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and Karmiloff-Smith, 2001; Veneziano, 2001). Word meanings are 
therefore directly related to the child’s experience, and the amount 
of situationally detached information presented to children by their 
caregivers only gradually increases over time (Veneziano, 2001).

While word meanings are partly acquired based on salient per-
ceptual properties (cf. Clark, 1973; Smith et al. 1996), other word 
meanings are rather based on the role of functional affordances of 
objects in interaction (Nelson, 1973; Mandler, 1992). Nelson (1973), 
for instance, shows that 3-years-old children use their sensorimotor 
experiences about the function of a given object for categorization. 
But also linguistic information is taken into account in word mean-
ing learning (cf. Gelman and Heyman, 1999; Bowerman and Choi, 
2001; Bowerman, 2005), That is, children understand objects and 
events that share a linguistic label to share underlying characteristics 
as well (cf. Gelman, 2009).

But also for adult speakers, word meanings are grounded in 
embodied experience to a considerable extent (Bergen, 2005; 
Glenberg, 2007). For instance, distinctions between verbs of grasp-
ing are motivated by different hand postures and subtle differences 
in motor control involved in the actions denoted by a particular 
motion verb (Bailey et al., 1997). Different motor patterns associ-
ated with different action verbs were also found to be reflected in 
differences in location in the motor cortex (Pulvermüller et al., 
2001). Furthermore, language understanding was found to interfere 
with motor actions if the meaning of the respective sentence evokes 
a motion in the opposite direction than necessary to carry out the 
action (Glenberg and Kaschak, 2002).

Further evidence for the embodiment of word meanings in 
adult language comes from the study of cognitive metaphor and 
image schemata (e.g. Lakoff and Johnson, 1999) and lexical seman-
tics (Wierzbicka, 1985). These studies draw attention to mean-
ings that are shaped by an implicit understanding of dimensions 
and functions of the human body. To address word learning from 

IntroductIon
Human language is a formidable communication system. It allows 
us to describe the world around us and exchange our thoughts. 
Nevertheless, despite many decades of studies and research, a com-
plete description of its functions and operations is still missing. 
In particular, the fundamental mechanisms that allow humans to 
associate meanings to words are still a matter of ongoing debate 
among scientists.

For instance, Siskind (2001) suggests three major language 
functions allowing humans: (i) to describe what they perceive, (ii) 
to ask others to perform a certain action and (iii) to engage in 
conversation. At the core of all three functions there is our ability 
to understand the meanings that words represent. Especially the 
first two language functions require that language be grounded 
in perception and action processes. Especially in the description 
of dynamic processes and specific relations between objects and 
object properties, the process of grounding language in perception 
and actions means that, when we describe a given scene or we ask 
someone to perform a certain action, the words used must be linked 
with physical entities in the scene or in actions that can be either 
observed or desired.

In order to understand the link by means of which words are 
connected with objects and actions, it may be useful to look into 
studies on child language acquisition.

Children acquire word meanings in direct interaction with the 
environment. Before they begin to learn words, they go through 
a long phase of perceptual (visual, haptical, motor, interactional, 
etc.) exploration of objects in their environment. Interactions with 
preverbal infants and young children are furthermore anchored in 
the immediate context; that is, interactions are highly situated in 
the here and now and allow the child to make direct connections 
between perceptually available objects and events and linguistic 
utterances (e.g. Snow, 1977; Hatch, 1983; Sachs, 1983; Karmiloff 
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a grounded language learning perspective is thus supported by 
research from both child language acquisition and human language 
understanding.

Several computational models have been proposed to study 
communication and language in cognitive systems, such as robots 
and simulated agents (Cangelosi and Parisi, 2002; Lyon et al., 2007). 
On the one hand there are models of language focusing on the 
internal characteristics of the individual agent in which the lexi-
con is constructed based on a self-referential symbolic system. The 
cognitive agents only possess a series of abstract symbols used for 
both communication and for representing meanings (e.g. Kirby, 
2001). These models are subject to the symbol grounding problem 
(Harnad, 1990). That is, symbols are self-referential entities that 
require the interpretation of an external experimenter to identify 
the referential meaning of the lexical items.

On the other hand, there are grounded approaches to modeling 
language, in which linguistic abilities are developed through the 
direct interaction between the cognitive agents and the physical 
world they interact with. In these models, the external world plays 
an essential role in shaping the language used by these cognitive 
systems. Language is therefore grounded in the cognitive and 
sensorimotor knowledge of the agents (Steels, 2003). As pointed 
out by Cangelosi and Riga (2006), the grounding of language in 
autonomous cognitive systems requires a direct grounding of the 
agent’s basic lexicon. This assumes the ability to link perceptual 
(and internal) representations to symbols.

In this modeling paradigm, artificial agents are usually asked 
to associate features of objects to words, where this association is 
self-organized by the agents itself. An agent discovers autonomously 
certain features that are peculiar to a given object and learns from a 
model, which is usually another agent’s, to associate the feature to an 
arbitrary word. Some of these models aim to study the emergence 
of shared lexicons through biological and cultural evolution mecha-
nisms (Cangelosi and Parisi, 2002). In these models, a population 
of cognitive agents that are able to interact with the physical entities 
in the environment and to construct a sensorimotor representation 
of it, is initialized to use random languages. Within this population, 
agents converge toward the use of a shared lexicon after an iterative 
process of communication and language games.

The paradigm of language games for language evolution and 
acquisition has been used extensively by Luc Steels (Steels, 2001). 
For example, Steels and collaborators (Steels et al., 2002; Steels, 
2003) use hybrid population of robots, internet agents and humans 
engaged in language games. Agents are in turn embodied into 
two “talking head” robots to play language games. In this experi-
ment it has been demonstrated that a shared lexicon gradually 
emerges to describe a world made of colored shapes. This model 
has been also extended to study the emergence of communication 
between humans and robots using the SONY AIBO robot (Steels 
and Kaplan, 2000). Steels’s approach is characterized by his focus 
on the naming of perceptual categories and by his emphasis on 
the importance of social mechanisms in the grounding and emer-
gence of language.

Other models focus on the developmental factors that favor the 
acquisition of language by investigating the role of internal motiva-
tion and active exploratory behavior. Oudeyer and Kaplan (2006) 
show that an intrinsic motivation toward the experience of novel 

situations (i.e. situations that increase the chance of an agent to 
learn new environmental and communicational features) lead the 
agent to autonomously focus the attention toward vocal commu-
nicative and language features (see also Oudeyer et al. (2007), on a 
related topic, and Kaplan et al. (2008) for a compelling review and 
discussion of computational models of language acquisition).

From a different perspective, Marocco et al. (2003) use evolu-
tionary robotics for the self-organization of simple lexicons in a 
group of simulated robots. Agents first acquire an ability to manipu-
late objects (e.g. to touch spheres or to avoid cubes). Subsequently, 
they are allowed to communicate with each other. Populations of 
agents are able to evolve a shared lexicon to name the objects and 
the actions being performed on them.

