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ABSTRACT 

If wave energy is to become a fully-fledged renewable, its environmental impacts 

must be fully understood. The objective of the present work is to examine the impact of 

a wave farm on the beach profile through a case study. The methodology is based on 

two coupled numerical models: a nearshore wave propagation model and a 

morphodynamic model, which are run in two scenarios, both with and without the wave 

farm. Wave data from a nearby coastal buoy are used to prescribe the boundary 

conditions. A positive effect on the wave climate, cross-shore sediment transport and, 

consequently, the evolution of the beach profile itself due to the presence of the wave 

farm was found. The wave farm leads to a reduction in the erosion of the beach face. 

This work constitutes the first stage of the investigation of the effectiveness of a wave 

farm as a coastal defence measure, and the accuracy of the quantification of the erosion 

reduction will be enhanced in future research. In any case, the overarching picture that 

emerges is that wave farms, in addition to providing carbon-free energy, can be used as 

elements of a coastal defence scheme. 

Keywords: Wave energy; Wave farm; Wave Energy Converter; Nearshore impact; 

Beach profile; Erosion 
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1. INTRODUCTION 

Marine renewable energy and, in particular, wave energy is called to play a major 

role in achieving the renewable energy targets of the European Union for 2020 – the so-

called 20-20-20 targets (European Commission, 2007). Among other advantages, wave 

energy boasts one of the highest energy densities of the renewable energy sector  

(Clément et al., 2002). At present, the main research areas in wave energy are: (i) the 

characterisation of the resource (Cornett, 2008; Iglesias and Carballo, 2009; 2010; 2011; 

Pontes et al., 1996; Vicinanza et al., 2013); (ii) the development of the technology 

(Falcão, 2007; Falcão and Justino, 1999; Kofoed et al., 2006); and, finally (iii) the 

environmental impact of wave farms, including the impact on the physical environment 

with which this work is concerned. 

Knowledge of the impacts, positive or negative, is important for the development of 

the different types of marine energy because an Environmental Impact Assessment 

(EIA) is required for any such project. In the case of wave energy, the studies so far 

have dealt with the impact of a wave farm on the wave conditions in its lee. As waves 

propagate through the wave farm, their height is reduced according to an energy 

transmission coefficient. This coefficient depends on the performance of the Wave 

Energy Converters (WECs) selected. Millar et al. (2007) used SWAN (Booij et al., 

1999), a phase-averaged spectral model, to quantify the impact on the wave climate and 

the shoreline changes for the Wave Hub project (UK). Notional values of the 

transmission coefficient (0, 40, 70 and 90%) were used due to the lack of information 

about the performance of the WECs at the time. In the same vein, Palha et al (2010) 

used the parabolic mid slope wave model REFDIF to perform a sensitivity analysis to 

study the impact on the shoreline using different layouts for the wave farm; and Vidal et 
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al. (2007) studied the impact of a small wave farm on the wave climate and the 

nearshore sediment transport. 

Another line of work used physical modelling to investigate wave-WEC interaction. 

Carballo and Iglesias (2013) studied the modification of the nearshore wave climate 

using values of the energy transmission coefficient obtained from ad hoc physical 

model tests of a WaveCat WEC (Iglesias et al., 2008). Taking into account these values, 

a sensitivity analysis was performed with different layouts of the wave farm to assess its 

impact on the nearshore wave conditions. Mendoza et al. (2014) compared the impact of 

two wave farms with different WECs on the coastline. The results showed that a wave 

farm nearshore could produce accretion to some extent in some sections of the beach. In 

this context, Ruol et al. (2011), Nørgaard et al. (2011) and Zanuttigh and Angelelli 

(2013) put forward the idea of using a wave farm for shore protection based on the 

reduction of the nearshore wave height caused by the wave farm. 

If a wave farm is to be used for the purpose of coastal protection, it is essential to 

understand its impact on the beach profile – an aspect of great practical relevance that 

has not been investigated so far. This is the main objective of the present work, which is 

conducted through a case study: Perranporth Beach.   

