The effect of oil sands process-affected water and model naphthenic acids on photosynthesis and growth in *Emiliania huxleyi* and *Chlorella vulgaris*.

Running Title: Effect of naphthenic acids on algae.

Jessica Beddow\(^1\), Richard J. Johnson\(^2\), Tracy Lawson\(^1\), Mark N. Breckels\(^1\), Richard J. Webster\(^3\), Ben E. Smith\(^4\), Steven J. Rowland\(^4\) & Corinne Whitby\(^1\)

\(^1\)School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK

\(^2\)Oil Plus Ltd., Dominion House, Kennet Side, Newbury, RG14 5PX, UK

\(^3\)Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, Wales, SY23 3EB, UK

\(^4\)School of Geography, Earth & Environmental Sciences, University of Plymouth, Plymouth, Devon, PL4 8AA, UK

\(^\$\) These authors contributed equally

* Corresponding author Tel: +44 (0)1206 872062 Email: cwhitby@essex.ac.uk

Subject category: Environmental Toxicology and Risk Assessment
Abstract

Naphthenic acids (NAs) are among the most toxic organic pollutants present in oil sands process waters (OSPW) and enter marine and freshwater environments through natural and anthropogenic sources. We investigated the effects of the acid extractable organic (AEO) fraction of OSPW and individual surrogate NAs, on maximum photosynthetic efficiency of photosystem II (PSII) \(F_v/F_m \) and cell growth in *Emiliania huxleyi* and *Chlorella vulgaris* as representative marine and freshwater phytoplankton. Whilst \(F_v/F_m \) in *E. huxleyi* and *C. vulgaris* was not inhibited by AEO, exposure to two surrogate NAs: \((4'-n\text{-butylphenyl})\)-4-butanoic acid (\(n\text{-BPBA} \)) and \((4'-\text{tert-butylphenyl})\)-4-butanoic acid (\(\text{tert-BPBA} \)), caused complete inhibition of \(F_v/F_m \) in *E. huxleyi* (\(\geq 10 \text{ mg L}^{-1} \) \(n\text{-BPBA} \); \(\geq 50 \text{ mg L}^{-1} \) \(\text{tert-BPBA} \)) but not in *C. vulgaris*. Growth rates and cell abundances in *E. huxleyi* were also reduced when exposed to \(\geq 10 \text{ mg L}^{-1} \) \(n\text{-} \) and \(\text{tert-} \)BPBA; however, higher concentrations of \(n\text{-} \) and \(\text{tert-} \)BPBA (100 \text{ mg L}^{-1}) were required to reduce cell growth in *C. vulgaris*. AEO at \(\geq 10 \text{ mg L}^{-1} \) stimulated *E. huxleyi* growth rate (\(p \leq 0.002 \)), yet had no apparent effect on *C. vulgaris*. In conclusion, *E. huxleyi* was generally more sensitive to NAs than *C. vulgaris*. This report provides a better understanding of the physiological responses of phytoplankton to NAs which will enable improved monitoring of NA pollution in aquatic ecosystems in the future.
1. Introduction

The Athabasca oil sands deposit in Alberta, Canada is one of the largest reservoirs of bitumen in the world, covering an area over 100,000 km2. Oil sands mining operations currently generate 1.9 million barrels of oil per day and production is expected to increase to 4.8 million barrels by 2030 (CAPP, 2011). Such large-scale industrial operations inevitably have severe environmental impacts. During oil sands mining, large quantities of oil sands process water (OSPW) are generated which are stored in vast tailings ponds. These ponds contribute to the contamination of local aquatic ecosystems (Headley et al., 2004) and pose a threat to environmental and human health (Siddique et al., 2011). The OSPW hydrocarbons comprise mainly asphaltenes, aromatic compounds (typically high molecular weight), alkanes and naphthenic acids (Whitby, 2010; Strausz et al., 2011). Naphthenic acids (NAs) comprise of mixtures of aliphatic, alicyclic and aromatic carboxylic acids, which demonstrate acute and chronic toxicity to several organisms including fish (Young et al., 2007), plants (Kamaluddin and Zwiazek, 2002, Armstrong et al., 2008), bacteria (Frank et al., 2008; Johnson et al., 2011; Johnson et al., 2012) and phytoplankton (Leung et al., 2003). Establishing the environmental impact of NA contamination presents a considerable challenge, since NAs may enter marine and freshwater environments through natural seepages and anthropogenic sources such as discharge from oil refineries and oil spillage events (Brient et al., 1995; Yergeau et al., 2012).

