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Abstract 

 

Effects of dietary ingredients and feed additives on the health and production of 

European sea bass (Dicentrarchus labrax) for applications in aquaculture 

David Luke Peggs 

Experiment one revealed fishmeal (FM) replacement with soy protein concentrate (SPC) 

alone, and in combination with pea protein concentrate (PPC) and saponins (S) modulated the 

intestinal bacterial communities of D. labrax, increasing the presence of lactic acid bacteria. 

Intestinal histology revealed significantly reduced goblet cell’s (GC’s) in fish fed the SPC+S, 

epithelial microvilli densities (MD) in fish fed the SPC+PPC, SPC+PPC+S and SPC+S after 

two weeks feeding. Significant reductions in GC’s and intraepithelial leukocytes (IEL’s) in 

fish fed the SPC+S, and MD’s in fish fed the SPC+S and SPC+PPC+S after four weeks 

feeding, relative to fish fed the FM control. Furthermore, fish fed all plant based diets 

appeared to exhibit a loss of membrane integrity at the microvilli tips, most pronounced in 

fish fed the SPC+S diet. These results suggest a sub-acute enteritis response in the posterior 

intestine of D. labrax, which was deemed to be most pronounced in fish fed the SPC+S diets. 

Experiment two utilised the SPC+S diet as a sub-optimal basal diet to assess the potential of 

the probiotic Bacillus subtilis and the prebiotic Previda
®
,
 
individually and in combination, in 

alleviating the enteritis-like effects induced by this diet, observed in the first experiment. 

Microbiological analyses revealed B. subtilis modulated the allochthonous bacterial 

communities. Fish fed the combination of B. subtilis and Previda
®
 (synbiotic) diet exhibited a 

significantly increased intestinal perimeter ratio, compared to fish fed the basal. Significantly 

elevated GC’s in fish fed the probiotic and synbiotic treatments, and significantly elevated 

epithelial MD’s, and intestinal absorptive surface index in fish fed the probiotic diet was 

observed, relative to fed fish the basal. The loss of membrane integrity induced by the basal 

diet, was reduced in fish fed the probiotic, prebiotic and synbiotic diets. The intestinal gene 

expression of the pro-inflammatory cytokines IL-1β and TNFα was significantly up-regulated 

in fish fed all experimental diets, relative to fish fed the basal. The intestinal gene expression 

of HSP70, CASP3 and PCNA was significantly down-regulated in fish fed the probiotic, 

prebiotic and synbiotic relative to fish fed the basal. At the end of the experiment intestinal 

samples were exposed to one of four treatments [1. PBS (control), 2. B. subtilis, 3. Vibrio 

anguillarum and 4. B. subtilis + V. anguillarum], ex vivo, to determine if the feed additives 

could mitigate enteric pathogen damage. All feed additives revealed the potential to reduce 

the morphological damage caused by the pathogen.  

Experiment three assessed B. subtilis and the phytobiotic Next Enhance 150
® 

on the
 
growth 

and health of D. labrax. B. subtilis modulated the allochthonous bacterial communities and 

reduced the presence of some potential pathogens. The intestinal gene expression of HSP70, 

CASP3, PCNA and CAL was significantly down-regulation in fish fed the probiotic diet 

relative to fish fed the control. Significantly elevated IEL’s were observed in fish fed the 

probiotic and Next Enhance 150
® 

diets relative to fish fed the control. Growth performance 

was remained unaffected. 

The present research demonstrates that dietary B. subtilis modulates the allochthonous 

bacterial communities, as well as, improving the intestinal morphology and localised 

immunity in European sea bass. Dietary Previda
®
 and Next Enhance 150

® 
were also observed 

to confer beneficial effects on the gut health of this species. No detrimental effects were 

observed as a consequence of any of the feed additives used in the present research. 
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Chapter 1: 

General introduction 

 

1.1 Aquaculture: feeding a growing population 

The human population is estimated to reach 9.3 - 9.6 billion by 2050 (Ezeh et al. 2012; FAO 

2014). This increase, often fastest in developing countries, inevitably leads to an increase in 

demand for high quality sources of protein food stuffs. For centuries, a large part of this 

protein has come from living resources harnessed from the oceans. Today, seafood remains 

an essential protein source for a large number of cultures in many countries globally. 

However, poorly managed wild capture fisheries over the past 40 - 50 years has brought the 

industry to its knees, simply unable to supply the increase in global demand. The Food and 

Agricultural Organization of the United Nations (FAO) reported that 61 % of wild caught fish 

are fully exploited and 29 % are over-exploited with only 10 % under-fished. These figures 

show that most wild caught species have no potential for production increases (FAO 2014). 

Therefore, there is a real need to alleviate the stress put on struggling species from a moral 

standpoint, as well as supplying adequate protein to meet consumer demand. Aquaculture is 

an alternative with the potential to meet this demand for protein both from marine and 

freshwater habitats. In fact aquaculture, defined as the culture of all aquatic animals and 

plants in fresh, brackish and marine environments, is the fastest growing food producing 

sector worldwide (Bostock et al. 2010; Defoirdt et al. 2011). Estimated by the FAO to be 

worth US$ 130 billion in 2012, aquaculture contributed almost half of the fish for human 

consumption and remains the fastest growing food production industry (FAO 2014). The 

development and growth of aquaculture however, like all businesses, is determined by market 

demand, resource availability and profitability for major investors (Bostock et al. 2010). It is 

therefore vital that aquaculture growth and expansion remains sustainable and this is 

http://onlinelibrary.wiley.com/doi/10.1111/j.1467-2979.2011.00435.x/full#b13
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especially important with regards to aquafeeds and disease prevention. A major constituent 

and protein source in aquafeeds is fishmeal (FM), harvested largely from pelagic fish species, 

the replacement of which is of high priority in order to ensure aquaculture remains 

sustainable as a growing industry (Olsen & Hasan 2012). Piscivorous species such as Atlantic 

salmon (Salmo salar) and European sea bass (Dicentrarchus labrax), among others, require 

high protein diets to grow healthily and efficiently in order to meet demand and remain 

profitable. Replacing FM with sources such as those harnessed from plant based products e.g. 

soybean, rapeseed and pea products among others has been a challenge for the aquaculture 

industry over the last few decades. Although the protein levels and amino acid profiles in 

plant based products in some cases are comparable to those in FM, anti-nutritional factors 

(ANF’s) exist within the plant protein products which are known to negatively affect the 

growth and/or health of some important cultured species (Van den Ingh et al. 1991; Knudsen 

et al. 2007; Uran et al. 2008). Extensive research into feed technologies has increased and 

improved greatly year upon year. However, replacing FM to levels considered practical and 

sustainable is a long way from becoming a reality. In this respect the industry faces a 

challenging future, if it is to supply adequate nutrients in a balanced and sustainable manner. 

 

1.2. European sea bass (D. labrax):  biology, production, dietary requirements and issues 

The European sea bass (D. labrax) is silver/grey in colour with lighter sides and underbody, 

has a thin elongate body, and is well adapted to its environment. A coastal species common to 

the British Isles, most of Europe and some of north and west Africa, the European sea bass is 

an efficient predatory species feeding on smaller fish, prawns and crustaceans. The species is 

eurythermic ranging from habitat temperatures of 5 - 28 
o
C, and euryhaline ranging from 

salinities of 3 ‰ to ~ 38 ‰, which allows them to utilise coastal, estuarine and brackish 
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waters (FAO 2014). The European sea bass was the first marine species, other than salmonids, 

to be commercially cultured in Europe and is recognised, together with gilthead sea bream 

(Sparus aurata) as one of the most important commercially produced fish species in the 

Mediterranean. Production in 2012 reached 153,182 tonnes and was valued at just over USD 

1 billion (Figure 1.1.) with Turkey, Greece, Egypt, Spain, Italy, France and Croatia the 

largest produces (FAO 2014). In the wild, European sea bass reproduction takes place in the 

winter between December and March dependent on regional distribution and temperature 

(Asturiano et al. 2000; Vázquez, & Muñoz-Cueto 2014). Females exhibit high fecundity, 

producing approximately 200,000 eggs/kg of body weight, reaching sexual maturity at 

around 2 kg in weight which occurs at around 4 years of age (Haffray et al. 2007). In culture, 

egg production/release can be manipulated through temperature and photoperiod control, as 

well as the administration of hormones, in order to create broodstock throughout the year 

(Villamizar et al. 2012). The majority of production is carried out in sea cages but production 

in ponds and lagoons are not uncommon. European sea bass generally reach a commercially 

marketable size of 300 - 500 g in approximately 18 - 37 months depending on the method of 

production with the limiting factor being their natural feeding behaviour (Haffray et al. 2007; 

FAO 2014).  

A piscivorous teleost, the European sea bass requires a diet high in protein and energy.  

Digestible protein levels of around 50 % are required in order to generate the desired growth, 

however these levels can be reduced somewhat provided that adequate digestible energy 

levels are provided. The essential amino acid requirements of European sea bass are similar 

to those of other finfish and crude lipid and digestible energy requirements are approximately 

15 % and 19 KJ g
-1

 respectively depending on the life stage (FAO 2014).  

A major issue faced by the aquaculture industry as a whole is the loss of stock due to 

infectious diseases which remains a significant and difficult challenge for the industry to 
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overcome. European sea bass are susceptible to a variety of diseases in culture and high 

stocking densities and / or stress levels increase the spread of these diseases which can have a 

significant negative impact on commercial production. Diseases associated with European 

sea bass include infections from viruses (i.e. nodavirus and picornavirus), bacteria (i.e. 

vibriosis, photobacteriosis, myxobacteriosis, and epitheliocystis), and parasites (i.e. 

cryptocaryoniasis, scuticociliatosis, myxosporidiosis, microsporidiosis, gill fluke infections, 

anisakis infection, and isopodiasis) (FAO 2014). The often irresponsible use of antibiotics to 

treat these and other bacterial diseases, has led to an increase in bacterial resistance which in 

turn has led to concerns relating to: possible direct and indirect toxicity to non-target 

organisms, pathogenic resistance to the compounds, lasting residues of some compounds in 

the surrounding environment and potential risks to the human population on a global scale 

(Cabello 2006; Defoirt et al. 2011). As a result of this, tighter regulations on the use of 

antibiotics globally and the ban of antibiotics as growth promoters in Europe has been applied 

(Regulation 1831/2003/EC). 

 

http://www.sciencedirect.com/science/article/pii/S0044848609004566#bib71
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Figure 1.1. Aquaculture production and price evolution of European sea bass (1984-2012).  

Modified from FAO 2014. 

 

1.3. Alternative feedstuffs for aquaculture 

The aquaculture industry continues to rely heavily on FM as a primary ingredient source 

supplying much of the protein requirements of many high value cultured fish species. The 

high protein content, well balanced amino acid profile and good palatability and digestibility 

make FM an important and, in some cases essential, ingredient for the health and growth of 

the fish in aquaculture. This is particularly important with regards to piscivorous species such 

as salmonids, European sea bass and the gilthead sea bream. Due to their physiology and 

position as top predators in their respective environments, piscivorous fish require a diet high 

in protein and an amino acid balance representative of their diets in the wild. Therefore FM is 
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still a key ingredient used in the diets of piscivorous fish species in aquaculture. Issues 

regarding the price and sustainability of FM, have however dictated that alternative protein 

sources must be sought if the aquaculture industry is to continue growing at the current rate, 

as well as, remaining sustainable whilst doing so. In recent years alternative protein sources 

of interest have come from those produced by plant based products such as soybean products, 

rapeseed, barley, pea protein and lupin meal among others. Soybean products are perhaps the 

ingredient which has shown the greatest potential, and hence the greatest interest as a key 

source of protein and constituent in the diets of fish in aquaculture. This is largely due to the 

high protein content and relatively well balanced amino acid profile, as well as its 

competitive, stable price relative to FM (Figure 1.2.).  However, like other plant based 

protein sources, soybean products contain ANF’s which have been reported to cause various 

adverse effects on diet digestibility, growth and overall health of various fish species (Gatlin 

et al. 2007). These ANF’s include components which interfere with digestion such as fibres, 

phytic acid and enzyme inhibitors, and components such as lectins and saponins, which 

interfere with permeability of intestinal membranes potentially affecting the influx and efflux 

of molecules and bacteria (Krogdahl et al. 2010).  

Saponins are particularly important due to their presence in soybean products, typically in the 

range of 1-5 g kg
-1

. Steroid or triterpenoid in nature, saponins are predominantly produced by 

plants, they are glycosides known for forming soap-like foams in aqueous solutions and are 

thought to be involved in plant defensive systems (Bouarab et al. 2002). One important 

aspect of saponins is their ability to cause membrane disruption in animals (Figure 1.3.). This 

action is known as haemolytic activity, due to their potential to cause lysis of erythrocytes in 

mammals (Augustin et al. 2011). In fish, saponins have been reported to cause adverse 

effects such as increasing gut permeability and increasing the onset of enteritis in salmonids 

(knudsen et al. 2007, 2008). Symptoms of enteritis include inflammation and subsequent 
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changes in gut morphology including increased vacuoles in enterocytes, shortening of 

mucosal folds and widening of the mucosal fold lamina propria (van den Ingh et al. 1991; 

Baeverfjord & Krogdahl 1996). However, it has been reported that intestinal inflammation as 

a consequence of saponin inclusion in salmonids is dependent on dose and/or the presence of 

other ANF’s in the supplemented diets (Krogdahl et al 2010; Penn et al. 2011; Chikwati et al. 

2012; Couto et al. 2014). Saponins have also been observed to significantly reduce feed 

intake and growth responses of Japanese flounder (Paralichthys olivaceus) when 

supplemented into diets at 3.2 and 6.4 g kg
-1

 (Chen et al. 2011) and play a role in influencing 

sex ratios to favour males in Nile tilapia (Oreochromis niloticus) (Francis et al. 2002a). 

Couto et al. (2014) reported no effects to the growth of juvenile gilthead sea bream fed diets 

containing purified soya-saponins at 1 g kg
-1

 and 2 g kg
-1

 after a 48 day feeding trial, but 

observed some structural effects to the intestinal mucosa which, the authors inferred, could 

compromise intestinal functionality. There is a paucity of information relating to saponin 

interactions in European sea bass health with only two papers, to the author’s knowledge, 

published to date (Couto et al. 2015a, 2015b). The first of these studies supplemented soya-

saponins into FM based diets for European sea bass (initial weights: 282 g) at a low dose (1 g 

kg
-1

) and high dose (2 g kg
-1

). Two more diets were formulated to contain phytosterols at low 

dose (5 g kg
-1

) + the saponin low dose, and phytosterols at high dose (10 g kg
-1

) + the saponin 

high dose. After 15 days on the experimental diets the authors reported that the high saponin 

dose caused a depression in maltase and alkaline phosphatase activity, as well as, some mild 

inflammation in the posterior intestine. Fish fed the low saponin dose did not exhibit a lower 

degree of inflammation after 15 days but increased severity was observed after 59 days of 

feeding on the experimental diets.  Fish fed the high phytosterol + high saponin diets were 

also observed to exhibit a decrease in maltase activity and evidence of posterior intestinal 

inflammation. The authors also reported five - fold increases in the expression of the pro-
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inflammatory gene interleukin-1 β (IL-1β) in fish fed the low and high dose saponin diets, 

after 59 days, compared to fish fed the control diet. Couto et al. (2015b) assessed the same 

diets in European sea bass juveniles (initial weights: 27 g) for 59 days analysing growth 

performance, intestinal histology and immunology, and digestive enzyme activity. The 

authors reported no changes in growth performance, digestive enzymes or gene expression. 

Mild intestinal morphological changes were observed only in fish fed the high saponin based 

diets. The results of these two studies reveal that European sea bass appear to exhibit a high 

tolerance to dietary saponins when supplemented into a FM based diet. There is limited 

information however, on the effects saponins, or indeed other ANF’s, have on the intestinal 

microbiota of fish (Krodahl et al. 2010; Knudson et al. 2007, 2008), and to the author’s 

knowledge no studies have assessed saponin effects on the intestinal microbiota of European 

sea bass. More research is required on this and other factors such as inclusion levels, species 

variation and life stage effects to validate the results of the aforementioned studies. Although 

these and many other questions are yet to be answered, it is clear that saponins and other 

ANF’s have an influence on the nutritional health of fish species and are a significant factor 

in the consideration of alternative protein sources for finfish aquaculture.   

 

 

 

 

 

 

 

 



Chapter 1 

 

25 | P a g e  

 

 

Figure 1.2. Price evolution of fishmeal and soybean meal (2010-2014). Modified from FAO 

2014.  
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Figure 1.3. Schematic diagram showing the interactions between saponin molecules and 

biological membranes. Molecules of saponins penetrate into the lipid membrane (A) binding 

to sterols (i.e. cholesterol) in the membrane (B). The saponin molecules interact with the 

sterols and other saponin molecules (C). As more saponin molecules penetrate to form 

insoluble complexes with sterols an asymmetrical and curvature of the membrane is formed 

(D). Modified from Augustin et al. (2011).  

 

1.4. Antibiotics in aquaculture 

Prophylactic antibiotic applications are still used today in some parts of the world as growth 

promoters in aquaculture. Examples of antibiotics used in aquaculture practices today are 

displayed in Table 1.1. Antibiotics have two main mechanisms of action, either bacteriostatic 

(inhibition of bacterial growth) (e.g. penicillin, metronidazole and fluoroquinolones) or 
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bactericidal (killing of bacteria; e.g. tetracyclines, sulfonamides, chloramphenicol, 

erythromycin macrolides and sarafloxacin). Many antibiotics exhibit both of these 

mechanisms and bacteriostatic or bactericidal action is often determined by the dose 

administered and the bacteria targeted. The dose and treatment time required depends on the 

causative agent and severity of infection. Four main modes of action are employed by 

antimicrobials against bacteria which include: inhibition of bacterial cell wall synthesis, DNA 

synthesis, protein synthesis and folate synthesis (Kaufman 2011). Antibiotics have an 

essential role to play in aquaculture with regards to the control and treatment of diseases in 

fish, however problems arise when these chemicals are used consistently as precautionary 

measures even when diseases are not present. Regulations for antimicrobial treatment in 

aquaculture vary geographically; in Europe and North America for instance these regulations 

are relatively stringent but this is not the case for a significant proportion of finfish producing 

countries globally (Defoirdt et al. 2011). Effects of chemotherapeutic agents as disease 

treatments in aquaculture such as bacterial resistance and detrimental effects to surrounding 

environments have received increasing attention over recent years (Cabello 2006; Kim & 

Cerniglia 2009). There are two forms of bacterial resistance to antibiotics: inherent/intrinsic 

resistance, where a species is not susceptible to a specific antibiotic due either to a lack of 

affinity between the antimicrobial and the target bacteria so the antimicrobial cannot enter the 

cell, or an absence of the target in the cell itself. The second form is acquired resistance, 

where a bacterial strain is normally susceptible to an antimicrobial but some strains of the 

same bacteria are resistant. Resistance genes can be transferred to initially susceptible 

populations through lateral DNA transfer (transformation, transduction and conjugation), 

allowing the bacterial populations to adapt to the changes in conditions and potentially 

proliferate under the environmental conditions created by the antibiotic (Romero et al. 2012). 

However, understanding these mechanisms is only the first part in tackling the problem. 
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Genes and their hosts travel through their environments in complex patterns, and resistant 

genes can be captured in different bacteria and bacterial strains, and therefore tracking them 

becomes problematic (Marshall & Levy 2011).  

 

The effect that antibiotics have on the gastrointestinal (GI) bacterial populations of fish is a 

relatively new area of research and our knowledge is therefore limited. Some studies have 

reported a shift and reduction in overall GI microbial diversity in fish exposed to antibiotic 

treatments (Bakke-McKellop et al. 2007; Sekirov et al. 2008; Naverrete et al. 2008). Bakke-

McKellep et al. (2007) included experimental diets with oxytetracycline (OTC) at 3 g kg
-1

 

conducted on Atlantic salmon reporting a significant decrease in bacterial populations in all 

intestinal regions. A greater reduction was observed in the allochthonous than autochthonous 

microbiota (500 - fold compared with 10 - fold log reductions respectively). The posterior 

intestine was affected to the largest extent in both digesta and mucosa samples followed by 

the mid intestine, with the anterior region least affected. Naverrete et al. (2008) also 

conducted a study on juvenile Atlantic salmon and using molecular microbiological 

techniques observed a reduction in GI bacterial diversity when treated with oxytetracyline at 

0.75 g kg
-1

 per day. He et al. (2011) also reported a reduction in microbiota with the 

administration of an antibiotic this time using tilapia as the model. Juvenile hybrid tilapias 

were fed the growth promoting antibiotic florfenicol (0.02 g kg
-1

) for a period of 16 weeks 

and although the treatment increased the growth of the fish, a significant reduction in GI 

microbiota was observed. Sequential decreases in intestinal microbial populations through 

antibiotic treatment might not come as a huge surprise as it is, after all what they are designed 

to do. However, when the reduction includes mutualistic and commensal bacteria as well as 

pathogenic bacteria this may have significant implications for the health of the host. More 

studies are necessary to elucidate which bacteria are actually effected and to what extent by 
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various antibiotic treatments. Furthermore, there is evidence to suggest routine use of 

antibiotics in sea based aquaculture systems has implications for the surrounding 

environment. A study by Buschmann et al. (2012) assessed the bacteria found in the marine 

sediment around a salmon farm in Chile. The authors reported significantly higher bacterial 

numbers in the sediment and fractions resistant to oxytetracycline, oxolinic acid and 

florfenicol were found in the sediment around the aquaculture site compared to the control 

site. The authors conclude that large scale use of antibiotics in Chilean salmon aquaculture 

may select for antimicrobial-resistant bacteria in the surrounding sediment.  

In terms of human health, it is reasonable to assume that antibiotic use in aquaculture and the 

subsequent bacterial resistance could have direct and indirect implications (Cabello 2006; 

Sapkota et al. 2008; Marshall & Levy 2011; Aly 2014). Bacteria in the aquatic environment 

share a range of mobile genetic elements and resistant genes with terrestrial bacteria, and 

there is evidence to suggest the existence of horizontal gene transfer between bacteria from 

the aquatic environment and human pathogens (Cabello et al. 2013). Furthermore, there are a 

number of studies reporting the potential occurrence of antibiotic resistance genes to various 

commonly used antibiotics in aquaculture environments (Costello et al. 2001; Luo et al. 2010; 

Seyfried et al. 2010; Tamminen et al. 2010; Su et al. 2011; Gao et al. 2012). Many authors 

appear to share the sentiment that there is a lack of information regarding the use of 

antibiotics in aquaculture practices (Defoirdt et al. 2011; Marshall & Levy 2011; Cabello et 

al. 2013; Aly 2014). The aquaculture industry must manage the use of antibiotics as well as 

research alternatives for the control and prevention of diseases. Defoirdt et al. (2011) suggest 

a holistic approach would be the most effective long term measure, whereby the 

measure/measures take into account the pathogen, host and environment. Other potential 

disease control measures include: vaccines, bacteriophage therapies, probiotics, prebiotics, 
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synbiotics, phytobiotics and immunostimulants (Costello et al. 2001; Cabello 2006; Defoirdt 

et al. 2011; Muñoz-Atienza et al. 2013). 

 

Table 1.1. Examples of antibiotics used in aquaculture practices today and mechanisms of 

actions. Modified from Serrano (2005) and Defoirdt et al. (2011). 

Antibiotic Class Mechanism of action 

Amoxicillin Beta-lactams Interfere with cell wall synthesis 

Enrofloxacin Fluoroquinolones Interfere with nucleic acid synthesis 

Erythromycin Macrolides Protein synthesis inhibition 

Florfenicol Amphenicols Protein synthesis inhibition 

Furazolidone Nitrofurans Interfere with nucleic acid synthesis 

Oxolinic acid Quinolones Interfere with nucleic acid synthesis 

Oxytetracycline  Tetracycline Protein synthesis inhibition 

Streptomycin Aminoglycoside Protein synthesis inhibition 

Sulphadiazine Sulphonamides Inhibition of folic acid synthesis 

 

 

1.5. Intestinal microbiota of fish 

The microbiota or microbiome of animals, including humans, is a complex and diverse 

community, one which in recent times has become well-researched. The study of the 

intestinal microbiota was initiated after the discovery of Escherichia in the GI tract of 

humans in 1885 (Rajilić‐Stojanović et al. 2007). This then paved the way for the study of 

microbes in the gut of various other species for many reasons of interest. Modern molecular 

techniques have enhanced the study of the GI tract of animals and revealed that these 

communities are more diverse and complex than was initially thought (Ley et al. 2008; 

Benson et al. 2010; Nayak 2010a). Furthermore, scientists soon realised that these host-

microbe interactions are critical and play a crucial role in the health of the host (Young 2012). 

The intestinal microbiome and the gastrointestinal (GI) tract is a symbiotic relationship which 
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has co-evolved over time to create a complex community of microorganisms which are 

involved in several functions in animals, including: disease resistance, immunity, metabolism 

and digestion (Hooper & Macpherson 2010; Kaiko & Stappenback 2014; Lee & Hase 2014). 

These communities can be divided into two main groups: allochthonous or transient 

communities which pass through the GI tract with food, and autochthonous or resident 

communities which reside in the GI tract and are associated with the mucosal tissue (Ringø & 

Birkbeck 1999).  However, it should be mentioned that there is likely to be some crossover 

between some bacterial species which could be allochthonous/autochthonous depending on 

conditions. Understanding the associations and the resulting host-microbe interactions is a 

vital part in assuring the welfare of the host. This is also true of fish, however a more intimate 

relationship with their surrounding environment differentiates them from terrestrial animals. 

The gut microbiota of fish is heavily influenced by its surrounding aqueous environment and 

is thought to be present in numbers of 10
7 

- 10
8 

bacteria (culturable) and 10
9 

- 10
11

 (total) per 

gram of digesta (Sugita et al. 2005; Shiina et al. 2006; Pérez et al. 2010). The predominant 

phyla of the intestinal microbiota of marine fish include Proteobacteria, Actinobacteria, 

Bacteroidetes, Firmicutes and Fusobacteria (Gómez & Balcázar 2008). Common bacterial 

species present include those from the Bacillus, Vibrio, Micrococcus, Clostridium, 

Bacteroides and Pseudomonas genera, as well as various species of lactic acid bacteria (LAB) 

(i.e. Lactobacillus, Enterococcus, Leuconostoc and Pediococcus) which are thought to 

constitute an important part of this microbiota (Ringø & Gatesoupe 1998; Romero et al. 

2014). Yeast, protozoa and viruses are also common constituents of the microbial 

communities in fish (Merrifield & Rodiles 2015).  

Current information of the intestinal microbiota of fish is available through various reviews 

and studies of numerous farmed species, with a large portion of these studies focused on the 

commercially important salmonids including those by: Nayak 2010b; Hovda et al. 2012; 
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Hartviksen et al. 2014; Ingerslev et al. 2014a, 2014b; Ringø et al. 2014; Zarkasi et al. 2014; 

Romero et al. 2014). There is however a paucity of information regarding studies assessing 

the intestinal microbiota of European sea bass, with only a handful of studies, to the author’s 

knowledge, published to date on this species (Kotzamanis et al. 2007; Carda-Diéguez et al. 

2014; Gatesoupe et al. 2014; Delcroix et al. 2015).  

Kotzamanis et al. (2007) assessed the effects of commercial fish protein hydrolysates (FPH) 

dietary inclusion (at 10 and 19 %) on growth, digestive enzymes and the intestinal microbiota. 

The study also assessed host resistance to the pathogen V. anguillarum. The authors report 

fish fed the diet 10 % FPH to exhibit the best growth, survival and intestinal development. 

The study also revealed cultivable Vibrio spp. to be dominant in samples of fish fed the high 

dose FPH (19 %) and this dose seemed to be more effective in terms of protection against V. 

anguillarum infection. The authors suggest this protection could be due to a barrier effect 

with the already present Vibrio spp. preventing the settlement of the invading pathogen, or 

the presence of certain Vibrio spp. may act as a probiotic and stimulate the immune system. 

The paper concludes by advising caution with regards to the use of FPH as a means of 

increasing the proliferation of Vibrio spp. in the intestine of European sea bass larvae.  

Carda-Diéguez et al. (2014) used pyrosequencing to assess the intestinal microbiota of 

European sea bass fed two functional diets containing purified 1,3  and 1,6 β-glucans as 

immunostimulants. The authors reported two dominant genera associated with the 

autochthonous intestinal communities (Dysgonomonas and Ralstonia). Dysgonomonas levels 

significantly reduced in fish fed both β-glucan diets whereas levels of Ralstonia were 

observed to be significantly elevated in fish fed the 1,6 β-glucan diet compared to fish fed the 

control. The authors conclude that Dysgonomonas could be a common symbiont in the 

intestine of European sea bass and is involved in digestion. Furthermore, the increase in 
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Ralstonia found in fish fed the 1,6 β-glucan diet could be due to the presence of some growth 

promoting constituents contained in this diet which Ralstonia was able to utilise.  

Gatesoupe et al. (2014) assessed the effects of dietary lupin, amylomaize, and waxy maize on 

the metabolic response and intestinal microbiota of juvenile European sea bass compared to 

fish fed a FM control. The study observed dietary changes to both allochthonous and 

autochthonous microbial communities with the dominant Vibrio spp. of the allochthonous 

communities being different depending on the diet. The authors also reported that the 

dominant Vibrio spp. differed between allochthonous and autochthonous communities 

regardless of treatment and the presence of Clostridium sp. was increased in fish fed the lupin 

diet. The bacterial dissimilarity profiles of fish fed the lupin meal and amylomaize were 

observed to be clearly separated when compared to the fish fed the control. The dissimilarity 

profiles of fish fed the waxy maize were not different to the control fed fish.   

Delocroix et al. (2015) assessed the use of hydrolysates on European sea bass development 

and associated abdominal microbiota using polymerase chain reaction - denaturing gradient 

gel electrophoresis (PCR-DGGE). The authors reported that 3 of the 5 hydrolysate diets 

influenced the microbial communities, indicated by the ANOSIM dissimilarity values, which 

were significantly dissimilar to the control and within hydrolysates treatments. Three 

bacterial groups were observed to be particularly abundant and the main contributors to the 

dissimilarities between groups: Enterobacteriaceae, Moraxellaceae and Methylobacteriaceae. 

Unfortunately other operational taxonomic units (OTU’s) were not identified by the authors.  

These studies supply a small insight into the microbial communities of European sea bass, 

however this area of research is clearly in need of further investigations.  

 

1.6. The fish intestine and the role microorganisms play therein 

1.6.1. Physiology and metabolism 
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The GI tract of fish is comparable to that of other vertebrates and has evolved to encompass a 

large variety of morphological organisation. This anatomical organisation aims to optimise 

nutrient utilisation and therefore is largely dependent on the diet of the fish. Fish can be 

categorised into four main classes depending on their diet: carnivorous/piscivorous (fish that 

primarily eat other fish/vertebrates and invertebrates), herbivorous (fish that primarily eat 

plants and algae), omnivorous (fish that eat a mix of other vertebrates, invertebrates and plant 

material), and detritivorous (fish that primarily eat detritus). However, these classes may 

change throughout the lifestyle of the species, and most species possess the ability to shift 

between feeding habits which is largely depending on the availability of resources (Olsen & 

Ringo 1997). The GI tract is a basic tube structure that stretches through the body of the fish 

from the mouth to the anus. This can be divided up into regions: foregut (mouth, gill arch, 

oesophagus, stomach and pyloric caeca), anterior intestine, mid intestine, and posterior 

intestine, however there are some deviations on this classification which depends largely on 

the dietary habits of the species (Harder et al. 1975; Falk et al. 2013; Ray & Ringø 2014). 

The primary function of the stomach is the storage of digested food, where acid is secreted 

however in the absence of this structure many species have developed a sac-like structure 

called the intestinal bulb for this process (Olsen & Ringo 1997). The pyloric caeca are finger-

like projections which are extensions of the intestine. They are not present in all fish but in 

some species can account for as much as 70 % of the total intestine (Wulff et al. 2012). There 

is also a huge variation in the size of the pyloric caeca between the species which possess 

these structures. It is thought that the functions of the pyloric caeca are to increase absorptive 

surface area of the intestine and thus aid in the digestive process (Ray & Ringø 2014). 

Beyond the stomach/intestinal bulb and pyloric regions, the intestine is a simple cylindrical 

structure which continues to the anus. This organ is the primary site of digestion and 

absorption of feed, and plays a crucial role in the water electrolyte balance and endocrine 
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regulation, as well as, supporting metabolism and immunity. In order to contribute to these 

processes, the intestine must possess a large absorptive surface area. This is achieved with 

undulating structures known as mucosal folds which are lined with a brush border of 

microvilli (Figure 1.4). The digestive function of the intestine is thought to decrease from the 

anterior to posterior whereas goblet cells and hence mucus production increases (Ringø et al. 

2003). 

The development and functionality of the fish intestine depends on a number of factors such 

as anatomy, pH, osmolality and diet composition which help shape the microbiota (Ray & 

Ringø 2014). Gnotobiotic studies in fish have revealed the importance of the GI microbiota in 

various processes including: nutrient metabolism, providing the host with additional nutrient 

uptake capabilities of nutrients otherwise unobtainable to the host (Rawls et al. 2004; Bates et 

al. 2006; Ray et al. 2012; Beck & Peatman 2015); epithelial renewal and enterocyte 

morphology (Rawls et al. 2004); and immunology (Rawls et al. 2006, 2007). With regards to 

digestion, intestinal microbes have been observed to produce digestive enzymes, not 

produced by the host (e.g. amylase, cellulase, lipase and protease) contributing to this process 

in fish (Bairagi et al. 2002; Ramirez & Dixon 2003; Pérez et al. 2010). The intestinal 

microbiota also contributes by serving as a source of vitamins. Vitamins such as B12, have 

also been reported to be produced by certain GI microbiota (e.g. Cetobacterium somerae) of 

fish (Sugita et al. 1991), and requirements of this vitamin vary between species (Romero et al. 

2014). Vitamin B12 is involved in erythrocyte development and fatty acid metabolism (Lin et 

al. 2010). The GI microbiota of fish also contributes to the fermentation of dietary fibre 

(particularly important in herbivorous species) which convert carbohydrates to short-chain 

fatty acids (SCFA’s) (Romero et al. 2014). These SCFA’s can be transferred directly into 

energy by epithelial cells making this process an important contributor to host energy needs 

in herbivorous species (Mountfort et al. 2002). The production of SCFA’s has also been 
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observed to decrease pH in the intestine of herbivorous fish (Clements et al. 1997). In 

European sea bass, a study by Gatesoupe et al. (2014) assessing the effects of amylomaize 

and waxy maize on the intestinal microbiota, demonstrated that the highest levels of the 

SCFA acetate was exhibited in samples derived from these treated diets compared to the 

controls. The authors suggest that the maize products were, at least in part, metabolised by 

the intestinal microbiota. 
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Figure 1.4. Electron micrographs of the posterior intestine of European sea bass, illustrating 

the mucosal folds (A) and microvilli (brush border) (B; SEM and C; TEM). Scale bars = 100 

µm (A), and 1 µm (B&C). 

 

1.6.2. Immunology  

The intestinal microbiota are also recognized as key components of the fish immune system, 

contributing to mucosal barrier function, providing physical site-competition, as well as 

producing antimicrobial substances which help to protect the host against potential pathogens 

A 

C B 
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(Salinas & Parra 2015). With the functionality of the digestive system (e.g. 2 - 3 days post 

hatch in European sea bass) (Zambonino Infante & Cahu 2001), the GI tract and associated 

microbiota become one of the most important interaction sites with the external microbial 

world. This is an antigen rich environment and consequently fish have evolved to possess an 

effective immune system early in their development, comparable to that of other vertebrates 

(Kiron 2012). The immune system of fish is therefore fundamental for defence and ultimately 

survival, and the intestinal microbiota play a crucial role in this system (Rombout et al. 2005). 

Intensive cross-talk interactions between the GI tract, associated microbiota and the 

environment depend on genetic, nutritional and environmental factors, and are integral to the 

development, function and maintenance of the intestinal mucosa (Montalto et al. 2009). The 

mucosal surfaces are the main sites of these interactions and are widely considered to be the 

first line of defence against disease. The mucus layer covers the intestinal epithelium and 

contains various protective substances produced by epithelial cells such as complement 

components, mucins, enzymes, piscidins, and defensins (Austin 2006; Kuppulakshmi et al. 

2008). Anatomically the intestine is known collectively as the gut associated lymphoid tissue 

(GALT), and in fish this organ lacks specialised immune structures found in other terrestrial 

vertebrates such as peyer’s patches. However, the gastrointestinal associated lymphoid tissue 

(GALT) in fish consists of lymphoid cells, macrophages, granulocytes and mucus 

immunoglobulin M (IgM), and various mucosal antibodies (i.e. IgM, IgT/IgZ, IgF) 

constituting the immune function which must distinguish between innocuous and harmful 

bacteria and initiate the appropriate responses (Chistiakov et al. 2007; Nayak 2010). This 

non-specific response, in ideal circumstances, would be followed by an antigen-specific 

adaptive response as a more comprehensive mechanism for the defence against a pathogen. 

The adaptive immune system of teleosts however, acts at a relatively slow rate compared to 
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that of higher vertebrates due, at least in part, to lower surrounding environmental 

temperatures, and the poikilothermic nature of fish (Whyte 2007; Foey & Picchietti 2014).  

Commensal microbes, or microbiota, present in the intestinal muscosal tissue and 

surrounding mucus play a significant role in the factors that contribute to intestinal immune 

responses in fish. These complex communities are present in extremely high numbers and 

have even been suggested to be an extra organ in their own right (O'Hara and Shanahan 

2006). The gut microbiota play an important role in the development of the host GI tract 

including those related to metabolism and immune functionality. Gnotobiotic work carried 

out by Rawls et al. (2004) on zebra fish (Danio rerio) has revealed some interesting insights 

into the influential roles these microbial communities play in the intestine, including those 

involved in the expression of certain immune related genes. For example, microbiota-

associated responses were reported for the homologue of the mouse serum amyloid A1 

(Saa1), C-reactive protein (Crp), complement component 3 (C3), and suppressor of cytokine 

signalling 3 (Socs3), and myeloperoxidase (Mpo).  

The complex host-microbe interactions which occur at the intestinal barrier are only partly 

described in fish and the mechanisms involved therein are therefore poorly understood.  

However, fish are known to share certain molecules and immune processes with mammals 

where the depth of knowledge of this topic is far greater. The expression of pattern 

recognition receptors (PRR’s) are responsible for the detection of microbes at the mucosal 

interface. Perhaps the most demonstrative of these receptors in fish are those belonging to the 

toll-like receptor (TLR) family. These receptors are involved in the recognition of bacterial 

lipopolysaccharides (LPS) and pathogen-associated molecular patterns (PAMP’s) or 

commensal-associated molecular patterns (CAMP’s). TLR recognition triggers a series of 

molecular pathways which include adaptor molecules such as Myd88, TRIF and SARM, 

transcription factor molecules such as NFκB and IRF3/7, which in turn lead to the production 
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of cytokines (Tlaskalova-Hogenova et al. 2005). Commonly studied cytokines in fish include 

those involved in the inflammatory response: tumor necrosis factor-α (TNF- α), IL-1β, IL-8, 

and IL-10. For a comprehensive review of the inflammatory pathways in fish refer to (Foey 

& Picchietti 2014).  

With regards to probiotic (refer to section 1.7.1) applications, a number of studies have 

reported probiotic-associated immune responses in the GI tract of fish. Picchietti et al. (2009) 

demonstrated probiotic (Lactobacillus delbrueckii) -induced increases in intestinal T-cells 

and total body T-cell receptor-β (TcR-β) transcripts in European sea bass larvae. Transcripts 

of IL-1β were significantly reduced in the probiotic group intestine, and trends towards lower 

IL-10, Cox-2 and transforming growth factor-β (TGF-β) in the probiotic group were also 

reported. Multiple T-cells have been observed in fish including helper and cytotoxic T cells 

which are essential in cell-mediated immunity and tolerance responses (Foey and Picchietti 

2014). IL-1β is one of the earliest studied pro-inflammatory cytokines which may be 

triggered by pathogens inducing an inflammatory response (Seppola et al. 2008). The anti-

inflammatories TGF-β and IL-10 are important in terms of mucosal tolerance maintenance 

which may be expressed in the absence of pathogens.  Another study focused on rainbow 

trout fed the probiotic Lactobacillus plantarum, which were subsequently challenged with the 

pathogen Lactococcus garvieae (Pérez-Sánchez et al. 2011). The study reported a significant 

up-regulation of the mRNA levels of intestinal IL-10 and IgT following L. garvieae infection. 

The authors also reported no detectable levels of either the probiotic or pathogen bacteria 

using PCR-DGGE and suggest direct tactile host-microbe interactions may not be necessary 

to induce host immune stimulation. To the author’s knowledge, only three isotypes of 

immunoglobulins, which are important components of the humoral immunity, have been 

identified in fish to date: IgM, IgD and IgT/IgZ. IgT, similar to IgA in mammals, is a 

specialised antibody involved in mucosal function, commonly found in fish (Gomez et al. 
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2013). Zhang et al. (2010) demonstrated that IgT was detected in the intestinal mucus only in 

rainbow trout, and coated most bacteria in response to a parasite.  

The intimate relationship that teleosts share with their antigen-rich aquatic environment has 

demanded the evolution of an effective immune system. Similar to other vertebrates fish 

possess innate and adaptive responses to pathogen insults through the production of a variety 

of immunoglobulins, antimicrobial peptides and inflammatory cytokines. The understanding 

of the mechanisms surrounding the innate immunity in fish is relatively well documented 

however, the mechanisms surrounding the adaptive immunity in fish is comparatively less 

well studied. The intestinal microbiota clearly play an important role in fish host immunity, 

however these complex host-microbe interactions are far from being completely understood, 

and this area warrants further investigation. 

 

1.7. Feed additives: alternative strategies to antibiotics 

1.7.1. Probiotics 

Probiotic applications are an alternative approach to antibiotics for creating a healthy 

intestinal environment by influencing a host’s microbiota. The term probiotic comes from the 

Greek words “pro” and “bios” simply meaning “for life”, (Zivković 1998). The most widely 

cited definition of a probiotic was proposed by Fuller et al. (1989) as “a live microbial feed 

supplement which beneficially affects the host animal by improving its intestinal balance”. 

Despite continual contention Fuller’s definition of the term is still widely referred to today. 

However, when referring to probiotic applications in aquatic systems it is important to 

consider certain factors which are fundamentally different from those applied to terrestrial 

probiotic use. The epithelium and mucosal barrier of the skin, gills (in fish) and alimentary 

tract are an extremely important barrier against disease in animals. In terms of fish, rearing 
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water generally supports a higher microbial load and the intimate relationship fish share with 

this potentially antigen rich environment, means a distinct definition is needed (Kesarcodi-

watson et al. 2008; Magnadottir 2010). Merrifield et al. (2010) therefore suggested the 

following broad definition for aquatic animals: ‘any microbial cell provided via the diet or 

rearing water which subsequently benefits the host fish, fish farmer or fish consumer, which 

is achieved, in part at least, by improving the microbial balance of the fish’. The range of 

probiotics used in aquaculture is quite broad and has encompassed both Gram-positive and 

Gram-negative bacteria as well as yeasts and unicellular algae (Irianto & Austin 2002). The 

benefits of probiotics are also quite broad and incorporate potential inhibition of pathogenic 

microorganisms, improvement of growth performance or feed utilisation and increased 

immune responses (Verschuere et al. 2000; Spanggaard et al. 2001; Bairagi et al. 2004; 

Yanbo & Zirong 2006; Ringø 2008). Lactic acid bacteria (LAB) are perhaps the most widely 

used bacteria for probiotic applications in human and terrestrial animals. LAB are also known 

to be abundant in the intestine of healthy fish and therefore are commonly used probiotics in 

aquaculture (Ringø & Gatesoupe 1998; Kesarcodi-watson et al. 2008; Gatesoupe 2008). LAB 

commonly used in aquaculture are species from the Lactobacillus, Lactococcus, 

Carnobacterium, Pediococcus, Enterococcus and Streptococcus genera. Other probiotic 

candidates including species from the genera: Aeromonas, Bacillus, Enterobacter, 

Pseudomonas, Roseobacter, Vibrio, Clostridium, and the yeasts Debaryomyces and 

Saccharomyces among others, have also been assessed in aquaculture (Nayak 2010a; 

Merrifield et al. 2010a; Lauzon et al. 2014). Microbial modulation in the intestine of fish 

induced by dietary probiotic applications has being commonly reported. Sun et al. (2012) 

demonstrated a modulation in the autochthonous intestinal microbiota of juvenile grouper 

(Epinephelus coioides) fed Lactococcus lactis MM1 for 60 days. The authors used PCR-

DGGE to assess these effects, observing distinct clustering of replicates within the samples of 
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the probiotic fed fish which were different from those of the controls. The study also revealed 

separate clusters depending on the intestinal region and an increase in the species richness 

and diversity in all intestinal regions in fish fed the probiotic. Furthermore, the authors 

reported the growth of some potentially beneficial bacteria, as well as a decrease in the 

presence of the potential pathogen Staphylococcus saprophyticus, as a consequence of 

probiotic feeding. In contrast to increased intestinal microbial species richness and diversity 

induced by the probiotic in the aforementioned study, a number of studies have reported a 

decrease in these parameters. Furthermore, the number of observed species has also been 

reported to decrease as a consequence of dietary probiotic administration in the fish intestine. 

Ferguson et al. (2010) reported a decrease in the number of observed species as well as a 

decrease in species richness and diversity in the allochthonous intestinal populations of tilapia 

(Oreochromis niloticus) fed the probiotic Pediococcus acidilactici compared to fish fed a 

control after a period of 32 days. Yang et al. (2012) reported a marginal reduction in species 

richness and diversity in the autochthonous microbial populations of the mid and posterior 

intestinal regions of grouper (Epinephelus coioides) fed Bacillus clausii after 60 days 

compared to a control. Interestingly the opposite was observed in the microbial populations 

of the anterior intestinal region. The authors also reported the stimulation of some potentially 

beneficial bacteria (Enterococcus sp. -like and Bacillus pumilus -like), as well as, a reduction 

in potential harmful bacteria (Staphylococcus sp. –like and Vibrio ponticus –like) in samples 

of fish fed the probiotic diet compared to those fed the control. Cerezuela et al. (2013b) 

assessed the effects Bacillus subtilis and inulin on the intestinal morphology and 

allochthonous microbiota of gilthead sea bream after four weeks. The authors reported 

significant decreases in specific richness in samples of fish fed Bacillus subtilis, inulin and 

Bacillus subtilis + inulin compared to those fed the control. Shannon’s diversity was also 

observed to be significantly reduced in fish fed the Bacillus subtilis, and Bacillus subtilis + 
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inulin diets compared to fish fed the control. Suzer et al. (2008) demonstrated beneficial 

effects, with the application of commercial Lactobacillus spp. (Lactobacillus 

plantarium, Lactobacillus bulgaricus, Lactobacillus acidophilus, and Lactobacillus 

rhamnosus) probiotic to live feeds and the rearing water of gilthead sea bream. Fish fed the 

probiotic treatments showed a significant increase in the specific activities of pancreatic and 

intestinal enzymes and an increase in both survival and specific growth rate when compared 

to fish fed the controls. Another study by Zhou et al. (2010) revealed that Lactococcus lactis 

RQ516 had the ability to inhibit the growth of the fish pathogen Aeromonas hydrophila in 

vitro. The study also observed the probiotic fed fish exhibited a significant increase in the 

total protein and globulin concentrations in the blood serum of tilapia (Oreochromis niloticus) 

as well as significant increases in immune parameters for respiratory burst activity, lysosome 

content, myeloperoxidase and superoxide dismutase activity when compared to the control 

fed fish. Bacterial regional specificity in the gut is also an important aspect and one which 

must be taken in to account when selecting a probiont. An in vitro study by Lazado et al. 

(2011) observed that two candidate probiotic bacteria (Pseudomonas sp. and Psychrobacter 

sp.) applied to intestinal epithelial cells (IEC’s) of Atlantic cod adhered to different intestinal 

cells. The authors report that the probiotics applied exhibited the potential to interfere with 

the adhesion of two pathogens, V. anguillarum and Aeromonas salmonicida. The adhesion of 

V. anguillarum was affected through competition by Psychrobacter sp. and although affected 

by Pseudomonas sp., the mode of action was not determined. The potential pathogen A. 

salmonicida was affected through competition by Pseudomonas sp., while exclusion 

mechanisms were favoured by Psychrobacter sp.  

Merrifield et al. (2010) assessed the probiotic potential of Bacillus subtilis, Bacillus 

licheniformis and Enterococcus faecium on the growth performance, feed utilisation, and 

intestinal microbiota of oxolinic acid treated rainbow trout for 10 weeks. The authors 
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reported significantly improved feed conversion ratios, specific growth rates, and protein 

efficiency ratios in fish fed B. subtilis + B. licheniformis compared to fish fed the control. The 

authors conclude, suggesting that the probiotics used here could create a stabilizing effect, 

and could strengthen the intestinal microbiota post antibiotic treatment. Another finding of 

the study was an increase in intestinal in leukocyte levels in fish fed the Bacillus diets as well 

as those fed the Bacillus + E. faecium compared to the control. Standen et al. (2013) also 

observed significantly elevated intestinal leukocyte levels, as well as increased intestinal 

goblet cells in tilapia fed Pediococcus acidilactici for six weeks when compared to the 

control. The authors also reported an increase in the gene expression of TNFα in fish fed the 

probiont at week six and suggest these collective results could be an indication of an 

epithelium in an increased immunological state induced by probiotic feeding.  

There is in fact growing evidence that probiotics do indeed positively influence the immune 

response in fish, due in part at least, to the components produced by the probiont which are 

thought to interact with the GALT generating immune responses (Pérez et al. 2010; 

Dimitroglou et al. 2011). Andani et al. (2012) evaluated the effects Lactobacillus casei and 

Lactobacillus plantarum on the growth performance, immune response and antagonistic 

potential against Yersinia ruckeri in the diets of rainbow trout. The authors reported 

significant increases in total weight gain and SGR’s of fish fed the probiotic diets compared 

to fish fed the control. Lysozyme activity, alternative complement activity and total 

immunoglobulin levels were also significantly increased in fish fed L. casei compared to fish 

fed the control. Furthermore, percentage survival rates were significantly greater in fish fed 

the probiotic diets compared to those fed the control after being challenged with Y. ruckeri. 

Pérez-Sánchez et al. (2011) investigated the effects LAB: Lactobacillus plantarum, L. lactis 

and Leuc. mesenteroides on the expression of the immune related genes: IL-1β, IL-8, IL-10 

and TNFα (head kidney), and IL-8, Tlr5 and IgT (intestine) of rainbow trout fed the diets for 
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36 days. The authors reported a significant up-regulation of mRNA levels of IL-10, IL-8 and 

IgT in samples of fish fed L. plantarum compared to those from the control. The study also 

reported significantly higher mRNA levels of IL-10, IL-8 and IgT in fish fed L. plantarum 

compared to fish fed the control after fish were challenged with the pathogen Lactococcus 

garvieae. The authors concluded that L. plantarum has the ability to stimulate the immune 

response in rainbow trout; however, interestingly the authors observed undetectable levels of 

either probiotic or pathogen in samples of the posterior intestine using PCR-DGGE analysis. 

