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Modeling the Development 
of Pronunciation in Infant 

Speech Acquisition

Ian S. Howard and Piers Messum

Pronunciation is an important part of speech acquisition, but little attention has 
been given to the mechanism or mechanisms by which it develops. Speech sound 
qualities, for example, have just been assumed to develop by simple imitation. In 
most accounts this is then assumed to be by acoustic matching, with the infant 
comparing his output to that of his caregiver. There are theoretical and empirical 
problems with both of these assumptions, and we present a computational model—
Elija—that does not learn to pronounce speech sounds this way. Elija starts by 
exploring the sound making capabilities of his vocal apparatus. Then he uses the 
natural responses he gets from a caregiver to learn equivalence relations between 
his vocal actions and his caregiver’s speech. We show that Elija progresses from 
a babbling stage to learning the names of objects. This demonstrates the viability 
of a non-imitative mechanism in learning to pronounce.

Keywords: infant speech development, pronunciation, reformulations, reinforce-
ment, interaction, correspondence problem

Speech Communication
Linguistic communication is considered to be one of the foremost human accom-
plishments. Speech is the acoustic expression of language, and the most common 
form in which it is realized. To learn to speak, an infant must master complex move-
ments of his respiratory, laryngeal and articulatory apparatus to produce an acoustic 
output. From a motor control perspective, the infant learns which activations of 
the muscles of his vocal tract and breathing apparatus result in somatosensory and 
auditory sensory consequences. He does this, however, without initially knowing 
that such activity will have linguistic value (Locke 1996). (On the other hand, the 
communicative value of some forms of vocal output, e.g., in the form of crying, 
is discovered early on.)
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The pronunciation of the first L1 words that an infant adopts (i.e., words 
he hears spoken by others), may be a holistic recreation of their sound images 
(Studdert-Kennedy 2002). However in due course the child will come to construct 
words using a repertoire of actions which produce the distinct speech sounds of the 
ambient language. While traditionally these and many other aspects of infant learn-
ing have been seen as projects undertaken by the infant largely on his own, there 
is now increasing recognition of the potential and actual importance of caregiver 
interventions and interaction e.g., in general infant development (Zukow-Goldring 
and Arbib 2007) and in speech development (Goldstein and Schwade 2008; Messum 
2007; Yoshikawa et al. 2003).

For convenience in the use of pronouns in this paper, we assume a male infant 
and a female caregiver in our discussions of caregiver-infant interactions (although 
a male caregiver was used to run the experiments described in the Experiments 
Section).

Learning to Pronounce: Cognitive Models
How is the mature skill of word pronunciation developed? As just described, the 
first words a child adopts from the ambient language may be recreated from adult 
input by a form of “whole-word mimicry”. However, it is uncontroversial that a 
particulate principle for the phonology of word structure soon emerges. A child 
then starts to conceive words as being made up of speech sounds (subword units 
of production forming part of a mental syllabary (Levelt and Wheeldon 1994)). 
At this point, it is important to draw a distinction between two activities that are 
required for word adoption: “learning to pronounce” and “learning to pronounce 
words” (Messum 2008a).

“Learning to pronounce” is the systemic activity of learning to produce speech 
sounds that will be taken by listeners to be equivalent to the speech sounds that 
the listeners themselves produce. After the initial stage of “whole word mimicry”, 
“learning to pronounce words” applies this expertise in the adoption of the word 
forms produced by others: the speech sounds that form a word are identified and 
reproduced using their equivalents from the child’s repertoire. The latter activity 
is a form of imitation, since the sequence of the speech sounds is reproduced, but 
it uses elements (the speech sounds that have been learnt to be equivalent) which 
may or may not have themselves been learnt by imitation.

This distinction was described more generally by Parton (1976) as that between 
“learning to imitate” and “learning by imitation”. Using his terminology, we can say 
that learning to pronounce is the acquisition of the perceptuo-motor isomorphisms 
linking the speech sounds that the child hears to the molecular motor behaviors 
underlying his production of what his listeners will take to be equivalent sounds.

Using a more contemporary formulation of this issue, learning to pronounce 
can be seen as the child’s solution of the “correspondence problem” between speech 
sounds he hears and speech sounds he makes. Those sounds he makes must be 
taken by listeners to be equivalent to their own, but for this to happen they need 
not be identical or even acoustically similar (although their functional equivalence 
may lead to a “learnt” or “theory-based” (Mompean-Gonzalez 2004) judgment of 
their similarity).
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The general assumption about the mechanism for “learning to pronounce” 
is that sound qualities are copied, solving the correspondence problem through 
acoustic matching:

“Infants learn to produce sounds by imitating those produced by another and 
imitation depends upon the ability to equate the sounds produced by others 
with ones infants themselves produce.” (Kuhl 1987).