Over the last decade, measurements of chlorophyll fluorescence have become a routine technique for monitoring photosynthetic performance in both higher plants and algae (Baker, 2008). The dark-adapted parameter
F/V/FM is a measure of the maximum efficiency of photosystem II (PSII) photochemistry. Changes in the value of F/V/FM provide a simple and rapid way to monitor abiotic and biotic stress in photosynthetic organisms (Baker, 2008, Murchie and Lawson, 2013). Chlorophyll fluorescence measurements (e.g. F/V/FM) have previously been used in several plant and algal studies investigating the toxicity of heavy metals (Lu et al., 2000) and polycyclic aromatic hydrocarbons (PAHs) (Huang et al., 1997). However, to our knowledge there are no studies that have investigated the effects of OSPW and NAs on F/V/FM.

In the present study, the marine alga *Emiliania huxleyi* and the freshwater alga *Chlorella vulgaris* were selected as representative phytoplanktonic organisms, since both are biogeographically widespread in their respective environments. The present study aimed to investigate the effects of the acid extractable organic fraction (AEO) of OSPW and individual surrogate NAs, on maximum photosynthetic efficiency of PSII (F/V/FM) and cell growth in *E. huxleyi* and *C. vulgaris*. Such information is crucial, as it will provide a better understanding of the physiological responses of phytoplankton to OSPW and NAs, thus enabling improved monitoring of NA pollution in aquatic ecosystems.

2. Materials and methods

2.1 Sources of OSPW and NAs

Experiments were conducted with surrogate NAs associated with petroleum acids or OSPW and the AEO fraction of OSPW. Two surrogate NAs used in this study were (4′-n-butylphenyl)-4-butoanoic acid (n-BPBA) and
(4′-tert-butylphenyl)-4-butanoic acid (tert-BPBA) and were synthesized using a modified Haworth synthesis (Smith et al., 2008). Both compounds have structural similarities to those NAs previously found in OSPW (Rowland et al., 2011). OSPW was collected at a 2m depth from a Suncor tailings pond (courtesy of L. Gieg, University of Calgary, Canada). The AEO fraction of OSPW was extracted from 1 L OSPW using an ethyl acetate liquid-liquid extraction procedure and the total acid concentration determined by GC-MS as described previously (Johnson et al., 2011). NA and AEO stock solutions were prepared using 0.1 M NaOH to final concentrations of 1, 10, 50 or 100 mg L\(^{-1}\) (media pH was adjusted to 7.5 for ESAW or 7.1 for BG11 immediately following addition). NA concentrations were selected to include the highest concentration generally observed in OSPW (Holowenko et al., 2002).

2.2 Media and growth conditions

Stock cultures of *Emiliania huxleyi* (strain CCMP 370 - a non-coccolith producing strain) and *Chlorella vulgaris* (strain CCAP/211/12) were obtained from the University of Essex culture collection. Both strains were cultured using axenic practices in low light using cool white fluorescent tubes with a light dark cycle of 14:10 at a photon flux density of 150 μmol m\(^{-2}\) s\(^{-1}\) in a controlled environment growth room (Fitotron PG660, Sanyo). *E. huxleyi* cultures were grown in 1 L of 0.2 μm filtered ESAW media, pH 7.5 (Berges et al., 2001; Berges et al., 2004), and *C. vulgaris* cultures were grown in 1 L of 0.2 μm filtered BG11 freshwater media, pH 7.1 (Berges et al., 2004). Cultures were incubated at 16ºC (within the range for growth of *E. huxleyi* (https://NCMA.bigelow.org) and *C. vulgaris* (Nowack et al., 2005; Shluter et
al., 2006), for a total of eight days and harvested for experimental treatments during exponential growth. Triplicate 100 mL sterile serum bottles (Sigma-Aldrich) containing 75 mL filtered media were inoculated simultaneously with either *E. huxleyi* or *C. vulgaris* at an initial cell density of 6×10^4 cells mL$^{-1}$. Cells were acclimated to experimental conditions for 24 h prior to the addition of NAs. Day zero measurements were taken immediately prior to NA addition. Control cultures of *E. huxleyi* and *C. vulgaris* were inoculated into filtered EASW or BG11 media respectively, containing no NAs. Procedural controls containing 75 µL of 0.1 M NaOH (Fisher Scientific) were also established (with media pH adjusted to 7.5 for EASW or 7.1 for BG11 immediately after addition). Killed controls for all treatments were prepared by heating cultures of *E. huxleyi* and *C. vulgaris* to 60 ºC for 1 h before NA addition and incubation.

2.3 Maximum photosynthetic efficiency (F_{V}/F_{M}) measurements

Sub-samples (2 mL) were removed daily over the eight day exposure period and dark adapted for 30 min before measuring F_{V}/F_{M}, using a Fast$^{\text{tracka}}$ II Fast Repetition Rate Fluorometer with a Fast$^{\text{act}}$ system (Chelsea Instruments, Molesey, UK).

2.4 Cell abundance and light microscopy

Cell density and cell volume measurements were calculated daily using a Z2 Coulter Particle and Size Analyzer (Beckman Coulter, CA, USA). Media blanks were used to account for non-biological particles in the media. Cell fragments were excluded from coulter counter analysis by including a lower
size limit for detection. Growth rates were calculated between days zero and three, during the exponential growth phase of both algae. All cultures were examined by light microscopy on day six using an Olympus BX41 brightfield microscope fitted with a Colorview camera and imaging system (Colorview II).

