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Highlights: 

 AGNES allows direct determination of free Zn2+ ion 

 First application of AGNES to estuarine waters  

 Results can be used for toxicity modelling and setting appropriate 

Environmental Quality Standards (EQS) 

 Good agreement with competitive ligand exchange cathodic stripping 

voltammetry 

 

Abstract  

Zinc (Zn) has been classified as a “Specific Pollutant” under Annex VIII of the EU 

Water Framework Directive by two thirds of the EU member states. As a result, the 
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UK Environmental Quality Standard (EQS) for Transitional and Coastal (TrAC) 

Waters has been reduced from 612 nM to 121 nM total dissolved Zn. It is widely 

accepted that the free metal ion ([Zn2+]) is the most bioavailable fraction, but there 

are few techniques available to determine its concentration in these waters. In this 

work, Absence of Gradients and Nernstian Equilibrium Stripping (AGNES) has been 

applied, for the first time, to determine [Zn2+] in estuarine waters. The AGNES 

method had a mean RSD of ± 18%, a (deposition time dependent) limit of detection  

of 0.73 nM and a [Zn2+] recovery of 112 ± 19% from a certified reference material 

(BCR-505; Estuarine Water). AGNES results for 13 estuarine samples (salinity 0.1 – 

31.9) compared well (P = 0.02) with Competitive Ligand Exchange Cathodic 

Stripping Voltammetry (CLE-AdCSV) except for one sample. AGNES requires 

minimal sample manipulation, is unaffected by adsorption of interfering species at 

the electrode surface and allows direct determination of free zinc ion concentrations. 

Therefore AGNES results can be used in conjunction with ecotoxicological studies 

and speciation modelling to set and test compliance with water quality standards. 

 

1. Introduction 

 

Zinc (Zn) is an essential trace element and plays an important role in certain DNA 

binding proteins and hydrolytic enzymes [1], but uptake by biota in excess of 

required concentrations can result in toxic effects. The free metal ion is recognised 

as the most readily bioavailable species and, therefore, is of greatest concern with 

respect to permeation through biological membranes and potential toxicity [2]. 

The new UK Environmental Quality Standard (EQS) for Zn in saltwater is 121 nM, 

which includes a natural background concentration of 17 nM, and is significantly 

lower than the previous EQS of 612 nM. Unlike the Zn EQS set for freshwaters, the 

saltwater EQS refers to total dissolved Zn and does not account of the bioavailability 

of different Zn species [3]. Recently Stockdale et al. [4] highlighted the relative lack 

of data published on [Zn2+] in saline waters compared with other metals such as Cu. 

Copper in estuarine waters is strongly complexed by humic and fulvic acids (> 90 %) 

and reported [Cu2+] are frequently of the order 10-13 – 10-11 M [5-7], but can be as low 

as 10-15 M [5]. In contrast, reported [Zn2+] are typically of the order 10-9 M [8-11], with 



 

24 – 98 % organically complexed, suggesting a weaker affinity for binding by organic 

ligands [12]. Only four studies report [Zn2+] in estuarine waters over a wide salinity 

range (Table 1). This lack of data is due in part to the analytical challenges 

associated with determining ultra-trace [Zn2+] concentrations (pM - nM) in complex 

environmental matrices. Free Zn2+ concentrations are therefore more often predicted 

than measured. Various codes (e.g. the Windermere Humic Aqueous Model (WHAM) 

[13] and Visual Minteq (VMINTEQ) [14]) have been developed to predict free metal 

ion concentrations ([Men+]) in freshwaters based on total dissolved concentrations 

and ambient water quality parameters (e.g. pH, hardness, dissolved organic carbon, 

etc.). The calculated [Men+] have been combined with ecotoxicological data to 

generate site specific freshwater quality standards for metals such as Cu, Ni and Zn, 

using the Biotic Ligand Model [15, 16]. However, the lack of data on Zn speciation in 

estuaries has constrained the derivation of a robust Zn EQS for TrAC Waters.  

 

Table 1 Free zinc ion concentrations in estuarine waters reported in the literature. DPASV: 

differential pulse anodic stripping voltammetry, CLE-AdCSV: competitive ligand exchange 

adsorptive cathodic stripping voltammetry.  

 

 

 

 

 

 

 

 

 

Voltammetric techniques can be used to study Zn speciation in estuarine waters, e.g. 

competitive ligand exchange adsorptive cathodic stripping voltammetry (CLE-AdCSV) 

[19] and anodic stripping voltammetry (ASV) [20]. With these techniques, [Zn2+] is 

calculated from measured total and labile Zn concentrations, while ligand 

Location 
Salinity 

range 

[Zn2+] range 

(nM) 

Analytical 

Technique 
Reference 

Narragansett Bay 

Rhode Island, 

USA 

24 – 30 0.3 – 13 DPASV [9] 

Cape Fear 

Estuary North 

Carolina, USA 

7 – 32 0.13 – 16 CLE-AdCSV [8] 

Scheldt Estuary, 

SW Netherlands 
9 – 27 2 – 16 CLE-AdCSV [17] 

Gulf of Thailand, 

SE Asia 
1.8 - 31.2 0.63 – 39.3 

MnO2 

equilibration 

[18] 



 

concentrations and conditional stability constants between Zn and (organic) ligands 

in the sample can be determined within operationally defined detection windows after 

titration of subsamples spiked with Zn [21]. Limitations of this approach include (i) 

the analysis of titration data requires assumptions about Zn-ligand complexation 

characteristics (e.g. 1:1 binding [22]), (ii) sample preparation requires lengthy 

equilibration (> 15 h) and (iii) a single titration requires at least 150 mL of sample. 

Consequently, replicate titrations are limited and precision data are rarely reported.  

Absence of Gradients and Nernstian Equilibrium Stripping (AGNES) is an 

electrochemical stripping technique designed for the direct determination of free Zn 

ion concentrations in solution [23]. The analytical procedure consists of two stages, (i) 

application of a suitable potential to preconcentrate the determinand within the 

working electrode (a mercury drop or thin layer) by a known factor (the “gain” Y ) for 

a deposition time long enough to achieve equilibrium of the metal species within the 

bulk solution, within the working electrode, and between them [24], and (ii) 

electrochemical stripping of the Zn0 from the electrode, where the response function 

(current or charge) of AGNES is proportional to the free Zn ion concentration in the 

solution [25, 26]. 

With a hanging mercury drop electrode (HMDE), the technique has been used to 

determine [Zn2+] in seawater [11], extracts of dissolved organic matter from treated 

wastewater [27], freshwater [28], soil extracts [29], nanoparticle dispersions [30, 31], 

and wine [32]. Results obtained using AGNES have been compared with data from 

the Donnan membrane technique [29], resin titrations [33], ion-selective electrodes 

[23, 34], and scanned stripping chronopotentiometry [35, 36]. There are no reported 

data, however, for TrAC Waters with widely varying ionic strength, which is critical for 

setting suitable EQSs and subsequent compliance monitoring. 

The overall aim of this work was to demonstrate the suitability of the AGNES 

technique for determining [Zn2+] in TrAC Waters by i) optimising AGNES for 

estuarine samples (salinities 0.1 – 31.9), ii) determining the analytical figures of merit 

for the optimised method and iii) comparing the performance characteristics of 

AGNES with CLE-AdCSV in samples collected in three different seasons from the 

temperate, macro-tidal Tamar Estuary (SW England). 

