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Abstract

Improved Composability of Software Components through Parallel Hard-
ware Platforms for In-Car Multimedia Systems

Andreas Knirsch

Recent years have witnessed a significant change to vehicular user interfaces (UI). This is
the result of increased functionality, triggered by the continuous proliferation of vehicular
software and computer systems. The UI represents the integration point that must fulfil
particular requirements for usability despite the increased functionality. A concurrent
present trend is the substitution of federated systems with integrated architectures. The
steadily rising number of interacting functional components and the increasing integration
density implies a growing complexity that has an effect on system development. This
evolution raises demands for concepts that aid the composition of such complex and
interactive embedded software systems, operated within safety critical environments.

This thesis explores the requirements related to composability of software components,
based on the example of In-Car Multimedia (ICM). This thesis proposes a novel software
architecture that provides an integration path for next-generation ICM. The investigation
begins with an examination of characteristics, existing frameworks and applied practice
regarding the development and composition of ICM systems. To this end, constructive
aspects are identified as potential means for improving composability of independently
developed software components that differ in criticality, temporal and computational char-
acteristics.

This research examines the feasibility of partitioning software components by exploitation
of parallel hardware architectures. Experimental evaluations demonstrate the applicabil-
ity of encapsulated scheduling domains. These are achieved through the utilisation of
multiple technologies that complement each other and provide different levels of con-
tainment, while featuring efficient communication to preserve adequate interoperability.
In spite of allocating dedicated computational resources to software components, certain
resources are still shared and require concurrent access. Particular attention has been
paid to management of concurrent access to shared resources to consider the software
components’ individual criticality and derived priority. A software based resource arbiter
is specified and evaluated to improve the system’s determinism. Within the context of
automotive interactive systems, the UI is of vital importance, as it must conceal inher-
ent complexity to minimise driver distraction. Therefore, the architecture is enhanced
with a UI compositing infrastructure to facilitate implementation of a homogenous and
comprehensive look and feel despite the segregation of functionality.

The core elements of the novel architecture are validated both individually and in combi-
nation through a proof-of-concept prototype. The proposed integral architecture supports
the development and in particular the integration of mixed-critical and interactive sys-
tems.
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Introduction and overview

“Computer Science is the study and management of complexity” (E. W. Dijkstra)

Not too many years ago, driving a car was very different from what it is today. This
is the result of a change in various aspects that affect what driving a car encompasses,
including increased engine power, improved roads, increased traffic density and other fea-
tures. However, this is also caused by the introduction of computer systems into vehicles
with their effects on active and passive safety, fuel economy, comfort, information and the
occupants’ entertainment. Although mechanical engineering evolved as well, it did not
change as fundamentally within the last decades. Advances in the electrical/electronic
(E/E) system have initiated changes within the entire automotive industry. The first
automotive microcontroller was introduced in 1977 for the engine spark timing of the GM
Oldsmobile Tornado (Charette, 2009). Today, the microcontroller constitute a significant
part of both the automotive development and the user experience (UX), while simulta-
neously affecting all vehicular components. Electronics and software are key innovation
factors within the automotive domain and have significant impact on the customer’s pur-
chasing decision, although it is possible that the user does not even take notice of the
amount of software-controlled functionality (Manfred Broy et al., 2007; Pretschner et al.,
2007; Manfred Broy et al., 2011b; Huth and Spahr, 2011; Schneiderman, 2013). This
implies that the advances in E/E and mechanical engineering are jointly responsible for
the economic success of car manufacturers. Hence, all players of the automotive industry
are forced to keep up with the pace of innovation in order to improve or maintain their
market position.

A distinctive example for the evolution, tangible even for occupants who are not very
interested in the technology behind it, is the In-Vehicle Infotainment (IVI) system and
its impact on both the dashboard and rear seat1. Infotainment combines information

1Nowadays, the rear seats are equipped with dedicated entertainment facilities, also referred to as
rear seat entertainment (RSE).
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and entertainment into an integrated presentation with the intention of increasing the
occupants’ comfort (i.e. entertainment during long rides). Two decades ago, IVI systems
were non-existent with entertainment provided by an optional FM radio and a cassette or
CD player, built into the vehicle’s centre-console using standardised connectors and slot
dimensions (ISO 7736:84, 1984), enabling the vendor-independent integration of aftermar-
ket devices. The user interface (ECU) are also integrated to provide a UI to adjust the air
conditioning or seat position. Whereas formerly, the car radio may have distracted the
driver from steering the car safely through traffic, today’s systems’ functional complexity
might lead to the assumption that driving the car distracts from operating the IVI system.
However, we have already become used to those systems in a similar manner to the use
of mobile phones. Our cognitive and capacitive abilities adapted to the steady improve-
ment with every new generation of automobiles. Moreover, we have become dependent
on those systems. This may relate to a dependence on the built-in route navigation or
due to having to use hands-free telephony due to legal regulations, or because we desire
to make use of our complete audio library synchronized with other devices, as is already
state-of-the-art for mobile consumer electronics (CE). This process of socialisation is not
reversible (Göschel, 2012).

Moreover, the evolution is on-going still: the connectivity provisioned by IVI systems
using wireless access networks enables new functionality, affecting the capabilities of next-
generation advanced driver assistance systems (ADAS), as proposed by Bolle (2011). He
details this with improvements and functionalities such as intelligent speed adaptation
and cruise control by incorporating ‘real-time’ traffic information and up-to-date map
data, with respect to passenger safety and fuel economy.

The evolution of IVI systems correlates with their increasing functional size. The time
necessary for the development has decreased in accordance with the shrinking time span
before one generation of an IVI system is being replaced with the following one. Addition-
ally, the functionality is interdependent, which leads to a significant growth of complexity.
This is countered by the use of modularisation into distinct hard- and software compo-
nents, following the paradigm of separation of concerns. Components are multi-sourced,
developed and maintained separately following a high division of labour. This requires
well-defined functional interfaces, following the parallel development of the mechanical
components (i.e. assembly units).

Manfred Broy et al. (2007) estimates that the Original Equipment Manufacturer (OEM;
i.e. car manufacturer) in the automotive domain creates only 25% of the value. Their
focus is set on the vehicle’s engine, integration of subsystems and marketing the brand.
The result is (a) an increasing number of automotive control units (i.e. ECUs) for mod-
ularization at the hardware level to achieve physical separation and (b) a challenging
integration at the software level. The former (a) has a negative effect on the per-unit
costs, energy efficiency and weight, and hence car manufacturers are interested in de-
creasing the number of ECUs (Monot et al., 2012). The latter (b) has gained significance
due to the fact that a functional description of inter-component interfaces is not sufficient:
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software components integrated in a common hardware platform share available hardware
resources with a potential negative effect on the temporal behaviour due to unintended
adverse interference. Currently applied approaches for integrating multi-sourced software
components with different temporal characteristics into a common hardware platform do
not effectively cope with the steadily increasing functionalities while providing a means to
ensure adequate compatibility in combination with the necessary interoperability. This is
detailed in Chapter 3.

Compatibility is a quality related to software components to characterise their coexistence
without adverse mutual interference. Further, interoperability complements compatibility
and implies the ability of software components to work constructively with one another.
The combination of compatibility and interoperability is subsumed to the more abstract
quality composability, which is introduced in this research programme as a foundation for
the successful development and integration of future IVI systems. It describes the coex-
istence of different components related to the absence of negative reciprocal effects while
facilitating functional interdependencies. Hence, composability constitutes a key aspect
especially within the context of multi-sourced software systems with a rising number of
heterogeneous functionalities. Following Peter G Neumann (2004) for the context of trust-
worthy systems, designing a system architecture for composability can have significant
payoffs in simplifying system integration, maintenance and operations.

Although this issue applies to a wide field of different domains even beyond automotive
systems, the domain of IVI systems has special characteristics. More than a fifth of the
amount of software within a current car is related to IVI (Charette, 2009). In parallel IVI
utilises the largest share of computational power available within the vehicle. Further,
it combines different temporal requirements and relies both on time- and event-triggered
computation. Nevertheless, it has to cope with harsh climatic conditions such as all
other automotive systems and is operated within a safety-relevant environment, although
current IVI systems are not classified as ‘safety critical’. The latter aspect has led to
a very static system design to enable predictable behaviour and improve test coverage.
However, future systems will enable a dynamic deployment on user demand and during
operation of software components to those systems, as is common practice for consumer
electronics (CE) (Mössinger, 2010; Bolle, 2011). This is a fundamental change for those
originally very static systems. It will have significant impact on the predictability of the
systems’ behaviour and cause a serious decrease of test coverage due to the exponential
growth of possible permutations of installed components. A significant amount of IVI
functionality (e.g. as related to entertainment) may not be classified as safety critical
and would not require a rigorous (re)-verification process that is compliant with extensive
certification standards. Nevertheless, compared to desktop applications or CE devices,
it is still being employed within a safety-critical environment. Integration to a common
platform or connectivity to a shared bus may cause adverse interference that would include
non-critical functionality but also potentially affect critical functionality.

Aside from the functional growth of IVI, the scope of past and current systems was and
is limited to information and entertainment with the focus on the occupants’ comfort.
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Current developments lead to systems where the distinction of safety-critical software
functionalities, such as the instrument cluster, become blurred due to integration onto
common hardware platforms. The instrument cluster provides functionality (e.g., in-
dicators for gear, exterior light, speed control) that is classified as safety-critical using
level ASIL B (Automotive Safety Integrity Level) to comply with the standard for func-
tional safety of road vehicles (ISO 26262, 2011). Today, systems are already available
that display IVI content within a fully digital instrument cluster (e.g. route navigation
information in the direct vicinity of the speed gauge). Those systems are implemented
using several distinct ECUs interconnected by in-vehicle bus systems (e.g., CAN, MOST)
and direct links to achieve an efficient video transport (e.g. LVDS). However, it is the
declared intention of car manufacturers to reduce the number of ECUs while utilising
available multicore (MC) hardware architectures (Monot et al., 2012). This implies the
integration of mixed criticality components while giving up the traditional ‘major archi-
tectural element’ that gives confidence in correct operation: physical separation (Knight,
2002). The consequence of a decreasing number of dedicated hardware units is an in-
creasing integration density at the software level for a single hardware platform while
using a multi-source code base. In result, ‘IVI’ evolves into a mixed-criticality system
(MCS), combining distinct levels of assurance against failure (Burns and R. Davis, 2013).
Nevertheless, safety-critical and non-safety critical functions may be still separated at the
software level to prevent unwanted mutual interference. The objective is to maintain the
necessary reliability of vehicular software, with a failure rate of about one part per million
in a year (Mössinger, 2010).

Due to progress which has already begun as concerns the shifting of the focus of IVI
systems, the term IVI is set too narrow and does not reflect the denominated system very
well. Future IVI is anticipated to go beyond mere information and entertainment due to
the fusion with other existing and upcoming functionality to build an integral UI for the
occupants. In the following chapters, the broader term In-Car Multimedia (ICM) is used
to differentiate from IVI.

This sections has outlined the problem domain using several relevant aspects to justify
the relevance of this work. The applied software engineering approaches have to address
those aspects, especially the integration of heterogeneous software components onto a
single computing platform. Again, for this context composability of components represent
a key for the successful development of future ICM.

Based on these foundations, the next sections describe more concisely the challenges
related to this research to narrow down the focus and make its aims more tangible.

1.1 Focus of this research

The independently developed software components of next-generation ICM have to meet
specific temporal requirements while being deployed and integrated onto a shared em-
bedded hardware platform. Despite the substantiated heterogeneity at the software level,
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the UI of those systems has to provide all functionality in a comprehensive and uniform
way, blended into the OEM’s usage concept. The UI provides multiple distinct modes for
interaction that are usable simultaneously (a.k.a. multi-modal interaction). To achieve
an adequate and purpose-oriented UX, both the allocation and the presentation of the
content has to respect the car’s operating state, the user’s preferences and interaction
with the system, while considering multiple I/O facilities. Moreover, the system contains
safety-critical components and operates within a safety-relevant environment and there-
fore has to provide sufficient dependability, or put more simply: it must work as intended.
This relates to the components’ functionalities despite concurrent use of the hardware re-
sources as well as to the integration at the UI level, characterised with compatibility and
interoperability – or subsumed composability.

The availability of parallelism with MC hardware architectures provides an unexpected
means to establish a software architecture that addresses such systems’ challenges, in-
cluding conflicting temporal requirements and mixed criticality.

This builds both the motivation and a general foundation for this research. The particular
objectives are outlined in the following section in order to narrow the focus of this work
even more, including relevant limitations.

1.2 Aims and objectives

The aim of this research is to propose an architecture for next-generation ICM systems
which is capable of fulfilling demands for a growing number of multi-sourced and mixed-
criticality software components and ensuring adequate composability2. The intent is to
describe the elements for a software framework that incorporates this architecture to
foster applicability for software development and integration process for ICM. Within
this context the focus is set on increasing the determinism regarding the behaviour at
runtime while improving the predictability of the integration and considering an integral
UI to facilitate a positive UX.

The main objective of this research is to explore, propose and evaluate adequate archi-
tectural features that enhance the components’ composability (Peter G. Neumann, 2006;
Kopetz and Obermaisser, 2002). In order to achieve this, this project is divided into five
distinct stages:

1. To investigate relevant characteristics and requirements for the ICM system and
reason the need for architecture that fosters the integration and parallel operation
of heterogeneous functionality that varies by means of criticality, temporal require-
ments, and demands for software updates.

2A detailed discussion on
’
composability’ is provided in Section 2.3.1.
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2. To create a comprehensive review of approaches regarding composing software com-
ponents and the applicability of component isolation technologies for achieving com-
patibility to ICM systems.

3. To investigate the need for necessary communication channels between software
components and shared resources and a shared UI respectively with regard to com-
ponent interoperability.

4. To propose a novel software framework to support the integration of pristinely in-
compatible components without the need for modification.

5. To evaluate the applicability of the proposed concepts and derived software frame-
work’s features by use of a prototype implementation.

1.3 Method overview

This research employs empirical research methods for achieving its objectives. Basically,
new ideas are developed following a review of literature and case studies of recent in-
dustry development projects (with the latter having had considerable influence on this
research). Following Segal (2003) and Segal et al. (2005), the evidence from field studies of
applied software engineering practice is essential in order to understand current practice.
Those new ideas are transferred into architectural concepts and design principles for next-
generation ICM systems to verify their feasibility. Therefore, a ‘proof-by-construction’
approach is employed, with building prototypes applied to particular cases. This allows
deriving respective perspectives to engineer such software intensive systems. Thereafter,
a ‘pilot case’ (a.k.a. demonstrator) characterises the value and appropriateness of the
ideas by applying them to a representative case. The objective here is to demonstrate
their ‘in-context-value’, again following a ‘proof-of-construction’ approach. Formal mod-
els are used to abstract the essentials of the proposed concepts and principles and provide
alternative perspectives throughout this work.

Such an experimental approach is appropriate due to the problem requiring a complex soft-
ware solution, as categorized with ‘Experimental Computer Science’ according to Dodig-
Crnković (2002). The approach here is to identify concepts that facilitate solutions for
compositing next-generation ICM systems and then evaluate the solutions through con-
struction of prototype systems.

The selection of methods for this research basically matches with the findings of Höfer
and Tichy (2007). They classified empirical research published in a software engineering
journal into eight methods. ‘Experiment’ and ‘Case Study’ are the two preferred research
methods which comprise a share of 66.2% based upon 133 reviewed articles.
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1.4 Thesis outline

Chapter 2 begins by reviewing the software development methods applied to current
ICM systems, establishing the importance of composability of software components. By
presenting both significant characteristics and relevant requirements and their interdepen-
dencies respectively, a demand for a new design and implementation approach is identified.
The chapter concludes by highlighting the need for a flexible architecture that supports
the deterministic development of valid compositions, predictable both on functional and
temporal behaviour.

Having established the need for an advanced architecture, Chapter 3 discusses particular
aspects of software compositions in more detail. Therefore, approaches applied within
recent exemplary development projects are presented, accompanied with these projects’
characteristics and an interpretation of the results. The latter provides valuable infor-
mation for future projects and the architecture for next-generation systems. The chapter
concludes with a comprehensive literature review to date that backs up the interpretation
of the projects and addresses derived essential architectural features for future systems.

Chapter 4 introduces a number of applied technologies for partitioning software compo-
nents. Comparing their characteristics and mapping those to the heterogeneous require-
ments, an exemplary system design is composed. It mixes technologies in order to utilize
their different advantages. The chapter then proceeds to describe how these technologies
can be combined for an applied framework to positively affect the software development
and integration process. The chapter concludes with a recapitulation of the advantages
and disadvantages with the focus set to limitations on compatibility and interoperability.

Chapter 5 then reviews the issue regarding the arbitration of shared resources to mitigate
limitations on compatibility. It proceeds with the presentation of an access arbiter that
enables the prioritisation of concurrent access of shared resources. Based on a number of
experimental results, both the effect and the costs are illustrated to demonstrate its appli-
cability. The chapter finishes with a summary covering the applicability and limitations
of shared resource arbitration.

Chapter 6 details the implications of a shared UI for partitioned software components
with the focus set on interoperability. After describing relevant requirements, a novel
compositing infrastructure for ICM systems is proposed that enables the implementation
of a flexible visualisation of different graphical elements without the need to interpret the
actual content. Its applicability is illustrated using a prototype implementation which is
built upon the previously-described architectural features for partitioning heterogeneous
software components. The chapter concludes with a critical discussion on the compositing
infrastructures’ benefits and limitations.

Chapter 7 assembles and evaluates the proposed architectural features for partitioning,
resource arbitration and UI compositing. The chapter describes the integration of these
into a comprehensive framework. Then an exemplar system design in combination with
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simulated use-case scenarios is described. The chapter finishes by discussing both the
feature’s applicability in coexistence and their impact to the system behaviour using the
results of the simulation.

Finally, Chapter 8 presents the main conclusions from the research, highlighting its
achievements and limitations. Future research and development for this project are also
suggested in this chapter.
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Review of software development for ICM

This chapter aims for a clear definition of the problem domain to provide a well-defined
background and understanding of this research and for the following chapters. Hence,
it builds the foundation of this work by introducing ICM systems, their characteristics,
applied development approaches for such systems and supporting frameworks. In other
words, this chapter describes what ICM is about and what the herein addressed challenges
are.

2.1 Terminology and introduction to ICM

Initially the term ICM is examined to clarify its meaning, especially because it is not yet
a widely-used term for the named systems in both academia and industry. Nevertheless,
there is reason for this naming, discussed in the following.

Multimedia is a rather broad and overused term with different meanings depending on
the context of use. Steinmetz and Nahrstedt (2004) provide the following definition:

“From the user’s perspective, multimedia means that information can be rep-
resented in the form of audio signals or moving pictures.”

For this research, the term multimedia is used as proposed by Vaughan, who gives em-
phasis to the integral aspects of multimedia systems (Vaughan, 2011):

“Multimedia is [. . . ] a woven combination of digitally manipulated text, pho-
tographs, graphic art, sound, animation, and video elements. When you allow
an end user [. . . ] to control what and when the elements are delivered, it is
called interactive multimedia.”
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An ICM system is a software intensive system that consists of components that provide in-
formation and entertainment within an automotive context. In regard to the statement of
Vaughan, the ‘end user’ is any vehicle occupant who interacts with the multimedia system
by use of knobs, levers, and buttons dispersed over the dashboard and the steering wheel,
as well as touch panels, touch-displays and speech recognition systems. However, this
enumeration is not extensive. The UI and hence the provided modalities for interaction
may differ with the make and model of the vehicle. Nevertheless, the provided function-
ality is usable from different seats in the vehicle. Derived from the definition of Vaughan,
ICM systems provide interactive multimedia, implemented by use of applications that
handle user events.

The established human machine interface (HMI) provided by a car can be reduced to a
steering wheel, pedals, a gear stick and a set of switches and knobs for lights, indica-
tors and horn. But in recent years, it has evolved to an highly interactive information
and control interface, providing the ability to use satellite-supported route navigation,
to listen to Internet radio, receive emails, control automotive body functions, air condi-
tioning, seat positioning, and many more, by use of ICM. The significance of automotive
information and entertainment (conflated to the artificial term ‘infotainment’) has grown
rapidly. Beside the driver, passengers are able to use those facilities through individual
interfaces connected to the same software system, even from the rear seats. Nowadays,
value creation within automotive domain is primarily dependant on software, with ef-
fects both on increased costs and complexity (Ebert and Jones, 2009). A manufacturer’s
competitive advantage relies more and more on compelling functionalities provided to
the passengers (Manfred Broy, 2006). They represent the central information interface
between the car and its occupants and already affect a prospective customer’s purchase
decision. Therefore, they combine an increasing number of software-based functionali-
ties of different importance and purpose, developed independently by multiple suppliers
and integrated onto a shared hardware platform: the ‘head-unit’. The aim is to provide
guidance and assistance while enabling the driver to configure and control automotive
functions and offer a rich variety of entertainment functionalities. They actually already
implement a great share of the vehicular HMI, although not directly interacting with the
car’s driving dynamics, but communicating with other ECUs by use of different vehicular
fieldbus networks. This evolution has led to large-scale complex software systems of >25
million lines of code (MLOC) (Charette, 2009; Smethurst, 2010), decomposed into soft-
ware components to tackle the complexity and integrated into the head-unit to achieve
cost efficiency in production. The components can be regarded as architectural subsys-
tems that form a ‘coalition of systems’ that inherit the characteristics and challenges of
large-scale complex IT-systems, as discussed by Sommerville et al. (2012). They conclude
that a traditional centralized engineering perspective is no longer adequate:

“Current software engineering is simply not good enough. We need to think
differently to address the urgent need for new engineering approaches to help
construct large-scale complex coalitions of systems we can trust.”
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The head-unit acts as central computing instance of an ICM system (Wietzke and Tran,
2005, p8). Thus, the head-unit is implicitly meant when addressing the hardware of ICM
systems due to its central role within the system. It is basically an automotive embedded
system that provides entertaining facilities, context-based information, and control over
automotive body functions through an integral and comprehensive user interface. Ac-
cording to Smethurst (2010), the head-unit is the most complex component by software
volume within a car. It contains approximately 70% of the total code in an automobile to
provide the logical interface between the car and its users (i.e. consumer space). More-
over, he emphasis relevance of ICM and the head-unit for OEMs (Original Equipment
Manufacturer) and their economic success respectively:

“The environment created in the car is a key differentiator for the OEMs
compared to aftermarket solutions, and it’s not a domain that the OEMs can
afford or intend to surrender.”

The head-unit features various interfaces to other systems and the occupants of the car,
their mobile gadgets and storage devices. Figure 2.1 depicts some common components
and interfaces of next-generation systems.
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Figure 2.1: Exemplary ICM components and interfaces

In the past, the scope of such systems was limited to non-critical functionality. Cur-
rent developments led to systems that incorporate safety-critical functions, such as, for
instance, the instrument cluster that contains functionality classified ASIL B following
(ISO 26262, 2011). Such systems provide functionality beyond information and entertain-
ment: thus they became essential for the safe operation of the car. The resulting mixed
criticality is a fundamental architectural driver and hence is discussed in more depth in
the following section.

As mentioned, there do exist several terms for ICM that are already widely accepted, such
as ‘automotive infotainment’ or ‘in-vehicle infotainment’ (IVI). These have been coined
by the marketing divisions of different manufacturers, rather than defining a difference
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in functionality and handling. However, this puts emphasis on the need to differentiate
from ‘legacy’ IVI and to reflect the growing area of responsibility parallel to the shift
from straight supply of contents to interactive multimedia. This backs the decision to
make use of the term ICM for this research to cover the next-generation’s wider range
of functional features beyond ‘information’ and ‘entertainment’ while emphasising user
interaction. Nevertheless, IVI and ICM might be used interchangeably as long as the
described implications caused by the recent developments are considered.

2.2 Characteristics of ICM systems

For providing interactive multimedia, various disciplines within the domain of computer
science have to be considered, driven by the combination of different but interdependent
functionalities at the design level and subsequently applications and components at the
implementation level.

A hierarchy of functions, applications and components support the management of the
system’s complexity by the principle of ‘divide and conquer’. Based on the heterogeneity
of those components, the application layer of ICM systems refers to different specialised
fields of computer science. A selection of those is given by the enumeration below:

• Software engineering
• Multiprocessing
• Computer graphics and visualisation
• Human-computer interaction
• Natural language processing
• Telecommunication
• Media encoding and rendering
• Databases

ICM systems might appear to the user as a slightly enhanced CE device comparable
to current Internet tablets or mobile phones both in computational performance and
application diversity, but offered by automobile manufacturers for a premium price. In
the following the characteristics and differences to other (mobile) embedded devices and
their development respectively are discussed. Intent is to reason why ICM systems are
‘special’. Therefore, viewpoints of the automotive domain and CE domain are presented
alternately.

2.2.1 Classification

An ICM system is classified as embedded system, which according to Marwedel (2011)
is defined as an information processing system embedded into an enclosing product. For
ICM, the ‘enclosing product’ is the car that contains a set of up to 80 distinct but in-
terconnected embedded systems (i.e. ECUs), including ICM (Manfred Broy et al., 2007;
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Charette, 2009; Monot et al., 2012). Those embedded systems consist of a hardware
platform and a software system. This link between the software and a physical system
is further supported by E. A. Lee (2006) who defines embedded software as software
integrated with physical processes, while the technical problem is managing time and
concurrency in computational systems. This perception coincides with the one of Ebert
and Salecker (2009), who also defined embedded systems as microcontroller-based sys-
tems built into technical equipment, while the software in those systems is defined as
embedded software. Furthermore, they state that the end-user usually only recognizes
the set of function provided by the overall system and not the embedded software. This
applies particularly to ICM. It further implies embedded systems only exist as part of
a larger system, such as technical processes that pose external constraints that have to
be addressed. This led to cyber-physical systems (CPS), which are according to E. A.
Lee (2007) integrations of computation and physical processes. He further remarks on
considerable challenges in regard to CPS, because the physical system components issue
safety and reliability requirements different from those in general-purpose computing and
the CE domain due to their inherent criticality.

Definition Criticality

Criticality is a designation of the level of assurance against failure needed for a system
component (Burns and R. Davis, 2013).

Furthermore, ICM systems are automotive software systems due to their ‘enclosing prod-
uct’. Manfred Broy et al. (2011a) define the characteristics for such systems as follows:

• Multiple, conflicting and error-prone requirements
• Real-time properties
• Stringent and high-volume communication requirements
• Multi-functionality with complex dependencies between functions
• Heterogeneity of the application domains

Although these are mainly focused on automotive control software, they are also applica-
ble to ICM, admittedly with limitations regarding (hard) real-time requirements. Those
do only apply for a subset of ICM functionality, particularly for components that com-
municate with other automotive control units, or for real-time audio processing and to
support adequate responsiveness to user interactions. However, the given characteris-
tics are not unique to automotive software, but the combination amplifies challenges of
software engineering, particularly with regard to design, analysing and debugging such
systems.
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2.2.2 Environment

ICM systems have to cope with a harsh operational environment due to their ‘enclosing
product’ when compared to other software-intensive multimedia systems. This includes
shock resistance, usability within divergent climates (e.g., wide temperature and humidity
ranges and varying atmospheric pressure), and system lifetimes of 15 years and longer af-
ter end of production. While those mainly affect the hardware part of the systems, there
are further issues also to be considered by the software design. This includes as well low
voltage situations during start of the vehicle’s motor, fast system availability (standby
is not a solution due to tough bias-current requirements), and problematic system main-
tenance. Within this context the term ‘maintenance’ includes not only repairs but also
all modifications of the software system during system life. This includes the update, re-
moval and enhancement of the provided software functionality and software components
respectively. However, the long system lifetimes demand applicable concepts to update
the software and thus improve the provided functionality and to address new demands.

2.2.3 Architecture

From the user’s viewpoint, the value of an ICM system mainly depends on its functional
features and the way they are presented. The functionality is implemented in software
by use of several application components. These appear as a uniform system to the user
by use of one integral interface. Neither the composition of functionality of individual
components nor their physical structure (e.g., partitioning into separated ECUs vs. inte-
gration onto a common hardware platform) is recognized by the user. This makes ICM
systems highly integrated software systems, composed of heterogeneous and interdepen-
dent components. A massive over-commitment of hardware resources emphasizes this.
In the past, a distinct ECU was equipped with hardware resources to explicitly match
the requirements of the software (and vice versa). Following this approach, sufficient
computational power and memory is available to fulfil the specific use-case assigned to
that subsystem. Although current systems benefit from increasing computational power
and memory capacities, a hardware platform may not provide the resources necessary to
run all application components in parallel. At a certain threshold (i.e., at high system
load), the system’s capacity is exhausted and the software components’ demands may
not adequately be fulfilled anymore, causing degradation, for example, in performance,
availability and responsiveness. Such under-provisioning of the platform’s resources by
intention implies increased flexibility during integration, as there are no hard limits re-
garding how much functionality is deployed to the target system. It is widely applied
within embedded computing for the CE and desktop computing. But for safety-relevant
automotive systems, it obviates determinism regarding system behaviour in high system
load situations as long as no adequate measures apply that reflect the software compo-
nents’ mixed criticality.
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Definition Mixed Criticality

A system with mixed criticality has multiple distinct levels of assurance against failure
needed for different system components (Burns and R. Davis, 2013).

Furthermore, an ICM system incorporates multiple roles. It forms a converging point for
the functionality of multiple domains of computing, signal processing, and communica-
tions. This leads to systems that integrate components reflecting a heterogeneous set of
Models of Computation (MOC) (Martin, 2002).

Inadequately structured complex systems cannot be effectively maintained. Moreover
and in relation to the demanded systems reliability because of the inherent criticality
(cf. Section 2.2.5), it cannot be expected that verification methods would cope with such
systems (Kreiker et al., 2011a; Kreiker et al., 2011b). This puts emphasis on the archi-
tecture and applied design principles. The most significant, as already mentioned, is the
use of software components. It is a fundamental engineering principle - even beyond soft-
ware engineering (SE) - to decompose larger systems into smaller parts (top-down) and
to compose smaller parts into larger systems (bottom-up). Component-based software
engineering (CBSE) has been a research area for many years and represents a specific
field within the domain of SE. According to Crnković et al. (2011b), it addresses topics
such as composability, predictability of functional and non-functional properties, mod-
elling of component based systems, reusability, deployment, software architecture, and
middleware. Furthermore, they denote the idea of keeping component development sep-
arate from system development, a basic concept of CBSE. This in particular enables
multi-source software development to improve efficiency and can help to shorten the de-
velopment period. A fundamental principle is composability that considers both func-
tional and non-functional properties (Crnković et al., 2011b), with the goal of supporting
compatibility and interoperability (Peter G Neumann, 2004).

Definition Composability

Composability combines coexistence of different components without adverse side effects
with the ability to work constructively with one another.

Adequate composability positively affects the predictability of success and efforts nec-
essary for systems integration. A detailed discussion of composability is provided in
Section 2.3.1.

The concepts and principles of CBSE fit very well to the demands that arise with next-
generation ICM systems which must incorporate pre-existing components (i.e., legacy
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or COTS), build new components to address new requirements as reusable entities, and
evolve by replacing components. This aspect is discussed in more detail in Section 2.2.4.

More recently within the mobile CE market segment, dynamic architectures have proved
their applicability (Pope and Muller, 2011). Functionality can be updated, substituted,
removed or added by the end user or during regular system service. A particular compo-
nent can be composed into the system during operation on user demand, or respectively
an already-incorporated component can be removed. Although the latter may only apply
for a subset of the initial installed components. In both cases, the resulting system must
still provide all ‘services’ as intended and specified.

Certain aspects regarding system architecture are taken up in Section 2.4, including cur-
rent trends within automotive domain (e.g., AUTOSAR and GENIVI).

2.2.4 Development

The component-based architecture effects the development of ICM systems. The develop-
ment process of such systems is usually highly parallelised through division of labour with
involved parties from different locations, organizations, or domains. Among others, this
is attributed to encounter the automotive domain’s substantial time-to-market pressure.
ICM systems are too complex to be designed from scratch for each new product or gener-
ation due to productivity reasons (Manfred Broy et al., 2011b). Thus, ICM systems are
both functional and architectural assemblies of legacy, COTS and new components. The
complexity issued through composing of different sets of functional requirements demands
profound design and integration knowledge, more than is required for single-component
development groups (Martin, 2002).

The segmentation into distinct components has been an approved approach within the
domain of automotive mechanical engineering for decades, following a strict strategy of
‘divide and conquer’ (Manfred Broy, 2006). Components are specified using functional
requirements, implemented and produced by a supplier, and assembled on a clocked as-
sembly line at the OEM. Therefore, the components have to fulfil the predefined interfaces
on which all related parties have agreed upon. Or put more simply, they have to fit to-
gether.

For software engineering, the assembly line is the integration of the components during
the development process. However, for software an essential limitation must be consid-
ered: although the components’ interfaces might be well defined at the functional level,
this must not necessarily apply to non-functional requirements (NFR). As this might be
adequate for mechanical components, software shares common resources, such as field
bus communication lines, computational power, and memory storages. This may affect
the temporal behaviour during high system load situations. Moreover, even if such be-
haviour is defined, it is challenging to implement. The reason for this is the potential
‘non-deterministic nature’ of interactions among components within complex systems of
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systems – at least for the developers who focus on only a subset of the overall system. Al-
though operating systems do provide means to counter those problems by use of scheduling
policies and task priorities, the independent and parallel development of those systems’
components decrease their applicability. Hence they are not sufficient to ensure the pre-
vention of negative inter-component interferences and to achieve valid compositions. The
situation is exacerbated by the fast-growing system complexity to address new demands
and utilize new evolvements including, for instance, wireless ad-hoc networks, web-based
services and ADAS (Bolle, 2011). However, the automotive industry is a highly compet-
itive domain. Hence costs for design and production must be kept low. This implies it is
vital for the different stakeholders to cope with the complexity (Simonot-Lion, 2009).

Additionally, there is a significant economic pressure which affects both the develop-
ment as well as the maintenance and warranty for ICM systems. Although the economic
pressure is not unique for the automotive market domain, both the need for the timely
coordination with the chain of production for the whole vehicle and the difficult mainte-
nance situation with respect to product recalls requires a different level of professionalism
to improve predictability related to the development of reliable systems. This becomes
even more weighty when considering the user’s perception of ICM systems. As part of
the automobile, an ICM system is recognized as part of the OEM (i.e., the car man-
ufacturer), and not of the Tier-1 OEM (i.e., supplier to the OEM providing the ICM
system). Therefore, a problem with the ICM is addressed to the OEM, even if the OEM
just mounts it to the dashboard as a distinct process step along the production line of
the car. This implies that problems occurring in the systems which have been caused by
items provided by a supplier affect the reputation of the OEM, which may in turn affect
the economic success. Di Natale (2008) provides a brief summary regarding the structure
of the automotive supply chain.

Further, the development process has to be coordinated with all other parts of the vehicle
due to a synchronised assembly at the OEM’s production line. Therefore, a development
project has to consider the start of production (SoP), which forms the deadline where
all development has to be completed. With SoP, the maintenance period begins and
continues basically until the end of production (EoP), as illustrated in Figure 2.2.

development maintenance

production spare part production

ICM  

development

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

on-road presence 
SoP

tyears

EoP

Figure 2.2: Temporal dimensions of ICM development following (Borgeest, 2014).
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2.2.5 Criticality

The criticality of a system or a system’s component is related to the impact to its environ-
ment. It correlates with the ‘idea of safety’ and has an effect on required system qualities
like reliability, dependability and trustworthiness. Due to the related potential affects to
a person’s health or damage of objects, the criticality of ICM is emphasised and discussed
in-depth in the following. But, before detailing the relation to safety and reliability, the
use of the terms safety, reliability, failure, dependability, and trustworthiness are defined.

Safety is the state of being safe from consequences of events that are considered non-
desirable. This implies a protection from any events that could cause health problems or
economic losses, or at least the ability to insure that particular hazards can be contained
within a defined level of risk (ICAO, 2013, p2-1). A more colloquial definition to the
point from an unnamed safety officer is provided by Stroustrup (2009, p887):

“ ‘Unsafe’ means ‘somebody may die.’ ”

Reliability is defined as the probability that a system or component satisfies specified
behavioural requirements over time and under given conditions (i.e., does not fail) (Leve-
son, 1995). A failure is defined as the inability of a component or system to perform
its intended function (i.e., caused by a system error). Intended function is defined with
respect to the component’s behavioural requirements (Leveson, 2011, p8). A common
cause of failures in the field is related to ‘implicit environmental assumptions’1 within the
software (Sha, 2009).

Dependability is defined as the ability of a (computer) system to deliver service that can
justifiably be trusted, while the service delivered is its behaviour as it is perceived by its
users (i.e., humans or other systems) (Avižienis et al., 2001). Following Avižienis et al.
(2004), it is an integrated concept that encompasses system attributes including reliability.
Other attributes are availability, safety, integrity and maintainability, whereas the weight
of each attribute may vary related to the field of application, type of system, and accepted
dependence. Adopting the view of Peter G Neumann (2004), the concept of dependability
is essentially indistinguishable from what is termed trustworthiness. Avižienis et al. (2004)
systematically decompose the concept of dependability into threats, attributes and means.
They illustrate this using a tree, depicted in Figure 2.3. Especially the attributes related
to dependable systems are relevant for defining requirements for a particular system by
putting different emphasis on different attributes. Therefore it might be necessary to
further decompose those to address relevant drivers for system architecture and design to
achieve a verifiable system.

Nevertheless, the system’s criticality is the most fundamental characteristic to justify
the need for a particular degree of dependability. The criticality of a system might be

1i.e., not part of any specification; not necessarily obvious to all involved in development or mainte-
nance
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Figure 2.3: Dependability tree following (Avižienis et al., 2004)

described and justified most illustratively by its negative effects. This is done in the fol-
lowing, based upon quantitative figures from available reports related to relevant research
to establish the link to ICM.

In 2010 a total of 92,492 people died of road traffic injuries within the European Region2,
whereas 50% were car occupants. For every person dying, 23 were admitted to hospital
and 112 attended to an emergency room (Mitis and Sehti, 2013). These figures prove
that cars are safety-relevant. Hence, automotive-embedded systems are operated within
a safety-relevant environment. This applies without reference to their individual purpose.
Such systems can be classified as safety-critical based on their impact to the safety of the
vehicle’s passengers (i.e., with direct impact on the driving dynamics such as braking and
stability systems). Electronic automotive systems have to fulfil tight safety requirements
(Di Natale, 2008). This basically also includes ICM. Admittedly, those systems are not
the cause for all of these injuries and loss of life, and ICM has no direct impact on the
safety of the vehicle’s occupants. In reality, the ‘human factor’ is seen as a very important
aspect for the cause of most accidents. A car represents a safety-critical actuator device
controlled by an error-prone operator (i.e., the driver) (Sha, 2009). Hence, the driver still
has an important role in regard to traffic safety of the driver, passengers, other vehicles’
occupants and others. This puts emphasis on the interface to the driver, including ICM
systems.

ICM systems can and will be operated while the driver operates the car through the traffic
which can be a demanding task by its own. Although this increases the comfort for the
driver, it also causes driver distraction, which can affect safety. As of the relation to the
safety, driver distraction indirectly is also related to the concept of criticality, because a
level of assurance against failure has to be considered at least for parts of the system.

Further, distraction is increased due to inadequate usability provided by the system. The
latter may cause (1) unnecessary cognitive load for the user (which has a limited cognitive
capacity) or an increased (2) visual and (3) manual distraction, following the three sources
of driver distraction according to Strayer et al. (2011).

2European Region as defined by the World Health Organization (WHO)
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Horberry et al. (2006) showed that performing an additional in-vehicle task (e.g., tuning
the radio or conducting a conversation) may have a negative impact on driving perfor-
mance. For the interaction with the entertainment system, they showed the affect on
measures like maintaining speed as well as preparedness for hazards which might compro-
mise the safety of occupants and other road users. That means an ICM system is regarded
only as secondary3/tertiary task for the driver as its not directly related to the driving
task, following the classification of Tönnis et al. (2006). Any distraction from the primary
task should be minimised. Pfleging et al. (2014) provide a comprehensive overview on the
current field of research related to vehicular human-machine interaction to reduce driver
distraction, including multimodal, implicit and context-sensitive user-input.

Despite these improvements regarding usability and usage concepts of ICM systems, the
provided reliability also has an impact on the actual focus of the driver. This means
unexpected system behaviour or failures may also cause the drivers to withdraw their
attention from processing information necessary to operate the car safely, take their eyes
from the road, their hands from the steering wheel, and combinations of these sources
of driver distraction. One could possibly imagine the distraction caused due to, for ex-
ample, the media player’s audio volume increasing to maximum (or even mute; without
the possibility of restoring it to a normal state), the climate control to maximum heating
or fan to maximum speed, delayed or incomprehensible route guidance, a sporadic dis-
play blackout, a hands-free phone system with incomprehensible audio communication.
This list could be easily expanded in accordance with the increased amount of provided
functionality.

Additionally, the number of systems that visualise content and require user interaction
has increased dramatically, affecting the driver’s cognitive load as well as increasing visual
and manual interaction. This may increase the risk of driver distraction and make the
achievement of an adequate usability and reliability even more important.

The impact of distraction is further supported by the research of the U. S. National High-
way Traffic Safety Administration (NHTSA). They report for 2010 that a share of 17%
of all police-reported crashes involved some type of driver distraction. Of those 899,000
crashes, the distraction was caused by a device or control integral to the vehicle in 26,000
crashes, which means 3% of the distraction-related police-reported crashes (NHTSA,
2012). A further research NHTSA states 10% of reported fatal crashes were distraction-
affected, causing the death of 3,331 people in 2011 in the United States (NHTSA, 2013).
This does not imply ICM systems are necessarily violating the safety of the vehicles’ oc-
cupants. However, it does put emphasis on the safety relevance of vehicular systems that
are not directly related to driving dynamics.

The intent of the OEMs is to reduce the number of ECUs (Navet et al., 2010; Monot et
al., 2012). This implies the integration of former distinct systems onto common hardware

3With respect to the potential integration of the instrument cluster into the ICM function set to
support maintaining of the vehicle’s speed.
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platform. Hence, components with different levels of criticality are combined. This applies
to ICM, e.g., for the integration with the instrument cluster that is classified as safety
critical, or for the role as data provider and network gateway for next-generation ADAS
functions (Bolle, 2011). That emphasises the demands for reliable ICM systems with
consistent and easy to use HMIs, compatible to the remaining car controls.

However, it is often assumed safety correlates with reliability; following the rule ‘increased
reliability implies increased safety.’ This might be based on the perception that ‘accidents’
or safety related incidents will not occur as long as a system or component does not fail.
However, according to Leveson (2011, p7), safety and reliability are different properties,
meaning one does not imply or require the other. She provides good examples for both (a)
safe but unreliable and (b) reliable but unsafe systems. An obviously safe but unreliable
system (a) is designed to fail into a safe state. This means that although one or more
components fail, the system’s robustness mitigates those (isolated) failures to prevent an
accident. However, this does not imply it does not matter whether a particular component
may fail or not. But in such a case, the effect is deterministic. Further, within complex
systems an accident may also result from interactions among components, each satisfy-
ing their individual requirements. Although a system’s components are reliable when
examined individually the system might be unsafe due to the component’s interactions
(b).

Such component interaction accidents are gaining significance as the system’s complexity
increases. The derived logical complexity is seen as a major driver for software defects
(Sha, 2009). According to Perrow (2011), this can be related to the reduced intellectual
manageability of design, the insufficient ability to plan, understand, and anticipate inter-
actions among components. He claims accidents4 caused through system characteristics
like interactive complexity and tight coupling can be classified as ‘normal accidents’ or
system accidents. This means with the given system, characteristics multiply and unex-
pected failures are inevitable (i.e. ‘normal’). This view can be mapped to software systems
that assemble multiple interacting and multi-sourced components. Within this domain,
interaction can be divided into planned and inherent interaction. Planned interaction is
basically the functional interface that implements the communication between compo-
nents necessary to fulfil the requirements and derived from the system design. Inherent
interaction covers mutual interference caused, e.g., through integration onto a common
hardware platform that implies a concurrent use of resources or sharing of a communica-
tion media. The latter are not necessarily obvious and hence are not easy to understand
and thus support the anticipation of possible effects that may violate the required system
behaviour.

Moreover, the already-mentioned problematic maintenance situation and the relatively
long system lifetimes compared to CE demand reliable systems. The reliability must be
preserved, as systems and their software gradually change and evolve to provide improved

4defines an accident as (at the minimum) an unintended and untoward event that involves damage
to people, objects, or to both.
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services and address new demands. This challenge is also addressed by Hoare and Milner
(2005) as one of seven themes of the UK Computing Research Committee (UKCRC) that
describe the grand challenges for computing research. Although this issue is independent
of those systems’ inherent complexity, the complexity may affect software maintenance.
This is basically related to the fact that it is still human beings who specify, design,
and implement software. These may have different skills, domain background, languages,
perceptions, goals (i.e., due to different strategic aims of involved parties) and change over
time. Those different characteristics lead to the causes for ‘normal accidents’ according
to Perrow (2011) because of decreased qualities regarding the stakeholders in software
engineering:

• Manageability of design
• Ability to plan (i.e., also as result of limited manageability)
• Understanding
• Anticipation of interactions among components

A common countermeasure in software engineering to increase understanding of the sys-
tem (i.e., manageability) is abstraction of complexity by use of modelling languages.
Following M. Broy (2005) none of the methods for modelling and specification adequately
addresses the needs of automotive software. He claims they do not feature a compre-
hensive model of all relevant aspects for such system’s architecture. Those include user
functionality, logical components, hardware architecture, software architecture and de-
ployment. Although, most of the methods for modelling cover those at least partly, this
is still an open field of research in particular for mixed criticality and interactive ICM.

Further, modelling can reduce the details of information that is necessary to understand
and anticipate all relevant interactions including the inherited and non-obvious. The result
is an overall system design which inhibits limitations for enabling verification in regard
to reliability. This issue demands an improved architecture and design to foster those
characteristics. However, architecture and design with focus set only to the components’
interaction may not improve the characteristics regarding manageability as well as ability
to plan and understand for ‘local’ logical complexity (i.e., inside the components) which
was already proposed by Randell (1975) four decades ago and is still valid:

“The variety of undetected errors which could have been made in the design of
a nontrivial software component is essentially infinite. Due to the complexity
of the component, the relationship between any such error and its effect at run
time may be very obscure.”

This demands a holistic (or ‘integrated’) design and development process that covers both
component complexity as well as the complexity caused by components’ interaction.

Additionally, the criticality of the ICM components varies. This is believed to be due
to their temporal behaviour (i.e., real-time requirements, time and event triggered tasks)
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and impact to the user (i.e., cluster instrument, route navigation) and other systems (i.e.,
ADAS that rely on geographical map data). This implies the need to integrate heteroge-
neous functionality that varies by means of safety criticality. Although the separation into
distinct but interdependent components provides good means for structuring ICM system
at the software level, this does not solve the thereby assembled MCS. Burns and R. Davis
(2013) classify a MCS to have two or more distinct levels of criticality and is integrated
onto a common hardware platform. They further claim the prevention of interference
between tasks from different components as a primary concern with the implementation
of such MCS.

Potential threats of liability costs are strong arguments for achieving systems that con-
sider adequate and verifiable reliability (or dependability/trustworthiness respectively).
In reality, reliability often conflicts with economic demands. According to Leveson (2011,
p5 f.), this is one reason for changing regulatory and public views of safety:

“[. . . ] responsibility for safety is shifting from the individual to government.
Individuals no longer have the ability to control the risks around them and are
demanding that government assume greater responsibility for ensuring public
safety through laws and various forms of oversight and regulation as companies
struggle to balance safety risks with pressure to satisfy time-to-market and
budgetary pressures.”

The applicable standard for safety-related software within the automotive industry is
defined by ISO 26262 (2011), an adaption of the international standard for functional
safety (IEC 61508, 2010). It defines requirements for the development and the verification
of automotive electric/electronic (E/E) systems. This is basically related to the processes
and methods applied therefore.

According to Stirgwolt (2013), the application of ISO 26262 strongly affects the devel-
opment behaviour by defining process requirements for a shift from quality management
system (QMS) as defined by ISO/TS 16949 (2009) to a safety-oriented work culture. He
further describes this as a shift from control-oriented production (i.e. ‘make the product
right’) to ‘developing the right product’ by defining safety requirements using a top-
down approach and providing quantitative product reliability (i.e., failure in time (FIT)
methodology).