2.5 NA extraction and gas chromatography mass spectrometry analysis.

The cultures that demonstrated significant growth were analysed further for NA degradation as follows: sub-samples (15 mL) were removed at day eight and replicates were pooled together in order to obtain sufficient volume for NA extraction. Killed controls were also extracted for comparison. NAs were extracted using ethyl acetate as described previously (Johnson et al., 2011). Samples were analysed on a 7890A GC system connected to a 5975 VL MS (triple axis detector) and a 120 model autosampler (Agilent Technologies). Samples (1 µl) were injected by splitless injection (270°C injection temperature) onto a 50 m x 320 m x 0.52 µm 19091Z-115E column (Agilent Technologies) using helium as the carrier gas. Oven temperature was set at 50°C for 5 min with an increase to 250°C at a rate of 8°C min⁻¹ and a final hold for 15 min. Data was analysed using Chemstation software (Agilent Technologies).

2.6 Statistical analysis

Statistical analysis was performed using PASW statistics version 18.0.0. Repeated measures ANOVA was used to determine if significant differences in F_v/F_M occurred throughout the time course of the experiment. If the assumption of sphericity of the data was violated, a Greenhouse-Geisser
correction was applied to produce a more conservative F-statistic by reducing the degrees of freedom. Growth parameters and degradation data were analysed using one-way ANOVA with post hoc Tukey test.

3. Results

3.1 Effect of the AEO fraction of OSPW and surrogate NAs on maximum photosynthetic efficiency (F/V/FM)

The FV/FM of E. huxleyi was reduced to zero by day six when incubated with n-BPBA at ≥ 10 mg L⁻¹ (Fig. 1a). When incubated with tert-BPBA, greater concentrations (≥50 mg L⁻¹) were required to cause complete reduction of FV/FM in E. huxleyi (Fig. 1c). In contrast to the surrogate NAs, the AEO fraction did not inhibit FV/FM in E. huxleyi and the FV/FM remained between 0.39-0.45 throughout the eight-day incubation period (Fig. 1e). When C. vulgaris cells were incubated with n-BPBA, tert-BPBA or AEO, no significant differences in FV/FM were found in comparison to controls (F₁₃, ₄₁ = 2.32, p = 0.22). The FV/FM parameter remained within the range of 0.43-0.67 for all treatments. This indicates that the surrogate NAs and the AEO fraction of OSPW had no effect on the maximum photosynthetic efficiency of C. vulgaris up to 100 mg L⁻¹ (Fig. 1b,d and f). The FV/FM for all procedural and killed controls also remained constant throughout (Fig. 1), suggesting that any effects observed were not due to the addition of sodium hydroxide.

3.2 Effect of AEO fraction of OSPW and surrogate NAs on cell growth

Whilst E. huxleyi growth was unaffected by 1 mg L⁻¹ n- and tert-BPBA (Fig. 2, Table 1), greater concentrations (≥ 10 mg L⁻¹) caused significant
inhibition of growth. Specifically, growth rates were significantly reduced compared to controls ($\mu = 0.48$) when *E. huxleyi* was exposed to 10 mg L$^{-1}$ *n-* and tert-BPBA ($\mu = 0.07$ and 0.31, respectively) ($p \leq 0.001$ in both cases) (Table 1). This resulted in much lower cell abundances at day eight for *E. huxleyi* exposed to 10 mg L$^{-1}$ *n-* and tert-BPBA (7.94 x 103 and 9.01 x 105 cells mL$^{-1}$, respectively) compared to controls (1.97 x 106 cells mL$^{-1}$) (Fig. 2a and c).

When *E. huxleyi* was incubated with \geq 50 mg L$^{-1}$ *n-* and tert-BPBA, growth rates were negative (Table 1, Fig. 2a and c).

Whilst 1 mg L$^{-1}$ of the AEO fraction of OSPW had no significant impact on *E. huxleyi* growth, greater concentrations (i.e. \geq 10 mg L$^{-1}$) resulted in significantly increased growth rates (in the range of $\mu = 0.64$-0.77) compared to controls ($p \leq 0.002$ in all cases) (Table 1). Cell abundances for *E. huxleyi* exposed to \geq 10 mg L$^{-1}$ of the AEO fraction of OSPW (3.62-5.56 x 106 cells mL$^{-1}$) were also significantly greater at day eight than for controls ($p < 0.001$ in all cases) (Fig. 2 e). The growth of the procedural controls was consistent with the no-NA controls throughout, suggesting that any observed effect was not due to addition of sodium hydroxide (Table 1, Fig. 2a, c and e).