Perranporth Beach is a 3 km sandy beach located in Cornwall, SW England (Figure 

1). Composed of medium quartz sand  (Austin et al., 2010), it has a semi-diurnal tidal 

regime and a tidal range of 6.3 m (macrotidal). The area has a great potential for wave 

energy (Thorpe, 2001) ; indeed, it was selected as the site for the Wave Hub Project, a 

grid-connected offshore facility for sea trials of WECs (Gonzalez et al., 2012; Reeve et 

al., 2011). The study covered the period from November 2007 to May 2008, 

corresponding to the part of the annual cycle with the highest frequency of storms based 
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on the onsite wave buoy data (Section 2.1). This time scale allows the assessment of the 

morphological changes in beaches, such as scarp formation, profile erosion and 

accretion, and bar evolution (Cowell and Thom, 1994). 

 

Figure 1 Bathymetry of SW England including the location of Perranporth Beach and the WaveHub 

Project [water depths in m]. 

Wave propagation was simulated using SWAN and the beach profile evolution with 

XBeach, a numerical model of nearshore processes (Roelvink et al., 2006). XBeach was 

successfully applied in a number of studies to describe the behaviour of beach profiles. 

Roelvink et al. (2009) assessed the beach erosion due to storms and McCall et al. (2010) 

focussed on the impact caused by hurricanes. Other authors, such as Jamal et al. (2011) 

and Williams et al. (2012) , used XBeach to investigate gravel beaches. More recently, 

Pender and Karunarathna (2012, 2013) demonstrated that XBeach is capable of 

modelling the medium-term evolution of the beach profile of a sandy beach. Their 

results showed a good fit to the measured profiles after each storm period. On these 

grounds, XBeach is used in the present work to compare the evolution of the beach 

profile with and without the presence of a wave farm situated close to Perranporth 

Beach. 
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This article is structured as follows. In section 2, the main characteristics of the data 

sets – which include wave, wind, tide and beach profile data – are presented, and the 

models are briefly described. This is followed by section 3, in which the results 

describing the impact of the wave farm on the wave conditions and the evolution of the 

beach profiles are presented and discussed. Finally, in Section 4, conclusions are drawn 

concerning the effects of a wave farm on the beach profile and, on these grounds, its 

applicability for coastal protection purposes. 

2. MATERIALS AND METHODS  

2.1 DATA  

The wave data used for this study were hindcast and onsite wave buoy data. The 

directional wave buoy of the Coastal Channel Observatory located in front of 

Perranporth beach (Figure 2), in approximately 10 m of water depth with reference to 

the local chart datum (LCD), provided half-hourly data. The wave buoy data were used  

in conjunction with hindcast data from WaveWatch III, a third-generation offshore 

wave model consisting of global and regional nested grids with a resolution of 100 km 

(Tolman, 2002), to validate the high-resolution nearshore wave propagation model. In 

the period selected for the study, from November 2007 to April 2008, a number of 

storms with significant wave heights over 6 m occurred (Figure 5). The mean values of 

significant wave height, Hs, and peak wave period, Tp, were 2.4 m and 13 s, 

respectively. Given the orientation of the coastline and its exposure to the long Atlantic 

fetch, the relevant wave direction is from the IV quarter (from W to N), prevailing NW.  
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Figure 2 Initial beach profiles (P1 and P2) including their location and the position of the wave buoy. 

Water depth in relation to local chart datum 

Wind data with a three-hourly frequency obtained from the Global Forecast System 

(GFS) weather model were used as input of the wave model. In the period covered in 

the study the mean wind velocity magnitude at a height of 10 m above the sea surface 

was u10 = 9.5 ms−1. The strongest winds came from the NW, with u10 values exceeding 

20 ms−1.  

The SW coast of England is characterised by a large tidal range, which may affect 

the beach morphodynamics. For this reason, the tide was included into the 

morphodynamic model with constituents obtained from the TPXO 7.2 global database, 

a global model of ocean tides that solves the Laplace equations using data from tide 

gauges and the TOPEX/Poseidon Satellite (Egbert et al., 1994) . 

The beach profiles were obtained through field survey by the Coastal Channel 

Observatory. The initial profiles (Figure 2), typical of the end of summer at Perranporth 

Beach, are associated with less energetic wave conditions. The beach profile evolution 

is characterised during the summer by an increase of the sediment transport onshore. In 

contrast, offshore movement of sediment is the predominant phenomenon during the 

winter owing to the more energetic wave conditions, which results in a lowering of the 
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intertidal beach face. Indeed, most of the profile change at Perranporth Beach occurs in 

the lower intertidal to sub-tidal active regions (Scott et al., 2011).  