Other cognitive models propose instead that gestures rather than sounds are 
imitated, e.g., (Goldstein et al. 2003), and further variants on these two possibili-
ties exist; see Messum (2007) for a review. However, models which depend upon 
imitation are problematic for some theoretical reasons and because observation of 
infant speech development and adult performance have identified several phenomena 
that cannot be explained by any imitative account (Messum 2007) 1.

As an alternative to the infant matching his speech sounds to those of his 
caregivers acoustically, an infant can solve the correspondence problem via the 
information made available to him by a caregiver when she takes the role of a 
vocal “mirror” for his output. A caregiver takes this mirroring role whenever she 
reflects her child’s output back to him, either by mimicking it or by reformulating 
it. There are many such episodes of vocal imitation in mother-child interaction. 
Pawlby (1977) reported that over 90% of “imitative” exchanges between caregiv-
ers and infants between 17 and 43 weeks of age were actually of this type, where 
a mother “imitates” her child rather than vice versa.

Within this framework of interaction, reformulation rather than mimicry 
becomes the mother’s preferred response and reformulation of a child’s vocal 
output by his mother continues until at least age 4 (Chouinard and Clark 2003). 
Reformulation transforms the child’s output into his mother’s interpretation of what 
he has uttered within the phonology of L1 (the mother’s first language). Sound 
reformulation is therefore analogous to so-called “affect attunement” (Stern 1985) 
on the part of the mother in more general child development, rather than to simple 
mimicry. As with reformulations, affect attunement also replaces mimicry of 
affect in mother-infant interactions (Jonsson et al. 2001). As the mother’s response 
comes within the context of an imitative exchange which the child will recognize 
as such (Meltzoff 1999), it provides the child with the evidence for him to deduce 
a correspondence between his output and the speech sound equivalent within L1 
that she produces. He understands that his mother regards the two as equivalent, 
and he relies on her judgment in this matter. In this way, the infant can deduce the 
linguistic value of what he performs.

Once the correspondence problem is solved, learning to pronounce a word 
requires recognition and correct sequencing of the speech sound elements that make 
it up. Heyes (2001) provides a general graphic device for one class of imitation that 
illustrates this two part process of learning to pronounce and learning to pronounce 
words. We reproduce this as Figure 1. Here the sequencing problem is represented 
by horizontal associations, and the correspondence problem is represented by the 
vertical associations between sensory input and motor output. Thus to learn the 
pronunciation of a word like “gruffalo”, a speaker may parse and then reproduce the 
word shape as three speech sounds: perhaps corresponding to “gru”, “ffa” and “lo”.
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Learning to Pronounce: 
Previous Computational Models

As well as cognitive models, there are also a number of computational models of 
how speech production develops, noted below. The main difference between Elija, 
our model, and these is that Elija interacts with a caregiver. In particular, he makes 
use of the well-attested caregiver reformulations of child output that are provoked 
by a child’s vocal activity. Such interactions are not used as sources of informa-
tion in the other models discussed below. In addition, we model development from 
babbling to the learning of words, with a focus on the learning of pronunciation.

Laboissière created one of the earliest computational models of articulatory 
skill acquisition, with a connectionist model that learnt to produce vowels (Labois-
sière 1992). Guenther’s DIVA model (Guenther 1994; 1995; Guenther et al. 2006) 
uses a neural network to investigate the acquisition of speaking skills by infants. 
DIVA addresses a range of phenomena observed in speech production, such as 
motor equivalence, contextual variability, coarticulation and speaking rate effects. 
In HABLAR (Markey 1994; Markey 1993; Menn et al. 1993), Markey modeled 
the articulatory foundations of phonology with a sensorimotor simulation con-
sisting of an auditory system, an articulatory system and a hierarchical cognitive 
architecture that bridged the two. Reinforcement learning was employed to train 
the motor system. Kröger’s model (Kröger et al. 2009a; Kröger et al. 2009b) is 
similar to DIVA but focuses on the neurocomputational issues in speech produc-
tion. Bailly’s model is able to generate speech utterances by learning articulatory 
to audio-visual mappings (Bailly 1997). Finally, Westermann and Miranda’s neural 
network model concentrates on learning couplings between motor representations 
and their sensory consequences (Westermann and Miranda 2004).

