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A physics-enabled flow restoration algorithm1

for sparse PIV and PTV measurements2

Andrey Vlasenko Edward C. C. Steele3

W. Alex M. Nimmo-Smith4

Abstract5

The gaps and noise present in Particle Image Velocimetry (PIV)6

and Particle Tracking Velocimetry (PTV) measurements affect the7

accuracy of the data collected. Existing algorithms developed for the8

restoration of such data are only applicable to experimental measure-9

ments collected under well-prepared laboratory conditions (i.e. where10

the pattern of the velocity flow field is known), and the distribution,11

size and type of gaps and noise may be controlled by the laboratory12

set-up. However, in many cases, such as PIV and PTV measurements13

of arbitrarily turbid coastal waters, the arrangement of such conditions14

is not possible. When the size of gaps or the level of noise in these15

experimental measurements become too large, their successful restora-16
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tion with existing algorithms becomes questionable. Here, we outline17

a new Physics-Enabled Flow Restoration Algorithm (PEFRA), spe-18

cially designed for the restoration of such velocity data. Implemented19

as a “black box” algorithm, where no user-background in fluid dynam-20

ics is necessary, the physical structure of the flow in gappy or noisy21

data is able to be restored in accordance with its hydrodynamical ba-22

sis. The use of this is not dependent on types of flow, types of gaps23

or noise in measurements. The algorithm will operate on any data24

time-series containing a sequence of velocity flow fields recorded by25

PIV or PTV. Tests with numerical flow fields established that this26

method is able to successfully restore corrupted PIV and PTV mea-27

surements with different levels of sparsity and noise. This assessment28

of the algorithm performance is extended with an example application29

to in situ submersible 3D-PTV measurements collected in the bottom30

boundary layer of the coastal ocean, where the naturally-occurring31

plankton and suspended sediments used as tracers causes an increase32

in the noise level that, without such denoising, will contaminate the33

measurements.34
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1 Introduction35

Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry (PTV)36

are two established methods for the measurement of instantaneous distri-37

butions of velocity components within an illuminated 2D sample area or38

3D sample volume. In both cases, digital cameras are commonly used to39

record traces of particles suspended in the flow field. A pair of traces are40

yielded by two successive laser-sheet pulses or two successive camera frames41

in PIV and PTV, respectively. The displacements in all the particles (on an42

ensemble-averaged or an individual basis) are then divided by the fixed time43

delay between the two exposures, thus obtaining the corresponding velocity44

distributions.45

While the idea of the PIV and PTV methods is simple, the noise and46

gaps present in experimental measurements typically affects the accuracy of47

the data collected (Westerweel, 1994, Raffel et al., 2007). The noise arises48

from errors connected with the characteristics of the particles and their rep-49

resentation in the images (Hart, 2000). A low seeding density complicates50

these issues, as well as any subsequent analysis (Cenedese and Querzoli, 1997,51

2000, Stanislas et al., 2004).52

In recent years, several methods have been developed for the denoising53

and restoration of such data; exploiting the statistical or the physical char-54
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acteristics of the velocity flow field.55

In statistical methods, individual vectors that depart from the ensemble56

of the recorded velocity flow field are identified and subsequently eliminated.57

Such data post-processing commonly consists of using global-mean, local-58

mean or local-median tests or using global histogram operators (Westerweel59

and Scarano, 2005, Raffel et al., 2007, Duncan et al., 2010). Here, it is as-60

sumed that locally-occurring errors are randomly scattered within the sample61

volume, and that a sufficient quantity of tracers are present for the outliers62

to be detected. These methods are used for their convenience, computa-63

tional cost and ease of implementation. However, only individual vectors are64

eliminated and not the noise that exists homogeneously within the sample65

volume.66

Concomitant issues relate to infilling gaps in experimental measurements,67

and are tackled after statistical denoising. The restoration of ‘gappy’ data68

commonly consists of using different types of interpolation, e.g. kriging, near-69

est neighbour or polynomial interpolation from linear to nth order (cf. Stuer70

and Blaser 2000). Similarly, methods that employ Proper Orthogonal De-71

composition have gained popularity, remaining cost efficient while still being72

applicable to any type of flow (Venturi and Karniadakis, 2004, Gunes and73

Rist, 2008). These exhibit good restoration capabilities where the sparsity74

of these data are 50 %, but the performance decreases as the sparsity of the75
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data approaches 20 %.76

In physical methods, hydrodynamical equations, e.g. Navier-Stokes (NSE)77

or Vorticity Transport Equations (VTE), are used for the restoration of noisy78

and gappy data. Typically, this is achieved by fitting numerical pre-estimates79

of the (same) velocity flow field to data collected from experimental measure-80

ments using Kalman filtering (Suzuki, 2012) or variational methods (Okuno81

et al., 2000, Suzuki et al., 2009a,b), such that they are similar. Since the82

velocity data from these schemes are determined from the results of the nu-83

merical hydrodynamical model, the results of the restoration are physically-84

plausible yet are not limited by the occurrence of noise or the sparsity of85

the data. However, this is only feasible where numerical pre-estimates of the86

velocity flow field are possible (i.e. where boundary and initial conditions are87

known a priori).88

Contrary to methods using numerical pre-estimates, Sciacchitano et al.89

(2012) suggested deriving boundary conditions directly from experimental90

measurements, that then are used to infill gappy data in a physically-plausible91

way. However, this is very sensitive to noise (Sciacchitano et al., 2012).92

All these methods are able to be used for the denoising and restoration of93

experimental measurements within the context of a well-prepared laboratory94

set-up, where no unsuitable particles are present and tracers with known light95

scattering characteristics are selected and seeded in the velocity flow field.96
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Tuning laboratory settings (e.g. by optimising the concentration / size of the97

particles tracked) results in the permissible level of gaps and noise that allows98

successful restoration using existing methods. Even if gaps and noise cannot99

be sufficiently reduced, the laboratory set-up offers enough details that nu-100

merical pre-estimates are possible, as the boundary conditions or the pattern101

of the velocity flow field are known a priori. However, in several cases, it102

is not possible for these gaps and noise to be sufficiently reduced nor any103

pre-estimates to be made. An example of this is seen in PIV and PTV mea-104

surements in ocean flows (Nimmo-Smith et al., 2002, 2005, Nimmo-Smith,105

2008) where the arrangement of usual experimental conditions using ideal106

tracers is not possible and naturally-occurring suspended particles are used107

instead. The uneven shape of these particles, scattered inhomogeneously108

within the velocity flow field, causes an increase in the occurrence of gaps109

and noise that, in turn, complicates any later analysis. In addition, as only110

the part of the ocean advected through the sample volume are recorded, the111

boundary conditions are unknown and numerical pre-estimates are not feasi-112

ble. Therefore, restoration of such data with existing methods is debatable;113

requiring the development of a new Physics-Enabled Flow Restoration Al-114

gorithm (PEFRA) for these velocity measurements. This is founded on a115

hydrodynamical basis, as represented by the Vorticity Transport Equation116

(VTE), however it is independent of specified boundary conditions and the117
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algorithm exhibits a weak sensitivity to noise, as confirmed by tests using118

both artificial/numerical and in-situ experimental data.119

PEFRA is from the same pedigree as the Physically-Consistent and Effi-120

cient Variational Denoising (PCEVD) algorithm developed by Vlasenko and121

Schnorr (2010), but with a significant improvement that allows restoration122

of gappy and noisy data. Both methods conform to a black box philosophy,123

requiring no specific user-background in fluid dynamics (except in special124

cases) and may be applied to any velocity time-series, formed from any type125

of flow and corrupted by any type of noise. However, PCEVD is limited in126

the sparsity permitted, especially under turbulence. This failing is corrected127

in PEFRA, and confirmed by the restoration of a velocity flow field with only128

10% of data available.129

Here, PCEVD is outlined in §2, with the development of PCEVD into130

PEFRA outlined in §3. In §4, the algorithm sensitivity to noise and sparsity131

is discussed, with an assessment of the algorithm performance using artifi-132

cial/numerical data modelling different flow conditions presented in §5. This133

assessment is extended to submersible 3D-PTV measurements in ocean flows,134

in §6, where naturally-occurring suspended particles are used as tracers. The135

pseudo-code outline of PEFRA is presented in Appendix B.136

7



2 PCEVD algorithm137

A detailed discussion of the mathematical background to PCEVD containing138

the complete proofs may be found in Vlasenko (2010) (or in compact form139

in Vlasenko and Schnorr 2010), and only a summary (without theoretical140

substantiation) is provided here as the context for the solution of the problem.141

To do so, ~a(~x) and ~b(~x) are defined as two vector functions in a volume, V ,142

where ~x ∈ V is a three-dimensional coordinate vector. Then, assuming143

that ~a(~x) and ~b(~x) are differentiable, the L2 norm is defined as: ‖~a‖2 =144 √∫
V
~a(~x)2d~x, the inner product is defined as 〈(~a,~b)〉 =

∫
V

(~a ·~b)d~x and the145

convolution of these is defined as: ~a(~x) ?~b(~x) =
∫ +∞
−∞ ~a(~x)~b(~t− ~x)d~t.146

The curl, finally, is defined as: ∇× ~a = [∂az
∂y
− ∂ay

∂z
; ∂ax
∂z
− ∂az

∂x
; ∂ax
∂y
− ∂ay

∂x
].147

Importantly, the VTE is yielded when this operator is applied to both the148

LHS and the RHS of the NSE:149

∂~ω

∂t
+ (~ω · ∇)~v + (~v∇)ω = ν4~ω (1)

where, ω = ∇× ~v, 4 = ∇2 is the Laplace operator and ν is the viscosity.150

The benefit in using the VTE over the NSE is that it does not contain151

pressure as an additional variable. For the sake of simplicity, the LHS of152

the VTE is denoted by an ~e, i.e. ~e(~v) = ∂~ω
∂t

+ (~ω · ∇)~v + (~v∇)~ω. This153

shorthand is especially useful when the VTE is presented in weak form, i.e.154
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J(~ω) = ν‖∇ × ~ω‖2
2 + 2〈~e(~vs), ~ω〉. The weak form of the VTE reverts to the155

normal form of the VTE by differentiation by ~ω.156

PCEVD is an iterative algorithm that was developed for the denoising and157

restoration of three-dimensional velocity time-series data recorded in PIV,158

PTV or other velocity measurements. This is implemented in four stages:159

Gaussian filtering, solenoidal projection (i.e. divergence removal, demanded160

by the continuity equation), vorticity restoration and velocity restoration.161

On each loop, the quality of this output is checked by a termination criteria.162