2.2 WAVE PROPAGATION MODEL 

The assessment of the wave height reduction on the shore due to the wave farm was 

carried out using SWAN (Simulating WAves Nearshore), a third-generation numerical 

wave model developed to model nearshore wave climate transformations. SWAN 

computes the evolution of the wave spectrum based on the spectral wave action balance 

equation,  

( ) ( ) ( )θ σ
C N C NN S

CN   
t θ σ σ

∂ ∂∂ + ∇ ⋅ + + =
∂ ∂ ∂

r
  (1) 

 where N is the wave action density, t the time, C
r

 the propagation velocity in the 

geographical space, θ the wave direction, σ the relative frequency, and Cθ and Cσ the 

propagation velocity in the θ- and σ-space, respectively. Therefore, on the left-hand side 

of equation (1), the first term represents the rate of change of wave action in time, the 

second term describes the spatial propagation of wave action, and the third and fourth 

terms stand for the refraction and changes in the relative frequencies respectively 

induced by depth and currents. Finally, on the right-hand side, S is the source term 

representing the generation and dissipation of energy density by the different processes 

involved. 
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Figure 3 Computational grids of the wave propagation model [water depths in m]. Profiles P1 and P2 

are shown. 

In the present study two computational grids were used: (i) a coarse grid from 

offshore to the coast encompassing an area of approx. 100 km × 50 km with a resolution 

of 400 m × 200 m; and (ii) a fine, nested grid focussed on Perranporth Beach, covering 

an area of approx. 15 km × 15 km with a resolution of 20 m × 20 m. The high resolution 

of the nested grid allowed to define the position of the WECs in the array and simulate 

their individual wakes with accuracy. This is a prerequisite to a detailed assessment of 

the wave farm effects on the beach profile (Carballo and Iglesias, 2013). The 

bathymetric data, from the UK data centre Digimap, were interpolated onto this grid. 

 

Figure 4 Schematic of wave farm considered off Perranporth Beach, at a distance of approx. 7 km 

from the shoreline [water depths in m]. Profiles P1 and P2 are shown. 
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To study the effects of wave energy exploitation on the beach profile an array of 11 

WaveCat WECs arranged in two rows was considered. With the same layout as in 

Carballo and Iglesias (2013), the array was located in a water depth of 35-40 m (Figure 

4). The distance between devices was 2.2D, where D = 90 m is the distance between the 

twin bows of a single WaveCat WEC. Finally, the wave transmission coefficient of the 

WECs, obtained from the laboratory tests carried out by Fernandez et al. (2012), was 

input into the coastal propagation model. Based on the results of these tests, which 

showed a very small variability in the wave transmission coefficient (with the exception 

of an outlier), the value Kt = 0.76 was adopted. This constitutes an approximation in that 

the tests carried out by Fernandez et al. (2012) did not cover all the wave conditions 

simulated in the present work; in future work, as more experimental data on WEC 

behaviour become available, this approximation will be refined.  

2.3 MORPHODYNAMIC MODEL 

The input conditions to XBeach were obtained from the output of the SWAN wave 

propagation model. XBeach is a two-dimensional model for wave propagation, long 

waves and mean flow, sediment transport and morphological changes of the nearshore 

area, beaches, dunes and back barrier during storms. XBeach concurrently solves the 

time-dependent short wave action balance, the roller energy equations, the nonlinear 

shallow water equations of mass and momentum, sediment transport formulations and 

bed update on the scale of wave groups (Roelvink et al., 2006).  

The sediment transport is modelled with a depth-averaged advection diffusion 

equation (Galappatti and Vreugdenhil, 1985). The equation is: 

( ) ( ) ( )
  

E E
eq

s s
S

hC hChC hCu C hCv C
D h D h

t x x x y y y T

− ∂ ∂ ∂ ∂ ∂ ∂ ∂ + + + + =  ∂ ∂ ∂ ∂ ∂ ∂ ∂   
  (2) 
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where C represents the depth-averaged sediment concentration, which varies on the 

wave-group time scale, Ds is the sediment diffusion coefficient, the terms uE and vE 

represent the Eulerian flow velocities, Ts is the sediment concentration adaptation time 

scale that depends on the local water depth and the sediment fall velocity, and Ceq is the 

equilibrium concentration, thus representing the source term in the sediment transport 

equation. The sediment transport formula defined by Van Thiel de Vries (2009) was 

used to determine the sediment equilibrium concentration.  

