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PROCESSING-PERFORMANCE RELATIONSHIPS FOR FIBRE-

REINFORCED COMPOSITES 

Abstract 

The present study considers the dependence of mechanical properties in 

composite laminates on the fibre architecture.  The objective is to characterise 

the mechanical properties of composite plates while varying the fibre 

distribution but keeping the constituent materials unchanged.  Image analysis 

and fractal dimension have been used to quantify fibre distribution and resin-

rich volumes (RRV) and to correlate these with the mechanical properties of the 

fibre-reinforced composites. The formation, shape and size of RRV in 

composites with different fabric architectures is discussed. The majority of 

studies in literatures show a negative effect of the RRV on the mechanical 

behaviour of composite materials. RRV arise primarily as a result of (a) the 

clustering of fibres as bundles in textiles, (b) the stacking sequence, and/ or 

stacking process, (c) the resin properties and flow characteristics, (d) the 

heating rate as this directly affects viscosity and (e) the consolidation pressure. 

Woven glass and carbon/epoxy fabric composites were manufactured either by 

the infusion or the resin transfer moulding (RTM) process. The fractal 

dimension (D) has been employed to explore the correlation between fabric 

architecture and mechanical properties (in glass or/ carbon fibre reinforced 

composites with different weave styles and fibre volume fraction).  The fractal 

dimension was determined using optical microscopy images and ImageJ with 

FracLac software, and the D has been correlated with the flexural modulus, 

ultimate flexural strength (UFS), interlaminar shear strength (ILSS) and the 

fatigue properties of the woven carbon/epoxy fabric composites.  
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The present study also considers the dependence of fatigue properties in 

composite laminates on static properties and fibre architecture. Four-point 

flexural fatigue test was conducted under load control, at sinusoidal frequency 

of 10 Hz with amplitude control. Using a stress ratio (R=σmin/σmax) of 0.1 for the 

tension side and 10 for the compression side, specimens were subjected to 

maximum fatigue stresses of 95% to 82.5% step 2.5% of the ultimate flexural 

strength (UFS). The fatigue data were correlated with the static properties and 

the fibre distribution, in order to obtain a useful general description of the 

laminate behaviour under flexural fatigue load.  The analysis of variance 

(ANOVA) technique was applied to the results obtained to identify statistically 

the significance of the correlations. Composite strength and ILSS show a clear 

dependence on the fibre distribution quantified using D. For the carbon fabric 

architectures considered in this study, the fatigue properties of composite 

laminates have significant correlations with the fibre distribution and the static 

properties of the laminates. The loss of 5-6 % in the flexural modulus of 

composite laminates indicates an increasing risk of failure of the composite 

laminates under fatigue loads. The endurance limits, based on either the static 

properties or the fibre distribution, were inversely proportional to the strength 

for all laminates. 
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1.1 Introduction 
 

The increasing demand for high performance materials, (i.e. those which have 

high modulus- and/or high strength-to-weight ratio combined with improved 

fatigue performance and high toughness) has led to rapid advances in the field 

of fibre–reinforced composites.  The global estimated demand could reach 

146,000 tonnes of carbon fibre composites produced annually by 2020 for 

different applications [1].  Composite materials are widely used in the 

transportation sector, especially in aerospace where, for example, >50% of the 

structural weight in the Airbus A350XWB and Boeing B787 Dreamliner are 

manufactured from epoxy composites. Generally, fibre-reinforced polymer 

composites consist of two materials, fibre-reinforcement (e.g. glass, carbon and 

aramid) in a resin matrix (epoxy or other polymers); consolidated together to 

produce a material that has different and enhanced properties compared with its 

constituent materials. Composite material properties depend on various 

parameters such as the type of each material, the volume fraction of each 

material, the geometrical orientation and distribution of fibres and the 

manufacturing process. 

High-performance composites often use autoclave consolidation to improve 

their mechanical properties by increasing the fibre volume fraction, and hence 

reducing the defect population.  Autoclaves are, however, both an expensive 

capital equipment cost and a significant constraint on the rate of production.  

There is therefore increasing interest in composite manufacturing processes 

which do not require the autoclave stage, e.g. the resin transfer moulding 

process (RTM).  Whilst elimination of the autoclave stage during manufacturing 

can increase the production rate of composite components and significantly 
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reduce the energy consumption, it can also lead to lower fibre volume fractions 

(Vf) due to the compressibility characteristics of the fibres [2-5]. The lower Vf, 

obtained at reduced pressure, may lead to resin-rich volumes (RRV) in the 

composite and a consequent disproportionate reduction in the mechanical 

properties of the composite laminates1.  The level of RRV is highest in spray-up 

and hand-lamination techniques (no consolidation pressure), less common in 

out-of-autoclave (OOA) and liquid composite moulding (LCM) procedures, and 

lowest in autoclave and compression moulding processes.  Hence increasing 

the pressure during manufacturing reduces the RRV especially with autoclave 

consolidation [6, 7] due to the nesting of fibres, and that leads to improved 

mechanical properties (both static and fatigue). 

The author cautions against studying only the effect of fibre volume fraction on 

the performance of composite laminates unless the effect of changing the fibre 

architectures and the consequent RRV are fully understood for the 

reinforcement system in use. Therefore, the manufacture of different laminates 

with similar manufacturing parameters and different fibre architectures could be 

useful to correlate the effect of the fibre architectures and the consequent RRV 

to the static and the fatigue properties of fibre-reinforced composites. 

Improvements in mechanical properties and especially fatigue properties of 

fibre-reinforced composites are desirable [8] for the reason that most failures 

that occur in composite materials are due to fatigue where cyclic stress occurs 

[9]. The anisotropic properties of composites give rise to various damage 

mechanisms [10]. Failure is therefore difficult to predict in composites due to 

their inhomogeneous and anisotropic properties. Furthermore, the prediction of 

                                                
1
 Mahmood, A.S., James, M.N. and Summerscales, J. The influence of resin-rich volumes (RRV) 

on the performance of fibre-reinforced composites, a draft of a review paper. 
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composite life is of great interest to researchers due to the possibility of reduced 

production cost through proper design, and to reduced risk in transportation 

vehicles and civil structures. For that reason, the fatigue life and the 

degradation of the mechanical properties of composites are issues of great 

importance. However, developments in the fatigue properties and life prediction 

in composite materials remains complex due to the anisotropic properties of 

composites. In addition, the fatigue life and the mechanical properties of 

composite materials depend on many factors, including matrix material, fibre 

material, volume fractions, fibre orientation, moisture content, voids and  

porosity, applied stress, strain rate, and stress amplitude [10, 11].  

Due to the complexity of the problem, research in this area and the amount of 

experimental data and information available are relatively limited. Most 

researchers have studied the effect of different parameters on the mechanical 

properties of composite laminates. However, no study has had a primary focus 

on the effect of the uniformity of the fibre distribution and RRV on the fatigue 

properties of fibre-reinforced composites 2 . Furthermore, using fibre volume 

fraction (Vf) alone to calculate the mechanical properties of the laminates does 

not account for the effects of different fibre architectures. New research should 

seek to understand why there are different mechanical properties in laminates 

that are manufactured with similar manufacturing parameters and different fibre 

architectures.  

Consider three laminates which have identical manufacturing parameters 

(unidirectional fibre, resin type, thickness, fibre volume fraction….etc.), but 

different fibre distributions.  Figure 1.1 shows idealised microstructure images 

                                                
2
 I offer my apologies to the authors of any studies that might have been missed despite 

searching up to the time of writing this thesis. 
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for ten fibre bundles occupying the same area fraction.  The distribution of the 

bundles is obviously different in each case and the fractal dimension quantifies 

the microstructure variations from left to right as 1.7198, 1.722 and 1.7366.  

So, this raises the questions of (a) are the mechanical properties of laminate 1 

higher than laminates 2 and 3 or lower? …. and (b) what is the effect of using 

woven fabric or any other type of fabric instead of unidirectional fabric?  

 

 

 

Figure 1-1: Three idealised composite microstructures with ten fibre bundles (i.e. similar 
fibre volume fraction) and different fractal dimension.  

    

This study considers experimental static and fatigue tests. Fractal dimension 

will be employed to explore the correlation between fabric architecture and 

mechanical properties (in glass or carbon fibre reinforced composites with 

different weave styles and fibre volume fraction), in order to answer the 

following questions: 

 Why are there different mechanical properties (static and fatigue) for 

laminates that are manufactured with similar manufacturing parameters 

and different fibre architectures? 

 Is there any correlation between the static properties and the uniformity 

of the fibre distribution of the composite laminates and, if so, what is it? 

Laminate 1 Laminate 2 Laminate 3 
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 Is there any correlation between the fatigue properties and the uniformity 

of the fibre distribution of the composite laminates and, if so, what is it? 

 Is there any correlation between the fatigue properties and the static 

properties of the fibre-reinforced composites laminates and, if so, what is 

it? 

 Is it possible to predict the fatigue life of the composite laminates based 

on the static properties and the fibre distribution of the laminates? 

 Is it possible to use the above-mentioned correlations for various types of 

fabric? 

1.2 Motivation of the research 
 

Many researchers have studied the effect of processing parameters on the 

properties of composites, but few have focused on the effect of the uniformity of 

the fibre distribution on the fatigue of composite laminates. Therefore, this 

project is believed to be the first to correlate fractal dimensions of sections of 

continuous woven reinforcement fabric laminates with the fatigue properties. In 

addition, this study will contribute to knowledge of the following issues: 

 Correlations that may exist between the uniformity of the fibre distribution 

and the mechanical properties of the composite laminates and that could 

lead to improved performance of the composites. 

 Whether using fractal dimension (D) can sensibly reduce an image of the 

key aspects of the microstructure to a single real number and hence 

assist in characterising the microstructure. 
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 Whether predicting the mechanical properties of woven fabrics from 

specific microscopic images will allow a reduction in the time and the 

cost of mechanical tests (static and fatigue) necessary to characterise a 

composite material. 

 Explaining the difference between the mechanical properties of laminates 

with similar fibre volume fraction and differing fibre bundle architecture. 

 Improving theoretical approaches to characterising the static and the 

fatigue properties of composite laminates. 

 Predicting the life of composite laminates based on either the static 

properties or the analysis of the microstructural images and hence could 

lead to reduced risk of failure of the composite structures. 

 Modifying fibre architectures to improve the performance of fibre-

reinforced composites.  

In addition to other researchers in this aspect of composite materials, the most 

direct beneficiaries from this project could be manufacturers of the composite 

laminates (e.g. companies that manufacture aircraft, spacecraft, cars, ships, 

boats and sports equipment) because they may be able to manufacture 

composite laminates without an autoclave stage, and this may contribute 

significantly to increasing the production rate and reducing the energy 

consumption of the production stages.  In turn this would save significant money 

and time.  Therefore, this could foster the global economic performance, and 

specifically the economic competitiveness of the United Kingdom. In addition, it 

may increase the effectiveness of public services and enhance the quality of life, 

health and creative output. 
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1.3 Objectives  
 

The overall aim of the project is to understand the effect of the fibre distribution 

and RRV on the mechanical properties of composites, and the contribution 

arising from process parameters such as the fibre distribution, the RRV size and 

shape, the manufacturing process type, infusion pressure, and number of 

laminate layers. The desired outcome is that the properties of advanced 

composites can be predicted using appropriate formulae based on newly 

developed relationships between measured properties and microstructures. The 

initial study will determine whether using the fractal dimension with the box-

counting method has the ability to describe the fibre distribution effect and then, 

whether the fractal dimension is suitable to distinguish the differences between 

various fibre architectures. Therefore, the research will follow the methodology 

below to reach its aims:  

a- Glass fibre-reinforced composites will be manufactured by an infusion 

process using several different infusion pressure levels. 

b- The microstructure of the samples will be quantified using optical 

microscopy with Olympus and ImageJ with FracLac software software 

for image processing and analysis to quantify features using fractal 

dimension. 

c- Samples will be tested for static mechanical properties such as 

tensile modulus, strength and strain to failure and interlaminar shear 

strength, ILSS. 

d- Correlations will be sought between: 
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i. Measured properties and microstructures quantified as fractal 

dimension. 

ii. Measured properties and fibre volume fraction and compare them 

to the fractal dimension correlations. 

e- Carbon fibre-reinforced composites will then be manufactured by 

resin transfer moulding, RTM, with various fibre distributions and 

number of layers. 

f- Samples will be tested for static mechanical properties such as 

flexural modulus, strength and strain to failure and interlaminar shear 

strength, ILSS. 

g-  Samples will be tested in fatigue using 4-point bending tests to 

determine S/N curves for the various composite laminates. 

h- Correlations will then be sought between measured properties (static 

and fatigue) and microstructures quantified as fractal dimension. 

i- Finally, an empirical model will be identified for the fatigue behaviour 

of composites in terms of the uniformity of the fibre distribution and 

static properties. 

j- Attempts will be made to use X-ray computerised tomography (CT) to 

understand and predict the initiation of failure in the woven 

carbon/epoxy laminates under fatigue load. 

k- The validity of the static and fatigue models will be checked by 

applying them to other types of laminate. 
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Figure 1.2 is a flowchart indicating research activities and the path required to 

complete the study. 

1.4 Structure of the thesis 
 

Chapter One provides an introduction to the research topic and the principal 

research questions. It explains the significance and the motivation of the 

research, the primary aims, objectives and the structure of the thesis. 

Chapter Two systematically reviews the existing literature relating to composite 

mesostructure, including the RRV and fibre distribution effects, static and 

fatigue properties of fibre-reinforced composites and the various numerical and 

experimental techniques that have been used in these studies. A key concept is 

the quantification of mesostructural images using fractal dimension. 

In Chapter Three the experimental methodology that was employed is 

presented. This includes details of the laminate manufacturing process and the 

resulting laminates (materials used plus process parameters), microstructural 

characterisation: preparation, image capture, analysis (including an 

investigation of the suitability of the box counting method as a route to fractal 

dimension in composite laminates), static mechanical properties, fatigue 

properties and failure analysis. In Chapter Four, the results are presented for all 

the materials and processing parameters studied as detailed in Chapter Three. 

Chapter Five considers applying the observed correlations to a different (basket 

weave) fabric.  Finally, Chapter Six presents some general conclusions and a 

discussion of the study’s findings, leading to some appropriate 

recommendations for future work. 
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Figure 1-2: The research activities and the path required to complete the study. 
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2.1 Introduction 
 

This chapter reviews the literature relating to composite mesostructure, 

including the RRV and fibre distribution effects, static and fatigue properties of 

fibre-reinforced composites and the various numerical and experimental 

techniques that have been used in these studies. A key concept is the 

quantification of images, i.e. mesostructures, using fractal dimension.  

2.2 Mesostructure analysis for fibre-reinforced 

composites 
 

Characterising a multiphase material can involve an analysis at a micro-, meso- 

or macro-structural level, as all of these can influence the properties and 

performance of the material. In the case of a composite laminate it is most 

effective in terms of time and information to perform a mesoscale analysis (see 

Figure 2.1) that deals with millimetre length scales and describes the fibre 

volume fraction, the fibre distribution and variations of the fibre direction inside 

the laminate. Previous research has used mesostructural information to analyse 

and simulate the behaviour of composite materials [12-17], and found it to be an 

effective tool for the analysis of fibre reinforced composites, since tow 

distributions take the form of repeated arrangements for many types of 

composite fabrics (e.g. woven, non-crimp and braided fabrics). Furthermore, it 

is time consuming and complex to model the behaviour of composite laminates 

at the micro level, because the fibres may be irregularly distributed both within 

the tow and through the laminate and the fibres may have different shapes and 

diameters.  
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Figure 2-1: The composite laminates of this study at different structural scales: from 
micro through meso to macro. 

 

To achieve the required objectives of the study, the literature review is focused 

on three main technical areas: 

 The effect of the RRV and the uniformity of the fibre distribution on the 

mechanical properties of fibre-reinforced composites; 

 A review of the fatigue properties of fibre-reinforced composites, and the 

main factors that affect this property; 

 The measurement of features in microscopic images for composites and 

homogeneous materials, and the best method to measure the uniformity 

of the fibre distribution in the mesostructure analysis. 

2.3 The effect of the RRV and fibre distribution on 

the performance of composites 
 

Using fibre volume fraction (Vf) alone to characterise the mechanical properties 

of laminates does not provide an adequate account of the effects of different 

fibre architectures. Uniform distribution of fibre minimises resin-rich volumes 

              Micro (µm)                            meso (mm)                          macro (m) 

                                                             Length scale 
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while fibre clustering inevitably creates RRV. Most studies discuss RRV in the 

context of different processing parameters. No known published work has a 

primary focus on controlling their size, shape or distribution within the laminate. 

2.3.1 Overview 
 

For an increasing number of layers of a specific reinforcement in a constant 

thickness laminate, as the fibre volume fraction increases, there will inevitably 

be a decrease in RRV measured as their number, individual volume and total 

volume.  The level of RRV will be highest in spray-up and hand-lamination (no 

consolidation pressure), less common in out-of-autoclave (OOA) and liquid 

composite moulding (LCM), and lowest in autoclave and compression moulding 

processes as shown in Figure 2.2.  

This section considers the effect of the RRV and the fibre distribution, on the 

mechanical and physical behaviour of composites, in order to understand the 

performance of composite materials. It reviews published work in the context of 

its relevance to the following questions: 

 What is the influence of processing parameters on the formation, shape 

and size of RRV in composites with different fabric architectures?  

 What procedures and techniques can be used to measure RRV? 

 What is the effect of voids within RRV? 

  What is the effect of the RRV on the behaviour of fibre-reinforced 

composite materials? 
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a)  

b)  

Figure 2-2: Typical micrographs (original (left) & binary (right)). (a) Hand lamination 
composite (Vf=27 %) and (b) Vacuum infused composite (Vf=66 %). The same 
reinforcement shows increased RRV (black in the image) at top (no) consolidation 
pressure. 

 

2.3.2 Production of composites and consequent RRV 
 

This section considers the influence of processing parameters on the formation, 

shape and size of RRV for (i) aligned and cross/angle-plied unidirectional (UD) 

composites, (ii) two-dimensional (2D) woven fabric, (iii) three dimensional (3D) 

woven fabric, and (iv) stitched Non Crimp Fabric (NCF). Conclusions regarding 

composites manufacture and RRV are then presented.  

Lower compression pressure will reduce Vf and uncured resin flow; increase the 

RRV and the void fraction [18]. Furthermore, the pore spaces are filled with 

resin during the flow, consolidation and cure process to create the RRV [19]. 

The resin flow in some consolidation processes can displace fibres and create 

gaps which fill with resin to form the RRV [20]. Gaps are also created due to 

clustering of fibres to create a space which becomes the RRV [21]. Increasing 
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the manufacturing pressure as mentioned in section 2.3.1 will reduce the RRV 

especially with autoclave consolidation [6, 7] due to the nesting of fibres. The 

RRV amount depends on the design of the product, fibre layout and the 

stacking sequence. 

RRV have been found to be proportional to resin viscosity changes by adding 

nano particles [22] or by varying the heating rate of the manufacturing process 

[23]. 

2.3.2.1 Aligned unidirectional (UD), cross-plied (XP), and angle-

plied (AP) unidirectional laminae composites  
 

The RRV in UD, XP and AP unidirectional laminae composites are caused by 

different processing parameters which are related. 

Costa et al. [24] consolidated prepreg carbon fibre laminates in a stacking 

sequence [0,90]14. They showed that the RRV with voids are distributed at ply 

interfaces and that cracks in the RRV initiate at the void tips. 

Chensong [25] tried to model the formation of the RRV in glass fibre (351 g/m2) 

angled composite parts using applied mechanics. It was shown that RRV 

thickness was inversely proportional to radius of a corner and fibre volume 

fraction. The RRV thickness in unidirectional (UD) composites was found to be 

larger than that for cross-plied laminates due to the better compressibility of the 

UD material. The study used open channel moulds, and the experimental 

results show an average of 20% difference with the model.  

 

 



Chapter 2 LITERATURE REVIEW 

[20] 
 

2.3.2.2 Two-dimensional (2D) woven fabric 
 

The difference between the processing parameters that create the RRV in 2D 

woven fabric and UD fabric are related to fabric architecture. Furthermore, 

Cartié et al. [26] studied the delamination of Z-pinned carbon fibre reinforced 

laminates and found that the RRV surround the Z-pin. In manufacturing U-

beams the reinforcement  pulls tight  around the inner corners and results in the 

RRV on the outer surface [27]. 