Balcázar et al. (2008) demonstrated a higher survival rate of brown trout (Salmo trutta) as a 

result of probiotic (Lactococcus lactis CLFP 100 and Leuc. mesenteroides CLFP 196) 

application in fish subjected to temperature stress.  The authors also observed that fish fed the 

probiotics had higher phagocytic cell activation in the head kidney and decreased levels of 

the pathogen Aeromonas salmonicida compared to control fed fish. Another study on brown 

trout, Balcázar et al. (2007a) assessed the effects several LAB (Lactococcus lactis ssp, 

Lactococcus lactis, Lactobacillus sakei and Leuc. mesenteroides) on the humoral response, 

administered to the feed at 10
6
 CFU g

-1
. Fish were fed the probiotic diets for two weeks and 

switched back to a non-probiotic diet for another two weeks. When compared to the control 

group the authors observed the LAB fed fish to exhibit significantly elevated complement 

activity in the serum after two weeks. At the end of the third week significantly higher 

lysozyme activity was observed in fish fed Lc. lactis ssp, Lc. lactis, and Leuc. mesenteroides 

compared to the control fed fish. These LAB were also assessed by Balcázar et al. (2007b) in 

the diets of rainbow trout at the same levels for two weeks. Similarly, the authors reported an 

increase in resistance to the pathogen A. salmonicida in fish fed the probiotic diets. Fish fed 

the probiotics also exhibited significantly elevated phagocytic activity in the head kidney and 

alternative serum complement activity when compared to the fish fed the controls after two 

weeks.  A number of other studies have reported immune modulation upon probiotic 
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application in rainbow trout (Panigrahi et al. 2004, 2005, 2007, 2010, 2011; Kim & Austin 

2006; Newaj-Fyzul et al. 2007; Korkea-aho et al. 2011, 2012; Min et al. 2012). Probiotic 

studies in European sea bass are limited to only a few and these include studies by: Carnevali 

et al. 2006; Silvi et al. 2008; Abelli et al. 2009; Tovar-Ramírez et al. 2010; Touraki et al. 

2010; Sorroza et al. 2012. Collectively these studies have demonstrated the potential of 

various candidate probiotics to modulate the sea bass intestinal microbiota (Silvi et al. 2008), 

improve growth and immunological parameters (Carnavali et al. 2006; Abeli et al. 2009; 

Tovar-Ramírez et al. 2010), and directly increase disease resistance to the pathogen V. 

anguillarum (Touraki et al. 2010; Sorroza et al. 2012). With the exception of the study by 

Silvi et al. (2008), the effects that probiotics have on the intestinal microbial communities of 

European sea bass, and how these effects influence the overall health of the host remains 

scarce and is an area in need of exploration.  

 

1.7.2. Prebiotics 

Prebiotics are also thought to offer potential beneficial health promoting effects to various 

fish species (Burr et al. 2005; Ringø et al. 2010). These feed additives are non-digestible feed 

components which may selectively stimulate potentially beneficial bacteria, thus improving 

host health (Gibson et al. 1996). Specifically, Gibson et al. (2004) defined prebiotics as: any 

foodstuff that reaches the colon, (e.g. non-digestible carbohydrates, some peptides and 

proteins, as well as certain lipids). Prebiotic carbohydrates can either be oligosaccharides and 

polysaccharides with inulin, mannanoligosaccharides (MOS), fructooligosaccharides (FOS) 

and galactooligosaccharides (GOS) being the most commonly used prebiotics in animal feeds, 

including feeds for various fish species (Ringø et al. 2010; Cerezuela et al. 2011). Prebiotics 

have the ability to influence the microbial community within the host, decreasing intestinal 
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pathogens and replacing them with beneficial bacteria such as Lactobacillus and Bacillus spp. 

Beneficial effects of prebiotics have been observed in mammals and are relatively well 

documented; however, studies relating to prebiotic applications in fish have only recently 

been explored (Burr et al. 2005; Dimitroglou et al. 2011).  

Prebiotic studies in fresh water species have revealed some promising results in terms of 

growth and intestinal health (Staykov et al. 2007; Grisdale-Helland et al. 2008; Ortiz et al. 

2013; Dimitroglou et al. 2011). In the study by Staykov et al. (2007), improved FCR’s and 

growth, as well as increased lysozyme and complement activity were observed in fish fed a 

diet containing MOS at 2 g kg
-1 

compared to fish fed a control diet. MOS was also 

supplemented into Atlantic salmon diets in the study by Dimitroglou et al. (2011). The 

prebiotic dose was 4 g kg
-1

 in this study conducted on Atlantic salmon (smolts). The authors 

reported significantly increased body protein composition, as well as significantly improved 

absorptive surface area and microvilli density in the anterior intestine when compared to fish 

fed a control after 14 weeks feeding. In a 4 month study Grisdale-Helland et al. (2008) 

assessed the use of MOS, FOS in the form of inulin and GOS at 10 g kg
-1

 in the diets of 

Atlantic salmon. The study reported significant increases in feed efficiency (5 %) and energy 

retention (6 %) in fish fed the FOS relative to fish fed the control. The study also reported 11 

% lower routine oxygen consumption, 5 % lower protein and 3 % higher energy 

concentration in whole-body and 7 % greater energy retention in fish fed the MOS 

supplemented diet, which were significant increases when compared to fish fed the control. 

Nitrogenous and energetic losses in the non-faecal nitrogen excretions were significantly 

higher in fish fed the GOS diet (11 and 7 % respectively) compared to fish fed the control. 

Additionally, the protein concentration in the wet body composition and protein retention was 

significantly reduced (6 and 9 % respectively) in fish fed the GOS compared to those fed the 

control. Neutrophil oxidative radical production and serum lysozyme activity was 
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significantly lower in fish fed the MOS supplemented diet compared to fish fed the control. 

The authors suggest the results obtained in this study to be mostly positive but indicate 

further research is required to assess optimal dosage and how these feed additives affect the 

health of fish challenged by bacterial infection or other stressors. Indeed, prebiotic dose must 

be a major consideration for optimum beneficial effects. Low doses may fail to confer 

positive effects and conversely high doses may be detrimental to the host health. High doses 

of inulin (150 g kg
-1

) have been reported to be detrimental in terms of intestinal health of 

Arctic charr (Salvelinus alpinus) (Olsen et al. 2001). Enterocyte disruption and microvilli 

disorder in the posterior intestine were reported after 4 weeks feeding. Dose dependant 

resistance to pathogens have also been reported in fish. Ebrahimi et al. (2012) demonstrated 

this in common carp challenged with Aeromonas hydrophila, with lowest mortality rates 

observed in fish fed the 1.5 g kg
-1

 (Immunogen
®

) dose, compared to fish fed the 0.5, 1, and 

2.5 g kg
-1

 doses. Akrami et al. (2012) also assessed dose of MOS supplementation in the diets 

of carp. The study investigated the effects 1, 2 and 3g kg
-1

 doses had on the growth, survival, 

body composition and some haematological parameters of juveniles fed the diets for 45 days. 

The authors reported significant increases in haematocrit and lymphocyte levels in fish fed 

the 1 g kg
-1

 dose compared to fish fed the control. Growth performance and carcass 

composition were also improved in fish fed the 1 g kg
-1

 MOS however, not significantly. The 

other parameters measured were unaffected by dietary dose. Additionally, there is further 

evidence that dietary prebiotics (MOS) supplementation increases the disease resistance of 

crucian carp (Carassius auratus gibelio) to the pathogen A. hydrophila (Zhou et al. 2009; Liu 

et al. 2013). MOS (1 and 2 g kg
-1

) supplementation has also been observed to increase serum 

lysozyme and superoxide dismutase activities in this fish species (Zhou et al. 2009). The 

authors also report increased growth parameters in fish fed the prebiotic diets. Digestive 

enzyme activity has also been observed in crucian carp fed xylooligosaccharides (XOS) (Xu 
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et al. 2009), and increased weight gain and increased serum lysozyme and complement 

activities in common carp (Cyprinus carpio) as a consequence of MOS (2 g kg
-1

) 

supplementation. There are a number of other studies assessing the effects prebiotics have on 

the health of various other carp species (Andrews et al. 2009; Lochman et al. 2009, 2010; He 

et al. 2011; Lin et al. 2012).  

Prebiotic studies have also been applied to various marine fish species with beneficial effects 

reported. Dimitroglou et al. (2010) assessed the use of MOS (2 and 4 g kg
-1

) supplemented in 

to the diets of sea bream of either a FM based diet or a diet with partial FM replacement with 

SBM for 9 weeks. The authors reported no differences in the mean final weight, SGR, FCR 

and protein efficiency ratio (PER) as a consequence of MOS supplementation in either FM or 

SBM fed fish. Other results obtained revealed a significantly lower condition factor (K) and 

hepatosomatic index (HSI) in fish fed the MOS supplemented diets of the FM based feed 

compared to the FM control. These parameters remained unaffected in fish fed the SBM 

based feed. Histological analyses revealed MOS to seemingly improve the absorptive surface 

area in the posterior intestine of fish fed the FM based diet. Furthermore, microvilli density 

and lengths were increased in the anterior and posterior regions of fish fed the MOS in both 

FM and SBM based diets. Microbiological analyses indicated MOS supplementation also 

influenced the allochthonous intestinal microbiota by increasing species richness and 

diversity in fish fed the FM based diets. MOS seemed to exerted little effect on the 

allochthonous microbial populations of fish fed the SBM based diets.  

Only a small number of studies have assessed the effects of prebiotic supplementation on 

marine species immunity and direct protection against pathogens. In a study on Atlantic cod, 

Lokesh et al. (2012) assessed the effects of MOS (1 g kg
-1

) on the expression of pro-

inflammatory and anti-inflammatory cytokine genes in the intestine prior to, and post V. 

anguillarum infection. The study reported a significant increase in the relative mRNA gene 
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expression of the inflammatory cytokine IFNγ, prior to the pathogen exposure, in the anterior 

intestine of fish fed the prebiotic compared to fish fed the control. Post infection, prebiotic 

fed fish exhibited significantly increased IL8 mRNA expression in the rectum, and 

significantly increased IL 1β mRNA expression in the posterior intestine and rectum. In this 

study, MOS appeared to influence the intestinal response to V. anguillarum infection which 

may confer beneficial effects against this pathogen. A study by Cerezuela et al. (2008) found 

that dietary inulin (5 and 10 g kg
-1

) produced significant inhibition in phagocytosis and 

respiratory burst in leucocytes in sea bream after one week when compared to fish fed a 

commercial control diet. Inulin was also reported to confer some immune-stimulating effects 

in another study by Cerezuela et al. (2012). The authors evaluated the effects that inulin (10, 

15 and 30 g kg
-1

) had on some immune parameters, immune-related gene expression and 

protection against Photobacterium damselae subsp. piscicida in gilthead sea bream. The 

authors reported 10 g inulin kg
-1

 to be the optimal dose which stimulated the serum 

complement activity, IgM levels and the leukocyte phagocytic activity after two weeks. 

Inulin also stimulated leukocyte respiratory burst activity but had no affect on immune 

related gene expression in the head kidney, and did not increase survival when fish were 

challenged with the pathogen. Another study revealed inulin supplementation effected the 

intestinal gene expression, with the expression of IL8, β-actin, occludin, and transferrin 

observed in sea bream fed the experimental diet when compared to fish fed a control 

(Cerezuela et al. 2013a). Immunity in marine fish as a consequence of prebiotic applications 

is an area of research warranting further investigations. Inulin however, has also been 

observed to negatively affect intestinal morphology in sea bream and induce changes in the 

intestinal microbial communities. Cerezuela et al. (2013b) observed signs of microvilli and 

enterocyte damage in fish fed inulin (10 g kg
-1

) compared to fish fed a control diet. The 

authors also reported some microbiological parameters. Numbers of OTU’s and the range-
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weighted richness were significantly reduced in fish fed the inulin diet compared to fish fed 

the controls. Mahious et al. (2006) investigated the effect of dietary inulin, oligofructose and 

lactosucrose on the growth and intestinal bacteria of the marine turbot (Psetta maxima). The 

study observed the mean weight of larvae weaned on oligofructose to be significantly higher 

than those weaned on the other diets. A strain of Bacillus was observed to constitute 14 % of 

the total load of bacterial isolates in turbot weaned on the oligofructose. The authors suggest 

the presence of Bacillus sp. may be stimulated by oligofructose and might confer health 

benefits to the host. Indeed some Bacillus spp. are used as probiotics in the diets of fish, 

however the study did not identify this to species level. Although these last two studies 

investigated some microbiological aspects, there is a distinct lack of information relating to 

the effects that prebiotics have on the intestinal microbiota in marine fish species. More 

research into this and other areas of marine fish health are fundamentally important if the 

feed formulations are to be effective in culture going forward. 

In European sea bass there are a very limited number of studies assessing the effects of 

dietary prebiotics on the health of this species (Torrecillas et al. 2007, 2011a, 2011b, 2012, 

2013, 2015; Guerreiro et al. 2015). Torrecillas et al. (2011a) investigated the effects of dose 

dietary administration of MOS on growth, digestibility, liver morphology, lipid and 

carbohydrate metabolism enzymes, organoleptic properties, immune parameters and GI tract 

mucus production in European sea bass. The authors reported dietary inclusion of MOS 

improved feed utilization together with a reduction in feed intake. Furthermore enhanced 

phagocytic activity of head kidney leukocytes in fish fed 4 and 6 g kg
-1

 MOS diets at days 30, 

45 and 60 was also observed. Additionally, Torrecillas et al. (2012) observed increased 

disease resistance to V. anguillarum, and improved innate immunological responses in sea 

bass fed a diet containing MOS (4 g kg
-1

). In another study Torrecillas et al. (2013) reported 

European sea bass fed 4 g kg
-1

 MOS to exhibit significantly increased weight gain and SGR 
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compared to fish fed a control. Fish fed the prebiotic were also reported to exhibit 

significantly higher prostaglandin production, significantly reduced neutral lipid fraction, and 

significantly increased polar lipid fraction when compared to fish fed the control. Microscopy 

analyses also revealed fish fed the prebiotic to exhibit increased goblet cell’s and infiltrated 

eosinophilic granulocytes and generally a better presented epithelium when compared to fish 

fed the control diet. Torrecillas et al. (2015) assessed the effects of concentrated MOS 

(cMOS) at dietary levels of 1.6 g kg
-1

 on European sea bass performance, body chemical 

composition, fatty acid profiles, liver and posterior gut morphology and the expression of 

intestinal immune and lipid metabolism genes. The authors reported increased SGR’s and 

fish lengths in fish fed the cMOS supplemented diet compared to those fed the control. No 

differences were observed in tissue proximate composition analyses between treatments. In 

terms of gene expression a down-regulation of transforming growth factor β (TGFβ), up-

regulation of immunoglobulin (Ig), histocompatibility complex II (MHCII), T cell receptor β 

(TCRβ) and caspase-3 (CASP3) was observed in fish fed the cMOS supplemented diets 

compared to fish fed the control. Guerreiro et al. (2015) assessed the effects of short-chain 

fructooligosaccharides (scFOS) and xylooligosaccharides (XOS) on the growth, feed 

utilisation and liver activity of the enzymes involved in the glycolytic, gluconeogenic, and 

lipogenic pathways of European sea bass juveniles. The study included diets based on fish 

meal (FM) and plant ingredients (PP) each with the inclusion of scFOS and XOS at 1 % 

hence dietary treatments were PP-Control, PP-FOS, PP-XOS and FM-Control, FM-FOS, 

FM-XOS. Fish fed the PP-XOS diet were observed to exhibit increased growth performance 

compared to those fed the PP-Control. Fish fed the FM-FOS and FM-XOS exhibited higher 

glucokinase activity compared to fish fed the FM-Control. Fish fed the XOS diets also 

exhibited lower lipogenic enzyme activities compared to fish fed the other treatments. FOS 

and XOS treatment also increased glycolytic activity in the liver of fish fed the FM based 
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diets. The authors concluded that XOS could be potentially used as a prebiotic in the diets of 

European sea bass.  

The studies carried out on prebiotics in fish suggest their potential as feed additives in 

aquafeeds. There is however, very little information regarding their effects on the intestinal 

microbial communities in fish and more research is required to further increase our 

understanding of this important aspect of fish nutrition. Future research should also focus on 

optimal dosage, effects on metabolism and immunological responses to assess whether a 

prebiotic should be used in the diets of cultured fish species. There are also some concerns 

regarding the potential for several pathogens and opportunistic bacteria to utilise a wide range 

of carbohydrates. In this case these potential pathogens may proliferate in the gut causing 

detrimental effects to host health (Nayak 2010b). Therefore, research into prebiotic-potential 

pathogen interactions should also be conducted. 

 

1.7.3. Synbiotics 

Synbiotic applications are the use of probiotics and prebiotics in combination in order to 

enhance the beneficial effects either one might have individually (Cerezuela et al. 2011). 

Investigations into synbiotics have been applied to an array of fish species and have included 

techniques such as culture dependent/ culture independent microbial analyses, as well as 

growth performance, feed utilisation, body composition, and histological, immunological and 

disease resistance analyses as a means of assessing the potential beneficial effects. Cerezuela 

et al. (2011) provided a review on synbiotic applications in fish and readers with an interest 

in studies pre 2011 are referred to this review. Since 2011, there has been a number of 

synbiotic studies conducted on various fish species (Lin et al. 2012; Nekoubin et al. 2012a; 

2012b; Abid et al. 2013; Cerezuela et al. 2012; Cerezuela et al. 2013a; Cerezuela et al. 2013b; 

Firouzbakhsh et al. 2014; Hassaan et al. 2014; Akrami et al. 2015; Beshkar et al. 2015; 
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Hassaan 2015; Hoseinifar et al. 2015; Nurhayati & Yuhana et al. 2015; Vaezi et al. 2015; 

Zhang et al. 2015).  

Cerezuela et al. (2012) assessed the effects of inulin and Bacillus subtilis on immune 

parameters, immune-related gene expression and protection against the 

pathogen Photobacterium damselae subsp. piscicida in gilthead sea bream. The study found 

fish fed the synbiotic (B. subtilis 10
7
 CFU g

-1
 + inulin 10 g kg

-1
) to exhibit significantly 

higher serum complement activity after four weeks, and significantly higher IgM levels after 

two weeks feeding when compared to fish fed the control. Interestingly, fish fed the synbiotic 

were more susceptible to the pathogen with significantly higher mortality when compared to 

fish fed the control. In another study in gilthead sea bream Cerezuela et al. (2013a) 

demonstrated significantly increased expression of β-actin and occludin in the intestine of 

fish fed inulin + B.subtilis compared to fish fed a control diet. The authors concluded that the 

expression of these genes may indicate a strengthening of the tight junctions and transport of 

iron molecules in the intestine, but could also be indicative of a negative reaction to the 

initiation of the diets. Clearly, more research is required to confirm these findings and to 

further understand synbiotics effects on the expression of genes in the intestine and indeed 

other organs of fish. In a third study on gilthead sea bream Cerezuela et al. (2013b) assessed 

the effects inulin + B. subtilis had on intestinal morphology and microbiota. The authors 

observed no differences in intestinal absorptive surface area between fish fed the synbiotic 

and control diets. However, a reduction in goblet cells and microvilli heights was observed in 

fish fed the synbiotic diet compared to those fed the control. DGGE analyses revealed 

significant reductions in the number of OTU’s, species diversity and range-weighted richness 

in fish fed the synbiotic diet compared to fish fed the control.  

Abid et al. (2013) investigated the effects of a synbiotic (Pediococcus acidilactici 3.5 g kg
-1 

+ 

scFOS 7 g kg
-1

) supplemented into the diets of Atlantic salmon on the intestinal health of fish 
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after 63 days feeding. Results revealed fish fed the synbiotic diets exhibited significantly 

lower total bacterial levels in the anterior and posterior mucosal tissue and posterior digesta 

compared to fish fed the control diet. DGGE analyses revealed significantly increased OTU’s, 

species diversity and richness in the anterior digesta of fish fed the synbiotic compared to 

those fed the control. The authors also observed a significant increase in mucosal fold length 

and epithelial leukocyte numbers as a consequence of synbiotic administration. In terms of 

immunology, a significant up-regulation of the pro-inflammatory cytokine genes, IL-1β, IL8 

and TNFα, as well as the expression of the genes TLR3 and MX-1 was observed in both 

intestinal regions of fish fed the synbiotic treatment compared to fish fed the control. The 

authors concluded that the collective results obtained in this investigation suggest the 

synbiotic supplementation has a positive effect on the intestinal health of Atlantic salmon.  In 

a recent study on rainbow trout fingerlings, Hoseinifar et al. (2015) investigated the effect 

that P. acidilactici + GOS had on the immune response, skin mucus and disease resistance in 

an 8 week trial.  Serum lysozyme activity, alternative complement activity and leukocyte 

respiratory burst activity were observed to be significantly increased in fish fed the synbiotic 

treatment when compared to fish fed the control. Soluble protein levels were also 

significantly elevated in fish fed the synbiotic diet compared to those fed the control. 

Additionally, a bacteriocidal activity assay was carried out and revealed the skin mucus of 

fish fed the synbiotic diet to be significantly more effective in the inhibition of Streptococcus 

faecium, Streptococcus iniae, Serratia marcescens, Staphylococcus aureus and Escherichia 

coli. Furthermore, mortalities were observed to be significantly lower in fish fed the synbiotic 

diet compared to fish fed the control after being challenged with Streptococcus iniae. 

Firouzbakhsh et al. (2015) also used rainbow trout as the model for a synbiotic trial. Diets 

supplemented with Enterococcus faecium 10
11

 CFU g
-1

 + FOS (0.5, 1.0 and 1.5 g kg
-1

) were 

fed to fingerlings for a period of 60 days. The study revealed significantly increased final 
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mean weights and SGR’s of fish fed the diets containing all three synbiotic inclusion rates 

compared to those fed the control diet. FCR and feed conversion efficiency (FCE) was 

observed to be most improved in fish fed the 1.0 g kg
-1

 synbiotic treatment. Haematological 

parameters revealed significant increases in white and red blood cell counts as well as 

significantly elevated haemoglobin concentrations and haematocrit in fish fed the synbiotic 

treatments when compared to fish fed the control. Serum lysozyme activity was also 

significantly increased in fish fed the synbiotic treatments. In all haematological analyses the 

highest values were observed in those fish fed the 1.0 g kg
-1

 synbiotic dose. Furthermore, all 

synbiotic fed fish exhibited significantly higher survival compared to fish fed the control after 

being challenged with Saprolegnia parasitica. The results obtained from both of these trials 

suggest rainbow trout fingerling health is improved as a consequence of the respective 

synbiotic treatments and the optimal dose was1.0 g kg
-1

.  

Zhang et al. (2014) investigated the effects of B. subtilis + FOS on growth performance, 

immune responses and disease resistance in juvenile ovate pompano (Trachinotus ovatus). 

Fish were fed either a control or one of four synbiotic diets for a period of eight weeks. The 

synbiotics were supplemented into the diets as follows with the probiotic expressed as CFU g
-

1
 + prebiotic expressed as g kg

-1
: diet 1. 1.05 + 0.2, diet 2. 1.05 + 0.4, diet 3. 5.62 + 0.2, and 

diet 4. 5.62 + 0.4. Growth data results displayed fish fed all synbiotic diets to exhibit higher 

SGR’s, significantly so in diet 3, and feed efficiency ratios (FER’s), significantly so in diets 2, 

3 and 4 when compared to fish fed the control. Respiratory burst activity was observed to be 

significantly elevated in fish fed diets 1 and 3 compared to fish fed the control. Alternative 

complement pathway activity was significantly elevated in fish fed diets 3 and 4 compared to 

fish fed the control. Serum lysozyme was significantly elevated in fish fed diets 2, 3 and 4 

compared to fish fed the control. Phagocytic activity remained statistically unaffected 

between treatments. Furthermore, fish fed the synbiotic diets exhibited lower cumulative 
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mortalities after 10 days post Vibrio vulnificus infection compared to those fed the control 

diet. The results of this trial indicate that dietary B. subtilis and FOS may enhance the 

systemic immunity in juvenile ovate pompano under the conditions of the present study. The 

authors suggested that future work is needed to ascertain the mechanisms involved around B. 

subtilis supplementation, as well as research into the significance of this probiont and FOS in 

relation to the non-specific immunity and disease resistance of this fish species is also needed. 

Further to this, more research is required on the effects these feed additives have on the 

intestinal (allochthonous and autochthonous) microbial communities.  

Vaezi et al. (2015) investigated the effects that the synbiotic: Biomin imbo application on the 

intestinal microbiota of Russian sturgeon (Acipenser guldenstadti). The study utilised five 

different synbiotic inclusion levels (1, 1.5, 2, 2.5 and 3 g kg
-1

) and compared the culturable 

allochthonous intestinal microbiota of these fish against a control after 20, 40 and 60 days 

feeding. The authors assessed the total (culture dependent) bacterial levels, as well as, 

cultivable LAB levels. The study showed bacterial levels increased in a time dependant 

manor in all treatments and significant increases in LAB were observed in the synbiotic fed 

fish compared to control fed fish in all time points. The authors suggest the results indicate a 

stabilising effect towards LAB in a time dependent pattern. This study is however, only a 

small insight into these microbial communities given that most microbes isolated from the 

gut of fish cannot be cultured on traditional media, and therefore more research is needed on 

the culture-independent techniques in order to ascertain the true effects this synbiotic has on 

the intestinal microbiota of Russian sturgeon.    

Even though there are a growing number of synbiotic studies in fish it’s clear that most of 

these studies focus on various growth parameters and immunology. There seems to be a 

distinct lack of research focusing on how these feed additives interact with the intestinal 
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microbial communities. More research is required on these interactions and how they relate to 

various aspects of fish health. 

 

1.7.4. Phytobiotics 

Phytobiotics are plant-derived natural compounds which potentially enhance animal 

productivity (Antache et al. 2013). These feed additives are thought to exhibit antimicrobial, 

antioxidant, growth promoting and digestive enzyme properties (Cristea et al. 2012). These 

properties are caused by a variety of primary (e.g. protein, carbohydrates and fat) and 

secondary (e.g. terpenes, carvacrol, capsaicin, peperin, chicoric acid and flavonoids) 

ingredients and have shown some promise as alternative feed additives in the nutrition of 

livestock (Grashorn 2010). In fish, various phytobiotics have been observed to have 

immunostimulating (Dügenci et al. 2003; Yin et al. 2006; Kaleeswaran et al. 2012), disease 

resistance (Christybapita et al. 2007; Sahu et al. 2007; Abd-El-Rhman 2009; 

Rattanachaikunsopon et al. 2010; Volpatti et al. 2013) and growth promoting (JI et al. 2007; 

Abd-El-Rhman 2009; Thanikachalam et al. 2010) effects. Cristea et al. (2012) gives a 

comprehensive review of the use of phytobiotics in aquaculture. Since the publication of this 

review, a number of studies assessing phytobiotics in fish have been published, most notably 

the studies by Antache and colleagues who have published a number of studies on the effects 

various phytobiotics have on the health of Nile tilapia (Anatache et al. 2013a, 2013b, 2013c, 

2014a, 2014b, 2014c, 2015).  In the first of these experiments Antache et al. (2013a) assessed 

the phytobiotcs thyme (Thymus vulgaris), fenugreek (Trigonela foenum graecum), neem 

(Azadirachta indica) supplemented into diets at a concentration of 10 g kg
-1

 on the 

biochemical composition of Nile tilapia. The study reported differences in protein with fish 

fed the phytobiotics exhibiting significantly lower values when compared to fish fed the 

control. Moisture levels were significantly higher in fish fed the phytobiotics compared to 
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fish fed the control. Lipid levels were observed to be significantly higher in fish fed the 

thyme and fenugreek treatments but was significantly lower in fish fed the neem treatment 

when compared to fish fed the control. The authors concluded that these phytobiotics at a 

concentration of 10 g kg
-1

 significantly influence the biochemical composition of Nile tilapia. 

In a second study Antache et al. (2013b) assessed rosemary, sea buckthorn and ginger (10 g 

phytobiotic kg
-1

) on growth performance of Nile tilapia. The results indicated that fish fed the 

sea buckthorn to exhibit the best SGR’s and FCR’s when compared to fish fed the control, 

however these were not significantly different. Antache et al. (2013c) also assessed the 

effects these phytobiotics have on oxidative stress in Nile tilapia. The study revealed 

significantly reduced lipid peroxidase from liver, gut and blood plasma in fish fed the sea 

buckthorn treatment when compared to fish fed the control. The authors suggest this to 

indicate a reduction in oxidative stress and the collective results obtained from the last two 

aforementioned studies reveal sea buckthorn at a concentration of 10 g kg
-1

 confers beneficial 

effects to Nile tilapia heath. More recently Antache et al. (2014a, 2014b) have also observed 

beneficial changes in haematological parameters in Nile tilapia fed various phytobiotics. 

Antache et al. (2014c) also observed some positive effects in terms of growth and reduced 

stress in Nile tilapia fed a diet containing sea blackthorn at 10 g kg
-1

 + vitamin E at 0.5 g kg
-1

 

compared to fish fed a control. The authors suggest these results indicate a synergistic effect 

between these two feed additives. Antache et al. (2015) also observed that dietary rosemary, 

sea buckthorn and ginger influenced the muscle tissue biochemical composition of Nile 

tilapia with significantly increased percentage protein in fish fed 10 g ginger kg
-1

 feed, 

compared to fish fed the control. These studies report basic growth, body chemical 

composition, oxidative stress indicators and haematological parameters but further research is 

needed on various other aspects of health in order to better understand the effects these 

phytobiotics have on Nile tilapia. Effects on localised immunity, intestinal morphology, 



Chapter 1 

 

61 | P a g e  

 

metabolism, digestion and the intestinal microbiome are examples of areas in need of further 

research.  

 

1.8. Conclusions and future work 

It has been clear for a number of years that wild fisheries have been poorly managed and 

stocks have declined significantly, fuelling the growth of the aquaculture industry in the hope 

of meeting global demand for seafood. The aquaculture industry must continue to adapt to 

find new ways of becoming sustainable through feed technology and to counteract the threat 

of disease through methods other than those, such as antibiotics, which have serious 

implications to the environment and human health. The problems associated with the routine 

use of antibiotic compounds are well known and has pushed forward the search for 

alternative prophylactics. Alternatives include: phage therapy, vaccines, and various methods 

designed to inhibitor/disruptor pathogen virulence factors (Defoirdt et al. 2011; Romero et al. 

2012). Feed additives such as probiotics, prebiotics, synbiotics and phytobiotics have shown 

some potential beneficial effects in many fish species, and their use is becoming common 

practice in many aquaculture practices. However, this is a relatively new field of research and 

limited knowledge is available on the mechanisms governing the dynamics between feed 

additives and host health. Furthermore, very few studies have focused their analyses on the 

intestinal microbiota and the mechanisms associated with its manipulation. More studies are 

necessary to validate the effects feed additives have on these microbial communities and how 

they affect host health. Furthermore, there are considerable gaps existing in the role that feed 

additives have on various aspects for metabolism, immunology and intestinal morphology, as 

well as specific disease resistance. It is hoped that the recent advances in molecular 

metagenomic and proteomic techniques will supply new information on how these feed 

additives impact on the microbial assemblages, and how they relate to host mucosal 
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responses in fish. There is very little information on the effects of feed additives on European 

sea bass and furthermore, with the exception of a limited number of studies, feed additive 

effects on the intestinal microbiota of this species is limited at best. 

 

1.9. Thesis aims and objectives 

The aim of the current research programme was to assess the effects of various plant based 

protein sources and feed additives on the health of European sea bass through a series of three 

feeding trials. 

Trial 1. Assessing the potential enteritis effects as a consequence of partial fishmeal 

replacement with soy protein concentrate, pea protein concentrate and saponins on European 

sea bass. 

Trial 2. Assessing the potential of probiotic, prebiotic and synbiotic supplementation on 

alleviating enteritis-like effects of European sea bass fed a sub-optimal diet.   

Trial 3. Assessing the long-term effects of probiotic and phytobiotic supplementation on the 

growth, intestinal microbiota, intestinal integrity and localised intestinal and systemic 

immune responses of European sea bass.   
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Chapter 2: 

General materials and methodologies 
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2.1. Overview 

All experimental analyses were carried out with the following protocols unless otherwise 

stated. Chemicals, reagents and culture media were sourced from Fisher scientific Inc. 

(Hampton, NH, USA), Sigma Aldrich corp. (St. Louis, MO, USA) or Oxoid Ltd unless 

otherwise indicated. All experimental work involving fish was carried out under the Home 

Office project licence #30/2644 and personal licence #30/9993. 

 

2.2. Aquarium facilities 

All feeding experiments were conducted at the Aquaculture and Fish Nutrition Research 

Aquarium at Plymouth University. All trials were conducted in experimental system B 

(Figure 2.1). The system is a closed recirculation system with a total system volume of ~ 

4600 L. Mechanical filtration was provided by six filter nets and a two inch gauze filter matt, 

cleaned every other day. Biological filtration was provided by a submerged biological filter 

bed in the sumps and chemical filtration was provided by UV-light. System B comprised of 

18 x 110 L fibreglass tanks, each provided with recirculated aerated seawater (~ 32 ‰) at a 

rate of ~ 440 L hr
-1

. A 12 hr light, 12 hr dark photoperiod was maintained throughout the trial 

periods. Water changes (approximately 10- 15 % of system volume) were conducted every 72 

hr to minimise the accumulation of nitrogenous waste and bacterial levels. The system pH, 

dissolved oxygen and temperature were monitored daily using a Hach HQ 40d. The system 

was buffered with sodium bicarbonate (NaHCO3) as required to maintain ~ pH 7. The water 

temperature was maintained at 25 ± 1 
o
C with a thermostatic controlled heater (Elecro, 

Titanium) and dissolved oxygen levels maintained > 80 % saturation with additional aeration 

provided by an air stone supplied by a low pressure side channel blower (Rietschle, UK).  
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Ammonia (Lange LCK 304), nitrite (Lange LCK 341) and nitrate (Lange LCK 340) were 

monitored on weekly basis using a Hach Lange DR 2800 with acceptable levels considered to 

be < 0.1 mg L
-1

, < 1.0 mg L
-1

 and < 50 mg L
-1

 for ammonia, nitrite and nitrate, respectively.  

 

 

Figure 2.1. Schematic of system B with technical information and water holding capacities. 

A closed recirculatory system at the aquaculture facilities of Plymouth University, where all 

three feeding trials were carried out.  
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2.3. Experimental fish and feeding rates 

All experimental fish were acquired from Anglesey Aquaculture Ltd, Black Point, Beaumaris, 

Wales, UK. An acclimation period of ~ four weeks was carried out where the fish were fed a 

commercial sea bass diet (Skretting) before grading and separating into tanks. A preliminary 

grading was carried out approximately one week prior to the final grading where batch tank 

weights were graded to within 1.5 % of each other. Each tank was allocated a dietary regime 

at random and fish were fed at a rate of 2-3 % of total tank biomass three times daily (09:00, 

13:00 and 17:00). Feed was adjusted after weighing (as tank biomass) every two weeks. Feed 

was reduced to one feed (1.5 % biomass) the day before weighing to reduce stress. 

 

2.4. Diet formulation and production 

All experimental diets where formulated on Feedsoft professional software (version 3.1) to 

meet the known nutritional requirements of European sea bass (NRC 2011), and were 

produced at the nutritional facilities of Plymouth University. Ingredients were mixed in small 

amounts to ensure a homogenous mix before placing in a Hobart food mixer (Hobart Food 

Equipment, Sydney, Australia, model no: HL1400–10STDA). Oil and hot water were added 

to the mixer and cold press extrusion was conducted (PTM P6 extruder, Plymouth, UK) to 

produce the appropriate sized pellets. The pelleted diets were then dried for 48 hours in an air 

convection oven set at 45
o
C and broken up by hand to the relevant size. 
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2.5. Chemical proximate analyses 

Diets and carcass (where applicable) were subjected to analysis for the determination of 

protein, lipid, moisture, ash, and gross energy content. All samples were analysed according 

to AOAC (1995) protocols. 

 

2.5.1. Crude protein 

Crude protein levels were determined by the Kjeldahl method to establish the total nitrogen 

(N) content of samples. This amount was then multiplied by a factor 6.25 to calculate the 

crude protein content on the assumption that animal proteins contain 16 % nitrogen (AOAC 

1995). Approximately 150 mg of sample was added to a Kjeldahl digestion tube along with 

catalyst tablet (3 g K2 SO4, 105 mg CuSO4.5H2O and 105 mg TiO2; BDH Ltd UK) and 10 ml 

of concentrated (98 %) H2SO4 (Sp.Gr. 1.84, BDH Ltd UK). To correct for the efficiency of 

nitrogen extraction two samples of acetanilide (nitrogen content 10.36 %) were used. Casein 

was used to validate the nitrogen content. The digestion was performed using a Gerhardt 

Kjeldatherm digestion block (Gerhardt Laboratory Instruments, Bonn, Germany) at 225 
o
C 

for 40 min and at 380 
o
C for 60 min. After digestion the samples were distilled using a 

Vapodest 40 automatic distillation unit (Gerhardt Laboratory Instruments, Bonn, Germany). 

Crude protein is then determined as: ((ST - BT) x 0.20 x 14 x 6.25) / SW) * 100. Where ST is 

sample titre (ml), BT is blank titre (ml), SW is sample weight (mg), 0.2 is the acid molarity 

and 1.4007 is the molecular weight of nitrogen. 
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2.5.2. Gross energy 

Gross energy (MJ kg
-1

) was determined using a Parr Adiabatic Bomb Calorimeter model 

1356 (Parr Instrument Company, IL, USA). Approximately 1 g of sample was compressed 

into a cylindrical pellet which was then placed into a nickel crucible. The conductor fuse wire 

was then attached to electrodes and then placed on the uppermost surface of the pellet. The 

crucible is then placed into a decompressor vessel which is filled with 30 bar (435 PSI) of O2. 

The vessel is then placed into a metal cylinder containing 2000 g of distilled water which is 

then placed into the calorimeter machine. The sample is electrically ignited through the fuse 

wire and combusted. All organic material is burnt and the subsequent heat created is 

transferred into the surrounding water jacket and the difference between the initial and post 

ignition water temperature is detected by the calorimeter. The information is then converted 

into the energy value of the sample. 

 

2.5.3. Lipid   

Lipid content was determined by rapid Soxhlet extraction method. Approximately 3 g of 

sample was placed into a cellulose thimble, lightly plugged with cotton wool and inserted 

into glass beakers containing bumping granules. Petroleum ether (140 ml) was then added to 

the beakers which were then placed onto the soxtherm unit (Gerhadt Laboratory Instruments, 

Bonn, Germany). The sample was then heated to 150 
o
C for 30 minutes and rinsed for 45 

minutes and the solvent is left to evaporate for ~ 1 hr in a fume hood, after which the 

extracted lipid was weighed. The lipid content is then determined as: (LW / SW) x100. 

Where LW is the lipid weight (determined from weight increase of cup, g) and SW is the 

initial sample weight (g). 
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2.5.4. Moisture 

Moisture content was determined by weighing 3-5 g of sample into a metal dish (diet) or total 

wet weight of fish into an aluminium foil tray and air drying in a fan assisted oven at 105 
o
C 

until a constant weight was achieved. The percentage moisture was then calculated as follows: 

((WW – DW) / WW) * 100. Where WW is the wet weight (g) and DW is the dry weight (g). 

 

2.5.5. Ash 

The determination of ash (total mineral or inorganic content) was carried out by adding a 

known weight of sample (~500 mg) to a pre-weighed porcelain crucible. The crucibles were 

then incinerated in a muffle furnace (Carbolite, Sheffield, UK) at 550 
o
C for 12 hr. The ash 

content was then calculated as follows: ((SR - CW) / SW)*100. Where SR is sample residue 

weight (g), CW is crucible weight (g) and SW is the original sample weight (g). 

 

2.6. Fish dissection and sampling 

Two fish per tank were sampled for microbiology and two per tank for histology (n = 6) at 

the end of each trial. Fish were euthanized by an overdose (200 mg/L
 
water for 5 min) of 

MS222 (Pharmaq) and destruction of the brain. Fish were dissected under aseptic conditions 

and the intestine was isolated. Lipid deposits were removed and the intestine was cut just 

below the pyloric caeca. For molecular microbiological analyses the digesta was removed 

aseptically and placed into sterile microcentrifuge tubes and stored at -20 
o
C. For histological 

analyses the first 5 mm were discarded from the end of the posterior intestine, a section (5 

mm) for light microscopy analysis was then excised and placed in 4 % saline formalin which 

was replaced with 70 % IMS after 48 h. A piece approx. 2 mm in size was then excised, cut 
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open and separated into two small pieces, one sample for scanning electron microscopy 

(SEM) and the other for transmission electron microscopy (TEM). SEM samples were 

washed in 1 % S-methyl-L-cysteine for approximately 20 sec to remove mucus and both 

sections were placed in fixative (2.5 % glutaraldehyde in pH 7.2, 0.1 M sodium cacodylate 

buffer). Figure 2.2. illustrates the sampling methods used. 

 

 

Figure 2.2. Schematic of the intestine of European sea bass and details of how samples were 

taken for the various analyses. 
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2.7. Molecular microbiology 

2.7.1. DNA extraction 

DNA extraction was carried out using the Qiamp DNA stool mini kit (Qiagen), with some 

modifications. Digesta samples were weighed into microcentrifuge tubes, and with the 

addition of 500 µl of lysozyme (50 mg / ml in TE buffer), were incubated for 30 min at 37 
o
C. 

The samples were then homogenised in a vortex mixer and 700 µl of buffer ASL was added 

and samples were incubated for 60 min at 90 
o
C. Samples were then vortexed and centrifuged 

in a benchtop microcentrifuge for 1 min at 17,000 x g. The supernatant (800 µl) was added to 

a new microcentrifuge tube containing half of an Inhibitex tablet. The sample was 

immediately vortexed for 1 min and then left to stand for a further minute at room 

temperature. The sample was centrifuged for 3 min at 17,000 x g and the supernatant 

transferred to a new microcentrifuge tube. The sample was then centrifuged again for 3 min 

at 17,000 x g and 350 µl of the supernatant transferred to a new microcentrifuge tube. 

Proteinase K (15 µl) and buffer AL (350 µl) was then added to the sample which was mixed 

by inversion and incubated for 60 min at 56 
o
C. The sample was cooled to room temperature 

and 350 µl of molecular grade chloroform and 350 µl molecular grade phenol was added, 

mixed by inversion and centrifuged for 10 min at 17,000 x g. the supernatant was then 

removed and the chloroform step was repeated. The supernatant was then removed and 480 

µl of ice cold isopropanol was added and sample was mixed by inversion. The sample was 

left to stand at room temperature for 10 min after which another centrifugation step was 

carried out for 10 min at 17,000 x g. The supernatant was then discarded and the sample 

washed with 500 µl ice cold 70 % molecular grade ethanol, comprising of two centrifugation 

steps of 10 min at 17,000 x g. The ethanol was pipetted off and the sample was left to dry at 

room temperature for 5 min to remove any remaining ethanol. The sample was finally re-
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suspended in 30 µl of molecular grade H2O and incubated over night at 4 
o
C. DNA recovery 

and quality was analysed on a Nanodrop 2000 (Thermo Scientific, Wilmington, USA). 

 

2.7.2. PCR-Denaturing gradient gel electrophoresis (PCR-DGGE) 

PCR amplification of the variable V3 region of 16S rRNA genes was carried out using the 

reverse primer P2 (5’- ATT ACC GCG GCT GCT GG -3’) and the forward primer P3 (5’- 

CC TAC GGG AGG CAG CAG -3’), which had a GC clamp attached at the 5’ end (5’- CGC 

CCG CCG CGC GCG GCG GGC GGG GCG GGG GCA CGG GGG G -3’), after Muyzer et 

al. (1993). The following reagents were added to each PCR reaction: 1 μl of primer P2 and 1 

μl of P3 (50 pmol ul
-1

), 3 μl DNA template, 25 μl RedTaq™ (Bioline) and 20 μl molecular 

grade water. This gave a final concentration of 1.5 units Taq DNA polymerase, 10 mM 

TrisHCl, 50 mM KCl, 1.5 mM MgCl2, 0.001 % gelatin, and 0.2 mM dNTPs. The PCR 

conditions employed were: 95 
°
C for 5 min, followed by 2 cycles at 95 

°
C for 1 min, 65 

°
C for 

2 min, 72 
°
C for 3 min. This cycling regime was repeated with a drop in annealing 

temperature of 1 
°
C after every second cycle until a final annealing temperature of 55 

°
C was 

reached, whereupon a further 10 cycles were run. PCR products were run on 1.5 % agarose 

gels to assess PCR success. Denaturing gradient gel electrophoresis (DGGE) was performed 

using a DCode Universal Mutation Detection System (Bio-Rad laboratories, Italy). PCR 

products were run on an 8 % polyacrylamide gel (160 mm x 161 mm) containing 40 %–60 % 

denaturing gradient (where 100 % denaturant is 7 M urea and 40 % formamide). Gels were 

run at 65 V for 17 h at 60 
o
C in Tris-acetate-EDTA (TAE) buffer. Pooled samples were 

loaded in triplicate on the same gel, and DGGE gels were stained  for in 100 ml TAE buffer 

containing 10 µl of SYBR Gold nucleic acid gel stain (Molecular Probes, UK) for 20 min. 

Visualization was carried out in a Bio-Rad 1387 universal hood II (BioRad laboratories, 
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Italy). The resulting gel was transformed into presence/absence matrices and band intensities 

were measured using Quantity One ™ software (BioRad laboratories). 

 

2.7.3. Sanger sequencing 

DGGE bands were excised from the gels using a pipette tip and were subjected to a re-PCR 

as described in section 2.7.2. using primer P1 in place of primer P3 to ensure adequate 

amplification. PCR success was determined by agarose gel as described in section 2.7.4. and 

the subsequent PCR products were cleaned using a QIAquick PCR Purification Kit (Qiagen) 

as per the manufacturer’s protocol. Sequencing was carried out by GATC laboratories 

(GATC-biotech, Germany) and the resulting sequences were subjected to a BLAST search in 

GenBank (http://blast.ncbi.nlm.nih.gov/Blast.cgi).  

 

2.7.4. High-throughput sequencing 

PCR amplification of the variable V1-V2 region of 16S rRNA genes was carried out using 

the primers as follows; reverse primer 27F (5’ - AGA GTT TGA TCM TGG CTC AG – 3’) 

and the forward primer 338R (GCW GCC WCC CGT AGG WGT). The following reagents 

were included in each PCR tube: 1 µl of primer 338R and 1 µl of primer 27F (each 50 pmol 

µl
-1

; Eurofins MWG, Ebersberg, Germany), 4 µl of DNA template (diluted 1/10 of original 

template), 15 µl of MyTaq
TM

 (Bioline, London, UK) and 9 µl of PCR grade water. Thermal 

cycling was conducted using a TC-512 thermal cycler (Techne, Staffordshire, UK) under the 

following conditions: initial denaturation at 94° C for 7 min, then a touchdown of 10 cycles at 

94°C for 30 s, 62 for 30 s (with the annealing temperature decreasing by 1 
o
C peer cycle) and 

72 °C for 30 s. A further 25 cycles were performed at 94°C for 30 s, 53°C for 30 s and 72 °C 

for 30 s before a final extension for 7 min at 72 °C. To ensure that there was sufficient PCR 

amplicons for sequencing, the PCR reactions were run in duplicate and pooled into a single 
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sample prior to cleaning. PCR products were purified (QIAquick PCR Purification Kit; 

Qiagen) and quantified using a Qubit
®
 2.0 Fluorometer (Invitrogen). Prior to sequencing the 

amplicons were assessed for fragment concentration using an Ion Library Quantitation Kit 

(Life Technologies TM, USA), then concentrations were adjusted to 26 pM. Amplicons were 

attached to Ion Sphere Particles using Ion PGM Template OT2 200 kit (Life Technologies
TM

, 

USA) according to the manufacturer’s instructions. Multiplexed sequencing was conducted 

using Ion Xpress Barcode Adapters (1-16 Kit; Life Technologies
TM

) and a 316
TM

 chip (Life 

Technologies
TM

) on an Ion Torrent Personal Genome Machine (Life Technologies
TM

). 

Sequences were binned by sample and filtered within the PGM software to remove low 

quality reads. Data were then exported as FastQ files. 

Taxonomic analyses of sequence reads were performed after the removal of reads with low 

quality scores (Q < 20) with FASTX-Toolkit (Hannon Laboratory, USA). Sequences were 

concatenated and sorted by sequence similarity into a single fasta file. Sequences were 

denoised and analyzed with QIIME 1.5.0 (Caporaso et al. 2010a). Briefly, OTU mapping was 

performed using the USEARH quality filter pipeline (Edgar 2010), to remove putatively 

erroneous reads (chimeras). Non-chimeric OTU’s were identified with a minimum pairwise 

identity of 97% and representative sequences from the OTU’s were aligned using PyNAST 

(Caporaso et al. 2010b). Taxonomic classification of each OTU was determined using the 

Greengenes database (DeSantis et al. 2006) using the RDP classifier (Wang et al. 2007), 

clustering the sequences at 97 % similarity with a 0.80 confidence threshold.  

Alpha diversity metrics were calculated on rarefied OTU tables. Sampling depth and 

coverage were checked by constructing rarefaction curves and Good’s coverage of observed 

species. Phylogenetic diversity (PD), Chao1 (richness) and Shannon-Wiener indices 

(diversity) were also calculated. The similarities between the microbiota compositions were 

compared using Bray-Curtis unweighted pair group method with arithmetic mean (UPGMA). 
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2.7.5. Agarose gel electrophoresis 

PCR amplicons were loaded and ran on an agarose gel to assess product quality. All gels 

were 1 % agarose gel run with 1 x Trisborate EDTA (TBE) buffer in a Pharmacia 

electrophoresis tank. Sample’s (4 - 6 μl) and loading buffer (Bioline) was loaded onto the gel 

as well as 5 μl of Hyper ladder IV (Bioline). Positive and negative controls were included and 

ran alongside the samples. 

 

2.7.6. RNA extraction and cDNA synthesis 

Total RNA was extracted from the posterior intestine using TRIzol (Invitrogen, Carlsbad, 

CA,USA) according to the manufacturer's instructions, with some modifications as described  

elsewhere (Pérez-Sánchez et al. 2011). RNA concentration and purity were measured 

spectrophotometrically (NanoDrop Technologies, Wilmigton, USA) and stored at -80 
o
C until 

use. Total RNA was treated with DNAse (10 UI at 37 
o
C for 10 min, MBI Fermentas), and a 

total amount of 1 mg of RNA was used for cDNA synthesis, employing iScript cDNA 

Synthesis Kit (Bio-Rad CA, USA).  

 

2.7.7. Quantitative Real-time PCR 

PCRs were performed in an iQ5 iCycler thermal cycler (Bio-Rad) using the SYBR green 

method. Primer efficiencies were determined using serial dilutions (1/10) of pooled cDNA 

and resulting plots of Ct versus the logarithmic cDNA input, using the equation E = 10(
-1/slope

). 

Duplicate PCR’s were carried for each sample and each PCR reaction was set on 96 or 384 

well plates (7.5 μl reaction volumes) by mixing 2 μl of diluted (1/10) cDNA with 3.75 μl 2 x 

concentrated iQ™ SYBR Green Supermix (Bio-Rad), containing SYBR Green as a 
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fluorescent intercalating agent, 0.225 μl of forward and reverse primer (0.3 μM) and 1.3 μl of 

DEPC treated H20 (Ambion). Quality control measures and RT-reactions were carried out 

according to the MIQE guidelines (Bustin et al. 2009). The thermal profile for all reactions 

was 10 min at 95 °C and then 40 cycles of 15 s at 95 °C, 60 s at 60 °C with fluorescence 

monitoring occurring at the end of each cycle. Additional dissociation curve analysis was 

performed and showed in all cases one single peak. For information relating to the 

housekeeping genes, genes of interest and methods for analyses refer to individual chapters. 