Although concentrations of \leq 50 mg L$^{-1}$ *n-*BPBA had no significant effect on growth rate of *C. vulgaris*, cell densities were significantly reduced (to 9.06 x106 cells mL$^{-1}$) by day eight with 50 mg L$^{-1}$ *n-*BPBA, compared to controls (1.42 x 107 cells mL$^{-1}$) ($p \leq 0.002$). The growth rate for *C. vulgaris* cultures incubated with 100 mg L$^{-1}$ *n-*BPBA was significantly reduced ($\mu = 0.73$) compared to controls ($\mu = 1.15$), and cell abundance was almost four-fold lower than controls by day eight (3.60 x 106 cells mL$^{-1}$, $p < 0.001$) (Fig. 2b, Table 2). Whilst the growth rate of *C. vulgaris* did not appear to be
significantly affected by *tert*-BPBA up to 100 mg L⁻¹ compared to controls, by day eight, cell densities were significantly lower in the cultures incubated with 50 and 100 mg L⁻¹ *tert*-BPBA, (8.95 x10⁶ and 5.85 x10⁶ cells mL⁻¹ respectively, *p* ≤ 0.001 in both cases) (Fig. 2b and d). Exposure to the AEO fraction of OSPW (up to 100 mg L⁻¹) had no significant effect on *C. vulgaris* growth rate or cell density (Fig. 2f, Table 2). Growth from procedural controls was consistent with no-NA controls throughout, suggesting that there was no effect of sodium hydroxide addition (Table 2, Fig. 2b, d and f).

By day eight, *E. huxleyi* cell volumes differed significantly between treatments (*F*₁₃, ₄₁ = 104.69, *p* < 0.001) (Table 1). Specifically, cells incubated with 50 mg L⁻¹ *n*-BPBA were significantly larger (94.89 µm³) than controls (82.51 µm³) (*p* = 0.003) as were cells incubated with 10 and 50 mg L⁻¹ *tert*-BPBA (94.06-101.56 µm³) (*p* = 0.003). In contrast to *n*- and *tert*-BPBA, when *E. huxleyi* cells were incubated with the AEO fraction of OSPW at ≥ 10 mg L⁻¹, cells were significantly reduced in size (40.95-57.35 µm³, *p* < 0.001 in all cases) compared to controls (Table 1). The cell volume of procedural controls was consistent with no-NA controls at day eight, confirming that there was no effect of sodium hydroxide addition on cell volume (Table 1). *C. vulgaris* cells incubated with ≥ 50 mg L⁻¹ *n*-BPBA, and 100 mg L⁻¹ *tert*-BPBA had significantly larger cell volumes (between 57.29-79.41 µm³) compared to controls (50.57 µm³) (*p* < 0.010 in all cases) (Table 2). The cell volume of *C. vulgaris* cells was not significantly affected by the AEO fraction of OSPW, (up to 100 mg L⁻¹) (Table 2). The cell volume of procedural controls was consistent with no-NA controls at day eight, confirming that there was no effect of NaOH on cell volume (Table 2).
3.3. Effect of the AEO fraction of OSPW and surrogate NAs on cell morphology

The effect of the AEO fraction of OSPW and surrogate NAs on cell morphology of *E. huxleyi* and *C. vulgaris* was investigated using light microscopy (Fig. 3). When *E. huxleyi* cells were exposed to 1 mg L\(^{-1}\) *n*- or *tert*-BPBA, there was little difference in cell morphology compared to controls (Fig. 3c and e). However, when *E. huxleyi* cells were exposed to 10 mg L\(^{-1}\) *tert*-BPBA, cells underwent extensive changes in morphology, becoming irregular in appearance. Cell wall damage was apparent and the appearance of several small, round inclusions inside and around cells was noted (Fig. 3d). It was not possible to image cells incubated with ≥ 10 mg L\(^{-1}\) *n*-BPBA or ≥ 50 mg L\(^{-1}\) *tert*-BPBA due to the toxicity of the NAs resulting in low cell abundances. Image analysis confirmed the observed reduction in the cell size of *E. huxleyi* when exposed to 100 mg L\(^{-1}\) AEO fraction of OSPW (Fig. 3f). Microscopy analysis also confirmed the presence of larger *C. vulgaris* cells when incubated with 100 mg L\(^{-1}\) *n*- and *tert*-BPBA compared to controls, although no dark inclusions were observed in *C. vulgaris* cells incubated with *n*- and *tert*-BPBA as seen in *E. huxleyi* (Fig. 3j and k).