2.3.2.3 Three dimensional (3D) woven fabric 
 

In 3D woven fabric, additional parameters are present to those in UD and 2D 

woven fabric, which have a great effect on distribution and size of the RRV 

including weave style and distribution of the out-of-plane binder yarn 

reinforcement [28, 29], binder yarn path [30, 31] and level of compaction [28, 

30].   

2.3.2.4 Stitched Non Crimp Fabric (NCF) 
 

Mouritz et al. [32] reviewed the effect of stitching on the in-plane mechanical 

properties of fibre reinforced composites and found that the stitching causes the 

RRV. According to different researchers, the stitches of the NCF create the 

RRV [33-39] as shown in Figure 2.3. The shape of the RRV depends on the 

stacking sequence of the composite laminates [37, 38]. The size of the RRV are 

controlled by the yarn size and stacking sequence [37].      
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Figure 2-3: (a) the stitching seam direction perpendicular to the image plane, and (b) the 
stitching seam laying in the image plane. (reproduced from [39] with the permission of 
the authors and the publishers). 

 

2.3.2.5 Conclusions regarding composites manufacture and 

RRV   
 

The literature clearly indicates that consolidation increases fibre volume fraction 

and in consequence reduces the size of RRV. For a given reinforcement, and a 

constant reinforcement, the change from (i) autoclave or compression moulding 

to (ii) out - of – autoclave, vacuum bagging, RTM or RIFT to (iii) hand lay-up (or 

spray-up) will increase the extent of RRV. Figure 2.4 illustrates the influence of 

processing parameters on formation, shape and size of RRV with different 

fabric architectures. The main causes of the RRV are the fibre layout, the resin 

properties and the processing parameters. Therefore, this study will try to 

characterise the mechanical properties of composite plates by varying the fibre 

layout but keeping the other parameters unchanged. 

2.4 Identification and measurement of RRV 
 

The three principal techniques used to measure RRV in fibre-reinforced 

composites are: (i) X-ray transmission, (ii) computerised tomography (CT) and, 

http://www.sciencedirect.com/science/article/pii/S1359835X07000322#gr5


Chapter 2 LITERATURE REVIEW 

[22] 
 

(iii) microscopy with image analysis. Techniques (i) and (ii) may be non-

destructive testing (NDT) while (iii) normally requires cut sections. 

2.4.1 X-ray transmission 
 

In this technique X-rays are projected toward the composite laminate surface, 

then captured on the other side by a detector which gives a 2D image through 

the thickness of the laminate structure. 

Tan et al. [40] used X-radiography to examine damage characteristics in NCF 

stitched composites subjected to impact loading. They consolidated either 32-

ply [45o/90o/−45o/0o/(0o/45o/90o/90o/−45o/0o)2]S or 20-ply 

[45o/90o/−45o/0o
2/45o/90o

2/−45o/0o]S stacking sequences and found that the RRV 

around stitch threads acted as crack initiation sites. 

 

 

 

 

 

 

 

 

Figure 2-4: Summary of all causes of the RRV with significant influences in bold. 
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2.4.2 Computerised tomography (CT)   
 

In CT scanning the X-ray passes through a composite laminate from different 

angles to create multiple images. These images can be reconstructed to yield a 

3D image of the laminate showing the size and distribution of the RRV or the 

voids. 

Mahadik et al. [28] measured the size and shape of the RRV in a resin transfer 

moulded (RTM) composite using CT. They consolidated samples with fibre 

volume fractions from 50% to 65% step 5%. The authors found that the RRV 

size (0.2 mm3 to 0.5 mm3 for different fabrics) was inversely proportional to the 

level of compaction and heavily dependent on fibre architecture. For a fabric 

used in their study, when the fibre volume fraction was increased by 10%,  the 

RRV height decreased by 83% due to the flattening of the yarn and the RRV 

length reduced by 67%. However, the width of the RRV remained unchanged. 

Liotier et al. [37] claimed that CT can be successfully used to measure 

composite defects. They used a circular sample with a radius of 10 mm and 

2000 projections per full rotation (i.e. every 0.18°). This procedure maximises 

the contrast between carbon fibres and epoxy, and hence improves 

determination of the RRV. The RRV in multi-axial multi-ply stitched carbon 

composites manufactured by liquid resin infusion averaged 3.0 ± 0.5% of the 

overall laminate volume. Tan et al. [40] used CT to analyse defects and 

examine damage characteristics in stitched epoxy composites subjected to 

impact loading. They showed that the cracks were initiated at the RRV. Bull et 

al. [41] claimed that synchrotron radiation computed tomography (SRCT) and 

computed laminography (SRCL) offer clear images with details of individual 

fibres and the RRV. The crack bridging within the RRV is shown in Figure 2.5. 
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Figure 2-5: Close up of a delaminated region obtained using (a) μCT (b) SRCT (c) and 
SRCL. (a and b) are of the same specimen at approximately the same location, (c) is 
representative of similar damage on a separate specimen [41]. 

2.4.3 Microscopic image analysis 
 

Microscopic image analysis provides access to spatial information on fibre 

distribution in addition to volume fraction data. Hayes [42] has reviewed optical 

microscopy of fibre-reinforced composites. Guild and Summerscales [13], 

Summerscales [43] and Summerscales et al. [44] reviewed the use of 

computer-based image analysis in the microscopical study of fibre-reinforced 

composites.  

Summerscales et al. [45] manufactured composite plates from nine-layer 

unidirectional carbon stitched fabric with cold-curing epoxy. They used different 

dwell times (0, 90 or 180 min.) before applying vacuum pressure (0.8 bar), and 

found that fibres clustered more and RRV were reduced the most for the 90 

minutes dwell specimen. They supported a hypothesis that the mechanical 

properties depend on the fibre distribution in addition to the fibre volume fraction.  

Griffin et al. [46] and [47] studied commercial flow-enhancement reinforcement 

fabrics (FERF), from Carr Reinforcements, woven with specially designed 

mesoscale architecture for RTM processes. Image analysis of optical 
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micrographs was used to quantify the micro-/mesostructures as statistical 

distributions of pore space areas and perimeters.  Increased flow rate was 

shown to be related to the presence of both modest-sized and large pore space 

in the reinforcement architecture.  The pore spaces became resin-rich volumes 

in the composites.  These authors noted that the RRV may be implicated in 

premature mechanical failure of the laminate. 

Pearce et al. [48] studied three Brochier (now Hexcel) fabrics:  5-harness satin 

(5HS) , Injectex 5HS FERF and a 2x2 twill (Figure 2.6 and Table 2.1), with the 

same fibre type, surface treatment and fibre volume fractions, to relate 

variations in permeability and mechanical performance to differences in the 

composite microstructures. The satin fabric (Figure 2.6), had the highest 

proportion of small flow areas (<0.06 mm2).  The twill fabric had the smallest 

number of flow areas, but also contained a significant number of very large pore 

spaces (>0.5 mm2).  The Injectex fabric (Figure 2.6) had significant numbers of 

pore space areas in the range 0.08-0.30 mm2.  The proportion of larger pore 

spaces, and the consequent fabric permeability was ranked twill>Injectex>satin 

with the ranking of interlaminar shear strength (ILSS) being in reverse order.  

Pearce et al. [49] continued to analyse the above data set using automated 

image analysis, specifically fractal dimension to quantify the microstructure. 

Canal et al. [50] consolidated 14-layer  unidirectional laminates from prepreg 

sheets of E-glass/MTM57 epoxy resin at 120oC under 640 kPa autoclave 

pressure. Compression tests were carried out within a scanning electron 

microscope, and a digital image correlation technique (DIC) with various 

magnifications (250x, 2000x, and 6000x) was used to examine differences in 

strains between the RRV and the fibre rich volumes (FRV). They found that the 
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calculated strains from DIC measurement were in a good agreement with the 

numerical results from a finite element model. 

 

               Twill    Satin    Injectex 

Figure 2-6: Schematics and transverse micrographs of Brochier weave.  Image frame is 
3.6 x 3.0 mm showing the different RRV dependent on weave style. (Reproduced from [44] 
with the permission of the authors and the publishers). 

 

Table 2-1: Fabric description and the pore space area of Brochier (now Hexcel) woven 
carbon fibre fabrics.  

Group Fabric designation Description %bound 
tows 

Source 
reference 

Pore 
space area 

(mm
2
) 

The 
Rank of 

ILSS 

I Brochier E3853 G986 
6K carbon fibre fabric 

290 g/m
2 

Standard 2x2 
twill weave 

0% Pearce et 
al. [33] 

>0.5 Lowest 

I Brochier E3833 G963 
6K carbon fibre fabric 

290 g/m
2
 5-

harness satin 
Injectex 

weave with 
one in five 
bound tows 

20% Pearce et 
al. [33] 

0.08-0.30 Middle 

I Brochier E3795      6K 
carbon fibre fabric 

290 g/m2 
Standard 5-

harness satin 
weave 

0% Pearce et 
al. [33] 

<0.06 Highest 
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2.5 Voids 
 

The pore space within a dry fabric may, during infusion with resin, become a 

resin rich volume which can include voids (closed spaces) or porosity (inter-

connected channels). Voids/porosity may contain included air, or other volatile 

organic components (VOC). Subject to the resolution of the detection system, 

and the extent of sampling, the accuracy of void volume fraction (Vv) 

determination is probably ± 0.5% [51].   Stone and Clarke [52] reported that 

below void volume fraction (Vv) = 1.5%, voids tend to be volatile-induced and 

hence spherical with diameters in the range 5-20 μm, while above Vv = 1.5% 

the voids are flattened and elongated in the in-plane direction due to the 

limitation of space between the fibre bundles. They are also significantly larger 

than those voids at a lower Vv.  Mayr et al. [53] have recently reported that small 

pores in CFRP with porosity levels <1.8% often have roughly circular cross-

sections and found an abrupt increase in the out-of-plane shape factors above 

this percentage porosity. 

Judd and Wright [54] reviewed 47 papers and concluded that "although there is 

a considerable scatter in results (reflecting in part the difficulties of accurate 

void content determination) the available data show that the interlaminar shear 

strength of composites decreases by about 7 per cent for each 1 per cent voids 

up to at least the 4 per cent void content level, beyond which the rate of 

decrease diminishes.  Other mechanical properties may be affected to a similar 

extent.  This is true for all composites regardless of the resin, fibre or fibre 

surface treatment used in their fabrication". Similar findings were reported by 

Ghiorse [55].  
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Purslow [56] proposed a novel classification system for voids to replace the 

previous system which was only applicable to fairly uniformly distributed voids. 

For example, to quote a Vv (void volume fraction) of 0.5% for a composite of 

generally high quality (voids < 0.2%) but with an occasional very large void 

could be very misleading and potentially dangerous. He suggested that the void 

content should be quoted as "0<voids<0.2%; infrequent local voids > 0.5%". His 

studies have suggested that when Vv < 0.5%, the voids are spherical with a 

diameter of 10 μm and are due to trapped volatiles.  As Vv increases, the voids 

due to trapped volatiles decrease in number and are replaced by large intra-

tow/intra-lamina voids. The results suggested a linear relationship between Vv 

and void thickness, where the thickness is related to fibre diameter. 

Stringer [57] used hand lay-up to manufacture composite laminates with woven 

carbon fibre (340 g/m2). The laminate layers were XP [00/900]7 to produce 2-3 

mm laminate thickness. Increasing epoxy viscosity by a dwell period before 

applying the vacuum pressure could reduce the voids and hence improve the 

mechanical properties of the laminates. Well-chosen dwell periods could also 

reduce the RRV [45] as mentioned above.  

Santulli et al. [51] used microscopic image analysis to measure the void content 

in  twill weave  E-glass/polypropylene composites. They found that coplanar 

voids (voids that spread over the same plane, commonly corresponding to 

interlayer boundaries) exist when RRV are detected between the laminae. 

The extent to which voids affect the mechanical properties of the fibre-

reinforced composites is dependent on void content, void distribution and void 

shape.  A high void content minimises the mechanical properties of composites. 

 



Chapter 2 LITERATURE REVIEW 

[29] 
 

2.6 Evaluation of the effects of RRV on composite 

performance 
 

Studies normally show a negative effect of increasing RRV on all mechanical 

properties of fibre-reinforced composites. This section is therefore divided into 

four parts dealing with (i) stress concentrations arising from RRV, (ii) crack 

initiation and propagation, (iii) static properties and (iv) dynamic properties. 

2.6.1 Stress concentration  
 

The study of stress concentration is very important in composite laminates, 

because failure normally starts from sites of stress concentration. Mikhaluk et al. 

[36] claimed that the RRV could influence the mechanical behaviour of 

carbon/epoxy NCF laminates, and cause stress concentrations. Iarve et al. [58] 

analysed stresses in three dimensions for textile composites both numerically 

(using the finite element method) and experimentally (using Moiré 

interferometry). Their experiments measured strain distributions which 

characterised with well-localised high strain bands corresponding to the RRV 

between the fibre tows. The RRV cause a difference in stresses from region to 

region in composite laminates which leads to the stress concentration.  

2.6.2 Crack initiation and propagation 
 

In addition to its effect on the mechanical properties of composites, it is useful to 

investigate the effect of RRV on crack behaviour. As indicated above, the RRV 

are strongly implicated in creating initiation sites and propagation paths for 

crack growth [31, 59-63] as shown in Figure 2.7. Tan et al. [40] showed that the 

cracks were initiated at the RRV. Bull et al. [41] used synchrotron radiation 

computed tomography (SRCT) and  showed that the cracks connected with the 
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RRV as mentioned earlier. Dyer et al. [64] studied the fatigue behaviour of 

continuous glass fibre reinforced composites with XP stacking sequence 

[90o/0o]2s. They found that failure occurred from cracks which had initiated and 

grown in RRV. Therefore, the RRV are the weak link between cracks. In 

addition, some studies stated that the cracks move from one ply to another 

through the RRV [38, 60]. Furthermore, more RRV means a greater number of 

micro-cracks [38], and coherent fracture of the laminates through the RRV [65]. 

However, Liang et al. [66] stated that all cracks observed in their study were 

located at fibre/matrix interfaces, in fibre rich volumes. Thus, almost no 

transverse cracks were found in RRV due to a weak transverse strength of 

flax/epoxy. 

 

Figure 2-7: (a) top view and (b) cross-sectional view of lock stitch pattern. (reproduced 

from [63] with the permission of the authors and the publishers). 

 
 

 

http://www.sciencedirect.com/science/article/pii/S0261306911006273#gr2
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2.6.3 Static properties 
 

Numerous articles describe the effect of the RRV on the mechanical properties 

of composites. Basford et al. [67] measured the compression and inter-laminar 

shear strengths of carbon fibre/epoxy composite laminates reinforced with 

either normal 5-harness satin (5HS) or Injectex 5HS FERF woven fabrics at 

constant fabric areal weight and Vf.  The strength of both fabrics was found to 

decrease as the proportion of flow-enhancement tows increased.  The presence 

of the twisted tow (used to enhance flow rates in Injectex) was found to cause 

large RRV adjacent to the tow. 

Hale [29] investigated the in-plane and out-of-plane strains in woven carbon 

textile composites experimentally (using Moiré interferometry)  and found that 

the RRV have high local/ microstructural distortions which differ from theoretical 

predictions (using finite element analysis) for these sites. 

Aziz and Ansell [68] investigated the effect of fibre alignment on the flexural 

properties of either kenaf or hemp bast fibre composites. They found that the 

fibre alignment and the location of RRV both have a large negative effect on the 

flexural strength.  

Gojny et al. [69] studied the effect of carbon nanotubes on the mechanical 

properties of glass fibre reinforced composites. They claimed that the RRV had 

a large local deformation relative to the reinforcement. The RRV are estimated 

from the formation of the observed shear-bands of the microscopic image.  

Tzetzis and Hogg [70] investigated an infusion repair technique that could 

increase the toughness of carbon fibre laminates and reported a small reduction 

in load for crack growth under mode I (opening), due to the damage in the RRV. 
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Dhakal et al. [71] analysed the effect of water absorption on the tensile and 

flexural properties of hemp fibre reinforced composites. They found that the 

random orientation of fibres can produce RRV which can reduce the mechanical 

properties.   Lomov et al. [72] claimed that the RRV has a lowest tensile strain, 

when they used meso-finite element analysis of carbon fabric textile composites. 

However they neglected the nesting of layers in their models. Sudarisman and 

Davies [18] investigated the effect of processing parameters such as epoxy 

concentration (within an acetone solution for wetting the carbon fibres), 

compressive pressure and holding time on the flexural properties of composites. 

They showed that the RRV produce poor bonding between individual prepreg 

layers. Colin de Verdiere et al. [73] showed that the RRV reduced the in-plane 

stiffness of tufted Non-Crimp Fabric (NCF) composite materials by 13% relative 

to non-tufted reinforcement. Liu and Liang [74] consolidated prepreg 

carbon/epoxy with a stacking sequence [0o/−45o/45o/90o]s and reported RRV in 

the layers adjacent to an embedded optical fibre.  

Heß and Himmel [75] simulated the experimental results of non-crimp fabric 

(NCF) carbon fibre/epoxy laminates under in-plane tension, compression and 

shear loading using finite element method. Their overall mean deviation was 8% 

to 13% between experiment and simulation. Fibre dislocation and RRV were 

found to reduce the laminate strength. Vaughan and McCarthy [76] investigated 

transverse shear fracture in carbon fibre-epoxy laminates at micro-scale and 

found that shear bands propagated at the RRV.  
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2.6.4 Dynamic properties  

(wave propagation, fatigue, impact) 

2.6.4.1 Wave propagation properties 
 

The RRV have a large effect on the dynamic properties of composites. Jeong 

and Hsu [77] analysed wave propagation in carbon fibre reinforced composites 

and found that the ultrasonic velocity was inversely proportional to the void 

content. They discovered that voids are localised in the RRV. 

2.6.4.2 Fatigue properties 
 

This section reviews the main parameters that affect the fatigue properties of 

composite laminates, and indicates methods that have been used to improve 

them. In addition to reviewing the prediction of fatigue life of fibre-reinforced 

composites, it will explore correlations that have been observed between fatigue 

properties and the static properties or the fibre distribution of fibre-reinforced 

composites. 

The mechanical properties of composites have been extensively considered in 

analytical and experimental investigations for the last four decades [78]. Kalam 

et al. [79] studied the fatigue behaviour of oil palm fruit bunch fibre/epoxy and 

carbon fibre/epoxy composites and found that damage had started in the RRV. 

Kawai et al. [80] manufactured unidirectional carbon-fibre-reinforced composites 

with different resin matrices using the autoclave method. They concluded that 

there was a degradation of the fatigue performance of carbon-polyimide 

composites. Because in comparison with the other two systems used in the 

study, carbon-polyimide had very large RRV, which were produced during the 
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manufacturing process. Aymerich et al.  [33] studied the effect of stitching on 

the mechanical behaviour of graphite-epoxy laminates and observed that the 

stitching caused a reduction in the fatigue performance due to the misalignment 

of fibres, damage of fibers (because of the needle penetration)  and the RRV 

surrounding the stitches. Chambers et al. [60]  discovered that the distribution, 

size and shape of voids have a greater effect on the flexural fatigue of 

composites than the void volume fraction. This was due to effect of the voids on 

the crack propagation in the RRV at the inter-ply regions. 

Ferreira et al. [81] investigated the fatigue performance of polypropylene-glass 

fibre thermoplastic composites. They observed that in their composites the loss 

of stiffness was proportional to the temperature rise during testing of all 

laminates used in their study. Bertin et al. [82] found that the stacking sequence 

has a great impact on the mechanical behaviour of composites under thermal-

cyclic loading. De Monte et al. [83] studied the effect of sample thickness and 

temperature with different fibre orientations of short glass fibre and found that 

the fatigue properties were inversely proportional with temperature, and the 

degree of anisotropy was increased by reducing the thickness, because varying 

the thickness could affect the fibre orientation across the thickness. Ferreira et 

al. [84] concluded that the fatigue strength was strongly influenced by the 

stacking sequence. 

Fuqiang and Weixing [85] concluded that internal defects are the common 

cause of the random distributions of the static and the fatigue properties of 

composite laminates. By studying statistically the correlation between the 

fatigue loading and the fatigue life, their model describes the distributions of 

fatigue life of composites based on their distributions of static strength.  Caprino 

and D'Amore [86] said that the scatter in S-N curves was due to the variability in 
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static properties, so that a lower fatigue life was related to a lower ultimate static 

strength, and it has been observed that fatigue and static–fatigue interaction 

has a considerable effect on the fatigue lives of GFRP composites [87]. 

