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Abstract 

Laminated composite structures operating in a marine environment are subject to moisture 

ingress. Due to the slow diffusion process of moisture, the distribution of moisture is not 

uniform so that the laminates can develop hygrothermal stresses. An accurate prediction of 

the moisture concentration and the associated hygrothermal stress is vital to the 

understanding of the effect of marine environment on failure initiation. The present paper 

investigates the time-dependent moisture diffusion and the stress distribution in carbon fibre 

reinforced polymeric (CFRP) composites by means of experimental study and Finite Element 

Analysis (FEA).  Samples were made from CFRP pre-preg autoclave-cured, and then 

immersed in fresh water and sea water at a constant 50°C for accelerated moisture diffusion. 

Laminates with [0]16, [90]16, [±45]4s lay-up sequences were investigated. A multiscale 3D 

FEA model was developed to evaluate the interfacial stresses between polymer matrix and 

carbon fibre and the stress distribution in the composite laminates. The analysis revealed that 

both the stress distribution and stress level are time-dependent due to moisture diffusion, and 

the interphase between fibres and matrix plays an important role in both the process of 

moisture diffusion and the stress/strain transfer. The interlaminar shear stresses of the 

laminates induced by hygrothermal expansion exhibited a significant specimen edge effect. 

This is correlated with the experimental observations of the flexural failure of laminates. 
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1. Introduction 

Fibre reinforced plastic (FRP) composites were first used in marine structures at the end of 

World War II when the US Navy was seeking to reduce the maintenance and production 

costs of ship hulls
1
. In contrast to the aerospace industry, where a high strength to weight 

ratio is essential, the use of marine composites was prompted by their superior environmental 

resistance and fatigue life. FRP composites have been used for critical marine structures, such 

as propellers 
2
, hulls 

3
, shafts 

4
, pipes and tanks 

5
. The US shipment of marine composites in 

2014 was about $0.3 billion and this value is expected to grow by 65% by 2020 
6
. The growth 

of marine composites is partly due to the development of marine renewable energy and other 

offshore applications. Since FRP composites can be tailored into complex shapes, these 

materials are used, for example, to construct tidal turbine blades
7
. 

The challenges for composite materials to be used in the marine environment include the long 

exposure time to moisture and temperature, as well as microorganisms and numerous ionic 

species present in seawater. Recently, Summerscales
8
 gave a general review on the marine 

environmental effects on the durability of FRP composites. The loss in the mechanical 

properties of composite materials is mainly attributed to the plasticisation of polymeric 

matrix. However, the previous investigations of the moisture effects of current commercial 

FRP composites in the marine environment are based on the accelerated laboratory studies 

and mainly considered moisture diffusion effects on the polymeric matrix.  

The hygrothermal degradation of FRP composites can be divided into two categories: the 

reduction of the glass transition temperature Tg 
9
, and the stresses induced by hygrothermal 

expansion 
10

. Specifically, moisture absorption reduces the Tg of the polymer matrix due to 

plasticisation resulting from the interruption of van der Waals bonds between the polymer 

chains 
11

, which also leads to the decrease of matrix-dominated stiffness and strength of FRP 

composites. Usually, the effects of moisture and temperature are considered simultaneously 

to determine the synergistic effects of these two exposures. According to previous studies, 

temperature does not change the saturated moisture content but accelerates the process of 

diffusion. This relation between temperature and moisture diffusivity is commonly known as 

Arrhenius equation
12

, which introduced the terms of activation energy. Shen and Springer 
13

 

pointed out that, for many polymer composites, the temperature distribution approaches 

equilibrium about one million times faster than the moisture concentration. Therefore, the 

short time-scale fluctuations of temperature can be neglected with regard to the evolution of 

moisture content. 
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Moisture diffusion in isotropic materials, such as a pure polymer, is governed by Fick’s first 

and second laws 
14

. However, many previous publications, e.g. 
13, 15-17

, have shown that 

moisture diffusion in polymer-based composites can also be described by Fick’s laws. For a 

thin plate ( 1/,1/  hlhw ), the moisture content (M) can be derived from Fick’s first and 

second laws as
18

: 
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where M  is the saturated moisture concentration, D is the apparent moisture diffusivity, t is 

the time, hlw ,,  are the width, length and thickness respectively. 

