Variable response of three Trifolium repens ecotypes to soil flooding by seawater

White, AC

http://hdl.handle.net/10026.1/4399

10.1093/aob/mcu118
Annals of Botany
Oxford University Press (OUP)

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Variable response of three *Trifolium repens* ecotypes to soil flooding by seawater

Anissia C. White¹, Timothy D. Colmer², Greg R. Cawthray², and Mick E. Hanley*¹

¹School of Biological Sciences, University of Plymouth, Plymouth PL4 8AA, England.
²School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, WA, Australia.

*Corresponding author:
Mick Hanley
e-mail: mehanley@plymouth.ac.uk
Tel: +44 (0)1752 584631
Abstract

- **Background and Aims** Despite concerns about the impact of rising sea-levels and storm surge on coastal ecosystems, there is remarkably little information on the response of terrestrial coastal plant species to seawater inundation. Our aim was to elucidate responses of a glycophyte (*Trifolium repens*) to short duration soil flooding by seawater and recovery following leaching of salts.

- **Methods** Using plants cultivated from parent ecotypes collected from a natural soil salinity gradient; we examined the impact of short-duration seawater soil flooding (8 or 24 hrs) on short-term changes in leaf salt ion and organic solute concentrations, and longer-term impacts on plant growth (stolon elongation), and flowering.

- **Results** There was substantial Cl⁻ and Na⁺ accumulation in leaves, especially for plants subjected to 24 h soil flooding with seawater, but no consistent variation linked to parent plant provenance. Proline and sucrose concentrations also increased in plants following seawater flooding of the soil. Plant growth and flowering were reduced by longer soil immersion times (seawater flooding followed by drainage and freshwater inputs), but plants originating from more saline soil responded less negatively than those from lower salinity soil.

- **Conclusions** The accumulation of proline and sucrose indicates a potential for solute accumulation as a response to the osmotic imbalance caused by salt ions, while variation in growth and flowering responses between ecotypes points to a natural adaptive capacity for tolerance of short-duration seawater soil flooding in *T. repens*. Consequently, we suggest that selection for tolerant ecotypes is
possible should the predicted increase in storm surge flooding events frequency unfold.

Key Words – Flooding; Osmotic stress; Salinity; Saline soil waterlogging; Salt ions; Sea-level rise; Stress metabolites; Storm surge; White Clover
Introduction

A combination of sea level rise and the increased likelihood of storm surge events associated with anthropogenic climate change is likely to result in more frequent and severe episodes of salt water inundation into low-lying coastal vegetation (Nicholls and Cazenave, 2010; Martin et al., 2011; Zappa et al., 2013). Coastal habitats are both economically and ecologically important. Not only do they provide protection against the sea for urban areas and agro-ecosystems in-land (Hanley et al., 2014), they offer refuge for many plant and animal species excluded by intensive agriculture (Rhymer et al., 2010; Fisher et al., 2011). Consequently the ecological response of these coastal habitats to seawater inundation may have important ramifications not only for conservation, but also shoreline management.

The potential impact of storm surge events may be particularly acute for grazing marsh, sand dunes and coastal pasture since unlike salt marshes, these ecosystems are not naturally susceptible to the periodic intrusion of sea water. Salt stress and inundation regimes are known to affect productivity and plant zonation in estuarine marsh/grassland transitions (Guo and Pennings, 2012; Janousek and Mayo, 2013), and also influence plant survival, growth, and reproduction in freshwater macrophytes (Van Zandt and Mopper, 2002; Van Zandt et al., 2003; Middleton, 2009; Pathikonda et al., 2010). However, our understanding of the impact of salt stress on coastal mesophytes is limited to the effects of sea spray on cliff and strandline vegetation (Malloch et al., 1985; de Vos et al., 2010; Rogers and Wiser, 2010). This contrasts markedly with a rich literature documenting salinity tolerance
in halophytes (Zhu, 2001; Flowers and Colmer, 2008; Wetson et al., 2012) and the impact of salinity on growth and yield of crop species (Munns and Tester, 2008; Flowers et al., 2010).

The tolerance of wetland plants to freshwater flooding has been studied extensively (see reviews by Bailey-Serres and Voesenek, 2008; Colmer and Voesenek, 2009), but knowledge of plant response to seawater flooding is limited (Colmer and Flowers, 2008; Bennett et al., 2009; Hanley et al., 2013) and for the most part focusses on how increased tidal flooding affects halophytes in salt marsh systems (e.g., Janousek and Mayo 2013; Valentim et al., 2013). In addition to impeded gas exchange and chemically-reduced compounds in flooded soils (Armstrong, 1979), flooding by seawater also imposes osmotic and ionic stresses; the osmotic stress limits the plant's ability to absorb water and the ionic stress can result in toxicity through the accumulation of Na\(^+\) and Cl\(^-\) in tissues (Munns and Tester, 2008). In order to cope with the challenge of salinity the plant must prevent or alleviate damage caused by the high concentration of salt ions (Na\(^+\) and Cl\(^-\)) and re-establish homeostatic function (e.g. for K\(^+\)). Salt tolerance is often achieved by the accumulation of stress metabolites (e.g. compatible solutes) and the regulation of tissue ions to exclude or compartmentalize the potentially damaging Na\(^+\) and Cl\(^-\), but even if successfully achieved, this can impose a cost on plant growth (Munns and Tester, 2008).