If this is not achieved, the process repeats using the results generated in163

the last output. The idea of this sequence is that high-frequency noise, as164

well as any divergence, is eliminated by Gaussian filtering and solenoidal165

projection, respectively. Any remaining noise is then eliminated by vorticity166

restoration, where the pattern of the vorticity flow field is also recovered (– if167

it is corrupted). Finally, the last part of the algorithm, velocity restoration,168

links the pattern of the vorticity flow field and the filtered pattern of the169

velocity flow field, providing an additional connection to the PIV or PTV170

data. These stages are detailed below, via the restoration of a gappy and171

noisy velocity flow field, vm, recorded in an incompressible fluid.172
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2.1 Stage 1: Gaussian filtering173

The restoration of the velocity flow field, ~vm, is initiated by Gaussian filtering:174

~vd = g ? ~vm, g =
1

(2πσ2)3/2
exp

(
−σ

2

2
|~x|2
)

(2)

where, ~vm is the recorded velocity flow field, ? is the convolution and σ is175

the variance governing the strength of the Gaussian filtering (discussed in176

Section 4) that removes high frequency noise. The filtered velocity flow field177

~vd is then passed to Stage 2 where the divergence is eliminated.178

2.2 Stage 2: solenoidal projection179

As it is assumed that this fluid is incompressible, divergence within the ve-180

locity flow field constitutes noise and must be eliminated. Therefore, ~vd is181

the sum of the divergence (∇p) and the solenoidal (~vs) velocity components,182

i.e. ~vd = ∇p+ vs, to which the divergence operator may be applied giving:183

∇~vd = 4p (3)

Solving Equation 3 with zero boundary conditions results in the diver-184

gence part,4p. This is subtracted from ~vd, giving the divergence-free velocity185

flow field vs (consistent with the continuity equation) passed to Stage 3.186
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2.3 Stage 3: vorticity restoration187

The physical plausibility of the flow that was filtered in Stage 1 and Stage 2188

is enforced by the VTE. This is done by minimising the functional:189

J(ω) = ‖~ω − ~ωs‖2
2 + α

(
ν‖∇ × ~ω‖2

2 + 2
〈
~e(~vs), ~ω

〉
~ω

)
(4)

where, ~ωs = ∇× ~vs is the vorticity computed from the velocity flow field in190

Stage 2, and ~ω is the vorticity to be found.191

Minimization of Equation 4 with respect to ~ωs means that both terms192

must remain as small as possible with respect to the L2 norm. The minimized193

sum (in brackets) represents the weak form of the VTE and enforces the194

physical flow structures in ~ωs, while the term outside the brackets (i.e. ‖~ω−195

~ωs‖2
2) links ~ω and ~ωs such that the difference in the L2 norm between these two196

vector fields is minimal. The balance between the two components dictates197

the strength of the restoration and this, in turn, is controlled by a control198

parameter, α that has the dimensions of time (discussed in Section 4). The199

weak form of the VTE reverts to the normal form of the VTE, after the first200

variation in ~ω is computed.201

The first variation of this functional is:202

~ω − αν4~ω = ~ωs − α~e(~vs) (5)
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Note that if ~ωs satisfies the VTE, ~ω = ~ωs.203

In cases where the exact boundary conditions are known, solving Equa-204

tion 5 is easily done analytically or numerically. In all other cases, it is205

assumed that volume V freely allows in-/out-flow (i.e. it is open), requiring206

that constant-flux boundary conditions must be used:207

∂~ω

∂n−

∣∣∣∣
∂Vl

=
∂~ω

∂n+

∣∣∣∣
∂Vl

(6)

where, n− is the inner normal to V and n+ is the outer normal to V .208

Such boundary conditions are sufficient in solving Equation 5 and do not209

rely on fixed vorticity or velocity fluxes. The filtered vorticity flow field ~ω is210

then passed to Stage 4.211

2.4 Stage 4: velocity restoration212

The velocity restoration is done by minimising the functional:213

min
~u

{
‖~u− ~vs‖2

Ω + ‖∇ × ~u− ~ω‖2
Ω

}
. (7)

This is implemented similarly to Equation 4, and the output is an opti-214

mum velocity flow field, u, determined from Stage 2 and Stage 3. Here, term215

‖~u−~vs‖2
Ω links the output u and velocity field vs from Stage 2 such that the216

L2 norm difference between them is minimal (and therefore also the experi-217
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mental measurements), while the term ‖∇×~u−~ω‖2
Ω links the output pattern218

of the velocity flow field in u and the restored pattern of the vorticity flow219

field in ~ω from Stage 3. Dimensional consistency is achieved using a constant220

that equals one, but has the dimensions of length squared. For the sake of221

simplicity, this constant is omitted in later derivations.222

The first variation of this functional is:223

~u−4~u = ~vs −∇× ~ω (8)

The boundary conditions to Equation 8 are the same as in Stage 3, and224

solving results in the rectified velocity flow field, ~u.225

Note that Equation 2, Equation 5 and Equation 8 each represent a low-226

pass filter that causes a suppression of energy that must be recovered. Al-227

though this suppression is negligible for a single iteration, it becomes consid-228

erable if the algorithm executes more than 10 iterations. Here, it is assumed229

that the main fraction of the noise energy present in the data collected is con-230

centrated in the middle and high frequency part of the spectrum (e.g. white231

noise). Therefore, low-pass filtering causes the large decay of that fraction232

after the first iteration, while the decay of the true signal is insignificant.233

The implication of this is that, after the first iteration, the energy of the234

remaining low frequency part is negligible compared to the true energy of235
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the flow, such that the energy of the noisy flow approximately equals the236

true energy of the flow. The energy of this flow is recovered starting from237

the second iteration when the output ~u is multiplied by the ratio between238

the energy of the first iteration and that of the rectified data.239

2.5 Algorithm termination240

Algorithm termination occurs after a user-predefined maximum number of241

iterations or when the mean angle deviation between u and vm is less than242

user specified tolerance. If this is not met, the velocity flow field, u, is defined243

as if it were vm and the process repeats using the results generated in the244

last output.245

3 Algorithm development246

Vlasenko and Schnorr (2010) established that PCEVD offers good restora-247

tion capabilities for any type of flow, corrupted by any type of noise. It is248

also able to accommodate gappy data, however the quality of this output249

is detrimentally affected by the sparsity. The large gaps within the velocity250

flow field are not considered as noise, as they meet the divergence-free criteria251

(Stage 2) and the trivial solution of the VTE (Stage 3 and Stage 4). There-252

fore, PCEVD merges the large gaps with the PIV or PTV data, changing253
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the complete pattern of the velocity flow field. It is this failing especially,254

rather than the hydrodynamical theory applied, that prompted the develop-255

ment of a new algorithm, PEFRA. This new algorithm is applicable to any256

type of (incompressible) flow, and offers similar restoration capabilities to its257

PCEVD predecessor, but with less sensitivity to the sparsity of the data.258

PEFRA consists of three blocks: interpolation, linear approximation and259

restoration. Here, weighted-average interpolation methods are used to infill260

gappy data in the first block. This is then smoothed by linearization, using a261

modified PCEVD algorithm (with Stage 2 omitted and ~e(~v) in Stage 3 set to262

zero), such that it fits the pattern of the laminar vorticity flow field. Finally,263

restoration is done using a differently modified PCVED algorithm (with Stage264

2 omitted) and the output velocity flow field established iteratively, as in265

§2. The omission of Stage 2 from PEFRA may be justified by its small266

effect on the reconstruction of gappy elements within the velocity flow field.267

The reason for this is that both Block 2 and Block 3 decrease the vorticity268

(proof in Appendix) on each loop, such that the output vectors are almost269

divergence-free. The scheme and pseudo-code of PEFRA for its numerical270

implementation are given in Appendix B.271
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3.1 PEFRA volume and boundary conditions272

In cases where the boundary conditions are not known, continuity flux bound-273

ary conditions are used in both PEFRA and PCEVD. In PCEVD, these are274

applied to the same volume as that where the data were collected but, in275

PEFRA, a larger volume is needed. This is apparent when Equation 5 is276

considered, with respect of the normal vorticity component, at the boundary277

of V. These continuity flux boundary conditions convert Equation 5 to:278

~ωn = ~ωns − α~en(~vs). (9)

where, n is the normal component of the vector.279

Therefore, the unknown vorticity component, ~ω, is unambiguously defined280

by the difference between ~ωs and α~e(~vs), where the noisy ~ωs is corrected281

by α~e(~vs). However, when experimental measurements are highly sparse,282

Equation 9 is not appropriate as the lack of velocity data at the boundary283

means the fluxes in Equation 9 are computed incorrectly. Note that after284

interpolation and linearization, ~vs is a linear function, as is ~ω and α~e(~vs).285

Consequently, ω is also linear – irrespective of the dynamics within the sample286

volume – requiring enlargement of this volume in PEFRA.287

To understand these, a volume, V , containing the fluid motion, sur-288

rounded by a larger volume Vl of the same shape, is considered. The walls of289
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V and Vl are invisible to fluid movement and freely allow in-/out-flow. Crit-290

ically, the center of these volumes are co-positioned, meaning the distance,291

d, that offset the walls of V from the walls of Vl are the same to each face.292

Therefore, if Vl is sufficiently large, any turbulence present in V diminishes at293

the boundary of Vl due to viscosity effects. Here, flows near the boundary are294

linear, so constant-flux boundary conditions (Equation 6) are appropriate.295

To explain the computation of d, the analogy of fractal turbulence may296

be considered. Here, it is suggested that a velocity flow field may be repre-297

sented as an overlapping set of vortices with different characteristic length298

scales (Giacomazzi et al., 1999). Let L be the characteristic length of the299

largest vortices in the set. Following Kolmogorov theory (Landau and Lif-300

shitz, 2000), an individual eddy is divided into several vortices twice as small301

as the original after a distance of twice its characteristic length. Therefore,302

the largest vortices in the set are divided into several smaller vortices with a303

characteristic length of L/2 after a distance of 2L. These smaller vortices are304

then sub-divided after a distance of L and the process repeats until the min-305

imum eddy length scales are met. In discrete cases, this is set by the number306

of grid-points that are needed for the resolution of the smallest vortices (i.e.307

three grid-points). The equation for the minimum length of d is, therefore:308
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d =
N∑
i=0