The apparent diffusivity can be calculated from the measurements at the early stages of 

diffusion (where M is proportional to the square root of time): 
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In a sample of finite dimensions, the longitudinal ( LD ) and transverse ( TD ) diffusivities can 

be used to compensate for the diffusion from the sample’s edges
19

: 
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The apparent diffusivity D  is determined by equation (2), while LD  and TD  can be 

determined by samples with different dimensions using equation (3). 

Previous experimental observations 
13, 20

 have demonstrated that, for polymeric composites, 

the expansion induced by moisture absorption is generally a linear function of moisture 

content if the range of moisture content is less than 2%. Since the moisture distribution inside 

composites is non-uniform throughout any given ply, classical laminate theory (CLT) is 

unlikely to predict the hygrothermal expansion and the associated stresses for a laminate with 

a complex lay-up
21

. The effects of induced hygrothermal stress, along with additional 

external mechanical loading, on the physical properties of CFRP appear not to have been 

investigated extensively.  

The aim of the present work is to investigate the moisture diffusion at both micro- and macro- 

scales and the coupling effects between hygrothermal expansion and bending, by means of 

experimental and numerical approaches. This work mainly focuses on the effects of moisture 
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diffusion on the transverse properties of composite, particularly the role of the interphase 

between fibre and matrix. A two-dimensional FEA model was developed to simulate the 

moisture diffusion and stress/strain transfer at micro-scale (i.e. the ply), while a three-

dimensional FEA model was developed to simulate the moisture diffusion, hygrothermal 

expansion and the coupling of hygrothermal stress with bending at macro-scale (i.e. the 

laminate). 

2. Experiment setup 

2.1 Material preparation 

High strength UD carbon fibre/epoxy pre-preg (Cytec 977-2-12kHTS) was used in this study. 

The pre-preg was hand laid on a flat mould tool, then vacuum-bagged and autoclave cured at 

180
o
C and 85psi (0.6 MPa) pressure, according to the manufacturer’s instructions

22
. The 

calculated fibre volume fraction was %58fV . Three typical lay-up sequences were chosen 

for the composite laminates: [0]16, [90]16, [+45/-45]4s. These three lay-ups are the simplest 

examples of laminates which show a range of different laminate stacking: the unidirectional 

laminates (longitudinal [0]16, transverse [90]16) are fibre and matrix dominated respectively to 

show the strongest and weakest mechanical properties, while the angle-ply ([±45]4s) laminate 

presents intermediate properties. The study of these three common lay-ups could provide a 

general view of the effects of fibre orientation on moisture diffusion and hygrothermal 

stresses. 

The laminates were to be tested in bending following the ISO standards
23, 24

 which required a 

nominal plate thickness of 2 mm. Therefore all of the laminates in the present work were 

made up of 16 plies to satisfy the ISO standards. 

The matrix is a high temperature (180°C) curing toughened epoxy resin with 212°C glass 

transition temperature which is formulated for autoclave moulding. The aromatic epoxide-

amine network
25

 consists of bisphenol A diglycidyl ether (commonly abbreviated BADGE, or 

DGEBA) and diaminodiphenyl sulfone (DDS). The PAN-based carbon fibres present parallel 

graphite layers to the surface near the skin region 
26

. Therefore, the transverse elastic 

properties of carbon fibre are significantly lower than the longitudinal properties. Studies 

have suggested that the transverse modulus is about 10% of its longitudinal value 
27-29

. 
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Fig.1  Five-region model of fibre-epoxy interface 

In terms of fibre composite, the interface is usually considered as the chemically bonded 

junction between resin (including the size) and the fibre surface. The link between resin and 

fibre is very complicated. Kardos 
30

 suggested that the link contains five zones as shown in 

Fig.1, where A is the fibre, B is a layer of reactive site on the fibre surface, C is the third-

phase interlayer referred to above, D is the size, and E is the matrix. The typical thickness of 

the interphase is 0.1μm on 7μm diameter fibres, which varies for different types of fibre 

surface treatment
31

. According to Waltersson’s observation 
32

, approximate 33% of the region 

of the fibre/matrix interface was not well bonded therefore it was suggested that the 

mechanical properties of the interphase (e.g. elastic modulus and tensile strength) could be 

estimated by 1/3 lower than the matrix. 