In the present study, the model was applied in 1DH mode (x, z) to simulate the 

beach profile evolution. From the results of the nearshore wave propagation model, 

spectra with a frequency of 6 hours were obtained with and without the wave farm to 

compare the impact on the coast. These spectra were the input of the morphodynamic 

model, which provided beach profile results every 6 minutes to compare the evolution 

of the profile in both cases.   

A varying grid size was employed in the morphodynamic model: the resolution was 

defined as a function of the water depth and the offshore wave conditions, and subjected 

to the grid size smoothness constraints. On these grounds, the Courant condition was 

applied to find the optimal grid size. The optimised grid was coarser in high water 

depths and finer in the intertidal zone, where a size of 1 m was adopted so as to 

accurately characterise the evolution of the profile.  

Finally, to describe properly the behaviour of the beach, the time series of wave 

data was broken down into a number of segments. These segments were grouped into 

two types, Type A (Accretion) and Type E (Erosion), depending on the values of the 

wave parameters and the consequent nature of the beach profile changes, either 

accretionary or erosionary.  Type A, associated with calm conditions, was set with a 
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stationary constant wave energy distribution, based on given values of root mean square 

wave height (Hrms), mean absolute wave period (Tm01), mean wave direction (θm) and 

directional spreading coefficient (s), obtained from the nearshore wave propagation 

model. Type E, associated with storm periods, used the parametric spectra as input to 

create time-varying wave amplitudes, i.e., the envelopes of wave groups (Van Dongeren 

et al., 2003). The difference in approach between the two categories is the way that 

wave groups were treated. Type A segments included wave groups, as they are 

important to describe the behaviour of the beach during erosion conditions. In contrast, 

wave groups were not taken into account in Type E segments because this would result 

in an overestimation of erosion (Baldock et al., 2010). 

2.4 ASSESSMENT OF THE IMPACT OF THE WAVE FARM ON THE BEACH PROFILE 

To quantify the impact of the wave farm on the beach profile the following 

parameters were defined: the Bed Level Impact (BLI), the eroded area in the baseline 

scenario (A), the eroded area in the presence of the farm (Af), and the Erosion Impact 

(EI) index.  

The bed level impact (BLI, in m) was defined as 

( ) ( ) ( ) ,fBLI x x xζ ζ= −   (3) 

where x is the horizontal coordinate along the profile, ζf(x) is the bed level in the 

presence of the farm, and ζ(x) is the bed level in the baseline scenario. The BLI index 

represents the change in the bed level drop due to the shelter afforded by the wave farm. 

For their part, the eroded area in the baseline scenario (A, in m3 per linear metre of 

beach) and the eroded area in presence of the farm (Af, in m3 per linear metre of beach) 

were defined as 
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[ ]
max

0

0( ) ( ) ,
x

x

A x x dxζ ζ= −∫   (4) 

max

0

0( ) ( ) ,
x

f f

x

A x x dxζ ζ = − ∫   (5) 

where ζ0(x) is the initial bed level and xmax and x0 are the limits of integration, with 

xmax the maximum value of the x coordinate (which corresponds to the landward end of 

the profile) and x0 the value corresponding to a bed level of 0, i.e., ( )0 0xζ = .  

Finally, the Erosion Impact (EI, in %) index was defined as 

( ) [ ]
max

0

1

0
max 0

1
( ) ( ) ( ) ( )

x

f

x

EI x x x x dx
x x

ζ ζ ζ ζ −
 = − − − ∫   (6) 

EI index is a dimensionless parameter that represents the reduction of the eroded 

area brought about by the wave farm as a fraction of the total eroded area. 

3. RESULTS AND DISCUSSION 

3.1 WAVE PROPAGATION MODEL 

The results obtained from the nearshore wave propagation model were validated 

with the wave buoy data during the period from November to December 2007 and 

February to April 2008 owing to the lack of data during January. A very good fit was 

achieved between the simulated and measured time series (Figures 5 and 6). This is 

further confirmed by the error statistics: RMSE = 0.46 m and R2 = 0.84 (with RMSE the 

Root Mean Square Error and R2 the coefficient of determination).  
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Figure 5 Time series of simulated (Hs,SWAN) and measured (Hs,buoy) significant wave height. 

