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[1] The generation of secondary internal waves by the interaction of a large-amplitude
internal solitary wave with the Dreadnought Bank in the Andaman Sea (6�400N, 95� 470E)
is shown by analyzing a synthetic aperture radar (SAR) image acquired by the European
Remote Sensing satellite ERS-2 and by carrying out model calculations. Although the
Dreadnought Bank is quite deep (241 m), the model calculations show that large-
amplitude internal solitary waves as encountered in this sea area can overturn and break
over the bank and generate secondary internal waves. Comparison of model results with
observations clearly demonstrates that the semicircular wave pattern visible on the
ERS-2 SAR image centered at the Dreadnought Bank is indeed a sea surface manifestation
of a secondary internal wave packet generated by scattering of a large-amplitude
internal solitary wave and not by the interaction of the barotropic tidal flux with this
underwater obstacle.

Citation: Vlasenko, V., and W. Alpers (2005), Generation of secondary internal waves by the interaction of an internal solitary wave

with an underwater bank, J. Geophys. Res., 110, C02019, doi:10.1029/2004JC002467.

1. Introduction

[2] The generation of internal solitary waves by the inter-
action of tidal currents (barotropic tidal flows) with under-
water topographic features, like continental slopes, sills,
ridges or underwater banks, has been investigated exten-
sively theoretically as well as experimentally [Maxworthy,
1979; Lamb, 1994; Gerkema and Zimmermann, 1995;
Brandt et al., 1996, 1997]. The interaction of solitary waves
with a sloping bottom has also been the subject of many
theoretical and experimental studies [Kao et al., 1985;
Wallace and Wilkinson, 1988; Helferich, 1992; Liu et al.,
1998; Vlasenko and Hutter, 2002a]. However, to our
knowledge, the interaction of internal solitary waves with
a sill has only been studied in laboratory experiments
[Diebels et al., 1994;Wessels and Hutter, 1996; Huettemann
and Hutter, 2001].
[3] We have observed on a synthetic aperture radar (SAR)

image acquired by the European Remote Sensing satellite
ERS-2 over the Andaman Sea, surface manifestations of a
packet of strong internal solitary waves in which a smaller-
scale semicircular weak internal wave packet is embedded.
Comparison with a bathymetric map reveals that the focal
point of this small-scale wave pattern coincides with the
shallowest point of the Dreadnought Bank, which has a
depth of 241 m and is located at 6�400N, 95�470E. We

hypothesize that this internal wave packet was generated by
the interaction of a strong solitary wave with the Dread-
nought Bank. However, another possibility is that it was
generated directly by the interaction of the barotropic tide
with this underwater bank. In this paper we show by
carrying out numerical simulations and by comparing the
results of the simulations with the ERS-2 SAR image, that it
was generated by the breaking of a large-amplitude internal
solitary wave over the underwater bank. Breaking occurs
when the horizontal orbital velocity associated with the
internal solitary wave exceeds the local phase speed (for
details see section 5). As input data to our model calcu-
lations, we use historical data of the stratification of the
water column, the barotropic tidal flux and the amplitude of
the primary internal solitary waves in the southern section
of the Andaman Sea.

2. Observational Data

[4] Figure 1 shows a section of an ERS-2 SAR image
acquired over the Andaman Sea during orbit 9477 on
11 February 1997 at 0360 UTC. From the full ERS-2 SAR
strip (not shown here) we infer that the large-scale linear
wave pattern is the sea surface manifestation of a strong
internal solitary wave packet which was generated by the
interaction of the barotropic tide with shallow bottom
topographic features located between Sumatra and the Great
Nicobar Island. Figure 2 shows a zoom of the ERS-2 SAR
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image depicted in Figure 1 on the section where the
secondary internal wave packet was generated.
[5] The comparison of the ERS SAR image (Figures 1

and 2) with a sea map (Figure 3) reveals that the focal point
of the semicircular small-scale wave pattern is located at
6�400N, 95�470E, which is the position of the shallowest
point of the Dreadnought Bank (241 m). Figure 4 shows a
detailed bathymetric map of this site with the sea surface
manifestations of the incident internal solitary waves
(dashed thick lines) and of the scattered secondary internal
waves (thin dotted lines) visible on the ERS-2 SAR image
(Figure 2). Thus this underwater bank must be instrumental
in the generation process of the semicircular internal solitary
wave packet. In this image we can measure the distances
between the focal point and the leading solitons in both
packets. The distance to the leading soliton in the large-
scale wave packet is 22.5 km, and the distance to the
leading soliton in the small-scale wave packet varies
between 15 km and 17 km (depending on direction).
These measured distances will be compared in section 6
with the corresponding distances calculated from the model.

3. Model

[6] The generation of internal waves by the interaction of
baroclinic tides with shallow underwater features, like sills
or seamounts, as well as the interaction of intense internal
solitary waves with these underwater features is a three-
dimensional (3-D) process. In our case it would be appro-
priate to describe the wave-topography interaction in the
framework of a 3-D fully nonlinear and nonhydrostatic
system of hydrodynamic equations. Unfortunately, the
existing modern 3-D numerical models of baroclinic tides
[see, e.g., Holloway and Merrifield, 1999; Niwa and
Hibiya, 2001; Cummins et al., 2001] usually exploit the
hydrostatic approximation for pressure. Using a 3-D non-
hydrostatic mesoscale oceanic model [Mahadevan et al.,
1996; Marshall et al., 1997; Casulli and Stelling, 1998]
for the study of the dynamics of highly nonlinear internal

Figure 1. ERS-2 synthetic aperture radar (SAR) strip
acquired over the Andaman Sea during orbit 9477 (frames
3465, 3483, and 3501) on 11 February 1997 at 0360 UTC
showing sea surface manifestations of internal solitary
waves. The northwestern section of Sumatra and the
Indonesian island Weh are visible. The imaged area is
100 � 300 km. Copyright: ESA.