Any change in the frequency and severity of seawater flooding might therefore be expected to influence greatly the vegetation of low-lying coastal ecosystems. Nonetheless, our ability to predict the impact of anthropogenically-induced changes
in storm surge scenarios on coastal vegetation is limited by the paucity of information on how component species respond to salt water inundation (Hoggart et al., 2014; but see Redondo-Gómez et al., 2011; Hanley et al., 2013). Here we investigate how one common and economically important coastal grassland species, *Trifolium repens* L., responded to simulated short-term seawater inundation of the soil. Although some coastal populations of this species have been shown to be relatively tolerant of salinity, all previous work has exposed plants to a range of salt concentrations imposed for several weeks (Ab-Skukor et al., 1988; Rogers et al., 1997), rather than looking at the effects of a simulated, short-duration seawater soil flooding event and subsequent recovery. Given the lack of information on plant response to salinity stress following storm surge events, our primary goal was to elucidate how exposure to a relatively short pulse of seawater soil flooding affected plant survival, immediate onward growth, and flowering. In addition, as plant performance and response are likely influenced by the accumulation of salt ions and organic solutes (Munns and Tester, 2008; Flowers and Colmer, 2008), we investigated post-immersion changes in the tissue concentrations of Na\(^+\), Cl\(^-\) and K\(^+\) and organic solutes (sugars, sugar alcohols, and proline).

We also examined whether response to seawater immersion varied for plants cultivated from clonal fragments taken from a natural salinity gradient, since we hypothesised that likely natural adaptation for salt tolerance (Munns and Tester, 2008) would influence the response of *T. repens* plants to short-duration soil immersion in seawater. Environmental gradients across even small distances can facilitate the evolution of local ecotypes; i.e., genetically distinct populations
adapted to local environmental conditions (Turesson, 1922). Population-specific variation in morphological or physiological responses to environmental factors such as climate are well-known (Fernández-Pascual et al., 2013; Quilot-Turion et al., 2013), but our understanding of ecotype-specific variation in response to salinity stress is largely confined to halophytes (Huiskes et al., 1985; Blits and Gallagher, 1991 – but see Ab-Skukor et al., 1988; Van Zandt et al., 2003). Ours is the first study to examine ecotypic variation in response to simulated seawater soil flooding in a terrestrial, coastal glycophyte.

Materials and Methods

Plant species, collection and cultivation

Naturally distributed throughout Europe, North Africa and Asia, *T. repens* has been widely introduced elsewhere as a pasture forage plant (Grime et al., 2007). It is also a very common component of coastal grasslands and dune systems likely to be affected by sea-level rise and storm-surge events. In June 2011, we collected parent plants from grassland pasture at South Efford Marsh near Aveton Gifford, Devon, England (50°18'14"N, 3°50'59"W). Plants were collected at locations approximately 25, 200, and 700 m away from the most southerly point of the site. At 25 m, seepage under the sea wall favoured the development of a semi-halophytic community (containing *Puccinellia maritima* and *Spergularia media*) as well as common pasture species like *T. repens* and *Agrostis stolonifera*. At 200 m the plant community was more typical of a terrestrial pasture (dominated by *A. stolonifera* and *Ranunculus repens*), and at 700 m, the sward was dominated by similar species,
but also including common pasture grasses such as *Holcus lanatus* and *Cyanosurus cristatus*. The variation in the plant community with distance from the sea wall suggested a salinity gradient (confirmed by electrical conductivity measurements of the soil - described below), with which to test the hypothesis that natural adaptation for salt tolerance would influence plant response to short-duration soil immersion in seawater.

In mid-June 2011 we sampled 12 individual plants per distance, collecting large, branched (circa 100 mm diameter) fragments with multiple rooting points. All parent plants were at least 5 m apart and taken from distinct patches to reduce the likelihood of collecting from the same individual (Ab-Shukor *et al*., 1988). The plant fragments were transplanted into 110 × 110 × 120 mm plastic pots containing John Innes No. 2 potting compost and cultivated in a sheltered outdoor area. Three soil cores (10 cm depth, 5 cm diameter) per distance were also collected at random intervals to quantify soil electrical conductivity. Three 20 g subsamples were taken from each core and mixed with 100 ml deionised water on a rotational mixer to provide a 1:5 soil:water extract (British Standards Institution, 1997). An electrical conductivity reading was then obtained for each subsample using a WTW Cond 330i handheld conductivity meter with a WTW TetraCon 325 probe (Wissenschaftlich-Technische Werkstätten GmbH, Weilheim, Germany). One-way ANOVA was used to determine variation in soil electrical conductivity from these samples.