L

2i−1
, N = log2

(
L

3

)
(10)

The enlargement of V to Vl by d means that flow near the boundary309

are constant and linear, so constant-flux boundary conditions (Equation 6)310

are appropriate. To emphasize that constant flux boundary conditions are311

applied to a larger volume where the pattern of the vorticity flow field is312

linear, these are termed open boundary conditions. If L is unknown, and313

estimation of d using Equation 10 is impossible, then this is able to be ob-314

tained iteratively. The algorithm to do so is as follows: initially, all control315

parameters are set as default (§4.3.1) and d = 1. PEFRA runs with this316

set of control parameters until the termination criterion is satisfied, and the317

root-mean-difference between the input and output velocity flow field is saved318

for further reference. Then d is incremented by one and the procedure re-319

peated, whereupon the root-mean-square differences between the experimen-320

tal measurements and the restored data from the present and the preceding321

iterations are compared. If the relative difference between these two values322

is sufficiently small (e.g. smaller than 1%) the algorithm terminates and Vl323

is estimated. Otherwise, d is incremented by one and the sequence repeated324

again. Note that if this tolerance is set close to zero, the estimated d will be325

the same as in Equation 10.326
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3.2 Interpolation327

After the enlargement of V to Vl, all empty grid-points in V are filled by328

interpolation of the experimental measurements, prior to the velocity flow329

field from V being extrapolated into Vl. Tests using different types of in-330

terpolation (i.e. nearest neighbour, splines and weighted-average) reveal that331

weighted-average schemes are most appropriate, since they achieve the best332

convergence rate of PEFRA. Consequently, these schemes are used in this333

algorithm. Here, it is assumed that all the available PIV or PTV data are334

presented on a regular grid (or projected from an irregular grid onto a reg-335

ular grid), with a grid-step h. Each empty node is surrounded by a sphere336

of 2h. If there are two or more measured velocity vectors in that sphere, a337

weighted average interpolation can be applied and the node is filled with the338

interpolated data. If not, the radius of the sphere is increased by h and the339

availability of measured velocity vectors is re-checked. If, again, there are less340

than two recorded velocity vectors the radius of the sphere increased until341

the amount of measured vectors within the sphere becomes greater than or342

equal to two. The weights for interpolation are set as the inverse distance343

from the node to the center of the sphere.344
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3.3 Linearization345

In several cases, ramps are present at junctions between the infilled data and346

the recorded velocity flow field, however the smoothing of these ramps by347

Gaussian Filtering (Stage 1) may be insufficient at avoiding large non-linear348

~e(~v) terms at these junctions. Increasing the filter variance will strengthen349

the severity of the smoothing of these ramps but this, in turn, risks over-350

smoothing the pattern of the velocity flow field such that two adjacent vor-351

tices may be amalgamated into one and so must be avoided. This over- or352

under-smoothing is prevented by fitting the interpolated velocity flow field to353

the linear VTE, since the linear VTE does not have problematic non-linear354

terms and can filter-out the junctions as discussed below. Helpfully, this so-355

lution of the linear VTE is also the first-order (linear) approximation of the356

non-linear VTE. This solution is obtained by performing a single Gaussian357

filtering operation, prior to executing step 3 and step 4, sequentially, with358

the linear VTE, until the termination criterion is satisfied. Therefore, the359

algorithm establishes linear flow such that, among all the possible linear so-360

lutions, the difference in the L2 norm of the velocity and vorticity, with the361

corresponding ~ωs and ~vs, is minimal. The energy of the flow is subsequently362

recovered, as in PCEVD. After each iteration, the obtained linear velocity363

field fills the gaps in the measurements. The resultant field is used then as364
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an input field for the next iteration.365

Note that PEFRA is an iterative method, and therefore its computa-366

tional speed performance may be significantly improved if the correct initial367

estimate (known also as initial guess) is found. Since the linear flow is tradi-368

tionally used as the first approximation of any type of flow (Pedlosky, 1990),369

the construction of linear flow is the preparation of this estimate. It de-370

creases the time needed for the restoration in the final block – irrespective371

of the dynamics within the sample volume.372

3.4 Restoration373

The final block, restoration, consists of two stages. Initially, it is the same374

as linearization but with the full form of ~e(~v) used for the vorticity restora-375

tion. Here, on each iteration, the grid-points containing the restored data376

are substituted with the non-zero data from the sparse experimental mea-377

surements. After the algorithm termination criteria is met, this last stage378

is again repeated only without the input of the PIV or PTV data into the379

output velocity flow field such that noise injected with the experimental mea-380

surements is filtered out. The energy of the flow is subsequently recovered,381

as in PCEVD.382
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4 Algorithm sensitivity383

The sensitivity of PEFRA to noise, sparsity and control parameters is dis-384

cussed analytically here, with an experimental verification provided in §5.385

For the purposes of analysis, the restoration is considered to be success-386

ful if the L2 difference between the true flow and the restored flow decreases387

on each iteration, ultimately becoming less than a user-defined criterion.388

Although the true flow in experimental measurements is unknown, it is pos-389

sible to anticipate the cases where restoration will be successful from only390

the characteristics of the PIV or PTV data. This is examined using an ex-391

treme example. Here, a velocity flow field only consisting of two vectors is392

considered. If the two vectors are far apart, then they may be connected393

to one large vortex or two smaller separate vortices (or, indeed, any other394

type of flow) and any later restoration will be ambiguous. Consequently, a395

necessary criterion for the successful restoration specifies that a velocity flow396

field fitting the PIV or PTV data must be unique. If this correct restoration397

is not still possible when any part of the velocity flow field is omitted then398

this flow is labelled as critically sparse. Therefore, this necessary criterion399

for the successful restoration is met if the sparsity of these data are above400

critical.401

The necessary sparsity criterion for the successful restoration may be402
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checked using homogeneously sparse velocity measurements, presented on a403

regular grid. Here, S is the sparsity of the data, i.e. the number of grid-points404

containing data, divided by the total number of grid-points (expressed in405

percent), while Ls is the characteristic length scale (expressed in grid-points)406

of the smallest resolved1 entities within the measured, discrete, velocity407

flow field. According to §3, an approximation of the velocity flow field within408

the sample volume is yielded by an initial interpolation and subsequently409

improved and specified iteratively. The interpolation of the smallest entities410

of this flow is possible where at least two vectors are present at a distance of411

Ls, i.e. if the sparsity of the data satisfies a critical sparsity condition:412

S ≥ 8

L3
s

× 100% (11)

In cases of turbulence, the number of grid-points that are needed for413

the resolution of the smallest vortices is four grid-points, meaning that for414

the correct restoration S ≥ 12.5%. It is suggested that 12.5% is considered415

to be the default value for critical sparsity, since all types of flows with416

S ≥ 12.5% may be successfully reconstructed, providing the noise level in417

the experimental measurements is below its critical value (discussed below).418

1The flow feature is resolved on the grid if all its velocity maxima and minima can be

projected on the corresponding grid nodes
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4.1 Algorithm sensitivity to noise (critically-sparse ve-419

locity flow field)420

The sensitivity of PEFRA to a critically sparse velocity flow field containing421

noise, ~δo, is considered in reference to Equation 4. If the restoration of the422

pattern of the vorticity flow field is unaffected by noise, the only solution to423

this expression is the true vorticity, ~ωT . The substitution of ~ωT into Equation424

4 reduces term 1 to ‖~δo‖ and term 2 disappears. If this is affected by noise,425

the restoration results in a new vorticity flow field, ~ωT + ~θ, where ~θ is the426

difference between ~ωT and the new output. Since the output satisfies the427

VTE, the substitution of ~ωT + ~θ into Equation 4 reduces term 1 to ‖~δo − ~θ‖428

and term 2 disappears. If this is minimized by ~ωT + ~θ it must be true that:429

J( ~ωT )

J( ~ωT + ~θ)
=
‖~δo‖2

Ω

‖~δo − ~θ‖2
Ω

> 1 (12)

The inequality on the RHS of Equation 12 is true if |~θ| < 2|~δo|, meaning430

that if the extremely sparse velocity measurements contain 5% noise, the431

difference between the true vorticity and the post-restoration vorticity is432

less than 10%. Therefore, the critically sparse velocity flow field will be433

successfully reconstructed, with data containing much less than 50 % of the434

noise, i.e.:435
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‖~δo‖2
Ω

‖ ~ωT‖2
Ω

� 0.5 (13)

Note that Equation 13 considerably underestimates the upper limit of436

the noise level in the input data permissible for successful restoration to437

still be achieved. In reality, successful restoration is possible even when438

‖~δo‖2
Ω/‖ ~ωT‖2

Ω ' 0.5., however as Equation 13 unambiguously ensures suc-439

cessful restoration, it is this that is used for the noise level condition.440

4.2 Algorithm sensitivity to noise (non critically-sparse441

velocity flow field)442

The sensitivity of PEFRA to a non-critically sparse velocity flow field is443

identical to that completed for the PCEVD algorithm (cf. Vlasenko 2010,444

where a detailed study of the effect of noise in the data at each restoration445

stage of the algorithm is presented). Since PCEVD and PEFRA are from446

the same pedigree, these conclusions will remain the same for the present447

algorithm, so only a summary is provided here.448

According to Vlasenko (2010), the noise in the experimental measure-449

ments contains a fraction that satisfies the VTE and, consequently, will be450

referred to here as the hydrodynamical component of the noise. Therefore,451

the velocity estimates generated from noisy PIV or PTV data, f , may be452
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considered as consisting of the sum of three components: f = ~vT + (~h +
~~δ),453

where ~vT is the true velocity, and the expression in brackets is noise consisting454

of a hydrodynamical component (~h) and a non-hydrodynamical component455

(~δ), that does not satisfy VTE. The algorithm sensitivity to each of these is456

considered separately below.457

4.2.1 The hydrodynamical component of the noise458

The hydrodynamical component of the noise is a systematic error of both459

PCEVD and PEFRA that cannot be eliminated. The results will therefore460

be identical to that established for the earlier algorithm. Vlasenko (2010)461

applied PCEVD to two sets of data, each of 1000 vector fields, consisting of462

pure identically-distributed white noise with zero-mean and pure Gaussian-463

distributed white noise with zero-mean, respectively. These data suggest464

that if the noise contain such a component, it will pass the PCEVD filtering.465

Therefore, the application of PCEVD to these data revealed that each of the466

1000 vector fields in the two sets contain a pattern suggestive of a turbulent467