 

2.8. Histology analyses 

2.8.1. Light microscopy 

Approximately 5 cm of the posterior intestine was sampled and fixed in 4 % saline formalin 

which was replaced with 70 % IMS after 48 hours. Samples were then dehydrated in a graded 

ethanol series and embedded in paraffin wax using a Leica EG1150H. Ultrathin sections (6 

µm) were cut on a microtome (Leica) and stained with haematoxylin and eosin (H&E) and 

Alcian Blue-PAS. Micrographs were taken of each section and each was analysed using the 

software package Image J 1.45 (National Institutes of Health, USA). The perimeter ratio (PR) 

between the internal perimeter (IP) of the mucosal folds (absorptive surface area) and the 

external perimeter (EP) of the intestine was calculated (PR = IP / EP, arbitrary units) after 

Dimitroglou et al. (2010) (Figure 2.3.). Lamina propria widths were analysed by taking the 

average of three measurements (bottom, mid and top) along each fold, 10 folds per sample 

(Figure 2.4.A). Mucosal fold lengths were measured with at least 18 folds per sample (Figure 

2.4.B). Intraepithelial leucocytes (IEL’s) were counted per 100 µm (10 folds per sample) 

(Figure 2.5.A) and goblet cells were counted across a distance of 200 µm (10 folds per 

sample) (Figure 2.5.B). 
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Figure 2.3. Example of the posterior intestine and how perimeter ratio measurements were 

carried out in image J. Transverse light microscopy images are loaded into image J (A), 

transformed to 8-bit (grayscale) (B) and a threshold of the image is then applied (C/D) where 

measurements of the outside and the inside of the intestine can be made. 
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Figure 2.4. Lamina propria widths were measures in three places along complete folds 

(bottom, middle and top of the fold) (A). Complete mucosal folds were measured by drawing 

a line at the top of the submucosa (SM) (base of the fold) and measuring to the tip of the fold 

with care taken to keep the line within the lamina propria (B). 
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Figure 2.5. Intraepithelial leucocytes (IEL’s) were counted by measuring 100 µm of the fold 

and counting cells in the epithelial layer between the lamina propria and brush border. An 

average of two counts per fold (either side of the fold) was taken (Figure A). For goblet cell 

(GC) counts a light microscope in phase contrast mode was used to show the GC’s more 

clearly. A measurement 200 µm from the tip of the fold was measured out and an average GC 

count on either side of the fold was taken per fold measured (Figure B). 

 

2.8.2. Scanning electron microscopy (SEM) 

Samples were fixed in 2.5 % glutaraldehyde with 0.1 M sodium cacodylate buffer (1:1 vol., 

pH 7.2, 3% NaCl). Samples were then dehydrated in a graded ethanol series each step for 15 
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min (30 % alcohol, 50 %, 70 %, 90 % and 100 % x2) and critical point dried (K850 Emithech) 

with ethanol as the intermediate fluid and CO2 as the transition fluid. The samples were then 

sputter coated (K550 Emitech) with gold and viewed with JSM 6610 LV and JSM 7001 F 

electron microscopes (JEOL, Tokyo, Japan). Multiple images were captured per sample at 

magnifications ranging from x 500 – x 20,000. Microvilli density measurements were carried 

out in image J 1.45 using images taken at x 20,000 magnification. A ratio of foreground 

(microvilli) / background (gaps between microvilli) was calculated to give a density value 

(arbitrary units;  AU) (Figure 2.6.). 

 

 

Figure 2.6. High magnification (x 20,000) electron micrographs showing the posterior 

intestine of European sea bass and how the microvilli measurements were carried out in 

image J. The image is loaded into image J (A), a threshold of the image is then applied to the 

image (B) and a ratio of the white and black is calculated to give a microvilli density ratio 

expressed as arbitrary units (AU). 
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2.8.3. Transmission electron microscopy (TEM) 

Samples were fixed in 2.5 % glutaraldehyde with 0.1 M sodium cacodylate buffer (1:1 vol., 

pH 7.2, 3% NaCl). Samples were then post-fixed in OsO4 (1 %, cacodylate buffer pH 7.2, 

0.1M) for 1 hr The tissue was dehydrated through a graded alcohol series which was then 

replaced with agar low viscosity resin in increasing concentrations (30 Resin: 70 Alcohol, 

50:50, 70:30) with 12 hours between each step until samples were in 100 % resin. Samples 

were then placed in beem capsules and embedded over night at 60 
o
C. Ultrathin sections (6 

µm) were cut on a Leica Ultra-microtome with a diatome diamond knife. The sections were 

then stained using a saturated solution of uranyl acetate (15 min) and Reynolds lead citrate 

(15 min). Samples were screened using a JEOL 1200 EX II TEM (Tokyo, Japan). TEM 

sampling and processing was conducted after Dimitroglou et al. (2009). Ten well orientated 

microvilli were measured (Merrifield et al. 2009) within three different images of each 

sample with a total of 4 samples per treatment. Measurements were carried out using Image J 

1.45 (National Institutes of Health, USA), as illustrated in Figure 2.7. 
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Figure 2.7. Electron micrograph of the posterior intestine illustrating for microvilli heights 

were measured in image J. Microvilli heights were measured by drawing a line from the base 

to the tip of complete well defined microvilli. 

 

2.9. Statistical analyses 

In order to evaluate similarities between treatment groups within the PCR-DGGE banding 

patterns were transformed into intensity matrices using the software Quantity One, version 

4.6.3 (Bio-Rad Laboratories), after Schauer et al. (2000). Primer V6 software (Clarke & 

Gorley 2006) was used to analyse and measure band intensities, and to determine similarity 

percentages (SIMPER). Pairwise comparisons to determine differences between PCR-DGGE 

banding profiles were analysed by a one-way analysis of similarity (ANOSIM) (Abell and 
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Bowman 2005). Ecological calculations were also carried out in Primer V6:  total number of 

operational taxonomical units OTU’s (S).Margalef species richness (d = (S - 1)/ln (N)); where 

S is the number of species and N is the total number of individuals (total intensity units). 

Shannon diversity index (H´ = 9 Σ (pi (ln pi)); where pi represents the proportion of the total 

number of individuals in the ith species. These parameters were subjected to a one-way 

ANOVA. 

For high-throughput sequencing data Good's estimator of coverage was calculated using the 

formula: (1−(singletons/individuals)) × 100. Chao 1 index was calculated using the formula: 

Schao1 = S + (n1-1)/ (n2+1); where Schao1 is the estimated richness, S is the number of observed 

species, n1 is the number of OTU’s with one sequence (singletons) and n2 is the number of 

OTU’s with two sequences (doubletons). The Bray-Curtis was calculated using the formula; 

Cn = 2jn/ (na + nb); where Na is the total number of individuals in site (treatment) A, nb is the 

total number of individuals in site B and 2jn in the sum of the lower of the two abundances 

for species found in both sites. The phylogenetic metric (PD) represents the minimum total 

branch length which covers all taxa within the sample present on the phylogenetic tree. A 

Kruskal-Wallis test was performed followed by pairwise comparison to compare OTU 

abundance and alpha diversity metrics, Vegan and ape packages of R were used to analyse 

the beta diversity of the groups. STAMP v2.0.8 was used to perform an ANOVA and 

Tukey’s post hoc test to distinguish differences at the phylum and genus levels. 

For all other data, means ± standard deviation (SD) are presented. Statistical analyses were 

carried out using SPSS version 18 (SPSS Inc., Chicago, IL, USA). Data were tested for 

normality and a one-way ANOVA was carried out thereafter. Significant differences between 

the control and treatment groups were determined by Tukey’s post hoc test. In all cases, 

significance was accepted at P < 0.05.  
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Chapter 3: 

Dietary induced changes to the intestinal morphology and microbiome of European sea 

bass D. labrax 
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3.1. Abstract 

The present study was designed to develop an enteritis model to be used in Chapter 4A to test 

the efficacy of feed additives on any potential intestinal inflammation which manifest as a 

consequence of fishmeal (FM) replacement.  Chapter 3 therefore assessed the effects of the 

partial replacement of dietary FM with soy protein concentrate (SPC), and pea protein 

concentrate (PPC), with and without the inclusion of saponins (S), on the intestinal 

microbiota and morphology of European sea bass. Fish (24.40 ± 0.25 g) were fed for four 

weeks with one of five dietary regimes: 1] FM (control), 2] SPC, 3] SPC+PPC, 4] 

SPC+PPC+S, and 5] SPC+S. PCR-DGGE and high-throughput sequencing analyses revealed 

distinct clusters between treatments suggesting differences in the intestinal microbiomes. 

PCR-DGGE also revealed significantly higher numbers of operational taxonomic units 

(OTU’s) in the plant based treatments compared to the control group after two and four 

weeks. Histological analyses revealed a significant (P < 0.05) reduction in goblet cells in fish 

fed the SPC+S supplemented diets when compared to FM fed fish at two and four weeks, as 

well as significant (P < 0.05) reduction in intraepithelial leukocytes (IEL’s) in fish fed the 

SPC+S supplemented diets when compared to control fed fish at week four (P < 0.05). 

Microvilli density was also significantly reduced in fish fed SPC+PPC, SPC+PPC+S and 

SPC+S treatments at weeks two and four (P < 0.05). This present study revealed that partial 

replacement of fishmeal with SPC and PPC, with and without saponin supplementation, 

cause changes to the intestinal microbiota and morphology of European sea bass.  
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3.2. Introduction 

Replacing fishmeal (FM) in aquafeeds, especially for carnivorous species, has been 

challenging for the aquaculture industry. Alternative protein sources derived from various 

plant based products have been increasingly studied, and utilised, in commercial aquafeeds. 

Soy proteins such as soybean meal (SPM) and soy protein concentrate (SPC) have the 

potential to replace, at least in part, a considerable percentage of FM in aquafeeds. Soy 

protein products contain a well-balanced amino acid profile and a lower market price 

compared to FM. However, certain anti-nutritional factors (ANF’s) contained in soy protein 

products limits their use in animal feeds and various negative health implications for fish 

have been associated with these protein source (Gatlin et al. 2007). Some ANF’s of SPC 

include fibres, phytic acid, enzyme inhibitors, lectins and saponins, which can reduce nutrient 

digestibility and growth performance. Some of these compounds, such as saponins, are 

known to interfere with the permeability of intestinal membranes, affecting the influx and 

efflux of molecules and bacteria (Knudsen et al. 2008; Øverland et al. 2009; Krogdahl et al. 

2010). High dietary SPC inclusion levels have been reported to induce histopathological 

disruption in the gastrointestinal (GI) tract of fish which include: shortening of the mucosal 

folds, reducing the absorptive surface area of the intestine, widening of the lamina propria, 

loss of supranuclear vacuolisation of the enterocytes, and up-regulation of pro-inflammatory 

genes such as IL-1β and TNF-α (Krogdahl et al. 2000; Knudson et al. 2007; Uran et al. 2008, 

2009). These deleterious changes, collectively known as enteritis, observed in the GI tract 

have predominantly been reported in salmonid species (Baeverfjord & Krogdahl 1996; 

Burrells et al. 1999; Nordrum et al. 2000; Krogdahl et al. 2003), but more recently similar 

effects have been detected in common carp (Uran et al. 2008; Marel et al. 2014). Pea protein 

meals and concentrates (PPM’s and PPC’s) have also been used as a partial replacement of 

FM in aquafeeds. Studies in Atlantic salmon (Øverland et al. 2009) and rainbow trout 
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(Thiessen et al. 2003) have indicated that PPC inclusion levels of up to 20 % did not cause 

inflammation in the posterior intestine and supported feed conversion ratios and growth 

performance equal to that of the control fed fish. Higher dietary levels of PPC (35 %) have 

been reported to lower growth performance and induce enteritis in the posterior intestine of 

Atlantic salmon. Saponins are a particularly important ANF present in SPC, PPC and other 

plant based protein sources and the levels of which require careful consideration when 

designing animal feeds (Gatlin et al. 2007; Krogdahl et al. 2010). Saponins are glycosides, 

steroidal or triterpenoid in nature, which form soap-like foams in aqueous solutions whiah are 

known to cause membrane disruption in mammals due to their haemolytic nature (Francis et 

al. 2002a; Bouarab et al. 2002; Augustin et al. 2011). Salmonid studies have revealed that 

saponins cause an increase in gut permeability and are a causative agent in the development 

of enteritis (Bureau et al. 1998; Knudsen et al. 2007, 2008; Iwashita et al. 2008). A review by 

Krogdahl et al. (2010) concluded that saponins play an important role in the onset of enteritis 

in salmonids but only when other plant based compounds are present in the diet. More 

recently however, there is evidence to suggest that saponins induce enteritis in Atlantic 

salmon independent of other plant-based compounds (Krogdahl et al. 2015). Saponins have 

also been reported to affect fish growth, metabolism, cholesterol levels in males and sex 

ratios favouring males in Nile tilapia (Francis et al. 2001; Francis et al. 2002b).  

The role of microbial communities in fish has recently received much attention and the 

importance of the many complex interactions which occur in the gut are a key factor affecting 

the health of the host (Nayak 2010; Dimitroglou et al. 2011). As a consequence there are a 

growing number of studies describing the effects of dietary plant proteins (SPC in particular) 

on the intestinal microbiota of fish (Heikkinen et al. 2006; Ringø et al. 2006; Bakke-

McKellep et al. 2007; Ringø et al. 2008; Merrifield et al. 2009; Cai et al. 2012; Desai et al. 

2012; Silvia et al. 2012; Reveco et al. 2014). The impact of plant based protein sources on 
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intestinal microbial communities of fish is only partly described but readers with an interest 

in this topic are referred to the review by Merrifield et al. (2011). 

Most studies regarding the effects of plant proteins on fish gut histology and microbiology 

have focused on long term effects at the end of growth trials (i.e. > 10 weeks) and so short-

term, temporal and transitional response effects may not have been identified. Therefore, the 

aim of the present study was to assess the short-term effects caused by partial FM 

replacement with plant proteins (with and without additional saponin supplementation) on 

European sea bass intestinal morphology and microbiota. 

 

3.3. Materials and Methodologies 

All experimental work involving fish was conducted under the UK Home Office project 

licence PPL 30/2644 and was in accordance with the UK Animals (Scientific Procedures) Act 

1986 and the Plymouth University Ethical Committee. 

 

3.3.1. Experimental design 

European sea bass were obtained from Anglesey Aquaculture Ltd, Black Point, Beaumaris 

UK and transported to the Aquaculture and Fish Nutrition Research Aquarium, Plymouth 

University, UK with an acclimation period of six weeks. The fish were then graded and 

separated into 15 x 110 L fibreglass tanks in a closed recirculatory system at a stocking 

density of 40 fish per tank with an average weight of 24.40 ± 0.25 g. Each dietary treatment 

was randomly attributed to the tanks in triplicate and the fish were fed each experimental diet 

at a rate of 2 – 3 % of biomass per day in equal rations at 9:00 and 17:00. Daily feed was 

adjusted on a weekly basis by batch weighing following a 24-h starvation period. Fish were 
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held at 24 ± 1 °C and 30 ± 2 ppt salinity with a photoperiod of 12: 12 h light: dark. Water 

quality parameters were maintained at 7.0 ± 0.5 pH and dissolved oxygen > 85 % saturation, 

and were monitored daily. Ammonium, nitrite and nitrate levels were monitored weekly with 

weekly water changes of approx. 25 % system volume were conducted to minimise the build-

up of these compounds.   

 

3.3.2. Diet preparation 

Five iso-nitrogenous and iso-lipidic dietary regimes were formulated (Table 3.1.) to meet the 

known requirements of European sea bass (NRC 2011). The dry ingredients were mixed in a 

Hobart food mixer (Hobart Food Equipment, Sydney, Australia, model no: HL1400–

10STDA). The oil and hot water were gradually added to the mixer and cold press extrusion 

was conducted (PTM P6 extruder, Plymouth, UK) to produce 2 mm pellets. The pelleted 

diets were then dried to achieve ca. 5 % moisture content in an air convection oven set at 

50 °C for 48 hours. The diets were then broken up to the appropriate size and the composition 

analysed using AOAC (1995) protocols (Table 3.1.). Experimental diets were subsequently 

stored in airtight containers prior to use. 
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Table 3.1. Dietary formulation (%) and chemical composition 

 FM SPC SPC + PPC SPC + S SPC + PPC +S 

Fishmeal
a
 62.93 20.00 20.00 20.00 20.00 

Soy protein concentrate
b
 - 52.72 18.51 52.72 18.51 

Lysamine pea protein
c
 - - 25.00 - 25.00 

Glutalys
c
 10.00 10.00 10.00 10.00 10.00 

Fish oil
d
 7.25 11.08 9.81 11.08 9.81 

Corn starch
e
 17.22 3.60 14.68 3.30 14.38 

Mineral/vitamin premix
f
 2.60 2.60 2.00 2.60 2.00 

Saponin
g
 - - - 0.30 0.30 

Proximate analysis (%) 

Dry matter 91.2 91.3 94.1 94.6 93.5 

Crude protein* 50.3 48.9 51.1 50.5 50.9 

Crude lipid* 13.1 14.7 13.7 14.5 13.8 

Ash* 9.1 7.1 5.1 7.4 4.8 

Gross energy (MJ kg
-1

)* 20.3 21.0 21.0 20.9 21.3 

a 
Herring meal LT94: CC MOORE & Co. Ltd., Dorset, UK.

 

b 
Hamlet HP100 (56 % crude protein), Hamlet Protein, Denmark. 

c 
Roquette Company, Frêres, France. 

d 
Seven seas Ltd. Hull, UK  

e 
Sigma-Aldrich Company, UK. 

f 
Premier Nutrition Products (PNP Ltd.) Rugeley, Staffordshire, UK. 

g 
Sigma–Aldrich Company, UK. (20-30% sapogenic content) 

* % wet weight basis 

 

 

3.3.3. Dietary proximate analyses 

Proximate analysis of diets was determined as described in section 2.5. 

 

3.3.4. Sampling 

Two fish per tank were sampled for microbiology and an additional two per tank for 

histology (n = 6) at weeks two and four. Fish were euthanized by an overdose (200 mg/l
 

water for 5 min) of MS-222 (Pharmaq) and destruction of the brain. Fish were dissected 

under aseptic conditions and the intestine was isolated. Lipid deposits were removed and the 

intestine was cut just below the pyloric caeca. To assess the allochthonous bacterial 
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populations, digesta was removed from the posterior region of the intestine using sterile 

forceps and collected into sterile microcentrifuge tubes and stored at -20 
o
C until use.  

 

3.3.5. Microbiological analysis 

3.3.5.1. PCR-DGGE and sequencing 

For PCR-DGGE analysis, digesta samples from two fish per tank were pooled and 

homogenised, thus providing n = 3 per treatment. DNA from 200 mg samples was extracted 

as described in section 2.7.1. PCR-DGGE analysis and sequencing was carried out as 

described in sections 2.7.2. and 2.7.3. 

 

3.3.5.2. High-throughput sequencing 

For high-throughput sequence analysis, digesta samples were sampled from one fish per tank 

for SPC, SPC+PPC, SPC+PPC+S and SPC+S treatments (n = 3), and one fish from two tanks 

from the FM treatment (n = 2). DNA from 200 mg samples was extracted as described in 

section 2.7.1. High-throughput sequence analysis was carried out as described in section 2.7.4. 

 

3.3.6. Intestinal histology 

3.3.6.1. Light microscopy 

Light microscopy analysis was carried out on two fish per tank (n = 6) as described in section 

2.8.1. 
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3.3.6.2. SEM 

SEM analysis was carried out on two fish per tank (n = 6) as described in section 2.8.2. 

 

3.3.6.3. TEM 

TEM analysis was carried out on four fish per treatment (n = 4) as described in section 2.8.3. 

 

3.3.7. Statistical analysis 

Statistical analysis was carried out as described in section 2.9. 

 

3.4. Results 

3.4.1. Gross observations 

Fish accepted the diets well and there was 100 % survival throughout the trial. No significant 

differences in growth were observed among the treatments at week two (33.22 ± 5.55 g) or at 

week four (41.82 ± 7.54 g).  

 

3.4.2. Microbiological analyses 

3.4.2.1. PCR-DGGE 

The V3 16S rRNA PCR-DGGE fingerprints and respective dengrograms for weeks two and 

four are presented in Figure 3.1 A & B. The microbial ecological parameters for week two 

and four are presented in tables 3.2. & 3.3.  
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3.4.2.1.1. Week two 

A total of 52 distinct OTU’s were observed on the denaturing gradient gel. A high 

level of dissimilarity (46.72 – 53.91 %) was observed when the control was systematically 

compared to the plant based treatments (Figure 3.1.A; Table 3.2.). The number of OTU’s 

increased incrementally with increasing FM substitution and was significantly increased from 

23.67 ± 7.09 in the control to 34.67 ± 0.58 in the SPC+PPC treatment group (P = 0.05). The 

mean SIMPER value observed for the replicates within the control revealed a low degree of 

inter-replicate similarity at 52.95 ± 14.82 %. In contrast, SIMPER values observed for the 

replicates within the plant based groups were markedly higher, significantly so in the SPC 

(80.87 ± 6.91; P < 0.05), SPC+PPC (93.49 ± 2.33; P < 0.05), and SPC+S (88.64 ± 2.98; P < 

0.01). Species richness and diversity remained unaffected at week two. 

 

3.4.2.1.2. Week four  

A total of 54 distinct OTU’s were observed on the denaturing gradient gel at week four 

(Figure 3.1.B). The dissimilarity was high (38.80 – 41.38 %) when the control was compared 

to the plant based treatments (Table 3.3.). The number of OTU’s was highest in the 

SPC+PPC+S treatment (49.67 ± 1.53) and was significantly higher when compared to the 

control (41.67 ± 2.31; P < 0.001), SPC (45.33 ± 0.58; P < 0.05), and SPC+PPC (45.33 ± 1.58; 

P < 0.05) treatment groups. Species richness increased from 3.77 ± 0.20 in the control to 4.21 

± 0.11 in the SPC+PPC+S treatment (P < 0.01). Shannon’s diversity index also increased 

from 3.62 ± 0.08 in the control to 3.77 ± 0.03 in the SPC+S (P < 0.05), 3.77 ± 0.04 in the 

SPC+PPC (P < 0.05), and 3.86 ± 0.03 in the SPC+PPC+S (P < 0.001).  
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3.4.2.2. DGGE Sequence analysis 

A number of OTU’s were excised for sequence analysis from the PCR-DGGE (Tables 3.4. 

and 3.5.). The presence of OTU’s DP3 (Lactobacillus salivarious), DP4 (unidentified 

bacteria with 93 % similarity to L. fermentum), DP14 (L. buchneri), DP16 (Collimonas 

fungivorans), DP17 (Enterobacteriaceae FG157) and DP18 (Enterococcus faecalis) were 

present in at least two of the three replicates of each treatment. OTU’s DP1 (B. subtilis), 

DP12 (B. subtilis), DP2 (Paenibacillus mucilaginous), DP13 (P. mucilaginous) and DP6 (L. 

johnsonii) appeared to be affected by PPC inclusion with their presence in at least two 

replicates of fish fed the PPC diets and their absence from fish fed the other treatments, with 

the exception of DP6 which was detected in one replicate of the FM fed fish. The presence of 

OTU’s DP5 (L. buchneri), DP19 (B. subtilis), DP20 (B. subtilis), and DP21 

(Desulfosporosinus sp.) appeared to be influenced by all plant ingredients with their presence 

observed in all three replicates of fish fed the plant based diets compared to either absence or 

presence in only one replicate of fish fed the control diet. 
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 1 

Figure 3.1. Cluster analysis dendrograms of the PCR-DGGE fingerprint profiles of the bacterial community in the posterior intestine of 2 

European sea bass after being fed the experimental diets for two (A) and four (B) weeks. 3 
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Table 3.2.  Microbial community analysis from the PCR-DGGE of the allochthonous bacterial communities in the posterior intestine of 4 

European sea bass fed each dietary regime for two weeks. (ANOVA + post hoc Tukey’s) accepted at P < 0.05. Values expressed as means ± 5 

standard deviation. 6 

  Ecological parameters 
 

ANOSIM 
 

  

 Treatment OTU’s Richness
†
 Diversity

‡
 

SIMPER 

(similarity %) 
R-value P-value Dissimilarity (%) 

FM 24.00±7.09
a
 2.17±0.56 3.07±0.34 52.95±14.82

a
    

SPC 31.00±4.00 
ab

 2.72±0.31 3.32±0.14 80.87±6.91
b
    

SPC+S 30.00±1.53
ab

 2.66±0.14 3.32±0.05 88.64±2.98
b
    

SPC+PPC 35.00±0.58
b
 3.04±0.04 3.50±0.02 93.49±2.33

b
    

SPC+PPC+S 31.00±2.31
ab

 2.79±0.19 3.36±0.09 70.73±11.75
ab

       

Pairwise comparisons               

FM vs SPC 

 

   0.67 0.10 52.30 

FM vs SPC.S 

 

   0.70 0.10 53.91 

FM vs SPC.PPC 

 

   0.52 0.10 46.72 

FM vs SPC.PPC.S 

 

   0.30 0.10 47.45 

SPC vs SPC.S 

 

   0.33 0.10 18.71 

SPC vs SPC.PPC 

 

   1.00 0.10 36.25 

SPC vs SPC.PPC.S 

 

   0.41 0.30 31.26 

SPC.S vs SPC.PPC 

 

   1.00 0.10 31.34 

SPC.S vs SPC.PPC.S 

 

   0.52 0.10 30.50 

SPC.PPC vs SPC.PPC.S         0.41 0.10 24.33 

SIMPER, similarity percentage within replicates of each treatment; ANOSIM, analysis of similarities between treatments. 7 
†
 Margalef species richness: d = (S – 1)/log (n). 8 

‡
Shannon’s diversity index: H′ = -SUM(pi*log (pi)). 9 

Values expressed as means ± standard deviation. 10 
ab

 Different superscript letters in the same row indicate significant differences accepted at P < 0.05 11 
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 12 

Table 3.3. Microbial community analysis from the PCR-DGGE of the allochthonous bacterial communities in the posterior intestine of 13 

European sea bass fed each dietary regime for four weeks. 14 

  Ecological parameters   ANOSIM 

 Treatment OTU’s Richness† Diversity‡ 
SIMPER 

(similarity %) 
R-value P-value Dissimilarity (%) 

FM 41.67±2.31
a
 3.77±0.20

a
 3.62±0.08

a
 63.91±24.27    

SPC 45.33±0.58
a
 3.84±0.05

a
 3.74±0.01

ab
 93.30±1.84    

SPC+S 45.67±1.53
ab

 3.87±0.11
a
 3.77±0.03

bc
 92.16±3.67    

SPC+PPC 45.33±1.53
a
 3.88±0.10

a
 3.77±0.04

bc
 88.40±6.67    

SPC+PPC+S 49.67±1.53
b
 4.21±0.11

b
 3.86±0.03

c
 94.59±0.65       

Pairwise comparisons               

FM vs SPC 

 

   0.67 0.1 38.80 

FM vs SPC.S 

 

   0.63 0.1 39.03 

FM vs SPC.PPC 

 

   0.54 0.2 41.48 

FM vs SPC.PPC.S 

 

   0.70 0.1 40.35 

SPC vs SPC.S 

 

   0.26 0.2 08.63 

SPC vs SPC.PPC 

 

   0.85 0.1 21.84 

SPC vs SPC.PPC.S 

 

   1.00 0.1 14.95 

SPC.S vs SPC.PPC 

 

   0.70 0.1 18.90 

SPC.S vs SPC.PPC.S 

 

   0.82 0.1 11.87 

SPC.PPC vs SPC.PPC.S         0.56 0.1 10.91 

SIMPER, similarity percentage within replicates of each treatment; ANOSIM, analysis of similarities between treatments. 15 

† Margalef species richness: d = (S – 1)/log (n). 16 

‡Shannon’s diversity index: H′ = -SUM (pi*log (pi)). 17 

Values expressed as means ± standard deviation. 18 
ab

 Different superscript letters in the same row indicate significant differences accepted at P < 0.05 19 
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Table 3.4. Closest bacterial relatives (% similarity) of excised bands from the PCR-DGGE of the allochthonous bacterial communities from the 20 

European sea bass posterior intestine after being fed the experimental diets for two weeks. The presence of OTU’s in each replicate of each 21 

dietary regime is indicated; 0 = not present in any replicate, 1 = present in one replicate, 2 present in two replicates and 3 present in all three 22 

replicates. 23 

Band ID Band presence  Phyla Nearest neighbour Alignment 

similarity (%) 

Accession number 

 Replicates     

 FM SPC SPC+PPC SPC+PPC+S SPC+S     

DP1 0 0 3 2 0 Firmicutes B. subtilis 100 NC_019896.1 

DP2 0 0 3 2 0 Firmicutes Paenibacillus mucilaginosus 100 NC_017672.1 

DP3  2 3 3 3 3 Firmicutes Lactobacillus salivarius 98 NC_017481.1 

DP4  3 3 3 3 3 Firmicutes Lactobacillus fermentum 93 NC_017465.1 

DP5  1 3 3 3 3 Firmicutes Lactobacillus buchneri 100 NC_018610.1 

DP6 1 0 3 2 0 Firmicutes Lactobacillus johnsonii 100 NC_017477.1 

DP7 0 0 3 2 2 Firmicutes Lactobacillus johnsonii 100 NC_017477.1 

DP8 1 0 3 1 3 Firmicutes Staphylococcus aureus 100 NC_018608.1 

DP9  3 0 3 1 0 Firmicutes Thermoanaerobacterium 

saccharolyticum 

92 NC_017992.1 
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DP10 3 3 3 1 0 Firmicutes B. subtilis 100 NC_019896.1 

DP11 0 0 3 2 3 Firmicutes B. subtilis 100 NC_019896.1 

DP12 0 0 3 3 0 Firmicutes B. subtilis 100 NC_019896.1 

DP13 0 0 3 3 0 Firmicutes Paenibacillus mucilaginosus 100 NC_017672.1 

DP14 3 3 3 3 3 Firmicutes Lactobacillus buchneri 100 NC_018610.1 

DP19 1 3 3 3 3 Firmicutes B. subtilis 100 NC_019896.1 

DP20 1 3 3 3 3 Firmicutes B. subtilis 100 NC_019896.1 

 24 

 25 

 26 

 27 

 28 

 29 
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Table 3.5. Closest bacterial relative (% similarity) for sequences excised from the PCR-DGGE of the allochthonous bacterial communities from 30 

the European sea bass posterior intestine after being fed the experimental diets for four weeks. The presence of OTU’s in each replicate of each 31 

dietary regime is indicated; 0 = not present in any replicate, 1 = present in one replicate, 2 present in two replicates and 3 present in all three 32 

replicates. 33 

Band 

ID 

Band presence  Phyla Nearest neighbour Alignment 

similarity (%) 

Accession 

number 

 Replicates     

 FM SPC SPC+PPC SPC+PPC+S SPC+S     

DP1 0 0 3 2 0 Firmicutes B. subtilis 100 NC_019896.1 

DP2 0 0 3 2 0 Firmicutes Paenibacillus mucilaginosus 100 NC_017672.1 

DP10 3 3 3 1 0 Firmicutes B. subtilis 100 NC_019896.1 

DP11 0 0 3 2 3 Firmicutes B. subtilis 100 NC_019896.1 

DP12 0 0 3 3 0 Firmicutes B. subtilis 100 NC_019896.1 

DP13 0 0 3 3 0 Firmicutes Paenibacillus mucilaginosus 100 NC_017672.1 

DP15 2 0 3 3 0 Firmicutes Lactobacillus buchneri 100 NC_018610.1 

DP16 3 1 3 2 3 Proteobacteria Collimonas fungivorans 100 NC_015856.1 

DP17 3 3 2 3 3 Proteobacteria Enterobacteriaceae bacterium 

strain FGI57 

100 NC_020063.1 
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DP18 3 3 2 3 3 Firmicutes Enterococcus faecalis 100 NC_018221.1 

DP19 1 3 3 3 3 Firmicutes B. subtilis 100 NC_019896.1 

DP20 1 3 3 3 3 Firmicutes B. subtilis 100 NC_019896.1 

DP21 0 3 3 3 3 Firmicutes Desulfosporosinus sp. 100 NC_018515.1 

 34 

 35 

 36 

 37 

 38 

 39 

 40 

 41 

 42 
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3.4.2.3. High-throughput sequencing 43 

After trimming and QC, a total of 491,354 reads were retained and subsequently used for 44 

downstream analyses. Alpha rarefaction curves for all samples reached, or were approaching, 45 

a plateau after approx. 7,000 sequences (Figure 3.2.). Further, Good’s coverage estimators for 46 

all samples were > 0.99 (Table 3.6.), indicating that the bacterial community was fully 47 

sampled and that the OTU’s detected in the samples were representative of the population 48 

(Sims et al. 2014). The Bray-Curtis UPGMA showed a clear differentiation between 49 

replicates within treatment groups indicated by the grouping of samples into three clusters: 50 

one cluster comprising samples from the FM treatment, which were distinctly different from 51 

the other treatments, the second cluster containing most of the SPC samples, and the third 52 

cluster containing most the SPC+PPC samples (Figure 3.3.). No statistical differences 53 

between species richness (Chao1) or diversity (Shannon-Wiener) were observed between 54 

treatment groups.  55 
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 56 

Figure 3.2. Alpha rarefaction curves representing the number of OTU’s per sample, which is 57 

used as an inference of the number of species, as a function of the sequencing effort. 58 

 59 

 60 

Table 3.6. High-throughput sequencing good’s coverage estimations by treatment and alpha 61 

diversity parameters of the allochthonous bacterial communities in the posterior intestine of 62 

European sea bass fed each dietary regime for four weeks. Data represent mean ± SD. 63 

Treatment Good’s coverage Observed species Chao 1 index Shannon index 

FM 0.9971±0.0002 114.78±10.22 134.70±11.76 4.82±0.02 

SPC 0.9982±0.0002 126.54±5.14 135.56±5.33 4.70±0.24 

SPC+S 0.9984±0.0001 129.56±0.85 138.01±1.15 5.05±0.17 

SPC+PPC 0.9982±0.0004 124.48±10.25 137.96±5.55 5.15±0.27 

SPC+PPC+S 0.9983±0.0001 135.14±3.59 144.35±3.13 5.18±0.15 

 64 

SPC.1 

SPC.2 

FM.1 

SPC+PPC.3 

SPC+S.2 

SPC+PPC+S.1 

SPC+S.1 

SPC.3 

SPC+S.3 

SPC+PPC+S.3 

FM.2 

SPC+PPC.1 

SPC+PPC+S.2 

SPC+PPC 2 
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 65 

 66 

Figure 3.3. Bray-Curtis UPGMA UniFrac clustering of reads of the replicates of the 67 

allochthonous bacterial communities in the posterior intestine of European sea bass fed each 68 

dietary regime for four weeks.  Jackknife support is: Red (75-100 %) and yellow (50-75 %). 69 

Bar indicates 10 % divergence. Cluster 1 contains samples of the FM fed fish. Cluster 2 70 

contains all samples of the SPC fed fish and cluster 3 contains all but one of the PPC fed fish.  71 

 72 
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Figure 3.4. illustrates the sequence distribution at the phylum level. A large proportion 77 

(30.60 %) of the reads, predominantly present in the samples from fish fed SPC containing 78 

diets, belonged to the order Streptophyta. BLAST results identified these reads as chloroplast 79 

nucleotides and it was therefore concluded that these reads were artefacts as a consequence of 80 

the high plant meal inclusion levels; these reads were subsequently removed from the 81 

sequence libraries, as has been described elsewhere in fish gut microbiota studies (Wong et al. 82 

2013). The majority of the remaining sequences belonged to the Proteobacteria (62.40 %), 83 

followed by Firmicutes (35.30 %), Actinobacteria (1.80 %) and Bacteriodetes (0.40 %). The 84 

abundance of the reads assigned to each phylum was not significantly affected by dietary 85 

treatment.  86 

Figure 3.5. illustrates the sequence distribution at the genus level (displaying genera that 87 

contain > 0.2 % of the total sequences). The most abundant 16S rRNA reads belonged to an 88 

unidentified genus from the Enterobacteriaceae family (21.10 %), followed by Leuconostoc 89 

(16.20 %), Acinetobacter (12.90 %), Weissella (7.70 %) and Bradyrhizobium (7.10 %). The 90 

relative abundance of reads assigned to Pseudomonas, Clostridium, Acinebactacter, 91 

Enterococcus and Acidovorax were significantly (P < 0.001) higher in the FM fed fish when 92 

compared to all other treatments. Reads assigned to Janthinobacterium were significantly (P 93 

< 0.05) higher in the FM fed fish when compared to SPC, SPC+PPC+S and SPC+S fed fish.  94 

Reads assigned to the genus Diaphorobacter were significantly higher in SPC+PPC+S and 95 

SPC+S (P < 0.05) when compared to FM fed fish. Reads assigned to the genera Leuconostoc 96 

and Serratia were significantly higher in SPC+PPC+S and SPC (P < 0.05) when compared to 97 

FM fed fish. Reads assigned to the genus Mesorhizobium were significantly elevated in fish 98 

fed SPC+PPC (P < 0.05), as well as, reads assigned to Weissella, which were significantly 99 

elevated in fish fed SPC+PPC+S compared to FM-fed fish (P < 0.05). 100 

 101 
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102 
Figure 3.4. The allochthonous bacterial communities in the posterior intestine of European 103 

sea bass fed each dietary regime for four weeks. Data represent bacterial phyla percentage. 104 
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106 
Figure 3.5. The allochthonous bacterial communities in the posterior intestine of European 107 

sea bass fed each dietary regime for four weeks. Data represent bacterial genera with reads 108 

accounting for > 0.2 % of total reads. 109 
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3.4.3. Intestinal histology 110 

3.4.3.1. Light microscopy 111 

Gross morphological analysis using light microscopy revealed some qualitative differences 112 

between dietary treatments. Examples of H & E stained intestinal sections from each dietary 113 

treatment at week four are displayed in Figure 3.6. At both weeks two and four, the posterior 114 

intestine of fish fed the FM diet displayed a well-preserved epithelial mucosal barrier, with 115 

well-differentiated, long mucosal folds extending in to the lumen with a thin intact lamina 116 

propria. The intestine of the FM fed fish also exhibited an abundance of goblet cells and 117 

intra-epithelial leukocytes throughout the mucosal surfaces. Although not statistically 118 

significant, trends were observed with regards to a reduction in the mucosal fold lengths and 119 

absorptive surface area of the digestive epithelium, as well as an increase in the lamina 120 

propria widths observed in fish fed the plant based diets at both weeks two and four (Table 121 

3.7.). The number of intraepithelial leukocytes (IEL’s) in the intestine of the SPC+S fed fish 122 

was significantly reduced (P < 0.001) at week four (68.35 ± 15.41) compared to the FM fed 123 

fish (80.87 ± 14.52). IEL levels in the SPC, SPC+PPC and SPC+PPC+S treatments did not 124 

differ from those observed in the FM fed fish at week four and the IEL levels remained 125 

unchanged throughout treatment groups at week two (Table 3.7.). Goblet cell numbers in the 126 

SPC+S treatment were significantly reduced (P < 0.001) at week two (7.95 ± 2.58 compared 127 

to 6.38 ± 1.79 in the FM fed fish) (Table 3.7.). After four weeks the abundance of intestinal 128 

goblet cells were significantly reduced in the SPC+PPC (P < 0.001), SPC+PPC+S (P < 0.001) 129 

and SPC+S (P < 0.001) fed fish compared to the FM fed fish (Table 3.7.).  130 

 131 
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 154 

Figure 3.6. Light micrographs of the posterior intestine of European sea bass fed the control 155 

(A & F), SPC (B & G), SPC+PPC (C & H), SPC+PPC+S (D & I), and SPC+S (E & J) 156 

treatments for four weeks. Scale bars = 100 µm in A-E and 50 µm in F-J.  157 
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Table 3.7. Histological parameters of the posterior intestine of European sea bass fed the 158 

experimental diets for two and four weeks. Different superscript letters within the same row 159 

indicate significant differences. 160 

Histological parameters 

 Dietary regime 

 Week 2 

Variable FM SPC SPC+PPC SPC+PPC+S SPC+S 

Perimeter 

ratio (AU) 4.06±0.86 3.97±0.81 4.11±0.69 3.94±0.84 4.21±0.67 

Mucosal fold 

lengths (µm) 394.82 ±101.86 384.62±105.54 385.19±93.61 381.80±105.15 387.53±113.56 

Lamina 

propria 

width (µm) 
17.82 ±5.60 18.70 ±4.69 18.37 ±4.50 17.40 ±4.94 19.11±5.12 

Goblet cells 

(per 100 µm) 7.95±2.58
a

 7.17±2.40
ab

 7.03±2.03
ab

 6.73±2.14
ab

 6.38±1.79
b

 

IEL’s (per 

100 µm) 82.4±18.51 81.30±15.33 82.07±20.46 81.36±17.87 79.19±16.88 

Microvilli 

density (AU) 12.16±4.34
a

 9.59±3.82
ab

 7.97±2.71
b

 7.14±1.88
b

 7.76±1.03
b

 

 Week 4 

Perimeter 

ratio (AU) 4.46±0.89 3.97±0.38 4.16±1.20 3.77±0.92 3.75±1.06 

Mucosal fold 

height (µm) 426.25±95.63 410.83±103.43 416.20±121.56 406.16±121.38 405.32±118.61 

Lamina 

propria 

width (µm) 
17.95±5.48 19.61±5.24 21.45±4.37 19.71±4.33 21.87±5.38 

Goblet cells 

(per 100 µm) 8.12±2.32
a

 7.34±2.51
ab

 6.63±1.95
ab

 6.56±2.22
ab

 6.44±2.05
b

 

IEL’s (per 

100 µm) 80.87±14.52
a

 78.78±19.03
ab

 79.43±17.33
ab

 76.63±16.32
ab

 68.35±15.41
b

 

Microvilli 

density (AU) 13.65±3.11
a

 10.20±2.74
ab

 12.00±3.79
ab

 8.08±1.96
b

 7.92±3.23
b

 

Microvilli 

length (µm) 1.70±0.15 1.58±0.19 1.84±0.28 1.72±0.27 1.50±0.26 

 161 
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3.4.3.2. SEM 162 

Analyses at the ultra-structural level using SEM revealed the posterior intestine of the FM fed 163 

fish to be healthy with uniform enterocyte formations and densely packed microvilli; no signs 164 

of enteritis were observed (Figure 3.7. A & F). In contrast, observations of the posterior 165 

intestines from fish fed the plant based diets revealed malformed microvilli, gaps between 166 

enterocytes and areas of patchy microvilli with reduced microvilli densities (Figure 3.7. B & 167 

G, C & H, D & I, E & J). These observational results were confirmed when applying 168 

quantitative analysis. The intestines from the SPC+PPC, SPC+PPC+S and SPC+S fed fish 169 

exhibited a significant reduction in microvilli density at week two when compared to the FM 170 

fed fish (P < 0.001). At week four the treatments SPC+PPC+S and SPC+S both continued to 171 

exhibit significantly reduced microvilli density compared to fish fed the FM diet (P < 0.001) 172 

(Table 3.7.).  173 

 174 

3.4.3.3. TEM 175 

TEM analysis of the posterior intestinal brush border morphology revealed differences 176 

between the SPC, SPC+PPC, SPC+PPC+S and SPC+S fed groups when compared to the FM 177 

group. Fish fed the control diet showed densely packed, uniform, microvillar formations with 178 

no obvious signs of damage (Figure 3.7. A). In contrast, fish fed all plant based diets showed 179 

less densely packed microvilli and signs of irregular microvilli structure (Figure 3.7. B-E). 180 

The SPC+S fed fish exhibited the shortest microvilli in comparison to all other treatments, 181 

however there were no significant differences between treatments at week 4 (Table 3.7.). 182 

 183 
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 184 

Figure 3.7. Electron micrographs (SEM; A-E and TEM; F-J) of the posterior intestine of 185 

European sea bass fed the experimental diets; FM (A, F & K), SPC (B, G & L), SPC+PPC (C, 186 

H & M), SPC+PPC+S (D, I & N) and SPC+S (E, J & O) for four weeks. Note the TEM 187 

images derived from fish fed the SPC+PPC, SPC+PPC+S and SPC+S based dietary regimes 188 

(M, N & O) which seem to reveal a loss of membrane integrity at the apical tips of the 189 

microvilli. Scale bars = 10µm in images A-E and 1 µm in images F-O.  190 
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3.5. Discussion 191 

A number of studies have previously revealed that dietary soy protein products can alter the 192 

gut microbiota in fish (Heikkinen et al. 2006; Ringø et al. 2006; Bakke-McKellep et al. 2007; 193 

Ringø et al. 2008; Merrifield et al. 2009; Dimitroglou et al. 2010; Reveco et al. 2014). A 194 

number of studies have previously revealed that dietary soy protein products can alter the gut 195 

microbiota in fish (Heikkinen et al. 2006; Ringø et al. 2006; Bakke-McKellep et al. 2007; 196 

Ringø et al. 2008; Merrifield et al. 2009; Dimitroglou et al. 2010; Reveco et al. 2014).  197 

The majority of these studies have generally reported an increase in intestinal microbial 198 

populations. Heikkinen et al. (2006) and Refstie et al. (2006) reporting an increase in the 199 

culturable populations of Atlantic salmon and Atlantic cod as a consequence of SPC based 200 

diets. However, contrary to the study by Heikkinen et al. (2006), the study by Refstie et al. 201 

(2006) reported no change in the posterior intestine. Bakke-Mckellep et al. (2007) reported 202 

significant increases in autochthonous and allochthonous microbial populations in posterior 203 

intestinal region of Atlantic salmon fed a SPC based diet when compared to the control after 204 

three weeks. Dimitroglou et al. (2010) reported an increase in species richness/presumed 205 

species in fish fed a SPC based diet compared to fish fed a FM control after nine weeks. 206 

Contrary to the above findings, Reveco et al. (2014) reported a reduction in species richness 207 

in the posterior intestine of Atlantic salmon fed a SPC based diet compared to fish fed a FM 208 

based control diet for 80 days. Making comparisons between studies is problematic however, 209 

and differences in, for example, fish species, SPC ingredients used, trial conditions, trial 210 

length and methodology used for the analyses, may affect the results obtained, complicating 211 

comparisons. It would appear that the effects of soy protein products on fish may be 212 

dependent on fish species and the intestinal region, as well as, the differences in soy protein, 213 

making comparisons difficult.  214 
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The majority of studies assessing soy protein products in fish have focused on long term 215 

feeding trials (i.e. > 10 weeks) and short term temporal effects are often missed. In the 216 

present study the inclusion of SPC, alone and in combination with PPC and saponins, 217 

influenced the gut microbial composition of European sea bass, when compared to a FM 218 

based diet after two and four weeks.  219 

High-throughput sequence libraries displayed Good’s coverage estimations of > 99 %, 220 

suggesting the bacterial microbiome had been fully sampled. Cluster analyses revealed 221 

distinct clusters of replicates within treatment groups, an observation which was supported by 222 

the PCR-DGGE analyses. The numbers of OTU’s, species richness (Chao 1) and diversity 223 

(Shannon-Wiener) were all elevated in fish fed the plant based diets compared to fish fed the 224 

control at both weeks two and four. Fish fed the saponin supplemented diets appeared to 225 

exhibit the highest number of OTU’s at week four, which PCR-DGGE analyses revealed to 226 

be significantly increased in fish fed the SPC+PPC+S treatment when compared to fish fed 227 

the FM control. The bacterial diversity was also increased in fish fed the plant based diets 228 

compared to those fed the FM diet, with PCR-DGGE analyses revealing that the SPC+PPC, 229 

SPC+PPC+S and SPC+S treatment groups exhibited significantly elevated diversity at week 230 

four. Fish fed the FM diet showed the greatest degree of inter-replicate variation at both 231 

weeks two and four. The pairwise comparisons of the PCR-DGGE fingerprints comparing the 232 

profiles of fish fed FM and fish fed the plant based diets was greater at week two than at 233 

week four. 234 

In terms of relative sequence abundance, high-throughput sequencing revealed the phyla 235 

Proteobacteria accounted for 62.40 % of the 16S rRNA reads, followed by Firmicutes 236 

(35.30 %), Actinobacteria (1.80 %) and Bacteriodetes (0.40 %). Bands excised from the 237 

PCR-DGGE also revealed Proteobacteria and Firmicutes to be the most abundant phyla. All 238 

phyla detected in the current study have been reported as constituents of the gut microbiota of 239 
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various marine fish species, including European sea bass (Navarrete et al. 2008; Mansfield et 240 

al. 2010; Silva et al. 2011; Zhou et al. 2012; Green et al. 2013; Lamari et al. 2013; Carda‐241 

Diéguez et al. 2014; Gatesoupe et al. 2014; Kormas et al. 2014).  242 

At the genera level, high-throughput sequence analyses revealed that the highest proportions 243 

of 16S rRNA reads were assigned to Leuconostoc, Acinetobacter, and Weissella in the 244 

treatment groups. Lactobacillus, Bacillus and Enterococcus spp. were also present at a lower 245 

level, which were also detected in the PCR-DGGE analyses. Reads assigned to Enterococcus 246 

spp. were significantly elevated in fish fed the FM diet compared to fish fed all plant based 247 

diets. Species of this genus (e.g. E. faecium and E. faecalis) have been reported to exhibit 248 

potentially beneficial effects when administrated as probiotics in various fish and shellfish 249 

species, as well as demonstrating inhibitory effects against some potential fish pathogens 250 

(Swain et al. 2009, Gopalakannan & Arul 2011; Avella et al. 2011; Sun et al. 2012; Sorroza 251 

et al. 2013; Allameh et al. 2014; Araújo et al. 2015). Enterococcus spp. are known to exhibit 252 

greater proteolytic and lipolyitc activity when compared to other lactic acid bacteria (LAB) 253 

(Ramakrishnan et al. 2012), and their increased presence in the allochthonous communities of 254 

fish fed the FM diet compared to the plant based diets in the present study may have 255 

implications relating to the hosts ability digest proteins and lipids in the intestine.  256 

Reads assigned to the genera Leuconostoc, Weissella and Bacillus were observed to be 257 

elevated in fish fed the plant based treatments when compared to fish fed the FM diet, with 258 

Leuconostoc significantly elevated in fish fed SPC+PPC+S and SPC, and Weissella 259 

significantly elevated in fish fed the SPC+PPC+S when compared to fish fed the FM diet. 260 

Various species of these genera have been reported to have intestinal modulatory effects in 261 

fish when added to aquafeeds. For example, elevated immunological responses such as 262 

increasing the levels of intestinal leukocyte infiltration, increased lysozyme activities and 263 

positively effecting the expression of immune related genes, improved growth and digestive 264 
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enzyme activities have also been demonstrated in fish as a consequence of Leuconostoc 265 

mesenteroides supplemented feeding (Balcázar et al. 2007a, 2007b; Askarian et al. 2011). To 266 

the author’s knowledge there is little information regarding the use of Weissella spp. as 267 

probiotics in fish, however, Mouriño et al. (2012) demonstrated a reduction in Vibrio spp. in 268 

the intestine of hybrid sorobims (Pseudoplatystoma sp.), as well as increased 269 

immunoglobulin levels, in fish fed dietary inclusion of W. cibaria for 15 days. There is an 270 

abundance of literature demonstrating the potential of Bacillus spp., including B. subtilis, B. 271 

licheniformis, B. pumilis, and B. clausii, as probiotics in fish (Newaj-Fyzul et al. 2007; 272 

Bagheri et al. 2008; Merrifield et al. 2010b, 2010c; Sun et al. 2011; He et al. 2013; Yang et 273 

al. 2012). However, with the exception of Touraki et al. (2012), who demonstrated that 274 

European sea bass larvae exhibited an increased resistance to the pathogen V. anguillarum as 275 

a result of B. subtilis feeding, there is a scarcity of information relating to the efficacy of 276 

Bacillus spp. as probiotics in European sea bass. 277 

The OTU’s sequenced from the DGGE generally support the high-throughput sequence data 278 

with the abundance of B. subtilis and L. buchneri observed to be elevated in fish fed the 279 

SPC+PPC, and SPC+PPC+S treatments compared to fish fed the FM control after two and 280 

four weeks. Increased LAB populations in the posteriors intestine due to dietary SPC 281 

inclusion has previously been reported in Atlantic salmon (Reveco et al. 2014) and may be 282 

considered to be beneficial to the host as many LAB have been used as potential probiotics in 283 

fish (Newaj-Fyzul et al. 2014). The reasons for this increase in LAB populations are not clear 284 

but may be due, at least in part, to the availability of oligosaccharides and polysaccharides 285 

(e.g. glucose, arabinose, galactose and cellulose) present in the plant ingredients. This has 286 

previously been suggested in a study assessing SPC in the diets of broiler chickens (Lan et al. 287 

2004). 288 
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Histological analysis revealed distinct qualitative differences between treatment groups with 289 

the control fed fish appearing healthy with no obvious signs of epithelial disruption or 290 

damage. In contrast, the epithelium of fish fed the plant based diets showed signs of damage 291 

and enteritis-like effects similar to those previously described in salmonids (Heikkinen et al. 292 

2006; Krogdahl et al. 2003) and common carp (Uran et al. 2008). The epithelial damage 293 

appeared to be exacerbated in fish fed the saponin supplemented diets which is in agreement 294 

with previous studies conducted on salmonids (Knudson et al. 2007, 2008). Morphometric 295 

analyses revealed a reduction in epithelial GC’s in fish fed SPC based diets when compared 296 

to the control at both weeks two and four in the SPC+S. Similarly, IEL numbers were 297 

observed to be reduced in fish fed the SPC based diets and significantly reduced after four 298 

weeks when the SPC+S treatment was compared to the control. A reduction in GC’s and 299 

IEL’s may suggest an epithelium more susceptible to bacterial infection, with lowered mucus 300 

production and fewer leukocytes present to protect against pathogenic insults. However, other 301 

studies have observed an increase in IEL’s as an inflammatory response to SPC induced 302 

enteritis in salmonids after longer periods of feeding (Romarheim et al. 2008; Marjara et al. 303 

2012). Future research is required to ascertain the reasons for the discrepancies in these 304 

observations which may be a result of the temporal differences of the studies (i.e. differences 305 

in the exposure duration to the diets) or differences between fish species. 306 

SEM analysis also revealed distinct differences between treatments at the epithelial 307 

ultrastructural scale. The epithelium of fish fed the SPC based diets all showed signs of 308 

epithelial damage greater in extent when compared to the epithelium of the control fed fish. 309 

This was further supported when assessing microvilli density which revealed a significant 310 

reduction in the density of the SPC+PPC, SPC+PPC+S and SPC+S fed fish after two weeks, 311 

and SPC+PPC+S and SPC+S fed fish after four weeks, when compared to the control fed fish. 312 

This is in accordance with studies which have observed a decrease in epithelial microvilli 313 
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density as a result of SPC inclusion in salmonids (Bakke-McKellep et al. 2007; Merrifield et 314 

al. 2009). A reduction in microvilli length has also been reported to be a sign of SPC induced 315 

enteritis in salmonids (van den Ingh et al. 1991; Merrifield et al. 2009). In the present study 316 

no statistical differences in microvilli lengths were observed between treatments, however, 317 

potential differences in the membrane integrity of fish fed the SPC based diets was observed. 318 

The highest degree of disruption was observed in the fish fed the saponin diets suggesting 319 

that the saponin inclusion may, at least in part, contribute to this microvilli degradation. 320 

Saponins have the ability to integrate into intestinal membranes and form complexes with 321 

strerols such as cholesterol, creating plagues in phospholipid formation which in turn changes 322 

membrane structure and permeability and thus affecting the influx and efflux of molecules, as 323 

well as, potentially aiding translocation of bacteria from the host lumen (Krogdahl et al. 2010; 324 

Augustin et al. 2011).  325 

 326 

3.6. Conclusion 327 

In the present study, the gut microbiota identified by both PCR-DGGE and high-throughput 328 

sequence analyses revealed that SPC and PPC alone, and in combination with saponins, can 329 

modulate the allochthonous intestinal bacterial communities of European sea bass which is 330 

consistent with other studies on piscivorous fish species (Heikkinen et al. 2006; Refstie et al. 331 

2006; Ringø et al. 2006; Bakke-McKellep et al. 2007; Merrifield et al. 2009; Navarrete et al. 332 

2013). Signs of sub-acute enteritis were also observed in the present study but the results 333 

indicate a more moderate response than those observed in the previous studies published on 334 

salmonids (Krogdahl et al. 2003; Bakke-McKellep et al. 2007; Romarheim et al. 2008; Uran 335 

et al. 2008; Merrifield et al. 2009; Marjara et al. 2012). Future studies are required to assess 336 

whether these changes affect the microbiome functionality, and whether this change in 337 
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microbiota coupled with reduced epithelial morphological integrity may increase the 338 

susceptibility to enteric pathogens. Further research should also focus on the long term effects 339 

SPC has on the intestinal microbiota and integrity of European sea bass.  340 

The present investigation revealed that the allochthonous bacterial communities were 341 

influenced by dietary SPC alone and in combination with PPC and saponins. Furthermore, 342 

the collective histological analyses revealed that European sea bass are susceptible to dietary 343 

induced enteritis-like effects of the posterior intestine. This Chapter provides a novel enteritis 344 

model for this fish species which could be used to assess the effectiveness of feed additives in 345 

reducing inflammation in the intestine, and would be the focus of Chapter 4A. 346 
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Chapter 4A: 

The effect of feed additives on the intestinal microbiome and intestinal integrity of 

European sea bass fed a sub-optimal SPC based diet 
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4A.1. Abstract 

The aim of the present study was to assess modulatory effects of dietary B. subtilis and/or 

Previda
®
, and the antibiotic oxytetracycline, on the intestinal bacterial populations in 

European sea bass, and to assess the efficacy of these products to reduce intestinal damage 

caused by a high soy protein concentrate + saponin basal diet. The basal diet in this chapter 

(SPC+S) was used as a negative control diet referred to as basal throughout. The four 

experimental diets consisted of the basal dietary formulation with the addition of probiotics, 

prebiotics or probiotics & prebiotics (i.e. synbiotic treatment) as follows: 1] the probiotic diet 

contained 10
7
 CFU g

-1 
B. subtilis, 2] the prebiotic diet contained Previda

®
 at 0.6 g kg

-1
, and 3] 

the synbiotic diet contained 10
7
 CFU g

-1 
B. subtilis + Previda

®
 at 0.6 g kg

-1
. Fish (88.8 ± 1.2 g) 

were fed one of the experimental diets for four weeks. PCR-DGGE and high-throughput 

sequencing analysis revealed that the inclusion of the feed additives modulated the 

allochthonous gut microbiota of D. labrax. B. subtilis was abundant in all samples from both 

the probiotic and synbiotic treatment groups. Distinct clusters within treatment replicates 

confirmed differences in the bacterial communities. Gene expression analyses revealed a 

significant up-regulation in the expression of IL-1β and TNFα in fish fed all experimental 

treatments relative to fish fed the basal. HSP70, CASP3 and PCNA expression was 

significantly down-regulated in fish fed the probiotic, prebiotic and synbiotic, whereas fish 

fed the antibiotic treatment exhibited significant up-regulation of these genes relative to fish 

fed the basal diet. The synbiotic fed fish exhibited a significantly (P < 0.05) higher intestinal 

perimeter ratio compared to the basal fed fish. In addition, significantly (P < 0.05) elevated 

goblet cell levels were observed in the probiotic and synbiotic treatments compared to the 

basal fed fish. TEM revealed the loss of membrane integrity induced by the basal diet, was 

reduced in the probiotic, prebiotic and synbiotic treatments. Moreover, the probiotic and 
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prebiotic applications significantly (P < 0.05) increased the microvilli density when 

compared to fish fed the basal control. 

