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Highlights:  

 Improved simplicity and accuracy of analysis of maleimides by GC×GC-ToF-

MS 

 High sensitivity of the method enabled detection of new compounds 

 Previous erroneous quantification due to coelution discovered 

 Enable studies on environmental significance of chlorophyll degradation 

products 

 

 

 

ABSTRACT 

Maleimides (1H-Pyrrole-2,5-diones) are monopyrrolic pigment derivatives with 

specific alkyl side chains that can be directly linked to their tetrapyrrole 

precursors, most notably chlorophylls and bacteriochlorophylls. These 

compounds can be used as palaeoenvironmental indicators such as, for 

instance, algal productivity and redox conditions in ancient and modern aquatic 

systems. Here, we present a new method using two-dimensional gas 

chromatography time-of-flight mass spectrometry (GC×GC-ToF-MS), which 

enables the rapid analysis of maleimides in complex mixtures and different 

matrices (e.g. sediments and soils), therefore largely simplifying the previous 

intricate maleimide purification protocol. This method also reduces the potential 

for bias associated with partial losses due to low recovery and the high volatility 

of maleimides. The maleimide distributions and concentrations obtained by 

GC×GC-ToF-MS were reproducible and in agreement with the previously used 

purification procedure followed by analysis with traditional gas chromatography 
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- mass spectrometry (GC-MS). The new method also resolved previously 

unrecognised, partial coelution of some maleimides with unknown compounds 

by quantification with the m/z 75 fragment ion. Furthermore, the higher 

sensitivity enabled the detection of previously unrecognised and preliminarily 

identified maleimides based on their relative retention times. The new, easier, 

rapid and more sensitive GC×GC-ToF-MS method greatly facilitates the 

analysis of maleimides in environmental samples to study tetrapyrrole 

degradation processes and will further the development of maleimides as 

biomarkers for palaeoenvironmental reconstructions. 

 

Keywords: maleimide; tetrapyrrole; chlorophyll; gas chromatography; GC-MS; 

GC×GC-ToF-MS 

 

1. Introduction 

Tetrapyrrole pigments comprise chlorophylls and bacteriochlorophylls, which 

are essential light absorbing and energy-transferring compounds for oxygenic 

and anoxygenic photosynthesis [e.g. 1,2]. Although these pigments have been 

intensely studied since the 1930s [3-7], improvements of analytical techniques 

during the last two decades have facilitated their characterisation in aquatic and 

terrestrial environments [e.g. 7]. Most notably, high performance liquid 

chromatography tandem mass spectrometry (HPLC-MS/MS) has enabled 

detailed investigations of pigments to reconstruct phototrophic communities in 

aquatic systems [e.g. 7,8,9-12]. 
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Structural alteration and degradation processes of intact chlorophylls lead to a 

large variety of chlorin derivatives in the water column and sediments [e.g. 

13,14-18]. The preservation of pigment derivatives during diagenesis and 

catagenesis allows reconstructions of ancient phototrophic community 

assemblages [e.g. 4,5,19-21]. 

Among degradation products of pigments are monopyrrolic derivatives (1H-

Pyrrole-2,5-diones; maleimides; Fig. A1; [19]). These compounds have been 

used to study the structure and degradation processes of tetrapyrroles [e.g. 

22,23-25]. Maleimides have also been detected in environmental samples, 

where they have been used as indicators of algal productivity, water column 

properties (i.e. redox conditions, stratification, chemocline depth) and 

depositional conditions [19,20,26-35]. However, the precursors of many 

maleimides have still not been fully identified, the processes leading to their 

formation are incompletely understood and their environmental significance 

needs further investigation [29]. 

Although maleimides can be analysed more easily than their precursor 

tetrapyrroles by gas chromatography due to their lower molecular weight, a 

relatively long, material and time consuming sample preparation and purification 

procedure comprising an array of silica gel column chromatography and thin 

layer chromatography is required to analyse maleimides in environmental 

samples [Section 2.2; 19,29]. Furthermore, this procedure might also introduce 

some bias such as losses of maleimides due to their high volatility and low 

recovery during separation and/or contributions from maleimides derived from 

the instability of tetrapyrroles during sample treatment. 
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In order to improve the current protocols and to facilitate the analysis of 

maleimides, we developed a rapid method to analyse maleimides based on 

two-dimensional gas chromatography (GC×GC) within lipid extracts and polar 

fractions from environmental samples. 

GC×GC was first employed by Liu and Phillips [36] to increase chromatographic 

resolution of traditional one-dimensional gas chromatography, and has been 

extensively developed since then [e.g. 37,38], including coupling to mass 

spectrometers [39,40]. While GC×GC with flame ionisation detection (GC×GC-

FID) has the advantage of improved peak shapes, a higher reproducibility and a 

more precise quantification, GC×GC coupled to time-of-flight mass 

spectrometry (GC×GC-ToF-MS) facilitates the determination of mass spectra 

and therefore the identification of biomarker compounds [37]. Major advantages 

of these instruments include direct analysis of organic compounds in complex 

mixtures and improved determination of labile and volatile molecules [41-44]. 