From all the factors mentioned above, one could conclude that the fibre 

distribution is the common link to other parameters such as the RRV and 

internal defects, the stacking sequence, the stiffness and the anisotropic 

properties of the composite laminates. Therefore, the fibre distribution might be 

one of the main factors that affect the fatigue performance of the fibre-

reinforced composite. In this thesis, an empirical model will be identified for the 

fatigue behaviour of composites in terms of the uniformity of the fibre 

distribution and static properties, while keeping the other processing parameters 

unchanged. 

The initiation of fatigue damage was identified by Clark et al.  [88]. The 

composite laminates were expected to fail when accumulated damage exceeds 

a critical level of damage. Accumulation may be used as a more suitable 

approach to predict the fatigue life of composite laminates. However, fatigue 

damage cannot be measured directly [89].  The fatigue damage in fibre-

reinforced composites has often been modelled by using the degradation in 

modulus of elasticity [90]. Abbadi et al. [91] addressed fatigue behaviour of 

composite sandwich materials using nonlinear fatigue models verified from 

experimental data, which are based on the degradation of the fatigue modulus. 

Li et al. [92] showed that stiffness degradation in the laminates due to cyclic 

fatigue loading is a direct consequence of multiple damage events, and 

cumulative damage growth can be directly evaluated from the stiffness 

degradation of the samples. Mao and Mahadevan [89] developed a 

mathematical model for fatigue damage evolution in composite materials, which 
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is based on continuum damage mechanics concepts of experimental data. 

Adden and Horst [93] showed degradation of the Young’s modulus and the 

shear modulus, under biaxial tension and torsion fatigue, of non-crimp-fabric 

GFRP tube specimens. Ferreira et al. [94] studied notch and test condition 

effects on the fatigue of glass fibre-reinforced composites at ambient 

temperatures, and observed a sudden drop of stiffness (for  unnotched 

specimens)  during the first 10-20% of the fatigue life then the stiffness 

remained constant until failure. Gude et al. [95] investigated damage evolution 

of novel 3D textile-reinforced composites under fatigue loading conditions. They 

claimed that the degradation in composite stiffness under cyclic tensile and 

shear stresses was due to the creation and propagation of visible cracks. 

However, compression fatigue loading does not cause development of visible 

cracks and thus no loss in stiffness during the life cycle. Gagel et al. [96] 

concluded that location of final failure, of glass fibre NCF reinforced epoxy 

under tensile fatigue, can be detected via thermography. However, the location 

of the final failure cannot be related to the local crack density, and the stiffness 

degradation is governed by different mechanisms of failure. Harris [97] stated 

that twenty or more fatigue models have been proposed, and the differences 

between them are quite small. Due to the complexity and test procedures for 

such experiments and cost of the fatigue samples, the validity of fatigue models 

can only be tested over limited ranges of combined stresses. Furthemore, 

according to some authors, an endurance limit for composites actually exists, 

and is mainly controlled by matrix, but verifying whether the endurance limit 

actually exists will require a costly and time-consuming testing stage. 

Wu and Yao [98] stated that the fatigue damage and failure mechanism of 

composites is very complex. The five types of failure in fibre reinforced 
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composites under fatigue and static loading are matrix cracking, fibre breakage, 

debonding, delamination and fibre pullout. However, the behaviour of fibre 

reinforced composites under fatigue loading is mainly controlled by the matrix 

[66, 99], and  the micro-voids have no great effect on the fatigue properties of 

E-glass polypropylene composites [51]. Böger et al. [8] improved the fatigue life 

of glass fibre-reinforced epoxy under fatigue load by the incorporation of 

nanoparticles in the matrix. The addition of the nanoparticles improved the 

fracture toughness of the bulk epoxy, and the inter fibre fracture strength 

increased by up to 16%.  For  multiaxial multi-ply stitched carbon, the type of 

stitching yarn and the size of RRV have a main effect on laminate microcracking 

under fatigue load [38].  Furthermore, the tensile fatigue behaviour is reduced 

as a result of localised fibre undulations [39], and crack growth depends on both 

the fatigue properties of the fibres and of the matrix, with both occurring on 

different time and space scales [100].  

To sum up the results of the work reported in this section, modelling and 

prediction of the fatigue life requires a significant amount of experimental S-N 

data for each type of composite [11, 101], as well as critical experiments 

designed to elucidate the underlying mechanisms and relationships in the 

composite materials.  Most of the researchers have selected fatigue data from 

published literature as an experimental shortcut. The matrix and the fibre type 

and the fibre distribution in the fibre-reinforced composites, have been shown to 

be the main factors that affect the fatigue properties, where the fibre distribution 

and the RRV are related to each other. The stiffness degradation can be used 

for measuring the damage that is occurring in the laminates. Failure 

mechanisms are very complex to unpick, and therefore, analytical models are in 

short supply and of limited applicability. Given the complexity of the problem, it 
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is clear that further research in this area would be both useful and timely.  The 

present project aims to contribute to further understanding in the area of RRV in 

composite laminates in terms of characterising their distribution and effect on 

mechanical properties. 

2.6.4.3 Impact properties 
 

Azouaoui et al. [102] manufactured XP glass/epoxy laminates with stacking 

sequence [0o/90o]4s. They evaluated damage parameter, visually and by 

scanning electron microscope inspection, against number of impacts according 

to reduction of material bending stiffness. They found that RRV in their 

materials had a low resistance to impact fatigue and that the cracks followed the 

RRV distribution in the glass-epoxy laminates. Tan et al.[40] used X-ray micro-

computed tomography (μCT), and X-ray radiography to characterise impact 

damage in stitched carbon composites. They applied low-velocity impact tests 

with a normalised impact energy from 1.6-10 (J/mm) to different specimen 

thicknesses. They showed that the RRV around the stitches in NCF composites 

are the weakest sites and were the site of impact crack initiation. 

2.6.5 Summary 

Figure 2.8 summarises the effects of RRV on the static and dynamic 

mechanical properties, on crack behaviour and on the stress concentrations in 

fibre-reinforced composites that arise from RRV. One could conclude that 

reducing the size of the RRV might lead to improved mechanical properties in 

terms of increasing the static and dynamic properties, and decreasing the crack 

growth and the stress concentration within the fibre-reinforced composites. The 

RRV depend on the fibre distribution within the laminates as mentioned earlier. 
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Therefore, this project investigates the effect of the fibre distribution on the 

mechanical (static and fatigue) properties of composites but keeping other 

processing parameters constant.    

2.7 Fractal dimension 
 

In terms of understanding the influences of RRV on the properties and 

performance of composite laminates, and devising models that describe these 

relationships, it is necessary to be able to correlate the mechanical properties of 

the composite laminates with quantitative parameters that describe aspects of 

the microstructure.  In common with other materials, the microstructure and its 

defects govern the properties of the composite material.  This section has 

reviewed a number of published experimental and numerical studies to clarify 

answers to the following questions: 

 How did these previous studies quantify the microstructure features of 

composite laminates or homogenous materials? 

 Is it possible to use the fractal dimension to characterise the 

microstructure of fibre-reinforced composites?  

 How might the fractal dimension be used in correlating the mechanical 

properties and the microstructural features? 
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Figure 2-8: The effects of the RRV on the mechanical behaviour of fibre-reinforced 
composites. 

Plane geometry describes regular objects such as points, lines, areas, and 

volumes using integer dimensions 0, 1, 2, and 3, respectively. However, a 

variety of natural objects and engineering constructs do not conform to the 

plane geometry description since their length, area and volume are scale-

dependent. Such objects are called fractals, and are described using a non-

integer dimension called the fractal dimension (D) [103].  

Measuring the fractal dimension of complex objects was popularised in scientific 

fields about three decades ago [104]. A fractal is a natural phenomenon, or a 

mathematical set, that exhibits a statistically similar repeating pattern at every 

scale.  Fractals are useful in modelling complex structures (such as eroded 

coastlines, snowflakes or microstructures) which are spatially correlated, i.e. 

similar patterns recur at progressively smaller scales.  Composite 
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microstructures are normally quantified using fibre volume fraction, fibre length 

distribution and fibre orientation distribution. The quantification of distribution 

within a microstructure requires image processing and analysis. This can be 

achieved using the D (a non-integer physical dimension) which reduces the key 

aspects of the microstructure, as seen in representative images, to a single real 

number.  

The characterisation of composite microstructure with the fractal dimension has 

evolved over the past two decades [44, 48, 105-107].  Picu et al. [108] have 

provided a useful recent discussion on composites whose microstructures had 

either a fractal distribution of inclusions, or a random distribution of inclusions.  

They observed that microstructures that could be described by a fractal 

dimension always led to stiffer composites, with higher strain hardening rates.  

D is now also seen as a useful tool to characterise self-similar fracture surfaces 

occurring at different scales [109] and, as noted by Allen et al. [110] is 

extremely useful in quantifying the degree of roughness of highly irregular 

objects, whilst there are also a large number of analysis strategies that have 

been developed to measure the fractal dimension of composite and 

homogeneous materials. 

Celli et al. [111] used fractal geometry to examine crack paths in alumina–

zirconia composites. The cracks observed by scanning electron microscope, all 

taken at the same magnification, had a relationship between fracture toughness 

and fractal dimension, and showed the potential of fractal analysis to clarify 

complex mechanisms such as those involved in the fracture of brittle materials. 

Biancolini et al. [112] investigated fractal dimension by using the box counting 

method (described in Section 2.7.1) to study fatigue cracks in steel by 

characterising the spatial distribution of acoustic emission sources. They found 
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that the fractal dimension decreased with increase in the number of fatigue 

loading cycles until the failure point. The authors concluded that they could use 

the fractal dimension as a damage characterisation parameter. Kuznetsov et al. 

[113] derived the fractal dimension of a deformed specimen using surface relief 

images obtained from a scanning electron microscope. The austenitic stainless 

steel specimen was subjected to a step-wise increase in load. With increasing 

strain, the curve shows three levels for the fractal dimension: (i) a slight 

decrease in the fractal dimension is noticed before (ii) the onset of necking in 

the interval of strain 0.48–0.52, then (iii) the fractal dimension increases to a 

critical value corresponding to the start of specimen fracture as shown in Figure 

2.9.  Venkatesh et al. [114] observed that the fractal dimension of fracture 

surfaces of Ti–6Al–4V extra-low interstitial alloy subjected to different heat 

treatments was proportional to the fracture surface roughness and hence D 

could be used as a measure of fracture surface roughness. Yield strength and 

ultimate tensile strength both decreased, while ductility increased, with 

increasing fractal dimension. This was attributed to the change in the fracture 

mode being dependent on the microstructure induced by the heat treatment. 

Wang et al. [115] analysed fracture surfaces of aluminium alloy by using the 

fractal dimension. Their results showed the ultimate tensile strength to be 

proportional to the fractal dimension of the fracture surface roughness, due to 

different fracture modes that depend on the level of interface reaction status 

generated by heat treatment. Yuan et al. [116] claimed that D can be extremely 

useful when applied to tribological work.  They calculated the D before and after 

tin coating and found that the value of D after the coating was larger than before 

coating in some cases, and the difference was due to various machined 
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surfaces. They did not find a big difference between D values measured using 

the slit island or box counting methods. 

 

Figure 2-9: The straining diagram for the austenitic stainless steel specimen from 
Kuznetsov et al. [112]. 

The fractal dimension has also been applied to characterise particular aspects 

of polymer matrix composites, in particular, links between their fracture surface 

topography and toughening mechanisms, e.g. [104, 117], the evolution of 

defects in composite materials [118], and the microstructural influence on 

mechanical and other properties, e.g. [108, 109, 119].  A clustered distribution 

of the reinforcement fibres can result in resin-rich volumes and consequent 

stress concentrations [107].  Therefore, it would be useful to find a technique 

that could characterise the fibre distribution within the laminates.  Furthermore, 

such techniques may contribute to the understanding of the “manufacturing 

process-properties dilemma” in composites where clustered fibre distributions 

have high permeability in liquid composite moulding (RTM/RIFT) processes but 

uniform fibre distributions confer better mechanical properties [120]. 

2.7.1 Box counting method 
One of the techniques used to calculate the fractal dimension is the box-

counting method which has been widely used in D research [103, 112, 121, 

122], because it is easy to use and amenable to simple automated computation.  
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It can be applied to both linear and non-linear fractal images, and is applicable 

to microstructural patterns with or without self-similarity [103, 122]. The box 

counting method has been modified, e.g. [123], to eliminate problems found 

with the computerised method such as the border effect and non-integer values 

of box size. Furthermore, it has been applied in various fields due to its 

simplicity in use [124].  In many situations, one quarter of the shorter image side 

may provide a proper value for largest box size [122]. Even with the same 

approach, different scale ranges chosen for the computation of the fractal 

dimension may lead to different values [125, 126]. In addition, Buczkowski et al.  

[127] claimed that large box sizes usually characterise the embedding surface 

of the whole object and that small box sizes approximate the dimension of the 

substructure for discontinuous objects. In application of composites, the large 

box size might cover the fibres bundles and the small box sizes could cover the 

fibres theirselves.  

To sum up, the fractal dimension concept has been widely used to characterise 

homogeneous and composite materials, and provides a link between the 

structure and the mechanical properties; the box counting D method is a useful 

way to measure the fibre distribution within composite laminates.  

2.8 Summary 
 

The fibre distribution could be one of the main factors that affect the 

performance of fibre-reinforced composites. It is clear that there is a gap in 

research related to quantitatively characterising the fibre distribution and RRV, 

and in terms of then correlating the fatigue properties with the fibre distribution 

and RRV for fibre-reinforced composites. 
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The RRV and the fibre distribution have a significant effect on the mechanical 

behaviour of fibre-reinforced composites. RRV arise primarily as a result of (a) 

the clustering of fibres as bundles in textiles, (b) the stacking sequence, and/or 

stacking process, (c) the resin properties and flow characteristics, (d) the 

heating rate as this directly affects viscosity and (e) the consolidation pressure. 

The main techniques used to measure the RRV in fibre-reinforced composites 

are X-ray transmission, computerised tomography (CT) and microscopic image 

analysis.  The formation, shape and size of RRV in composites with different 

fabric architectures has been briefly discussed above.  The majority of studies 

have shown a negative effect of the RRV on the mechanical behaviour of 

composite materials.  

Further in-depth studies are required that examine the RRV and/or the fibre 

distribution as a main influential factor on the mechanical (static and dynamic) 

properties of fibre-reinforced composites.  

 As a consequence of the literature review above, the present author cautions 

against reducing laminate consolidation pressure or changing the fibre 

architecture for high performance composite structures, unless the effect of 

reduced fibre volume fraction and the consequent fibre distribution and RRV are 

fully understood for the reinforcement system in use. 

Fractal dimension looks promising for quantification of the fibre distribution 

given that researchers have already used D to correlate some mechanical 

properties and processing parameters.  This aspect has been explored further 

in the work described in this thesis. 
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3.1 Overview 
 

This chapter presents the experimental methodology employed for the work 

described in this thesis.  It describes the materials used and laminate 

manufacture, microstructural characterisation of the laminates (preparation of 

specimens, image capture and fractal dimension analysis), static mechanical 

properties, fatigue properties and fractography. 

3.2 Resin Transfer Moulding (RTM) process 
 

RTM is a process of producing composite laminates by clamping the 

reinforcement between the upper and lower parts of a fitted mould tool (Figure 

3.1).  The RTM process (Ciject® One, Composites Integration, Saltash UK) was 

used in this study for CFRP for the following reasons; 

 The RTM mould has a fixed cavity which maintains constant fibre volume 

fraction Vf for all laminates.  This is useful when investigating the 

uniformity of the fibre distribution effect, for a constant fibre volume 

fraction, on the performance of the composite laminates. Ideally, the 

processing parameters will be kept constant. 

 The RTM process reduces the thickness variation between specimens 

and within a specimen (fixed cavity), and the laminates produced by this 

method have a good surface finish on both side surfaces [128]. 

 The process does not require high injection pressure. 



Chapter 3 EXPERIMENTAL METHODOLOGY 

[50] 
 

 The laminates will have a high fibre volume fraction and good 

mechanical properties.  

 

Figure 3-1: The RTM process as implemented in this doctoral study. 

 

 A schematic of the RTM process is given in Figure 3.1.  A liquid release agent 

is applied to the mould surfaces to facilitate easy removal of the laminates. The 

clamping force may be produced through a number of different techniques such 

as applying pressure on the upper mould, mechanical clamping methods or 

vacuum pressure, i.e. one atmospheric net pressure. The latter method was 

used in this study. After closing the mould, fitting the vacuum catch-pot at the 

vent position, and connecting the vacuum pump to the catch-pot and flange, the 

vacuum pump closes the mould and compresses the double seals (an inner 

resin seal and an outer vacuum seal) to prevent air ingress into the vacuum 

space. The product of the mould flange area and the external atmospheric 

pressure gives the clamping force.  Resin is injected into the mould through an 
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injection valve and the peripheral (runner) channel. The mould continues to fill 

and the resin percolates through the reinforcement fibres until the resin reaches 

the catch-pot at the mould centre.  A transparent glass upper mould allows full 

observation of the flow of the resin through the fibre-reinforcement. The  

vacuum is maintained until the resin has cured.  At that point, the vacuum is 

disconnected, the catch-pot is removed, and the mould is then opened to 

extract the composite laminate plate.  The peripheral injection technique offers 

the most useful route to fill the mould, giving a minimum of reaction pressure 

against the clamping force, it can also be used to mould large structures and 

offers the shortcut fill time for a given area. 

3.3 Infusion process 
 

Unlike the RTM process that uses a semi-rigid upper mould, the infusion 

process uses a vacuum bag [129], and hence produces variable laminate 

thicknesses, due to the variation of cavity size that results from using a vacuum 

bag instead of an upper mould part. The infusion process is a technique that 

normally uses only vacuum pressure to draw resin into the mould cavity. 

Compressing the laminate and hence increasing fibre-to-resin ratio increases 

the modulus and strength-to-weight ratios and leaves minimal void content in 

the composite laminates. Fabrics are assembled as a dry stack of materials as 

in the case of the RTM process. The dry reinforcement is then covered with 

peel ply3  and a distribution medium as shown in Figure 3.2. The whole dry 

stack is then vacuum bagged, and after eliminating bag leaks, resin is allowed 

to flow into the laminate. The resin distribution over the whole laminate is 

                                                
3
 A release fabric that prevents foreign materials from becoming integrated into the finished 

laminate. 
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assisted by the transport/flow medium/mesh, leading to wetting of the dry 

reinforcement from above.  

Like the RTM process, the infusion process offers all the advantages of a 

closed system process [130, 131]. However, the cavity of the mould is not fixed, 

but depends on the processing parameters and there is consequently a 

variation in laminate thickness. The process is controlled by the principles of 

D'Arcy's equation [132], which describes the resin flow rate as governed by only 

three factors: (i) resin viscosity, (ii) pressure differential in the cavity, and (iii) 

permeability of the laminate. If the three parameters are unchanged, then the 

resin will always flow in a similar manner for every composite laminate. 

 

 

 

 

 

Figure 3-2: The infusion process as implemented in this doctoral study. 

 

3.4 Woven glass composite panels manufactured 

by the infusion process 
 

One of the objectives of this study, as illustrated in Figure 1.2, are to study the 

effect of the uniformity of fibre distribution on the mechanical properties of the 

composite laminates. The initial study started by manufacturing different woven 

fabric laminates with a range of fibre volume fractions. These composite 
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laminates were manufactured by the infusion process with different level of 

consolidations. 

The infusion process was used to manufacture [(90/0)2]s woven composite 

panels as shown in Figure (3.3) with a range of levels of consolidation. Three 

levels of consolidation were chosen: hand lay-up, infusion under 600 mbar and 

infusion under 900 mbar. The reinforcement comprised eight layers of plain 

weave 290 g/m2 glass fabric and the resin was Sicomin SR8100 (properties 

given in Appendix A-1). Three plates were manufactured under each 

consolidation condition in order to ensure that the experimental data were 

statistically meaningful.  

In an infusion process, the vacuum bag is sealed with tape, so it is essential to 

use a pressure gauge to check that there are no leaks which would affect 

consolidation. Pressure regulation utilised a pressure gauge on the vacuum 

pump tube.  Consolidation pressure was measured via a pressure gauge on the 

resin inlet tube before the start of the infusion process. Resin was infused in 

one direction (rectilinear flow) through the laminate as shown in Figure 3.3, 

which was the 0o direction of the surface laminate layers. The plates were cured 

under vacuum for 24 hours at ambient temperature according to the resin 

manufacturer’s recommendations (Appendix A-1) before post-curing was 

performed in an oven at 60 oC with time-temperature profile shown in Figure 3.4. 

