
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

Faculty of Health: Medicine, Dentistry and Human Sciences Peninsula Medical School

2015-05-06

Web-Based Textual Analysis of

Free-Text Patient Experience

Comments From a Survey in Primary

Care

Maramba, Inocencio Daniel

http://hdl.handle.net/10026.1/3666

10.2196/medinform.3783

JMIR Medical Informatics

JMIR Publications Inc.

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.



Original Paper

Web-Based Textual Analysis of Free-Text Patient Experience
Comments From a Survey in Primary Care

Inocencio Daniel Maramba1, BS, MD, MSc; Antoinette Davey1, BA(Hons), MSc, MPhil; Marc N Elliott2, BA, MA,

PhD; Martin Roberts3, BA (Hons),Cert Ed, MSc; Martin Roland4, MA, BM, BCh, DM, FRCGP, FMedSci; Finlay

Brown5, BMBS; Jenni Burt4, BA (Hons), MSc, PhD; Olga Boiko1, MSc, MPhil, PhD; John Campbell1, MBChB, MD,
FRCGP
1Primary Care, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
2RAND Corporation, Santa Monica, CA, United States
3Collaboration for the Advancement of Medical Education Research and Assessment (CAMERA), Peninsula Schools of Medicine and Dentistry,
Plymouth University, Plymouth, United Kingdom
4Institute of Public Health, University of Cambridge, Cambridge, United Kingdom
5Peninsula College of Medicine and Dentistry, Universities of Plymouth and Exeter, Plymouth, United Kingdom

Corresponding Author:
Inocencio Daniel Maramba, BS, MD, MSc
Primary Care
University of Exeter Medical School
University of Exeter
JS01 Smeall Building
St Luke's Campus University of Exeter, Magdalen Road
Exeter, EX1 2LU
United Kingdom
Phone: 44 1392 722895
Fax: 44 1392 722894
Email: I.D.C.Maramba@exeter.ac.uk

Abstract

Background: Open-ended questions eliciting free-text comments have been widely adopted in surveys of patient experience.
Analysis of free text comments can provide deeper or new insight, identify areas for action, and initiate further investigation.
Also, they may be a promising way to progress from documentation of patient experience to achieving quality improvement. The
usual methods of analyzing free-text comments are known to be time and resource intensive. To efficiently deal with a large
amount of free-text, new methods of rapidly summarizing and characterizing the text are being explored.

Objective: The aim of this study was to investigate the feasibility of using freely available Web-based text processing tools
(text clouds, distinctive word extraction, key words in context) for extracting useful information from large amounts of free-text
commentary about patient experience, as an alternative to more resource intensive analytic methods.

Methods: We collected free-text responses to a broad, open-ended question on patients’ experience of primary care in a
cross-sectional postal survey of patients recently consulting doctors in 25 English general practices. We encoded the responses
to text files which were then uploaded to three Web-based textual processing tools. The tools we used were two text cloud creators:
TagCrowd for unigrams, and Many Eyes for bigrams; and Voyant Tools, a Web-based reading tool that can extract distinctive
words and perform Keyword in Context (KWIC) analysis. The association of patients’ experience scores with the occurrence of
certain words was tested with logistic regression analysis. KWIC analysis was also performed to gain insight into the use of a
significant word.

Results: In total, 3426 free-text responses were received from 7721 patients (comment rate: 44.4%). The five most frequent
words in the patients’ comments were “doctor”, “appointment”, “surgery”, “practice”, and “time”. The three most frequent
two-word combinations were “reception staff”, “excellent service”, and “two weeks”. The regression analysis showed that the
occurrence of the word “excellent” in the comments was significantly associated with a better patient experience (OR=1.96,
95%CI=1.63-2.34), while “rude” was significantly associated with a worse experience (OR=0.53, 95%CI=0.46-0.60). The KWIC
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results revealed that 49 of the 78 (63%) occurrences of the word “rude” in the comments were related to receptionists and 17(22%)
were related to doctors.

Conclusions: Web-based text processing tools can extract useful information from free-text comments and the output may serve
as a springboard for further investigation. Text clouds, distinctive words extraction and KWIC analysis show promise in quick
evaluation of unstructured patient feedback. The results are easily understandable, but may require further probing such as KWIC
analysis to establish the context. Future research should explore whether more sophisticated methods of textual analysis (eg,
sentiment analysis, natural language processing) could add additional levels of understanding.