Here, we used recent sediment samples from a eutrophic lake in Switzerland 

and Devonian sedimentary rocks from a core section in the Canning Basin in 

Western Australia in order to compare ratios derived from conventional 

maleimide analysis (sample purification followed by GC-MS) and GC×GC-ToF-

MS on clean fractions and total lipid extracts. Furthermore, we report the 

detection of novel maleimides based on relative retention times, distributions in 

the 2D chromatograms and mass spectra, measured by GC×GC-ToF-MS. 
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2. Material and methods 

2.1. Study sites 

Rock samples from the McWhae Ridge (Canning Basin, Western Australia; S 

18°43.678 E 126°4.092, WGS84) were studied by [32,45,46]. The samples 

originate from a core section (MR-1 core; 27.2-42.1 m) which comprises the 

period between the Late Givetian (Middle Devonian) and the Middle to Late 

Frasnian (Late Devonian), and were investigated to reveal environmental 

changes before the Frasnian-Famennian boundary extinction event [32,45]. The 

geologic setting and information on the core section are summarised in [45]. In 

short, the lowest part of the section comprises the Gogo Formation (40.1-42.1 

m), consisting of laminated argillaceous shales with thin limestone beds and 

irregular beds of wackestone and fine grained packstone. The following section 

(33.5-40.1 m) comprises calcareous siltstone with micrite nodules and 

argillaceous limestone. The uppermost part of the sampled section (27.2-33.5 m) 

consists of calcareous shale with narrow beds of micrite and packstone. Two 

samples from the core section were analysed, in depths of 27.88-28.25 m 

(MWR11) and 29.64-29.85 m (MWR13A). 

The sediment sample from the Swiss Lake Rotsee (22-24 cm) originate from a 

58 cm long core obtained with a gravity corer at the maximum depth of 16 m in 

August 2010 (N 47°4.251 E 8°18.955, WGS84). After recovery, the core was 

sliced into 2 cm intervals and frozen at -20 °C and freeze dried, ground and 

homogenised prior to analysis. The small (0.46 km2) prealpine, monomictic and 

eutrophic Lake Rotsee is stratified most of the year with a chemocline between 

ca. 6 and 10 m and an anoxic hypolimnion [47]. Hydrographical and limnological 
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parameters of this lake are summarised in [48]. The sedimentation rate is ca. 

0.38 cm yr-1 [48], indicating that the core covers the last ca. 150 yr. The studied 

sample (22-24 cm) therefore corresponds to ca. 1947-1952. The 

biogeochemical history of the lake has been described previously [29,48-50]. 

 

2.2. Maleimide analysis 

The rock samples from the McWhae Ridge (Canning Basin, Western Australia) 

were Soxhlet extracted as reported in [45]. In short, the rock samples were cut 

with a rocksaw and pre-extracted with methanol (MeOH) and dichloromethane 

(DCM) in an ultrasonic bath to remove potential surface contamination. After 

grinding the samples in a rock-mill, they were Soxhlet extracted with 

DCM/MeOH (9:1, v: v) for 48 h. Elemental sulfur was removed by activated 

copper. The total lipid extracts (TLEs) were separated by silica gel column 

chromatography into six fractions using n-hexane for saturated hydrocarbons, 

n-hexane/DCM (8:2, v: v) for aromatic hydrocarbons, n-hexane/DCM (1:1, v: v) 

for nickel porphyrins, DCM for vanadyl porphyrins, DCM/acetone (9.5:1, v: v) for 

maleimides (‘Si1 fraction’) and DCM/MeOH (1:1, v: v) to elute polar compounds. 

Half of the S1 fraction was used for direct analysis by GC×GC-ToF-MS, and the 

other half further purified as described below. 

In contrast, the sediment sample from Lake Rotsee (Switzerland) was extracted 

by ultrasonication with DCM/acetone (1:1, v: v) and oxidised with 1.7% chromic 

acid (CrO3) as described in [29]. The CrO3 oxidised samples comprise naturally 

occurring maleimides as well as maleimides formed by oxidation of the 

tetrapyrroles within the extracts. An aliquot of the CrO3-oxidised sample was 
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separated by silica gel column chromatography into three fractions using DCM, 

20% ethyl acetate (EtOAc) in DCM (i.e. ‘Si1 fraction‘, containing the maleimides; 

one aliquot was used for direct analysis by GC×GC-ToF-MS, another aliquot 

further purified as discussed below) and DCM/MeOH (1:1, v: v) [29]. 

In order to obtain maleimide fractions of sufficient purity for GC-MS analysis, 

aliquots of the Si1 fractions of the MWR and Lake Rotsee samples were 

subjected to preparative thin layer chromatography with 20% EtOAc in DCM as 

mobile phase [29]. H,H maleimide (Sigma Aldrich, 99%) was applied to each 

plate in parallel to the samples as retention standard. The band between ca. Rf 

0.6 and 0.9 was recovered by elution with EtOAc on a short silica column. After 

derivatisation (overnight, room temperature) with 100 µL MTBSTFA [N-(tert-

butyldimethylsilyl)-N-methyl trifluoroacetamide, Sigma Aldrich] in 150 µL 

pyridine to obtain TBDMS (tert-butyldimethylsilyl) derivatives, the carefully dried 

samples (under reduced pressure) were eluted with DCM over a short silica 

column and redissolved in n-hexane prior to analysis (purified fractions).  