The goal of the verification is to formally prove its conformance with its specification
(Kreiker et al., 2011b, p26). This is based upon the perception that functional safety
forms an integral part of system development and hence must be integrated into the
system-rendering process from the start (Lederer and Ebert, 2008). This includes trace-
ability of all requirements to the implementation level to enable full coverage of safety
goals and their fulfilment. Furthermore, all system functions must be examined with
the goal of determining the risks that could result from potential system failures. These
have to be classified regarding the exposure (i.e., probability of occurrence), severity and
controllability (Keul et al., 2013; Keul and Brock, 2013). With this classification, the
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critical functions are categorized into one of four different levels according to ASIL, num-
bered from A (low criticality) to D (high criticality). This means in quantitative terms
a failure probability rate of 10-8 per driving hour for an ASIL D categorized function.
Such a mapping of a function’s criticality to assurance levels for software development is
a common approach within various domains, like aeronautics, automation, nuclear, rail-
way, and space (Machrouh et al., 2012). The automotive ISO 26262 features a relatively
fine-grained criticality allocation policy at system level. The scope on functions implies
the probability of the need to integrate differently categorized functionality (regarding
ASIL criticality-levels) onto a common hardware platform, or a mix of integrity levels at
software level (Ledinot et al., 2012). The result is a ‘mixed-ASIL’ system that contains
functionality of different safety relevance/criticality, which adopts challenges of MCS such
as, for instance, sharing common resources or functional dependencies between functions
of different ASIL categorization (i.e., an ASIL n function may depend on an ASIL m
function only as long as n≤m) (Heling et al., 2012). However, a categorization into safety
levels based upon estimated probability, anticipated severity and assumed controllability
contains several weaknesses. Despite these, a safety standard like ISO 26262 is still viewed
amongst the best of the available engineering standards and practices in use (Verhulst
and Sputh, 2013).

Although ICMs were usually not categorized for ASIL levels in the past, future systems
will contain safety-critical components. Hence, ICM systems evolve to mixed-ASIL sys-
tems that will contain both non-ASIL relevant and ASIL categorized components, such
as, for instance, signalling the status of headlights, direction indicator, rear-view mirror,
engaged gear, or integrated ADAS functionality5 (Bräuer, 2011; Mehr, 2014). This makes
ICM relevant for software validation, in particular for ISO 26262. However, it is not feasi-
ble to validate all components (or functionality) of a state-of-the-art ICM system without
violating usual economic limits and developmental schedules. In parallel, current ICM al-
ready provides data connection to the Internet and web-based services. This allows future
systems to stream media (e.g., music), dynamically update data (e.g., geographical maps)
and functionality (i.e., ‘apps’) (Bolle, 2011). Such capabilities may affect the reliability
of integrated critical components, not least because of an increasing attack surface that
demands adequate countermeasures regarding security issues.

To summarize, it is assumed an automotive system cannot be completely free of hazards
and related risks which increasingly does apply as well to ICM. Moreover, human inter-
action and systems built by human beings cannot be guaranteed to be absolutely free of
operational errors and their consequences (ICAO, 2013). With focus on the mitigation of
driver distraction, adequate reliability is a key feature of ICM. Due to the fact that this
is a constructive aspect, it cannot be effectively added to an already-existing system or
introduced at the final stage of development. This gains significance within the context of
MCS. The system’s architecture and the development process must reflect this from the
ground up. Hence, the system’s criticality and derived demand for reliability are signif-
icant design drivers for the software infrastructure and has to be considered throughout

5also driven by vehicular ad-hoc communication
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development and maintenance. This demands adequate means to structure the overall
system, including features to isolate particular components while still allowing for efficient
inter-communication to utilize advantages of a common hardware platform.

2.2.6 User interface

From a user perspective, the UI is the actual point of contact with the ICM system. The
design of the UI has to cover demands for an appealing front-end to foster a positive user
experience (UX) (Buxton, 2007).

UX is non-tangible and depends on aspects such as the actual user’s experiences, culture,
and objectives. It goes even beyond usability, as it incorporates the user’s emotion within
the context of using the system. However, ‘perceived usability’ is one aspect of UX. This
implies that the actual perception of the user regarding the UX may change over time and
is unique to an individual. The UX is addressed by a product’s design process (i.e., user
centred design), while within this context, ‘design’ is not restricted to the product’s ‘visual
characteristics’. Roto et al. (2011) provide a comprehensive overview on UX. From an
economic viewpoint, the UX affects a product’s user acceptance and hence may influence
the customers purchasing decision. For this research, no detailed discussion regarding UX
is provided. However, it is used to express the use of an appealing, attractive, enjoyable
and fun to use UI and ICM system, which adequately fulfils demands stemming from the
in-vehicle context.

Further, the UI has to reflect the system’s functional purpose with regard to the safety-
critical environment. The question of how ICM systems can efficiently exploit their func-
tionality and the capabilities of current hardware platforms is of prime importance. This
implies the UI takes on a very important role for ICM systems due to their nature of
highly interactive systems. It has to combine the content of very heterogeneous content
providers in terms of multi-sourced and mixed-criticality components to form a uniform,
domain specific and appealing front-end to the occupants. The blending of different con-
tent has to operate in such a way that the ‘user’ does not take notice of the separation
into components, as illustrated in Figure 2.4.

coherent user interface

Instrument Cluster Entertainment Navigation Phone ...

Figure 2.4: Automotive user interface

The design space for interaction is analysed by Kern and Schmidt (2009). They focus
on the role of the ‘driver’. However, in particular ICM is operated and used by differ-
ent ‘users’ occupying different roles such as ‘driver’, ‘front-seat passenger’, or ‘rear-seat
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passenger’. These different roles call for different variations of the UI with respect to
usability, vehicular context, and legal framework. As an example, the driver need not be
able to view a movie while the car is moving, while a rear-seat passenger must not change
the seat-position for the driver. Schmidt et al. (2010) provide a comprehensive overview
on challenges regarding the human computer interaction as related to automotive UI, in-
cluding interaction with built-in information and entertainment systems as well as smart
and autonomous function.

A significant part of the UI relies on visual information and feedback. By technical means,
next-generation automotive UI consists of seven (or more) displays connected to the ICM
system or respectively its head-unit to visualize content as depicted in Figure 2.5.

rear seat entertainment

head-up display

instrument cluster

center console

right exterior rear-view

left exterior rear-view

inside rear-view

Figure 2.5: In-vehicle displays connected to ICM

Additionally, acoustic signals and voice synthesis (i.e., text to speech) is used to minimise
visual distraction. Accordingly, multi-modal input capabilities are provided, including
buttons, switches and knobs linked with both fixed and context-sensitive functional-
ity (i.e., ‘soft-buttons’), touch-displays/-areas and voice recognition. Recently, (touch-
)displays have been becoming larger and incorporating an increasing amount of func-
tionality beyond route navigation, exemplified with the 17-inch touch screen of the Tesla
Model S (Rümelin and Butz, 2013). Generally, these multi-modal options for input to
operate and use the system are available as well for all occupants simultaneously. The
provided features that compose the UI must be assembled in such a way as to foster a
positive UX because they have become an integral part of how the car appears to the
driver, passengers, and prospective buyer. However, the ultimate aim is to provide a well-
arranged visualisation and clear control to support an unobscured and intuitive usage of
the system while minimising driver distraction (Hudelmaier, 2014; Pfleging et al., 2014).
The demands for an ICM UI based upon such a wide range of available options for input
and output in combination with derived requirements due to the automotive domain are
not comparable to any CE device.

2.2.7 Connectivity

ICM systems already provide data links to other communication partners inside and
outside the vehicle. In-vehicle communication includes Bluetooth and WiFi connections
with mobile phones, Internet tablets, laptop computers, and portable media players to
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support use-cases like hands-free telephony, address synchronisation with the navigation
system, or streaming/synchronisation of personal media content.

Connectivity to ‘outside’ infrastructure using cellular access networks allows next-
generation ICM to update content during operation. Wireless broadband technologies
of the third generation of mobile telecommunications technology (3G) (a.k.a. Universal
Mobile Telecommunications System (UMTS)) and the succeeding Long Term Evolution
(LTE) (3GPP, 2010) provide the enabling infrastructure. In particular, the latter con-
tributes a promising current technology providing high data rates and low latencies even
for high velocity vehicles (Araniti et al., 2013). These communication paths are used to
incorporate satellite images into the navigation and guidance system and to provide access
to other Internet services. Moreover, they facilitate the update of, e.g., geographical maps
or real-time traffic information to improve existing functionality. Moreover, connectivity
also enables the implementation of new use-cases, like for example intelligent personal as-
sistants with natural language/conversational UI comparable to Apple ‘Siri’ (Aron, 2011)
and real-time ride-sharing applications (Amey et al., 2011). Although such functionality
is already available within the automotive context by use of mobile devices, an integration
into the head-unit and composition with already existing functionality may help to reduce
driver distraction and facilitate the use of vehicular information with the aim to improve
the perceived UX. Further, systems may use this connectivity even to update exiting or
install new functionality; this is discussed in more detail in Section 2.3.6.

Additionally, a continuous connection to the Internet using cellular networks allows re-
locating certain functionality of the vehicle into centralized infrastructure. This may
have a positive effect on the maintainability as well as enabling the implementation of
new use-cases that incorporate both data and functionality of the vehicle. In particular,
the latter allows a shift of computational requirements into infrastructure of remote ser-
vice providers, given network communication facilities that provide sufficient coverage,
bandwidth and latency. A promising approach is described by Glaab et al. (2014a) and
Glaab et al. (2014b), who describes an Automotive Service Delivery Platform based on
Machine-to-Machine (M2M) communication. Off-loading functionality from the head-
unit into ‘the cloud’ might be beneficial for a range of applications that currently are
computed on-board. However, critical functionality with demands for low latency results
independent of network coverage must reside physically within the vehicle. That means
future ICM might incorporate software components that appear to be computed locally
but are physically computed at a service provider (e.g., at the OEM).

A further benefit of the vehicle’s connectivity to the Internet is the ability to provide
gateway functionality to mobile devices using WiFi communication. These may bene-
fit from improved connectivity due to the vehicle’s outside antenna. Also, capabilities
to communication peer-to-peer between in-vehicle mobile devices can be achieved using
wireless networks which may also include communication with ICM functionality. This
means the car acts as access point for non-automotive devices which introduces both new
use-cases regarding passenger information and entertainment as well as new requirements
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for maintaining adequate robustness against improper use and thus prevent violation of
the required dependability.

Additionally, future vehicles will provide capabilities to communicate with each other
without the need for infrastructure using Vehicular Ad-Hoc Networks (VANETs), also
referred to as Car2X6 communication. Vehicles spontaneously form a network while trav-
elling with other vehicles (V2V) or infrastructure (V2I). This type of communication is
standardized with IEEE 802.11p as amendment to the IEEE 802.11 family for implement-
ing wireless local area networks (IEEE 802.11p, 2010). It forms the base for the higher
layer standard IEEE 1609 - Wireless Access for Vehicular Environments (WAVE) and
Management and Security of WAVE (IEEE 1609, 2007). Uzcategui and Acosta-Marum
(2009) provides an overview on the standards related to this type of vehicular peer-to-peer
communication.

With the ability to directly communicate with other traffic participants, the vehicle’s
sensory capabilities reach a new level (Dar et al., 2010). This is basically related to
active safety demands by enhancing the sensory capabilities beyond the limits of a single
vehicle and independent of (the driver’s) direct visual or audible perception of traffic
hazards. However, it also enables provisioning of data to realise other use-cases such as
improvement of transport efficiency, e.g., reducing travel time by avoiding traffic jams
realized through enhancing route navigation with real-time traffic information. This may
further include location-based advertisements regarding points of interest (POI), update
of (local) maps, parking payments, and automatic tolling services. However, while these
already affect ICM, they also facilitate new use-cases related to entertainment, such as
multi-player gaming, multimedia content provisioning, multicast audio communication,
in between vehicles without the need for infrastructure (Tonguz and Boban, 2010; Olariu,
2007; Bucciol et al., 2008; Amadeo et al., 2012). Moreover, beside data, also functionality
(i.e., ‘apps’) can be provisioned on a peer-to-peer basis, e.g., a petrol station provides
an app as part of the fill up by use of ‘V2I’ communication. Although VANETs and
in particular V2V interaction rely on a sufficient number of ‘communication partners’ to
achieve adequate usability of such use-cases, its introduction instantly affects the software
of ICM to maintain adequate robustness against improper use in order to ensure the
required dependability.

This research does not focus on communication technologies using wireless networks.
However, next-generation ICM will have to cope with the effects that arise with dynamic
update of data and functionality. Such support has to be reflected within the constructive
aspects of such systems to adequately mitigate risks introduced by the new communication
ports and which thereby increase attack surface for such systems.

The automotive use of additional and external computing platforms has been common
practice for years. Current ICM provides basically the synchronisation of contacts, usage
of the telephone stack and streaming of music using wireless communication with mobile

6The X is a placeholder for ‘car’ or ‘infrastructure’ (e.g., road-side units like traffic signals).
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devices. Moreover, Portable Navigation Devices (PND) can be seen in many cars, either
to have route navigation as the vehicle’s ICM system (if available) does not provide any,
or to ‘update’ the existing one by adding the PND and not using the built-in any more.
As route navigation is also provided by current mobile phones accompanied with a media
player, personal contacts, telephony and connectivity to wireless cellular networks, PNDs
are often substituted, as the driver carries a mobile phone in any case. As the PNDs were
designed for automotive use, the mobile phones and their UIs are usually not, which is
related to potential issues regarding driver distraction – not considering legal constraints
of the use of mobile phones while driving. The solution here is provided by concepts
that use the vehicular UI to visualise content, render audio of, and interact with the
mobile device. This means the functionality of the mobile device is blended to or even
substitutes for the built-in, while the actual applications are computed on the mobile
device. Exemplary technologies are Nokia ‘Terminal Mode’, ‘Mirror Link’, and more
recent solutions like Google ‘Android Auto’ or Apple ‘iOS Carplay’. The normal UI of the
device is customized to automotive usage concepts when connected to the vehicle (e.g.,
reduced functionality, no text presented) to reduce driver distraction (Bose et al., 2010;
Apple, 2014; Google, 2014). Such ‘integration’ of mobile devices provides benefits to the
users by having their current custom device accessible while driving, using the vehicles
UI capabilities (e.g., buttons on steering wheel, display integrated to centre console).
However, this covers only a portion of an ICM system’s set of use-cases which include,
for example, the multi-display and multi-user management and control of automotive
body functions. Although this might be partly solved through the provisioning of apps
that cover the OEM or car model specifics, the usage concepts and criticalness of ICM
systems does currently differ from the one of mobile phones to substitute the ICM system
within the near future. Using the viewpoint of an OEM, it may be unlikely to give up
and pass the ‘control’ over the car’s centre console to a manufacturer of mobile devices.
Such ‘integration’ can be seen more as add-on or temporary substitution of in-vehicle
functionality. Nevertheless, the question as to what has to be done to replace the ICM
by use of a mobile device is another current field of research (Hüger, 2011).

2.2.8 Hardware

To counter issues raised to limited thermal dissipation capabilities and availability of
energy, MC architectures do provide adequate help. They have been common in the high-
performance computing (HPC) sector for decades. In the more recent past, they have
emerged and proved applicability also in server and desktop market segments, to solve
the need for more computational power while improving energy efficiency. This is mainly
driven by the fact that the increase of clock speeds to improve performance reached a
physical barrier due to current limits in transistor technologies and the necessary thermal
dissipation facilities.

Nowadays, this also applies to the domain of embedded systems where special purpose
cores support the main processing unit to form a heterogeneous System-on-Chip (SoC)
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MC architecture. But also homogeneous MC architectures are already available for dif-
ferent instruction set architectures (Levy and Conte, 2009). Those provide a number of
advantages, some of the most prominent of which are outlined in (Smit et al., 2008) as
follows:

Scalability is supported, as the architecture itself does not grow in complexity with future
technologies. Only the number of provided computational cores increases, depending on
the density of the integrated circuits and the size of the silicon. The computational power
of MC CPUs scales direct proportional with the number of integrated cores, although the
exploitation will suffer slightly due to necessary overhead.

Energy efficiency can be obtained by switching off unused cores to reduce the static
power consumption. Also, the clock speed might be dynamically adapted to current needs
for computation tasks which do not have to fulfil hard real-time constraints for determin-
ism. Energy efficiency increases with reduced clock speeds, resulting in a lower thermal
footprint. However, dynamic change of the provisioned computational resources decreases
predictability of behaviour, which has impact on the testability and analysability.

Independency of computational tasks is realised by space division on MC architectures
in contrast to the time division manner of multi-tasked software systems executing on
single-core systems. That means that MC systems support parallel processing. In con-
trast, single-core systems have to perform jobs concurrently. Nevertheless, MC systems
still have to compete for shared resources. Functional dependencies are realised by us-
ing an inter-core communication bus or network for exchange of information between the
cores.

For ICM - as well as (mobile) CE devices - features such as the increased integration den-
sity, improved computational power, energy efficiency and functional features of current
embedded SoC designs enable the creation of cost-efficient systems. However, to utilise
the facilities of multiple cores, the software has to address issues raised through parallel
execution (Sutter and Larus, 2005; Cantril and Bonwick, 2008; Holt et al., 2009). Even-
tually, MC CPUs were basically introduced to avoid the physical problem of increasing
clock speeds to enhance computational power and not as a new feature to provide more
parallelism which software developers will have to cope with. The new opportunities and
implications with the use of MC hardware architectures are discussed in more detail in
Section 4.2.3.

2.3 Requirements

System requirements correlate with the targeted software quality. A requirement is
basically a statement that identifies a necessary quality or characteristic of a system.
This means a requirement facilitates a formal specification of the systems quality. The
ISO/IEC/IEEE standard for systems and software engineering vocabulary defines soft-
ware quality as the capability of a software product to satisfy stated and implied needs
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when used under specified conditions (ISO 24765, 2010, p334). This does not include the
process quality related to the development of the product, although the process quality
may affect the product quality. The herein referred requirements are related to the soft-
ware product quality and not the process quality of the development. However, this does
not imply any limitations for application of process quality models to system development
(i.e., ‘use the right processes’). Moreover, the use of a stable software architecture that
adequately reflects the characteristics of the targeted systems and the development envi-
ronment during the development may support the process quality. But for this research
the focus is set to constructive aspects of the system under development (i.e., ‘develop
the system right’).

Based on the presented characteristics for ICM, a selection of significant requirements for
compositing such systems are detailed in the following, also derived from relevant product
qualities. Although the list of presented characteristics is not extensive, it highlights sig-
nificant architectural triggers with respect to modularity due to multi-source development
while considering adequate dependability, portability and adaptability. The characteris-
tics are selected and justified based on the review of relevant literature. Moreover, those
form the basis for evaluation of an adequate software structure (i.e. architecture) to
address demands for next-generation ICM.

With the ISO standard for Software product Quality Requirements and Evaluation
(SQuaRE) (ISO 25010, 2011; Wagner, 2013) a mature software quality model is available,
derived of the former (ISO/IEC 9126, 2001). It defines high-level characteristics that
capture major aspects of the system’s quality which are refined by sub-characteristics to
capture finer-grained quality aspects. Kalaimagal and Srinivasan (2008) compare different
quality models derived from ISO 9126 within the context of CBSE and propose the one
defined by Alvaro et al. (2005) to be most consistent and suited to the software component
domain. They propose software-quality framework that relies on characteristics refined
to sub-characteristics and further refined to quality attributes with the aim of efficiently
evaluating the quality of the software components. Beside others, this model explicitly
utilises sub-characteristics for self-containment and reusability. In further work (Alvaro
et al., 2010), they also propose means for evaluation. However, a high-quality software
component is not worth much when the remaining software infrastructure and compo-
nents are of a lower grade. All parts of the system have to contribute to fulfil the required
product quality. Hence, this research adapts the more general ISO 25010 model, with
particular focus on the qualities that support integration of components into a whole (cf.
Table 2.1; following Wagner (2013, p62)). Therefore, the focus is not limited to compo-
nents, but includes the infrastructure that binds them to support the achievement of the
particular quality attributes. When using quality models such as the one defined by ISO
25010, it has to be considered that neither the characteristics nor the sub-characteristics
can be regarded free of interdependencies. For example, improved security has potential
impact on the system’s performance efficiency and usability.

In the following, a subset of the characteristics are detailed and related to this research.
Therefore the quality model of ISO 25010 provides the foundation, although it has been
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Characteristics Sub-Characteristics

Functional Suitability Functional completeness
Functional correctness
Functional appropriateness

Reliability Maturity
Availability
Fault tolerance
Recoverability

Performance Efficiency Time behaviour
Resource utilisation
Capacity

Usability Appropriateness
Recognisability
Lernability
Operability
User error protection
User interface asesthetics
Accessibilty

Maintainability Modularity
Reusability
Analysability
Modifiability
Testability

Security Confidentiality
Integrity
Non-repudiation
Accountability
Authenticity

Composability Compatibility
Interoperability

Portability Adaptability
Installability
Replaceability

Table 2.1: Quality model following ISO 25010

adapted to this research. Originally, the standard defined a characteristic ‘compatibil-
ity’ with the derived sub-characteristics ‘co-existence’ and ‘interoperability’. This has
been substituted with ‘Composability’ and the respective sub-characteristics as colour
highlighted in Table 2.1. This corresponds to the herein-defined dependencies of char-
acteristics according to Peter G Neumann (2004) and emphasises the component-based
nature of ICM.
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2.3.1 Composability

Composability is a central quality characteristic within the context of this research. It
is usually not significant for a user, but its potential direct effect to other quality as-
pects pushes its significance through all phases of software development. That applies
in particular to ICM systems, which are not designed and implemented monolithically
from scratch. They are composed of different software components using concepts and
principles of CBSE while, reflecting a heterogeneous set of MOC (cf. Section 2.2.3). The
combination of component-based architecture and the need for resource efficient software
implementations raises demands for approaches that allow a rapid development with low
risks. This is related to the specification, design, and implementation, while considering
both hard- and software (Martin, 2002).

Provided the correctness of a system’s constituent parts (i.e., components) is given, it is
necessary to emphasise the validity of the composition with the aim of a safe and reliable
system. Therefore both functional and non-functional requirements (or properties) must
be considered (Crnković et al., 2011a). They are fundamental to the provided quality of
a software system and hence to software engineering and the related processes.

Chung and Prado Leite (2009) provide a comprehensive overview on the treatment of
NFR. They manifest the need to consider both functional and non-functional character-
istics with insufficient usable (i.e., not useful) functionality. Further, they provide defini-
tions to clarify terms related to NFR, describe the differences to non-software systems,
and reason about the lop-sided emphasis in functionality with the short history behind
software engineering, the demand for swiftly producing running systems which fulfil the
basic necessity, and the ‘soft’ nature of NFR. Hence, most attention is usually centred on
notations and techniques for definition and implementation of functional requirements.

This demonstrates the need for a more thorough consideration of NFRs during system
building and maintenance. Hence, NFRs must also be reflected when defining a com-
mon software infrastructure to improve the predictability of both the effort and success
of component integration. Otherwise the components’ temporal behaviour during run-
time is rather based on coincidence than planning and predictability. Current software
frameworks do not sufficiently foster the predictable combination of interdependent multi-
sourced components (cf. Section 2.4).

Multimedia systems have to deliver the information in a predefined quality to the user.
This includes the processing, the communication and the presentation of information and
media. These operations are usually not performed by a single system component. Thus,
considering all relevant components, the end-to-end path has to deliver a certain service
quality. This concept is defined as quality of service (QoS) and refers to operational
deadlines which have to be met (Steinmetz and Nahrstedt, 2004, p9 ff.). It applies in
particular to continuous information such as, for example audio and video, but is also
prerequisite to fulfilling certain protocols and interface standards of the relevant commu-
nication facilities and an adequate responsiveness to user interaction. Due to the ICM
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systems’ applications’ heterogeneity and interdependencies, the compliance to a certain
QoS related to a given use-case depends on multiple applications. Further, it has to be
considered that several use-cases are performed in parallel, utilising common applications,
which again share common resources (e.g., the audio device for an incoming phone call
while listening to music and speech synthesis of the navigation system’s route guidance).
Which use-case currently is of top priority may depend on the current state of the sys-
tem, which is also affected by the environment (e.g. the vehicle’s state). Hence, the
applications have to reflect the actual priority in accordance to a given use-case and the
current environmental conditions. However, this does not mean task priorities have to
be adjusted dynamically during runtime. But the system’s state and state transitions
have to comply with required and predefined system behaviour, e.g., formalised by use of
hierarchical finite state machine (FSM) (Wietzke and Tran, 2005, p215 ff.).

The temporal system behaviour is of significant importance, especially when considering
a system as having failed when it is not able to execute the critical workload in time,
although the hardware and software may be working properly from a functional viewpoint
(Krishna and Y. Lee, 1991). This applies to embedded systems that are part of a physical
process, i.e., cyber physical systems. Hence, such systems have to provide real-time
behaviour. Following the definition of (R. I. Davis and Burns, 2011), a system is referred to
as real-time when its correct behaviour depends not only on logically correctly performed
operations, but also on the time at which the operations are performed and respectively
when their results are available. Buttazzo (2011, p26) distinguishes real-time into three
categories: hard, firm and soft. Concerning firm real-time, results available after a certain
‘deadline’ are useless for the system, but this does not cause any damage which is the
case for hard real-time systems. Soft real-time implies such late results may have some
utility to the system, but do cause quality degradation. For instance audio media may be
affected by jitter, delay, distortion, or cracks and crunches when not meeting the end-to-
end path’s deadlines, which result in unintelligible route guidance, arduous phone calls, or
low-quality music play back. Although such cracks and crunches do not directly affect the
safety, other use-cases related to driving are safety critical and hence classified using an
ASIL category, for example the visualisation of certain elements of the instrument cluster.
High system load situations issued due to a non-critical use-case must not affect a critical
one. This demands a predictable temporal resource reservation, whereas resources include
CPU, memory, and I/O.

All this can be summarized into the need to render an integrated whole out of more or less
distinct and heterogeneous components. To form such an integrated whole, those com-
ponents have to be composable. This feature is expressed by the quality ‘composability’,
which has to be reflected by the system’s requirements to define targeted characteristics
and attributes to making the system useful and usable under stated conditions.

Composability is a complex quality. To make this term more tangible and also support the
classification of whether a system meets a certain degree of composability, it is decomposed
into the most significant and related qualities and characteristics, detailed in the following
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sections (see also Figure 2.6). Unfortunately, most quality models (a.k.a. classification
schemes) for NFRs are inconsistent with each other (Chung and Prado Leite, 2009) and
do not sufficiently recognize potential interactions between requirements. Although this
means a single NFR cannot be addressed without affecting other required system qualities,
in the following sections the focus is placed on composability as much as possible for
reasons of comprehensibility.
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Figure 2.6: Qualities related to composability

Composability mainly depends on ‘compatibility’ and ‘interoperability’. Following Peter
G Neumann (2004), compatibility implies the possible coexistence of different compo-
nents (or entities) without adverse side effects. In contrast, interoperability addresses
the ability of those different components to work constructively with one another. Both
compatibility and interoperability are constructive aspects of software engineering and
therefore have to be already considered during the system design phase. This also implies
that a system that lacks compatibility and interoperability might not be able to be refac-
tored for improvement of those qualities without significant efforts. Hence, consideration
of relevant NFRs permeates an adequate architectural design (Chung and Prado Leite,
2009).

This results in the following system requirements to describe ICM software components
more formally, which were defined as part of this research and represent the foundation
of architecture for future ICM:

REQ-1 Components shall not interfere with each other during runtime unless it is explicitly
specified.

This puts emphasis on the prevention of unwanted interference to mitigate adverse side
effects. Although such interference most obviously is related to functional interfaces,
also the NFR must be covered (e.g., temporal behaviour to fulfil a required QoS). On
the contrary, wanted interference is basically related to functional dependencies. This
means components still have to communicate in order to achieve the overall system’s
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desired functionality. However, the communication has to be restricted using well-defined
functional interfaces (also referred to as ports).

REQ-2 Components shall provide defined functional ports to enable inter-component com-
munication.

Although these are broad definitions that are applicable to a wide range of system domains
and types, they represent fundamental aspects for future ICM systems. Being construc-
tive aspects, they must be adequately considered throughout system development and in
particular by the system’s architecture.

Further, compatibility and interoperability can have a positive effect on the ‘scalability’
of a modular system. This is mainly related to the extendibility regarding the number of
composed components. However, following Peter G Neumann (2004, p32), performance
may degrade unpredictably with multiple conjoined components. Such a performance
decrease may extend from linear, multiplicative, to exponential relative to the number of
composed components. He explains that in practice the impact is even worse, caused by
design or implementation flaws or indirect effects of the composition as of unrecognized
dependencies. Such adverse side effects have to be mitigated. That is also a driver for
well-defined interfaces. Given fulfilment of REQ-1 and REQ-2, the number of coexisting
components does not necessarily result in an exponential growth of mutual interference.
Hence, the system’s ‘extendibility’ regarding the number and nature of composed com-
ponents also benefits from improved composability (cf. Section 2.3.6).

Also, the ‘reusability’ of the system’s components increases with well-defined interfaces.
This means positive effects on the efficiency of the development process due to the possible
reuse of already-existing or legacy components. This addresses demands for the capability
of independent design and implementation of the multi-sourced developed software com-
ponents. That can even be expanded to the build and deployment of those to support
dynamic functionality (cf. Section 2.2.7).

2.3.2 Functional suitability

The system’s functional suitability is directly related to the purpose of the system. It is
usually the primary focus when defining a system, because it expresses whether it fits to
the functional needs of the user. Hence it lays the foundation for use-cases descriptions,
derived services and applications realised within or in collaboration of software compo-
nents. However, providing adequate functionality is usually not directly related to the
system’s architecture, properties and constraints a system has to cope with, or its perfor-
mance efficiency. Moreover, it must not be affected by parallel development or software
reuse. Within a component-based software system, the major part of functionality is
provided by the components and not the infrastructure. Nevertheless, the components
rely on the infrastructure and hence may be dependent on the functional suitability of
infrastructural software components.
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Although for an actual system the functional suitability is of prime importance, this
research does not focus on functionality. In the following it is assumed that adequate
methods and technologies are applied to ensure that the right functionality is provided
correctly by the targeted system. Nevertheless, given components that provide the right
functionality and adhere to agreed functional interfaces does not necessarily imply the
targeted system is usable, maintainable and composable. Therefore functional suitability
does not mean a system is capable to serve the intended purpose well. NFRs must be
considered with at least the same magnitude.

2.3.3 Usability

Usability can be seen as the second-best characteristic for a software product from a user’s
viewpoint. According to Alvaro et al. (2005) it can be subsumed for expressing the ability
to be understood, learned, used, configured and executed under specified conditions. This
may include the consideration of the users’ capabilities as well as the environment. Re-
ferred to ICM systems that are operated within a safety-critical environment by untrained7

users, demands for adequate usability gain significance. Beside the UI, this also is related
to the system’s superordinate usage concept that has to combine the diversity of provided
functionality. That also includes the necessity to consider the variety and multi-modal
abilities to interact with the system as well as multi-user operation and multi-display and
multi-audio rendering (i.e., simultaneous visualisation and different displays and sound
generation at different speaker locations). Hence, the complex component-based systems
that have to provide an integral usage concept with multiple means for in-/output of the
usability acquire a constructive aspect.

2.3.4 Performance efficiency

Efficiency expresses the relationship between the level of provided performance and the
amount of resources used under stated conditions (Alvaro et al., 2005). That includes the
system’s response times and compliance against real-time constraints, while considering
limited hard- and software8 facilities available. Within the context of ICM, in particular
the system startup time and responsiveness have to be considered. In particular the latter
is of interest due to the interactive nature of those systems when operated within a safety-
relevant environment (cf. driver distraction in Section 2.2.5). This has to be reflected in
the system architecture and design. Albeit one common driver for CBSE is reuse (e.g.,
within another composition) which prerequisites the adaptation of a component to the
actual infrastructure. However, such adaptation (or configuration) should be put into
action most likely before runtime. This means either during deployment or even better:
during ‘compile-time’. Although optimisation might be deferred until it is necessary,

7It is rather unusual to thoroughly read a manual or get any other training before using an ICM
system.

8Within the domain of embedded systems, it is not unusual that libraries and system APIs do only
provide a reduced functionality (e.g., OpenGL ES for graphics).
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premature design decisions may prevent the chance of achieving an efficient system or in
actuality a system that provides the required efficiency after integration of all components.

2.3.5 Reliability

Reliability expresses the ability to maintain a defined level of performance under stated
conditions for a stated period of time. This may include several of the other quality
characteristics. That includes maturity, availability, fault tolerance and recoverability.
Importance is emphasized for mission and life critical systems and has to be ensured for
long runtime and untrained users. Following Wagner (2013, p11), failures in the func-
tionality of the software to be considered differ from performance problems, for example.
This makes reliability a well-defined quality characteristic for which statistical models and
measurements exist.

Reliability is directly related to the often referred-to term ‘dependability’. According
to the classification of Avižienis et al. (2004), the attributes for dependability basically
correspond to the characteristics of reliability used for this research adopted from ISO
25010 (cf. (Wagner, 2013, p16); Section 2.2.5).

With regard to the operation within a safety-relevant environment and containing safety-
critical functionality, the ICM system’s ‘dependability’ takes on a special role. This has to
be considered throughout system development, maintenance and deployment of dynamic
functionality. Qualities affected are the system’s security, reliability, fault tolerance, sur-
vivability and performance. However, although this list covers significant qualities, it is
not extensive.

Due to the mixed-criticality of the components and the integration to a shared platform,
a failure within an uncritical component potentially propagates to a critical one. This
may be considered as adverse interference (covered by REQ-1). Nevertheless, such error
propagation is enabled through the components’ connectors (or ports) which are neces-
sary to achieve interoperability. Mehta et al. (2000) present a comprehensive classification
framework and taxonomy of software connectors derived from analysis of existing compo-
nent interaction. They define types for communication connectors, including ‘procedure
call’, ‘event’, ‘data access’ and ‘stream’. These types are further developed by Manadhata
and Wing (2005), who define metrics for computing ‘attackability’ as a cost-benefit ratio
within the context of an ‘attack surface’ metric. Although the size of a system’s attack
surface should not be confused with vulnerability or dependability, such a metric provides
a quantitative method to express damage potential and effort. Within the context of this
research, an offender does not necessarily cause ‘damage’. Although this is a valid trigger,
damage is potentially attributed to (undiscovered) incompatibilities, error propagation,
misinterpreted communication and transmission errors. They assume the order ‘event’
(1), ‘data access’ (2), ‘procedure call’ (3), ‘stream’ (4), with (1) low and (4) damage
potential.

Hence, the ports (required with REQ-2) should be defined as narrowly as possible:
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REQ-3 An interface port shall be reduced to the particular needs of the respective commu-
nication (based on type ‘event’ or ‘data access’).

This means an interface may implement a predefined protocol, ideally without the need
of interpreting received data and making use of fixed message sizes (e.g., uniform event
messages). This calls for detailed and explicit interface specification (at best at an early
development stage) to reduce chances of misinterpretation during development or runtime.
Interpretation may provide some flexibility, but also potentially decrease the efficiency –
again of development and the system performance. Furthermore, such a non-abstracted
interface may improve testability and assessment for critical components (e.g., when com-
paring a Simple Object Access Protocol (SOAP) based web service against fixed-size event
messages to communicate between the route navigation system and the ASIL-B classi-
fied instrument cluster). Admittedly, this may be counterproductive for interoperable
evolving systems. Nevertheless, a best practice protocol family for such communication
is still the Hyper Text Transfer Protocol (HTTP) and its relatives that feature flexible
message structures, interoperability and mature infrastructures. However, interpretation
(i.e., ‘decisions’) should be made at best before runtime with respect to the particular
needs of the respective communications and performance efficiency (cf. Section 2.3.4).

2.3.6 Portability

As the complexity of multi-sourced and in-parallel operated ICM components consistently
rises, this brings with it the demand for a mature hardware abstraction layer integration
to a single platform including the use of shared resources. This issue is addressed by use
of an OS and its ‘kernel’. The kernel forms the core of an OS and provides the necessary
means to cope with the complexity, parallelisation and heterogeneity by use of a set of
fundamental functionalities following the micro-kernel concepts of Liedtke (1995):

• Address spaces
• Threads and inter process communication (IPC)
• Unique identifiers

Upon those core concepts, further abstractions can and will be realized to provide, for
instance, memory management and device drivers. This aims for adequate usability at
the application level, which these system services are provided to by use of an operat-
ing system interface. This special form of an API defines the actual interface between
the application level and the kernel, also referred to as user space and kernel space with
focus set on the respective memory region. Depending on the actual OS and its im-
plementation of the concepts and abstractions, this interface may vary and hence limit
portability between different types of OSs, although they provide similar functionalities.
Portability gains significance when considering reuse of already-existing components on
different platforms or decisions to switch platform during development (e.g., because the
target platform is not available when development starts, change of platform supplier due
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to technical or strategic/management decisions, etc.). Basically, portability may help to
protect investment already made on software development.

An appropriate solution is the use of a standardised interface like the Operating Sys-
tem Interface (POSIX). It defines system API of mature quality, proved applicability,
and provides adequate portability to facilitate a reuse for software components specified
simultaneously by the IEEE and The Open Group (ISO/IEC/IEEE 9945, 2008; Walli,
1995). It is supported by various OSs9, although they usually provide additional features
beyond the defined standard. Nevertheless, POSIX support the applications portability
at source code level. This still applies when considering that its scope does not cover
areas like graphics interfaces, object and binary code portability, system configuration,
and resource availability. It lays the foundation for enhancing the provided interface to
cover those areas as well, i.e. by implementing a domain-specific software framework (cf.
Section 2.4) that streamlines the provided services and capabilities to a special purpose.
Hence, for this research, POSIX is used as the least common denominator for system
implementation to foster adequate portability.

REQ-4 Either the utilized software framework or the components shall comply with POSIX.

This means at least the framework (if used) must be portable to another POSIX com-
pliant OS, which implies the components are portable to that OS as well. In result, an
implementation of components is independent of a particular (UNIX like) OS as long as
it complies with the POSIX programmers interface.

Nevertheless, especially within the context of automotive embedded systems a great share
of a vehicle’s functionality is implemented without the utilisation of a POSIX compliant
OS (e.g., OSEK-OS (ISO 17356-3:2005, 2005)), or even without an OS by running the code
directly on a microcontroller hardware. This is attributed to the fulfilment of hard real-
time requirements and the intent to decrease hardware costs. Although the ICM head-unit
usually employs a POSIX compliant OS to counter the complexity, the OEMs intent to
reduce the number ECUs may require an integration of ‘non-POSIX’ applications for next-
generation ICM. This research does not explicitly address the integration of non-POSIX
software components. Nonetheless, except of REQ-4 the herein specified characteristics of
the target system are still valid. For the integration of such components an appropriate
runtime environment must be available on the head-unit. An integration to a POSIX-
conform framework and respective framework-conform software components might be
achieved by use of a ‘proxy-component’ that adapts the non-POSIX software-component
to the software framework.

A sub-characteristic of portability is adaptability. This is important, as for ICM systems,
a relatively long development process elapses until they actual are built into a car to be

9Including, e.g., QNX Neutrino, Wind River VxWorks, GNU/Linux, Green Hills Integrity, SYSGO
PikeOS, etc.
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delivered to the customer. Although the nature and basic tasks of ICM are quite clear
due to the automotive context, the users’ demands are not. Admittedly, in all probability
they all expect a set of current state-of-the-art functionality, including, e.g., instrument
cluster, media player, hands-free telephone, satellite based route navigation. However, it
is not possible to foresee the particular demands of all drivers and passengers for the whole
product life cycle. The fulfilment of the users’ demands correlates with user acceptance.
Hence, the ability to adapt an ICM to changing demands resulting from divergent users
who might also change their demands over time, gains importance for next-generation
systems.

Even though existing ICM systems are configurable, they provide limited capabilities to
adapt their function set to the actual needs and demands of their passengers. Up to
now, the provided functionality is defined during the initial development process and
fixed latest at SoP. This means the functionality is static during the whole product-
life cycle. However, there are user demands that call for a change of that policy, not
least because of the capabilities provided by devices within the CE domain (as detailed
below), although usual product lifecycles are distinctly shorter compared to an automotive
system. The evolution from systems with static functionality extends to ICM devices that
can be updated and enriched regularly or on-demand and this is a major change in the
automotive domain. The UX can be efficiently maintained through the entire vehicle
lifetime. Hence, this evolution may have significant impact on the user interaction, as a
current user is basically limited to configure functionality delivered with the vehicle (i.e.,
as initially shipped). Next-generation ICM enable their users to adapt a portion of the
provided functional extent to personal needs or favourites. This creates a new dimension
of customization.

To adapt the function set to individual needs and demands of a vehicle’s passengers, ICM
have to provide the capabilities to install/deploy applications dynamically (e.g., after-
market). This puts emphasis on agreed upon inter-application communication facilities
and functional interfaces to achieve the necessary interoperability. The relations to other
quality characteristics have to be considered as well, depicted in Figure 2.7.
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Figure 2.7: Qualities related to adaptability
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Such functional flexibility is an already-established and approved approach by use of
so-called ‘Application Stores’ and ‘Application Markets’ in the CE market domain of
smartphones, Internet tablets, and desktop computers. They enable their users to install
new functionality into their devices as well as remove unwanted applications (Pope and
Muller, 2011). With increasing functionality introduced to ICM systems, the demand
for innovative digital contents and user-individual functionality rises for such systems as
well. This issue is already under research at several relevant OEMs and Tier-1 OEMs
(Smethurst, 2010; Pflug and Frederick, 2011). Nevertheless, the software system’s com-
plexity increases due to almost infinite permutation by recombination of different apps,
as well as with the possibility of defining and implementing new aftermarket functionality
which the initial system designer cannot foresee but has to consider to ensure a dependable
system that fulfils the requirements of an ICM system. (Charette, 2011; Quain, 2011).

As detailed in Section 2.2.7, the current and next-generation systems are already con-
nected to wireless networks. This provides the necessary channels for distribution (or
deployment) of such dynamic function sets. Hence, the availability of wireless commu-
nication facilities enables after-market enhancement of ICM functionality even during
operation. Again, such functional enhancement amplifies demands regarding compos-
ability, which puts emphasis on the software’s infrastructure and temporal predictability.
Nevertheless, the need for adaptability is defined as follows:

REQ-5 The system shall provide capabilities for updating and installing components on user
demand.

2.3.7 Maintainability

Maintainability characterises the effort needed to make specified modifications. The effect
is not limited to the maintenance phase, as adequate maintainability is necessary right
from the beginning of the development for project efficiency. This is of great significance
in particular for multi-sourced software projects with various organisations involved that
run for several years. That implies, for example, staff exchange, potential change requests
at every project stage, multiple integration phases combined with fixed delivery dates due
to concerted development and production with other vehicular subsystems.

As a software project benefits from a maintainable system, while maintainability is also
a constructive aspect. Hence, considering it carefully at the beginning can significantly
enhance the entire subsequent life cycle and reduce development costs. Maintainability is
difficult to satisfy once the development is advanced if it had not been included in early
planning.

Although essential for all software development projects using a developer’s and even more
a manager’s viewpoint, this research does not explicitly focus on maintainability. More-
over, it is presumed that the respective sub-characteristics are considered according to
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good architecture, design and coding style to achieve maintainable ICM systems. In prac-
tice, for the maintenance until EOP, about 30% of the total number of human resources
that were employed for the development of an ICM system are necessary, according to
the experience made in recent projects Section 3.2.

2.3.8 Security

Security issues are gaining significance within the domain of ICM systems due to connec-
tivity to cellular networks combined with integration of after-market functionality. Al-
though characteristics such as reliability are related to integrity derived from security, this
research does not cover security-related system qualities. However, the herein proposed
architecture may affect security aspects, especially the structuring software components
as detailed in Chapter 4. An investigation of isolation mechanisms and potential attack
vectors within the context of ICM is an active field of research (Schnarz et al., 2013;
Schnarz et al., 2014b; Schnarz et al., 2014a).

2.4 Software frameworks

An ICM system is composed of different interdependent software components. A qual-
ity model to verify the individual components’ quality is useful as starting point when
integrating multi-sourced parts. Components of adequate quality are necessary but not
sufficient to achieve a composition of the required quality (i.e., satisfy stated and implied
needs when used under specified conditions, according to ISO 24765 (2010, p334)).

The components are computed asynchronously which allows for parallelisation depending
on the hardware platform’s available facilities. This presumes the availability of common
synchronisation and communication facilities. A common infrastructure eases the devel-
opment and maintenance process, especially for projects with independent, parallel and
multi-sourced development. It supports both the design phase and the implementation
phase by domain-specific abstractions of the resources provided by underlying system lay-
ers to foster both the quality of the system under development and the productivity. Such
an infrastructure is provided by use of a software framework in combination with an agreed
upon guideline on how to use it. It provides capabilities to support the development and
maintenance process by defining an infrastructure in combination with approved methods
and techniques to achieve efficient inter-application communication and synchronisation.
That can be realised by a domain-specific abstraction of the facilities of the underlying
system layers, including both software and hardware.

There is a wealth of definitions for the term framework. Different target platforms come
with their individual ones, possibly with their specific OS and HMI. Riehle and Gross
(1998) provide the following definition:
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“Frameworks are a central concept of large-scale object-oriented software de-
velopment. They promise increased productivity, shorter development times,
and higher quality of applications.”

Within the domain of automotive software systems, and in particular for ICM systems,
Wietzke and Tran (2005, p10)10 provides an applicable motivation taking into account
the parallel development and division of labour:

“As soon as larger groups work on one or more projects, perhaps dispersed
over different locations, rules and solutions must be defined, which have to be
recorded within a framework.”

A software framework is recommended for parallel development, involving a large number
of developers, probably working at different locations. A software framework is usually
domain-specific, which applies in particular when targeting efficient embedded solutions
such as ICM systems. It may define coding conventions, provides common communication
and synchronisation facilities, rules for memory usage, and further hardware abstraction.
Therefore, the framework implements a set of base functionality and provides an API
using abstract base classes. The implementation relies on object-oriented principles using
C++. It helps to ensure certain qualities of the targeted system. These include portabil-
ity, maintainability, reusability, extensibility, and interoperability. A software framework
predefines performance and efficiency of the system and further has impact on the effi-
ciency of the development process. If not already part of the framework, the system’s
architecture and design is at least highly influenced by it. It constructs the foundation,
which has to be elaborated for a particular target system. Thus, it is a critical component
and should receive appropriate attention (Wietzke and Tran, 2005, p10 f.).

When considering the evolvement from decoupled architectures to an integrated one, the
utilised frameworks receive increased significance. The former independent components
have to share a common infrastructure, which requires rules and solutions to ensure inter-
operability and extensibility. This applies even more in regard to the complex functional
behaviour and the required characteristics for safety, time and reliability due to the con-
text of use (Di Natale and Sangiovanni-Vincentelli, 2010). An appropriate framework is
able to provide the necessary support for the development process of highly complex and
integrated ICM systems.

The use of a software framework supports the design phase by providing well-defined ap-
plication interfaces, as well as the implementation and maintenance due to the availability
of a set of mature base functionalities. A developer benefits from its use by being able to
limit focus onto application logic that makes up the core of the functionality. Hence, the
use of software frameworks aids the separation of different concerns. It is possible that

10Translation by A. Knirsch: Sobald größere Gruppen, eventuell sogar verteilt über Standorte, an
einem oder mehreren Projekten arbeiten, müssen Regeln und Lösungen festgelegt werden, die im Frame-
work niedergelegt werden.
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a framework will also ease the reuse of mature and well-tested applications within future
systems which rely on compatible frameworks.