motion, whose substitution into the discrete VTE results in equality. Figure468

1 is an example of one of these vector fields, obtained from one of the 1000469

samples of white noise. It was established that in the two sets, the fraction470

of the hydrodynamical component of the noise obeys the same bell-shaped471

distribution. Its mean, variance and maximum (normalized by the noise472
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level) equals 0.115, 0.510 and 13, respectively. These experiments with both473

types of noise revealed that the hydrodynamical component of the noise474

always results in an arbitrary isotropic turbulent-like pattern (e.g. Figure 1)475

if the noise level in each component is identical. However, if the noise level476

in one component is significantly greater than for the others, it results in a477

flow field, satisfying the VTE, with anisotropy in that component. In cases478

of zero-mean distributed noise, the anisotropy causes a pattern similar to479

Kelvin-Helmholz instabilities. In cases of nonzero-mean distributed noise, the480

noise-pattern appears embedded within the constant background flow, whose481

components are proportional to the mean of the noise in the corresponding482

velocity components. Due to nonlinear terms, the VTE does not possess the483

property of linear additivity, meaning that if noise is present in measurements484

it will affect the form of the hydrodynamical component. These statistical485

experiments with artificial measurements revealed a weak anti-correlation,486

which is not smaller than -0.1. The subtraction of the corresponding artificial487

true velocity field from the restored output shows that, with the exception488

of differences in small details, the hydrodynamical component remains the489

same as the hydrodynamical component filtered from the pure noise. On the490

results of these experiments Vlasenko (2010) concluded that noise contains491

a hydrodynamical component that cannot be removed by PCEVD (nor by492

PEFRA) as it is merged with the output data. Defining n as the inverse493
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of the signal-to-noise ratio (i.e. the ratio between the L2 norms of the noisy494

and true velocity flow field), the fraction of this component in the output495

is greater than 0.9n but less than 13n for zero mean noise. If the noise has496

nonzero mean, the hydrodynamical fraction is estimated as the sum of the497

mean noise level and 0.13n.498

4.2.2 The non-hydrodynamical component of the noise499

If it is assumed that noise exists homogeneously within the sample volume500

and that this is able to be expanded spectrally, where ai is the amplitude of501

these harmonics at a spatial frequency of φ = L/i (i = 1, 2, ..., N) and U is502

defined as twice the characteristic velocity. According to Vlasenko (2010) an503

approximation of the non-hydrodynamical component of the noise is yielded504

by:505

εi ≤ exp−(σi)2/2︸ ︷︷ ︸
1

ai
1 + i2︸ ︷︷ ︸

2


√√√√√√√1 +

 U

(φ2α)−1 + ν︸ ︷︷ ︸
3


 (14)

where, εi is the harmonics remaining after one iteration of the restoration in506

the final block. Term 1, term 2 and term 3 (in under-brackets) represent the507

eigen-reduction factors of the noise of the Gaussian filtering, vorticity and508

velocity restoration steps, as if these are applied independently. The upper509

bounds for the non-hydrodynamical component of the noise remaining in the510
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data at each step (separately) are provided in Vlasenko (2010). Equation 14511

is an approximation of the upper bound of the joint impact of these errors512

(from all stages) in the restoration block. This expression is, however, diffi-513

cult to apply practically. A more convenient expression is achieved through514

correct selection of control parameters ν and α (§4.3). If this is done, the515

product of term 2 and the expression under the square-root in Equation 14516

is less than or equal to one, and εi may be expressed as: εi ≤ exp−(σ)2/2 ai.517

When the L2 norm is subtracted from the LHS and RHS and both, in turn,518

are divided by the L2 norm of the true velocity flow field, a new inequality519

(in terms of the signal-to-noise ratio) is yielded: nr ≤ exp−(σ)2/2 nn, where nn520

and nr are the inverse of the signal-to-noise ratio of the non-hydrodynamical521

component of the noise before and after the restoration in turn. Since the522

non-hydrodynamical component of the noise is a fraction of the noise quan-523

tified by the inverse of the signal-to-noise ratio, n, i.e. nn ≤ n, then it must524

be true that: nr ≤ exp−(σ)2/2 n. Using this inequality and the estimates for525

the hydrodynamical component of the noise, the total error remaining after526

the restoration may be expressed as:527

ntotal ≤ n(0.13 + exp−(σ)2/2) (15)

As an example, if σ = 1.34, then according to the inequality, ntotal ≤ 1,528
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when n = 2.2. Similarly as in Equation 12, the inequality underestimates529

the upper limit of the noise level in the input data permissible for successful530

restoration to still be achieved.531

4.3 Sensitivity to control parameters532

The sensitivity of PEFRA to control parameters, σ, α and ν, is considered533

in reference to Equation 14. Term 1 is the error reduction from Gaussian534

filtering and is always less than one and, therefore, never causes an increase535

in the noise-level. In fact, the opposite is true as an increase (linearly) in536

parameter σ (§2) decreases the noise-level exponentially, as well as smoothing537

the pattern of the velocity flow field. However, to prevent over-smoothing,538

Vlasenko (2010) established that σ must be less than 1.34. Similarly, term 2 is539

the error reduction from velocity restoration and this is always less than one.540

This is affected by term 3, that characterizes the upper limit of the impact541

of the vorticity restoration on the velocity restoration. Since the term under542

the square root is always more than one, it is possible that εi > ai and this,543

in turn, causes an increase in the noise-level. To ensure that this upper limit544

is not achieved εi/ai < 1 and the control parameters selected accordingly.545

When the left hand side and the right hand side of Equation 14 are divided546

by ai, the right hand side is less than one. Simple mathematical operations547
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show that this right hand side is always less than one if:548

0 <
U

α−1 − 3ν
< 1 (16)

Therefore, the permissible values of α and ν are unambiguously defined549

by Equation 16 (referred to as nu-alpha condition). Note that the spatial550

frequency in front of α−1 is set to one and omitted here. However, it is551

important to remember its dimensions (m s−1) remain and these balance the552

denominator.553

4.3.1 Optimum selection of control parameters554

If the nu-alpha condition is satisfied, the sparsity and quantity of noise in555

the data allow successful restoration, and the noise in the experimental mea-556

surements has a zero-mean, then the noisy velocity flow field and the re-557

constructed velocity fields may be expressed as: ~vnoisy = ~vtrue + ~N and558

~vPEFRA = ~vtrue + ~A + ~Nh. Here, ~vtrue is the true velocity flow field, ~N is559

noise in the experimental measurements, ~Nh is the hydrodynamical compo-560

nent of ~N and ~A represents the artefacts caused by poor selection of control561

parameters. The residual between the noisy velocity vectors and the recon-562

structed velocity vectors at the grid node k is ~vknoisy−~vkPEFRA = ~Nk− ~Nk
h− ~Ak.563

According to §4.2.1, if ~N has a zero-mean, ~Nh has an arbitrary isotropic noise-564

pattern (and therefore the difference ~N ′ = ~N − ~Nh also has zero-mean), and565
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~vknoisy − ~vkPEFRA = ~N ′k − ~Ak, the root-mean-square difference between the566

true velocity flow field and the reconstructed flow field may be estimated as:567

∆ =

√√√√ 1

K

K∑
k

(~vknoisy − ~vkPEFRA)2 =

√
A2 − 2A ·N ′ + ~N ′2 (17)

where the overline denotes averaging. Note that ~N ′ has no hydrodynami-568

cal component, which means that that ~A and ~N ′ are independent. Moreover,569

~N ′ has zero mean, hence ~A ·N ′ = ~A · ~N = 0. Equation 17 therefore may be570

simplified to:571

∆ =

√√√√ 1

K

K∑
k

(~vknoisy − ~vkPEFRA)2 =

√
A2 + (1− C)2N2 (18)

where C ∈ [0.09, 0.13] is the fraction of hydrodynamical component in572

~N . If the noise in the experimental measurements has a nonzero mean, the573

reasoning and intermediate conclusions remain the same – only the data ~A,574

~N and ~Nh, are expressed as the sum of the corresponding zero mean variables575

~A0, ~N0, ~N0h and their corresponding means. The root of the mean-square-576

difference may then be computed by repeating the reasoning above. Since the577

arithmetic for this is cumbersome, it is omitted here and the final expression578

is provided instead:579

∆ =

√√√√ 1

K

K∑
k

(~vknoisy − ~vkPEFRA)2 =

√
A2

0 + (1− C)2N2
0 + µ2 (19)
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where µ is the sum of means of ~A and ~N . Note that ∆ in Equation 18580

and Equation 19 is minimal when A2 and A2
0 are minimal. The artefacts581

are, in turn, minimal only when the optimum set of parameters are selected.582

Therefore, the problem of finding of optimum set of parameters is equivalent583

to the problem of finding the set of parameters that minimize ∆.584

The search of parameters that minimize ∆ may be achieved, for example,585

using the gradient descent method (cf. Talagrand and Courtier 1987), with586

the following control parameters used by default for the computation of the587

first gradient step: σ = 1.34 (see Vlasenko and Schnorr (2010)), ν can be588

set to its physical value and α = (U−1 + 3ν)−1, starting at the boundary of589

nu-alpha condition (Equation 16), where twice the maximum velocity of the590

noisy flow can be used as U . Note that if the noise in the experimental mea-591

surements is homogeneously distributed in both time and space, the control592

parameters may be considered the same for all frames. The simplest version593

of this algorithm is presented in the pseudo-code outline of PEFRA (Table594

4 in Appendix B.595

4.3.2 Estimation of maximum discrepancy between true and re-596

stored flows597

An important corollary of §4.3.1 will occur under ideal conditions, where598

~vkPEFRA = ~vtrue, or where the experimental measurements are noise free, and599
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~vknoisy = ~vtrue. In these cases, Equation 19 is never equal to zero. Note600

that in noise free measurements ∆ =

√
~A2

0 + µ2 measures only the fraction601

of artefacts in the restored data, while the occurrence of noise in data only602

causes an increase in ∆. Therefore, the root-mean-square difference between603

the true velocity flow field and restored velocity flow field never exceeds604

∆. If the mean and the variance of ~N are known (e.g. from a reference605

experiment with constant flow), Equation 19 is an exact estimate of the606

root-mean-square difference between the true and restored velocity flow field.607