In other robotics models of language grounding, robotic 
agents acquire a lexicon through interaction with human users. 
For example, Roy et al. (2003) have developed an architecture that 
provides perceptual, procedural and affordance representations 
for grounding the meaning of words in conversational robots. 
Sugita and Tani (2005) use a mobile robot that follows human 
instructions based on combinations of five basic commands.  
Yu (2005) focuses on the combination of word learning and cat-
egory acquisition to show improvements in both word-to-world 
mapping and perceptual categorization. This suggests a unified 
view of lexical and category learning in an integrative framework. 
Another experiment on human-robot communication has been 
carried out by Dominey (2005). This particular study provides 
insight into a developmental and evolutionary transition from 
idiom-like holophrases to progressively more abstract grammati-
cal constructions.

All of the models presented before adopt the general and wide-
spread assumption that tends to define nouns as words associated to 
physical (or even abstract) entities, and verbs as words that represent 
actions (or, in general, events that happen in time). This practice 
reflects findings in cognitive (e.g. Langacker, 2008) and functional 
(e.g. Halliday, 1985) linguistics that nouns are prototypically asso-
ciated with objects and verbs prototypically correspond to events 
and actions. Grounded computational models so far mainly focus 
on grounding nouns on sensorimotor object representations and 
verbs on actions that are directly performed by the agent (e.g. Sugita 
and Tani, 2005). In Marocco et al. (2003), for example, a simulated 
robotic arm was evolved for the ability to discriminate between a 
sphere and a cube and then to associate different words (nouns) 
to the two objects. The discrimination was based on a physical 
exploration of the characteristics of the two shapes. Therefore, the 
meaning of the nouns was entirely grounded in the sensorimotor 
dynamic that allowed the discrimination of the two objects. The 
same procedure has been applied to evolve two different words 
associated to two different actions performed by the agents. The 
actions were “avoid” the cube and “touch” the sphere. In this case, 
the agents were asked to discriminate the objects and perform one 
of the two actions with respect to the shape. Given the action-word 
association, these types of words were defined as verbs.

In a different experiment, Cangelosi and Riga (2006) developed 
a robot able to imitate the actions of another robot (the teacher). 
The robot was also able to learn from the model an association 
between actions and words, such as close or open arms. Actions 
were related to motor patterns performed by the robot and words 
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represent distances between two interacting physical entities, their 
velocity, and the observed transfer of energy after the interaction. 
Bodies are represented as circles of different colors that interact in 
various ways. Also in this case, as before, the system is purely based 
on the passive elaboration of a visual scene.

Following the same path, the aim of the present research is to 
study how a humanoid robot can learn to understand the mean-
ing of action words (i.e. words that represent dynamical events 
that happen in time) by physically acting on the environment and 
linking the effects of its own actions with the behavior observed on 
the objects before and after the action. This will allow the agent to 
give an interpretation of a given scene that develops in time, and is 
grounded on its own bodily actions and sensorimotor coordination. 
Object manipulation, therefore, is the central concept behind the 
research. We believe that an active manipulation of the object is an 
opportunity to test the reaction of that object. Imagine the robot 
hits a ball. As an effect of the hit, the ball will move. Therefore, the 
dynamics of this event can be characterized by the action performed 
by the robot and by the sequence of the activation of its sensors 
during the movement and the physical interaction with the ball. The 
movement of the ball can be viewed as an instantaneous contact 
between the ball and the hand of the robot followed by a displace-
ment of the same ball in the space, away from the hand. In such a 
case, the integration of the contact sensors with vision information 
can easily characterize this situation as different from another situ-
ation in which, e.g., the robot moves a cube by sliding it over the 
surface of the desk. In this case, although there is movement, i.e. the 
object displaces in space, the event is characterized by a continuous 
contact of the hand with the cube. On the other hand, the fact that 
different objects react differently to the same movement can also 
characterize a particular property of the object itself. Therefore, 
rolling and sliding are action words that pertain to objects that can 
be understood by the agent on the basis of the same sensorimotor 
information used to characterize its own actions.

Such types of interactions can be easily regarded as affordances 
of the objects for the robot. In fact, the robot learns the effects of 
its own movement on a given object. Several studies have already 
addressed affordances on robotics models in a similar way, where 
a robot learns a specific type of affordances using information 
provided by sensory states. These models have been mainly used 
in relation with imitation tasks. For example, in Fitzpatrick et al. 
(2003) a robot learns the motion dynamics of different objects 
after having pushed them. Subsequently, it uses the sensorimotor 
information to recognize actions performed by others and to rep-
licate the observed motion. Similarly, Kozima et al. (2002) created 
a system that enables a robot to imitate actions driven by the effects 
of that actions (a more general solution on learning affordances is 
presented in Stoytchev, 2005; Fritz et al., 2006; Dogar et al., 2007). 
Montesano et al. (2008) created a humanoid robot controller that 
uses a Bayesian network for learning object affordances and showed 
the benefit of the model in imitation games. The model presented 
here, although inspired by a similar approach, does not have an 
explicit interest in imitation, and also the actions repertoire is sim-
plified in comparison to those models. However, we believe that 
this simplification helps to better highlight and understand the 
sensorimotor grounding of action words, which is the primarily 
scientific question behind this work. This consideration, of course, 

were directly associated to those motor patterns. Also in this case, 
therefore, the grounding of a verb is strictly related to an action 
that is entirely under the motor control of the agent.

Actions, however, are not restricted to agents. Actions can also 
be produced by physical objects in the environment, for example. 
Only few studies focus on the acquisition of actions words that are 
connected to properties of objects, such as rolling for a ball, or on 
the acquisition of words that express a dynamic and force-varied 
interaction with objects, such as hit or move. The application range 
of these two words can be extremely complex and may vary con-
siderably depending on the physical properties of the object. In the 
case of the rolling ball, moving the ball can be “similar” to hitting 
the ball, because the ball has the property to roll after being hit; 
therefore it will move by itself. On the contrary, hitting a solid cube 
can produce a different effect from moving the cube by sliding it 
on the surface of a desk.

Other research in this area has mostly focused on disembod-
ied models that aim to ground the meaning of action words by 
the elaboration of a visual scene acquired by a fixed camera that 
observes that scene. In Siskind (2001) the computational model 
is a computer program called LEONARD that analyzes a visual 
scene and is able to recognize different events, such as pick-up, 
put-down, move or assemble. As pointed out before, these actions 
are not directly performed by an agent, but it is the computational 
system that observes a visual scene through a fixed camera that is 
able to reconstruct the meaning. The visual scene typically includes 
a human hand that perform actions on objects of different colors. 
For instance, the pick-up scene is represented by a hand that picks 
up a red cube originally positioned on top of a green cube. The 
model is based on the principle of force dynamics (Talmy, 1988) and 
on a specifically designed event logic system, to which in later work 
(Fern et al., 2002) a learning system has been added. This enabled 
the computational model to learn and describe events based on a 
general temporal logic.