Using a more applied developer’s perspective, a software framework represents an infras-
tructural system component that supports both the assembly of application components
(horizontal binding) and the deployment to a particular platform (vertical binding). Inter-
operability and compatibility must be considered for both horizontal and vertical binding.
Using a software framework, the respective implementation parts that support the assem-
bly and deployment are kept separate from the implementation of the applications, i.e.,
the use-cases. This means application components are ‘glued’ together using a domain-
specific infrastructure that offers well-defined interfaces. The decomposition of the system
into infrastructure and use-case implementation follows the paradigm of ‘separation of
concerns’ and fosters a relatively independent in-parallel development and maintenance,
given an agreed upon common interface. Such division into different development do-
mains (cf. Figure 2.8) improves the comprehensibility of the implementation. This can
have positive effects on the quality characteristic ‘maintainability’ and the derived mod-
ularity, reusability, analysability, modifiability and testability (cf. (ISO 25010, 2011);
Section 2.3.7). This applies all the more when the domains evolve at a different pace.

Software System

Application Domain

Base System Domain 

(Framework)

Integration Domain

Configuration Application

Infrastructure

Figure 2.8: Separated software development domains

A comprehensive software framework represents the infrastructure that provides the base
for configuring or adaption of application components to achieve a compatibility and
interoperability.

2.4.1 AUTOSAR

An application of the idea of CBSE (cf. Section 2.2.3) to embedded and real-time systems
is the Automotive Open System Architecture (AUTOSAR) (Bunzel, 2011). AUTOSAR
is the outcome of a consortium consisting of international automobile manufacturers11,
suppliers and producers of development tools. It is a standardized architecture, develop-
ment approach and API. Beside many other features, it also provides mature means for

11AUTOSAR members include the following core partners: BMW, Bosch, Continental, Daimler, Ford,
General Motors, PSA Peugeot Citroen, Toyota, Volkswagen. Further 48 premium, 103 associate, 25
development partners and 12 attendees are affiliated to the AUTOSAR association.
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partitioning different components (Mössinger, 2010). These support the shift from the
‘one function per ECU’ paradigm to more centralized architecture designs (Monot et al.,
2012), also addressing issues of mixed criticality (cf. Section 2.2) (Burns and R. Davis,
2013). Following Jensen and Mascolo (2010), AUTOSAR provides key concepts to enable
collaborative development of automotive software in large inter-company development
groups, using a standardized design for integration and software reuse, implementation
specification and inter-organisational communication.

The technical strategy of AUTOSAR covers collaboration at vehicle system level and
component level. Whereas vehicle system level is related to interoperability for networked
and interdependent ECUs, the component level covers compatible and interoperable intra-
ECU software co-location. Both are facilitated by use of a ‘virtual bus’ called Run Time
Environment (RTE) to provide the necessary means for intercommunication indepen-
dent of the deployment of the software components (i.e., collocated within a common
ECU or dispersed to distinct ECUs). Low-level basic software provides the necessary in-
frastructure, while the so-called AUTOSAR software components (SWC) implement the
application logic. This corresponds to a separation of development domains as detailed in
Section 2.4. However, the base system is divided into a service layer that relies on an ECU
abstraction layer that in return relies on a hardware abstraction layer. The service layer
acts as the interface for the application components to provide system services, memory
services and communication services. Additionally, that integral structure AUTOSAR
enables the ‘standardised means to circumvent the standard’ by use of a Complex De-
vice Driver that enables (legacy) code to run collocated next to a AUTOSAR system.
The downside is that the Complex Device Driver has no communication ports to the
AUTOSAR base system’s stack.

With the primary focus set on automotive control functions (Kindel and Friedrich, 2009,
p62), it is rather static and does not provide the necessary capabilities to integrate soft-
ware components (i.e., dynamic functional content) which originate from the CE domain
or integrate mobile devices. This also has an effect on the available communication facili-
ties between the AUTOSAR SWC. Although with release 4.0 (and substantially enhanced
with release 4.1), its architecture and API support the use of MC platforms (cf. (AU-
TOSAR, 2013, p27 ff.) and (AUTOSAR, 2014, p88 ff.)), it is very restrictive regarding
communication to foster strict partitioning. However, it focuses on mechanisms regarding
the communication between applications running on different processor cores. A utiliza-
tion of shared resources by applications deployed onto different cores is not supported
(AUTOSAR, 2014, p112):

“AUTOSAR RESOURCES cannot be shared between TASKs/ISRs on different
cores.”

The communication between different SWC is basically limited to stream-oriented socket
communication. Although this preserves the degree of freedom of where to deploy a par-
ticular SWC to (i.e., collocated vs. different ECUs), it limits liberty regarding the struc-
turing of SWCs. This is a disadvantage for systems consisting of many inter-dependent
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components, in particular for such that rely on high-bandwidth communication for mul-
timedia such as, for instance, ICM. The related implications of partitioning are detailed
in more depth in Chapter 4.

As of several OEMs and Tier-1 OEMs already relying on AUTOSAR-conform ECUs, fu-
ture in-vehicle software systems may have to support at least compatible communication
facilities (using the AUTOSAR RTE). This can be realised using concepts that feature co-
existence of AUTOSAR implementation and other applications/OSs on a single hardware
platform (Hergenhan and Heiser, 2008; Nett and J. Schneider, 2013; J. Schneider, 2013;
Thiebaut, 2011), also supported by the specification for AUTOSAR OSs with requirement
SWS OS 00576 (AUTOSAR, 2014, p93):

“It shall be allowed to use only a subset of the cores available on a µC for the
AUTOSAR system.”

Respective system environments that focus on partitioning of resources for isolation of
software components are detailed in Chapter 4.

2.4.2 GENIVI

Another multi-organisation initiative consisting of a wide range of OEMs and their sup-
pliers with the aim to foster collaborative in-vehicle software is the GENIVI12 Alliance
(GENIVI, 2014). It was announced in early 2009 with eight founding members13. As of
this writing, over 180 members are collaborating within the non-profit organisation. In
contrast to AUTOSAR, this one explicitly sets its focus on the domain of infotainment,
adopting the idea of ‘open-source’ by their standards and relying on a Linux-based OS as
base hardware abstraction. The proposed GENIVI IVI platform does not address highly
competitive areas such as UI and logic that defines the UX.

Following Germonprez et al. (2013), such an open-source community enables partnerships,
advance technology, and seeks opportunities even among competitors. Similar to the aims
of AUTOSAR the objective is to collaborate on the development of the basics of software
platforms to enable the individual organisations to differentiate among products based on
usability and features instead of wasting time on platforms. Smethurst (2010) details the
motivation for GENIVI and its operation principals ‘Code’, ‘Platform’ and ‘Reference’,
following their approach of adopting from community (80%), adapting CE functionality
(15%) and creating automotive specific GENIVI code (5%). Following this ‘80-15-5 as-
sumption’, several existing open source projects have been adopted and adapted to meet
defined requirements for their free and open source software (FOSS) platform, including
an improved ‘D-Bus’ for component intercommunication, ‘Common API C++’ IPC ab-
stractions, Linux containers (LXC) for resource isolation and control, a layer management

12GENIVI is an artificial term that combines the pronunciation oft the city Geneva and IVI.
13GENIVI founding members (OEMs, tier-1 OEMs, silicon and OS vendor): BMW, PSA Peugeot

Citroen, General Motors, Delphi, Magneti-Marelli, Visteon, Intel, Wind River.
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to blend the visual output of different components, audio management, and many more
(GENIVI Alliance, 2013; LXC - Linux Containers 2014). GENIVI basically provides a
Linux-based foundation that is already compliant to a wide range of hardware platforms,
ready to build an ICM system on top.

In 2013, BMW demonstrated the applicability of the proposed concept by starting pro-
duction of vehicles with GENIVI-based head-units in several product lines, four years
after the official start of the alliance (GENIVI Alliance, 2014).

A close relative to GENIVI is Tizen and its IVI profile architecture (the successor of
MeeGo IVI) (Tizen Project, 2014b). It also follows the idea of FOSS and provides a
fully-equipped OS driven by the requirements of the GENIVI alliance, and although
incorporated into their platform, it does not fully share the same core components. Ti-
zen also supports profiles for other device categories including mobile phone, wearable
computer, and TV. Therefore it distinguishes between platform and application domain,
providing software development Kits (SDK) dedicated for application development only.
Thus it emphasises the UX, featuring both a web technology-based or native UI API14

and comprehensive design guides (Tizen Project, 2014a; Tizen Project, 2014c).

With GENIVI, an extensive platform to build ICM systems is available, designed and
maintained by OEMs and Tier-1 OEMs. The Linux kernel-based LXC provides (‘con-
tainer’ based) means for temporal isolation of different components using a lightweight
virtualisation using kernel namespaces with ‘near native’ performance (Xavier et al., 2013;
Calarco and Casoni, 2013). However, without the need to employ multiple OS instances,
the degree of isolation may not be strict enough to satisfy demands of MCS, as well as to
cover different components’ life cycles. Respective implications are detailed in Chapter 4,
and regarding LXC in particular in Section 4.3.4.

2.4.3 Android

Within the recent past, the system platform Android continuously increased its presence
within CE devices. This most significantly applies to mobile phones where it dominates
the market with a share of 78.1% and nearly 793.6 million devices sold in 201315 (IDC,
2014). One success factor might be its open source license that enables different com-
peting manufacturers to use it as software platform for their devices. A further positive
aspect is the key feature that enables the user to install and update application com-
ponents to customize the provisioned features of the particular device’s life cycle. The
platform is developed and maintained by Google, which also runs an application market
as distribution point for new functionality that is comparable to the Apple App Store for
their iOS platform.

14Tizen’s web UI refers to HTML5 and JavaScript while the native UI is related to the integration of
Qt.

15By comparison: Apple iOS had a share of 15.2% with 153.4 million sold devices.
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The Android platform relies on a Linux kernel and enables the application developer to
realize the functionality using a specialised Java runtime environment (Dalvik VM), eased
due to availability of a SDK. It is further possible to run native (i.e. C/C++) code on
the platform using the Native Development Kit (NDK) which can be connected to, for
example, a Java-based UI. The particular functionality for one application is encapsu-
lated within a ‘sandbox’. This improves compatibility due to the prevention of adverse
interference of different applications, but limits interoperability between different ‘apps’.

Although Android does not fulfil the demands for an ICM platform regarding mixed
criticality, its user acceptance within the CE domain, license model and capabilities for
dynamic functionality also affects the roadmaps for next-generation ICM systems and
evolve new research areas (Macario et al., 2009). Several OEMs and Tier-1 OEMs are
currently running projects to integrate Android or are even already using Android as plat-
form for their systems (Pflug and Frederick, 2011; Continental, 2014; Renault, 2014). As
Android needs connectivity to the Internet and application market(s) to unfold its capa-
bilities for customisation, it might be necessary to decouple it from automotive and critical
functionality (e.g., running it side-by-side with another software platform). Respective
features are detailed in Chapter 4.

2.4.4 OpenICM

OpenICM is an academic software framework developed and maintained at the ICM Labs
of the Faculty of Computer Science at the University of Applied Sciences Darmstadt,
freely available due to open-source licensing (ICM Labs, 2010). It implements the con-
cepts described in (Wietzke and Tran, 2005) by use of the POSIX API (cf. Section 2.3.6).
Basically, it supports the implementation of software components by providing a flexible
and domain-specific infrastructure and guidelines for its use. OpenICM have been in-
fluenced by several industry-cooperation and inter-institutional projects for more than a
decade. Further, it contains the experience made within several task forces at Tier-1 OEM
to rescue projects in difficulties. Although its focus is primarily set on ICM, its concepts
and implementation are also applicable for other target domains where the system under
development has to address comparable issues.
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Figure 2.9: Abstraction layers using OpenICM

To ease the parallel and distributed development and maintenance, OpenICM fosters a
loose coupling between software components (e.g., UI and application logic) in combi-
nation with corresponding rules and guidelines to achieve adequate interoperability and
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compatibility. This is realised by abstractions of an underlying OS layer and following
the idea of reducing the overall complexity to interacting subsystems by use a policy of
‘divide and conquer’ as depicted in Figure 2.9. Within this context, interoperability ba-
sically relies on the availability of efficient and unambiguous means for communication.
That includes inter-process communication (IPC) and synchronisation of concurrent or
parallel executed components and their tasks respectively. That fundamentally implies
primitives for mutual exclusions and signalling, message queues and shared memory for
data exchange. The use of dynamic memory (heap) is avoided to prevent fragmentation
of the limited memory and to allow the prediction of necessary memory during runtime.
The predefined and limited means of memory usage can also have a positive impact on
the system start-up time as detailed in (Knirsch, 2009), which is of high importance for
automotive applications.

The implementation of OpenICM utilises object-orientated concepts and the programming
language C++. Due to the use of the POSIX API, it is portable to different target
platforms, while GNU/Linux and QNX Neutrino are the actively maintained ones. An
essential part of OpenICM is the abstraction of functionality by use of a thread-based
runtime model. The adaptation of the components and threads is realised by use of a static
central configuration (i.e., not changeable during runtime), including memory layout and
thread priorities. Threads are labelled with names in plaintext to ease system monitoring
and analysis. For efficient inter-component communication, event-triggered queues for
fixed sized messages in combination with a ‘dispatcher’, component are provided (Wietzke
and Tran, 2005, p308). The message queues rely on a shared memory region using so-
called ‘component contexts’ that realise three different priority levels per component. For
complex data exchange, the component context can also contain so-called ‘data container’
in shared memory (Wietzke and Tran, 2005, p347). It is ensured that even before a
particular component is started, no message addressed to this component can get lost.
The dispatcher and the uniform message structure supports monitoring and analysis.
Figure 2.10 illustrates the static relations between component contexts and application
components that realise the inter-component communication.

Additionally, OpenICM provides abstractions for domain-specific hardware resources.
This unifies, for example, the access to field bus systems like CAN or MOST, as well as
supporting the development by use of those abstractions to realise the access to physical
devices (e.g., FM radio, CD player, amplifier). This means that in addition to the com-
ponents that realise the application logic, further infrastructure components are available
to encapsulate, e.g., inter-component messaging or component monitoring. Such infras-
tructural ‘base components’ use the same architecture as the application components.

Within this rEsearch, OpenICM is used as portable OS abstraction layer to address ICM
specific requirements for evaluation of the herein provided concepts. Therefore OpenICM
were enhanced and modified (cf. Chapter 7).
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Figure 2.10: OpenICM communication infrastructure

2.5 Summary

ICM systems inherit characteristics from various domains, which include embedded, au-
tomotive, and multimedia. In detail, this places a demand for systems that are able to
cope with real-time requirements, the operation in harsh environments, limited hardware
resources, and need for adequate dependability due to their operation within a safety-
relevant environment. In parallel, ICM evolved to a key differentiator with significant
economic relevance to the OEM. This is a result of the feature-rich applications provided
to the user, comparable to a mixture of functions as available in current cutting-edge con-
sumer devices. Their development is realised in parallel by different independent parties
and has to be coordinated with all other parts of the vehicle. Moreover, next-generation
ICM has to incorporate means to support a dynamic function set to address the users’
needs for individual functional adaptation. The platform’s resources are not sufficient
to run all software components in parallel without violation of usability, reliability and
performance efficiency due to overcommitment of memory and processing power. A degra-
dation of the perceived usability is the lesser evil: due to the inherent criticality of ICM,
an inadequate software architecture has a potential effect on the occupants’ and others’
safety. This is emphasised by the rising importance of ICM, as it constitutes the integra-
tion platform for other vehicular software systems and realises connectivity beyond the
vehicular boundaries.

The approaches applied for the development of past and current systems are not applicable
for the rising integration density at the software level. This has resulted in a demand for
design and implementation concepts that support the development of valid compositions,
predictable both on functional and temporal behaviour while considering changes during
the whole product lifecycle.
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Therefore a set of essential requirements is presented (to be enhanced within the following
sections) with the aim of considering the characteristics of ICM as well as improving the
predictability of the success of the development. Here software integration is seen as a
crucial quality for the successful rendering of future ICM systems.

In parallel to this research, industry-recognised, formulated and evolved standardised plat-
forms for mixed criticality and infotainment systems that consider multi-sourced software
have been developed for the automotive domain (cf. Section 2.4.1 and Section 2.4.2).
They focus on particular solutions that offer only limited compatibility with application
for a comprehensive ICM architecture. This is further detailed within the subsequent
chapters.
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Applied software composition for ICM

“The only source of knowledge is experience.” (Albert Einstein)

ICM is a converging point for functional complexity and safety relevance. From this
emanates the challenge of rendering integral, consistent, and dependable software systems
while integrating heterogeneous components developed in parallel by independent parties
with different interests. Under these constraints, the successful integration of automotive
software components becomes a major challenge of the development process (Pretschner
et al., 2007; Sangiovanni-Vincentelli and Di Natale, 2007). This implies the parts have
to be composed into an integral and dependable system. Given the correctness of the
constituent parts, it is necessary to emphasis the validity of the composition.

The significance of the integration issue increases with evolving functionality and com-
plexity. The amount of software within a current upper market car has already reached
the mark of 106 lines of code, where up to 70% can be addressed to future ICM systems
(Charette, 2009; Smethurst, 2010). Although this metric is not appropriate to directly ex-
press the systems complexity, it provides a first impression to anticipate the challenges the
Tier-1 OEMs will counter during the development process in general and the integration
process in particular.

Additionally, the software has to be developed according to the schedule of all other parts
of an automobile, as at SoP all vehicular components have to be ready for production.
This requires a deterministic development process for all components. In this context,
the term ‘deterministic’ is related to the duration of the development process, the efforts
of the integration process, and fulfilment of the required functional and non-functional
qualities of the targeted system. This again puts emphasis on the system development
and composition which this chapter covers from a more practical viewpoint.
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3.1 Development approach of automotive systems

ICM is the contribution of the automotive industry to the general trend for ubiquitous
computing. Within this context, it has already gained significance in regard to the OEMs’
economic success. While in the past, prospective customers focused primarily on vehic-
ular characteristics like related fuel consumption, engine power or safety systems, now
the ‘FM radio’s descendant’ increasingly affects their purchase decision. Car magazines
already compare vehicles based on their ICM systems. This is the logical result of the
market penetration of CE devices that also foster ubiquitous computing, the availability
of wireless access networks with high bandwidths, and the fact that younger drivers are
already growing up with everyday computing. However, ICM is still a relatively young
domain within the automotive development and manufacturing process. Two decades
ago, built-in satellite navigation, speech recognition, in-vehicle touch displays, Internet
media streaming and hands-free telephones within both lower and upper market cars were
still dreams of future. Although some of these functionalities may also rely on specialised
hardware devices, the usability is achieved by use of an increasing amount of software.
The development and production of both is subject to processes that have evolved during
the last decades and which have significant impact on the development approaches applied
to ICM systems’ software.

The development of ICM, and respectively its software, follows the rules of automotive
manufacturing, and in particular those for supply production processes. Those are in
accordance with Quality Management Systems (QMS) which gained significance in the
1940s in the USA and 1950s in Japan. In the evolution of QMS within the automotive
industry, Deming played a significant role and shaped the term Total Quality Management
(TQM). In (Deming, 2000) he describes the effect of improved quality as chain reaction
as illustrated in Figure 3.1.

improve quality

costs decrease

productivity improves

capture the market

stay in business

provide (more) jobs

less rework  

fewer delays

better quality  

lower prices

Figure 3.1: Chain reaction following improved quality according to Deming

In the 1980s, the evolved QMSs were standardised by multiple national norms while
aligning with ISO/TS 16949 (2009) that replaced or at least covered the requirements of
the different quality systems (QS) (Hoyle, 2005, p95 ff.). With this standard, a global
management system fosters continuous improvement, defect prevention and waste in the
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supply chain by applying a process approach, commitment to quality by the management
and emphasis on customer focus (Kartha, 2004). Hoyle (2000, p48 ff.) highlight differences
between automotive QSs’ requirements using ISO/TS 16949 as reference. All members
of the International Automotive Task Force (IATF) insist that their suppliers develop
and produce in accordance with this standard. The same applies to Japan Automotive
Manufacturers Association (JAMA), which encourages their members’ suppliers to be
certified to the ISO/TS 16949. While a most of the industry’s distinguished OEMs in
Europe, United States and Japan are either members of IATF1 or JAMA2, it is the de
facto standard that all producers of ICM are obliged to implement. This means, ICM
is developed and produced in accordance to the same process standards as the other
vehicular components.

In practice, at the start of a new project, the specifications and requirements are unclear.
This prevents the applicability of a top-down approach based on a well-defined set of
requirements. However, the project timeline is already defined, aligned with the devel-
opment of the other vehicle’s subsystems. This project environment requires a robust
change management that supports the development (Schleuter et al., 2009). An approved
and widely-applied approach is staged prototyping that relies on evolutionary A-, B-, C-,
and D-models (a.k.a. prototypes) as illustrated by Schäuffele and Zurawka (2013, p240 f.)
and Borgeest (2014, p308 ff.). Hoyle (2005, p438) describes a prototype program as part
of the design and validation of quality automotive systems, to ensure whether it is the
right design to meet the requirements defined up to that point (i.e., verify the design3)
which are necessary for satisfying ISO/TS 16949 . Possible benefits are reduced time and
costs in accordance with customer involvement (i.e., the OEM). Each development cycle
has a duration of 3 to 12 months and ends with an acceptance test and an examination by
the customer. Based on the examination of the early development models (i.e. A, B, C),
the customer may refine the requirements and specifications for the next stage prototype
following the principle of ‘I don’t know what I want, but I will know it when I see it’
(IKWISI) (Borgeest, 2014, p300). That implies a truly integrated supply chain where the
buyer (i.e., OEM or Tier-1 OEM) integrates suppliers’ engineers and designers into the
decision-making process as described by Tan et al. (2002).

Each integration stage relies on a complete development cycle, usually following a software
development process model such as the V-model XT (VM-XT) (Rausch et al., 2005;
Manfred Broy and Rausch, 2005). Following Maurer (2013) the application of the V-
model for automotive systems’ engineering leads to a significantly more structured way
of development with OEMs and their suppliers. However, due to the staged process, the

1IATF members include the following OEMs: BMW, Chrysler, Daimler, Fiat, Ford, General Mo-
tors, PSA Peugeot Citroen, Renault, Volkswagen (IATF - International Automotive Task Force Global

Oversight 2014).
2JAMA members include the following OEMs: Daihatsu, Honda, Isuzu, Mazda, Mitsubishi, Nissan,

Suzuki, Toyota, and others (JAMA - Japan Automobile Manufacturers Association, Inc. 2014).
3Validation proves it is the right design, while verification proves the design is right (Hoyle, 2000,

p264).
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development follows a bottom-up approach driven by past experience with damage, rather
than a preventative top-down approach (Winner, 2013). This puts emphasis on efficient
quality systems and even more process models such as VM-XT to improve the projects’
transparency by use of process documentation and thus provide uniform communication
throughout all model phases (Rausch et al., 2005).

Each model phase may differ in provided functionality and integrated domains regarding
the targeted system. The ICM system’s model phases are usually aligned with the model
phases of the vehicle’s other subsystems. As an initial starting point, an A-model often
reuses already available (i.e., legacy, previous series) systems to provide basic usability
built into a housing that may not perfectly fit into the car’s dashboard. Due to the limited
available specifications, it is basically a very quick and pragmatic development, and differs
significantly from the final product that is produced in very few numbers. Subsequent
B- and C-models are more sophisticated preliminary evolutions of the product ‘ready
for production’. The B-model is characterised by a more experimental nature, whereas
the C-model already represents a pre-series version. At the latest with the start of the
requirements phase of the D-model, the OEM must define the complete list of features
and qualities that the targeted system has to provide. The D-model represents the version
ready for production for a four phase prototype and hence named ‘product’ instead of
‘prototype’ (cf. (Borgeest, 2014, p309 f.)). It is usually reviewed for a period of three
months. However, this may vary as premium market segment OEMs test the D-model for
up to 12 months to ensure high quality, whereas as been recently noted, others reduce it
to less than a month. A delay in any phase has effect on the overall schedule, because the
requirement phase for a particular model (except for A-model) depends on the outcome
of review and examination of the preceding one, as illustrated in Figure 3.2.

B-modelA-model C-model D-model

requirements

development

review 

requirements

development

review 

requirements

development

review 

requirements

development

review 

production 

incl. PPAP

Figure 3.2: Sequential phases, following the prototype model of (Borgeest, 2014)

Nevertheless, review and examination of the respective phases for this evolutionary ap-
proach with initially unclear specifications is an important task. This is addressed by
the applied QS by documenting results with an Initial Sample Inspection Report (ISIR).
With a successfully tested D-model, the product gets approved for production with a Pro-
duction Part Approval (PPAP) according to the regulations of ISO/TS 16949 (Borgeest,
2014, p310). Following this approach, the loop between process and product certification
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becomes connected: ISO/TS 16949 defines the process that requires suppliers to docu-
ment the quality of their products with a PPAP. The aim is to certify their capability
and competence (i.e., qualification) of producing products in accordance with specified
requirements (Hoyle, 2005, p461). This proceeding is applied beyond ICM to all domains
(i.e., subsystems) in automotive systems development. Moreover, it is derived from vehic-
ular mechanical engineering to the E/E domains. Although this approach might appear
inadequate or at least not state-of-the-art for software development, it has to be adopted
due to the supply chain regulations of the OEMs. This view can also be transferred to the
application of rich process models in software engineering. Rausch and Kuhrmann (2011)
derived some principles and values for rich process models and came to the conclusion
that there is a need for process frameworks to organize projects while allowing the use of
project-specific methods and tools:

“This is the way rich process models can be of advantage: A comprehensive
framework to host projects, but also giving freedom to the teams to work without
having to pay much attention to the development process model itself.”

In summary, the development processes provide the environment for software engineering.
The multi-organisation and multi-level supplier chain for automotive systems necessitate
the management of the process quality, taking into account a hierarchy of national, in-
ternational and organizational norms (aligned to ISO/TS 16949). The goal is to produce
a valid design certified for conformity to defined needs. Both the applied regulations and
applied approaches within the context of staged prototyping provide an integral process
framework to organize the interaction in between the OEM, Tier-1 OEMs, and their sup-
pliers (‘Tier-2 OEMs’), distributed development teams and individual developers. How-
ever, regulations and process definition may prepare an adequate environment and a valid
system design. Nevertheless, they can neither ensure that the qualities of the components
are defined sufficiently nor that the system under development will in the end operate
as required in relation to the defined qualities. From experience of real-world projects,
this does in particular apply to software-intensive systems such as ICM as detailed in the
following section.

3.2 Exemplary real-world projects

The previous chapter basically took an academic view of the problem domain of building
software for ICM. However, the issues described correlate with recent engineering projects
in industry. Empiric information on applied software engineering of ICM systems is
essential to understand current practice (Segal, 2003; Segal et al., 2005) and must be
considered for applicable solutions.

An inside view was granted through two past long-term inter-institutional research
projects with two of the leading Tier-1 OEMs for ICM systems (Wünderlich, 2007).
For further projects, only snapshots for the project state were made available, or they
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have not yet been completed. In the following, some basic information regarding those
projects is provided to illustrate the current practice of software development for ICM
beyond academia and in order to put emphasis on the relevance of this research. The
project names (‘Alpha’ and ‘Beta’) have been changed so as to maintain confidentiality.

3.2.1 Project Alpha

Project Alpha did run from Q3/2007 until Q4/2009. The ICM system makes use of
more than 1,000 tasks4 at run-time, issued from a source base with 86,000 files (or 3.1
GByte), and produced by 235 software engineers at 13 different locations and affiliated
to 9 different organisations. The ICM system had more than 2,000 open issues (i.e.,
bugs or suspect system observations) at SoP, whereas 8,600 where rejected (including
not reproducible system behaviours) and 26,000 were processed, which adds up to 17,300
developer days for issue solving. The resulting software system was successfully deployed
and is now operational in 45+ variants.

Even though this development project can be seen as a success, the applied process relied
on a wasteful fix-up phase, resolved by a subsequent installed task force, consisting of 10
additional developers. That team was co-located to reduce communication loss and ease
coordination to encounter the problem of parallel and independent development.

3.2.2 Project Beta

The ICM system of project Beta was under development for two years and was finished
Q3/2013. It involved 220 software engineers at 32 different locations and affiliated to 28
different organisations. During the development, more than 22,000 issues were processed
with ˜3,500 open issues at SoP. Sixty developers (27%) were assigned to the engineering
of the HMI. Furthermore, decisions on the systems’ HMI technologies were discussed over
a period of six months. Three independent design studies were ordered to reflect the in-
creasing frequency of innovations throughout such a project. Specifications mainly relied
on pictures, which may obfuscate the traceability to requirements and implementation.
The overall development finished three months behind schedule, which affected the du-
ration of the review phase. The resulting software system was successfully deployed and
is in operation in 15 variants. However, the maturity of the initial production system
was not satisfactory, which led to a stabilisation phase for vehicles that had already been
delivered where daily updates were submitted to the OEM and transferred to the car
dealers on a weekly base.

No dedicated integration team with adequate insight into component bindings, interde-
pendencies and knowledge about relevant quality characteristics was installed throughout
the development phase. This was not changed before the project was very far advanced,

4The term task represents a single computational context with, e.g., an individual stack and program
counter. It is used interchangeably here with the terms thread and process.
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again by a ‘task-force’ to rescue the project. Even at this stage, automated tests were use-
less because the system crashed within the first minutes after startup. However, ‘monkey
tests’ (a.k.a. ‘free-play testing’) proved to be an efficient means to stabilise the system
within a short time. The total cost for the development reached USD 80 million.

3.2.3 Other projects

Another long-term development project has been setup for several generations, with a
two-year development cycle for one generation. About 200 developers affiliated with 12
organisations are involved. Although the produced variants have already been present on-
road for three years, the software maintenance is still busy with stabilisation. Exemplary
issues are system failures due to deadlocks caused due to misuse of inter-component
synchronisation (e.g., relying on remote-method invocations) and locking mechanisms
(e.g., recursive mutual exclusions), which are hard to reproduce and analyse.

A further project with deferred SoP to Q1/2015 has still more than 20,000 issues to
solve in Q3/2014, which will require the Tier-1 OEM to process more than 500 issues per
week, not considering a review phase for the production system. Even in very optimistic
scenarios, an expensive fix-up and stabilisation phase is to be expected after deployment
to market, degrading (or even eliminating) the Tier-1 OEM’s economic success. Currently
the total cost for the development is estimated to reach USD 100 million.

3.3 Interpretation of the reviewed projects

Based upon the information gathered through involvement in several multi-national devel-
opment projects of ICM systems at different OEMs, it can be observed that the industry
does not apply a comprehensive approach to achieve composable systems. Interpreting
those numbers leads to the assumption that it is possible to create a state-of-the-art ICM
system, consisting of heterogeneous functionalities from different vendors, but at the cost
of unforeseeable efforts necessary to put these together. With an overall cost for the de-
velopment of an ICM system of up to USD 100 million, the economic success of such a
project is questionable, as the revenue is highly dependent on the quantities sold. These
are difficult to predict, as they are related to multiple other aspects of the vehicle as well
as the success of the marketing that affects customer acceptance.

3.3.1 Management

Although the reasons for the illustrated problems could be categorized as organisational
or communication problems during the development process, a solution at that level is
difficult due to incongruent interests of the involved parties. A supplier usually is only able
to provide a competitive offer as long as the efforts necessary can be reused for multiple
clients. A custom-made solution developed from scratch is not negotiable for economic
reasons. A supplier of such a third-party component would not necessarily display much
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interest in easing the integration efforts if his own return of investment will suffer. Further,
he may not have an interest in providing much detail about the internals of his part of the
product in order to secure his intellectual property for economic reasons. A mutual consent
between suppliers and integrator is most likely based upon the functional profile rather
than distinct timing behaviour. This approach is derived from the distributed architecture
utilised for previous generations of ICM systems, consisting of interconnected electronic
component units (ECU), where the least common denominator was defined by the fieldbus
system and the communication protocol. Those communication facilities were the shared
resources of the architecture of such distributed ICM systems. The agreed specifications
are good and necessary but seldom sufficient to ensure a predictable integration of the
components.

With a consolidated architecture, integrating the functional components into one hard-
ware unit (i.e., the head-unit), the components have to share additional resources, includ-
ing computational power, memory, and I/O devices. Beside the functional dependencies,
this introduces new dependencies regarding the temporal behaviour. The lack of de-
tails about the internals results in a lack of an overall understanding of the subsystems’
interplay, and therefore decreases the predictability of the integration process which is
countered by heuristic and ad hoc approaches (Sangiovanni-Vincentelli and Di Natale,
2007). This in particular has an effect on mixed-critical systems like ICM.

Based on the gathered experience, the applied business project management tools or tech-
niques with focus on the development process do not provide sufficient assistance. They
may help to mitigate effects by adding transparency and traceability but also obfuscate the
root cause: insufficient addressing of composability throughout the constructive phases
of the system development, i.e., the product or system under development.

This also applies to the use of coding standards. They may help to improve maintainability
and reliability by defining how the code must be structured and which language features
should and should not be used. Hence, coding standards are an important building block
for development and maintenance of complex systems. Coding standards can be used
for automated static checking of the components’ sources for compliance and producing
clear results to support the reliability of the system under development (Holzmann, 2013).
This can have a positive effect on the system’s dependability. However, this is of limited
significance for the components’ composability. This means, composability lies beyond
non-architectural implementation rules defined through coding standards.

Due to problems encountered, delays during the projects have become the standard.
Unfortunately, the development of ICM is coordinated with the other vehicular subsystems
which makes a project delay unacceptable. Practice shows the review phase planned for
the production ready system (i.e., D-model) becomes a buffer that shrinks continuously
as the project advances. This results in immature systems delivered to the customers
and an ‘in-field’ stabilisation phase to minimise claims for compensation by the OEM. An
estimated increasing complexity for next-generation ICM may accentuate this situation.
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To summarise, the called for integration of the system components is affected by man-
agement decisions with primary focus on the process rather than on the targeted system,
organisational issues inherited due to parallel and distributed development, and insuffi-
cient requirements because of incongruent interests and lack of knowledge of the overall
system details. Unfortunately, a solution at that level is not in sight due to the de-
scribed strategic or economic reasons. Therefore, the subsequent development stages will
be forced to cope with those circumstances which in the past were achievable more or less
successfully as detailed with the exemplary real-world projects.

3.3.2 Domain knowledge

Beside organisational differences, the developing parties have heterogeneous expertise
regarding ICM, also referred to as different domain knowledge. With a rising number
of functionalities already available within CE devices, even software suppliers with no
expertise in automotive systems are getting involved in ICM. For the herein exemplary
projects described, this applies for features such as satellite navigation, voice recognition
and speech synthesis.

One could argue that this may have a positive effect based on the multi-domain knowledge
combined in ICM. On the contrary, this introduces ‘language’ barriers due to different
use of terminology, lack of knowledge concerning implicit requirements, and inadequate
assessment of requirements due to the particularities of automotive systems (e.g., low-
power situations during motor ignition, coexistence with other components of different
criticality, start-up behaviour).

3.3.3 Component interfaces

Although the component interfaces were defined within an early development phase, the
definition mainly focused on the functionality to achieve interoperability. NFR were not
addressed adequately. This may have an effect on the temporal behaviour of the overall
system. During the operation of the system, the computational requirements and hence
the computational load varies for different components, depending on the current system
state, user interaction, or external events (i.e., triggered by automotive systems and sen-
sors or through network communication). This may result in high-load (or peak-load)
situations, where the system behaviour is not defined due to shared use of both computa-
tional and non-computational resources (e.g., input/output devices). Further, the system
behaviour is difficult to test, due to various potential permutations of load distributions
regarding the momentary state of the components and depending on the integrated com-
ponents at that point in time. The latter gains significance for dynamic functionality (i.e.,
on user request), because neither the constellation of integrated components nor their po-
tential mutual interferences are foreseeable. This may result in sporadic temporal inter-
ferences between components, violating the components’ compatibility. Components that
dynamically adjust the priorities of their executing threads and hence bias the scheduling
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without knowledge of other components’ current state or their importance related to their
semantics with a view on the overall system amplify such effects. Even more adverse is
the circumstance that temporal behaviour is not usually defined on the granularity of
components. Latency requirements and performance characteristics serve as examples
here. Hence, a violation of the required temporal behaviour often does not appear before
integration of all components. Unfortunately, this may usually occur in proximity to SoP,
which issues additional pressure on the overall project and the stakeholders respectively.
Also with dynamic functionality, that may for instance be realised by after-market ‘apps’
and facilitated due to the head-unit’s connectivity, the system’s qualities are affected.
This applies in particular to the software components’ compatibility with effect on the
systems performance efficiency, reliability and usability (cf. Table 1). This potentially
causes unpredictable system behaviour throughout the whole product-lifecycle. A system
behaviour that does not correspond with a user’s learnt empirical knowledge features a
disruptive influence on the user (Göschel, 2012). Put more simply: unpredictable system
behaviour may cause driver distraction. Hence, unsatisfactory compatibility of software
components poses a safety risk.

3.3.4 Integration

The process of integration requires the availability of the components to assemble, which
puts the process of integration to the final stage of the development process. The root
cause of the described problems is not the integration process. Unfortunately, this is
the late development stage where the problems usually appear. Whether problems got
unveiled or not still depends on the efforts and coverage of the integration tests. If the
problems appear after the integration stage, such as after SoP or in use by the customer,
the impact of those problems will be even more drastic due to the difficult maintenance
situation within the automotive domain.

Within this context, the term integration is of particular importance. Generally speaking,
integration means the assembly of separate components to form a (new) whole. Integra-
tion as used within the following is associated with the non-functional quality composabil-
ity. It refers to correctness of a system that integrates different components. Within the
domain of real-time systems, correctness includes the fulfilment of both functional and
temporal requirements. Regarding ICM systems, erroneous behaviour might be observed
by restarting components due to missed watchdog triggers, cracks in audio rendering of
the phone, route navigation, or music component, inadequate responsiveness to user in-
put, or elusive after effects. Whereas this enumeration is not exhaustive, the impact of
these issues is amplified due to very difficult reproducibility.

Erroneous behaviour caused by an inadequate shared use of common hardware facilities
also occurs at the very end of the development process during system integration. That
includes the interference through concurrent use of computational power. Such erroneous
behaviour may only be observed for high system load situations, but still within the
range of real-world use-case scenarios. At that time, the separated work packages will
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have to be joined together and will have to prove their qualities by use of an integration
test, while the development project has not much buffer time until SoP. This makes the
integration a critical stage of the development process, even though the cause for problems
can be deferred to the design phase and the system’s architecture respectively. Kopetz
and Obermaisser (2002) put criticism on inadequate interface specification and describes
the problem as follows:

“A fundamental problem in the domain of distributed real-time systems re-
lates to the constructive design of large systems out of independently developed
prevalidated components. At the core of this problem is the provision of precise
interface specifications, both in the value domain and in the temporal domain.”

When occupying an organisational or management viewpoint, the components to be in-
tegrated are supplied by internal or external development teams, providing software arte-
facts. With a more technical view, those artefacts might be delivered as source code,
binary object files linked into the targeted system during compile time, binary library
objects files linked into the targeted system during run-time, or binary files executed by
the targeted system. Due to the interdependencies of the woven ICM software compo-
nents, the integration efforts are affected by the overall system’s complexity. Therefore
it evinces good practice for the integrating Tier-1 OEM to install an integrator (usually
represented by a team of senior developers and architects), which is assigned for the as-
sembly of the targeted system’s components. Such integration goes beyond just setting
up the build-environment correctly and placing the delivered components in the right
place. It presumes explicit expertise about the components’ qualities and features so as
to be able to actively and proactively detect issues and suspect interoperation as early as
possible. The staged development model for automotive systems put even more emphasis
on integration, because there are four (or more) models to be integrated and reviewed.
Instead of a non-deterministic ‘big-bang’ integration at the end of several years of devel-
opment, preliminary versions of the components have to pass the integration process for
the A-, B-, and C-models. But this does not imply these integration processes are free of
conflicts. Hence, there is still valid need for increased determinism for those staged inte-
gration processes. However, the final integration for the D-model is still critical, because
this stage firstly has to cover all requirements.

Good practice showed the installation of a continuous integration approach, to have a
running (and testable) system available right from the early development stage. This still
cannot substitute a review phase for the D-model, but may uncover principle problems
related to compatibility and interoperability early. This especially applies to such multi-
source development with potentially imprecise interface specifications.

Independent of the applied quality system or process model, the efficiency of an evolu-
tionary prototype approach improves with reuse of substantial components of the product
under development. Such a reuse prerequisites a stable software infrastructure that scales
well with the introduced changes due to the sequential requirements phases (cf. Fig-
ure 3.2). This means while a QS following ISO/TS 16949 in combination with a process
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model such as VM-XT provides a framework to support the development processes and
communication in between developing parties, a software framework may support the
multi-sourced development and integration with focus on the product under development
by providing the necessary infrastructure.

3.4 Summary

Understanding current practice in large-scale industry projects is important to support
research of applicable solutions considering the requirements of next-generation ICM.
Therefore, empiric information was gathered and discussed.

The integration of ICM systems’ components is a process that combines heterogeneous
software parts to form an integral system. The validity of the resulting composition
depends on the functional and temporal correctness of the interacting software parts as
well as the integrated overall system. An isolated pre-validation of components has limited
conclusiveness on a correct functional and even less on the temporal behaviour within the
targeted system.

However, the success of the integration is dependent on the provided components and
the utilized infrastructure rather than on the integration itself. This implies a high risk
due to multi-sourced components and inadequate or premature software frameworks and
affects predictability on the validity of the result of integration process.

The different domain backgrounds of the involved parties, communication barriers, and
incongruent interests affect the development process negatively, although this is not the
root cause. It is rather the increasing complexity caused by additional functionalities
and an unpredictable temporal behaviour of the targeted software system. The system’s
qualities and characteristics described above are not addressed adequately (if they are
addressed at all) during the constructive design and development phase. In reality, the
composing of components is mainly seen from a functional viewpoint, covering the com-
ponents’ interfaces with respect to the functional interdependencies to fulfil the required
interoperability. This is necessary but not sufficient to achieve composable systems. The
components compatibility (i.e., coexistence without adverse interference) is neither ad-
dressed adequately nor supported by the system’s infrastructure. With an increasing
extent of the system under development, such an issue treatment can be expected to be
less successful. This means the current integration approach of ICM systems with its
downstream5 fix-up phase does not scale with the anticipated rise of both the functional
features and the independent developing parties involved.

While next-generation ICM will rely on additional and even dynamic functionality, the
software architecture’s complexity is ever-increasing. In result, this puts emphasis on
REQ-1 (cf. Section 2.3.1) to ‘enforce compatibility’. This demands new concepts to

5i.e., during the phases assigned to the D-model, at ‘the end of the development’, or even after SoP
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support the development and assembly of the interdependent software components. In
particular, this applies to high-system load situations during operation. A comprehensive
approach in combination with an appropriate architecture is needed. The aim is to support
the development and integration of fine-grained and heterogeneous software components
into a dependable and comprehensive whole while considering a predictable temporal
behaviour. Or put more simply: reduce complexity by use of composable components.
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Structuring software components

“At the heart of every well-engineered software system is a good software
architecture.” (Medvidovic and Taylor, 2010)

Essential qualities to achieve a composable system are interoperability and compatibil-
ity. These are constructive aspects which have to be considered through all development
phases, and in particular by the software architecture. The latter defines how the compo-
nents are structured. This also includes arrangement into abstraction layers and groups of
components (i.e., agglomerates), definition of communication paths that represent vertical
and horizontal bindings in between the components and to underlying system services.
Following Medvidovic and Taylor (2010), such constructive aspects permeate all major
facets of a software system. They define its architecture as set of principal design decisions
made during its development and any subsequent evolution.

Within this context, the prevention of interference between tasks allocated to different
components is relevant, in particular for implementation of MCS (Burns and R. Davis,
2013). Although this behaviour is relevant for all systems that host several different
applications, it gains significance for such that are operated within a safety-relevant en-
vironment or contain mixed criticality applications or both (such as ICM). To address
a system’s and its component’s criticality the overall system complexity has to be con-
trolled to avoid faults. Following Sha (2001) this can be achieved by simplicity, as with
higher complexity it is more difficult to specify, design, develop and verify, as he relates
to avionic systems and respective standards of the avionic industry. Basically, this means
partitioning a complex system into ‘understandable’ (i.e. less complex) parts can help
to address the overall system’s criticality. However, simplicity may contradict with per-
formance. This implies practical limits and trade-offs to partitioning and containment
respectively, not further detailed here. However, the concepts applied in avionics systems
can be transferred also to automotive and in particular to ICM systems of mixed critical-
ity. With appliance component containment, the components take care of the functional
aspects while the containers take care of NFRs by preventing unwanted interference. This
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can be classified as an exogenous management of NFR following the scheme proposed by
Crnković et al. (2011b).

The implementation of such an architecture can be supported by use of a software frame-
work (cf. Section 2.4) to separate the infrastructure from the actual functionality provided
by the structured components. Such an architecture and the framework respectively have
to fulfil the requirements defined in Section 2.3.

In the following, a concept to structure components is discussed, focusing on efficient inter-
component communication while preventing adverse interference of components (due to
shared use of resources).

4.1 Inter-component communication

The temporal behaviour and performance of an integrated software system is highly de-
pendent on efficient messaging and memory access. This is also proposed by Kopetz and
Obermaisser (2002) with their third principle of composability: ‘performability of the
communication system’. This is especially applicable for cost-efficient solutions that do
not allow an extensive communication overhead introduced by an abstraction layer to sup-
port a loose coupling. This basically applies to the interdependent software components
of an ICM system. They also require efficient, clear and unambiguous inter-component
communication. This is fundamental to achieving the required interoperability despite
the segmentation of the overall system’s functionality into distinct components.

Interoperability relies on inter-component communication and hence implies data flow.
Such communication includes IPC of concurrent and parallel executed components and
their subsequent tasks. Related POSIX primitives are mutual exclusions, semaphores, and
condition variables. They provide mature intra-OS mechanisms to achieve synchronisation
between different components’ tasks, whereas message queues and shared memory regions
enable data exchange. For more complex data transfer between components, the use of
shared memory remains the method of choice in efficient environments opposed to more
loosely coupled technologies, such as socket stream base communication that requires
appropriate interpretation at the receiver, serialization and deserialization. This especially
applies to data flow in between mixed criticality components, i.e., respectively from low
to high critical components and tasks. This creates an attack surface because a high-
critical component has to cope with potentially unreliable data which may affect its
temporal behaviour1. The latter applies also to vice versa data flows for synchronous
communication when the more critical component is delayed. Following Sha (2009), such
behaviour where a high-critical component depends on a less critical one is also referred
to as ‘dependency inversion’.

1Other attacks ‘by intention’ due to an offending component or due to other vulnerabilities are not
detailed here, but are a current field of research that is relevant in particular for systems supporting
‘dynamic functionality’ (cf. (Schnarz et al., 2013; Schnarz et al., 2014b)).
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With rising complexity, the manageability of the components’ dependencies decreases.
Furthermore, with depending components, this complexity becomes nonlinear (cf. (Leve-
son, 2011, p4)). The reasons are potentially indirect relationships between cause and
effect. In some measure the relationship is not obvious because the structural decom-
position is inconsistent with the functional decomposition: ‘decompositional complexity’.
Such adverse behaviour is usually assisted by complex intercommunication such as remote
function calls/method invocation or complex data protocols that allow loose coupling but
require extensive interpretation at the receiver. Interpretation at runtime degrades ef-
ficiency. Hence, in particular for inter-component communication, a simple event-based
communication utilising fixed-size messages supports the manageability (i.e., maintain-
ability and traceability) and reduces the related complexity. This is backed by the expe-
rience made within practical testing as part of the projects detailed in Chapter 3, where
complex communication repeatedly issued locked components with opaque relationships
between cause and effect.

Beside the components that implement the application logic, there may exist infrastruc-
ture components which affect communication-related functionalities such as central mes-
sage dispatching and system monitoring (i.e., message tracing). The distinct components
are connected by defined ‘communication channels’ connecting the components-defined
‘communication ports’. These are accessible by other components through an unambigu-
ous abstraction. This is part of the infrastructure code (i.e., the software framework).

Such infrastructural facilities are provided with the event-based message system of
OpenICM (cf. Section 2.4.4). The provided message queue abstraction fosters flexi-
bility in combination with a deterministic behaviour and efficiency due to the use of
shared memory (Wietzke and Tran, 2005, p197 ff.). For this research, the communication
means provided by OpenICM are utilised because they rely on the standardised POSIX
API and hence are portable to many platforms and operating systems. Further, the
open-source licensing allows for reproducing the herein provided practical evaluation of
concepts. However, this prerequisites the availability of shared memory accessible from
the communicating components. One the one hand, this may limit the applicability of cer-
tain technologies for partitioning; on the other hand, the use of shared memory provides
very efficient data exchange between components. The latter is in particular relevant for
multimedia content that requires high bandwidths and low latency to achieve the required
QoS.