The analytical reproducibility of the separation and purification procedure was 

within 10% and 25% for the concentrations of Me,Et maleimide in the free and 

oxidised fractions, respectively, based on duplicate sample preparation and 

measurement of Lake Rotsee sediment by GC-MS. 

The Si1 fractions were also derivatised with 100 µL MTBSTFA in 150 µL 

pyridine (overnight, room temperature), carefully dried under reduced pressure 

and redissolved in n-hexane prior to analysis. 

Maleimides were named and abbreviated according to the nomenclature in 

[19,29]. Identification was based on relative retention times and published mass 
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spectra [19,29,51] as well as authentic standards for H,H, Me,H, Me,Me, Et,H, 

Me,Et, Me,i-Pr, Me,n-Pr, Me,neo-Pent, CycloH, β-benzo and α-benzo 

maleimides provided by Y. Chikaraishi (JAMSTEC, Japan). 

 

2.3. Instrumentation 

The Si1 and purified fractions were analysed using two-dimensional gas 

chromatography-time-of-flight-mass spectrometry (GC×GC-ToF-MS). An 

Agilent 7890B GC system was used, fitted out for GC×GC with a LECO linear 

modulator, and coupled to a LECO Pegasus 4D time-of-flight mass 

spectrometer. The first dimension column (1D) was a Restek Rtx-5MS column 

[29 m x 0.25 mm inner diameter (i.d.) x 0.25 μm film thickness (f.t.)], whereas a 

Restek Rxi-17SILMS column (1.5 m x 0.18 mm i.d. x 0.18 μm f.t.) was used as 

second dimension column (2D). Helium was used as carrier gas with a constant 

flow of 1.05 mL min-1. Splitless injection of samples (1 µL) was performed at an 

inlet temperature of 310 °C. The oven was programmed as follows: 40 °C (1 

min isothermal), heated to 190 °C at 3 °C min-1, then to 300 °C at 20 °C min-1, 

isothermal at 300 °C for 10 min. The modulation period was 3 s, with a 

secondary oven offset of 40°C and a modulator offset of 15°C. The temperature 

of the transfer line to the ToF-MS was held at 290 °C, whereas the ion source 

temperature was 230 °C. The MS was operated in positive ion electron 

ionisation mode at 70 eV. The scan speed was 100 Hz with a range of m/z 35-

650 Da. ChromaTOF (LECO) was used for data processing, with automatic 

baseline correction and peak detection matching against a library produced 

from mass spectra obtained from maleimides (from samples and standards). 



 10 

For comparison, the purified fractions were also analysed using traditional one-

dimensional gas chromatography mass spectrometry (GC-MS) on an Agilent 

7890A system equipped with an Agilent DB-5MS column [60 m x 0.25 mm inner 

diameter (i.d.) x 0.25 μm film thickness (f.t.)] and coupled to an Agilent 5975C 

inert XL EI/CI MSD mass spectrometer using electron impact ionisation at 70 

eV. The temperature program of the oven was 40 °C (1 min isothermal), 40 °C 

to 100 °C at 10 °C min-1, 100 °C to 320 °C at 4 °C min-1, isothermal at 320 °C 

for 30 min. The temperature of the transfer line to the MS was 280 °C and the 

ion source temperature was 230 °C. The inlet temperature was 250 °C. Helium 

was used as carrier gas with a constant flow of 1.2 mL min-1. The scan range 

was m/z 50-650 Da. The software ChemStation was used for data processing. 

Samples (1 µL) were injected splitless. 

Maleimides were quantified by coinjection with the TBDMS derivative of 

phthalimide (ca. 4 ng/injection) on both instruments, using the total ion current 

(TIC), m/z 75 and the base peaks of the respective maleimides as TBDMS 

derivatives ([M - C4H9]+∙ ; m/z 154 for H,H; m/z 168 for Me,H; m/z 182 for Me,Me 

and Et,H; m/z 196 for Me,Et; m/z 194 for Me,vinyl; m/z 210 for Me,i-Pr, Et,Et, 

Me,n-Pr and H,n-Bu (suggested structure); m/z 224 for Et,i-Pr (suggested 

structure), Et,n-Pr (suggested structure), Me,i-Bu, Me,sec-Bu, Me,n-Bu and H,n-

Pent (suggested structure); m/z 238 for Me,neo-Pent, Me,i-Pent (isomers 1-3, 

suggested structure) and Me,n-Pent; m/z 204 for the phthalimide standard; m/z 

208 for CycloH; m/z 218 for β-benzo and α-benzo; Table 1, Fig. A1). However, 

we only report relative concentrations in this study as no response factors were 

determined for the different maleimides and the phthalimide standard. 
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3. Results and discussion 