A similar approach to the identification of dynamic events has 
been taken by Steels and Baillie (2003). In their models, two arti-
ficial agents embedded in two movable cameras negotiate a self-
organized lexicon based on dynamical events observed through 
the cameras. However, the ability of the agents to recognize and 
communicate about dynamic events is provided by the interaction 
between two different ways of using information: A bottom-up and 
a top-down direction of information flow. The bottom-up system, 
based on vision, provides information about the actual visual scene 
and a set of layered software detectors that allow to detect changes 
in the scene, such as movements of contacts between objects at 
a lower level, and series of changes at a upper level in order to 
identify complex dynamics. The top-down system, on the other 
hand, provides a sort of internal guidance for the vision system 
that allows, for example, to focus on particular aspects of the visual 
scene. Thus, the agent’s representation of the world is constituted 
by the interaction between the two processes, encoded in a kind 
of lisp-type logic, and by sharing its communicative interaction 
with the other agent.

Cannon and Cohen (2010) and Cohen et al. (2005) ground the 
meaning of action words on the physical interactions between two 
bodies. In their system, verbs like push, hit and chase are represented 
as pathways through a metric space, defined as maps for verbs, that 
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the robot has been specifically designed to act in a cognitive robot-
ics domain, where the robotic platform is a physical entity that 
allows researchers to test hypothetic cognitive models in the real 
world. The robot is 90-cm tall and has a weight of 23 kg. iCub 
has 53 degrees of freedom distributed as follow: seven for each 
arm, six for each leg, three on the waist, three dedicated to eyes 
movements and three for the neck. In addition, it has two complex 
hands with 9 degrees of freedom each. For its size, the iCub is the 
most complete humanoid robot currently being designed, in terms 
of kinematic complexity. In contrast to similarly sized humanoid 
platforms, the eyes can also move. All motors and sensors are 
accessible through a centralized control system that provides an 
interface between the robot the and the external world. The inter-
face is implemented on a PC104 board located in the head of the 
robot. For vision, the robot is equipped with two cameras with 
VGA resolution and 30-fps speed that provide color images (for 
additional technical details about the robot body and head see 
Beira et al., 2006; Tsagarakis et al., 2007). Every communication 
with the robots uses an Ethernet network protocol. The integrated 
software platform to control all the sensors and actuators is called 
YARP (Metta et al., 2006).

In our experiment we used a carefully designed software simula-
tion of the iCub robot that uses ODE (Open Dynamic Engine) to 
simulate the dynamics of the physical interactions (for details about 
the simulator see Tikhanoff et al., 2008). The YARP platform is used 
as the main communication tool for both the simulator and the real 
robot. The simulator has been designed to test the robot’s software 
application in a safe, yet realistic, environment. In particular, the 
simulator can be used to safely test potentially dangerous motor 
commands that might damage the physical structure of the robot. 
Moreover, for the specific requirement of the model, we had to use 
tactile sensors in the hand that are currently not implemented on 
the real robot available to us.

For the present study we used a sub-set of all the degrees 
of freedom and only one of the two cameras. In particular, for 
manipulation purpose we only use a single joint on the shoulder 
that allows the robot to reach and move an object placed on a desk 
in front of it. The encoder value of this joint is also used as prop-
rioceptive sensory feedback. When the hand gets in contact with 
an object, a binary tactile sensor placed on the hand is activated. 
Its activation value provides a coarse tactile sensory feedback. 
This tactile sensor is activated whatever part of the hand gets in 
contact with the object. The vision of the robot is provided by a 
vision system that acts on the left camera of the robot that auto-
matically fixate the object in the environment, regardless of the 
action currently performed by the robot. The encoder values of 
two neck joints, that represent the position of the head, express the 
position of the object in the visual field relative to the robot. The 
position of the head is then treated as visual input of the system 
(Yamashita and Tani, 2008). The vision system, in addition to the 
object relative position in the visual field, also provides coarse 
information about the shape of the object. A parameter of the 
shape, which we call roundness, is calculated from the image of 
the object acquired by the robot and its value is added as input 
to the neural network controller. The robot automatically gener-
ates a movement when it receives a target joint angle as input. 
The movement corresponds to the target angle and is generated 

does not prevent possible extensions of the model towards more 
applied scenarios that involve imitation tasks, as well as tasks that 
involve a form of linguistic instruction provided by another agent, 
which might be a human or another robot.

To approach the research issue related to the grounding of action 
words in sensorimotor coordination, we present a simulated robotic 
model equipped with a neural control system. By manipulating the 
environment, the robot can learn the association between certain 
objects, located on a desk in front of him, and some physical prop-
erty of such objects. In the next section, a description of the robot 
used in the experiment, the environment and the neural control 
system will be described. Subsequently, the results of the experiment 
will be present and discussed.

MaterIals and Methods
The robotic model used for the experiments is a simulation of 
the iCub humanoid robot (Tikhanoff et al., 2008) controlled by 
a recurrent artificial neural network. The robot can interact with 
objects located on a desk in front of it, and its neural control system 
is trained through a supervised learning algorithm, namely the 
“Back-Propagation-Through-Time” algorithm (Rumelhart and 
McClelland, 1986). In the following sections we provide details 
on the robotic platform utilized, the environment and on the robot-
object interaction. Moreover, a description of the neural network 
that acts as a control system and of the training procedure will 
be presented.

the sIMulated huManoId robots and the envIronMent
For the experiments a simulated model of the iCub (Figure 1) has 
been used, a small-size humanoid robot, designed and produced by 
the European project “Robotcub” (robotcub.org; Metta et al. 2008). 
The iCub dimensions are similar to that of 2.5-year-old child and 

Figure 1 | The humanoid robot iCub.



Frontiers in Neurorobotics www.frontiersin.org May 2010 | Volume 4 | Article 7 | 5

Marocco et al. Grounding action words

by means a pre-programmed proportional-integral-derivative 
(PID) controller. The sensorimotor state of the robot is updated 
every 500 ms.