(JMIR Med Inform 2015;3(2):e20)   doi:10.2196/medinform.3783
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Introduction

Patient experience is an important component of quality of
health care, and questionnaires capturing patient experience
have been widely used to provide insight into the quality of
primary health care provision [1-3]. Feedback from survey
results has been proposed as a cost-effective method to support
and facilitate quality improvement [4,5].

In addition to capturing responses via closed questionnaire
items, open-ended questions eliciting free-text comments have
also been widely adopted [6,7] as the exclusive use of
quantitative data limits the potential of surveys to improve
practice [8]. Analysis of free-text comments can provide deeper
or new insight, identify areas for action, and initiate further
investigation [9]. Also, they may be a promising way to progress
from documentation of patient experience to achieving quality
improvement [9,10]. Free-text comments have been evaluated
using methods such as content analysis [11,12], thematic
analysis [9,13,14], and the Holsti Method [15]. However, these
approaches can be resource intensive [6,15,16]. To efficiently
deal with a large amount of free-text, new methods of rapidly
summarizing and characterizing the text are being explored
[17].

Text clouds are visual representation of a body of text, where
the more frequently occurring words appear larger in the
"cloud"[18,19]. The first widespread use of text clouds was “tag
clouds”, which originated as a representation of the "tags" or
keywords that users would assign to a Web resource [20,21].
Tag clouds have been used in health related websites to counter
biased information processing [22].

The same technology that creates tag clouds may also be used
to create word clouds from texts and textual data in general
[23]. Text clouds differ from tag clouds in that their purpose is
predominantly comprehension of the text rather than navigation
of webpages [23]. Text clouds can be used to rapidly summarize
textual data, revealing textual messages in a pictorial form [24].
Text clouds may have utility in supporting searching and
browsing of webpages, as well as impression formation and
recognition/matching of textual data [25].

Web applications such as TagCrowd, Many Eyes, Wordle, and
Tagxedo are commonly used to generate text clouds. The
majority of these are free for nonprofit use.

Text clouds have been used in a wide range of health related
areas, such as examining the differences between various
versions of a General Medical Council document [24] as well
as a UK Government White Paper [26], survey responses on
ehealth [27], survey of pharmacists’ perceptions [28], patients’
use of online message forums [29], and to analyze the responses
of multiple sclerosis sufferers to open-ended questions [30].

Other uses of computerized textual analysis in health include:
automatic analysis of online discussions related to diabetes [31],
content analysis of the free text comments in multi-source
feedback about specialist registrars [32], automatic drug side
effect discovery by analysis of online patient submitted reviews
[33], keyword analysis of an online survey investigating nurses'
perceptions of spirituality and spiritual care [34], and uncovering
signs and symptoms of opiate exposure from comments posted
on YouTube [35].

We aimed to investigate the feasibility of using Web-based
textual analysis for extracting useful information from large
amounts of free-text patient comments, and to identify key
issues or topics that would be revealed by computerized text
processing, using tools that are currently available at no cost
on the Web.

Methods

Participants and Procedure
The data was collected as part of the “Improve” study, a research
program funded by the National Institute for Health Research
(NIHR) [36], exploring various aspects of patient experience
in primary care. One of the projects involved a post-consultation
postal survey using a modified version of the English GP Patient
Survey (GPPS) questionnaire. The GPPS is the largest survey
program of patients registered with an English general practice.
A random sample of patients from each English practice-~2.6
million patients each year in total-is invited to take part in the
survey [37,38]. A particular change made to the GPPS
questionnaire (at the request of participating practices) was the
inclusion of a free-text comments question worded as follows:
"Your [general] practice has asked that we collect any further
comments you would like to make about the service they
provide."

Detailed survey methods have been previously reported in the
paper by Roberts et al [39], which are briefly summarized here.
Following a recent face-to-face consultation between November

JMIR Med Inform 2015 | vol. 3 | iss. 2 | e20 | p.2http://medinform.jmir.org/2015/2/e20/
(page number not for citation purposes)

Maramba et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://dx.doi.org/10.2196/medinform.3783
http://www.w3.org/Style/XSL
http://www.renderx.com/


2011 and June 2013 with one of 105 doctors from 25 practices
in six areas of England (Cornwall, Devon, Bristol, Bedfordshire,
Cambridgeshire, Peterborough, and North London), patients
were sent a questionnaire regarding their experiences of care.
One reminder was sent to nonrespondents. Free-text comments
were anonymized during data entry, extracted from the database
and exported to a text file. Approval for the study was obtained
from the South West 2 Research Ethics Committee on January

28th 2011 (ref: 09/H0202/65). Return of a completed
questionnaire was taken to indicate patient consent to participate
in the study.

