(KK, 1)=V(KK22) 

44 CONTINUE 

C 

231 
2 

C 
C 

1235 
1234 
1236 

4321 

C 

MEh12=-1 
IF(DIFFP() 2) . GT. O)A', EN12=1 
IF(MEM2. EQ. MEM1)CO TO 231 

MEM1 =+11EM2 
FLAG=FLAG+1 
IF(FLAG. LE. 1)GO TO 2. 

Ntk=NUº1+1 
WRITE(6,11111 )NUb1 
IF (N U11. GT. MAX) GD TO 8 
FLAG=0 
CONTINUE 
WRITE(1,11111)NIM 

FOURIER ANALYS1S OF 
NORMALISED PRESSURE GRADIENTS. 

CALL FANAL (P STAR, DELT, PI, NUr, NUrl, NUTA11, 
* , MEAN, A1, A2, A3, A4, A5, B1, B2,03, 
* 84, B5, AMPL, ARG) 

FORMAT(1F14.5,2F10.5,1110) 
FORMTAT(//1F14.5,11F10.5) 
FO11AT(1F14.5,11F10.5) 
WRITE(6,1234)A1A2, A3, A4, A5 
%JRITE(6,1236)B1, B2, B3, B4, B5 
PHASE=DATAN(-B1/A1) 
PHASE=PHASE*180/PI 
COINT=CO WT+ 1 
FORMAT (3 4H MEAN AMP L CO WT) 
WRITE(6,1235)MEAN, IMPL, PHASE, COI, NT 
V'. R ITE(1 , 1235) PHASE 
WR ITE(1 , 1235)MEAN, AMPL, COWT 
WRITE(1,1235)COI. NT, MEAN 
CONT I NIE 

IF(COWT. EQ. NC)GO TO 8 
T(1)=0. ODO 
GO TO 7 
FORMAT(12110) 
CONTINUE 
COt1JT=0 
T(1)=0. OD0 
DO 112 1=1, NR1 
V(1,1)=0.000 
CONTINUE 

11111 
8 

112 
1957 
1944 
1812 

CONTINUE 
CONTINUE 
CONTINUE 
WRITE(6,2057) 
%VRITE(6,4445)NLM 
WRITE(6,2057) 
STOP 
END +'s 

C ----------------------------------------------------- 
SlCROUTINE, FANAL(PSTAR, DELT, P 1, NUT, 



*N* 
B5, AMPL, ARG) 

INTEGER NUT1 , NUT, NUTN11 
DOUBLE PRECISION PI, MEAN , Al , A2 , A3 , A4 , A5 , 

* Bl 62, B3, B4, B5, ANT L, ARG, 
* PSTAR(40010), 
* X, DELT, 
* TOTALC, TOTALS, TOTC(5), TOTS(5), 
* TOTALO, CF(5), SF(5), CE(S), 
* SE(5), CO(5), SO(5), CL(5), SL(5) 

C 
DO 1 I=1,5 
CF(I)=2. ODO*PSTAR(1) 
SF(I)=0.0D0 
CE(I)=2. ODO*PSTAR(2)*DCOS(DELT*2. ODO*I*PI) 
SE(I)=2. ODO*PSTAR(2)*DSIN(CELT*2. ODO*I*PI) 
CO(I)=2. ODO*PSTAR(3)*DCOS(DELT*4. ODO*I*PI) 
SO(I)=2. ODO*PSTAR(3)*DSIN(DELT*4.000*I*PI) 
CL(I)=2. ODO*PSTAR(N UTI)*DCOS(DELT*NUT*I*2. ODO*PI) 
SL( I)=2. ODO*PSTAR(N UT1)*D5IN(DELT*N UT*1*2. OD0*PI) 

1 CONTINUE 
C WRITE(1,1000)(CF(I), 1=1,5) 
C VVRITE(1 , 1000) (SF( I ), I=1 , 5) 
C 14RITE(1,1000)(CE(1), I=1,5) 
C V, RITE(1,1000)(SE(I), 1=1,5) 
C WRITE(1,1000)(CO(I), 1=1,5) 
C WRITE(1,1000)(SO(I), 1=1,5) 
C \RITE(1,1000)(CL(I), 1=1,5) 
C WRITE(1,1000)(SL(I), 1=1,5) 