The Task Dynamic model of speech production (Nam et al. 2004; Saltzman and 
Munhall 1989) draws on the ideas of articulatory phonology (Browman and Gold-
stein 1986; Browman and Goldstein 1992; Goldstein et al. 2006) and coordinative 

Figure 1 — Mapping between sensory and motor levels of representation. Parsing the input 
creates a sequencing (horizontal) specification, but the motor equivalents to the sensory 
elements identified (the vertical specification) must have been established previously. Only 
then is the mature mechanism of word reproduction possible.
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structures (Saltzman and Byrd 2000; Saltzman and Kelso 1987). It does not include 
perception and is not a model of speech acquisition, but it has been influential in 
this field. It attempts to explain the continuous movement of the speech articulators 
in terms of abstract, discrete gestural units. Gestures are activated according to a 
gestural score, in a relationship that is similar to that between the notes played on 
a musical instrument and a musical score. The movements of the articulators are 
modeled using a dynamical system, employing critically damped oscillators that 
behave as point attractors. The input to control production is specified by ortho-
graphic transcriptions of speech.

In the rest of this paper we start by discussing the ways in which sensory 
information is received and responded to by an infant. Next we describe Elija, a 
computational model of an infant. We then present the stages by which Elija learns 
first to pronounce and then to pronounce words, and relate the results to Oller’s 
stages of infant vocal development (Oller 2000). Finally we discuss the implications 
of our model, its relations with previous models, and proposals for future work.

Signal Flows and Interactions with the Environment

Agent Pathways

An infant interacts with his environment via various signal flow paths operating in 
parallel, some of which are shown in Figure 2 (see Menn et al. (1993) for a fuller 
analysis). He receives somatosensory feedback from movement of his articulators, 
from any contacts that they make, from the vibration created by turbulent airflow 
and from laryngeal vibrations. He is able to hear sounds. He has basic desires and 
motives that he tries to meet, represented here in terms of “reward.” He can also 
explore, recognize, remember and associate his sensory inputs and motor outputs.

Passive Observation

It is known that sensory systems can be modeled using self-organization from pas-
sive observation of the environment (Figure 2B). For example using the statistics 
of natural inputs it is possible to develop efficient coding strategies that can explain 
the structures of sensory processing (Barlow 1961; Olshausen and Field 1996). If 
the infant’s auditory input includes ambient speech sounds, this will help develop 
speech perception (Saffran et al. 1996). However such passive observation alone 
will not assist development of the motor system, since it does not require its use.

Sensory Consequences of Action

As the infant experiments with his vocal apparatus, he receives internal somatosen-
sory feedback arising from proprioception and, if contact occurs, from touch (Figure 
2C). This is informative regarding the kinematic and dynamical properties of the 
vocal apparatus. In particular, tactile feedback reveals vocal tract configurations 
which may later become the basis for consonants. Activity of the vocal apparatus 
can also generate acoustic consequences that pass via the external environment 
(Figure 2D). The infant can evaluate these actions on the basis of the salience of 
their sensory consequences, leading to the discovery of potential speech sounds, a 
process we have previously modeled (Howard and Messum 2007).
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Figure 2 — Infant signal flow pathways. A The state of the body. B Using passive obser-
vation of the environment an infant can self-organize his sensory systems. C There is a 
somatosensory signal flow path within the body arising from motor output fed back to the 
sensory input. D There is also a path via the external environment, e.g., the infant hearing 
his own voice. E There can also be an external path that includes a caregiver. Because she 
has well developed phonological perception and production, she can evaluate his utterances 
in a linguistically appropriate fashion. F Her response can thus reward certain sounds and 
G her reformulations can be associated with his productions.

Response from a Learned Caregiver: 
Reinforcement and Reformulations

Another signal flow path arises from interaction with a learned caregiver, which 
is usually the infant’s mother (Figure 2 E, F and G). She can evaluate the infant’s 
speech production in terms of the ambient language using her well-developed 
criteria for speech perception.
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During babbling and other vocal play, the infant will produce some sounds 
that his mother can take to be attempts at linguistic communication. It is normal 
for caregivers to respond to these vocally or with other forms of encouragement 
(Newson 1979). This can have several effects. At a simple level it reinforces the 
infant’s original production, encouraging the development of speech sounds (Figure 
2 F). Conversely, the absence of a response can be taken as a sign of discouragement.