 



 

2. Experimental 

2.1 Reagents  

Ultra-high purity (UHP) water (Elga Process Water, resistivity = 18.2 MΩ cm) was 

used for all applications. All bottles for Zn (low density polyethylene LDPE, Nalgene, 

500 mL), and for DOC (Pyrex glass, Fisher Scientific), filtration equipment for Zn 

(polysulphone, Nalgene) and DOC (Glass, Millipore), and vials (glass, VWR) were 

cleaned in dilute HCl (10% HCl, Fisher Scientific) and rinsed with UHP water. Filter 

membranes used for Zn determination (0.2 and 0.4 µm Whatman, Nuclepore 

polycarbonate track-etched) were soaked overnight in dilute (25 %) HCl and oven 

heated to 60 °C [37], before copious rinsing with UHP water. Because the 0.4 µm 

polycarbonate filters cannot be ashed, the accepted method for DOC determination 

was used, employing glass fibre membranes [38] (GF/F, 0.7 µm, Whatman, Fisher 

Scientific). Glass vials, filter equipment and membranes were ashed for 6 h at 

550 °C prior to use. 

Aqueous calibration standards containing 1 µM, 15.3 µM and 1.53 mM Zn were 

prepared by dilution of Zn nitrate element reference solution (15.3 mM PrimAg, 

ROMIL) with UHP water and acidified to pH 2 (HCl, ROMIL). Synthetic calibration 

solutions of appropriate ionic strength were made up using potassium nitrate 

(TraceSelect, Sigma Aldrich) and UHP water.  

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES, high purity, VWR) 

buffer (1 M) was prepared from solids in UHP water and adjusted with ammonium 

hydroxide solution (SpA, ROMIL) to hold samples at pH 7.8. Ammonium pyrrolidine 

dithiocarbamate (APDC, Fisher Scientific) stock solution (0.1 M) was prepared from 

solids in UHP water. This concentration was used for the “two point method” (TPM, 

section 2.3.2) using 250 µM APDC. APDC stock was diluted (to 0.01 M) for titrations 

with 40 µM APDC. Hydrogen peroxide (Suprapur, Merck) was added to samples 

during UV irradiation prior to analysis of total dissolved Zn (TDZn). 

The complete certificate of analysis for the certified reference material used to 

assess the accuracy of each technique (estuarine water “BCR 505”) gives 

consensus values in nmol/kg for the total metal concentrations of four metals: Cd 



 

0.80 ± 0.04 (n = 12), Cu 29.4 ± 1.5 (n = 12), Ni 24.1 ± 2.0 (n = 10), and Zn 172 ± 11 

(n= 15). 

 

2.2 Sample collection, treatment and storage 

Thirteen samples were collected during three surveys (spring and summer 2014 and 

winter 2015) across the full range of estuarine salinities, from the fresh water end 

member of the Tamar River to the mouth of its estuary in the English Channel (SW 

England). A map of sampling sites is given in Fig. S1. 

Samples were collected using a sampling device [39] that carried six sampling 

bottles (500 mL LDPE bottles for metal, and 500 mL glass for DOC) and was 

triggered at 1 m below the surface by a messenger. Samples for Zn determination 

were filtered within 48 h of collection, first to 0.4 µm, then a sub-sample additionally 

to 0.2 µm, in order to assess any variation in the association of Zn with colloidal 

material. Filtration units were rinsed with ca. 150 mL UHP water between each 

sample and, following assemblage with the membrane, were rinsed with UHP water 

and sample. Filtered sample was poured into preconditioned (rinsed with filtrate) 

bottles and kept refrigerated at 4 °C. Procedural blanks for Zn were stored in clean 

LDPE bottles and acidified (6 M HCl, SpA, ROMIL) to ca. pH 2. Samples for DOC 

were collected in glass bottles, filtered on-site, acidified to ca. pH 2 (6 M HCl, SpA, 

ROMIL) and stored in glass vials prior to analysis. 

In situ pH was measured using a calibrated pH meter (model H19025, Hanna 

Instruments Ltd., UK) and salinity was determined in un-filtered samples using a 

calibrated salinometer (Orion model 105). 

Samples for total and labile Zn determination by CLE-AdCSV were refrigerated (4 °C) 

immediately after collection and analysed within 48 h. Samples for the determination 

of Zn complexation capacity and [Zn2+] were stored at -18 °C.  

 



 

2.3 Instrumentation and Procedures 

For both methods, samples were analysed within 48 h of being slowly thawed at 4 °C. 

Sample preparation was undertaken in a class 100 laminar flow unit. Clean 

borosilicate glass voltammetric cells were used for calibration (AGNES) and sample 

analysis. A complete description of the methods is provided in the electronic 

supporting information (ESI) sections 2 and 3.  

 

2.3.1 AGNES optimisation for estuarine waters 
 
For AGNES a HMDE set at drop size 1 (radius 1.41 x 10-4 m ± 10 %, Metrohm) was 

used on a VA 663 stand (Metrohm), which was connected to a µAutolab voltammeter 

(EcoChemie) via an interface (IME, EcoChemie). The Ag/AgCl reference electrode 

(Metrohm) was filled with electrolyte solution (3 M KCl) containing AgCl (Thermo 

Orion, cat. code 900011) and the electrolyte bridge contained 0.1 M KNO3 (Trace 

Select, Sigma Aldrich). The software used for peak analysis was GPES version 4.9.  

The ionic strength (µ) of individual estuarine samples during analysis was calculated 

using an ion pairing model [40] with metal complexation constants from Turner et al. 

[41] combined with inputs of salinity and pH. CO2 was omitted as it was removed 

during sample purge with ultrapure N2 prior to analysis. Five synthetic calibration 

solutions (A – E, Table 2) of KNO3 were prepared to represent the mean ionic 

strengths of groups of samples of similar salinities. Calibration was carried out in 

each of the KNO3 solutions and in a separate cell to that of the samples to minimise 

the risk of cross contamination. Calibration can be performed at high concentrations 

with a low gain (and short deposition periods) to save time [23]. This is possible 

because of the proportionality between the applied gain and the faradaic current 

obtained during stripping (equations 2 and 3). The analytical responses in the 

calibration were sought to fall in the range of current (or charge) responses expected 

for the samples, because they corresponded to similar values of the product Y times 

[Zn2+] (i.e. this product is just [Znº] according to the Nernst equation used in AGNES) 

(Fig. 1). 

 



 

In this study, calibration was undertaken with an AGNES 1P programme where Y = 5 

during deposition (t1 = 50 s). During stripping (calibration, blanks and all samples) a 

potential (E2) corresponding to Y = 10-8 was applied for a fixed time (t2 = 50 s) (ESI 

section 1.1). The current was measured every 0.05 s during stripping and the 

analytical response for current was taken after 0.2 s (this time gave the maximum 

signal:noise ratio [23]). The current (or charge) values at the tail of the stripping 

curve were used to correct for residual dissolved oxygen (see below). At each ionic 

strength, four standard additions were made in each AGNES calibration. 

 

 

Fig. 1 An example calibration plot (determined using an AGNES single potential programme ([KNO3] 

= 0.393 M, Y = 4.44). Eta (ƞ) = 2.439×10
-3

 A M
-1

 is obtained from the slope and Ifaradaic is the current 

value obtained from stripping minus the shifted blank. Data points represent duplicate AGNES 

analyses performed on each zinc addition. This kind of representation highlights the possibility of 

using different gains for calibrations and sample analyses. 