4.2 Component partitioning

When beginning to structure a system with predefined functionality where the architect
possesses all degrees of freedom and comprehensive knowledge about all details of the sys-
tem (no predefined architectural restrictions, COTS software or legacy code to consider,
no ‘black box’ deliverables to be integrated), it is suitable to decompose the function-
ality into fine-grained separate tasks using software engineering technologies to transfer

69



4. STRUCTURING SOFTWARE COMPONENTS

abstract functionality to implementation level. In this context, a task is defined as the
smallest execution item. Based on certain constraints, they can be partitioned into groups
of tasks which make up the components of the system. The constraints can be derived
from the attributes of the individual tasks in association with their interdependencies. An
appropriate way is to differentiate the tasks and the related implementation (if already
available) based on their internal architecture (i.e., dependencies), their vendor (especially
for COTS parts), and their lifecycle or ability to be reused. Considering these factors will
lead to a generally coarser-grained segmentation (i.e., fewer components) in comparison
to a design with all degrees of freedom and detailed insight.

Internal dependencies can be rated by use of design structure matrices (DSM). Those re-
flect the amount, frequency and direction of information exchanged between tasks (Sangal
et al., 2005). Such dynamic information most certainly will change during system oper-
ation. Therefore, an adequate system profiling is advisable to achieve expressive and
effective results.
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Figure 4.1: Functional decomposition with all degrees of freedom

In the ‘real world’, the decomposition and development commonly does not look like
the process depicted in Figure 4.1. To manage the complexity of the overall system,
functionality can be described using use-cases. Accompanied by further high-level design
information, the implementation can be separated into distinct chunks to be provided by
suppliers. The task of the integrator is to unite the resulting chunks and arrange these
onto the available platform as depicted in Figure 4.2. A software framework may provide
support (cf. Section 2.4). Architectural design concepts like use-cases, components and
modules, for proper abstraction and modelling a system, help to cope with complexities.
But the resulting design artefacts still have to be transferred to the level of implementa-
tion utilising the API of the OS and programming languages and comply with software
frameworks.
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Figure 4.2: Functional decomposition using use-cases for multi-source development
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Using distributed (also referred to as ‘federated’) hardware architectures for previous
generations of ICM systems had the advantage of clearly separated software components
that correspond with the decomposition of the use-cases, enforced through distinct plat-
forms within a federated architecture. With consolidated architectures, these platforms’
hardware boundaries were abandoned (cf. Figure 4.3), providing both advantages and
disadvantages. From the viewpoint of the software, the most significant of the advantages
are improved communication abilities; of the disadvantages are unpredictable temporal
behaviour and complex temporal dependencies. These are all caused by shared use of
common resources. Scheduling algorithms and the implementation of these in terms of
schedulers enable configurable reservation of certain resources with the aim of improving
predictability of runtime-behaviour despite random occurrence of event-triggered tasks
and independently developed components that have not been harmonised with a system
global scheduling scheme (cf. Section 4.2.1). This means a system without scheduling
and implementing a ‘run-loop approach’ is basically more predictable but less manage-
able in terms of integration of multi-sourced software components that address different
use-cases and has to fulfil both event- and time-triggered requirements. In all practical-
ity, the scheduler supports the integration of heterogeneous functionality while featuring
adequate predictability. Prerequisite for such scheduling is the abstraction into distinct
execution units. In the following, the approved concept of execution units and a selection
of solutions to create segregated ‘domains’ for software components are discussed.

… …

federated consolidated

Figure 4.3: Federated vs. consolidated system architecture

4.2.1 Scheduling

Before describing approaches to effectively partition a system’s functionality, an OS’s
native features for temporal control of execution units during runtime are detailed. The
most fundamental concept here is scheduling. Scheduling in combination with disjoint
address spaces is an abstraction of a hardware platform’s resources into a task-based model
(cf. Section 2.3.6). The task-model also abstracts the functionality into execution units.
That means an application is executed by use of a set of parallel or concurrent threads. A
process represents the frame for one or more threads that share a common memory region.
This leads to the definition of a task, which is the hyponym for addressing an executional
unit consisting of several operations represented by a thread at the implementation level.

For the following, threads are used as an execution unit. They may have access to both
shared and private memory regions. They are arranged as the performing entities of
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processes, whereas one process contains at least one thread. Each software component
may utilise a number of processes and hence threads to fulfil its respective job. An
application may consist of one or more software components.

A ‘scheduler’ implements scheduling and usually is a core component of an OS kernel.
Generally speaking, a scheduler assigns (i.e., ‘schedules’) a given resource for a certain
timespan to an execution unit (i.e., a thread). Within this context, a resource is basically a
hardware device or an abstraction of such. This may also include virtual devices provided
by an underlying system layer.

Within this context, the CPU is the most central resource within a computer system. It
provides computational power to the software layer. The OS’s ‘thread-scheduler’ basi-
cally assigns the computational power of the available CPU cores to the threads ready for
computation. In the following it is assumed that a thread-scheduler assigns the hardware
platforms’ processing capacity to the applications’ threads independent of their belong-
ingness to processes (i.e., independent of any semantic relations in between the threads).

The challenge here is to determine which thread has to be assigned next for computation
and on which core for MC hardware platforms). Therefore the thread-scheduler uses a
‘scheduling-policy’ that follows an algorithm that defines which thread is scheduled when
and where. The scheduling-policy may consider both static characteristics and runtime be-
haviour of a given thread. This may include thread priorities, CPU utilisation in the past,
anticipated CPU utilisation in the future, or the thread’s deadline. Scheduling-policies
are classified into (a) pre-emptive and (b) cooperative. For (a), the scheduler grants a
thread access to the computational resource for only a limited timespan2 (a ‘timeslice’
a.k.a. ‘quantum’) or until a thread of higher priority gets ready for computation, while
for (b) the thread does not return from computation before it is finished, it releases the
CPU ‘at own will’, or until a thread of higher priority gets ready for computation. In
pre-emptive systems, the program locality suffers when cache misses increase due to cache
invalidations as result of iterating context switches (Buttazzo, 2011, p15). However, it
fosters the system’s reactivity by ensuring that a higher priority task interrupts low prior-
ity ones, as well as granting computation time to equal prioritized threads in turn. Hence,
different scheduling policies are utilized in regard to their field of operation. For example,
the demands for scheduling in a server system are optimised for resource utilisation (i.e.,
using large time-slices to reduce overhead introduced with context switches) while a desk-
top system might be optimised for responsiveness. Embedded systems are usually part of
a physical overall system (‘cyber-physical’) where the threads’ computation usually has
to meet strict deadlines to fulfil requirements regarding real-time behaviour. Common
real-time scheduling policies are round robin (RR), first in first out (FIFO) (Kerrisk,
2010; Love, 2010) and earliest deadline first (EDF) (a.k.a. Horn’s algorithm (Horn, 1974;
Buttazzo, 2011)). Whereas RR supports a fully pre-emptive scheduling where threads are
arranged in priority based waiting queues, FIFO follows a cooperative scheduling as long
as no higher prioritised thread becomes ready. This means that while for RR two threads

2time division multiplexing of the resource
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of the same priority are executed alternately until they are finished (or blocked), for FIFO
the one which is executing keeps running until it is finished (or blocked); when for both
scenarios no higher priority thread becomes ready. This means with FIFO it is possible
to reduce thread synchronisation due to its sequential running order, although this is not
recommended when aiming for robust implementations and potential reuse within similar
scenarios within different environments. EDF is a dynamic policy that gives higher pri-
ority to urgent tasks. EDF improves resource utilisation by use of fine-grained scheduling
and reduced interference, as the particular tasks’ requirements are considered. Therefore
the attributes runtime, deadline and period have to be defined which allows a dynamic
adaptation. The different policies provide benefits depending on particular use-cases or
a software component’s internal architecture. As a result, the scheduler may utilise dif-
ferent scheduling policies for different groups of threads, as each component may use the
best fitting policy according to the actual use-case implementation. That implies different
scheduling-policies may coexist during runtime. This means different components poten-
tially have an adverse effect on each other’s task scheduling which may affect the overall
system’s temporal behaviour. This is detailed in the following.

Especially when composing software with both aperiodic and periodic timing character-
istics, the scheduling of the respective threads is a challenging issue. Aperiodic is also
referred to as event based, whereas external triggers (e.g., interruptions due to user input
or received messages) or the progress of preceding threads (e.g., termination or waiting for
I/O) determines the start or computation. If the trigger that issues a thread is dependent
on the progression of a certain timespan or when a particular point in time is reached,
the start of computation of a thread can be classified periodic or time triggered (Kopetz
and Obermaisser, 2002).

The number of coexisting threads sharing the computational resources has significant im-
pact on the overall system’s temporal behaviour independent of the utilised scheduling
policies. Threads do not switch context instantaneously. Liu and Solihin (2010) distin-
guishes between direct and indirect overheads. Whereas direct overhead includes saving
and restoring CPU registers, flushing CPU pipeline, and executing the OS scheduler, in-
direct overhead refers to perturbation of the cache and TLB states. The latter is related
to the scenario where a thread-pause computation (i.e., due to pre-emption) occurs dur-
ing the subsequent running thread and may bring its own working set to the cache and
overwrite/invalidate at least partially the set of the former one. Hence the earlier thread
has to rebuild the cache and TLB when it resumes execution. This behaviour may reit-
erate for each context switch. Hence, with an increasing number of threads, the overhead
also increases due to context switching. Further, with more threads, the access to the
computational resources is reduced and delayed for an individual one. Given the 1,000
threads of Project Alpha (cf. Section 3.2.1) and assuming there are 10 percent ready for
computation during a high load situation, all using the same priority level and a timeslice
of 4 ms (realistic value for QNX Neutrino real-time OS; the default timeslice for RR with
Linux based OSs is 100 ms) and context switch time of 0.001 ms. The temporal cost of
context varies due to cache interference that is also referred to as ‘indirect costs’ of context
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switching, as well as the available hardware architecture and features (Li et al., 2007).
For this example the context switch time is insignificant but considered for completeness.

twait =
n−1
∑

1

(ttimeslice + tcontext switch) ; with n ready threads (4.1)

twait =
(1000∗1/10)−1

∑

1

(4ms + 0.001ms) = 396.099ms (4.2)

Following Equation 4.1, the introduced wait time (also referred to as ‘invocation interval’)
for the exemplary scenario adds up to 396 ms for rescheduling a pre-empted thread (cf.
Equation 4.2) not considering any additional costs introduced due to cache invalidations.
The wait time causes missed deadlines for the individual threads T as illustrated in
Figure 4.4. This may cause inadequate responsiveness even for non-critical automotive
use-cases like visual or audible feedback for user input when considering the mitigation
of driver distraction due to delayed feedback. According to Stevens et al. (2002, p21), a
‘timely response’ should be given within 250 ms for in-vehicle information systems with
respect to usability. However, requirements for such systems define responsiveness with
less than 50 ms for feedback on user input. A neatly layered software architecture for
interactive systems (e.g., following the model view control (MVC) pattern) may obviate
fulfilment of temporal requirements without considering scheduling policies and thread
priorities. The wait time measures linear with the number of threads. Nevertheless, the
behaviour of an uncoordinated scheduling is not predictable due to aperiodic tasks and
unforeseeable permutations of components’ states within the complex architecture of ICM
systems.
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Figure 4.4: RR scheduling with 100 threads using the same priority

Although this can be controlled by use of suitable scheduling policies and thread priorities
related to the particular importance of the respective threads, the low prioritised ones have
to cope with even less access and increasing delays. However, the overhead introduced
due to context switches still reduces the overall efficiency.
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Although priority-based scheduling provides a flexible means to adapt the system’s threads
according to their importance, the mapping of timing constraints into a particular priority
scheme is not simple for complex systems. Buttazzo (2011, p10) claims this is also a result
of the limited number of priority levels, while on the other hand deadlines may vary over
a considerable wider range. Although this might theoretically apply to complex systems
that have to fulfil a wide range of use-cases, by practical means an increase of priority
levels has a negative effect on the system’s maintainability. The typically available 128
to 256 priority levels already introduce a high degree of freedom which the developing
organisations within a multi-sourced environment have to agree upon. On the contrary,
due to the experience gathered in industrial projects, it is beneficial to reduce the num-
ber of priority levels by use of a specification to improve comprehensibility and support
predictability and traceability of the system’s behaviour. Further, a dynamic mapping of
priorities also provides limited support, as on the arrival of new and the termination of ex-
isting tasks a remapping might be necessary. Such remapping causes additional overhead
that may affect the system’s overall temporal behaviour and complexity.

With the transition from a federated to a consolidated architecture (cf. Figure 4.3), more
software components, and therefore more execution units (i.e., threads), compete for the
‘shared resource’ CPU. Third parties supply the software components of ICM systems.
Those components usually utilise a scheduling-policy and thread priorities according to
their individually required behaviour. This implies that they configure the scheduler
independently of the remaining system components which are provided by other parties.
The coordination of scheduling policies and thread priorities is only possible with a deep
insight into all individual software components while considering the overall system’s
timing behaviour. With more software components to consolidate, complexity rises.

The implicit issue regarding the integration of different components can be illustrated
with only three threads. Therefore it is assumed that a component’s functionality can
be disassembled into multiple threads. Those threads might be of different criticality
and deadlines to support mixed QoS and hence are assigned different priorities. Those
priorities assigned to the threads of a single component constitute a self-contained priority
scheme.

In the following, C denotes the components of the system S (cf. Equation 4.3), while each
C contains multiple threads T (cf. Equation 4.4). Further, each T has a specific priority
P within limits defined by the scheduler or the scheduling policy respectively (i.e., the
priority levels available; cf. Equation 4.5).

S =
n

∑

i=1

Ci ; with system S and component C (4.3)

C =
m

∑

j=1

Tj ; with component C and thread T (4.4)
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(Pmin ≤ P (T ) ≤ Pmax) ∧ (P (Tj) = Pj) ; with Priority P (4.5)

The scheduler handles the threads according to their priorities independently of their
affiliation to a given component. Given a system of at least two components (C1 and C2)
with one of them having at least two threads (here C1), the priority schemes of different
components may overlap (cf. Equation 4.6).

(

(n > 1) ∧ (mC1
> 1) ∧ (mC2

≥ 1)
)

⇒
(

P1C1
≤ P1C2

≤ P2C1

)

(4.6)

Different priority-schemes defined within different components are not necessarily com-
patible. This means they may interfere with each other in an adverse way. Furthermore,
they may not reflect the respective components’ overall criticality. This applies for ex-
ample, if C2 is of higher criticality (i.e., higher overall priority) in relation to C1. This
becomes even more complex if one component utilises a wide or even the complete range
of priority levels defined through (Pmin, Pmax).

T1

0 1 2 3 4 5 6 7 8 9 10 11 12

t

T2 T4 T3

RR:  T1, T3 

T1 T3 T1 T3

FIFO: T2, T4 

T1-4 ready T1 pre-empted T2 finished T4 finished T1 finished T3 finished

time slice

Figure 4.5: Mixed policies assigned to threads with the same workload and priority

Incompatibility also applies for mixed scheduling-policies, such as pre-emptive and coop-
erative policies, such as RR and FIFO using the same priority and assigned to the same
CPU core. A FIFO thread will occupy the CPU until it is finished, a higher priority
thread becomes ready, or has to wait for I/O. This means for a schedule derived from a
taskset consisting of four threads (T1-4), with two threads using FIFO and two threads
using RR, the RR threads compute after the FIFO threads have finished (the RR threads
may compute for one timeslice; cf. Figure 4.5 and Section A.1).

A homogenisation of incompatible priority schemes and scheduling-policies may imply
extensive efforts of coordination at both the organisational and development levels, which
could result in the need to reengineer substantial parts of given software components that
already fulfil all (component-local) functional and most3 non-functional requirements.

3They actually do not meet the requirements for compatibility, if available.
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The initial requirements could be blamed for incompleteness, but this does still not cover
legacy or contributed off-the-shelf (COTS) software, provided as-is where the integrator
is not willing to pay for any changes, or the contributor is not willing or not able to apply
any changes.

4.2.2 Partition scheduling

Partition scheduling provides a solution for incompatible priority-schemes or scheduling-
policies. The idea is to assign the software components to separate ‘vertical’ partitions
which are able to apply different scheduling schemes and thread priorities without nega-
tively interfering with each other in terms of the utilisation of the computational resources.
This can be achieved by use of a partition scheduler which is able to separate the computa-
tional power of the underlying hardware into distinct partitions by means of agglomerates
of threads. All threads of a single partition have to compete for the computational share
which is granted to the partition. This share may be assigned statically by use of a fixed
quantum or dynamically relative to the current system load, whereas the latter decreases
determinism in terms of timing behaviour.

The approach of partitioning the platform by use of a scheduler supports the integration
of components into a single software system while the platforms resources can be shared.
This includes temporal and spatial partitioning according to the definition of Y.-H. Lee
et al. (2000):

“Spatial partitioning implies that a partition cannot access other partitions resources, like
memory, buffers, and registers. On the other hand, temporal partitioning guarantees a
partitions monopoly use of a pre-allocated processing time without any intervention from
other partitions.”
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Figure 4.6: Partition scheduling with three components assigned to two partitions

As effect, components assigned to different partitions have exclusive access to the plat-
form’s resources (albeit only for a certain timespan if partitioned temporal), significantly
reducing a conflicting interference. Kim and Y.-H. Lee (2002) provide a detailed view to
real-time capable integration of time- and event-triggered tasks by use of partitioning with
an evaluation of exemplary algorithms while having a strong focus on the integration in
complex systems. Therefore they define partitioning as a two-level hierarchical scheduling
approach, allocating a processing capacity for each partition.

Such a two-level processor scheduling relies on a lower layer and a higher layer, as de-
picted in Figure 4.6 for a setup consisting of three components and two partitions. The
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low layer separates the processing power into partitions by use of a predefined monotonic
cyclic schedule. A predefined processing capacity is granted to each partition in fixed
intervals (a.k.a. cycles). Within this context, processing capacity serves as abstract con-
cept for measures such as CPU cycles, timeslice, or instructions. This allows calculating
the ‘schedulability’ of periodic tasks which are assigned to a predetermined partition.
Additionally, the predictability of the latency of aperiodic tasks increases. This leads to
an improved determinism of the targeted system and implies a more probable compliance
with the required real-time behaviour derived from the QoS of ICM applications.

The high layer is characterised through the partitions and their local scheduler. The
partitions are defined by their assigned tasks which determine the actual scheduling algo-
rithm. This implies that different scheduling algorithms are allowed to coexist on the high
layer. Although temporal interference is prevented by the monotonic cyclic schedule of
the low layer underneath, the behaviour of a certain application is highly dependent of the
processing capacity and the invocation interval assigned to the predetermined partition
(Kim and Y.-H. Lee, 2002).

component0 component1 component2

ED0 ED1

platform

Figure 4.7: Partitioning of components using execution domains

To summarise, the partitions defined by the low layer effectively create separated schedul-
ing domains, in the following referred to as execution domains (ED), as depicted in Fig-
ure 4.7 for the previously defined setup.

Definition Execution Domain (ED)

An ED is a scheduling domain configured by use of the PU-affinity feature of an OS’s
task scheduler. Tasks allocated to an ED are scheduled independently (regarding task-
priorities and scheduling-policies) of tasks not allocated to that ED.

These improve the compatibility of mixed criticality and multi-sourced components. This
is proposed as a fundamental concept for the integration of next-generation ICM systems.
Unfortunately, OSs normally do not feature partition scheduling. But in combination with
MC hardware architectures under certain conditions, an efficient and portable solution
becomes available, detailed in the following section.

4.2.3 Multicore architectures

MC hardware is characterised by providing multiple processing units (PU) in form of CPU
cores. They have been common in the High Performance Computing (HPC) sector for
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decades. In the recent past they have emerged and proved applicability also in server and
desktop market segments to solve the need for more computational power while improving
energy efficiency. This is mainly driven by the fact that an increase of clock speeds
to improve performance reached a physical barrier due to current limits in transistor
technologies. This is also valid for the domain of embedded systems, where special purpose
PUs support the main processing unit to form a heterogeneous SoC MC architecture.
But also homogeneous MC architectures are already available for different instruction set
architectures (Levy and Conte, 2009). These provide a number of advantages, some of the
most prominent of which are outlined by Smit et al. (2008): scalability, energy efficiency
and independency of computational tasks.

Scalability is supported, as the architecture itself does not grow in complexity with future
technologies. Only the number of provided PUs increases, depending on the density of
the integrated circuits and the size of the silicon. The computational power of MC CPUs
scales direct proportional with the number of integrated PUs, although the exploitation
will suffer due to necessary overhead.

Energy efficiency can be obtained by switching off unused PUs temporarily to reduce
power consumption. Also the clock speed might be dynamically adapted to current needs
for computation tasks that do not have to fulfil real-time constraints. Energy efficiency
increases with reduced clock speeds, resulting in a lower thermal footprint. However, dy-
namic adaptation of clock speeds and switching off PUs massively affect the determinism
and might not be adequate for very complex systems within a safety-relevant environment.

The most relevant feature in regard to this research is the independency of computational
tasks. For MC systems, this is realised by space division on MC architectures in contrast
to the time division manner of multitasked software systems executing on single-core
systems. That means that MC systems support parallel processing whereas single-core
systems have to perform jobs concurrently (‘as if they were parallel’). However, MC
systems still have to compete for shared resources. Functional dependencies are realised
by using an inter-PU communication bus or network for routing information between the
PUs.

Eventually MC CPUs were basically introduced to avoid the physical problem of increas-
ing clock-speeds to enhance computational power and not as a new feature to provide
more parallelism which the software developers have to cope with. According to Pham
et al. (2011), the increased power comes at cost of increased complexity for software de-
velopment. Although with the use of an OS that features Symmetric Multi-Processing
(SMP; detailed below) and hence abstracts multiple available PUs with a single sched-
uler (Wietzke, 2012, p151), the execution of dependent and independent tasks at the
same time has to be considered throughout the development. Basically, the utilisation
of MC requires adequate parallelisation and hence synchronisation, which according to
Sutter and Larus (2005) and Cantril and Bonwick (2008) produces additional challenges
for implementation. These may include finding and implementing parallelism, advanced
debugging techniques to analyse deadlocks and race conditions, and eliminating perfor-
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mance bottlenecks (Pham et al., 2011). However, with the availability of MC hardware
architectures, new capabilities for structuring software are provided (Kopetz et al., 2007).
They facilitate an opportunity to reflect a parallel software design in hardware. This
opportunity was taken up for this research.

In regard to the concept of a two-level partition scheduler, a use of multiple computa-
tional PUs has significant effect on the invocation interval of predefined partitions and
their threads respectively. They are not necessarily in temporal dependence due to the
opportunity to compute tasks in parallel instead of concurrent execution. The summed
up processing capacity within a given timespan increases, while the invocation period
decreases. This has a positive effect on the partitioned tasks latencies and therefore on
the overall (RT) behaviour.

With SMP, a single OS abstracts the hardware resources and employs a single scheduler
to disperse computational resources. The scheduler reduces the additional complexity
caused due to multiple PUs and the derived parallel computation. For an MC system,
this implies that threads ready for computation are allotted to available computational
PUs considering an equal dispersion of load while reflecting given priorities. Usually
neither the coherence of threads with respect to their components nor the communication
flow between the tasks influences this distribution. In best case, an already-scheduled
thread might be kept on a particular PU for further computation to decrease cache-
bouncing effects related to context switch and reschedule on a PU with distinct cache
hierarchy. Cache-bouncing increases cache invalidations which cause read and write misses
and therefore rising latencies during memory access (Tam et al., 2007).

The PUs feature interconnected but independent partitions which the scheduler makes
available transparently to the applications. The focus here is to maximise the system
performance. Regarding the scenario related to the wait time as depicted in Figure 4.4, the
use of MC divides the invocation interval by the number of available PUs (cf. Figure 4.8).
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Figure 4.8: RR scheduling with 100 threads on same priority using two PUs

Although this has significant impact on the temporal behaviour, i.e., the system’s re-
sponsiveness to interaction and a higher probability to fulfilling deadlines, the underlying
problem of non-deterministic scheduling due to incompatible components is not solved.
With respect to the history in computer systems, more computational power will be
utilised with additional and more complex features (i.e., components and applications).
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Hence, even if additional available PUs have a positive impact on the wait time, it is very
likely that future systems have to cope with even more threads. That implies that merely
adding computational power will improve the system only in the short term, if at all.

This also applies to the scenario related to mixed scheduling policies as illustrated in
Figure 4.5. Here any additional PU also improves the temporal behaviour, but it is still
not foreseeable whether deadlines of particular tasks can be met, as depicted in Figure 4.9.
Moreover, parallel computing might introduce new problems for cooperative scheduling
(i.e., FIFO with threads using the same priority level) when synchronisation relies on
the sequential computation. This is exemplified by use of a set of practical experiments,
detailed in Section A.1.
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Figure 4.9: Mixed scheduling policies on two PUs

In summary, within an SMP system the OS scheduler’s decision regarding the targeted
PU for computation depends neither on affiliation to a component nor on the assigned
scheduling policy and priority. It basically may optimize the dispersion of threads for
process locality with respect to improving trashing effects and load balancing to fully
utilize the system’s capacity. Although these are valid goals for some system types (e.g.,
non-interactive batch processing with focus on high throughput), they do not apply to
highly interactive MCS.

The additional computational power introduced with MC hardware has to be adapted to
the software system to improve benefits. This can be achieved by partitioning the available
hardware by means of the available PUs aligned to partitioning the software system. With
respect to performance efficiency this can be realised with the herein-proposed concept
regarding segregated scheduling using EDs based on PU-affinitiy, as they employ already
OS features without the need for an additional management layer (cf. Section 4.2.2).

For SMP systems, the OS’s scheduler can be configured by use of ‘thread-affinity’ on
the granularity of threads to assign them statically to a specific set of CPU cores (Love,
2003; Love, 2010; Wietzke, 2012; Nagarajan and Nicola, 2009). This is also referred
to as Bound Multi-Processing (BMP)), CPU-, core-, or PU-affinity. A set of PUs may
include any number from one to all PUs. The default affinity assigned to a thread usually
includes all available PUs, which grants the scheduler the freedom to decide where it is
actually to be executed. Limiting this freedom into defined PU sets by use of a static
configuration according to the component’s peculiarities effectively allows for partitioning
the computational resources. Both incompatible scheduling policies as well as priority

81



4. STRUCTURING SOFTWARE COMPONENTS

schemes can be integrated onto a common platform while mitigating adverse temporal
interferences related to shared PU resources. The components’ threads are allotted to
different PUs, computed in parallel and therefore do not have to compete for shared PU
resources, as exemplary illustrated in Figure 4.10 for a dual-core hardware platform.
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Figure 4.10: Realisation for execution domains using MC hardware

Such an architecture based upon EDs that exploits the features of MC hardware fosters
the components’ compatibility without the need to modify the components. The parti-
tioning is transparent to the of the components’ suppliers. This enables an integrator to
define an ED in form of a dedicated PU or set of PUs by adapting the scheduler’s alloca-
tions depending on implemented use-cases, independent of the software’s internals. This
applies also for components which are not available in source code. Further, it is possible
to safely integrate components that are not prepared for parallel computation such as
legacy code that does not employ adequate synchronisation mechanisms. A component
bound to a single-PU behaves very similarly in timing as to what is observed when it is
executed exclusively on a single-PU system, similar to a separate ECU, as systems were
designed in the past (but without additional housings, power supplies, etc.). In contrast,
the components need not rely on parallel computation or individually assign their threads
statically to particular PUs. This limitation can be enforced by use of a robust software
framework that interferes with the corresponding API calls for configuring thread affini-
ties. However, a software framework may not only incorporate enforcement of limitations
but can also exploit the features for creating EDs by use of a portable abstraction of
partitioning components. This affects both the composability of such and improves the
maintainability (i.e., usability for the integrator). This can help to mitigate risks related
to unforeseeable integration expenses and thus help to predict the success of multi-sourced
development projects.

Moreover, predefined collocations of particular threads with respect to their inherent inter-
dependencies or affiliation to components may positively affect the system’s performance.
This can be achieved by taking advantage of the underlying hardware’s (coherent) cache
hierarchies (Schnarz et al., 2014a). Co-location of communicating threads can reduce
memory access latencies by decreasing cache misses. That means the throughput can be
improved when communication partners use a shared cache instead of the main memory.
Information stored within shared caches can be accessed about 10 (or more) times faster
than memory connected via system bus. This means optimised arrangement of tasks can
improve overall system performance (Tam et al., 2007).
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For the successful isolation using EDs, a set of essential capabilities has to be provided
by an underlying software framework in association with the utilised OS. Those were
identified as part of this research:

• Threads and groups of them can be statically bound to certain PUs.
• That binding is inherited to dynamically created sub-threads.
• The scheduler supports the parallel execution of tasks which make use of different

priorities on different computational PUs.
• The static mapping of tasks to PUs appears transparent to the application devel-

opers and is managed only by the system integrator.

As part of this research, those features were incorporated into OpenICM. The API for
the application developer did not need to be changed, whereas the integrator is now
empowered to cluster the components on certain PUs with minimal efforts. Only one
additional argument for indicating the targeted PU is necessary for the subsystems (i.e.,
components) start routine. The implementation abstracts the peculiarities and deviations
from POSIX for Linux and QNX.

As a result of such a static configuration, the tasks are scheduled as defined by the in-
tegrator based on the interdependencies and predefined characteristics rather than ‘only’
depending on an equal dispersion of workload. That means different software is separated.
Distinguishing characteristics may include the particular vendor, change rate, internal
structure, internal priorities, internal scheduling strategies, and mission. Imminent con-
flicts are effectively reduced, without the need for changing the components’ internals. A
task with high priority does not displace a low priority task as long as both are defined
for different execution domains which implies they could make use of different priority
schemes. This probably does not support a most optimal performance, but improves the
deterministic behaviour and helps to reach a higher grade of stability. Erroneous be-
haviour is not necessarily propagated beyond the boundaries of one computational PU or
one set of computational PUs predefined with a bit-mask. According to Aggarwal et al.
(2007), depending on the implementation, it is even possible to handle failures of affected
subcomponents for improving availability.

To summarise, EDs realised through the exploitation of the capabilities of MC hardware
in combination with an SMP-based OS is an effective way to partition heterogeneous
components for mitigation of adverse temporal interference.

4.2.4 Interrupt affinities

An interrupt signals the OS’s kernel about an event. This event is handled by use of
an interrupt handler routine (a.k.a. Interrupt Service Routine (ISR)) as part of the
kernel or device driver. The occurrence of an interrupt changes the instruction sequence
independently of the scheduling policy or thread priority currently being used for executed
user space applications (as well as kernel functionality for some OSs). This means an ISR
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blocks the systems processing asynchronously and temporarily takes control over the
PU where it is executed: it ‘interrupts’ the current processing context and immediately
switches to another one.

Besides the discussed scheduling overhead, the interrupt latency is an important char-
acteristic for a system’s real-time behaviour. The interrupt latency is defined by the
occurrence of the signal until executing the ISR. As Wietzke (2012, p114) states, this
latency subsumes the time necessary for the completion of the current instruction, save
of CPU registers, disabling potential concurrent interrupts and change context. Further
overhead is necessary to enable interrupts and restore the context and registers after
completion of the ISR. Depending on the current version of OS, further tasks related to
memory management might be necessary. The time needed for preparation, execution
and completion of an ISR affects the computation of applications and may have signif-
icant impact on the system’s temporal behaviour depending on frequency of interrupts.
However, interrupts are necessary to ensure the timeliness (e.g., timer interrupts used for
scheduling) and responsiveness (e.g., signal user input or receive of fieldbus messages) of
the system.

To reflect the different types of signals, interrupts can be divided into two types: hardware
interrupts and software interrupts. Whereas the former are related to events originated by
attached hardware (e.g., input devices, clocks, etc.), the latter one are related to events
(implicitly) issued by the processed applications to signal the OS. They may differ in
their ISR’s execution mode, derived privileges and reactivity to the actuating event, also
depending on the actual implementation of the OS. Comprehensive insight to interrupts
and ISRs are provided by Wietzke (2012) and Love (2010). However, both types share
the same impact to the system with introducing delay for processing applications.

The delay introduced due to ISRs is no problem as long as the trigger is as the same or of
higher criticality as the current processed thread. There are no means to map an event’s
criticality to the actual processing of an ISR, because it is executed independently of
any thread priority. This is attributed to keep the interrupt latency as small as possible.
However, within a MCS like ICM, for example, a user input must not delay the processing
of an ASIL-relevant software component.

With the use of MC systems and the static configuration of the component’s threads’
affinities, the relation between critical processing and interrupt handling is also adaptable.
The interrupt requests (IRQ) are processed by a programmable interrupt controller , which
is an integrated circuit (IC) that basically collects several interrupt sources (several lines)
and passes them to the CPU(s) using less connections (often only one). For MC hardware,
a PIC usually allows programmable routing of interrupts to dedicated PUs (ARM, 2014).
This feature realises PU affinity for IRQs and hence provides the capability to control
where the related ISRs are processed, comparable to the configurable thread affinity using
the scheduler. This enables the separation of critical processing and interrupt handling.

Beside separation, IRQ affinity enables co-location of coherent ISRs and components.
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This may apply, for example, to input devices and the ICM’s corresponding HMI soft-
ware components, or for communication devices and the ICM’s corresponding software
components to handle incoming messages. This can improve the overall performance
due to exploitation of shared caches and hence more efficient intercommunication in be-
tween ISR and the corresponding software components, comparable to thread clustering
as proposed by Tam et al. (2007).

In summary, using IRQ affinity, the component structure of the software can be mapped
to the interrupt handling to ensure critical components are not delayed due to uncritical
interrupts, as well as to improve reactivity including the full path form IRQ to software
component due to shared caches. To put this more simply: as long as an IRQ is related to
particular software components, it is also related to the respective ED which the software
component is assigned to. This means the IRQ has to be assigned to the ED of the
respective software component it belongs to. As with thread affinity, for IRQ affinity no
changes to the OS or the hardware are necessary as long as a reprogrammable PIC is
available.

4.3 Related concepts

The proposed use of MC hardware architectures to realise isolated EDs features only one
opportunity to structure software components. In the following, some notable alternatives
and complementing concepts are discussed. The aim is to emphasis the appropriateness
of the EDs as well as point out the composability within or next to other architectural
means for partitioning software.

4.3.1 Service orientation

A great deal of research for structuring and governing complex software systems has been
done in the field of service-oriented architectures (SOA). Following Krüger et al. (2004),
automotive software systems do not pose an exception. However, with increased abstrac-
tion of system complexity, the overhead during runtime may increase. This is attributed
to flexibility of composition of services which relies on the paradigm of register, find, bind
and execute (Zhu, 2005). Although SOA may support the integration of heterogeneous
software components, it lacks efficient exploitation of the underlying hardware architec-
ture’s features and neglects issues caused by conflicting scheduling policies and priority
schemes. SOA may not necessarily be seen as a contrary architectural concept. More-
over, services may substitute components within the herein proposed concept for ED to
support compatibility of heterogeneous services for temporal behaviour due to mitigated
interference. Hence, the availability of EDs may introduce an additional layer for fine-
grained deployment on a single hardware platform to complement the features of SOA for
improved compatibility of multi-sourced services. Eichhorn et al. (2010) propose a flexible
in-vehicle HMI based upon SOA to foster platform independency, scalability, faster time
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to market and lower development costs using web technologies, but do not address mixed
criticality.

The OSGi Alliance propagates with ‘OSGi’ an open dynamic component platform to as-
sure interoperability of applications and services. The platform addresses the integration
issue of software provided by different vendors with respect to reliable operation, shared
resources and the ability to add functionality dynamically during runtime. With a so-
phisticated service model, it follows a service-oriented approach, relying on a Java Virtual
Machine (JVM). Kriens (2008) provides a comprehensive overview on OSGi. Compara-
ble to SOA, it fosters interoperability. OSGi does not cover the hardware’s features for
partitioning or addressing compatibility issues due to conflicting scheduling policies and
thread priorities. But again, the concept of EDs may complement OSGi to mitigate
adverse temporal interference in between heterogeneous components.

4.3.2 Budgeting

Budgeting is related to agglomerate tasks into defined partitions and grants those par-
titions access to the platform’s resources repeatedly up to a certain time. That time is
derived from a temporal budget assigned to the respective partition, comparable with a
pre-emption scheduler for groups of tasks with heterogeneous time slices.

QNX Software Systems provide the capability to partition software by use of resource
budgets with their Adaptive Partitioning Scheduler (APS) (Johnson et al., 2006; QNX
Software Systems, 2010). This thread scheduler supports the creation of such ‘virtual’
partitions that are configured during runtime with a specific budget that corresponds
to a guaranteed portion of resource usage. Software components are assigned to those
partitions while utilising application-specific scheduling policies (e.g., RR, FIFO, etc.) and
priorities. This basically corresponds to a two-level partition scheduling approach with
configurable partitions at the lower level that incorporates dynamic adaptation to actual
utilisation. The latter implies a high load (a.k.a. ‘full load’) partition is allowed to borrow
unused budgeting of another partition (referred to as ‘underload partition’). The borrowed
time must be returned back to the lending partition as much as the scheduler ‘remembers’
(i.e., only the borrowing that occurred in the last ‘cycle’). However, partitions’-guaranteed
budgets take precedence over the contained threads’ priority. Nevertheless, threads can be
defined as ‘critical’ that allow them to run even if its partition is already over budget. For
such cases, ‘critical time’ is billed against the respective partitions. If the billed critical
time exceeds a partition’s critical budget, ‘bankruptcy’ occurs that forces the initiation
of a recovery policy. As this is considered as design error, it significantly affects the
related threads’ behaviour and overall systems behaviour. Depending on the recovery
policy this means, e.g., either turn-critical budget to zero, a forced reboot, or a pause of
the scheduling of the partition.

Such an approach fosters the exploitation of the platform’s computational power (com-
pared to cyclic toggling between partitions using fixed time slots – cf. synchronous Time
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Division Multiple Access in Section 5.3). But the combination of budgets, priorities
and adaptive behaviour may contradict each other and affect predictability in high load
situations. As exemplified by Vergata et al. (2010), this means APS does not support in-
dependent, non-coordinated priorities and scheduling schemes in different partitions. Fur-
thermore, budgeting with APS is also affected by IRQ handling. The additional temporal
efforts related to handle an IRQ are deducted from the budget of the current computing
partition, regardless of any dependencies between the respective IRQ and the computing
partition. Moreover, the inherent complexity due to the adaptive behaviour produces new
challenges for trace and debugging the system behaviour. This is emphasised for systems
that may change their functionality during product lifecycle (i.e., dynamic functionality).

4.3.3 Virtualisation

Virtualisation describes a concept of simulating hardware in software, which has been
a research topic for decades (Goldberg, 1974). It basically supports the provisioning of
one (or more) virtual hardware platform by use of a single physical one (Neiger et al.,
2006). Following Popek and Goldberg (1974), this efficient, isolated duplicate of a real
machine is realised by use of a virtual machine monitor (VMM) (a.k.a. hypervisor). The
VMM defines and manages the capabilities of the virtual platforms which are referred to
as virtual machines (VM). The runtime environment appears for the software (e.g., OS,
bare-metal applications) executed on the VM like deployed on physical hardware, except
degradations in speed. This means a VMM may host several VMs, while each VM repre-
sents a partition with a different OS instance, which in turn may host multiple application
components. Following Kanda et al. (2010), this realises a multi-OS environment.

The use of different OS instances implies different scheduling domains and hence decoupled
scheduling policies and priority schemes. Adverse temporal interferences are mitigated.
This behaviour can be improved when allotting the VMs to distinct PUs (Kanda et al.,
2010; Vergata et al., 2012).

Furthermore, such a multi-OS environment provides the capability to employ different
OSs, with each providing dedicated features for certain purposes. This may include
real-time capabilities, UI features, compatibility to CE platforms, or domain-specific ap-
plication frameworks.

Nevertheless, the introduced abstraction layer to provision the virtual hardware platforms
introduces overhead as well as the operation of multiple OSs. Such overhead include ad-
ditional startup time to initialize the guest-OSs, memory resources for the extra OSs
instances within persistent and non-persistent memory and also additional latency during
runtime. This is caused due to the indirection introduced with the abstraction layer of
the VMM and additional guest-OSs and also includes additional efforts for intercommu-
nication between different OS instances. An empiric comparison regarding the runtime
overhead is detailed in Table 4.1 using quantitative measurements based on a Linux based
QEMU/KVM VMM (Kivity et al., 2007). Those are gathered using the benchmark-suite
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‘lmbench’ (revision 3.0-a9), which relies on a set of reproducible and transparent test cases
to compare latency of e.g. system calls, process creation, math operations and signalling
(Staelin, 2005; McVoy and Staelin, 1996). Basically, such overhead reduces the integrated
system’s effectiveness, as computational power is spent to operate infrastructural system
parts such as VMM and VMs. The efficiency can be improved with the availability of
hardware-supported virtualisation features as detailed by Neiger et al. (2006). Such fea-
tures are also available for current automotive platforms. Furthermore, the guest-OSs
can be optimized for the virtualisation layer to reduce the performance degradation. The
measurements presented in Table 4.1 were collected using x86 hardware platform that
features such virtualisation support (using a 64bit Linux kernel 3.6.37-mainline, a mag-
netic hard-drive and eight processing cores with 1995 MHz each). Although those show
a near-native performance can be achieved, there is overhead which affects system per-
formance. This does not apply for the EDs based on PU-affinity, because the indirection
and the need for infrastructural system parts are not needed. ED-based partitioning of
components effectively is equivalent to the measurements for native execution, deducted
from quantitative empiric tests. Static partitioning (i.e. static allocation of components
to scheduling domains) is most effective with regards to avoiding performance degradation
by use of EDs.

Heiser (2008) details virtualisation use cases, its limits and technologies for the domain
of embedded systems and presents a microkernel (named ‘OKL4’) that offers hypervisor
functionality. In further work, Heiser (2011) refers to virtualisation and exemplifies this
with the collocation of infotainment and AUTOSAR using a single hardware platform,
following the architecture proposed by Hergenhan and Heiser (2008). Also, Kaiser (2011)
anticipates virtualisation as an adequate means to cope with the challenges of upcoming
complex embedded systems, despite the fact that most of current VM environments are
still targeted for desktop and server systems. However, increased manageability due to the
use of multiple isolated VMs hosting different subsystems applies for embedded, desktop
and server systems.

Virtualisation may provide an alternative for ICM systems to structure different software
components into isolated containers as proposed by Vergata et al. (2010). However, even
with hardware-supported virtualisation, speed degradations are measureable. Moreover,
the isolation of components using VMs in combination with the operation of multiple
(instances of) OSs inhibits the utilisation of mature and efficient intra-OS synchronisa-
tion and communication infrastructures. Such inter-OS communication between different
VMs is basically comparable to communication in between different hardware platforms.
However, there are technologies to signal and allocate shared memory regions accessible
by multiple VMs to realise efficient data interchange, as proposed by Macdonell (2011)
with the Nahanni system.

Despite the drawbacks of virtualisation due to the additional overhead the provided multi-
OS environment in combination with thread-affinity-based EDs enables a flexible system
architecture. A host-OS may provide the device drivers and runtime environment for
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Measurement Unit Native Virtual Overhead

Syscall read microsec 0.1198 0.1198 0.0000 0.0 %

Syscall write microsec 0.1170 0.1172 0.0002 0.2 %

Syscall open/close microsec 1.3059 1.4481 0.1422 10.9 %

Signal handler installation microsec 0.1855 0.1865 0.0010 0.5 %

Signal handler overhead microsec 1.1826 1.2114 0.0288 2.4 %

Process fork+exit microsec 155.8485 191.1667 35.3182 22.6 %

Process fork+execve microsec 412.3077 573.1000 160.7923 38.6 %

Process fork+/bin/sh -c microsec 958.8333 1351.2500 392.4167 39.2 %

integer bit nanosec 0.50 0.50 0.00 0.0 %

integer add nanosec 0.25 0.25 0.00 0.0 %

integer mul nanosec 0.15 0.15 0.00 0.0 %

integer div nanosec 12.06 12.07 0.010 0.1 %

integer mod nanosec 11.55 11.57 0.020 0.2 %

int64 bit nanosec 0.50 0.50 0.00 0.0 %

uint64 add nanosec 0.25 0.25 0.00 0.0 %

int64 mul nanosec 0.15 0.15 0.00 0.0 %

int64 div nanosec 22.31 22.33 0.02 0.1 %

int64 mod nanosec 21.11 21.53 0.42 2.0 %

float add nanosec 1.50 1.51 0.01 0.7 %

float mul nanosec 2.01 2.01 0.00 0.0 %

float div nanosec 7.47 7.48 0.01 0.1 %

double add nanosec 1.50 1.51 0.01 0.7 %

double mul nanosec 2.01 2.51 0.50 24.9 %

double div nanosec 11.48 11.49 0.01 0.1 %

float bogomflops nanosec 7.02 7.03 0.01 0.1 %

double bogomflops nanosec 11.03 11.04 0.01 0.1 %

Table 4.1: Runtime overhead for virtualisation
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critical components with real-time demands. The latter can directly interact with the
host OS and the platform’s devices. Further, the host OS provides the runtime environ-
ment for the VMM. According to the definition of Goldberg (1973, p22), this means the
hypervisor is a type-2 VMM. In contrast, a type-1 VMM runs on ‘bare-metal’ without
the need for a host-OS. Such a VMM incorporates basic functionality of a kernel such
as memory management, task abstraction and scheduling. Although a type-1 VMM may
reduce the overall system overhead, host-OS based architectures provide the capability
to deploy non-virtualised low-level components. The integrator configures the VMM and
the related OS-partitions based upon individual VMs. Each VM can be ‘equipped’ with
n virtual PUs (vPU) to correspond with the number of EDs deployed to the respective
guest OS. By this means, a virtual MC platform within a VM is realised, introduced as
VMMC (Virtual Machine MC). This provides the capability to allot EDs to the nvPU
to achieve independent scheduling domains, as depicted in Figure 4.11 and exemplified in
Section A.2. The guest-OSs are interconnected by use of a Nahanni based inter-VM shared
memory. As part of this research, this integral architecture-incorporating virtualisation
and EDs were presented by Vergata et al. (2012)4.

C1

C0 VMMC0

ED1

host-OS

hardware platform

VMM

VMMC1

ED2 ED3 ED4

ED0

C2 C3 C4 C5

critical / RT

guest-OS0 guest-OS1

Figure 4.11: Architecture combining EDs and virtualisation

Virtualisation within ICM system is a promising on-going field of research. It can effec-
tively complement the herein proposed concept for EDs on MC hardware.

4.3.4 Application containers

Virtualisation provides a virtual hardware platform to a VM that may run an individ-
ual guest OS, also referred to as hardware-level virtualisation. In contrast, ‘application
containers’ rely on a mechanism that sets into an OS kernel that supports application
containers. This technology is also known as virtual engines, virtual private servers, or
OS–level virtualisation. By practical means, (hardware-level), virtualisation is related
to the provisioning of a virtual instruction set architecture (ISA), whereas applications
containers rely on the availability of a contained application binary interface (ABI), as
depicted in Figure 4.12, modelled after Smith and Nair (2005, p10).

4cf. Appendix B - 6
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Figure 4.12: Comparison of virtualisation and application containers by their interfaces

Basically, with application containers, ‘sandboxes’ on top of a single kernel are realised.
These provide isolation that aim to reduce adverse interference between applications run-
ning within distinct containers. Depending on the actual implementation, it enables
resource and security isolation by realising defined share and reservation of hardware-
facilities such as available PUs, memory, and I/O (Soltesz et al., 2007). Reshetova et
al. (2014) compares several OS-level virtualization systems, discusses their security and
identifies gaps of current solutions with focus mainly set on the Linux kernel.

