PEARL

Faculty of Science and Engineering

School of Biological and Marine Sciences

2015

EFFECTS OF OCEAN ACIDIFICATION VARY DEPENDING ON LIGHT AND NUTRIENT LEVELS

Celis-Pla, PSM

http://hdl.handle.net/10026.1/3927

EUROPEAN JOURNAL OF PHYCOLOGY

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.

European Journal of Phycology 2015 Volume: 50 Supplement: 1 Pages 199-199.

Effects of ocean acidification vary depending on light and nutrient levels

Paula S.M. Celis-Plá¹, Jason M. Hall-Spencer² Paulo Horta³, Marco Milazzo⁴, Nathalie Korbee¹, Christopher E. Cornwall⁵ and Félix L. Figueroa¹

¹Department of Ecology, Faculty of Science, University of Malaga, Spain

²Marine Institute, Plymouth University, UK

³Department of Botany, University Federal of Santa Catarina, Brazil

⁴Dipartimento di Scienze della Terra e del Mare, University of Palermo, Italy

⁵ARC Centre of Excellence for Coral Reef Studies, University of Western Australia, Australia

Ocean acidification is expected to be detrimental to many calcified algae, but beneficial to those non-calcified forms that are able to capitalise on increased carbon availability for photosynthesis. Shifts in dominance between primary producers will have knock-on effects on marine ecosystems and will likely vary regionally, depending on factors such as light and nutrients. Here, we investigated physiological responses of macroalgae near a CO₂ seep (in zones with mean 500, 700-800 and 1200 µatm CO₂) in oligotrophic waters off Vulcano (Italy). *Cystoseira compressa* (Phaeophyceae, Fucales) and *Padina pavonica* (Phaeophyceae, Dictyotales) were incubated at 0.5 m depth *in situ* in well-lit *vs* shaded conditions and in nutrient (N, P, and K) enriched *vs* non-enriched treatments.

A suite of biochemical assays and *in vivo* chlorophyll *a* fluorescence parameters showed that elevated CO₂ levels benefitted these macroalgae, although their responses varied depending on light and nutrient availability. In *C. compressa*, elevated CO₂ treatments had higher carbon content and antioxidant activity in shaded conditions both with and without nutrient enrichment - they had more Chla, phenolic and fucoxanthin with nutrient enrichment and higher quantum yield (F_v/F_m) and photosynthetic efficiency (α_{ETR}) without nutrient enrichment. In *P. pavonica*, elevated CO₂ treatments had higher carbon content, F_v/F_m , α_{ETR} , and Chla regardless of nutrient levels - they had higher concentrations of phenolic compounds in nutrient enriched, fully-lit conditions and more antioxidants in shaded, nutrient enriched conditions. Nitrogen content increased significantly in fertilised treatments, confirming that the algae are nutrient limited in this oligotrophic part of the Mediterranean.

Our findings strengthen evidence for the prediction that brown macroalgae could proliferate as the oceans acidify where other physicochemical conditions, such as nutrient levels and light, permit.