An optical image of the microstructure is required to build the corresponding FEA geometry. 

The specimens were set in a mould and encapsulated by transparent resin, and then ground 

and polished to be optically flat using a polishing media containing 1.5μm diamond particles, 

as shown in Fig.2. 

 

Fig.2 Polished UD ([0]16), UT ([90]16) and AP ([±45]4s) specimens for the microscopic study 
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2.2 Fibre packing analysis 

Regardless of the stacking sequence of a composite laminate, all the fibres in each ply are 

assumed to be aligned parallel to each other within a single ply. There are several fibre 

packing assumptions to predict the fibre volume fraction, such as hexagonal and square 

lattices
3
, 
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where 
fV  is the fibre volume fraction, r is the radius of a single fibre and R is half of the 

central distance between two adjacent fibres.  

Theoretically, it is predicted that the maximum fibre volume fraction is 907.0fV for 

hexagonal lattice and 0.785for a square lattice by equation (4). For many carbon fibres, the 

average radius is approximately 3.5μm. Considering the inversion of equation (4), the central 

distance between two adjacent fibres within a composite ply with 58.0fV  can be calculated 

as 8.751μm (hexagonal) and 8.144μm (square). 

Due to the inevitable limitations of the current manufacturing technique, the fibre lattice 

cannot be perfectly hexagon or square. Fig.3 shows the real fibre lattice of a unidirectional 

laminate (Cytec 977-2-12kHTS). A mixture of the hexagonal and square lattices can be seen 

from the figure, with quite a few resin rich volumes. 

 

Fig.3 Fibre lattice of a unidirectional laminate 

Fig.4 shows the statistics of the central distance between two adjacent fibres of Cytec 977-2-

12kHTS unidirectional laminate ( 58.0fV ) based on the fibre lattice shown in Fig.3. The 

microscopic images were taken from an optical microscope using 1000 times magnification 

(OLYMPUS BX60M), and the fibre distances were measured by OLYMPUS STREAM 
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software (version 1.9). The measurements of the fibre distances were then imported into 

MATLAB for curve fitting using DFITTOOL toolbox. The best fit was three-parameter 

Weibull function given by
33

: 

 𝑓(𝑑) =
𝑘

𝜆
(
𝑑−𝑑0

𝜆
)
𝑘−1

𝑒−(
𝑑−𝑑0
𝜆

)
𝑘

    (5) 

where  is the scale factor, k is shape factor, d is the fibre spacing and d0 is the threshold fibre 

spacing. For HTS-12K/977-2 unidirectional laminate 023.050.1,02.039.1  k  and 

md 5.60  . A reasonably good fit was obtained. 

It is interesting to note that the average central distance from the statistical analysis (7.705μm) 

is shorter than the predictions of either a square lattice (8.144μm) or a hexagonal lattice 

(8.751μm) based on equation (4). One possible reason is that the compaction of fibres tends 

to squeeze the resin out; resulting in resin rich volumes which reduce the overall fibre volume 

fraction. 

 

Fig.4 Statistics of fibre distance of a unidirectional laminate. Approximate two thousand 

specimens are included in the statistics. 

The gaps between the adjacent fibres are very narrow, showing only 0.7μm on average. It can 

be seen from Fig.4 that some fibre separations are less than 7μm (the average diameter of 

carbon fibres). One possible reason is that the radius of these fibres is slightly smaller than 

the average value. Nevertheless, Fig.4 suggests that there are many fibres presenting a very 

narrow gap which affect both the moisture distribution and stress distribution. 

2.3 Diffusion and bending tests 

Fresh water (tap water) and sea water were used for the diffusion test to investigate the 

degradation of composite properties. The sea water used was collected from the English 
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Channel near Plymouth harbour, and the water was refreshed every month during the tests. 

The salinity of the sea water was varying with seasons and depth, and the values were in the 

range of 3.4%-3.5% in weight. The salinity was similar with values in the open literatures so 

that the chemical composition can be referred to ASTM D1141
34

. 