 

4A.2. Introduction 

Chapter 3 revealed that European sea bass juveniles are susceptible to dietary induced 

enteritis similar to those observed in salmonids and carp (Baeverfjord & Krogdahl 1996; 

Burrells et al. 1999; Nordrum et al. 2000; Krogdahl et al. 2003; Uran et al. 2008; Marel et al. 

2014). The ANF’s associated with soy protein products, including saponins, have been 

observed to reduce nutrient digestibility and thus growth performance, to interfere with the 

permeability of intestinal membranes, affecting the influx and efflux of molecules and 

bacteria, and disrupt intestinal morphology, of fish (Krogdahl et al. 2010). Furthermore, 

soybean based diets are known to effect the intestinal microbiota of fish which as a 

consequence may directly or indirectly effect the host (Merrifield et al. 2011). Soybean 

products are routinely used in aquafeeds and are therefore an important aspect associated 

with the successful formulation of these diets for various fish species. The intestinal 

disruption and microbial modulation observed in European sea bass fed the SPC+S diet in 

chapter 3 presented an interesting model with which to assess probiotics and prebiotics and 

their potential protective potential.  

In recent years, the manipulation of the intestinal microbiota through probiotic and prebiotic 

applications has become commonplace in the nutrition of various cultured animal species 

including finfish in aquaculture practices (for a review on probiotics in fish refer to Merrifield 

& Carnevali 2014). Improved growth, disease resistance, immunological responses as well as 

improving the gastrointestinal morphology and modulation of the intestinal microbiota have 

been attributed to probiotic applications in fish (Abelli et al. 2009; Merrifield et al 2010a; 
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Ferguson et al. 2010; Dimitroglou et al. 2011; Perez-Sanchez et al. 2011; abid et al. 2013; 

Standen et al. 2013; Gioacchini et al. 2014).  

Prebiotic studies have reported enhanced growth and disease resistance in striped sea bass fed 

a commercial prebiotic supplemented diet (Gatlin & Li 2004), significantly improved 

antibody production and lysozyme activity (Staykov et al. 2007), as well as modulation of 

intestinal microbiota and improvement in intestinal morphology (Dimitroglou et al. 2009) in 

rainbow trout (Oncorhynchus mykiss) fed a Mannan-oligosaccharides (MOS) supplemented 

diet. Prebiotics are also thought to play a role in innate immunity either through direct 

stimulation or by enhancing the growth and proliferation of commensal microbes. For a 

review of this topic readers are referred to Song et al. 2014.  

The concept of synbiotics (a mixture of prebiotics and probiotics), was introduced as a means 

to increase the effectiveness either prebiotic or probiotic would have individually on the 

health of the host. A number of synbiotic studies have been conducted in various fish species 

over the last few years. Rodriguez-Estrada et al. (2009) observed an improvement in growth 

performance and immune response when investigating the of effect Enterococcus faecalis + 

mannan oligosaccharide in rainbow trout. Abid et al. investigating the application of 

Pediococcus acidilactici and short chain fructooligosaccharides on the intestinal health of 

Atlantic salmon (Salmo salar) concluded that modulation of the gut microbiota had a 

protective action on the intestinal mucosal cells, improving morphology and stimulating the 

innate immune response without negatively affecting growth performance or feed utilization. 

Another study found the administration of B. subtilis + fructooligosaccharide in the diets of 

juvenile ovate pompano (Trachinotus ovatus) to enhance immune responses and increase 

disease resistance against V. vulnificus (Zhang et al. 2014). Most of the aforementioned 

studies however, have focused their analyses on long-term feeding trials (ca. 2-3months) and 
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as was observed in Chapter 3 effects on the intestine brought about by high soybean based 

diets can be seen as early as two weeks.  

Chapter 3 assessed the plant proteins SPC and PPC together with saponins based on the 

hypothesis that these plant based products may induce enteritis-like effects in the European 

sea bass intestine. The results indicated a level of intestinal inflammation as a consequence of 

all dietary combinations of the plant diets; however it was observed that the diet deemed most 

challenging was the SPC+S. This diet would therefore be used in the present chapter.  

The aims of the present study was to assess the effects of the feed additives: B. subtilis and 

Previda
®

 individually and in combination, as well as the antibiotic oxytetracycline on the 

gastrointestinal health of European sea bass fed a suboptimal soybean meal based diet. 

Oxytetracycline is a broad-spectrum antibiotic commonly used for the treatment against 

pathogens in aquaculture, and concerns of antimicrobial resistance are well documented 

(Rigos et al. 2013; Shah et al. 2014). The present study also assessed how these feed 

additives and antibiotics impacted the localised immune condition in the intestine, by the 

expression of the pro-inflammatory genes tumour necrosis factor-α (TNFα) and interleukin-

1β (IL-1β), and the genes associated with: cellular level stress; heat shock protein 70 (HSP70), 

programmed cell death; caspase 3 (CASP3), and cell proliferation; proliferating cell nuclear 

antigen (PCNA). These genes were selected due to their relevance in the inflammatory 

response process and roles in intestinal integrity. It was hypothesised that the sub-optimal 

basal diet would cause an up-regulation in these cytokines and the feed additives might 

mitigate these responses.  

 

4A.3. Materials and Methodologies  
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All experimental work involving fish was conducted under the UK Home Office project 

licence PPL 30/2644 and was in accordance with the UK Animals (Scientific Procedures) Act 

1986 and the Plymouth University Ethical Committee. 

4A.3.1. Experimental design 

European sea bass were obtained from Anglesey Aquaculture Ltd, Black Point, Beaumaris 

UK and transported to the Aquaculture and Fish Nutrition Research Aquarium, Plymouth 

University, UK with an acclimation period of six weeks. The fish were then graded and 

separated into 15 x 110 L fibreglass tanks in a closed recirculatory system at a stocking 

density of 15 fish per tank with an average weight of 88.8 ± 1.2 g. Each dietary treatment was 

randomly attributed to the tanks in triplicate and the fish were fed each experimental diet at a 

rate of 2 - 3 % of biomass per day in equal rations at 9:00, 13.00 and 17:00. Daily feed was 

adjusted on a weekly basis by batch weighing following a 24 - h starvation period. Fish were 

held at 24 ± 1 °C and 31 ± 0.5 ppt salinity with a photoperiod of 12: 12 h light: dark. Water 

quality parameters were maintained at 6.6 ± 0.3 pH and dissolved oxygen > 85 % saturation, 

monitored daily. Ammonium, nitrite and nitrate levels were monitored weekly with weekly 

water changes of approx. 25 % system volume to reduce build-up of these compounds.   

 

4A.3.2. Diet preparation  

Five iso-nitrogenous and iso-lipidic dietary regimes were formulated (Table 4A.1.) to meet 

the known nutritional requirements for European sea bass (NRC 2011). The dry ingredients 

were well mixed in a Hobart food mixer (Hobart Food Equipment, Sydney, Australia, model 

no: HL1400–10STDA). The oil and hot water were gradually added to the mixer and cold 

press extrusion was conducted (PTM P6 extruder, Plymouth, UK) to produce 2 mm pellets. 
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The pelleted diets were then dried to ca. 5 % moisture in an air convection oven set at 50 °C 

for 48 hours. The diets were then broken up to the appropriate size and the composition 

analysed using AOAC (1995) protocols (Table 4A.1.). Experimental diets were subsequently 

stored at 4 
o
C in airtight containers prior the start of the trial. Probiotic inclusion levels 

(probiotic treatment: 1.98 x 10
7
 CFU g

-1
 and synbiotic treatment: 2.03 x 10

7
 CFU g

-1
) were 

confirmed by spread plating onto specific B. subtilis media (Starch nutrient agar with the 

addition of polymixin B) for 24 h at 30 
o
C. 

 

Table 4A.1. Dietary formulation (%) and chemical composition 

 Basal Probiotic Prebiotic Synbiotic Antibiotic 

Fishmeal
a
 20.00 20.00 20.00 20.00 20.00 

Soya protein concentrate
b
 52.72 52.72 52.72 52.72 52.72 

Glutalys
c
 10.00 10.00 10.00 10.00 10.00 

Fish oil
d
 11.08 11.08 11.08 11.08 11.08 

Corn starch
e
 3.30 3.30 2.70 2.70 1.30 

Mineral/vitamin premix
f
 2.60 2.60 2.60 2.60 2.60 

Saponin
g
 0.30 0.30 0.30 0.30 0.30 

Probiotic
h
 (log CFU g

-1
) - 7.27 - 7.62 - 

Prebiotic
i
 (g kg

-1
) - - 0.60 0.60 - 

Antibiotic (oxytetracycline
j
) (g kg

-1
) - - - - 2.00 

Proximate analysis (%) 

Dry matter 93.0 92.6 92.6 92.9 92.9 
Crude protein* 51.5 53.5 52.2 53.1 53.0 
Crude lipid* 14.0 14.2 14.0 14.0 14.2 
Ash* 7.42 7.78 7.59 7.92 7.99 
Gross energy (MJ kg

-1
)* 20.80 20.90 21.00 21.10 20.80 

a 
Herring meal LT94: CC MOORE & Co. Ltd., Dorset, UK.

 

b 
Hamlet HP100 (56 % crude protein), Hamlet Protein, Denmark. 

c 
Roquette Company, Frêres, France. 

d 
Seven seas Ltd. Hull, UK.  

e 
Sigma-Aldrich Company, UK. 

f 
Premier Nutrition Products (PNP Ltd.) Rugeley, Staffordshire, UK. 

g 
Sigma-Aldrich Company, UK. (20-30% sapogenic content). 

h
 Probiotic (B. subtilis): Novus Int, St. Charles, USA. (lyophilised cells at 10

10
 CFU g

-1
) 

i
 Previda

®
 Novus Int, St. Charles, USA. 

j
Pharmaq ltd, Fordingbridge, Hampshire, UK. 

* % wet weight basis 
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4A.3.3. Dietary proximate analyses  

Proximate analysis of diets was determined as described in section 2.5. 

 

4A.3.4. Sampling 

Two fish per tank were sampled for microbiology and two per tank for histology (n = 6) at 

the end of the trial. Refer to section 2.6. for sampling methodology. 

 

4A.3.5. Microbiological analyses 

4A.3.5.1. PCR-DGGE and sequencing 

For PCR-DGGE analysis, two digesta samples per tank were pooled and homogenised, thus 

providing n = 3 per treatment. DNA from 200 mg samples was extracted as described in 

section 2.7.1. PCR-DGGE analysis and sequencing was carried out as described in sections 

2.7.2. and 2.7.3. 

 

4A.3.5.2. High-throughput sequencing 

For high-throughput sequence analysis triplicate digesta samples were subjected to DNA 

extractions as described in section 2.7.1. High-throughput sequence analysis was carried out 

as described in section 2.7.4. 

 

4A.3.6. Intestinal histology  

4A.3.6.1. Light microscopy 
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Light microscopy analysis was carried out on two fish per tank (n = 6) as described in section 

2.8.1. An absorptive surface area index (ASI) was calculated according to the following: ASI 

= microvilli length (μm) × microvilli density (AU) × intestinal perimeter ratio. 

 

4A.3.5.2. SEM 

SEM analysis was carried out on two fish per tank (n = 6) as described in section 2.8.2. 

 

4A.3.5.3. TEM 

TEM analysis was carried out on four fish per treatment (n = 4) as described in section 2.8.3. 

 

4A.3.7. Gene expression 

4A.3.7.1. RNA extraction, cDNA synthesis and real-time PCR 

RNA extraction, cDNA synthesis and real-time PCR was carried out as described in sections 

2.7.6. and 2.7.7. 

 

4A.3.7.2. Reference gene, genes of interest and analyses 

β-Actin was used as the reference gene in each sample in order to standardise the results by 

eliminating variation in mRNA and cDNA quantity and quality (Bustin et al. 2009). No 

amplification product was observed in negative controls and no primer–dimer formations 

were observed in the control templates. The data obtained was analysed using the iQ5 optical 

system software version 2.0 (Bio- Rad) including Genex Macro iQ5 Conversion and genex 
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Macro iQ5 files. The calculations in this spreadsheet are derived from the algorithms outlined 

by Vandesompele et al. (2002) and from the GeNorm manual and associated calculations 

(http://medgen.ugent.be/ ~jvdesomp/genorm/). GeNorm calculates the stability value “M” of 

the reference genes by comparing the variation in expression for all other target genes. 

Modification of gene expression is represented with respect to the controls being sampled at 

the same time as the treatment. Genes of interest were the pro-inflammatory cytokines: 

interleukin-1β (IL-1β) and tumour necrosis factor-alpha (TNFα), and the immune-regulatory 

cytokines: heat-shock protein 70 (HSP70), caspase-3 (CASP3) and proliferating cell nuclear 

antigen (PCNA). Primers used and their sequences are presented in Table 4A.2. 

http://medgen.ugent.be/
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Table 4A.2. Information regarding primers used for real-time PCR analysis 1 

Gene Forward primer Reverse primer Amplicon 

size 

Genbank No E-value Annealling 

temp 

β-actin  AACACTGTGCTGTCTGGAGG  CTGCTGGAAGGTGGACAGAG  177  AJ493428.1 1.9 

 

60 

IL-1β  CAACAGCGCAGTACAGCAAG  AGATGCAAGGTTGGCTCCTC  265  AJ269472.1 1.9 

 

60 

TNFα AGGCCAAACCGAAGCACTAA ACTCCAGCTTGGCAGTCAAA 146  DQ070246.1 1.9 60 

HSP 70  GCACTCAACTACGAGCGTCT  AGTGTTGCTGGGGTTCAGAG  233 AY423555.2  2.0 

 

58 

CASP 3  CTTCGACAGGAGAACAGGCA  GCGTTGCAGCTGTGATCTTC  174  DQ345773.1 1.9 60 

PCNA  GCTGGGTACAGGAAACGTCA  GCGTGGCTTTGGTGAAGAAG  137  JQ755266.1 1.9 

 

60 

 2 

 3 

 4 

 5 

 6 

 7 
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4A.3.8. Statistical analysis  8 

Statistical analysis was carried out as described in section 2.9. 9 

 10 

4A.4. Results 11 

4A.4.1. Gross observations 12 

Fish accepted all dietary regimes well and fish appeared healthy with 100 % survival 13 

recorded throughout the trial. The average fish weights after four weeks were, basal: 120.30 ± 14 

6.78 g, probiotic: 125.20 ± 6.60g, prebiotic: 121.10 ± 10.79g, synbiotic: 125.10 ± 9.77g, and 15 

antibiotic: 122.90 ± 3.77g. Growth parameters remain statistically unaffected. 16 

 17 

4A.4.2. Microbiological analyses 18 

4A.4.2.1. PCR-DGGE 19 

The 16S rRNA PCR-DGGE is presented in Figure 4A.1. with arrows depicting the excised 20 

bands for sequencing. Cluster analysis and multi-dimensional scaling of the replicates in each 21 

dietary treatment group is presented in Figure 4A.1. Replicates of fish fed the probiotic and 22 

synbiotic treatments exhibited clusters with a clear separation from fish fed all other 23 

treatments. The probiotic and synbiotic treatments exhibited > 80 % similarity between all 24 

replicates. Three of the four replicates within both treatments distinctly clustered with some 25 

crossover between these two treatments apparent between the remaining replicates. The 26 

replicates of fish fed the prebiotic treatment were distinct form all the other groups and three 27 

of the four replicates within the basal were also distinct from the other treatment groups. Two 28 

replicates of fish fed the antibiotic treatment exhibited some distinction from fish fed the 29 
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other treatments with the remaining two replicates exhibiting crossover/similarity with the 30 

replicates of the basal and prebiotic fed fish.  31 

The highest within treatment variation was observed in replicates of fish fed the antibiotic 32 

treatment with a percentage similarity (SIMPER) of 61.45 ± 9.48 which was significantly 33 

reduced compared to the other treatment groups. Replicates of fish fed the probiotic diet 34 

exhibited the highest percentage similarity (88.00 ± 3.82), followed by fish fed the prebiotic 35 

(87.94 ± 4.48), synbiotic (87.64 ± 4.78), and basal (82.56 ± 11.09) treatments (Table 4A.3). 36 

Percentage dissimilarity values were observed to be lowest when the replicates of the 37 

probiotic and synbiotic fed fish were directly compared (18.04 %), and the greatest level of 38 

dissimilarity was observed when the replicates of the probiotic fed fish were compared to 39 

replicates of basal fed fish (65.61 %). The ecological parameters remained unaffected by 40 

dietary treatment Table. 4A.3. 41 

 42 

 43 

 44 

 45 
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Figure 4A.1. Nonmetric multidimensional scaling analysis plots (A) showing clusters at different 46 

similarity levels and dendrogram (B) of the PCR-DGGE fingerprint profiles of the allochthonous 47 

bacterial communities associated with the posterior intestine of European sea bass fed the 48 

experimental diets for four weeks. 49 

A 

B 
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Table 4A.3 Microbial community analysis from the PCR-DGGE of the allochthonous bacterial communities in the posterior intestine of 50 

European sea bass fed each dietary regime for four weeks (ANOVA + post hoc Tukey’s) accepted at P < 0.05. Values expressed as means ± 51 

standard deviation. 52 

  Ecological parameters   ANOSM   

 Treatment OTU’s Richness
†
 Diversity

‡
 

SIMPER 

(similarity %) 
R-value P-value Dissimilarity (%) 

Basal 29.00 ± 4.83 2.72 ± 0.40 3.24 ± 0.18 82.56 ± 11.09
a
    

Probiotic 27.00 ± 2.16 2.46 ± 0.20 3.15 ± 0.08 88.00 ± 3.82
a
    

Prebiotic 29.00 ± 1.83 2.71 ± 0.14 3.27 ± 0.06 87.94 ± 4.48
a
    

Synbiotic 29.00 ± 1.41 2.61 ± 0.11 3.24 ± 0.04 87.64 ± 4.78
a
    

Antibiotic 22.50 ± 7.68 2.16 ± 0.69 2.98 ± 0.34 61.45 ± 9.48
b
       

Pairwise comparisons               

Basal vs. Probiotic 
    

1.00 0.029 65.61 

Basal vs. Prebiotic 
    

0.40 0.057 18.52 

Basal vs. Synbiotic 
    

1.00 0.029 60.51 

Basal vs. Antibiotic 
    

0.27 0.057 34.30 

Probiotic vs. Prebiotic 
    

1.00 0.029 62.61 

Probiotic vs. Synbiotic 
    

0.66 0.029 18.04 

Probiotic vs. Antibiotic 
    

1.00 0.029 65.30 

Prebiotic vs. Synbiotic 
    

1.00 0.029 58.18 

Prebiotic vs. Antibiotic 
    

0.41 0.029 35.91 

Synbiotic vs. Antibiotic         1.00 0.029 64.31 

SIMPER, similarity percentage within replicates of each treatment; ANOSIM, analysis of similarities between treatments. 53 
†
 Margalef species richness: d = (S – 1)/log (N). 54 

‡
Shannon’s diversity index: H′ = -SUM(pi*log (pi)). 55 

Values expressed as means ± standard deviation. 56 
ab

 Different superscript letters in the same row indicate significant differences accepted at P < 0.05 57 
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4A.4.2.2. DGGE sequence analysis 58 

A number of OTU’s were excised for sequence analysis from the DGGE (Table 4A.4). The 59 

sequence data acquired from BLAST searches revealed that all of the bands sequenced 60 

belonged to the phylum Firmicutes. A number of these bands were observed to be related to 61 

B. subtilis (bands: 18, 20, 22, 34, 36, 38) which were present in both the probiotic and 62 

synbiotic treatment groups and absent from the other treatment groups confirming the 63 

presence of the probiotic.    64 

 65 

 66 

 67 
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Table 4A.4. Closest bacterial relative (% similarity) for sequences excised from the PCR-DGGE of the allochthonous bacterial communities 68 

from European sea bass posterior intestine after being fed the experimental diets for four weeks. The presence of bands in the replicates of each 69 

dietary regime is indicated in columns 2-6. Numbers indicate; 0 = band not present in any replicate through to 4 = band present in all replicates. 70 

Band 

ID 

Band presence  Phyla Nearest neighbour Alignment 

similarity (%) 

Accession number 

 Replicates     

 Basal Probiotic Prebiotic Synbiotic Antibiotic     

2 4 0 4 0 4 Firmicutes Lactobacillus sp. 81 AF_159000.1 

4 4 3 4 2 4 Firmicutes Uncultured Lactobacillus 95 KC_354241.1 

6 4 4 4 4 4 Firmicutes Uncultured Lactobacillus 98 KC_354241.1 

8 4 3 4 4 4 Firmicutes Uncultured Weissella  sp. 93/93 HM_820310.1 

10 4 3 4 4 4 Firmicutes Lactobacillus satsumensis 96 AB_362684.1 

12 4 4 4 4 4 Firmicutes Uncultured Lactobacillus 96 KC_354254.1 

14 4 4 4 4 4 Firmicutes Lactobacillus satsumensis 92 AB_362684.1 

16 0 4 3 4 0 Firmicutes Bacillus sp. 96 JQ_068110.1 

18 0 4 0 4 0 Firmicutes B. subtilis 96 HQ_703594.1 

20 0 4 0 4 0 Firmicutes B. subtilis 99 HQ_703594.1 
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22 0 4 0 4 0 Firmicutes B. subtilis 100 HQ_703594.1 

24 4 0 4 0 4 Firmicutes Lactobacillus frumenti 98 JX_272061.1 

26 0 4 0 4 0 Firmicutes B. subtilis 100 HQ_703594.1 

28 4 2 4 4 4 Firmicutes Uncultured Lactobacillus 87 JN_883491.1 

30 4 0 4 0 4 Firmicutes Uncultured Lactobacillus 87 JN_883491.1 

34 0 4 0 4 0 Firmicutes B. subtilis 95 HQ_703594.1 

36 0 4 0 4 0 Firmicutes B. subtilis 99 HQ_703594.1 

38 0 4 0 4 0 Firmicutes B. subtilis 94 HQ_703594.1 

40 4 3 4 4 4 Unidentified Uncultured soil bacterium 93 GU_375004.1 

42 4 4 4 4 3 Unidentified Uncultured bacterium 87 HM_269688.1 

44 4 0 4 0 4 Firmicutes Lactobacillus rossiae 96 JN_680708.1 

46 4 0 4 0 4 Firmicutes Uncultured Lactobacillus 93 KC_354151.1 

48 4 0 4 0 4 Firmicutes Lactobacillus rossiae 98 JN_680708.1 

50 4 0 4 0 4 Firmicutes Salinococcus sp. 92 NR_044030.1 

 71 

 72 
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4A.4.2.3. High-throughput sequencing 73 

A total of 1,404,925 reads were retained after trimming and QC, which were used for 74 

downstream analyses. Alpha rarefaction analyses revealed all samples to be reaching a 75 

plateau after approx. 25,000-30,000 sequences (Figure 4A.2.), and good’s coverage 76 

estimators were > 0.99 (Table 4A.5.), signifying that the bacterial communities were fully 77 

sampled and the subsequent observed OTU’s were representative of the population. Alpha 78 

diversity parameters are also presented in Table 4A.5. and revealed that fish fed the prebiotic 79 

treatment exhibited the highest numbers of observed species (325.51 ± 13.18) which was 80 

significantly higher than in samples of fish fed the probiotic and synbiotic treatments (181.61 81 

± 35.22 and 230.93 ± 6.91, respectively). Confirming the results obtained from the PCR-82 

DGGE, the lowest value was observed to be in fish fed the probiotic treatment. Shannon-83 

wiener diversity index revealed fish fed the probiotic and synbiotic treatments exhibited 84 

lower bacterial diversity (3.59 ± 0.12 and 3.78 ± 0.08, respectively) compared to fish fed the 85 

other treatments, which was observed to be significantly (P < 0.05) lower when compared to 86 

fish fed the antibiotic treatment (5.07 ± 0.07). The phylogenetic distance (PD) was observed 87 

to be lowest in fish fed the probiotic treatment (3.15 ± 0.69) which was significantly (P < 88 

0.05) lower than in fish fed the prebiotic treatment (5.51 ± 0.37). Species richness (Chao 1) 89 

remained statistically unaffected by treatment groups. Unweighted UniFrac UPGMA 90 

clustering of reads from the replicates of each treatment revealed two distinct clusters, with 91 

all replicates from the basal, prebiotic and antibiotic treatment groups clustering together in 92 

the first cluster, and all replicates of the probiotic and synbiotic treatment groups clustering 93 

together in the second cluster (Figure 4A.3.). 94 

 95 
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96 
Figure 4A.2. Alpha rarefaction curves representing the number of observed species (OTU’s) 97 

per sample, which is used as an inference of the number of species, as a function of 98 

sequencing effort. 99 

 100 

 101 

 102 

 103 

 104 

 105 

 106 

 107 
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Table 4A.5. High-throughput sequencing goods coverage estimations by treatment and alpha 108 

diversity parameters of the allochthonous bacteria associated with the posterior intestine of 109 

European sea bass fed each dietary regime for four weeks. Data represent mean ± SD. 110 

Treatment Good’s 

coverage 

Observed 

species 

Chao1 index Shannon 

index 

Phylogenetic 

Distance 

Basal 0.9972±0.0001 261.89±16.17 296.00±15.97 5.03±0.15 5.07±0.38 

Probiotic 0.9978±0.0006 111.89±23.65 160.80±33.32 3.18±0.06 2.11±0.52 

Prebiotic 0.9971±0.0002 254.91±4.12 286.79±8.51 4.86±0.01 4.88±0.29 

Synbiotic 0.9972±0.0001 139.83±4.84 193.55±3.18 3.30±0.06 2.74±0.16 

Antibiotic 0.9969±0.0002 247.58±7.02 286.21±4.85 4.76±0.17 4.73±0.12 

 111 

 112 
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 113 

Figure 4A.3. Bray-Curtis UPGMA UniFrac clustering of reads of the replicates of the 114 

allochthonous bacterial communities in the posterior intestine of European sea bass fed each 115 

dietary regime for four weeks. Jackknife support is: Red (75-100 %), yellow (50-75 %), 116 

green (25-50 %) and blue (< 25 %). Bar indicates 10 % divergence. Cluster 1 contains all 117 

replicates within the basal, prebiotic and antibiotic treatments. Cluster 2 contains all 118 

replicates within the probiotic and synbiotic treatments. 119 

 120 
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The sequence distribution at the phylum level is displayed in Figure 4A.4. Firmicutes 122 

dominated the phyla within all treatments accounting for 97.50 % of the total read sequences, 123 

followed by Actinobacteria (1.30 %), Proteobacteria (1.10 %) and Bacteroidetes (0.10 %). 124 

Statistically, Firmicutes were significantly elevated in samples of fish fed the probiotic 125 

(99.80 %) and synbiotic treatments (99.60 %) compared to those fed the basal diet (94.90 %) 126 

(P < 0.02 and P < 0.05, respectively). The proportion of Actinobacteria reads were 127 

significantly reduced in fish fed the probiotic (0.10 %) and synbiotic (0.20 %) diets compared 128 

to fish fed the basal (2.00 %), prebiotic (2.30 %), and antibiotic (0.90 %) diets (P < 0.001). 129 

The phyla Proteobacteria and Bacteroidetes remained statistically unaffected by dietary 130 

treatments. 131 

Figure 4A.5. displays the sequence distribution at the genus level. The genus Lactobacillus 132 

comprised the majority of the 16S RNA gene reads, comprising 42.10 % of the total reads, 133 

followed by reads belonging to the family Bacillaceae (identified in BLAST as B. subtilis) 134 

(34.90 %), and Leuconostocaceae (genus unidentified) (11.90 %), and the genus Bacillus 135 

(4.10 %) with all other genera present at 1.5 % or below. The genus Lactobacillus was 136 

significantly higher in fish fed the prebiotic treatment (73.20 %) compared to fish fed the 137 

basal (60.70 %; P < 0.05), probiotic (2.70 %; P < 0.001), and synbiotic (5.10 %; P < 0.001) 138 

diets. This genus was also observed to be significantly higher in fish fed the basal treatment 139 

compared to fish fed the probiotic and synbiotic (P < 0.001). The proportion of Lactobacillus 140 

reads was also significantly elevated in fish fed the antibiotic treatment (68.80 %) compared 141 

to fish fed the probiotic and synbiotic treatments (P < 0.001). The abundance of reads 142 

assigned to the genus Bacillus was observed to be significantly elevated in fish fed the 143 

probiotic (10.30 %) and synbiotic (9.40 %) treatments compared to fish fed the basal (0.6 %; 144 

P < 0.001), prebiotic (0.2 %; P < 0.001) and antibiotic (0.2 %; P < 0.001) diets. The genera 145 

Micobacterium and Vagococcus were significantly reduced (P < 0.001) in fish fed the 146 
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probiotic (undetected) and synbiotic (undetected) compared to the fish fed the basal, prebiotic 147 

and antibiotic treatments which was detected at 0.30 %. Reads belonging to the genus 148 

Weissella were significantly reduced in fish fed the probiotic (undetected) and synbiotic 149 

(undetected) treatments when compared to fish fed the basal (0.80 %; P < 0.001), prebiotic 150 

(0.60 %; P < 0.001) and antibiotic (0.60 %; P < 0.01) treatments. Reads assigned to the 151 

family Brevibacteriaceae were also significantly higher in fish fed the basal (0.2 %; P < 152 

0.01), prebiotic (0.1 %; P < 0.02) and antibiotic (0.2 % P < 0.01) diets when compared to fish 153 

fed the probiotic treatment, and fish fed the synbiotic (undetected) treatment (P < 0.01, P < 154 

0.05 and P < 0.01, respectively). 155 

 156 

 157 

 158 

 159 

 160 

 161 
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162 
Figure 4A.4. The allochthonous bacterial communities in the posterior intestine of European 163 

sea bass fed the experimental diets for four weeks. Data represent bacterial phyla percentage. 164 

0%

20%

40%

60%

80%

100%

Basal Probiotic Prebiotic Synbiotic Antibiotic

Bacteroidetes

Proteobacteria

Actinobacteria

Firmicutes



Chapter 4A 

 

146 | P a g e  

 

165 
Figure 4A.5. The allochthonous bacterial communities in the posterior intestine of European 166 

sea bass fed the experimental diets for four weeks. Data represent reads assigned to bacterial 167 

genera > 0.1 %. 168 
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4A.4.2.4. Gene expression 169 

The relative expression of the genes IL-1β, TNFα, HSP70, CASP3 and PCNA is presented in 170 

Figure 4A.6. The relative expression of the pro-inflammatory cytokine genes IL-1β and 171 

TNFα was significantly up-regulated in fish fed the probiotic, prebiotic, synbiotic and 172 

antibiotic treatments when compared to fish fed the basal diet. IL-1β was significantly up-173 

regulated in fish fed the probiotic diet compared to fish fed the prebiotic, synbiotic and 174 

antibiotic diets. This gene was also significantly up-regulated in fish fed the prebiotic diet 175 

compared to fish fed the synbiotic and antibiotic diets. TNFα gene expression was 176 

significantly up-regulated in fish fed the probiotic, prebiotic and synbiotic diets compared to 177 

fish fed the antibiotic diet.  178 

Changes were also observed in the expression of the genes; HSP70, CASP3 and PCNA 179 

(Figure 4A.6.). The relative expression of HSP70 was observed to be significantly down-180 

regulated in fish fed the probiotic, prebiotic and synbiotic diets when compared to fish fed the 181 

basal. This was further significantly down-regulated in fish fed the synbiotic diet compared to 182 

fish fed the probiotic and prebiotic diets. HSP70 gene expression was also significantly up-183 

regulated in fish fed the antibiotic diet compared to fish fed all other treatments. The relative 184 

expression of CASP3 was significantly down-regulated observed in fish fed the probiotic, 185 

prebiotic and synbiotic diets compared to the intestine of fish fed the basal. The intestine of 186 

fish fed the antibiotic diet exhibited a significant up-regulation in CASP3 compared to fish 187 

fed the all other treatments. The relative expression of PCNA followed similar trends with a 188 

significant down-regulation observed in fish fed the probiotic, prebiotic and synbiotic diets 189 

compared to fish fed the basal. The expression of PCNA was significantly down-regulated in 190 

fish fed the synbiotic diet compared to fish fed the probiotic and prebiotic diets. Fish fed the 191 

antibiotic diet exhibited a significant up-regulation in this gene when compared to fish fed all 192 

other diets.     193 
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 194 

Figure 4A.6. Relative mRNA abundance of HSP70, CASP3, PCNA, TNFα and IL-1β in the 195 

intestine of European sea bass fed the experimental diets for four weeks. Different superscript 196 

letters indicate significant differences (accepted as P < 0.05) between treatments.  n = 6 per 197 

treatment. 198 
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4A.4.3. Intestinal histology 199 

4A.4.3.1. Light microscopy 200 

Figure 4A.7. illustrates examples of H & E stained posterior intestinal sections of 201 

fish fed each dietary regime. Gross observation analyses revealed some distinct 202 

differences between treatment groups with fish fed the basal treatment appearing to 203 

exhibit reduced mucosal fold lengths. The PR values (abitrary units) of fish fed the 204 

synbiotic treatment was significantly (P < 0.05) higher compared to fish fed the 205 

basal (5.36 ± 0.85 vs. 4.15 ± 0.59 in conrtol fed fish). Significantly elevated GC’s 206 

were obserevd in the probiotic and synbiotic fed fish (11.32 ± 1.97; P < 0.01 and 207 

11.28 ± 2.89; P < 0.05, respectively) compared to fed fish the basal treatment (7.43 208 

± 0.59) (Table 4A.6.). Numbers of IEL’s per 100 µm was highest in fish fed the 209 

probiotic and synbiotic treatments (70.48 ± 14.21 and 70.98 ± 10.91 respectively) 210 

however, all IEL counts per treatment remained significantly unaffected (Table 211 

4A.6.). 212 

 213 

 214 

 215 

 216 

 217 

 218 

 219 

 220 

 221 

 222 
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Table 4A.6. Quantitative morphometric analyses of European sea bass posterior intestine 223 

after four weeks on the respective dietary regimes for four weeks. Data represent mean ± SD. 224 

Different superscript letters within the same rows indicate significant differences between 225 

groups. 226 

Variable Basal Probiotic Prebiotic Synbiotic Antibiotic 

Perimeter ratio  

(AU) 
4.15±0.59

a
 5.19±0.70

ab
 4.80±0.85

ab
 5.36±0.71

b
 5.03±0.61

ab
 

IEL’s (cells per 

100µm) 
66.02±8.54 70.48±14.21 67.03±5.87 70.98±10.91 57.63±8.19 

GC’s (cells per 

100µm) 
7.43±0.59

a
 11.32±1.97

b
 8.58±0.91

ab
 11.28±2.89

b
 9.32±3.32

ab
 

Microvilli density 

(AU) 
6.34±0.88

a
 8.47±1.13

b
 8.46±1.67

b
 7.84±1.29

ab
 7.10±1.11

ab
 

Microvilli length 

(µm) 
2.37±0.30 2.25±0.40 2.15±0.24 2.19±0.26 2.33±0.28 

ASI 71.51±11.05
a
 113.24±23.44

b
 95.75±18.19

ab
 105.65±14.84

ab
 93.95±22.11

ab
 

 227 

 228 
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 229 

 230 

 231 

 232 

 233 

 234 

 235 

 236 

 237 

 238 

 239 

 240 

 241 

 242 

 243 

 244 

Figure 4A.7. Light micrographs of the posterior intestine of European sea bass fed the basal 245 

control (A & F), probiotic (B & G), prebiotic (C & H), synbiotic (D & I), and antibiotic (E & 246 

J) treatments for four weeks. Scale bars = 100 µm in A-E and 50 µm in F-J.  247 
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4A.4.3.2. SEM 248 

Electron micrographs of the ultra-structural scale of the posterior intestine of fish fed each 249 

dietary treatment are presented in Figure 4A.8. Gross observations using SEM revealed 250 

distinct differences between treatments with the epithelium of fish fed the basal dietary 251 

treatment exhibiting gaps between enterocytes and areas of patchy microvilli with reduced 252 

microvilli densities and formation. In contrast the epithelium of fish fed the probiotic, 253 

prebiotic and synbiotic treatments exhibited uniform enterocyte formations and densely 254 

packed microvilli. Fish fed the antibiotic treatment exhibited similar epithelial damage to that 255 

observed in the basal fed fish. Quantitative analyses confirmed these observations with the 256 

epithelium of fish fed the basal treatment exhibiting the lowest microvilli density 257 

measurement (arbitrary units) (6.34 ± 0.88). Antibiotic fed fish displayed a value, similar to 258 

the basal fed fish of 7.10 ± 1.11. Values observed from fish fed the probiotic (8.47 ± 1.13), 259 

prebiotic (8.46 ± 1.67) and synbiotic (7.84 ± 1.29) treatments were markedly increased, 260 

significantly so with regards to the probiotic and prebiotic treatment groups with P < 0.05 in 261 

both cases (Table 4A.6.).  262 

 263 

 264 

4A.4.3.3. TEM 265 

Observations of TEM images confirmed the SEM findings with apparently uneven 266 

microvillar structures and some degradation at the apical tips in those fish fed the basal 267 

treatment. In contrast, fish fed the probiotic, prebiotic, synbiotic and antibiotic treatments all 268 

appeared to exhibit a more uniform and tightly packed microvillar morphology. Despite these 269 

morphological differences at the apical tips, the microvilli height measurements remained 270 

statistically unaffected throughout treatments. The ASI index revealed that fish fed the 271 
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synbiotic treatment exhibited a significantly (P < 0.05) higher value (105.65 ± 14.84) when 272 

compared to those fish fed the basal treatment (71.51 ± 11.05) (Table 4A.6.). 273 

 274 

 275 

 276 
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277 
Figure 4A.8. Electron micrographs (SEM; A-J and TEM; L-P) of the posterior intestine of 278 

European sea bass fed the experimental diets; basal (A, F & L), probiotic (B, G & M), 279 

prebiotic (C, H & N), synbiotic (D, I & O), and antibiotic (E, J & P) for four weeks. Scale 280 

bars = 10µm in images A-E and 1 µm in images F-O.  Note the apparent loss of membrane 281 

integrity of the microvilli apical tips in images L, N and P. 282 
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4A.5. Discussion 283 

The present study used microbiological, gene expression and histological techniques 284 

to assess the effects the probiotic B. subtilis, the commercial prebiotic Previda
®
 and 285 

the antibiotic oxytetracycline have on the intestinal microbiota and health of 286 

European sea bass fed a sub-optimal diet.  287 

The results generated from the PCR-DGGE analyses revealed that the inclusion of 288 

B. subtilis modulates the allochthonous intestinal microbiota in European sea bass. 289 

Two distinct clusters with replicates from fish fed the basal, prebiotic and antibiotic 290 

treatments clustering with approx. 55 % similarity. The second cluster contained the 291 

replicates of the probiotic and synbiotic fed fish with approx. 80 % similarity. This 292 

was further confirmed by high-throughput sequence analysis, with similar cluster 293 

groupings observed in the Bray-Curtis UniFrac UPGMA. PCR-DGGE ecological 294 

parameters revealed fish fed the antibiotic treatment exhibited the lowest numbers 295 

of OTU’s and significantly lower pecentage similarity between replicates 296 

(SIMPER) when compared to fish fed the other treatments. Fish fed the probiotic, 297 

prebiotic and synbiotic treatments exhibited higher SIMPER values compared to 298 

fish fed the basal, perhaps suggestive of a more stable microbiota induced by the 299 

feed additives. Species richness and diversity was lowest in fish fed the antibiotic 300 

treatment, folowed by fish fed the probiotic and synbiotic treatments though these 301 

values remained statistically unaffected. With regards to high-throughput sequence 302 

analyses, sequence libraries of all treatments exhibitied Good’s coverage 303 

estimations > 0.99, indicative of fully sampled microbial populations. Similar to the 304 

PCR-DGGE analyses, high-throughput sequence ecological parameters revealed 305 

fish fed the probiotic and synbiotic treatments to exhibit lower Chao 1 (richness) 306 

and Shannon index (diversity) values when compared to fish fed the basal. 307 
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Observed species values were also observed to be lowest in fish fed the probiotc and 308 

synbiotic treatments. However, these parameters were not statistically different 309 

between treatments.  310 

Interestingly, contrary to the PCR-DGGE analyses, fish fed the antibiotic treatment 311 

exhibited Chao1 and shannon index values similar to those observed in fish fed the 312 

basal and prebiotic treatments. Observed species values of fish fed the antibiotic 313 

treatment appeared to be lower than fish fed the basal and prebiotic treatment, but 314 

higher than in fish fed the probiotic and synbiotic treatments. The small 315 

discrepancies (although not significant) between molecular methods with regards to 316 

the Choa1 and Shannon indices of the antibiotic fed fish is perhaps not surprising 317 

and may be a result based on the higher level of sensitivity of high-throughput 318 

sequencing methods compared to the PCR-DGGE methods. Indeed, it has been 319 

reported that rare/minority bacterial groups in a given sample may not be detection 320 

by PCR-DGGE (Ercolini 2004). Leite et al. (2012) reported minor bacrterial 321 

constituents deteced using high-throughput sequencing, which went undetected by 322 

PCR-DGGE. Caution should also be applied to high-thrpoughput sequencing data 323 

when assessing bacterial abundance. This is particularly important in probiotic 324 

studies given the generally high numbers of probiotic 16S rRNA reads (which may 325 

occur as a consequence of the probiotic supplementation), relative to 16S rRNA 326 

reads assigned to other species. Furthermore, 16S rRNA copy numbers may differ 327 

between bacterial species potentially skewing the true bacterial abundance in a 328 

given sample (Fogel et al. 1999; Ercolini 2004). 329 

Both PCR-DGGE and high-throughput sequence analysis revealed all samples to be 330 

dominated by the Firmicutes phylum. Proteobacteria, Actinobacteria and 331 

Bacteriodetes were also detected by high-throughput sequence analysis in relatively 332 
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lower abundances. These findings are in contrast to other studies on European sea 333 

bass and other marine fish species, where the intestinal microbiota appear to be 334 

dominated by Proteobacteria, with Bacteriodetes, Actinobacteria, and Firmicutes 335 

making up the smaller proportions (Izvekova et al. 2007; Cerezuela et al. 2013; 336 

Carda-Diéguez et al. 2014; Gatesoupe et al. 2014). The reasons for this warrant 337 

further investigation but could be due to the artificially high SPC content and/or 338 

saponin supplememntation of the basal formulation which had a modulatory effect 339 

to the intestinal microbiota. Indeed, dietary inclusion of soy proteins has been 340 

observed to modulate the intestinal microbiota in various fish species (Heikkinen et 341 

al. 2006; Ringø et al. 2006; Bakke-McKellep et al. 2007; Ringø et al. 2008; 342 

Merrifield et al. 2009; Dimitroglou et al. 2010; Reveco et al. 2014; Chapter 3) 343 

Differing methodologies applied in the various studies could also be a contributing 344 

factor to the above findings.  345 

At the genera level, LAB, and specifically Lactobacillus spp., appeared to dominate 346 

the bacterial community of the basal, prebiotic and antibiotic fed fish and was 347 

significantly higher than in fish fed the probiotic and synbiotic treatments. Multiple 348 

B. subtilis species were sequenced from PCR-DGGE of fish fed the probiotic and 349 

synbiotic treatments which were absent from fish fed the other treatments, 350 

appearing to confirm the presence of the probiotic. This was further verified through 351 

high-throughput sequence analyses, which revealed the dominance of OTU’s (of 352 

those 16S rRNA reads accounting for > 0.1 %) assigned to Bacillus spp. in fish fed 353 

the probiotic and synbiotic treatments, which was significantly higher than in fish 354 

fed the basal, prebiotic and antibiotic treatments. Furthermore, multiple Bacillus 355 

sequences identified as B. subtilis using the NCBI database were present in the 356 

probiotic and synbiotic fed fish which were absent from the other treatments 357 
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appearing to confirm the presence of the probiotic. However, a number of sequence 358 

reads also identified as B. subtilis were present in all samples. This is perhaps not 359 

surprising as B. subtilis is commonly found in the intestine of many fish species 360 

(Mahious et al. 2006; Ai et al. 2011; Askarian et al. 2012; Del'Duca et al. 2013; 361 

2015), and its presence in all samples in the present study may suggest this species 362 

to be part of a core bacteria found in the intestine of European sea bass. However, to 363 

the authors knowledge only a handful of studies have assessed the intestinal 364 

bacterial communities of European sea bass and hence limited data is available in 365 

this area (De Schryver et al. 2011; Sun et al. 2013; Gatesoupe et al. 2014; Carda-366 

Diéguez et al. 2014; Delcroix et al. 2015; Chapter 3). 367 

A number of genes were also evaluated in the present study to assess the affects the 368 

feed additives on the localised intestinal immunology. The cytokines IL-1β and 369 