3.4. Biodegradation of the AEO fraction of OSPW and surrogate NAs.

Since there were observed differences in NA sensitivity between *E. huxleyi* and *C. vulgaris*, it was hypothesised that this was due to differential biodegradation of the BPBA isomers by the two algae. Therefore, the algal cultures that clearly demonstrated growth were further analysed against killed and abiotic controls to determine whether NA biodegradation had occurred.
It was found that whilst *C. vulgaris* cultures partially degraded *n*-BPBA (at 1 and 10 mg L\(^{-1}\)) and *tert*-BPBA (at 1 mg L\(^{-1}\)), *tert*-BPBA (at 10 mg L\(^{-1}\)) and the AEO fraction of OSPW remained. In contrast, *E. huxleyi* cultures almost completely removed *tert*-BPBA (at 1 mg L\(^{-1}\)) and partially degraded *tert*-BPBA (at 10 mg L\(^{-1}\)) but were unable to degrade either *n*-BPBA (at 1 mg L\(^{-1}\)) or the AEO fraction of OSPW (Supplementary Fig. S1). All controls demonstrated no abiotic loss of NAs by photodegradation (data not shown).

4. Discussion

This is the first report to describe the effects of the AEO fraction of OSPW and surrogate NA compounds on maximum photosynthetic efficiency of PSII (\(F_V/F_M\)) and cell growth in *Emiliania huxleyi* and *Chlorella vulgaris*. Such information is important as it provides a better understanding of the physiological responses of photosynthetic microorganisms to NAs and may enable improved monitoring of NA pollution in aquatic ecosystems.

Here, we demonstrated that the marine alga *E. huxleyi* was highly sensitive to the surrogate NAs *n*- and *tert*-BPBA at ≥ 10 mg L\(^{-1}\), in terms of photosynthetic efficiency, cell growth and morphology, compared to the freshwater alga *C. vulgaris*, which was more tolerant. Differential sensitivity to the two surrogate BPBA isomers was also observed, whereby *n*-BPBA was generally more toxic than *tert*-BPBA. Similar findings were previously obtained with *n*- and *tert*-butylcyclohexylbutanoic acid isomers using oyster embryos (Smith et al., 2008). In contrast to the results of our study, *tert*-BPBA was previously shown to be more toxic to a bacterial enrichment culture than *n*
BPBA (Johnson et al., 2011). It is well known that NA toxicity can be structure
specific, with lower molecular weight acids often demonstrating acute toxicity
(Holowenko et al., 2002; Frank et al., 2008). Although the exact mechanism of
NA toxicity to algae is unknown, NAs are anionic surfactants (Roberts, 1991)
and their acute toxicity is thought to be related to these properties. More
specifically, NAs acting as surfactants can disrupt the lipid bilayer of
membranes and change membrane properties via polar narcosis (Roberts,
1991, Frank et al., 2008). There is also evidence to suggest surfactants
interact with and denature cell wall proteins in algae, altering cell permeability
and the potential to take in other nutrients and chemicals (Lewis, 1990; Goff,
2013).

Although differential sensitivity between algal species may be expected
(Fairchild et al., 2009), one may hypothesise that the difference observed
herein was due to the ability of C. vulgaris cultures to more readily biodegrade
the BPBA isomers to less toxic metabolites compared to E. huxleyi. Indeed, it
has been previously shown that biodegradation of the BPBA isomers by a
bacterial culture produces ethanoic acid metabolites that are less toxic than
the butanoic acid parent compounds (Johnson et al., 2011). In the present
study, C. vulgaris partially degraded both n- and tert-BPBA, whilst only tert-
BPBA was partially degraded by E. huxleyi. Previous studies have shown that
phytoplankton such as Selenastrum sp., Navicula sp. and Dunaliella sp. may
also degrade certain NAs (Headley et al., 2004, Quesnel et al., 2011). It was
also possible that the surrogate NAs were susceptible to photodegradation
under UV light, thus reducing their toxicity (Mcmartin et al., 2004; Mishra et
al., 2010). However, in the present study, relatively low levels of artificial light
were used with no UV element and abiotic controls showed that photodegradation had not occurred (data not shown).

In contrast to the toxic effects of surrogate NAs observed herein, the AEO fraction of OSPW at concentrations up to 100 mg L\(^{-1}\) (i.e. within the top range found in tailings ponds) had no impact on \(F_v/F_M\) in either algae species studied. Furthermore, the AEO fraction appeared to have a stimulatory effect on the growth of \(E.\ huxleyi\) (but no apparent effect on \(C.\ vulgaris\)). Whilst ESAW media is well known to support high growth rates in \(E.\ huxleyi\) (Berges et al., 2001; Berges et al., 2004), the apparent stimulation of \(E.\ huxleyi\) cells incubated with the AEO fraction of OSPW herein may have been due to the presence of other acid-extractable constituents (Grewer et al., 2010) such as metals and salts, which provided additional nutrients or co-factors for \(E.\ huxleyi\), but not for \(C.\ vulgaris\). NAs have previously been shown to have a stimulatory effect on root and shoot growth in \(Arabidopsis\ thaliana\), which may be due to the broad structural similarity of some NAs to plant growth regulators such as auxins (Leishman et al., 2013). In addition, NAs from OSPW have been shown to stimulate plant growth (as measured by CO\(_2\) uptake) in cattails (\(Typha\ latifolia\)) (Wort, 1976; Bendell-Young et al., 2000). Further work is required to determine whether a direct stimulatory effect of the AEO of OSPW occurs in photosynthetic organisms such as the algae studied herein, or whether other, indirect factors such as increased CO\(_2\) uptake also play a role.