3.1. Maleimide detection based on one- and two-dimensional chromatography 

Maleimides were detected in the purified fractions of McWhae Ridge and Lake 

Rotsee samples by GC-MS analysis (Fig. 1). The compound with the most 

intense base peak in the studied samples was 2-methyl-3-ethyl-maleimide 

(Me,Et maleimide) (Fig. 1), in agreement with [29,32]. Furthermore, based on 

GC-MS analysis, other less abundant maleimides could be detected, which 

showed various alkyl side chain patterns as reported in [19,29,51] based on 

authentic standard compounds, relative retention times and/or mass spectra 

(Fig. 1). These maleimides were maleimide (H,H maleimide) 2-methyl-

maleimide (Me,H maleimide), 2,3-dimethyl-maleimide (Me,Me maleimide), 2-

ethyl-maleimide (Et,H maleimide), 2-methyl-3-vinyl-maleimide (Me,vinyl 

maleimide), 2-methyl-3-iso-propyl-maleimide (Me,i-Pr maleimide), 2-methyl-3-n-

propyl-maleimide (Me,n-Pr maleimide), 2-methyl-3-iso-butyl-maleimide (Me,i-Bu 

maleimide), 2-methyl-3-n-butyl-maleimide (Me,n-Bu maleimide), 2-methyl-3-iso-

pentyl-maleimide (Me,i-Pent maleimide), 2-methyl-3-n-pentyl-maleimide (Me,n-

Pent maleimide), 2,3-diethyl-maleimide (Et,Et maleimide) and 2-ethyl-3-n-

propyl-maleimide (Et,n-Pr maleimide). 

2-methyl-3-sec-butyl-maleimide (Me,sec-Bu maleimide) could not be detected in 

the studied MWR and Lake Rotsee samples, despite a previous report of 

Me,sec-Bu maleimide in the sediment of this lake [29]. 2-methyl-3-neo-pentyl-

maleimide (Me,neo-Pent maleimide) was only detected in the MWR samples. 

α- and β-methylbenzomaleimide (α- and β-benzo) and 

tetrahydrobenzomaleimide (CycloH) were also detected in the MWR samples 
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based on relative retention times and mass spectra of authentic standards, 

whereas CycloH was below the limit of detection and the other compounds 

were only present in traces in the Lake Rotsee samples. 

The same maleimides could also be detected in the purified samples by 

GC×GC-ToF-MS (Figs. 2, 3). The 2D chromatograms showed very similar 

maleimide distributions and relative retention times in the first dimension 

compared to the GC-MS chromatograms (Figs. 1, 2, 3), as well as similar mass 

spectra (Figs. 4, S1, S2). As expected, the H,H, Me,H, Me,Me and Et,H 

maleimides eluted earlier than Me,Et maleimide in the first dimension, whereas 

Me,vinyl maleimide eluted after Me,Et maleimide (Figs. 2, 3). In the second 

dimension, the elution order was opposite, with H,H maleimide showing the 

highest retention time on the more polar, second column (2.45 s; Figs. 2,3). The 

differential retention of the maleimides on both columns resulted in specific 

peaks in the 2D chromatograms. The other maleimides grouped into three 

series with the base peaks m/z 210, 224 and 238 (Figs. 2,3). 

Based on the elution order on a DB5-MS column as reported in [19,51] for GC-

MS chromatograms, Me,i-Pr maleimide eluted prior to Et,Et and Me,n-Pr 

maleimides in the m/z 210 series, whereas in the m/z 224 series Et,n-Pr 

maleimide eluted prior to Me,i-Bu, Me,sec-Bu and Me,n-Bu maleimides (Fig. 1). 

Using a stationary phase of the same polarity, similar relative retention times in 

the first dimension and relative peak areas were achieved (Figs. 2, 3). Similarly, 

also Me,n-Pent maleimide eluted after Me,neo-Pent and Me,i-Pent maleimides 

in the m/z 238. Phthalimide eluted prior to CycloH, β-benzo and α- benzo in the 

first dimension of the GC×GC-ToF-MS and GC-MS analyses (Fig. 3). 
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3.2. Quantitative comparison of maleimide analysis using GC-MS and GC×GC-

ToF-MS 

Relative concentrations of maleimides in the studied samples were determined 

by coinjection with a phthalimide standard. Maleimides were quantified by gas 

chromatography using either flame ionisation detection or mass spectrometry, 

in the latter case using either the m/z 75 or base peak fragment due to the up to 

three orders of magnitude varying concentrations of maleimides in 

environmental samples [e.g. 19,29,32]. 

Here, we compared concentrations calculated relative to the phthalimide 

standard based on the total ion current (TIC), the m/z 75 or base peak fragment 

between the GC-MS and GC×GC-ToF-MS chromatograms (Fig. 5a, 5b, 5c). 

Despite differences in the fragmentation pattern and response of the studied 

compounds, quantification has previously been observed to be comparable 

between both instruments [41], and the concentrations were similar between the 

two instruments when base peak fragments for the maleimides ([M - C4H9]+∙; Fig. 

5c, 5d, 5e) were used. However, GC×GC-ToF-MS analysis revealed that other 

compounds showing an m/z 75 peak were coeluting with some of the 

maleimides, resulting in inaccurate quantification when TIC or m/z 75 was used. 

This was causing some large offsets between the determined concentrations 

comparing both instruments, using m/z 75 and TIC, but not when the base peak 

was used, especially in the m/z 224 and 238 series and partly also for Me,H and 

Me,Me maleimides (Fig. 6). Although the TIC and m/z 75 are considered more 

accurate for quantification of maleimides due to unknown response factors and 



 14 

differential mass discrimination of different fragments, both may result in an 

overestimation of concentrations by one-dimensional GC-MS analysis. 