TNFα, which are involved in the initiation of immune cells such as macrophages 370 

and neutrophils and play roles in regulating inflammation (Foey & Picchetti 2014), 371 

were assessed at the transcriptional level. It was observed that fish fed the probiotic, 372 

prebiotic, synbiotic and antibiotic treatments exhibited a significant up-regulation of 373 

the pro-inflammatory cytokine genes IL-1β and TNFα compared to fish fed the 374 

basal diet. Elevated intestinal IL-1β and/or TNFα expression has been reported in 375 

fish as a consequence of probiotic and prebiotic supplementation (Pérez-Sánchez et 376 

al. 2011; Pirarat et al. 2011; Abid et al. 2013; He et al. 2013; Liu et al. 2013; 377 

Román et al. 2013; Standen et al. 2013; Guzmán-Villanueva et al. 2014; Villamil et 378 

al. 2014; Yarahmadi et al. 2014). The elevated intestinal IL-1β and TNFα levels 379 

(relative to the basal control) in the present study may be indicative of an intestine 380 

in an elevated immunologic state. The expression of HSP70, CASP3 and PCNA 381 

was also assessed in the present study as indicators of intestinal cellular level stress. 382 
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Relative to the basal fed fish, the expression of HSP70 was significantly down-383 

regulated in fish fed the probiotic, prebiotic and synbiotic treatments. HSP70 levels 384 

are known to increase in the presence of potential pathogens, stressors and 385 

unfavourable conditions such as inappropriate stocking densities (Gornati et al. 386 

2004; Sanden et al. 2009; Zhang et al. 2014). The down-regulation in HSP70 387 

observed in the present study in fish fed the probiotic, prebiotic and synbiotic is in 388 

agreement with a number of previous probiotic and prebiotic studies assessing this 389 

gene in various fish species (He et al. 2011; Lui et al. 2013; Yarahmadi et al. 2014; 390 

Chen et al. 2015). The relative expression of CASP3 and PCNA was also 391 

significantly reduced in fish fed the probiotic, prebiotic and synbiotic treatment 392 

compared to fish fed the basal. PCNA is a biomarker for cell proliferation and DNA 393 

repair and an increase in expression of this gene would suggest an increase in 394 

cellular division. CASP3, is part of the cysteine-dependent aspartate specific 395 

protease family, involved in programme cell death (apoptosis) (Fink and Cookson 396 

2005). It has been observed in European sea bass that a virulence mechanism of the 397 

fish pathogen Photobacterium damselae ssp. piscicida is the ability to induce 398 

apoptosis of macrophages and neutrophils (do Vale et al. 2003). In the present study 399 

the relative expression of CASP3 was significantly down-regulated in fish fed the 400 

probiotic, prebiotic and synbiotic treatment compared to fish fed the basal. This is in 401 

accordance with a study where a down-regulation of CASP3 in intestinal cells of 402 

Atlantic cod was reported as a consequence of probiotic supplementation in vitro 403 

(Lazado et al. 2011). The reduced expression levels of HSP70, CASP3 and PCNA 404 

of the probiotic, prebiotic and synbiotic fed fish may be suggestive of an intestinal 405 

tissue under a state of reduced stress and a lower level of cellular turnover compared 406 

to fish fed the basal diet and the antibiotic treatment. It has been observed 407 
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previously in Atlantic salmon that the inclusion of SPC increases PCNA-positive 408 

proliferation at the base of intestinal folds, as well as a marked increase in HSP70 409 

and CASP3 reactivity in epithelial cells at the tips of the simple folds (Bakke-410 

McKellep et al. 2007). Interestingly, the opposite trend was observed with regards 411 

to fish fed the antibiotic treatment in the present study, with significant increases in 412 

the expression of HSP70, PCNA and CASP3 relative to fish fed all other treatments. 413 

This may suggest the antibiotic exerts a level of intestinal stress in the intestine of 414 

European sea bass. This could, at least in part, be due to the significant decrease in 415 

the abundance of the genus Bacillus in fish fed the antibiotic treatment, compared to 416 

fish fed the probiotic and synbiotic treatments, as Bacillus strains including B. 417 

subtilis have been reported to the reduce cellular level stress in gilthead sea bream 418 

by decreasing HSP70 gene expression (Avella et al. 2010). Future work is required 419 

on the roles antibiotics have on the expression of immune-related gene expression in 420 

the intestine of fish. 421 

Chapter 3 revealed some histological differences between fish fed the basal diet 422 

used here and fish fed a FM control diet. This Chapter revealed reduced PR and fold 423 

lengths, as well as significantly reduced GC’s and IEL’s as a consequence of 424 

feeding the basal diet compared to fish fed the FM control. In the present 425 

investigation, the administration of the probiotic, prebiotic and synbiotic appeared 426 

to increased the PR relative to the PR of fish fed the basal control, significantly so 427 

in fish fed the synbiotic treatment. Furthmore, fish fed the probiotic and prebiotic 428 

treatments exhibited significantly increased microvilli density measurements when 429 

compared to fish fed the basal. These results are in agreement with previous 430 

probiotic and prebiotic studies in fish (De Rodriganez et al. 2009; Dimitroglou et al. 431 

2009; Merrifield et al. 2010b). Microvilli lengths remained unaffected by dietary 432 
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treatments however, the combined with the PR and microvilli density indices, the 433 

absorptive surface area index (ASI) was significantly increased in fish fed the 434 

probiotic and generally increased in fish fed the prebiotic and synbiotic treatments 435 

compared to fish fed the basal. GC numbers were significantly increased in fish fed 436 

the probiotic and synbiotic treatments compared to fish fed the basal. IEL’s were 437 

also elevated in fish fed the probiotic and synbiotic treatments however, these 438 

values remained statistically unaffected between treatments. Elevated IEL’s and 439 

GC’s in the intestine of gilthead sea bream and European sea bass has previously 440 

been reported after dietary Lactobacillus spp. and B. subtilis administration 441 

(Picchietti et al. 2007, 2009; Salinas et al. 2008). Increased GC’s could be an 442 

indication of increased mucus production which subsequently lines the epithelial 443 

surfaces creating an unreceptive environment for potential pathogens (Dharmani et 444 

al. 2009). Furthmore it has been observed in rainbow trout that elevated intestinal 445 

IEL’s and GC’s may lead to reduced epithelial damage when exposed to pathogens 446 

(Harper et al. 2011). The colective histological results from the present study are in 447 

agreement with the aformentioned experiments and the increase in IEL’s and 448 

significant increase in GC’s exhibited by the probiotic and synbiotic fed fish may 449 

suggest an intestine better protected against potential enteropathogens. Furthmore, 450 

the increases in PR, microvilli density and ASI observed in fish fed the probiotic, 451 

synbiotic and to a slightly lesser degree, the prebiotic, may indicate an intestine with 452 

greater nutrient utilisation potential. These findings are in accordance with the 453 

significantly reduced expression levels of HSP70, PCNA and CASP3 suggesting 454 

that the probiotic, synbiotic and prebiotic supplementation has a positive effect on 455 

the intestinal health of European sea bass fed a sub-optimal diet.  456 

 457 
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4A.6. Conclusion 458 

In the present investigation, the supplementation of the probiotic, prebiotic, and 459 

synbiotic was observed to modulate the allochthonous intestinal microbiota of 460 

European sea bass. Multiple B. subtilis strains were observed to be present in fish 461 

fed the probiotic and synbiotic treatments which were absent from fish fed the other 462 

treatments. The probiotic appeared to have a stabilising effect on the microbial 463 

communities which were observed to be less diverse and less rich compared to the 464 

other treatments. The present study also revealed the use of the probiotic and 465 

prebiotic when used individually, and in combination, significantly elevated the 466 

expression of the cytocynes IL-1β and TNFα as well as the significant down-467 

regulation of HSP70, PCNA and CASP3 suggesting an intestine in an elevated state 468 

of immuo-readiness and under a lower level of cellular stress. These results 469 

appeared to coincide with the histological analyses where the epithelium of the 470 

intestine of fish fed the probiotic, prebiotic and synbiotic was observed to contain 471 

increased GC’s and IEL’s and increased PR, microvilli densities and ASI compared 472 

to fish fed the basal diet. Gene expression data and histological appraisals indicated 473 

that the antibiotic caused a level of intestinal stress in excess of those caused by the 474 

basal diet. Collectively, the results of the present investigation reveal that the 475 

probiotic and prebiotic, when incorporated individually and in combination, into a 476 

sub-optimal SPC based diet can have positive effects on the intestinal health of 477 

European sea bass juveniles.  478 

The positive effects B. subtilis appeared to confer in this chapter led to the question; 479 

do these positive effects due to dietary B. subtilis supplementation extend to 480 

positive long-term effects on the growth and health of European sea bass juveniles. 481 

The present chapter revealed the unusually high levels of SPC and the addition of 482 
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saponins appeared to modulate the intestinal bacterial communities, and was not 483 

representative of a diet used commercially for this species. Chapter 5 would 484 

therefore use a diet more in line with one which might be used commercially in 485 

European sea bass aquaculture. 486 
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Chapter 4B: 

Ex vivo European sea bass Intestinal bacterial challenge trial of (D. labrax) 
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4B.1. Abstract 

At the end of the trial in Chapter 4A, 20 fish per treatment (i.e. basal, probiotic, prebiotic and 

synbiotic) were sampled for the ex vivo experiment. Whole intestinal samples were removed 

aseptically and the posterior intestine was then isolated. Solutions containing one of four 

treatments [1. phosphate buffered saline (PBS) as the control, 2. probiotic at 10
7
 CFU g

-1
, 3. 

pathogen (V. anguillarum) at 10
7
 CFU g

-1 
and 4. probiotic1 (10

7
 CFU g

-1
)
 
+ pathogen (10

7
 

CFU g
-1

) (50:50)] was conducted with n = 5. SEM analyses revealed V. anguillarum caused 

substantial epithelial damage to the intestine of all samples. The most pronounced damage 

was observed in samples of fish fed the basal control and microvilli density measurements 

were significantly reduced in fish fed the control compared to fish fed the other treatments 

when exposed to the pathogen. These results appear to strengthen the findings of Chapter 4A, 

suggesting the improved health status of the epithelium as a consequence of B. subtilis and 

Previda
®
 feeding may confer a level of epithelial protection against V. anguillarum. No 

significant differences in microvilli densities were observed between treatments when the 

intestines were exposed to the pathogen + probiotic. FISH analyses did not detect the 

presence of V. anguillarum cells on or in the epithelial tissue after the one hour exposure time. 

This suggests the epithelial damage caused by V. anguillarum may be as a result of the 

producing cytotoxins without directly attaching to the epithelium. The present experiment 

provides a novel way to assess the interactions between bacteria and host tissue  
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4B.2. Introduction 

The GI tract of fish is an important organ involved primarily in digestion/absorption, but is 

also vitally important with regards to homeostasis and immunity (Ray & Ringo 2014). A 

common problem associated with European sea bass production is vibriosis, a bacterial 

disease caused by V. anguillarum, and it is thought the GI tract is one of the main infection 

site for this pathogen (Ringø et al. 2007; Harper et al. 2011). Antibiotics have traditionally 

been used to treat this and other bacterial diseases in fish, but more recently probiotic and 

prebiotic applications have come to the fore as a means of preventing bacterial infection 

without negatively impacting the intestinal microbiome. Probiotic and prebiotic studies in 

fish have presented positive effects and as a consequence are applications in the aquaculture 

industry are increasing year on year. For information regarding recent probiotic and prebiotic 

studies in fish refer to sections 1.7.1 and 1.7.2. A number of these studies provide evidence of 

host immunomodulation as a result of probiotic and prebiotic applications and its thought 

probiotics may inhibit pathogen infection through competitive exclusion (Balcázar et al. 

2007b; Ringø et al. 2007a). With regards to vibriosis, most studies assessing the efficacy of 

probiotics to inhibit or retard this disease have been carried out on salmonids (Gram et al. 

1999; Robertson et al. 2000; Spanggaard et al. 2001; Brunt et al. 2007; Ringø et al. 2007; 

Rodriguez-Estrada et al. 2009; Harper et al. 2011), with comparatively fewer studies 

available on European sea bass (Sorroza et al. 2012; Touraki et al. 2012). Most of these types 

of studies have focused on in vivo models, assessing survival and host immunity, and 

mechanisms relating to bacterial interactions and translocation are not fully understood. Ex 

vivo models have been utilised recently to assess the relationship between pathogens and the 

GI tract of fish. These types of studies are not only important models in terms of assessing 

bacterial-host interactions but are also in line with the replacement, reduction and refinement 

of animals in science. However, only a few studies to date are available on probiotic and 
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pathogen adhesion in the GI tract ex vivo, using variations of the intestinal sac method (Ringø 

et al. 2007b; Salinas et al. 2008; Kristiansen et al. 2011; Løvmo Martinsen et al. 2011; Salma 

et al. 2011; Harper et al. 2011; Ren et al. 2013). To the author’s knowledge however, only 

one study has been carried out on European sea bass using ex vivo techniques (Torrecilas et al. 

2011b), and no studies assessing probiotic efficacy using this ex vivo approach exist for this 

species. It was therefore the aim of the present investigation to utilise an ex vivo intestinal sac 

method to assess the effects the probiotic B. subtilis has individually, and in combination with 

the pathogen V. anguillarum, on the intestine of European sea bass fed various diets. 

 

4B.3. Materials and Methodologies 

4B.3.1. Experimental design 

Prior to the ex vivo challenge trial, experiments were carried out in order to optimise the 

conditions to which the experiment would be carried out (sections 4B.2.2. and 4B.2.3.). For 

information of experimental fish and trial parameters, refer to section 4A.3.1. At the end of 

the four week trial fish remained on the experimental diets for a further 3 days at which point 

Sampling was conducted on a total of 20 fish per feeding treatment (i.e. basal, probiotic, 

prebiotic and synbiotic). Each ex vivo treatment [phosphate buffered saline (PBS) as the 

control, probiotic cultured to a concentration of 10
7
 CFU g

-1
, pathogen (V. anguillarum) 

cultured to a concentration of 10
7
 CFU g

-1 
and probiotic1 (10

7
 CFU g

-1
)
 
+ pathogen (10

7
 CFU 

g
-1

) (50:50)] was conducted with n = 5 (Table 4B.1.) Whole intestinal samples were removed 

aseptically and any contents removed with sterile PBS, and the posterior intestine was then 

isolated. Cotton thread was used to tie the posterior-most end of the intestine. PBS (100 µl) 

was then added directly to the intestine and the anterior end was subsequently tied using 

cotton thread. The intestine was then placed into sterile 30 ml universal tubes containing PBS 
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which were then incubated (Figure 4B.1.). Each sample was incubated at 20 
o
C for a period 

of 60 min, at which point samples for fluorescent in-situ hybridisation (FISH), and light and 

electron microscopy analysis were taken.  

 

 

 

Figure 4B.1. Schematic representation of the ex vivo intestinal sac method used in the present 

experiment. 
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Table 4B.1. Trial information of the ex vivo experiment with dietary regimes and ex vivo 

treatments and numbers of fish used. 

  ex vivo treatments 

  PBS PROBIOTIC PATHOGEN PROBKIOTIC+PATHOGEN 

D
ie

ta
ry

 r
eg

im
es

 Basal 5 5 5 5 

Probiotic 5 5 5 5 

Prebiotic 5 5 5 5 

Synbiotic 5 5 5 5 

 

 

4B.3.2. Time assessment optimisation  

A preliminary experiment was conducted on the intestine of fish fed the basal diet to optimise 

the conditions best suited to conduct the ex vivo challenge trial at the end of the four week 

feeding trial. Intestines were incubated at 20 
o
C for periods of 30, 45 and 60 min to assess 

possible intestinal damage or artefacts caused by the ex vivo process (n = 4). After each time 

point samples were taken for SEM and TEM to determine levels of deterioration (refer to 

section 2.8 for methodology).  

 

4B.3.3. Time assessment optimisation results 

No obvious signs of damage were observed at the ultrastructural scale at the time points 

examined using both SEM and TEM analysis (Figure 4B.2.). SEM images revealed that the 

mucosal fold surfaces appeared to be healthy with no signs of necrosis or artefacts. 

Enterocytes appeared uniform as did the microvilli which were observed to be densely 

packed throughout all samples. TEM images also revealed a healthy brush border with well 
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defined, long microvilli and enterocytes bound by tight junctions with no obvious signs of ill 

health observed. It was concluded from the results acquired here that the ex vivo bacterial 

challenge experiment would be conducted at 20
 o
C and for the maximum time of 60 min. The 

longer time period of exposure would allow greater opportunities for the bacteria to interact 

with the tissue.  
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 1 

Figure 4B.2. SEM and TEM images of the posterior intestine of European sea bass in the preliminary time assessment ex vivo optimisation 2 

experiment, 20 
o
C for 30, 45 and 60 minutes. Scale bars = 1µm. Key: M = mitochondria; MV = microvilli; TJ = tight junctions. 3 
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4B.3.4. Vibrio challenge optimisation 4 

In order to select a bacterial species for use in the challenge trial, an experiment was 5 

conducted using three known fish pathogens and intestinal tissues of fish fed the basal diet. 6 

Vibrio harveyi, Vibrio alginolyticus and V. anguillarum were the three Vibrio species assayed. 7 

The bacteria were added to the intestine in PBS at a concentration of 10
7
 CFU g

-1
 and 8 

incubated at 20 
o
C for a period of 60 min (n = 4). Samples were taken for SEM and TEM to 9 

determine the levels of tissue deterioration (i.e. enterocyte malformation and necrosis) 10 

induced by the pathogens (refer to section 2.8 for methodology). 11 

 12 

4B.3.5. Vibrio challenge optimisation results 13 

Qualitative analysis acquired from the SEM micrographs of the posterior intestine showed at 14 

least some degree of damage caused by all three of the tested Vibrio strains. However, V. 15 

anguillarum appeared to show the most damaging effects including necrotic enterocytes, 16 

areas with irregular microvilli and areas lacking microvilli exposing the lamina propria and 17 

tight junctions (Figure 4B.3.). This strain was deemed to have demonstrated the highest 18 

pathogenicity and would therefore be used in the ex vivo experiment as the pathogen. 19 

 20 



Chapter 4B 

 

174 | P a g e  

 

 21 

Figure 4B.3. SEM images of the posterior intestine of European sea bass exposed to either 22 

PBS (Control; no pathogen added; A-C) or V. alginolyticus (D-F), V. harveyi (G-I) and V. 23 

anguillarum (J-L) ex vivo for 60 min at 20 
o
C. Scale bars are presented in each image. 24 
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4B.3.6. Fluorescent in-situ hybridisation (FISH) optimisation 25 

For optimisation of the FISH procedure, B. subtilis (Novus Int) and V. anguillarum CM31 26 

(Plymouth University culture collection) were routinely grown at 30 
o
C in brain heart 27 

infusion media (Oxoid). The cells were fixed in Carnoy’s solution (1 ml) for a minimum of 2 28 

hours at 4 
o
C. The fixed cells were centrifuged for 5 min at 13,000 x g and the supernatant 29 

removed and discarded. The cells were then re-suspended in PBS (1 ml) and washed for 5 30 

min by centrifugation (13,000 x g). The supernatant was discarded and cells were washed 31 

again in PBS. After re-suspension, 10 µl of the culture was placed on poly-L-lysine slides 32 

(Fisher Scientific, UK) and air dried at room temperature for 20-30 min. The slides were then 33 

dehydrated in a graded alcohol series: 50, 80, 90, 100 % (2 min in each) and washed in 34 

double distilled H20 (DDH20) for 2 min and left to air dry. The relevant probe solutions (1 µl) 35 

to 9 µl of hybridisation buffer ((20 mmol l
-1

 Tris–HCl pH 8.0, 0.9 mol l
-1

 NaCl, 0.02 % SDS 36 

and formamide (30 %)) was spotted onto the cultures which were circled with a wax pen. 37 

Both fluorescently labelled probes were obtained from Eurofins, UK and are presented in 38 

table 4B.2. Coverslips were added and hybridisation was carried out for 3 hours in a dark 39 

incubator at 46 
o
C in a humid chamber (50 ml falcon tube). Thereafter, slides were quickly 40 

added to separate falcon tubes containing preheated (48 
o
C) washing buffer (20 mmol l

-1
 41 

Tris–HCl pH 8.0, 0.9 mol l
-1

 NaCl, 0.01 % SDS) and left for 15 min. Slides were then dipped 42 

in DDH20 and then 100 % alcohol and air dried. Nucleic acid counterstain (10 µl of DAPI (1 43 

µg 1
-1

) (Sigma, UK)) was then spotted onto the slides which were left at room temperature 44 

for 10 min. Subsequently the slides were then dipped in DDH20 and 100 % alcohol and then 45 

air dried. A drop of antifade (Citifluor, Ltd) was added and coverslips were applied. Slides 46 

were visualised by epi-fluorescence microscopy with a Nikon H600L microscope and Nikon 47 

Ds-Qi1Mc camera.     48 

 49 
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Table 4B.2. Fluorescent 16S probes for fluorescent in situ hybridization analysis 50 

Probe  Sequence (5’-3’) Label Hybridisation 

temp 

Reference 

Vibrio ACAGTACTCTAGTCTGCCAG CY5 46 
o
C Moreno et al. (1999) 

Bacillus CGTTCAAACAACCATCCGG FITC 46 
o
C Liu et al. (2001) 

 51 

 52 

 53 

4B.3.7. FISH optimisation results 54 

Good fluorescence of both FITC labelled B. subtilis and Cy5 labelled V. anguillarum was 55 

observed on the slides. Non-specific binding was determined by multi-cultured slide 56 

preparations with both B. subtilis and V. anguillarum with both probes applied and visualised 57 

through epi-fluorescence multichannel image microscopy. Counter staining was carried out 58 

with DAPI. Fluorescence was observed in both species indicating good efficiencies of the 59 

respective probes, and no non-specific binding was observed (Figure 4B.4.). 60 
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 61 

Figure 4B.4. Fluorescently labelled B. subtilis and V. anguillarum cells after hybridisation. A] 62 

FITC labelled B. subtilis, B] DAPI counterstained B. subtilis, C] Cy5 labelled V. anguillarum 63 

and D] DAPI counterstained V. anguillarum. Scale bars = 10 µm. 64 

 65 

4B.3.8. V. anguillarum challenge experiment 66 

At the end of the four week trial a total of 20 fish per treatment were sampled from each 67 

dietary regime to be used in the ex vivo experiment. Each dietary regime was exposed to the 68 

ex vivo treatment solutions containing: 1] phosphate buffered saline (PBS) as the Control, 2] 69 

probiotic (B. subtilis at 10
7
), 3] pathogen (V. anguillarum at 10

7 
CFU’s g

-1
) and 4] probiotic 70 

(B. subtilis at 10
7 

CFU’s g
-1

) + pathogen (V. anguillarum at 10
7 

CFU’s g
-1

) (50:50) (as 71 

A 

C D 

B 
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summarised in Table 4B.1). Each ex vivo treatment was conducted with n = 5. Each sample 72 

was incubated at 20 
o
C for a period of 60 min, at which point samples for electron (SEM and 73 

TEM), and light microscopy analyses (refer to section 2.8. for methodology)  74 

For fluorescent in-situ hybridisation, samples of approx. 1 cm were also taken and fixed in 75 

Carnoy’s solution (60 % ethanol: 30 % chloroform: 10 % glacical acetic acid) as described by 76 

Lebeer et al. (2010) for fluorescent in-situ hybridisation (FISH) analysis. Tissue samples (n = 77 

5), cut to 5 µm were placed on poly-L-lysine slides (Fisher Scientific) and left overnight. 78 

Multiple (2-4) sections were cut for each intestinal sample. Deparifination was carried out 79 

using xyline and the sections were then rehydrated in a graded alcohol series: 100, 90, 80, 70, 80 

50, 30 % (2 min in each). The samples were then post-fixed in freashly prepared Carnoy’s 81 

solution for 1 hr. The relevant probe solutions (1 µl) in 9 µl of hybridisation buffer (20 mmol 82 

l
-1

 Tris–HCl pH 8.0, 0.9 mol l
-1

 NaCl, 0.02% SDS and formamide (30 %)) were spotted onto 83 

the sections which were circled with a wax pen to contain the samples. Coverslips were 84 

added immediately and hybridisation was carried out for 3 hours in a dark incubator at 46 
o
C 85 

in a humid chamber (50 ml falcon tubes). Thereafter, slides were immediately added to 86 

separate falcon tubes containing preheated (48 
o
C) washing buffer (20 mmol l

-1
 Tris–HCl pH 87 

8.0, 0.9 mol l
-1

 NaCl, 0.01 % SDS) and left for 15 min. Slides were then dipped in DDH20 88 

and then 100 % alcohol and air dried. Nucleic acid counterstain (10 µl of DAPI (1µg 1
-1

) 89 

(Sigma)) was then spotted onto the slides which were incubated at room temperature for 10 90 

min. Subsequently the slides were then dipped in DDH20 and 100 % alcohol and then air 91 

dried. A drop of antifade (Citifluor, Ltd) was added and coverslips were applied. Slides were 92 

visualised by epi-fluorescence microscopy with a Nikon H600L microscope and Nikon Ds-93 

Qi1Mc camera.  94 

 95 
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4B.3.9 Statistical analysis  96 

Statistical analysis was carried out as described in section 2.9. 97 

 98 

4B.4.Results 99 

4B.4.1. V. anguillarum challenge experiment  100 

4B.4.1.1. Light microscopy 101 

Examples of light microscopy sections stained in H&E of fish fed each dietary regime within 102 

the control ex vivo treatment are displayed in Figure 4B.5. The sections are representative of 103 

each dietary regime and were comparable to those samples taken at the end of the four week 104 

trial (refer to section 4A.4.3.1.). Perimeter ratio measurements for each sample are displayed 105 

in Table 4B.3. Fish fed the probiotic and synbiotic treatments generally exhibited the highest 106 

PR values independently of ex vivo treatment. The highest values were exhibited in fish fed 107 

the probiotic and synbiotic dietary regimes within the probiotic ex vivo treatment and the 108 

lowest value was observed in fish fed the basal regime within the pathogen ex vivo treatment, 109 

however, these were not significant different.  110 

 111 
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 112 

Figure 4B.5. Light micrographs of the posterior intestine of European sea bass fed the basal 113 

(A), probiotic (B), prebiotic (C) and synbiotic (D) diets for four weeks and subsequently 114 

exposed to the control ex vivo treatment for 60 min at 20 
o
C. Scale bars = 200 µm. 115 

 116 

 117 

 118 

 119 

 120 

A 

C 
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Table 4B.3. Perimeter ratio measurements of posterior intestine of European sea bass fed 121 

different dietary regimes, and exposed to the various ex vivo treatments. Data represent mean 122 

values expressed as arbitrary units (AU) ± SD. 123 

  ex vivo treatments 

  PBS PRO PATH PRO+PATH 

D
ie

ta
ry

 r
eg

im
es

 Basal 3.77±1.06 3.74±0.77 3.45±0.78 3.59±0.44 

Probiotic  4.15±0.91 4.46±0.47 3.95±0.45 4.18±0.26 

Prebiotic 4.09±0.65 4.37±0.70 3.68±0.53 3.99±0.66 

Synbiotic 4.30±0.44 4.54±0.36 3.93±077 3.94±0.58 

 124 

 125 

4B.4.1.2. Electron microscopy 126 

An example of the intestinal epithelium of each dietary regime, within each ex vivo exposure 127 

is presented in Figure 4B.6. Qualitative assessment revealed that within the ex vivo control 128 

(PBS exposure) the basal dietary regime exhibited the most epithelial damage which included 129 

malformed microvilli, patches of reduced microvilli density and gaps between enterocytes (A, 130 

B & C). There were no obvious signs of extra damage or artefacts caused by the ex vivo 131 

process. In contrast, the probiotic (M, N & O), prebiotic (Y, Z & AA) and synbiotic (KK, LL 132 

& MM) fed fish displayed relatively little epithelial damage within the PBS ex vivo exposure. 133 

The probiotic ex vivo exposure revealed no obvious deviation from the PBS treatment with 134 

the probiotic (P, Q & R), prebiotic (BB, CC & DD) and synbiotic (NN, OO & PP) fed fish, 135 

all exhibiting a uniform epithelium, with no signs degradation. The basal dietary regime 136 

exposed to the probiotic (D, E & F) exhibited some degree of epithelial damage similar to 137 

that observed in the basal control (i.e. PBS exposure; A, B & C) treatment. The pathogen ex 138 

vivo exposure caused substantial damage to all of the replicates within the basal dietary 139 

regime, which was characterised by necrotic enterocytes, areas with irregular microvilli and 140 

areas lacking microvilli which caused exposure of the lamina propria. However, the probiotic 141 
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(S, T & U), prebiotic (EE, FF & GG) and synbiotic (QQ, RR & SS) dietary regimes 142 

subsequently exposed to the pathogen exhibited less damage when compared to the basal 143 

dietary regime exposed to the pathogen (G, H & I). The probiotic + pathogen ex vivo 144 

exposure of the intestine of the fish fed the basal dietary regime exhibited the greatest signs 145 

of epithelium degradation (J, K & L). The probiotic (V, W & X), prebiotic (HH, II & JJ) and 146 

synbiotic (TT, UU & VV) fed groups all exhibited less damage than those observed in the 147 

basal fed fish group when exposed to both the pathogen and probiotic. It was apparent that 148 

less epithelial damage was observed in the probiotic + pathogen exposures than was observed 149 

with the pathogen exposure alone for the probiotic, prebiotic and synbiotic fed fish.  150 

Quantitative assessment of microvilli density is presented in Table 4B.3. Within the basal 151 

dietary regime the probiotic ex vivo exposure group exhibited the highest microvilli density 152 

which was significantly higher than both the pathogen and the probiotic + pathogen 153 

exposures. The microvilli density of the pathogen ex vivo exposure was significantly reduced 154 

compared to all other treatments. Within the probiotic dietary regime the intestines of the 155 

probiotic ex vivo exposure treatment exhibited the highest microvilli density which was 156 

significantly higher than the microvilli density of the pathogen exposure. Within the prebiotic 157 

dietary regime the probiotic ex vivo exposure exhibited a significantly higher microvilli 158 

density than the pathogen and probiotic + pathogen exposures. The microvilli density within 159 

the prebiotic treatment exposed to the pathogen ex vivo treatment was also observed to be 160 

significantly lower than the PBS and probiotic ex vivo exposures. Within the synbiotic dietary 161 

regime the probiotic and PBS ex vivo exposures were observed to exhibit significantly higher 162 

microvilli densities when compared to the pathogen exposure. The microvilli density of the 163 

probiotic exposure was also significantly higher than the microvilli density of the probiotic + 164 

pathogen exposure.                                                                                165 



Chapter 4B 

 

183 | P a g e  

 

 166 
Figure 4B.6. SEM images of varying magnifications of the posterior epithelium of European sea bass fed the four dietary regimes for four 167 

weeks which were subsequently exposed to each ex vivo treatment for 60 min at 20 
o
C. 168 
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Table 4B.4. Microvilli density assessment of posterior intestine of European sea bass fed 169 

different dietary regimes, and exposed to the various ex vivo treatments. Data represent mean 170 

values expressed as arbitrary units (AU) ± SD. Different superscript letters within rows 171 

(lowercase) and within columns (uppercase) indicate significant differences between groups. 172 

  ex vivo treatments 

  PBS PRO PATH PRO+PATH 

D
ie

ta
ry

 r
eg

im
e 

Basal 5.67±1.40
ab

 7.49±0.53
a
 3.27±0.21

c(A)
 5.29±1.42

bc
 

Probiotic  7.61±2.45
ab

 8.78±5.40
a
 5.40±0.80

b(B)
 6.60±1.30

ab
 

Prebiotic 6.78±0.37
ab

 8.49±1.85
a
 4.52±0.60

c(B)
 5.31±0.48

bc
 

Synbiotic 7.69±2.15
ab

 8.07±0.54
a
 4.54±0.19

c(B)
 5.43±0.82

bc
 

 173 

 174 

4B.4.1.3. FISH 175 

Pure bacterial cultures of B. subtilis (Novus Int) and V. anguillarum (the strain used in the ex 176 

vivo assay) were prepared and probed on separate slides for use as positive controls (Figure 177 

4B.7.A&B). Figure 4B.7.C presents examples of mucosal folds of the intestine of fish fed 178 

each dietary regime exposed to each ex vivo treatment. The eukaryotic tissue is clearly visible. 179 

Multiple areas of the mucosal folds were scanned and subjected to the different fluorescent 180 

conditions necessary for the visuallisation of both probes.  181 

Good fluorescence was acquired for samples of tissue from all tested samples. Fluorescence 182 

of the tested strains of B. subtilis and V. anguillarum was also acquired through preparation 183 

of the pure cultures (Figure 4B.7.A&B). The tested strains were not observed to be 184 

asociated/attached with/to the mucosal folds within each dietary regime, nor were their any 185 

signs of translocation into the tissues (Figure 4B.7.C).  186 

 187 
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 188 
 189 

Figure 4B.7. Fluorescently labelled B. subtilis and V. anguillarum cells after hybridisation. 190 

A] FITC labelled B. subtilis, B] Cy5 labelled V. anguillarum. Scale bars = 10 µm. Image C 191 

displays examples of intestinal mucosal folds of the posterior epithelium stained with DAPI 192 

of European sea bass fed each dietary regime exposed to the ex vivo treatments.  193 

Ex vivo treatment 
PATH PRO+PATH 

D
ie

ta
ry

 r
eg

im
e 

  
B

as
al

 
P

ro
b
io

ti
c 

S
y
n
b
io

ti
c 

P
re

b
io

ti
c 

PRO 

A B 

C 



Chapter 4B 

 

186 | P a g e  

 

4B.5. Discussion 194 

The gastrointestinal tract of fish has been proposed as a major infection site for potential 195 

pathogens (Groff & Lapatra 2000; Ringø et al. 2007). Hence, ex vivo (and in vitro gut cell 196 

line culture) assays are important tools for assessing bacterial-host interactions in the intestine 197 

of fish and are crucial with regards to limiting the numbers of fish used in bacterial challenge 198 

trials. However, to the author’s knowledge only a few studies have utilised this approach to 199 

assess bacterial pathogenesis in the intestine of fish species (Harper et al. 2011; Salma et al. 200 

2011; Løvmo Martinsen et al. 2011; Ren et al. 2013). In the present study, histological and 201 

FISH techniques were employed to assess the effects of V. anguillarum on the intestine of 202 

European sea bass, as well as assessing any antagonistic effects between the pathogen and the 203 

B. subtilis probiotic. The pathogen was observed to cause extreme damage to the epithelium 204 

at the ultrastructural scale as demonstrated by the electron micrographs. The morphometric 205 

analyses of microvilli densities revealed that fish exposed to the pathogen exhibited a reduced 206 

microvilli density, which was significantly reduced when fish fed the basal, prebiotic and 207 

synbiotic treatments were exposed to the pathogen. This is in line with Harper et al. (2011) 208 

who observed in an ex vivo study the degradation of the epithelium of rainbow trout intestines 209 

when exposed to V. anguillarum. Conversly, Løvmo Martinsen et al. (2011) reported no 210 

intestinal cell damage in the mid intestine of Atlantic cod when exposed to V. anguillarum ex 211 

vivo. The authors also observed Carnobacterium maltaromaticum exerted some competitive 212 

pressure against the pathogen. However, conclusions were drawn that the mid intestine of 213 

Atlantic cod appears not to be a major infection site for this pathogen.  In the present study, 214 

fish previously fed the probiotic, prebiotic and synbiotic supplemented diets, and then 215 

subsequently exposed to the pathogen ex vivo, exhibited significantly increased microvilli 216 

coverage when compared to fish fed the basal control diet. This may indicate a level of 217 

epithelial protection provided by the feed additives. Indeed antagonistic effects against Vibrio 218 



Chapter 4B 

 

187 | P a g e  

 

spp. by B. subtilis have been reported previously in vitro (Vaseeharan et al. 2003; Nakayama 219 

et al. 2009; Zokaeifar et al. 2014) and in vivo (Balcázar & Rojas-Luna 2007; Touraki et al. 220 

2012). With regards to prebiotic applications, there are a number of studies which indicate 221 

that prebiotic applications may improve the disease resistance of some aquatic species (Li et 222 

al. 2004; Costa et al. 2008; Rodrigues-Estrada et al. 2008). The beneficial effects are unlikely 223 

to be directly related to inhibition or antagonism of the pathogen, but in fact may be due to 224 

the general beneficial effects conferred by the prebiotic, particularly in terms of the intestinal 225 

health of the fish. Various studies have reported improvements in microvilli coverage and 226 

heights, as well as, increased fold heights and mucus production in fish fed diets 227 

supplemented with MOS (Dimitroglou et al. 2009, 2010; Torrecillas et al. 2011a, 2011b, 228 

2012). In the present study, fish were fed the experimental diets for four weeks prior to the ex 229 

vivo challenge and it was observed that fish fed the probiotic, prebiotic and synbiotic diets 230 

exhibited increased microvilli density measurements compared to fish fed the basal control 231 

diet. Furthermore, fish fed the feed additives were observed to be under apparently less 232 

cellular stress as indicated by a significant reduction in HSP70, as well as a significant 233 

reduction in CASP3 (cell proliferation) and PCNA (apoptosis) compared to fish fed the 234 

control (Chapter 4A). The ex vivo experiment confirmed these results in terms of microvilli 235 

density measurements and also revealed that fish exposed to the B. subtilis ex vivo treatment 236 

exhibited the highest microvilli density measurements suggesting the probiotic has a positive 237 

effect on the epithelium of European sea bass.  238 

The present ex vivo study also used fluorescently labelled probes for B. subtilis and V. 239 

anguillarum cells to assess any bacterial adherence to, and translocation into, the intestine. 240 

The presence of the probiotic and pathogen was not detected on or in the tissue of fish 241 

exposed to either treatment. This is perhaps not surprising given the conditions of the trial. 242 

The tissue was exposed for a period of one hour which could be a factor, as well as, 243 
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potentially loose association between baceria and tissue may have been interupted by the 244 

washing through process with PBS prior to sampling.  V. anguillarum is reported to exhibit 245 

various virulence factors including the production of repeat-in-toxin gene cluster (Li et al. 246 

2008), hemolysin gene cluster (Rock & Nelson 2006), zinc metalloprotease EmpA (Denkin & 247 

Nelson 2004) and flagellin A gene (Milton et al. 1996). The present study revealed through 248 

SEM that V. anguillarum had time to induce damage via the production of these cytotoxins, 249 

but may not have sufficient time to respond chemotactically to the mucus/epithelium and 250 

form robust attachements. Furthermore, it also appears from the electron microscopy analyses 251 

that B. subtilis may act antagonistically against V. anguillarum providing a level of 252 

epithelium protection without adhering directly to the epithelial surfaces. Multiple antibiotic 253 

biosynthesis genes, including those involved in bacilysin, plipastatin, subtilosin and surfactin 254 

production, have been reported to be produced by B. subtilis strains (Stein 2005; Zokaeifar et 255 

al. 2014; Sumi et al. 2015). Plipastatin has been observed to exhibit strong lipopeptide 256 

biosurfactants produced by Bacillus amyloliquefaciens has been reported to exhibit 257 

antibacterial action against pathogenic Vibrio spp., including V. anguillarum (Xu et al. 2014). 258 

As previously mentioned B. subtilis appears to have the potential to act antagonistically 259 

against Vibrio spp. however, the mechanisms involved in this process merit further 260 

investigation. 261 

 262 

4A.6. Conclusion 263 

Ex vivo techniques are important tools to assess bacterial interactions in the intestine of fish. 264 

Furthermore, these types of studies may minimise the numbers of animals used in bacterial 265 

challenge trials, as well as, reducing suffering and impairment of animal welfare which is in 266 

line with the 3 R’s (replacement, reduction and refinement). In the present study the fish 267 

pathogen V. anguillarum was observed to induce intestinal damage to the epithelium of 268 
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European sea bass at the ultrastructural scale as evidenced by electron microscopy. The study 269 

also revelaed B. subtilis had no detrimental effects to the epithelium and in fact increased the 270 

microvilli density with higher values observed in samples of intestine exposed to the 271 

probiotic ex vivo treatment. It should also be mentioned that fish fed the probiotic, prebiotic 272 

and synbiotic treatments exhibited an increased intestinal health status compared to fish fed 273 

the basal, prior to the ex vivo study (Chapter 4A). The study demonstrates that B. subtilis  and 274 

Previda
® 

individually and in combination may act to provide a degree of protection to 275 

intestinal epithelium of European sea bass in the presence of V. anguillarum. However, 276 

further studies are required to validate these results. 277 
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Chapter 5: 

The effect of B. subtilis and Next Enhance 150
®
 on the growth, intestinal microbiota, 

intestinal integrity, and immunity of European sea bass  
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5.1. Abstract 

The aim of the present study was to assess the effects of dietary B. subtilis individually, and 

in combination with a phytobiotic (Next Enhance 150
®

) on the health of European sea bass 

after ten weeks feeding. Five iso-nitrogenous (50% crude protein) and iso-lipidic (14% crude 

lipid) diets were produced, based on a commercial formulation, to meet the known nutrient 

requirements of European sea bass. The four experimental diets consisted of the basal dietary 

formulation with the addition of the feed additives as follows 1] the probiotic diet contained 

10
8
 CFU g

-1 
B. subtilis, 2] Next Enhance

®
 low dose at 1.5 g kg

-1
 (NE 1.5), 3] Next Enhance

®
 

high dose at 3.0 g kg
-1

 (NE 3.0), and 4] Probiotic + Next Enhance 150
®
 (10

8
 CFU g

-1 
B. 

subtilis + Next Enhance 150
®
 at 1.5 g kg

-1
. European sea bass (40.6 ± 0.28 g) were reared in 

triplicate tanks (23 per tank at 25 ± 1 °C, 30 ± 2 ppt salinity and 7.0 ± 0.5 pH) and were fed 

the experimental diets three times daily for ten weeks. At the end of the study, growth 

performance was assessed, and the posterior intestine was sampled for microbiological 

assessment, gene expression and histological analyses. 

High-throughput sequence analyses revealed that the inclusion of the probiotic modulated the 

allochthonous gut microbiota of D. labrax. Multiple Bacillus spp. were detected which were 

significantly increased in fish fed the probiotic compared to all dietary treatments and 

significantly increased in fish fed the probiotic + Next Enhance 150
®
 1.5 relative to fish fed 

the control, Next Enhance 150
®
 1.5 and Next Enhance 150

®
 3.0 treatments. A BLAST search 

revealed the presence of B. subtilis in fish fed the probiotic and probiotic + Next Enhance 

150
®
 1.5 which were not present in fish fed the other treatments. High-throughput sequencing 

analyses revealed distinct clusters of the bacterial profiles, with fish fed the probiotic and 

probiotic + Next Enhance 150
®

  1.5 generally clustering together and fish fed the control, 

Next Enhance 150
®
 1.5 and Next Enhance 150

®
  3.0 treatments clustering together, 

confirming differences in the bacterial communities. Gene expression analyses revealed 
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significant down-regulation of the expression of HSP70, CASP3, PCNA and calreticulin 

(CAL) in fish fed the probiotic treatment relative to fish fed the control. Histological analyses 

revealed significantly elevated intraepithelial leukocytes in fish fed the probiotic, Next 

Enhance 150
®
 3.0 and probiotic + Next Enhance 150

®
 1.5 treatments compared to fish fed the 

control. The present observations indicate that these feed additives may have a beneficial 

effect on the gut health of European sea bass without having a detrimental effect, after 10 

weeks feeding.  

 

5.2. Introduction 

Chapter 4A demonstrated that the B. subtilis modulated the intestinal microbiota of European 

sea bass, as well as conferring some protective effects at the intestinal epithelium against a 

challenge by a sub-optimal diet. However, Chapter 4A was an intestinal integrity trial 

designed to assess the short term effects of the feed additives on European sea bass health. 

The diet used in Chapter 4A was also designed to be challenging due to the high levels of soy 

protein and saponin products; it would be fair to assume this diet was not representative of a 

diet used commercially for this species. It was therefore the aim of present trial to assess the 

effects B. subtilis on European sea bass growth and health, when supplemented into a non-

challenging diet which was designed to be more reflective of a diet that might be used 

commercially for this species. Furthermore, the present study was designed to assess these 

effects over a longer period (i.e. 10 weeks) and additionally, the phytobiotic Next Enhance 

150
®
 was also investigated. 

Phytobiotics are plant-derived natural compounds which potentially enhance animal 

productivity (Antache et al. 2013). These feed additives are thought to exhibit an array of 

properties including antimicrobial, antioxidant, growth promoters and digestive enzyme 
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activies among others (Cristea et al. 2012). These properties are caused by a variety of 

primary (e.g. protein, carbohydrates and fat) and secondary (e.g. terpenes, carvacrol, 

capsaicin, peperin, chicoric acid and flavonoids) ingredients and have some demonstrable 

promise as alternative feed additives in the nutrition of livestock (Grashorn 2010). In fish, 

various phytobiotics have been observed to have immunostimulating (Dügenci et al. 2003; 

Yin et al. 2006; Kaleeswaran et al. 2012), disease resistance (Christybapita et al. 2007; Sahu 

et al. 2007; Abd-El-Rhman 2009; Rattanachaikunsopon et al. 2010; Volpatti et al. 2013) and 

growth promoting (JI et al. 2007; Abd-El-Rhman 2009; Thanikachalam et al. 2010) effects. 

Next Enhance 150
® 

is an encapsulated product containing the essential oils carvacrol and 

thymol. These essential oils have been observed to promote beneficial effects in various 

species of livestock (Li et al. 2012; Hashemipour et al. 2013; Roofchaee et al. 2013; Arsi et 

al. 2014; Ghasemi et al. 2014) including fish (Ahmadifar et al. 2011; Giannenas et al. 2012; 

Volpatti et al. 2013; Pérez-Sánchez et al. 2015; Peterson et al. 2015). In fish, a recent study 

demonstrated that Next Enhance 150
® 

could improve FCR’s and intestinal immune function 

when supplemented into the diets of gilthead sea bream (Pérez-Sánchez et al. 2015). There 

are however, fewer reports on the efficacy of utilising phytobiotics in combination with 

probiotics. To the author’s knowledge there are currently no published studies assessing the 

effects of probiotics in combination with phytobiotics on fish health. Therefore, the present 

study aimed to assess the effects the probiotic B. subtilis and the phytobiotic Next Enhance
 

150
®
 have individually and in combination on the growth and health of juvenile European sea 

bass. The study utilised high-throughput sequencing for bacterial community analysis, as well 

as assessing systemic immunity parameters: haematocrit, haemaglobin and serum lysozyme 

activity, and the expression of the immune related genes: IL-1β and IL-10, and genes 

associated with cellular stress, apoptosis and cell turn-over related genes (HSP70, CASP3 and 

PCNA). In addition, the expression of the calreticulin (CAL) was also assessed. CAL is an 



Chapter 5 

 

195 | P a g e  

 

important binder protein involved in the regulation of Ca
2+

 homeostasis, lectin binding and 

molecular chaperoning in the endoplasmic reticulum in animal systems. There is evidence to 

suggest CAL is involved in the immune function in fish (Luana et al. 2007; Duan et al. 2014; 

Liu et al. 2011), and was therefore assessed and hypothesised that the probiotic B. subtilis 

would not induce an up-regulation of this gene in present study. Chapter 4A revealed that IL-

1β was significantly up-regulated, and HSP70, CASP3 and PCNA were significantly down-

regulated as a consequence of probiotic, prebiotic and synbiotic feeding. It was therefore 

hypothesised that the expression of IL-1β would be up-regulated and HSP70, CASP3 and 

PCNA would be down-regulated as a consequence of probiotic feeding.  

 

5.3. Materials and Methodologies  

All experimental work involving fish was conducted under the UK Home Office project 

licence PPL 30/2644 and was in accordance with the UK Animals (Scientific Procedures) Act 

1986 and the Plymouth University Ethical Committee. 

 

5.3.1. Experimental design  

European sea bass were obtained from Anglesey Aquaculture Ltd, Black Point, Beaumaris 

UK and transported to the Aquaculture and Fish Nutrition Research Aquarium, Plymouth 

University, UK with an acclimation period of four weeks. The fish were graded and separated 

into 15 x 110 L fibreglass tanks in a closed recirculatory system. Average fish weights were 

40.6 ± 0.28 g and fish were stocked to a density of 23 fish per tank. Tanks were allotted a 

dietary treatment randomly and each treatment was conducted in triplicate. Fish were fed the 

diets at a rate of 2 – 3 % of biomass per day in equal rations at 9:00, 13:00 and 17:00. Daily 
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feed was adjusted on a weekly basis by batch weighing following a 24 - h starvation period. 

Rearing conditions were as follows: 25 ± 1 °C, 30 ± 2 ppt salinity and 7.0 ± 0.5 pH with a 

photoperiod of 12: 12 h light: dark and dissolved oxygen was maintained to > 85 % 

saturation. These parameters were monitored daily. Ammonium, nitrite and nitrate levels 

were monitored weekly with weekly water changes of approx. 25 % system volume to 

minimise the potential build-up of probiotics and phytobiotic compounds.   

 

5.3.2. Diet preparation  

Each experimental diet was formulated to be iso-nitrogenous, iso-lipidic and iso-caloloric and 

to meet the known nutritional requirements for European sea bass (NRC, 2011) (Table 5.1.). 

Briefly, dry ingredients were well mixed in a Hobart food mixer (Hobart Food Equipment, 

Sydney, Australia, model no: HL1400–10STDA) and the oil and hot water gradually added to 

the mixer. Cold press extrusion was conducted (PTM P6 extruder, Plymouth, UK) to produce 

~ 2 mm pellets. The pelleted diets were then dried to ca. 5 % moisture in an air convection 

oven set at 50 °C for 48 hours. The diets were then broken up to the appropriate size and the 

composition analysed using AOAC (1995) protocols (Table 5.1.). All experimental diets were 

stored at 4 
o
C in airtight containers prior to the start of the trial. Probiotic inclusion levels 

(probiotic treatment: 8.36 x 10
7
 CFU g

-1
 and probiotic+ Next Enhance 150

®
 treatment: 8.08 x 

10
7
 CFU g

-1
) were confirmed by spread plating onto nutrient agar for 24 h at 30 

o
C. The diets 

without probiotic supplementation were also plated out to confirm these diets did not contain 

the probiotic. 
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Table 5.1. Dietary formulation (%) and chemical composition 

Ingredient (%) Control Probiotic 

Next 

Enhance 

150
®
 1.5 

Next 

Enhance 

150
®
  3.0 

Probiotic + 

Next 

Enhance 

150
®
  1.5 

Fishmeal (LT 94)
a
 25.00 25.00 25.00 25.00 25.00 

Concentrated soy protein 

60
b
 

20.00 20.00 20.00 20.00 20.00 

Corn starch
c
 14.12 14.12 13.97 13.82 13.97 

Glutalys
d
 12.00 12.00 12.00 12.00 12.00 

Soybean meal (HP100)
e
 10.00 10.00 10.00 10.00 10.00 

Hydrolysed wheat gluten
f
 5.00 5.00 5.00 5.00 5.00 

Lysamine pea protein
d
 2.00 2.00 2.00 2.00 2.00 

Fish oil
g
 6.88 6.88 6.88 6.88 6.88 

Corn oil 4.00 4.00 4.00 4.00 4.00 

Vit/Min premix
h
 1.00 1.00 1.00 1.00 1.00 

Next Enhance 150
®i

 - - 0.15 0.30 0.15 

Probiotic (log CFU’s g
-1

)
j
 - 8.36 - - 8.08 

Proximate composition (%) 

Crude protein* 50.11 50.42 50.15 51.08 50.70 

Crude lipid* 14.44 13.89 14.50 14.12 13.87 

Dry matter 96.23 96.01 96.48 97.79 96.29 

Ash* 6.59 6.20 6.22 6.95 6.54 

Gross energy (MJ kg 
-1

) 21.10 20.98 21.20 21.09 21.21 
a 
Herring meal LT94: CC MOORE & Co. Ltd., Dorset, UK.

 

b
 SPC60: sourced from Biomar, Edinburgh, UK

 

c 
Corn starch: Sigma-Aldrich Company, UK. 

d
 Glutalys

 
and lysamine pea protein: Roquette Company, Frêres, France. 

e 
Soybean protein concentrate: Hamlet HP100 (56 % crude protein), Hamlet Protein, 

Denmark.
 

f
 Vital wheat gluten: Tereos syral, Marckolsheim, France.