1000 FORMAT(1OF10.4) 
DO 90 I=4, NUT, 2 
X=(1-1)*DELT*2.0D0*PI 
DO 2 J=1,5 
CE(J)=CE(J )+2. ODO*PSTAR(I)*DCOS(J *X) 
SE(J)=SE(J )+2. ODO*PSTAR( 1)*DSIN(J *X) 

2 CONTINUE 
C WRITE(1,1000)(CE(K), K=1, S) 
C WRITE(1,1000)(SE(K), K=1,5) 

90 CONTINUE 
DO 91 1=5, NUTß71,2 
X=(I-1)*DELT*2. ODO*PI 
DO 3 J=1,5 
CO(J)=CO(J )+PSTAR(I)*2. ODO*COS() *X) 
SO (j )=SO(j)+2. ODO*PSTAR( I) *DS IN(J *X) 

3 CONTINUE 
C V: RITE(1,1000) (CO(K), K=1,5) 
C %VRITE(1,1000) (SO(K), K=1,5) 

91 CONTINUE 
DO 4 1=1,5 
CE( I)=CE(I)*4. ODO 
SE(I)=SE(1)*4. ODO 
CO(I)=CO(I)*2.0D0 
SO(I)=SO(I)*2. ODO 

4 CONTINUE 
TOTALC=CF(1)+CE(1)+CO(1)+CL(1) 
TOTALS=SF(1)+SE(1)+SO(1)+SL(1) 
DO 6 1=2,5 



TOTC(I)=CF(1)+CE(I)+CO(I)+CL(I). 
TOTS(I)=SF(1)+SE(I)+SO(i)+SL(I) 

6 CONTINUE 
A1=TOTALC*DELT%3.000 
131=TOTALS*DELT/3. ODO 
A2=TOTC(2)*DELT/3. ODO 
B2=TOTS(2)*DELT/3.000 
A3=TOTC(3)*DELT/3. ODO 
B3=TOT5(3)*DELT/3.000 
A4=TOTC(4)*DELT/3. ODO 
B4=TOTS(4)*DELT/3. ODO 
A5=TOTC(5)*DELT/3. ODO 
B5=TOTS(5)*DELT/3. ODO 
ARG=Al *Al+81*B1 
AN L=DSQRT(ARG) 
PSTAR(2)=4. ODO*PSTAR(2) 
PSTAR(3)=2. ODO*PSTAR(3) 
DO 53 N2=4, NLJT, 2 
PSTAR(N2)=PSTAR(N2)*4. ODO+PSTAR(N2-2) 

53 CONTINUE 
DO 54 N3=5, NUTM1,2 
PSTAR(N3)=PSTAR (N3)*2. ODO+PSTAR(N3-2) 

54 CONTINUE 
TOTALO=PSTAR(1 ) +P STAR(NUT) +P STAR(NUTM1)+PSTAR(NUT1) 
MEAN=DELT*TOTALO/3. OD0 
RETURN 
END 



PROGRAM 
-5 

THIS PROGRAM CALCULATES THE NORMALISED MEAN PRESSURE 

GRADIENT FROM THE POWER LAW MODEL PERTURBATION ANALYSIS. 



