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Global change biology
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Ocean acidification lowers the saturation state of calcium carbonate, decreas-

ing net calcification and compromising the skeletons of organisms such as

corals, molluscs and algae. These calcified structures can protect organisms

from predation and improve access to light, nutrients and dispersive

currents. While some species (such as urchins, corals and mussels) survive

with decreased calcification, they can suffer from inferior mechanical per-

formance. Here, we used cantilever beam theory to test the hypothesis

that decreased calcification would impair the mechanical performance of

the green alga Acetabularia acetabulum along a CO2 gradient created by

volcanic seeps off Vulcano, Italy. Calcification and mechanical properties

declined as calcium carbonate saturation fell; algae at 2283 matm CO2 were

32% less calcified, 40% less stiff and 40% droopier. Moreover, calcification

was not a linear proxy for mechanical performance; stem stiffness decreased

exponentially with reduced calcification. Although calcifying organisms can

tolerate high CO2 conditions, even subtle changes in calcification can cause

dramatic changes in skeletal performance, which may in turn affect key

biotic and abiotic interactions.
1. Introduction
Ocean acidification is lowering the saturation state of calcium carbonate in sea-

water, making shells and skeletons more vulnerable to dissolution and

increasing the energetic costs of calcification [1]. Falling calcium carbonate

saturation levels have the potential to disrupt key organisms globally; cocco-

lithophores and foraminiferans are responsible for 32–80% of the carbon

transported to the ocean depths and in coastal waters, seaweeds can contribute

even more carbonate than corals [2–4]. Calcification affects many aspects of

algal performance and survival, including structural integrity [5], increased

UV protection [6] and protection against herbivory [7] (but see [8]). Many

organisms are less calcified under increased CO2, but the degree to which

loss of calcification affects their mechanical performance is largely unexplored

(but see [9]).

Here, we used volcanic CO2 seeps to assess the effects of chronic exposure to

low calcium carbonate saturation on the calcified green alga Acetabularia
acetabulum that persists across CO2 gradients in the Mediterranean, albeit

with changes in its biomineral composition [10]. Its common name, the mer-

maid’s wineglass, aptly describes its morphology of a cup atop a long

slender stem (figure 1a). The cup is an ephemeral reproductive structure that

produces and releases spores, appearing from February to July. Calcification

enables the thin stem to support the apical cup and extend up from the sub-

strate, where it has improved access to light, nutrients and dispersive
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Figure 1. Characteristic appearance of specimens from the low (white and heavily calcified) and high CO2 sites (green and less calcified) (a). Representative SEM
images of stems showing calcium carbonate corrosion at the high CO2 site (b). Algae collected in the high CO2 site had a lower proportion of calcified tissue in the
whole alga (c), and in the isolated stem (d ) and cup (e). Letters on top of bars represent significantly different treatments, bars are means+ s.e., n ¼ 7 – 12 per
site. (Online version in colour.)
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currents. The alga calcifies by passive precipitation of arago-

nite and amorphous calcium carbonate, a process in which it

exhibits little biological control, creating a skeletal layer on

both the inside and outside of its cell wall [11]. Specifically,

we investigate whether chronic exposure to elevated CO2

reduces calcification and stem bending stiffness (structural

and material) of A. acetabulum.
2. Methods
The rocky north shore of Levante Bay on Vulcano Island (NE Sicily)

has volcanic CO2 seeps that create an aragonite saturation gradient

running parallel to the coast (electronic supplementary material,

figure S1) [12]. We sampled three sites (low, mid and high)

along this 600 m gradient ranging from present day conditions

(418 matm CO2; Varag 3.56) to 2283 matm CO2 (Varag 0.96) as

described in [13] (electronic supplementary material, figure S1

and table S1). Snorkel surveys assessed the presence and appear-

ance of A. acetabulum, and samples were collected for materials

testing as described in the electronic supplementary material.

We applied static cantilever beam theory to each freshly col-

lected stem to quantify the flexural stiffness (EI, N �m2), an

index of the droopiness of the stem structure, and stem stiffness

(E, MPa), an index of the ability of each stem material to resist

load [14] (see the electronic supplementary material, Methods

for details). Briefly, the base was clamped between two horizon-

tal glass slides, suspending the hydrated stem and cup in air.

A weight was hung on the stem to exert a force (F, in N) to deflect

(y, in m) the algal beam 10–15% of its length (L, m). Flexural

stiffness (EI, N �m2), a structural property, was calculated as

EI ¼ FL3

3y
,

where I is the second moment of area (m4, see the electronic

supplementary material, Methods for calculation) measured

from analyses of stem cross sections imaged under a scanning

electron microscope (SEM) to the nearest 1026 m. Stiffness (E),
a material property, was calculated by dividing flexural stiffness

(EI) by the second moment of area (I ).

Our metric of calcification is the proportion calcified (C) of

each algal stem and cup, measured by decalcification in 1 N

HCl following methods in [15] and weighed to the nearest

1025 g. A separate set of samples were stored in 70% ethanol

in seawater prior to analysis with a JEOL 5000 SEM. Percent

cover, proportion calcified, flexural stiffness and stiffness were

compared among sites using statistical methods described in

electronic supplementary material, Methods. Regression analysis

compared linear with nonlinear (exponential and polynomial)

curves to describe the relationship between algal calcification

and stiffness, as described in the electronic supplementary

material, Methods.
3. Results
Surveys in May 2014 revealed that A. acetabulum cover did

not differ among sampling stations (high CO2: 0.56%+
0.41; mid CO2: 0.41%+0.25; low CO2: 0.81%+ 0.20;

table 1). All surveys revealed that these algae ranged in

appearance, from those with bright white cups at the low

CO2 site to green cups at the high CO2 site (figure 1a). No cal-

cified algae were present in the region nearest the seeps,

where aragonite saturation levels fall below 1 [12].