Due to the at least 10 times higher concentration of Me,Et maleimide (Figs. 1, 2) 

relative to other maleimides in the studied samples, the concentrations of less 

abundant maleimides under exclusion of Me,Et maleimide were used to 

compare both methods (Figs. 5a-5e). Maleimide concentrations in the purified 

MWR11 sample determined by GC×GC-ToF-MS vs. GC-MS showed slopes of 

1.2, 0.6 and 1.0 and R2 values of 0.69 (n=10; p<0.01), 0.92 (n=10; p<0.01) and 

0.97 (n=10; p<0.01) on the basis of TIC, m/z 75 and base peaks, respectively 

(Fig. 5a, 5b, 5c), typically with a lower number of compounds detected by GC-

MS relative to GC×GC-ToF-MS as discussed above. 

The good agreement of the data determined by both instruments indicates a 

high comparability of the analysed maleimide concentrations. In contrast, in the 

purified MWR13A sample, no correlation was found for concentrations 

determined by both instruments using TIC and m/z 75 (data not shown), which 

was the result of significant coelution of unknown compounds with maleimides 

during GC-MS analysis (Fig. 6). However, using the base peaks of maleimides 

for quantification in this sample resulted in a slope of 1.1 and a R2 value of 0.96 

(n=10; p<0.01) when Me,Et maleimide was excluded (Fig. 5d), indicating a 

higher specificity of the base peaks of maleimides. For comparison, the purified 

Lake Rotsee sample (excluding Me,Et maleimide) was also characterised by a 

slope of 1.0 and a high R2 value of 0.97 (n=12; p<0.01; Fig. 5e). 

Maleimide concentrations of the purified MWR11 and MWR13A samples also 

followed a linear relationship if also Me,Et maleimide as determined by both 
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instruments was included, however with a higher slope of 1.3 instead of 1.0 (Fig. 

5f, 5g). While most maleimides were < 200 ng g-1 TOC (except Me,Et maleimide 

in both samples, Me,Me maleimide in the MWR11 sample), Me,Et maleimide 

reached a concentration of almost 8000 ng g-1 TOC in the purified MWR11 

sample based on GC×GC-ToF-MS analysis. Although the R2 value was similar 

in both cases (Fig. 5f, 5g), the higher slope indicates that such high 

concentrations represent limits in the linearity between both instruments and 

only more diluted samples should be analysed to obtain correct maleimide 

concentrations. 

Despite the good agreement of both methods, a higher relative concentration of 

low molecular weight maleimides (especially H,H, Me,H and Me,Me maleimides) 

was observed based on their base peaks in the MWR and Lake Rotsee 

samples obtained by GC×GC-ToF-MS compared to GC-MS analysis, indicating 

a higher sensitivity than GC-MS analysis for these compounds. In contrast, the 

concentration of higher molecular weight maleimides in the purified MWR and 

Lake Rotsee samples (e.g. maleimides with base peaks m/z 224, 238) 

determined by GC-MS was slightly higher, indicating that GC-MS analysis is 

more sensitive for higher masses. These relations reflect differences in the 

mass spectrometers, resulting in different response and therefore slightly 

different relative concentrations. 
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3.3. Comparison of direct analysis of maleimides versus wet laboratory sample 

preparation and purification procedure 

The direct analysis of Si1 fractions of the MWR samples by GC×GC-ToF-MS 

and comparison to the purified fractions allowed the re-assessment of the 

accuracy of the traditional laboratory procedure, which is a necessary pre-

treatment prior to analysis with GC-MS. The comparison of maleimide 

distributions obtained in the Si1 and purified fractions of the MWR samples by 

GC×GC-ToF-MS reveals reproducible maleimide distributions similar to those 

of the purified fractions (Fig. 2). Correlations between maleimide concentrations 

between the Si1 and purified MWR11 fractions were conc(Si1) = 1.0 x 

conc(purified) + 4.0 (R2=0.99, n=17; p<0.01; Fig. 5h), and between the Si1 and 

purified MWR13A fractions conc(Si1) = 1.3 x conc(purified) - 0.04 (R2=0.98; 

n=12; p<0.01; Fig. 5i). This indicates significant losses in the absolute amounts 

of maleimides using the traditional procedure. 

Despite a high correlation between concentrations in the Si1 and purified 

MWR11 fractions (Fig. 5h), the concentrations of most maleimides in the 

purified fraction of the MWR11 sample were up to 25% lower than the 

concentrations in the Si1 fraction, and the concentration of Me,H, Me,vinyl and 

Me,n-Pent maleimides was 60%, 54% and 47% lower, respectively, indicating 

significant losses of these compounds due to the laboratory procedure. In 

contrast, in the purified fraction of the MWR13A sample, Me,vinyl, Me,i-Pr and 

Et,Et concentrations were 84%, 35% and 34% lower than in the Si1 fraction. 