Among the caregiver’s possible vocal responses, we are principally concerned 
with mimicry and reformulation (Figure 2 G). In mimicry, she produces an acousti-
cally similar utterance. In reformulation, she interprets the infant’s utterance within 
her linguistic system and responds with her equivalent canonical utterance, on the 
basis of what she has inferred the infant to have said (Otomo 2001).

Both of these responses provide reinforcement, but reformulation enables 
the infant to connect his vocal action to an acoustic form produced by his mother 
that need not be acoustically similar. Infants know when they are being imitated 
(Meltzoff 1999), so he knows that his mother believes her response is equivalent 
to what he did to provoke it. He can therefore rely upon her judgment to make a 
strong association between the two events.

Parsing the Input for Reproduction

In the imitation literature, parsing, or “string parsing”, is the identification of the 
sequence of molecular events making up a performance (Byrne 2003). By pars-
ing the caregiver’s speech in terms of the speech sounds he has previously learnt, 
the infant can deduce the actions he must make to reproduce part or all of it using 
his own vocal actions. This provides a method for more efficient word reproduc-
tion than whole word mimicry. That is, recognizing a sequence as being made up 
from a limited set of speech sounds and then replicating this is more efficient than 
learning the sound shape of every word in the lexicon discretely. In the same way, 
it is more efficient to reproduce a written word using a small set of letters than to 
recreate the whole word shape through drawing.

Using Object Context

Using the speech sound reproduction abilities acquired during the reformulation 
phase, the infant can now learn the names of objects spoken by the caregiver. For an 
object within their shared attention, the infant will be able to associate the object, 
the caregiver’s utterance and the sequence of vocal actions he has deduced will 
correspond to this (Figure 3).

This procedure is likely to involve multiple exchanges, by which the caregiver 
refines the pronunciation of the infant’s labels. If the caregiver likes the infant’s 
production she can signal her approval by congratulation or by simply acting on 
the meaning she has understood. If she is unhappy with his attempt she can engage 
him in an iterative loop, in which she repeats the name (possibly with emphasis 
on a particular element of the pronunciation), inviting him to modify his response. 
This can continue until she either accepts an attempt or decides that he is unlikely 
to be able to pronounce the word, and moves on. This procedure further develops 
the correspondences between caregiver and infant speech sounds, with the shared 
context providing strong evidence of equivalence to the infant.
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Methods
We now describe the design philosophy behind Elija. Then we describe his vocal 
apparatus, motor system, reward, and memory modules. These are depicted in 
Figure 4.

Non-imitative Mechanism for Learning Simple Sound 
Pronunciation
Here we model the development of pronunciation through an agent, Elija, who 
learns by running experiments on an environment that includes a linguistically 

Figure 3 — Learning to pronounce the name of an object. In the presence of an object A, 
the caregiver pronounces its name. B. Elija analyses the speech signal and parses it on the 
basis of previous learning to identify a sequence of speech sounds. These have direct associa-
tions with vocal actions, and the corresponding sequence of these is generated, resulting in 
Elija’s imitated response. C. The object’s context is also associated with the speech sound/
vocal action sequence, which can later trigger recall.



Modeling the Development of Pronunciation    93

expert caregiver. Her natural inclinations lead her to respond in ways that assist 
his development. We model Elija’s speech production as initially developing using 
rewarded exploration of his vocal tract. His own evaluation of the sensory conse-
quences of his actions leads to the discovery of some vocal actions whose acoustic 
output then attracts the attention of his caregiver. As in real life, her response to 
sounds similar to those in the ambient language will often be an “imitation”; either 
a mimicked or reformulated version of his output. This reinforces Elija’s actions 
and thereby biases his production toward the sounds of the ambient language. 
Importantly, these and all other linguistic judgments of Elija’s speech production 
are made by the caregiver, not by Elija himself.