Experimental treatments
In November 2011 we removed 10 stolons (about 20 mm long with 1 root node) from each of 12 parent ‘stock’ plants per distance group and individually transplanted these into 70 x 70 x 80 mm pots containing John Innes No. 2 potting compost. Plants were subsequently grown in a naturally lit, heated greenhouse in Plymouth, England (mean daily temperatures varying between 10.7 °C (± 0.2) min and 26.3 °C (± 0.6) max, with daily watering with tap water), until late April 2012.

On April 24th 2012, established ramets were selected such that each of 12 parent ‘stock’ plants was represented by up to 6 clones, each uniform in size and appearance. Clones were allocated to a different treatment group such that we aimed to subject two ramets from each parent ‘stock’ plant to the same soil immersion treatment with seawater collected from Plymouth Sound (electrical conductivity = 47.9 mS/cm at 23.8 °C) for 8, or 24 h, or were retained as untreated controls. This arrangement ensured that genetic variation across all soil immersion treatments was minimised within all distance classes. However, due to some plants failing to establish, replication fell below the target of 6 clones per parent for the 200-m and 700-m distance groups, affecting the number of replicates used in the onward growth and flowering experiment (see below). By immersing to pot-level (in large plastic tubs) we simulated short-term soil waterlogging. Although we recognise that seawater inundation following a storm-surge event would potentially also result in shoot submergence, our approach allowed us to focus on the effect of ionic imbalance in the root-zone rather than the combined effects that could also arise if shoots experienced oxygen deficiency by submergence. In addition, while seawater flooding following storm surge events might also be expected to persist longer than
24 h, records from along the UK coast suggest a 1-d long seawater flooding event is typical (Environment Agency 2014).

Immediately after immersion in seawater, pots were allowed to fully drain before being arranged randomly on a wire mesh-topped bench inside the greenhouse; the wire mesh allowed free drainage and prevented cross-contamination of any leachates between pots.

Tissue ion and metabolite analyses

One fully expanded, non-senescent leaf was removed from each of 12 individual clones per ecotype per immersion treatment 2 d after soil immersion. These samples were frozen in liquid nitrogen and freeze-dried. Samples were then stored in sealed containers with desiccant in a freezer at -80 °C until analysis. These plants were then discarded.

Dried samples were digested in 5 mL dilute (0.5 M) nitric acid while suspended on a shaker in dark conditions for 2-d at room temperature prior to determination by flame photometry of Na\(^+\) and K\(^+\) and by chloridometry of Cl\(^-\) (Munns et al., 2010).

This procedure was applied to 4 replicate leaf samples per soil immersion treatment/ecotype group (minimum sample mass = 26.7 mg). A reference tissue taken through the procedures confirmed the reliability of these measurements.

The remaining leaf samples were bulked (by adding two samples together) such that 4 replicate samples were created for each soil immersion treatment/ecotype group (minimum sample mass = 54.3 mg). Tissue metabolites were extracted from these
using 5% (w/v) perchloric acid and neutralised extracts were analysed using HPLC (Fan et al. 1993). Neutralised extracts were filtered (0.22 μm) and stored at -80 ºC. The initial HPLC analysis of organic solutes (glycinebetaine, proline, prolinebetaine and trigonelline), soluble sugars (fructose, glucose, sucrose) and sugar alcohols (sorbitol, mannitol and pinitol) was adapted from Slimestad and Vågen (2006). The HPLC system (Waters, Milford, MA) consisted of a 600E pump, 717plus autosampler and a 996 photo-diode array detector (PDA). As detection of fructose, glucose and sucrose with the PDA at 195 nm is very insensitive, an Alltech (Deerfield, IL, USA) evaporative light scattering detector (ELSD) was also used to improve sensitivity by minimum 100 fold. Separation was achieved at 22 ± 1.0 ºC on a Prevail ES Carbohydrate column (250 x 4.6 mm i.d. with 5 μm packing; Alltech) using a gradient elution profile of acetonitrile (Eluent A) and water (Eluent B) at 1 ml min⁻¹. Samples in the autoinjector were held at 10 ºC, the ELSD drift tube held at 85 ºC and eluent nebulisation with high purity N₂ gas at a flow rate of 2.6 l min⁻¹. Quantification was based on PDA peak area for organic solutes, and ELSD peak area for soluble sugars and sugar alcohols. Calibration curves were generated from peak area versus the mass of standard analyte injected, with linear relationship for the PDA and a power relationship for the ELSD output. A standard was analysed every 10 samples to check for any instrument/detector drift. Retention times of standards were used to identify analytes in the sample extracts with the PDA spectral data and peak purity used to confirm organic solutes. Typical sample
injections were 20 µl and runtime was 20 min per sample with Empower™ 2 software (Waters) used for data acquisition and processing.