Figure 2. Zoom of the ERS-2 SAR image of the sea area
around the Dreadnought Bank. The imaged area is 100 �
80 km. Copyright: ESA.
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wave causes great problems because of the high demand
on spatial and temporal steps in the computing. However,
even in the 2-D case it is very difficult to model the
interaction of an internal wave with underwater bottom
topography numerically. The application of the most
advanced numerical 2-D models gives satisfactory results
only when using fine-resolution grids (spatial step: several
meters) [Vlasenko and Hutter, 2002a, 2002b]. Since our
study is not aimed at describing all details of this interac-
tion, but only aimed at answering the principle question as
to which of the two possible mechanisms is responsible for
the generation of secondary internal waves at the Dread-
nought Bank, we use a fine-resolution 2-D nonhydrostatic
model which is based on the incompressible 2-D Reynolds
equations. Our results can be considered as approximations,
in particular, the calculated amplitudes of the scattered
internal solitary waves constitute only upper bounds for
the wave amplitudes. Thus 3-D effects, like refraction and

radial spreading, are not included in our model. However,
by using a linear model, we shall give some estimates how
these 3-D effects affect the results (section 4.2).
[7] The computational area (model domain) consists of a

basin of constant depth, H0 = 900 m, containing the local
bottom elevation located in zone II (�l < x < l, �1 < y <1
(see Figure 5)) with a peak of 241 m below the sea surface
corresponding to the shallowest point of the Dreadnought
Bank. The water depth H2 in zone II is assumed to be
independent of the y coordinate (@H2/@y � 0). The basin is
filled with continuously stratified water whose stationary
density profile r0(z) (or its buoyancy frequency distributions
N(z), see Figure 6) is close to the one measured in the
Andaman Sea in winter [Levitus and Boyer, 1994; Levitus et
al., 1994].
[8] The aim of this investigation is to answer the question

whether the secondary internal waves, whose sea surface
manifestations visible on the ERS-2 SAR image depicted in

Figure 3. Bathymetric map of the Andaman Sea. Bold lines represent the shorelines, and thin lines
represent the isobaths. The numbers denote depth in meters. The rectangular insert shows the location of
the ERS-2 SAR strip depicted in Figure 1.
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Figures 1 and 2, are generated by scattering of an internal
solitary wave (ISW) at the bank (problem I) or by interac-
tion of the baroclinic tide with the bank (problem II).
[9] The two-dimensional system of Reynolds equations in

the Boussinesq approximation, written in Cartesian (x, y, z)
coordinates in which the x and y axis lie on the undisturbed
free surface and the z axis points upward (opposite to the
direction of gravity), reads

wt þ J w;yð Þ � fvz ¼ gerx=ra þ ahyxzð Þxz þ ahyxxð Þxx þ azyzzð Þzz
þ azyxzð Þxz;

vt þ J v;yð Þ þ f yz ¼ ahvxð Þx þ azvzð Þz; ð1Þ
ert þ J er;yð Þ þ rag

�1N2 zð Þyx ¼ kherxð Þxþ kz r0 þerð Þz
�� �

z
:

Here (u = yz, w = �yx) denotes the stream function, u, v, w
denote the horizontal and vertical velocity components, and
w = yxx + yzz denotes the vorticity function. Furthermore,
f denotes the Coriolis parameter, kh and kz denote the
coefficients of vertical and horizontal turbulent diffusion,
ah and az the coefficients of vertical and horizontal eddy
viscosity, N2(z) = �gra

�1dr0/dz denotes the buoyancy
frequency, and J(a, b) = axbz � azbx is the Jacobian
operator. The subscripts x, z, t denote (with the exception
of kz and az) partial derivatives with respect to these

variables. The water density r(x, z, t) is written here as
the sum of a stationary background density r0(z) and a
density fluctuation er(x, z, t) associated with the wave
disturbances.
[10] We use for the coefficients of vertical turbulent

exchange, az and kz, the Richardson number parameter-
izations [Pakanowski and Philander, 1981]:

az ¼
a0

1þ aRi x; z; tð Þð Þp þ ab

kz ¼
az

1þ aRi x; z; tð Þð Þp þ kb:
ð2Þ

The Richardson number Ri(x, z, t) depends on the local
buoyancy frequency N(x, z, t) and the local vertical velocity
shear uz(x, z, t) as follows:

Ri x; z; tð Þ ¼ N2 x; z; tð Þ=u2z x; z; tð Þ; if rz < 0;
0; if rz > 0:

�

[11] Here ab and kb are dissipation parameters describing
background turbulence, and a0, a and p are adjustable
parameters. These parameterizations of the vertical turbu-
lent kinematic viscosity and diffusivity increase the coef-
ficients az and kz in regions with small values of Ri. In

Figure 4. Detailed bathymetric map of the sea area around the Dreadnought in the Andaman Sea. Bold
dashed lines denote the sea surface manifestations of the incident internal solitary waves, and thin dotted
lines denote the secondary scattered internal waves visible on the ERS-2 SAR image depicted in
Figures 1 and 2.
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regions with vertical density inversion due to wave break-
ing, the Richardson number is set equal to 0.
[12] For the coefficients of horizontal turbulent exchange,

ah and kh, we use the parameterization of Stacey and Zedel
[1986]:

ah ¼ b0 þ b Dxð Þ2 @u=@xj j;

kh ¼ m0 þ m Dxð Þ2 @u=@xj j:
ð3Þ

Here b0 and m0 refer to the homogeneous background, b and
m are adjustable parameters, and Dx is the step size of the
horizontal grid.
[13] In this paper, two sets of initial and boundary