The environment of the experiment consists in a desk placed 
in front of the robot. On the desk, one out of three objects is posi-
tioned on a given location. These objects are a sphere, a box, and a 
cylinder placed vertically on the desk. The sphere has a diameter of 
12 cm. The three dimensions of the cube are 12 cm on a side and 
7 cm on the other two sides. The cylinder has a diameter of 4 cm 
and 25 cm tall. Roundness values calculated for the three object are 
∼0.87, ∼0.71, and ∼0.43 for the sphere, the cube, and the cylinder 
respectively. Each of these objects has different physical properties 
associated to the shape and the physical connection to the desk. 
The sphere, when touched by the robot hand, will roll away on a 
direction that directly depends on the hand direction and on the 
applied force. The cube, when touched with the same force and 
direction as the ball, will slide on the desk while in contact with the 
robot hand. The cylinder, which was tightly attached to the desk, 
will not move and will prevent the robot to accomplish its desired 
movement. Therefore, the three objects represent three different 
properties, namely, the property to roll, to slide and to resist.

structure and traInIng of the neural control systeM
The neural system that controls the robot is a fully connected recur-
rent neural network with 10 hidden units (Figure 2), eight input 
units and eight output units. Activations of input units are divided 
into five sensory units and three linguistic units. Three of the five 
sensory units are set to the encoder values of the three corresponding 
joints (shoulder, pan-neck and tilt-neck), scaled between 0 and 1. 
Those input units provide information about joints current angles. 
The fourth sensory unit encodes the value of the binary tactile sen-
sor. This is set to either 0 or 1, depending on the contact of the hand 
with the object. The fifth sensory unit encodes the value of the 
roundness. The three linguistic input units represent a local binary 
encoding of the three objects. The activation value of those units 
can vary with respect to the experimental phase, that is, training or 
testing phase, respectively. Activations of hidden and output units 
y

i
 are calculated at a discrete time, by passing the net input u

i
 to the 

logistic function, as it is described in Eqs 1 and 2:

u y w ki j ij i
j

n

= ⋅ −∑
 

(1)

y
ei ui

=
− −

1

1  
(2)

where w
ij
 is the synaptic weight that connects unit i with unit j and 

k
i
 is the bias of unit i. The output units encode the values of the 

input at the time step t + 1. That is, the output state corresponds 
to the next input state of the network. The network is trained to 
predict its own input. As we will see in the next section, during the 
testing phase, the predicted input state is also used to provide target 
angles for the actuators.

The structure of the experiment is divided into two phases: in 
the first phase the network is trained to predict its own subsequent 
sensorimotor state. In the second phase the network is tested on 
the robot, in interaction with the environment.

Figure 2 | The neural network that acts as a control system for the robot. 
(A) Network activation structure during the training phase (closed-loop condition). 
The output at time t with a small portion of the recorded input is used for setting 
the input at time t + 1. See the text for details. (B) Network activation structure 
during the testing phase (open-loop condition). The input is taken by the state of 
the sensors and the output is used to set the target angle of the actuators.
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where w
ij
 is the synaptic weight that connects unit i with unit j, 

y
i
 is the activation of unit j, η is the learning rate and α is the 

momentum.
The sequences to learn, in our case, are the sensorimotor contin-

gencies produced by the robot’s manipulation of the object present 
in the environment. In order to produce those sequences, the robot 
is placed in front of the desk together with one of the three objects 
placed on the desk, at a given position. At this point, the shoulder 
joint of the robot is activated so as to move the right arm from the 
side of the robot to the front. By performing this movement, the 
hand of the robot moves towards the object and gets in contact 
with it. At the same time, the automatic vision routing turns the 
head in the direction of the object and keeps the object in the visual 
field by moving the neck joints (Figure 3). During this activity, we 
recorded the values of shoulder and neck joint encoders, as well as 
the state of the tactile sensors and the roundness value calculated by 
the image processing system. Each sequence consists of 30 recorded 
patterns that represent 15 s of activity by the robot. The graphs in 
Figure 4 show the activations of the sensory units when the robot is 
interacting with the three objects. The information provided to the 
robot, although extremely simple, is sufficient to allow the neural 
controller to correctly separate the three conditions.

The input pattern of every sequence is completed by adding 
the linguistic input in the following form: [1 0 0] when the robot 
is interacting with the sphere, [0 1 0] when the robot is  interacting 
with the cube, and [0 0 1] when the robot is interacting with the 
cylinder. The linguistic input is explicitly presented only at the 
beginning of the sequence. For the rest of the 30 patterns that 
form the training sequence, the linguistic input is self-generated 
by the network. It should be noted that at this time we deliberately 
avoid to give a semantic interpretation of the linguistic input and 
output. So far the “words” chosen as input and, consequently, as 
output simply correlate with the interaction with different objects. 

Training phase
For training the neural network we used the Back-Propagation-
Through-Time-algorithm (BPTT), which is typically used to train 
neural network with recurrent nodes (Rumelhart and McClelland, 
1986). This algorithm allows a neural network to learn the dynami-
cal sequences of input-output patterns as they develop in time. 
Since we are interested in the dynamic and time dependent proc-
esses of the robot-object interaction, an algorithm that allows to 
take into account dynamic events is more suitable than the standard 
Back-Propagation algorithm (Rumelhart and McClelland, 1986). 
For a detailed description of the BPTT algorithm, in addition to 
Rumelhart and McClelland (1986) see also Werbos (1990). The 
main difference between a standard Back-Propagation algorithm 
and the BPTT is that, in the latter case the training set consists in 
a series of input-output sequences, rather than in a single input-
output pattern. The BPTT allows the robot to learn sequences of 
actions. The goal of the learning process is to find optimal values 
of synaptic weights that minimize the error E, defined as the error 
between the teaching sequences and the output sequences produced 
by the network. The error function E is calculated as follows:

E y y y y
S

i t s i t s i t s i t s
it

= − − −∑ ∑∑
∈

(( )( ( ))), , , , , , , ,∗ 1 2

output  
(3)

where y
i,t,s*

 is the desired activation value of the output unit i at 
time t for the sequence s and y

i,t,s
 is the actual activation of the 

same unit produced by the neural network, calculated using Eqs 
1 and 2.

During the training phase, synaptic weights at learning step n + 1 
are updated using the error δ

i
 (Rumelhart and McClelland, 1986) 

calculated at the previous learning step (n), that in turn depend on 
the error E, according to the following equation:

∆ ∆w n y w nij i j ij( ) ( )+ = +1 ηδ α  
(4)

Figure 3 | From left to right, a small sample of the 30 step sequences 
produced for training the network. (A) An example sequence produced by the 
manipulation of a sphere and (B) the same movement towards a cube. The two 
objects produce different interactions because of their different physical 

properties. The sequence produced by the interaction with the fixed cylinder is 
not shown, given the fact that the robot, after the contact with the cylinder does 
not move anymore. The tracking behavior is due to the automatic visual routine 
embedded in the control system.
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a problem, the real input s fed to the network (i.e. the input actually 
used to calculate the performance), is produced by adding to the 
self-generated input s+ a small fraction of the recorded input s*, 
which represents the real input the network should receive. The 
same is done for the linguistic input m, with the only difference that 
m* is the linguistic activation fixed by the experimenter:

s s s= ⋅ + ⋅ +0 1 0 9. .∗

m m m= ⋅ + ⋅ +0 1 0 9. .∗

The parameters used for training the network used in the fol-
lowing experiments are: Learning rate 0.2; momentum 0.3; initial 
synaptic weights value between −0.01 and 0.01.