Even when the caregiver’s response is a reformulation rather than a mimicked 
version of his output, Elija associates his productions with her adult form, giving 
him vocal effectivities which generate a set of two-way speech sound correspon-
dences. He will later be able to use these to parse adult speech and generate output 
that is equivalent to it. This is how he will learn to pronounce words: by firstly 

Figure 4 — Inside Elija. Elija listens to his environment and affects it using speech output. 
The vocal tract is driven by a motor control module which also computes the effort involved 
in generating a vocal action. The vocal tract generates internal somatosensory feedback 
from touch. The motor action may arise from motor exploration and can be stored, and 
later recalled, from motor memory. When an action leads to sensory consequences (e.g., 
auditory salience or somatosensory feedback) these are evaluated by the reward module. 
The reward can be used to improve the action using gradient accent, or to reinforce it. 
Similarly, sensory input can be analyzed in terms of salience and is also recorded in sensory 
memory. Associations can form between sensory and motor memories, linking action with 
their sensory consequences.
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identifying the sequence of speech sounds they contain and then reproducing this 
sequence with his corresponding motor patterns.

We note that although the caregiver imitates Elija during this process, Elija 
himself does not imitate the caregiver, in contrast to the assumption made in con-
ventional accounts. For this reason we describe our approach as “non-imitative”. 
Our work was inspired by the observations of child speech development made by 
Gattegno within his descriptive framework of human learning (Gattegno 1973; 
1985; 1987).

Modeling the Vocal Apparatus with an Articulatory 
Synthesizer

To generate acoustic output, Elija uses an articulatory speech synthesizer. A good 
model of an infant vocal tract is important to effectively model speech development 
for several reasons. Firstly, phonology can then develop directly from the basic 
biomechanical and aerodynamic properties of the vocal apparatus (Lindblom 1999). 
Secondly, proprioception and touch sensation provide information about distinc-
tive articulator configurations, e.g., touching the tip of the tongue on the back of 
the teeth or closing the lips, aiding the discovery of those configurations that will 
be used in the generation of speech sounds. Thirdly, the work of Saltzman and his 
colleagues (Saltzman and Kelso 1987; Saltzman and Munhall 1992) points to the 
importance played by the dynamics of the vocal apparatus. Fourthly, a synthesizer 
that sounds like a real infant will help to provoke natural responses from caregivers.

Elija’s vocal tract is based on an implementation of the Maeda articulatory 
synthesizer (Maeda 1990) and a voice source based on the LF model (Fant et al. 
1985)2. In all there are 7 articulatory parameters used to specify vocal tract profile: 
jaw position, tongue dorsum position, tongue dorsum shape, tongue apex position, 
lip height (aperture), lip protrusion, and larynx height. Our implementation of the LF 
voice source makes use of two parameters: glottal area and fundamental frequency. 
The VTCALCS implementation of the Maeda synthesizer (see Acknowledgments) 
also includes a velopharyngeal port to control nasality. These control parameters 
are shown on the example trajectories in Figure 5B.

The Maeda vocal tract profile determines an equivalent digital filter which 
is applied to the excitation from the voice and noise sources, thus leading to an 
appropriately filtered acoustic output signal. Fricatives are simulated in the model 
by injecting noise at locations in the vocal tract where turbulent airflow is predicted. 
In our implementation, the synthesizer operated at an output sampling rate of 24 
kHz. To approximate the vocal tract of an infant, the physical dimensions of the 
original Maeda vocal tract were scaled down by a factor of 0.8 from the default 
values used for an adult female and the midrange of the fundamental frequency was 
shifted from 210 Hz to 400 Hz. There are other differences between adult and infant 
vocal tracts. For example, this scaling does not reflect the real differences in the size 
of the pharynx (Boë et al. 2007). However, for our study an exact representation 
of an infant vocal tract was not necessary because Elija does not attempt auditory 
matching between his infant speech and that of the caregiver. He only matches the 
caregiver’s current speech utterances to her past speech utterances.

The Maeda synthesizer was enhanced to generate contact information, which 
represents touch feedback arising from the speech production apparatus. The Maeda 
model operates by first computing the cross sectional area of the vocal tract, which 
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depends on the values of the control parameters. At points where the cross-sectional 
area reaches zero, contact has occurred.

In its current form, the articulatory synthesizer generates unnatural acoustic 
artifacts when the velopharyngeal port is open. To circumvent this deficiency, the 
sound discovery stages of the experiments were carried out with nasality deactivated 
(i.e., with the velopharyngeal port closed). To include nasals in the final reformula-
tion repertoire, nasality was only included during the recombination stage for a set 
of CVs (see the Methods section of the Integrative Stage Experiment).

The Maeda synthesizer was implemented in C++ and all other analyses were 
written in Matlab.