Due to the fact that pinitol co-eluted with fructose, a second HPLC approach was needed to separate and quantify these two analytes and the method described by Naidu (1998) was followed. The Sugar-Pak column (300 × 6.5 mm i.d.) was held at 90 ± 0.5 ºC and separation achieved using a mobile phase of 2.5 mg l⁻¹ Ca-EDTA at 0.6 ml min⁻¹. Detection and quantification of pinitol was undertaken with the PDA as this offered good sensitivity as well as peak spectral and purity comparisons with the standards.

Following application of the Cochran test for homogeneity of variance, and \((\log N)\) data transformation where necessary (Underwood, 1997), the effect of immersion on tissue ion and solute concentrations was examined using a two-way ANOVA with ‘Immersion Time’ and ‘Distance’ as factors, with the tests for an ‘Immersion Time’ \(\times\) ‘Distance’ interaction included to examine any evidence for distance-specific variation in response to immersion duration.

Plant survival, growth and flowering

Plants not used for chemical analysis were watered to capacity 48 h after salt water immersion (using tap water), and then every two days thereafter for a further 70 d (5th July 2012). Greenhouse air temperatures during this phase of the experiment were: 11.3 ºC (± 0.3) min and 29.9 ºC (± 0.9) max. Due to some clones failing to establish before immersion, replication fell below the target of 12 plants for the 200-
m (0-hr = 9 plants, 8-hr = 9 plants, 24-hr = 8 plants) and 700-m (24-hr = 11 plants) distance groups.

The number of inflorescences on each plant were monitored weekly, so that the total number of inflorescences produced per plant (‘Flowering Effort’) and the percentage of plants that produced open inflorescences (‘Percentage Flowering’) could be quantified at the end of the experiment. Elongation of a representative, randomly selected shoot on each plant, measured from a node marked with loosely tied cotton thread, was quantified at 14 days and 42 days (‘Stolon Growth’). Plant mortality was recorded daily.

Subsequently, the effects of ‘Immersion Duration’ and ‘Distance’ on ‘Flowering Effort’ were examined using a two-way ANOVA with ‘Immersion Duration’ and ‘Distance’ as factors, with the tests for an ‘Immersion Duration’ × ‘Distance’ interaction included to examine any evidence for distance-specific variation in response to immersion duration. The effects of ‘Immersion Duration’ and ‘Distance’ on ‘Stolon Growth’ at 14 d were analysed in the same way. Data transformation of the 42 d ‘Stolon Growth’ data could not avoid deviations from normality and homogeneity of variance; therefore Kruskal Wallis tests were applied. Pearson’s chi-squared test was performed on ‘Percentage Flowering’ data to assess the effects of immersion within ‘Distance’ groups, where assumptions of the statistical test were met.
In order to quantify the leaching of salts from the potting compost, four pots were randomly chosen from each soil immersion treatment and water passing through collected and electrical conductivity measured as described above for 5 weeks.

Results

Electrical conductivity of soil samples from transects

One-way ANOVA indicated significant variation in soil electrical conductivity (of 1:5 soil:water extract, EC$_{1:5}$) between sample sites (F$_{(2,27)}$ = 39.61, $P < 0.01$). Post-hoc SNK comparisons revealed that soil electrical conductivity declined with distance from the sea wall embankment, with a mean EC$_{1:5}$ of 6.96 (± 1.35 SE) mS/cm at 25 m, 1.29 (± 0.40 SE) mS/cm at 200 m and 0.19 (± 0.02 SE) mS/cm at 700 m. We therefore conclude that soil salt concentrations were higher at 25 m due to likely sea water seepage through the sea wall and/or deposition of salts from sea spray.

Accumulation in leaves of salt ions and stress metabolites

There was substantial accumulation of Cl$^-$ and Na$^+$ in leaves following soil immersion in sea water (Table 1). Post-hoc SNK tests showed that leaf tissue Cl$^-$ concentrations significantly increased following 24 h sea water immersion compared with both control and 8 h treatments, irrespective of original parental distance from the sea wall. There was also a significant increase in Cl$^-$ concentrations in the 8 h treatments compared with control plants. A similar effect of ‘Immersion Time’ was evident for Na$^+$ although there were also additional ‘Distance’ and ‘Immersion
Time’ × ‘Distance’ effects. However, SNK tests indicated that these were a manifestation of relatively high leaf Na$^+$ levels in 200 m control plants, and generally relatively low leaf Na$^+$ levels in 25 m plants following soil immersion. There was no effect of ‘Immersion Time’ on K$^+$ concentrations; the significant ‘Distance’ effect denoted the inherently higher leaf K$^+$ concentrations in plants cultivated from the 200 m parent population.