Subsequently samples were prepared for image analysis and mechanical 

testing. 
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Figure 3-3: The stacking sequence of laminates, 0
o
 is the direction of warp tows & 90

o
 is 

the direction of weft tows, i.e. [(90/0)2]s. 

 

 

Figure 3-4: The post-curing cycle of the resin used in the infusion process. 
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3.5 Carbon fibre composite panels manufactured 

by the RTM process 
 

After initial investigations into the effect of the uniformity of the fibre distribution, 

on the performance of the glass fibre reinforced composites, with various fibre 

volume fractions, a study was conducted into the mechanical properties of 

composite laminates with a similar fibre volume fraction. These composite 

laminates were manufactured by the RTM process. 

Figure 3.5 illustrates the RTM process used to manufacture these woven 

composite laminates and also illustrates the relative location in each laminate 

plate, of the various test specimens used in the experimental work. Two (of 

three) 6K4 carbon fibre fabric architectures woven by Carr Reinforcements were 

using the same batches of fibre for both warp and weft.  The modulus of 

elasticity of the carbon fibres was 235 GPa.  The areal densities of the two 

fabrics used in this work were: plain weave 300 g/m2 and twill weave 320 g/m2.  

Yarn counts were 380 tows/m for both warp and weft in the plain weave, and for 

the warp in the twill weave, while the weft yarn count for the twill weave was 

420 tows/m.  The resin was Sicomin SR8100 epoxy with Sicomin SD8824 

hardener and a weight mix ratio of 100:22.  A standard RTM process (Ciject® 

One, Composites Integration, Saltash UK) was used to manufacture laminates 

for the experimental work, with a fixed 2 mm cavity and vacuum closing of the 

mould. The injection pressure was +500 mbar.   

                                                
4
 The 6K tow is formed from approximately 6,000 bundled carbon fibre filaments. 
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Figure 3-5: The RTM process mould. 

Initial problems were experienced with the presence of small bubbles and 

variable laminate thickness arising from the high vacuum at the middle of the 

plate, leading to a maximum laminate thickness at the mould edges and a 

minimum at the centre.  This was resolved by reducing the vacuum at the cavity 

from 1000 mbar absolute to 100 mbar absolute at the end of the injection 

process to allow the mould tool and laminate deformation to relax.  

The plates were then cured under vacuum for 24 hours at ambient temperature. 

Full peripheral clamping vacuum (1000 mbar absolute) was maintained whilst 

the resin was cured. The plates were then post-cured in an oven for 8 hours at 

60 o C according to the resin manufacturer’s guidelines (Appendix A-2). 

Six different composite laminate plates were manufactured for this work, 

comprising:  

 3 plain weave plates, one each with 4 layers, 5 layers or 6 layers of fabric. 
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 3 twill weave plates, one each with 4 layers, 5 layers or 6 layers of fabric. 

The target fibre volume fractions were 33.3 % (four layers), 41.67% (five layers) 

and 50 % (six layers). Samples for mechanical testing and image analysis were 

cut from the laminate plates according to the layout shown in Figure 3.5.   

3.6 Microstructural characterisation: preparation, 

image capture and analysis  
 

Images of the microstructure were captured using an Olympus BX60 

microscope with Olympus Stream image analysis software (SM04733) and 

analysed using the ImageJ package with FracLac add-in (open source image 

analysis software written in Java by the US National Institute of Health in 

Bethesda, Maryland).  One of the techniques used to calculate the fractal 

dimension in ImageJ software is the box-counting method which has been 

widely used in D research [103, 121]. It is applicable to both linear and non-

linear fractal images, and applicable to patterns with or without self-similarity 

[103, 122]. Furthermore, it has been applied to measurements in various 

application fields due to its simplicity in use [124].  

For consistent image analysis, all images should have (a) the same pixel size,  

(b) uniform assignment of colours to different parts of the microstructure (e.g. 

resin as black background), and (c) the ImageJ software options set to obtain 

the same size of sampling grid area in each case.  For these composite two-

phase materials, all images were converted into binary images using ImageJ.  

Each binary image was divided into non-overlapping boxes as shown in Figure 

3.6 using variable numbers of boxes, as required to cover the image with 12 
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grid positions5, i.e. for each of the 240 images, the analysis was conducted with 

12 separate starting co-ordinates, and the results were averaged. In this study, 

the quantification of the microstructural D was performed with the resin 

background made black and the fibres made white (see Figure 3.9).  

 

Figure 3-6: Illustration of an increase in box size and decrease in box number in the box 
counting method (the red boxes are just for illustrative purposes and, in reality, they are 
‘virtual’).  Note that all boxes contain at least one fibre at εmax but a lot of boxes at ε1 
contain no fibre. 

ImageJ with FracLac software creates an imaginary network of boxes over the 

binary image of the sampling region of the laminate with an initial box size (ε1).  

It then iteratively creates other networks with different box sizes (ε2, ε3, ε4 …….. 

εmax).  This procedure starts from the minimum resolution of 1 pixel and 

continues until the box size reaches maximum box size (taken as 25% of the 

shorter side of the image [122]).  At every step i, the program counts the 

number of boxes that contain fibre, count Fεi.  A log-log plot of number of fibre-

                                                
5
  The number of boxes needed to cover all of the foreground pixels depends on where the grid 

is positioned, hence the grids laid at 12 different locations. 
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containing boxes, Fε, against box size ε is produced as the output from this 

process.  Each iteration gives a point in this plot.  The slope of the regression 

line equals the negative estimated fractal dimension of the laminate under 

consideration.  Figure 3.7 illustrates the procedure.  The slope of the regression 

line can be calculated using Equation (3.1) for each grid position.  The mean 

fractal dimension of different grid positions has been calculated by using 

Equation (3.2). 

 

Figure 3-7: Illustration of calculation of the fractal dimension using the box counting 
method. 

D=slope [ln( number of boxes with detected features)/ln(ε)]             (3.1) 

Mean D =Σ(D)/grids                                                                         (3.2) 

For clustered fibres, the tow centres will be further from the surface of the 

material, whereas for uniformly distributed fibres there will be more 

reinforcement adjacent to the sample surface (further from the neutral axis in 

bending) with an expectation of a higher flexural modulus in the latter case.  

However, the RRV between fibres are larger and more likely to be contiguous in 

uniform fibre distributions compared with the case for clustered distributions. A  

larger RRV will reduce the flexural strength.  However, for real woven 

composites, it is difficult to assess uniformity or clustering by eye, and use of 

the D permits quantification in an objective systematic manner (Figure 3.8). 

 

ln (Fε) 
Count (Fε) 

Box size (ε) ln box size (ε) 

D=Slope of the regression 

line 



Chapter 3 EXPERIMENTAL METHODOLOGY 

[60] 
 

3.6.1 Image analysis of the infusion glass laminates 
 

Optical image analysis of the microstructure is an important destructive 

characterising test for composite laminates. One can measure fibre, the resin 

and void areal fractions in the laminates from 2-D images and hence infer the 

respective volume fraction for each component. It is very important to choose 

the correct direction in the samples to perform this D characterisation because 

that controls the appearance of the samples under optical microscopy. The cut 

composite samples are embedded in a resin to prepare them for the polishing 

process. The polishing procedure is described in Appendix A-3 and affects the 

resolution of the images, especially when image analysis is needed. 

At this stage of the research, using samples of the laminates that were 

manufactured by the infusion process, the D specimens were cut parallel to the 

cross section of the mechanical test samples, so that the woven weft glass 

fibres appeared as circles and the warp fibres had an elongated oval form or 

vice versa dependent on the stacking sequence. Ninety images were analysed 

at each level of consolidation (30 images from each of the three laminate 

plates). In this optical microscopy process, the problem of broken fibres, 

especially those elongated during the cutting procedure should be noted, 

because they have the same contrast as the voids as shown in Figure 3.8 and 

this would affect the results of automated image analysis. To avoid this problem, 

the region of interest (ROI)6 technique was used, which is illustrated in Figures 

3.8 for the three different phases of fibre (Aqua colour), resin (Deep Pink colour) 

and voids (Dark Blue colour). This problem could subsequently be avoided by 

changing the cutting procedure using an angle greater than 0o to reduce the 
                                                
6
 In ROI, the user of Olympus Stream image analysis software can define thresholds for multi-

phase analysis directly from the image, then the software automatically calculates area and 
area fraction, and the number of objects and the results can be exported to Excel file.  
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effect of broken fibres, by improving the polishing process and improving the 

laminates quality by reducing the voids. The latter two are used in this project.  

    

Figure 3-8: Microscopic image analysis of glass fibre – epoxy composite, (a) hand lay-
up,(b) 600 and (b) 900 mbar. 

The cavity in the infusion process is variable and depends on the level of 

consolidation and this gives constancy in the fibre volume fraction across the 

thickness. Therefore, there is no need to analyse the whole thickness of the 

laminate in order to characterise the D. ImageJ with FracLac software was used 

to determine the D for each woven glass fibre laminate. The process involved 

capturing five images, at (10x) magnification, from each of the three replicate 

plates made using the three different levels of consolidation. This provided 15 

images for each consolidation pressure giving 45 images in total for analysis. All 

the captured images were converted to binary form, as shown in Figure 3.9, 

which is essential to reduce the computational time [133] necessary to 

determine the D. Figure 3.9 demonstrates that increasing the level of 

consolidation (increasing the applied vacuum) results in smaller RRV.  
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Figure 3-9: Binary images of glass fibre – epoxy composite, (a) hand lay-up, (b) 600 mbar 
and (b) 900 mbar.  

                                                                                      

3.6.2 Image analysis of the RTM carbon laminates  
 

Image analysis of mounted microstructural specimens was performed to obtain 

the D for the laminates that were manufactured by RTM. Samples were cut 

normal to both the warp and the weft directions shown in Figure 3.5.  Accurate 

determination of the D required 40-60 images from both warp and weft 

directions in each of the six laminates plates giving 560 images for analysis. 

The variation in number of images required arises from the variable RTM 

laminate thickness and the constant 10x magnification factor used in this work. 

Thus in a thicker sample at the magnification used in this work (10x), a single 

image does not cover the full laminate thickness (which is necessary for 

characterising the fibre distribution and D), and it was necessary to overlap 

several images and move them into digital registration (Figure 3.10) to generate 

a single merged image for analysis.  

(a) (b) (c) 

RRV 
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Figure 3-10: Illustration of merging the microstructural images to cover the complete 
thickness of the laminate (2080x2800) pixels for the first  image and (2080x3400) pixels 
for the second image. 

After merging the microstructural images,  ImageJ with FracLac software was 

used to calculate the fractal dimension for 20 samples from each of the 12 

cases considered (warp and weft directions in six different RTM laminate plates) 

giving a total of 240 images to be analysed. Figures 3.11 and 3.12 show the 

experimental technique used to determine the value of the D of the weft 

direction of the twill weave plate containing 4 layers of fabric (data shown for 

only 1 of the 20 values sampled for this case and the D = 1.8504 which equals 

the slope of the line).  

 

 

 

 

 

Figure 3-11: Plot of counts against box size for the weft direction of the four layer twill 
weave laminate. 

raw raw 
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Figure 3-12: Log-log plot of the data in Figure 3.11. 

3.7 Fractal dimension box counting method. 
 

It is essential to check the validity of the box counting method when calculating 

the D for the composite laminates. The estimation of fractal dimension is not 

straightforward, especially for shapes without self-similarity.  The accuracy of 

the results depends on various factors such as the maximum box size and the 

grid position relative to the microstructure. Ideally, the effect of each of these 

factors should be assessed using validated cases with known solutions. The 

box counting method has been validated in this project with images (shown in 

Figure 3.13) of known fractal dimensions such as Sierpinksi carpet (D=1.893), 

an area (D=2), Kock island (D=1.5), Sierpinski gasket (D= 1.585) and Koch 

snowflake (D=1.262). 

Sierpinksi 

carpet 

An area Kock island Sierpinski 

gasket 

Koch 

snowflake 

Figure 3-13: Different fractal images. 
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The box counting method was implemented in ImageJ with FracLac software. 

The method was validated with actual fractal dimension values that lie in the 

range 1.262 - 2.0. In order to improve the accuracy of D determination in the 

present work, the binary images shown in Figure 3.13 were used to investigate 

the effect of the maximum box size (which was varied from 1-45% of the shorter 

side of the image) and the effect of the grid position (which was varied from 1-

40). 

Figures 3.14-3.18 illustrate the effect that maximum box size and grid position 

have on the calculated D. For most exemplar images, the calculated D 

approached a stable value as the grid position value increased from 1 to 40, 

except Sierpinksi carpet and solid image (i.e. Area), and as the maximum box 

size became > 15% and < 30% of the shorter side of the image. Therefore, in 

this study, the maximum box size was taken as 25% of the shorter side of the 

image, which is the value  used in the work reported by Foroutan-Pour et al. 

[122].  

In choosing the grid position number, there is trade-off between increasing 

stability of the D as grid number increases and the additional time required for 

the calculations. The microstructural images in this study of composite 

laminates are similar to the Sierpinksi carpet and solid images and both are 

square shapes. It is essential to increase the grid position number in order to 

increase the accuracy of the D especially when using a large box size.  

The box counting method was used in the work for this thesis to determine the 

D with the maximum box size and taking 12 grid positions.  These parameters 

were checked with the standard fractal images discussed above.  Once a 

combination of factors was found that appeared to give an acceptable 
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percentage of error between the actual and the estimated values of D (see 

Table 3.1), these factors (maximum box size and grid positions) were then 

applied to calculate the D of all the composite laminate specimens used in this 

work.  

 

Figure 3-14: The D versus the maximum box size for the Sierpinksi carpet image with 
various grid positions. 

 

Figure 3-15: The D versus the maximum box size for the Solid image with various grid 
positions. 
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Figure 3-16: The D versus the maximum box size for the Kock island image with various 
grid positions. 

 

Figure 3-17: The D versus the maximum box size for the Sierpinski Gasket image with 
various grid positions.  
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Figure 3-18: The D versus the maximum box size for the Koch snowflake image with 
various grid positions. 

Table 3.1 shows the error in the D calculated using the method proposed above 

compared with the actual D for the standard fractal patterns. For the first fractal 

image, its actual D is 1.893, while that calculated using the proposed method is 

1.8642, giving an error of 1.52 %. In all of these standard cases, the error in the 

D estimation using the proposed method is less than 6.6 % when compared 

with the actual D, and this error is accepted because the D calculated is within 

the respective sets and did not overlap with the rest of the images. The 

proposed method gives improved estimates of the D as the D increases. This 

investigation demonstrates that the box counting method provides accurate D 

calculations. The proposed method has been used to calculate the D values for 

different laminates as shown in Figure 3.19 for some laminates by taking single 

image.  
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Table 3-1: The error between the fractal dimension values found using the proposed 
method compared with the actual D values for the standard patterns. 

Fractal image D (the proposed method) D (the actual) Error (%) 

Sierpinksi carpet 1.8642 1.893 1.52 

An area 2.0112 2 0.56 

Kock island 1.599 1.5 6.6 

Sierpinski gasket 1.6285 1.585 2.7 

Koch snowflake 1.3025 1.262 3.2 

 

 

Figure  0.1 
Figure  0.2 

 
 D=1.84 for T4wt D=1.88 for T5wt D=1.91 for T6wt 

Figure 3-19: Different D values for some different laminates  

3.8 Static and dynamic mechanical properties, 

and fractography. 
 

3.8.1  Interlaminar shear strength (ILSS) 
Fibre reinforced plastic composite materials show excellent strength and 

stiffness properties when loaded along the fibre direction. Structures under in-

plane loading usually outperform their metallic counterparts, especially when 

subjected to fatigue loading, as the fatigue limit in composite materials is a high 

percentage of the tensile strength.  However, the ability of the composite to 

withstand out-of-plane loading is governed predominantly by the properties of 

the matrix, which has a much lower static strength and is much more sensitive 

to fatigue.  This is of particular importance with thick components.  The 
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interlaminar shear strength is a measure of the ability of the laminate to resist 

delamination and was assessed in this work using the ISO 14130:1998 short-

beam method (Figure 3.20) which essentially measures the adhesive force 

between fibre and resin.  It should be noted that the short beam shear method, 

whilst widely used, has a number of problems associated with it in terms of 

assessing a ‘true’ interlaminar shear strength [134]. These include the 

dependence of the ILSS on support span-to-laminate thickness ratio and the 

fact that the stress state is not pure shear.  However, when making a 

comparison between the thin laminates used in this work, these influences are 

minimised.  Five rectangular samples with dimensions 20x10x2 mm (length L, 

width W and thickness T) were cut with their L-direction parallel with the warp 

fibres, from each glass fibre laminate panel (manufactured by the infusion 

process), giving 15 ILSS test samples for each level of consolidation and hence 

45 samples in total.  Five samples of the same dimensions were cut with their L-

direction in either the warp or weft directions from each of the six carbon fibre 

RTM laminate plates (comprising plain or twill weave with 4, 5 or 6 fabric layers 

(giving 60 samples in total)).  Tests were conducted using an Instron 5582 

universal testing machine (serial number: 5582J7466) with a ±100 kN static 

range load cell (serial number: UK195) and a test speed of 1 mm/min and a 

constant span of 10 mm.  The ILSS was calculated from Equation 3.3. 

𝜏 = 0.75 
F𝑚𝑎𝑥

𝑏ℎ
                                      (3.3) 

Where 𝜏 is the ILSS (Pa), Fmax is the maximum load (N), 𝑏 is the width of the 

samples (m) and ℎ is the thickness of the samples (m). 
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Figure 3- 20: short-beam method for ILSS test. 

 

3.8.2 Tensile strength 
 

The tensile strength is one of the most important mechanical parameters used 

to design composite structures in terms of the uniaxial stiffness and strength. 

Tensile tests were performed according to the British Standard BS EN ISO 527-

4 for isotropic and orthotropic fibre-reinforced plastic composites. The tests 

were carried out in the 0o direction (warp direction), of the infused glass fibre 

laminates. The specimen dimensions were 250x25x2 mm with a 150 mm gauge 

length between the grips. Testing used an Instron 5582 universal testing 

machine (serial number: 5582J7466) with a ±100 kN static range load cell 

(serial number: UK195) and a crosshead speed = 2 mm/min. Strain was 

measured by an extensometer with a gauge length of 50 (mm), and the strain 

was held at a value of 0.02 (mm/mm), to permit removal of the extensometer 

before sample failure (to avoid any instrument damage during failure). The 

specimen was aligned with the load chain using a protractor. Five samples were 

cut in the warp direction from each panel of the glass fibre laminates, giving 15 

samples for each level of consolidation and 45 samples in total. 

Sample 

  Support members 

Loading member 
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3.8.3  Flexural (bending) modulus Eb and ultimate 

flexural strength UFS 
 

Four-point bend tests were conducted according to the British Standard EN ISO 

14125:1998 for fibre-reinforced plastic composites as shown in Figure (3.21).  

An Instron Electropuls E300 (serial number: 5527-103) with a ±5 kN dynamic 

load cell (serial number: 107190) and test speed 1 mm/min was used. Tests 

were carried out in both the warp and the weft directions, of the RTM carbon 

fibre laminates, using specimens with dimensions of 100x15x2 mm (LxWxT).  

Five samples were cut from each direction of 3 different plates for each weave 

style (giving 60 samples in total). In bend the maximum tensile and compressive 

stresses act on the load-bearing faces of the sample and can be calculated 

using Equation 3.4. 

𝜎 =
3Fa

𝑏ℎ2                                                                                          (3.4)

                           

 Where, 𝜎  is the stress (Pa) and F is the applied force (N). 

 

 

 

 

 

 

Figure 3- 21: The four-point bending test.   
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The flexural (bending) modulus of elasticity was calculated using Equation 3.5. 

𝐸𝑏 =   0.21 
∆𝐹

∆𝑑
 

𝐿3

𝑏ℎ3         (3.5) 

Where Eb is the flexural modulus of elasticity (MPa), d is the beam mid-point 

deflection (m) and L is the span (m). 

In calculating the flexural modulus, the displacement at mid-span should be 

used, although many researchers do not respect this requirement. A travelling 

microscope was used to measure the mid-point deflection (d) under flexural 

loading. The ultimate flexural stress (UFS), σ′ (Pa) was then calculated using 

Equation 3.6.  

    𝜎′ =
3𝐹′𝑎

𝑏ℎ2                    (3.6)  

Where 𝐹′ is the maximum applied force (N) and 𝑎 is the displacement between 

the point of application of the force and the support point. 