Textual Analysis Methods
Free-text comments were analyzed using three Web-based
textual analysis tools: TagCrowd v.10/02/2011 [40], Many Eyes
v.1.0 [41], and Voyant Tools v.1.0 [42], which were chosen for
their ease of use and range of functionalities.

TagCrowd is a Web application for visualizing word frequencies
in any text by creating what is popularly known as a word cloud,
text cloud or tag cloud. We created text clouds based on an
aggregated corpus of free-text patient comments.

We used the following parameters in TagCrowd: (1) frequently
occurring English words and connectives (eg, “a”, “in”, “is”,
“it”, and “you”) were ignored; (2) the tag cloud was created
from the 50 most frequently occurring single words; (3) a
stemming algorithm combined related words (eg, learn, learned,
learning -> learn). The 50 word limit was chosen as it has been
used in previous work using text clouds to examine health
information [24,26]. We also tried generating a 60 word text
cloud but found the result to be difficult to read.

Many Eyes is a Web-based data visualization application created
by IBM [41]. Fundamentally the software incorporates the
capacity to create and view various forms of text visualization
and representation. We chose to use Many Eyes because of its
capability of creating text clouds from the most frequent
two-word combinations. We hypothesized that two-word
combinations might give a more nuanced insight into the
meanings behind the most frequently used words as some of
their associations would be preserved.

Voyant Tools is a Web-based reading and analysis environment
for digital texts. It was created as part of a collaborative project
to develop and theorize text analysis tools and text analysis
rhetoric [42]. In addition to calculating word frequencies and
creating text clouds, Voyant Tools performs other textual
analysis functions, such as identifying distinctive words in the
documents that make up a text corpus. To investigate the validity
of the distinctive words component, we divided the comments
into separate text files depending on whether the patients
reported if they were either “satisfied” or “not satisfied” with
their experience of care. The question was “In general, how
satisfied are you with the care you get at this GP surgery or
health center?”. Patients were given five options to rate their
satisfaction with the practice: “very satisfied”, “fairly satisfied”,
“neither satisfied nor dissatisfied”, “fairly dissatisfied”, and
“very dissatisfied”. In this analysis, the “very satisfied” and
“fairly satisfied” responses were recoded as “satisfied” and the
last three options as “not satisfied”. We used the “distinctive

words” function to identify the words that occurred more
frequently in comments originating from patients who were
“satisfied” and words which occurred more frequently in
comments from patients who were “not satisfied”.

Statistical Analysis
We used logistic regression to investigate the
occurrence/nonoccurrence of words within individual patient
comments. The words were selected from the results of the
distinctive word analysis. We obtained and compared the
frequency of use of the five most distinctive words from the
comments classified as originating from either the “satisfied”
or “not satisfied” patients (ten words in total).

Logistic regression was used to predict the presence or absence
of each of these words in a comment from the standardized
scores (z-scores) of the patients’ responses to the survey question
on satisfaction. We used the following formula for the
standardized scores (z-scores):

z=(x-μ)/(σ)

Two additional models were run for each word, predicting its
presence or absence from the z-scores of the patients’ ratings
of their confidence and trust in the doctor and their ratings of
the doctors’ communication skills. We derived these scores
from the patients’ responses to two other structured questions
that were asked in the questionnaire. These variables were
chosen as we hypothesized that confidence and trust in the
doctor, as well as the communication skills of the doctor could
influence the words used by the patients in their comments.
Statistical analyses were performed in STATA version SE13.1
for Windows. We then plotted the odds ratios for the selected
words against their standardized frequencies. The standardized
frequency is calculated in the same way as a z-score, where x
is the frequency of a particular word, μ is the mean frequency
of all words in the patient comments, and σ is their standard
deviation.

Keyword in Context Analysis
Voyant Tools provides a Keyword in Context (KWIC) function.
KWIC involves searching for a particular keyword in the text
and analyzing its local meaning in relation to a fixed number
of words immediately preceding and following it [43]. KWIC
can help identify underlying connections that are being implied
by the text [44]. KWIC analysis had been used in content
analysis of blogs about female incontinence [45], as well as in
content analysis of audiology service improvement
documentation [46]. The KWIC function in Voyant tools can
quickly display the KWIC for a selected keyword and the results
can be exported to a format suitable for further analysis. For
this analysis we selected 15 words that preceded and followed
the word “rude”. The resulting text was then manually examined
to determine the context of the use of “rude”, and the results
were tabulated.