Compared to hardware virtualisation, with such ‘OS virtualisation’ and the need to run
only a single OS that handles multiple containers, the startup time and overhead for
partitioning related to intercommunication and hosting multiple OS instances is reduced
(Strauss, 2013; Tsai et al., 2014). However, it does not support a heterogeneous multi-OS
environment that enables the integration of software components targeted for different
OSs or different revisions of an OS. Hence it is comparable rather to the concept of EDs
using PU affinities in which application containers are assigned to a dedicated PU or PU-
set. However, application containers are not available for each OS kernel, as this approach
requires built-in features within the kernel. Moreover, there is no standardized API to
configure and control the runtime of ‘OS-level virtualisation’ (e.g., for Linux different
layered APIs or frontends are available to improve the usability of the kernel’s built-in
‘control groups’ and ‘namespaces’).

An ICM related platform that utilises application containers is GENIVI. Therefore it
exploits the Linux kernel’s built-in features by use of the abstraction layer LXC (cf. Sec-
tion 2.4.2). In particular, these include kernel namespaces (related to, e.g., IPC, process
IDs, networking, user privileges, etc.), chroot (to change the root file system), control
groups (budgeting resource utilisation) (Bustos-Jimenez et al., 2014). Despite isolation,
inter-partition communication via shared memory and inter-partition synchronisation can
be configured, as evaluated in Section A.3.

As this approach is only available for a subset of relevant embedded OSs for ICM, it
is not considered as a portable solution for structuring software components. However,
application containers pose a valid supplement for a comprehensive software structure.
Also, an enhancement of existing API (e.g., POSIX) or framework that abstracts the core

91



4. STRUCTURING SOFTWARE COMPONENTS

features would improve maintainability and portability (cf. Table 1) and address future
demands for flexible OS-level virtualisation in complex software systems with minimal
management overhead. Moolenbroek et al. (2014) argue that OS-level and hardware-
level virtualisation are extremes in a continuum of virtualisation boundaries in which new
alternatives have the potential of combining the good properties of both. This is still a
valid field of research, not further detailed within this research project.

4.3.5 Asymmetric Multi-Processing

With Asymmetric Multi-Processing (AMP), the platform’s hardware features are strictly
separated to different OS instances or applications when no OS is available or necessary
(Wietzke, 2012, p151). This means a hardware device is dedicated to only one partition
and cannot be shared. The allocation to different partitions is statically defined and
realised during the system’s startup sequence.

In contrast to SMP that utilises all available PUs for one OS, AMP allows the parallel
execution of multiple OSs. As Schnarz et al. (2013) states, this fosters a stricter de-
coupling of resources compared to the concept of EDs using SMP in combination with
thread affinity. Similar to virtualisation, an AMP-based multi-OS environment implies
the lack of low overhead intra-OS synchronisation features such as semaphores, mutual
exclusions, condition variables and message queues. Within an AMP environment, inter-
OS communication may rely on signalling (i.e., to trigger IRQs), message-based hardware
interconnects, or network sockets (Mücke, 2014; Daub, 2012). It may utilize dedicated
shared memory regions for data interchange (Wietzke, 2012, p150). Also as with virtual-
isation, a multi-OS environment based on AMP means the dissipation of computational
power (overhead) for the operation of multiple OS instances. This power is not available
for application components. Summarized, AMP allows a strict decoupling of compo-
nents, but comes at the cost of limited and more restricted communication facilities and
increased overhead. Additionally, it features the parallel deployment of different OSs and
so-called ‘bare-metal applications’, again comparable to virtualised system architectures,
but without the need to run a VMM.

Related to the concept of EDs, AMP is not necessarily a substitute. For a layered system
architecture that has to cope with different levels of decoupling (or segregation), it may
complement PU affine EDs for AMP partitions with multiple PUs and virtualisation. Fis-
cher (2009) provides a comprehensive discussion on an AMP-based multi-OS environment
within the context of ICM, including a prototype implementation and evaluation using
an ARM-based MC platform.

4.4 Applied structuring

Segregation of different functionality can be seen as a key to achieving dependable mixed-
criticality systems that have to provide adequate means for updating particular software
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components without re-accessing the whole. Figure 4.13 abstracts the elements and inter-
dependencies, divided into the layers architecture, OS, application and hardware (arrows
define the direction for the given association accompanied with a label and cardinality).
Therefore the segregation is abstracted by the element ‘Partition’ that is specialised by
‘Execution Domain’ and ‘Operating System’, comparable to an object-oriented strategy
pattern. The component ‘Operating System’ can be further divided related to the actual
implementation of the respective environment, such as native on hardware, virtualised,
and using AMP.
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Thread
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Figure 4.13: Layered view on structuring system components

Such component containment improves composability due to improved compatibility at
the architectural level. This is achieved due to enforced decoupling of execution at the
application level by use of segregated scheduling domains. Hence, asynchronous compo-
nents and their threads must not be synchronised with one another. This applies both to
the process of system integration by an integration team and also to system runtime by
use of a scheduler and respective policies and priority schemes. Components that are not
designed for compatibility are to be kept separated. Compatibility is not a characteristic
that is easily applied to already available and functional components, if not considered as
constructive aspect. For ICM systems, this also gains significance due to the high divi-
sion of labour during the development process. Further, composability achieved through
containment may have positive affects on the system’s maintenance as thus the update
cycle for partitioned components can be segregated. Further aspects on compatibility by
containment are discussed in Section 7.1.1 for the context of an integral architecture.

Structuring can be achieved using different technologies and concepts which also includes
a combination of these. A selection of the herein discussed ones with interdependencies
on requisites and opportunities is depicted in Figure 4.14 (technologies are highlighted
in blue; arrows stand for ‘provides’ using the given cardinalities). For example, if the
physical platform does not provide a sufficient number of PUs to segregate using EDs,
a virtual hardware platform is able to incorporate the necessary vPUs as proposed in
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Figure 4.14: Interdependencies between technologies for structuring threads

Section 4.3.3. Further, PU-affinity based EDs can be combined with VMs, AMP and ap-
plication containers, whereas a decision for a particular technology should correspond with
its respective characteristics and the related requirements derived from the components’
use-case and criticality.

Such a mix of different technologies for containment is shown in Figure 4.15. It illustrates
the nested partitions using bounding boxes. For this example a combination of PU affinity,
virtualisation and AMP is used. It further demonstrates the provisioning of additional
virtual PUs to enable a sufficient number of scheduling domains and parallel operated
OS-instances.

Different technologies and concepts imply different characteristics regarding isolation
(such as self-containment, overhead, communication facilities) which may be in contrast
to one another as depicted in Figure 4.16. Hence, it is reasonable to classify the different
concepts with respect to shared platform facilities. Therefore the ‘Containment Level’
(CL) is introduced as designator, mapped to particular concept’s characteristics in Ta-
ble 4.2. The CL represents the degree of containment using a scale from zero to four,
while CL0 does not provide software component isolation and CL4 means very strict
partitioning.

A minimum requirement for adequate containment within the context of this research is
non-shared PUs due to the inability of enforcing the software components’ incompatible
temporal requirements. CL1 to CL4 do provide this capability, whereas the particular lev-
els are differentiated with regards to the availability of shared memory (SHM) or shared
I/O. For the context of ICM systems, the focus may be set on CL1 and CL3. They
both feature isolated PUs in combination with a shared memory region that allows for
efficient inter-partition communication. Shared I/O might be avoided to mitigate concur-
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Figure 4.16: Contrary characteristics for selected segregation concepts

rent access that affects the temporal behaviour of the competing software components.
However, depending on the use-case or applied access management (i.e., arbitration; cf.
Chapter 5), shared I/O can be a beneficial option. In contrast, CL2 and CL4 do not
feature a SHM region. This implies they are more suited for software components that
must not support interoperability (e.g., using efficient intercommunication), but still have
to fulfil requirements for compatibility due to integration onto a single hardware platform.

Moreover, as exemplary depicted in Figure 4.17 (evolved from Figure 4.11), different CLs
can be combined to address the actual need for isolation using a layered architecture. A
higher CL may introduce additional overhead (e.g., due to the need to run multiple OS
instances). Further, a low level containment may contain a higher level containment. In
the example, ED0 and the VMM use SMP-based PU-affinity that isolates according to
CL1 on tier 1. This does not imply an inner container can increase the CL against an
outer container, as depicted with VMMC0 and VMMC1 on tier 2 with CL3. Although
both VMMCs are still isolated against each other using CL3, they are isolated against
the software component C0 (deployed to ED0) with CL1. But while the components on

95



4. STRUCTURING SOFTWARE COMPONENTS

C
o

n
ta

in
m

e
n

t
L

e
v

e
l Shared

P
ro

c
e
ss

in
g

U
n

it
s

M
e
m

o
ry

I/
O

R
e
so

u
rc

e
s

Technology / Concept

CL4 ◦ ◦ ◦ distinct HW; AMP

CL2 ◦ ◦ • VMs with PU-affintiy

CL3 ◦ • ◦ AMP with SHM; VMs with (PU-affinity & SHM)

CL1 ◦ • • SMP with PU-affinity; VMs with (PU-affinity & shared I/O & SHM)

CL0 • ◦ ◦ VMs

CL0 • ◦ • VMs with shared I/O

CL0 • • ◦ -

CL0 • • • SMP

◦ = isolated; • = shared

Table 4.2: Mapping of Containment Levels to concept characteristics

tier 3 within the VMMCs are isolated using CL1 (e.g., C1 against C2), the components
of the different VMMCs are still isolated using CL3 (e.g., C1 against C4).
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Figure 4.17: Multitier CL architecture

A tree spanned of the different CLs and software components can express this in a more
formal abstraction. A node represents a CL while a leaf-node represents a software com-
ponent. A CL is connected to at least two other nodes. Highlighting the shortest path
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between the respective leaf nodes and identifying the CL at the lowest tier can determine
the effective isolation between two software components. Software components collocated
within a single leaf node are assumed as not isolated against each other (i.e., CL0). A
graph corresponding to the previous example is depicted in Figure 4.18.

Additional to the CL, it might be necessary to decide whether it is necessary or useful
to employ multiple OS instances which increase overall startup time, require additional
memory with each instance and require efficient intra-OS synchronisation facilities when
using intra-OS SHM regions. The freedom of choice is limited to CL1, which can be
implemented using EDs or VMs (with SHM and shared I/O; cf. Table 4.2).

CL1

CL3

CL1CL1

C0

C1 C2 ; C3  C4 C5

tier 1

tier 2

tier 3

tier 3

Figure 4.18: Visualisation of effective CL in multitier architecture

Such a formal representation can support the validation of an architecture to structure
software components. The effective CL between particular components should match
their respective required characteristics (e.g., criticality, responsiveness).

To subsume, different concepts can be combined to address the mixed requirements of dif-
ferent software components. For this research, their structuring relies basically on isolation
using segregated containments within the runtime environment. While the concepts are
different, they all reduce temporal dependencies to improve the components’ compatibil-
ity by adequate preparation of their runtime environment. Simplified, this means not the
component must be adapted to the system – the system can be (statically) adapted to the
components. This leads to the need for an adequate base system (i.e., software framework)
that abstracts the respective peculiarities of the concepts to encapsulate their complexity
and improve usability for developers and integrators. Admittedly, abstractions that, for
example, both run and manage an AMP-based multi-OS and provide high-level thread
abstraction might not be incorporated into a single software library. However, inter-OS
synchronisation mechanisms necessary for a multi-OS environment are well suited for such
a software framework that enables the integrator to have the full degree of freedom to
deploy a particular component using the best suited concept.

For this research, a subset of the described abstractions were incorporated into OpenICM
as described in Section 4.2.3. This implementation relates to PU-affinity-based EDs to
achieve CL1. The thread abstraction mechanism of OpenICM allows for subdivision of
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the architecture into different (development) domains, depicted in Figure 4.19. With the
static definition of the software component’s runtime configuration within a ‘Context De-
scription’ from its actual implementation, an integrator effectively can adapt predefined
system behaviour to the system. The configuration includes the PU affinity to define the
particular component’s ED. This is possible without the need for modification of either
the base system (i.e., the software framework) or the component’s internals. The imple-
mentation of the PU affinity is encapsulated within the framework’s thread abstraction
that puts the configuration into action, separating the configuration from the application.
All this is assembled during compile time to keep the overhead low during the system
start. Further, this architecture does not require any OS or kernel modifications and
hence is portable to multiple platforms.
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Figure 4.19: Segregated domains using OpenICM’s runtime control of software
components

Besides the implementation of EDs, a VM based multi-OS environment (CL1/CL3) was
setup, detailed for the ‘pilot case’ in Chapter 7.

4.5 Summary

With focus on the application layer and the anticipated increased complexity of future
ICM systems, the structuring of components and their necessary communication is of great
significance. The management of concurrent resource access is identified as a significant
issue when structuring integrated systems that rely on components of mixed criticalness
which have to fulfil a certain timing behaviour and were developed independently without
inside knowledge of the other components. The management of shared computational
resources and the handling of external events are necessary features of an infrastructure
for complex component-based software systems such as ICM systems.
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As part of this research the concept of ED for partitioning software components is in-
troduced and proposed for next-generation ICM. The utilisation of MC hardware archi-
tectures to retain the structure of the software system by use of ED can support the
compatibility of heterogeneous software components. With EDs, the available computa-
tional capabilities are partitioned to create temporal isolated scheduling domains.

A software framework supports the development process with a tested and approved in-
frastructure, which a concrete application can build upon. The proposed architectural
concept is lightweight enough to be usable in practice and proved practicality by adopt-
ing it to OpenICM. However, the problems of concurrency remain for unique peripheral
resources shared by multiple computational resources.
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5

Arbitrate resource utilisation

Following the concept proposed within the previous chapter, the availability of multiple
PUs forms the basis for an approach to structure software components through the use
of EDs. The utilization of a single OS avoids additional overhead introduced through a
virtualisation- or AMP-based approach for structuring components. With EDs, formerly
physically isolated software systems can be integrated into a highly integrated head-unit.
The temporal behaviour of the targeted system also becomes predictable for high system
load situations.

Even though MC platforms provide multiple computational cores, there are still a num-
ber of resources that are only available once. Access to such shared resources is realized
using a concurrent behaviour, meaning each accessing component has to compete with
others for the shared resource. On a single-PU system, such access is implicitly arbi-
trated by the task scheduler and controlled using thread-priorities: access to a certain
resource is only granted as long as the accessing thread is scheduled for computation by
the scheduler and when the state is changed to ‘running’. This relies on the limitation
that in a single core system, only one thread in the state ‘running’ is possible. If there are
multiple PUs available, multiple threads can be computed in parallel and they can also
potentially access the same resource in parallel. The temporal order of the latter is not
deterministic. This applies in particular for multiple available thread scheduling domains
(cf. Section 4.4). This affects the temporal behaviour and predictability of those accessing
tasks. If a low critical component reserves a shared resource that is also requested by a
high critical component, the high critical component is delayed. This is comparable to the
issue of ‘priority inversion’ in task scheduling. Although a guideline for strict partition-
ing to obviate concurrent access to a shared resource from mixed criticality components
might be the most obvious solution, it is not applicable for all resources. This applies
in particular to such which are only available once or in less quantity than (potentially)
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needed. Therefore, the correct functioning of time-critical tasks cannot be guaranteed,
especially in high system-load situations. This might lead to the perception that the
use of single core systems can ease the integration of multiple software components due
to implicit arbitration using the operating system’s task scheduler. However, with such
systems, the ‘bottleneck’ is the scheduling of tasks using incompatible priority schemes
and scheduling strategies, not forgetting to mention the insufficient computational power.
The move to MC systems is unavoidable for CPU-intensive parallel applications, which
implies increased complexity in system design. The consequence of this evolution to MC
architectures is new challenges which, according to Torres et al. (2011), make it impos-
sible to design current systems using the same approaches applied 20 years ago. They
further motivate the need for synchronised and protected access to shared memory in
multiple-instruction architectures according to the classification of Flynn (1972), which
can be enhanced to shared resources. This basically implies the consideration of the move
of ‘the bottleneck’ (i.e., concurrency) during system design, where multiple tasks compete
for a single resource in parallel. A configurable arbitration of such concurrent access is
not available for the OSs usually used for ICM.

In the following, an approach is presented to arbitrate the access to shared resources in
a parallel computer- and component-based software system that is configurable for the
integrator. The main objective is to improve the predictability of the temporal behaviour,
especially for high system-load situations and therewith to improve the reliability of the
integrated ICM system. For this purpose, further detail is included on the problem
definition, and a set of requirements for a resource arbiter are specified. A prototype has
been implemented based on these specifications which is also presented.

5.1 Parallel computing versus shared resources

The arbitration of resource access for shared resources is not a new field of research
(Manfred Broy and Streicher, 1991). Generally speaking, for systems that rely on different
tasks and must fulfil a certain QoS, the management of resource access has to be done at
some point. This can be achieved by interrupting the processing of an accessor, or at the
other extreme: delegated to the targeted system’s user, such as, multiple different audio
streams consumed by the user in parallel. If the arbitration has to be predefined, based
on the system requirements, the access control needs to be reflected by the system. With
multiple computational resources and accessors, this control has to be available for the
integrator. Hence, the utilization of MC systems in combination with component-based
systems requires a practicable solution to manage the temporal order of concurrent access.

With MC hardware platforms for structuring heterogeneous software components, the
parallel utilisation of resources in addition to the PUs has to be considered. Buttazzo
(2011, p31) provides the following definition of a resource:

“From a process point of view, a resource is any software structure that can
be used by the process to advance its execution. Typically, a resource can be
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a data structure, a set of variables, a main memory area, a file, a piece of
program, or a set of registers of a peripheral device. A resource dedicated to a
particular process is said to be private, whereas a resource that can be used by
more tasks is called a shared resource.”

The use of MC platforms reduces the competition for computational resources of the CPU
due to increased number of available resources (i.e., PUs). But other resources are still
available only once or can only be accessed by one software component at a time. This
may include memory (e.g., RAM, NOR/NAND flash, HDD), graphical processing unit
(GPU), network interfaces, devices attached via serial communication channels, or various
other I/O devices. For single-PU architectures, the OS’s scheduler grants processing ca-
pacity to threads, which implicitly control the access to resources by use of the configured
priorities for the threads. This means the priority assigned to threads affects the order of
access to shared resources with only a single PU available. This is not applicable to MC
architectures, because threads are able to compute at the same point in time independent
of the respective priority, as long as they are scheduled for different PUs, as illustrated
in Figure 5.1. Here the access order related to shared resources is non-deterministic and
follows a FIFO policy, independent of any affiliations to a particular software component
or thread priority. The scheduler is still limited to managing reservations for the PUs.
This applies to both static PU affinity and dynamic assignment based on load-balancing
algorithms as facilitated for SMP by an OS scheduler. This situation exacerbates with
the number of accessors that compete for a shared resource such as for flash file systems,
fieldbus transceivers, etc.
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Figure 5.1: Implicitly scheduled and concurrent access to shared resources

Furthermore, for shared resources that have to be used exclusively for a given point in time
a global lock mechanism incorporated to the OS and the related device driver respectively
prevents pre-emption of low priority accessors. For MC architectures this also applies
beyond the scheduling domain of a given PU. This means a high priority thread that
wants to access a resource which is currently being used by a low priority one has to wait
until the low priority one is finished. This issue gains significance for systems that rely on
components with limited compatibility due to the absence of an agreed scheduling policy
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or priority scheme. Component containment using segregated scheduling domains, such
as EDs and multiple OS instances (cf. Section 4.4) do not provide a solution for temporal
management of resource access. Nevertheless, waiting for resources and I/O introduces
latency to the software components behaviour and therefore undermines the priorities
and scheduling policies of the related threads. Such competition for a shared resource
represents a bottleneck that may degrade the system’s overall performance.

For shared resources, only limited priority-based access control is usually provided by
common embedded OSs. The Linux kernel allows the use of an I/O scheduler for block-
oriented devices (e.g., hard-disk drives), mainly targeted to improve the performance
for concurrent disk access. The driver of such random access devices implements a job
scheduler to hide latencies; as an example, for a hard disk: the I/O scheduler virtualises
the disk among multiple outstanding requests from different client applications to reduce
disk seeks and improve overall performance (Love, 2010, p297-304). Therefore different
implementations are available, even with the ability to adjust request orders by use of
priorities. They all have in common that they are only targeted for block devices and do
not support stream- and character-oriented resources.

C0 C1 Cn 
…

shared resource

arbitration

Figure 5.2: Abstraction layer for arbitration of access to shared resource

That necessitates abstraction of the shared resource in form of an additional scheduling
instance, as depicted in Figure 5.2 for parallel-executed software components that compete
for a single resource, derived from Schranzhofer (2011, p55). This instance has to provide
access to shared resources other than the PUs for defined groups of tasks, based on
predefined priorities. For the components, the resource appears as having direct access.
Although such abstraction has similarities to virtualisation approaches, an arbiter that can
be configured to manage the access on the granularity of a single shared resource is beyond
the abilities of current virtualisation solutions. This allows and forces an integrator of
the system’s software components to set priorities that are based on the semantics of the
components, independent of their internal prioritisation of threads and implementation
details. Resource control can be implemented at integration time to reflect the required
behaviour of the system as derived from the specified use-case scenarios.

5.2 Requirements for a resource access arbiter

Before defining requirements, the designated environment and derived limits of the herein
proposed arbiter are detailed. Basically, the concept was initially developed on the as-
sumption that the underlying OS features an SMP-based scheduling. Herewith additional
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overhead costs due to multiple instances of OSs are circumvented in comparison to AMP
or virtualisation-based system designs. However, this does not imply the concept is lim-
ited to SMP. On the contrary, the herein proposed approach is generally also applicable
to such architectural designs, if not even required when using such. This means within
AMP and virtualization-based systems, concurrent access to shared resources might be
necessary, depending on the integration density and hence the shared use of common
resources.

Further, the static scheduling of tasks is presumed to improve predictability and therefore
maintainability due to simplified analysis capabilities during runtime. Additionally, these
can be processed principally within their Worst Case Execution Time (WCET), although
this condition might be limited to a certain threshold due to the mix of time- and event-
triggered task characteristics. This implies the software system is a ‘schedulable taskset’
as long as the competing access to shared resources is not considered and the system
is not operating within a high-load scenario. This basically implies that during such a
high system load, neither low prioritized tasks nor low prioritized access is scheduled
for computation. The use of dynamic scheduling (e.g., based on deadlines calculated
during runtime) would improve the efficiency with regard to processing cores and resource
utilization, but decrease predictability. Within the context of ICM systems that employ
various tasks of differing importance, triggered either by time or events and clustered into
components that are developed in parallel by independent organizations, the need for
predictability prevails to foster a deterministic temporal behaviour of the overall system.
This is further supported by the problematic and costly maintenance of vehicular systems
after they have left the production line.

The shared resources addressed here exclude multiply available general purpose PUs.
Those are managed by the OS scheduler. The focus for the arbiter is set on I/O devices,
such as, automotive fieldbus connections like CAN and MOST, serial connections, files
and file systems respectively. It is further presumed that these resources are utilized using
an OS and available hardware drivers.

Based on this environment, the requirements for next-generation ICM systems are en-
hanced. Basically, the system is required to provide a certain degree of determinism
related to resource-access latency to support a predictable temporal behaviour of the
accessing threads and components respectively.

REQ-6 The latency related to the access of a shared resource shall be predictable.

Further, the management of the resource access has to appear transparent for the supplier
of the components. The decision as to which component is granted high-priority resource
access (i.e., to achieve low latency) is delegated to the integrator. Thus, the access and the
management of the access are clearly separated to improve the components’ reusability
and allow the integration of legacy components.
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REQ-7 The resource access shall be manageable without the need for any modifications of
third-party components.

Following the prioritized thread scheduling, an arbiter orders the access requests strictly
according to the accessor’s criticality, expressed by static priorities to improve both pre-
dictability and maintainability.

REQ-8 The access to shared resources shall be temporally ordered using static-defined prior-
ities.

This enumeration defines the most essential architectural driver for the implementation
of a resource arbiter.

5.3 Strategies for accessing shared resources

Similar to the policies implemented by a task scheduler (cf. Section 4.2.1), an arbiter fol-
lows a particular strategy that defines behaviour regarding contention for a certain shared
resource. To detail strategies, at first related characteristics for a particular resource ac-
cess are to be defined.

The resources are considered to be stateless. The access to a (shared) resource requires
a certain amount of time for completion and is modelled following a division into three
distinct subsequent phases. These are employed as ‘request’, ‘in-use’ and ‘clearance’ (cf.
Figure 5.3). The phase ‘request’ is related to the management and basically refers to
the introduced overhead due to arbitration. It differs related to the particular access
prioritization (if available) and applied arbitration policy. The phase ‘in-use’ refers to the
timespan where the accessor performs the particular operations on the resource, while
‘clearance’ covers efforts regarding the return of a success value and data. An access is
granted for - at the most - one accessor at a time, which implies necessary blocking for
any other succeeding access until the one being currently processed is ‘in-use’. Hence,
the ‘in-use’ phase represents a critical section. Furthermore, an access at phase ‘in-use’
cannot be pre-empted. This means the completion of phase ‘request’ is delayed at least
until the current accessors finish ‘in-use’, and at most until no other accessor is ‘in-use’.
The contention is handled within the ‘request’ phase. If more than one accessor is in phase
‘request’, it depends on the applied policy as to which accessor actually enters ‘in-use’.

request in-use clearance

time

……

Figure 5.3: Modelled phases of resource access
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A strategy that provides good predictability and hence offline computable schedulabil-
ity analysis for time-triggered or sequential resource access is synchronous Time Division
Multiple Access (TDMA) (Schranzhofer et al., 2010). A resource is repeatedly assigned
to an accessor for a predefined time slot with monotonic frequency. Hence, TDMA is
a static arbitration policy, as its parameters ‘time slot length’ and ‘time slot frequency’
are usually defined before runtime and do not change. This requires a minimum TDMA
time-slot of the maximum ‘in-use’ phase for a particular resource, as the resource access
is considered to be not pre-emptible. A TDMA policy provides deterministic (contention
caused) interference in accordance to a linear complexity. Also, the delay within phase
‘request’ scales linear with the number of accessors and time-slots respectively. In con-
trast, it potentially degrades overall performance, as time-slots are assigned to accessors
that actually have not requested an access (for the current slot). Although such be-
haviour might be optimized by asymmetric assignment of time-slots to accessors which
might incorporate the criticality of accessors, it is still challenging to forecast when and
in which order the resource is accessed. This applies even more for multi-sourced software
components and (user-)event-triggered resource access. Therefore TDMA is not an ap-
propriate solution to improve composability for the domain of ICM, although it might be
applicable for software components that have to fulfil (hard) real-time requirements while
sharing resources. Schranzhofer (2011) provides in-detail assessment on TDMA within
the context of resource arbitration for time-triggered and sequential tasks.

An alternative strategy is First Come First Serve (FCFS), also referred to as First In First
Out (FIFO). Accessors are queued and processed subsequently according to their temporal
order of ‘requests’. This dynamic strategy adapts during runtime to occurring ‘requests’
and is performance-efficient, as no ‘time slot’ is reserved for ‘potential’ accessors. However,
as FCFS does not incorporate any priorities to reflect the accessors mixed criticality, the
latency also due to the still-necessary blocking within phase ‘request’ is not predictable as
it depends on the current number and ‘in-use’-duration of earlier queued accessors. The
latter is related to the availability of a priori knowledge regarding point in time, order
of access and potential differing duration of ‘in-use’ phases. As this cannot be assumed,
FCFS does not provide adequate features for implementing an arbiter for multi-sourced
event-triggered systems of mixed criticality.

Another dynamic strategy is Round Robin (RR) with fixed priorities. Comparable to the
RR scheduling policy for OS tasks, ‘requests’ are queued according to their occurrence
and priority level. The priority level is assigned statically before runtime, while the order
of processing for a single priority level follows an FCFS strategy. The queued ‘requests’
of lower priority are not processed as long as higher-prioritised accessors are waiting for
‘completion’. Considering the above detailed characteristics regarding resource access, an
accessor ‘in-use’ cannot be pre-empted by another requesting accessor. This also applies to
scenarios where a low-prioritised accessor actually is in phase ‘in-use’ while a high-priority
accessor enters ‘request’. The low-prioritised must at least enter phase ‘completion’ before
the high-prioritised is granted access to the shared resource. However, the subsequent
processing of resource access is ordered according to predefined priorities while fostering

107



5. ARBITRATE RESOURCE UTILISATION

performance efficiency to ensure that no ‘time slots’ are wasted. Although the complexity
of the strategy is higher than a static policy, RR arbitration can improve predictability due
to static priorities even for unpredictable points in time, order and duration of resource
access. This qualifies RR arbitration for the use within the context of mixed-critical and
multi-sourced ICM systems.

A strategy that mixes static and dynamic components to form an adaptive policy is derived
from the FlexRay protocol. It relies on both a static and optional dynamic segment.
Monotonically repeated slots following the strategy of TDMA are on demand succeeded
by a fixed number of slots that follow an FCFS policy (so called ‘mini-slots’) (Hagiescu et
al., 2007; Lukasiewycz et al., 2009; R. Schneider et al., 2011). Hence, both deterministic
and dynamic requirements are addressed. However, FlexRay is intentionally targeted
for fieldbus communication where slots are represented by segments within a fixed-size
message to achieve real-time behaviour in data transport. Adapted to arbitration, the
TDMA segment is utilised for accessors that require real-time access, while a certain
amount of TMDA slots is used to make use of a different strategy. The inherent complexity
related to the real-time accessors is low, which does not apply to the FCFS slots. Such a
strategy might be promising for a shared resource with many competitors. However, the
overall complexity reduces the predictability, at least for those accessors that rely on the
use of FCFS slots. This is emphasised for accessors that employ both TDMA of the first
segment and FCFS of the second segment. That affects reproducibility, analysability and
maintainability of the configuration, which has to reflect the predefined mixed criticality
within the resource arbitration. That leads to further challenges regarding multi-sourced
ICM systems, also with perspective on dynamic functionality.

Other dynamic strategies like EDF or Least Completion Time (LCT) consider the max-
imum allowed response time or respectively the estimated ‘in-use’ timespan to order the
resource access (Jaouani et al., 2012). Although these may provide adequate results in
particular for multimedia scheduling (i.e., soft RT), these strategies do not reflect a mixed
criticality of concurrent accessors. This means they may appropriate for accessors of com-
mon criticality that have to fulfil dynamic temporal requirements. Due to their dynamic
prioritisation, their behaviour is difficult to reproduce and hard to analyse. Accessors
from different software components may define deadlines and ‘in-use’ independently of
their respective criticality. As long as a feasible schedule exists, EDF is able to find
it (Buttazzo, 2011, p59). But for multi-sourced ICM, there is not a guarantee that a
feasible schedule during high-load situations exists. For such, the respective deadlines
are second-order, whereas a static configuration reflecting the components’ criticality is
top-tier. Comparable to the deadline for EDF, this also applies to LCT and the then
secondary completion time (i.e., duration of ‘in-use’ phase).

To summarise, arbitration strategies can be classified ‘static’, ‘dynamic’ and ‘adaptive’,
whereas the latter combines static and dynamic components (Schranzhofer, 2011). Static
arbitration policies are generally related to linear complexity, good repeatability and hence
good analysability for schedulability. This makes the behaviour predictable and allows
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for offline analysis of WRCT regarding the access to shared resources. However, these
are mainly applicable for time-triggered or sequential task models without requirements
for responsive processing of event-based trigger. Whereas static arbitration is related to
time-triggered or sequential resource access, dynamic arbitration covers event-triggered
access. Dynamic arbitration strategies increase complexity and reduce predictability, also
affected due to decreased repeatability. Hence such dynamic approaches imply more chal-
lenging analysability. Although such policy may improve performance, it also decreases
isolation due to increased potential interference related to mutual blocking, causing in-
creased contention during accessors’ ‘request’ phases. Dynamic arbitration can be further
subdivided into dynamic priority scheduling (DPS) and fixed priority scheduling (FPS)
(Jaouani et al., 2012). While DPS depends on deadlines and estimated ‘in-use’ phases
calculated during runtime, FPS utilises fixed configured priorities to reflect the accessors’
mixed criticality. Although the latter requires (manual) configuration, it enables the in-
tegrator to directly affect the respective strategies during runtime to realise a predefined
access order.

For this research project, dynamic arbitration with FPS represents a promising approach
for addressing performance efficiency and providing adequate means for configuration or
accessors related to the integration of mixed-critical and multi-sourced software compo-
nents. Based on the constraint regarding non-pre-emptive resource access, a short ‘in-use’
phase has to be considered.

5.4 SHARB: a prototype architecture and

implementation

The specified requirements were effected and validated for applicability by use of a pro-
totypical implementation, the Shared Resource Arbiter (SHARB).

It provides a solution for managing resource access by abstracting the access. All accessing
instances have to utilise this managing resource and must comply with its respective in-
terface. This is a common approach within domain-specific software frameworks that offer
abstract services to a higher-level application layer. It does not presuppose a modifica-
tion or even reimplementation of legacy or third-party components to fulfil the respective
interfaces of the resource abstraction.

SHARB both utilise OpenICM as software infrastructure. SHARB not only makes use of
the existing facilities of OpenICM, but it is also a suitable enhancement to OpenICM to
provide the necessary abstraction for a predefined temporal behaviour of the concurrent
access to shared resources.

5.4.1 Architecture constraints and design decisions

With consideration of REQ-6, SHARB avoids the use of dynamic memory and employs ef-
ficient communication facilities for internal synchronization and data transfer. Therefore,
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the abstractions provided by OpenICM are utilized for shared memory, message queues
and the parallel execution of tasks.

The interface to the application layer on top of SHARB as well as the interface to the
operating system below conforms to the POSIX API to achieve portability. With the
use of the library interposition mechanism as presented by Nakhimovsky (2001), the
arbitration layer introduced with SHARB is hidden to software components that access
managed shared resources. Applying this mechanism, also referred to as interposing,
introduces an intermediate layer that provides capabilities to modify, prevent or substitute
the functionality of referenced libraries. This appears transparent to both the caller (the
application) and the callee (library), only based upon the configuration of the loader and
runtime linker. The loader overloads resource-access relevant symbols during runtime for
the dynamic binding with the use of symbols provided by the interposing resource arbiter.
This means SHARB forms an additional layer on top of the operating systems and system
libraries to intercept certain calls, reinterpret them and redirect them to available system
libraries where appropriate. This obviates any functional changes regarding the access to
resources from the application layer. Hence, through the use of SHARB, no modifications
to the already-existing software are necessary. This implies there is no recompilation of
supplied binary software required, with respect to REQ-7. Further, no change within the
layer of the operating system is necessary because SHARB operates in user space. In
combination with its conformance to POSIX, this eases a port to other system platforms.

Through OpenICM as an infrastructural software framework for the application layer, the
creation of threads is abstracted and unified. This includes the association of contextual
data of a particular software component with the thread by use of the POSIX API.
Thereby SHARB is able to identify the context of a particular software component by
the implicit identifier of an accessing thread. In combination with the identifier of the
accessed resource, SHARB determines the priority of a certain access based on statically-
defined priorities as part of the configuration associated with the software components’
contextual data.

5.4.2 Architecture and functional principle

In the following section the internal functional principles of SHARB are illustrated to de-
scribe the arbitration of concurrent access to shared resources. The essential architectural
components are depicted in Figure 5.4. Applicational software components are allotted to
the herein proposed EDs. For the prioritization of resource accesses, the Device Manager
(DM) delegates all relevant calls from EDs and affiliated threads to a Service Driver (SD).
Relevant calls include primitives like open, read, write and close, as well as those used
for the control and initialization of resources as defined within the POSIX API. For each
association between an ED and a resource, a dedicated SD is created which is executed as
a thread within the context (i.e., process frame) of the associated ED. An SD is connected
to a Device Instance (DI) to actually perform the access to the resource abstraction pro-
vided by the OS. The details of the access to a certain resource are encapsulated within its
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associated DI which is executed as a thread in an independent context. This corresponds
to the ‘in-use’ phase introduced in Section 5.3.
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Figure 5.4: Architectural layers of SHARB

Within this context, a thread-pool manages standby worker threads which receive prior-
itized jobs (DI-job) triggered by events. A DI-job represents a read or a write access to
a certain resource. With the use of the thread-pool, additional costs for thread creation
can be avoided during runtime. The communication between DM, SD and DI relies on
shared memory, POSIX message queues and binary semaphores. The prioritization is re-
alized using static thread priorities given to the DI-jobs and the SDs, whereas all DI-jobs
and SDs associated to a common DI are bound to a common PU. This PU affinity sup-
ports both a deterministic order of resource access and an efficient communication within
SHARB through the use of a common cache memory hierarchy. The foundation for the
prioritization of DI-jobs and SDs is the utilization of the OS’s CPU scheduler by use of
an RR scheduling strategy with fixed priorities. Additionally, the messages between the
components are marked with priorities that are considered during their handling. The use
of RR scheduling does not imply the accessor must also be configured for RR scheduling.
Nevertheless, this may require the segregation of SHARB using a separate scheduling
domain depending on the compatibility of scheduling policies and defined priorities, as
detailed in Section 4.4.
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Figure 5.5: Main activities to process a call to open()

111



5. ARBITRATE RESOURCE UTILISATION

call READED
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Figure 5.6: Main activities to process a call to read()

Figure 5.5 and Figure 5.6 provide an alternative view of the prototype’s design. They
depict the activities for two exemplary scenarios for a call to open( ) and read(). These
are partitioned into the elements of the arbiter to denominate the execution contexts of
the respective activities.

For an open( ), the effective access priorities are determined, depending on the calling ED
and the requested resource, and a logical handle is created which is used as the identifier
for the association between ED and the resource (Figure 5.5 (activities 2-3)). After
creating a new thread for the SD, communication channels are established for internal
message events, followed by the call of the open routine using the device driver API from
the DI (Figure 5.5 (activities 4-5)). The DM is blocked until the result of the ‘real open( )’
is signalled. Subsequent calls to open( ) for the same resource will not affect the device
driver as long as there is at least one active SD.

For a read( ), the DM delegates the call to the related SD by use of the logical handle which
was created during the open() (Figure 5.6 (activity 2)). The SD is already aware of the
access priority which is used to prioritize an available worker instance of the thread-pool
within the DI (Figure 5.6 (activities 3- 4)). The DI copies any read data to an internal
shared memory buffer (SHM-buf), which is copied into the destination buffer (DEST-buf)
by the DM on the signal from the respective SD (Figure 5.6 (activities 5-7)).

ED1

RA

ED2 ED3 EDn
...

RB Rm...

Figure 5.7: Resource access without arbitration

In Figure 5.7, three exemplary EDs are depicted which access two resources. It illustrates
the co-operation of multiple accessors competing for shared resources (R). For this scenario
the following assumptions are made:

• ED1 utilizes RA

• ED2 utilizes both RA and RB
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• ED3 utilizes RB

This means RA and RB are shared resources. The order of access is not defined for EDs
executed in parallel, each on a different PU.

SHARB introduces a new abstraction layer as depicted in Figure 5.8. For each shared
R, a separate DI is created during initialization. Further, for each association between
ED and R, a separate SD is created during runtime. Also, for each DI n connections
are handled during runtime. This implies a management overhead by means of an extra
thread for each SD, for each DI and for each DI-job that is held in readiness by use of the
thread-pool.

                                                              DM
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Figure 5.8: Resource access with arbitration

Derived from the example introduced in Figure 5.8, the effective threads for the access of
ED1 and ED2 are depicted in Figure 5.9 with their SHARB Priority Levels (SPL). The
SPLs are a concept to order the access-priority in dependency of the relation between a
certain ED and R. The OS’s task scheduler implements this concept. SPL-0 supersedes
all other SPLs and is reserved for the management of the effective resource access effected
by DIs. The subsequent SPLs correspond to the respective access priority derived from
the relation between ED and R. A single SPL represents a task queue. The task queues
related to a single resource must be bound to a single processing core.

Figure 5.9 illustrates both the assignment of threads to SPLs and the partitioning into
distinct scheduling domains using PU1 and PU2. Therefore, the behaviour based upon
the initial example shown in Figure 5.7 is refined by assuming the following:

• ED1 has higher access priority than ED2 for RA

• ED3 has higher access priority than ED2 for RB

For the OS’s task scheduler, the threads of the arbiter are stringed on different priority
scheduling queues as depicted in Figure 5.10. The DI-jobs represent effective access calls
to the corresponding resource (i.e., ED1 is accessing RA two times; ED2 is accessing RA

three times; both are assigned to PU1). The OS’s priority levels utilized for the SPLs
may supersede the priorities assigned to EDs which are collocated on the same processing
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Figure 5.9: Prioritization of resource access using SPLs and PU affinity

core. Although this is not a prerequisite, it prevents unwanted temporal interference
between SHARB and the applications. Alternatively, dedicated PUs might be reserved
for SHARB, as for example general-purpose cores with a reduced clock rate or features
within a heterogeneous MC hardware architecture (a.k.a. ‘big-little’ architecture).
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Figure 5.10: Prioritized scheduling queues per PU

5.4.3 Impact

With the described approach, the access to resources can be prioritized to achieve a more
predictable temporal behaviour. A prerequisite is the definition of a static configuration
which provides the capability to specify priorities for resources (and groups of them) in
need of the accessing software components. An access priority is not specified for an ED
or a resource, but for a combination of both of them. Hence, an ED could make use of
different priorities for different resources. This offers the required degree of freedom to the
integrator which is necessary to achieve predefined temporal system behaviour without
the need to modify the implementations of the accessing software components.

Further, it is possible to arbitrate the access to a selected set of resources. This implies
that additional costs for the management only occur when necessary. With this selective
deployment of SHARB, the overhead introduced through the additional indirection is kept
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to a minimum, with the focus being on the overall system. It is also possible to combine
SHARB with the implementation of another resource arbiter through selective resource
configuration.

Additionally, the attributes and strategies used to access a specific resource can also be
optimized using the decoupling of software components and the resources. This means,
for example, the use of a new hardware with legacy software is feasible without the need
to change the software. Apart from the demultiplexing of accesses, SHARB can enforce
an optimal configuration for the abstracted resources or hardware devices (e.g., rate of
transmission, byte order, synchronization methods) through the intercepting of control
calls. This might provide further freedom during the integration process.

Moreover, the described abstraction provides the capability for achieving different access
strategies with regard to the resource or the accessing software component. This applies
to read access in particular. The following enumeration lists a selection of such strategies
for stream-oriented resources:

• A call of read( ) starts at the position after a previous read() of an access of the
same component.

• A call of read( ) starts at the position after a previous read() of an access of any
component.

• A call of read( ) returns the most recent data, independent of any previous access.

Furthermore, the abstraction allows for the implementation of filters which may manip-
ulate, discard or add transmitted data that is transparent for the application layer. In
addition, the latter could be used to substitute, simulate or emulate unavailable resources
in the early development stages and therefore to reduce risks during system integration.

5.5 Applicability of SHARB

The ICM system’s interdependent software components require efficient communication
facilities, provided by the use of shared memory regions and adequate mechanisms for
synchronization like semaphores, mutual exclusions and condition variables. Such an
abstraction may include a usable and domain-specific interface for concurrent and parallel
processing, as for example by providing capabilities to define EDs and their priorities to
enforce temporal requirements. Regarding the access of shared resources, a framework
should also enable an integrator to define the temporal order of accessing these to improve
the predictability of the system’s behaviour. In relation to ICM systems, the targeted
system has to provide the functionality in a coherent and uniform way in agreement with
the vehicle’s user interface design. This supports achieving the goal of providing the
perception of an ensemble in one piece. This also includes the predefined behaviour of
the system.

With integration into the OpenICM framework, SHARB becomes usable for a system
integrator. The exploitation of the underlying OS’s RR task scheduling provides mature
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means for access arbitration. This includes the applicability of available technology and
tools for tracing and debugging.

In the following, the evaluation of the proposed approach based on the described proto-
typical implementation is discussed.

5.5.1 Test setup

The test system is an x86 MC hardware platform based on two Intel Xeon E5504 pro-
cessors with four cores each. Even though equivalent performance is not available for
current ICM systems, the test environment’s characteristics can be compared with next-
generation head-units. The operating systems used are GNU/Linux 3.6, GNU/Linux 3.6
patched with PREEMPT RT real-time extension (in the following referred to as PRE-
EMPT RT), and QNX Neutrino 6.5. The shared resource is a dedicated kernel module
which implements a character-oriented device driver (char dev) that returns a given num-
ber of bytes into a target buffer on a POSIX read request. To simulate latency within
a real resource driver and respectively a real device, the module responds to read access
with a fixed latency of 50 ms independent of the number of requested bytes or repeti-
tions. Although a real driver or device might not answer using a fixed latency, this testing
environment prevents additional variance during the time measurements. This leads to
reproducible results. The scope of the evaluation is reduced to the testing of the proto-
type (and not any driver or device implementations). Further, the module behaves as a
blocking device, which implies only one accessor can read at a time.

5.5.2 Prioritization

To evaluate the correctness of the approach, the time to read a predefined number of
bytes is measured. Therefore, two components (ED1 and ED2) are bound to different
processor cores. These components are implemented to read from the described device
driver (RA) concurrently and start simultaneously. The dependencies are illustrated in
Figure 5.11. The coordination of the simultaneous start is implemented through the
use of a semaphore, triggered for both ED1 and ED2. For ED1 a high- and for ED2 a
low-resource access-priority is configured. Due to the implementation using the library
interpositioning mechanism, the arbiter can be activated without much effort by adapting
the search path of the dynamic linker. The measurement is performed as a loop to collect
values from 10,000 runs to achieve adequate statistical stability.

ED1

RA

ED2

Figure 5.11: Test setup for evaluation of prioritization
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Symbol Parameter Description

ai Arrival time time at which a task becomes ready

si Start time time at which a task starts its execution

fi Finishing time time at which a task finishes its execution

pi Preemption time time at which a task is interrupted due to the arrival
of a higher priority task

ri Resume time time at which a task continues its execution after
preemption

Ci Computation time time needed to compute a task without interruption

Di Delay time introduced through pre-emption (Di = ri - pi)

Ei Execution time time needed to compute a task including delays (Ei

= Ci + Di)

Li Latency time until a ready task starts computation (Li = si

- ai)

i corresponds to the related task, e.g. SD or DI-job.

Table 5.1: Definitions of points in time and timespans for scheduling tasks

Scenario Computing Arriving Condition Impact

1 SD1.A SD2.A fSD1.A >aSD2.A L

2 SD1.A DI-job2.A fSD1.A >aDI-job2.A L

3 SD2.A SD1.A fSD2.A >aSD1.A D

4 SD2.A DI-job1.A fSD2.A >aDI-job1.A D

5 DI-job1.A DI-job2.A fDI-job1.A >aDI-job2.A L

6 DI-job1.A SD2.A fDI-job1.A >aSD2.A L

7 DI-job2.A DI-job1.A fDI-job2.A >aDI-job1.A L

8 DI-job2.A SD1.A fDI-job2.A >aSD-1.A L

Impact is either delay (D) or latency (L), whereas D is related to the

task’s computation and L is related to the task’s arrival.

Table 5.2: Permutations of task arrivals for a single scheduling domain

The results of the measurements show that the high-prioritized ED1 successfully com-
pletes read before the low-prioritized ED2 gets access for every test run when SHARB
is activated. With the arbiter deactivated, the number of test runs where ED1 finishes
before ED2 compared with where ED2 finishes before ED1 is uniformly distributed.

In addition to the previously-described empirical methods to prove predictable access
prioritization, a theoretical consideration of SHARB is provided in the following:

Therefore, a set of parameters to define points in time and periods of time are provided in
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Table 5.1. Furthermore, Table 5.2 lists eight permutations of task arrivals related to the
concurrent access of different EDs using different priorities within a common scheduling
domain. Hence, they cause pre-emption of, or introduce latency to tasks. The table
also specifies the conditions of the concurring tasks, using the symbols of Table 5.1 to
support the clear distinction between computing and the arriving task. Corresponding
to Figure 2.6, tasks related to ED1 are of higher access priority than tasks related to
ED2. This means SD1.A and DI-job1.A are configured for a high SPL, whereas SD2.A and
DI-job2.A are configured for a low SPL, respectively. A more trivial scenario with only
one accessing ED is not considered here because in such a case access prioritization has
no affect on the tasks’ computation order.