Before being immersed in the water, all of the specimens were oven-dried at 70°C for 48 

hours. The specimens were constrained and separated by breathing nylon cloth before being 

immersed. In order to accelerate the diffusion process, all the samples were placed in an oven 

at a constant temperature of 50°C. Following the ASTM standard
18

, the specimens were taken 

out at intervals to measure the moisture content and hygrothermal expansion. The moisture 

content by weight was measured by a weight scale with 0.01 mg accuracy, while the 

dimensions were measured by a vernier calliper with 0.01 mm nominal accuracy. At least 

five specimens of each lay-up were immersed in each chamber, and the mean values were 

calculated. Equations (2) and (3) were used to calculate the apparent moisture diffusivity, 

with longitudinal (DL) and transverse (DT) moisture diffusivities obtained from the UD ([0]16) 

and UT ([90]16) data (UT: Unidirectional Transverse).  

The measurements showed a very rapid weight gain during the first week of immersion and 

saturation of the composite after three months at a weight gain of 0.9% with a transverse 

moisture diffusivity smDT /102 213  and longitudinal moisture diffusivity

smDL /106.3 213 . Substituting the densities of fibre ( 33 /1078.1 mkg ), matrix 

( 33 /1031.1 mkg ) and the value of fibre volume fraction (58%), the saturation and moisture 

diffusivity of matrix can be calculated as 2.7% and sm /106 213  respectively at the test 

temperature. It is interesting to note that the difference in moisture diffusivity between fresh 

water and sea water was negligible. 

Bending tests (following the ISO standard
24

) were carried out to investigate the elastic 

properties both in dry and saturated conditions. At least five samples in each group were 

tested, and the properties transverse to fibres were focused on in the presented work due to 

their sensitivity to moisture diffusion. The flexural strength and modulus of the dry UT 

specimens were 117±5 MPa and 8.4±0.3 GPa respectively, while the same properties in the 

saturated condition were 102±4 MPa and 9.0±0.2 GPa respectively.  

3. FEA modelling 

Two scales of FEA model were built to study the moisture diffusion within CFRP composite 

laminates and its coupling with external mechanical loading. At the micro scale, a 2D model 

was constructed according to the real distribution of fibres within one single ply to investigate 

the moisture diffusion behaviour. At the macro scale, a 3D model was developed based on 
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the actual laminate lay-up to investigate the impact of moisture diffusion and external load on 

the interlaminar shear stresses.  

3.1 Micro model 

The geometry of the micro scale model was taken directly from the optical microscope image 

to capture the real distribution of fibres within a single ply, but assuming that the fibres were 

perfectly circular, as shown in Fig. 5. The FEA model contained two components: (a) species 

transport was used to simulate the moisture diffusion within the matrix and interphase, 

therefore the surface ply (ply 16) was extracted for the FEA geometry; (b) structural 

mechanics was employed to calculate the stress/strain transfer among the three phases, as 

well as the coupling between hygrothermal expansion and external loading.  

 

Fig.5 Optical microscopic image of a UT specimen and schematics of FEA model 

It can be seen from Fig.5 (c) that there was a resin-rich volume between two adjacent layers; 

therefore it is reasonable to extract a single ply for the modelling by applying the continuous 

boundary condition. For the species transport component, the lower surface was defined as 

being at the saturated moisture concentration given by: 

3max
1018 






m

mM
c


      (6) 
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where m  is the density of matrix, and 
31018   molkg /

 
is the molar mass of water. 

Substituting the matrix saturation (2.7%) into equation (6), the boundary moisture 

concentration can be calculated as 1965
3/ mmol .  

It can also be seen from Fig.5 (a) that the fibres are very close to each other so that the stress 

concentration due to the barrier layer effect could be induced during moisture diffusion. It is 

well known that the moisture diffusivity of the interphase should be different from that of the 

matrix. Therefore, a sensitivity study of the interphase diffusivity was carried out to 

investigate this barrier effect. 

Due to the bending moment applied to the laminate, the bottom surface of the laminate was 

under maximum tension, and the tensile stress at the 15th and 16th plies near the bottom was 

calculated to be 102 MPa and 117 MPa respectively. For the structural mechanics component, 

a distributed tensile stress was applied on the left side of the model while the right side was 

defined as symmetric plane. Fig.6 shows the schematics of the boundary conditions for both 

species transport component and structural mechanics component. 