To assure the robustness of the results obtained, 10 replications 
with different initial random synaptic weights were carried out.

Testing phase

The second part of the experiment is the phase in which the net-
work is tested in open-loop. That is, the network is connected to 
the robot and the input is directly produced by the actual values 
of its encoders (Figure 2B), while the output is used to determine 
the target angles of the joint for moving the arm. During this phase 
the robot is placed in front of the desk as before and an object is 
placed on the desk in front of the robot. By activating the robot, this 
time the movement of the arm is commanded by the output of the 
neural network, while the other outputs represent the prediction 
of the next sensory state.

In this set-up, the only joint that can be directly actuated by 
the network is the joint on the shoulder, which causes the move-
ment of the arm toward the object. The joints controlling the neck 
are still commanded by the visual routine that tracks the object 
in the environment. However, the most interesting part in this 
experiment is the behavior of the linguistic output. As we will show 
and discuss in the next session, the interaction between action 
and language exploited during the training, allows us to better 
understand what type of sensorimotor contingencies are associ-
ated with certain linguistic patterns and how certain categories 
of action words might be directly grounded in the sensorimotor 
states of an agent.

Their semantic referent, i.e., whether they refer to objects (sphere, 
cube, cylinder) or to actions associated with the objects (roll, 
slide, fix), will be discussed later on. For this reason we refer to 
the linguistic output of the neural network as linguistic_output_1 
[1 0 0], linguistic_output_2 [0 1 0] and linguistic_output_3 [0 0 1], 
corresponding to interactions with the sphere, the cube and the 
cylinder, respectively.

From these values we produce the sequences, one for each 
object, by setting the sequence element t + 1 as target output for 
the previous element t. In this way, starting from the first pattern, 
the network has to produce the next pattern. Then, the produced 
pattern is given as input to the network, which produces the next 
pattern and so on. This iteration is executed until the end of the 
sequence is reached.

The complete training set for the present work includes six 
sequences. Three of these are created in the way just described 
above, while the other three use the same set of data as before except 
for the roundness values which is set to 0. The linguistic input is 
presents in both cases.

During this process, the error produced by the network with 
respect to the target outputs is accumulated for all three sequences. 
The synaptic weights are updated according to the global error 
only after all the sequences have been presented. Therefore, accord-
ing to the traditional back-propagation notation, the neural net-
work is trained in “batch” mode and not “on-line” (for technical 
details about the algorithm adopted in this paper and a discus-
sion about computational differences between “batch” and “on-
line” training mode in recurrent neural networks see Williams and 
Zipser, 1995).

To facilitate the training process and to produce a neural net-
work capable of better predicting the sequences, we used a training 
modality known as closed-loop training (Yamashita and Tani, 2008) 
depicted in Figure 2A. In this type of training procedure the input 
given to the network is the actual output produced by the network 
itself at the previous time cycle. However, by doing this, the error 
can accumulate on the input, especially at the beginning of the 
training process, given that the input is self-generated by a network 
with random synaptic weights. For this reason, the effect on the 
learning performance can be heavily affected and can prevent the 
algorithm to converge to a close to optimal solution. To avoid such 

Figure 4 | Sensor activations recorded during the 15-s interactions 
between the robot and the object on the desk. Curves represent activations 
of the shoulder joint, the pan and tilt movements of the neck, the touch sensors 

and the roundness of the object calculated by the vision system over time. Refer 
to the legend on the graph. The thin dashed vertical line in the three graphs 
represents the moment in which the robot’s arm touches the object.
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generalIzatIon under dIfferent condItIons
For this analysis each of the 10 controllers were tested under four 
different conditions for 100 trials. The number of successful trials 
was recorded, i.e. the cases in which, at the end of 30 sensorimotor 
cycles of the neural network controlling the robot, the activation 
of the output units were the same as the desired output. Given the 
variation of the initial condition, a deviation of ±0.1 was allowed 
for every output unit. It should be noted that, given a certain degree 
of the error, the robot is not able to accomplish the task at all. The 
four testing conditions are as follows:

Ling. A condition identical to that of the training process, with the 
linguistic input provided at the beginning of the trial.

No Ling – In this condition the linguistic input is set to zero during 
the whole duration of the trial. The other parameters are the 
same of the training process.

No Ling – Pos variation. A condition in which the linguistic input 
is set to zero during the whole duration of the trial. In addi-
tion, at every trial the position of the object randomly varies 
within a range of ±10 cm.

During the testing phase some parameters of the set-up used 
for the training have been changed, such as the presence of the 
linguistic input and the size and position of objects on the desk. 
In the next section we will describe the tests performed and the 
results obtained.

results
After the training of all the 10 neural networks, we obtained 10 
controllers that were able to predict the next sensory input state 
on the basis of the current input state. Previous tests shown that 
an error E smaller that 0.001 produces neural controllers capable 
of performing the task with a good degree of generalization. To 
avoid the overtraining of the network, we decided to set the learn-
ing threshold to 0.001. Below this threshold the training process is 
considered completed. Given this threshold, the 10 replications have 
been carried out by stopping the training as soon as E was smaller 
than the threshold. Figure 5, left, shows the average error calculated 
for the 10 replications during the training process. Figure 5, right, 
shows the average epochs that occurred until an error smaller than 
0.001 for the 10 replications was reached. From the integration of 
the two data sets we can see that after about 28.000 epochs the error 
is already smaller than 0.001 for the majority of the replications, 
while for some of them additional epochs are required. The fastest 
replication reached the error threshold in 22695 epochs and the 
slowest reached the threshold in 42254 epochs.

The trained neural controllers were tested systematically using 
the open-loop procedure connecting the controller with the sim-
ulated robot. A test of the robot under the same conditions as 
experienced during the training process (i.e. with linguistic input 
and with/without roundness information) showed that the neural 
controllers were perfectly trained and were able to move the robot 
and emit the correct outputs in all training conditions (see condi-
tion Ling in Figure 6 for a similar test performed with roundness 
information. Results without roundness are not shown since the 
networks were able to reproduce the recorded sequence with a 
negligible error). After this first test, more comprehensive gener-
alization tests were performed in order to estimate the capability 
of the controller to cope with different conditions.

Figure 5 | Left: error graph of the average of 10 replications during the training process. The x axis shows the number of epochs and the y axis shows the 
mean error. Right: Average epochs required to reach the error threshold, which was set to 0.001 (E < 0.001). Error bar represents Standard deviation.

Figure 6 | results of 100 trials from four different testing conditions. 
Standard deviation is represented as error bar. See text for details.
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As we stated above, so far we cannot properly link an observed 
linguistic activation with a particular word. In fact, we still ignore 
the specific relation between words and meanings created by the 
controller. Therefore, in the following tests and analyzes we will 
refer to the linguistic output in very general terms. We will apply 
a specific word associated to the linguistic output only when the 
relation between them and their referents will be clarified. The 
notation for linguistic output identification, already introduced 
in Section “Training phase”, is the following:

linguistic_output_1: correlates with the robot-sphere interaction;
linguistic_output_2: correlates with the robot-cube interaction;
linguistic_output_3, correlates with the robot-cylinder interaction.