 

During calibration, the peak potential for Zn (Epeak) at different ionic strengths was 

determined with a differential pulse polarography (DPP) experiment (modulation time 

0.05 s, interval time 1 s, initial potential -0.82 V, final potential -1.02 V, step potential 

1.05 mV, modulation amplitude 49.95 mV) [23]. The Epeak was used to calculate the 

deposition potential (E1), which is related to the gain through the Nernst equation 



 

(ESI section 2.4). Because Epeak changes with ionic strength, due to the differences 

in the metal activity coefficient ᵞM [42], potentials were determined based on an 

average ionic strength from grouped samples with a further fine-tuning correction 

(Table 2). The actual Y value applied to a sample of a given grouping of ionic 

strengths was calculated from the associated calibration using: 

𝑌 = 

𝛾Zn

𝛾Zn
𝜇calib

 √
𝐷Zn
𝐷
Zn0
 

exp [(𝐸1− 𝐸peak
𝜇calib

− 
∆𝐸

2
 )
𝑛𝐹

𝑅𝑇
] 
        (1) 

Where 𝐸peak
𝜇calib is the peak potential obtained from a DPP experiment in the 

corresponding calibration solution (one of A - E), DZn and DZn
0 are the diffusion 

coefficients for oxidized and reduced Zn respectively, and ∆E is the modulation 

amplitude of the DPP experiment (in V).  

For samples with ionic strengths <0.1 M, the charge was used instead of the current 

to quantify [Zn2+] to avoid any anomalous stripping behaviour affecting low ionic 

strength media [42]. 

The slope of calibration plots of the faradaic current (If) (or the charge, Q) vs. 

Ycalibration×[Zn2+] (Fig. 1) corresponds to the proportionality factor eta (η, or ƞQ when 

charge is used). This was used to calculate [Zn2+] in the sample as follows: 

[Zn2+]= 
𝐼f

(𝑌𝜂)
          (2) 

and for low ionic strength samples: 

[Zn2+]= 
𝑄

(𝑌𝜂Q)
         (3) 

The range of eta values obtained in this work compares well with the values obtained 

by other workers using AGNES calibrated at µ ƍ 0.1 M (2.1 x 10-3 amps per molar 

(A M-1) [43], 2.4 x 10-3 A M-1 [44]), at µ = 0.5 M (2.08 x 10-3 A M-1 [11]) and µ = 0.7  M 

(3.06 x 10-3 A M-1 [11]). 

The expected [Zn2+] in the calibrations were calculated using the speciation 

computer code Visual MINTEQ (VMINTEQ) version 3.1 [14]. The activity coefficient 

was calculated using {Zn2+} / [Zn2+] from VMINTEQ which relies on Davies equation. 

As an example, input parameters used for solution D are given in ESI section 2.5. 



 

For the estuarine samples, [Zn2+] was analysed in 10 mL aliquots using the 2P 

AGNES programme (ESI section 2.2). Although not strictly required, for the sake of 

matrix matching, the HEPES buffer used for CLE-AdCSV was also added to the 

samples for the AGNES procedure. Due to the low concentration of free Zn, a large 

gain is required, which would impose prohibitively long times with the simplest 1P 

deposition program. A faster variant consists in the splitting of the stirring period of 

the deposition stage into two sub-stages: one, for t1,a seconds, under diffusion limited 

conditions, and another one, for t1,b seconds, at the desired gain [45]. As a check for 

consistency, two different gains and three deposition times (t1,a and t1,b) for each gain 

setting were used following the general rule t1,a = 0.7 x Y and t1,b = 3 x t1,a. The [Zn2+] 

in each sample was calculated using the stripping current (or charge) obtained after 

application of the longest deposition time [43]. Two repeat AGNES analyses were 

conducted on each sample aliquot, at each deposition time, for both gains (therefore 

n = 4).  

 

Table 2 Synthetic calibration solutions for AGNES, matching ionic strength of estuarine samples (July 

& April 2014, February 2015). IS: intermediate salinity, SW: sea water end member, FW fresh water 

end member, numbers refer to distance (in km) from Gunnislake Weir, 
a
0.2 µm filter fraction, 

b
0.4

 
µm 

filter fraction, µ: the ionic strength of the solution, ƞ and ƞQ: eta and eta-Q, the proportionality factor 

obtained from an AGNES calibration plot using current or charge as the response function, 

respectively (see text and ESI section 2.5), AM
-1

: amps per molar, Ycalibration: gain used for analysis of 

calibration solutions. For salinities < 0.5, the charge Q was used (highlighted in bold) to compute 

[Zn
2+

].  

Solution Salinity 
µ KNO3  

(mol L-1) 
Samples calibrated Ycalibration  

Ƞ (AM-1) or 

ȠQ (C M-1) 

A < 0.5 0.007 
FW-1.1a, FW-1.1b (summer & 

winter), IS4.8b 
4.03 0.0018 

B 3 – 10 0.195 IS13.3b, IS14b, IS19.5b 4.93  0.0022 

C 10 – 20 0.291 IS24b, IS19.5b 5.27 0.0022 

D 20 – 30 0.393 IS25b, SW32b (winter) 4.44 0.0024 

E > 30 0.688 SW32a,SW32b (spring) 5.11 0.0028 

 

 



 

2.3.1.1 AGNES analytical figures of merit 

The accuracy of AGNES was assessed by analysing an estuarine water CRM of 

salinity 12.1 (CRM BCR-505, European Commission; [46]) with a certified value of 

172 ± 11 nmol kg-1 TDZn. The CRM was analysed at pH 1.5 following calibration in 

KNO3 at the same pH and ionic strength (0.228 M) as BCR-505.  

To determine the non-faradaic (capacitive) contribution to the AGNES response, an 

AGNES analysis was performed on a sample with a shift in the deposition and 

stripping potentials (E1,sb and E2,sb, respectively), at a potential at which there was a 

negligible accumulation of Zn. This is termed a “shifted blank” (Fig. S6) [11]. In order 

to determine the necessary shifted blank deposition time (t1,sb), an intermediate 

salinity estuarine sample was analysed using an E1,sb with increasing deposition time 

t1,sb (50 – 1000 s), whereby 50 s was identified as optimum (ESI section 2.3). For 

each estuarine sample, at least three “shifted blanks” were conducted with t1,sb =  50 

s (ESI section 2.3). The shifted blank response was subtracted from each total 

AGNES sample response. The residual current (IŸ) results from the presence of a 

small quantity of oxygen in the purged sample [23, 45]. IŸ was calculated as the 

average response current from t2 = 49.55 to 50.00 s and was subtracted from the 

stripping current of all samples and blanks. For AGNES measurements, the limit of 

detection (LOD) for each sample was calculated using 3 x S.D.Isb / (Yƞ) from the 

corresponding shifted blanks and n = 4. 

 

2.3.2 Competitive Ligand Exchange Adsorptive Cathodic Stripping Voltammetry 

(CLE-AdCSV) 

 

For CLE-AdCSV a VA Computrace 797 (Metrohm) was used in conjunction with the 

797 VA Computrace 1.3.2 Metrodata software for peak analysis. The Ag/AgCl 

reference electrode and electrolyte bridge contained 3 M KCl (Metrohm).  

For the titrations, sub-samples were placed (12 x 10 mL, where one aliquot was 

repeated) into 30 mL plastic cups (polypropylene, Life Pharmacy) and spiked with 

incremental additions of Zn to a maximum concentration ca. 1.5 orders of magnitude 

greater than the TDZn concentration in the original sample. HEPES and APDC were 



 

added to final concentrations of 10 mM and 40 µM, respectively. Cups were covered 

and left overnight (ca. 15 h) to equilibrate.  