Modeling a Vocal Motor Action

We use the term motor pattern for the abstract representation of a movement of the 
vocal tract, for which we use the term vocal action. We model a basic motor pattern 
as a sequence of up to three vocal tract target positions. Thus motor patterns are 
defined in terms of articulator position vectors, which specify the 10 vocal tract 
control parameters. In addition, the time for which a target is maintained is specified. 
The simplest motor pattern, to produce a vowel V, consists of only a single target 
vector with 11 elements. More complex motor patterns, such as those producing a 
CV, VC, or CVV, require two or three target vectors respectively, and contain 22 
or 33 elements in total.

A motor pattern generates a vocal action in which the trajectories between 
targets are determined by articulator dynamics modeled by means of gestural con-
trollers. Here we adopt the approach of Markey by assuming 2nd order dynamics 
that are critically damped, leading to movements toward targets without overshoot 
(Markey 1994). The corresponding equation for the trajectories of an articulator 
is given by:

 x t x x x xendpo startpo endpo startp( ) ( ) (int int int= + − + oo endpo
tx t t eint int )− +( ) −β ν β

0

where

x(t) is the articulator position at time t.

xstartpoint is the starting articulator position

xendpoint is the ending articulator target position

v0 is the initial velocity

the constant β is given by

 β 2 = k m/

where k is the spring constant and m the associated mass of the dynamical system. 
Here we assume v0 = 0 and the constant β is set to 40 to match the range of speeds 
of human articulators. The effect of β is to change the speed at which the articula-
tors move toward their target positions. Large values of β lead to a rapid movement 
toward the target, and Figure 5A shows the effect β has on the transition from a 
target value of -1 to a target value of 1 for a single articulator. An example of the 
trajectories resulting from a three target CVV motor pattern for all 10 articulator 
control parameters is shown in Figure 5B.
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Because Elija does not learn the articulatory control to move between targets, 
we use the term “vocal action” to describe his vocal tract movements, rather than 
using the term “vocal motor scheme” (VMS) (McCune and Vihman 1987). The 
concepts are similar, but we need to distinguish the two, since low level motor 
learning is clearly an important part of VMS development in real infants.

We use a simple model of declination to modulate the fundamental frequency, 
reducing its control parameter by 0.75 each second. The inclusion of this frequency 
modulation makes the generated utterances sound more natural.

Optimization: the Objective Function

Elija uses rewarded exploration of the vocal tract parameters to find motor patterns 
that generate vocal actions. This discovery process is formulated as an optimiza-
tion problem. Optimization is a computational technique that can find the set of 
parameters of a function that specify its maximum (or minimum) value. Simple 
gradient ascent (hill climbing) is an iterative process, in which steps are taken in the 
direction of the gradient. In Newton’s method (also known as the Newton–Raph-
son method), the estimation of the steps needed makes use of the curvature of the 
objective function. This involves computing its second derivate, or Hessian. For 
computational reasons, quasi-Newton optimization algorithms are often used in 
practice, which avoids directly computing such second derivates. In our experiments 
the parameters to be optimized are those which define the motor patterns, and we 
use quasi-Newton gradient ascent to find values which maximize their associated 
objective function or “reward”, as described below.

Computing Reward

In our model, the objective function, or reward R, is defined in terms of the weighted 
sum of several components, illustrated in Figure 6. Typical signals involved in 
reward generation during the production of a simple speech utterance are shown in 
Figure 7. The objective function is defined as sensory salience of the current motor 
pattern, plus its motor diversity, minus the effort involved in its generation. That is

 R Salience Diversity Effort= + −∑ ( )

Three sensory consequences of a vocal action—the acoustic power, the acoustic 
spectral balance and the sensory feedback from touch—make positive contributions. 
Specifically, we compute a weighted sum of speech power, ratio of low to high 
frequency power (above and below 6 kHz), ratio of high to low frequency power 
(above and below 6 kHz) and high pass filtered touch contact (frequency cut-off 
= 1Hz). Second order Butterworth filters were used to implement all the low and 
high pass filters. We compute salience as:

Salience W Power W Touch W Powepa acoustic t pHFLF= + +. . . rr W PowerHF LF pLFHF LF HF/ /.+