The differences between these fractions may partly be explained by 

uncertainties in the analytical reproducibility of the extraction and separation 
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procedure (within 10% for free fractions such as the studied MWR samples; 

Section 2.2). Also losses due to the high volatility of the low molecular weight 

maleimides (i.e. H,H and Me,H maleimides) and due to incomplete recovery can 

occur. In particular, the losses of Me,n-Pent maleimide may occur during 

column or thin layer chromatographic separation due to its larger size and lower 

polarity than other maleimides. Me,vinyl maleimide may easily be oxidised due 

to the presence of oxygen during sample preparation, resulting in its lower 

abundance in the purified samples.  

 

3.4. Preliminary identification of new maleimides based on GC×GC-ToF-MS 

analysis 

In addition to the previously reported maleimides, other peaks with almost 

identical mass spectra as these from known maleimides were detected by 

GC×GC-ToF-MS analysis (Fig. 3, Table 1). However, the mass spectra of 

TBDMS derivatives of maleimides (Figs. 4, S1, S2) only dominate by m/z 75 

and a characteristic base peak [19,52]. This prevents further interpretations 

regarding the structure based on the mass spectra, and thus, structural 

assignments can only be assumed based on relative retention times. 

The compound eluting prior to Et,n-Pr maleimide (Fig. 3, Table 1) was assigned 

as 2-ethyl-3-iso-propyl-maleimide (Et,i-Pr maleimide) based on its spectrum 

(m/z 75, 210) and retention times. In the m/z 238 series, four other peaks with 

similar mass spectra eluted prior to Me,n-Pent maleimides (Fig. 3, Table 1). 

One of these peaks was Me,neo-Pent maleimide, which was confirmed by an 

authentic standard (Section 2.2). The other peaks may be Me,i-Pent isomers 
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and/or compounds such as 2-ethyl-3-iso-butyl-maleimide (Et,i-Bu maleimide) 

and 2-ethyl-3-n-butyl-maleimide (Et,n-Bu maleimide), but a structural 

identification of these compounds awaits further confirmation by co-injection 

with authentic standards which will be the focus of future studies. Therefore, we 

assigned these maleimides as Me,i-Pent(1) to Me,i-Pent(3), with the latter 

compound corresponding to the Me,i-Pent maleimide which could also be 

identified by GC-MS analysis. 

Furthermore, peaks with higher retention times in the m/z 210, 224 and 238 

series were present in GC-MS chromatograms, which were not identified 

previously (Fig. 3, Table 1). The compound dominated by a base peak at m/z 

75 and the mass 210 eluting after Me,n-Pr maleimides was most likely 2-n-

butyl-maleimide (H,n-Bu maleimide), and similarly, the compounds eluting after 

Me,n-Bu maleimide in the m/z 224 series and after Me,n-Pent maleimide in the 

m/z 238 series are most likely 2-n-pentyl-maleimide (H,n-Pent maleimide) and 

2-n-hexyl-maleimide (H,n-Hex maleimide) based on their equal differences in 

retention times which is strong evidence for a homologous series of compounds 

(Fig. 3, Table 1). 

These new compounds were partly present in low intensities in the SIM traces 

of m/z 210, 224 and 238 obtained by conventional GC-MS analysis (Fig. 1), but 

in very low abundance, which may explain why they have not yet been reported. 

The GC×GC-ToF-MS approach is more sensitive for the detection of less 

abundant maleimides. Moreover, tetrapyrrole precursors with the proposed 

structures are so far unknown, rendering interpretations regarding their sources, 

formation processes and environmental significance yet impossible.  
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Furthermore, in the MWR and Lake Rotsee samples, potential maleimides of 

higher molecular weights were detected: a series of m/z 252 and 266 with five 

and three peaks, respectively (Fig. 3, Table 1), which showed spectra similar to 

maleimides (Fig. S2). Relative intensities were lower than those of the peaks in 

the m/z 238 series. The most abundant compounds of these series were 

preliminarily identified as 2-methyl-3-n-hexyl-maleimide (Me,n-Hex) and 2-

methyl-3-n-heptyl-maleimide (Me,n-Hep) based on their mass spectra and 

relative retention times, and could also be detected by GC-MS. The other, less 

abundant compounds of these series have so far not been interpreted. 

The identification of maleimides discussed in this section remains preliminary as 

no reference compounds were available. Although the origin of such 

compounds is unknown based on structural reasons considering known 

chlorophylls, these maleimides may be derived from bacteriochlorophyll 

derivatives and porphyrins with extended alkyl chains [10,53,54]. In contrast, 

thermal cracking and alkylation processes as suggested for maleimides with 

alkyl side chains up to C11 in crude oils [52] are unlikely in the immature, recent 

lake samples [29] and the low maturity rock samples from the Canning Basin 

[45] analysed in this study. This first report of their occurrence and simplified 

detection method will enable further studies to determine their environmental 

significance. 