In single celled microorganisms it is not uncommon for changes in cell size to occur in response to stress (Li, 1979; Fisher et al., 1981; Goff et al., 2013). In this study, the presence of both \(n\)- and tert-BPBA resulted in an
increased cell size for both *E. huxleyi* and *C. vulgaris*, compared to controls. It is likely that this increase in cell size was in response to toxic stress, whereby a decrease in surface area to volume ratio reduced NA uptake into the cell. Indeed, previous studies have shown that phytoplankton species with a smaller cell size accumulate higher amounts of contaminants such as atrazine (Tang, 1997) and dichlorodiphenyltrichloroethane (Rice and Sitka, 1973) relative to species with a larger cell size, due in part to their larger surface area to volume ratio. Alternatively, increased cell sizes could be due to arrested cell growth cycle prior to cell division or the cells have increased vacuolization, following NA exposure. A similar increase in cell size to that observed in this study has also been noted in other phytoplankton species in the presence of NAs (Goff et al., 2013) and metal contaminants (Li, 1979; Fisher et al., 1981).

In addition to changes in cell size, *E. huxleyi* also underwent changes in morphology following exposure to tert-BPBA. Specifically, cells changed from rounded to irregular shape; showed signs of cell wall damage and there was the appearance of several small, round inclusions inside and surrounding cells which may be nuclear fragments resulting from apoptosis. Goff et al. (2013) reported changes to algae morphology following exposure to the NA fraction of OSPW. Specifically, Goff et al. (2013) noted that *Chlamydomonas reinhardtii* cells experienced increased roundness and increased diameter with exposure to NAs. In addition, Goff et al. (2013) described the formation of palmelloids (groups of cells remaining in the remnants of the mother cell wall) when *C. reinhardtii* were exposed to OSPW NAs.
Overall, there was a clear and opposite difference in the sensitivity of the two algae towards surrogate NAs (a toxic response was observed) compared to the AEO fraction of OSPW (a stimulatory response was observed), highlighting a need for caution when extrapolating toxicity data from surrogate NAs, as they may be poor predictors of the response to NAs found in OSPW. The marine alga *E. huxleyi* was highly sensitive to the surrogate NAs, in terms of photosynthetic efficiency, cell growth and morphology, compared to the freshwater alga *C. vulgaris*, which was more tolerant. This report provides a better understanding of the physiological responses of marine and freshwater phytoplankton to surrogate NAs and the AEO fraction of OSPW and will enable improved monitoring of NA pollution in aquatic ecosystems in the future.

Acknowledgements

This work was supported by NERC (NE/K000497/1; NE/1001352/1), Oil Plus Ltd and the University of Essex. We thank Dr Lisa Gieg (University of Calgary, Canada) for the provision of OSPW samples and Ms Tania Cresswell-Maynard (University of Essex, United Kingdom) for technical support. Prof Rowland is grateful to the European Research Council for support (agreement no. 228149). We thank Dr Max Frentzel for copy editing the manuscript.
References

https://NCMA.bigelow.org

Mishra, S., Meda, V., Dalai, A.K., McMartin, D.W., Headley, J.V., Peru, K.M.,

Titles and Legends to Figures

Fig. 1. Effect of acid extractable organic (AEO) fraction of OSPW and surrogate NAs on maximum photosynthetic efficiency (F_\text{V}/F_\text{M}) in *Emiliania huxleyi* (a, c and e) and *Chlorella vulgaris* (b, d and f) over eight days with (a-b) n-BPBA, (c-d) tert-BPBA and (e-f) AEO fraction of OSPW at 1 (\text{\textdegree}), 10 (\text{x}), 50 (\text{\textastern}) and 100 (\text{o}) mg L\(^{-1}\), no-NA control (\text{\Diamond}) and procedural controls (\text{\square}). Error bars represent standard deviation of the mean (n=3).

Fig. 2. The effect of acid extractable organic (AEO) fraction of OSPW and surrogate NAs on particle (cell) counts of *Emiliania huxleyi* (a, c and e) and *Chlorella vulgaris* (b, d and f). Particle (cell) counts of *E. huxleyi* and *C. vulgaris* over eight days with (a-b) n-BPBA, (c-d) tert-BPBA and (e-f) the AEO fraction of OSPW at 1 (\text{\textdegree}), 10 (\text{x}), 50 (\text{\textastern}) and 100 (\text{o}) mg L\(^{-1}\). No-NA controls (\text{\Diamond}) and procedural controls (\text{\square}) are also shown. Error bars represent standard deviation of the mean (n=3).