 

 

Figure 6 Scatter diagram: simulated (Hs,SWAN) vs. measured (Hs,buoy) significant wave height. 

Having validated the numerical model, it was used to compare the wave patterns 

with and without the wave farm and to determine the wave conditions that were used as 

input to the morphodynamic model. As an example of the effects of the wave farm on 

the wave patterns, the wave propagation corresponding to the peak of a storm on 10 

March 2008 is shown in Figure 7. The deep water wave conditions were: significant 

wave height, Hs0 = 10.01 m; peak wave period, Tp = 15.12 s; and peak wave direction, 

θp = 296.38 °. A substantial decrease of the significant wave height, exceeding 30% 

along the wakes of the WECs, is apparent in the more detailed graph of wave farm area 

(Figure 8). This decrease is less marked on the beach itself. In the northern section of 
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the beach the reduction of wave height is more pronounced than elsewhere owing to the 

deep water wave direction (approx. WNW).   

 

Figure 7 Significant wave height in the baseline scenario (Hs) and in the presence of the farm (Hsf) at 

the peak of a storm (10 Mar 2008, 18:00 UTC) [deep water wave conditions: Hs0 = 10.01 m, Tp = 15.12 s, θp = 

296.38 °]. Profiles P1 and P2 are shown. 

 

Figure 8 Significant wave height (Hsf) within the wave farm at the peak of a storm (10 Mar 2008, 

18:00 UTC) [deep water wave conditions: Hs0 = 10.01 m, Tp = 15.12 s, θp = 296.38 °]. 

The average reduction of the wave energy flux, J, during the period studied at 

different points along the 10 m contour is shown in Table 1. The areas most sheltered by 

the wave farm are the middle and, especially, northern sections of the beach. On these 

grounds two profiles in the northern and middle sections of Perranporth Beach were 

selected for the analysis of the impacts of the wave farm (Figure 2).  
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Beach Point 
Coordinates 

∆Hs (%) ∆J (%) 
Easting (°) Northing (°) 

North -5.17 50.36 3.26 13.25 

Middle -5.18 50.35 1.75 7.90 

South -5.21 50.34 0.70 0.93 

Table 1 Significant wave height reduction (∆Hs) and wave power reduction (∆J) caused by the wave 

farm at different points along the 10 m contour. 

3.2 MORPHODYNAMIC MODEL 

The impact of the wave power reduction on the beach was studied through the 

evolution of the two profiles of Perranporth Beach. This was carried out using the 

spectra generated by the wave propagation model with and without the wave farm in the 

morphodynamic model. The series were split, as explained in Section 2.3, to describe 

suitably the behaviour of the beach in different periods. The results showed that type E 

segments are mainly responsible for the erosion of the profiles.  

 

Figure 2 Bed level at Profile P1 and P2: initial [1 Nov 2007, 0000 UTC] and after three months with 

and the wave farm [22 Jan 2008, 15:47 UTC]. 
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Figure 9 shows the evolution of the initial profiles 1 (P1) and 2 (P2) after a storm. 

The graph compares the initial beach profiles with those after three months of operation 

of the wave farm. Both graphs illustrate that the erosion of the profiles is concentrated 

mainly in the beach face, which is the section of the profile exposed to wave uprush. 

The eroded material is moved to a lower section of the profile. 

To better visualise the effect of wave energy extraction, the situation of profile P2 

with and without the farm is shown in Figure 10. The reduction of the wave energy flux 

at the beach leads to a substantial reduction (of the order of 3 m) in the erosion of the 

dune delineating the landward limit of the beach.  

 

Figure 3 Beach face level at Profile P2: initial [1 Nov 2007, 0000 UTC] and after three months with 

and without the wave farm [22 Jan 2008, 15:47 UTC]. 

The impact of the wave farm on the beach profile was analysed through the 

parameters defined in Section 2.4. The BLI parameter along Profiles P1 and P2 is 

illustrated in Figure 11 for three different points in time: 1 month (M1), 3 months (M3) 

and 6 months (M6) after the beginning of the study period. The results for both profiles 

show a significant reduction of the erosion in the beach face and in the bar (around x = 

600 m). The bar forms part of the response mechanism of the natural system to protect 

the beach face from increased wave attack. Figure 11 proves that the effect of the wave 

farm is a reinforcement of the bar, and therefore enhanced protection for the beach face 
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in storms. Advancing in time, the BLI values increase in the bar area, i.e., the 

aforementioned effect is intensified.  