In order to show the correctness of SHARB, three exemplary scenarios selected from
Table 5.2 are detailed in the following section. They show either the delay in an already
computing task’s execution time or a delay in the start of the computation (latency).
For reasons of clarity and comprehensibility, any additional latency caused through the
tasks’ context switches was disregarded. Further, the illustration is reduced to the two
fundamental types of tasks derived from the architectural elements of SHARB. These differ
in their behaviour regarding pre-emption: the SDs are pre-emptible whereas the DI-jobs
are non-pre-emptible. The latter is caused through the DI-jobs main task of accessing
the actual resource, which implies the current access must be finished before switching to
a subsequent DI-job (although this is highly dependent on the type of the resource and
therefore leaves space for further optimization). Following previous notations, Figure 5.12,
Figure 5.13 and Figure 5.14 visualize tasks separated by their configured SPL. The focus
is on the scheduling order of the subsequent tasks.
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Figure 5.12: Low SPL latency (scenario 6)

LSD2.A
= fDI−job1.A

− aSD2.A
(5.1)

Figure 5.12 depicts the occurrence of a low-priority access during a computing high-
priority access. In particular, scenario 6 of Table 5.2 is addressed here. The low-priority
tasks SD2.A and DI-job2.A are delayed until all high-priority tasks are finished. This implies
an introduced latency for SD2.A which may affect ED2 as expressed by Equation 5.1.

DSD2.A
= fDI−job1.A

− aSD1.A
(5.2)

ESD2.A
= DSD2.A

+ ESD2.A
(5.3)
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Figure 5.13: Low SPL delay (scenario 3)

Figure 5.13 depicts scenario 3. A high priority SD (and subsequent DI-job) pre-empts a
low priority SD. In particular, the task-scheduler of the OS pre-empts SD2.A and starts the
computation of SD1.A immediately after the arrival of SD1.A. SD2.A resumes computation
after SD1.A and the subsequent DI-job1.A finishes computation. This causes a delay which
may affect ED2 as expressed by Equation 5.2.
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Figure 5.14: High SPL delay (scenario 7)

LDI−job1.A
= fDI−job2.A

− aDI−job1.A
(5.4)

Figure 5.14 depicts scenario 7. A high-priority DI-job arrives while a low-priority DI-job
is computing. The DI-job2.A locks resource RA until the current job is finished. DI-job1.A

is delayed until the low-priority DI-job2.A releases RA. The maximum latency for a high-
priority DI-job is the computation time of a single low-priority DI-job. Respectively, this
may affect ED1 as expressed by Equation 5.4.

To summarize, the temporal order of the concurring access to the shared resource is con-
figurable with SHARB. Hence, with its use, the predictability of the behaviour increases
and REQ-3 is met.

5.5.3 Temporal overhead

For the temporal overhead a single ED reads from a single R. The results provided are
based on 90,300 measurements. These were taken natively (without SHARB/not priori-
tized) and arbitrated to visualize the costs in terms of temporal overhead. The amount
of data (1-256 byte) and the number of repetitions (1-30) are iterated during the data
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collection, whereas for each permutation 25 measurements were recorded to achieve reli-
able and evaluable results. In this context, repetitions are related to the number of calls
to read( ) between an open() and close(). This means a single read consists of the call
‘open( ) - read() - close()’, whereas an access with eight repetitions consists of the calls
‘open() - 8*read() - close()’.

Figure 5.15: Overhead in relation to repetitions in percentages

Figure 5.16: Overhead in relation to amount of data in percentages

Figure 5.15 and Figure 5.16 visualize the results as a percentage in relation to non-
arbitrated access for Linux, PREEMPT RT and QNX. The respective overhead results
from the arithmetic mean of the absolute time measurements for an arbitrated access less
the mean of the absolute time measurements for a native access.

Figure 5.15 shows the overhead as the mean of different data sizes in relation to the
repetitions. For a few repetitions, a significant percentage of overhead can be observed.
This is caused by the initial setup phase to establish the internal administration and
communication infrastructure. These temporal costs amortize when accessing the resource
five times or more. Further, this effect can be mitigated by the pre-initialization of SHARB
(the evaluation was performed by initialization on-demand). Nevertheless, the temporal
overhead levels off at about 20% for QNX and Linux.

Figure 5.16 shows the effect of SHARB related to different amounts of data, whereas
for each data size the mean duration based on different repetitions of the read( ) access
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is measured. The overhead with QNX is significantly higher compared to the use with
PREEMPT RT. However, the temporal overhead with QNX is considerable more stable
in variance and therefore more predictable (distribution with QNX is 0.14%, compared
to 1.85% with PREEMPT RT, and 3.14% with Linux).

Figure 5.17: Standard deviation in relation to native access and repetitions

Figure 5.18: Standard deviation in relation to native access and amount of data

Further conclusions about the predictability regarding access latency are founded on the
standard deviation. Figure 5.17 and Figure 5.18 show the standard deviation of the time
necessary to access a resource using SHARB in comparison to native access, which is
also in relation to the repetitions and the amount of data respectively. Nevertheless, the
measurements also show that the latency is scattered only slightly more with activated
SHARB and is independent of size and repetitions. In particular, the standard deviation
built from the arithmetic mean of different sizes for the different number of reads (as
shown in Figure 5.17) illustrates a predictable temporal behaviour that is independent
of the repetitions of a call to read( ). For example, both the distribution of the relative
standard deviation with SHARB on QNX and also the standard deviation itself is smaller
than the measures of SHARB on Linux. However, Linux patched with PREEMPT RT
still performs comparably to the measures achieved with QNX.
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Figure 5.19: Overhead in relation to repetitions

Figure 5.20: Overhead in relation to amount of data

Figure 5.19 and Figure 5.20 provide details regarding the absolute overhead (mean du-
ration arbitrated less mean duration native). They correspond to Figure 5.15 and Fig-
ure 5.16 for the observations regarding the comparison of QNX, PREEMPT RT and Linux:
with QNX SHARB behaves more deterministically, however introduces more overhead.

Although the additional costs may appear high considering the efficiency of the targeted
system, the predictability of the access order prevails with respect to the deterministic
behaviour of the overall system. This is the main objective of SHARB.

5.6 Related research and alternatives for resource

arbitration

The AUTOSAR API gains importance for automotive software systems (cf. Section 2.4.1).
With release 4.0, it also supports MC platforms. The main focus of AUTOSAR is on
mechanisms regarding the communication between applications running on different PUs.
The utilization of shared resources by applications that are deployed on different PUs
is not supported (AUTOSAR, 2014). This limits the degree of freedom regarding the
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structuring of software components and is thus a disadvantage for systems consisting of
many components such as ICM systems.

According to Bini et al. (2011), the ACTORS project addresses embedded software in-
tensive systems in combination with resource utilization and high demands regarding
adaptability and efficiency. This problem domain can also be mapped to ICM systems.
The project proposes virtualization technologies for software isolation to improve pre-
dictability and reliability. The resource management is implemented in user-space and
adapts the resource reservation dynamically during runtime while considering optimal
system occupancy. Although this promises good utilization of the system’s resources, the
resource management does not take into account semantic dependencies in relation to
the desired temporal system behaviour. This could be achieved through the allocation of
static priorities that are defined by an integrator.

Nesbit et al. (2008) predict that the available mechanisms and strategies for managing
the resources of future MC systems will be insufficient. They further describe that a
shared utilization of resources by tasks executed simultaneously could lead to unpre-
dictable individual durations of the respective threads related to the involved tasks. This
may include the violation of requirements and associated QoS. Similar to the ACTORS
project, they propose a spatial separation by use of virtualization and feedback channels
for the adaptive management of resource utilization during runtime. Their main focus is
on the computational resources of the underlying hardware platform.

Waldspurger and Rosenblum (2012) identify the conflation of concurrent access to physi-
cal hardware as a central challenge within the context of I/O virtualization. This includes
prioritization and arbitration. They specify a minimal additional overhead for the indirec-
tion as critical. Although this is unquestioned, one of the most important characteristics
of a resource arbiter for the herein proposed concepts ‘overhead’ is regarded as secondary
in relation to the predictability of fulfilling temporal requirements during high system-load
situations.

Schranzhofer et al. (2010), Schranzhofer et al. (2011), and Schranzhofer (2011) focus on
efficient and predictable resource sharing using MC hardware architectures. Therefore
they motivate the need for arbitration related to the concurrent use of shared resources
by parallel-executed processing elements, detail the derived interference on their shared
usage, and propose approaches for static and hybrid arbitration policies. Within that
context, real-time tasks are allocated on predefined processing elements with emphasis
put on the proposed policies, their effect on temporal behaviour (i.e., Worst Case Response
Time (WCRT)) by application of different models, analysability and schedulability related
to memory access. Interactive event-triggered systems that demand responsiveness are
not considered in particular. However, the proposed TDMA and adaptive policy following
the FlexRay protocol may be valuable for ICM domains with particular necessity for hard
real-time behaviour despite the use of shared resources. Moreover, it might be of interest
to implement and evaluate those policies in user-space using the herein detailed arbitration
infrastructure of SHARB.

123



5. ARBITRATE RESOURCE UTILISATION

5.7 Summary

The integration of different software components into a common platform implies de-
manding challenges. MC hardware platforms can provide support but at the same time
create new challenges due to the additional parallelism. In contrast to the concurrent
multi-tasking (quasi-parallelism), concurrent resource access is not predictable in terms
of temporal order within the context of multiple scheduling domains that support parallel
computation of low and high priority threads. Hence it is necessary to arbitrate the access
to shared I/O resources. Requirements were defined which formed the basis for an arbiter:
SHARB. It introduces a thin architectural layer in between application components and
system libraries for accessing particular resources. SHARB appears transparent to both
the application layer and the libraries underneath, which obviates the need to change
either the applications or libraries. Furthermore, SHARB resides within user-space and
therefore does not require any changes to the OS. A prototypical implementation supports
the verification of the presented approach for arbitration. The applicability and intro-
duced overhead of the prototypical implementation were theoretically and quantitatively
evaluated. For the latter, different target OSs are compared.

Although SHARB is targeted for use in SMP-based ICM systems utilizing a single OS,
the approach is also portable to other usage contexts and architectures with similar re-
quirements. This includes architectures focusing on a more strict isolation of components.
These may also require the management of concurrent access to shared resources based
on their density of integration or grade of parallelism. This refers, for example, to AMP
systems and architectures based upon virtualization using hypervisors. For certain I/O
resources within the context of multimedia, including video and audio, alternative arbi-
tration and compositing technologies are discussed within the following chapter.
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6

Compositing User Interfaces

“Design is not just what it looks like and feels like. Design is how it works.”
(Steve Jobs)

For the vehicle’s occupants, the user interface (UI) is the actual point of contact with
the vehicle. The design of such systems has to cover demands for an appealing front end
to foster a positive UX (cf. Section 2.2.6). Basically, the presentation and use of ‘the
system’ has to address current state-of-art technologies and concepts for user interaction,
even beyond approved in-vehicle usage concepts and UIs. Although in practice, the ‘visual
design’ is usually detached from the implementation as this is the domain of automotive
(graphic) designers, it has to be transferred to the functional level as part of the software
development process. This includes in like manner - independently of any ‘look and feel’
the UI has - the necessity of reflecting the system’s functional purpose with regard to
the safety-critical environment. A central question is how the UI of ICM systems can
efficiently exploit the integrated functionality and the capabilities of current hardware
platforms. That is in particular related to the provided hard- and software infrastructure.

As previously discussed, IVI systems were rather isolated in the past. Their main task was
to provide information and entertain the car’s occupants. Nowadays they have become
an integral part of the in-vehicle system’s network and enable the driver to configure and
control automotive functions. Moreover, ICM systems feature the communication node
between components attached to automotive fieldbus and infrastructure-based wireless
communication networks. The interconnection with other systems within the vehicle as
well as the environment enables new services and functionality, including future ADAS
(Bolle, 2011). Furthermore, interconnectivity allows future ICM systems to update both
data and functionality dynamically during operation regularly or on-demand. With re-
spect to the customary system lifecycle of several years, the UX can be efficiently main-
tained throughout the entire vehicle lifetime. So far, such capabilities have not been
available within the automotive domain. With future systems the user will be able to
adapt the functional extent to personal needs or desires. This creates a new dimension of
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customization, adopted from mature deployment models for dynamic functionality in the
CE domain.

Previously, respective implications regarding the compatibility of different functionality
were addressed, including opportunities for structuring a priori incompatible software
due to parallel hardware architectures. But similar to the necessary arbitration-shared
resources, partitioned software leads to challenges regarding the provisioning of an inte-
gral and homogeneous UI. Components distributed to isolated partitions have to form
a uniform presentation that appears to the user as if the overall system is made of one
piece (i.e., non-partitioned). In particular, as each of the components provides only a por-
tion of the graphical user interface (GUI), the independent artefacts need to be blended
to provide the car’s occupants a consistent and uniform look and usage concept. The
compositing of UI artefacts is related to both the components’ compatibility and interop-
erability. A solution for current systems is to implement the whole UI within a distinct
component that relies on distinct ‘functional’ components. However, such an approach
inhibits the modification and extension of those ‘functional’ components without adap-
tation of the UI component. Hence such architecture must be thoroughly reconsidered
due to the parallel and independent development, decoupled update policies and inter-
vals, and demands to integrate after-market functionality (i.e., ‘apps’) on user demand.
A system-global UI component that implements the entire visualization and user event
handling (the ‘frontend’) to abstract the systems logic (the ‘backend’) is no longer pos-
sible. A UI for next-generation ICM systems has to provide capabilities for removing,
replacing or adding UI components. However, a central UI instance (or UI subsystem)
may implement the UI logic that reflects the required usage concept.

In summary, a centralised UI approach is not applicable for dynamic functionality that
evolves over the complete product life cycle of the vehicle. This chapter presents an alter-
native that supports both a change of presented functionality and provided capabilities
to enable the realisation of adequate UX to address the demands of next-generation ICM.

6.1 Requirements for an in-car user interface

The segregated computation mitigates risks regarding negative interferences between dif-
ferent applications and error propagation due to an infrastructure-based encapsulation.
Still, the software system shares a common hardware platform, including shared resources.
The allocation and arbitration of such shared resources potentially cause temporal inter-
ference as well. For resources that allow only an exclusive usage at any given time, a
priority-based arbiter may lead to more predictable system behaviour as discussed in the
previous chapter. Time slicing is not appropriate for shared resources that at the same
time facilitate multiple accessing applications. This applies especially to data sinks that
allow the blending of data streams, such as video and audio. However, these types of
data are significant for building an appealing UI. Hence, these have to be considered for
establishing a comprehensive infrastructure relying on the segregation of functionality
while improving the UX.
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Based on the independent development of the software components, their respective por-
tions of the UI are built independently from the core functionalities. Nevertheless, they
have to comply with design specifications and guidelines predefined by the OEM to im-
plement a homogeneous ‘look and feel’ and usage concept to facilitate consistent user
interaction. With a rising number of applications and after-market ‘apps’, a comprehen-
sive UI component covering all visual presentation and user event handling is no longer
feasible. Each application has to provide its own UI to be integrated with – or blended
into – the existing ones. This creates a demand for a graphics compositing instance as a
segregated component that can cope with multiple graphics sources and the related user
interaction (the ‘back channel’) for user presentation and event handling respectively.
Such an instance may act as manager and define what to visualize, where, and in which
presentation mode, whereas the graphics sources are segregated software components.

REQ-9 A UI compositor shall provide the capability to blend independent portions of the UI.

A conceptual architecture for such an instance is detailed in the following. The goal
is to pave an integration path for independently-developed components while enforcing
individual run-time polices.

6.1.1 Architectural drivers for compositing

The following constraints lay the foundation for the architecture of a compositing instance
for ICM.

The system’s functionality is partitioned into segregated partitions to ensure local run-
time policies. These include predefined temporal behaviour derived from given priority
policies and priority levels. The intention is to prevent effectively negative interference
between different functionalities – or applications – deployed to different partitions. The
partitions may be implemented using PU affinity-based EDs, or multi-OS environments
using virtualization technologies or AMP. This implies that different partitions do not
necessarily share a common OS (or kernel space), meaning that the options for inter-
process communication (IPC) are limited. However, efficient communication is necessary
to utilise and benefit from the common hardware infrastructure and achieve the necessary
QoS related to UI responsiveness.

With respect to the varying safety relevance of different applications, the interoperability
between partitions has to meet certain security-related requirements. It has to be ensured
that a dynamically installed or updated application cannot cause an error within a safety-
relevant partition (e.g., containing the instrument cluster) or the compositing partition.

REQ-10 The UI compositing shall support the distribution of UI components onto multiple
OS instances.
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Generally, the UI provides multiple input and output facilities to enable a multi-modal
interaction with various software components in parallel use. Many of these provide a
graphical front end using the car’s multi-display environment. Nowadays, appealing UIs
usually rely on three dimensional (3D) graphic effects. This may also relate to facilitat-
ing a positive UX. Therefore hardware accelerators relieve the general purpose PUs from
graphics computation. The individual components concurrently utilise such graphical
processing units (GPU). By partitioning the system into several partitions that indepen-
dently render graphics, a single GPU has to be shared between multiple OSs. Alterna-
tively, only one partition benefits from the GPU, while the others have to render their
graphics without acceleration. Both options are unsatisfactory. The lack of the availabil-
ity of multi-GPU platforms implies a bottleneck with potential adverse temporal effects
for parallel computed components that rely on graphical output. For efficient composit-
ing, the architecture may employ several GPUs as accelerators for different partitions and
OS instances respectively.

REQ-11 A GPU shall be assignable exclusively to a dedicated OS partition.

In summary, the integrated modular architecture applied to highly interactive ICM sys-
tems requires partitioning. This is caused through the functionalities’ different safety
relevance and hence the need for preventing adverse interference. Demands for uniform
and compelling UIs create requirements for efficient graphic processing. Using dedicated
CPU cores for segregated computation is no solution as long as more than one partition
relies on graphic acceleration. Thus, the utilization of multiple GPUs to consistently
maintain the segregated architecture for graphics processing as well is proposed. This
implies decreasing computational load for the CPUs related to graphics processing and
hence more effective utilization of hardware capabilities. Consequently, negative inter-
partition interference is mitigated and additional graphics acceleration for future highly
interactive ICM UIs is made available.

6.1.2 Architectural drivers for communication

The isolated computation of different software components presents challenges regarding
the inter-partition communication. The latter must support interoperability while pre-
serving the components isolation using PU affinity-based EDs or multi-OS variants. In
particular, the conveyed data may follow a protocol that obviates interpretation at the
receiver to enforce containment for the different components to improve composability
and with respect to reliability (cf. Section 2.3.5). In practice this means the rendering of
graphics data is preferably performed at the UI-component provider, and the data trans-
mitted can be directly passed on to graphics hardware without any further processing of
any graphic directives at the receiver (i.e., the compositor).

REQ-12 A UI component shall provide pixel frames that obviate further interpretation at the
receiving compositor.
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The communication’s performance efficiency has direct impact on the UI’s responsiveness
and respectively to the system’s reactivity. This is related to the limited communication
and synchronisation facilities due to software component isolation for multi-OS environ-
ments compared to integration onto a single OS, while considering a predefined QoS.
Especially for pre-rendered graphics data, the necessary throughput and bandwidth is of
importance, as it directly depends on the number of UI-component providers and partic-
ular frame size or graphics resolution.

REQ-13 The compositing architecture shall provide performance efficient communication
channels.

Besides visualisation, a GUI has to provide means for interaction. Therefore, additional
to the transport of graphics data, the compositing architecture has to provide means to
route user events to the corresponding UI component provider.

REQ-14 User-event shall be communicated from the compositor to the designated UI com-
ponent.

The above detailed requirements are seen as the foundation for an ICM-compositing
architecture that copes with the introduced barriers for temporal isolation of software
components.

6.2 Related architectures and research

AUTOSAR fosters an independent development using well-defined interfaces to enable in-
tegration onto shared hardware platforms. Therefore, abstraction layers help to decouple
software from hardware specifics that make it appear as underlying platform to software
components. Although the target is very similar to the previously-described segregation,
it does not detail compositing of graphics to a shared rendering device. Nevertheless, the
concept discussed in the following might be transferred to an AUTOSAR-conform ICM
system using the provided API of AUTOSAR. However, as intercommunication with AU-
TOSAR SWCs is restricted to defined ports and does not provide capabilities such as
performance- efficient communication via shared memory, this limits the intercommuni-
cational abilities for a composting architecture with certain requirements on bandwidth.

Similar to AUTOSAR, open vehicular software platforms are intended to create abstrac-
tion layers that provide access to hardware resources and offer domain-specific software
services. They aim for reduction of application complexity while fostering parallel execu-
tion and reuse of software components. However, ‘open’ implies the platform specification
is freely available, which enables everyone to develop platform-compatible software com-
ponents. Prominent open automotive platforms for ICM are AutoLinQ™, GENIVI and
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Ford SYNC® (Holle et al., 2011). A side effect of the open platform trend is the intro-
duction of Linux-based OSs into the vehicle, which is also applied for evaluation of the
herein-proposed compositing architecture. Despite the fact that no specific platform is
addressed by the latter, it may constitute a beneficial enhancement to them to enable
independent UIs. However, GENIVI’s ‘IVI Layer Management’ project addresses com-
positing and separation of HMI and layer management, but does not yet cover efficient
inter-OS UI provisioning for multi-OS environments (GENIVI, 2014).

QNX Software Systems propose their QNX CAR HTML5-based HMI framework to ease
integration of applications from CE space using web technologies (Gryc and Lapierre,
2012). A compositing of different UI components might be realized by use of different
in-vehicle provisioned web services, each offering a particular functionality. A ‘browser’
acts as a central compositor. This positively affects the development process through the
use of web technologies and may ease the transfer of a predefined design to a working
UI. Different service providers could be segregated into dedicated partitions with the
freedom to utilize different OSs. However, the major part of the UI’s content has to be
rendered within the partition of the ‘browser’. Hence, there is more computational power
required for the compositor which therefore may become the bottleneck. Furthermore,
a certain service provider may interfere with a more critical one due to the need for
interpretation and computation of the content to visualize, which undermines the concept
of partitioning. Therefore it does not provide an adequate solution, although within
layered system architectures, HTML5 might be applicable as long as the rendering is
performed within a segregated partition.

Eichhorn et al. (2010) do also propose an automotive HMI architecture that relies on
web technologies. They structure the UI functionality into distinct services, managed by
a database-driven ‘service manager’. A ‘composer’ creates and pre-processes graphical
primitives to adjust the component’s content to the display features. These graphical
primitives are forwarded to and displayed by a lightweight ‘renderer’. The complexity for
processing the graphical content is concentrated to the ‘composer’, which may become the
bottleneck for the architecture, similar to the drawbacks of QNX CAR HMI framework.

Various graphics already exist compositing window managers for different OSs and provid-
ing different features. The latter address, for example, improved accessibility, simplified
use and so-called ‘eye candy’ to enhance UX. One of the more recent developments is
Wayland (Høgsberg, 2012), which focuses on a lightweight and efficient internal commu-
nication and, therefore, is also applicable to resource-constrained embedded systems. It
is also incorporated into the ‘IVI Layer Management’ of GENIVI. Unfortunately, Way-
land does not natively facilitate an efficient inter-partition communication. Nevertheless,
it is used for the evaluation of the herein proposed concept. Therefore, fundamental
communication components were substituted or enhanced.

Hudelmaier (2014) identifies demands for an integrated HMI within the context for profes-
sional drivers to combine instrument cluster with infotainment, fleet management, driver
assistance, and UIs for special car bodies and equipment. The proposed approach relies
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on hardware bus technologies (e.g., LVDS) to interconnect the different UI-component
provider. Although this might be advantageous for the graphics data transport with
regard to preserved isolation and high bandwidths, it limits the system’s flexibility re-
lated to the functional evolution during the vehicle’s lifetime. Decisions concerning what
to display at the level on single ‘apps’ can only be made on the granularity of a whole
system partition. This also affects composability, in particular regarding maintenance
throughout the system’s life cycle.

Holstein et al. (2015) also address the challenges in compositing heterogeneous UIs for
automotive use. They define a layer model to distinguish between different levels for
compositing: hardware (1), OS (2), application (3) and UI (4). Depending on the layer,
different methods of integration and different needs of knowledge for the composited
parts are required. They further explain that specifications within lower layers create
constraints for the higher ones, while the latter depend on the lower ones. This herein
presented research covers multiple layers of this model, in particular (2) with multi-OS
approaches, (3) with inter-OS communication frameworks and ED based on PU-affinity
and partly (4) by blending the heterogeneous UI parts while considering the constraints
of the underlying layers. Nonetheless, although at layer (4) UI-design guidelines and
integral-usage concepts are to be considered to achieve a homogeneous UX, this research
focuses on the technical infrastructure to composite graphical content and communicate
user events to the respective addressee despite containment of the providing UI-apps.
This implies that the herein-detailed research project is rather founded on a technical
base to support the implementation of compositing on the UI layer while achieving a
homogeneous usage concept and frontend design, which is an active field of research.

6.3 An architecture and prototype for compositing

segregated UIs

The design is derived from the architectural drivers defined above. Basically, it consists
of three conceptual components as detailed in the following and depicted in Figure 6.1:

• UI application (content provider)
• Compositor (content blender)
• Intercommunication (implements the binding between UI application and compos-

itor)

6.3.1 Conceptual components

A ‘UI application’ (UI-APP) refers to an independent functionality providing a UI artefact
(or UI component). Such an artefact (or surface) may implement comprehensive and
extensive menu structures providing access to a set of applications, or only a section of a
certain UI screen that has to be blended with other UI-APP’s artefacts. This implies that
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Figure 6.1: ICM UI infrastructure

each application renders its own subset of the UI. UI-APPs are distributed to different
partitions, whereas each partition may benefit from a dedicated GPU. The combination of
all UI-APPs forms the UI of the ICM system, which means that they represent the source
for graphics and the sink for related user events. However, all UI-APPs must comply
with the design concept and UI guidelines of the overall system to form a homogenous UI
layer.

The ‘Compositor’ is a super-ordinated instance that blends the artefacts provided by
different UI-APPs. Therefore, it may, for example, resize, transpose, and project the
graphics with perspective. These artefacts can be regarded as active video streams. This is
comparable to applying a texture to a 3D model, whereas here the texture is not an image
but an animated and active UI artefact. Active means the UI artefact is still receiving user
events (e.g., touch-events). Extensive manipulation of the provided artefacts may demand
for a dedicated GPU for the respective compositor. Furthermore, the graphical artefacts
are received as plain pixel buffers. This obviates the need to interpret information and
hence mitigate security issues such as code injection. However, it also means additional
efforts, for instance, to resize the artefacts if the provided dimension or aspect ratio does
not fit the display. Nevertheless, using plain pixel buffers has great advantages in terms of
loose coupling, maintaining a high degree of freedom for the UI-APPs, but still ensuring
compatibility. This means a moderate functional complexity in terms of logic for the
compositor, as its main task is to adapt the provided graphical content using primitive
graphics processing. Appropriate hardware accelerators can support this to relieve the
general-purpose PU. Additionally, the compositor delegates incoming user events to the
related UI-APP, comparable with an input-event mapper. An ICM system employs a
single compositing instance for each display, communicating with all UI-APPs. Hence,
a compositor is aware of what artefacts are actually displayed to the user. Therefore,
it also maps generic input events (e.g., buttons on a multifunction steering wheel) that
are related to the current system context to the corresponding UI-APP or respective ED.
This also applies to input preprocessed by speech- or gesture-recognition. The compositor
can also be seen as abstraction for accessing the UI, while the UI is a shared resource. In
contrast to other shared resources (cf. Chapter 5) the UI can cope with several accessors
in parallel due to blending the content and utilisation of multiple displays. This means
the compositor is a specialised resource manager. Due to its important role for visualising
UI applications, a compositor is classified at the same level of criticality as the connected
UI-APP with the highest level of criticality.
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The facilitator of the compositing infrastructure is an efficient communication by use of a
shared memory region that is accessible by both UI-APPs and the compositor. Basically,
this is needed to transfer pixel buffer information from UI-APPs to the compositor with
adequate throughput to achieve predefined frame rates. The intercommunication also
transfers user events from the compositor to UI-APPs, which requires low latency to
provide appropriate responsiveness.

A central characteristic of this architecture is the location where the graphic primitives
are rendered: at the producing UI-APP. This is also a key differentiator to other approved
graphics systems which send primitives to a central instance that has to interpret and ren-
der them for all applications. Such a central graphics server implies an increased inherent
complexity to the system, as the applications that produce graphics primitives are highly
dependent on the server’s actual graphic features and performance. Such architecture di-
minishes the respective components’ self-containment as their functional interdependency
increases. This may have a negative effect on the components’ compatibility and hence
affect composability. Further, this central graphics renderer constitutes a bottleneck that
gains significance with an increasing number of connected UI applications. This becomes
even more relevant for MCS that may incorporate dynamic functionality throughout the
system’s life cycle, such as ICM.

6.3.2 Prototype architecture

The infrastructure as depicted in Figure 6.1 already covers the concept of decoupled
content providers, segregated due to the use of three partitions (Pn ; with n = 0 .. 2).
This implies that the criticality of the partition that contains a compositor (here P0) is at
least equal to the highest criticality of the content-providing partitions. P0 becomes the
bottleneck for both UI rendering and event dispersion and hence has to be equipped with
adequate computing power and communication facilities. For providing more partitions
of different criticality, a hierarchical compositing architecture might be more appropriate.
This in particular applies to the relatively wide spectrum of applications within the ICM
system domain.

Figure 6.2 depicts an enhanced infrastructure that employs two compositing entities
(Compositor0 and Compositor1), deployed to distinct partitions. For this example,
Partition0 is of high criticality due to the provisioning of the instrument cluster. It is
able to blend UI artefacts of other partitions, provisioned by Compositor1. Therefore the
receiving Compositor0 has no information about the semantics of the provisioned content.
This means Compositor1 acts as compositor for low-critical UI artefacts (i.e., entertain-
ment, multimedia) provisioned by UI-APPs of Partition2 and Partition3, as well as UI-
APP for Compositor0. This allows blending of pre-composited low-critical UI artefacts
(created within Partition2 and Partition3) with high-critical UI artefacts of Partition0.
The interface between the partitions is reduced to pixel buffer information and predefined
fixed-size key events to handle user input and feature synchronisation and flow control
of pixel information. Hence functional dependencies are kept to a minimum with respect
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to the partitioning prevention of adverse interference. The depicted intercommunication
component may also be split by use of dedicated shared memory regions to follow the
segregation of the UI and application logic.

Partition1 Partition2

UI ApplicationUI-APP

Pixel Buffer

User Event

Partition3

UI ApplicationUI ApplicationUI-APPCompositor1

Partition0

Compositor0

Intercommunication

UI-APP

Compositor1 act as UI-APP 

for Compositor0

Figure 6.2: ICM UI infrastructure for mixed criticality UI-APPs

Each partition may rely on a different OS to fulfil the different demands of the particular
UI-APPs, which may include real-time abilities such as QNX, not connected to the Inter-
net for Partition0 or in contrast a mobile-OS such as Android that allows the use of ‘social
media’ on the same hardware platform. Such ‘social media’ applications rely on Internet
connectivity. Using the proposed ICM UI infrastructure, it is still possible to blend such
content into critical partitions1. The critical partition’s compositor still has full control
of how and where to integrate such UI artefacts, even though it has no information about
the visualised content’s functional details. The loose coupling ease dynamic update of
particular UI-APPs without affecting critical (ASIL classified) software components and
therefore obviates costly re-validation. Even the update of a particular partition is possi-
ble without affecting the others, to support, for example, security updates or maintenance
of a mobile-OS. This fosters the ability to maintain the overall system’s UX by use of
evolving low critical UI-APPs. However, this also provides a means to maintain critical
UI-APPs. Such evolution during the life cycle is mandatory for some functionality, which
relies on connectivity to third-party service providers with independently-evolving func-
tional interfaces (e.g., web-interface of social-media platforms). For the consumer (i.e.,
compositor), the content is opaque in terms of merely receiving already pre-computed
plain pixel data, handled as textures or frames. In the above example, the update-cycle
of Compositor0 is independent of any UI-APP within a partition different from Partition0.

The prototype architecture’s components and their relationships can be expressed using
the following notation, given that the UI (ICM-UI) consists basically of n UI-APPs and
m compositors.

1A discussion whether it is sensible to blend particular content like ’social media’ into the instrument
cluster is not part of this research.
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ICM-UI := (
n

∑

1

UI-APP) ∪ (
m

∑

1

Compositor) ∪ (Intercommunication) (6.1)

UI-APP
−−−−−−−−−−−−→
Intercommunication Compositor (6.2)

Compositor
−−−−−−−−−−−−→
Intercommunication Compositor (6.3)

{ICM-APP | Compositor}
−−−−−−→
deployed to Partition (6.4)

Figure 6.3 provides an alternative formal view on the architecture. It depicts the rela-
tionships between the components, modelled after a Unified Modelling Language (UML)
class diagram. Therefore, a ‘UI-Entity’ is introduced that represents the commonalities
of the UI-APP and compositor.

CompositorUI-APP

UI-Entity

Intercommunication

Partition
deployed to provisions content to

connected to

Figure 6.3: Relationships between UI components

The conceptual components arranged to the exemplary infrastructure depicted in Fig-
ure 6.2 scale with the requirements. With a compositor’s capability of providing already-
blended content to other compositors, it is possible to define ‘composite UIs’ for the
occupants’ different roles within the vehicle (e.g., driver, passenger, rear-seat passenger)
as well as custom UI-setups for individual persons. The later may include what to visu-
alise where and how. Such setup information might be stored within the ICM system,
on a portable storage media or CE device, or on a remote infrastructure using the head-
unit’s wireless connectivity. Furthermore, content can be visualised on multiple displays.
Therefore only one pixel buffer has to be rendered at a UI-APP which is distributed to
multiple target compositors. The respective target compositors are able to adapt the
content by resizing and transposing the pixel information according to the actual display
characteristics and predefined setup information. This implies the UI-APP must render
graphics using the highest resolution required, as the adaptation is performed by the
compositor.

Although the content provisioning based on pixel buffers is basically attributed to func-
tional decoupling of UI-APP and Compositor, it enables an additional feature for the UI
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design. Due to the capability of resizing the pixel buffer at the consumer (Compositor)
without affecting the producer (UI-APP), it is possible to ‘iconize’ the UI artefacts. This
means a navigation- or menubar may consist of minimized ‘live views’ of the running
UI-APPS instead of static icons or ‘screenshots’. The computational efforts to prepare
the iconized live views are segregated within the limits of the particular partition that
hosts the respective UI-APPs.

6.4 Applicability of the ICM-Compositor

A prototype implementation has been built to facilitate evaluation of the proposed design
and demonstrate its feasibility. It is not extensive and does not provide all functional
capabilities of a real-world ICM system. However, the previously defined architectural
drivers are covered to address essential features from an architectural viewpoint.

The prototype implementation has to feature at least n partitions (P), with n greater
than 2. P1 contains a compositor that is blending the independently rendered graphics
for visualization on a display. Furthermore, P1 is connected to a dedicated GPU to
support the modification of artefacts. P2..n contain UI-APPs rendering 3D graphics, also
using dedicated GPUs for graphics acceleration. All EDs run different instances of an
OS (i.e., forming a multi-OS environment) and have access to a shared memory region.
This constitutes the minimum criteria to verify the applicability of the herein described
concept for graphics compositing. In the following, the implementation and its constraints
of the prototype are outlined.

The partitioning in the prototype relies on virtualization, where each partition is encap-
sulated within a dedicated VM. All VMs are connected to a shared memory region to
prepare the prerequisite for the intercommunication component. This is realized using
KVM as VMM in conjunction with a virtual inter-VM shared memory PCI device based
on Nahanni (Kivity et al., 2007; Macdonell, 2011). The platform of the host system
provides several GPUs passed through to respective VMs for dedicated acceleration.

A GNU/Linux based OS is utilized for the compositor’s and UI-APPs’ partitions. The
prototype also supports Android OS based partitions acting as UI-APP to demonstrate
the blending of graphical artefacts which are rendered by different OSs.

The intercommunication is realized by using Wayland with enhancements to utilize inter-
VM shared memory. Admittedly, the use of Wayland violates REQ-12 which requires
a rudimentary communication based on pixel information to obviate the need for any
further interpretation. This is due to additional bidirectional control messages for syn-
chronisation, a keep-alive mechanism, and forwarding of user-events. However, except for
these disadvantages the features of Wayland represent the best available COTS solution
to support the other requirements. Moreover, its open-source licensing allows for the
required enhancements to enable inter-OS communication. Nevertheless, as part of this
research, alternative non-interpreted communication was also evaluated (cf. Section A.4).
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Within Android, the system services for rendering the UI is modified to clone and route
surfaces to the compositor using the intercommunication component of the proposed
design detailed by Theis (2013). The surfaces are routed without changing the Android
applications.

dependent on contextInstrument Cluster Center Console

route guidance

communications

media player

application menu with active widgets

car controls
appearance and content of  

UI artifacts dependent on context and user's 
preferences

safety critical content

Figure 6.4: Exemplary ICM UI with different UI-APPs

Figure 6.4 depicts a prototype UI layout that relies on various UI artefacts rendered
by different partitions. The selection and appearance of the content within the centre
console is adaptable, whereas the instrument cluster must comply with regulations and
laws. All UI artefacts are fully active and may be transposed in size and perspective
by the compositor instance independent of the UI-APP. Certain content is additionally
displayed on the instrument cluster, dependent on the vehicle’s or application’s context
or user interaction.

The prototype to all intents and purposes demonstrates how a compositor along with
graphic acceleration could enable modular UIs without breaching partitioning concepts.

The compositing component is implemented using Qt5 (Qt Project 2014) with the QtWay-
land module that acts as wrapper for the enhanced Wayland implementation to provide
inter-OS communication based on shared memory. The compositor utilises on a scene
graph for efficient handling of multiple displayed UI-APPs. Figure 6.5 depicts significant
software layers of the prototype implementation, mapped to the conceptual components
of the proposed compositing architecture. A preliminary prototype that founds on the
herein proposed architectural principles is discussed by Bienias (2013).

For multi-headed compositors, a session compositor layer abstracts the access to the OS
graphics layer (here kernel mode setting (KMS)) to foster flexibility regarding configu-
ration of connected displays on the particular partition or GPU respectively. Hence, a
single compositor can blend UI artefacts for multiple displays. Further, a compositor
may also render to an ‘off-screen’ buffer that is provided to another compositing instance.
This provides the capability to establish a hierarchy of compositing instances to reflect
mixed criticalities of assigned UI-APPs and scale with the number of available displays.
The prototype is equipped with multiple GPUs. A single GPU is assigned to a dedicated
partition (Fries et al., 2013; Fries, 2013).
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Figure 6.5: Conceptual components mapped to prototype implementation

As an alternative to the compositing architecture that relies on the Wayland protocol,
a ‘frame-grabber’ component may intercept and copy rendered pixel-buffer data to a
shared memory region. This can be implemented as a separate application or system
service that accesses the (intermediate) frame-buffer of the graphics framework in-use,
as depicted in Figure 6.6. Respective prototypes are available for Android’s ‘Surface
Flinger’ (Theis, 2013) and QNX ‘Screen’ Section A.4. This allows for ‘grabbing’ and use
of the whole (virtual) display output of an OS partition, but also supports the use of
individual applications. A frame receiver that is connected to the compositor consumes
the provided frame-buffer. The compositor blends the received UI artefacts with other
content, provided by further frame-receiver or using the Wayland protocol and respective
abstractions such as QTWayland.

Although the herein proposed concept focuses on unidirectional communication for the UI
artefacts, the technologies used allow also for a bidirectional transport of graphic content.
This means a UI-APP may incorporate precomposited content, which is then returned to
the same or forwarded to another compositor. Such bidirectional communication means
increased flexibility to the architecture that, for example, allows the use of a corporate
overlay design that includes application-specific UI functionality. However, such a mul-
tipoint communication data-flow also implies an increased complexity due to mutual de-
pendencies and may affect the UI responsiveness due to additional latency caused by the
extra communication efforts and processing steps. Hence, bidirectional communication
for UI artefacts is not considered for this research.

For the prototype implementation, the control channel relies on network socket commu-
nication. This improves traceability and flexibility due to the use of existing abstractions
within utilised related software frameworks. However, this offers a starting point for
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Figure 6.6: Enhancements to incorporate non-Wayland compatible UI-APPs

optimisation. The network socket can be substituted by an event-based message queue
placed within a shared memory region (i.e., next to the buffer for the UI artefacts). This
requires the existence of an inter-partition interrupt facility to signal the availability of
new messages, such as the doorbell functionality offered by the virtual PCI device with
the Nahanni-based inter-VM shared memory implementation (cf. Section 4.3.3).

6.5 Audio compositing

This research mainly focuses on the compositing of graphical UI components. However, a
current ICM system heavily relies on audible user interaction. A preliminary investigation
was carried out to evaluate the feasibility of mixing multiple audio provider using efficient
communication facilities beyond OS boundaries. Therefore, a prototype audio compositor
based upon a virtualised multi-OS environment that relies on OpenICM, inter-partition
shared memory, and the gstreamer multimedia framework (gstreamer - open source mul-
timedia framework 2014) was implemented (Gathmann, 2013). Basically, similar require-
ments apply to such an audio compositor when compared with above-proposed graphical
compositing architecture. The compositing instance decides which audio stream is actu-
ally blended (a), played at which location (b) (i.e., speaker channel) and at which volume
(c). Here also the respective criticality of the audio source must influence the compositor’s
decision (e.g., park distance control might be more important than route guidance and
hence have least affect (a) or (b)).

However, an integration of graphics and audio composition into a comprehensive UI com-
positor is not part of this project.
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6.6 Summary

Appealing UIs are important features of future ICM systems. First of all, this is addressed
to the automotive (graphic) designers. Nevertheless, the visual concepts must be trans-
ferred to the software level. In parallel, the increasing extent of functionality integrated
into such systems creates new challenges. Functionality varies in criticality in terms of
safety. This leads to time/space-separated software architectures to enable strong enforce-
ment of run-time policies. Such a partitioned architecture counteracts the implementation
of a comprehensive, coherent, and compelling UI, which has to appear as an ensemble of
one piece. This is amplified as long as only one graphic accelerator is available that has
to be shared by applications executed in parallel on multiple PUs and structured using
technologies for containment, such as EDs or VMs. The architectural-design approach
presented addresses this issue and provides an integration path for individually-developed
software components of different criticality. Relevant architectural drivers are discussed
and the essential design components are illustrated. A prototype implementation sup-
ports the evaluation of the design by use of a functional proof-of-concept. It basically
reflects defined key requirements for such an architecture to support the implementation
of next-generation graphical UI designs.
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Interoperation of approaches and evaluation

“The whole is greater than the sum of its parts.” (Aristotele)

To fulfil the demands of next-generation ICM systems, a new integration path is neces-
sary. The main objective here is to build dependable MCSs that rely on graphic-intensive
and multi-modal UIs. Moreover, with changing functionality throughout the product life-
cycle, preceding approaches for integration of multi-sourced components are not feasible
anymore.

Within the previous chapters, a set of distinct approaches were presented that form archi-
tectural building blocks to address some fundamental issues related to the development
and maintenance of future ICM. This chapter collects those concepts to form an inte-
grated and holistic architecture aiming for a more predictable integration due to improved
composability, in particular related to temporal behaviour while providing the necessary
flexibility for dynamic functionality. Moreover, these are assembled using a prototype
demonstrator to showcase their practicability.

7.1 An architecture to construct next-generation

ICM

To address the herein described issues, the proposed architecture covers basically the
design principles investigated as part of this research. These are briefly recapitulated in
the following sections and basically consist of the design ideas and patterns that permeate
a system’s architecture. The assembly of the architectural components is illustrated by
use of an abstract view on a system that consists of multiple application components that
utilise multiple PUs, a set of shared resources and provide a uniform UI, as depicted in
Figure 7.1.
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Figure 7.1: Abstract view on a component based system

7.1.1 Compatibility by containment

A key to foster deterministic component integration while preventing adverse interference
in between components of mixed criticality during system operation is separation through
containment. Due to the components’ scope on the functional features, already-existing
applications can be integrated without the need to adapt them to a system-global frame-
work. This provides freedom to make use of legacy and third-party functionality and
positively affects the portability of such. A redevelopment of applications is no longer re-
quired as long as a suitable component container is available that forms the local runtime
environment.

Furthermore, a strict segregation of different functionality enables the implementation
of different and independent update policies to reflect the criticalness of the particular
contained functionality. Also, the different evolution pace of components can be reflected
without affecting each other. Critical software may only be updated through secure and
trusted communication channels with the option of validating the success of the update,
as for example during the regular service at the automotive repair shop. In contrast,
noncritical software may use similar distribution channels for after-market functionality
and updates as approved for CE devices (i.e., so-called ‘market places’ or ‘app stores’),
using wireless access networks (a.k.a. ‘over-the-air’ updates). The separation ensures
that both the update itself as well as the introduced or updated functionality within a
container does not affect the operation performed within the other ones.

As detailed in Chapter 4, component containment can be implemented using different
approaches. This allows for reflecting the actual needs due to the system’s architecture
and the available hardware capabilities. Applicable means are the use of scheduling poli-
cies (a), ED using PU affinities (b), containment models like LXC for Linux or APS for
QNX (c), type 1 or type 2 virtualisation (d) or strict hardware partitioning in the style
of AMP (e). In particular, (d) and (e) provide a multi-OS environment to enable effec-
tive containment with strong encapsulation. However, (a) to (e) all feature an explicitly
controlled use of MC hardware in terms of mapping the software architecture to PUs
and shared resources to foster a more deterministic behaviour. Improved compatibility
positively affects composability, while the overall complexity is reduced due to the en-
capsulation/containment of heterogeneous software components. This is anticipated as
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a necessary prerequisite for next-generation ICM systems with their continuously rising
complexity and number of provided functionalities.

The component containment within the demonstrator is achieved by selection and com-
bination of representatives of the enumerated approaches. Containment at the OS level
is implemented using type-2 virtualisation and at the user-space level using PU-affinity-
driven EDs. This does not mean a limitation regarding the possibility of enhancing the
showcase with integration of other approaches or substituting selected with matching
alternatives. However, it supports multi-OS environments and is portable to different
hardware platforms to improve the demonstrator’s reproducibility. This is also fostered
by the use of FOSS components, including a Linux kernel-based OS as host-OS and KVM
as VMM/hypervisor.

C1 C2 Cn

PUPUPUPU

ED | VMM | AMP

PUPUPUResource

UI

…

provide 
containment

Figure 7.2: Containment of application components

7.1.2 Managed access to shared resources

Despite the isolation into containments, the integration and deployment of software com-
ponents to a common hardware platform implies necessary access to shared resources. To
foster compatibility by mitigation of adverse interference, in particular by a less-critical
component, the access to and usage of shared resources has to be managed. This applies
especially to parallel access enabled by MC hardware architectures.

Containment of software components already improves the system behaviour, but it un-
folds its potentials even more when the partitioned functionality is also temporally man-
aged regarding the access for shared resources considering the respective criticalities. This
implies the managed access of shared resources is a necessary completion for the proposed
technologies to structure mixed criticality and heterogeneous software components.

For the demonstrator, with SHARB a low-level software resource arbiter is available to
enforce access priorities according to the component’s criticality as detailed in Chapter 5.
With the integration into OpenICM, it builds upon a mature software framework for
embedded systems.
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Figure 7.3: Arbitration of concurrent resource access

7.1.3 Compositing UI

For ICM systems, the UI represents a very important role. It must combine the content of
heterogeneous content provider (i.e., mixed criticality components within multi-OS envi-
ronment) and form a uniform, domain-specific and appealing front-end to the occupants.
Especially due to the containment of the component, the blending of different contents has
to work in such a way that the user does not take notice of the partitioned computation
behind the visualization.

For the demonstrator, a compositor was developed that basically implements an integral
usage concept and controls what to visualize on which displays by blending UI artefacts.
UI applications render these artefacts within dedicated components, and compositors are
assigned to different containments, while several UI-APPs may share a single containment
(e.g., UI-APPs of similar criticality, with strong mutual dependencies, provided by the
same supplier, etc.). This implies the UI-APPs are basically independent of each other
related to their criticality. To support adequate hardware acceleration for graphic pro-
cessing, particular containments have exclusive access to non-shared GPU, which applies
also for the containment that contains the compositing component.