We found detectable amounts of the amino acid proline, the sugars fructose, glucose and sucrose, and the sugar alcohol pinitol, in leaf extracts (Table 2). Of these, proline and sucrose increased in all distance groups following soil immersion, but no other treatment-specific trends were located for organic solutes.

Plant survival, growth, and flowering

Water collected from control plants remained at an average electrical conductivity (EC$_w$) of 2.37 ± 0.03 mS/cm. Leachates from pots immersed for 8 and 24 h recorded similar levels of EC$_w$ 2 d post-immersion (12.53 ± 3.28 mS/cm and 11.05 ± 5.61 mS/cm respectively) and declined at a similar rate until 35 d. At this point, stabilisation of EC$_w$ occurred in both treatments (Fig.1).

Only four plants died during the experiment, these were all in the 24 h sea water soil immersion treatment; three from the 700 m ecotype and one from the 200 m ecotype. All plants from the 25 m ecotype survived 24 h soil immersion. At 14 d after the short-durations of soil flooding, ‘Stolon Growth’ was greatly reduced by ‘Immersion’ for all distance groups ($F_{(2,91)} = 50.25, P < 0.01$), with post-hoc SNK tests indicating the greatest reduction after 24 h soil immersion treatment ($P < 0.01$)
‘Distance’ also had a significant effect on ‘Stolon Growth’ \((F_{2,91} = 3.40, \ P < 0.05) \); likely due to a generally greater stem growth of 200 m plants and much reduced growth of 700 m plants following soil immersion. There was no interaction between ‘Immersion’ and ‘Distance’ \((F_{4,89} = 1.78, \ P > 0.05) \). The loss of cotton thread markers used to identify stolons reduced effective replicate number (see Figure 2b) at 42 d, nevertheless the ‘Immersion’ effect remained apparent \((H_{2} = 35.22, \ P < 0.01) \), but ‘Distance’ had no significant effect on ‘Stolon Growth’, as average growth of 25 m plants increased to similar rates as 200 m \((H_{2} = 2.15, \ P > 0.05) \). However, average stolon growth of 700 m plants appeared to be much reduced even at 42 d after the longer duration (24 h) of soil immersion (Fig. 2b).

While both ‘Immersion’ \((F_{2,92} = 14.18, \ P < 0.01) \), and ‘Distance’ \((F_{2,92} = 6.12, \ P < 0.01) \) had a significant effect on ‘Flowering Effort’ (Fig. 3), there was no interaction between ‘Immersion’ and ‘Distance’ \((F_{4,90} = 0.69, \ P > 0.05) \). Post-hoc SNK tests revealed that the mean number of inflorescences per plant (‘Flowering Effort’) produced by the end of the experiment were reduced in both the 8 and 24 h soil immersion treatments \((P < 0.01) \). The significant ‘Distance’ effect could be explained by greater number of inflorescences produced by the 200 m and 700 m control plants compared with the 25 m control plants, suggesting that these populations naturally produce more flowers. However, ‘Flowering Effort’ in the 200 m and 700 m plants was nonetheless greatly reduced by 24 h soil immersion. Similar patterns were observed for ‘Percentage Flowering’ (Fig. 4); 700 m plants produced more open flowers than plants in the groups collected at 200 m and 25 m. Pearson’s chi-squared test revealed that ‘Percentage Flowering’ in the 25-m plants was
reduced by soil immersion ($X^2_{36,2} = 16.94, P < 0.01$). Although the same test could not be performed on 200 m and 700 m plants (over 50% of cells in the test matrix had expected values of less than 5), there was a trend for reduced flowering in both these distance groups following soil immersion.

Discussion

Our experiment to simulate the effects of transient saline soil waterlogging yielded consistent ecophysiological and plant performance responses; two days after soil immersion, all plants exhibited higher leaf concentrations of Na$^+$ and Cl$^-$, concentrations of some organic solutes significantly changed (e.g. sucrose and proline increased), and longer-term plant growth and flowering potential were reduced. The fact that growth and flowering responses also varied according to the location of the parent plants along a natural salinity gradient, suggests that our study plants were displaying natural ecotypic variation to the short-duration salinity stress.