 

Figure 4 Evolution of BLI along Profiles P1 and P2 at different points in time: 1 month (M1), 3 

months (M3) and 6 months (M6) after the beginning of the study period. 

As regards the beach face, the BLI values for both profiles are also significant and 

show that the wave farm reduces the erosion. This is nowhere more apparent than on the 

dune at the landward end of the profile, where BLI values exceed 1 m. Table 2 shows 

the values of the eroded areas at the beach face at the same points in time as in Figure 

11. It is observed for both profiles and especially in Profile P1, that the erosion is higher 

at the first two points in time (M1 and M3) than at the last one, which is associated with 

less energetic conditions (Figure 5). Further, the EI values confirm the significant 

reduction in the erosion owing to the presence of the wave farm. It is also noted that the 

effect of the wave farm is more significant in the north of the beach (Profile P1) than in 

the middle of the beach (Profile P2), as may be seen in Table 1.  
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Profiles 

M1 M3 M6 

A Af EI A Af EI  A Af EI 

Profile P1 20.53 14.11 31.27 16.3 10.42 36.07 23.85 18.66 21.76 

Profile P2 15.69 12.91 17.72 21.31 16.85 20.93 25.53 21.42 16.10 
Table 2 Eroded area in the baseline scenario (A), in the presence of the farm (Af), and Erosion Impact 

(EI) index for Profiles P1 and P2 at different points in time: 1 month (M1), 3 months (M3) and 6 months (M6) 

after the beginning of the study period 

The results showed a significant reduction of the erosion along profiles P1 and P2, 

which may indicate some degree of coastal protection owing to the presence of the wave 

farm nearshore. The present work was framed as the first step in the assessment of the 

impact of wave farms on the beach profile – a relevant aspect for the development of 

wave energy, and one which was not investigated to date – and the accuracy of its 

results will likely be enhanced in future research. 

4. CONCLUSIONS 

In this paper, the impact of a wave farm consisting of 11 WaveCat WECs on the 

beach profile was investigated through a case study. This is the first study focussed on 

the effect of wave energy on the beach profile evolution. A high-resolution nearshore 

wave propagation model was coupled to a morphodynamic model to assess the wave 

farm impacts over a medium-term period.  

First, to study the effect of the wave farm a high-resolution grid was employed on 

Perranporth beach to describe properly the interaction of the wave farm and the sea. The 

transmission coefficient of the WEC employed was obtained through laboratory tests.  

It was found that the wave farm effect varies in the different areas of the beach, 

affecting, in particular, the northern section of the beach and reducing its wave energy 

flux up to 12%. This extraction of energy modifies the coastal processes in the 

nearshore.  
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Second, a morphodynamic model was employed to investigate the impact of the 

wave energy extraction. Two profiles were studied, the first in the north of the beach 

and the second in the middle. The impact of the wave energy exploitation on the 

profiles was analysed through several parameters. These allowed the assessment of the 

impact of the wave farm on the bed level and the eroded area compared to the baseline 

scenario. The bed level impact (BLI) parameter showed a substantial effect on the bar 

and on the beach face. BLI values exceeded 1 m at some points in time. Concerning the 

erosion impact (EI) parameter, the reduction of the eroded area reached values of up to 

35% at the first points in time (M1 and M3) and 21% at the last (M6) in the north of the 

beach. In the middle of the beach the reduction was lower, reaching values up to 20% at 

the first points in time (M1 and M3) and 16% at the end of the period studied (M6). 

This substantial reduction in the erosion of the profiles constitutes an added benefit 

of the wave farm. This is corroborated by the results of the present work, which dealt 

with the impacts of a relatively small, hypothetical wave farm (with 11 WECs 

distributed in an area of 1.5km2); despite its size, the wave farm was shown to have a 

significant effect in reducing the erosion of the beach face. This effect would likely be 

even more significant in the case of a larger wave farm. 

In conclusion, a wave farm can be considered a green alternative to conventional 

forms of coastal protection, in the sense that it provides not only some degree of coastal 

protection but also green (carbon-free) energy. This synergy enhances the viability of 

wave farms. 
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