Given the differences among the neural controllers in terms of 
synaptic weights and overall dynamics, the following additional 
analyzes were carried out using a single controller. The controller 
of replication 2 was chosen because it demonstrated to be the best 
one in the previous generalisation tests.

Tests on linguistic outputs
In this test, the robot was placed in front of an object without pro-
viding any linguistic input yet with roundness information. During 
the interaction of the robot with the object, the activations of the 
linguistic output have been recorded for the usual 30 sensorimo-
tor cycles allowed (15 s). As it is shown in Figure 7 (left column), 
linguistic activations vary greatly as the interaction unfolds in time, 
depending on the object. In the case of the sphere, the roundness 
provides information that immediately permits linguistic_output_1 
activation, as correctly required by the task. However, after about 
3 s, the hand of the robot gets in contact with the object, and 
for a while the linguistic output changes by activating linguistic_
output_2, which correlates with robot interacting with the cube. 
However, as the interaction continues and the sphere rolls away, the 
robot is then able to produce again the right output pattern after 
some time. In the graph we can also observe the time dynamics 
of the roundness prediction, which is affected, like the linguistic 
output, by the overall sensorimotor state of the robot. The perceived 
roundness for the sphere is about 0.9, which is correctly predicted 
by the robot at the beginning. Nevertheless, after the activation of 
the touch sensor, the prediction switches from “sphere” (∼0.87) to 
“cube” (∼0.71), although in input the robot still receive the correct 
roundness. Finally, the roundness measure returns to the right value 
after the sphere begins to roll away from the hand.

The dynamics that we observe while the robot is interacting with 
the cube and the cylinder is very similar. Roundness information, 
in fact, allows an early recognition of the type of object and the 
production of the correct linguistic output pattern, i.e., linguis-
tic_output_2 for the robot-cube interaction and linguistic_output_3 
for the robot-cylinder interaction. In case of the cube, after the 
contact of the robot with the object, the correct linguistic_output_2 
is triggered and it remains active for the rest of the time. Only a 
minor activation of the linguistic_output_3, related to the cylinder, 
is observed just after the contact. As for the cylinder, the correct 
output is emitted by the star and after a brief interference of the 
linguistic_output_1, the correct output, i.e. linguistic_output_3, is 
activated and maintained.

No Ling – Size variation. A condition in which the linguistic input 
is set to zero during the whole duration of the trial. In addi-
tion, at every trial the global size of the object is randomly sca-
led within a range of ±20%. For instance, the diameter of the 
sphere can vary at each trial between a minimum of 9.6 cm 
and maximum of 14.4 cm.

Information about the roundness was available in all 
conditions.

Results of the tests are depicted in Figure 6. The conditions 
Ling and No Ling interestingly are exactly the same for all 10 rep-
lications. It should be noted that the neural networks have been 
trained always with linguistic input. This means that the natural 
generalization capability of the network is able the reconstruct the 
input pattern, including the linguistic input, without any loss in 
terms of performance. In the No Ling condition, the robot is placed 
in front of the object and performs its movement toward it without 
any linguistic input; still, it is able to produce the correct linguistic 
pattern after the interaction with the object. This result indicates 
that the controller can recall and produce the appropriate linguistic 
output only on the basis of its overall sensory state. Pos variation 
produces slightly worse results and we observe a certain variation 
among the replications, as indicated by the standard deviation on 
the graph. It is interesting to note that the worst replication is the 
one which took more epochs to converge, whilst the best is the 
one that converged in the fewer number of epochs. Besides the 
performance decrement, the majority of the replications shows 
a very high generalization capability, even though in the allowed 
range of the variation. The same can be observed for the Size vari-
ation condition, although the results appear slightly better. This 
can be explained by the fact that the roundness information is, 
to a certain extent, independent from size variations. Therefore, 
roundness provides a reliable source of information even in cases 
of unexpected sensory-motor input in comparison with that expe-
rienced during training. This effect has been observed in connec-
tion with larger objects.

The tests presented above demonstrate that the neural controller 
is capable to produce the correct behavior in terms of joint activa-
tions and prediction of sensorimotor states, as well as in terms of 
linguistic activations. Moreover, the correct behavior is performed 
also without providing a linguistic input. This is also true when the 
set-up is manipulated to a certain extent.

Nevertheless, this kind of test does not allow us to understand 
what exactly the information is that is used by the controller to 
connect an object with its corresponding linguistic label. In order 
to clarify this issue, additional tests have been performed.

understandIng the MeanIng of words
Further tests and analyzes were carried out in order to better under-
stand the meaning associated to the linguistic labels, which we can 
imagine as a kind of simplified words, and the relation between 
the sensorimotor processes triggered by robot-object interactions 
and these arbitrarily provided words. To analyse the word–meaning 
mappings that emerge from the current experimental set-up, the 
dynamics of the activations of the linguistic units and the roundness 
prediction have been analysed under several conditions in which 
additional input modifications are explored.



Frontiers in Neurorobotics www.frontiersin.org May 2010 | Volume 4 | Article 7 | 10

Marocco et al. Grounding action words

above, the correct output is suppressed and the one correspond-
ing to the cube is activated. During the following interaction, lin-
guistic_output_2 is active to a smaller extent than in the case with 
roundness in the input (see corresponding graph on the left col-
umn). This effect is probably due to a kind of interaction between 
the roundness value provided in the input and the linguistic output 
activation. Roundness values for “sphere” and “cube” are indeed 
very close. When the robot is interacting with the cube, given the 
stereotypic behavior of the controller at the beginning, it activates 
linguistic_output_1. However, after the contact the cube slides on 
the surface and the correct output is produced. For the cylinder, 

Figure 7 (right column) shows the same type of analysis as above 
for a condition in which neither linguistic input nor roundness 
information are available. This case is much more complex than 
before because at the beginning of the movement no external infor-
mation is available. Not surprisingly, the dynamics is also different. 
When the robot is interacting with the sphere, a presumably stere-
otypic behavior of the chosen neural controller produces, at the 
beginning of the movement and without any other information 
about the object available, a default linguistic output activation, 
which is the correct one by chance, that is, linguistic_output_1. 
After the robot touches the sphere, similar to what we observed 

Figure 7 | Activations of linguistic output units during the 15-s 
interaction between the robot and the object on the desk. The graph 
shows linguistic_output_1 (interaction with the sphere), linguistic_output_2 
(interaction with the cube), linguistic_output_3 (interaction with the fixed 

cylinder), and the roundness prediction. Refer to the legend on the graph. The 
thin dashed vertical line in the three graphs represents the moment in which 
the robot’s arm touches the object. Left: Condition with roundness information 
in the input. Right: condition without roundness information in the input.
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These additional results suggest that the linguistic label are 
grounded in complex sensorimotor dynamics instead of in the vis-
ual features provided by the roundness parameter, despite the fact 
that roundness information is provided. Specifically, the grounding 
of the linguistic output can be identified with the dynamics associ-
ated to the physical properties of an object.

dIscussIon and conclusIon
What has been shown so far indicates that the robot is able to extract 
the sensorimotor contingency of a particular interaction with an 
object and to reproduce its dynamics by acting on the environment. 
Moreover, in the absence of linguistic input, the robot is capable of 
associating a certain temporal sensorimotor dynamics to the learnt 
linguistic labels. Thus, in the lights of the results provided by the 
tests, it is now time to ask whether the linguistic label learnt are 
associated to the objects themselves or whether the label refers to 
the physical properties of the objects.