4.4 Algorithm sensitivity to flow parameters: time,608

length, velocity.609

Velocity Due to the assumption of incompressibility PEFFRA may only610

be applied to a flow where the Mach number is much smaller than one.611

Length The quality of restoration for any individual flow entities depends612

on its grid-representative characteristic scale (expressed in grid-points) but613

not on its actual size. According to Vlasenko (2010), the energy spectrum614

of the rectified velocity flow field is proportional to 1/(1 + νφ2), where φ is615

a discrete frequency, inversely proportional to the characteristic length (ex-616

pressed in grid-points). Following Kolmogorov theory, the high band part of617

the energy spectrum will obey the −5/3 law. Therefore, in cases of turbulent618
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flow, the high-band part of the energy spectrum of the rectified velocity flow619

field is steeper than expected. As a consequence, the small-scaled (in terms620

of grid-scales) flow entities associated with high frequencies present in the621

rectified velocity flow field are always smoother than the same entities in the622

true velocity flow field. However, tests using the artificial data containing623

zero-sparsity, obtained from direct numerical simulations, revealed that this624

smoothing error – defined as mean-square-difference between the input and625

output velocity flow field – is of the order of 0.1%.626

Time PEFRA uses the full VTE and therefore its accuracy in time depends627

only on how accurately the selected numerical scheme approximates the time628

derivative in the VTE. If τ is a time interval between two measurements,629

and O is big O notation, then for the first-order directed difference this error630

equals O(τ).631

4.4.1 Summary of algorithm sensitivity to noise, sparsity and con-632

trol parameters633

In summary, successful restoration is possible for a critically sparse velocity634

flow field when Equation 13 is satisfied and for a non-critically sparse ve-635

locity flow field when Equation 15 is satisfied, and both the critical sparsity636

condition (Equation 11) and the nu-alpha condition (Equation 16) are met.637
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If the critical sparsity of the experimental measurements is not known, then638

12.5% may be used by default. Equation 18 and Equation 19 estimate the639

maximum discrepancy between the true flow and the restored flow for the640

zero-mean and the non-zero mean noise respectively, while the minimization641

of ∆ with respect to α, ν and σ yields the optimum set of parameters.642

5 Algorithm performance643

The performance of PEFRA is assessed using a series of twin-experiments,644

where the true velocity flow field is provided by Direct Numerical Simulation.645

From this artificial/numerical data, vectors are removed and noise added,646

such that a gappy and noisy sample is generated. After restoration, the647

results are compared to the true flow to establish if the two are similar (i.e.648

like“twins”).649

For these tests, direct numerical simulation data modelling turbulence in650

the wake of a cylinder (computed on a three-dimensional grid that consists651

of 128× 256× 128 grid-points) and that of the development of a convection652

cell within a tank (that consists of 32 × 32 × 132 grid-points) were used.653

The quality of the subsequent restoration is assessed normalized using the654

root-mean-square error, ∆n, and the mean angle deviation, θ.655

The ∆ is defined as:656
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∆n =
‖~vtrue − ~vPEFRA‖2

‖~vtrue‖2

(20)

and measures the total difference between the true flow, ~vtrue, and the PE-657

FRA output, ~vPEFRA. Note that ∆n is the same as ∆ discussed in §4.3.2, and658

~vnoisy = ~vtrue, but normalized using the root-mean-square of the true flow.659

For the twin experiments ∆n is more convenient than ∆, since it measures660

the relative deviation of the restored flow from the true flow.661

The θ is defined as:662

θ =

∫
V
| arccos(~vtrue − ~vPEFRA)|dx∫

V
dx

(21)

and measures the mean angle difference between the true flow, ~vtrue, and663

the PEFRA output, ~vPEFRA. Therefore, if all the vectors in ~vPEFRA have664

the same direction (i.e. the same pattern of the velocity flow field) as ~vtrue,665

then θ = 0. Similar measures with curl(~vtrue) and curl(~vPEFRA) are used to666

qualify the vorticity reconstruction. They are denoted as ∆curl and θcurl667

5.1 Sensitivity to sparsity, control parameters and type668

of flow669

Experiment 1: Sensitivity to sparsity. The sensitivity of PEFRA to670

sparse, noise-free velocity measurements is assessed using artificial/numerical671
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data modelling turbulence in the wake of a cylinder. Here, two conditions672

are considered, where the sparsity of the data, S (Equation 11), is 30% (i.e.673

> 2.5× critical sparsity) and 12.5% (i.e. = critical sparsity), respectively. A674

horizontal cross-section (HXS) of this flow is presented in Figure 2A, while675

the sparse (input) conditions are presented in Figure 2B and Figure 2C. The676

black dots represent empty grid-points. To facilitate a visual post-restoration677

assessment, the HXS of the true flow is repeated in Figure 3A, and the PE-678

FRA output is presented in Figure 3B (S = 30%) and Figure 3C (S = 12.5%).679

Despite the sparsity of the PEFRA input, the restoration of the pattern of the680

velocity flow field is almost completely achieved in both cases, as confirmed681

by the quality statistics, where ∆n = 0.1180, and θ = 7.8860, when S = 30%682

and ∆n = 0.2260, and θ = 11.2600 when S = 12.5%. A small difference be-683

tween these two may be seen in fine details of the vorticity flow field, however684

the three-dimensional iso-surfaces of these both resemble the true flow. The685

iso-surfaces of vorticity absolute (further referred to as vorticity iso-surfaces)686

are used here for the visualisation of the reconstruction capabilites of PE-687

FRA vorticism. The iso-surfaces in all experiments correspond to the mean688

of the true vorticity absolute. The vorticity iso-surface of the true flow is689

presented in Figure 4A, and the PEFRA output is presented in Figure 4B690

(S = 30%) and Figure 4C (S = 12.5%). The vorticity iso-surface of S = 30%691

is similar to the true flow, except in fine details such as the artificial tongue692
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seen in the lower-left corner of Figure 4B. The artificial tongue also occurs693

in the vorticity iso-surface of S = 12.5%, with it apparent the quality of the694

restoration decreases with the sparsity of the data (such that only large-scale695

components in Figure 4C resemble the true iso-surface in Figure 4A). The696

quality statistics show that when S = 30%, ∆curl = 0.2120 and θcurl = 12.43697

but when S = 12.5%, ∆curl = 0.4112, and θcurl = 20.680.698

Experiment 2: Sensitivity to sparsity and type of flow. To extend699

the analysis, the algorithm performance is assessed under different flow con-700

ditions (such as adjacent to a rigid boundary) using artificial/numerical data701

modelling the development of a convection cell in a tank. The sinking of702

the cold, dense fluid generates two vortices, each with a characteristic length703

equalling half the length of the tank (i.e. 16 grid-points). Therefore, the704

critical sparsity (Equation 11) of this flow is 98%. A vertical cross-section of705

this flow is presented in Figure 5A, while the sparse (input) conditions are706

presented in Figure 5B. The black dots again represent empty grid-points.707

To facilitate a visual post-restoration assessment, the vertical cross-section708

of the true flow is repeated in Figure 6A and the PEFRA output is presented709

in Figure 6B. Note that the tank has rigid walls, meaning that exact bound-710

ary conditions may be defined. However, these exact boundary conditions711

were not used in place of the constant flux conditions specified in §3, enabling712
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their application to a velocity flow field bounded by rigid walls to be assessed.713

Again, the restoration of the velocity flow field is almost completely achieved,714

even at its edges, as confirmed by θ (11.9000◦) being similar to that for the715

wake of the cylinder. Under these conditions, ∆n (0.4200) for the convection716

cell is larger. Such a large difference in ∆n and small difference in θ indicates717

that, in cases of critical sparsity, the restoration of the direction (pattern) of718

the vectors is independent of the type of flow, while their magnitude (length)719

is flow dependent. The reason for this dependency is that the mean lengths720

of these vectors are proportional to the square-root of the mean energy of721

the flow. Due to the filtering attributes of PEFRA (§2), the average energy722

of the PEFRA output decreases after every iteration. This is compensated723

by setting it to the average energy of the sparse velocity flow field as it is as-724

sumed these (sparse) non-zero vectors are a representative sample of the true725

flow, and therefore their average energy is also representative (§2). However,726

in cases of a small volume containing highly sparse velocity measurements,727

this sampling is not representative and PEFRA cannot correctly recover the728

energy. Increasing the sparsity of the data beyond the critical level causes729

the algorithm to fail completely. An example of this failure is seen in Figure730

6C, where the sparsity is 99%. Therefore, Equation 11 permits a correct731

estimate of the sparsity bounds where successful restoration is possible.732
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Experiment 3: Sensitivity to control parameters. In Figure 2 and733

Figure 5, the optimum set of parameters were used to facilitate the restora-734

tion. For the example of the wake of the cylinder (Figure 2), ν = 0.0025,735

σ = 0.1000 and α = 0.0025. If σ and ν are too large, over-filtering results736

(§4.3). The effects of this over-filtering is presented in Figure 7, where the737

same flow as in Figure 2A (S = 30%) is used where ν = 2 (Figure 7A) and738

σ = 2 (Figure 7B). These parameters cause the small-scale velocity com-739

ponents to be amalgamated or over-smoothed. If, however, α is too large,740

the nu-alpha condition is violated and this, in turn, causes the redundant741

small-scale velocity components that are seen in Figure 7C (where α = 2, i.e.742

6.5× higher than that permitted in Equation 16).743

5.2 Sensitivity to sparsity and noise and comparison744

with other methods745

Experiment 4: Sensitivity to noise (critically-sparse velocity flow746

field). The restoration capabilities of PEFRA under extreme conditions747

(i.e. both critical sparsity and high noise level) are assessed using numeri-748

cal data of the wake of a cylinder, but from a different time-step to that749

considered earlier, where the sparsity of the data, S, is 12.5%. In addi-750

tion, white Gaussian noise (signal-to-noise ratio = 2) is added such that the751

41



quality statistics for the resultant gappy and noisy velocity flow field are752

∆n = 1.0260 and θ = 52.4800◦. The sparse conditions are illustrated by the753

vectors within a HXS (Figure 8A). The HXS of the true flow is presented in754

Figure 8B and its three-dimensional vorticity iso-surface presented in Figure755

8C, such that they may be compared to the PEFRA outputs in Figure 9A756

and Figure 10A, respectively. Again, the difference in the quality statistics757

(∆n = 0.3230 and θ = 20.9390◦, and ∆curl = 0.5429 and θcurl = 26.9390◦)758

is seen in fine details, while the large-scale features still resemble the true759