conditions are applied depending on the two generation
mechanisms: the generation of internal waves by barotropic
tidal flux over the underwater bank (case 1) or by scattering
of an internal solitary wave by the underwater bank (case 2).
Common to both cases are the boundary conditions at the
free surface and at the bottom. Since we want to study the
baroclinic response of the ocean, the ‘‘rigid-lid’’ condition
at z = 0 can be used:

y ¼ w ¼ erz ¼ vz ¼ 0: ð4Þ

The first condition says that the free surface is a streamline,
and the last two conditions say that at the free surface the
mass flux and the shear stress vanish. The second condition
for the vorticity, w = 0, implies that at the sea surface
tangential stress (wind forcing) is zero.
[14] The bottom line, z = �H(x), is a streamline on which

the ‘‘no-slip’’ condition and zero mass flux across the
boundary is imposed. This yields

y ¼ �0 sin stð Þ; w ¼ w0;

v ¼ yx ¼ yz ¼ 0; ern ¼ 0;
ð5Þ

where @/@n denotes the derivative normal to the bottom,
�0 denotes the amplitude of the vertically integrated water
flux in the barotropic tidal wave, and s denotes the tidal

frequency. In the case of internal wave scattering, �0 is set
equal to zero. The value of the vorticity at the bottom, w0,
is calculated from the stream function at the previous
temporal layer. Initial fields and the boundary conditions at
lateral liquid boundaries of the computational area are
discussed below. Some more details about the numerical
procedure can be found in the work of Vlasenko and
Hutter [2002a, 2002b] and Vlasenko et al. [2002].
[15] Several numerical experiments were carried out for

determining grid steps and optimum values for the eddy
viscosity and the turbulent diffusivity parameters. We found
that the numerical scheme was stable even during the
overturning of a wave front if we chose the following
values for these parameters: Dt = 0.5 s, Dx = 2 m, Dz = 3 m

Figure 5. Schematic of the computational area, with a sketch of the two basic mechanisms of internal
wave generation (problem I and problem II). The sea surface is at z = 0, and the depth of the basin is H0.
The underwater bank extends from x = �l to x = l, has a depth of H2(x), and at the shallowest point, has a
depth of H0 � Hmax. The tidal forcing has the frequency s.

Figure 6. Smoothed buoyancy frequencies (1) and (2),
typical for the Andaman Sea.
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in the deep part of the basin and Dz ffi 0.5 m over the top of
the bank. In accordance with measurements and estimates
of the background viscosity and diffusivity, ab and kb,
given by Sandstrom and Oakey [1995], we chose the value
10�4 m2 s�1 for both parameters. Such low level of
dissipation allows the internal solitary waves to propagate
over large distances without significant attenuation (dis-
tances of 500 wavelengths and more). This is in agree-
ment with in situ observations, which show that internal
solitary waves can propagate several hundred kilometers
from their source of generation without significant atten-
uation [Osborne and Burch, 1980; Apel et al., 1985]. The
other parameters used in our calculations have the values:
a0 = 10�2 m2 s�1, p = 2, a = 4, b0 = 10�4 m2 s�1, m0 =
10�5 m2 s�1, and b = m = 1.

4. Generation of Internal Waves by
Barotropic Tide

[16] First we investigate whether it is possible that the
observed semicircular wave packets in the ERS SAR
image can result from the interaction of a barotropic tidal
flux with the Dreadnought Bank. As stated before, since
our model is two-dimensional, it cannot account for the
radial divergence of wave energy from the source of
generation. During such a spreading, the amplitudes of
the radiating waves attenuate with distance from the bank.
Thus in our 2-D model the amplitudes of the radiating
secondary waves are always overestimated and therefore
our model results constitute upper bounds for the wave
amplitudes.

4.1. Nonlinear Two-Dimensional (2-D) Model:
Estimation of Amplitudes

[17] The model is initialized by a barotropic tidal flux
oscillating with the tidal frequency s (see Figure 5, problem
II). It interacts with the underwater bank and generates
internal waves which propagate away from the source in
both directions. Since we want to calculate only the bar-
oclinic response of the ocean caused by tidal flow over a
localized bottom topography, we can prescribe the ‘‘zero’’
initial conditions at the initial moment t = 0 in the whole
area, if we assume the absence of baroclinic disturbances
before that time as

y ¼ w ¼ er ¼ 0 v ¼ � f =sð Þ�0=H0 xð Þ: ð6Þ

The only type of motion which can exist at t = 0 is the
along-topography tidal flux represented by the v component
of the barotropic tidal flow velocity. In the viscous case
these conditions are valid with good accuracy for variable
bottom topography through the whole water column, except
in a thin bottom boundary layer.
[18] First we define the boundary conditions at the liquid

lateral boundaries at x = ±L (see Figure 5). We are
concerned with the generation of internal waves in a
restricted area, i.e., in the band x < �l. Outside of this area,
i.e., in the band x > l, the basin depth is constant. Other
sources of wave generation are absent. In this case the flow
field can be written as the sum of a barotropic tidal flux and
a perturbation field associated with internal waves propa-
gating away from the source of generation. Taking this in

mind, the following conditions have to be satisfied at the
boundaries x = ±L:

y �L; z; tð Þ ¼ � z=H0ð Þ�0 sin stð Þ; er ¼ 0

v �L; z; tð Þ ¼ �f = sH0ð Þ�0 cos stð Þ; w ¼ 0:
ð7Þ

Here the signs ‘‘�’’ and ‘‘+’’ refer to the boundaries at the
left- and right-hand sides, respectively. These conditions
imply the presence of only barotropic wave motions at the
liquid boundaries with tidal ellipses aligned in the direction
normal to the underwater bank. Their ellipticity is given by
the ellipticity factor f/s (ratio of the semiaxes). This
assumption can be justified because there is an upper limit
for the velocity of the baroclinic tidal disturbances. In the
ocean, this velocity does usually not exceed 2–2.5 m s�1.
The trick is to set the model boundaries sufficiently far
away from the internal wave source (l  L) such that the
leading waves generated in region II at jxj < l reach the
boundary only after several wave periods. During this time
the fluid motions in the vicinity of the bottom topography
are unaffected by the presence of the lateral boundaries.
[19] We have solved equations (1) and (4)–(7) numeri-