For the quantification of [Zn2+] in samples containing 250 µM APDC, the TPM 

(equation 4) was used, where labile Zn was determined in two aliquots (10 mL) of 

buffered sample using two standard additions each. Samples and a certified 

reference material (CRM) were prepared for the analysis of TDZn by UV irradiation 

(4 h, 400 W medium pressure Hg lamp, Photochemical Reactors) of the acidified 

sample (ca. 30 mL) in the presence of hydrogen peroxide (final concentration 15 mM 

[47]). The pH was raised to ca. pH 6 using ammonia solution (SpA, ROMIL) and 

TDZn concentrations were determined in the same manner as labile Zn (final 

concentration of HEPES and APDC 10 mM and 250 µM, respectively).  

CLE-AdCSV analysis took place using differential pulse modulation in de-oxygenised 

(3 min purge with N2) samples. Deposition times of 5 – 60 s were used, depending 

on Zn concentration, at a potential of -0.9 V and the current response to analyte 

reduction (stripping was done at a potential of -1.15 V)  was quantified as peak 

height above the baseline. Deposition times were kept to a minimum in order to 

avoid interference from other electroactive organic species, a problem known to 

affect this technique [48]. CLE-AdCSV titrations were undertaken in duplicate, one 

each on samples filtered to 0.4 µm and to 0.2 µm. The capacity (complexing capacity, 

CC) of Zn complexing natural ligands (Lx) in the sample and the conditional stability 

constants (log K’) of the Zn-Lx complexes were calculated after data transformation 

according to the van den Berg/Ruzic linearization method [49]. Titrations were 

carried out on the 0.4 and 0.2 µm filter fractions of each estuarine sample (Fig. 2) 

using 40 µM APDC [8, 50]. 

 



 

 

Fig. 2 A complexation capacity titration curve (left) and transformed data (right) obtained for an 

estuarine sample (IS 4.8
a
). Error bars represent ± 95% confidence intervals (n = 4). 

 

Labile Zn and TDZn concentrations were also quantified in each sample (in both 

filtered fractions) using 250 µM APDC as described previously. Free zinc ion 

concentration ([Zn2+]) was calculated via the TPM using results from CLE-AdCSV 

analyses with both APDC concentrations, employing equation 4 [51].  

[𝐙𝐧𝟐+]= 
𝐓𝐃𝐙𝐧

(𝜶
𝐙𝐧Ŋ
+ 𝜶𝐙𝐧𝐋𝐱)

       (4) 

Where αZn’ and αZnLx are the side reaction (alpha) coefficients [52] for complexation 

of [Zn2+] with inorganic ligands, and natural organic ligands respectively. The former 

was calculated using the ion pairing model discussed previously, and the latter using 

Equation 5 [51]: 

𝜶𝐙𝐧𝐋𝐱=(𝜶𝐙𝐧𝐀𝐏𝐃𝐂 + 𝜶𝐙𝐧Ŋ)× 
(𝟏−𝑿)

𝑿
     (5) 

Where 𝜶𝐙𝐧𝐀𝐏𝐃𝐂 is the alpha coefficient for the Zn-APDC complex, which equals the 

stability constant for Zn-APDC corrected for ionic strength (𝑲′𝐙𝐧𝐀𝐏𝐃𝐂) multiplied by 

the added APDC concentration, and 𝑿 is the ratio of labile Zn to TDZn in the sample. 

Values for 𝑲′𝐙𝐧𝐀𝐏𝐃𝐂 were calculated using constants from [19].  

 



 

2.3.2.1 CLE-AdCSV Analytical figures of merit 

Two replicate titrations were carried out (one each at 0.4 and 0.2 µm filter fractions) 

using CLE-AdCSV with 40 µM APDC, and two replicate aliquots of sample analysed 

for labile Zn and TDZn using 250 µM APDC. During titrations, one of the aliquots 

was analysed three times to determine reproducibility.  

For CLE-AdCSV, the LOD was calculated using 3 x S.D. of the blank (n = 4) using a 

deposition time of 60 s and maximum drop size and stirring speed. 

Procedural blanks for zinc were generated using UHP water, both prior to sampling 

and during filtration. Zinc concentrations in these blanks were analysed using CLE-

AdCSV (APDC concentration = 250 µM). 

 

2.3.3 Dissolved Organic Carbon (DOC) 

Dissolved organic carbon was determined in acidified samples (ca. pH 2, using 6 M 

HCl) using high temperature catalytic combustion (Shimadzu TOC V) [53]. The 

instrument was calibrated at the beginning of each run and samples were 

sandwiched between field and UHP water blanks. Mean DOC concentrations in field 

procedural blanks were subtracted from each sample. A marine water CRM, (Florida 

Strait 700 m depth, University of Florida) was also run with each batch of samples.  

 

2.3.4 Statistical treatment of results 

Paired t-tests (P = 0.02) were used to compare the mean [Zn2+] determined using 

CLE-AdCSV (at both APDC concentrations) and AGNES in each sample, and F-

tests were used to compare their variances [54]. 

For CLE-AdCSV, CRM preparation and quantification were as described for TDZn. 

  

3 Results and Discussion 

 



 

3.1 Optimisation of the gain and deposition time 

The effect of changing the gain (Y) with its suitable deposition time (t1,a) on the 

response are shown in Fig. 3. From the three different deposition times applied to 

each sample aliquot, and the guidelines outlined in [45], it can be concluded that the 

longest times were sufficient to achieve equilibrium (i.e. a constant faradaic current). 

For the two gain settings used (e.g. Y = 256 and 514, Fig. 3) at the longest 

deposition time for each (1000 and 3000 s respectively) there was a proportional 

increase in the faradaic current (18.4 and 36.8 nA respectively).  

 

Fig. 3 Stripping currents of AGNES measurements conducted on an estuarine sample (IS 25
b
) using 

a 2P program (ESI section 2.2) at two different gains (Y = 256, t1,a = 500 s and Y = 514, t1,a = 1000 s) 

with increasing deposition time (t1,b). Note that doubling the gain doubles the current obtained at 

equilibrium, indicated by the plateau reached between the second and third t1b applied, indicating 

consistent measurements. Error bars represent 95% confidence intervals (n = 4). 

 

3.2 Analytical figures of merit  

 

In order to determine [Zn2+] in TrAC waters it is necessary to achieve accurate 

measurements over the full salinity range (0 – 35) with a limit of detection (LOD) in 



 

the low nM range. This is based on the new UK EQS of 121 nM for TDZn and the 

assumption, from the data in Table 1, that the [Zn2+] fraction in estuarine waters is 2 - 

25% of the TDZn concentration. Possible interferences from metals other than Zn 

present in the Tamar samples and the CRM could potentially affect the results. 

APDC is known to complex a number of other metals (e.g. Ca, Cd, Co, Cu, Fe, Mg, 

Pb) which could compete with the Zn for complexation with APDC prior to adsorption 

of the metal-APDC complexes on the mercury drop [48].The fact that APDC is added 

in excess however, should minimise any impact on the reduction of the CLE-AdCSV 

signal. Intermetallic complexes formed between Cu and Zn have proved troublesome 

for electrochemical stripping analyses, but only at Cu concentrations in great excess 

of Zn [55]. Concentrations of Cu in the samples in this work were only analysed 

during the spring and summer surveys, but for a number of other surveys conducted 

on the Tamar (publication of this data in progress), Cu concentrations were 

repeatedly determined to be less than Zn. It is therefore unlikely that these 

intermetallic complexes interfered with the [Zn2+] determined by the two techniques 

for either the samples or the CRM. 