3.8.4 Volume fraction Vf 

 

Laminate thickness is an important parameter in work on composite materials, 

because one can use the thickness to estimate the quantity of resin used and 

hence predict the local mechanical properties [37] to assist in creating an 

optimum design.  Furthermore, after manufacturing the laminates, their 

thickness7 may have changed in the manufacturing process. 

The total fibre volume fraction for specimens made with different fabrics and 

various numbers of layers was found from Equation 3.7, by substituting the 

                                                
7
 The thickness values are squared in the denominator of Equations 3.4 & 3.6 and cubed in the 

denominator of Equation 3.5.  
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thickness values of the samples from the warp and the weft direction of each 

plate and each weave style  (10 samples/plate) [135].   

Total Vf = n AF / ρf t                   (3.7) 

Where Vf  is the fibre volume fraction, n  is the number of layers, AF  is the areal 

weight of fabric (kg/m2), ρf is the density of the fibre (kg/m3) (ρf equals 1800 

kg/m3 for woven carbon used in the RTM laminates and 2540 kg/m3 for woven 

glass used in the infusion laminates)  and t is the laminate  thickness (m). 

The stressed fibre volume fraction for the same specimens (those machined 

parallel to the beam’s principal axis) is found using Equation 3.8, i.e. multiplying 

the total Vf (Equation 3.6) by the fibre orientation distribution factor  ηo (equation 

3.9).  

Stressed Vf  = ηO (n AF / ρf t)                 (3.8) 

Where,  in-plane for woven reinforcement 

ηO  =
warp or weft yarn number

Total yarn number
                                (3.9) 

For woven carbon fabric, areal weight, determined by weighing 1 m2 fabric 

samples, was found to be 300.8 g/m2 for plain weave and 320 g/m2 for twill 

weave (confirming the values from the manufacturer). The tow counts were also 

measured, and yarn counts were 380 tows/m for both warp and weft in the plain 

weave and for warp in the twill weave, while the yarn count for the twill weft was 

420 tows/m. 

Therefore;  

ηO = 380 760⁄  = 0.5 for both warp and weft in the plain weave. 
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ηO =  380 800⁄ = 0.475 for warp in the twill weave.  

  ηO = 420 800 =⁄  0.525 for weft in the twill weave.  

3.8.5 Four-point bending fatigue test 
 

In real service situations, composite laminates are not only subjected to static 

load, but also subjected to fatigue and impact loads. In addition, fatigue life is 

affected by fibre distribution which also has an effect on their static mechanical 

properties. Fatigue testing in tension was undertaken for the carbon fibre 

laminates.  Initial work considered tensile fatigue on five samples (similar to the 

samples used in Section 3.7.2), but all failures occurred at the grips. 

Subsequently, therefore, constant amplitude four-point bend fatigue testing was 

chosen to investigate the fatigue properties of the carbon fibre laminates. 

Tensile fatigue testing has the advantage of testing the complete section 

thickness and generally gives a lower fatigue limit than bending, but flexure is 

representative of many service loading situations and enhances the possibility 

of delamination, which is an important factor in failure of composite materials. In 

addition, in four-point bending, the region of the specimen between the inner 

load points will be in pure bending, which is advantageous in terms of analysis.  

 In order to achieve relatively long fatigue lives and to test a large number of 

specimens, a high test frequency is desirable [136]. Furthermore, the higher 

thermal conductivity of carbon-fibre-based systems permits the use of higher 

test frequencies compared with glass-fibre-based or aramid-fibre-based 

systems [137]. Some researchers have found that there is no effect of 

frequency on the fatigue life [138], while others have observed a determined 

effect of higher frequency on fatigue life [11, 139-141]. Such observations are 
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likely to be a result of the localised heating at the crack tip arising from 

hysteretic energy input during strain cycling.  This study compares different fibre 

distributions in otherwise very similar composite laminates with a constant 

frequency chosen for all laminate testing.  

Fatigue cyclic loading frequency 10 Hz was chosen as a compromise between 

reducing test time, avoiding crack tip heating, and reducing specimen 

resonance. Although most other fatigue studies do not appear to have 

considered this issue, the present study does consider resonance because it 

could lead to failures other than the fatigue failure. The resonant frequency is 

calculated by Equation 3.11 [142, 143]  for clamped-clamped boundary between 

middle rollers. 

ωn =
   22.4

𝐿2   √𝐸𝐼𝐿/𝑚                      (3.10) 

Therefore,   f  = 
3.56

𝐿2  √𝐸𝐼𝐿/𝑚                (3.11) 

Where, ωn is the natural frequency (rad/s), f  is the frequency (Hz), L is the 

distance between the middle rollers (m), E is the flexural modulus (Table 4.2), I 

is the second moment of inertia (m4) and m is the mass of the sample (kg). The 

distance between the middle rollers was 27 mm and the width of the sample 

was 15 mm with values for the flexural modulus, mass and thickness of 

specimens given in Table 3.2. The 10 Hz test frequency is well below the 

fundamental resonant frequency (given in table 3.2) for all samples.  
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Table 3-2: Input data for calculating the resonant frequency of all samples. 

Laminate E (GPa) Mass (g) 
Thickness 

(mm) 

Frequency (Hz) 

P4wp 38.9 4.2 1.902 226 

P4wt 31.2 4.04 1.84 197 

T4wp 30.9 4.38 2.072 225 

T4wt 34.6 4.23 2.03 235 

P5wp 40.8 4.52 1.964 235 

P5wt 39.2 4.34 2.022 245 

T5wp 36.8 4.89 2.27 266 

T5wt 42.4 4.83 2.268 287 

P6wp 45.6 4.85 2.152 274 

P6wt 41.4 4.85 2.136 259 

T6wp 40.6 5.58 2.406 286 

T6wt 42.4 5.25 2.362 293 

 

The four-point bending fatigue tests were performed at room temperature under 

load control, in accordance with British Standard EN ISO 14125:1998 for fibre-

reinforced plastic composites as shown in Figure 3.19. An Instron Electropuls 

E300 testing machine (serial number: 5527-103) with a ±5 kN dynamic load cell 

(serial number: 107190) was used. The tests were carried out on specimens 

machined with their longitudinal axis parallel with either the warp or the weft 

directions the laminate plates. Specimen dimensions were 100x15x2 mm 

(length x width x thickness) and the span L was 81 mm. Maxima in tensile and 

compressive stresses occur on the lower and upper surfaces of the sample 

respectively, and are calculated using Equation 3.4. The load cycling 

amplitudes were chosen on the basis of using a percentage of the ultimate 

flexural strength (UFS). 
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Fatigue properties in composite laminates depend on test parameters such as 

cyclic load wave form, the amplitude of the applied stress, the mean stress 

during cycling, frequency and stress ratio (R). The latter is the ratio of minimum 

applied stress (σmin) divided by the maximum applied stress (σmax). Hence in 

tension-tension fatigue 0< R <1, for fully reversed cycles R = -1, and for 

compression-compression fatigue R >1. 

 In the case of four-point bend testing, R=0.1, the upper surface experiences 

compression, while the lower surface experiences tension. Most fatigue studies 

on composite laminates use a frequency 10 Hz and R 0.1. Although it would be 

preferable to use R = 0, contact is lost on the specimen faces at minimum load 

and specimens move during the test, which is undesirable [11, 144]. 

In order to obtain S-N curves for the laminates, samples were loaded under 

constant amplitude sinusoidal loading until failure occurred. The number of 

cycles to failure, maximum and minimum applied loads, and maximum and 

minimum displacement under the load points were monitored during the tests in 

order to provide information on the decrease in stiffness (modulus) of the 

specimen during the test. The testing machine was tuned for each sample to 

account for changes in sample stiffness that might affect the test accuracy. Trial 

tests were used to confirm the range of the load levels to be used. Fatigue data 

were then generated at six load levels of 95% to 82.5% step 2.5% of the UFS. 

To reduce the time spent on generating the fatigue test matrix , a single set of  

repeat tests was performed for each laminate condition (giving 12 fatigue 

samples in total for each condition) which should be sufficient [137] to establish 

a basic S-N curve. The complete test matrix encompasses two fibre 

architectures (twill and plain weave) two directions in the laminate (warp and 
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weft) and 4, 5 or 6 fabric layers.  144 fatigue specimens were therefore tested in 

order to obtain S-N curves for all composite laminate conditions.  

A bi-linear relationship between the maximum flexural stress S and log N, the 

number of load cycles to fatigue failure, is widely used to fit experimental fatigue 

data [89], as shown in Figure 3.22. The fatigue life data can then be described 

by Equation 3.12.  

S = -A log N +B                  (3.12) 

Where; A is the fatigue strength exponent and B is the fatigue strength 

coefficient. 

 

 

 

 

 

Figure 3-22: Typical S-N curve. 

 

3.8.6 Fatigue damage index (FDI) and failure analysis 
 

The cumulative fatigue damage index, FDI, was identified by Clark et al.  [88]. It 

is derived from stiffness degradation for composite sandwich materials. In 

common with other materials, composite laminates are expected to fail when 

the accumulated damage exceeds a critical value. However, fatigue damage 

cannot be measured directly [89]. Therefore, the FDI has been defined in terms 

S (MPa) 

 

 log N (cycles) 

 

S=-A log N +B 

Fatigue limit 
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of the flexural modulus decrease observed in composite materials as fatigue 

cycling progresses. 

  FDI= 1- (Eb /Eo)             (3.13) 

Where, Eb is the current flexural modulus and Eo is the original flexural modulus. 

In this study, the fatigue tests are performed under load control, and therefore 

increasing damage reduces the stiffness of the specimens (and hence reduces 

the modulus of elasticity) which leads to an increase in deflection that can be 

monitored. The flexural modulus of elasticity can be calculated using Equation 

3.5. The fatigue loads (load and displacement of the loading points) are 

recorded on a cycle-by-cycle basis by the Electro-puls testing machine. 

To calculate the flexural modulus, the displacement of the beam at the mid-

span should be used. A traveling microscope was used to calibrate the beam 

mid-point deflection (d) as a function of displacement under the loading points 

as shown in Table 3.3. Hence, by plotting this data as shown in Figure 3.23, the 

relationship between mid-span and load point displacements can be determined, 

as indicated in Equation 3.14. 

Table 3-3: The data from the traveling microscope and the Electropuls machine. 

dloading member (mm) dmid span (mm) 

1 1.26 

1.5 1.8 

2 2.37 

2.5 2.92 

3 3.4 

3.5 4.03 

4 4.6 

4.5 5.1 

5 5.7 

5.5 6.25 

6 6.7 

6.5 7.35 
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Figure 3-23: The calibration curve between the displacement under the loading points 
and the mid span of the laminate. 

 

d mid span = 1.1369* d loading points                                            (3.14) 

3.9 X-ray computed tomography 
 

Once the S-N curves had been obtained for all laminates, an investigation into 

the relationship between fatigue life, crack initiation and the fatigue damage 

index was initiated. This involved, applying specific numbers of fatigue cycles to 

additional specimens at several load levels, with the cycle number being chosen 

as a proportion of the fatigue life calculated using Equation 3.12 at the particular 

load level.  The tests were stopped once the desired cyclic life was reached. 

Fatigued samples were then examined using a micro-CT scanner (Skyscan 

1174 X-ray microtomograph, serial no 021), to identify the onset of failure or a 

nascent damage zone. Success in this process relies on a high resolution in the 

CT images. In CT scanning, the X-ray beam passes through the composite 

laminate from different angles to create multiple images that can be 

reconstructed to yield a 3D image of the interior of the laminate, hence showing 

the size and distribution of any crack-like features. A high resolution involves 
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taking an image for every 0.5o for a full rotation of the sample (giving 720 

images in total for each sample). If the CT images contain features with low 

density, that is likely to signify the beginning of crack formation.  
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4.1 Introduction 
 

In Chapter Four, results are presented for the material characterisation and 

mechanical property experiments described in Chapter Three. 

4.2 Fractal dimension – mechanical property 

relationships for infused woven glass laminates 
 

As described in Chapter 3, glass composite laminates were manufactured by 

the infusion process. Three plates were manufactured at each level of 

consolidation and five test samples were cut from each of the three plates 

(giving 15 samples at each level of consolidation) for determination of the ILSS, 

the UTS and the fractal dimension.  

Olympus Stream image analysis software (5M04733) was used to analyse 90 

images of the various microstructures at each level of consolidation with the 

region of interest (ROI) technique. Initial work demonstrated that the polishing 

technique used to prepare the specimens gave low quality images while the 

ROI did not adequately represent the whole image. The polishing process was 

modified and the final process used in this work is presented in Appendix A-3.  

This procedure was used to prepare the specimens and obtain 15 new  images 

of the microstructure as demonstrated in Figure 4.1 (five images from each 

plate) for each level of consolidation were acquired (giving 45 images for 

analysis in total). These were used to investigate the correlation between either 

the D, or the fibre volume fraction, and the mechanical properties for each 

laminate plate. 
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Figure 4-1: Typical micrographs of glass fibre – epoxy composite of 900 mbar, (a) 
Original and (b) In binary format. 

The microstructures were characterised for each laminate using the box-

counting method for calculating the D and the Vf. Interlaminar shear strength 

(ILSS) and quasi-static tensile tests were performed to measure the ILSS, 

elastic modulus (from the slope of the stress-strain curve) and ultimate tensile 

stress (UTS). Table 4.1 presents the mean mechanical properties and image 

analysis data, for the woven glass fabric laminates at different levels of 

consolidation. 

Table 4-1: The mean mechanical properties and image analysis data. 

Level of 
consolidation 

UTS (MPa) Elastic 
modulus 

(GPa) 

ILSS (MPa) D Vf (%) 

Hand Lay-up 265 12.1 18.4 1.712 23.5 

Infusion 600 
(mbar) 

385 17.2 24.7 1.797 30.3 

Infusion 900 
(mbar) 

398 17.4 31.3 1.866 52.1 

 

Due to the different numbers of the specimens used in the mechanical testing 

and microstructural characterisation, the value of the standard error is used to 

check the variation in the data, where larger specimen numbers give a smaller 

standard deviation.  The standard error is calculated using Equation 4.1. [145]  

(a) (b) 
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Standard error = 
𝑆𝑇𝐷𝐸𝑉

√𝑛
               (4.1) 

Where, STDEV is the standard deviation and n is the sample size.  

Figure 4.2 illustrates the increase observed in UTS with increase in the level of 

consolidation. The laminates that were infused under 900 mbar had the highest 

value of UTS. The elastic modulus also increased with increase in the 

consolidation level as shown in Figure 4.3. Furthermore, the results show that 

the ILSS increased with increasing level of consolidation as shown in Figure 4.4. 

In all cases, the increase in all mechanical properties as a function of increase 

in the level of consolidation due to an increase in the fibre volume fraction, Vf, 

(Figure 4.5). Therefore, consolidation of the laminate under 900 mbar gave 

significant improvement in mechanical properties compared with the other 

levels of consolidation. A further useful outcome is that laminates with high level 

of consolidation have fewer RRV as shown in Figure 3.9, where the RRV is 

inversely proportional to the fibre volume fraction, Vf. 

 

Figure 4-2: The Ultimate tensile strength UTS with standard error as a function of the 
level of consolidation. 
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Figure 4-3: The elastic modulus with standard error as a function of the consolidation 
level. 

 

 

 

Figure 4-4: The interlaminar shear strength ILSS with standard error as a function of the 
consolidation level. 
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Figure 4-5: The fibre volume fraction Vf with standard error as a function of the 
consolidation level. 

 

Figure 4.6 illustrates the observed increase in fractal dimension with increase in 

level of consolidation. A higher level of consolidation increases the fibre volume 

fraction Vf of the laminate and the uniformity of the fibre distribution, and hence 

a higher fractal dimension as seen in Figure 4.7. Furthermore, a higher infusion 

pressure can sometimes increase the uniformity of the fibre distribution within 

the laminate, and hence reduce the clustering of the fibres which, in turn, 

reduces the RRV content. This situation is in keeping with that shown by Pearce 

et al. [48]  to increase the mechanical properties of the laminate. Figure 4.8 

further shows that a strong link exists between fractal dimension and 

interlaminar shear strength (ILSS), while, Figure 4.9 illustrates the increase 

observed in the elastic modulus with increase in level of consolidation and with 

the fractal dimension. A similar trend is observed in UTS as shown in (Figure 

4.10).  

These results indicate that mechanical properties are strongly influenced by 

volume fraction, with an increase in Vf directly correlating with an increase in 

properties.  Similar trends exist between fractal dimension D and mechanical 
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properties and hence these key performance indicators can be predicted for a 

particular manufacturing process and level of consolidation, from 

characterisation of the D using image analysis. A high D value implies a high Vf 

and/ or a uniform fibre distribution and leads to good mechanical properties. It 

should be noted that these observations and relationships are true when 

analysis of the D is performed with the resin as background. However, if we 

determined the D with the fibre as background, this will be reversed which 

means that all these trends would then be a function of a decrease in D. 

 

Figure 4-6: The D with standard error as a function of the level of consolidation. 

 

Figure 4-7: The fibre volume fraction and the fractal dimension as a function of the level 
of consolidation. 
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Figure 4-8: The interlaminar shear strength and the fractal dimension as a function of the 
level of consolidation. 

 

 

 

Figure 4-9: The elastic modulus and the fractal dimension as a function of the level of 
consolidation. 
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Figure 4-10: The Ultimate tensile stress and the fractal dimension as a function of the 
level of consolidation. 

The underlying hypothesis presented in this thesis is that either D or Vf or both, 

will correlate with mechanical properties and therefore be able to act as a 

predictor of mechanical performance of the composite laminate.  A point of 

considerable interest is then, which of these two parameters is better and why? 

To explore this further, the mechanical properties are plotted against the D and 

Vf respectively in Figures 4.11 and 4.12. Fitting linear relationships between 

UTS and both D and Vf, the correlation between the UTS and the D (R² = 

0.8633 Figure 4.11a) is better than the correlation between the UTS and the Vf 

(R² = 0.5537 Figure 4.11b). Similar trends are found for the cases of ILSS and 

elastic modulus (Figure 4.12 and Figure 4.13 respectively). 
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Figure 4-11: Woven glass laminates: a) Ultimate tensile strength UTS versus fractal 
dimension D and b) UTS versus the fibre volume fraction Vf.  

 

Figure 4-12: Woven glass laminates: a) ILSS versus fractal dimension D and b) ILSS 
versus the fibre volume fraction Vf. 
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Figure 4-13: Woven glass laminates: a) The elastic modulus versus fractal dimension D 
and b) The elastic modulus versus the fibre volume fraction Vf. 

 

All these results indicate that the D is proportional to the level of consolidation, 

and that Vf, ILSS, elastic modulus and UTS generally increase with increase in 

D. Performing the correlation using a linear relationship suggests that the fractal 

dimension may be a better parameter to characterise the mechanical properties 

of fibre reinforced composites than Vf, and indicates that the fractal dimension 

could be used to compare mechanical properties, for different fibre reinforced 

composite laminates, with a high D implying a high level of mechanical 

properties. The analysis reported in this section was the first step in the 

investigation of the effect of fibre distribution on mechanical properties, as 

mentioned in the objective of the work and illustrated schematically in Figure 1.2. 

The next step in the work is analysing the performance of different woven fabric 

laminates manufactured to possess similar Vf, but with different fibre distribution. 
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4.3 Fractal dimension – mechanical property 

relationships for RTM laminates  
 

This section discusses the relationship between D and mechanical properties 

for the carbon fibre composite laminates that were manufactured using the RTM 

process. In a similar fashion to the results discussed in Section 4.2, 

microstructures were quantified for each laminate, in both the warp and weft 

directions, using the box-counting method to characterise the D, the stressed Vf 

(defined in equation 3.8)8 and the total Vf. Interlaminar shear strength, ILSS, 

and four-point bending tests have been undertaken to obtain values for the 

flexural bending modulus (Eb) and the ultimate flexural stress (UFS). Table 4.2 

presents the mean mechanical property and image analysis data for the woven 

carbon fibre fabric laminates, with the two different fibre architectures (plain and 

twill weave) and 4, 5 of 6 layers of fabric. 

Figure 4.14 presents the UFS data for all the RTM specimens and 

demonstrates that the UFS of the twill fabric laminates is higher than that of the 

plain fabric laminates in the weft direction and that this trend is reversed in the 

warp direction, although the UFS for both fabrics increases with increasing 

number of fabric layers (as would be expected from the rule-of-mixtures). In the 

case of the ILSS data (Figure 4.15) the twill fabric has higher strengths in both 

the warp and the weft directions. Data for the flexural modulus Eb (see equation 

3.5 for the definition)  indicates that the plain fabric is stiffer than the twill fabric 

in the warp direction and less stiff than the twill in the weft direction as shown in 

Figure 4.16, because the flexural modulus data are consistent with the fibre 

volume fraction data (Figure 4.17), except the flexural modulus of the twill in the 

                                                
8
 (i.e. Vf weighted to account for only the fibres in the stressed direction) 
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weft direction, where the yarn count was higher than others (420 tows/m) and  

the crimp9 of the twill fabric could be less than the crimp of the plain fabric.   