cally. Even though the ERS-2 SAR image was acquired in
winter (11 February), we have carried simulations for two
different vertical profiles of the buoyancy frequency, N(z),
which are representative for winter and summer conditions
(see Figure 6). This is done in order to study the sensitivity
of the model results to the water stratification. For the same
reason we have carried out simulations for two different 2-D
model bottom topographies of the Dreadnought Bank: one
2-D model topography is obtained by making a cut through
the 3-D bottom topography (see Figure 4) intersecting the
top in east-west direction and another one by making a cut
one in north-south direction. Furthermore, we have carried
out simulations for two different tidal forcings representa-
tive for neap and spring tides, �0 = 20 m2 s�1 and �0 =
50 m2 s�1, respectively. In these simulations we have held
constant the parameters of the turbulent exchange and
chosen the following values: ah = kh = 0.1 m2 s�1, az =
kz = 10�4 m2 s�1(according to Sandstrom and Oakey
[1995]).
[20] The results of the simulations for the two values �0

are depicted in Figure 7. The disturbances of the anomalies
of the conventional density field at the time t = 2T (T =
12.4 h is the tidal period) are plotted. In these simulations
the buoyancy frequency profile depicted in Figure 6 as line
1 was used. The simulations for the other profile (line 2)
yields similar results (not reproduced here).
[21] These simulations show that the wave disturbances

induced by the interaction of the barotropic tidal flow over
the underwater bank are very weak; their amplitudes are
only a few meters. They are much weaker than the wave
disturbances induced by the interaction of a strong internal
solitary wave with this bank as will be shown in the next
section. The reason for this weak response of the density
field to the barotropic forcing is that the Dreadnought
Bank is much deeper than the depth of the pycnocline (see
Figure 6).
[22] An interesting side result of these simulations is that,

in the case of strong tidal forcing, also internal wave trains
of the second baroclinic mode are generated. Three wave
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packets of this kind can clearly be delineated in the plot
depicted in Figure 7b. The reason for their generation can
easily be explained in the framework of our model, but this
is beyond the scope of the present paper. We only note here
that the spatial characteristics of these wave packets are not
in agreement with the SAR observations. The distance
between two successive waves in the wave packets is
several hundred meters, whereas the corresponding distance
observed in the SAR image is one order of magnitude larger
(several kilometers). Thus the observed secondary wave
packet visible in the ERS SAR image cannot result from
such a generating mechanism.

4.2. Linear Two-Layer Model: Estimation of
3-D Effects

[23] In reality, the topography of the Dreadnought Bank
resembles much more an ellipse than a ridge, which implies
that radial spreading can reduce the wave amplitude con-
siderably when the wave propagates away from the source
of generation. In addition, the wave field generated over
such a topography has a much more complicated spatial
structure than the wave field generated over a ridge. In order

to obtain estimates of these three-dimensional effects we use
a 3-D two-layer linear. The equations and the method of
solving them numerically are described in the Appendix. In
the calculations the following parameters were used: H1 =
60m,H2 = 1200m, and g = 0.994. The 3-D topography of the
Dreadnought Bank has been extracted from the 20 resolution
bottom topography map (see http://www.ngdc.noaa.gov/
mgg/gdas/gd des-ignagrid.html) shown in Figure 4.
[24] One result of the simulations carried out with this

linear model is depicted in Figure 8. The oval-shaped
pattern in the center having different gray scales represents
the amplitude of the internal wave disturbance normalized
to its maximum value. The plot shows two local maxima of
the tidally generated waves which are located at the lateral
boundaries of the bank where the gradient of the bottom
topography have local maxima. As a consequence, the
barotropic tide generates a maximum baroclinic response
here. Note that the maxima do not coincide with the top of
the bank, which contradicts the assumption that the shal-
lowest point of the Dreadnought Bank is a single source for
the generation of secondary internal waves. Furthermore,
Figure 8 shows that the tidally generated internal wave

Figure 7. Anomalies of the conventional density field generated by the barotropic tidal flow over
the underwater bank for (a) moderate (�0 = 20 m2 s�1) and (b) strong (�0 = 50 m2 s�1) tidal
forcing. The fields were calculated for the buoyancy frequency profile depicted in Figure 6 as line 1.
Only the disturbances of the upper 125 meter layer are shown. The plots represent the disturbances at
the time t = 2T, i.e., after two tidal cycles.
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disturbance radiates in all directions from the bank’s center
to the periphery. At the bottom of the bank the amplitude
has already dropped to 0.1–0.2 of its peak value.

5. Generation of Secondary Internal Waves by
Scattering of an Internal Solitary Wave

[25] Now we investigate whether it is possible that the
observed semicircular wave packets in the ERS SAR image
can result from the interaction of a large amplitude internal
solitary wave (ISW) with the Dreadnought Bank.
[26] In the simulations we assume that a plane internal

solitary wave depression with amplitude am, whose vertical
structure is defined by its density profile, propagates from
the deep section of the Andaman Sea toward the Dread-
nought Bank (Figure 5, problem I). The measured ampli-
tudes of internal solitary waves in the Andaman Sea vary
considerably and can attain values (peak-to-trough) of up
to 100 m. The first measurements of such large waves
were performed by Perry and Shimke [1965], who
measured with a bathythermograph an internal solitary
wave with an amplitude of 80 m. Later, Osborne et al.