 

3.2.1 Limits of detection  

 

AGNES calibration was performed at a similar ionic strength to that of the sample 

and therefore the LOD can be estimated from shifted blanks (see section 2.3.5) 

carried out during the calibration, the gain used for the calibration (Ycalibration) and the 

gain used for the sample (Ysample): 

 

 LOD of 𝑌sample=
𝑌calibration 

𝑌sample
×LOD of 𝑌calibration                                (6) 

The LOD for AGNES is therefore implicitly related to the gain (Y) [11, 23] and in this 

study ranged from 0.73 nM (Y = 4231) to 18 nM (Y = 256) Zn. A higher gain leads to 

a lower LOD, but this requires a longer deposition time to reach equilibrium, which 

will extend the measurement time and could result in speciation changes within the 

sample ([56] and references therein). In this work, analysis of a single aliquot 

commenced immediately after thawing a sample to room temperature and analysed 

within the following 48 h.  



 

The LOD for Zn using CLE-AdCSV (3 x S.D. of the blank) is dependent on the 

deposition time [57] and in this work was 0.79 nM Zn with a 60 s deposition time. 

The procedural blanks analysed during sampling were ƈ  1.5 nM TDZn, which 

included contributions from the sample bottles, filtration units and filter membranes. 

This value was considered negligible for the purposes of determining [Zn2+], 

particularly given that the free metal ion was on average 25 % of the TDZn 

concentration. Procedural blank values were not subtracted from the measured 

concentrations because the TDZn concentration in the sample is required to 

accurately calculate [Zn2+].  

The LOD for DOC (using 3 x S.D. of the blank) was 10 ± 5 µM C. 

3.2.2 Accuracy and precision 

 

Recoveries of [Zn2+] from the Estuarine Water CRM were 112 ± 19 % (n = 4) for 

AGNES and 103 ± 8 % for CLE-AdCSV (using 250 µM APDC) relative to a ‘derived 

value’ of 140 nM [Zn2+]. There is no commercially available CRM for free Zn ion in 

aqueous solutions and therefore [Zn2+] at the salinity (12.1) and pH (1.5) of the 

irradiated CRM was predicted using thermodynamic equilibrium calculations 

(VMINTEQ) based on the input parameters given in ESI section 2.6. 

The mean relative standard deviation (RSD) for TDZn measurements made using 

CLE-AdCSV was 6 %, and typical RSD for repeat aliquots analysed during titrations 

were ≤ 5 % (n = 3). The mean RSD for [Zn2+] determination was 18 % using AGNES 

and 32 % using CLE-AdCSV (two-point method). The poorer precision shown by the 

latter technique is attributed to the propagation of errors associated with each step 

required to derive a value for [Zn2+] by CLE-AdCSV. The results for the DOC CRM 

determinations were 47.8 ± 0.9, 49.7 ± 1.6 and 41.3 ± 1.8 µM C (n ≥ 3) for the winter, 

spring and summer surveys respectively (compared with the consensus range of 41 

– 44 µM C). 

 

3.3 Comparison of AGNES and CLE-AdCSV for the determination of [Zn2+] 

 

Table 3 summarises the key analytical characteristics of AGNES and complexation 

capacity titrations (CCT) with CLE-AdCSV. They can be considered as 



 

complementary techniques for investigating Zn speciation in TrAC waters. An 

attractive feature of CCT with CLE-AdCSV is that the data obtained includes free 

zinc ion concentrations, concentrations of (operationally defined) groups of natural 

ligands in the sample and their conditional stability constants with Zn. These data are 

necessary to reduce uncertainties associated with predictions of Zn speciation using 

thermodynamic equilibrium speciation codes such as Visual MINTEQ [14], but 

analysis does require a large sample volume (>150 mL). Furthermore, calibration by 

standard additions to each sample during CLE-AdCSV analysis eliminates the need 

for matrix matching. 

The presence of surface-active organic compounds in TrAC waters can however, 

cause interferences through adsorption at the electrode surface during CLE-AdCSV 

analysis [58]. Optimisation of analytical parameters can reduce interferences, but 

baseline distortions and ill-defined peaks may make quantification challenging. An 

attractive characteristic of AGNES, shown both theoretically [23] and experimentally 

[26], is that the stripping signal is unaffected by such interferences, because the 

equilibrium value is prescribed only by the gain and [Zn2+] at the electrode surface. In 

addition, AGNES does not generally require any additional reagents (e.g. buffers, 

competing ligands, metal standards) and minimal sample manipulation, thereby 

reducing the potential for contamination. 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

Table 3 Comparison of analytical characteristics of AGNES and complexing capacity titrations (CCT) 

with CLE-AdCSV. 

 AGNES CCT with CLE-AdCSV 

Instrumentation  Standard for voltammetry Standard for voltammetry 

Determinands Zn2+, Pb2+, Cd2+, Cu2+ Any element forming a reducible 

complex with an added ligand that 

adsorbs on the electrode 

Speciation data 

obtained 

[Zn2+] [Zn2+], complexation capacity, 

stability constant of complex 

Salinity range fresh to seawater fresh to seawater 

Matrix matching for 

calibration 

Yes (calibration prior to sample 

analysis) 

No (standard addition to each 

sample) 

Sample volume*   10 mL 150 mL 

Sample preparation 

time* 

20 min >15 h 

Sample analysis 

time* 

6 – 9 h ~ 1 h 

Blank determination Shifted blank Blanks determined in UHP water 

(60 s deposition)  

Background 

corrections 

Shifted blank method to enable 

subtraction of capacitive 

component of analytical signal 

Peak height relative to baseline; 

wave form parameters optimised to 

reduce capacitive contribution 

Limit of Detection Dependent on gain setting Dependent on deposition time 

Adsorptive 

interferences at 

electrode 

No Yes 



 

*Volume or time to complete analysis on one aliquot of sample at two gains and two times per gain 

(AGNES), or one 12-point titration with three replicate scans made on each aliquot (CLE-AdCSV). 

 

 

 

 

 

3.4 Application of AGNES to TrAC waters 

 

TDZn concentrations in 13 estuarine samples (salinities 0.1 – 31.9), together with 

ancillary water quality data, are summarised in Table 4. Temperatures reflected the 

time of year (6.5 – 15.3 °C) and, within individual surveys, sample pH generally 

increased with increasing salinity. The range of observed DOC concentrations (30.9 

– 482 µM C) and temperatures were consistent with other data reported for the 

Tamar [59] and other temperate estuaries [60]. DOC concentration generally 

decreased with increasing salinity, with the exception of one sample (IS 14b, S = 8.8, 

482 µM C, location Fig. S1). The location of this sample coincided with the onset of 

the high turbidity area in the narrowing upper estuary and the high DOC 

concentration was probably the result of tidal re-suspension of bottom sediments rich 

in organic matter.  

 



Table 4 Physico-chemical and analytical data for the estuarine samples.  