SEM images revealed that all the specimens at the low

CO2 site had an intact sheath of aragonite supporting the

stem, whereas those from the high CO2 site had surface

erosion and deep pits into the skeleton (figure 1b). Specimens

from the high CO2 site were 32% less calcified than those

from the mid and low CO2 sites (figure 1c and table 1). The

same pattern was observed for the proportion calcified of

the isolated algal stems and cups; those at the high CO2

site were 25% and 34% less calcified, respectively (figure1d,e
and table 1). The stem was more calcified than the cup at all

sites (table 1). Because there was no significant difference in

http://rsbl.royalsocietypublishing.org/


Table 1. Statistical summary of percent cover, proportion calcified and mechanical properties of Acetabularia acetabulum collected from three sites representing
high, mid and low (ambient) levels of CO2 off Vulcano, Italy in May 2013.

statistical test F d.f. p

percent cover ANOVA 0.65 2 0.5

proportion calcified

total plant Kruskal – Wallis 17.9 2 ,0.0001

Dunn test

low CO2 – mid CO2 0.05

low CO2 – high CO2 ,0.001

mid CO2 – high CO2 ,0.05

stem ANOVA 14.0 2 ,0.0001

Tukey’s HSD

low CO2 – mid CO2 0.07

low CO2 – high CO2 ,0.001

mid CO2 – high CO2 ,0.01

cup ANOVA 3.2 2 ,0.05

Tukey’s HSD

low CO2 – mid CO2 ,0.01

low CO2 – high CO2 ,0.01

mid CO2 – high CO2 0.9

site � algal region two-way ANOVA

site 10.3 2 ,0.001

region 88.6 1 ,0.0001

site � region 1 2 0.4

mechanical properties

EI (N �m2) Wilcoxon’s signed-rank test ,0.05

I (m4) ANOVA 0.7

E (MPa) Wilcoxon’s signed-rank test ,0.05

calcification versus E regression analysis ,0.001

calcification versus EI regression analysis ,0.05

rsbl.royalsocietypublishing.org
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stem calcification between the low and mid CO2 sites, these

samples were pooled as low CO2 for subsequent mechanical

property analysis.

Algae from the high CO2 site had 40% the flexural stiffness

and material stiffness of those from the low CO2 site (figure 2a,b
and table 1). There was no difference in the second moment of

area (I) among sites (table 1, data not shown). Stiffness of the

algal stem decreased exponentially with decreasing calcification

(figure 2c, r2 ¼ 0.51; p , 0.001, AIC of 2, 391, 461 for the expo-

nential, linear and polynomial model, respectively; table 1 and

electronic supplementary material, tables S2 and S3). A similar

pattern was observed for flexural stiffness (r2 ¼ 0.15, p , 0.05,

table 1, data not shown).
4. Discussion
Acetabularia acetabulum is similar to the brown algae Padina
spp. in that it can persist in areas with unusually high CO2

levels despite depressed net calcification owing to low arago-

nite saturation levels [10,16]. Specimens growing at greater

than 2000 matm CO2 had one-third less calcification than
those from sites with less than 650 matm CO2. Moreover, the

relationship between calcification and material stiffness was

exponential, not linear; even relatively small reductions in cal-

cification led to a disproportionate drop in the ability of the

material to resist a load. Because we observed no difference

in I, this lower material stiffness translates directly to lower

flexural stiffness; the stem becomes droopier in high CO2.

A previous study has shown A. acetabulum growing under

high CO2 lose their orderly aragonite crystalline structure and

shift to amorphous carbonate [10]. We observed pitted imper-

fections on stems at elevated CO2 levels, which could create

microcracks that concentrate stress and lower a material’s

strength and stiffness [17]. Altered material composition and

the pattern of erosion could therefore explain why algae

from the high CO2 site had 40% the material stiffness and flex-

ural stiffness compared with those growing at ambient levels

of CO2.

Loss of material stiffness could have a number of potential

costs for the alga. A less rigid stem droops towards the sea-

floor likely reducing the distance spores can travel away

from the cup [18]. The cup is also photosynthetic [19]; bending

may reorient it away from incident light and increase shading

http://rsbl.royalsocietypublishing.org/
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by neighbours, thereby reducing the scope for growth [20].

While calcification can deter grazers, high CO2 may result in

the loss of grazers [13], so maintaining this defence may

lose its importance and become an energetic burden. There

are also potential benefits to being less stiff. A more flexible

stem allows the alga to reorient in flow, reducing drag and

the likelihood of dislodgement [21], and may aid in gas

exchange as the stem moves back and forth like a pendulum

[22]. Trade-offs between these and other costs and benefits

could explain why we observed no difference in areal abun-

dance at our three sites. Ultimately, further knowledge of

the environmental context and interactions with other organ-

isms is needed to determine the fate of organisms with

reduced skeletal calcification owing to high CO2.

This study underscores the fact that some organisms may

survive ongoing ocean acidification despite reduced calcifica-

tion; this facultative calcification may explain why certain

calcified organisms reappear in the fossil record after mass

extinctions associated with periods of high atmospheric
CO2 [23]. Many ocean acidification studies show reduced cal-

cification at high CO2, but do not examine the consequences

for organismal performance [24]. Our ecomaterial approach

establishes these linkages between calcification and perform-

ance (and ultimately fitness) which are vital for long-term

predictions of how organisms will fare in a high CO2 world.
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