[1978] and Osborne and Burch [1980] observed in
current meter measurements carried out in the Andaman
Sea several packets of internal solitary waves that had
amplitudes (peak-to-trough) of up to 100 m and current
speeds in excess of 1 m s�1. More recent observation of
large internal solitary waves in the Andaman Sea with
amplitudes of about 50 m were reported by Alpers
[2002]. In order to investigate how the generation of
secondary internal waves depends on wave amplitude, we
have carried out simulations for several amplitudes in the
range between 10 and 85 m.
[27] The simulations are initialized using the first-mode

analytical solitary wave solution of the stratified Korteweg-
de Vries (K-dV) equation in a 900 m deep basin. Such
initial field represents a stationary solitary wave in a weakly
nonlinear, nonhydrostatic medium, but does not satisfy the
system of equations (1) for large amplitude waves. In such a
case the nonlinear parameter lies outside the region of
applicability of weakly nonlinear models. Once inserted in
the numerical scheme, a strong nonlinear wave will evolve
in the basin of constant depth. During this evolutional
process the initial large amplitude K-dV solitary wave is

Figure 8. Amplitudes of the interface displacements generated by the interaction of the barotropic tide
with the Dreadnought Bank as calculated from a two-layer linear model. The gray scales and the isolines
denote the amplitudes of the internal wave disturbances normalized to their maximum value (contour
interval equals 0.1). Inserted are the isobaths (solid lines, depth in meters) and the sea surface
manifestations of the secondary internal waves (dashed lines).

C02019 VLASENKO AND ALPERS: GENERATION OF SECONDARY INTERNAL WAVES

8 of 16

C02019



modified and a new stationary solitary wave is formed at the
front of the wave field. The leading wave, which has a
larger phase speed than the wave tail, separates from the tail
at a definite stage of its time evolution (corresponding to a
travel distance of 20–30 wavelengths from its initial posi-
tion) and propagates further as an independent internal
solitary wave. The model is run until a leading wave
separates from the wave tail. This internal solitary wave is
then used as initial condition for problem I. This approach
was already used in a previous paper [Vlasenko et al., 2000]
to study the characteristics of strong ISWs.
[28] Bearing in mind that the wave disturbances in ISW

are localized in space, we use ‘‘zero’’ boundary conditions
at the lateral ‘‘liquid’’ boundaries, x = ±L, instead of the
boundary condition (7). Furthermore, we do not use the
equation for the transverse velocity v because we assume
that the influence of the rotational effect on the ISWs is
negligible.

5.1. Basic Case Simulation

[29] The results of the numerical simulations for the
interaction of ISW with the Dreadnought Bank are depicted
in Figures 9 and 10. We have assumed in this basic case
simulation that the ISW impinging onto the Dreadnought
Bank (represented by a triangle) has amplitude of 82 m. The
time t is scaled by T, where T is the ratio of the wavelength
l of the ISW to its phase speed cp. In these simulation runs
T has the value 156 s.
[30] The plots depicted in Figure 9 show that the large

amplitude ISW interacts strongly with the underwater bank
leading to overturning and wave breaking. The rear face of
the incoming ISW becomes steeper when it approaches the
underwater bank (Figures 9a and 9b). Later, at the rear face
of the ISW, the horizontal orbital velocity exceeds the local
phase speed and the steep rear wave front outstrips the wave
trough (Figure 9c). In this stage, the heavier and denser
water penetrates into the relatively light water layers and
becomes entrained in the surrounding waters (Figure 9d).
[31] Obviously, zones of internal wave breaking are

potential zones of enhanced energy dissipation and inten-
sive diapycnal mixing. Here, the local coefficients of
turbulent viscosity and diffusivity increase strongly. In our
model these effects are taken into account by the parameter-
izations (2) and (3). The increase of the local viscosity and
diffusion leads to faster attenuation, dissipation and mixing
of water layers and to the formation of a local zone with
new stable vertical fluid stratification. For more details on
internal wave breaking the reader is referred to Vlasenko
and Hutter [2002a].
[32] Wave breaking generates secondary internal waves

(Figure 9e) which propagate in both directions away from
the bank (Figure 9f) as transmitted and reflected waves. In
Figure 10 the density field anomaly at the time t = 82T is
plotted. It clearly shows the strong transmitted internal
solitary wave on the left-hand side, and the secondary
reflected internal waves on the right-hand side generated
during the breaking of the incoming ISW. The leading
soliton in the secondary transmitted wave packet has an
amplitude of 14 m.
[33] The velocity gradient of the surface current field

associated with internal waves is plotted in Figure 11. This
gradient determines the modulation depth or the image

intensity contrast by which the internal waves become
visible on radar images. The image intensity modulation
by which internal waves become visible on radar images
depends on the velocity gradient of the surface current field
associated with internal waves. According to the radar
imaging theory of internal waves developed by Alpers
[1985], the image intensity modulation or modulation depth
is, to first order, proportional to the velocity gradient.
However, the proportionality factor is highly variable
[Brandt et al., 1999]. It depends on radar as well as on
several environmental parameters, the most important one
being the wind speed and wind direction [Brandt et al.,
1999]. The lower the wind speed, the larger is the modu-
lation depth. The gradient of the surface current velocity is
plotted in Figure 11. It shows that for the secondary waves it
is of the order of 5 � 10�4 s�1, which is well within the
range where internal waves become visible on radar images
[Alpers, 1985; Brandt et al., 1996].