 

Fig.6 The boundary conditions for the multiphysics micro model: species transport and 

structural mechanics 

The mechanical properties of the fibre and matrix were obtained from the product technical 

datasheet
22

, and the diffusion properties of the matrix was taken as the measured value in 

section 2.3. Table 1 gives the material properties used for the micro-model. The properties of 

the interphase shown in Table 1 were for the baseline case, and these values were used for the 

parametric study. 
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An area with dimensions of mm  50125   was considered with 125 m being the thickness 

of each ply. There were three phases in the model including fibres, interphase and matrix. 

The diameter of the fibres varied with an average value of 7µm
35

, while the thickness of the 

interphase was 0.1µm as the baseline case, which is equivalent to approximately 4% of the 

weight of fibres. The calculated fibre volume fraction was 58% which was the same as the 

experimental value. 

Table 1 Mechanical and chemical properties of carbon fibre and epoxy 

  

1E  

)(GPa  

32 EE   

)(GPa  
1312    23  

D  

)/10( 213 sm
 M  

Fibre 238 24 0.2 0.4  -  - 

Matrix 3.5 3.5 0.34 0.34  6.0 2.7% 

Interphase  2.6   2.6 0.34 0.34  6.0 2.7% 

 

 

Fig.7 A local view of the mesh, showing the three phases in the micro model 

The model was solved using COMSOL Multiphysics 
36

. The automatic meshing method of 

COMSOL was employed to generate the mesh. Approximately 250k triangular elements were 

created.  Fig.7 shows a magnified view of the mesh which shows detailed meshes of the three 

phases within the composite. The interphase and the adjacent regions were refined to capture 

the stress concentration effect and the fibres barrier effect. 

3.2 Macro-model 

As described in section 3.1, the micro model was a 2D plane strain approximation of a 

unidirectional composite specimen. The hygrothermal effect was not taken into account in the 

micro model because only free expansion was induced within the resin region under a simply 

supported boundary condition. However, for a laminate with a complicated stacking sequence, 

stress/strain can be induced by the hygrothermal expansion between the adjacent plies, and 

such induced strain/stress can be coupled with the external loading. In the present study, the 
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interlaminar shear stress of angle-ply laminate was emphasized because it plays an important 

role in the initiation of fracture of laminate in bending. 

The macro-model was inherited from the authors’ previous 3D FEA study of CFRP 

laminates
37

 by adding the species transport component, and the coupling term (hygrothermal 

strain) was introduced to link the species transport and structural mechanics components: 

c

CHE c






31018 
        (7) 

where c  is the density of composite and   is coefficient of hygrothermal expansion (CHE) 

which can be calculated by the ‘rule of mixtures’ 
10
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Where  

)1( fmffc VV         (8-2) 

For the species transport component, all surfaces were fixed at a constant concentration 

which was calculated from equation (6) to be 800
3/ mmol . For the structural mechanics 

component, the boundary conditions corresponded to three-point bending, and the external 

loading was the same as the maximum value recorded in the bending tests (for the angle-ply 

laminate, NF 1395max  ). Table 2 shows the material properties and the loading of species 

transport/structural mechanics components. 

Table 2 Material properties of lamina and the loading for macro model ([±45]4s) 

Longitudinal modulus 1E  139 GPa 

Transverse modulus 32 EE   8.8 GPa 

In-plane shear modulus 1312 GG   4.7 GPa 

Transverse shear modulus 23G  3.0 GPa 

In-plane Poisson’s ratio 1312    0.26 

Transverse Poisson’s ratio 23  0.48 

Longitudinal diffusivity 1D  sm /106.3 213  

Transverse diffusivity 32 DD   sm /102.2 213  

Longitudinal CHE 1  0 
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Transverse CHE 32    0.49 

4. Results and discussion 

4.1 Moisture diffusion 

As discussed in section 3.1, the barrier layer effect develops due to the narrow gap between 

fibres. The diffusion rate extracted from the micro model was significantly lower than that 

observed in the experiment if the diffusivity of the interphase ( inD ) was assumed to be the 

same as for the matrix in the FEA model. A parametric study was carried out to investigate 

the sensitivity of the interphase diffusivity. Fig.8 shows the comparison of the fit of the 

measurement to Fick’s law and the predictions by the micro model for three levels of inD : the 

same, five times, or ten times that of the matrix. The results suggested that the FEA 

prediction matched the experiment well when the inD value was ten times that for the matrix. 