7.1.4 Interoperability by efficient communication

Separation to achieve compatibility may contradict interoperability. Interoperability ad-
dresses the ability of different components to work with one another, e.g., the functional
bindings in between the components. As with compatibility, interoperability is also a con-
structive aspect of software engineering and an essential quality to be considered when
aiming for composable systems. Hence, a system design relying on segregation through
component containment has to incorporate means to achieve interoperability. The pro-
posed architecture reflects this by use of well-defined interfaces using an event-based com-
munication via shared memory regions, mapped to the particular component container.
This is implemented by enhancing Linux KVM with QEMU/Nahanni inter-VM shared
memory for efficient intercommunication.
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Figure 7.4: Compositing of an uniform UI

The communication related to the UI compositing requires particular consideration due
to the transport of relatively big amounts of data. Hence, the communication of UI arte-
facts and user events relies on efficient data transport to achieve adequate responsiveness
with the focus on usability. The pixel buffer information is provided to the consuming
compositor using a format that obviates further computation to reduce the attack surface
(cf. Section 2.3.5).
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Figure 7.5: Communication facilitated by use of shared memory regions

7.2 Evaluation

Per Eklund et al. (2012), the initial design decisions that led to a particular product’s
architecture (‘as-is’) also have relevance for similar products. This means they basically
can be applied to a whole product family or product line. From these general design
decisions, details of a ‘reference architecture’ can be derived. According to the definitions
provided by Angelov et al. (2012), this is considered a ‘non-structured reference architec-
ture’. However, the goal of such reference architecture is to capture rationale and design
principles that form the base for a particular product’s architecture but is applicable to

145



7. INTEROPERATION OF APPROACHES AND EVALUATION

a wider range of products or allow usage in different contexts. As the design principles
are discussed and evaluated in isolation within the previous chapters, an implementation
is utilised to ‘pilot-case’ their feasibility for a product. Further, their applicability puts
emphasis on the relevance for the whole product family of ICM systems.

A set of requirements is used to express necessary qualities of future ICM (cf. previous
chapters; assembled in Table 7.1). These express the rationale behind the principles in
a very condensed form and are applicable to the whole ‘product family’. Although the
usage context of this research focuses on ICM, the defined requirements are sufficiently
abstract to allow transfer or reusing of them within a different context. Further, this
research does not provide a comprehensive reference architecture for ICM, but it may
contribute to the ‘reference architecture details’ that detail the architectural strategies,
as defined by Eklund et al. (2012). The defined set of requirements for this research
presently enables a verification of the implemented demonstrator that can be viewed as
‘architecture implementation’. Therefore its implementation is detailed in the following.

7.2.1 Implementation details of the demonstrator

The main objective of the demonstrator is to cover the requirements assembled in Ta-
ble 7.1. Moreover, its design and related technology decisions consider the product qual-
ities maintainability (in particular analysability) and portability (cf. ISO 25010 (2011)
and Table 1) with the focus on reproducibility. Hence the use of FOSS is emphasised
whenever possible and a common hardware architecture/platform is selected. Albeit not
explicitly discussed, the use of portable technologies fosters support of a wide range of
target platforms.

The host-OS is based on a Linux kernel, using KVM for creating OS partitions to achieve
CL3 (cf. Table 3). The build-system to render the host-OS is based upon the Yocto build
system, which allows configuration regarding what and how to build the target system by
use of interdependent ‘recipes’ (Yocto Project, 2014). These enable a reproducible build of
both the toolchain and the target system images, including kernel, modules, libraries and
user-space applications. The respective recipes are structured by use of distinct layers.
These represent a modular system configuration that contains optimizations for the used
target hardware by use of a board support package (BSP), as well as defines substitutions
or complements to recipes of subsequent application layers. This allows for the building of
a whole meta-system and target-system by use of a single configuration using a customary
Linux distribution. Although the demonstrator is primarily targeted for an x86 based
hardware platform, the build-system used fosters only portability by substitution of the
BSP (exemplary supported platforms relevant for ICM systems include Texas Instruments
OMAP5, Intel Atom Zxx/Exx, Renesas RCar).

The x86-based hardware platform was selected because of easily accessible hardware and
reproducibility due to a customary architecture. Moreover, it provides modularity by use
of PCI-express-based expansion cards to integrate multiple GPUs, as well as automotive
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ID Requirement Short Description

REQ-1 Components shall not interfere with each other
during runtime unless it is explicitly specified.

prevent component interference

REQ-2 Components shall provide defined functional
ports to enable inter-component communica-
tion.

provide functional ports

REQ-3 An interface port shall be reduced to the par-
ticular needs of the respective communication
(based on type ‘event’ or ‘data access’).

simplified ports

REQ-4 Either the utilized software framework or the
components shall comply with POSIX.

conform to POSIX

REQ-5 The system shall provide capabilities for updat-
ing and installing components on user demand.

support dynamic functionality

REQ-6 The latency related to the access of a shared
resource shall be predictable.

predictable resource access latency

REQ-7 The resource access shall be manageable with-
out the need for any modifications of third-
party components.

transparent resource management

REQ-8 The access to shared resources shall be tempo-
rally ordered using static-defined priorities.

resource access priorities

REQ-9 A UI compositor shall provide the capability to
blend independent portions of the UI.

compositing UI-APPs

REQ-10 The UI compositing shall support the distri-
bution of UI components onto multiple OS in-
stances.

multi-OS compositing

REQ-11 A GPU shall be assignable exclusively to a ded-
icated OS partition.

dedicated GPU

REQ-12 A UI component shall provide pixel frames that
obviate further interpretation at the receiving
compositor.

frame-based communication

REQ-13 The compositing architecture shall provide per-
formance efficient communication channels.

efficient communication channel

REQ-14 User-event shall be communicated from the
compositor to the designated UI component.

backchannel for user-events

Table 7.1: Requirements for an ICM architecture.
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bus systems like MOST and CAN. The utilised platform is equipped with a CPU that
provides four PUs and features hardware-accelerated OS-virtualisation. Figure 7.6 depicts
the demonstrator’s hardware configuration.

CPUGPUs

CAN Interface

MOST Interface

Figure 7.6: Hardware configuration of the demonstrator

The demonstrator hosts four OS partitions (OSP), each running a separate OS instance
within a VM (cf. Figure 7.7):

• OSP0 contains the VMM and the compositor , while both rely on Linux.
• OSP1 contains an instrument cluster that builds upon QNX Neutrino
• OSP2 contains a media player that builds upon Linux
• OSP3 contains navigation and IP telephony that builds upon Android

hardware platform

OSP3 

Android

OSP2  

Linux

OSP1  

QNX

OSP0 

Linux

VMM

Compositor

SHARB

Fieldbus Internet Audio Input Dev GPUs

Figure 7.7: The demonstrator’s four OS partitions

OSP0 issues and controls the startup sequence of OSP1-3. This is supported by use of
the features of OpenICM to assign the respective VMs to dedicated PUs and provide
means to manage access to shared resources by use of the integrated SHARB. The use of
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a software framework for control of the startup sequence and observation of the runtime
behaviour positively affects the systems maintainability in terms of analysability. This
can be achieved, i.e., by use of a software-watchdog (cf. (Wietzke, 2012, p60 ff.)) and
continuous system traces during test phases.

The GPU assigned to OSP0 is connected to a display that provides multi-touch capabilities
for user interaction. OSP0-3 are interconnected using shared memory and socket commu-
nication, whereas the latter is implemented using virtual network sockets in between the
VMs accelerated by hardware support for virtualisation.

The compositor deployed to OSP0 is implemented with Qt5 and its abstractions for Way-
land and OpenGL, following the layered architecture detailed in Figure 6.5 (cf. Sec-
tion 6.4). This also includes the employment of a session compositor to abstract the
configuration of the multi-display environment. Within OSP1-3, the tasks are structured
using EDs that rely on PU-affinity, provided by OpenICM.

In summary, the demonstrator utilised multiple technologies to fulfil the specified require-
ments. These technologies can be classified into three conceptual groups that correspond
to the main contribution of this research:

• Partitioning components for temporal containment (cf. Chapter 4).
• Management of shared resources (cf. Chapter 5).
• Compositing of UI artefacts (cf. Chapter 6).

Table 7.2 maps the technologies to the specified requirements for the ICM architecture.
Several requirements are related to multiple technologies that complement each other.
This implies that most requirements are achieved by use of a set to technologies.

The features of the OpenICM framework were not introduced but enhanced with this
research. Further, the distinct technologies were evaluated individually, while their as-
sembly into an integral demonstrator basically evinces their compatibility and interop-
erability. They complete each other to form a comprehensive architecture for improving
the composability of interactive software components.

7.2.2 Discussion

Based on the evidence of applied software engineering practice for ICM (cf. Chapter 3),
containment of heterogeneous components provides the architectural means to counter
the rising integration density at the software level of next-generation ICM. The demon-
strator covers the architectural requirements for fostering such modularised architecture
with temporally separated software components and providing the infrastructure to ren-
der a uniform HMI integration layer. Taking the viewpoint of the user and emphasing the
system’s usability, the HMI basically constitutes the integration point of potentially het-
erogeneous components. This implies an architecture that focus on structuring software
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REQ-1 prevent component interference • • • (•)

REQ-2 provide functional ports • • •

REQ-3 simplified ports • •

REQ-4 conform to POSIX • • (•) •

REQ-5 support dynamic functionality (•) •

REQ-6 predictable resource access latency • •

REQ-7 transparent resource management •

REQ-8 resource access priorities • •

REQ-9 compositing UI-APPs •

REQ-10 multi-OS compositing • • •

REQ-11 dedicated GPU • •

REQ-12 frame-based communication • •

REQ-13 efficient communication channel • •

REQ-14 backchannel for user-events •

Table 7.2: Map requirements to technologies

components to improve composability must consider features to composite components
at the UI level.

The herein detailed demonstrator reflects selected key features of current ICM systems,
but is not comparable to a system that is rendered by >200 software developers within >2
years (cf. Section 3.2). This includes the functional features as well as the visual design
of the HMI. However, this research serves as pilot case regarding the software architecture
that consists of the proposed concepts. Within that context, some implementation-specific
decisions might not apply to a ‘productive’ ICM system which are discussed in the fol-
lowing.

Linux on OSP0 provides only limited real-time features. However, for this evaluation it
features portability and good hardware support. Basically, the superordinate user-space
layers enable substitution of Linux with a POSIX conform OS like QNX. Furthermore,
the compositor can be moved to a VM instance to free the host-OS from all tasks except
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the VMM/hypervisor. The next consecutive step is to remove the hypervisor by an
AMP-based multi-OS architecture, where the segmentation and startup is coordinated by
an enhanced bootloader. First evaluation showed promising results on MC architecture
that relies on ARM ISA. The herein described general architecture must not be altered
to support that shift to AMP-based multi-OS. Especially for MCS, a reduced or even
unnecessary VMM layer eases the efforts related to the required verification process and
decouples independent software evolvements.

For both the compositor and client UI-APPs, the Qt framework was used (Qt Project
2014). Qt provides extensive support in particular for the implementation of UIs. The
utilisation for the compositor makes the used Qt libraries critical components of the sys-
tem. The same applies to the software-based instrument cluster, which for the demonstra-
tor also relies on Qt. Due to the number of provided functionalities, a formal verification
of both the prototype compositor and instrument cluster is improbable. However, Qt
enables precompiled native rendering of UIs. This means the code must not be parsed
and interpreted during runtime, as required for UIs that rely on web technologies such as
HTML5 (Gryc and Lapierre, 2012).

The demonstrator relies on the Wayland protocol for UI compositing, with enhancements
on the libraries to support inter-VM shared memory communication. This is a prerequisite
of the availability and integration of the enhanced Wayland library to all guest OSs.
This is also related to the required driver to connect to the inter-VM shared memory
region. An alternative approach is to enhance the VMM to provide a virtual hardware
platform that implements the Wayland protocol within the virtual graphics hardware.
This would obviate any modification to a guest-OS, system libraries and applications
executed within a virtual environment. This means, compositing is possible without
altering a self-contained VM. Such an approach limits the degree of freedom related to the
arrangement of multiple UI-APPs within the compositor, as the virtual display of the VM
containing those UI-APPs prearranges/composites their visual output. However, for the
herein detailed demonstrator modifications are limited to

’
user-space’, i.e. system libraries

and applications. Modifications of the OS were avoided with respect to portability and
reproducibility.

The use of an integral build system improves the ability for maintaining and reproducing
the demonstrator and adapting it to alternative hardware platforms. Here, this is featured
by the Yocto project that is utilised for both the OSP0 and OSP1 to formalise the building
and configuration of all parts of the system.

7.3 Summary

The herein described demonstrator illustrates the practicality of the proposed approaches
and concepts regarding containment, intercommunication, arbitration of resource access
and UI compositing. Each viewed separately provides only limited support. This means,
although each of them is incomplete on its own, they finally complete each other. Through
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their combination, their full potential to improve composability for next-generation ICM
systems, supporting the parallel use of multiple OSs, mixed criticality components and
dynamic functionality with predefined temporal behaviour is exploited.
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Conclusions and future work

“The reward for work well done is the opportunity to do more.” (Jonas Salk)

With software, new functionality can be provided at low cost (Göschel, 2012) and main-
tained throughout a vehicle’s product life cycle. While the replication costs for software
are insignificant, the related development costs are increasing dramatically (Manfred Broy
et al., 2007). Integration of new functionality has implications for the fulfilment of the
overall system’s required qualities, in particular regarding composability, performance ef-
ficiency, usability and maintainability. The rising complexity with next-generation ICM
systems demands a reconsideration of current system architectures, as traditional en-
gineering perspectives are no longer adequate (Sommerville et al., 2012). This relates
to interdisciplinary challenges that range from management of distributed development
teams via clearly defined requirements to decisions and implementations driven by tech-
nical criteria. Additionally the systems’ software components’ mixed criticality generates
cumulative challenges for the development, verification and update cycles. At the or-
ganisational level, distributed development involving multiple organisations all over the
world implies an additional dimension of complexity. At the same time, the development
of these systems has to be aligned with the development processes of all other vehicular
components even beyond the limits of the E/E domain to a common SoP. Current practice
does not adequately address these issues.

8.1 Achievements of the research

This research is based on an investigation of the current situation covering the increasing
complexity and current requirements for ICM systems. Therefore, literature within related
fields of research, as well as common practice within recent and on-going industrial projects
were reviewed. The gathered information was used to highlight the significance and
challenges regarding composability and related qualities of ICM software components and
supporting infrastructure by means of a software framework.
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A set of architectural features were investigated and assembled to form a proposed ar-
chitecture that improves the relevant qualities. The main objective is to support the
integration of heterogeneous functionality that varies by means of criticality, temporal
requirements (for both time and event triggered tasks), and demands for software up-
dates, while fostering an integral UI that provides a positive UX. This architecture also
addresses the implications that arise during the development process, in particular due to
a parallel and independent software development that generates the need for integration
through a coordinator, as for example the (Tier-1) OEM.

The proposed architecture essentially consists of the following three basic concepts. These
were motivated, detailed and implemented using a pilot case to demonstrate both their
feasibility and practical impact:

1. Isolate software components into partitions while exploiting the features of current
hardware architectures and preserving efficient inter-component communication fa-
cilities.

2. Manage the access to shared resources by arbitration to reflect the mixed criticality
of software components computed in parallel.

3. Composite segregated UI/software components to enable the implementation of
homogeneous and integral UI.

None of these individually solves the issues regarding composability. But combined and
integrated into a software framework, they provide holistic support to integrate complex
systems that behave deterministically even during situations of high system load.

Similar concepts with different emphases developed and enhanced in parallel to this re-
search address either a more strict decoupling with the focus on non-user interactive
systems (cf. Section 2.4.1), or only partly address rising demands for mixed criticality
and demands for multi-OS environments of future ICM systems (i.e., with focal point
strictly set on infotainment; cf. Section 2.4.2). Hence this research can be regarded as
bridgework between these two currently distinct domains, paving the way for an increased
integration of formerly distinct vehicular hardware platforms.

8.2 Limitations

Although the research objectives have been met, a number of limitations associated with
the project can be identified. The key limitations of the research are summarised below.

The focus of the research was to increase the determinism of the behaviour at runtime
while improving the predictability of the integration. All measures proposed here basically
share the same principle of abstraction of the underlying hardware or software level and
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introduce a management layer. This affects the overall system efficiency, both in terms
of speed and memory usage, due to introduced management overhead. Exceptions are
EDs that utilize the task scheduler’s existing feature for PU-affinity and strict hardware
partitioning that follows the idea of AMP. In any case, these also reduce the overall system
efficiency due to static allocation of computational resources and not considering load-
balancing strategies1. This means increased determinism comes at the cost of introduced
overhead and reduced exploitation of the available computational resources. Nevertheless,
these expenses facilitate the integration of mixed criticality components onto a single
hardware platform and improve the system’s determinism during high-load situations.

The concepts scale with the number of components and their containments. In particular,
the number of parallel containments is - depending on the technology up to a certain
degree - limited by the physical features of the HW platform. Besides the number of
available PUs, this is related to the shared on-chip/on-system infrastructure, layered
memory architectures (i.e., including shared caches and main memory), and other shared
resources. This means the applicability of the concepts improves with the availability
of hardware features. Currently available MC-architectures within the embedded and
automotive system domain may only partly exploit the potential of the proposed concepts
and technologies.

For the number of available PUs, it can be assumed that the currently available SoCs are
only the beginning of parallel platforms within the domain of embedded computing. This
research contributes to this evolution by proposing to set focus on the enforcement of
predefined temporal behaviour instead of ‘merely’ increasing computational throughput.

Although an arbiter may improve determinism for accessing shared resources, such man-
agement will increase delays for low priority accessors with an increasing number of ac-
cessors. At some point, the low priority accessors will not be able to provide the required
QoS, which may only be acceptable for a short timespan (e.g., during a high-load situa-
tion). Such behaviour must not prevail. This means increasing the number of accessors
for a shared resource may violate required qualities regarding usability and performance
efficiency, at least for low priority components. This requires either the provisioning of
additional resources to reduce the degree of concurrency or system redesign. However,
it is important to define the components’ particular criticality to derive their QoS and
priorities while considering the limits of the available hardware platform in terms of com-
putational power, memory and I/O resources. Despite the potential integration of a
virtually infinite number of functionalities, the execution of the software components is
constrained by physical limitations.

Aside from the accessed resources, the on-chip/on-system infrastructure also has to cope
with an increased amount of processed data with regards to both throughput and fre-

1In practice, it is even counterproductive to exploit the full potential computational power of the PUs,
as some embedded platforms are not capable of running at full load for longer than a given time period
without damaging the hardware due to thermal issues. Although such implications were not examined
as part of this research, the effects have been observed, e.g. with the Texas Instrument OMAP5 SoC.
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quency. The related effects depend on the particular components’ demands for inter-
communication and resource utilisation and scale at least linearly with the number of
integrated components. This necessitates hardware platforms with high throughput in-
frastructures and emphasises the proposed use of simplified event based (fixed) message
protocols to reduce complexity related to the components intercommunication.

For the proposed UI, compositing the transmitted pixel buffer information consumes ad-
ditional memory. Although the related footprint is predictable, the amount of memory
actually utilized might be extensive. It can basically be calculated before runtime based
on the components that actively provide UI artefacts as well as on their individual res-
olution (which may differ from the displayed resolution). However, the memory usage
and utilisation of infrastructure to transmit the pixel buffer information scales linearly
with the number of active UI components. While dynamic approaches such as on-demand
downgrading of the resolution of non-critical applications might be helpful to improve ef-
ficient memory utilisation, they can also cause decreased determinism and may affect the
UX. It might be more beneficial to set a fixed limit for active UI components related to the
HW platform’s memory facilities. Nonetheless, such an investigation was not conducted
as part of this research.

Additionally, the consideration of MCS basically refers to the integration of components
that have to be verified to provide a certain degree of functional safety, as for example in
accordance with ASIL classifications. However, this research did by design not extensively
cover related areas such as requirements and verification of ‘functional safety’ as defined
with ISO 26262 (2011).

Furthermore, this research did not, by design, provide in-depth details regarding process
and maturity models supporting the product life cycle right from the start of develop-
ment. It is assumed that currently-applied related approaches may adequately support
the development and integration at the organisational level (CMMI Product Team, 2010;
Automotive SIG, 2010). The proposed concepts neither contradict nor conflict with such.
On the contrary, these concepts even support a multi-sourced and multi-organisational
development by complementing the process models with an integral infrastructure on the
level of development.

8.3 Suggestions and scope for future work

This research programme has advanced the field of software engineering of ICM with a
strong focus on components’ composability by proposing an infrastructure that exploits
characteristics of parallel hardware architectures. However, a number of areas of scope
for future work exist, specifically related to this research and more generally within the
area of mixed-criticality and highly interactive embedded systems. These suggestions are
detailed below:
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1. Improving multi-OS architectures with decreased overhead to foster strict resource
partitioning is necessary, advancing the proposed architecture of Fischer (2009).
This may also include the utilisation of multiple GPUs without the utilisation of a
virtualisation layer. Also, the enforcement of the component containment of multi-
OS architectures and respective approaches for assurance of such is an active field
of research (Schnarz et al., 2013; Schnarz et al., 2014b; Schnarz et al., 2014a). Both
are prerequisites for performance-efficient and verifiable MCS.

2. Further, resources could be spent on the integration of ‘real-time data’ and func-
tionality provided by infrastructure (i.e., ‘off-board’). This may include the consid-
eration of in-vehicle proxy services and remote delivery platforms to which former
on-board functionality is off-loaded, as proposed by Glaab et al. (2014a). This must
be reflected by the ICM systems’ architecture, whereas the containment concepts
described here may provide an adequate foundation to decouple such remote func-
tionality from (critical) on-board functionality. Beyond that, the use of remote data
as well as the incorporation of remote functionality into a vehicular E/E system that
is interconnected with safety-critical ECUs generates further implications that are
related to secure communication. Potential effects of a violation of the ICM’s in-
tegrity may affect the car’s occupants’ physical health, not comparable with the
results of security issues related to mobile phones or desktop computers which are
basically limited to financial loss and loss of data.

3. Further investigation of ICM system’s UX while considering reduction of driver dis-
traction and support for dynamic functionalities is necessary. This research project
is focussed primarily on an architectural view of ICM. Although architecture is im-
portant for system design, this must not be confused with the design that appears
to the user. Although the implementation of a UI relies on the system design by
exploiting of the features provided, the realisation of an appealing and usable UI is
beyond infrastructural concepts. An adequate UX requires an integral usage concept
that covers the vehicular context as well as the mixed criticality of heterogeneous ap-
plications and use cases. This also includes the consideration of multi-modal input
and multiple displays and speakers for spatially distributed output. The proposed
compositing architecture covers some significant issues but is only the provisioning
infrastructure that has to be instrumented by an actual UI implementation that
sustains a homogeneous UX (Holstein et al., 2015). The demonstrator described
within Chapter 7 basically describes features but not the possible impact to a user
regarding sub-characteristics of usability (e.g., appropriateness, user error protec-
tion, aesthetics, accessibility – cf. Table 1).

4. Further investigation on the applicability of the concepts for compositing of graphics
to audio is necessary. The proposed compositing architecture’s focus is primarily
set to graphical UIs. An in-vehicle UI also relies on audible user-interaction (cf.
Section 6.5). Although preliminary investigations were carried out to demonstrate
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feasibility, the combination of audible and graphics within an integral ICM com-
positing architecture is still an open issue. However, the essential requirements for
graphics compositing may correlate with audio compositing.

5. Further research on a formal approach to transfer components’ importance to
threads’ priorities that reflect a predefined system behaviour is necessary. The foun-
dation for mapping mixed importance from design to implementation level is related
to (static) prioritisation and scheduling or arbitration that consider the individual
priorities. Incompatible priority policies and schemes can be resolved following the
proposed approach for decoupled scheduling domains through containment. The
question of how a system can be prioritised efficiently at the design level, including
consideration of how to transfer such information to the implementation level using
a formal approach, is still an open issue. This is a prerequisite for automating such
interpretations and ‘translating’ to achieve the predefined system behaviour.

6. Further research on appropriate system profiling to determine correct partitioning
with respect to the predefined system behaviour is necessary. Although the contain-
ment of functionality and derived tasks on the implementation level is fundamentally
related to their heterogeneity (i.e., regarding supplier, criticality, other characteris-
tics), there might still be a certain degree of freedom, in particular regarding how
to partition the overall system.

7. Furthermore, additional research might be applied to approaches for determining
the correct allocation and best parallel use of shared resources. Related results
may improve the system’s overall efficiency regarding the concurrent use of shared
resources. Again, appropriate system profiling might be a useful building block for
such research, which may also influence the partitioning of functionality.

8. Further, resources could be dedicated to reviewing the relationship between a
component-based software architecture for mixed-critical/interactive systems and
the engineering processes defined by maturity models such as CMMI and Automo-
tive SPICE (Software Process Improvement and Capability Determination) (CMMI
Product Team, 2010; Automotive SIG, 2010). This research focused on constructive
aspects for the development of complex software systems that form a coalition of
systems. In practice, such development might be organised by the use of abstract
process models with a focus on quantitative management and optimisation.

8.4 The future of In-Car Multimedia

The root of ICM systems was the FM radio. Within a relatively short time - not much
more than one decade - it expanded to a computer system with significant computa-
tional power that addresses multiple use cases. This is an on-going evolution. Increased
interconnectivity with on-board units as well as to outside infrastructures provides the
necessary capabilities for new applications.
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At the same time, ADAS means a fundamental change to driving. Functionalities like
assisted or semi-automatic parking, lane departure warning, lane change assistance, col-
lision avoidance, traffic sign recognition and adaptive cruise control with steering assist
are already available (Fleming, 2013). Although there is still a significant time gap un-
til autonomous driving is ready for everyday use (including the necessary clarification
of legal issues), the transition by the use of such assisting functionalities has already
started (Coelingh and Solyom, 2012). Ross (2014) pictures the evolution of the assistance
supplied by the car as follows:

“In 5 years, cars will be quicker to intervene; in 20, they won’t need your
advice; and in 30, they won’t take it.”

Giving credit to car manufacturers like Nissan, a line of autonomous driving cars will
already start to be available in 2020. Even if their introduction is delayed by a few years,
the results of the past years’ autonomous vehicle races sponsored by Defense Advanced
Research Projects Agency (DARPA), as well as various field tests of different OEMs,
demonstrate the feasibility of ‘driverless’ travel (Ross, 2014). This puts additional em-
phasis on ICM systems that combine entertainment of the passengers, ‘operation planning’
of travel, and an in-vehicle communication centre. By practical means, in the future, an
ICM system will not distract from driving, instead, driving will distract from using the
ICM: the descendent of the FM radio may outlive the accelerator, brake and steering
wheel.

A more imminent change for the automotive industry is the increased use of battery-
powered electrical drives for both economic and ecological reasons. These will reduce
practicable driving distances before a ‘refill’ is necessary, while such a ‘refill’ currently
requires significantly more time than fuelling up with petrol. This has an effect on driv-
ing, as it requires a ‘planned operation’ of the vehicle to avoid a breakdown due to an
empty battery. Although battery technology is evolving, it may still take many years
until cars with electrical drive provide their passengers a similar flexibility for travel as
already provided by petrol-driven ones (also with respect to the infrastructure for ‘refill’).
ICM systems and in particular their route navigation subsystem may assist in such plan-
ning, especially with correlations to information related to current battery charge, traffic
conditions, driving behaviour, climatic conditions, remaining driving distance, alternative
charging stations, etc. Hence, the ICM system will become a more integral part of the
travel and therefore gain importance. A prerequisite for such improved driver assistance
is an increased interconnectedness of vehicular subsystems of mixed criticality and the
use of ‘real-time’ information via wireless networks. This poses a substantial challenge
for vehicular E/E systems and in particular for next-generation ICM.

The use-case detailed above regarding electrical drives represents only one example for as-
sisting systems that rely on data provided by different providers such as driving dynamics,
up-to-date geographical information, past behaviour of the driver, current (or estimated)
traffic and climate conditions. Sources are vehicular ECUs, ‘off-board’ servers, and the
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ICM system. The latter bridges the different worlds of on-board and off-board systems
and is able to process new information based upon the combined data, to support ap-
plications that offer improvements related to fuel economy, active driver safety, traffic
efficiency, and parking space allocation; or more generally: ‘an improved driving experi-
ence’. They all share an increased interconnectedness of formerly distinct systems to offer
new opportunities while also introducing new risks.

In conclusion, the requirements and user expectations regarding the number of functional-
ities and services provided by ICM are continuously growing. At the start of this research
programme, such an evolution was only speculated upon, but now it has become reality.
Unfortunately, the applied technologies and in particular the evolution of architectural
concepts did not keep pace with current demands. Today, OEMs and tier-1 OEMs are
encountering unpredictable integration efforts of such multi-sourced and mixed-criticality
SW systems and are forced to bear cost-intensive downstream fix-up phases with signif-
icant negative effects on economic success. However, with further developments, such as
vehicles’ connectivity to infrastructure, vehicular ad-hoc networks, (semi-) autonomous
driving and electrical drives, this evolution is still in its early stages. A solution at the
management/organisational level is not foreseeable, as with inadequate architectural con-
cepts, the current problems are to be seen at the technical level.

This research programme contributes a solution to relieve such architectural deficits by
proposing a set of integral concepts for a predictable integration, maintenance and oper-
ation of ICM. It adapts composability to the domain of ICM and envisages this as a key
characteristic that has to be manifest in a system’s architecture. The concepts and de-
tailed technologies for containment, shared resource arbitration and compositing perfectly
complement each other to improve composability and reduce complexity, while exploiting
the features of parallel HW architectures. Their interoperability has been proven with
a demonstrator. Transferring these concepts into practice can build a foundation for a
more predictable and efficient development of next-generation ICM.
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176. Navet, Nicolas, Aurélien Monot, Bernard Bavoux, and Françoise Simonot-Lion
(July 2010). “Multi-source and multicore automotive ECUs - OS protection mecha-
nisms and scheduling”. In: IEEE International Symposium on Industrial Electronics
(ISIE), pp. 3734–3741. doi: 10.1109/ISIE.2010.5637677 (cit. on p. 20).

177. Neiger, Gil, Amy Santoni, Felix Leung, Dion Rodgers, and Rich Uhlig (Aug. 2006).
“Intel Virtualization Technology: Hardware Support for Efficient Processor Virtual-
ization”. In: Intel Technology Journal 10.3. doi: 10.1535/itj.1003 (cit. on pp. 87,
88).

178. Nesbit, Kyle J., Miquel Moreto, Francisco J. Cazorla, Alex Ramirez, Mateo Valero,
and James E. Smith (May 2008). “Multicore Resource Management”. In: IEEE
Micro 28 (3), pp. 6–16. doi: 10.1109/MM.2008.43 (cit. on p. 123).

179. Nett, Tillmann and Jörn Schneider (2013). “Running Linux and AUTOSAR side
by side”. In: 7th Junior Researcher Workshop on Real-Time Computing. Sophia
Antipolis, Frankreich, pp. 29–32 (cit. on p. 47).

180. Neumann, Peter G (2004). “Principled assuredly trustworthy composable architec-
tures”. In: Final report for Task 1 (cit. on pp. 3, 15, 18, 32, 35, 36, 187–189).

181. Neumann, Peter G. (2006). “System and network trustworthiness in perspective”.
In: Proceedings of the 13th ACM conference on Computer and communications secu-
rity. CCS ’06. Alexandria, Virginia, USA: ACM, pp. 1–5. doi: 10.1145/1180405.

1180406 (cit. on p. 5).

177

http://dx.doi.org/10.1145/2611354.2611369
http://dx.doi.org/10.1109/MS.2010.55
http://dx.doi.org/10.1109/ISIE.2010.5637677
http://dx.doi.org/10.1535/itj.1003
http://dx.doi.org/10.1109/MM.2008.43
http://dx.doi.org/10.1145/1180405.1180406
http://dx.doi.org/10.1145/1180405.1180406


BIBLIOGRAPHY

182. NHTSA (2012). Visual-Manual NHTSA Driver Distraction Guidelines for In-
Vehicle Electronic Devices. NHTSA Guideline Docket No. NHTSA-2010-0053. Na-
tional Highway Traffic Safety Administration (NHTSA), U.S. Department of Trans-
portation (DOT) (cit. on pp. 20, 188).

183. NHTSA (Apr. 2013). Distracted Driving 2011. Research Note DOT HS 811 737.
Washington, DC, USA: National Highway Traffic Safety Administration (NHTSA),
U.S. Department of Transportation (DOT) (cit. on p. 20).

184. Olariu, Stephan (2007). “Peer-to-peer Multimedia Content Provisioning for Vehic-
ular Ad Hoc Networks”. In: Proceedings of the 3rd ACM Workshop on Wireless
Multimedia Networking and Performance Modeling. WMuNeP ’07. Chania, Crete
Island, Greece: ACM, pp. 1–1. doi: 10.1145/1298216.1298217 (cit. on p. 28).

185. Perrow, Charles (2011). Normal Accidents: Living with High Risk Technologies.
Princeton University Press (cit. on pp. 21, 22).

186. Pfleging, Bastian, Stefan Schneegass, Dagmar Kern, and Albrecht Schmidt (2014).
“Vom Transportmittel zum rollenden Computer – Interaktion im Auto”. German.
In: Informatik-Spektrum 37.5, pp. 418–422. doi: 10.1007/s00287- 014- 0804- 6

(cit. on pp. 20, 26).

187. Pflug, Enno and Sue Frederick (Jan. 2011). Continental at CES 2011 in Las Vegas.
The Car of the Future is Always On: Apps, HMI and Personalization will fuel Driv-
ing Experiences. Press Release. Schwalbach, Auburn Hills: Continental AG (cit. on
pp. 42, 49).

188. Pham, Dac, Jim Holt, and Sanjay Deshpande (2011). “Embedded Multicore Sys-
tems: Design Challenges and Opportunities”. English. In: Multiprocessor System-
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Glossary

“When I use a word it means just what I choose it to mean neither more nor
less.” (Humpty Dumpty (Carroll, 1887))

Application An application provides a set of functional features to its user. It may consist
of one or more components, modules or subsystems (ISO 24765, 2010, p17).

Application Developer A person or group that develops an application or subsequent
components. Preferably an available framework is utilised to improve portability
and compatibility to interdependent applications and components.

Application Domain An application domain is an application that consists of compo-
nents.

Central Processing Unit Provides the main computational resources of a hardware sys-
tem.

Compatibility Compatibility implies that different components of a system can coexist
without adverse side effects (Peter G Neumann, 2004, p3).

Complexity Per Leveson (2011, p4), complexity can be defined as intellectual unman-
ageability. She further subdivides into interactive complexity (interaction among
system components), dynamic complexity (changes over time), decompositional
complexity (structural decomposition is not consistent with the functional decom-
position), and nonlinear complexity (cause and effect are not directly related).

Component A component denominates a subset of functional features in comparison to
an application. This means an application (or application domain) consists of
one or more components.

Composability A quality that refers to correctness of a system that integrates differ-
ent components, whereas correctness includes the fulfilment of both functional
and temporal requirements. It subsumes system qualities like compatibility and
interoperability.
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Dependability Dependability of a (computing) system is related to its ability to deliver
a predefined service that can justifiably be trusted (Avižienis et al., 2001, p2).
It is essentially indistinguishable from trustworthiness (Peter G Neumann, 2004,
p2).

Driver Distraction An inattention that occurs when drivers divert their attention away
from the driving task to focus on another activity. These distractions can be
from electronic devices or more conventional distractions such as interacting with
passengers and eating (NHTSA, 2012, p5).

End of Production The end of production (EoP) describes a certain point in time on
which the production line for a particular vehicle or vehicular component is
stopped.

Failure in Time A quantitative figure to express the failure rate of a component within
a predefined time span. ISO 26262 (2011) extensively refers to ‘FIT’ in relation
to functional safety.

Functional Safety The part of the overall safety that depends on a system or equipment
operating correctly in response to its inputs (IEC, 2014).

Head-Unit A hardware platform (i.e., computer) that represents the central computing
instance of an ICM system (Wietzke and Tran, 2005).

Human Machine Interface cf. User Interface

In-Car Multimedia In-Car Multimedia describes a software-intensive system, which con-
sists of components that provide information and entertainment within an au-
tomotive context. Related terms are infotainment or In-Vehicle Infotainment
(IVI).

Integrator A person or team to put parallel and independently developed system parts
together to build an integral whole.

Interoperability Interoperability implies that different components of a system are able
to work constructively with one another (Peter G Neumann, 2004, p4).

Logical Complexity Logical complexity is expressed due to the number of cases (or states)
that the verification (or testing) process must handle (Sha, 2001).

Multi-Sourced Software The development of software is divided into distinct depart-
ments that may not belong to a single organisation.

Multimedia An interdependent combination of digital manipulated text, graphic, sound,
and video, whereas the delivery can optionally be controlled by the user.
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Multimodal Multiple interaction modes with a system for input (e.g., push button, touch
display, speech recognition) and output of data (e.g., audible visual).

OpenICM An academic SW framework maintained at the ICM labs at the University of
Applied Sciences Darmstadt (Knirsch et al., 2012b).

Portable Operating System Interface POSIX defines a standard OS interface and en-
vironment, including a command interpreter, and common utility programs to
support applications portability at the source code level (ISO/IEC/IEEE 9945,
2008).

Processing Unit A hardware device that provides computational resources (i.e. micro-
controller).

Quality Management System A set of interconnected processes that support an organ-
isation to achieve its objectives (Hoyle, 2005, p685).

Quality of Service The QoS describes a requirement for the delivery of information with
respect of the end-to-end path of a certain data flow. This can be related to
operational deadlines as well to the resolution of video, audio, or other media.

Safety Safety is the state of being safe from consequences of events that are considered
non-desirable. This implies a protection from events that cause health or eco-
nomic losses, or at least a control of particular hazards to achieve a defined level
of risk.

Software Framework A common infrastructure accompanied with guidelines to ease the
development and maintenance process in particular for projects with independent
and parallel development. It supports both the design phase and the implemen-
tation phase by domain specific abstractions of the underlying system (Wietzke
and Tran, 2005).

Start of Production The start of production (SoP) describes a certain point in time
on which the production line for a particular vehicle or vehicular component is
started. All development has to be finished before SoP to prevent a delay in
production.

Task A task represents a single computational context with, e.g., an individual stack and
program counter. Within the context of this report, it is used interchangeably
with the terms thread and process.

Trustworthiness Trustworthiness represents the extent to which a defined set of require-
ments is likely to be satisfied under specified conditions. According to Peter G
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Neumann (2004, p1), this means ‘worthy of being trusted to satisfy the given
expectations’.

User Experience The User Experience subsumes the perceived quality aspects of an inter-
active system, which includes dimensions like perceived ease of use and perceived
visual attractiveness (cf. (Mahlke, 2005)).

User Interface An interface that enables information to be passed on between a human
user and hard- or software components (i.e., to allow a user to interact) (ISO
24765, 2010, p390).

Verification The verification of a system is the process to formally prove its conformance
with its intended behaviour (i.e., specification) (Kreiker et al., 2011b, p26).
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Abbreviations

3G Third Generation of Mobile Telecommunications Technology

AMP Asymmetric Multi-Processing

APS Adaptive Partitioning Scheduler

AUTOSAR Automotive Open System Architecture

CAN Controller Area Network

CD Containment Domain

COTS Contributed Off The Shelf

CPU Central Processing Unit

DARPA Defense Advanced Research Projects Agency

DI Device Instance

DM Device Manager

DPS Dynamic Priority Scheduling

E/E Electrical/Electronic

ECU Electronic Component Unit

ED Execution Domain

EoP End of Production

FCFS First Come First Serve
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FIFO First In First Out

FIT Failure in Time

FOSS Free and Open Source Software

FPS Fixed Priority Scheduling

GPU Graphical Processing Unit

HTML Hyper Text Markup Language

HW Hardware

I/O Input/Output

IATF International Automotive Task Force

ICM In-Car Multimedia

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

IMA Integrated Modular Avionics

IPC Inter-Process Communication

IRQ Interrupt Request

ISO International Organization for Standardization

KMS Kernel Mode Setting

KVM Kernel-based Virtual Machine

LTE Long Term Evolution

LVDS Low Voltage Differential Signal

LXC Linux Containers

M2M Machine-to-Machine

MC Multicore

MMU Memory Management Unit

MOC Models of Computation

MOST Media Oriented System Transport
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NFR Non-Functional Requirements

NHTSA National Highway Traffic Safety Administration

OEM Original Equipment Manufacturer

OS Operating System

OSD Operating System Domain

OSGi Open Services Gateway Initiative

POSIX Portable Operating System Interface

PU Processing Unit

QMS Quality Management System

QoS Quality of Service

RT real-time

RTOS Real-Time Operating System

SD Service Driver

SDK Software Development Kit

SHARB Shared Resource Arbiter

SMP Symmetric Multi-Processing

SOA Service Oriented Architecture

SoC System-on-Chip

SoP Start of Production

SQuaRE Software product Quality Requirements and Evaluation

SW Software

TDMA Time Division Multiple Access

UI User Interface

UK United Kingdom

UKCRC UK Computing Research Committee

UMTS Universal Mobile Telecommunications System
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US United States

UX User Experience

VM Virtual Machine

VMM Virtual Machine Monitor

VMMC Virtual Machine Multicore

vOSD virtual Operating System Domain

vPU virtual PU

WAVE Wireless Access in Vehicular Environments

WCET Worst Case Execution Time

WCRT Worst Case Response Time

WHO World Health Organization

WLAN Wireless Local Area Network
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A

Experimental Results

The main body of this thesis focuses on the discussion on structuring potentially incom-
patible software components. In the interest of readability, the following experiments are
located separately and referenced in the respective sections. However, the intention of
this appendix is to provide empiric, quantitative and reproducible results to foster com-
prehensible evidence for certain isolated aspects. This means the following sections take
up on abstract problems with prototype implementations to demonstrate problems and
effects of proposed concepts.

A.1 Incompatible scheduling policies

The following experiments exemplify the implications that arise with the coexistence
of concurrent scheduling policies in MC environments based on the discussion in Sec-
tion 4.2.3. Therefore nthreads (Tn) are created that share a common scheduling priority.
They are organised into two components (C0 and C1), and while regarding the scheduling
policy, the threads of C0 make use of RR and the threads of C1 make use of FIFO. All
threads compute the same independent workload that is not interrupted (i.e., by synchro-
nisation, cooperative ‘yields’, or device access) using two PUs and SMP scheduling. This
implies threads of C1 are not pre-empted to grant computational resource to the ones of
C0, while threads of C0 are pre-empted and do not receive computational resources before
the ones of C0 are finished.

For the experiment, each processing of workload is repeated r times, while for each pro-
cessing, elapse time is measured. This means for each T a number of r ‘elapse times’ (tr)
are available. These establish the base to derive temporal characteristics regarding the
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elapse times in form of sum (tsum), arithmetic mean (tmean), maximum (tmax), minimum
(tmin) and standard deviation (tsd). The first elapse time (t0) additionally contains the
startup time (tstartup) of T. Figure A.1 illustrates the design of the respective application
component with regard to the measuring points of tr.

init thread data

print summary

start threads

[more to do]

[done]

check  

iterations

configure: 
• scheduling policy 
• number of threads 
• workload & iterations 
• deadlines for workload

thread  
context

…

join threads

trcompute workload

tstartup

Figure A.1: Multithreaded test component

Based on the proposed concept for EDs using PU-affinity, the experiment is repeated with
the same configuration, except that C0 and C1 are assigned to different PUs to isolate
the scheduling domains. This means the experiment is conducted using two setups (S),
as depicted in Figure A.2:

• S1 (mixed) - an uncoordinated allocation of PUs by the OS’s task scheduler (using
SMP).

• S2 (partitioned) - a dedicated allocation of PUs by configuration of the OS’s task
scheduler (using SMP with PU affinity).

The experiment is targeted for a Linux OS. The results detailed in Table A.1 were collected
using kernel release 3.17.3 configured for low-latency scheduling and operated on an Intel
Core i7 64bit hardware platform that hosts 4 PUs with simultaneous multi-threading
(SMT).

In particular, the reduced tsd for the threads of C0 within S2 (partitioned) mean a more
deterministic computation of the individual workloads. It appears the temporal char-
acteristics for one of the threads for C1 decreases. However, this is related to the FIFO
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C0

host-OS

hardware platform

C1 ED0

host-OS

hardware platform

ED1

C0 C1

… …

mixed partitioned1 2

Figure A.2: Setup for demonstrating incompatible scheduling policies

S C policy n PU tstartup tsum tsd tmin tmax

m
ix

ed

0 RR
0 2 0.000 8.851 1.133 0.229 6.012

1 0 0.000 8.827 1.132 0.229 6.006

1 FIFO
2 2 0.199 4.630 0.039 0.229 0.430

3 0 0.099 4.525 0.020 0.229 0.331

p
ar

ti
ti

on
ed 0 RR

0 0 0.099 8.844 0.054 0.361 0.494

1 0 0.000 8.822 0.056 0.361 0.493

1 FIFO
2 2 4.408 8.806 0.864 0.228 4.638

3 2 0.000 4.408 0.001 0.229 0.231

configured with n=4 and r=25

Table A.1: Parallel computed components using different scheduling policies

scheduling. Moreover, a parallel computation of workload for a component that is designed
to process its tasks sequentially may even cause unexpected behaviour. This implies an
increased tsd and tstartup is related to FIFO scheduling. In summary, with partitioned
scheduling of S2 compatibility of components that relay on different scheduling policies,
determinism is improved.

A.1.1 Listings

The experiment’s code listings are detailed in Section A.2.

A.2 Scheduling within virtualised environments

Virtualisation introduces overhead, a result of the abstraction of the native ISA interface
to host a virtual guest, as well as due to multiple OS instances. This has an impact on the
performance efficiency of applications deployed to a virtual environment. Additionally,
the VMM may provide only a subset of computational resources to the VM, which fur-
ther decrease an application’s performance within a VM. Such restriction on provisioned
resources reserves computational power for coexisting VMs or applications. PU affinity is
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an effective means to achieve such limitation or reservation respectively on computational
resources. The effect is visualised by an experiment that utilises an application that cre-
ates a configurable number tasks Ti using RR scheduling, each processing an independent
workload: incrementing a counter from 0 to 109 with five iterations. The arithmetic mean
of these iterations is saved before this ‘measurement’ is repeated for another five times
to improve stability of the results. These results are again summed up by use of the
arithmetic mean of the iterations, as depicted in Figure A.3.

init

wait for trigger

compute workload

start processes

[more to do]

[done]

check  

repetitions

configure: 
• number of processes 
• number of repetitions 
• scheduling priority & policy

separate  
process context

…

join

output measures

send trigger

∆t
measure duration of 

one iteration per 
context/workload 

check  

iterations
[more to do]

[done] calculate mean of 
duration of iterations 
per process context

calculate mean of 
duration of repetitions 
per process context

Figure A.3: Test application to apply parallel workload

Figure A.4 depicts the results with four VMMC setups with a varying number of con-
figured vPUs in relation to native execution of the test application using a hardware
platform that provides four PUs and eight parallel tasks (i=8). Therefore the test appli-
cation is re-run with different limitations/reservations enforced with PU affinities while
the workload has not been changed. The used PUs are mapped to the figure’s horizontal
axis. The host OS is Linux, while for the VMM QEMU/KVM is used.

The results show the overhead to the native execution of the test application. Related to
the application’s actual performance, it is basically insignificant whether the ‘limitation’
is configured at the level of the host by pinning the VMMC to a set of native hardware
PUs, or the guest by pinning the application within the VMMC to a set of vPUs.
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Figure A.4: Parallel workload with PU affinity using different VMMC configurations

To further detail the feature of pinning a VMMC’s vPUs to a single native PU, the
experiment detailed in Section A.1 is ported to a virtualised environment. The objective is
to evaluate the impact of PU-affinity-based EDs using a VMMC architecture as proposed
in Section 4.3.3. Therefore the already-available prototype test application is reused
without any modification except the underlying OS and hardware platform. The OS is
a Linux kernel configured for low-latency with a small-sized RAM file-system, executed
on a VMMC that relies on QEMU/KVM. The experiment is therefore extended with two
more setups, as depicted in Figure A.5:

• S3 (vmixed) - an uncoordinated allocation of PUs by the guest-OS’s task scheduler.
• S4 (vpartitioned) - a dedicated allocation of

PUs by configuration of the guest-OS’s task scheduler.

Based on the S3 and S4 three additional configurations using different numbers of vPUs
for the VMMC are tested, as depicted in Table A.2.