5.2. Sensitivity Runs

[34] The basic case simulation presented in the previous
subsection shows how a strong ISW can generate secondary
internal waves via wave breaking. However, unanswered
questions are: Under what conditions does such a generation
take place? How large must the amplitude of the incident
ISW be for generating secondary internal waves at the
Dreadnought Bank? What parameters control the strong
interaction of an ISW with the underwater bank? Some
information relevant to these questions can be extracted
from Vlasenko and Hutter [2002a, 2002b] where the break-
ing of ISW over a slope shelf topography is investigated,
and a criterion for wave breaking is derived. It was found
that the depth Hb where the incident ISW with amplitude am
breaks over a sloping bottom is given by the breaking
criterion:

Hb ¼ Hm þ am

0:8�=gþ 0:4
: ð8Þ

Here Hm denotes the depth of maximum wave depression
(which is a function of the wave amplitude and water
stratification) and g denotes the inclination angle of the
sloping bottom (given in degrees). The position where wave
breaking occurs is defined as the position where the
horizontal orbital velocity associated with the ISW exceeds
its local phase speed.
[35] Criterion (8) was derived for a bottom whose depth

decreases linearly with distance. Now we want to apply this
criterion to internal wave breaking at the Dreadnought Bank
with the aim of determining the minimum ISW amplitude
which gives rise to wave breaking. To this end we have
carried out several simulations with different ISW ampli-
tudes. The density fields obtained from simulations with
amplitudes of 66.3 m, 56.9 m, and 41.7 m are depicted in
Figure 12. The plots in the left column refer to the time
(t = 0) when the ISW breaks just over the top of the
bank, and the plots in the right column refer to times
when the scattered (and transmitted) internal waves are well
developed, which is several tens of wave periods T = l/cp
after wave breaking.
[36] Like in the basic case simulation presented in the last

subsection, overturning and wave breaking occurs also
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Figure 9. Evolution of the density field during the interaction of an internal solitary wave (ISW) of
82 m amplitude with the Dreadnought Bank (contour interval is 0.5 kg m�2) as calculated from the
model. The incoming solitary internal wave and the secondary scattered internal waves (transmitted
and reflected) are shown in Figure 9f. The timescale T = 156 s is the ratio of the wavelength of the
ISW to its phase speed. The wave field is shown in a moving system of coordinates to illustrate the
process of wave breaking in more detail.
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when the amplitudes are 66.3 m and 56.9 m, but it does
not occur when the amplitude is 41.7 m (Figure 12).
Thus the value of minimum amplitude which is sufficient
for the generation of secondary internal waves lies in the
range between 56.9 m and 41.7 m. This is an unexpected

low amplitude, which seems to contradict the breaking
criterion (8). If we insert in equation (8) the values Hb =
241 m, g = 6.84� and Hm = 97 m (as used in the basic
case simulation), we obtain am = 74.4 m. However, there
is no contradiction if one remembers that the depth Hm of

Figure 10. Model result showing the density field anomaly at the time t = 82T, which corresponds to the
time at which the ERS SAR image depicted in Figure 1 was acquired. The letters A, B, and C denote the
positions of the transmitted primary ISW, the leading solitons in the first- and second-mode secondary
internal wave packets, respectively. The distances 22.5 km and 15.0 km refer to the distances from the
center (top) of the Dreadnought Bank.

Figure 11. (a) Horizontal component of the surface current velocity induced by the internal solitary
waves at the time t = 82T. (b) Gradient of this velocity. The positions A and B are the same as in
Figure 10.
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the maximum wave depression (which also is a part of
equation (8)) also depends on the wave amplitude am as
shown by Vlasenko et al. [2000]. Figure 13 makes this
statement more clear. The solid line shows the vertical
structure of the first eigenfunction g(z) of the standard
boundary value problem

g00 þ N2=c2p

� �
g ¼ 0

g 0ð Þ ¼ g �Hð Þ ¼ 0;

ð9Þ

which is obtained when the buoyancy frequency profile N(z)
given by line 2 in Figure 6 is used. This eigenfunction g(z)
is commonly used for the representation of the vertical
structure of the Korteveg-de Vries ISW.
[37] As can be seen from Figure 13, the position of the

maximum wave depression, Hm, moves closer to the free
surface when the wave amplitude am increases. In turn, this
leads to the widening of the range of the ISW amplitudes
which can give rise to wave breaking over the Dreadnought
Bank.
[38] The next series of simulations is devoted to the study

of the dependence of wave breaking and thus to the
generation of secondary internal waves, on bottom inclina-

tion and on water stratification, which has an effect on the
value of Hm.
[39] According to equation (8) wave breaking occurs at a

lower ISWamplitude and at a deeper depth when the bottom
slope is steeper. This is confirmed by the simulation results
depicted in Figure 14. These simulations were carried with
a ‘‘shallow’’ pycnocline as given by the dashed line 1 in
Figure 6 and an ISW amplitude am of 84 m. For this value
of the ISW amplitude the maximum of the pycnocline
depression lies at a depth of Hm = 87 m.
[40] Now we want to calculate the minimum inclination

angle of the bottom slope at which wave breaking occurs.
Substituting into equation (9) the above value for Hm and am
together with Hb = 241 m, we obtain gmin = 5.5�. The
density field obtained for the case gmin = 5.5� is depicted in
Figure 14c. We see that weak breaking takes place at the
rear face of the ISW. However, as depicted in Figure 14d, it
generates a well developed wave tail of secondary scattered
waves (of first as well as of second modes). For a steeper
slope (g = 19.1�), wave breaking is much more pronounced
(see Figure 14a) and for a gentler slope (g = 1.6�) wave
breaking is absent (see Figure 14e).
[41] The next interesting result of the present study

concerns the generation of second-mode internal waves

Figure 12. Density fields obtained from simulations with different ISW amplitudes am. (top) am =
66.3 m. (middle) am = 56.9 m. (bottom) am = 41.7 m. (left) Refer to the time when the ISW is located
over the top of the bank and breaks. (right) Refer to times when the scattered (and transmitted) internal
waves are well developed, i.e., at 185 s (Figure 12b), 207 s (Figure 12d), and 255 s (Figure 12f) after
wave breaking. The interval between the isolines of density is 1 kg m�3.
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during the interaction of the ISW of depression with the
underwater bank. The counterphase displacement of iso-
pycnals which are characteristic for second-mode internal
waves are clearly discernible at the rear side of the scattered
wave fields, (see Figure 10, position C, and Figures 12 and
14, dashed rectangles A, B, and C). The generation of
second-mode internal waves during the interaction of first-
mode internal solitons with a sill was recently observed also
in laboratory experiments by Huettemann and Hutter [2001]
and confirmed in model calculations by Vlasenko and
Hutter [2001]. Earlier, Helferich [1992] already observed
in laboratory experiments that multiple turbulent surges, or
boluses, generated by breaking of ISW show characteristics
of second-mode baroclinic waves.
[42] Vlasenko and Hutter [2001] have shown that the