Results

Textual Analysis Methods
From 7721 respondents, we collected 3426 individual comments
(comment rate: 44.4%). The comments came to a total of
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150,699 words of which 6867 are unique words. The average
length of response is 43.98 words. There are 273 instances of
90 unique, non-English terms (mostly misspellings). Figure 1
shows the text cloud resulting from all the free-text comments
as generated by TagCrowd. The five most frequent words were:
“doctor”, “appointment”, “surgery”, “practice”, and “time”.
Included in the 50 most frequent words were those that have a
positive connotation such as: “helpful” and “excellent”. Words
with a negative connotation, such as “difficult” and “problem”
were also present, but were less frequent.

The two-word text cloud generated by Many Eyes is shown in
Figure 2, displaying the 200 most frequent two-word phrases

(bigrams). The five most frequent bigrams were: “reception
staff”, “excellent service”, “two weeks”, “medical centre” and
“good service”.

Figure 3 shows the results of the Voyant Tools distinctive words
component when applied to comments categorized as originating
from satisfied or dissatisfied patients. The words “surgery”,
”excellent”, “service”, “good”, and “helpful” were the five most
distinctive words from satisfied patients, while the words
“doctor”, “feel “, “appointment”, “rude”, and “symptoms” were
the five most distinctive words in the comments from dissatisfied
patients.

Figure 1. Single-word text cloud created in TagCrowd from all free text comments.
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Figure 2. Two-word text cloud created in Many Eyes.

Figure 3. Word frequency by patient satisfaction.

Statistical Analysis
From the logistic regression models, odds ratios were calculated
for the distinctive words. In this analysis, the odds ratio indicates
the amount by which the odds of a particular word occurring at

least once in a comment are multiplied for every point increase
in the z-score. Table 1 reports the results of the logistic
regression for the 10 distinctive words and the scores for
satisfaction, doctor-patient communication, and confidence and
trust of the patient in the doctor.
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Table 1. Odds ratio (95% CI, R2 value) for the occurrence of distinctive words corresponding to a one standard deviation increase in measures of
patient experience.

Confidence and trust in the doctor

N=3066

OR (CI, R2)

Doctor’s communication skills

N=3062

OR (CI, R2)

Overall satisfaction

N=3134

OR (CI, R2)Word

1.29 (1.16-1.43, .009)1.25 (1.13-1.39, .007)1.39 (1.25-1.54, .02)Service

1.06 (0.97-1.16, .0005)1.09 (0.99-1.2, .001)1.11 (1.02-1.21, .002)Good

1.76 (1.45-2.15, .003)2.09 (1.69-2.58, .09)1.96 (1.63-2.34, .04)Excellent

1.00 (0.93-1.08, .00)0.98 (0.90-1.05, .0001)0.94 (0.88-1.01, .0008)Surgery

1.10 (0.99-1.22, .001)1.24 (1.10-1.40, .006)1.19 (1.07-1.32, .005)Helpful

0.80 (0.74-0.86, .01)0.77 (0.77-0.82, .01)0.67 (0.63-0.72, .04)Appointment

0. 81 (0.76-0.88, .008)0.81 (0.75-0.87, .01)0.76 (0.71-0.81, .02)Doctor

0.77 (0.70-0.85, .01)0.78 (0.71-0.86, .01)0.79 (0. 72-0.87, .01)Feel

0.60 (0.51-0.70, .05)0.63 (0.55-0.74, .04)0.53 (0.46-0.60, .10)Rude

0.64 (0.54-0.77, .03)0.61 (0.52-0.72, .05)0.60 (0.51-0.70, .06)Symptoms

As shown in the table, the regression for the word “excellent”
results in an OR of 1.96, for the bivariate model for patient
satisfaction; that is, an increase of one standard deviation in the
patient satisfaction is associated with almost twice the odds of
the word “excellent” occurring in the comments. There is also
a significant association of the occurrence of “excellent” in the
comments with the z-scores for doctor communication skills
and confidence in the doctor which have odds ratios of 2.09 and
1.76 respectively.

In contrast, the word “rude” has an OR of 0.53 in the bivariate
model for patient satisfaction, indicating that an increase in one
standard deviation in the satisfaction score almost halves the
odds that the word “rude” will appear in the comments. The
OR is also significantly lower for the occurrence of “rude” when
scores for doctor communication skills or confidence in the

doctor are higher. To summarize, the words “service” and
“excellent” had a significant positive association for overall
satisfaction, doctor's communication skills scores, and
confidence and trust in the doctor scores. The word “helpful”
had a significant positive association for overall satisfaction
and doctor’s communication skill scores, but was not significant
for confidence and trust. The words “rude” and “symptoms”
had a significant negative association with all three scores.