Sample  
code* 

Survey Salinity Ionic 
strength 

Total 
dissolved Zn 

[Zn2+] ± S.D  (nM) 
 (number of replicates) 

 

DOC pH Temperature  

   (M) (nM) AGNES† CLE-AdCSV‡ (µM  C)  (°C) 

FW -1.1a Summer 0.1 0.004 126 5.7 ± 0.9 (3) 3 ± 1 (3) 245 7.79 ND 

FW -1.1b Summer 0.1 0.004 225 7 ± 3 (7) 3 ± 1 (3) 245 7.79 ND 

FW -1.1b Winter 0.15 0.005 129 8 ± 1 (4) 9 ± 2 (4) 114 7.19 6.0 

IS 4.8b Winter 0.4 0.010 80 4 ± 1 (3) 2 ± 2 (4) 123 7.42 10.1 

IS 13.3b Winter 3.8 0.075 47 11 ± 2 (4) 13 ± 2 (4) 114 7.45 7.4 

IS 14b Spring 8.8 0.17 254 14 ± 2 (4) 46 ± 11 (4) 482 8.07 12.5 

IS 19.5b Winter 9.5 0.18 50 12 ± 2 (3) 19 ± 4 (4) 89.3 7.83 7.3 

IS 24b Winter 14.9 0.28 22 14 ± 2 (4) 19 ± 5 (4) 30.9 7.70 7.4 

IS 19.5b Winter 16.2 0.30 41 23 ± 5 (4) 23 ± 5 (4) 56.2 7.86 6.8 

IS 25b Spring 20.7 0.39 65 26 ± 4 (4) 27 ± 5 (4) 208 8.50 15.3 

SW 32b Winter 21.1 0.39 11 2.2 ± 0.1 (4) 5 ± 4 (4) 56.5 7.80 6.5 

SW 32a Spring 31.9 0.59 32 8 ± 1 (7) 10 ± 3 (4) 147 8.55 12.4 

SW 32b Spring 31.9 0.59 62 5.9 ± 0.9 (8) 10 ± 3 (4) 147 8.55 12.4 

*FW Freshwater endmember; IS Intermediate salinity sample; SW Seawater endmember; numbers refer to distance (in km) from Gunnislake Weir, the tidal limit of the Tamar 

Estuary (note that the fresh water samples were taken upstream of the weir, hence a negative distance); 
a
0.2 µm filter fraction; 

b
0.4 µm filter fraction  

†
Represents the mean [Zn

2+
] for the number of replicates given in brackets.  

‡
Represents the mean [Zn

2+
] determined using 40 µM and 250 µM APDC for the number of replicates given in brackets.



TDZn concentrations were in the range 11 - 254 nM, which are in agreement with other 

studies on the Tamar Estuary ([61, 62]), and exceeded the current Zn EQS for saline 

waters (121 nM) in one sample (IS 14b). The abandoned metal mines in the 

Calstock/Gunnislake mining district were the main diffuse and point sources to the high 

TDZn concentrations observed in the freshwater end member (FWEM) and upper estuary 

[63]. 

Fig. 4 shows the [Zn2+] results for AGNES and CLE-AdCSV together with the salinities for 

these samples, with the lowest [Zn2+] concentrations (< 10 nM) found in the upper and 

lower estuary (0.4 < S < 21.1). In the FWEM and low salinity zone of the estuary (S < 1), 

high DOC concentrations indicate the possibility of high complexing capacity for Zn that 

would maintain low [Zn2+] (< 6.6 % of TDZn). However, the discrepancy between filter pore 

size fractions for metals and DOC (0.4/0.2 µm and 0.7 µm respectively) means that 

drawing a direct relationship between DOC concentrations and complexation capacity in 

this work is not certain. The lower TDZn concentrations due to dilution with sea water, and 

relatively high Zn complexation (74 – 91 %) also resulted in the low [Zn2+] at the mouth of 

the estuary. The samples containing the highest [Zn2+] (23 – 26 nM) were from the mid-

estuary (S = 16.2 – 20.7), where TDZn concentrations were moderate (41 – 65 nM), but 

complexation by organic ligands was relatively low (44 – 60 %). These results highlight the 

complexity of geochemical processes occurring in estuarine environments, where diverse 

fluvial and autochthonous sources of Zn and organic matter of varying complexing 

capacity interplay to yield a [Zn2+] whose determination is an analytical challenge. 

 

 

 



 

 

Fig. 4 Mean [Zn
2+

] obtained using AGNES and CLE-AdCSV and salinity for Tamar Estuary samples. Error 

bars represent ± 1 S.D. Note that the dotted line joining points of salinity is for illustrative purposes and does 

not represent a continuum  

 

No statistically significant difference (paired t-test, P = 0.02) was found between [Zn2+] 

determined via AGNES (2.2 – 25 nM) and CLE-AdCSV (1.9 – 27 nM) for 12 of the 

samples. In sample IS 14b, however, [Zn2+] determined using CLE-AdCSV was 3 fold 

higher than values obtained using AGNES and this sample also had a substantially higher 

DOC concentration (Table 4). 

4. Conclusions 

 

The free zinc ion concentration ([Zn2+]) was successfully determined in thirteen estuarine 

samples of varying salinity (0.1 – 31.9) using Absence of Gradients and Nernstian 

Equilibrium Stripping (AGNES), the first time that this emerging technique has been 

applied to environmental samples of varying ionic strength. The benefits of AGNES, as 

applied to this study, include (i) a limit of detection of < 1 nM [Zn2+], which is suitable for all 

TrAC waters, (ii) a precision of 18 % RSD over the [Zn2+] range of ƈ 2 Ŀ 26 nM), (iii) 

acceptable accuracy (recovery 112 ± 19 %, n = 3) for [Zn2+] and (iv) a sample processing 

time of ca. 2 samples per day (n = 4). In addition, AGNES compared favourably with the 



 

established CLE-AdCSV technique, whereby results for 12 of the 13 samples showed no 

significant difference (P = 0.02) between the two methods.  

Development of EQSs on the basis of bioavailable metal concentrations and predictive 

models is hampered by a lack of validated data for Zn speciation owing to the complex 

matrix and low concentrations present. Considering the practical advantages of using 

AGNES to determine [Zn2+] in TrAC waters, and in light of the new EQS set for Zn, this 

technique provides the capability to advance our understanding of Zn speciation and 

monitor compliance with Zn EQSs. 
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1. Sampling  

A map of the Tamar Estuary with sampling sites is given in Fig. S1. 



 

 

Fig. S1 Sampling sites on the Tamar Estuary. SW: seawater end member, IS: Intermediate salinity sample, 

FW: fresh water endmember. Numbers refer to distance (km) from the tidal extent of the estuary, Gunnislake 

Weir.  

2. AGNES Theory and Implementation 

2.1 The AGNES 1P programme 

The AGNES 1P (single potential) programme is the simplest application of AGNES, whereby the 

deposition stage consists of one period of deposition for a set time (t1) at the appropriate potential 



 

(E1) while the solution is stirred during t1-tw, followed by a quiescence period tw. The potential is 

then anodically switched and a measurement is made at t2 (Fig. S2).  

The gain and deposition time has to be carefully selected. The AGNES experiment consists of 

several steps: 

1) The potential at the working electrode (E1) is applied and held constant, so that the analyte in 

solution is reduced and forms an amalgam with the mercury drop.  

2) The concentration of the analyte within the mercury drop steadily increases with increasing time, 

as dictated by the presence of concentration gradients (Fig. S3). For instance, with a gain of Y = 2, 

equilibrium is achieved when the concentration of Zn within the drop is a factor of 2 greater than 

that in the bulk solution. A plot of I vs. t1 (Fig. S3c) shows a decreasing current intensity with time, 

until the flux of metal to the electrode ceases and current intensity remains constant.  

3) A period of quiescence (tw, Fig. S2) follows in order to reduce noise from stirring and to allow the 

mercury amalgam to stabilise.  