Fig. 3. Microscopic analysis of *Emiliana huxleyi* and *Chlorella vulgaris* cells exposed to the acid extractable organic (AEO) fraction of OSPW and surrogate NAs over six days (NAs). Images a-f represent *E. huxleyi* cells incubated with (a) no-NAs, (b) procedural (NaOH) control, (c) 1 mg L\(^{-1}\) tert-BPBA, (d) 10 mg L\(^{-1}\) tert-BPBA, (e) 1 mg L\(^{-1}\) n-BPBA and (f) 100 mg L\(^{-1}\) AEO fraction of OSPW. Images g-l represent *C. vulgaris* cells incubated with (g) no-NAs, (h) procedural (NaOH) control, (i) 50 mg L\(^{-1}\) tert-BPBA, (j) 100 mg L\(^{-1}\) tert-BPBA, (k) 100 mg L\(^{-1}\) n-BPBA and (l) 100 mg L\(^{-1}\) AEO fraction of OSPW. Scale bars = 10 \text{\mu m}.
Table 1. Growth rates and cell volumes of *Emiliana huxleyi* cultures incubated for eight days with NAs. Values represent means of triplicate samples with standard deviation in parentheses. Growth rates (μ) were calculated over days 0-3. Stars (*) represent results that are statistically different from no-NA controls ($p < 0.05$).

Table 2. Growth rates and cell volumes of *Chlorella vulgaris* cultures incubated for eight days with NAs. Values represent means of triplicate samples with standard deviation in parentheses. Growth rates (μ) were calculated over days 0-3. Stars (*) represent results that are statistically different from no-NA controls ($p < 0.05$).
Fig. 1.
Fig. 2.
Fig. 3.
Table 1.

<table>
<thead>
<tr>
<th>Substrate (mg L(^{-1}))</th>
<th>Growth rate (μ) calculated over days 0-3</th>
<th>Cell volume Day 0 (μm(^3))</th>
<th>Cell volume Day 8 (μm(^3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0.48 (0.01)</td>
<td>70.56 (1.12)</td>
<td>82.51 (4.02)</td>
</tr>
<tr>
<td>NaOH control</td>
<td>0.47 (0.02)</td>
<td>70.87 (6.25)</td>
<td>82.52 (3.17)</td>
</tr>
<tr>
<td>n-BPBA (1)</td>
<td>0.48 (0.03)</td>
<td>69.29 (5.24)</td>
<td>85.16 (1.57)</td>
</tr>
<tr>
<td>n-BPBA (10)</td>
<td>0.07 (0.05)*</td>
<td>71.19 (6.28)</td>
<td>85.32 (4.94)</td>
</tr>
<tr>
<td>n-BPBA (50)</td>
<td>-0.49 (0.02)*</td>
<td>73.36 (3.87)</td>
<td>94.89 (0.52)*</td>
</tr>
<tr>
<td>n-BPBA (100)</td>
<td>-0.34 (0.02)*</td>
<td>68.20 (2.98)</td>
<td>90.15 (2.19)</td>
</tr>
<tr>
<td>tert-BPBA (1)</td>
<td>0.44 (0.02)</td>
<td>67.87 (2.12)</td>
<td>88.06 (6.96)</td>
</tr>
<tr>
<td>tert-BPBA (10)</td>
<td>0.31 (0.01)</td>
<td>67.25 (2.12)</td>
<td>101.56 (3.56)*</td>
</tr>
<tr>
<td>tert-BPBA (50)</td>
<td>-0.52 (0.10)*</td>
<td>69.14 (2.63)</td>
<td>94.06 (1.70)*</td>
</tr>
<tr>
<td>tert-BPBA (100)</td>
<td>-0.40 (0.07)*</td>
<td>73.09 (7.69)</td>
<td>90.29 (0.87)</td>
</tr>
<tr>
<td>AEO OSPW (1)</td>
<td>0.46 (0.03)</td>
<td>67.35 (3.40)</td>
<td>76.31 (2.59)</td>
</tr>
<tr>
<td>AEO OSPW (10)</td>
<td>0.64 (0.01)*</td>
<td>65.94 (2.14)</td>
<td>57.35 (1.56)*</td>
</tr>
<tr>
<td>AEO OSPW (50)</td>
<td>0.73 (0.01)*</td>
<td>71.83 (5.35)</td>
<td>46.08 (2.00)*</td>
</tr>
<tr>
<td>AEO OSPW (100)</td>
<td>0.77 (0.02)*</td>
<td>65.36 (5.80)</td>
<td>40.95 (0.75)*</td>
</tr>
</tbody>
</table>
Table 2.