flow. Note that from Equation 12, it is possible that ∆n ∼ 2 however, after760

restoration, the remaining error in this flow is almost a factor of 2 less than761

in the gappy and noisy velocity flow field. This fact warrants a comment762

on Equation 12 that this noise reduction is possible even when the critically763

sparse velocity flow field is highly contaminated by noise. At the same time,764

θ decreases by almost a factor of 2.5. In the equivalent tests without noise765

(S = 12.5%), ∆n decreases by a factor of 2, while θ decreases by a factor of766

1.5. Therefore, the error of the restoration of gappy and noisy data (with767

signal-to-noise ratio = 2) causes an increase in the error of the restoration768

by a factor of 2. Consequently, it is concluded this restoration is successful769

even if the velocity flow field is critically sparse and contaminated by noise.770
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Experiment 5: Comparison with other methods. To complement the771

assessment of the algorithm performance, PEFRA is compared to PCEVD772

and Weighed Average Interpolation (WAI). The connection to PCEVD is773

made to show the benefit of the new algorithm over its predecessor. The774

connection to WAI is made to facilitate benchmarking against other meth-775

ods as using specialist restoration method (e.g. PCEVD) is only meaningful776

to those familiar with that method. WAI, however, is both commonly used777

and easy to implement, and therefore can be a reference restoration method778

with which PEFRA or any other restoration method are compared. Here,779

the same gappy and noisy velocity flow field presented in Figure 8A is pro-780

cessed using PCEVD (Figure 9B and Figure 10B) and WAI (Figure 9C and781

Figure 10C), respectively. It was established above that the same data was782

mostly recovered by PEFRA, as confirmed by the quality statistics, where783

∆n = 0.3230 and θ = 20.9390◦. In contrast, the PCEVD output has lit-784

tle in common with the true flow and, consequently, ∆n = 99.0000 and785

θ = 87.0000◦, ∆curl = 346.12 and θcurl = 102.03◦. The implication of this is786

that vectors are orientated randomly with respect to the true solution and787

the restoration failed completely. The WAI output is an improvement over788

PCEVD (∆n = 0.9130 and θ = 43.969◦,∆curl = 1.132 and θ = 56.7◦), how-789

ever these input vectors are too gappy and too noisy for the pattern of the790

resultant velocity flow field to be easily identified.791
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Dependency of restoration performance on inhomogeneity The restora-792

tion performance is inversely proportional to the quantity of the hydrody-793

namical component of the noise and PEFRA artefacts remaining in the data.794

The difference between the true flow and restored flow yields a vector field795

which is a merger of the hydrodynamical error and PEFRA artefacts re-796

maining in the restored data. Such a difference, presented as a vector field in797

Figure 11, is obtained for the flow represented in Figure 8A (experiment 4).798

The length of the vectors at each grid-point represents the magnitude of the799

error at that point, while its direction does not have any particular sense.800

Note that although the true flow and restored flow (see Figures 8B and 9A801

) exhibit an isotropic pattern in their center and an anisotropic pattern at802

their edges, the error still remains isotropic. The relative root-mean-square803

of this vector field equals ∆n = 0.3230. For the similar field, with S = 12.5%804

but in the absence of noise, Experiment 1 revealed that the quantity of PE-805

FRA artefacts, A, in the restored velocity flow field equals 0.22. According806

to §4.2.1, the mean quantity of hydrodynamical components may be esti-807

mated as 0.11n = 0.22, where n = 2 is the noise level in the experiment. If808

the PEFRA artefacts and the hydrodynamical component of the noise are809

independent, the root of the sum of the squares of these two will be approx-810

imately equal to ∆n in this experiment, which is confirmed. Therefore, the811

affects of sparsity and noise on PEFRA restoration are independent.812
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6 Implementation with 3D-PTV813

PEFRA was developed for the restoration of gappy and noisy velocity mea-814

surements where the arrangement of a standard laboratory PIV or PTV815

set-up is not possible. Here, the assessment of the algorithm performance816

is extended to submersible 3D-PTV measurements in ocean flows, i.e. using817

data collected in-situ under extreme conditions.818

Presently, our employment of 3D-PTV is for the study of the three-819

dimensional turbulence characteristics of the bottom boundary layer of the820

coastal ocean (Nimmo-Smith, 2008). Unlike laboratory measurements, where821

small neutrally-buoyant particles are seeded within the flow, plankton and822

suspended sediments are used as tracers. The use of these arises from the823

impracticality of seeding the ocean with tracers, meaning that a reliance on824

naturally available seed material is essential (Bertuccioli et al., 1999). The825

uneven shape of these particles especially, scattered inhomogeneously within826

the sample volume, causes an increase in the noise level since it cannot al-827

ways be assumed that they act as passive tracers of the velocity flow field.828

In these cases, using PEFRA is highly beneficial, and this application is829

discussed below.830

As in §5, the quality of the subsequent restoration is assessed using the831

normalized root-mean square error, ∆n, and the mean angle deviation, θ.832
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The only difference is in normalization – selected to be the root-mean-square833

of the noisy velocity flow field. Since the in-situ velocity flow field has an arbi-834

trary turbulent pattern and the PIV or PTV instrumentation is directionally835

independent, it is assumed that the noise has zero-mean and its level in these836

experimental measurements is at least twice as small as the level of the sig-837

nal. In these cases, the variation between the root-mean-square difference of838

the noisy and the true flow is not greater than 12% and may be considered839

as approximately equal. Therefore, as before, ∆n estimates the approximate840

relative maximum deviation from the true flow, permitting estimation of the841

optimum set of parameters, as discussed in §4.3.1 and §4.3.2.842

If it is assumed that the plankton and sediments used as tracers are843

equally distributed within the small, arbitrarily turbulent sample volume,844

the experimental measurements have approximately constant level of noise845

and sparsity throughout the time series with small biases around this con-846

stant. Similarly, as sampling was conducted over periods of less than half an847

hour, and the site itself was sheltered from surface effects, the background848

flow conditions were also approximately constant throughout data collection.849

This means that restored velocity flow fields will have the same quality with850

the same level of artefacts. According to §4.3.1 and §4.3.2 ∆n equals the sum851

of the root-mean-square of the noise in the data and artefacts produced by852

PEFRA during restoration. Any bias in noise or artefacts causes the corre-853
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sponding bias in ∆n, that over a sufficiently long time series will exhibit a854

random bell shaped distribution with a narrow variance. Following the ran-855

dom value distribution theory, it is expected that most of ∆n biases will not856

exceed the variance, while the probability that ∆n biases considerably exceed857

this value is close to zero. Therefore, an anomalous increase of ∆n may be858

interpreted as an inconsistency in PEFRA or an incorrect assumption of ho-859

mogeneous noise distribution for the instantaneous flow field. To arbitrate in860

such cases, the additional data available from 3D-PTV becomes important,861

as these contain an image of each of the particles and may be checked when862

unexpected results are encountered (Nimmo-Smith, 2008). Following Adrian863

and Westerweel (2010), it is expected that a small, regular particle will be-864

have more like an ideal tracer – and, therefore, contaminate the velocity flow865

field less – than a large, more irregular particle. In addition, in the ocean,866

a minority of these large tracers may also be mobile plankton capable of in-867

dependent movement. Consequently, the vectors established from tracking a868

small particle will need less adjustment by PEFRA, while the vectors estab-869

lished from tracking a large particle will need more adjustment by PEFRA.870

Therefore, if an instantaneous flow field is associated with an anomalous ve-871

locity arising from the presence of extremely large particles (or a high total872

number of large particles), it will be concluded that it is as a result of these873

tracers that the velocity flow field will contain more noise that results in an874
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increase in ∆n and θ. Moreover, it will be concluded that this is the only875

reason for the increase, and there is no inconsistency in PEFRA if the cor-876

rections of velocity vectors corresponding to small particles are much smaller877

than the corrections of velocity vectors corresponding to large particles.878

6.1 Instrumentation879

The submersible 3D-PTV system is detailed fully by Nimmo-Smith (2008).880

It consists of four 1002 × 1004 pixel 8-bit digital cameras that view a 20 ×881

20 × 20 cm3 sample volume illuminated by four 500 W underwater lights.882

Electrical power is supplied from a surface support vessel using an umbilical883

cable. The cable also enables communication with the 3D-PTV master com-884

puter, that synchronises the triggering of the cameras at the rate of 25 Hz.885

Data from each of these cameras is recorded by its own computer, each with886

2× 400 GB of hard disk storage (3.2 TB total). All underwater components887

are mounted on a rigid frame. A vane attached to the frame aligns it at an888

angle to the mean flow to prevent the contamination of the sample volume889

by the wake of the system. This alignment is monitored by an Acoustic890

Döppler Velocimeter (ADV) that also offers auxiliary turbulence statistics at891

the same height as the sample volume.892
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6.2 Data processing and use of PEFRA893

After the calibration of the system (Svoboda et al., 2005), data processing is894

completed in three stages using the specialist ‘Particle Tracking Velocimetry’895

software developed by Maas et al. (1993) and Willneff (2003). Here, particles896

are identified within the exposures from the four cameras by high-pass fil-897

tering, segmentation and weighted-centroid methods. In addition, maximum898

and minimum size criteria are used to limit contamination by noise or large899

objects. The calibration parameters are then used to relate the exposures900

from the four independent cameras, such that the three-dimensional position901

of the particles is yielded. Finally, tracking is done in image- and object-902

space, running the sequence in both directions so that linkages between ad-903

jacent frames are maximised, and the velocity of each of the particles at each904

time-step established by low-pass filtering their trajectories using a moving905

cubic spline (Luthi et al., 2005).906

The experimental measurements are projected from an irregular grid onto907

a regular grid, where only the nearest neighbour of each of the detected908

particles are filled by interpolation (and all others set to zero) to minimise909

noise that arises from gridding. Similarly, if the distance, D, between each910

of the particles and the nearest grid node exceeds 0.5
√
h2
x + h2

y + h2
z (where,911

hx, hy and hz are the spatial discretization in X, Y and Z, respectively),912

49



these grid-points are set to zero also. Note that this algorithm is therefore913

adaptable to processor speed and memory such that, in theory, at an infinite914

resolution, all the particles will fall on the grid exactly.915

6.3 In situ 3D-PTV experiments916

The submersible 3D-PTV system was deployed on the east side of Plymouth917

Sound, Plymouth, UK, on 9 June 2005 in 12 m deep water on an ebb tide918

over a period of about 4 hours. The centre of the sample volume was set at919

the height of 0.64 m above the seabed. Data was recorded in 20 minute runs920

directly to hard disk storage.921

For the following discussion, a right-handed Cartesian co-ordinate sys-922

tem is used, where X is aligned with the along-stream velocity component923

(U), Y is aligned with the cross-stream velocity component (V ), and Z is924

aligned (upwards) with the wall-normal velocity component (W ). Within925

this frame of reference, the zero-mean velocity is established using Reynold’s926