Figure 4 shows a plot of the odds ratios for the occurrence of a
word due to a one standard deviation increase in patient
satisfaction score as calculated by the bivariate model. The odds
ratios for ten distinctive words (five most distinctive words each
from satisfied and dissatisfied patients) are plotted against their
standardized frequencies (x-axis).
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Figure 4. Frequency of selected words and the odds ratios (with 95% confidence intervals) associated with the z-scores for satisfaction.

Keywords in Context (KWIC) Analysis
We chose to look at the context of the usage of the word “rude”
using Keyword in Context (KWIC) analysis. We examined 15
words to the left and right of the keyword in question because
we felt that was the minimum amount where we could
satisfactorily establish the context of use of the word in question.
Earlier attempts using 10 words on each side gave results
wherein the context was still ambiguous in some of the
comments. We manually reviewed the output from the KWIC
tool, and established the context of the various instances of the

adjective “rude”. We then constructed a table listing the sources
of the rude behavior and their frequency of mention (Table 2).

Overall, “reception staff” was mentioned in 63% of the
occurrences of the word “rude”, while doctors accounted for
22% of occurrences. Among the patients who were dissatisfied,
the proportion of doctors being associated with occurrences of
the word “rude” increased to 30% compared to 15% in satisfied
patients. Reception staff had a larger proportion of association
with occurrences of the word “rude” among satisfied patients,
72%, than in patients who were dissatisfied: 54%.

Table 2. Keyword in Context (KWIC) analysis for the word “rude”. Frequency of occurrence (% within patient type) by patient satisfaction and subject.

Subject of adjective “rude”

Frequency of occurrence (% within patient type)

TotalPatientStaffReception staffPractice managerNurseDoctorPatients

370 (0)3 (8)20 (54)2 (5)1 (3)11 (30)Not satisfied

411 (2)1 (2)29 (72)1 (2)3 (7)6 (15)Satisfied

781( 1)4 (5)49 (63)3 (4)4 (5)17 (22)All

Discussion

Principal Results
We found the three textual analysis tools easy to use and the
results were generated very quickly, considering the volume of

text that was processed (approximately 150,699 words). The
tools used the standard ASCII text file format, which most data
analysis software can easily export to. The text clouds did give
a concise summary of what the majority of comments were
about, but it was difficult to establish the exact context of the
use of the most frequent words. The distinctive word analysis

JMIR Med Inform 2015 | vol. 3 | iss. 2 | e20 | p.7http://medinform.jmir.org/2015/2/e20/
(page number not for citation purposes)

Maramba et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


gave more insight by showing the different usage of words by
differing sources of comments (satisfied vs dissatisfied patients).
Some of the words in the output of the distinctive word analysis
showed significant associations with satisfaction scores, notably,
“excellent” and “rude”. The word “excellent” was associated
with high patient satisfaction scores. The high frequency of the
two-word phrase “excellent service” showed that patients used
it in relation to their rating of the quality of service they
received.

The word “rude” occurred much more frequently in comments
from dissatisfied patients, suggesting that rude behavior
encountered by patients may trigger dissatisfaction. The KWIC
analysis showed that the word “rude”, was most commonly
associated with the reception staff. Receptionists have been
recognized as crucial members of the primary health care team
[47], and recent work has suggested that the historical perception
of the receptionist as a “dragon behind the desk” has been
getting in the way of understanding the role of receptionists and
thus improving patient care [48]. Also worth noting is that the
proportion of rude actions being attributed to doctors was higher
amongst the patients who were dissatisfied with their practice.
Winsted has identified rudeness from doctors and other forms
of negative behavior as being a “dissatisfier” in medical
encounters [49].

The increased relative frequency of the word “feel” in the
comments from dissatisfied patients might indicate an emotional
reaction being a component of patient dissatisfaction. However,
the word may also be used in other contexts, for instance “I feel
that the doctor should”, as opposed to “I feel disappointed.”
The recurrence of the word “symptoms” in the comments from
dissatisfied patients could indicate a relationship between
dissatisfaction and the perception of poor health, as has been
reported previously by Xiao et al [50]. It may also provide a
comment on the perceived thoroughness of the clinical
encounter. One point of interest is that the words positively
associated with patient satisfaction focus on the system (eg,
“excellent service”), while those associated with dissatisfaction
highlight some of the interpersonal aspects of care (eg, “rude”,
“feel”).