Similar to the results for native partitioning, the results for VMMC-based runtime envi-
ronments also show a significant decrease of the standard deviation of the ‘elapse times’
(tsd). This difference between the mixed and partitioned setup for the different configu-
ration with regards to tsd and independent of the task’s ‘overall duration’ is depicted in
Figure A.6 (which also incorporates the results for native partitioning; cf. Section A.1).
The ‘overall duration’ increases with reduction of available computational resources as
the parallelism is substituted with concurrency (‘quasi parallel execution’).
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S C policy n tstartup tsum tsd tmin tmax

m
ix

ed

0 RR
0 0.000 8.861 1.133 0.230 6.011

1 0.000 4.429 0.001 0.230 0.237

1 FIFO
2 4.422 8.845 0.867 0.229 4.657

3 0.000 4.422 0.002 0.228 0.235

p
a
rt

it
io

n
ed 0 RR

0 0.099 8.865 0.053 0.361 0.492

1 0.000 8.835 0.056 0.361 0.496

1 FIFO
2 4.423 8.845 0.867 0.230 4.654

3 0.000 4.423 0.000 0.230 0.232

(a) VMMC with four vCPUs

S C policy n tstartup tsum tsd tmin tmax

m
ix

ed

0 RR
0 0.00 8.81 1.12 0.22 5.98

1 0.00 4.37 0.00 0.22 0.23

1 FIFO
2 0.00 8.85 0.00 0.22 0.27

3 0.00 4.38 0.00 0.22 0.23

p
ar

ti
ti

on
ed 0 RR

0 0.09 8.74 0.05 0.35 0.49

1 0.00 8.67 0.05 0.35 0.49

1 FIFO
2 4.37 8.75 0.85 0.22 4.60

3 0.00 4.37 0.00 0.22 0.23

(b) VMMC with two vCPUs

S C policy n tstartup tsum tsd tmin tmax

m
ix

ed

0 RR
0 0.00 17.29 2.21 0.44 11.77

1 0.00 17.24 2.21 0.44 11.73

1 FIFO
2 0.00 8.63 0.00 0.44 0.47

3 0.00 8.60 0.00 0.44 0.45

p
ar

ti
ti

on
ed 0 RR

0 0.11 17.44 0.07 0.83 1.07

1 0.00 17.29 0.06 0.83 0.98

1 FIFO
2 8.69 17.47 1.70 0.44 9.16

3 0.00 8.66 0.00 0.44 0.47

(c) VMMC with one vCPU

Table A.2: Mixed scheduling analysis using different VMMC configurations (a-c)
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Figure A.5: Counter incompatible scheduling policies with virtualisation
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Figure A.6: RR task’s standard deviations related to different VMMC configurations

A.2.1 Listings

The following code listings exemplify the realisation of the experiment on applying parallel
workload on different environments.

Listing A.1 details the implementation of the experiment as outlined in Figure A.3. The
script detailed in Listing A.2 improves reproducibility and usability by repeating the
workload using different PU affinities.
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Listing A.1
✞

1 # include <iostream >

# include <wait.h>

# include <stdlib .h>

# include <new >

# include " prios_helper .h"

6 # include " memory .h"

using namespace std;

/* data structure passed to the worker tasks (note: not threadsafe ) */

11 struct measure_component_info {

unsigned int id;

pid_t pid;

double result ;

};

16
/* do the work and measurement */

double measure ( measure_component_info & measure_data ,

unsigned int measure_runs = 5) {

const unsigned long long loops = 1000000000;

21 double * measure_duration = new double [ measure_runs ];

double measure_duration_sum = 0.0;

for ( unsigned int run = 0; run < measure_runs ; run ++) {

DEBUG_TRACE ("[comp #%u] Starting run #%u/%u", measure_data .id ,

26 run + 1, measure_runs )

measure_duration [run] = work_additions ( loops );

measure_duration_sum += measure_duration [run ];

DEBUG_TRACE ("[comp #%u] Finished run #%u/%u after %f s",

measure_data .id , run + 1, measure_runs ,

31 measure_duration [run ])

}

measure_data . result = measure_duration_sum / measure_runs ;

DEBUG_TRACE ("[comp #%u] Measured %f s on average to loop %lld times ",

36 measure_data .id , measure_data .result , loops )

delete [] measure_duration ;

return measure_data . result ;

}

41
/* create shm and fork worker tasks */

int parallel_load ( const unsigned int test_proc_cnt , const unsigned int provided_cpus )

{

const char * shm_name = " TESTPROG_SHM ";

const unsigned int runs_per_test_proc = 5;

46
/* init shared memory for data */

exchange

void * shm_ptr =

allocateSHM (shm_name ,

51 MAKE_ALIGNMENT_SIZE ( test_proc_cnt *

sizeof ( measure_component_info )));

measure_component_info * data_exchange_loop_test =

new( shm_ptr ) measure_component_info [ test_proc_cnt ];

for ( unsigned int i = 0; i < test_proc_cnt ; i++) {

56 data_exchange_loop_test [i]. id = i;

data_exchange_loop_test [i]. pid = 0;

data_exchange_loop_test [i]. result = 0.0;

}

61 /* start measuring */
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Listing A.1

DEBUG_TRACE (" Starting measuring components ...")

for ( unsigned int test_proc = 0; test_proc < test_proc_cnt ;

test_proc ++) {

pid_t comp_pid = -666;

66 if (( comp_pid = fork ()) == 0) {

measure ( data_exchange_loop_test [ test_proc ], runs_per_test_proc );

/* abort execution of child process after measuring */

return 666;

} else {

71 data_exchange_loop_test [ test_proc ]. pid = comp_pid ;

DEBUG_TRACE

(" Measuring component %u started and makes use of PID %d",

test_proc , comp_pid )

}

76 }

DEBUG_TRACE (" Waiting for measuring components ...")

unsigned int proc_finished = 0;

while ( proc_finished < test_proc_cnt ) {

81 int status = 0;

pid_t pid = wait (& status );

if ( status != EXIT_SUCCESS ) {

cerr << " Ooops component with pid " << pid <<

" died with status " << status << endl;

86 } else {

DEBUG_TRACE

(" Component with pid %d finished successfully ", pid)

}

++ proc_finished ;

91 }

/* print results */

# ifdef READABLE

96 for ( unsigned int i = 0; i < test_proc_cnt ; i++) {

cout << " Component #" << data_exchange_loop_test [i].

id << " with pid " << data_exchange_loop_test [i].

pid << " measured " << data_exchange_loop_test [i].

result << " s " << endl ;

101 }

# else

cout << provided_cpus << ";";

106 for ( unsigned int i = 0; i < test_proc_cnt ; i++) {

cout << data_exchange_loop_test [i]. result ;

if (i < test_proc_cnt - 1) {

cout << ";";

} else {

111 cout << endl;

}

}

# endif

116

deallocateSHM ( shm_name );

return EXIT_SUCCESS ;

121 }
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Listing A.1

/* main routine */

int main(int argc , char ** argv) {

unsigned int test_proc_cnt = 4;

126 unsigned int test_runs = 1;

unsigned int provided_cpus = 99;

int c, success ;

opterr = 0;

131 while ((c = getopt (argc , argv , "c:r:p:")) != -1)

switch (c) {

case ’c’:

/* number of parallel processes */

test_proc_cnt = atoi( optarg );

136 break ;

case ’r’:

/* number of repetitions of the whole test */

test_runs = atoi( optarg );

break ;

141 case ’p’:

/* first column of csv output (CPUs available ) */

provided_cpus = atoi( optarg );

break ;

case ’?’:

146 cerr << " Unknown option character " << hex << optopt << endl;

return 1;

default :

abort ();

}

151
for (int index = optind ; index < argc; index ++) {

cerr << "Non - option argument " << argv[ index ] << endl;

}

156 for ( unsigned int run = 0; run < test_runs ; run ++) {

DEBUG_TRACE (" Start run %u\n", run);

success = parallel_load ( test_proc_cnt , provided_cpus );

if ( success == 666) {

161 return EXIT_SUCCESS ;

}

assert ( success == EXIT_SUCCESS );

}

166 return EXIT_SUCCESS ;

}
✡✝ ✆

Listing A.1: Generate parallel workload using RR scheduling

Listing A.2
✞
#!/ bin/sh

# measure duration of concurrent workload on available HW platform

3
repetitions =5

parallel =8
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Listing A.2

cpus_available =$1

8 if [ -z " $cpus_available " ] ; then

cpus_available =‘grep -c processor /proc/cpuinfo ‘

fi

SCRIPTPATH ="‘pwd -P‘/‘ dirname $0 ‘"

13 cd $SCRIPTPATH

outputfile =/ tmp/ parallel_load_ ‘date "+%Y%m%d%H%M%S" ‘.csv

rm -f $outputfile

18 echo -n "CPU" > $outputfile

i=1

while [ "$i" -le " $parallel " ] ; do

echo -n ";T$i" >> $outputfile

i=$(( $i + 1))

23 done

echo >> $outputfile

allmask ="$(((1 < < $cpus_available ) -1))"

procs =0

28 cnt= $cpus_available

while [ " $procs " -lt " $cpus_available " ] ; do

mask="$(( $allmask >> $procs ))"

taskset $mask ./ parallel_load -c8 -p$cnt -r$repetitions >> $outputfile

procs =$(( $procs + 1))

33 cnt=$(( $cnt - 1))

done

echo " >>> check $outputfile "
✡✝ ✆

Listing A.2: Configure parallel load

Listing A.3 shows the ‘application component starter’ that configures and starts the ap-
plication components. The latter creates the worker threads for using a given scheduling
policy and measure durations, as outlined in Figure A.1 and detailed in Listing A.4.

Listing A.3
✞
# include " prios_helper .h"

2
# include <assert .h>

# include <unistd .h>

# include <stdlib .h>

# include <stdio .h>

7 # include <string .h>

# include <pthread .h>

# include <wait.h>

// main routine

12 int main(int argc , char ** argv ) {

/* check for SU privileges */

assert ( getuid () == 0);
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Listing A.3

17 /* default configuration */

int threads = 2;

int prio = 20;

int loops = 25;

int iterations = 20000;

22 int deadline = 1500;

char method [80];

bool mixedMode = false ;

/* init affinity */

27 cpu_set_t runmask ;

CPU_ZERO (& runmask );

/* check arguments */

int c;

32 opterr = 0;

while ((c = getopt (argc , argv , "t:s:p:l:d:m:i:M")) != -1)

switch (c) {

/* loop counter */

37 case ’l’:

loops = atoi( optarg );

break ;

/* iterations - depending on acutal work */

42 case ’i’:

iterations = atoi( optarg );

break ;

/* deadline in msec */

47 case ’d’:

deadline = atoi( optarg );

break ;

/* number of created worker tasks */

52 case ’t’:

threads = atoi( optarg );

break ;

/* priority of worker tasks */

57 case ’p’:

prio = atoi( optarg );

break ;

/* workload */

62 case ’m’:

strncpy (method , optarg , 80);

break ;

/* mixed mode */

67 case ’M’:

mixedMode = true ;

break ;

case ’?’:

72 fprintf (stderr , " Unknown option character ‘\\x%x ’.\n", optopt );

return 1;

default :

abort ();

77 }
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Listing A.3

for (int index = optind ; index < argc; index ++) {

printf ("Non - option argument %s\n", argv[ index ]);

return 1;

82 }

/* set priority ( inherited by components - if not explicitly assigned ) */

set_priority (prio + 2, pthread_self () , SCHED_RR );

87 int cmd_argv_len = 8;

int cmd_argv_item_maxlen = 80;

char ** cmd_argv = new char *[8];

cmd_argv [0] = ( char *)" application_component ";

for (int i = 1; i < cmd_argv_len - 1; i++) {

92 cmd_argv [i] = new char [ cmd_argv_item_maxlen ];

}

snprintf ( cmd_argv [2] , cmd_argv_item_maxlen , "-t%d", threads );

snprintf ( cmd_argv [3] , cmd_argv_item_maxlen , "-l%d", loops );

snprintf ( cmd_argv [4] , cmd_argv_item_maxlen , "-i%d", iterations );

97 snprintf ( cmd_argv [5] , cmd_argv_item_maxlen , "-d%d", deadline );

snprintf ( cmd_argv [6] , cmd_argv_item_maxlen , "-m%s", method );

cmd_argv [7] = NULL;

102 /* create components */

pid_t pid = -666;

if (( pid = fork ()) == 0) {

/* set affinity */

if ( mixedMode ) {

107 CPU_SET (1, & runmask );

}

CPU_SET (0, & runmask );

set_affinity ( runmask );

112 snprintf ( cmd_argv [1] , cmd_argv_item_maxlen , "-s%s", "RR");

int result = execve ( cmd_argv [0] , cmd_argv , NULL);

assert ( result == 0);

}

if (( pid = fork ()) == 0) {

117 /* set affinity */

CPU_SET (1, & runmask );

if ( mixedMode ) {

CPU_SET (0, & runmask );

}

122 set_affinity ( runmask );

snprintf ( cmd_argv [1] , cmd_argv_item_maxlen , "-s%s", "FIFO");

int result = execve ( cmd_argv [0] , cmd_argv , NULL);

assert ( result == 0);

127 }

/* wait for components to finish */

int status = 0;

/* ... first component */

132 pid = wait (& status );

if ( status != EXIT_SUCCESS ) {

fprintf (stderr , " Ooops component with pid %d died with status %d \n", pid , status

);

}

/* ... second component */

137 pid = wait (& status );
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Listing A.3

if ( status != EXIT_SUCCESS ) {

fprintf (stderr , " Ooops component with pid %d died with status %d \n", pid , status

);

}

/* cleanup */

142 for (int i = 1; i < cmd_argv_len - 1; i++) {

delete [] cmd_argv [i];

}

return EXIT_SUCCESS ;

147 }
✡✝ ✆

Listing A.3: Application component starter

Listing A.4
✞
# include " prios_helper .h"

3 # include <assert .h>

# include <unistd .h>

# include <stdlib .h>

# include <stdio .h>

# include <string .h>

8 # include <pthread .h>

enum Workload {

MEASURE_PRIME , MEASURE_ADD

};

13
enum Policy {

MIXED = 0, FIFO = SCHED_FIFO , RR = SCHED_RR

};

18 struct ThreadData {

int id;

int policy ;

int prio;

int loops ;

23 unsigned int deadline ;

Workload workload ;

unsigned long long iterations ;

timespec start ;

};

28
/* the thread function */

void * threadProc ( void *arg) {

timespec tend , startup ;

ThreadData td = *( reinterpret_cast < ThreadData * >(arg));

33 set_priority (td.prio , pthread_self () , td. policy );

double * durations = new double [td. loops ];

unsigned int *cpus = new unsigned int[td. loops ];

double cpuspeed = rdcpuspeed ();

38 stopwatch ( startup );

unsigned long long cur_tsc , last_tsc = rdtsc ();

for (int j = 0; j < td. loops ; j++) {
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Listing A.4

switch (td. workload ) {

43 case MEASURE_PRIME :

work_prime (td. iterations );

break ;

case MEASURE_ADD :

work_additions (td. iterations );

48 break ;

default :

assert ( false );

break ;

}

53
cpus[j] = get_cpuid ();

cur_tsc = rdtsc ();

durations [j] = ( cur_tsc - last_tsc ) / cpuspeed ;

last_tsc = cur_tsc ;

58 }

double sum = 0.0 , max = 0.0 , min = ( double )1E9;

unsigned int missed_deadlines = 0;

63 durations [0] += diff2double (td.start , startup );

for (int j = 0; j < td. loops ; j++) {

sum += durations [j];

if (max < durations [j]) {

68 max = durations [j];

}

if (min > durations [j]) {

min = durations [j];

}

73 if (td. deadline > 0 && durations [j] > ( double )(td. deadline ) / 1000.0) {

missed_deadlines ++;

}

}

78 stopwatch (tend);

printf (

"%d %d %d - %s on %d start : %6.3f duration : %6.3f [sum =%06.3 f mean =%06.3 f

min =%06.3 f max =%06.3 f sd =%06.3 f md =%u/%d durations =",

td.id , getpid () , gettid () , (td. policy == FIFO) ? "FIFO" : "RR ", get_cpuid

() , diff2double (td.start , startup ), diff2double (td.start , tend),

sum , sum / ( double )(td. loops ), min , max ,

83 standardDeviation ( durations , td. loops ), missed_deadlines , td. loops );

for (int j = 0; j < td. loops ; j++) {

printf ("%4.2f ", durations [j]);

}

printf (" cpus=");

88 for (int j = 0; j < td. loops ; j++) {

printf ("%u", cpus[j]);

}

printf ("]\n");

93 delete [] durations ;

delete [] cpus;

return NULL;

}

98
/* create a new thread */
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Listing A.4

pthread_t createThread ( ThreadData * td) {

pthread_t tid;

assert (0 == pthread_create (&tid , NULL , threadProc , td));

103 return tid;

}

/* main routine */

int main(int argc , char ** argv) {

108
/* check for SU privileges */

assert ( getuid () == 0);

/* default configuration */

113 unsigned int number_of_subtasks = 1;

ThreadData td;

td. policy = MIXED ;

td.prio = 20;

118 td. loops = 10;

td. deadline = 0;

td. workload = MEASURE_ADD ;

td. iterations = 20000000;

123 /* check arguments */

int c;

opterr = 0;

while ((c = getopt (argc , argv , "t:s:p:l:d:m:i:")) != -1)

switch (c) {

128 /* loop counter */

case ’l’:

td. loops = atoi( optarg );

break ;

133 /* iterations - depending on acutal work( additions or pi iterations ) */

case ’i’:

td. iterations = atoi( optarg );

break ;

138 /* deadline in msec */

case ’d’:

td. deadline = atoi ( optarg );

break ;

143 /* number of created worker tasks */

case ’t’:

number_of_subtasks = atoi( optarg );

break ;

148 /* priority of worker tasks */

case ’p’:

td.prio = atoi( optarg );

break ;

153 /* scheduling policy of worker tasks */

case ’s’:

if ( strncmp (optarg , "FIFO", 4) == 0) {

td. policy = FIFO;

} else if ( strncmp (optarg , "RR", 2) == 0) {

158 td. policy = RR;

} else if ( strncmp (optarg , " MIXED ", 5) == 0) {

td. policy = MIXED ;
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} else {

fprintf (stderr ,

163 " Unkown scheduling policy [%s] (only MIXED , FIFO or RR are supported

yet)\n", optarg );

return 1;

}

break ;

168 /* type of workload */

case ’m’:

if ( strncmp (optarg , "ADD", 4) == 0) {

td. workload = MEASURE_ADD ;

} else if ( strncmp (optarg , " PRIME ", 2) == 0) {

173 td. workload = MEASURE_PRIME ;

} else {

fprintf (stderr ,

" Unkown workload (only ADD or PRIME are supported yet)\n");

// return 1;

178 }

break ;

case ’?’:

fprintf (stderr , " Unknown option character ‘\\x%x ’.\n", optopt );

183 return 1;

default :

abort ();

}

188
for (int index = optind ; index < argc; index ++) {

printf ("Non - option argument %s\n", argv[ index ]);

}

193 /* set priority ( inherited by worker tasks ) */

set_priority (td.prio + 1, pthread_self () , SCHED_RR );

/* create container to store thread ids */

pthread_t * threads = new pthread_t [ number_of_subtasks ];

198 ThreadData *tds = new ThreadData [ number_of_subtasks ];

stopwatch (td. start );

for ( unsigned int i = 0; i < number_of_subtasks ; i++) {

203 memcpy (& tds[i], &td , sizeof ( ThreadData ));

tds[i]. id = i;

if (tds[i]. policy == MIXED ) {

if (i % 2) {

tds[i]. policy = SCHED_FIFO ;

208 } else {

tds[i]. policy = SCHED_RR ;

}

}

}

213
/* create tasks */

for ( unsigned int i = 0; i < number_of_subtasks ; i++) {

threads [i] = createThread (& tds[i]);

}

218
/* wait for tasks to finish */

for ( unsigned int j = 0; j < number_of_subtasks ; j++) {
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pthread_join ( threads [j], NULL);

}

223
/* tidy up */

delete [] threads ;

return EXIT_SUCCESS ;

228 }
✡✝ ✆

Listing A.4: Multi-threaded Application component

Both the ‘application component starter’ and the ‘application component’ as well as
the ‘parallel load’ generator utilise a set of helper functions to abstract the complexity
regarding PU affinity, task prioritisation, workload generation, measuring durations and
post-processing the results (cf. Listing A.5).

Listing A.5
✞
# include " prios_helper .h"

2 # include <sched .h>

# include <errno .h>

# include <string .h>

# include <stdio .h>

# include <unistd .h>

7 # include <stdlib .h>

# include <math.h>

# include <limits .h>

# include <assert .h>

# include <stdint .h>

12
/* binds the current process to the given cpu */

void set_affinity (int cpu) {

cpu_set_t runmask ;

CPU_ZERO (& runmask );

17 CPU_SET (cpu , & runmask );

set_affinity ( runmask );

}

/* binds the current process to the given cpu mask */

22 void set_affinity ( cpu_set_t runmask ) {

if ( sched_setaffinity (0, sizeof ( runmask ), & runmask ) == -1) {

printf (" failed to bind thread [with pid =%d (%s)]\n", getpid () ,

strerror ( errno ));

}

27 }

/* returns the cpu mask the proc is bound to */

int get_affinity () {

int result = 0;

32 cpu_set_t runmask ;

if ( sched_getaffinity (0, sizeof ( runmask ), & runmask ) == -1) {

printf (" failed to get cpu affinity [pid =%d] (%s)\n", getpid () ,

strerror ( errno ));

}
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37 for (int i = 0; i < 32; i++) {

if ( CPU_ISSET (i, & runmask )) {

result += 1 << i;

}

}

42 return result ;

}

/* sets the given priority to current thread and make use of SCHED_RR */

void set_priority (int prio) {

47 set_priority (prio , pthread_self () , SCHED_RR );

}

/* sets the given priority to given thread and make use of SCHED_RR */

void set_priority (int prio , pthread_t tid) {

52 set_priority (prio , tid , SCHED_RR );

}

/* sets the given priority and policy to given thread */

void set_priority (int prio , pthread_t tid , int policy ) {

57 struct sched_param threadparam ;

int curpolicy ;

pthread_getschedparam (tid , & curpolicy , & threadparam );

threadparam . sched_priority = prio;

int ret = pthread_setschedparam (tid , policy , & threadparam );

62 if (ret != 0) {

fprintf (stderr ,

" failed to set scheduling parameter for pid %d (%s) [prio =%d policy =%d]\n

",

getpid () , strerror (ret), prio , policy );

}

67 }

/* returns the current priortiy */

int get_priority () {

int policy ;

72 struct sched_param threadparam ;

pthread_t tid = pthread_self ();

pthread_getschedparam (tid , &policy , & threadparam );

return threadparam . sched_priority ;

77 }

/* returns the current policy */

int get_policy () {

int policy ;

82 struct sched_param threadparam ;

pthread_t tid = pthread_self ();

pthread_getschedparam (tid , &policy , & threadparam );

return policy ;

}

87
/* get cpu current thread is running on (may not work in virtualised envs) */

unsigned int get_cpuid () {

unsigned int cpu;

uint32_t leaf = 0x0B;

92 asm volatile (" cpuid ":"=d" (cpu):"a"(leaf):"%rbx", "%rcx");

return cpu;

}

/* get the time stamp counter (TSC) */
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97 unsigned long long int rdtsc () {

unsigned a, d;

__asm__ volatile (" rdtsc ":"=a" (a), "=d"(d));

return (( unsigned long long )a) | ((( unsigned long long )d) << 32);

}

102
/* get the cpu freq in MHz */

double rdcpuspeed ( void ) {

# ifndef INTEL

double result = 2600000000.0;

107
# else

char string [65];

char * pstring = string ;

string [64] = ’\0 ’;

112 double result = 0.0;

for ( unsigned int i = 0 x80000002 ; i <= 0 x80000004 ; i++) {

unsigned long eax , ebx , ecx , edx;

char tmpstring [17];

117 tmpstring [16] = ’\0 ’;

int j = 0;

__asm__ volatile (" cpuid ":"=a" (eax), "=b"(ebx), "=c"(ecx), "=d"(edx):"a"(i));

122 for (j = 0; j < 4; j++) {

tmpstring [j] = eax >> (8 * j);

tmpstring [j + 4] = ebx >> (8 * j);

tmpstring [j + 8] = ecx >> (8 * j);

tmpstring [j + 12] = edx >> (8 * j);

127 }

strcpy (pstring , tmpstring );

pstring += 8;

}

pstring = strchr (string , ’@’);

132 if (NULL != pstring && strlen ( pstring ) > 6) {

pstring += 2;

pstring [4] = ’\0 ’;

result = atof( pstring ) * 1000000000;

}

137 # endif

return result ;

}

/* calc prime numbers using given iterations - just to add workload */

142 double work_prime ( const unsigned long long &iter) {

timespec begin , end;

unsigned long long i;

stopwatch ( begin );

147 volatile unsigned long long max = 0;

for ( unsigned long long x = 0; x < iter; x++) {

for (i = 2; i < x; i++) {

if (x % i == 0)

break ;

152 }

if (i == x) {

max = x;

}

}

157 ( void )max;
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stopwatch (end);

return diff2double (begin , end);

}

162
/* measure addition for given iterations - just to add workload */

double work_additions ( const unsigned long long & maxloops ) {

timespec begin , end;

volatile unsigned long long loopcnt = 0;

167
assert ( maxloops <= ULLONG_MAX );

stopwatch ( begin );

for (; loopcnt < maxloops ; loopcnt ++) {

172 ;

}

stopwatch (end);

return diff2double (begin , end);

177 }

/* get current time */

void stopwatch ( timespec & curtime ) {

clock_gettime ( CLOCK_MONOTONIC , & curtime );

182 }

/* diff two timespecs */

timespec diff ( timespec start , timespec end) {

timespec temp ;

187 if (( end. tv_nsec - start . tv_nsec ) < 0) {

temp. tv_sec = end. tv_sec - start . tv_sec - 1;

temp. tv_nsec = 1000000000 + end. tv_nsec - start . tv_nsec ;

} else {

temp. tv_sec = end. tv_sec - start . tv_sec ;

192 temp. tv_nsec = end. tv_nsec - start . tv_nsec ;

}

return temp;

}

197 /* convert timespec to double */

double timespec2double ( timespec clock ) {

double result ;

result = clock . tv_sec ;

result += ( double ) clock . tv_nsec / ( double )1E9;

202 return result ;

}

/* diff two timespecs */

double diff2double ( timespec start , timespec end) {

207 return timespec2double (diff(start , end));

}

/* calculate sd on given array */

double standardDeviation ( double data [], int n) {

212 double mean = 0.0 , deviation = 0.0;

int i;

for (i = 0; i < n; ++i) {

mean += data[i];

}

217 mean = mean / n;

for (i = 0; i < n; ++i)
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deviation += (data[i] - mean ) * (data[i] - mean);

return sqrt( deviation / n);

}
✡✝ ✆

Listing A.5: Helper functions

A.3 Evaluate inter-application-container

communication

The following experiment evaluates the feasibility of communication and synchronisation
between different LXC application containers. Herefore two containers are created, one
of which acts as ‘producer’ and one as ‘consumer’. Two corresponding applications are
deployed to the respective containers. Both containers share a shared memory region
which contains a semaphore, mutex and a data buffer. The producer increments the
buffer value and repeatedly triggers the semaphore. The consumer waits for a trigger
after reading the current buffer value from the shared memory. The setup is depicted in
Figure A.7. The concurrent access to the buffer is synchronised with the mutex located
in shared memory.

Due to the possibility of making use of inter-application-container event triggers and data
transfer of potentially complex data, application container provides an applicable solution
for partition software components while preserving efficient communication facilities.

A.3.1 Listings

The following code listings exemplify the realisation of the experiment on LXC
application-container.

Listing A.6 details the configuration and life cycle management for two containers to
execute the producer (cf. Listing A.8) and consumer respectively (cf. Listing A.9). These
communicate using the structure detailed in Listing A.7.

Listing A.6
✞
#!/ bin/bash

# desc: setup and start two lxc containers that communicate via shm

4 # note: ubuntu 12.04 (or newer ) recommended

### check host environment

apps_required ="lxc - start debootstrap "

apps_missing =""
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container: consumer

map shared memory

[loop]

container: producer

update & write buffer 

send trigger

map shared memory

[loop]

wait for trigger

read buffer & printpause for 0.5 sec

shared memory

s
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p
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re

buffer
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Figure A.7: Producer and consumer with LXC application container

Listing A.6

9
for i in $apps_required ; do

which $i > /dev/null

if [ $? -ne 0 ] ; then

apps_missing =" $apps_missing $i"

14 fi

done

if [ -n " $apps_missing " ] ; then

echo ">> ERROR : the follwing applications are missing for the host environment : [

$apps_missing ] ( please install using e.g. apt -get or similar )"

19 exit 2

fi

### check privilegues

24 if [ "$UID" -ne "0" ] ; then

echo ">> ERROR : su privileges required . abort "

exit 2

fi

29 echo ">> create test applications "

make all
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### create and configure lxc containers and deploy test applications

### note: busybox template is used (cf. /usr/lib/lxc/ templates )

34 ### note: the containers are located in /var/lib/lxc

### note: test applications are named as their containers

declare -a CONTAINERS =( producer consumer ) # order is important for startup

declare -a XTERM_WINDOW_LOCATION =(+0+0 -0+0)

39
echo ">> now setup the containers "

for c in ${ CONTAINERS [@]} ; do

echo " >>> create container [$c]"

lxc - create -n $c -t busybox

44
echo ">> configure shm mount "

echo "lxc. mount . entry =/ dev/shm dev/shm none bind 0 0" >> /var/lib/lxc/$c/ config

echo ">> configure startup behaviour "

49 sed -i "s/\/ bin \/ udhcpc /\/ bin \/ $c/g" /var/lib/lxc/$c/ rootfs /etc/init.d/rcS

echo ">> deploy app [$c] to container [$c]"

cp $c /var/lib/lxc/$c/ rootfs /bin

54 echo

done

echo

59 echo ">> now start the containers "

cnt =0

for c in ${ CONTAINERS [@]} ; do

echo " >>> start container [$c]"

xterm -geometry 80 x24${ XTERM_WINDOW_LOCATION [$cnt ]} -e "lxc - start -n $c" &

64 sleep 1

cnt=$(( $cnt +1))

done

echo

69 echo -n ">> now wait a while ... "

sleep 5

echo " done"

74 echo

echo ">> now stop the containers "

for c in ${ CONTAINERS [@]} ; do

echo " >>> stop container [$c]"

79 lxc -stop -n $c

done

echo

echo ">> now cleanup "

84 for c in ${ CONTAINERS [@]} ; do

echo " >>> destroy container [$c]"

lxc - destroy -n $c

done

89 echo ">> done"
✡✝ ✆

Listing A.6: LXC setup and startup
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Listing A.7
✞
# ifndef GLOBAL_DEF_H_

# define GLOBAL_DEF_H_

4 # include <sys/mman.h>

# include <unistd .h>

# include <fcntl .h>

# include <stdio .h>

# include <stdlib .h>

9 # include <assert .h>

# include <semaphore .h>

# include <errno .h>

# include <pthread .h>

14 # define SHM_ID "/lxc -consumer - producer "

/* shared memory structure */

typedef struct {

int buffer ;

19 sem_t semaphore ;

pthread_mutex_t mutex ;

} DATA ;

24 # endif

✡✝ ✆

Listing A.7: Data structure within shared memory

Listing A.8
✞

1 /* producer .c - maps SHM and modify buffer before trigger event */

# include " global_def .h"

int main () {

6 DATA * datum ;

pthread_mutexattr_t attribut ;

/* connect to shared memory */

int fd = shm_open (SHM_ID , O_RDWR | O_CREAT , 0600) ;

11 if (fd == -1) {

perror (" failed to open SHM");

return 1;

}

if ( ftruncate (fd , sizeof (DATA)) != 0) {

16 perror (" failed to ftruncate SHM");

return 1;

}

datum = (DATA *) mmap (0, sizeof (DATA), PROT_READ | PROT_WRITE , MAP_SHARED , fd , 0);

21 /* init semaphore */

assert ( sem_init (& datum -> semaphore , 1, 1) == 0);
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datum -> buffer = 0;

/* init mutex */

26 assert ( pthread_mutexattr_init (& attribut ) == 0);

assert ( pthread_mutexattr_settype (& attribut , PTHREAD_MUTEX_RECURSIVE ) == 0);

assert ( pthread_mutexattr_setpshared (& attribut , PTHREAD_PROCESS_SHARED ) == 0);

assert ( pthread_mutex_init (&( datum -> mutex ), & attribut ) == 0);

pthread_mutexattr_destroy (& attribut );

31
printf (" producer : start main loop (incr buffer -> trigger event -> wait ->

startover )\n");

while (1) {

pthread_mutex_lock (&( datum -> mutex ));

datum -> buffer ++;

36 printf ("%i\n", datum -> buffer );

pthread_mutex_unlock (&( datum -> mutex ));

sem_post (& datum -> semaphore );

usleep (500000) ;

41 }

/* unreachable , for the sake of completeness */

sem_destroy (& datum -> semaphore );

46 return 0;

}
✡✝ ✆

Listing A.8: Producer

Listing A.9
✞

/* consumer .c - maps SHM and reads buffer on trigger event */

3 # include " global_def .h"

int main () {

DATA * datum ;

8 /* connect to shared memory */

int fd = shm_open (SHM_ID , O_RDWR | O_CREAT , 0600) ;

if (fd == -1) {

perror (" failed to open SHM");

return 1;

13 }

datum = (DATA *) mmap (0, sizeof (DATA), PROT_READ | PROT_WRITE , MAP_SHARED , fd , 0);

printf (" consumer : start main loop (wait for trigger -> print buffer -> startover )\n

");

while (1) {

18 sem_wait (& datum -> semaphore );

pthread_mutex_lock (&( datum -> mutex ));

printf ("%i\n", datum -> buffer );

pthread_mutex_unlock (&( datum -> mutex ));

}

23
/* unreachable , for the sake of completeness */
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sem_destroy (& datum -> semaphore );

return 0;

28 }
✡✝ ✆

Listing A.9: Consumer

The detailed implementation is limited to very basic communication and synchronisation
mechanisms. However, those primitives can be used to set up the base for more com-
plex scenarios. For example, event-based communication of OpenICM relies on mutexes,
semaphores and shared memory.

A.4 Forwarding display content using QNX Screen

The following experiment evaluates the capturing and forwarding of a partition’s virtual
display content to another partition following the architecture proposed in Chapter 6.

Herefore, two OS domains are employed. One relies on QNX and represents the graphics
source, whereas the receiver (i.e., compositing instance) relies on Linux, as depicted in
Figure A.8.

hardware platform

QNXLinux

INTERCOMMUNICATION

GLES 
APP

network socket

shared memory (shm)

frame 
grabberframe 

receiver

Screen

GPU

…

…

Qt 
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provides 
access to 

display’s pixel 
buffer

on vsync: read pixel 
buffer, write to shm and 

send trigger event

on trigger 
event: 

read shm 

…

Figure A.8: Frame-grabber/-receiver

The ‘frame grabber’ connects the pixel buffer of QNX Screen and repeatedly copies the
content to a mapped shared memory region for each display synchronisation. On each
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copy, a network datagram is sent to synchronise with the remote frame receiver, containing
information on the graphics format and memory offset for double buffering. The receiver
reads and forwards the content of the mapped shared memory on each received network
datagram. The network datagram represents the event trigger to synchronize the two
OS domains. As it is broadcasted using the virtual network connection, a single ‘frame
grabber’ can be connected to multiple ‘frame receivers’. However, the synchronisation
for this experiment is unidirectional and hence inhibits UI- and user events addressed
to the ‘frame grabber’. Nevertheless, this can be implemented by use of an additional
control channel or using legacy (virtual) fieldbus communications such as a CAN based
connection.

The setup of the experiment corresponds with a use-case, where a formerly isolated assem-
bly is integrated to the head-unit. Within that context the assembly is basically displaying
content, such as the instrument cluster. It is not necessary to refactor or adapt the soft-
ware system of that integrated assembly except for the deployment of the ‘frame grabber’.
The latter is independent of the software system’s semantics, as it merely forwards pixel
buffer information and feature inter-partition synchronisation.

For evaluation of the ‘frame grabber’ a GLES application renders multiple rotating objects
with 30 frames per second using a graphics resolution of 640 x 480 pixels and 32 bits depth.
The receiver on the Linux based OS instance were also rendered with 30 frames per second,
whereas a redraw where only issued on received synchronisation event via the network
socket. A degradation of the graphics quality where not observed.

A.4.1 Listings

The following code listings exemplify the implementation of a frame-grabber for QNX
Screen, connected to a shared memory and synchronised by use of a socket connection,
as detailed with Listing A.10. The access to the QNX Screen framework is implemented
by the class ‘CGraphics’ which features the connection to memory region of the display’s
pixel-buffer (cf. Listing A.11 and Listing A.12).

Listing A.10
✞
# include " CGraphics .h"

2 # include " CSync .h"

# include " CIVMmemory .h"

# include " CTimer .h"

int main(int argc , char *argv []) {

7 const unsigned int width = 640;

const unsigned int height = 480;

const unsigned int depth = 4;

const unsigned int memsize = width * height * depth ;

const unsigned int numberOfBuffers = 2;

12
// setup the event trigger

CSync signalling (55001) ;

if (0 != signalling .init ()) {

return EXIT_FAILURE ;
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17 }

// connect to shared memory

CIVMmemory shm;

if (-1 == shm. getFD ()) {

22 return EXIT_FAILURE ;

}

// connect to QNX screen

CGraphics graphics (width , height , depth );

27 if (0 != graphics .init ()) {

return EXIT_FAILURE ;

}

// setup timer to determine fps

32 CTimer timer (2);

timer .init ();

// read and display content and trigger receiver

unsigned int id = 0;

37 unsigned int buffer = 0;

while (1) {

graphics . writeToFD (shm. getFD () , buffer * memsize );

signalling . signal (id , buffer * memsize , 640 , 480 , 4);

buffer ++;

42 if ( buffer >= numberOfBuffers ) {

buffer = 0;

}

id ++;

timer . incrFPS ();

47 }

return EXIT_SUCCESS ; // never reached

}
✡✝ ✆

Listing A.10: Main routine of the frame-grabber application

Listing A.11
✞
# ifndef CGRAPHICS_H_

# define CGRAPHICS_H_

# include <screen / screen .h>

5
class CGraphics {

public :

CGraphics (int width , int height , int depth );

virtual ˜ CGraphics ();

10
/** initialize screen environment */

int init ();

/** write screen content to fd on vsync */

15 int writeToFD (int fd , unsigned int offset = 0, unsigned int destSize = 0);

/** returns size for a screenshot including depth */
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unsigned int getSize () const ;

20 static const int FORMAT ;

static const int USAGE ;

enum ErrorCode {

SUCCESS = 0,

25 FAILED_GET_CONTEXT ,

FAILED_GET_DISPLAY_COUNT ,

FAILED_ATTACH_DISPLAYS ,

FAILED_CONNECT_DISPLAY ,

FAILED_CREATE_PIXMAP ,

30 FAILED_SET_PIXMAP_USAGE ,

FAILED_SET_PIXMAP_FORMAT ,

FAILED_SET_PIXMAP_SIZE ,

FAILED_CREATE_PIXMAP_BUFFER ,

FAILED_GET_PIXMAP_RENDER_BUFFER ,

35 FAILED_GET_BUFFER_POINTER ,

FAILED_WAIT_VSYNC ,

FAILED_READ_DISPLAY ,

FAILED_SET_OFFSET ,

FAILED_WRITE_FD ,

40 };

private :

void cleanup ();

int handleError ( const char * msg , int exitcode = -1);

45
int mDepth ;

int mSize [2];

screen_context_t mScreenContext ;

50 screen_display_t * mScreenDisplays ;

screen_display_t mScreenDisplay ;

screen_pixmap_t mScreenPixmap ;

screen_buffer_t mScreenBuffer ;

void * mScreenBufferPtr ;

55
};

# endif /* CGRAPHICS_H_ */
✡✝ ✆

Listing A.11: Definition of the Screen access (CGraphics)

Listing A.12
✞
# include " CGraphics .h"

2
# include <stdio .h>

# include <malloc .h>

# include <string .h>

# include <ctype .h>

7 # include <stdlib .h>

# include <unistd .h>

const int CGraphics :: FORMAT = SCREEN_FORMAT_RGBX8888 ;
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const int CGraphics :: USAGE = SCREEN_USAGE_READ | SCREEN_USAGE_NATIVE ;

12
CGraphics :: CGraphics (int width , int height , int depth ) :

mDepth ( depth ) {

mSize [0] = width ;

mSize [1] = height ;

17
mScreenContext = NULL;

mScreenDisplays = NULL;

mScreenDisplay = NULL;

mScreenPixmap = NULL;

22 mScreenBuffer = NULL;

mScreenBufferPtr = NULL;

/* choose grahics driver root */

setenv (" GRAPHICS_ROOT ", "/fs/ graphics / vmware ", 1);

27 }

CGraphics ::˜ CGraphics () {

cleanup ();

}

32
unsigned int CGraphics :: getSize () const {

return mSize [0] * mSize [1] * mDepth ;

}

37 int CGraphics :: init () {

int rc = -1;

int displayCount = 0;

char *disp = NULL;

int displayID = 0;

42 int displayType = 0;

int val = 0;

/* create screen context */

rc = screen_create_context (& mScreenContext , SCREEN_DISPLAY_MANAGER_CONTEXT );

47 if (0 != rc) {

return handleError (" create context failed \n", FAILED_GET_CONTEXT );

}

printf (" create screen context successfully \n");

52 /*

* Retrieve the current value of the specified context property of type integer :

* store number of current displays in param count

*/

rc = screen_get_context_property_iv ( mScreenContext ,

57 SCREEN_PROPERTY_DISPLAY_COUNT , & displayCount );

if ((0 != rc) || (0 == displayCount )) {

return handleError ("get number of current displays failed \n",

FAILED_GET_DISPLAY_COUNT );

}

62 printf ("nb of current displays : %d\n", displayCount );

/*

* allocate heap mem for these diplays and attach to these

*/

67 mScreenDisplays = ( screen_display_t *) calloc ( displayCount ,

sizeof ( screen_display_t ));

rc = screen_get_context_property_pv ( mScreenContext ,

SCREEN_PROPERTY_DISPLAYS , ( void **) mScreenDisplays );

if (0 != rc) {
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72 return handleError (" attach to current displays failed \n",

FAILED_ATTACH_DISPLAYS );

}

printf (" attach to current displays successfully \n");

77 /*

* select display wants to be done a screenshot

*/

// if no display was specified , use the first supported display available for this

context .

82 if ((1 == displayCount ) || !disp) {

mScreenDisplay = mScreenDisplays [0];

}

// Otherwise , determine which display has been requested for the screen shot.

else {

87 if ( isdigit (* disp)) {

displayID = strtoul (disp , NULL , 0);

for (int i = 0; i < displayCount ; i++) {

screen_get_display_property_iv ( mScreenDisplays [i],

SCREEN_PROPERTY_ID , &val);

92 if (val == displayID ) {

mScreenDisplay = mScreenDisplays [i];

break ;

}

}

97 } else {

if (! strcmp (disp , " internal ")) {

displayType = SCREEN_DISPLAY_TYPE_INTERNAL ;

} else if (! strcmp (disp , "rgb")) {

displayType = SCREEN_DISPLAY_TYPE_COMPONENT_RGB ;

102 } else if (! strcmp (disp , "dvi")) {

displayType = SCREEN_DISPLAY_TYPE_DVI ;

} else if (! strcmp (disp , "hdmi")) {

displayType = SCREEN_DISPLAY_TYPE_HDMI ;

} else {

107 displayType = SCREEN_DISPLAY_TYPE_OTHER ;

}

for (int i = 0; i < displayCount ; i++) {

screen_get_display_property_iv ( mScreenDisplays [i],

SCREEN_PROPERTY_TYPE , &val);

112 if (val == displayType ) {

mScreenDisplay = mScreenDisplays [i];

break ;

}

}

117 }

}

// check if any display could be selected

if (! mScreenDisplay ) {

122 return handleError (" could not select any display \n",

FAILED_CONNECT_DISPLAY );

}

printf (" select display successfully \n");

127 // create a pixmap that can be used to do off - screen rendering .

rc = screen_create_pixmap (& mScreenPixmap , mScreenContext );

if (0 != rc) {

return handleError (" could not create pixmap from screen context \n",

FAILED_CREATE_PIXMAP );
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132 }

printf (" create pixmap successfully \n");

// set usage for pixmap

rc = screen_set_pixmap_property_iv ( mScreenPixmap , SCREEN_PROPERTY_USAGE ,

137 &( CGraphics :: USAGE ));

if (0 != rc) {

return handleError (" could not set usage for pixmap \n",

FAILED_SET_PIXMAP_USAGE );

}

142
// set format for pixmap

rc = screen_set_pixmap_property_iv ( mScreenPixmap , SCREEN_PROPERTY_FORMAT ,

& CGraphics :: FORMAT );

if (0 != rc) {

147 return handleError (" could not set format for pixmap \n",

FAILED_SET_PIXMAP_FORMAT );

}

// set size for pixmap

152 rc = screen_set_pixmap_property_iv ( mScreenPixmap ,

SCREEN_PROPERTY_BUFFER_SIZE , mSize );

if (0 != rc) {

return handleError (" could not set size for pixmap \n",

FAILED_SET_PIXMAP_SIZE );

157 }

printf ("set properties for pixmap successfully \n");

// create pixmap buffer (a pixmap could only have one buffer )

rc = screen_create_pixmap_buffer ( mScreenPixmap );

162 if (0 != rc) {

return handleError (" could not create pixmap buffer \n",

FAILED_CREATE_PIXMAP_BUFFER );

}

printf (" create pixmap buffer successfully \n");

167
// get screen buffer

rc = screen_get_pixmap_property_pv ( mScreenPixmap ,

SCREEN_PROPERTY_RENDER_BUFFERS , ( void **) & mScreenBuffer );

if (0 != rc) {

172 return handleError (" could not get screen buffers \n",

FAILED_GET_PIXMAP_RENDER_BUFFER );

}

// get screen buffer property pointer

177 rc = screen_get_buffer_property_pv ( mScreenBuffer , SCREEN_PROPERTY_POINTER ,

& mScreenBufferPtr );

if (0 != rc) {

return handleError (" could not get pointer of screen buffers \n",

FAILED_GET_BUFFER_POINTER );

182 }

return SUCCESS ;

}

187 int CGraphics :: writeToFD (int fd , unsigned int offset , unsigned int destSize ) {

int rc;

unsigned int wroteBytes ;

if ( destSize == 0) {

192 destSize = getSize ();
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}

/* block until the next vsync on the specified display . */

rc = screen_wait_vsync ( mScreenDisplay );

197 if (0 != rc) {

return handleError ("wait for vsync failed \n", FAILED_WAIT_VSYNC );

}

/*

202 * take screenshot of the display and store the resulting image buffer

*/

rc = screen_read_display ( mScreenDisplay , mScreenBuffer , 0, NULL , 0);

if (0 != rc) {

return handleError (" could not stride of screen buffers \n",

207 FAILED_READ_DISPLAY );

}

/* write into fd */

rc = lseek (fd , offset , SEEK_SET );

212 if (( int) offset != rc) {

return handleError (" could not set offset using lseek \n",

FAILED_SET_OFFSET );

}

wroteBytes = write (fd , mScreenBufferPtr , destSize );

217 if ( wroteBytes < destSize ) {

return handleError (" could not write to fd\n", FAILED_WRITE_FD );

}

return SUCCESS ;

222 }

/* print message , cleanup and return errorcode */

int CGraphics :: handleError ( const char * msg , int exitcode ) {

perror (msg);

227 cleanup ();

return exitcode ;

}

/* free data */

232 void CGraphics :: cleanup () {

if ( mScreenPixmap != NULL) {

screen_destroy_pixmap_buffer ( mScreenPixmap );

screen_destroy_pixmap ( mScreenPixmap );

}

237 if ( mScreenDisplays != NULL) {

free( mScreenDisplays );

}

if ( mScreenContext != NULL) {

screen_destroy_context ( mScreenContext );

242 }

}
✡✝ ✆

Listing A.12: Implementation of the Screen access (CGraphics)
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