The accumulation of Na$^+$ and Cl$^-$ in leaf tissues is commonly observed in salt-stressed plants which in-turn leads to the accumulation of organic solutes to counter the resulting osmotic imbalance (Wyn Jones and Gorham, 2002; Flowers and Colmer, 2008). It was interesting to note, however, that despite having different growth and flowering responses to seawater soil immersion, the accumulation of Na$^+$ and Cl$^-$ in leaf tissues did not vary for plants from different locations along the natural salinity gradient. Unlike Rogers *et al.* (1997) who documented that tolerance of *T. repens* to longer exposures to salinity was associated with ‘exclusion’ of Cl$^-$ from the shoot, the apparent salinity tolerance of plants we collected from the 25 m
population could not be linked to differences in leaf ion concentrations (the trend in the present study for lower leaf Na$^+$ and Cl$^-$ in ecotypes collected from closer to the sea wall was not statistically significant - Table 1). Moreover, in addition to regulation of leaf ion concentrations, other traits such as differences in “tissue tolerance” can also influence overall plant salinity tolerance (Munns and Tester, 2008). Maintenance of tissue K$^+$ concentration, which can decrease in plants exposed to excess Na$^+$, to retain a favourable K$^+$/Na$^+$ ratio of the cytoplasm for enzyme functioning, is also of importance for salt tolerance (Maathuis and Amtmann, 1999), but for the short-term salinity exposures in the present experiment on *T. repens* there was no significant treatment effect on leaf K$^+$ (Table 1). In addition to regulation of leaf ion concentrations, organic solutes that are compatible with enzymes and therefore accumulated in the cytoplasm are also of importance for adaptation to salinity (Munns and Tester, 2008; Flowers and Colmer, 2008). Organic solutes in plants can include various sugars, sugar alcohols, betaines, and amino acids, many of which accumulate with increasing plant exposure to NaCl, but the types and concentrations vary in different species (Flowers and Colmer, 2008). *T. repens* leaves contained constitutively high concentrations of pinitol, whereas proline and sucrose concentrations rose dramatically in the salt-stressed plants (Table 2). The increased organic solute accumulation is likely a response to provide the osmotic balance needed in the cytoplasm for Na$^+$ and Cl$^-$ accumulation in the vacuole.

The reduction in plant growth reported here mirrors that of plants in salinized agricultural systems (Bennett *et al.*, 2009; Flowers *et al.*, 2010). Simulated seawater
soil flooding not only reduced vegetative growth, measured here for *T. repens* as stolon growth, but had the added effect of causing reduced flowering potential. Exposure of the roots to seawater is expected to exert a negative effect on plant growth and reproductive allocation via ionic and osmotic stresses; salt stress impacts on cell division and photosynthesis as an osmotic imbalance leads to stomatal closure and reduced CO$_2$ uptake and so less photosynthesis (Zhu, 2001). Therefore, greater stress will be exerted on plants enduring longer root immersion as Na$^+$ and Cl$^-$ ions have more time to accumulate in leaf tissues (as was observed here for all plants subject to 24 h soil immersion when compared to the 8 h treatment). This is reflected by the greatest reduction in stolon growth and flowering potential of *T. repens* occurring as a result of 24 h seawater soil immersion despite the fact that salt levels in the growing media were roughly comparable for 8 and 24 h treatments after removal from seawater and subsequent leaching due to watering.

Growth and flowering responses to seawater soil immersion also varied according to the location of the parent plant along a natural salinity gradient. After 24 h of seawater soil immersion, stolon growth of 700 m plants was severely limited, while 25 m and 200 m plants were less affected and seemed to return to similar rates of growth by 42 d. Similarly, although ‘Flowering Effort’ and the percentage of plants with flowering inflorescences were reduced for all distances, the effects were particularly marked for 700 m plants. Ecotype-specific variation in flowering as a consequence of long-term salinity exposure is well known for halophytes like *Aster tripolium* (Gray *et al.*, 1979) and *Sporobolus virginicus* (Blits and Gallagher, 1991), but ours is this first study to demonstrate this effect for a glycophyte from a natural
salinity gradient when exposed to short-duration seawater soil flooding. Our results indicate that the 25 m- and to some degree the 200 m-ecotype, were resilient to transient seawater soil immersion presumably as a consequence of a local population adaptation to the higher soil salinity near to the sea wall embankment. Interestingly, a trade-off between salinity tolerance and reproductive allocation might be evident, as flowering potential in the 25 m ecotype was lower than in the 700 m population.