Decomposition, i.e.:927

u ≡ U − 〈U〉, v ≡ V − 〈V 〉, and w ≡ W − 〈W 〉, (22)

where, 〈〉 is the mean of that velocity component.928

Consistent with past in situ 2D-PIV measurements (Nimmo-Smith et al.,929
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2002, 2005), a variety of different conditions were recorded, as characterised930

by different turbulence strengths (I =
√
u2 + v2 + w2). Here, the restoration931

of two different conditions – corresponding to the 5th (I = 0.6065) and the932

85th (I = 1.0929) percentile of the turbulence strengths during an exam-933

ple 10 minute time-series – are discussed. The sparsity of these flows are934

2.14 % and 1.95 % while their characteristic lengths are 9 and 8 grid-points,935

in turn. Therefore, following Equation 11, the critical sparsity equals 1.09 %936

where I = 0.6065 and 1.56 % where I = 1.0929. Since the sparsity of these937

data exceeds the critical sparsity condition, it is expected that a successful938

restoration is possible.939

Three orthogonal cross-sections of these flows are presented in Figure 12A940

to Figure 12C and Figure 12D to Figure 12F. The vectors corresponding to941

the PEFRA input (red) and the PEFRA output (black) are overlapped to942

illustrate the adjustment made. The projection of the convex hull of the943

tracked particles, representing the area where data were recorded, is shaded944

white. The subsequent restoration of these data culminates in the vorticity945

iso-surfaces presented in Figure 13A and Figure 13B. Qualitatively, Figure946

13A exhibits small velocity gradients typical of a low turbulence level and947

Figure 13B is consistent with that expected of a higher turbulence level.948

While these cannot themselves confirm a correct restoration, the excellent949

agreement between the PEFRA input and the PEFRA output for the two950
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different conditions, as well as that of the coherent structures and the tur-951

bulence level (Adrian, 2007), implies the physics of these flows have been952

successfully restored. Specific details of the restoration of Figure 13A and953

Figure 13B are quantified below.954

Figure 14 presents an instantaneous velocity flow field where I = 0.6065.955

Here, 79 particles output by the tracking software survived filtering by mov-956

ing cubic spline (Figure 14A). For the grid used (hx = hy = hz = 1 cm),957

D > 0.87 cm at one of these grid-points (red ‘+’ markers). The interpolation958

of the velocity components onto the remaining grid-points results in a usable959

number of seed-points for the new algorithm of 78 (green ‘+’ markers). After960

the application of PEFRA ∆n and θ are quantified on a particle-by-particle961

basis (Figure 14B). The corresponding velocity flow field that has been mod-962

ified by PEFRA is presented in Figure 14C, where the instantaneous sample963

volume mean velocity components have been subtracted from each of the964

vectors to reveal the three-dimensional turbulence structures. This is similar965

to the pattern of the velocity flow field presented in Figure 14D, where PE-966

FRA was not applied. The cause of this similarity is that the sparsity of the967

data exceeds the critical sparsity condition by a factor of two and therefore968

will not affect the quality of the restoration. This, in turn, is aided by the969

small velocity gradients within the sample volume meaning that both large970

particles and small particles will follow the streamlines alike. Consequently,971
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neither particles increase the noise level substantially.972

Figure 15 presents an instantaneous velocity flow field where I = 1.0929.973

The format of these panels are the same as for the last figure, with 75 unique974

seed points used (Figure 15A). An increase in ∆n and θ on a particle-by-975

particle basis (Figure 15B) is visible and more adjustment seen in the ve-976

locity flow field that was modified by PEFRA (Figure 15C) over that where977

PEFRA was not applied (Figure 15D). The cause of this adjustment is that978

the sparsity of the data is nearer the critical sparsity condition and therefore979

a very small part of this modification is likely to be an error (that increases980

as the sparsity of the data approaches the critical sparsity). This, in turn,981

is compounded by the large velocity gradients within the sample volume, as982

large particles cannot react to these as quickly as small particles and are983

affected by differential shear along their length.984

As a verification of the adjustment made by PEFRA, the image contain-985

ing a record of each of the particles must be examined to establish whether986

individual tracer characteristics (e.g. bubbles, large or heavy particles) are987

responsible for these differences. Figure 16 presents three sections of the988

image, viewed from each of the four different camera angles. The particles989

corresponding to the frame minimum ∆n (0.6798) and frame minimum θ990

(0.0461) are highlighted in Figure 16A and Figure 16B. Although exhibit-991

ing the differences in shape expected of natural particles, these appear to992
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be small in size and therefore the lack of adjustment is in agreement with993

the reasoning that they will not affect the noise level as much as a larger,994

more irregular particle. Accordingly, the particle corresponding to the frame995

maximum ∆n (29.2589) and θ (15.9934) is revealed in Figure 16C to be a996

larger, irregular aggregate typical of a sediment floc. Such particles increase997

the noise level, and therefore need adjustment by PEFRA. Note that this998

connection to individual tracer characteristics is appropriate as there are a999

sufficient number of particles within the sample volume for the algorithm1000

not to fail, while the small distance that separates these from their nearest1001

grid-points (i.e. D < 0.87 cm) ensures that errors linked with interpolation1002

will also be small.1003

This approach also provides a secondary method of validation. In 3D-1004

PTV, individual particles are tracked as they are advected through the three-1005

dimensional sample volume. If a time-series of the instantaneous velocity flow1006

field is examined (Figure 17A, Figure 17B and Figure 17C), it may be seen1007

from the stream ribbons that depict the gridded PEFRA output that the1008

same coherent vortical structure is spatially and temporally coherent, and1009

from the cones that depict the gridded particle positions that these progress1010

through the sample volume. If the PEFRA output were incorrect, then there1011

would be no coherence in the structure over the sequence of snapshots. Addi-1012

tionally, for any single particle moving through the sample volume, a similar1013
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correction (related to the individual tracer characteristics, as discussed with1014

Figure 16) may be expected. Figure 17D and Figure 17E present a time-1015

series the correction of a total of 12 different particles associated with the1016

maximum and minimum adjustments that were made in Figure 17B to the1017

total difference and angle deviation, respectively, over a sequence of 7 frames.1018

These are seen to be both spatially and temporally invariant, giving confi-1019

dence that it is the physical characteristics of the particles that causes the1020

errors that are successfully corrected by PEFRA.1021

To complement the assessment of the instantaneous velocity flow fields1022

presented above, Figure 18 shows a time-series of the particle and turbulence1023

strength and total particle count (Figure 18A and Figure 18B), as well as1024

the corresponding ∆n and θ quantities (Figure 18C and Figure 18D). An1025

increase in the sample volume mean turbulence intensities are generally con-1026

nected to the passage of large coherent motions. This, in turn, is associated1027

with the corresponding increase in ∆n and θ that arises from tracking dif-1028

ficulties when the flow structures are more complex. In extreme instances1029

of swimming particles not advected through the flow field, however, a single1030

tracer can bias both restoration and turbulence statistics. An example of1031

this is presented in Figure 19, where one particle is seen to move very dif-1032

ferently to that of the pattern of the velocity flow field and necessitates a1033

large adjustment by PEFRA (Figure 19A). The examination of the original1034
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image (Figure 19B) reveals that this ‘particle’ has a distinct body and tail, is1035

4.0 mm in length, and swims at a speed of 5.68 cm s−1, or 14.2 body lengths1036

per second. These quantities are consistent with laboratory measurements of1037

the swimming speed of fish larvae (Bellwood and Fisher, 2001). This contam-1038

ination is easily eliminated by removing single outliers using local ∆n and θ1039

anomalies and reprocessing the affected frame, but the example also confirms1040

that PEFRA correctly identifies erroneous biological particles in situ.1041

7 Conclusions1042

A new Physics-Enabled Flow Restoration Algorithm (PEFRA) has been de-1043

veloped for the restoration of gappy and noisy velocity measurements where1044

a standard PTV or PIV laboratory set-up (e.g. concentration/size of the1045

particles tracked) is not possible, and the boundary and initial conditions1046

are not known a priori. Implemented as a black box approach, where no1047

user-background in fluid dynamics is necessary, this is able to restore the1048

physical structure of the flow from gappy and noisy data, in accordance1049

with its hydrodynamical basis. In addition to the restoration of the veloc-1050

ity flow field, PEFRA also estimates the maximum possible deviation of the1051

output from the true flow. A theoretical and numerical assessment of the1052

algorithm sensitivity demonstrates its successful employment under different1053
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flow conditions. When applied to submersible 3D-PTV measurements from1054

the bottom boundary layer of the coastal ocean, it is apparent that using1055

PEFRA is beneficial in processing data collected under difficult conditions,1056

such as where the number (and reliability) of tracer-particles is very sparse.1057
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Appendix A1066

Let p be a divergence-free vector function. Following Vlasenko (2010),1067

q− a∆q = p (23)

(with constant flux boundary conditions applied) will only have a divergence-1068

free solution. Therefore, the vorticity restoration in PCEVD and PEFRA will1069

only have a divergence-free output. The equation for the velocity restoration1070

is similar, however, in PEFRA, p is divergent, since this is not eliminated1071

in ~vs by solenoidal projection. To estimate the divergence remaining in the1072

reconstructed velocity flow field after one iteration, the div operator is applied1073

to both the LHS and the RHS of Equation 8. In doing so, the divergence-free1074

term∇×~ω on the RHS of Equation 8 disappears and the equation transforms1075

to:1076

u−4u = f (24)

where, u = div(~u) and f = div(~vs).1077

Expanding u and f in a trigonometrical Fourier series, and substituting1078

them into Equation 24, achieves:1079

un + 4(πn/L)2un = fn, n = 1, 2, ..., N (25)
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where, un and fn is the amplitude of harmonic n and L is the horizontal scale1080

of the sample volume, V , where the data were recorded. Simple arithmetical1081

manipulation achieves:1082

un =
fn

1 + 4(πn/L)2
(26)

After each iteration, the divergence in ~u reduces by at least a factor of1083

1/(1 + 4(πn/L)2), such that, after iteration i, this is by a factor of 1/(1 +1084