Data for Vf indicates that the plain weave fabric has better performance than the 

twill weave fabric in both warp and weft directions (Figure 4.17). There is a 

general trend observed in all four mechanical property parameters to increase 

with increasing number of fabric layers.  

Table 4-2: The mean mechanical property and image analysis data for woven carbon fibre 
laminates. 

Laminate Direction Symbol D Stressed 

Vf (%) 

Total Vf 

(%) 

UFS 

(MPa) 

ILSS 

(MPa) 

Eb 

(GPa) 

4 layers 

(Plain) 

Warp P4wp 1.835 18.2 36.4 561 43.8 38.9 

Weft P4wt 1.809 17.5 35.1 463 40.5 31.2 

4 layers 

(Twill) 

Warp T4wp 1.826 16.5 34.9 548 46.8 30.9 

Weft T4wt 1.862 18.3 34.8 608 45.9 34.6 

5 layers 

(Plain) 

Warp P5wp 1.859 20.9 41.9 670 47 40.8 

Weft P5wt 1.841 20.6 41.2 567 44.1 39.2 

5 layers 

(Twill) 

Warp T5wp 1.844 18.3 38.6 642 51.3 36.8 

Weft T5wt 1.893 20.6 39.2 719 49.3 42.4 

6 layers 

(Plain) 

Warp P6wp 1.892 23.8 47.6 725 48.9 45.6 

Weft P6wt 1.850 23.3 46.6 623 44.9 41.4 

6 layers 

(Twill) 

Warp T6wp 1.863 20.6 43.4 711 50.1 40.6 

Weft T6wt 1.912 23.2 44.2 743 51.7 42.4 

 

 

                                                
9
 Crimp: The waviness of the fibre in a fabric, expressed numerically as the crimp ratio, being 

the yarn length divided by the cloth length. 
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Figure 4-14: UFS with standard error for the various woven carbon laminates in warp (wp) 
and weft (wt) directions. 

 

Figure 4-15: ILSS with standard error for the various woven carbon laminates in both 
warp and weft directions. 
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Figure 4-16: Eb with standard error for the various woven carbon laminates in both warp 
and weft directions. 

 

Figure 4-17: Vf with standard error for the various woven carbon laminates in both warp 
and weft directions. 
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of UFS.  Figure  4.18 illustrates that the error in the fractal dimension (Equation 

4.2) is reduced to a very low value once 20 images from different sections are 

used to obtain D values (as was done in this study). 

Error in D (%) = 
𝐴𝐵𝑆(𝐷𝑚𝑒𝑎𝑛− 𝐷𝑛𝑖)

𝐷𝑚𝑒𝑎𝑛
 x 100                        (4.2) 

Where, ni is the number of images.   

 

Figure 4-18: The error value of the fractal dimension against the number of images used 
in its determination. 
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Figure 4-19: D with standard error for the various woven carbon laminates in both 
directions. 

 

The laminate P5wt had an increase in the standard error as shown in Figure 

4.19, due to longitudinal voids present in some microscopic images of this 

laminate as shown in Figure 4.20. 

  

  

Figure 4-20: Longitudinal voids observed in the P5wt laminate. 
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in the fibre volume fraction and the fractal dimension. This supports the results 

(see Figure 4.7) of the glass woven laminates that were manufactured by the 

infusion process. Again the laminate P5wt showed a slightly different behaviour 

compared with the data for other laminates as shown in Figure 4.21 (lowest 

R2=0.9061), due to the features observed in Figure 4.20 for this laminate. 

 

Figure 4-21: Fractal dimension versus number of layers; for a constant laminate 
thickness as used here, D is therefore proportional to Vf. 

The UFS in twill warp and plain weave warp directions are very similar for the 

same n, while the UFS in the twill weave weft direction is significantly higher 
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To a first approximation, the strength of the plain weave n-layer weft laminate is 
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Figure 4-22: UFS versus number of layers for the various woven carbon laminates. 
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weft fibre, but in twill fabric two (or more) warp fibres alternately weave over and 

under two (or more) weft fibres in a regular repeated manner (Figure 4.23). 

Therefore, the plain fabric has a higher crimp than the twill fabric. 
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Figure 4-23: (a) Plain weave and (b) 2/2 twill weave.  
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the elastic tensile modulus Et (Equation 4.3)10. The out-of-plane ηO (Eb / Et) is 

essentially cos4θ. The angle θ was calculated by using Equation (4.4) and found 

to be in the range 14.9o – 22.7o  for all laminates which is lower than the 

maximum crimp angle measured from typical micrographs (Figure 4.24), and is 

consistent with this angle varying along the length of the fabric (down to a 

minimum of zero degree).  

Et = ηO Vf Ef + Vm Em                         (4.3) 

θ = cos-1 (Eb /Et)
0.25           (4.4)   

Table 4.4 presents the ranking of fractal dimension and UFS data for the 

various types of laminate tested in this work, and it is clear that the value of 

these two parameters varies in a consistent and linked way for all four fabric 

types tested.  The microstructural images shown in Figure 4.24 were generated 

by merging 30 contiguous (10 horizontal by 3 vertical) microstructural images 

from sections of the respective laminates.  The shape and distribution of the 

RRV differ between the plain and twill fabrics with continuity of RRV around 

tows occurring in the plain weave fabric, but not in the twill weave fabric.  The 

distribution of fibres within the composite has been quantified using a fractal 

dimension (D) box counting method for 20 non-overlapped contiguous vertical 

strips taken from different sections from each laminate.   

 

 

 

 

                                                
10

 Where Ef = 235 GPa and Em = 2.85 GPa.  
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Table 4-3: The prediction for the elastic modulus Et and the out-of plane ηO from the rule-
of-mixtures.  

Laminate Vf~warp Vf~weft Vm Eb(GPa) Et(GPa) Eb/Et ηO= 
(Eb/Et)

0.25 
Angle 

θ 

P4wp 0.182  0.64 38.9 44.6 0.87 0.966 14.9 

P4wt  0.175 0.64 31.2 43.1 0.72 0.923 22.7 

T4wp 0.165  0.65 30.9 40.8 0.76 0.933 21.1 

T4wt  0.183 0.65 34.6 44.8 0.77 0.937 20.4 

P5wp 0.209  0.58 40.8 50.9 0.80 0.946 18.9 

P5wt  0.206 0.58 39.2 50.1 0.78 0.941 19.8 

T5wp 0.183  0.61 36.8 44.8 0.82 0.952 17.8 

T5wt  0.206 0.61 42.4 50.1 0.85 0.959 16.4 

P6wp 0.238  0.53 45.6 57.4 0.79 0.944 19.3 

P6wt  0.233 0.53 41.4 56.3 0.74 0.926 22.2 

T6wp 0.206  0.56 40.6 50.0 0.81 0.949 18.4 

T6wt  0.232 0.56 42.4 56.1 0.76 0.932 21.2 

 

Figure 4.24 supports the premise that strength increases with fractal dimension. 

If the tow acts as a crack-arrester for the RRV in the twill fabric (as indicated by 

the lack of continuity of the RRV around a tow), then one might expect smaller 

defects, and hence higher strengths, in fabrics with a twill weave, compared 

with plain weave fabrics.   

Table 4-4: UFS & D from highest to lowest value. 

No. of layers (n) UFS rank order from highest 
to lowest for n layers. 

D rank order from highest to 
lowest for n layers. 

4,5 &6 Twt   (Twill weft direction) Twt   (Twill weft direction) 

4,5 &6 Pwp   (Plain warp direction) Pwp   (Plain warp direction) 

4,5 &6 Twp   (Twill warp direction) Twp   (Twill warp direction) 

4,5 &6 Pwt   (Plain weft direction) Pwt   (Plain weft direction) 
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Figure 4-24: Merged contiguous microstructural images from five (upper) or six (lower) 
ply laminates of plain (left) or twill (right) weave fabrics showing the continuous 
horizontal RRV around the tows that occurs in plain, but not twill, composites fabrics. 

 

In this study, second order polynomial regression has been chosen for all data, 

as it has a high value of R2 compared with other regressions for all static 

properties such as UFS, ILSS and Eb, where R2 is a statistical measure of how 

close the data are to the fitted regression line.  It is also known as the coefficient 

of determination [146]. However, R2 does not indicate whether a regression 

model is adequate. Sometimes a low R2 value gives a good model, or a high R2 

value for a model that does not fit the data [147]. For checking the goodness-of-

fit, Figures (4.25-4.27) illustrate the actual values for all static properties such as 

UFS, ILSS and Eb versus the predicted values of them using the linear and the 

second order polynomial regression. For all static properties, the R2 in the 

second order polynomial was higher than the R2 of the linear model. Therefore, 

the second order polynomial regression seems to provide a better fit than the 

linear regression. Furthermore, increasing the uniformity of the fibre distribution 

could reduce the RRV, and that is likely to lead to a higher strength level in the 

P5wt with D=1.841 & UFS=567 MPa T5wt with D=1.893 & UFS=719 MPa 

P6wt with D=1.85 & UFS=623 MPa T6wt with D=1.912 & UFS=743 MPa 
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composite laminate.  Furthermore, the behaviour of the composite laminates 

under flexural loading is a direct consequence of multiple damage events, which 

are governed by different factors.  All of these factors could lead to the 

observed non-linear behaviour of composite laminates as a function of fibre 

distribution. 

 

Figure 4-25: Actual values versus the predicted values of UFS. 

 

Figure 4-26: Actual values versus the predicted values of ILSS. 
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Figure 4-27: Actual values versus the predicted values of Eb. 
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the alternative, if   0.001 < p < 0.01 means that the correlations are significant 

with strong evidence against the null hypothesis in favour of the alternative, and 

if p< 0.001 means that the correlations are significant with very strong evidence 

against the null hypothesis in favour of the alternative. In this study, most 

laminates have ABS R≥ 0. 577, and p < 0.05, with some correlations having p-

values in the range 0.001 < p < 0.01 and even p < 0.001, which implies that 

most correlation curves obtained with second order polynomial trend/regression 

lines were significant and that correlations exist for all laminates, with just two 

exceptions: (i) the ILSS versus the stressed Vf and (ii) the ILSS versus the total 

Vf as shown in Table 4.5.  

Table 4-5: ANOVA for second order polynomial trend/regression type.NB: Rule-of-thumb 
If ABS R≥0.577, gives TRUE for ALL correlations and p < 5% means ALL data set 
correlations are significant. 

Correlation R (Pearson  
coefficient) 

p-value The significant 
status 

UFS vs D 0.950 0.000027 Significant with 
very strong 

evidence 

UFS vs Stressed 
Vf 

0.740 0.028 Significant with 
moderate 
evidence 

UFS vs Total Vf 0.728 0.033 Significant with 
moderate 
evidence 

ILSS vs D 0.746 0.025 Significant with 
moderate 
evidence 

ILSS vs Stressed 
Vf 

0.386<0.577 0.4864 No correlation and 
not significant 

ILSS vs Total Vf 0.518<0.577 0.2437 No correlation and 
not significant 

Eb vs D 0.825 0.005 Significant with 
strong evidence 

Eb vs Streesed Vf 0.922 0.000184 Significant with 
very strong 

evidence 

Eb vs Total Vf 0.876 0.00137 Significant with 
strong evidence 

 

Figure 4.28 illustrates the correlations plotted for UFS versus D, the stressed Vf 

and the total Vf for all laminates. The UFS is clearly related to the D, with a 
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weaker relationship with the stressed Vf and a low correlation with the total Vf. 

The correlation between UFS and D is significant with very strong evidence (R² 

= 0.9034 and p=0.000027) as shown in Figure 4.28a, which is better than the 

correlation between UFS and the stressed Vf (R² = 0.5487 and p=0.028) or the 

total Vf (R² = 0.5307 and p=0.033) as shown in Figures (4.26b and 4.26c) due to 

the much lower R² and high p-values in the last two cases. 

Figure 4.29 illustrates the trend in the ILSS as a function of the three 

parameters of D, stressed Vf and total Vf respectively. It is clear that the ILSS 

correlates reasonably well with D (R² = 0.5579 and p=0.025) , but it does not 

correlate well with the stressed Vf (R = 0.386 and p=0.4864) or with total Vf (R = 

0.518 and p=0.2437). However the correlation between ILSS and D is 

statistically significant with moderate evidence (p< 0.05) due to the ILSS being 

dominated by resin properties and interface adhesion rather than the fibre 

distribution.  

Figure 4.30 illustrates the trend in the Eb as a function of the D, the stressed Vf 

and the total Vf for all laminates respectively. For all laminates, there is a 

correlation between the parameters plotted because R>0.577, and it is clear 

that the Eb correlates better with the stressed Vf (R² = 0.8505 and p= 0.000184) 

as shown in Figure 4.30b, or the total Vf (R² = 0.7688 and p=0.00137) as shown 

in Figure 4.30c, than it does with D (R² = 0.6822 and p=0.005) as shown in 

Figure 4.30a. This is expected from the rule-of-mixtures estimation for elastic 

properties, where the flexural modulus is proportional with the Vf.  

 

 



Chapter 4 RESULTS AND DISCUSSION 

[110] 
 

 

Figure 4-28: All laminates: a) Ultimate flexural strength UFS versus fractal dimension D, b) 
UFS versus stressed fibre volume fraction Vf and c) UFS versus total fibre volume 
fraction Vf.  
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Figure 4-29: All laminates:  a) Interlaminar shear strength ILSS versus fractal dimension 
D, b) ILSS versus stressed fibre volume fraction Vf and C) ILSS versus total fibre volume 
fraction Vf. 
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Figure 4-30: All laminates:   a) flexural modulus of elasticity Eb versus fractal dimension 
D, b) Eb versus stressed fibre volume fraction Vf and c) Eb versus total fibre volume 
fraction Vf. 
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concentration and crack growth within the laminate and should thus lead to 

improved mechanical properties in the composite laminates. Furthermore, as 

Eb = -1278.4D2 + 4881.4D - 4616.6 
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stated earlier for clustered fibres, the tow centres will be some distance from the 

surface of the material, whereas for uniformly distributed fibres there will be 

more reinforcements adjacent to the sample surface (further from the neutral 

axis in bending) with an expectation of a higher flexural modulus in the latter 

case. 

This supports the hypothesis that the mechanical properties of the composite 

laminates depend on the fibre distribution, which is measured by the D, more 

strongly than by the fibre volume fraction. 

For the full data set and from Figures 4.28a, 4.29a and 4.30a the equations 

linking mechanical properties with the D were found to be: 

UFS (MPa) = -21339D2 + 82155D – 78329     (R2=0.9034)      (4.5) 

ILSS (MPa) = -550D2 + 2131D – 2014               (R2=0.5679)      (4.6) 

Eb (GPa) = - 1278D2 + 4881D - 4616        (R2=0.6822)     (4.7) 

The boxes that were used to calculate the D were defined parallel with the 

distribution of bending and shear stresses as shown in Figure 4.31. The 

correlation between the boxes and the stress directions within the laminate 

cross-sections makes the D a useful parameter in exploring relationships 

between mechanical properties and manufacturing processes and fabrics in the 

laminates as mentioned earlier. Correlations between these parameters either 

do not exist or are less apparent for the case of the total Vf.  Furthermore, the 

correlation between D and the UFS is higher than the correlation between D 

and the ILSS, as discussed in the previous sections.   In addition to the reasons 

mentioned previously, another contributory factor in these observations is the 

bending stress which has a linear relationship across the thickness (boxes) of 
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the laminate, while the shear stress does not follow a linear relationship as 

shown in Figure 4.31.  

 

Figure 4-31: The correlation between the distribution of the bending strain and shear 
stresse to the box counting method. 

 

In summary: 

 The strength of the composite laminates shows a clear dependence on 

the fibre distribution as well as the fibre volume fraction, and the UFS is 

proportional to the D according to Equation 4.5. 

 The ILSS is proportional with a second order polynomial to the D but the 

relationship is less significant than the relation between the UFS and the 

D.  Here, the relationship is Equation 4.6. 

 The flexural modulus Eb is proportional with a second order polynomial to 

the stressed Vf, the total Vf and D for different laminates, and it correlates 

with Vf better than the D, which is expected from the rule-of-mixtures.  

The corresponding relationship is Equation 4.7. 

Bending strain Shear stress 
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These results obtained with the laminates manufactured using RTM confirm the 

results obtained from the laminates made under resin infusion, i.e. that the 

fractal dimension can be a measure of the fibre distribution and can therefore 

be correlated with the (quasi-static) mechanical properties (Eb, UFS and ILSS) 

of fibre reinforced composites.  These observations provide confidence that 

investigating the effect of fibre distribution on the fatigue properties of the fibre-

reinforced composites will provide useful insights into the process-property-

performance relationships. 

4.4 The fatigue properties of carbon laminates 

manufactured by the RTM process 
 

4.4.1 The S-N Curves 
 

In this study, a logarithmic regression (Equation 3.12) has been chosen to 

characterise the fatigue data.  This is due to the high value of R2 compared with 

that found for other forms of regression relationships for the S-N curve data, 

where R2 is ‘best fit indicator’ [146].  Figures 4.32, 4.33 and 4.34 present the S-

N fatigue data obtained in four-point bending, in both the warp and weft 

directions, for plain and twill weave laminates with 4, 5 and 6 layers of fabric.  

The UFS data are also plotted on the same curves, taking the flexural failure to 

coincide with one-half cycle of loading [137].  Figure 4.32 demonstrates that the 

T4wt laminate shows a high fatigue performance due to the high UFS and high 

D, while the P4wt laminate shows a low fatigue performance due to the low 

UFS and low D as shown in Table 4.2.  Fatigue performance ranks in the 

sequence T4wt >P4wp >T4wp > P4wt, i.e. when the laminates are subjected to 

the same flexural stress, it is expected that, on average, the fatigue life would 

rank from high to low in the same sequence.  This observation is related to the 
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static properties, where UFST4wt > UFSP4wp > UFST4wp > UFSP4wt.  Furthermore, 

the ranking is the same for the fibre distribution, which is measured by the D, 

where DT4wt > DP4wp > DT4wp > DP4wt as shown in Table 4.2.  Similar behaviour 

occurs for the same reasons, with the five and six layer laminates as shown in 

Figure 4.33 and 4.34 respectively.  The conclusion drawn from these 

observations is that the fatigue life of the composite laminates depends on the 

fibre distribution (as measured by the D) and that the laminates with high 

flexural strength will show high fatigue life, as has been observed by other 

workers [66, 86].  This leads to general hypothesis that fatigue life is 

proportional to the D and to the UFS as will be discussed later.  

 

Figure 4-32: S-N curves for 4 layer plain and twill weave laminates in both the warp and 
weft directions. 

As shown in Figures 4.32-4.34, there was significant scatter in the S-N data, 

which relates to the different mechanisms of failure that can occur in composite 

laminates. Another contributory factor is the high amount of samples and 

different areas (between the RTM mould edges and the mould centre) from 
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where the samples are cut. Furthermore, the anisotropic materials (e.g. fibre 

reinforced composites) are very sensitive to the loading path, and that could 

happen when the cut of the samples is not parallel to the warp and weft 

direction. Therefore, it is expected that the scatter of the composites is higher 

than that of the isotropic materials. 

 

Figure 4-33: S-N curves for 5 layer plain and twill weave laminates in both the warp and 
weft directions. 

 

 

Figure 4-34: S-N curves for 6 layer plain and twill weave laminates in both the warp and 
weft directions. 
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Again, the rule-of-thumb and analysis of variance (ANOVA) statistical 

techniques [148] will be used to discuss the scatter observed in the fatigue data, 

in order to check the significance of the correlations between applied flexural 

stress and fatigue life.  In this data set, nd=13 for all laminates, so if ABS R≥ 

0.554, then the correlation exists. In this data set, all laminates have ABS R≥ 

0.554 and 0.001 < p < 0.01 with some correlations having p < 0.001.  The 

interpretation is that the S-N curves characterised with a logarithmic regression 

are significant and that correlations exist between these parameters for all 

laminates as indicated in Table 4.6.  