This is in agreement with the previous reports that the diffusivity of the interphase is much 

higher than that of the matrix. 

 

Fig.8 Comparison of mass gain: Fick’s fit and FEA computation with various values of inD .  

A previous study of the carbon fibres/epoxides reaction 
32

 has shown that the mechanical 

modulus of the interphase is a fraction lower than the matrix, which may lead to a higher 

capability to attract water molecules. This is one of the possible reasons that the moisture 

diffusivity of the interphase presents a higher value. 

According to equation (1), the time to saturation is exponential to the thickness of the 

specimen. The moisture can penetrate one ply thickness with relatively low concentration 

within a short time of immersion. Indeed, the moisture concentration reached saturation after 

24 hours in the micro-model, compared to 90 days for the whole (16 ply) experimental 

laminate. Fig.9 shows the moisture distribution after one hour of immersion ( inD  was 10 

times that of the matrix). A magnified view of the interphase shows a smooth moisture 
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distribution which indicates the moisture distribution was not affected by the difference of 

diffusivities of the two phases of resin (the bulk and interphase).  

 

Fig.9 Moisture distribution in the micro model after one hour immersion (dimension unit: μm) 

 

Fig.10 Moisture distribution of macro-model at specific slice sections for angle-ply laminate 

after one month immersion (dimension unit: mm)  

Although the longitudinal diffusivity is 60% higher than the transverse, as shown in Table 2, 

the time-dependent moisture concentration in all three laminates ( [0]16, [90]16, [±45]4s) were 

quite similar. Fig.10 shows the FEA results of the macro model for moisture distribution 

within the angle-ply laminate in slice-view after one month of water immersion indicating 

different depth of water penetration in longitudinal and transverse directions. However, the 

slice plot shows a smooth distribution of moisture concentration regardless of the ply 

orientations.  

4.2 Stress distribution 

The mechanism of stress transfer among the three phases can be evaluated from the micro 

FEA model. The influence of the elastic modulus of the interphase was captured through a 

parametric study. Because of the random distribution of fibres, the first principal stress and 
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strain along an arbitrarily chosen line through-thickness were extracted. Fig.11 and Fig.12 

show the first principal stress and strain distributions respectively along a line at x=25µm for 

the cases of min EE 
 
and min EE 75.0 . 

  

Fig.11 (a) Schematics of stress distribution and the chosen line for the stress plot; (b) First 

principal stress distribution along the chosen line. The mean value is also shown in the figure. 

  

Fig.12 (a) Schematics of the chosen line for the strain plot; (b) First principal strain distribution 

along the chosen line. 

Significant stress concentration can be seen in Fig.11 (b), and the peaks correspond to the 

fibre barrier regions located near the fibre surface. Eventual fracture may initiate at these 

regions with the combination of fibre surface peeling, fibre/interphase delamination, and 

matrix fracture.  These peak stresses have exceeded the tensile strength of the matrix (81 MPa) 

and some of them even exceeded its flexural strength (197 MPa), according to the values 

given in the manufacturer’s datasheet.  The average value matched the applied load on the 

boundary (110MPa). The sensitivity study of the interphase modulus showed that the two 

curves almost overlapped each other, which means that a lower value of inE did not change 

the stress distribution among the three phases.  

The strain distribution in Fig.12 (b) gives more typical plot for the interaction among the 

three phases. The relative flat valleys show the strain in the fibres. Many extremely sharp 

peaks are evident at points where the chosen line crossed the fibre barrier regions. According 

to the previous studies, the ultimate failure strain of epoxy falls into the range of 5%-7% 
10

, 

which is close to the peak strains extracted from the micro model. Fig.13 is a local view of 
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the strain distribution indicating that the stress concentration occurs at the narrow gaps 

between adjacent fibres. 

 

Fig.13 Distribution of the first principal strain. Peak values were found at interphases. 