Plant adaptation to salinity has been shown for species in many hypersaline semi-arid/arid areas (Munns and Tester, 2008), but such local adaptation also occurs in coastal plant populations exposed to salt spray and long-term accumulation of salt ions in the soil (Lowry et al., 2009), including *T. repens* (Ab-Shukor et al., 1988; Rogers et al., 1997). Our study is considerably different, however, in that we applied a one-off, short-term, salinity pulse via soil flooding in an attempt to mirror seawater inundation in a storm surge event. Consequently, our plants experienced an immediate salinity shock followed by a gradual reduction of salt ions around the roots as freshwater diluted and leached salt from the potting media. In flooded ecosystems, the dissipation of salt ions over time may also allow plants to recover from the initial impact of ionic and osmotic stress, an effect not only likely to vary between plant species and ecotypes, but also with season and local weather conditions. The effects of seasonality and species identity remain to be elucidated, but we demonstrate here population-level variation in plant response to seawater soil flooding. Although ecotype-specific response to salinity stress has been demonstrated at the regional scale for *T. repens* (Ab-Shukor et al., 1988), our study evidences the presence of different salinity-tolerant ecotypes over relatively small...
distances within a single coastal site. If salinity-tolerant ecotypes are a widely-distributed feature of coastal plant species, supra-littoral vegetation may be naturally buffered to some extent against predicted sea-level rise and increased incidence of storm-surge events over coming decades. The existence of flooding-tolerant ecotypes may also be important in developing salt-tolerant cultivars for use in saline soils (Ab-Shukor et al., 1988; Rogers et al., 1997; Bennett et al., 2009), and any coastal pastures susceptible to future episodes of seawater flooding.

Given the increased likelihood of storm surge events over coming decades (Martin et al., 2011; Zappa et al., 2013), the international conservation importance of low-lying coastal vegetation and the role these areas play in coastal defence (Rhymer et al., 2010; Fisher et al., 2011; Hanley et al., 2014), a more detailed understanding of the structural and functional responses of coastal vegetation to periodic seawater flooding is particularly pressing. We demonstrate here that one common plant species component of many coastal grasslands and dune systems, *T. repens*, responds poorly to simulated seawater soil flooding, but that the response may be population-, i.e. ecotype-, specific and that the species consequently has an adaptive capacity to withstand short periods of soil inundation by seawater. Whether the likely increased selection pressure for plants resistant to seawater flooding impacts on other plant traits (e.g. growth, N-fixing capacity, anti-herbivore defence, reproductive potential) and thus the ecological role and economic value of this species is worthy of future attention. In addition, the impact of short-duration seawater flooding on multi-species mixtures and subsequent community assembly and function could yield many useful insights into the likely responses of coastal
vegetation to rising sea-levels and the anticipated increased frequency and severity of saline flooding events.

Acknowledgments

We thank Jane Akerman, Simon Hoggart, and John Quealy for technical assistance and two anonymous referees for their comments on an earlier draft of this MS. The support of a University of Plymouth International Research, Networking and Collaboration Grant to MEH and a University of Plymouth research studentship bursary to AW are gratefully acknowledged.

Literature Cited

White et al

Table 1: Ion concentrations of leaf tissues taken from *Trifolium repens* plants 2-d after root-zone immersion in seawater. Significant differences (post hoc S-N-K tests, $P < 0.05$) between treatment means are denoted by different letters following two-way ANOVA showing how immersion time (0, 8 or 24 h) and parent plant location along a natural salinity gradient (25 m most saline, 700 m least saline; described in ‘Results’ section) affected accumulation of Cl$^-$, Na$^+$ and K$^+$.