Table 4-6: ANOVA for the S-N curves fitted with logarithmic regression lines.  NB: Rule-
of-thumb states that if ABS R ≥ 0.554 gives TRUE for ALL correlations and p < 5% then 
ALL data set correlations are significant. 

Laminate R (Pearson  coefficient) p-value 

P4wp 0.87 0.0001 

P4wt 0.68 0.009 

T4wp 0.73 0.004 

T4wt 0.80 0.0008 

P5wp 0.68 0.01 

P5wt 0.75 0.003 

T5wp 0.76 0.002 

T5wt 0.71 0.005 

P6wp 0.83 0.0003 

P6wt 0.76 0.002 

T6wp 0.68 0.009 

T6wt 0.67 0.01 

 

Figures 4.35-4.38 show that, for a constant specimen thickness of 2 mm, the 

fatigue life increases with an increase in the number of fabric layers for a 

particular type of laminate.  This reflects the increasing fibre volume fraction in 
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the laminate (as the RTM mould cavity depth was fixed in all cases), and the 

associated increase in D and flexural strength that was observed in the 

laminates as the number of fabric layers increases (see Table 4.2). For all types 

of laminate used in this testing programme, the fatigue strength coefficient B 

and the fatigue strength exponent A (Equation 3.12) increased with increase in 

number of fabric layers, as can be seen in Figures 4.35-4.38. The resin type 

and fibre/matrix adhesion would be similar for all the laminates considered in 

this work and the fatigue behaviour of the composite laminates is mainly 

controlled by the fibre distribution which was different for all laminates. 

 

Figure 4-35: S-N curves for the plain weave laminates in the warp direction for 4, 5 and 6 
fabric layers. 
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Figure 4-36: Semi-log S-N curves for the plain weave laminates in the weft direction for 4, 
5 and 6 fabric layers. 

 

 

 

 

Figure 4-37: Semi-log S-N curves for the twill weave laminates in the warp direction for 4, 
5 and 6 fabric layers. 
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Figure 4-38: Semi-log S-N curves for the twill weave laminates in the weft direction for 4, 
5 and 6 fabric layers. 

 

Both the UFS and the D are proportional to the number of fabric layers, and an 

increase in number of fabric layers equates to an increase in fatigue life as 

mentioned before.  Within a single fibre architecture (twill or plain weave), the 

reduction in the fatigue life was faster for those laminates with more layers as 

evidenced by the values of the parameter A given in Table 4.7.   This is due to 

the visco-elastic behaviour of the matrix used in composite laminates which has 

a significant effect on the fatigue life of composite laminates [11]. 

Table 4-7: Fatigue constants based on the laminate type. 

Laminate A B (MPa) 

P4wp -15.9 569.4 

P4wt -9.86 459.6 

T4wp -12.26 548.5 

T4wt -14.65 613.3 

P5wp -17.87 667 

P5wt -15.14 569.5 

T5wp -16.81 644.7 

T5wt -17.32 714.1 

P6wp -19.89 727.6 

P6wt -17.79 626.5 

T6wp -19.28 704 

T6wt -19.97 736.3 
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4.4.2 Maximum displacement and modulus of elasticity  
 

In order to calculate the flexural modulus during the bending fatigue tests, the 

maximum displacement at the midspan was calculated using Equation 3.14.  

Figure 4.39 illustrates a typical deflection response observed at midspan, for the 

5 layer laminates with either plain or twill fabric (level load=85%UFS), as a 

function of the life fraction consumed (i.e. number of cycles (N) divided by the 

number of cycles at failure (Nf).  In Figure 4.39, the rate of change in deflection 

divides into three regions as follows; 

• The initial region 1 with a rapid increase in deflection as the applied load is 

ramped up to reach the required level.  This period is 1-2 % of the failure time. 

• An intermediate region 2, in which a steady-state slow increase in deflection 

occurs as fatigue damage accumulates; this region continues to around 90% of 

the total life, Nf. 

• Region 3, in which the rate of deflection increases rapidly in an exponential 

manner until failure occurs.  This region is associated with a sudden loss of 

strength and stiffness and is accompanied by cracking sounds (audible acoustic 

emission) for all the specimens in this test programme.  This indicates the onset 

of failure. 

From Figure 4.39, one can observe that the value of the steady-state deflection 

depends primarily on the fabric architecture (plain or twill weave) and whether 

the specimen has its longitudinal axis in the warp or the weft direction. 
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Figure 4-39: A typical deflection response observed at the midspan in the five layer 
laminates with either plain or twill weave fabrics. 

Figure 4.39 relates to a specific stress equal to 85% of the UFS, and the 

deflection reflects the value of applied load.  For the particular case of 85% of 

the UFS and the 5 layer fabrics, it is clear that the laminates in either plain or 

twill weave fabrics are stiffest when the specimen axis is parallel with the weft 

direction, and that the twill weave laminates are stiffer than the plain weave 

laminates.   

In this study the fatigue tests were conducted under load control, therefore the 

change in deflection reflects a change in stiffness or modulus of elasticity of the 

samples, arising from the development of damage zones in the laminates.  The 

flexural modulus of elasticity can be calculated using Equation 3.5. The applied 

fatigue loads were recorded automatically from the Electropuls test machine, 

allowing the actual flexural modulus to be calculated at any point in the fatigue 

test.  Figure 4.40 illustrates the change in the flexural modulus under fatigue 

test, Eff as a function of the normalised life fraction (N/Nf) at an applied load of 

85%UFS.  It is clear from Figure 4.40 that the laminate T5wt has a high flexural 

modulus and this can be correlated with the high fatigue life seen in Figure 4.33. 
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Figure 4.41 presents normalised flexural modulus data, i.e. the ratio of Eff to the 

original flexural modulus Eo, as a function of life fraction N/Nf for all five layer 

laminates at an applied load of 85%UFS. As expected, Figure 4.41 

demonstrates that the change in flexural modulus can be divided into three 

similar regions to those observed for deflection, as shown in Figure 4.39: 

• The initial stage which occurs within the first 10% of life, and where there is a 

marked reduction in flexural modulus degradation to ~96% of the original 

flexural modulus.  This reduction could be related to development of matrix 

cracks at this period. 

• An intermediate stage, where there is a gradual linear reduction in modulus 

degradation as a function of life fraction which continues to around 90% of Nf. 

• A final stage, in which the modulus decreases rapidly and which culminates in 

sample failure due to local damage development. 

 

Figure 4-40: Flexural modulus as a function of fatigue life fraction for the 5-layer 
laminates. 
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Figure 4-41: Normalised flexural modulus as a function of fatigue life fraction for the 5-
layer laminates. 
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value of Eff/Eo for approximately the first 60% of the fatigue life, where after it 

shows similar behaviour to the other laminate specimens. 

Similar behaviour occurs for the normalised flexural modulus as a function of 

fatigue life fraction at different levels of applied fatigue load (e.g. 95%UFS and 

85%UFS) as shown in Figure 4.42. 

In the specimens tested in this programme of work, a 5-6% decrease in the 
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composite laminates under fatigue loading.  This decrease could be related to 

the rise of temperature that usually accompanies fatigue testing [84]. Fatigue 

failure mechanisms in composite laminates are more complex than those which 

occur in metals, and failure in composite laminates under fatigue loading can 
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and fibre breakage.  Furthermore, in flexural fatigue testing, one face of the 
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sample is in tension and the other one is in compression. The observed 

mechanisms of failure change between these two types of load. 

4.4.3 Fatigue damage index (FDI) 
 

The fatigue damage index (FDI) has been defined in Equation 3.13 in terms of 

the flexural modulus decrease observed in composite materials as fatigue 

cycling progress.  Figure 4.43 shows the value of FDI as a function of the 

normalised life fraction N/Nf for typical laminates fatigued at 85%UFS.  Defining 

a fatigue damage index in terms of the decrease observed in flexural modulus 

means that  failure does not correspond with a value of FDI = 1.0.  A value of 

FDI = 0.1 corresponds with a value of N/Nf > 90% of fatigue life, while FDI = 0.2 

would indicate imminent failure. 

 

Figure 4-42: Normalised flexural modulus as a function of fatigue life fraction for two 
different applied load levels. 
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Figure 4-43: Fatigue damage index as a function of life fraction for different laminates. 

 

The FDI as defined above increases only slightly over the range life fraction 0 < 

N/Nf < 0.9 (Figure 4.43) but increases exponentially in the range 0.9 < N/Nf < 

1.0.  Similar behaviour is observed when considering other load cases 

(95%UFS and 85%UFS) as shown in Figure 4.44.  It is interesting to note that 

the twill weave 5-layer weft direction specimen (T5wt – which has high fatigue 

strength) displays a different behaviour in the final 10% of life compared with 

the lower fatigue strength laminate P5wt. 

 

Figure 4-44: Fatigue damage index as a function of life fraction for two different load 
levels. 
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It was observed that most of the fatigue specimens failed in the expected 

central region (middle of the lower loading roller span).  However, some 

specimens failed near to one of the loading points, particularly at higher applied 

load levels, i.e. 90-95% UFS as shown in Figure 4.45.  In these cases cracking 

did not begin exactly below the loading point, but rather in close proximity to it. 

This could be due to the local stress concentration becoming more important at 

higher applied loads, as a result of the compression stresses induced at the 

loading point (leading to a localised multiaxial stress state) as well as a potential 

thermal influence from friction and fretting between the loading point and the 

specimen. 

 

Figure 4-45: Examples of specimens where failure occurred close to the loading points. 

 

The fatigue damage index can be used to identify the onset of cracking in 

fatigue specimens.  Figures 4.43 and 4.44 illustrate that the fatigue damage 

index starts to increase above N/Nf ≈ 0.85.  In an attempt to explore the ability 

of the FDI to predict the onset of cracking irrespective of the level of applied 

fatigue load, four fatigue specimens were tested under several different load 

levels (R=0.1 and f=10 Hz) and with a sequence of life fraction, as illustrated 

below; 
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 A T5wp specimen was subjected to fatigue testing at 95%UFS for a 

number of cycles N = 0.6Nf.  

 A P5wp specimen was subjected to fatigue testing at 92.5%UFS for a 

number of cycles N = 0.7Nf.  

 A P5wt specimen was subjected to fatigue testing at 90%UFS for a 

number of cycles N = 0.8Nf. 

 A T5wt specimen was subjected to fatigue testing at 87.5%UFS for a 

number of cycles N = 0.9Nf. 

Nf is calculated from Equation 4.8, which is a rearrangement of Equation 3.12, 

taking the A and B values from Table 4.7 for each laminate type. 

N= log -1 ( 
B−S

A
 )                    (4.8)   

The Electropuls testing machine was set to stop the test when it reached the 

required number of cycles for each specimen.  The fatigued specimen was then 

examined using a Skyscan micro-CT scanner to see if any indications could be 

found of incipient cracking.  No trace of cracking was apparent in the X-ray 

scans for the specimens tested to life fractions of 0.6Nf, 0.7Nf or 0.8Nf, as 

shown in Figure 4.46 which illustrates the cross-sections from the three 

samples. 
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.  

Figure 4-46: Computed tomography (CT) images for three different laminates tested to 
various life fractions at different load values. 

The CT images do, however, contain low density features in the specimen 

tested to 90%Nf which are likely to reflect damage zones in the composite 

(Figure 4.47).  This life fraction corresponds to the onset of the region where 

there is a fast reduction in flexural modulus and an equivalent rapid increase in 

the fatigue damage index, FDI.  It is also the case that these low density regions 

coincide with the positions where failure is observed to have occurred in other 

specimens tested to failure, as shown in Figure 4.48.  These positions reflect 

the maximum tensile and compressive stresses that act on the contact faces of 

the specimens, and the RRV in some laminates allow cracks to both cross from 

one ply to another and to change their direction of propagation as shown in 

Figure 4.49.  This can occur because of the low strength of the RRV. 
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Figure 4-47: CT scan images for a laminate T5wt at N=0.9Nf. 

 

4.4.4 The correlation between fatigue and static 

mechanical strength 
 

In the fatigue data presented in Figures 4.32 to 4.34, the UFS data are plotted 

on the same curve with the flexural test being taken as equivalent to failure in 

0.5 cycles of loading [137].  The flexural fatigue stress at 0.5 fatigue cycles will 

be very close to the flexural fatigue stress at 1 fatigue cycle and the difference 

between them can be neglected.  Therefore, one can assume that at N=1 

cycles,   S = UFS; substituting that into Equation 3.12, i.e. S = -A log(N)+B, 

gives B=UFS. 

Therefore,   

  S = -A log(N)+ UFS        (4.9)   

Where, UFS and A are different for each laminate. 

Low density features 
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Figure 4-48: CT images showing the failure positions for various laminates and load 
levels. 

  

  

Figure 4-49: CT images showing crack propagation in various laminates and load levels. 

Hence the RRV and the fibre distribution are constants for each type of laminate, 

energy that cause failure at fatigue load could be related to the energy that 

cause failure at static load. Therefore, the fatigue properties could be related to 

the static properties. Figure 4.50a plots absolute value of A as a function of UFS 

for all laminates.  The constant A in the SN relationship is proportional to the 

T5wp at 
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UFS and a second order polynomial can be used to fit this correlation 

(polynomial because the R2 value for the second order polynomial fit is higher 

than the R2 value for a linear fit) while the p-value  of 0.000082 indicates a 

significant correlation between ∣A∣ and the UFS. Furthermore, the predicted ∣A∣ 

values using the second order polynomial regression was better than that of the 

linear regression (Figure 4.50b), and ∣A∣ is proportional to the UFS according to 

the relationship  

∣A∣ = -0.00006UFS2 + 0.1075UFS – 26.901                         (4.10) 
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Figure 4-50: (a) The correlation between A and the UFS for all laminates and (b) The 

actual values versus the predicted values of A. 

4.4.4.1 Extrapolation of Equation 4.10 

The following theoretically indications need to be confirmed by additional tests. 

In practice, need safety factor and recognise limit and their fatigue. From typical 

S-N curve at A=0, we might be expect that the laminate will not fail for an infinite 

number of cycles at that stress (endurance limit) as shown in Figure 3.21.  

Substituting A=0 in Equation 4.9, gives, 

A = -6E-05UFS2 + 0.1075UFS - 26.901 
R² = 0.8769 
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Sendurance =- (0) log(N)+ UFS  

and by applying that in Equation 4.10 to find the two roots of this equation. 

0= -0.00006 S2endurance + 0.1075 Sendurance – 26.901 

Therefore, Sendurance =1491 MPa is rejected as it is greater than UFS for all 

laminates where as Sendurance = 301 MPa is sensibly below UFS for all 

laminates and might be accepted. The endurance limit, obtained from the 

correlation between the slope of the S-N curve A and the UFS, is shown in 

Table 4.8 for all composite laminates in this study.  

 

Table 4-8: The endurance limit for all laminates obtained from the experimental 
correlation between A and the UFS. 

Laminate 

Endurance limit (%)= 

(
𝟑𝟎𝟏

𝑼𝑭𝑺
*100) 

P4wp 

 

53.7 

P4wt 64.9 

T4wp 54.9 

T4wt 49.5 

P5wp 44.9 

P5wt 53.1 

T5wp 46.9 

T5wt 41.8 

P6wp 41.5 

P6wt 48.3 

T6wp 42.4 

T6wt 40.5 

 

As noted earlier, the fibre distribution plays a critical role in determining fatigue 

performance and it is therefore useful to separate the data into plain weave 

fabric and twill fabric results as shown in Figure 4.51, which again demonstrates 
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that A is proportional to the UFS and that the relationship between them is not 

linear for either the plain or the twill weave laminates. 

 

Figure 4-51: A versus UFS for a) plain fabric and b) for twill fabric. 

The p-value of plain laminates in Figure 4.51 is 0.0039 and the p-value for the 

twill laminates is 0.022.  They are both < 0.05 which indicates a significant 

correlation between ∣A∣ and the UFS for both types of fabric. 

From Figure 4.51a,  

∣A∣plain = -0.0001UFS2 + 0.1603UFS – 41.848            (4.11) 

As mentioned before at A=0, Sendurance = UFS, and by applying that in Equation 

4.11 to find the two roots of this equation; 

Sendurance =1274 MPa > UFSstatic for all plain laminates which is not accepted. 

or Sendurance = 328 MPa < UFSstatic for all plain laminates which is accepted. 

From Figure 4.52b,  

∣A∣twill= -0.00006UFS2 + 0.1175UFS – 33.371                  (4.12) 

∣A∣ = -0.0001UFS2 + 0.1603UFS - 
41.848 
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Again at  A=0, Sendurance = UFS  and by applying that in Equation 4.12 to find 

the two roots of this equation; 

Sendurance =1614 MPa > UFS for all twill laminates which is not accepted or 

Sendurance = 345 MPa which is sensibly < UFS for all twill laminates and is 

therefore accepted. 

Therefore the endurance limit stress for twill laminates (345 MPa) is higher than 

the endurance limit stress of plain laminates (328 MPa), and this is expected 

because the crimp ratio in plain fabric laminates is higher than that in the twill 

fabric laminates.  The endurance limit based on the type of fabric is given in 

Table 4.9. 

Table 4-9: The endurance limit of the plain and twill laminates based on the correlation 
between A and the UFS. 

Laminate Endurance limit 
(%UFS)  

Laminate Endurance limit 
(%UFS)  

P4wp 58.5 T4wp 63 

P5wp 49 T5wp 53.7 

P6wp 45.3 T6wp 48.6 

P4wt 70.8 T4wt 56.8 

P5wt 57.9 T5wt 48 

P6wt 52.6 T6wt 46.4 

 

The fatigue life (N) corresponding to a particular value of UFS under any 

applied flexural fatigue load S can be calculated from Equation 4.13, which is a 

rearrangement of Equation 4.8,    

N= log-1( 
𝑈𝐹𝑆−𝑆

𝐴
 )                    (4.13) 

Where, 

 Aall laminates = -0.00006UFS2 + 0.1075UFS – 26.9    
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Aplain =-0.0001UFS2 + 0.1603UFS – 41.848     

And  Atwill= -0.00006UFS2 + 0.1175UFS – 33.371         

Equation 4.14 represents an equation that can predict fatigue life as a function 

of the UFS for any value of applied flexural fatigue stress S, where S and UFS 

have units of MPa. 

4.4.5 The correlation between the fatigue life and the 

fibre distribution 
 

In this study as mentioned earlier, second order polynomial regression has 

been chosen for the correlation between the fatigue parameter ∣A∣ and the fibre 

distribution, as it has a higher value of R2 compared with other regressions. 

Furthermore, the predicted values using the second order polynomial 

regression was better than that of the linear regression (Figure 4.52). 

 

Figure 4-52: The actual values versus the predicted values of ∣A∣. 

By plotting the absolute value of the fatigue parameter A against the complete 
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fraction and the total fibre volume fraction as shown in Figure 4.53, it is clear 

that there is a correlation between the fibre distribution measured by the D and 

the fatigue properties represented by the slope of the S-N curves A.  The 

correlation between ∣A∣ and the D (R2= 0.7915 and p=0.00086) is better than 

the correlation between ∣A∣ and the stressed Vf (R
2= 0.6979 and p=0.0045) or 

the total Vf (R
2= 0.723 and p=0.003).  

The correlation found between the fatigue life and the UFS (Figure 4.50) is 

more significant than the correlation between the fatigue life and the fibre 

distribution (Figure 4.53a), as evidenced by the R2 and p-values for the 

correlations.  However, both correlations were significant.  

 

 

Figure 4-53: Data for all laminates:  a) Fatigue parameter ∣A∣ versus D, b) ∣A∣ versus 

stressed Vf and c) ∣A∣ versus total Vf. 
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The correlation between fatigue life and the fibre distribution as shown in Figure 

4.53a is 

A = -1132.6D2 + 4301D – 4064.2                       (4.14) 

Again by using the same assumption that at A=0 the laminate will not fail for an 

infinite number of cycles at that stress.  

  0 =-1132.6D2 + 4301D – 4064.2   

Gives D1=2.027 > 2 (not accepted) or D2=1.77 (accepted) 

At A=0,    Sendurance = UFS, and by substituting D=1.77 in Equation 4.5, 

Sendurance= 232.4 MPa. 

Hence the endurance limit for all composite laminates found from the correlation 

between fatigue life and the fibre distribution is given in Table 4.10.  

Table 4-10: The endurance limit of all laminates based on the correlation between A and 
the D. 