The results presented in Section “Tests on linguistic outputs” 
on the activation of the linguistic output during robot-object 
interaction, clearly show that the robot is able to correctly cat-
egorize and produce the correct label for a given object both 
in absence of the corresponding linguistic input and round-
ness information. Moreover, the generalization tests presented 
in Section “Generalization tests on linguistic outputs” indicate 
that, irrespective of the roundness information provided and in 
absence of linguistic input, the linguistic output correlates with 
the sensorimotor dynamics produced by the specific physical 
property of the object. Therefore, such results suggest that the 
linguistic labels are based on an entire sensorimotor dynamics, 
and not on the visual features provided by the roundness param-
eter. Specifically, the grounding is exactly the dynamics associated 
to that physical property.

This interpretation is corroborated by other works that con-
nect active perception with language emergence. For example, in 
Marocco et al. (2003) (a study based on the previous work on 
active perception by Nolfi and Marocco, 2002) the evolved robot 
showed a stereotypic behavior towards the object, which allowed 
the robot to discover the physical properties of that object and then 
to categorize it to apply the correct linguistic label. The case we are 
presenting here is similar to Marocco et al. (2003) in many respects. 
The iCub robot interacts with the objects in a very stereotypic way 
and the stratagem by means of which the typology of the object is 
discovered is based on an active sensorimotor strategy which, given 
the same exploratory behavior, produces different outcomes. We 
can therefore speculate that the grounding of the linguistic label is 
not the actual object, but rather the physical property that allows 
the object (the patient in this case), when manipulated in a certain 
way, to produce a specific sensorimotor contingency in the agent.

At this point of the discussion we can definitely affirm that, 
given the present experimental set-up, the meaning of the labels 
are not associated to a static representation of the object, but to 
its dynamical properties. It seems, therefore, that the label that we 
called linguistic_output_1 ([1 0 0]), is related to the rolling of an 
object, or in general, to those objects that, when touched, move 
away from the agent. A corresponding tentative word for this can be 
“the rolling one”, more than “sphere”. Similarly, linguistic_output_2 
([0 1 0]) seems to be connected with the affordance of an object 

the same interference as before between linguistic_output_2 and 
linguistic_output_3 is observed, but after few seconds the robot 
produces the correct output.

Generalization tests on linguistic outputs
Results presented so far clearly show that the linguistic input is 
tightly connected with the sensorimotor dynamics produced by 
the interaction with the object. The tests demonstrate the ability of 
the robot to correctly categorize the objects, also in the absence of 
direct linguist input, and to produce the corresponding linguistic 
label only on the bases of its sensorimotor state. From this point 
of view, the observed interaction between the flow of the senso-
rimotor states and the activations of the linguistic units leads to 
the hypothesis that the whole sensorimotor state, rather than a 
single elements such as, e.g., the roundness, is at the core of the 
controller’s ability to categorize the events correctly. In this section, 
therefore, we performed an additional test to verify this hypothesis 
and to investigate what the real meaning is on which the linguistic 
labels are based.

The test consists of three different conditions in which the robot 
was tested. Again, no linguistic input is provided. The three condi-
tions are the following:

(a) A cylinder very similar to the one used throughout the trai-
ning process is placed in front of the robot. This time the 
cylinder is not attached to the table and is free to move. Its 
starting orientation is parallel to the starting position of the 
robot arm. Thus, it can roll away when the robot touches it 
(Figure 8A right). The roundness perceived by the robot is the 
same as for the cylinder.

(b) The same cylinder is placed on the table and free to move. The 
starting orientation is perpendicular to the robot arm. That is, 
it is rotated 90° with respect to the previous condition. In this 
position it can easily slide but not roll (Figure 8B right).

(c)  A cube is fixed to the table. The perceived roundness is the 
same of the cube, as during the training, but the cube cannot 
move if touched (Figure 8C right).

Results are shown in Figure 8. Figure 8A (left) represents the 
interaction with rolling cylinder, showing that when the cylinder 
is touched, it starts to roll away. Given the specific sensorimotor 
dynamics produced by the cylinder, the related pattern dynam-
ics of the linguistic output are very similar to that already seen 
for the robot-sphere interaction. We may thus conclude that the 
robot categorizes and labels the rolling cylinder as it catego-
rizes the sphere by activating linguistic_input_1. Similarly, the 
interaction with the sliding cylinder (Figure 8B left), given the 
fact that it slides and produces the same sensorimotor patterns 
previously seen for the cube, induces the controller to activate 
linguistic_input_2. Finally, Figure 8C (left) depicts the linguistic 
output activations while the robot interacts with the fixed cube. 
Even though its dimension and perceived roundness are exactly 
the same as for the cube used during training, the sensorimo-
tor contingency produced by the interaction is identical to that 
experienced with the cylinder in the training. Not surprisingly, 
the linguistic activation is the same observed for the cylinder in 
the previous test: linguistic_input_3.
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these properties are represented by the control system in terms of 
the effects produced by the robot itself and dependent on a self-
generated movement.