<table>
<thead>
<tr>
<th>Substrate (mg L(^{-1}))</th>
<th>Growth rate days 0-3 (μ) calculated over days 0-3</th>
<th>Cell volume day 0 (μm(^3))</th>
<th>Cell volume day 8 (μm(^3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>1.15 (0.06)</td>
<td>72.39 (5.36)</td>
<td>50.57 (0.47)</td>
</tr>
<tr>
<td>NaOH control</td>
<td>1.15 (0.09)</td>
<td>68.36 (1.63)</td>
<td>50.98 (2.14)</td>
</tr>
<tr>
<td>(n)-BPBA (1)</td>
<td>1.18 (0.01)</td>
<td>67.12 (0.53)</td>
<td>50.98 (1.80)</td>
</tr>
<tr>
<td>(n)-BPBA (10)</td>
<td>1.15 (0.07)</td>
<td>66.18 (0.83)</td>
<td>51.52 (1.40)</td>
</tr>
<tr>
<td>(n)-BPBA (50)</td>
<td>1.05 (0.08)</td>
<td>67.40 (2.12)</td>
<td>57.29 (2.06)*</td>
</tr>
<tr>
<td>(n)-BPBA (100)</td>
<td>0.73 (0.05)*</td>
<td>64.50 (0.66)</td>
<td>79.41 (2.66)*</td>
</tr>
<tr>
<td>tert-BPBA (1)</td>
<td>1.24 (0.03)</td>
<td>62.91 (0.73)</td>
<td>48.47 (0.72)</td>
</tr>
<tr>
<td>tert-BPBA (10)</td>
<td>1.16 (0.02)</td>
<td>61.94 (0.97)</td>
<td>45.656 (0.47)</td>
</tr>
<tr>
<td>tert-BPBA (50)</td>
<td>1.06 (0.06)</td>
<td>61.70 (1.21)</td>
<td>60.28 (3.80)</td>
</tr>
<tr>
<td>tert-BPBA (100)</td>
<td>1.00 (0.11)</td>
<td>60.71 (0.63)</td>
<td>77.42 (17.44)*</td>
</tr>
<tr>
<td>AEO of OSPW NAs (1)</td>
<td>1.14 (0.03)</td>
<td>60.09 (0.18)</td>
<td>47.95 (0.43)</td>
</tr>
<tr>
<td>AEO of OSPW (10)</td>
<td>1.16 (0.04)</td>
<td>59.92 (0.38)</td>
<td>47.21 (0.63)</td>
</tr>
<tr>
<td>AEO of OSPW (50)</td>
<td>1.09 (0.03)</td>
<td>62.47 (0.29)</td>
<td>48.41 (1.05)</td>
</tr>
<tr>
<td>AEO of OSPW (100)</td>
<td>1.12 (0.02)</td>
<td>61.15 (0.33)</td>
<td>48.59 (1.01)</td>
</tr>
</tbody>
</table>
Supplementary Information

Title and Legend to Supplementary Figure

Supplementary Fig. S1. Percentage degradation of individual model naphthenic acids (n-BPBA and tert-BPBA) and AEO OSPW by (A) E. huxleyi and (B) C. vulgaris. Bars represent the percentage recovery of pooled triplicate samples following eight days incubation, compared to killed controls. Original NA concentrations (1, 10 and 100 mg L\(^{-1}\)) are shown in sample labels (1, 10 and 100 respectively). Values where no algal growth occurred (e.g. with n-BPBA and tert-BPBA at 100 mg L\(^{-1}\)) are not shown.
Supplementary Fig. S1.

(A) *Emeliania huxleyi*

(B) *Chlorella vulgaris*
The effect of oil sands process-affected water and model naphthenic acids on photosynthesis and growth in *Emiliania huxleyi* and *Chlorella vulgaris*.

Running Title: Effect of naphthenic acids on algae.

Jessica Beddow¹§, Richard J. Johnson²§, Tracy Lawson¹§, Mark N. Breckels¹§, Richard J. Webster³, Ben E. Smith⁴, Steven J. Rowland⁴ & Corinne Whitby¹*

¹School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK

²Oil Plus Ltd., Dominion House, Kennet Side, Newbury, RG14 5PX, UK

³Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, Wales, SY23 3EB, UK

⁴School of Geography, Earth & Environmental Sciences, University of Plymouth, Plymouth, Devon, PL4 8AA, UK

§ These authors contributed equally

* Corresponding author Tel: +44 (0)1206 872062

Email: cwhitby@essex.ac.uk

Subject category: Environmental Toxicology and Risk Assessment
Research Highlights:

- *E. huxleyi* was generally more sensitive than *C. vulgaris* to surrogate NAs.

- Surrogate NAs at 10-50 mg L⁻¹ inhibited *Fᵥ/Fₘ* and growth in *E. huxleyi* but not *C. vulgaris*.

- *Fᵥ/Fₘ* in *C. vulgaris* and *E. huxleyi* was not inhibited by the AEO fraction of OSPW.

- The AEO fraction of OSPW at ≥ 10 mg L⁻¹ stimulated cell growth in *E. huxleyi*.