Laminate Endurance limit (%UFS) 

limit (%UFS) 
P4wp 41.4 

P4wt 34.7 

T4wp 32.1 

T4wt 50.2 

P5wp 41 

P5wt 37.3 

T5wp 42.4 

T5wt 36.2 

P6wp 32.7 

P6wt 38.2 

T6wp 32.3 

T6wt 31.3 
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The endurance limit based on the fibre distribution is likely to be safer to use in 

design than the endurance limit found using the UFS, as laminates could be 

manufactured with similar UFS values and different D values.  Therefore, it is 

safer to take the lower endurance limit as first indicator, or the one that fitted the 

design conditions. 

Finally, to find the life of the composite laminates, as mentioned above 

(Equation 4.13);  

N= log-1( 
𝑈𝐹𝑆 − 𝑆

𝐴
)    

Using the values of UFS from Equation 4.5 and A from Equation 4.13, the 

relationship between fatigue life and D is:   

N=log -1 ( 
−21339D2+82155D–78329−S

−1132.6D2 + 4301D – 4064.2  
)                (4.15)  

Equation 4.15 represents an equation to predict the fatigue life of the composite 

laminate based on the fibre distribution, which can be characterised by the D, at 

any value of the flexural fatigue stress S in MPa. 

The fatigue life relationships found in this project for the twill and plain weave 

fabrics can be summarised as follows:  

 The fatigue life of all the composite laminate specimens considered in 

this work shows a clear dependence on the static strength (UFS) as well 

as on the fibre distribution, characterised by the D.  

 The correlation observed between fatigue life and the static UFS was 

better than the correlation observed between fatigue life and the fibre 

distribution, although both of them are statistically significant. 
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 The endurance limit (found using either the UFS or the D data) was 

inversely proportional to the UFS for all specimens and the endurance 

limit of twill weave fabric laminates was better than the endurance limit of 

the plain fabric laminates at similar values of UFS. 

 The decrease in stiffness observed during fatigue cycling shows a clear 

trend with increase in the number of applied fatigue cycles. 

 A decrease of 5-6% in the flexural modulus of composite laminates was 

found to indicate the onset of crack initiation in the composite laminates 

under fatigue loading. 

 The CT images demonstrate the presence of low density features at 90% 

of Nf. 

 RRV in the composite laminates allow cracks to both cross from one ply 

to another and to change their direction of propagation.  

 The D can be used to characterise the fatigue life and hence make life 

predictions for fibre-reinforced composites. 

As a further validation of the relationships discussed in this chapter, another 

laminate was manufactured using the RTM process but with a different fabric 

architecture (basket weave) whilst keeping other processing parameters 

constant.  The mechanical tests (static and fatigue) and the image analysis 

performed on this laminate are discussed in the next chapter. 
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5.1 Introduction 
 

This chapter seeks to further evaluate the applicability of the various 

correlations discussed in Chapter 4 for the original twill and plain weave fabrics 

using a third basket weave fabric laminate. 

5.2 Materials and manufacturing laminate 
 

6K carbon fibre architectures were woven by Carr Reinforcements using the 

same batches of fibre for both warp and weft directions of the fabric.  The 

modulus of elasticity of the carbon fibres was 235 GPa.  The areal density of the 

basket weave fabric was 470 g/m2.  Yarn counts were 380 tows/m for warp and 

810 tows/m for the weft yarn count.  The resin was Sicomin SR8100 epoxy with 

Sicomin SD8824 hardener in a weight mix ratio of 100:22.  The RTM process 

was used to manufacture laminates for the experimental work, with the same 

cavity and vacuum closing of the mould as used for the twill and plain weave 

fabrics. The injection pressure was again +500 mbar 

The plate was then cured under vacuum for 24 hours at ambient temperature. 

Full peripheral clamping vacuum (1000 mbar absolute) was maintained whilst 

the resin was cured. The plate was post-cured in an oven for 8 hours at 60 o C 

according to the resin manufacturer’s guidelines (Appendix A-3.2). 

A single basket weave fabric laminate plate was manufactured with 4 layers of 

fabric. Five samples were cut from each of the warp and weft directions for each 

of the static mechanical tests (UFS and ILSS) and for the image analysis. 

However, nine samples were cut from each of the warp and weft directions for 
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the flexural fatigue tests. Then same sequence of mechanical tests (static and 

fatigue) and image analysis as described in Chapter 4 was conducted.  

5.3 Static properties of the basket weave laminate 
 

The basket weave microstructures were quantified, in both the warp and weft 

directions, using the box-counting method to determine the D and the total Vf. 

Interlaminar shear strength, ILSS, and the four-point bending tests were 

undertaken and provide values for the flexural bending modulus (Eb), the 

ultimate flexural stress (UFS) and ILSS. Table 5.1 illustrates the mean 

mechanical properties and image analysis data, for the basket weave laminate. 

Table 5-1: The mean mechanical properties and image analysis data of basket weave 
laminate. 

Laminate Direction Symbol D Total Vf 

(%) 
UFS 

(MPa) 
ILSS 
(MPa) 

Eb 
(GPa) 

4 layers (Basket 
weave) 

Warp BWwp 1.853 40 475 42 25 

Weft BWwt 1.913 43 747 49 57 

 

Figure 5.1 presents the UFS data and illustrates that the UFS in the weft 

direction is higher than the UFS in the warp direction, because the weft direction 

has a higher number of fibre tows (as would be predicted by the rule-of-

mixtures).  Similar behaviour was observed with the ILSS and the flexural 

modulus as shown in Figure 5.2 and Figure 5.3.  Even though the number of 

tows in the weft direction (810/m) is higher than the number of tows in warp 

direction (380/m), there was not a big difference between the ILSS in the two 

directions because it depends primarily on the resin properties rather than the 

fibres properties. Figure 5.4 illustrates that the total Vf in the weft direction was 

higher than the warp direction. Similar behaviour was observed for the D as 

shown in Figure 5.5 for the warp and weft direction.  
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Figure 5-1: UFS with standard error for the basket weave laminate in both directions. 

 

 

Figure 5-2: ILSS with standard error for the basket weave laminate in both directions. 

 

Figure 5-3: Eb with standard error for the basket weave laminate in both directions. 
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Figure 5-4: Vf with standard error for the basket weave laminate in both directions. 

 

Figure 5-5: D with standard error for the basket weave laminate in both directions. 

 

To validate the applicability of the correlations discussed in Chapter 4 for the 

static UFS, based on the fibre distribution, it is useful to use the D data for the 

basket weave laminate (column 4 in Table 5.1) to predict the values of the UFS, 

ILSS and Eb  by using Equations 4.5, 4.6 and 4.7 respectively as follows; 
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Then, the error can be determined between the predicted values, found 

according to the D, and the experimental values as shown in Table 5.2. 

Table 5-2: The error between the predicted and the experimental values of the UFS, ILSS 
and the Eb. 

Laminate D UFSexp 

(MPa) 

UFSD 

(MPa) 

Error 

(%) 

ILSSexp 

(MPa) 

ILSSD 

(MPa) 

Error 

(%) 

Ebexp 

(MPa) 

EbD 

(MPa) 

Error 

(%) 

BWwp 1.853 475 634 33 47 42 12 39 25 36 

BWwt 1.913 747 742 0.7 50 49 2 43 57 33 

  

Table 5.2 shows that the errors between the predicted and the experimental 

values of the UFS and ILSS were very small in the weft directions (0.7 and 2%), 

while the errors in warp direction were significantly higher (33 and 12%) due to 

the crimp ratio in the warp direction being higher in direct proportion to the 

number of tows in the warp and weft directions (380 vs 810).  However, the 

errors in the predicted values of Eb were high because this parameter correlates 

better with the stressed Vf than with the D (as would be expected from the rule-

of-mixtures), as mentioned in the previous chapter.  Furthermore, the error 

between the predicted and the experimental values of ILSS arises from the 

ILSS dependence on the fibre distribution in addition to the resin properties.  

To sum up, the predictions of the UFS and the ILSS, based on the fibre 

distribution, could be useful for predicting the static properties for woven fabric 

laminates, with smaller differences between the number of tows in the warp and 

weft direction. 

5.4 Fatigue life of the basket weave laminate 
 

The four-point bending fatigue tests were performed at room temperature under 

direct load control, according to the British Standard EN ISO 14125:1998 for 
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fibre-reinforced plastic composites as shown in Figure 3.19.  An Instron 

Electropuls E300 (serial number: 5527-103) fatigue testing machine fitted with a 

±5 kN dynamic load cell (serial number: 107190) was used.  The tests were 

carried out on specimens cut in the warp and the weft directions with 

dimensions of 100x15x2 mm (length x width x thickness) and the loading span 

between the inner loading rollers was 81 mm (as for plain and twill samples). 

In order to obtain S-N curves for the laminates, samples were loaded at 

constant stress amplitude (R=0.1 and f=10 Hz) until failure occurred.  The 

number of sine wave load cycles to failure for each specimen was monitored.  

Tuning of the Instron testing machine was performed for all samples because of 

the changes in sample stiffness between individual specimens that could affect 

the test accuracy.  Fatigue data were generated at load levels of 95%, 90% and 

85% of the UFS.  To reduce the time necessary for preliminary or experimental 

studies, three repeats of these three fatigue stress levels were done to provide 

the fatigue data shown in Table 5.3. 

Table 5-3: S-N curve data for the basket weave laminate for the warp and the weft 
direction. 

Level 

(%UFS) 

BWwp BWwp BWwt BWwt 

S 

(MPa) 

N 

(cycles) 

S 

(MPa) 

N 

(cycles) 

100 475 0.5 747 0.5 

95 451 2580 710 290 

95 451 6349 710 518 

95 451 17112 710 2438 

90 428 93125 672 35415 

90 428 85513 672 94651 

90 428 12039 672 30327 

85 404 496725 635 901665 

85 404 58270 635 996496 

85 404 79006 635 1555759 
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As used for the analysis of the S-N curves for the plain and twill weave 

laminates (Chapter 4), a logarithmic regression (Equation 3.12) was used to 

characterise the fatigue data, and the UFS data points were also plotted on the 

same curve at 0.5 cycles.  Figures 5.6 illustrates the S-N curve for both warp 

and weft directions in the basket weave laminate.  Figure 5.6 demonstrates that 

the weft direction of the basket weave laminate has higher fatigue strength due 

to the high UFS and D, while the warp direction of the laminate shows low 

fatigue properties due to the low values of these parameters in the warp 

direction (see Table 5.1).  

 

Figure 5-6: S-N curves for the warp and the weft directions in the basket weave laminate. 
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∣A∣D = 1132.6D2 + 4301D – 4064.2           

The errors between the predicted values, which are based on the fibre 

distribution and static properties, and the experimental values are shown in 

Table 5.4.  Table 5.4 shows that in the weft direction the error between ∣A∣D and 

∣A∣S-N values was very small (2%), while the error between ∣A∣UFS and ∣A∣S-N 

was higher (8%).  However the errors in warp direction were significantly higher 

(38 and 11%) than the errors in the weft direction, due to the crimp ratio in the 

warp direction being higher, as reflected by the number of tows in the warp and 

weft directions (380vs810).  Furthermore, Table 5.4 shows that the error 

between the BD with BS-N and BUFS with BS-N values were very small (2 and 1%) 

for the weft direction, and the error between the BUFS and BS-N for the warp 

direction was small (1%). However, the error between the BD and BS-N was 

higher (32%) for the warp direction. 

Table 5-4: The errors between the predicted values and the experimental values the (the 

S-N curve shown in Figure 5.6) of the ∣A∣ and B based on the UFS and the D data. 

Laminate ∣A∣D ∣A∣S-N Error (%) ∣A∣UFS ∣A∣S-N Error (%) 

BWwp 16.64 11.98 38 10.62 11.98 11 

BWwt 18.79 18.45 2 19.92 18.45 8 

Laminate BD BS-N Error (%) BUFS BS-N Error (%) 

BWwp 633 481 32 475 481 1 

BWwt 742 754 2 747 754 1 
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Table 5.4 shows that the values of ∣A∣ and B based on a D analysis were higher 

than the experimental values taken from the S-N curves, but that the values of 

∣A∣ and B based on an analysis of UFS were lower than the experimental 

values taken from the S-N curves.  It is safer in design terms to take the higher 

value of ∣A∣ (which has a negative sign in the typical equation of S-N curve) and 

lower value of B as first indicators of fatigue performance. Therefore, it is 

recommended for this data set to predict ∣A∣ value based on the D (Equation 

4.17), and to find a B value which is equal to the UFS. 

To sum up, the relationships between the fatigue life parameters ∣A∣ and B, 

found using the fibre distribution and UFS data, could be useful in predicting the 

fatigue life for the woven fabric laminates, provided that only small variations 

between the crimp ratio exist in the warp and weft directions. 
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6.1 Concluding comments 
 

The study was carried out to investigate the effect of fibre distribution and resin-

rich volumes, RRV, on the mechanical properties of fibre-reinforced composites.  

The study has also sought to explore whether the fibre distribution can affect 

the fatigue life of composites, particularly in woven carbon-epoxy laminates.  In 

addition, the study has determined that using the fractal dimension with the box-

counting method has the ability to describe the fibre distribution effects, and that 

the fractal dimension is suitable to distinguish the differences between various 

fibre architectures.  The review of previous literature on this subject in the 

context of fibre-reinforced composites is inconclusive regarding several vital 

questions.  These questions were centred on the relationships between 

mechanical properties and the microstructure of the composite laminates, and 

what the best method would be to measure the uniformity of the fibre 

distribution in a mesostructure analysis. 

It has been found from the literature that the fibre distribution and the RRV  can 

have a significant impact on the performance of composite laminates. Therefore 

the author cautions against reducing consolidation pressure or changing the 

fibre architecture for high performance composite structures, unless the 

consequences of such changes are fully understood for the reinforcement 

system in use.  The literature review has also indicated that no one has focused 

on researching the effect of the fibre distribution on the fatigue properties of 

composite laminates. This study is believed to be the first systematic endeavour 

to correlate fibre distribution ( measured as fractal dimension) with the fatigue 

life using sections of continuous woven reinforcement fabric laminates.   
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The study has shown that the variation in mechanical properties of composite 

laminates can be related to the various fibre distributions for laminates 

manufactured with similar processing parameters. The fibre distribution has 

been found to have a correlation with the mechanical properties (static and 

fatigue) of the fibre-reinforced composites, in addition to the correlation 

observed between fatigue life and static UFS.  All correlations were statistically 

significant and exist for all the laminates tested in this study. Arising from these 

correlations, one can predict the fatigue life of the laminates used in this study 

or any laminate manufactured with similar processing parameters and a similar 

number of tows in the warp and weft directions. 

6.2 Empirical correlations 
 

The main empirical correlations are given in Chapter 4 of this thesis, and the 

following conclusions can be drawn from these correlations:  

 The fractal dimension, D, can be used as a parameter to characterise the 

static and fatigue properties of fibre-reinforced composites.  

 The strength of the composite laminates shows a clear dependence on 

the fibre distribution. 

 Interlaminar shear strength, ILSS, correlates with the fibre distribution of 

the composite laminates. 

 The fatigue properties of composite laminates have significant 

correlations with the fibre distribution and the static properties of the 

laminates. 
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 A reduction of 5-6 % in the flexural modulus of composite laminates 

indicates an increasing risk of failure of the composite laminates under 

fatigue loads. 

 D can be used to predict the life of the fibre-reinforced composites. 

 The endurance limits, based on either the static properties or the fibre 

distribution, appear to be inversely proportional to the strength for all 

laminates based on an extrapolation of a polynomial.  

6.3 The implication of the correlations 
 

The implications of the empirical correlations found in this study were checked 

for a different basket weave fabric in Chapter 5.  The author has applied the 

various correlations to this different composite laminate, and from the 

percentage errors found between the predicted values and the experimental 

values, could conclude the following: 

 The correlations between composite strength and the ILSS, based on the 

fibre distribution, could be useful to predict these properties for woven 

fabric laminates, but only with cases with small differences between the 

number of tows in the warp and weft direction. 

 The correlations of the fatigue properties, based on the fibre distribution 

and static properties of the laminates could be useful for predicting the 

fatigue properties for the woven fabric laminates, but again only with 

cases with small variations between the crimp ratio in the warp and weft 

direction. 
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6.4 Recommendations for future work 
 

In order to make the findings of this study more comprehensive the author 

recommends further study of the following factors and additional experimental 

data, which would facilitate attaining this goal: 

 Future research should consider the measurement of the mean crimp 

angle for each weave style in both the warp and weft directions as a 

route to obtaining a fibre orientation distribution factor which could  be 

used in the rule-of-mixtures for estimating and correcting, the mechanical 

properties.  Such an analysis would require aggregation of the data sets. 

 Study the effect of the crimp ratio in parallel with the fibre distribution, in 

order to create correlations that could explain the mechanical properties 

(static and fatigue) based on two different factors. 

 Finding correlations between the fibre distribution and mechanical 

properties for other type of loads such as tensile, three-point bending, 

torsion and impact load. 

 Addressing the relation between the stiffness degradation and increasing 

sample temperature. 

 Using thermography to predict the final failure position under fatigue load 

according to the sample hot spots.  

 Further research will concentrate on the description of damage 

accumulation, which hopefully will lead to a better understanding of 

failure mechanisms. 
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 Using CT scan images, with different equipment and a higher resolution, 

to measure the fractal dimension of the laminate; this could reduce the 

effort involved and the cost. 

6.5 Limitations of the study 
 

The study has investigated the effect of fibre distribution on the mechanical 

properties (static and fatigue) of the woven carbon-epoxy laminates, and the 

fibre distribution quantified by using the D (box counting method) in a 

mesostructural analysis.  The correlations are based on flexural loading in the 

four-point bending test.  As a direct consequence of this methodology, the study 

encountered a number of limitations, which should be considered in any future 

work: 

 The correlations may not be suitable for other types of loading such as 

tensile, torsion, three-point bending, or impact loading. 

 The correlations are not suitable for a macro or microstructural analysis. 

 The fatigue cycles were sine wave type, therefore the correlations may 

not be suitable for other types of loading cycles. 

 The correlations may not be suitable for other types of resin or fabric. 

 The correlations may not be suitable for a test temperature different from 

the room temperature or lower or higher frequency of fatigue loads. 

 To compare results for the fibre distribution with a fractal dimension 

analysis requires using the same box size and the grid position in the box 

counting method (ImageJ with FracLac add-in).  
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6.6 Postscript 
 

In spite of what is often reported about the limited benefits of finding correlations 

between the mechanical properties (static and fatigue) and the fibre distribution 

from some microstructural images of the laminates, the author personally felt 

that there was some importance in finding these correlations, after spending a 

considerable amount of time in testing during this research. 

Such limited applicability correlations could offer useful insights and contribute 

to resolving issues with improving the performance of the composite laminates, 

reducing the time of testing, reducing the cost of mechanical tests (static and 

fatigue) and reducing the risk of the failure of composite structures by predicting 

the life of the composite laminates. Equally, it can contribute to finding an 

explanation for the difference in the mechanical properties of laminates with 

similar fibre volume fraction and in improving the theoretical approaches for the 

static and the fatigue properties of composite laminates.  All of this could lead to 

modified fibre architectures (without neglecting the permeability of the fabric 

employed), that could improve the performance of fibre-reinforced composites.  

Furthermore, the box counting method and fractal dimension can reduce an 

image of the key aspects of the microstructure to a single real number, and that 

could become a time-efficient way of data analysis. 
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Appendices 
 

Appendix A-1: Mechanical properties of SR 8100 based laminates SR 8100 

/ SD 8734 

 

*AT : Ambient Temperature. 
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Appendix A-2: Mechanical properties of Sicomin SR8100 epoxy with 

Sicomin SD8824 

 

*AT : Ambient Temperature. 
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Appendix A-3: The polishing process by using BUEHLER device 

 

Appendix B1: Selective images taken during testing and production of 

laminates and the mechanical test samples. 

  

   

Figure B1-1: Casting the samples (from the infusion and RTM laminates) for image 

analysis. 

 

 Force (N) Time(min.) r.p.m 

Grinding (SiC Grade)    

320 30 3 400 

400 30 3 400 

600 30 3 400 

800 30 3 400 

1200 20 3 400 

Polishing Grade (µm)    

15 By hand 3 400 

6 By hand 3 400 

1 By hand 3 400 
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Figure B1-2: The travel microscope with the electro-pulse machine. 

 

Figure B1-3: The RTM samples for the flexural loading. 

 

Figure B1-4: The X-ray tomograph (Micro CT) scanner for nondestructive three-

dimensional microscopy. 



Appendices 

[167] 
 

 

 

Figure B1-5: The capturing of the microstructure images by using the Olympus BX60 

microscope with Olympus Stream image analysis software (SM04733). 

 

 

 

Figure B1-6: The sine wave fatigue loadings of the electro-pulse machine. 
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