basic parameters which control the energy transfer from
the first-mode ISW to the high-mode internal waves over
the sill is the blocking parameter (in other words: the
nondimensional distance from the interface to the top of
the sill) and the Froude number (or nondimensional
amplitude of the incoming wave). With the increase of
these two parameters the efficiency of generation of the
second-mode internal waves increases. These results,
obtained in laboratory experiments can be transferred to
the oceanic scales. As can be seen from comparing the
wave fragments A, B and C in Figure 12, the second-mode
internal wave has a higher amplitude when wave breaking
is stronger.

[43] Another important parameter which influences the
structure of the secondary scattered wave train is the bottom
inclination. The larger this inclination, the more pronounced
are the second-mode internal waves (see Figure 14). The
second-mode internal waves are well developed in the case
of a steep bottom slope (Figure 14b) and less well in the
case of shallow bottom slopes (Figures 14d and 14f).
[44] However, second-mode internal waves can be gen-

erated not only by a strong interaction of internal solitary
waves with underwater bottom topography involving wave
breaking, but also during ‘‘laminar’’ interactions. If the
steepness of the bottom topography is large (5�–10� and
more) such second-mode waves can also be produced
without overturning of the initial ISW.

6. Discussion and Conclusion

[45] It is possible to make quantitative comparisons
between distances inferred from the radar image and those
obtained from the model calculations. From the ERS SAR
image we infer that at the time of the SAR data acquisition
the leading soliton of the primary internal solitary wave
packet has propagated 22.5 km beyond the center (top) of
the Dreadnought Bank. We have used this distance as input
for our model calculations with the aim of determining the
time it takes for the soliton to travel this distance away from
the center of the Dreadnought Bank. Choosing the ampli-
tude of the solitary wave to be 82 m, we obtain for this time
82T = 213 min. Therefore the phase speed of the transmitted
soliton should have been 22.5 km/213 min = 1.76 m s�1,
which lies well within the range of measured phase speeds
of internal solitons observed in the Andaman Sea. In other
parts of the Andaman Sea, Apel [1979] measured a phase
speed of 2.5 m s�1, Osborne and Burch [1980] measured a
phase speed of 2.2 m s�1, and Alpers [2002] measured a
phase speeds between 1.4 and 1.9 m s�1. In Figure 10 the
density field is plotted for this time which corresponds to
the time of the SAR data acquisition. From this plot the
distance between the position of the leading soliton in the
secondary internal solitary wave packet and the Dread-
nought Bank can be determined. It equals 15 km, which
compares well with the measured distance obtained from
the SAR image. Depending on direction, this value lies in
the range between 15 and 17 km.
[46] Thus the agreement between the model and experi-

mental data strongly supports our hypothesis about the
generating mechanism of secondary internal waves observed
in the area of the Dreadnought Bank: a secondary internal
wave packet was generated by scattering of a large-ampli-
tude internal solitary wave interacting with the underwater
bank.
[47] We have assumed in our model calculations that only

the leading soliton of the incident wave packet generates the
secondary wave packet. A justification of this assumption is
that the subsequent solitons in a wave packet have usually
much smaller amplitudes which do not lead to wave
breaking and thus do not generate secondary internal waves
(see discussion in section 5.2).
[48] Since our model is a 2-D model, three-dimensional

effects, like radial spreading of the secondary wave field, are
not described. However, it is evident that radial spreading
causes additional attenuation; the wave amplitude decreases

Figure 13. Vertical profiles of the normalized isopycnal
displacements calculated at the center of the ISW having
amplitudes of 57 m (dashed line), 71 m (dotted line), and
82 m (dash-dotted line). The solid line is the solution of
the boundary value problem (9) for the stratification
depicted by line 2 in Figure 6.
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with distance according to spreading law A(r) = A0(r/r0)
�1/2

[Maxworthy, 1980; Ramirez et al., 2002]. Thus the wave
amplitudes of the secondary waves must be smaller than the
one calculated from our 2-D model.
[49] Unfortunately, only one ERS SAR image could be

presented in this paper. This shows sea surface manifesta-
tions of secondary internal waves suggesting generation by
the interaction of a large-amplitude internal solitary wave
with the Dreadnought Bank. In the archive of the Centre for
Remote Imaging, Sensing and Processing (CRISP) at the
National University of Singapore (see http://crisp.nus.edu.
sg/crisp_cat.html) we have found only 9 sets of ERS-1 and
ERS-2 SAR images acquired over this sea area (frames
3465 and 3483). They were acquired in the period between
1 April 1996 and 5 January 2002. Only the one acquired on
11 February 1985 (Figures 1 and 2) shows these features.
However, this is not surprising, since we expect that
secondary internal waves are generated only when large-
amplitude ISWs impinge on the Dreadnought Bank, which
should be the case only during spring tides. Furthermore,
the SAR data acquisition must take place 2–4 hours after
the ISWs have hit the bank, otherwise the amplitudes of the
secondary waves have attenuated so much that the sea
surface manifestations are too weak to be detectable on
the SAR images. Thus the chances are very low to acquire
spaceborne SAR images over this site at these very specific

times. (Note that the ERS satellites pass over the same area
only every 35 days and that not always the SAR is switched
on over this site.)
[50] We have searched in the archives of the ERS