 

g 
Fish oil: Biomar, Edinburgh, UK. 

h 
Vitamin/mineral premix: Premier Nutrition Products (PNP Ltd.) Rugeley, Staffordshire, UK. 

i
 Next Enhance 150

®
: Novus Int, St. Charles, USA. 

j
 Probiotic (B. subtilis): Novus Int, St. Charles, USA. (lyophilised cells at 10

10
 CFU g

-1
) 

* % wet weight basis 

 

5.3.3. Dietary proximate analyses  

Proximate analysis of diets was determined as described in section 2.5. 
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5.3.4. Growth and feed utilisation parameters 

At the end of the trial the fish were batch weighed by tank. Growth performance and feed 

utilisation were monitored by assessing the final body weight (BW), weight gain (WG), 

specific growth rate (SGR) and feed conversion ratio (FGR). These parameters were 

calculated as follows:  

o BW (g) = TB / n. Where TB = tank biomass and n = number of fish in tank. 

o WG (g) = Wf – Wi. Where Wf = final weight and Wi initial weight. 

o SGR (%) = 100 ((ln Wf - ln Wi) / t). Where Wf = final weight and Wi = initial weight 

and t = number of experimental days. 

o FCR (g/g) = FI / WG. Where FI = feed intake and WG = weight gain 

 

5.3.5. Sampling  

Two fish per tank were sampled for microbiology and two per tank for histology (n=6) at the 

end of the trial. Refer to section 2.6. for sampling methodology. For haematology analyses 

blood was extracted from the caudal vein of fish using a 25 gauge needle and a heparinised 1 

ml syringe. Whole blood was used for blood smears, and after additional blood was allowed 

to clot for 12 hr (at 4 
o
C), serum was isolated by centrifugation at 3600 g for 5 min and stored 

at -80 
o
C until further analyses.  Haematocrit, measured as % packed cell volume (PCV), 

haemoglobin, erythrocyte counts (red blood cells), serum lysozyme activity, leucocyte counts 

(white blood cells) and differential leucocyte proportions were determined according to 

standard methods described by Rawling et al. (2009). 

 

5.3.6. High-throughput sequencing  
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For high-throughput sequence analysis, digesta samples (n = 6) were subjected to DNA 

extractions as described in section 2.7.1. High-throughput sequence analysis was carried out 

as described in section 2.7.4. 

 

5.3.7. Gene expression 

5.3.7.1. RNA extraction, cDNA synthesis and real-time PCR 

RNA extraction, cDNA synthesis and real-time PCR was carried out as described in sections 

2.7.6. and 2.7.7. 

 

5.3.7.2. Reference genes, genes of interest and analyses  

GAPDH, β-actin, ELF-1α and RSPA were used as the reference genes for Q-PCR in each 

sample in order to standardise the results by eliminating variation in mRNA and cDNA 

quantity and quality (Bustin et al., 2009). No amplification product was observed in negative 

controls and no primer–dimer formations were observed in the control templates. The 

software GeNorm (v 3.4, 145 Center for Medical Research, Ghent University, Belgium) was 

used to assess the optimal number and selection of reference genes. GeNorm calculates the 

stability value “M” of the reference genes by comparing the variation in expression for all 

other target genes. GeNorm results indicated genes GAPDH and RSPA to be the best two 

reference genes and were subsequently used as the reference genes in the present study. 

Modification of gene expression is represented with respect to the controls being sampled at 

the same time as the treatment. The threshold cycle (Ct), defined as the point at which the 

fluorescence rises appreciably above the background fluorescence, was determined manually 

for each run. PCR efficiencies for each set of primers were determined using serial dilutions 
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of cDNA (n = 3) and resulting plots of Ct versus the logarithmic cDNA input, using the 

equation E (PCR efficiency) = 10(-1/slope) (Rasmussen 2001), see Table 5.2. The normalised 

expression level of a target gene was calculated on the basis of Ct deviation (∆Ct) of the 

unknown sample versus a control sample, and expressed in comparison to the reference genes, 

according to the method outlined by Vandesompele et al. (2002). Data were subjected to 

statistical analyses carried out using the software package R as described by Hothorn & 

Honick (2015). Genes of interest were heat-shock protein 70 (HSP70), caspase 3 (CASP3), 

proliferating cell nuclear antigen (PCNA), the calcium binding protein Calreticulin (CAL),  

the pro-inflammatory cytokine interleukin-1β (IL-1β) and the anti-inflammatory cytokine 

interleukin-10 (IL-10). The Primers used were designed in Primer 3 version 4.0.0 as 

described by Untergasser et al. (2012). The sequences are presented in Table 5.2. 
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Table 5.2. Information regarding primers used for real-time PCR analysis. 1 

Gene Forward primer Reverse primer Amplico

n size 

Genbank No E-

value 

Annealing 

temp 

RSPA ACTTGGACTTCCAGATGGATCA AGCTTCTCCCAGGTCTTCTTC 88 HE978789.1 2.3 59.0 

GAPDH  CCGCCAAATATGACGACATCAA TGTATCCCAGAATGCCCTTCAT 75 AY863148 2.3 59.3 

ELF-1α CGCCACCGTTGCCTTTGTA TTCAAGGGATGGAAGGTTGAGC 98 AJ866727.1 2.2 58.8 

β-actin ATCCACGAGACCACCTACAA ACAGCACAGTGTTGGCATAC 79 AJ493428 2.3 60.1 

HSP70 CCCTCTGTCCCTGGGTATTG AAGGTCTGGGTCTGCTTTGT 93 AY423555 2.3 59.2 

CASP3 GACCAGACAGTCGAGCAGAT GCGTTGCAGCTGTGATCTT 68 DQ345773 2.3 59.2 

PCNA TGAAGTGTGCAGGAAACGAAGA GGCGAGTGTGTCTGCATTGT 65 JQ755266 2.3 60.8 

CAL AGCAACATGCACGGAGATTC TTGTGCTGTAGCCACAGATG 67 JX235975 2.3 57.3 

IL-1β TTACCCACCACCCACTGACA AAGCCCTTCCAGTCTCTCCAT 70 AJ269472 2.4 58.4 

IL-10 GCTGGGTCTGCTGTTCAACTA GCTGCATGGTTTCTGTGTTGTT 66 AM268529 2.1 60.4 

 2 

 3 

 4 
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5.3.8. Haematological and immunological parameters 

5.3.8.1. Serum lysozyme activity 

Serum lysozyme activity was assessed using a turbidometric assay method (Ellis 1990). 

Briefly, 10 μl of serum was added to 190 μl of lyophilised Micrococcus lysodeikticus at a 

concentration of 0.2 mg ml
-1

 in 0.04 M sodium phosphate buffer (pH 6.2). After mixing in a 

96 well plate, the reduction in turbidity was measured between 1 and 6 min at 540 nm at 25 

o
C in a microplate reader (Molecular Devices, VERSAmax). One unit of lysozyme activity 

was defined as a decrease in absorbance of 0.001 units per minute.  

 

5.3.8.2. Haematocrit 

Fresh whole blood was collected into heparinised capillary tubes by capillary action and 

sealed. The tubes were subsequently centrifuged for five minutes at 10 000 x g in a Centurion 

haematocrit centrifuge. Determination of haematocrit was measured as percentage packed 

cell volume (PCV) with a Hawksley haematocrit reader.  

 

5.3.8.3. Haemoglobin 

Haemoglobin was determined based on Drabkin’s cyanide - ferricyanide solution (Sigma-

Aldrich Ltd. UK). Whole, fresh blood (5 μl) was added to 1 ml of Drabkin’s solution 

(dilution factor: 1/ 200) and mixed and measured using a spectrophotometer at 540 nm. The 

sample haemoglobin levels (g dl
-1

) were determined against a standard curve of lyophilized 

porcine haemoglobin powder (Sigma-Aldrich Ltd. UK) and calculated using the formula: HC 

= ((OD540 – 0.0002) / 6.6137) x 200 where HC = haemoglobin concentration (g dl
-1

), OD540 = 

absorbance at 540 nm, 0.0002 = Absorbance of standard, and 200 = dilution factor.  
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5.3.9. Intestinal histology  

Light microscopy analysis was carried out on two fish per tank (n = 6) as described in section 

2.8.1. 

 

5.3.10. Statistical analysis  

Statistical analysis was carried out as described in section 2.9. 

 

5.4. Results 

5.4. 1. Gross observations and growth parameters  

Fish accepted all dietary regimes well and 100 % survival was recorded throughout the trial. 

No significant differences were observed in growth parameters by dietary regime. (Table 

5.3.). 

 

Table 5.3. Growth parameters of European sea bass fed the experimental diets for 10 weeks. 

n = 3 per treatment group. 

  Con Pro NE 1.5 NE 3.0 Pro+NE 1.5 

Initial weight 

(g)  
40.65±0.45 40.67±0.33 40.46±0.18 40.64±0.27 40.58±0.31 

Weight after 

10 weeks (g) 
109.44±1.48 110.25±3.44 107.74±4.29 108.49±0.16 108.33±2.99 

Weight gain 

(g) 
68.79±1.54 69.58±3.63 67.27±4.14 67.85±0.37 67.75±2.93 

SGR 1.28±0.02 1.31±0.03 1.27±0.04 1.29±0.00 1.27±0.04 

FCR 1.35±0.02 1.32±0.03 1.36±0.04 1.34±0.02 1.36±0.05 
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5.4.2. High-throughput sequencing  

A total of 346,903 reads were retained after trimming and QC, which were used for 

downstream analyses. Alpha rarefaction analyses revealed all samples to be reaching a 

plateau after approx. 6,000 sequences (Figure 5.1.), and Good’s coverage estimators were > 

0.99 (Table 5.4.), signifying that the bacterial communities were fully sampled and the 

subsequent observed OTU’s were representative of the sampled population. Alpha diversity 

parameters presented in Table 5.4. revealed no significant differences in observed species, 

Chao 1 (richness), and phylogenetic distance between treatments. Shannon-Wiener indices 

revealed fish fed the probiotic and probiotic + Next Enhance 150
®
 1.5 (4.19 ± 0.13 and 4.32 

± 0.31 respectively) to be significantly (P < 0.05) more diverse when compared to fish fed the 

NE 1.5 and Next Enhance 150
®
 3.0 treatments (Next Enhance 150

®
 1.5: 2.86 ± 0.33 and Next 

Enhance 150
®

 3.0: 3.16 ± 0.58). Bray-Curtis UniFrac UPGMA clustering of reads from the 

replicates of each treatment revealed three distinct clusters, with all replicates from the 

control and NE 1.5 treatments, and five of the six replicates of the Next Enhance 150
®
 3.0 

treatment clustering together in the first cluster, four replicates of the probiotic + Next 

Enhance 150
®
 1.5 in the second cluster and all replicates of the probiotic treatment groups 

clustering together in the third cluster (Figure 4A.3.). Some crossover was observed with 

replicate Next Enhance 150
®
 3.0-3 and replicate Probiotic + Next Enhance 150

®
 1.5-2 which 

appeared in cluster 3. Replicate Probiotic + Next Enhance 150
®
 1.5-1 appeared to 

demonstrate low similarity with any of the other replicates and did not cluster with the three 

main clusters (Figure 5.2.).   

The relative sequence distribution of the 16S rRNA reads at the phyla level is presented 

Figure 5.3. The 16S rRNA sequence reads assigned to the phylum Cyanobacteria accounted 

for 19.30 % (control), 19.40 % (probiotic), 9.80 % (Next Enhance 150
®
 1.5), 7.20 % (Next 

Enhance 150
®
 3.0), and 13.70 % (probiotic + Next Enhance 150

®
 1.5). These reads were 
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removed as described in Chapter 3 (section 3.4.2.3). After the removal of these reads, the 

greatest number of reads in all samples were assigned to the Firmicutes phylum which 

accounted for 78.40 % of the total sequence reads, followed by Fusobacteria (12.80 %), 

Proteobacteria (7.50 %), Spirochaetes (0.50 %), Actinobacteria (0.40 %), and Bacteriodetes 

(0.30 %). The proportion of sequence reads assigned to the Fusobacteria was observed to be 

significantly elevated in fish fed the Next Enhance 150
®
 1.5 treatment (19.20 %) compared to 

fish fed the probiotic treatment (8.10 %) (P < 0.02). All other phyla remained statistically 

unaffected between treatment groups. 

Figure 5.4. displays the relative sequence distribution of the 16S rRNA reads (> 0.1 %) at the 

genus level.  The genus Bacillus accounted for the majority of the 16S rRNA reads (50.30 %) 

followed by reads assigned to the Leuconostoc and Cetobacterium genera (22.30 % and 

12.70 %, respectively). The relative abundance of reads assigned to Bacillus were 

significantly elevated in fish fed the con (73.80 %; P < 0.001), Next Enhance 150
® 

1.5 

(71.50 %; P < 0.001) and Next Enhance 150
® 3.0 (59.80 %; P < 0.01) treatments compared 

to 16.10 % in fish fed the probiotic treatment. The majority of these reads were identified as 

B. coagulans with 69.28 %, 70.30 %, 60.95 % abundance observed in fish fed the control, NE 

1.5 and Next Enhance 150
®
 3.0, respectively, which was significantly (P < 0.001)  higher 

when compared to fish fed the probiotic and pro+NE 1.5 (14.45 % and 20.68 %, respectively) 

Next Enhance 150
®
 1.5. A BLAST search conducted on the remaining Bacillus reads 

revealed the presence of the probiotic (B. subtilis) in fish fed the probiotic (1.31 %) and 

probiotic + Next Enhance 150
®
 1.5 (10.68 %) treatments. The relative abundance of these 

reads were 0.27 %, 0.22 % and 0.16 % in fish fed the control, Next Enhance 150
®
 1.5 and 

Next Enhance 150
®

 3.0, respectively, which significantly lower when compared to fish fed 

the probiotic and probiotic + Next Enhance 150
®
 1.5 treatments (P < 0.01). 
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The relative abundance of reads assigned to Leuconostoc genus was significantly higher in 

fish fed the probiotic (59.80 %) diet compared to fish fed the control diet (3.20 %; P < 

0.001), Next Enhance 150
®
 1.5 (3.40 %; P < 0.001), Next Enhance 150

®
 3.0 (17.50 %; P < 

0.001), and probiotic + Next Enhance 150
®
 1.5 (27.40 %; P < 0.01). The relative abundance 

of reads assigned to Cetobacterium was significantly higher in fish fed the NE 1.5 diet 

compared to fish fed the probiotic diet (19.10 % vs 8.10 %; P < 0.02). The relative abundance 

of reads assigned to Lactococcus was significantly higher in fish fed the probiotic diet 

(2.80 %) compared to fish fed the control (0.20 %; P < 0.001), Next Enhance 150
®
 1.5 

(0.90 %; P < 0.001), Next Enhance 150
®
 3.0 (0.90 %; P < 0.01) and pro+NE 1.5 (1.20 %; P < 

0.001). The relative abundance of reads assigned to Streptococcus was significantly higher in 

fish fed the probiotic diet (2.50 %) compared to fish fed the control (0.10 %; P < 0.001), Next 

Enhance 150
®
 1.5 (0.10 %; P < 0.001), Next Enhance 150

®
 3.0 (1.00 %; P < 0.01) and 

probiotic + Next Enhance 150
®
 1.5 (1.20 %; P < 0.02). The relative abundance of reads 

assigned to Actinetobacter was significantly higher in fish fed the probiotic diet (1.30 %) 

compared to fish fed the control (0.20 %; P < 0.01), Next Enhance 150
®

 1.5 (0.10 %; P < 

0.001), and probiotic + Next Enhance 150
®
 1.5 (0.70 %; P < 0.02) diets. The relative 

abundance of reads assigned to Enhydrobacter was significantly higher in fish fed the 

probiotic (0.60 %) compared to fish fed the control (0.10 %; P < 0.02), Next Enhance 150
®
 

1.5 (0.10 %; P < 0.01), and probiotic + Next Enhance 150
®
 1.5 (0.30 %; P < 0.05) diets. The 

relative abundance of reads assigned to Staphylococcus was significantly higher in fish fed 

the control diet (1.40 %) compared to fish fed the probiotic (0.10 %), Next Enhance 150
®
 1.5 

(0.30 %), Next Enhance 150
®
 3.0 (0.20 %) and probiotic + Next Enhance 150

®
 1.5 (0.10 %) 

diets (P < 0.05 in all cases).  
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Figure 5.1. Alpha rarefaction curves representing the number of observed species (OTU’s) 

per sample, which is used as an inference of the number of species, as a function of 

sequencing effort. 
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Table 5.4. High-throughput sequencing good’s coverage estimations by treatment and alpha 

diversity parameters of the allochthonous bacterial associated with the posterior intestine of 

European sea bass fed each dietary regime for 10 weeks. Data represent mean ± SD. 

 

Good's 

coverage 

Observed 

species 

Chao1 index Shannon 

index 

Phylogenetic 

Distance 

Control 0.9938±0.0005 116.06±19.39 146.87±18.74 3.08±0.71
ab

 4.37±0.46 

Probiotic 0.9938±0.0007 131.59±6.56 160.68±8.41 4.19±0.13
b
 4.75±0.22 

NE 1.5 0.9929±0.0008 110.31±12.59 152.98±16.65 2.86±0.33
a
 4.50±0.35 

NE 3.0 0.9932±0.0005 117.68±12.51 155.35±9.56 3.16±0.58
a
 4.67±0.41 

Probiotic+Next 

Enhance 150
®
 1.5 0.9941±0.0008 124.81±6.63 151.90±10.06 4.32±0.31

b
 4.88±0.33 
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Figure 5.2. Bray-Curtis UniFrac UPGMA clustering of reads from the replicates of each 

treatment of the allochthonous bacterial communities of the posterior intestine of European 

sea bass fed each dietary regime for 10 weeks. Jackknife support is: Red (75-100 %), yellow 

(50-75 %). Bar indicates 10 % divergence. Cluster 1 contains all replicates of the control, 

Next Enhance 150
®
 1.5 and five of the six Next Enhance 150

®
 3.0 treatments. Cluster 2 

contains four of the six replicates of the probiotic + Next Enhance 150
®
 1.5 treatment, and 

cluster 3 contains all replicates from the probiotic treatment and one replicate each of the 

probiotic + Next Enhance 150
®
 1.5 and Next Enhance 150

®
 3.0 treatments. The replicate 

probiotic + Next Enhance 150
®
 1.5-1 was not similar to any of the three clusters. 
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Figure 5.3. The allochthonous bacterial communities in the posterior intestine of European 

sea bass fed the experimental diets for 10 weeks. Data represent bacterial phyla percentage. 
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Figure 5.4. The allochthonous bacterial communities in the posterior intestine of European 

sea bass fed the experimental diets for 10 weeks. Data represent reads assigned to bacterial 

genera > 0.1 %. 
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5.4.3. Gene expression 

The relative mRNA expression of the genes HSP70, CASP3, PCNA, IL-10, IL-1β and CAL 

was analyses and is presented in Figure 5.5. The relative expression of HSP70, CASP3 and 

PCNA was significantly down-regulated in fish fed the probiotic treatment compared to fish 

fed the control. The relative expression of CAL was also significantly down-regulated in fish 

fed the probiotic treatment relative to fish fed the control. The relative expression of the pro-

inflammatory cytokine IL-1β and the anti-inflammatory cytokine IL-10 were unaffected by 

dietary treatment.  
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Figure 5.5. Relative mRNA abundance of HSP70, CASP3, PCNA, CAL, IL-1β and IL-10 in 

the posterior intestine of European sea bass fed the experimental diets for 10 weeks. Different 

superscript letters indicate significant differences (accepted as P < 0.05) between treatments. 

n = 6 per treatment. 
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5.4.4. Haematological parameters 

Values for haematocrit, haemoglobin and lysozyme activity are presented in Table 5.6. 

Haematocrit, haemaglobin and serum lysozyme activity were not significantly affected by 

dietary treatments. 

 

Table 5.6. Haematological parameters of European sea bass fed the experimental diets for 10 

weeks. n = 15. 

 Con Pro NE 1.5 NE 3.0 Pro+NE 1.5 

Haematocrit 

(% PCV) 
50.92±1.05 53.22±4.17 54.75±4.16 53.33±0.29 54.98±8.01 

Haemoglobin 

(g dl
-1

) 
9.63±0.51 10.59±0.54 9.86±0.38 10.36±1.68 10.89±1.26 

Lysozyme 

activity  

(U ml
-1

) 

248.99±35.54 

 

296.40±49.10 
 

259.21±63.61 
 

258.26±35.71 
 

287.17±58.95 
 

 

 

5.4.5. Intestinal histology 

Figure 5.6. illustrates examples of H & E stained posterior intestinal sections of fish fed each 

dietary regime. The general morphology of the intestine of all sampled fish appeared healthy 

with no obvious signs of intestinal inflammation or ill health. The number of IEL’s per 100 

µm was significantly elevated in fish fed the probiotic (76.02 ± 18.65), NE 3.0 (82.05 ± 17.11) 

and pro+NE (74.32 ± 16.51) dietary regime compared to fish fed the control (56.7 ± 12.88). 

IEL counts in fish fed the NE 1.5 remained unaffected. The number of GC’s per 100 µm and 

PR measurements were not affected by dietary treatment (Table 5.7.).  
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Figure 5.6. Light micrographs of the posterior intestine of European sea bass fed the control 

(A & F), probiotic (B & G), NE 1.5 (C & H), NE 3.0 (D & I), and pro+NE 1.5 (E & J) 

experimental diets for 10 weeks. Scale bars = 100 µm in A-E and 50 µm in F-J. 
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Table 5.7. Quantitative morphometric analyses of histological parameters of European sea 

bass posterior intestine after 10 weeks on respective dietary regimes. Data represent mean ± 

SD. Different superscript letters within the same rows indicate significant differences 

between groups. n = 6 per treatment group. 

  Con Pro NE 1.5 NE 3.0 Pro+NE 1.5 

Perimeter 

ratio (AU)  4.19±0.64 4.35±0.76 4.32±0.75 3.50±1.58 3.94±0.40 

IEL’s (cells 

per 100 µm) 56.7±12.88
a
 76.02±18.65

b
 57.78±11.10

a
 82.05±17.11

b
 74.32±16.51

b
 

GC’s (cells 

per 100 µm) 7.18±3.04 8.87±3.04 9.11±3.60 8.10±3.00 9.38±3.25 

 

 

5.5. Discussion 

The present study assessed the effects of the probiotic B. subtilis and the phytobiotic Next 

Enhance 150
®
, individually and in combination, on the growth performance, haematology 

and intestinal health of European sea bass. The feed additives were applied to a diet 

formulated to reflect commercial diets for European sea bass.  In terms of the growth 

parameters, the SGR’s and FCR’s observed in the present study were in line with previous 

studies on European sea bass juveniles (Torrecillas et al. 2007, 2015; Haas et al. 2015). The 

growth parameters remained statistically unaffected by dietary treatment. 

 With regards to microbiological analyses, high-throughput sequencing was successfully 

utilised to characterise the allochthonous intestinal microbiota, and along with chapters 3 and 

4, is one of the first studies to apply this approach to studies of European sea bass gut 

microbiota. Furthermore, to the author’s knowledge, this is the first study assessing the 
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effects Next Enhance 150
®
, an encapsulated combination of carvacrol and thymol on 

European sea bass allochthonous bacterial populations. Sequence libraries displayed Good’s 

coverage estimations of > 99 %, which is indicative of a microbiome that has been fully 

sampled. Bray-Curtis cluster analyses revealed three distinct clusters separating the bacterial 

profiles, the first containing the control, NE 1.5 and NE 3.0, the second containing fish fed 

pro+NE 1.5 and the third containing fish fed the probiotic.  Values for numbers of OTU’s, 

species richness (Chao 1) and phylogenetic distance (PD) were observed to be highest in fish 

fed the probiotic and pro+NE 1.5 treatments. Bacterial diversity values (Shannon-Wiener) 

were observed to be significantly elevated in fish fed the probiotic and pro+NE 1.5 treatments 

when compared all other treatments 

With regards to relative sequence abundance, the Firmicutes phylum accounted for a large 

portion of overall reads (78.40 %);  this was followed by 16S rRNA reads assigned to 

Fusobacteria (12.80 %), Proteobacteria (7.50 %), Spirochaetes (0.50 %), Actinobacteria 

(0.40 %), and Bacteriodetes (0.30 %). These phyla have all been reported as constituents of 

the intestinal microbial communities of fish (Navarrete et al. 2008, Mansfield et al. 2010, 

Carda‐Diéguez et al. 2014; Gatesoupe et al. 2014; Kormas et al. 2014; Chapter 3; Chapter 

4A). The 16S rRNA sequence reads assigned to Fusobacteria were significantly elevated in 

fish fed the NE 1.5 treatment (19.20 %) compared to fish fed the probiotic treatment 

(8.10 %). 

With regards to bacterial genera, the majority of the 16S rRNA reads (of the reads accounting 

for > 0.1 %) were assigned to Bacillus sp. These were observed to be significantly elevated in 

fish fed the control (69.28 %), NE 1.5 (70.30 %) and NE 3.0 (60.95 %), when compared to 

fish fed the probiotic (14.45 %) and pro+NE 1.5 (20.68 %) treatments. B. subtilis was 

identified through a BLAST search, revealing the presence of the probiotic in fish fed the 

probiotic (1.31 %) and pro+NE 1.5 (10.68 %) treatments. The relative presence of B. subtilis 
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was < 0.27 % in fish fed the control, NE 1.5 and NE 3.0 treatments. These reads were 

significantly elevated in fish fed pro+NE 1.5 compared to fish fed the other treatments. 

High-throughput sequencing identified the majority of the Bacillus reads to be B. coagulans. 

B. coagulans has been reported to produce antimicrobials such as bacteriocin (Abdhul et al. 

2015), and has been investigated as a probiotic in Koi (Lin et al. 2012) and common carp (Xu 

et al. 2014). Lin et al. (2012) reported significant increases in growth of fish fed a diet 

supplemented with B. coagulans in combination with chitosan oligosaccharides. The study 

also reported significantly elevated respiratory burst, phagocytic, lysozyme activities were 

also reported as a consequence of these feed additives. Xu et al. (2014) reported improved 

growth, lysozyme and respiratory burst activities in fish fed B. coagulans compared to fish 

fed the control. To the authors knowledge no studies have reported B. coagulans to be part of 

the allochthonous bacterial communities in European sea bass and hence its potential positive 

effects are not known in this species. Interestingly, B. coagulans was significantly reduced in 

fish fed the probiotic and pro+NE 1.5 compared to fish the other treatments, suggesting B. 

subtilis has the potential to reduce the dominance of B. coagulans observed in the control, NE 

1.5 and NE 3.0. This could be due to a number of factors such as: direct antagonism (i.e. the 

production of substances by B. subtilis to inhibit the growth of B. coagulans), or through 

competitive exclusion. To the author’s knowledge, antagonism between these two species in 

the fish intestine has not been assessed and warrants further investigation.   

Reads assigned to the genus Leuconostoc were significantly elevated in fish fed the probiotic 

compared to fish fed all other treatments. The family Leuconostocaceae has previously been 

reported as a constituent of the intestinal microbiota of European sea bass (Carda-Dieguez et 

al. 2013; Chapter 4A), and Leuconostoc was also reported as part of the allochthonous 

microbiota in Chapter 3. Leuconostoc mesenteroides has been proposed as a potential 

probiotic species and its supplementation in the diets of fish has been associated with 
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improvements in immune responses, growth and digestive enzyme activities (Balcázar et al. 

2007a, 2007b, 2008; Askarian et al. 2011). Balcázar et al. 2007b reported the 

supplementation of the probiotic strains; Lactobacillus sakei, L. lactis and L. mesenteroides 

possessed the ability to adhere and survive in the intestinal mucus of rainbow trout.  The 

authors also reported the probiotic supplementation enhanced the humoral and cellular 

immune response and reduced the severity of furunculosis. Leuc. Lactis is comparatively less 

well documented, but there is evidence to suggest this species also could also have potential 

probiotic effects in fish (Zhang et al. 2013). Leuconostoc spp. were also observed in the 

bacterial communities European sea bass in Chapters 3 and 4A suggesting that this genera 

may be part of a core microbiota in this species.  

Reads assigned to the genus Lactococcus were also observed to be significantly elevated in 

fish fed the probiotic compared to fish fed all other treatments. Species from this genus, most 

notably L. lactis have been demonstrated as a potential probiotic in fish (Sun et al. 2012; 

Touraki et al. 2013; Zhang et al. 2013). Strains of this species have been reported to produce 

bacteriocins (e.g. nisin production in the case of L. lactis), which has been observed to inhibit 

some Gram positive bacteria (Pasteris et al. 2014). L. lactis has also been reported to confer 

positive effects such as improved feed utilization and immune function when supplemented 

in the diets of fish (Sun et al. 2012; Touraki et al. 2013; Zhang et al. 2013). In the study by 

Touraki and co-authors (2013), European sea bass fed L. lactis enriched artemia nauplii 

exhibited increased survival rates when challenged with V. anguillarum.  

Reads assigned to the genera Acinetobacter and Enhydrobacter accounted for a small portion 

of the overall reads but were observed to be significantly elevated in fish fed the probiotic 

when compared to the other treatments. Although some species of Acinetobacter (e.g. A. 

johnsonii and A. Iwoffii) are considered fish pathogens, there are a number of studies 

reporting Acinetobacter spp. to be part of the intestinal microbiota of healthy fish (Hovda et 
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al. 2007; Askarian et al. 2012). Enhydrobacter spp. is not as commonly reported in the fish 

intestine, but has been reported to be associated with fish generally, including as part of the 

skin microbiotia (Franchini et al. 2014; Falcinelli et al. 2014; Leonard et al. 2014). However, 

to the author’s knowledge the roles Enhydrobacter spp. play in the fish intestine have not 

been investigated and hence more research is required on this topic.  

Fish fed all of the experimental diets were observed to exhibit significantly reduced levels of 

the genus Staphylococcus compared to the control. The Staphylococcus genus contains a 

number of human/fish pathogens (e.g. S. aureus).The relative abundance of reads assigned to 

this genus were observed to be significantly reduced in fish fed all experimental treatments 

relative to fish fed the control, suggesting the feed additives may act to inhibit species of this 

genus. Indeed B. subtilis is known to produce an array of antimicrobial substances including 

bacilysin, subtilosin, surfactin and plipastatin (Stein 2005). The bioactivity of surfactin and 

plipastatin has been observed to inhibit strains of S. aureus in vitro (Gonzalez et al. 2011). 

There is also evidence to suggest strains of B. subtilis have the potential to inhibit specific 

fish pathogens such as V. anguiilarum and Photobacterium damselae subsp. piscicida 

(Touraki et al. 2012b). Interestingly, in the present investigation the relative abundance of 

reads assigned to Vibrio spp. was < 0.1 % in all treatments. Reads assigned to Vibrio spp. in 

Chapters 3 and 4A was also < 0.1 % of the total reads in all treatments suggesting this genera 

may be only a minor constituent of the allochthonous communities in European sea bass. 

The relative abundance of reads assigned to Cetobacterium was significantly elevated in fish 

fed the NE 1.5 diet compared to fish fed the probiotic diet. Members of this genus have been 

commonly reported to be associated with the intestine of various fish species (Tsuchiya et al. 

2008; Van Kessel et al. 2011; Larsen et al. 2014; Etyemez & Balcázar 2015; Li et al. 2015; 

Pedrotti et al. 2015; Standen et al. 2015). Cetobacterium somerae is known for its production 

vitamin B12 (Tsuchiya et al., 2008), and has been observed to possess antibacterial properties 
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(Sugita et al. 1996). Cetobacterium was not detected in the 16S rRNA reads representing > 

0.1 % in Chapters 3 and 4A. The reasons for this are not clear, however could be due to the 

differences in the basal formulations used in the respective studies. Furthermore, to the 

authors knowledge this is the first time this genus has been reported as part of the 

allochthonous bacterial communities in European sea bass, and its presence and subsequent 

effects should be further researched. 

The gene expression of heat-shock protein 70 (HSP70), caspase 3 (CASP3), proliferating cell 

nuclear antigen (PCNA), and calcium binding protein calreticulin (CAL), interleukin-1β (IL-

1β) and interleukin-10 were assessed in the present study. A significant down-regulation was 

observed in the mRNA abundance of HSP70, CASP3 and PCNA in fish fed the probiotic 

treatment compared to fish fed the control. These results are in agreement with Chapter 4A 

where a down-regulation of these was also reported in fish fed the probiotic relative to fish 

fed the control. As discussed in Chapter 4A, the down-regulation of HSP70, CASP3 and 

PCNA in fish fed a probiotic has been reported in the intestine, as a consequence of probiotic 

feeding of fish (Avella et al. 2010; Liu et al. 2013; Abid 2014; Chen et al. 2015; Chapter 4A). 

Collectively, the down-regulation of these genes in the present study reinforces the results 

obtained from Chapter 4A, suggesting B. subtilis has the potential confer beneficial intestinal 

health of European sea bass when supplemented into both challenging and non-challenging 

basal diets. Intestinal CAL gene expression was also significantly down-regulated in fish fed 

the probiotic treatment relative to fish fed the control. In mammals, calreticulin is an 

important binder protein involved in the regulation of Ca
2+

 homeostasis, lectin binding and 

molecular chaperoning in the endoplasmic reticulum. However, information on this gene and 

the roles it plays in fish are extremely limited (Rubinstein et al. 2000; Kales et al. 2004, 2007; 

Liu et al. 2011; Pinto et al. 2013; Duan et al. 2014). There is evidence to suggest CAL is 

involved in the immune function in fish and the up-regulation in expression of this gene has 
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been observed during bacterial infection in Chinese shrimp (Fenneropenaeus chinensis) 

(Luana et al. 2007), ridgetail white prawn (Exopalaemon carinicauda) (Duan et al. 2014), 

and channel catfish (Ictalurus punctatus) (Liu et al. 2011). In the present study, the reasons 

behind the significant down-regulation of CAL in fish fed the probiotic compared to fish fed 

the control are not fully clear, however, it further suggests that B.subtilis does not have a 

detrimental effect when applied to the feed of European sea bass. 

Intestinal histological analyses revealed no detrimental effects to the posterior as a 

consequence of the feed additives. Significant increase in IEL’s was observed in fish fed the 

probiotic and pro+NE 1.5 compared to fish fed the control. These results are similar to those 

observed in Chapter 4A when using B. subtilis and Previda
®
, and other probiotic studies on 

fish (Picchietti et al. 2007, 2009; Salinas et al. 2008). As discussed in Chapter 4A, elevated 

IEL’s in the intestine may help to create an unreceptive environment for potential 

enteropathogens (Harper et al. 2011). Therefore, fish fed the probiotic and pro+NE 1.5 

treatments in the present study appear to exhibit an intestinal epithelium potentailly better 

equiped to counteract pathogenic insults. Furthermore, the comparable results observed in the 

present study and those obtained from Chapter 4A appear to be present when fish were fed 

both a challenging diet and a non-challenging diet. In the current study the haematocrit, 

haemoglobin and serum lysozyme activity were also assessed. These parameters were not 

affected by dietary treatment. 

 

5.6. Conclusion 

The results from the present investigation, similar to those in Chapter 4A, reveal that dietary 

B. subtilis supplementation modulates the allochthonous intestinal bacterial populations of 

European sea bass. In comparison to Chapter 4A, the level of the probiotic appeared to 
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present in much lower abundance. Even at the lower levels, the probiotic had modulatory 

effects reducing the dominance of B. coagulans, which dominated the bacterial populations 

of fish fed the control, NE 1.5 and NE 3.0 treatments, as well as, reducing the abundance of 

some potential pathogens. The present study also revealed the probiotic significantly reduced 

the intestinal gene expression levels of HSP70, CASP3, PCNA and CAL, confirmimg the 

results from Chapter 4A, and suggesting a postivie effect in relation to intestinal integrity. 

The IEL’s levels were increased in fish fed the probiotic treatment which was also observed 

in Chapter 4A, potentially creating an intestine in an increased immunological state. This 

study expands on the results of Chapter 4A suggesting that dietary B. subtilis has the potetial 

to confer beneficial effects with regards to the intestinal health of European sea bass beyond 

four weeks and independently of dietary regime. Furthermore, these improvements in host 

health appeared with no detrimental effects on growth.    
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This research project comprised of three nutrition based experiments conducted to assess the 

effects the plant proteins SPC, PPC and saponins, and various feed additives, on the health of 

European sea bass juveniles. Additionally, an experiment was carried out ex vivo, to assess 

probiotic and pathogen interactions in the sea bass intestine. Collectively, this research 

provides novel information relating to dietary induced enteritis effects in European sea bass, 

as well as, how feed additives affect the overall health of this species, with a particular 

emphasis placed on the intestinal microbial populations and how their potential modulation 

impacts on the host. Furthermore, the ex vivo model provides information on bacterial host 

interacts and presents potential as a model to assess bacterial effects on host tissues devoid of 

host suffering which is in line with the 3 R’s.   

The first experiment (Chapter 3) investigated the effects SPC and PPC alone, and in 

combination with additional saponin supplementation, on the intestinal microbiota and health 

of European sea bass after two and four weeks feeding. The data from this chapter revealed 

that the allochthonous microbial populations of these fish were modulated as a consequence 

of dietary SPC inclusion alone and in combination with PPC and saponins. These changes 

were observed as early as two weeks after dietary provision, and were also observed after 

four weeks feeding. PCR-DGGE analyses at week two, and PCR-DGGE and high-throughput 

sequence analyses at week four revealed the phyla Proteobacteria and Firmicutes to be the 

dominant phyla, with the Actinobacteria and Bacteriodetes phyla constituting a minor 

proportion of the allochthonous microbial communities. Sequenced OTU’s from the DGGE 

revealed the abundance of B. subtilis and L. buchneri was elevated as a consequence of the 

SPC+PPC, and SPC+PPC+S treatments compared to fish fed the FM control after two and 

four weeks. Similarly, 16S rRNA reads assigned to the LAB (Leuconostoc and Weissella) 

and Bacillus spp. were observed to be elevated in fish fed the plant based treatments when 

compared to fish fed the control, significantly with regards to Leuconostoc in fish fed 
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SPC+PPC+S and SPC treatments, and Weissella in fish fed the SPC+PPC+S relative to fish 

fed the control. LAB were also detected in fish fed the FM control with Enterococcus spp. 

significantly higher in fish fed this treatment compared to fish fed the plant based diets. 

However, species belonging to LAB were generally increased as a consequence of the plant 

based ingredients. As discussed previously, multiple LAB have been proposed as potential 

probiotics in fish and it may be regarded as a positive result that LAB populations were 

increased in fish fed the plant based diets. This is in agreement with a previous study on 

Atlantic salmon (Reveco et al. 2014), and may be due to the nutrient source availability of 

carbohydrates (i.e. oligosaccharides and polysaccharides) in the plant based diets. However, 

this remains an area in need of further research with regards to whether or not these nutrient 

sources are indeed being utilised by the LAB, and if so how this relates to their proliferation 

and ultimately host health. Intestinal histology was also assessed in Chapter 3 after two and 

four weeks. Deleterious intestinal changes as a consequence of the plant based diets was 

apparent after two weeks feeding with a significant decrease in GC’s in fish fed the SPC+S, 

and significant decreases in microvilli density measurements in fish fed the SPC+PPC, 

SPC+PPC+S and SPC+S relative to fish fed the control. After four weeks feeding, GC and 

IEL levels were significantly decreased in fish fed the SPC+S, and microvilli measurements 

also decreased in fish fed the SPC+PPC+S and SPC+S relative to fish fed the control. 

Saponins are known to interfere with phospholipid formation in membranes affecting their 

permeability and structure (Augustin et al. 2011). The results obtained in Chapter 3 support 

the observations of previous studies on the effect of saponins on the intestinal morphology of 

fish (knudsen et al. 2007, 2008; Chikwati et al. 2012; Kortner et al. 2012; Couto et al. 2015). 

Additionally, Chapter 3 describes a potential loss of membrane integrity at the apical tips of 

the microvilli. To the author’s knowledge, this is the first time this has been described in the 

intestine of European sea bass, as a consequence of dietary saponin supplementation. These 
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novel findings warrant further investigation with particular attention placed on how these 

interactions affect the influx and efflux of molecules into epithelial cells. Furthermore, 

research should focus on the interactions between bacteria and intestinal membranes 

compromised by saponins and whether this could lead to increased risk of bacterial infections 

in the intestine of European sea bass. 

The enteritis-like effects as a consequence of dietary plant based protein sources were 

perhaps of a more moderate nature compared to previous studies on other fish species 

(Krogdahl et al. 2003; knudsen et al. 2007, 2008; Uran et al. 2008). Indeed this may be due 

to the relatively short trial period of the present study versus long-term (i.e. > 10 weeks) 

growth trials of those aforementioned studies, and increased detrimental effects may occur 

over time. Differences in ingredients may also be a contributing factor and hence making 

comparisons between studies problematic. The enteritis-like effects observed in Chapter 3 

however, appeared to be at their most pronounced in fish fed the SPC+S diet, after four 

weeks feeding. This diet was deemed to be the most challenging with regards to intestinal 

health of these fish, and was therefore selected to be used as the sub-optimal basal diet in 

Chapter 4A.  

Chapter 4A was designed to assess the potential of probiotic (B. subtilis) and the prebiotic 

Previda
®
, individually, and in combination, with regards to alleviating the sub-acute enteritis 

effects caused by the sub-optimal SPC+S basal diet used in Chapter 3. Additionally, an 

antibiotic (oxytetracycline) supplemented diet was also assessed in Chapter 4A. 

Oxytetracycline is a broad-spectrum antibiotic commonly used for the treatment against 

pathogens in aquaculture. With concerns of antimicrobial resistance well documented (Rigos 

et al. 2013; Shah et al. 2014), the inclusion of oxytetracycline in this chapter would advance 

our knowledge surrounding the effects of this antibiotic on European sea bass intestinal 

health. 
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In Chapter 4A the allochthonous microbial communities and intestinal histology was 

investigated, as well as, the expression of the genes: TNFα and IL-1β (important in the 

inflammatory response), and the genes: HSP70, CASP3 and PCNA (important in intestinal 

integrity/health). Firstly, Chapter 4A demonstrated after four weeks feeding similar 

deleterious changes to the intestine observed in fish fed the SPC+S in Chapter 3. As 

demonstrated by TEM analyses, the epithelium brush-border of fish fed the basal control 

(SPC+S) presented similar, apparent loss of membrane integrity at the microvilli tips, 

reinforcing the results observed in Chapter 3. PCR-DGGE and high-throughput sequencing 

analyses revealed the modulatory effects of the dietary provision of B. subtilis. The PCR-

DGGE and high-throughput sequencing dendrograms revealed that the bacterial profiles were 

grouped into two distinct clusters, with one cluster containing all replicates of fish fed the 

control, prebiotic and antibiotic treatments, and the second cluster containing all replicates of 

fish fed the probiotic and synbiotic treatments. High-throughput sequencing revealed that the 

phylum Firmicutes dominated the bacterial communities, accounting for > 97 % of the total 

16S rRNA read sequences. This is in contrast to Chapter 3 where, the phylum Proteobacteria 

were the dominant group. The phyla; Actinobacteria, Proteobacteria and Bacteroidetes were 

also detected as minor constituents. PCR-DGGE also confirmed the dominance of Firmicutes 

with all sequenced bands identified belonging to this phylum. Interestingly, these findings 

appear to contradict the literature, which generally suggests the intestinal microbiota of 

European sea bass to be dominated by Proteobacteria, with Bacteriodetes, Actinobacteria, and 

Firmicutes making up minor constituents (Carda-Diéguez et al. 2014; Gatesoupe et al. 2014). 

Further investigations are necessary to elecidate the overwhelming dominace of Firmicutes, 

in terms of 16S rRNA abundance, observed in Chapter 4A. These results  may, at least in part, 

be due to the high levels of SPC and the inclusion of saponins in the basal control feed. 

Indeed, intestinal microbial modulation in fish has previously been reported as a consequnce 
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of soy protein products and saponin inclusion (Heikkinen et al. 2006; Ringø et al. 2006; 

Bakke-McKellep et al. 2007; Ringø et al. 2008; Merrifield et al. 2009; Dimitroglou et al. 

2010; Reveco et al. 2014; Chapter 3). However, as mentioned previously, making 

comparisons between studies and different species presents difficulties, and hence future 

investigations on the effects soy proteins and saponins have on the intestinal bacteria of 

European sea bass requires more attention.  

Chapter 4A reported similar observations with regards to genera present in the European sea 

bass posterior intestine to those observed in Chapter 3. LAB apperaed to dominate the 

microbial communities of fish fed the control, preboitic and antibiotic treatments. More 

specifically, the dominance of Lactobacillus spp. was reported to be significantly higher in 

fish fed the basal control, prebiotic and antibiotic treatments relative to fish fed the probiotic 

and synbiotic treatments. Multiple B. subtilis strains were identified from the sequenced 

bands extracted from the DGGE which were present in the probiotic and synbiotic fed fish 

and absent in fish fed the other treatments. High-throughput sequencing anayses reflected this 

data, revealing a significant elevation in reads assigned to Bacillus spp. in fish fed the 

probiotic and synbiotic diets, relative to fish fed the other treatments. Probiotic feeding 

appeared to reduce the presence of some potential pathogens, with Salinococcus spp. absent 

in the PCR-DGGE profiles of fish fed the probiotic and synbiotic treatments and present in 

all of the replicates from fish fed the other treatments. High-throughput sequencing data also 

revealed the potentially pathogenic genus Micobacterium to be significantly reduced as a 

consequence of probiotic feeding. It is clear from the microbiological data that dietary B. 

subtilis feeding influenced the allochthonous intestinal microbial communities of European 

bass, and demonstrated the potential to reduce some potential fish pathogens within these 

communities.  
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The probiotic modulation of the intestinal microbiota also apperaed to lead to improvements 

in host immunity. An up-regulation of the pro-inflammatory cytokines IL-1β and TNFα was 

observed in the posterior intestine of fish fed the probiotic and synbiotic treatments relative to 

fish fed the control. An increase in the expression of these genes was also evident in fish fed 

the prebiotic and antibiotic treatments relative to fish fed the control. IL-1β and TNFα play 

important roles in immune regulation and inflammatory responses. The up-regulation in these 

pro-inflammatory cytokines as a consequence of probiotic and prebiotic feeding may be 

representative of increased immune capacity. These results are in agreement with previous 

probiotic and prebiotic studies in fish (Pérez-Sánchez et al. 2011; Pirarat et al. 2011; Abid et 

al. 2013; He et al. 2013; Liu et al. 2013; Román et al. 2013; Standen et al. 2013; Guzmán-

Villanueva et al. 2014; Villamil et al. 2014; Yarahmadi et al. 2014). The relative expression 

of HSP70, CASP3 and PCNA was significantly down-regulated in fish fed the probiotic, 

prebiotic and synbiotic treatments relative to fish fed the control diet. These genes are 

involved in cellular stress, apoptosis and cell proliferation/DNA repair, and the up-regulation 

of these genes has been associated with enetritis in fish (Bakke-McKellep et al. 2007). The 

significant down-regulation of these genes observed in fish fed the probiotic, prebiotic and 

synbiotic treatments suggests the potential of these feed additives in mitigating enteritis-like 

effects by reducing celluar level stress and improving epithelial integrity in the intetsine. 

Interestingly, fish fed the antibiotic treatment, as well as, exhibiting a significant up-

regulation in the pro-inflammatory cytokines TNFα and IL-1β, were observed to exhibit a 

significant up-regulation in HSP70, CASP3 and PCNA relative to all other treatments. These 

findings are in line with previous studies assessing antibiotic effects in fish. Caipang et al. 

(2009) demonstrated the antibiotics florfenicol and oxolinic acid induced an up-regulation of 

IL-1β in Atlantic cod. Furthermore, HSP70 has been observed to increase in response to 

oxytetracycline in zebra fish larvae (Romero et al. 2012). The present study suggests the 
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potetntial of oxytetracycline to induce a level of intestinal stress in European sea bass, 

however further research is required to test this hypothesis.  

Histological analyses appeared to coincide with the improved immunity described above. 

Epithelial goblet cell levels were significantly elevated in fish fed the probiotic and synbiotic 

treatments compared to fish fed the control, which has previously been reported in fish fed 

dietary Lactobacillus spp. and B. subtilis administration (Picchietti et al. 2007, 2009; Salinas 

et al. 2008). Chapter 4A also revealed, significant increases in: intestinal perimeter ratio of 

(probiotic and synbiortic treatments), epithelial microvilli density (probiotic and prebiotic 

treatments), and absorptive surface index (probiotic), relative to fish fed the control. The 

histological appraisals further support the potential of these feed additives to confer beneficial 

improvements in the intestinal health of European sea bass fed a sub-optimal basal diet.  

Chapter 4B utilsed an intestinal sac method to assess the potential of B. subtilis to mitgate 

enteric pathogen (V. anguillarum) damage. Histological and FISH techniques were employed 

to assess these effects in the posterior intestine at the end of the trial conducted in Chapter 4A. 

SEM analyses revealed that V. anguillarum exposures caused severe epithelial damage 

characterised by necrotic enterocytes, irregular microvilli and areas where the lamina propria 

and tight junctions were exposed to the lumen. A significant reduction in microvilli density 

was observed in the intestines exposed to the pathogen in fish fed all dietary regimes. These 

results are in agreement with the study by Harper et al. (2011) where V. anguillarum was also 

reported to reduce epithelial microvilli density in the intestine of rainbow trout ex vivo. 

Microvilli density measurements of intestines exposed to the pathogen were significantly 

elevated in fish fed the probiotic, prebiotic and synbiotic treatments compared to fish fed the 

control. This result is in agreement with Chapter 4A, suggesting the feed additives may 

improve the epithelial health in the posterior intestine of European sea bass, and provide a 

level of protection against V. anguillarum. Interestingly, FISH analyses revealed the lack of 



Chapter 6 

 

233 | P a g e  

 

adhesion to the epithelial surfaces by either B. subtilis or V. anguillarum. This would suggest 

that the damage to the epithelium caused by the pathogen was the result of the production of 

extracellular toxins (Li et al. 2008; Rock & Nelson 2006; Denkin & Nelson 2004; Milton et 

al. 1996), and was independant of direct pathogen-enterocyte interactions. The direct 

interactions between B. subtilis and V. anguillarum in the intestine of European sea bass and 

the mechanisms involved therein requires further investigation. Chapter 4B demonstrates the 

potential to utilise ex vivo models to assess bacterial interactions in the intestine of European 

sea bass, and could be used prior to bacterial challenge experiments. This would provide 

important information on pathogen interactions in the intestine before large numbers of fish 

were used in challenge experiments, which is in line with the 3 R’s with regards to the use of 

animals in science.   

 

Collectively the results of Chapters 4A and 4B indicate that B. subtilis, and to a lesser extent 

Previda
®
, confer health benefits to the intestine of European sea bass juveniles fed a sub-

optimal diet. Furthermore, no signs of detrimental effects were observed as a consequence of 

probiotic and prebiotic feeding. The challenging diet used in this chapter was revealed to 

cause a degree of intestinal enteritis European sea bass and provided an interesing model to 

assess probiotic and prebiotic applications. However, the unusually high levels of SPC and 

the addition of saponins used in Chapter 4A appeared to modulate the intestinal microbial 

communities, and was not representative of a diet used commercially for this species.  

Therefore the diet used in Chapter 5 was designed to be more representative of a commecial 

formulation for this species. Chapter 5 investigated the effects dietary probiotic (B. subtilis) 

and phytobiotic (Next Enhance 150
®

) supplementation individually, and in combination on 

the intestinal microbiota and health of European sea bass fed a commercially based basal diet 

for 10 weeks.  
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Chapter 5 revealed no differences in growth performance by dietary treatment. The 

allochthonous microbial communities were observed to cluster into three disticnt groups. 