Wpa  represents the weighting term for acoustic power

Wt  represents the weighting term for touch

WpHFLF  represents the weighting term for the ratio of high frequency power 
to low frequency power,
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Figure 6 — The computation of reward. The current motor pattern determines the vocal tract configuration 
and thus affects acoustic and somatosensory output. The auditory consequences from the vocal tract syn-
thesizer are evaluated in terms of acoustic power and spectral balance (the ratio of LF to HF power and the 
ratio of HF to LF power). Touch arising from vocal tract closure is also calculated. The degrees of voicing 
and articulator movement are used to estimate effort. Vocal tract closure is used to estimate salience from 
touch. A diversity measure is computed to estimate how different the current motor pattern and its acoustic 
and tactile sensory consequences are from the corresponding values for all previous discovered patterns. 
A weighted sum of these quantities is used to compute overall reward for the current motor pattern (which 
corresponds to the objective function used in the optimization procedure).

pLFHFW  represents the weighting term for the ratio of low frequency power 
to high frequency power.

The individual terms for acoustic power, touch and spectral balance are com-
puted by averaging the time waveforms for these quantities over the length of each 
vocal action.

A term is introduced into the reward function using a diversity mechanism 
which rewards the current motor pattern on the basis of its distance in motor and 
sensory spaces from the nearest previously discovered motor patterns. This encour-
ages Elija to explore previously unexplored parts of motor pattern space, imple-
menting a simple form of active learning (Mackay 1992). We compute diversity as:
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Figure 7 — Reward signals for a speech utterance generated by Elija. The plot shows time 
traces for the speech signal, its acoustic power, HF/LF power ratio, LF/HF power ratio, 
touch contact, voicing and articulator effort and the corresponding computed overall reward.

 

Diversity W motorpatternDiversity W tactimpd ppd= +. . lleDiversity

W sensd+ . ssoryDiversity

where

Wmpd  represents the weighting term for motor diversity

Wtd  represents the weighting term for tactile diversity

Wsd
 represents the weighting term for sensory diversity

and

motorpatternDiversity currentMotorPattern e
N

= −min xxistingMotorPattern

tactileDiversity curre

N

N
= min nntTactileConsequences existingTactileConsequen− cces

sensoryDiversity currentSensoryConsequ

N

N
= min eences existingSensoryConsequencesN−
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where the difference from the current motor pattern and its tactile and acoustic 
sensory consequences are computed for each of the N motor pattern and sensory 
consequences that have already been discovered.

The effort required to make a vocal action makes a negative contribution to 
reward, determined by a combination of loudness and the cost of movement. The 
latter was calculated as a weighted sum of articulator speed, where jaw movement 
was made more expensive than other movements. Thus effort is given by:

 Effort W ArticulatorEffort W VoicingEffortae ve= +. .

where
Wae  represents the weighting term for articulator effort and
Wve  represents the weighting term for voicing effort

Elija can selectively focus attention on different aspects of sensory feedback 
by changing the relative contribution to the individual terms in reward using the 
weighting vector W. Clearly a zero valued element would result in the corresponding 
quantity being excluded from the optimization procedure. The weights were all set 
to the range of 0–10. Using different weightings leads to the discovery of different 
types of speech sound. For example, attending to touch favors configurations where 
the lips are closed or the tongue touches the roof of the mouth. This attentional set 
is useful for discovering plosives. Attending to steady state acoustic output with 
power at lower frequencies favors configurations that lead to vocalic sound pro-
duction. Attending to acoustic output with a dominant high frequency component 
favors the discovery of fricatives. This mechanism corresponds to Oller’s concept 
of signal analysis (Oller 2000), in which an infant attends to different aspects of 
the sensory consequences of his actions.

Initial Discovery of Sounds

To discover the motor patterns that generate sounds that an infant would find of 
interest as modeled by our reward function, a quasi-Newton optimization algorithm 
was used, as implemented by the Matlab function fmincon. This function attempts 
to find a minimum (or a maximum if the sign of the reward term is flipped) of a 
scalar function of several variables. The optimization was constrained to find control 
parameters within their valid range. Figure 8 illustrates the optimization process 
within Elija. Optimization was begun from a random starting point and was run 
for 3 iterations. Further iterations did not improve the quality of the discovered 
sounds. The optimization for the motor patterns was used to discover Vs and CVs 
and ran on a PC for about 50 hr in total.