 

4. Summary and conclusions 

GC×GC-ToF-MS analysis allows determination of maleimides with improved 

simplicity and accuracy compared to the traditional method, as confirmed by the 
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analysis of distributions and concentrations of maleimides in Devonian rock 

samples from the Canning Basin, Australia and recent sediments from the 

Swiss Lake Rotsee. Concentrations obtained using both instruments matched 

best using characteristic base peak fragments of the maleimides as using TIC 

or the more general mass m/z 75 resulted both in overestimation by GC-MS 

due to coelution. The improved, two-dimensional separation has enabled the 

analysis of maleimides in complex mixtures and matrices, which facilitated prior 

purification procedures and allowed the detection of previously unknown 

maleimides. More research is required to confirm maleimides with the proposed 

structural assignments. The simplified and rapid analysis of maleimides will 

allow to significantly increase the knowledge about maleimide formation, 

provenance and significance in the environment, facilitate the determination of 

the origin of maleimides and the assessment of transformation and degradation 

of chlorophylls and other pigment precursors in the environment. Furthermore, it 

will be possible to widely use maleimides as biomarkers to reconstruct past and 

present surface water environments, the composition of associated phototrophic 

communities and biogeochemical cycling in these environments. 
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Figure captions 

Fig. 1.  Selected ion chromatograms obtained by gas chromatography – mass 

spectrometry (GC-MS) with maleimides detected in a) extract of 

McWhae Ridge rock sample MWR11 (purified fraction) and b) CrO3 

oxidised extract of Lake Rotsee sediment sample (purified fraction). 

The abbreviations and nomenclature of maleimides is discussed in 

Section 3.1 and shown in Fig. A1. 

 

Fig. 2.  Two dimensional (2D) chromatograms obtained by two-dimensional 

gas chromatography (GC×GC) coupled to time-of-flight mass 

spectrometry (ToF-MS) for a) Si1 fraction and b) purified fraction of the 

McWhae Ridge MWR11 sample, and c) Si1 fraction and d) purified 

fraction of Lake Rotsee sample (CrO3 oxidised extract) illustrating the 

extracted ion current of m/z 154, 168, 182, 196, 210, 224, and 238. e) 

Three dimensional (3D) chromatogram (surface plot) of maleimides as 

analysed by GC×GC-ToF-MS showing the extracted ion current of m/z 

154, 168, 182, 210, 224, and 238 of the purified MWR11 sample. The 

relative amount of Me,Et maleimide in e) is underrepresented by 

exclusion of its characteristic fragment ion (m/z 196), due to its very 

high abundance. Names and abbreviations of illustrated maleimides 

are discussed in Section 3.1 and shown in Fig. A1. 

 

Fig. 3.  Schematic two dimensional (2D) chromatogram as analysed by two-

dimensional gas chromatography (GC×GC) coupled to time-of-flight 
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mass spectrometry (ToF-MS) using the 1D and 2D retention times from 

Table 1 to illustrate retention times of all maleimides detected in this 

study without differences in their relative abundances. a) Scheme of 

complete 2D chromatogram. The peaks in the shaded area are 

magnified in b). Illustrated maleimides are shown in Fig. A1. b) 

Magnified 2D chromatogram illustrating maleimides in the m/z 210 

(peaks A), 224 (peaks B), 238 (peaks C), 252 (peaks D) and 266 

(peaks E). The corresponding maleimides are Me,i-Pr (C1), Et,Et (C2), 

Me,n-Pr (C3), H,n-Bu (C4; suggested structure), Et,i-Pr (B1; suggested 

structure), Et,n-Pr (B2; suggested structure), Me,i-Bu (B3), Me,n-Bu 

(B4), H,n-Pent (B5; suggested structure), Me,i-Pent(1-3) (C1, C3 and 

C4; suggested structures), Me,neo-Pent (C2), Me,n-Pent (C5), H,n-Hex 

(C6; suggested structure), peaks 1-5 of m/z 252 series (D1-D5), peaks 

1-3 of m/z 266 series (E1-E3). 

 

Fig. 4.  Comparison of mass spectra of 2-methyl-3-ethyl-maleimide (Me,Et 

maleimide) analysed by a) gas chromatography – mass spectrometry 

(GC-MS) and b) two-dimensional gas chromatography coupled to time-

of-flight mass spectrometry (GC×GC-ToF-MS). Also mass spectra of 2-

methyl-3-iso-butyl-maleimide (Me,i-Bu maleimide) obtained by c) GC-

MS and d) GC×GC-ToF-MS are illustrated. The mass spectra of all 

maleimides obtained with both instruments are shown in Figs. S1 and 

S2. 
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Fig. 5.  Correlation between maleimide concentrations analysed by gas 

chromatography – mass spectrometry (GC-MS) and two-dimensional 

gas chromatography coupled to time-of-flight mass spectrometry 

(GC×GC-ToF-MS) using a) total ion current (TIC), b) m/z 75 or c) 

characteristic base peaks for quantification in the purified fraction of the 

MWR11 (McWhae Ridge) sample, d) using base peaks in the MWR13A 

sample and e) Lake Rotsee sample. Correlations of maleimides in the 

MWR11 and 13A samples f) including or g) excluding the 

concentrations of 2-methyl-3-ethyl-maleimide (Me,Et maleimide) using 

base peaks. Comparison of maleimide concentrations in the Si1 and 

purified fractions obtained by GC×GC-ToF-MS analysis using 

characteristic base peaks in h) MWR11 and i) MWR13A samples. The 

regression functions and correlation coefficient (R2) values are also 

shown. The m/z of the characteristic base peaks used for quantification 

of the respective maleimides are listed in Section 2.3 and Table 1. 