<table>
<thead>
<tr>
<th>Distance</th>
<th>Treatment</th>
<th>N</th>
<th>Chloride (µmol g$^{-1}$ DM)</th>
<th>Potassium (µmol g$^{-1}$ DM)</th>
<th>Sodium (µmol g$^{-1}$ DM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>SE</td>
<td>Mean</td>
</tr>
<tr>
<td>25 m</td>
<td>Control</td>
<td>4</td>
<td>134</td>
<td>12</td>
<td>476</td>
</tr>
<tr>
<td></td>
<td>8 h</td>
<td>4</td>
<td>966</td>
<td>47</td>
<td>383</td>
</tr>
<tr>
<td></td>
<td>24 h</td>
<td>4</td>
<td>1261</td>
<td>233</td>
<td>502</td>
</tr>
<tr>
<td>200 m</td>
<td>Control</td>
<td>4</td>
<td>138</td>
<td>16</td>
<td>797</td>
</tr>
<tr>
<td></td>
<td>8 h</td>
<td>4</td>
<td>1025</td>
<td>77</td>
<td>712</td>
</tr>
<tr>
<td></td>
<td>24 h</td>
<td>4</td>
<td>1598</td>
<td>67</td>
<td>693</td>
</tr>
<tr>
<td>700 m</td>
<td>Control</td>
<td>4</td>
<td>110</td>
<td>17</td>
<td>466</td>
</tr>
<tr>
<td></td>
<td>8 h</td>
<td>4</td>
<td>1047</td>
<td>36</td>
<td>457</td>
</tr>
<tr>
<td></td>
<td>24 h</td>
<td>4</td>
<td>1805</td>
<td>59</td>
<td>518</td>
</tr>
<tr>
<td>Results of two-way ANOVA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Factor</td>
<td>Distance (DF = 2,27)</td>
<td>1.1</td>
<td>0.358</td>
<td>14.9</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>Immersion time (DF = 2,27)</td>
<td>471.0</td>
<td>0.000</td>
<td>0.7</td>
<td>0.498</td>
</tr>
<tr>
<td></td>
<td>Interaction (DF = 4,27)</td>
<td>2.3</td>
<td>0.084</td>
<td>0.5</td>
<td>0.753</td>
</tr>
<tr>
<td>Distance</td>
<td>Treatment</td>
<td>N</td>
<td>Proline (µmol g⁻¹ DM)</td>
<td>Fructose (µmol g⁻¹ DM)</td>
<td>Glucose (µmol g⁻¹ DM)</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>---</td>
<td>-----------------------</td>
<td>------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>SE</td>
<td>Mean</td>
</tr>
<tr>
<td>25 m</td>
<td>Control</td>
<td>4</td>
<td>ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 h</td>
<td>4</td>
<td>14<sup>AB</sup></td>
<td>8</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>24 h</td>
<td>4</td>
<td>28<sup>B</sup></td>
<td>10</td>
<td>85</td>
</tr>
<tr>
<td>200 m</td>
<td>Control</td>
<td>4</td>
<td>ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 h</td>
<td>4</td>
<td>16<sup>B</sup></td>
<td>3</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>24 h</td>
<td>4</td>
<td>45<sup>C</sup></td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>700 m</td>
<td>Control</td>
<td>4</td>
<td>ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 h</td>
<td>4</td>
<td>22<sup>B</sup></td>
<td>4</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>24 h</td>
<td>4</td>
<td>55<sup>C</sup></td>
<td>8</td>
<td>45</td>
</tr>
<tr>
<td>Results</td>
<td>Factor</td>
<td></td>
<td>F</td>
<td>P</td>
<td>F</td>
</tr>
<tr>
<td>of two-</td>
<td>Distance</td>
<td>3.3</td>
<td>0.054</td>
<td>1.9</td>
<td>0.174</td>
</tr>
<tr>
<td>way ANOVA</td>
<td>Immersion time</td>
<td>44.0</td>
<td>0.000</td>
<td>0.4</td>
<td>0.649</td>
</tr>
<tr>
<td></td>
<td>Interaction</td>
<td>1.6</td>
<td>0.198</td>
<td>0.5</td>
<td>0.735</td>
</tr>
</tbody>
</table>

1 Table 2: Organic solute concentrations of leaf tissue taken from *Trifolium repens* plants 2-d after root-zone immersion in seawater.

2 Significant differences (post hoc S-N-K tests, *P* < 0.05) between treatment means for each solute are denoted by different letters following two-way ANOVA showing how immersion time (0, 8 or 24 h) and parent plant location along a natural salinity gradient
(25 m most saline, 700 m least saline; described in ‘Results’ section) affected solute accumulation. ND denotes failure to detect any quantity above the detection limit, which were: proline (12 µmol g-1 DM), fructose (14 µmol g-1 DM), glucose (20 µmol g-1 DM), sucrose (6 µmol g-1 DM), and pinitol (36 µmol g-1 DM).
1 Figure Legends

2 **Figure 1:** Average electrical conductivity (mS cm\(^{-1}\)) of water passing through pots (i.e. of collected leachates following watering) after sea water soil immersion for the durations of 0 (control), 8 and 24 h.

3 **Figure 2:** Mean stolon extension (mm ± SE) of *Trifolium repens* clones cultivated from parent plants from different locations along a natural salinity gradient (25 m is most saline, 700 m least saline; described in ‘Results’ section), (a) 14 d and (b) 42 d after the root-zones of plants were immersed in sea water.

4 **Figure 3:** The effects of immersion time on the mean (± SE) number of inflorescences (‘Flowering Effort’) produced by *Trifolium repens* clones cultivated from parent plants from different locations along a natural salinity gradient (25 m is most saline, 700 m least saline; described in ‘Results’ section) 70 d after root-zone immersion in sea water.

5 **Figure 4:** The effects of immersion time on the proportion of *Trifolium repens* plants that had flowered by 70 d after root-zone immersion in sea water. Clonal fragments were cultivated from parents from different locations along a natural salinity gradient (25 m is most saline, 700 m least saline; described in ‘Results’ section).
Figure 1

Immersion duration (h)

Electrical conductivity (mS/cm)

Days since soil immersion
Figure 2a

![Graph showing mean stolon growth (mm) against soil immersion duration (h) at different distances (25, 200, 700 m). The graph includes error bars for each data point, with different n values for each condition.](image)
Figure 2b

![Graph showing mean stolon growth (mm) over soil immersion duration (h) with different distances (m) and sample sizes (n).]
Figure 4

Percentage flowering by 70 d (%)

Soil immersion duration (h)

Distance (m)
- 25
- 200
- 700

n=12
n=9
n=11
n=12
n=8
n=9

White et al
White clover and seawater flooding