4(πn/L)2)i. Therefore, with an increase in i, the divergence in ~u decreases,1085

becoming negligible after several iterations.1086
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Appendix B1087

The three tables comprising Appendix 7 are a pseudo-code representation of1088

PEFRA, that follows the form of the MATLAB code written by the authors.1089

Table 1 is a wrapper to PEFRA, and referred to as the PEFRA software.1090

It sets the boundary conditions, finds the optimum set of parameters and1091

launches the PEFRA function. The only user input needed in this software1092

is to set the desirable tolerance and the viscosity of the fluid. The software1093

then loads the time series of N velocity measurements (line 4), calibrates1094

the size of Vl (lines 5-12) and determines the optimum set of control param-1095

eters (line 14), initialising the restoration of the measurements in the time1096

series (lines 15-17). Table 2 outlines the PEFRA function, responsible for1097

the interpolation of the data to the empty grid-points in V and extrapolation1098

of the data into Vl (line 5), obtaining the linear flow field (lines 6-13) and1099

performing the final restoration (lines 14-21). Table 3 outlines the PCEVD1100

function, used by the software as external function. The stages of this algo-1101

rithm are the same as discussed in §2 with the only difference being that Step1102

2 (Solenoidal projection) is not applied. The ‘cgs’ function and ‘speye’ oper-1103

ator used are the Conjugate Gradients Squared Method and Sparse identity1104

matrix operator, respectively, as included with a core MATLAB distribu-1105

tion. The algorithm for obtaining the optimum set of control parameters is1106
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presented in Table 4.1107
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1 % - - - !!!! PROGRAM PEFRA !!!! - - -

2

3 % values ν, tol(desirable tolerance) and τ must be specified by user

4 [~U t=1:N ] = get time series % read velocity measurements

5 (~U) = (~U t=1,2) % first pair of vector fields

6 [ν, α, σ, d] = Set default values(~U)

% Initialization with σ = 1.34, d = 1, α = (U−1 + 3ν)−1

7 do

8 [ ~V1] = function PEFRA(~U, ν, α, σ, τ, d)

9 d = d+1

10 [ ~V2] = function PEFRA(~U, ν, α, σ, τ, d)

11 [term] = termination criterion( ~V1, ~V2) % term = true, when ‖ ~V1 − ~V2‖2 < tol

12 While (term criterion = false)

13 % search of optimal (ν, α, σ)

14 [ν, α, σ] = gradient descent(ν, α, σ, ~U, d)

15 for t = 1: N % go through the whole time series

16 [~V ] = function PEFRA( ~U t, ν, α, σ, τ, d)

17 end - - - !!!! END OF PROGRAM PEFRA !!!! - - -

Table (1). A wrapper to PEFRA, which computes boundary conditions,

optimal set of parameters and starts PEFRA for the given time series.
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1 function [~V ] = function PEFRA(~U, ν, α, σ, τ, d)

2

3 Vl = Set Vl(d,size(~U)) % Enlarge ~U by given d, Set volume Vl

4 Interpolate values into empty nodes

5 [~Vl] = Interpolation and Extrapolation(~Vl)

6 do % Get linear flow

7 [ ~V k
l ] = function Linear PCEVD(~Vl, ν, α, σ, τ)

8 % In function Linear PCEVD, function Vector E is substituted with ∂~ωs/∂t,

9 [term] =termination criterion( ~V k
l ,

~V k−1
l ) % term = true, when ‖ ~V k

l −
~V k−1
l ‖2 < tol

10 k = k + 1

11 ~Vl = ~V k
l

12 [~Vl] = inserter(~Vl, ~U) % Inserts nonempty values ~U into ~Vl

13 While (term criterion = false)

14 do

15 [ ~V k] = function PCEVD(~Vl, ν, α, σ, τ)

16 [term] =termination criterion( ~V k
l ,

~V k−1
l )

17 k = k + 1

18 ~Vl = ~V k
l

19 [~Vl] = inserter(~Vl, ~U) % Inserts nonempty values ~U into ~Vl

20 While (term criterion = false)

21 [~Vl] = function PCEVD(~Vl, ν, α, σ, τ) % Final filtering

Table (2). Function PEFRA.
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1 function [~V ] = function PCEVD(~U, ν, α, σ, τ) % Without Step 2

2

3 ~Us = Gaussian filter(~U, σ) % - - - - - - Step 1

4 ~ωs = curl( ~Us)

5 ~e = Vector E( ~Us, ~ωs, τ) % vector E computes LHS of VTE

6

7 ~F = ~ωs − α~e

8 A = speye(Vlg, Vlg)-α ∗ ν*Lap

9 % Lap = Laplace operator in matrix form, Vlg = number of grid nodes in Vl

10 ~ω = cgs(A,~F ) % - - - - - - Step 3

11 % it cgs = Conjugate Gradients Squared Method

12 B = speye(Vlg, Vlg)-Lap

13 ~F2 = curl(~ω)+ ~Us

14 ~V= cgs(B, ~F2) % - - - - - - Step 4

15 ~V= Energy(~U, ~V )% Energy recovery

Table (3). Function PCEVD.

64



1 function [~V ] = gradient decent(~U, ~V , ν, α, σ, τ, d)

2 step = 0.05*σ; k = 1; ∆1 =∞

3 do

4 ∆old = ∆k

5 [~V ] = function PEFRA(~U, ν, α, σ, τ, d)

6 ∆k = delta est(~U, ~V ) compute ∆ using Equation (19)

7 k = k+1

9 while(∆old > ∆k + tolgr or k ≤ 5 ) % by default tolgr = 0.001∆old

10 repeat lines 2-9 for ν and α

11 if (, ν, α, σ, τ) is optimal, do all again until ∆old −∆k < tol

Table (4). The search of optimal set of parameters for PEFRA based on

gradient descent method.
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Figure (1). (A) The hydrodynamical component of noise, extracted from

(B) the distribution of white Gaussian noise.
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Figure (2). The horizontal cross-section of a velocity flow field modelling

turbulence in the wake of a cylinder. (A) True flow, (B) with S = 30%, and

(C) with S = 12.5%. Black dots represent empty-grid points.
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Figure (3). The horizontal cross-section of a velocity flow field modelling

turbulence in the wake of a cylinder. (A) True flow, (B) PEFRA output from

the restoration of Figure 2B, and (C) PEFRA output from the restoration

of Figure 2C.
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Figure (4). The three-dimensional vorticity iso-surface, corresponding to

Figure 3. (A) True flow, (B) PEFRA output from the restoration of Figure

2B, and (C) PEFRA output from the restoration of Figure 2C.
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Figure (5). A vertical cross-section of the velocity flow field modelling

a convection cell. (A) True flow, and (B) sparse velocity flow field where

S = 98%. The black dots represent empty grid-points.
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Figure (6). A vertical cross-section of the velocity flow field modelling a

convection cell. (A) True flow, (B) PEFRA output from the restoration of

Figure 5B. S = 98%, (C) PEFRA output from the restoration of the same

flow which sparsity S = 99% is below critical value (Scritical = 98%).
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Figure (7). The horizontal cross-section of a velocity flow field modelling

turbulence in the wake of a cylinder (Figure 2), reconstructed by PEFRA

with (A) ν = 2, (B) σ = 2 and (C)α = 3.
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Figure (8). (A) The horizontal cross-section of a gappy and noisy ve-

locity flow field modelling turbulence in the wake of a cylinder, and the

corresponding (B) true flow and (C) vorticity iso-surface.
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Figure (9). The horizontal cross-section of a velocity flow field modelling

turbulence in the wake of a cylinder (Figure 8), reconstructed by (A) PE-

FRA, (B) PCEVD and (C) AWI.
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Figure (10). The three dimensional vorticity iso-surface corresponding to

Figure 9, reconstructed by (A) PEFRA, (B) PCEVD and (C) AWI.
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Figure (11). The difference between the true and restored field yields the

vector field shown, obtained from data presented in Figure 8B and Figure

9A.
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Figure (12). Row 1: cross-section of the velocity flow field corresponding

to the minimum turbulence intensities recorded. Row 2: cross-section of

the velocity flow field corresponding to the maximum turbulence intensities

recorded. In each case, the orientation of the slices are indicated by the axes.

The 3D-PTV measurements (red) and post-restoration velocity distribution

(black) are overlapped. The projection of the convex hull of the tracked

particles is shaded white.
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Figure (13). Vorticity iso-surfaces of the PEFRA output for the two con-

ditions presented in Figure 12.
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Figure (14). An instantaneous velocity flow field with a low turbulence

strength: (A) output from the tracking software and gridding process; (B)

The ∆n (vector scale) and θ (vector colour) between the input and out-

put velocity flow field at each of the seed-points; (C) Velocity distribution

(coloured and scaled by the velocity magnitude) corrected by PEFRA; (D)

Velocity distribution (coloured and scaled by the velocity magnitude) not

corrected by PEFRA

.
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Figure (15). An instantaneous velocity flow field with a higher turbulence

strength. The visualisation process is as per Figure 14.
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Figure (16). Three sections from the 3D-PTV image (A to C), viewed from

each of the four different camera angles. The particles nearest the grid-points

corresponding to: (A) the frame-minimum ∆n; (B) the frame-minimum θ;

(C) the frame-maximum ∆n and frame-maximum θ are highlighted.
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Figure (17). (A to C) Time-series of the instantaneous velocity flow field of

a three-dimensional coherent structure at intervals of 1/25 s. Visualisation

procedures are as in Figure and Figure. (D) Time-series of the adjustment

made by PEFRA to 6 particles that represent the 3 maximum and 3 mini-

mum ∆ corrections made in (B) over a sequence of 7 frames. (E) Time-series

of the adjustment made by PEFRA to 6 particles that represent the 3 maxi-

mum and 3 minimum θ corrections made in (B) over a sequence of 7 frames.

.
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Figure (18). Time-series of the sample volume (A) mean turbulence

strength, (B) total particle count, (C) frame-averaged ∆n and (D) frame-

averaged θ. The black lines represent where the velocity distributions shown

in (a) Figure 14, (b) Figure 15 and (c) Figure 19 occurs in the sequence.

88



Figure (19). (A) The ∆n and θ between the input and output velocity flow

field at each of the seed-points. (B) Section from the 3D-PTV image, viewed

from each of the four different camera angles, with the particle responsible

for the single large vector in (A) highlighted.
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