Cluster one contained most replicates of fish fed the control, NE low and NE high treatments, 

cluster two contained most replicates of fish fed the pro+NE low and cluster 3 contained all 

replicates of fish fed the probiotic treatment. Observed species, species richness and 

phylogenic distance remained unaffected by dietary regime. Shannon wiener diversity index 

was significantly elevated in fish fed the probiotic and pro+NE low treatments relative to all 

other treatments. Of these bacterial communities, high-throughput sequencing revealed 

Firmicutes to dominate the 16S rRNA reads of all samples. This is in line with Chapter 4A 

where the dominatant phylum of the allochthonous microbial communities was also 

Firmicutes, which suggests this phyla to be a the major constituent of the allochthonous 

bacterial communities of European sea bass juveniles under the rearing conditions used in 

these studies. The species B. coagulans appeared to dominate the 16S rRNA reads and was 

significantly higher in fish fed the control, NE low and NE high treatments compared to fish 

fed the probiotic and pro+NE 1.5 treatments suggesting this species was reduced as a 

consequence of probiotic supplementation. The probiotic inclusion also appeared to promote 

some potentially beneficial genera such as Leuconostoc and Lactococcus, while supressing 

the potential pathogenic genus Staphylococcus spp.   

With regards to the localised immune response, a significant down-regulation was observed 

in the mRNA abundance of HSP70, CASP3 and PCNA in fish fed the probiotic treatment 

compared to fish fed the control suggesting an epithelium under a lower level of cellular 

stress and turnover, which is in line with Chapter 4A. Chapter 5 also revealed a significant 

down regulation in CAL, a gene that has been observed to be up-regulated as a response to 

bacterial infection in fish and shellfish (Luana et al. 2007; Duan et al. 2014; Liu et al. 2011). 
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The pro-inflammatory gene IL-1β and the anti-inflammatory IL-10 remained unaffected by 

dietary treatment. Probiotic supplementation also increased the abundance of GC’s and 

significantly increased the number of IEL’s in the posterior intestine. The increase in mucus 

production and IEL’s is in agreement with the results obtained in Chapter 4A, suggesting the 

probiotic increases the presence of leukocytes in the epithelium, and thus potentially 

elevating the intestinal immunological state of these fish.  

This programme of research provides a wealth of information relating to the health of 

European sea bass juveniles in response to dietary ingredients and feed additives. Molecular 

techniques were adopted for the microbiological analyses in the present research, and it 

should be mentioned that these approaches, like other techniques, have their limitations. The 

caveats include sample variation in DNA extractions and PCR amplification bias which may 

be introduced prior to downstream analyses and sequencing. With regards to PCR-DGGE, it 

is possible that multiple sequences migrating to the same position in the gel may be wrongly 

considered as one species. There are also some potential pit-falls with respect to high-

throughput sequence analyses. These include problems associated with short reads and 

inconsistences in the process of sequences with regards to sequence coverage. Furthermore, 

care must be taken when assessing relative abundances in a given sample as 16S rRNA copy 

numbers may vary between bacterial species, which may lead to the overestimation of 

bacteria with high copy numbers, and the underestimation of bacteria with low copy numbers. 

Readers with an interest in the strengths and weaknesses of these molecular techniques are 

referred to the papers by Jackson et al. (2000), Kuczynski et al. (2012), Ghanbari et al. (2015) 

and Zhou et al. (2014). 
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The present research focused on the allochthonous microbial communities and provides 

important information on these communities in European sea bass. Future research should 

focus on the interactions between feed additives, in particular probiotics, and the 

autochthonous microbial communities in this and other fish species. Furthermore, research 

should also focus on the functional roles the microbial communities play in the intestine of 

fish by applying metatranscriptomics, metaproteomics and metabolomics to assess their 

relevance and relationship with the host (Ghanbari et al. 2015). Metatranscriptomics provides 

information on the active bacteria by assessing the expression of genes in these complex 

communities. Metaproteomics and metabolomics addresses the expression of proteins and 

metabolites in a microbial ecosystem, and would advance our knowledge on the potential 

roles these important microbes play in the intestine, and indeed other organs of fish (Franzosa 

et al. 2014; Ghanbari et al. 2015). Future research is also required on the role feed additives 

play on the localised immunity with regards to expression pathways. Feed additive effects on 

systemic immunity, such as serum immunoglobulin levels, lysozyme, and complement 

activities among others, is relatively well documented, including a limited number of studies 

on sea bass (Piccolo et al. 2014; Ranjan et al. 2014; Abdelmalek et al. 2015). However, our 

understanding of the immune interactions at the mucosal surfaces with regards to pattern 

recognition receptors, adapter molecules and ultimately cytokine expression is extremely 

limited in fish, and should be addressed in future studies. Furthermore, an up-regulation in 

cytokine expression may not necessarily indicate the presence of actual proteins, and hence 

proteomic approaches would greatly improve our understanding in this area (Rodrigues et al. 

2012; Almeida et al. 2015). There is also a paucity of information on SCFA levels in the 

intestine of fish, and should also be the focus of future studies. SCFA’s are the end products 

of the fermentation of fibres, and the roles microbes play in this process in fish has been 

previously documented (Clements et al. 1997; Ray et al. 2012; Romero et al. 2014). However, 
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more research is required to further our understanding of microbial SCFA metabolism in fish, 

and furthermore how feed additives impact on this process. Identifying bacterial species in 

the fish gut through 16S rRNA metagenomics provides important information on their 

presence and potential, however this approach fails to provide information on the actual roles 

the microbes play within the community ecosystem. Information acquired using these types 

of techniques will greatly advance our knowledge, not only with regards to bacterial 

presence/abundance, but also bacterial functionality, ultimately leading to a better 

understanding of fish health.     

 

Conclusion 

The present research provides novel information on the European sea bass response to soy 

protein, pea protein and saponins, as well as, the effects various feed additive 

supplementation has on the growth and health of this species. Chapter 3 revealed an enteritis-

like response in the posterior intestine of European sea bass as a consequence of dietary soy 

and pea protein inclusion, a response which appeared to be amplified with the addition of 

saponins. Chapters 3, 4A and 5 all revealed the allochthonous microbial communities of 

European sea bass to consist of a complex bacterial ecosystem. Dietary ingredients appeared 

to modulate these communities and B. subtilis was also observed to populate the intestine and 

influence the presence of various allochthonous bacterial species. Importantly, the feed 

additives utilised in the present study generally appeared to confer health benefits to the host 

fish, and no obvious signs of detrimental effects as a consequence of the feed additives were 

reported throughout the research programme. Feed additive research in aquaculture remains 

an interesting topic, one which has presented the potential to improve fish production and 
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health. However, much more research is still required particularly research relating the 

mechanisms underpinning feed additive effects in fish.      



References 
 

239 | P a g e  

 

References 

 

Abd-El-Rhman, A.M. (2009) Antagonism of Aeromonas hydrophila by propolis and its effect 

on the performance of Nile tilapia, Oreochromis niloticus. Fish & shellfish immunology, 27, 

454-459.  

 

Abdhul, K., Ganesh, M., Shanmughapriya, S., Vanithamani, S., Kanagavel, M., Anbarasu, K. 

& Natarajaseenivasan, K. (2015) Bacteriocinogenic potential of a probiotic strain Bacillus 

coagulans [BDU3] from Ngari. International Journal of Biological Macromolecules, 79, 

800-806.  

 

Abdelmalek, B.E., Driss, D., Kallel, F., Guargouri, M., Missaoui, H., Chaabouni, S.E., Ayadi, 

M.A. & Bougatef, A. (2015) Effect of xylan oligosaccharides generated from corncobs on 

food acceptability, growth performance, haematology and immunological parameters of 

Dicentrarchus labrax fingerlings. Fish physiology and biochemistry, 1-10. 

 

Abell, G.C. & Bowman, J.P. (2005) Ecological and biogeographic relationships of class 

Flavobacteria in the Southern Ocean. FEMS microbiology ecology, 51, 265-277. 

 

Abelli, L., Picchietti, S., Romano, N., Mastrolia, L. & Scapigliati, G. (1997) 

Immunohistochemistry of gut-associated lymphoid tissue of the sea bass Dicentrarchus 

labrax (L.). Fish & shellfish immunology, 7, 235-245.  

 

Abelli, L., Randelli, E., Carnevali, O. & Picchietti, S. (2009) Stimulation of gut immune 

system by early administration of probiotic strains in Dicentrarchus labrax and Sparus 

aurata. Annals of the New York Academy of Sciences, 1163, 340-342. 

 

Abid, A., Davies, S., Waines, P., Emery, M., Castex, M., Gioacchini, G., Carnevali, O., 

Bickerdike, R., Romero, J. & Merrifield, D. (2013) Dietary synbiotic application modulates 

Atlantic salmon (Salmo salar) intestinal microbial communities and intestinal immunity. Fish 

& shellfish immunology, 35, 1948-1956. 

 

Abid, A. A. (2014) Investigations on the gut microbiota of salmonids and the applications of 

probiotics-based feed additives. pearl.plymouth.ac.uk. 

 

Afonso, A., Gomes, S., Da Silva, J., Marques, F. & Henrique, M. (2005) Side effects in sea 

bass (Dicentrarchus labrax L.) due to intraperitoneal vaccination against vibriosis and 

pasteurellosis. Fish & shellfish immunology, 19, 1-16.  

 

Ai, Q., Xu, H., Mai, K., Xu, W., Wang, J. & Zhang, W. (2011) Effects of dietary 

supplementation of Bacillus subtilis and fructooligosaccharide on growth performance, 

survival, non-specific immune response and disease resistance of juvenile large yellow 

croaker, Larimichthys crocea. Aquaculture, 317, 155-161.  

 



References 
 

240 | P a g e  

 

Akrami, R., mansour, m.r., Chitsaz, H., Ziaei, R. & Ahmadi, Z. (2012) Effect of Dietary 

Mannan Oligosaccharide on Growth Performance, Survival, Body Composition and Some 

Hematological Parameters of Carp Juvenile (Cyprinus carpio). J. Anim. Sci. Adv., 2, 879-885. 

 

Akrami, R., Nasri‐Tajan, M., Jahedi, A., Jahedi, M., Razeghi Mansour, M. & Jafarpour, S. 

(2015) Effects of dietary synbiotic on growth, survival, lactobacillus bacterial count, blood 

indices and immunity of beluga (Huso huso Linnaeus, 1754) juvenile. Aquaculture Nutrition. 

 

Al‐Hisnawi, A., Ringø, E., Davies, S. J., Waines, P., Bradley, G. & Merrifield, D. L. 2014. 

First report on the autochthonous gut microbiota of brown trout (Salmo trutta Linnaeus). 

Aquaculture Research. 

 

Allameh, S. K., Ringø, E., Yusoff, F. M., Daud, H. M. & Ideris, A. 2014. Properties of 

Enterococcus faecalis, a new probiotic bacterium isolated from the intestine of snakehead 

fish (Channa striatus Bloch). African Journal of Microbiology Research, 8, 2215-2222. 

 

Allameh, S., Yusoff, F., Ringø, E., Daud, H., Saad, C. & Ideris, A. (2015) Effects of dietary 

mono‐and multiprobiotic strains on growth performance, gut bacteria and body composition 

of Javanese carp (Puntius gonionotus, Bleeker 1850). Aquaculture Nutrition. 

 

Almeida, A., Bassols, A., Bendixen, E., Bhide, M., Ceciliani, F., Cristobal, S., Eckersall, P., 

Hollung, K., Lisacek, F. & Mazzucchelli, G. (2015) Animal board invited review: advances 

in proteomics for animal and food sciences. animal, 9, 1-17.      

 

Aly, S. (2014) Antimicrobials use in aquaculture and their public health impact. Journal of 

Aquaculture Research and Development, 5.  

 

Andani, H.R.R., Tukmechi, A., Meshkini, S. & Sheikhzadeh, N. (2012) Antagonistic activity 

of two potential probiotic bacteria from fish intestines and investigation of their effects on 

growth performance and immune response in rainbow trout (Oncorhynchus mykiss). Journal 

of Applied Ichthyology, 28, 728-734. 

 

Andrews, S.R., Sahu, N.P., Pal, A.K. & Kumar, S. (2009) Haematological modulation and 

growth of Labeo rohita fingerlings: effect of dietary mannan oligosaccharide, yeast extract, 

protein hydrolysate and chlorella. Aquaculture Research, 41, 61-69.  

 

Antache, A., Victor, C., Iulia, G., Lorena, D., Mirela, M.C., Sandita, I.P. & Mihai, P.S. 

(2013a) The Effects of Some Phytobiotics on Biochemical Composition of Oreochromis 

niloticus Meat Reared in a Recirculating Aquaculture System. Scientific Papers Animal 

Science and Biotechnologies, 46, 238-243. 

 

Antache, A., Cristea, V., Dediu, L., Vasilean, I., Petrea, S.M. & Coada, M.T. (2013b) The 

Growth Performance of Oreochromis niloticus Reared in a Recirculating Aquaculture System 

in Condition of Some Phytobiotics Administered in Feed. Bulletin of University of 



References 
 

241 | P a g e  

 

Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Animal Science and 

Biotechnologies, 70, 185-186. 

 

Antache, A., Cristea, V., Iulia, G.R., Placinta, S. & Mocanu, M. (2013c) The Influence of 

Rosemary, Sea Buckthorn and Ginger on Oxidative Stress at Oreochromis niloticus Reared in 

a Recirculating Aquaculture System. Bulletin of University of Agricultural Sciences and 

Veterinary Medicine Cluj-Napoca. Animal Science and Biotechnologies, 70, 110-116. 

 

Antache, A., Victor, C., Iulia, G., Lorena, D., Mirela, C. & Mihai, P.Ș. (2014a) The Influence 

of Some Phytobiotics on Haematological and Some Biochemical Indices at Oreochromis 

niloticus–Linnaeus, 1758. Scientific Papers Animal Science and Biotechnologies, 47, 192-

199. 

 

Antache, A., Cristea, V., Grecu, I., Dediu, L., Cretu, M., Bocioc, E. & Petrea, S.M. (2014b) 

Effects of Dietary Supplementation at Nile tilapia with Thymus vulgaris, Trigonela foenum 

graecum and Azadirachta indica on Welfare Status. Bulletin of University of Agricultural 

Sciences and Veterinary Medicine Cluj-Napoca. Animal Science and Biotechnologies, 71, 

115-122. 

 

Antache, A., Cristea, V., Grecu, I., Petrea, Ș.M., Placinta, S. & Coada, M.T. (2014c) The 

Evaluation of Synergistic Effect of Hippophae rhamnoides and Vitamin E on Growth 

Performance and Oxidative Stress at Oreochromis niloticus-Linnaeus, 1758. Scientific 

Papers Animal Science and Biotechnologies, 47, 176-182. 

 

Antache, A., Cristea, V., Dediu, L., Grecu, I., Petrea, S.M. & Bandi, A.C. (2015) The 

Biochemical Evaluation of Aquaculture Nile Tilapia Muscle Tissue, in Condition of Some 

Phytobiotics Administered in Feed. Bulletin of University of Agricultural Sciences and 

Veterinary Medicine Cluj-Napoca. Animal Science and Biotechnologies, 72. 

 

AOAC (1995) Official Methods of Analysis of Association of Official Analytical Chemists 

(16th ed.). Association of Analytical Chemists, Arlington, VA, USA. 

 

Asimi, O. & Sahu, N. (2013) Herbs/spices as feed additive in aquaculture. Scientific Journal 

of Pure and Applied Sciences, 2, 284-292.  

 

Askarian, F., Zhou, Z., Olsen, R.E., Sperstad, S. & Ringø, E. (2012) Culturable 

autochthonous gut bacteria in Atlantic salmon (Salmo salar L.) fed diets with or without 

chitin. Characterization by 16S rRNA gene sequencing, ability to produce enzymes and in 

vitro growth inhibition of four fish pathogens. Aquaculture, 326–329, 1-8.  

 

Asturiano, J., Sorbera, L., Ramos, J., Kime, D., Carrilo, M. & Zanuy, S. (2000) Hormonal 

regulation of the European sea bass reproductive cycle: an individualized female approach. 

Journal of Fish Biology, 56, 1155-1172.  

 



References 
 

242 | P a g e  

 

Austin, B. (2006) The bacterial microflora of fish, revised. The Scientific World Journal, 6, 

931-945.  

 

Baeverfjord, G. & Krogdahl, Å. (1996) Development and regression of soybean meal induced 

enteritis in Atlantic salmon, Salmo salar L., distal intestine: a comparison with the intestines 

of fasted fish. Journal of Fish Diseases, 19, 375-387.  

 

Bairagi, A., Ghosh, K., Sen, S. & Ray, A. (2002) Enzyme producing bacterial flora isolated 

from fish digestive tracts. Aquaculture International, 10, 109-121. 

 

Bakke-McKellep, A.M., Penn, M.H., Salas, P.M., Refstie, S., Sperstad, S., Landsverk, T., 

Ringo, E. & Krogdahl, A. (2007) Effects of dietary soyabean meal, inulin and oxytetracycline 

on intestinal microbiota and epithelial cell stress, apoptosis and proliferation in the teleost 

Atlantic salmon (Salmo salar L.). Br J Nutr, 97, 699-713. 

 

Balcázar, J.L., De Blas, I., Ruiz-Zarzuela, I., Vendrell, D., Calvo, A.C., Márquez, I., Gironés, 

O. & Muzquiz, J.L. (2007a) Changes in intestinal microbiota and humoral immune response 

following probiotic administration in brown trout (Salmo trutta). British Journal of Nutrition, 

97, 522-527. 

 

Balcázar, J.L., De Blas, I., Ruiz-Zarzuela, I., Vendrell, D., Gironés, O. & Muzquiz, J.L. 

(2007b) Enhancement of the immune response and protection induced by probiotic lactic acid 

bacteria against furunculosis in rainbow trout (Oncorhynchus mykiss). FEMS Immunology & 

Medical Microbiology, 51, 185-193. 

 

Balcázar, J.L., Vendrell, D., de Blas, I., Ruiz-Zarzuela, I. & Múzquiz, J.L. (2008) Effect of 

Lactococcus lactis CLFP 100 and Leuconostoc mesenteroides CLFP 196 on Aeromonas 

salmonicida Infection in brown trout (Salmo trutta). Journal of molecular microbiology and 

biotechnology, 17, 153-157.  

 

Bates, J.M., Mittge, E., Kuhlman, J., Baden, K.N., Cheesman, S.E. & Guillemin, K. (2006) 

Distinct signals from the microbiota promote different aspects of zebrafish gut differentiation. 

Developmental biology, 297, 374-386.  

 

Beck, B.H. & Peatman, E. (2015) Mucosal Health in Aquaculture, Academic Press. 

 

Benson, A.K., Kelly, S.A., Legge, R., Ma, F., Low, S.J., Kim, J., Zhang, M., Oh, P.L., 

Nehrenberg, D. & Hua, K. (2010) Individuality in gut microbiota composition is a complex 

polygenic trait shaped by multiple environmental and host genetic factors. Proceedings of the 

National Academy of Sciences, 107, 18933-18938.  

 

Beshkar, D.S., Moghaddasi, B. & Manouchehri, H. (2015) Dietary effects of the synbiotic 

Biomin imbo on survival and growth performance of the oranda goldfish (Carassius auratus). 

Journal of Animal Biology, 7, 1-12. 



References 
 

243 | P a g e  

 

 

Bostock, J., McAndrew, B., Richards, R., Jauncey, K., Telfer, T., Lorenzen, K., Little, D., 

Ross, L., Handisyde, N., Gatward, I. & Corner, R. (2010) Aquaculture: global status and 

trends. Philos Trans R Soc Lond B Biol Sci, 365, 2897-2912.  

 

Brunt, J., Newaj‐Fyzul, A. & Austin, B. (2007) The development of probiotics for the control 

of multiple bacterial diseases of rainbow trout, Oncorhynchus mykiss (Walbaum). Journal of 

Fish Diseases, 30, 573-579.  

 

Bonaldo, A., Roem, A.J., Fagioli, P., Pecchini, A., Cipollini, I. & Gatta, P.P. (2008) Influence 

of dietary levels of soybean meal on the performance and gut histology of gilthead sea bream 

(Sparus aurata L.) and European sea bass (Dicentrarchus labrax L.). Aquaculture Research, 

39, 970-978. 

 

Bouarab, K., Melton, R., Peart, J., Baulcombe, D. & Osbourn, A. (2002) A saponin-

detoxifying enzyme mediates suppression of plant defences. Nature, 418, 889-892.  

 

Burr, G., Gatlin, D. & Ricke, S. (2005) Microbial ecology of the gastrointestinal tract of fish 

and the potential application of prebiotics and probiotics in finfish aquaculture. Journal of the 

World Aquaculture society, 36, 425-436.  

Burrells C, Williams P, Southgate P, Crampton V (1999) Immunological, physiological and 

pathological responses of rainbow trout (Oncorhynchus mykiss) to increasing dietary 

concentrations of soybean proteins. Veterinary Immunology and Immunopathology, 72, 277-

288 

Buschmann, A.H., Tomova, A., López, A., Maldonado, M.A., Henríquez, L.A., Ivanova, L., 

Moy, F., Godfrey, H.P. & Cabello, F.C. (2012) Salmon aquaculture and antimicrobial 

resistance in the marine environment. PloS one, 7, e42724.  

 

Bustin, S.A., Benes, V., Garson, J.A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., 

Nolan, T., Pfaffl, M.W. & Shipley, G.L. (2009) The MIQE guidelines: minimum information 

for publication of quantitative real-time PCR experiments. Clinical chemistry, 55, 611-622.  

 

Cabello, F.C. (2006) Heavy use of prophylactic antibiotics in aquaculture: a growing problem 

for human and animal health and for the environment. Environ Microbiol, 8, 1137-1144.  

 

Cabello, F.C., Godfrey, H.P., Tomova, A., Ivanova, L., Dölz, H., Millanao, A. & Buschmann, 

A.H. (2013) Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial 

resistance and to animal and human health. Environmental microbiology, 15, 1917-1942. 

 

Caipang, C.M.A., Lazado, C.C., Brinchmann, M.F., Berg, I. & Kiron, V. (2009) In vivo 

modulation of immune response and antioxidant defense in Atlantic cod, Gadus morhua 



References 
 

244 | P a g e  

 

following oral administration of oxolinic acid and florfenicol. Comparative Biochemistry and 

Physiology Part C: Toxicology & Pharmacology, 150, 459-464. 

 

Carda-Diéguez, M., Mira, A. & Fouz, B. (2014) Pyrosequencing survey of intestinal 

microbiota diversity in cultured sea bass (Dicentrarchus labrax) fed functional diets. FEMS 

microbiology ecology, 87, 451-459. 

 

Carrillo, M., Zanuy, S., Prat, F., Serrano, R. & Bromage, N. (1993) Environmental and 

hormonal control of reproduction in sea bass. Recent advances in Aquaculture, 4, 43-54. 

 

Cerezuela, R., Meseguer, J. & Esteban, M. (2011) Current Knowledge in Synbiotic Use for 

Fish Aquaculture: A Review. J Aquac Res Development S, 1, 2.  

 

Carnevali, O., de Vivo, L., Sulpizio, R., Gioacchini, G., Olivotto, I., Silvi, S. & Cresci, A. 

(2006) Growth improvement by probiotic in European sea bass juveniles (Dicentrarchus 

labrax, L.), with particular attention to IGF-1, myostatin and cortisol gene expression. 

Aquaculture, 258, 430-438.  

 

Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R (2010a). 

PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26: 

266-267. 

 

Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK (2010b). 

QIIME allows analysis of high-throughput community sequencing data. Nature methods 7: 

335-336. 

 

Cerezuela, R., Cuesta, A., Meseguer, J. & Esteban, M.Á. (2008) Effects of inulin on gilthead 

seabream (Sparus aurata L.) innate immune parameters. Fish & shellfish immunology, 24, 

663-668.  

 

Cerezuela, R., Guardiola, F.A., Meseguer, J. & Esteban, M.Á. (2012) Increases in immune 

parameters by inulin and Bacillus subtilis dietary administration to gilthead seabream (Sparus 

aurata L.) did not correlate with disease resistance to Photobacterium damselae. Fish & 

shellfish immunology, 32, 1032-1040.  

 

Cerezuela, R., Meseguer, J. & Esteban, M.Á. (2013a) Effects of dietary inulin, Bacillus 

subtilis and microalgae on intestinal gene expression in gilthead seabream (Sparus aurata L.). 

Fish & shellfish immunology, 34, 843-848. 

 

Cerezuela, R., Fumanal, M., Tapia-Paniagua, S.T., Meseguer, J., Moriñigo, M.Á. & Esteban, 

M.Á. (2013b) Changes in intestinal morphology and microbiota caused by dietary 

administration of inulin and Bacillus subtilis in gilthead sea bream (Sparus aurata L.) 

specimens. Fish & shellfish immunology, 34, 1063-1070. 



References 
 

245 | P a g e  

 

Chen, W., Ai, Q., Mai, K., Xu, W., Liufu, Z., Zhang, W. & Cai, Y. (2011) Effects of dietary 

soybean saponins on feed intake, growth performance, digestibility and intestinal structure in 

juvenile Japanese flounder (Paralichthys olivaceus). Aquaculture, 318, 95-100.  

 

Chen, X.-M., Lu, H.-M., Niu, X.-T., Wang, G.-Q. & Zhang, D.-M. (2015) Enhancement of 

secondary metabolites from Bacillus Licheniformis XY-52 on immune response and 

expression of some immune-related genes in common carp, Cyprinus carpio. Fish & shellfish 

immunology, 45, 124-131.  

Chikwati, E.M., Venold, F.F., Penn, M.H., Rohloff, J., Refstie, S., Guttvik, A., Hillestad, M. 

& Krogdahl, Å. (2012) Interaction of soyasaponins with plant ingredients in diets for Atlantic 

salmon, Salmo salar L. British Journal of Nutrition, 107, 1570-1590.  

Chistiakov, D.A., Hellemans, B. & Volckaert, F. (2007) Review on the immunology of 

European sea bass Dicentrarchus labrax. Veterinary immunology and immunopathology, 117, 

1-16.  

Christybapita, D., Divyagnaneswari, M. & Michael, R.D. (2007) Oral administration of 

Eclipta alba leaf aqueous extract enhances the non-specific immune responses and disease 

resistance of Oreochromis mossambicus. Fish & shellfish immunology, 23, 840-852.  

 

Clarke, K. R. & Gorley, R., N. (2006) PRIMER v6: User Manual/Tutorial. Plymouth, UK: 

Primer-E.  

 

Clements, K.D. (1997) Fermentation and gastrointestinal microorganisms in fishes In 

Gastrointestinal microbiology, pp. 156-198. Springer.   

 

Cristea, V., Antache, A., Grecu, I., Docan, A., Dediu, L. & Mocanu, M.C. (2012) The use of 

phytobiotics in aquaculture. Lucrări Ştiinţifice–Seria Zootehnie, 57, 250-255. 

 

Costa, M.M., Novoa, B. & Figueras, A. (2008) Influence of β-glucans on the immune 

responses of carpet shell clam (Ruditapes decussatus) and Mediterranean mussel (Mytilus 

galloprovincialis). Fish & shellfish immunology, 24, 498-505. 

 

Costello, M., Grant, A., Davies, I., Cecchini, S., Papoutsoglou, S., Quigley, D. & Saroglia, M. 

(2001) The control of chemicals used in aquaculture in Europe. Journal of Applied 

Ichthyology, 17, 173-180. 

 

Couto, A., Kortner, T., Penn, M., Bakke, A., Krogdahl, Å. & Oliva-Teles, A. (2014) Effects 

of dietary phytosterols and soy saponins on growth, feed utilization efficiency and intestinal 

integrity of gilthead sea bream (Sparus aurata) juveniles. Aquaculture, 432, 295-303.  

 

Couto, A., Kortner, T., Penn, M., Østby, G., Bakke, A., Krogdahl, Å. & Oliva‐Teles, A. 

(2015a) Saponins and phytosterols in diets for European sea bass (Dicentrarchus labrax) 



References 
 

246 | P a g e  

 

juveniles: effects on growth, intestinal morphology and physiology. Aquaculture Nutrition, 

21, 180-193. 

 

Couto, A., Kortner, T., Penn, M., Bakke, A., Krogdahl, Å. & Oliva‐Teles, A. (2015b) Dietary 

saponins and phytosterols do not affect growth, intestinal morphology and immune response 

of on‐growing European sea bass (Dicentrarchus labrax). Aquaculture Nutrition. 

 

Defoirdt, T., Sorgeloos, P. & Bossier, P. (2011) Alternatives to antibiotics for the control of 

bacterial disease in aquaculture. Curr Opin Microbiol, 14, 251-258.  

 

Delcroix, J., Gatesoupe, F.J., Desbruyères, E., Huelvan, C., Le Delliou, H., Le Gall, M.M., 

Quazuguel, P., Mazurais, D. & Zambonino‐Infante, J. (2015) The effects of dietary marine 

protein hydrolysates on the development of sea bass larvae, Dicentrarchus labrax, and 

associated microbiota. Aquaculture Nutrition, 21, 98-104.  

 

Del'Duca, A., Cesar, D.E., Diniz, C.G. & Abreu, P.C. (2013) Evaluation of the presence and 

efficiency of potential probiotic bacteria in the gut of tilapia (Oreochromis niloticus) using 

the fluorescent in situ hybridization technique. Aquaculture, 388, 115-121. 

 

Del'Duca, A., Cesar, D.E. & Abreu, P.C. (2015) Bacterial community of pond's water, 

sediment and in the guts of tilapia (Oreochromis niloticus) juveniles characterized by 

fluorescent in situ hybridization technique. Aquaculture Research, 46, 707-715.  

De Rodriganez, M.S., Diaz-Rosales, P., Chabrillon, M., Smidt, H., Arijo, S., Leon-Rubio, 

J.,Alarcon, F., Balebona, M., Morinigo, M., Cara, J., Moyano, F. 2009. Effect of dietary 

administration of probiotics on growth and intestine functionality of juvenile Senegalese sole 

(Solea senegalensis, Kaup 1858). Aqua. Nutr. 15, 177–185.  

 

Denkin, S.M. & Nelson, D.R. (2004) Regulation of Vibrio anguillarum empA 

metalloprotease expression and its role in virulence. Applied and environmental microbiology, 

70, 4193-4204.  

 

DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K. 2006. Greengenes, a 

chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied 

and Environmental Microbiology 72: 5069-5072. 

 

De Schryver, P., Dierckens, K., Bahn Thi, Q.Q., Amalia, R., Marzorati, M., Bossier, P., Boon, 

N. & Verstraete, W. (2011) Convergent dynamics of the juvenile European sea bass gut 

microbiota induced by poly‐β‐hydroxybutyrate. Environmental microbiology, 13, 1042-1051.  

 

Dezfuli, B.S., Giari, L., Lui, A., Squerzanti, S., Castaldelli, G., Shinn, A.P., Manera, M. & 

Lorenzoni, M. (2012) Proliferative cell nuclear antigen (PCNA) expression in the intestine of 

Salmo trutta trutta naturally infected with an acanthocephalan. Parasit Vectors, 5, 198.  

 



References 
 

247 | P a g e  

 

Dharmani, P., Srivastava, V., Kissoon-Singh, V. & Chadee, K. (2009) Role of intestinal 

mucins in innate host defense mechanisms against pathogens. Journal of innate immunity, 1, 

123-135.  

 

Dimitroglou, A., Merrifield, D., Moate, R., Davies, S., Spring, P., Sweetman, J. & Bradley, G. 

(2009) Dietary mannan oligosaccharide supplementation modulates intestinal microbial 

ecology and improves gut morphology of rainbow trout, Oncorhynchus mykiss (Walbaum). 

Journal of animal science, 87, 3226-3234. 

 

Dimitroglou, A., Merrifield, D.L., Spring, P., Sweetman, J., Moate, R. & Davies, S.J. (2010) 

Effects of mannan oligosaccharide (MOS) supplementation on growth performance, feed 

utilisation, intestinal histology and gut microbiota of gilthead sea bream (Sparus aurata). 

Aquaculture, 300, 182-188. 

 

Dimitroglou, A., Reynolds, P., Ravnoy, B., Johnson, F., Sweetman, J.W., Davies, S.J. (2011) 

The effect of Mannan Oligosaccharide supplementation on Atlantic salmon smolts (Salmo 

salar L.) fed diets with high levels of plant proteins. Journal of Aquaculture Research & 

Development, S1, 011. DOI 10.4172/2155-9556.S1-011. 

 

Dorojan, O.G., Placinta, S. & Petrea, S. (2014) The influence of some phytobiotics (thyme, 

seabuckthorn) on growth performance of stellate sturgeon (A. stellatus, Pallas, 1771) in an 

industrial recirculating aquaculture system. Scientific Papers Animal Science and 

Biotechnologies, 47, 205-210. 

 

Dorojan, O.G.V., Cristea, V., Creţu, M., Dediu, L., Docan, A.I. & Coadă, M.T. (2015) The 

effect of thyme (Thymus vulgaris) and vitamin E on the Acipenser stellatus juvenile welfare, 

reared in a recirculating aquaculture. AACL Bioflux, 8. 

 

do Vale, A., Marques, F. & Silva, M.T. (2003) Apoptosis of sea bass (Dicentrarchus labrax 

L.) neutrophils and macrophages induced by experimental infection with Photobacterium 

damselae subsp. piscicida. Fish & shellfish immunology, 15, 129-144. 

 

Duan, Y., Liu, P., Li, J., Wang, Y., Li, J. & Chen, P. (2014) Molecular responses of 

calreticulin gene to Vibrio anguillarum and WSSV challenge in the ridgetail white prawn 

Exopalaemon carinicauda. Fish & shellfish immunology, 36, 164-171. 

 

Dügenci, S.K., Arda, N. & Candan, A. (2003) Some medicinal plants as immunostimulant for 

fish. Journal of Ethnopharmacology, 88, 99-106.  

 

Ebrahimi, G., Ouraji, H., Khalesi, M., Sudagar, M., Barari, A., Zarei Dangesaraki, M. & Jani 

Khalili, K. (2012) Effects of a prebiotic, Immunogen®, on feed utilization, body composition, 

immunity and resistance to Aeromonas hydrophila infection in the common carp Cyprinus 

carpio (Linnaeus) fingerlings. Journal of Animal Physiology and Animal Nutrition, 96, 591-

599. 



References 
 

248 | P a g e  

 

 

Edgar RC (2010). Search and clustering orders of magnitude faster than BLAST. 

Bioinformatics 26: 2460-2461. 

 

Ellis, A. E. (1990) Lysozyme assays. In: Techniques in Fish Immunology (Stolen, J. S., 

Fletcher, T. C., Anderson, D. P., Robersen, B. S. & Van Muiswinkel, W. B. Eds.), pp. 

101104. SOS Publications. Fair Haven, New Jersey, USA. 

 

El-Mahmoud, R. & Ibrahim, D. (2013) The effect of aloe gel and dried Camphora leaves on 

growth performance, body composition, immunity, some blood parameters and economic 

efficiency in Nile tilapia (Oreochromis niloticus) In Proceedings of the 6th Global Fisheries 

and Aquaculture Research Conference, Hurghada, Egypt, 27-30 September 2013, pp. 149-

164. Massive Conferences and Trade Fairs.  

 

Ercolini, D. (2004) PCR-DGGE fingerprinting: novel strategies for detection of microbes in 

food. Journal of microbiological methods, 56, 297-314.  

Etyemez, M. & Balcázar, J.L. (2015) Bacterial community structure in the intestinal 

ecosystem of rainbow trout (Oncorhynchus mykiss) as revealed by pyrosequencing-based 

analysis of 16S rRNA genes. Research in veterinary science, 100, 8-11. 

EU Regulation (EC) no. 1831/2003 of the European Parliament and of the Council of 22 

September 2003 on additives for use in animal nutrition. 

 

Ezeh, A.C., Bongaarts, J. & Mberu, B. (2012) Global population trends and policy options. 

The Lancet.  

 

Falcinelli, S., Picchietti, S., Rodiles, A., Cossignani, L., Merrifield, D.L., Taddei, A.R., 

Maradonna, F., Olivotto, I., Gioacchini, G. & Carnevali, O. (2015) Lactobacillus rhamnosus 

lowers zebrafish lipid content by changing gut microbiota and host transcription of genes 

involved in lipid metabolism. Sci. Rep., 5. 

 

Falk, K., Bjerkås, I. & Koppang, E.O. (2013) Intestinal morphology of the wild Atlantic 

salmon (Salmo salar). Journal of morphology, 274, 859-876. 

 

FAO. The State of World Fisheries and Aquaculture (SOFIA) Report. (2014) FAO, Rome.  

 

Ferguson, R., Merrifield, D.L., Harper, G.M., Rawling, M.D., Mustafa, S., Picchietti, S., 

Balcàzar, J.L. & Davies, S.J. (2010) The effect of Pediococcus acidilactici on the gut 

microbiota and immune status of on‐growing red tilapia (Oreochromis niloticus). Journal of 

applied microbiology, 109, 851-862.  

 

Fink, S.L. & Cookson, B.T. (2005) Apoptosis, pyroptosis, and necrosis: mechanistic 

description of dead and dying eukaryotic cells. Infection and immunity, 73, 1907-1916.  



References 
 

249 | P a g e  

 

 

Firouzbakhsh, F., Mehrabi, Z., Heydari, M., Khalesi, M.K. & Tajick, M.A. (2014) Protective 

effects of a synbiotic against experimental Saprolegnia parasitica infection in rainbow trout 

(Oncorhynchus mykiss). Aquaculture Research, 45, 609-618.  

Franchini, P., Fruciano, C., Frickey, T., Jones, J.C. & Meyer, A. (2014) The gut microbial 

community of midas cichlid fish in repeatedly evolved limnetic–benthic species pairs. PloS 

one, 9, e95027.  

Francis, G., Levavi-Sivan, B., Avitan, A. & Becker, K. (2002a) Effects of long term feeding 

of Quillaja saponins on sex ratio, muscle and serum cholesterol and LH levels in Nile tilapia 

(Oreochromis niloticus (L.)). Comparative Biochemistry and Physiology Part C: Toxicology 

& Pharmacology, 133, 593-603.  

Franzosa, E.A., Hsu, T., Sirota-Madi, A., Shafquat, A., Abu-Ali, G., Morgan, X.C. & 

Huttenhower, C. (2015) Sequencing and beyond: integrating molecular'omics' for microbial 

community profiling. Nature Reviews Microbiology.  

 

Fogel, G., Collins, C., Li, J. & Brunk, C. (1999) Prokaryotic genome size and SSU rDNA 

copy number: estimation of microbial relative abundance from a mixed population. Microbial 

ecology, 38, 93-113. 

 

Gao, P., Mao, D., Luo, Y., Wang, L., Xu, B. & Xu, L. (2012) Occurrence of sulfonamide and 

tetracycline-resistant bacteria and resistance genes in aquaculture environment. Water 

research, 46, 2355-2364. 

 

Gatesoupe, F.-J., Huelvan, C., Le Bayon, N., Sévère, A., Aasen, I.M., Degnes, K.F., Mazurais, 

D., Panserat, S., Zambonino-Infante, J.L. & Kaushik, S.J. (2014) The effects of dietary 

carbohydrate sources and forms on metabolic response and intestinal microbiota in sea bass 

juveniles, Dicentrarchus labrax. Aquaculture, 422, 47-53. 

 

Gatlin III, D.M. & Li, P. (2004) Dietary supplementation of prebiotics for health management 

of hybrid stripped bass morone chrysops X M. saxatilis. Aqua Feeds Formul Beyond, 1, 19-

21.  

 

Gatlin, D.M., Barrows, F.T., Brown, P., Dabrowski, K., Gaylord, T.G., Hardy, R.W., Herman, 

E., Hu, G., Krogdahl, Å., Nelson, R., Overturf, K., Rust, M., Sealey, W., Skonberg, D., J 

Souza, E., Stone, D., Wilson, R. & Wurtele, E. (2007) Expanding the utilization of 

sustainable plant products in aquafeeds: a review. Aquaculture Research, 38, 551-579.  

 

Ghanbari, M., Kneifel, W. & Domig, K.J. (2015) A new view of the fish gut microbiome: 

Advances from next-generation sequencing. Aquaculture, 448, 464-475.  

 

Gibson, G.R., Roberfroid, M.B., 1995. Dietary modulation of the human colonic microbiota: 

introducing the concept of prebiotics. J. Nutr. 125, 1401–1412. 



References 
 

250 | P a g e  

 

 

Gibson, G.R, Roberfroid M. (1998) Dietary modulation of the human colonic microbiota: 

introducing the concept of prebiotics. Journal of Nutrition. 125, 1401–12. 

 

Gibson, G.R., Probert, H.M., Van Loo, J., Rastall, R.A. & Roberfroid, M.B. (2004) Dietary 

modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res 

Rev, 17, 259-275.  

Gioacchini, G., Giorgini, E., Olivotto, I., Maradonna, F., Merrifield, D.L. & Carnevali, O. 

(2014) The Influence of Probiotics on Zebrafish Danio Rerio Innate Immunity and Hepatic 

Stress. Zebrafish, 11, 98-106. 

Groff, J.M. & Lapatra, S.E. (2000) Infectious diseases impacting the commercial culture of 

salmonids. Journal of Applied Aquaculture, 10, 17-90. 

Gómez, G.D. & Balcázar, J.L. (2008) A review on the interactions between gut microbiota 

and innate immunity of fish. FEMS Immunology & Medical Microbiology, 52, 145-154.  

Gornati, R., Papis, E., Rimoldi, S., Terova, G., Saroglia, M. & Bernardini, G. (2004) Rearing 

density influences the expression of stress-related genes in sea bass (Dicentrarchus labrax, 

L.). Gene, 341, 111-118.  

Gonzalez, D.J., Haste, N.M., Hollands, A., Fleming, T.C., Hamby, M., Pogliano, K., Nizet, V. 

& Dorrestein, P.C. (2011) Microbial competition between Bacillus subtilis and 

Staphylococcus aureus monitored by imaging mass spectrometry. Microbiology, 157, 2485-

2492. 

Gram, L., Melchiorsen, J., Spanggaard, B., Huber, I. & Nielsen, T.F. (1999) Inhibition of 

Vibrio anguillarum by Pseudomonas fluorescens AH2, a Possible Probiotic Treatment of 

Fish. Applied and environmental microbiology, 65, 969-973. 

Grashorn, M. (2010) Use of phytobiotics in broiler nutrition – an alternative to infeed 

antibiotics? J. Anim. Feed Sci, 19, 338-347.  

Grisdale-Helland, B., Helland, S.J. & Gatlin Iii, D.M. (2008) The effects of dietary 

supplementation with mannanoligosaccharide, fructooligosaccharide or 

galactooligosaccharide on the growth and feed utilization of Atlantic salmon (Salmo salar). 

Aquaculture, 283, 163-167. 

 

Guerreiro, I., Oliva-Teles, A. & Enes, P. (2015) Improved glucose and lipid metabolism in 

European sea bass (Dicentrarchus labrax) fed short-chain fructooligosaccharides and 

xylooligosaccharides. Aquaculture, 441, 57-63.  

 

Guzmán-Villanueva, L.T., Tovar-Ramírez, D., Gisbert, E., Cordero, H., Guardiola, F.A., 

Cuesta, A., Meseguer, J., Ascencio-Valle, F. & Esteban, M.A. (2014) Dietary administration 

of β-1,3/1,6-glucan and probiotic strain Shewanella putrefaciens, single or combined, on 



References 
 

251 | P a g e  

 

gilthead seabream growth, immune responses and gene expression. Fish & shellfish 

immunology, 39, 34-41. 

 

Haffray, P., Tsigenopoulos, C., Bonhomme, F., Chatain, B., Magoulas, A., Rye, M., 

Triantafyllidis, A. & Triantafyllidis, C. (2007) European sea bass-Dicentrarchus labrax In 

“Genetics of domestication, breeding and enhancement of performance of fish and shellfish”, 

Viterbo, Italy, 12-17th June, 2006.  

 

Harder, W. (1975) Anatomy of fishes, Schweizerbart Stuttgart.  

 

Harper GM, Monfort M, Saoud IP, Emery M, Mustafa S, Rawling MD, et al. An ex vivo 

approach to studying the interactions of Pediococcus acidilactici and Vibrio (Listonella) 

anguillarum in the anterior intestine of rainbow trout Oncorhynchus mykiss. Journal of 

Aquaculture Research & Development. 2011:DOI: 10.4172/2155-9546. 

 

Hartviksen, M., Vecino, J., Ringø, E., Bakke, A.M., Wadsworth, S., Krogdahl, Å., Ruohonen, 

K. & Kettunen, A. (2014) Alternative dietary protein sources for Atlantic salmon (Salmo 

salar L.) effect on intestinal microbiota, intestinal and liver histology and growth. 

Aquaculture Nutrition, 20, 381-398. 

 

Haas, S., Bauer, J., Adakli, A., Meyer, S., Lippemeier, S., Schwarz, K. & Schulz, C. (2015) 

Marine microalgae Pavlova viridis and Nannochloropsis sp. as n-3 PUFA source in diets for 

juvenile European sea bass (Dicentrarchus labrax L.). Journal of Applied Phycology, 1-11. 

 

Hassaan, M., Soltan, M. & Ghonemy, M. (2014) Effect of synbiotics between Bacillus 

licheniformis and yeast extract on growth, hematological and biochemical indices of the Nile 

tilapia (Oreochromis niloticus). The Egyptian Journal of Aquatic Research, 40, 199-208. 

 

Hassaan, M. (2015) The Influence of Synbiotic on Growth and Expression of GH, GHR1 and 

IGF-I Genes in Oreochromis niloticus L Fingerlings. Journal of Fisheries and Aquaculture, 

ISSN, 0976-9927. 

 

Heikkinen, J., Vielma, J., Kemiläinen, O., Tiirola, M., Eskelinen, P., Kiuru, T., Navia-

Paldanius, D. & von Wright, A. (2006) Effects of soybean meal based diet on growth 

performance, gut histopathology and intestinal microbiota of juvenile rainbow trout 

(Oncorhynchus mykiss). Aquaculture, 261, 259-268.  

 

He, S., Wan, Q., Ren, P., Yang, Y., Yao, F. & Zhou, Z. (2011) The effect of dietary 

Saccharoculture on growth performance, non-specific immunity and autochthonous gut 

microbiota of gibel carp Carassius auratus. J Aquac Res Development S, 1, 2.  

 

He, S., Zhang, Y., Xu, L., Yang, Y., Marubashi, T., Zhou, Z. & Yao, B. (2013) Effects of 

dietary Bacillus subtilis C-3102 on the production, intestinal cytokine expression and 



References 
 

252 | P a g e  

 

autochthonous bacteria of hybrid tilapia Oreochromis niloticus ♀ x Oreochromis aureus ♂. 

Aquaculture, 412–413, 125-130.   

 

Hernández, M.G., Lozano, M., Elbal, M. & Agulleiro, B. (2001) Development of the 

digestive tract of sea bass (Dicentrarchus labrax L). Light and electron microscopic studies. 

Anatomy and embryology, 204, 39-57. 

 

Hooper, L.V. & Macpherson, A.J. (2010) Immune adaptations that maintain homeostasis 

with the intestinal microbiota. Nature Reviews Immunology, 10, 159-169.  

 

Hoseinifar, S.H., Mirvaghefi, A., Amoozegar, M.A., Sharifian, M. & Esteban, M.Á. (2015) 

Modulation of innate immune response, mucosal parameters and disease resistance in 

rainbow trout (Oncorhynchus mykiss) upon synbiotic feeding. Fish & shellfish immunology. 

 

Hothorn T. & Hornik. K. (2015) exactRankTests: Exact Distributions for Rank and 

Permutation Tests. R package version 0.8-28. http://CRAN.R 

project.org/package=exactRankTests 

 

Hovda, M.B., Lunestad, B.T., Fontanillas, R. & Rosnes, J.T. (2007) Molecular 

characterisation of the intestinal microbiota of farmed Atlantic salmon (Salmo salar L.). 

Aquaculture, 272, 581-588. 

 

Hovda, M.B., Fontanillas, R., McGurk, C., Obach, A. & Rosnes, J.T. (2012) Seasonal 

variations in the intestinal microbiota of farmed Atlantic salmon (Salmo salar L.). 

Aquaculture Research, 43, 154-159. 

 

Ingerslev, H.-C., Strube, M.L., von Gersdorff Jørgensen, L., Dalsgaard, I., Boye, M. & 

Madsen, L. (2014a) Diet type dictates the gut microbiota and the immune response against 

Yersinia ruckeri in rainbow trout (Oncorhynchus mykiss). Fish & shellfish immunology, 40, 

624-633. 

 

Ingerslev, H.C., von Gersdorff Jørgensen, L., Lenz Strube, M., Larsen, N., Dalsgaard, I., 

Boye, M. & Madsen, L. (2014b) The development of the gut microbiota in rainbow trout 

(Oncorhynchus mykiss) is affected by first feeding and diet type. Aquaculture, 424–425, 24-

34.  

 

Izvekova, G., Izvekov, E. & Plotnikov, A. (2007) Symbiotic microflora in fishes of different 

ecological groups. Biology Bulletin, 34, 610-618.  

Jackson, C.R., Roden, E.E. & Churchill, P.F. (2000) Denaturing gradient gel electrophoresis 

can fail to separate 16S rDNA fragments with multiple base differences. Mol Biol Today, 1, 

49-51. 



References 
 

253 | P a g e  

 

JI, S.-C., Takaoka, O., Jeong, G.-S., Lee, S.-W., Ishimaru, K., Seoka, M. & Takii, K. (2007) 

Dietary medicinal herbs improve growth and some non-specific immunity of red sea bream 

Pagrus major. Fisheries Science, 73, 63-69.  

Kaiko, G.E. & Stappenbeck, T.S. (2014) Host–microbe interactions shaping the 

gastrointestinal environment. Trends in immunology, 35, 538-548.  

 

Kaleeswaran, B., Ilavenil, S. & Ravikumar, S. (2012) Changes in biochemical, histological 

and specific immune parameters in Catla catla (Ham.) by Cynodon dactylon (L.). Journal of 

King Saud University-Science, 24, 139-152.  

 

Kales, S.C., Bols, N.C. & Dixon, B. (2007) Calreticulin in rainbow trout: a limited response 

to endoplasmic reticulum (ER) stress. Comparative Biochemistry and Physiology Part B: 

Biochemistry and Molecular Biology, 147, 607-615. 

 

Kales, S., Fujiki, K. & Dixon, B. (2004) Molecular cloning and characterization of 

calreticulin from rainbow trout (Oncorhynchus mykiss). Immunogenetics, 55, 717-723. 

 

Kesarcodi-Watson, A., Kaspar, H., Lategan, M.J. & Gibson, L. (2008) Probiotics in 

aquaculture: The need, principles and mechanisms of action and screening processes. 

Aquaculture, 274, 1-14.  

 

Kim, D.-H. & Austin, B. (2006) Innate immune responses in rainbow trout (Oncorhynchus 

mykiss, Walbaum) induced by probiotics. Fish & shellfish immunology, 21, 513-524.  

Kiron, V. (2012) Fish immune system and its nutritional modulation for preventive health 

care. Animal feed science and technology, 173, 111-133. 

Knudsen, D., Jutfelt, F., Sundh, H., Sundell, K., Koppe, W. & Frøkiær, H. (2008) Dietary 

soya saponins increase gut permeability and play a key role in the onset of soyabean-induced 

enteritis in Atlantic salmon (Salmo salar L.). British Journal of Nutrition, 100, 120-129.  

Knudsen, D., Urán, P., Arnous, A., Koppe, W. & Frøkiær, H. (2007) Saponin-containing 

subfractions of soybean molasses induce enteritis in the distal intestine of Atlantic salmon. 

Journal of agricultural and food chemistry, 55, 2261-2267.  

Kotzamanis, Y., Gisbert, E., Gatesoupe, F., Zambonino Infante, J. & Cahu, C. (2007) Effects 

of different dietary levels of fish protein hydrolysates on growth, digestive enzymes, gut 

microbiota, and resistance to Vibrio anguillarum in European sea bass (Dicentrarchus labrax) 

larvae. Comparative Biochemistry and Physiology-Part A: Molecular & Integrative 

Physiology, 147, 205-214. 