10 REM PROGRAM TO CPJ CULATE NORMALISED MEAN PRESSURE GRADIENT 
20 RFM FROM THE POWER LAW MODEL PERURBATION ANALYSIS 
30 : 
40 DIM Y(100), Z(100) 
50 N=. 9 
60 E=10 
70 ND=100 
80 F(1)=1: F(2)=2: F(3)=3: F(4)=4: F(5)=6: F(6)=8 
90 P1=3.1415927£ 
100 P2=2*P1 
110 FOR I=0 TO ND 
120 U=P2*I/ND 
130 Q=1+E*COS(U) 
140 Y(I)=(ABS(Q))AN*SGN(Q) 
150 Z(I)}E*P2*P2*COS(U)*(ABS(Q))^(1-N) 
160 NEXT I 
170 GOSUB 340 
180 Q0=RESULT 
190 GDSUB 400 
200 Q1=RESULT 
210 K1=N*(3*N+1)*Q1/(512*(2*N+1)"2*(5*N+3)) 
220 FOR I=1 T0 6 
230 Q=O+F(I)*F(I)*K1 
240 PRINT Q; " 
250 NEXT 
260 PRINT 
270 F(1)=10: F(2)=15: F(3)=20: F(4)=25: F(5)=30: F(6)=35 
280 FOR I=1 TO 6 
290 QUO+F(I)*F(I)*K1 
300 PRINT Q; " "; 
310 NEXT I 
320 PRINT 
330 END 
340 S1=0: S2=0 
350 FOR I=1 TO ND-1 STEP 2: S1=S1+Y(I): NEXT 
360 FOR I=2 TO ND-2 STEP 2: S2=S2+Y(I): NEXT 
370 RESULT=(Y(0)+4*S1+2*S2+Y(ND))/(3*ND) 
380 RETURN 
390 : 
400 S1=0: S2=0 
410 FOR I=1 TO ND-1 STEP 2: S1=S1+Z(I): NEXT 
420 FOR I=2 TO ND-2 STEP 2: 5252+Z(I): NEXT 
430 RESULT=(Z(0)+4*S1+2*S2+Z(ND))/(3*ND) 
440 RETURN 



PROGRAM 6 

THIS PROGRAM CALCULATES THE THEORETICAL NORMALISED MEAN 
PRESSURE GRADIENTS WHEN FLUID INERTIA IS IGNORED. 



C 
C 

C THIS PROGRAM CALCULATES THE THEORETICAL 
c NORMALISED MEAN PRESSURE GRADIENTS. 
C FLUID INERTIA HAS BEEN IGNORED. 
C 
C 

INTEGER NR, NRP1, NIM1 
DOUBLE PRECISION DELR, INT(200), TOTAL, PR(10), 

X(200), ARG, N(10), EPS(10) 
DATA EPS(1)/. 1/, EPS(2)/0.5/, EPS(3)/1.0/, 

* EPS(4)/5.0/, EPS(5)/10.0/, EPS(6)/50.0/, EPS(7)/100.0/ 
* N(1)/. 3/, N(2)/. 4/, N(3)/. 5/, N(4)/. 6/, 
* N(5)/. 7D0/, N(6)/. 8D0/, N(7)/. 9D0/, N(8)/1.0D0/, 
* NR/100/, NOUT/6/ 

C 
C 

600 FOF IAT(4X, 'EPS', 5X, 1F3.1,8X, 1I1,9X, 111,8X, 112,8X, 
* 112,8X, 113) 

800 FOE AT(5X, 'NI) 
WRITE(NOUT, 600)EPS(2), (IDINT(EPS(I)), 1=3,7) 
WR I TE (NOUT, 80 0) 
00 5 J=1,8 
DO 6 K=1,7 

C 
PI=4.0D0*DATAN(1.0D0) 
NRM1=NR-1 
N RP 1=N R+ 1 
DELR=2*PI/100. ODO 
DO 1 1=1, NRP1 
X(I)=(I-I)*DELR 

1 CONTINUE 
DO 2 1=1, NRP1 
ARG=X(1) 
IF(DABS(1+EPS(K)*DSIN(ARG)). LT. 0.000001)GD TO 7 
INT(1)=(1+EPS(K)*DSIN(ARG))*DABS(1+EPS(K)*DSIN(ARG)) 

« **(N(1 )-1) 
GO TO 2 

7 INT(I)=0.0 
2 CONTINUE 

INT(2)=4. ODO*INT(2) 
INT(3)=2. ODO*INT(3) 
DO 3 1=4, NR, 2 
INT(I)=INT(I)*4.0DO+INT(I-2) 

3 CONTINUE 
DO 4 1=5, N-k11,2 
INT(1)=INT(I)*2. ODO+INT(1-2) 

4 CONTINUE 
TOTAL=INT(1)+INT(NR)+INT(NRA11)+INT(NRP1) 
PR(K)=DELR*TOTAL/3. ODO 
PR(K)=PR(K)/(2.0DO*PI) 

6 CONTINUE 
%RITE(NOUT, 500)N(J ), (PR(KK) KK=2,7) 

500 FORMAT(J1F7.1,7F10.4) 
5 CONTINUE 

STOP 