Thus, it appears that in the interpretation of a given dynamic, 
the robot learns some property related to the force dynamics 
between objects. This is consistent with Talmy’s (1988) cogni-
tive linguistic analysis of the grounding of language in tempo-
ral events and, implicitly, of the grounding of action words that 
describe those events. This concept was explicitly used by Siskind 
in its software model LEONARD, briefly described in the intro-
duction. However, the main difference between our model and 
Siskind’s work is that in Siskind (2001) the force dynamic rules 

that can be moved by the agent, for instance, sliding on a surface. 
Therefore, an appropriate word for this can be “the sliding one” or 
“the one that slides”, rather than “cube”. This, indeed, is activated 
by an object that needs a continuous force applied to it in order 
to move. Linguistic_output_3 ([0 0 1]), on the other hand, is con-
nected to a fixed object, that is, to an object that does not change its 
position in space when touched. A word counterpart for this can be 
“the fixed one”. It is interesting to note that “fixed” is not an action. 
However, it is exactly the property of being fixed (not movable) 
that, by preventing the robot to accomplish its intended movement, 
produces the specific sensorimotor contingency that allows the 
robot controller to identify that particular physical  property. All 

Figure 8 | right column: The three novel conditions used for testing the 
generalization of the linguistic output units. In the case depicted in (A) the 
cylinder can roll away after being touched by the robot arm. In (B) the cylinder 
tends to slide while in contact with the arm, and in (C) the cube is fixed on 
the table and cannot be moved by the robot. Left column: Activations of 
linguistic output units during the 15-s interaction between the robot and the 

object on the desk. The graph shows linguistic_output_1 (interaction with the 
rolling cylinder), linguistic_output_2 (interaction with the sliding cylinder), 
linguistic_output_3 (interaction with the fixed cube), and the roundness 
prediction. Refer to the legend in the graph. The thin dashed vertical line in the 
three graphs represents the moment in which the robot’s arm begins to touch 
the object.
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capacity to generalize across them. It appears, however, that this 
kind of generalization is more abstract than seeing the common-
alities among cats or chairs. It involves generalizing the common 
roles that different categories of objects play (for example, animals 
pick-up objects, artifacts get picked up) and this rather abstract 
understanding forms the basis on which more detailed, concrete 
understanding of who does what to whom will develop. (Mandler, 
1999, p. 305)

Moreover, the research presented is also in line with the body 
of theoretical and empirical evidence grown in the past years in 
support of the role of embodiment and sensorimotor factors in 
language use (e.g. Barsalou, 1999; Glenberg and Robertson, 2000; 
Feldman and Narayanan, 2004; Gallese and Lakoff, 2005; Pecher and 
Zwaan, 2005), yet with different perspective. Barsalou (1999), for 
example, focuses on modality-specific perceptual and simulation 
processes within the Perceptual Symbol System hypothesis, based 
on experiences of sensorimotor, proprioceptive and introspective 
events, and also dynamic mental representations of object inter-
action. Glenberg and collaborators (e.g. Glenberg and Kaschak, 
2002) focus on the action and embodiment component of language 
by demonstrating the existence of action-sentence compatibility 
effects that support an embodied theory of meaning that relates 
the meaning of sentences to human action and motor affordances. 
The shared aim of these studies is to demonstrate that language 
processes cannot be fully understood without taking into account 
an embodied perspective.

Thus, the principal contribution of the results presented with 
respect to the current literature concerns the computational fea-
sibility of grounding of action words directly in the way in which 
an agent interacts with the environment and manipulates it. The 
dynamical properties of external objects, such as being movable, 
or being fixed, are embodied and directly represented in the way in 
which the agent experiences the reactions produced from its own, 
self-generated, active manipulation of the world on its perceptual 
system. This mechanism has two related, desired side-effects: (a) a 
word in the input produces the activation of a whole sensorimotor 
process and, conversely, (b) the experience of a given sensorimotor 
contingency recalls in the robot controller the associated word. 
Therefore, the model shows that meanings related to dynami-
cal properties of external objects, such as roll or fix, can be fully 
grounded in the embodied experience of the robot. From this 
perspective the activity performed by the robot itself is the key 
that allows to uncover the properties of the objects by means of 
physical interactions.

These findings confirm and extend the large body of work on 
computational and robotics models that focuses on the senso-
rimotor bases of language acquisition. In particular, as we have 
highlighted in the introduction, this is partly due to shifting the 
attention from actions that are performed by the agent, or the robot, 
to actions or properties that relate to external objects.

We conclude by acknowledging that this work, as we have already 
mentioned in the Section “Materials and Methods”, has been car-
ried out in simulation. We do not claim here that all the work done 
can be easily transferred onto the real robot, as we are aware of 
the difference between simulation and reality. There are, indeed, 
many reasons that justify this choice. The most important of them 
concerns the practical difficulties of carrying out a large number of 

are explicitly embedded in the perceptual system, as well as the 
events that the system can recognize, e.g. PICK-UP or MOVE. In 
a later work (Fern et al., 2002), Siskind added a learning rule to 
his system that allows LEONARD to learn any kind of dynamic 
events that are shown to the camera. It should be noted, however, 
that basic force dynamics rules, called states by the authors, such 
as CONTACTS, SUPPORTS or ATTACHED are still predefined 
by the experimenter. This new model allows LEONARD to learn 
the temporal sequences of states observed in a dynamic event. 
Therefore, any kind of events can be recognized on the basis of 
predefined force dynamics states.

A similar consideration can be raised with respect to the work 
by Baillie and Steels (2003). In their model, events are based on a 
set of predefined detectors in interaction with a kind of top-down 
reasoning system that allows an agent to create an internal repre-
sentation of the external world. This internal world, in turn, is the 
actual grounding of the utterance produced.

In contrast, in our model the robot is able to capture the essence 
of certain interactions between objects (i.e. its hand and the object 
of the desk) and to create an embodied representation of those 
interactions autonomously. Moreover, the embodied knowledge 
is implemented in the neural control system as specific dynamical 
patterns of sensorimotor contingencies and does not require an 
explicit internal representation of the external word.

Yet the results presented here are in line with the work by Cohen 
et al. (2005) and Cannon and Cohen (2010) on the grounding of 
action words. In their work, they refer to the concept of energy 
transfer between agents, which is to some extent connected to the 
idea of the force dynamics. In our model, we can analyse the way 
in which the robot categorizes the events in terms of Cannon and 
Cohen concepts. However, the main difference is that in their work 
they only refer to visual stimuli, while in our model the grounding 
of the action words we discovered is deeply rooted in the integration 
of many sensor stimuli, both visual and proprioceptive.

From a linguistic perspective, the results obtained are also use-
ful for understanding the acquisition of word meanings by young 
children. That is, the sensorimotor experience of the robot, rather 
than visual properties of the objects or the linguistic labels used, 
constitutes the basis for categorization. The word learning by the 
robot, therefore, depends on the way in which an object behaves 
when it is manipulated under certain conditions, rather than on 
its appearance. The results obtained thus support approaches to 
word meaning that focus on the role of functional affordances of 
objects in interaction (Clark, 1973; Nelson, 1973; Mandler, 1992). 
In particular, the meaning of “ball” is not defined on the basis of 
its perceptual appearance (its roundness in our case) but on its 
property to roll. “Sphere” and “cylinder”, in contrast, are grouped 
into the same category because of the action-based sensorimotor 
categories created by the robot during the training. Thus, what we 
found the robot to do corresponds to what Mandler (1999, p. 305) 
suggests for infant word learning:

Infants are attracted by and interested in moving objects from 
birth. Moving objects are the basis of events, which is what infants 
attend to, and, according to my theory, it is attended events that 
get analysed into the first conceptual meanings (Mandler, 1992). 
Understanding events is absolutely central to conceptual life, and 
it would be surprising indeed if even infants did not have the 
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