4) A potential (E2, more positive than E1) corresponding to Y = 10-8 is applied for time t2 (typically 

50 s). This re-oxidises the analyte and strips it back into solution under diffusion limited conditions. 

The gradients present during this stage are illustrated in Fig. S4a.  The oxidation current or charge 

(I or Q) is measured every 0.05 s for 50 s, and its value recorded after 0.2 s (Fig. S4b) gives the 

optimum signal:noise ratio [1]. The residual current (IŸ) remains due to the presence of a small 

quantity of oxygen [1, 2], despite purging with N2 prior to analysis. This contribution of IŸ to the 

desired current, Ifaradaic, is eliminated by subtracting the average of I measured at points 49.55 to 

50.00 s (Fig. S4c). 

Except for very well-known synthetic systems, it is not possible to know the deposition time a priori. 

However, as a general rule of thumb for a 1P AGNES experiment with a HMDE, a safe deposition 

time in seconds (with stirring during t1 – tw, Fig. S2) can be set to 7Y.   

When the 1P programme is used for solutions with low total metal concentrations, such as 

relatively pristine environmental waters, the time t1 required can be prohibitively long. For such 

cases, the required equilibration time has been reduced with the 2P (two potential steps) AGNES 

programme [2].   

 



 

  

Fig. S2 A schematic of the 1 pulse potential programme applied for an AGNES experiment. Adapted from [3]. 

 

 

 

Fig. 

S3 a) 

Conceptual illustration of the concentration profiles close to the electrode surface and within 

the mercury drop and solution with increasing deposition time t1 (represented by the different coloured lines). 
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The radial coordinate is denoted r, b) Schematic representation of the potential programme applied over time 

during deposition. The coloured dots correspond to the coloured concentration profiles in (a), c) The resulting 

output of (b) as a plot of current intensity vs. time. The horizontal red line highlights the plateauing of the 

current as equilibrium is achieved.  

 

Fig. S4 

a) The 

concentration profiles (orange lines) developed within the 

mercury drop and solution during the stripping stage of AGNES. b) Schematic of potential over time during 

the deposition (E1) and stripping stage (E2). E2 is held constant for time t2 and a current measurement is 

recorded after 0.2 s (orange dot). c) Example of the stripping current plotted against time once IŸ has been 

subtracted from each current measurement. 

2.2 AGNES 2P programme 

The two-potential-steps programme (“2P”) shortens analysis time by splitting the deposition period 

into two sub-stages, in which two different concentration gains are applied (Fig. S5). The first 

deposition period (t1,a) occurs at a potential step corresponding to a very large gain (termed Y1,a). 

The potential E1,a, corresponding to a practically unachievable gain (for example Y1,a = 108), is 

applied to speed up the reduction and amalgamation of the analyte, so that a high proportion of the 

number of moles of reduced analyte required to reach an absence of gradients enter the electrode. 

During a second deposition period (t1,b), the potential is stepped to E1,b to implement the desired 

concentration gain Y1,b =Y. At the end of t1,b , equilibrium is achieved in the mercury drop and 

solution, indicated by a horizontal concentration profile (Fig. S3a).  

If, in the application of a 2P programme, more than the desired concentration of analyte enters the 

mercury drop during t1,a, the current at the beginning of t1,b results in an overshoot (see Fig. 12 in 

[2]) of the desired constant current. Overshoot represents an excess over the desired 

concentration (prescribed by the actual gain), and consequently, analyte exits the mercury drop 

during t1,b as dictated by the present concentration gradient. 
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Fig. S5 Schematic of the two-potential-steps programme applied for an AGNES experiment. Adapted from 

[3]. 

 

 

The rule of thumb for AGNES experiments with a 2P programme and HMDE, t1a = 0.7×Y and t1b = 

3×t1a [2].  This offers the operator a rough guide in optimisation of sample analysis.  

 

2.3 The Shifted Blank 

To illustrate how the shifted blank works, assume a solution that requires quantification of [Zn2+]. A 

voltammogram from analysis of an estuary sample (Fig. S6) shows the current peaks produced 

after an ASV scan. So long as the potential region between the Zn and Cd peaks (ca. -0.6 V) is 

devoid of faradaic current produced by oxidation of Ga or Cd (red dashed area in Fig. 6), the 

“potential jump” (∆Esb) between a deposition potential pulse at E1,sb and the potential  pulse at E2,sb 

will produce only the capacitive current (Icapacitative), which can then be subtracted from the measured 

sample response. In the shifted blank, it is essential that the potential jump is the same in the 

measurement and in the blank, because the capacitive current depends on the potential change. 

For example, consider the AGNES potential for deposition of Zn2+, E1, to correspond to a Y of 500 

(“Y1”) and the stripping potential, E2, to correspond to a Y of 10-8 (“Y2”). E1,sb, will correspond to a 

negligible gain (such as 0.01, “Y1,sb”), and the stripping potential will correspond to Y1,sb*Y2 /Y1 so 

that E2 – E1 = E2,sb – E1,sb (Fig. S6). 



 

A check was made to ensure faradaic current from Ga or Cd was not contributing to the capacitive 

signal by incrementally increasing the deposition time (t1,sb) of the shifted blank on an estuary 

sample (Fig. S7). Results illustrate a negligible current increase after 50 s deposition. 

 

 

Fig. 

S6 

A 

voltammogram of a Tamar estuary sample 

(salinity = 17) using ASV (deposition time = 1000 s), showing current peaks and the AGNES potentials used 

to perform the shifted blank (t1sb = 1000 s). The grey dashed (E1 corresponding to Y = 5000), and dotted (E2 

corresponding to Y2 = 10
-8

) vertical lines represent potentials of AGNES measurements. The red dashed 

(E1,sb, for Y1,sb = 0.01) and dotted (E2,sb, for Y = 0.01×Y2/Y1) vertical lines represent potentials used for the 

shifted blank in order to quantify capacitive current. The difference in the potential ("jump") from E1 to E2 (∆E), 

and E1,sb to E2,sb (∆Esb) is equal.    

 

 

Fig. S7 Increasing the deposition time of the shifted blank (t1,sb) to check for possible contribution from Cd or 

Ga. Diamonds represent the average of two repeat AGNES analyses at each t1,sb with error bars 

representing the range. 



 

 

2.4 Obtaining the potentials for applying gain Y 

The relationship between a specific potential (E1) and the corresponding gain Y can be 

derived from Nernst equation: 

𝑌=
[Zn0]

[Zn2+]
= 
γ
Zn2+

γZn0
 exp [ 

𝑛𝐹

𝑅𝑇
 (𝐸1− 𝐸

0)]=exp[ 
𝑛𝐹

𝑅𝑇
 (𝐸1− 𝐸

0′)]                   (1) 

Where Zn0 is Zn in its reduced form inside the mercury electrode 

Zn2+ represents free ionic Zn in the bulk solution (and at the electrode surface)    

γi is the activity coefficient of species i (computed with Davies equation) 

E1 is the potential of the working electrode during deposition 

E0 is the standard redox potential  

E0’ is the formal standard potential  

F the faraday constant  

R the gas constant  

T temperature 

The peak potential (Epeak) for Zn in a DPP experiment (Fig. S8), obtained after the highest Zn 

addition during calibration, can be used to compute gain Y through: 

𝑌= √
𝐷Zn

𝐷Zn0
exp[− 

𝑛𝐹

𝑅𝑇
 (𝐸1− 𝐸peak− 

∆𝐸

2
 )]      (2) 

 Where ∆E is the modulation amplitude of the experiment 
DZn and DZn

0 are the diffusion coefficients for the free Zn ion and reduced Zn (inside the 
amalgam), respectively 

 

The parameters for the DPP experiment used are given in Table S1. 