receiving stations at Singapore and at Chungli, Taiwan
(see http://www.csrsr.ncu.edu.tw/english.ver/query.htm) for
others examples of secondary internal waves generated by
the interaction of an ISW with an underwater obstacle. So
far we have found sea surface manifestations of circular
internal wave patterns adjacent to sea surface manifestations
of large-amplitude ISWs only in the Sulu Sea around the
Bancoran Island, which lies on the top of a coral reef at
70�580N, 180�400E. One example of such an ERS SAR
image can be found at University of Hamburg homepage
(see http://www.ifm.uni-hamburg.de/ers-sar/Sdata/oceanic/
intwaves/sulusea/247263411-3429-3447-3465ERS1.html).
In the archive of the receiving station in Singapore one can
find three more examples of sets of ERS SAR images
showing such features in this sea area (acquired on 13 April
1998, 24 November 1997, and 22 July 1996; frames 3447,
3465).
[51] When comparing the sea surface manifestations of

the secondary internal waves visible on the ERS-2 SAR
image of 11 February 1997 (Figures 1 and 2) with our
model calculations, an unanswered question remains: Why
has the quasicircular wave pattern an asymmetric shape

Figure 14. Same as Figure 12, but with different bottom inclinations g: (top) g = 19.1�; (middle) g =
6.8�; and (bottom) g = 1.6�. The density fields were calculated for the fluid stratification given by line 1
in Figure 6, and the ISW amplitude was the held constant at am = 84 m. The timescale is T = 75 s.
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(more waves propagate eastward than westward)? This
observation can very likely be explained by one or a
combination of the following effects: (1) the Dreadnought
bank has an asymmetric shape which potentially leads to
refraction and asymmetric wave pattern (see discussion in
section 4.2); (2) an along-slope Lagrangian current gener-
ated by an incident ISW propagating on a sloping bottom
can give rise to an asymmetric wave pattern by wave
reflection [Thorpe, 1997] or wave breaking [Thorpe,
1999]; and (3) the initial horizontal momentum of the
incident ISW very likely has an effect on the directional
distribution of the radiated wave field. As shown by
Vlasenko and Hutter [2002a], wave breaking over a bank
leads to horizontal intrusion of water, which propagates
upstream. This could be an explanation why the radiated
energy is concentrated in a narrow segment in the wave
propagation direction of the incident ISW and why it does
not attenuate rapidly as radial spreading would suggest.

Appendix A: Two-Layer Model of Internal
Waves Generation and Propagation Over the
Dreadnought Bank

[52] The linear system of equations describing two-di-
mensional internal waves (x, y plane) in a two-layer fluid
has the form

U1t � fV1 ¼ �r�1
1 P1x;

V1t þ fU1 ¼ �r�1
1 P1y;

x1 � x2ð Þt þ H1 U1x þ V1y

� �
¼ 0;

P1 ¼ gr1 x1 � zð Þ;

U2t � fV2 ¼ �r�1
2 P2x;

V2t þ fU2 ¼ �r�1
2 P2y;

x2t þ H2 U2x þ V2y

� �
þ U2H2x þ V2H2y ¼ 0;

P2 ¼ gr1 x1 � x2 þ H1ð Þ þ gr2 x2 � z� H1ð Þ:

ðA1Þ

Here z is the vertical coordinate; Ui,Vi, are the horizontal
velocity components, Pi is the hydrostatic pressure; ri is the
density; Hi is the water depth; i = 1, 2 is the layer number;
f is the Coriolis parameter; x1 and x2 are the deviations of
the free surface and the interface from their equilibrium
values, respectively. Taking into account the tidal periodi-
city of the wave motions,

xi;Ui;Vif g ¼ zi; ui; vif g exp �istð Þ

(s is the tidal frequency), and introducing new variables as
follows h1 = z1, h2 = ez2 + gh1, where g = r1/r2, � = 1 �
g, the system of equations (A1) can be reduced to the
following form:

H1 h1xx þ h1yy
� �

þ s2 � f 2
� �

h1 � h2ð Þ=ge ¼ 0

H2 h2xx þ h2yy
� �

þ if H2xh2y � H2yh2x
� �

=s ðA2Þ

þ H2xh2x þ H2yh2y þ s2 � f 2
� �

h2 � gh1ð Þ=ge ¼ 0:

This system of equations describes free propagating
surface and interfacial waves in a two-layer fluid. External
forcing is introduced in the system of equations (A2) by a
barotropic or baroclinic tidal wave interacting with a

varying bottom topography. In this case the solution of
system (A2) can be represented as the superposition of an
incident wave propagating at angle q relative to the x axis
and a scattered surface wave c1 or a scattered interfacial
wave c2 as follows:

h1 ¼ c1 þ A0 exp ik x cos qþ y sin qð Þ½ �

h2 ¼ c2 þ A0 1� k2gH1 s2 � f 2
� ��1

e
h i

ðA3Þ

� exp ik x cos qþ y sin qð Þ½ �:

Here A0 and A0 [1 � k2gH1(s
2 � f 2)�1e] denote the

amplitudes of the incident wave at the free surface and at
the interface, respectively, and k denotes the wave number:

k ¼
H1 þ H2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H1 þ H2ð Þ2� 4H1H2g

q
2gH1H2g

s2 � f 2
� �

:

The ‘‘+’’ sign in the last equation applies to the internal
wave, and the ‘‘�’’ sign to the barotropic wave. After
substitution of (A3) into (A2), we obtain two inhomoge-
neous elliptic equations for the wave disturbances c1 and
c2, which can be solved numerically (e.g., by the Gauss-
Zeidels iteration procedure). A square computational area
(150 km � 150 km) with a rectangular grid and a spatial
step of 1 km is used. Owing to the fact that the wave
amplitude decrease with distance from its source because
of radial divergence, we can set c1 = 0 and c2 = 0 at the
lateral fluid boundaries.
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