Limitations
While the textual analysis applications are easy to use and give
results quickly, one limitation is that an internet connection is
required for all the software tools to work. However, a
high-speed connection is not necessary, and the software runs
on any modern operating system with an updated Web browser.

When we attempted to identify the messages contained in the
text cloud, we found it difficult to ascertain the significance of
the high frequency of the words “doctor”, “practice”, “surgery”,
“appointment”, and “time”. This is due to the text cloud showing
the words dissociated from their original context, making it
difficult to discern the meaning behind the high frequencies of
these words. This loss of context due to the dissociation of the
words from one another is a major limitation in the interpretation
of the results of the text cloud. When words are separated from
one another, and only their frequencies rather than their
relationships are scrutinized, there is a danger of overlooking
subtle and important nuances and meanings formed by the

synergy of the words [24]. The software tools are also limited
in that they are unable to group together words that are
synonymous, (eg, “doctor”, “dr”, and “gp”), unless the software
is specifically instructed to group these synonyms. In addition
to the individual words, meaning is also conveyed by the
patterns that words form.

Another consequence of dissociation is that our method does
not automatically deal with negation of terms. However, for the
words “good”, “excellent”, “helpful” “rude”, and “symptoms”,
we examined the results of the keyword in context extraction
to see if they contained instances of negation. We were satisfied
that all mentions of those words did not contain instances of
negation. A more sophisticated approach using natural language
processing and machine learning is required to automatically
deal with negation. Sentiment analysis, which is a more
sophisticated textual analysis technique, is one method that
takes the patterns of words, and not just their frequencies, into
account. Research reports are emerging in which sentiment
analysis has been used to examine free text comments from
patients [51-57].

A further limitation of this study is related to the nature of the
question being presented to elicit the comments. The very broad
nature of the request for comments means that the patients’
responses were, almost inevitably, quite varied. The wide
spectrum of issues raised in the comments make them quite
difficult to neatly categorize and characterize. The quality of
information gleaned from patient responses could be improved
by focusing the wording of the request for comments to address
central issues of interest [9]. This focus of interest could also
be coupled to particular quantitative questions, to give insight
into why the patient answered the question in that particular
way.

Further Research
Web-based textual analysis shows promise as a means of rapidly
summarizing the messages contained in free-text comments
from primary care patients. Text clouds are a feasible means of
presenting the most frequent words used in free-text comments
from patients. However, text clouds are limited by an inability
to provide a contextually meaningful summary of the original
corpus of comments. This is commonly encountered when
relying primarily on a simple, mechanistic algorithm, in this
case, word frequency. Words convey meaning by working
together, and there is a synergy created through the combination
of various words [24]. A more accurate way of capturing the
messages contained in the free-text comments by a computer
mediated approach is through KWIC analysis. The use of more
sophisticated technologies, such as machine learning, natural
language processing, neural networks, and sentiment analysis
may address some of these shortcomings. Future research needs
to be done around generating sentence level summarization
using the techniques from the NLP community [58], such as
latent Dirichlet allocation [59,60] . For a wider uptake, a
user-friendly (preferably open source) application needs to be
developed to fill this gap. This would enable practices to make
better use of the large amounts of free-text feedback that they
have collected. In addition, careful attention needs to be paid
to formulating focused and precise requests for comments which
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might be expected to yield feedback that could provide a
substantial basis for computer mediated textual analysis. Finally,
mixed methods approaches as well as sociocybernetics methods
have also been proposed as a way of completing the picture of
patient experience [61,62].

Conclusions
Our study has shown that by using Web-based text processing
tools to extract information from patient comments, we can
discover words that the patients have used in their comments
that have significant associations with quantitative
measurements of patient experience. The logistic regression
revealed strong positive and negative associations between the
satisfaction scores and the occurrence of certain words. KWIC

analysis was then used to examine the context of the uses of
words, which yielded useful information; for example, the
sources of rude behavior that is associated with patient
dissatisfaction. This approach could help practices in formulate
policies to increase patient satisfaction. Sequential use of these
methods may prove useful in documenting how patients’
experience of care changes over time, similar to the method
used by Gill et al in revealing the longitudinal changes in the
document “Good Medical Practice” produced by the General
Medical Council [24]. An approach that examines the key words
in the context is useful in deriving insights from the free-text
comments. Further research is necessary in refining these
methods, so that the results would be comparable to traditional
techniques of content analysis.
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