Table S1 Parameters used for attainment of a zinc DPP Epeak 

Parameter  Value 

Initial scanning potential -0.85 V 

Final scanning potential -1.05 V 

Step potential 0.00105 V 

Amplitude 0.04995 V 

Modulation time 0.05 s 

Interval time 1 s 

Drop size  3 (max.) 

Stirrer setting 6 (max.) 

 



 

 

Fig. S8 A DPP peak obtained for zinc by application of the parameters given in Table SS1 (KNO3 = 

0.393 M, total dissolved Zn = 10.6 µM, pH = 3.45). The Epeak is marked by the blue arrow. 

 

2.5 AGNES Calibration 

The slope of the calibration plot when the faradaic current (I f) (or the charge, Q) is plotted 

against Y times [Zn2+], corresponds to the proportionality factor eta (ɖ, or ЛQ when charge is 

used). 

The input parameters for the calculation of [Zn2+] and {Zn2+} using VMINTEQ for the 

calibration plot shown in Fig. 1 in the manuscript are given in Table S2. The {Zn2+} output 

value for the given example was 2.39 x 10-6
. This value was calculated using VMINTEQ from 

the final calibration point, and was used to recalculate the actual applied Y to the sample in 

each case. 

 

Table S2 Visual MINTEQ input parameters and output values for the AGNES calibration shown in Fig. 1 in 

the manuscript (solution D, [KNO3] = 0.393 M). Temperature was set to ambient room temperature (22.5 ºC) 

and ionic strength left "to be computed". All concentrations are in M.  

Input Output 

pH (fixed) K+ NO3
- Zn added [Zn2+] 

3.700 
 

0.39132 
 

0.39162 
 

1.9796 x 10-6 
 

1.61 x 10-6
 

 

3.640 
 

0.39081 
 

0.39112 
 

3.9540 x 10-6 
 

3.22 x 10-6
 

 



 

3.540 
 

0.39004 
 

0.39035 
 

6.9817 x 10-6 
 

5.68 x 10-6
 

 

3.450 
 

0.38911 
 

0.38943 
 

1.0599 x 10-5 
 

8.63 x 10-6
 

 

 

2.6 CRM for AGNES 

The input parameters for deriving, with VMINTEQ, the [Zn2+] in the estuarine CRM BCR-505 

(European Commission) is given in Table S3. The major ion concentrations were calculated using 

the ion pairing model described in section 2.3.1 of the main article. The output VMINTEQ [Zn2+] 

was 1.4 x 10-7 M. 

 

 

 

 

Table S3 Visual MINTEQ input parameters for the derivation of [Zn
2+

] in the estuarine certified reference 

material BCR-505. Temperature was fixed at 22.5 ºC, pH at 1.5, and ionic strength was set to “to be 

calculated”.  

Species Input total concentration (M) 

Zn2+ 1.72 x 10-7 
K+ 3.58 x 10-3 
Na+ 1.62 x 10-1 
Mg2+ 1.85 x 10-2 
Ca2+ 3.83 x 10-3 
Sr+2 3.18 x 10-5 
Cl- 1.89 x 10-1 
Br- 2.91 x 10-4 
SO4

2- 9.87 x 10-4 
F- 2.7 x 10-5 

 

 

3. Complexation capacity titrations with Adsorptive Cathodic 

Stripping Voltammetry 
This technique determines the complexation capacity (CC) and mean affinity (log K) of the 

dissolved organic matter for zinc, and the free metal ion concentration [Mn+] in a sample, by setting 

up a competitive equilibrium with the natural sample ligands (Lx) and an added artificial ligand (AL). 

A small proportion of the complexes of the target metal (M) with the AL form a monomolecular 

layer on the surface of a hanging mercury drop working electrode during deposition at a specific 

oxidising potential applied for a fixed time. The potential is then swept in the cathodic direction and 

the complexes are reduced and stripped from the electrode surface, producing a current 

proportional to the labile metal concentration in solution. The determined labile concentration is 

operationally defined by the degree of competition between AL and Lx for complexing metal (M), 



 

which is governed by the AL concentration added. Thus, the AL concentration used governs the 

“detection window” (DW) of the method, within which the CC, log K and [Mn+] may be determined. 

The lower limit of the DW is determined by the sensitivity of the technique, and the upper limit 

technique precision [4]. The centre of the DW equals the alpha coefficient for the formation of the 

MAL complex (αMAL), with values for αMLx  within approximately one decade either side being 

measureable [5].  

For CC titrations, the sample is separated into several aliquots (ca. 10 - 12) which are spiked with 

incrementally increasing additions of (zinc) metal, a pH buffer (HEPES, pH 7.8) and the AL (in this 

case ammonium pyrrolidine dithiocarbamate, APDC). Complexation of the additional zinc by 

sample ligands is shown as a curve on a plot of current vs. added analyte concentration (Fig. 2 in 

manuscript). Transformation of these data (in this case, the van den Berg/Rusic plot [6, 7]) gives 

the labile Zn (Znlab) concentration that is defined as the concentration of Zn2+ plus natural ligand 

complexes from which Zn will dissociate during the timescale of the analysis to form ZnAPDC 

complexes and is calculated as ip divided by the slope of the linear portion of the titration plot (Fig 2 

in manuscript). The ZnLx concentration is equal to TDZn in the aliquot (initial TDZn concentration + 

spiked Zn concentration) minus Znlab. A plot of Znlab/ZnLx vs. Znlab gives a straight line in the case of 

one ligand class present. Sample CC can be calculated as the inverse of the slope of the 

transformed plot. The log K of the ZnLx complex is calculated from: 

Log 𝐾ZnLx=log (α
′/(CC × intercept))    (3) 

Where α′ is the overall alpha coefficient (αZn + αZnAPDC) and ‘intercept’ is the intercept of the 

transformed plot (right hand plot in Fig. 2 of the paper). 

  

4. References 
1. Galceran, J., et al., AGNES: a new electroanalytical technique for measuring free metal ion 

concentration. Journal of Electroanalytical Chemistry, 2004. 566(1): p. 95-109. 
2. Companys, E., et al., Determination of Zn< sup> 2+</sup> concentration with AGNES 

using different strategies to reduce the deposition time. Journal of Electroanalytical 
Chemistry, 2005. 576(1): p. 21-32. 

3. Galceran, J., et al., AGNES: a technique for determining the concentration of free metal 
ions. The case of Zn (II) in coastal Mediterranean seawater. Talanta, 2007. 71(4): p. 1795-
1803. 

4. Town, R.M. and M. Filella, A comprehensive systematic compilation of complexation 
parameters reported for trace metals in natural waters. Aquatic sciences, 2000. 62(3): p. 
252-295. 

5. van den Berg, C.M.G. and J.R. Donat, Determination and data evaluation of copper 
complexation by organic ligands in sea water using cathodic stripping voltammetry at 
varying detection windows. Analytica Chimica Acta, 1992. 257(2): p. 281-291. 

6. Van Den Berg, C.M.G., Determination of copper complexation with natural organic ligands 
in seawater by equilibration with MnO2 I. Theory. Marine Chemistry, 1982. 11(4): p. 307-
322. 

7. Ružić, I., Theoretical aspects of the direct titration of natural waters and its information yield 
for trace metal speciation. Analytica Chimica Acta, 1982. 140(1): p. 99-113. 



 

 

 