 

Fig. 6.  Two dimensional (2D) chromatograms obtained by two-dimensional 

gas chromatography coupled to time-of-flight mass spectrometry 

(GC×GC-ToF-MS) analysis of the purified fraction of the MWR11 

sample resolving coelution of maleimides with unknown compounds 

using the intensity of a) m/z 75 fragment and b) base peak fragment for 

H,H (m/z 154), Me,H (m/z 168), Me,n-Bu (m/z 224) and Me,n-Pent (m/z 

238) maleimides for quantification. 
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Appendix 

Fig. A1. Structures of maleimides detected in this study. Maleimides were 

named and abbreviated (details in Section 3.1) according to the 

nomenclature in [19,29]. The compounds indicated with a star (*) 

correspond to preliminarily assigned structures. 
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c) Lake Rotsee (CrO3) – Si1 fraction d) Lake Rotsee (CrO3) – purified fraction

b) MWR 11 – purified fractiona) MWR 11 – Si1 fraction
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Fig 2(e)
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a) Me,Et maleimide – GC-MS b) Me,Et maleimide – GCxGC-ToF-MS

c) Me,i-Bu maleimide – GC-MS d) Me,i-Bu maleimide – GCxGC-ToF-MS

fig 4



GC-MS conc (ng g-1 TOC)
0 20 40 60 80 100 120 140 160

G
C

xG
C

-T
oF

-M
S 

co
nc

 (n
g 

g-1
 T

O
C

)

0

20

40

60

80

100

120

140

160
y = 1.19x - 3.73
R² = 0.69

GC-MS conc (ng g-1 TOC)
0 200 400 600 800 1000 1200

G
C

xG
C

-T
oF

-M
S 

co
nc

 (n
g 

g-1
 T

O
C

)

0

200

400

600

800

1000

1200

GC-MS conc (ng g-1 TOC)
0 20 40 60 80 100 120 140 160

G
C

xG
C

-T
oF

-M
S 

co
nc

 (n
g 

g-1
 T

O
C

)

0

20

40

60

80

100

120

140

160

GC-MS conc (ng g-1 TOC)
0 2 4 6 8

G
C

xG
C

-T
oF

-M
S 

co
nc

 (n
g 

g-1
 T

O
C

)

0

2

4

6

8

GC-MS conc (ng g-1 TOC)
0 1 2 3 4 5 6

G
C

xG
C

-T
oF

-M
S 

co
nc

 (n
g 

g-1
 T

O
C

)

0

1

2

3

4

5

6

GC-MS conc (ng g-1 TOC)
0 2000 4000 6000 8000 10000

G
C

xG
C

-T
oF

-M
S 

co
nc

 (n
g 

g-1
 T

O
C

)

0

2000

4000

6000

8000

10000

GC-MS conc (ng g-1 TOC)
0 20 40 60 80 100 120 140 160

G
C

xG
C

-T
oF

-M
S 

co
nc

 (n
g 

g-1
 T

O
C

)

0

20

40

60

80

100

120

140

160

purified fraction conc (ng g-1 TOC)
0 200 400 600 800

Si
1 

fr
ac

tio
n 

co
nc

 (n
g 

g-1
 T

O
C

)

0

200

400

600

800

purified fraction conc (ng g-1 TOC)
0 2 4 6 8 10

Si
1 

fr
ac

tio
n 

co
nc

 (n
g 

g-1
 T

O
C

)

0

2

4

6

8

10

y = 1.05x - 0.50
R² = 0.98

y = 1.28x + 12.95
R² = 0.99

y = 1.02x + 0.09
R² = 0.97

y = 1.07x - 0.01
R² = 0.96

y = 1.06x - 1.33
R² = 0.97

y = 0.58x - 11.10
R² = 0.92

y = 1.00x + 4.0
R² = 0.99

y = 1.33x - 0.04
R² = 0.98

a) TIC - MWR 11 purified b) m/z 75 - MWR 11 purified c) base peak - MWR 11 purified

d) MWR 13A purified - base peak e) Lake Rotsee - base peak

f) MWR 11+13A purified incl. Me,Et g) MWR 11+13A purified without Me,Et

h) MWR 11 - base peak i) MWR 13A - base peak

fig 5



m/z 75

m/z 75

a) 

column bleed unknown

H,H Me,H

Me,n-Bu
Me,n-Pent

m/z 75

m/z 75

column bleed 

column bleed column bleed 

unknown

unknown unknown

FIG 6



m/z 154

m/z 224

b) 

H,H Me,H

Me,n-Bu Me,n-Pent

m/z 168

m/z 238



H,H Me,H Me,Et Me,vinyl

Me,i-Pr Et,Et Me,n-Pr H,n-Bu *

Et,i-Pr * Et,n-Pr * Me,i-Bu Me,sec-Bu Me,n-Bu H,n-Pent *

Me,i-Pent / Me,neo-Pent Me,n-Pent H,n-Hex *Et,i-Bu * / Et,n-Bu *

Me,Me Et,H

Phthalimide α-benzo β-benzo CycloH

Fig appendix 1