 

Korkea-aho, T., Heikkinen, J., Thompson, K., Von Wright, A. & Austin, B. (2011) 

Pseudomonas sp. M174 inhibits the fish pathogen Flavobacterium psychrophilum. Journal of 

applied microbiology, 111, 266-277. 

 



References 
 

254 | P a g e  

 

Korkea-aho, T., Papadopoulou, A., Heikkinen, J., Von Wright, A., Adams, A., Austin, B. & 

Thompson, K. (2012) Pseudomonas M162 confers protection against rainbow trout fry 

syndrome by stimulating immunity. Journal of applied microbiology, 113, 24-35.  

 

Kristiansen, M., Merrifield, D.L., Gonzalez Vecino, J.L., Myklebust, R., and Ringø. E. (2011) 

Evaluation of prebiotic and probiotic effects on the intestinal gut microbiota and histology of 

Atlantic salmon (Salmo salar L.). Journal of Aquaculture Research & Development. S1, 009. 

DOI 10.4172/2155-9546.S1-009. 

 

Krogdahl Å, Bakke‐McKellep A, Baeverfjord G (2003) Effects of graded levels of standard 

soybean meal on intestinal structure, mucosal enzyme activities, and pancreatic response in  

Atlantic salmon (Salmo salar L.). Aquaculture Nutrition, 9, 361-371.  

 

Krogdahl, Å., Penn, M., Thorsen, J., Refstie, S. & Bakke, A.M. (2010) Important 

antinutrients in plant feedstuffs for aquaculture: an update on recent findings regarding 

responses in salmonids. Aquaculture Research, 41, 333-344.  

Krogdahl, Å., Gajardo, K., Kortner, T.M., Penn, M., Gu, M., Berge, G.M. & Bakke, A.M. 

(2015) Soya saponins induce enteritis in Atlantic salmon (Salmo salar L.). Journal of 

agricultural and food chemistry, 63, 3887-3902. 

Kuczynski, J., Lauber, C.L., Walters, W.A., Parfrey, L.W., Clemente, J.C., Gevers, D. & 

Knight, R. (2012) Experimental and analytical tools for studying the human microbiome. Nat 

Rev Genet, 13, 47-58. 

 

Kuppulakshmi, C., Prakash, M., Gunasekaran, G., Manimegalai, G. & Sarojini, S. (2008) 

Antibacterial properties of fish mucus from. European review for medical and 

pharmacological sciences, 12, 149-153. 

 

Larsen, A.M., Mohammed, H.H. & Arias, C.R. (2014) Characterization of the gut microbiota 

of three commercially valuable warm water fish species. Journal of applied microbiology, 

116, 1396-1404. 

 

Lauzon, H.L., Dimitroglou, A., Merrifield, D.L., Ringø, E. & Davies, S.J. (2014) Probiotics 

and Prebiotics: Concepts, Definitions and History. Aquaculture Nutrition: Gut Health, 

Probiotics and Prebiotics, 169-184.  

 

Lazado, C.C., Caipang, C.M.A., Brinchmann, M.F. & Kiron, V. (2011) In vitro adherence of 

two candidate probiotics from Atlantic cod and their interference with the adhesion of two 

pathogenic bacteria. Veterinary microbiology, 148, 252-259.  

 

Lebeer, S., Verhoeven, T., Claes, I., De Hertogh, G., Vermeire, S., Buyse, J., Van Immerseel, 

F., Vanderleyden, J. & De Keersmaecker, S. (2011) FISH analysis of Lactobacillus biofilms 

in the gastrointestinal tract of different hosts. Letters in applied microbiology, 52, 220-226. 



References 
 

255 | P a g e  

 

 

Lee, W.-J. & Hase, K. (2014) Gut microbiota-generated metabolites in animal health and 

disease. Nature chemical biology, 10, 416-424.  

 

Leite, A.M.O., Mayo, B., Rachid, C.T.C.C., Peixoto, R.S., Silva, J.T., Paschoalin, V.M.F. & 

Delgado, S. (2012) Assessment of the microbial diversity of Brazilian kefir grains by PCR-

DGGE and pyrosequencing analysis. Food Microbiology, 31, 215-221. 

 

Leonard, A.B., Carlson, J.M., Bishoff, D.E., Sendelbach, S.I., Yung, S.B., Ramzanali, S., 

Manage, A.B., Hyde, E.R., Petrosino, J.F. & Primm, T.P. (2014) The Skin Microbiome of 

Gambusia affinis Is Defined and Selective. Advances in Microbiology, 2014. 

 

Ley, R.E., Lozupone, C.A., Hamady, M., Knight, R. & Gordon, J.I. (2008) Worlds within 

worlds: evolution of the vertebrate gut microbiota. Nature Reviews Microbiology, 6, 776-788.  

 

Li, L., Rock, J.L. & Nelson, D.R. (2008) Identification and characterization of a repeat-in-

toxin gene cluster in Vibrio anguillarum. Infection and immunity, 76, 2620-2632. 

 

Li, T., Long, M., Gatesoupe, F.-J., Zhang, Q., Li, A. & Gong, X. (2015) Comparative 

analysis of the intestinal bacterial communities in different species of carp by pyrosequencing. 

Microbial ecology, 69, 25-36. 

 

Li, P., Lewis, D.H. & Gatlin, D.M. (2004) Dietary oligonucleotides from yeast RNA 

influence immune responses and resistance of hybrid striped bass (Morone chrysops× 

Morone saxatilis) to Streptococcus iniae infection. Fish & shellfish immunology, 16, 561-569. 

 

Lima dos Santos, C.A.M. & Howgate, P. (2011) Fishborne zoonotic parasites and aquaculture: 

A review. Aquaculture, 318, 253-261.  

 

Lin, S., Mao, S., Guan, Y., Luo, L., Luo, L. & Pan, Y. (2012) Effects of dietary chitosan 

oligosaccharides and Bacillus coagulans on the growth, innate immunity and resistance of 

koi (Cyprinus carpio koi). Aquaculture, 342, 36-41. 

 

Lin, Y.-H., Wu, J.-Y. & Shiau, S.-Y. (2010) Dietary cobalt can promote gastrointestinal 

bacterial production of vitamin B12 in sufficient amounts to supply growth requirements of 

grouper, Epinephelus malabaricus. Aquaculture, 302, 89-93.  

 

Liu, B., Xu, L., Ge, X., Xie, J., Xu, P., Zhou, Q., Pan, L. & Zhang, Y. (2013) Effects of 

mannan oligosaccharide on the physiological responses, HSP70 gene expression and disease 

resistance of Allogynogenetic crucian carp (Carassius auratus gibelio) under Aeromonas 

hydrophila infection. Fish & shellfish immunology, 34, 1395-1403.  

Liu, H., Peatman, E., Wang, W., Abernathy, J., Liu, S., Kucuktas, H., Lu, J., Xu, D.-H., 

Klesius, P. & Waldbieser, G. (2011) Molecular responses of calreticulin genes to iron 



References 
 

256 | P a g e  

 

overload and bacterial challenge in channel catfish (Ictalurus punctatus). Developmental & 

Comparative Immunology, 35, 267-272. 

Liu, W., Ren, P., He, S., Xu, L., Yang, Y., Gu, Z. & Zhou, Z. (2013) Comparison of adhesive 

gut bacteria composition, immunity, and disease resistance in juvenile hybrid tilapia fed two 

different Lactobacillus strains. Fish & shellfish immunology, 35, 54-62.  

 

Liu, W.T., Mirzabekov, A.D. & Stahl, D.A. (2001) Optimization of an oligonucleotide 

microchip for microbial identification studies: a non‐equilibrium dissociation approach. 

Environmental microbiology, 3, 619-629. 

 

Lochmann, R., Sink, T. & Phillips, H. (2009) Effects of dietary lipid concentration, a dairy–

yeast prebiotic, and fish and nonfish protein sources on growth, survival, and nonspecific 

immune response of golden shiners in indoor tanks and outdoor pools. North American 

Journal of Aquaculture, 71, 16-23. 

 

Lochmann, R., Sink, T.D., Phillips, H. & Chen, R. (2010) Evaluation of a dietary dairy–yeast 

prebiotic in juvenile golden shiners in ponds. North American Journal of Aquaculture, 72, 

164-171. 

 

Lokesh, J., Fernandes, J.M., Korsnes, K., Bergh, Ø., Brinchmann, M.F. & Kiron, V. (2012) 

Transcriptional regulation of cytokines in the intestine of Atlantic cod fed yeast derived 

mannan oligosaccharide or β-glucan and challenged with Vibrio anguillarum. Fish & 

shellfish immunology, 33, 626-631. 

 

Løvmo Martinsen, L., Salma, W., Myklebust, R., Mayhew, T.M. & Ringø, E. (2011) 

Carnobacterium maltaromaticum vs. Vibrio (Listonella) anguillarum in the midgut of 

Atlantic cod (Gadus morhua L.): an ex vivo study. Aquaculture Research, 42, 1830-1839.  

 

Luana, W., Li, F., Wang, B., Zhang, X., Liu, Y. & Xiang, J. (2007) Molecular characteristics 

and expression analysis of calreticulin in Chinese shrimp Fenneropenaeus chinensis. 

Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 147, 

482-491. 

 

Luo, Y., Mao, D., Rysz, M., Zhou, Q., Zhang, H., Xu, L. & JJ Alvarez, P. (2010) Trends in 

antibiotic resistance genes occurrence in the Haihe River, China. Environmental science & 

technology, 44, 7220-7225.  

 

Mahious, A., Gatesoupe, F., Hervi, M., Metailler, R. & Ollevier, F. (2006) Effect of dietary 

inulin and oligosaccharides as prebiotics for weaning turbot, Psetta maxima (Linnaeus, C. 

1758). Aquaculture International, 14, 219-229.  

 



References 
 

257 | P a g e  

 

Maniat, M., Ghotbeddin, N. & Ghatrami, E.R. (2014) Effect of garlic on growth performance 

and body composition of benni fish (Mesopotamichthys sharpeyi). International Journal of 

Biosciences (IJB), 5, 269-277.  

Marel, M., Pröpsting, M., Battermann, F., Jung‐Schroers, V., Hübner, A., Rombout, J. & 

Steinhagen, D. (2014) Differences between intestinal segments and soybean meal–induced 

changes in intestinal mucus composition of common carp Cyprinus carpio L. Aquaculture 

Nutrition, 20, 12-24. 

 

Marshall, B.M. & Levy, S.B. (2011) Food animals and antimicrobials: impacts on human 

health. Clinical microbiology reviews, 24, 718-733.  

 

Merrifield, D.L., and Carnevali, O. (2014) Probiotic Modulation of the Gut Microbiota of 

Fish. In Aquaculture Nutrition: John Wiley & Sons, Ltd, pp. 185-222. 

Merrifield, D.L., Dimitroglou, A., Bradley, G., Baker, R.T. & Davies, S.J. (2009) Soybean 

meal alters autochthonous microbial populations, microvilli morphology and compromises 

intestinal enterocyte integrity of rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis, 

32, 755-766. 

 

Merrifield, D.L., Dimitroglou, A., Foey, A., Davies, S.J., Baker, R.T., Bøgwald, J., Castex, M. 

& Ringø, E. (2010a) The current status and future focus of probiotic and prebiotic 

applications for salmonids. Aquaculture, 302, 1-18.  

 

Merrifield, D.L., Harper, G.M., Dimitroglou, A., Ringø, E. & Davies, S.J. (2010b) Possible 

influence of probiotic adhesion to intestinal mucosa on the activity and morphology of 

rainbow trout (Oncorhynchus mykiss) enterocytes. Aquaculture Research, 41, 1268-1272. 

 

Merrifield, D.L., Carnevali, O., Picchietti, S., Avella, M., Daniels, C., Güroy, D. & Davies, 

S.J. (2011) Microbial manipulations to improve fish health and production–a Mediterranean 

perspective. Fish & shellfish immunology, 30, 1-16.  

 

Merrifield D.L, Olsen R.E, Myklebust R, Ringø E. (2011) Dietary effect of soybean (Glycine 

max) products on gut histology and microbiota of fish. Soybean and Nutrition, 231-250.  

 

Merrifield, D.L. & Rodiles, A. (2015) The fish microbiome and its interactions with mucosal 

tissues. Mucosal Health in Aquaculture, 273. 

 

Milton, D.L., O'Toole, R., Horstedt, P. & Wolf-Watz, H. (1996) Flagellin A is essential for 

the virulence of Vibrio anguillarum. Journal of bacteriology, 178, 1310-1319. 

 

Min, L., Li-Li, Z., Jun-Wei, G., Xin-Yuan, Q., Yi-Jing, L. & Di-Qiu, L. (2012) 

Immunogenicity of Lactobacillus-expressing VP2 and VP3 of the infectious pancreatic 

necrosis virus (IPNV) in rainbow trout. Fish & shellfish immunology, 32, 196-203. 



References 
 

258 | P a g e  

 

  

Montalto, M., D'onofrio, F., Gallo, A., Cazzato, A. & Gasbarrini, G. (2009) Intestinal 

microbiota and its functions. Digestive and Liver Disease Supplements, 3, 30-34. 

 

Mountfort, D.O., Campbell, J. & Clements, K.D. (2002) Hindgut fermentation in three 

species of marine herbivorous fish. Applied and environmental microbiology, 68, 1374-1380. 

Romero, J., Ringø, E. & Merrifield, D.L. (2014) The Gut Microbiota of Fish. Aquaculture 

Nutrition: Gut Health, Probiotics and Prebiotics, 75-100.  

 

Muñoz-Atienza, E., Gómez-Sala, B., Araújo, C., Campanero, C., del Campo, R., Hernández, 

P.E., Herranz, C. & Cintas, L.M. (2013) Antimicrobial activity, antibiotic susceptibility and 

virulence factors of Lactic Acid Bacteria of aquatic origin intended for use as probiotics in 

aquaculture. BMC microbiology, 13, 15.  

Moreno, Y., Arias, C.R., Meier, H., Garay, E. & Aznar, R. (1999) In situ analysis of the 

bacterial communities associated to farmed eel by whole-cell hybridization. Letters in applied 

microbiology, 29, 160-165. 

Muyzer, G., Dewaal, E.C. & Uitterlinden, A.G. (1993) Profiling of complex microbial 

populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-

amplified genes coding for 16S ribosomal RNA. Applied and Environmental Microbiology 

59, 695-700. 

Navarrete, P., Toledo, I., Mardones, P., Opazo, R., Espejo, R. & Romero, J. (2010) Effect of 

Thymus vulgaris essential oil on intestinal bacterial microbiota of rainbow trout, 

Oncorhynchus mykiss (Walbaum) and bacterial isolates. Aquaculture Research, 41, e667-

e678. 

 

Nakayama, T., Lu, H. & Nomura, N. (2009) Inhibitory effects of Bacillus probionts on 

growth and toxin production of Vibrio harveyi pathogens of shrimp. Letters in applied 

microbiology, 49, 679-684. 

 

Nayak, S.K. (2010a) Probiotics and immunity: a fish perspective. Fish Shellfish Immunol, 29, 

2-14.  

 

Nayak, S.K. (2010b) Role of gastrointestinal microbiota in fish. Aquaculture Research, 41, 

1553-1573. 

 

Nekoubin, H., Hatefi, S., Javahery, S. & Sudagar, M. (2012a) Effects of synbiotic (Biomin 

Imbo) on growth performance, survival rate, reproductive parameters of angelfish 

(Pterophyllum scalare). Walailak Journal of Science and Technology (WJST), 9, 327-332. 

 

Nekoubin, H., Gharedaashi, E., Imanpour, M.R., Nowferesti, H. & Asgharimoghadam, A. 

(2012b) The influence of synbiotic (Biomin Imbo) on growth factors and survival rate of 

Zebrafish (Danio rerio) larvae via supplementation with biomar. drugs, 10, 13. 



References 
 

259 | P a g e  

 

 

Newaj-Fyzul, A., Adesiyun, A., Mutani, A., Ramsubhag, A., Brunt, J. & Austin, B. (2007) 

Bacillus subtilis AB1 controls Aeromonas infection in rainbow trout (Oncorhynchus mykiss, 

Walbaum). Journal of applied microbiology, 103, 1699-1706.  

 

Nordrum S, Bakke-McKellep A, Krogdahl Å, Buddington R (2000) Effects of soybean meal 

and salinity on intestinal transport of nutrients in Atlantic salmon (Salmo salar L.) and 

rainbow trout (Oncorhynchus mykiss). Comparative Biochemistry and Physiology Part B: 

Biochemistry and Molecular Biology, 125, 317-335. 

 

NRC (2011) Nutrient Requirements of Fish and Shrimp. Washington: The National 

Academies Press, 376. 

 

Nurhayati, D. & Yuhana, M. (2015) Dietary Synbiotic Influence on the Growth Performances 

and Immune Responses to Co-Infection with Infectious Myonecrosis Virus and Vibrio 

harveyi in Litopenaeus vannamei. Journal of Fisheries and Aquatic Science, 10, 13. 

 

Olsen, R., Myklebust, R., Kryvi, H., Mayhew, T. & Ringø, E. (2001) Damaging effect of 

dietary inulin on intestinal enterocytes in Arctic charr (Salvelinus alpinus L.). Aquaculture 

Research, 32, 931-934. 

 

Olsen, R.L. & Hasan, M.R. (2012) A limited supply of fishmeal: Impact on future increases 

in global aquaculture production. Trends in Food Science & Technology.  

Olsen, R.E. and Ringø, E. (1997) Lipid digestibility in fish: a review. Recent Research 

Developments in Lipid Research 1, 199–264. 

Ortiz, L., Rebolé, A., Velasco, S., Rodríguez, M., Treviño, J., Tejedor, J. & Alzueta, C. (2013) 

Effects of inulin and fructooligosaccharides on growth performance, body chemical 

composition and intestinal microbiota of farmed rainbow trout (Oncorhynchus mykiss). 

Aquaculture Nutrition, 19, 475-482. 

 

Panigrahi, A., Kiron, V., Kobayashi, T., Puangkaew, J., Satoh, S. & Sugita, H. (2004) 

Immune responses in rainbow trout Oncorhynchus mykiss induced by a potential probiotic 

bacteria Lactobacillus rhamnosus JCM 1136. Veterinary immunology and immunopathology, 

102, 379-388. 

 

Panigrahi, A., Kiron, V., Puangkaew, J., Kobayashi, T., Satoh, S. & Sugita, H. (2005) The 

viability of probiotic bacteria as a factor influencing the immune response in rainbow trout 

Oncorhynchus mykiss. Aquaculture, 243, 241-254. 

 

Panigrahi, A., Kiron, V., Satoh, S., Hirono, I., Kobayashi, T., Sugita, H., Puangkaew, J. & 

Aoki, T. (2007) Immune modulation and expression of cytokine genes in rainbow trout 



References 
 

260 | P a g e  

 

Oncorhynchus mykiss upon probiotic feeding. Developmental & Comparative Immunology, 

31, 372-382. 

 

Panigrahi, A., Kiron, V., Satoh, S. & Watanabe, T. (2010) Probiotic bacteria Lactobacillus 

rhamnosus influences the blood profile in rainbow trout Oncorhynchus mykiss (Walbaum). 

Fish physiology and biochemistry, 36, 969-977.  

 

Panigrahi, A., Viswanath, K. & Satoh, S. (2011) Real-time quantification of the immune gene 

expression in rainbow trout fed different forms of probiotic bacteria Lactobacillus rhamnosus. 

Aquaculture Research, 42, 906-917.  

Pedrotti, F.S., Davies, S., Merrifield, D.L., Marques, M.R.F., Fraga, A.P.M., Mouriño, J.L.P. 

& Fracalossi, D.M. (2015) The autochthonous microbiota of the freshwater omnivores jundia 

(Rhamdia quelen) and tilapia (Oreochromis niloticus) and the effect of dietary carbohydrates. 

Aquaculture Research, 46, 472-481.  

Penn, M.H., Bendiksen, E.Å., Campbell, P. & Krogdahl, Å. (2011) High level of dietary pea 

protein concentrate induces enteropathy in Atlantic salmon (Salmo salar L.). Aquaculture, 

310, 267-273. 

Pérez-Sánchez, J., Benedito-Palos, L., Estensoro, I., Petropoulos, Y., Calduch-Giner, J.A., 

Browdy, C.L. & Sitjà-Bobadilla, A. (2015) Effects of dietary NEXT ENHANCE® 150 on 

growth performance and expression of immune and intestinal integrity related genes in 

gilthead sea bream (Sparus aurata L.). Fish & shellfish immunology, 44, 117-128. 

 

Pérez-Sánchez, T., Balcázar, J., Ruiz-Zarzuela, I., Halaihel, N., Vendrell, D., De Blas, I. & 

Múzquiz, J. (2010) Host–microbiota interactions within the fish intestinal ecosystem. 

Mucosal immunology.  

 

Pérez-Sánchez, T., Balcázar, J.L., Merrifield, D.L., Carnevali, O., Gioacchini, G., de Blas, I. 

& Ruiz-Zarzuela, I. (2011) Expression of immune-related genes in rainbow trout 

(Oncorhynchus mykiss) induced by probiotic bacteria during Lactococcus garvieae infection. 

Fish & shellfish immunology, 31, 196-201.  

 

Pasteris, S.E., Pingitore, E.V., Ale, C.E. & Nader-Macías, M.E.F. (2014) Characterization of 

a bacteriocin produced by Lactococcus lactis subsp. Lactis CRL 1584 isolated from a 

Lithobates catesbeianus hatchery. World Journal of Microbiology and Biotechnology, 30, 

1053-1062. 

 

Peterson, B.C., Bosworth, B.G., Li, M.H., Beltran, R. & Santos, G.A. (2014) Assessment of a 

phytogenic feed additive (Digestarom PEP MGE) on growth performance, processing yield, 

fillet composition, and survival of channel catfish. Journal of the World Aquaculture society, 

45, 206-212.  

 



References 
 

261 | P a g e  

 

Picchietti S, Mazzini M, Taddei AR, Renna R, Fausto AM, Mulero V, et al. Effects of 

administration of probiotic strains on GALT of larval gilthead seabream: 

Immunohistochemical and ultrastructural studies. Fish & Shellfish Immunology. 2007 22:57-

67. 

 

Picchietti S, Fausto AM, Randelli E, Carnevali O, Taddei AR, Buonocore F, et al. Early 

treatment with Lactobacillus delbrueckii strain induces an increase in intestinal T-cells and 

granulocytes and modulates immune-related genes of larval Dicentrarchus labrax (L.). Fish 

& Shellfish Immunology. 2009 26:368-76.  

Piccolo, G., Bovera, F., Lombardi, P., Mastellone, V., Nizza, S., Di Meo, C., Marono, S. & 

Nizza, A. (2014) Effect of Lactobacillus plantarum on growth performance and 

hematological traits of European sea bass (Dicentrarchus labrax). Aquaculture International, 

1-8. 

 

Pinto, R.D., Moreira, A.R., Pereira, P.J. & dos Santos, N.M. (2013) Molecular cloning and 

characterization of sea bass (Dicentrarchus labrax, L.) calreticulin. Fish & shellfish 

immunology, 34, 1611-1618. 

 

Pirarat, N., Pinpimai, K., Endo, M., Katagiri, T., Ponpornpisit, A., Chansue, N. & Maita, M. 

(2011) Modulation of intestinal morphology and immunity in nile tilapia (Oreochromis 

niloticus) by Lactobacillus rhamnosus GG. Research in veterinary science, 91, e92-e97. 

 

Power, S.E., O'Toole, P.W., Stanton, C., Ross, R.P. & Fitzgerald, G.F. (2014) Intestinal 

microbiota, diet and health. British Journal of Nutrition, 111, 387-402.  

 

Ramirez, R.F. & Dixon, B.A. (2003) Enzyme production by obligate intestinal anaerobic 

bacteria isolated from oscars (Astronotus ocellatus), angelfish (Pterophyllum scalare) and 

southern flounder (Paralichthys lethostigma). Aquaculture, 227, 417-426.  

 

Ramos, M.A., Weber, B., Gonçalves, J.F., Santos, G.A., Rema, P. & Ozório, R.O.A. (2013) 

Dietary probiotic supplementation modulated gut microbiota and improved growth of 

juvenile rainbow trout (Oncorhynchus mykiss). Comparative Biochemistry and Physiology 

Part A: Molecular & Integrative Physiology, 166, 302-307.  

Ranjan, R., Prasad, K.P., Vani, T. & Kumar, R. (2014) Effect of dietary chitosan on 

haematology, innate immunity and disease resistance of Asian seabass Lates calcarifer 

(Bloch). Aquaculture Research, 45, 983-993. 

 

Rasmussen, R. (2001) Quantification on the LightCycler In Rapid cycle real-time PCR, pp. 

21-34. Springer. 

 



References 
 

262 | P a g e  

 

Rattanachaikunsopon, P. & Phumkhachorn, P. (2010) Assessment of synergistic efficacy of 

carvacrol and cymene against Edwardsiella tarda in vitro and in Tilapia (Oreochromis 

niloticus). African Journal of Microbiology Research, 4, 420-425. 

 

Rawling, M.D., Merrifield, D.L. & Davies, S.J. (2009) Preliminary assessment of dietary 

supplementation of Sangrovit® on red tilapia (Oreochromis niloticus) growth performance 

and health. Aquaculture, 294, 118-122. 

 

Rawls, J.F., Mahowald, M.A., Ley, R.E. & Gordon, J.I. (2006) Reciprocal gut microbiota 

transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell, 

127, 423-433.  

 

Rawls, J.F., Mahowald, M.A., Goodman, A.L., Trent, C.M. & Gordon, J.I. (2007) In vivo 

imaging and genetic analysis link bacterial motility and symbiosis in the zebrafish gut. 

Proceedings of the National Academy of Sciences, 104, 7622-7627. 

 

Rawls, J.F., Samuel, B.S. & Gordon, J.I. (2004) Gnotobiotic zebrafish reveal evolutionarily 

conserved responses to the gut microbiota. Proceedings of the National Academy of Sciences 

of the United States of America, 101, 4596-4601. 

 

Ray, A., Ghosh, K. & Ringø, E. (2012) Enzyme‐producing bacteria isolated from fish gut: a 

review. Aquaculture Nutrition, 18, 465-492. 

 

Ray, A.K. & Ringø, E. (2014) The Gastrointestinal Tract of Fish In Aquaculture Nutrition, pp. 

1-13. John Wiley & Sons, Ltd.  

 

Ren, P., Xu, L., Yang, Y., He, S., Liu, W., Ringø, E. & Zhou, Z. (2013) Lactobacillus 

planarum subsp. plantarum JCM 1149 vs. Aeromonas hydrophila NJ-1 in the anterior 

intestine and posterior intestine of hybrid tilapia Oreochromis niloticus♀× Oreochromis 

aureus♂: An ex vivo study. Fish & shellfish immunology, 35, 146-153.  

 

Reveco, F.E., Øverland, M., Romarheim, O.H. & Mydland, L.T. (2014) Intestinal bacterial 

community structure differs between healthy and inflamed intestines in Atlantic salmon 

(Salmo salar L.). Aquaculture, 420, 262-269.  

 

Rigos, G. & Smith, P. (2013) A critical approach on pharmacokinetics, pharmacodynamics, 

dose optimisation and withdrawal times of oxytetracycline in aquaculture. Reviews in 

Aquaculture. 

 

Ringø, E. & Gatesoupe, F.J. (1998) Lactic acid bacteria in fish: a review. Aquaculture, 160, 

177-203. 

 

Ringø, E. & Birkbeck, T. (1999) Intestinal microflora of fish larvae and fry. Aquaculture 

Research, 30, 73-93.   



References 
 

263 | P a g e  

 

 

Ringø, E., Olsen, R.E., Mayhew, T.M. & Myklebust, R. (2003) Electron microscopy of the 

intestinal microflora of fish. Aquaculture, 227, 395-415. 

 

Ringø, E., Myklebust, R., Mayhew, T.M. & Olsen, R.E. (2007a) Bacterial translocation and 

pathogenesis in the digestive tract of larvae and fry. Aquaculture, 268, 251-264.  

Ringø, E., Olsen, R.E., Gifstad, T. Ø., Dalmo, R.A., Amlund, H., Hemre, G.I. & Bakke, A.M. 

(2010) Prebiotics in aquaculture: a review. Aquaculture Nutrition, 16, 117-136.  

Ringø, E., Salinas, I., Olsen, R., Nyhaug, A., Myklebust, R. & Mayhew, T. (2007b) 

Histological changes in intestine of Atlantic salmon (Salmo salar L.) following in vitro 

exposure to pathogenic and probiotic bacterial strains. Cell and tissue research, 328, 109-116. 

Ringø, E., Zhou, Z., He, S. & Olsen, R.E. (2014) Effect of stress on intestinal microbiota of 

Arctic charr, Atlantic salmon, rainbow trout and Atlantic cod: a review. African journal of 

microbiology research, 8, 609-618.  

 

Robertson, P., O'Dowd, C., Burrells, C., Williams, P. & Austin, B. (2000) Use of 

Carnobacterium sp. as a probiotic for Atlantic salmon (Salmo salar L.) and rainbow trout 

(Oncorhynchus mykiss, Walbaum). Aquaculture, 185, 235-243. 

Rock, J.L. & Nelson, D.R. (2006) Identification and characterization of a hemolysin gene 

cluster in Vibrio anguillarum. Infection and immunity, 74, 2777-2786. 

 

Rodrigues-Estrada, U., Satoh, S., Haga, Y., Fushimi, H. & Sweetman, J. (2008) Studies of the 

effects of mannan-oligosaccharides, Enterococcus faecalis, and poly hydrobutyric acid as 

immune stimulant and growth promoting ingredients in rainbow trout diets In 5th World 

Fisheries Congress, Yokohama, Japan, October, pp. 20-25. 

 

Rodrigues, P.M., Silva, T.S., Dias, J. & Jessen, F. (2012) Proteomics in aquaculture: 

applications and trends. Journal of proteomics, 75, 4325-4345. 

 

Rodriguez-Estrada, U., Satoh, S., Haga, Y., Fushimi, H., Sweetman, J., 2009. Effects of 

single and combined supplementation of Enterococcus faecalis, mannan oligosaccharide and 

polyhydrobutyric acid on growth performance and immune response of rainbow trout 

Oncorhynchus mykiss. Aquacult. Sci. 57, 609–617.  

 

Román, L., Real, F., Padilla, D., El Aamri, F., Déniz, S., Grasso, V. & Acosta, F. (2013) 

Cytokine expression in head-kidney leucocytes of European sea bass (Dicentrarchus labrax 

L.) after incubation with the probiotic Vagococcus fluvialis L-21. Fish & shellfish 

immunology, 35, 1329-1332.  

 

Romero, J., Feijoó, C.G. & Navarrete, P. (2012) Antibiotics in aquaculture-use, abuse and 

alternatives, INTECH Open Access Publisher. 



References 
 

264 | P a g e  

 

 

Romero, J., Ringø, E. & Merrifield, D.L. (2014) The Gut Microbiota of Fish. Aquaculture 

Nutrition: Gut Health, Probiotics and Prebiotics, 75-100.  

 

Romero, J., Feijoó, C.G. & Navarrete, P. (2012) Antibiotics in aquaculture-use, abuse and 

alternatives, INTECH Open Access Publisher. 

 

Rimstad, E. (2011) Examples of emerging virus diseases in salmonid aquaculture. 

Aquaculture Research, 42, 86-89.  

Rajilić‐Stojanović, M., Smidt, H. & De Vos, W.M. (2007) Diversity of the human 

gastrointestinal tract microbiota revisited. Environmental microbiology, 9, 2125-2136. 

Regulation, EU. 2005. Ban on antibiotics as growth promoters in animal feed enters into 

effect (1831/2003/EC) In: safety, E.f. (Ed.), Europa, Brussels.  

Rubinstein, A.L., Lee, D., Luo, R., Henion, P.D. & Halpern, M.E. (2000) Genes dependent 

on zebrafish cyclops function identified by AFLP differential gene expression screen. 

Genesis, 26, 86-97.  

Sahu, S., Das, B., Mishra, B., Pradhan, J. & Sarangi, N. (2007) Effect of Allium sativum on 

the immunity and survival of Labeo rohita infected with Aeromonas hydrophila. Journal of 

Applied Ichthyology, 23, 80-86.  

 

Salinas, I., Abelli, L., Bertoni, F., Picchietti, S., Roque, A., Furones, D., Cuesta, A., 

Meseguer, J. & Esteban, M.Á. (2008) Monospecies and multispecies probiotic formulations 

produce different systemic and local immunostimulatory effects in the gilthead seabream 

(Sparus aurata L.). Fish & shellfish immunology, 25, 114-123. 

 

Salma, W., Zhou, Z., Wang, W., Askarian, F., Kousha, A., Ebrahimi, M.T., Myklebust, R. & 

Ringø, E. (2011) Histological and bacteriological changes in intestine of beluga (Huso huso) 

following ex vivo exposure to bacterial strains. Aquaculture, 314, 24-33. 

 

Sanden, M. & Olsvik, P.A. (2009) Intestinal cellular localization of PCNA protein and 

CYP1A mRNA in Atlantic salmon Salmo salar L. exposed to a model toxicant. BMC 

physiology, 9, 3. 

 

Sapkota, A., Sapkota, A.R., Kucharski, M., Burke, J., McKenzie, S., Walker, P. & Lawrence, 

R. (2008) Aquaculture practices and potential human health risks: current knowledge and 

future priorities. Environment international, 34, 1215-1226.  

 

Serrano, P.H. (2005) Responsible use of antibiotics in aquaculture, Food & Agriculture Org. 

 



References 
 

265 | P a g e  

 

Schauer, M., Massana, R. & Pedrós-Alió, C. (2000) Spatial differences in bacterioplankton 

composition along the Catalan coast (NW Mediterranean) assessed by molecular 

fingerprinting. FEMS microbiology ecology, 33, 51-59. 

 

Sekirov, I., Tam, N.M., Jogova, M., Robertson, M.L., Li, Y., Lupp, C. & Finlay, B.B. (2008) 

Antibiotic-induced perturbations of the intestinal microbiota alter host susceptibility to 

enteric infection. Infection and immunity, 76, 4726-4736. 

 

Seyfried, E.E., Newton, R.J., Rubert IV, K.F., Pedersen, J.A. & McMahon, K.D. (2010) 

Occurrence of tetracycline resistance genes in aquaculture facilities with varying use of 

oxytetracycline. Microbial ecology, 59, 799-807. 

 

Shah, S.Q., Cabello, F.C., L'Abée‐Lund, T.M., Tomova, A., Godfrey, H.P., Buschmann, A.H. 

& Sørum, H. (2014) Antimicrobial resistance and antimicrobial resistance genes in marine 

bacteria from salmon aquaculture and non‐aquaculture sites. Environmental microbiology, 16, 

1310-1320. 

 

Shiina, A., Itoi, S., Washio, S. & Sugita, H. (2006) Molecular identification of intestinal 

microflora in Takifugu niphobles. Comparative Biochemistry and Physiology Part D: 

Genomics and Proteomics, 1, 128-132.  

 

Silvi, S., Nardi, M., Sulpizio, R., Orpianesi, C., Caggiano, M., Carnevali, O. & Cresci, A. 

(2008) Effect of the addition of Lactobacillus delbrueckii subsp. delbrueckii on the gut 

microbiota composition and contribution to the well-being of European sea bass 

(Dicentrarchus labrax, L.). Microbial ecology in health and disease, 20, 53-59.  

 

Sims, D., Sudbery, I., Ilott, N.E., Heger, A. & Ponting, C.P. (2014) Sequencing depth and 

coverage: key considerations in genomic analyses. Nat Rev Genet, 15, 121-132. 

 

Spanggaard, B., Huber, I., Nielsen, J., Sick, E.B., Pipper, C.B., Martinussen, T., Slierendrecht, 

W.J. & Gram, L. (2001) The probiotic potential against vibriosis of the indigenous microflora 

of rainbow trout. Environmental microbiology, 3, 755-765. 

Staykov, Y., Spring, P. & Denev, S. (2005) Influence of dietary Bio-Mos® on growth, 

survival and immune status of rainbow trout (Salmo gairdneri irideus G.) and common carp 

(Cyprinus carpio L.). Nutritional Biotechnology in the Feed and Food Industries.(Eds. TP 

Lyons, and K. Jackues). Nottingham University Press, Nottingham, UK, 333-343. 

 

Song, S.K., Beck, B.R., Kim, D., Park, J., Kim, J., Kim, H.D. & Ringø, E. (2014) Prebiotics 

as immunostimulants in aquaculture: A review. Fish & shellfish immunology, 40, 40-48.  

 

Sorroza, L., Padilla, D., Acosta, F., Román, L., Grasso, V., Vega, J. & Real, F. (2012) 

Characterization of the probiotic strain Vagococcus fluvialis in the protection of European sea 



References 
 

266 | P a g e  

 

bass (Dicentrarchus labrax) against vibriosis by Vibrio anguillarum. Veterinary 

microbiology, 155, 369-373.  

 

Staykov, Y., Spring, P., Denev, S. & Sweetman, J. (2007) Effect of a mannan oligosaccharide 

on the growth performance and immune status of rainbow trout (Oncorhynchus mykiss). 

Aquaculture International, 15, 153-161.  

 

Standen, B., Rawling, M., Davies, S., Castex, M., Foey, A., Gioacchini, G., Carnevali, O. & 

Merrifield, D. (2013) Probiotic Pediococcus acidilactici modulates both localised intestinal-

and peripheral-immunity in tilapia (Oreochromis niloticus). Fish & shellfish immunology, 35, 

1097-1104.  

 

Stein, T. (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. 

Molecular microbiology, 56, 845-857. 

 

Sugita, H., Miyajima, C. & Deguchi, Y. (1991) The vitamin B 12-producing ability of the 

intestinal microflora of freshwater fish. Aquaculture, 92, 267-276.  

 

Sugita, H., Shibuya, K., Shimooka, H. & Deguchi, Y. (1996) Antibacterial abilities of 

intestinal bacteria in freshwater cultured fish. Aquaculture, 145, 195-203. 

 

Sugita, H., Kurosaki, M., Okamura, T., Yamamoto, S. & Tsuchiya, C. (2005) The 

culturability of intestinal bacteria of Japanese coastal fish. Fisheries Science, 71, 956-958.  

 

Su, H-C., Ying, G.-G., Tao, R., Zhang, R.-Q., Fogarty, L.R. & Kolpin, D.W. (2011) 

Occurrence of antibiotic resistance and characterization of resistance genes and integrons in 

Enterobacteriaceae isolated from integrated fish farms in south China. Journal of 

Environmental Monitoring, 13, 3229-3236.  

 

Sumi, C.D., Yang, B.W., Yeo, I.-C. & Hahm, Y.T. (2014) Antimicrobial peptides of the 

genus Bacillus: a new era for antibiotics. Canadian Journal of Microbiology, 61, 93-103. 

 

Sun, H., Jami, E., Harpaz, S. & Mizrahi, I. (2013) Involvement of dietary salt in shaping 

bacterial communities in European sea bass (Dicentrarchus labrax). Sci. Rep., 3. 

 

Sun, Y.-Z., Yang, H.-L., Ma, R.-L. & Zhai, S.-W. (2012) Does Dietary Administration of 

Lactococcus lactis Modulate the Gut Microbiota of Grouper, Epinephelus coioides. Journal 

of the World Aquaculture society, 43, 198-207. 

 

Suzer, C., Çoban, D., Kamaci, H.O., Saka, Ş., Firat, K., Otgucuoğlu, Ö. & Küçüksari, H. 

(2008) Lactobacillus spp. bacteria as probiotics in gilthead sea bream (Sparus aurata, L.) 

larvae: effects on growth performance and digestive enzyme activities. Aquaculture, 280, 

140-145. 

 



References 
 

267 | P a g e  

 

Tamminen, M., Karkman, A., Lõhmus, A., Muziasari, W.I., Takasu, H., Wada, S., Suzuki, S. 

& Virta, M. (2010) Tetracycline resistance genes persist at aquaculture farms in the absence 

of selection pressure. Environmental science & technology, 45, 386-391.  

Thanikachalam, K., Kasi, M. & Rathinam, X. (2010) Effect of garlic peel on growth, 

hematological parameters and disease resistance against Aeromonas hydrophila in African 

catfish Clarias gariepinus (Bloch) fingerlings. Asian Pacific Journal of Tropical Medicine, 3, 

614-618.  

 

Torrecillas, S., Makol, A., Caballero, M.J., Montero, D., Robaina, L., Real, F., Sweetman, J., 

Tort, L. & Izquierdo, M.S. (2007) Immune stimulation and improved infection resistance in 

European sea bass (Dicentrarchus labrax) fed mannan oligosaccharides. Fish & shellfish 

immunology, 23, 969-981.  

 

Torrecillas, S., Makol, A., Caballero, M.J., Montero, D., Gines, R., Sweetman, J. & Izquierdo, 

M. (2011a) Improved feed utilization, intestinal mucus production and immune parameters in 

sea bass (Dicentrarchus labrax) fed mannan oligosaccharides (MOS). Aquaculture Nutrition, 

17, 223-233. 

 

Torrecillas, S., Makol, A., Benítez-Santana, T., Caballero, M.J., Montero, D., Sweetman, J. & 

Izquierdo, M. (2011b) Reduced gut bacterial translocation in European sea bass 

(Dicentrarchus labrax) fed mannan oligosaccharides (MOS). Fish & shellfish immunology, 

30, 674-681. 

 

Torrecillas, S., Makol, A., Caballero, M.J., Montero, D., Dhanasiri, A.K., Sweetman, J. & 

Izquierdo, M. (2012) Effects on mortality and stress response in European sea bass, 

Dicentrarchus labrax (L.), fed mannan oligosaccharides (MOS) after Vibrio anguillarum 

exposure. J Fish Dis, 35, 591-602. 

 

Torrecillas, S., Makol, A., Betancor, M.B., Montero, D., Caballero, M.J., Sweetman, J. & 

Izquierdo, M. (2013) Enhanced intestinal epithelial barrier health status on European sea bass 

(Dicentrarchus labrax) fed mannan oligosaccharides. Fish & shellfish immunology, 34, 1485-

1495. 

 

Torrecillas, S., Montero, D., Caballero, M.J., Robaina, L., Zamorano, M.J., Sweetman, J. & 

Izquierdo, M. (2015) Effects of dietary concentrated mannan oligosaccharides 

supplementation on growth, gut mucosal immune system and liver lipid metabolism of 

European sea bass (Dicentrarchus labrax) juveniles. Fish & shellfish immunology, 42, 508-

516.  

 

Tsuchiya, C., Sakata, T. & Sugita, H. (2008) Novel ecological niche of Cetobacterium 

somerae, an anaerobic bacterium in the intestinal tracts of freshwater fish. Letters in applied 

microbiology, 46, 43-48.  

 



References 
 

268 | P a g e  

 

Tovar-Ramírez, D., Mazurais, D., Gatesoupe, J., Quazuguel, P., Cahu, C. & Zambonino-

Infante, J. (2010) Dietary probiotic live yeast modulates antioxidant enzyme activities and 

gene expression of sea bass (Dicentrarchus labrax) larvae. Aquaculture, 300, 142-147.  

 

Touraki, M., Frydas, I., Karamanlidou, G. & Mamara, A. (2012b) Partial purification and 

characterization of a bacteriocin produced by Bacillus subtilis NCIMB 3610 that exhibits 

antimicrobial activity against fish pathogens. Journal of Biological Research, 18.  

 

Touraki, M., Karamanlidou, G., Karavida, P. & Chrysi, K. (2012a) Evaluation of the 

probiotics Bacillus subtilis and Lactobacillus plantarum bioencapsulated in Artemia nauplii 

against vibriosis in European sea bass larvae (Dicentrarchus labrax, L.). World Journal of 

Microbiology and Biotechnology, 28, 2425-2433. 

 

Touraki, M., Karamanlidou, G., Koziotis, M. & Christidis, I. (2013) Antibacterial effect of 

Lactococcus lactis subsp. lactis on Artemia franciscana nauplii and Dicentrarchus labrax 

larvae against the fish pathogen Vibrio anguillarum. Aquaculture International, 21, 481-495. 

 

Uran, P., Goncalves, A., Taverne-Thiele, J., Schrama, J., Verreth, J. & Rombout, J. (2008) 

Soybean meal induces intestinal inflammation in common carp (Cyprinus carpio L.). Fish & 

shellfish immunology, 25, 751-760.  

 

Untergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B.C., Remm, M. & Rozen, 

S.G. (2012) Primer3—new capabilities and interfaces. Nucleic acids research, 40, e115-e115. 

 

Vaezi, M., Khara, H. & Shenavar, A. (2015) Synbiotic (Biomin imbo) alters gut bacterial 

microflora of Russian sturgeon, Acipenser guldenstadti (Brandt & Ratzeburg, 1833) in a 

time-dependent pattern. Journal of Parasitic Diseases, 1-4.  

 

Vaseeharan, B. & Ramasamy, P. (2003) Control of pathogenic Vibrio spp. by Bacillus 

subtilis BT23, a possible probiotic treatment for black tiger shrimp Penaeus monodon. Letters 

in applied microbiology, 36, 83-87. 

 

Van den Ingh, T., Krogdahl, Å., Olli, J., Hendriks, H. & Koninkx, J. (1991) Effects of 

soybean-containing diets on the proximal and distal intestine in Atlantic salmon (Salmo 

salar): a morphological study. Aquaculture, 94, 297-305.  

 

Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A. & 

Speleman, F. (2002) Accurate normalization of real-time quantitative RT-PCR data by 

geometric averaging of multiple internal control genes. Genome biology, 3, research0034.  

 

Van Kessel, M., Dutilh, B.E., Neveling, K., Kwint, M.P., Veltman, J.A., Flik, G., Jetten, M.S., 

Klaren, P.H. & den Camp, H.J.O. (2011) Pyrosequencing of 16S rRNA gene amplicons to 

study the microbiota in the gastrointestinal tract of carp (Cyprinus carpio L.). AMB express, 1, 

41. 



References 
 

269 | P a g e  

 

 

Vázquez, F.J.S. & Muñoz-Cueto, J.A. (2014) Biology of European sea bass, CRC Press.  

 

Villamil, L., Reyes, C. & Martínez‐Silva, M. (2014) In vivo and in vitro assessment of 

Lactobacillus acidophilus as probiotic for tilapia (Oreochromis niloticus, Perciformes: 

Cichlidae) culture improvement. Aquaculture Research, 45, 1116-1125.probiotic  

 

Villamizar, N., Herlin, M., López, M. & Sánchez-Vázquez, F. (2012) Daily spawning and 

locomotor activity rhythms of European sea bass broodstock (Dicentrarchus labrax). 

Aquaculture, 354, 117-120.  

Volpatti, D., Chiara, B., Francesca, T. & Marco, G. (2013) Growth parameters, innate 

immune response and resistance to Listonella (Vibrio) anguillarum of Dicentrarchus labrax 

fed carvacrol supplemented diets. Aquaculture Research, 45, 31-44.  

Wang Q, Garrity GM, Tiedje JM, Cole JR (2007). Naive Bayesian classifier for rapid 

assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental 

Microbiology 73: 5261-5267.  

Welker TL, Lim C. Use of probiotics in diets of tilapia. J Aquacult Res Dev 2011. 

http://dx.doi.org/10.4172/2155-9546.S1-014.  

 

Wulff, T., Petersen, J., Nørrelykke, M.R., Jessen, F. & Nielsen, H.H. (2012) Proteome 

analysis of pyloric ceca: a methodology for fish feed development? Journal of agricultural 

and food chemistry, 60, 8457-8464. 

 

Xu, H.-M., Rong, Y.-J., Zhao, M.-X., Song, B. & Chi, Z.-M. (2014) Antibacterial activity of 

the lipopetides produced by Bacillus amyloliquefaciens M1 against multidrug-resistant Vibrio 

spp. isolated from diseased marine animals. Applied Microbiology and Biotechnology, 98, 

127-136. 

 

Xu, Y., Wang, Y. & Lin, J. (2014) Use of Bacillus coagulans as a Dietary Probiotic for the 

Common Carp, Cyprinus carpio. Journal of the World Aquaculture society, 45, 403-411. 

 

Yang, H.-L., Sun, Y.-Z., Ma, R.-L. & Ye, J.-D. (2012) PCR-DGGE analysis of the 

autochthonous gut microbiota of grouper Epinephelus coioides following probiotic Bacillus 

clausii administration. Aquaculture Research, 43, 489-497. 

 

Young, V.B. (2012) The intestinal microbiota in health and disease. Current opinion in 

gastroenterology, 28, 63.  

 

Yarahmadi, P., Kolangi Miandare, H., Farahmand, H., Mirvaghefi, A. & Hoseinifar, S.H. 

(2014) Dietary fermentable fiber upregulated immune related genes expression, increased 

innate immune response and resistance of rainbow trout (Oncorhynchus mykiss) against 

Aeromonas hydrophila. Fish & shellfish immunology, 41, 326-331.  



References 
 

270 | P a g e  

 

 

Yin, G., Jeney, G., Racz, T., Xu, P., Jun, X. & Jeney, Z. (2006) Effect of two Chinese herbs 

(Astragalus radix and Scutellaria radix) on non-specific immune response of tilapia, 

Oreochromis niloticus. Aquaculture, 253, 39-47. 

 

Zambonino Infante, J. & Cahu, C. (2001) Ontogeny of the gastrointestinal tract of marine fish 

larvae. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 130, 

477-487.  

 

Zarkasi, K.Z., Abell, G.C., Taylor, R.S., Neuman, C., Hatje, E., Tamplin, M.L., Katouli, M. 

& Bowman, J.P. (2014) Pyrosequencing‐based characterization of gastrointestinal bacteria of 

Atlantic salmon (Salmo salar L.) within a commercial mariculture system. Journal of applied 

microbiology, 117, 18-27. 

 

Zivković, R. (1998) Probiotics or microbes against microbes. Acta medica Croatica: casopis 

Hravatske akademije medicinskih znanosti, 53, 23-28. 

 

Zhang, C.-N., Tian, H.-Y., Li, X.-F., Zhu, J., Cai, D.-S., Xu, C., Wang, F., Zhang, D.-D. & 

Liu, W.-B. (2014) The effects of fructooligosaccharide on the immune response, antioxidant 

capability and HSP70 and HSP90 expressions in blunt snout bream (Megalobrama 

amblycephala Yih) under high heat stress. Aquaculture, 433, 458-466. 

 

Zhang, Q., Yu, H., Tong, T., Tong, W., Dong, L., Xu, M. & Wang, Z. (2014) Dietary 

supplementation of Bacillus subtilis and fructooligosaccharide enhance the growth, non-

specific immunity of juvenile ovate pompano, Trachinotus ovatus and its disease resistance 

against Vibrio vulnificus. Fish & shellfish immunology, 38, 7-14. 

 

Zhang, W., Liu, M. & Dai, X. (2013) Biological characteristics and probiotic effect of 

Leuconostoc lactis strain isolated from the intestine of black porgy fish. Brazilian Journal of 

Microbiology, 44, 685-691. 

 

Zhou, X., Wang, Y., Yao, J. & Li, W. (2010) Inhibition ability of probiotic, Lactococcus 

lactis, against A. hydrophila and study of its immunostimulatory effect in tilapia 

(Oreochromis niloticus). International Journal of Engineering, Science and Technology, 2.  

 

Zhou, Z., Yao, B., Romero, J., Waines, P., Ringø, E., Emery, M., Liles, M.R. & Merrifield, 

D.L. (2014) Methodological approaches used to assess fish gastrointestinal communities. 

Aquaculture Nutrition: Gut Health, Probiotics and Prebiotics, 101-127. 

 

Zokaeifar, H., Babaei, N., Saad, C.R., Kamarudin, M.S., Sijam, K. & Balcázar, J.L. (2014) 

Detection and identification of antibiotic biosynthesis genes in Bacillus subtilis strains. 

Biocontrol Science and Technology, 24, 233-240. 