Fig.11 and Fig.12 illustrate the variation of mechanical behaviours of the first principal 

stress/strain in the sensitive study of the elastic modulus of interphase. Since the first 

principal stress is independent of the value of Ein, stress distributions along five chosen paths 

near the central were extracted to study the stress concentration in case of min EE  , shown in 

Fig.14. Compared with Fig.9 (x=25μm), Fig.14 shows extremely high values of the stress 

concentration on each path at the fibre barrier region, indicating the possibility of micro crack 

initiation. 

 

Fig.14 The distributions of the first principal stress along five chosen paths in the central 

Fig.15 shows the distributions of interlaminar shear stress obtained from the macro FEA 

model along three chosen through-thickness lines in the angle-ply laminate. A significant 

edge effect can be seen in Fig.15 (a) and (b), however the extremely high value of 

interlaminar shear stress decayed significantly inside the laminate within a distance of two 

ply thicknesses. It can also be seen that the coupling of hygrothermal expansion had changed 
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the distribution of interlaminar shear stress so that the stress was asymmetric about the mid-

plane, as shown in Fig.15 (b). The positions of peaks shifted to the tensile side. The 

maximum value of interlaminar shear stress showed an increase of about 15% after water 

absorption, compared with the dry condition. 

 

Fig.15 Through-thickness distribution of interlaminar shear stress of macro model for angle-ply 

laminate: (a) dry condition and (b) after one-month immersion. 

4.3 SEM examination 

Scanning eletronic microscopy (SEM) images were taken to compare with the FEA results by 

examining the interface of fibre/epoxy at the fracture surface, in order to investigate the 

failure mechanism. The fracture debris was taken from the UT laminate, including tests in the 

dry condition or after water immersion. The samples were coated with gold/palladium before 

being examined in SEM. Fig.16 shows the particular fracture surfaces under the two 

conditions. 

  

(a)                                                                             (b) 

Fig.16 SEM images of fracture surface: (a) dry condition, and (b) saturation 
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In dry condition, the epoxy was still attached to the carbon fibre, so that the fractured 

polymer showed a brittle wave-like morphology which is similar with Bescom and 

Gweon’s
38

 and Greenhalgh’s studies
39

, as shown in Fig.16 (a). Without water ingression, the 

epoxy provided adequate adhesion to the carbon fibre, and the failure mode presented as the 

combination of epoxy tensile fracture and debonding of fibre/epoxy interphase. After 

moisture ingress, the carbon fibres showed sections of bare surface which indicates that the 

adhesion of interphase/epoxy on carbon fibre had deteriorated and debonded, as shown in 

Fig.16 (b). It is also noted that the matrix breaks in a more ductile manner. These 

observations confirm that the moisture ingress leads to plasticisation of the resin and the 

weakening of the fibre/resin interface. 

5. Conclusions 

The failure mechanisms of composite material are very complicated, particularly when 

considering the additional effects of water immersion. A realistic 2D FEA model has been 

developed to analyse the moisture diffusion and stress/strain transfer at the micro scale while 

a 3D FEA model has analysed the hygrothermal effect coupled with bending. The 

experimental results showed a good agreement with the FEA solutions.  

This study suggests that the moisture diffusivity of the interphase must be about one order of 

magnitude higher than that of the matrix, in order to reproduce the fibre barrier effect. Due to 

the very slow diffusion process, the moisture concentration within both micro/macro models 

exhibited a smooth distribution despite the significant difference in diffusivities of 

interphase/matrix and ply orientations.  

The micro model revealed a significant stress concentration at the fibre barrier regions. A 

lower interphase modulus had no effect on the stress distribution, but increased the strain at 

the fibre barrier regions which made the failure mode more complicated. The coupling effect 

of hygrothermal expansion induced a significant interlaminar shear stress edge effect at the 

interfaces of adjacent plies, and the study showed a decrease by about 15% in interlaminar 

shear strength when the CFRP composite is moisture-saturated. The SEM analysis has shown 

a variety of matrix fracture morphologies and the effects of degradation of the fibre/matrix 

interface on the failure mechanisms of CFRP composites in a marine environment. 

The model predictions described in this paper have helped to understand the failure 

mechanisms of CFRP composites in the marine environment. The multi-scale modelling 
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approach developed can be applied to a selection of samples of microstructure to extract the 

statistical properties of moisture diffusion and mechanical properties of composite laminates. 
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