In the first experiment, motor patterns were discovered in the absence of 
caregiver interaction. Although it would have been possible for Elija to generate 
an acoustic output which he then analyzed by listening to himself using a micro-
phone (like a real infant listening to his own babble), we used a direct analysis on 
the output of the articulatory synthesizer waveform. This enabled the simulation 
to run several times faster than real time.
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Consolidation of Motor Patterns

We deliberately limited the number of motor patterns that were represented in 
memory by partitioning the data set into a limited number of clusters, and then only 
retaining the most central exemplar in each. This procedure removes redundancy 
from the repertoire of vocal actions without sacrificing diversity. An example is 
given in Figure 9. This is important because a caregiver will interact with Elija to 
reinforce and reformulate a wide variety of possible speech sounds. If the set of 
motor patterns was highly redundant this would rapidly lead to a combinatorial 
explosion of sounds and unnecessarily increase the number of interactions required 
in our experiments. By removing redundancy, we limited the length of interaction 
with a caregiver in the experiment to about 8 hr in total.

Categorization of Motor Patterns

Elija could potentially categorize his motor patterns using any of three datasets 
associated with them. On the basis of:

•  direct similarity of the motor patterns in vocal tract control parameter space.

•  similarity of the resulting acoustic outputs, computed using the DTW algorithm 
described below.

•  similarity of the caregiver’s corresponding acoustic outputs (usually reformula-
tions) again using the DTW algorithm.

This is illustrated in Figure 10. Initially, the first two datasets are the only means 
by which Elija can cluster his motor patterns. When the acoustic consequences 
of his vocal actions have been reformulated by a caregiver, this third dataset can 
also be used.

Categorization based on each dataset will lead to different results. For example, 
on the basis of similarity in articulator space, a vocal action that generates a fricative 
and one that generates an approximant may fall into the same category, because 
only a small change in articulator position differentiates them, whereas an acoustic 
categorization would be likely to separate them.

The categories that Elija will find will not necessarily reflect the phonological 
structure of the ambient language. However, such a result is more likely to occur in 
the third case, i.e., by clustering caregiver reformulations, because the caregiver is 
linguistically competent. Her productions within a category will therefore be more 
consistent than his (i.e., they will show low intertoken variability) and her refor-
mulations will more correctly and reliably express the phonological contrasts of 
the ambient language. Of course, phonological boundaries will only be definitively 
learned when semantic contrasts give the infant direct evidence of their locations. 
Currently we do not implement this procedure in our experiments.

Implementation of Pattern Clustering

As described above, after Elija has acquired a set of motor patterns in an experi-
mental run, he uses clustering to consolidate them. Elija can consolidate speech 
utterances either on the basis of their motor properties or acoustic properties. For 
the latter, the utterance is analyzed using a 21 channel filterbank described in the 
section Implementing Utterance Recognition based on the channel vocoder (Gold 
and Rader 1967) .
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Motor patterns are clustered directly using a standard K-means algorithm, as 
available in Matlab. For acoustic clustering of utterances, which will vary in length 
(different utterances from Elija will typically have different time durations, as will 
the caregiver’s utterances), the standard K-means algorithm is not appropriate, since 
it requires a fixed pattern length (see the K-means implementation in NETLAB for 
further details (Nabney 2004)). Therefore we perform clustering using a modified 
version of the standard algorithm, which we call DTW K-means. This is similar to 
the standard K-means algorithm except that 1) it represents a cluster using the best 
exemplar rather than its mean and 2) it uses a DTW distance metric. It operates 
in two steps. Let us assume we have already decided on the number of clusters, 
K. First the algorithm randomly chooses a best exemplar pattern to define each of 
the K clusters. It then begins an iterative loop. It processes each utterance in the 
dataset, assigning them to their nearest cluster exemplar. In standard K-means, a 
Euclidian distance metric is often used to directly compute distance. However, 
in the DTW K-means algorithm, dynamic time warping is used to determine the 
distance between utterances (as described in the section on Implementing Utter-
ance Recognition). After all utterances have been assigned to a cluster, we then 
use all the utterances within each cluster to recompute the best exemplar, which is 
defined as the utterance that is on average closest to all other utterances. It is found 

Figure 10 — Three alternative criteria for categorization. Each of Elija’s motor patterns B are associ-
ated with his speech output A and the corresponding caregiver reformulations C. Tokens in each data 
set can be categorized by similarity, but the categories obtained from the caregiver reformulations 
are preferred for two reasons. Firstly, the categories are more distinct and the tokens within them 
more similar because the caregiver is an expert speaker of L1. Secondly, the infant is aware that the 
caregiver is setting the rules of the game; her judgments are more consistent and authoritative than 
his and she will not be influenced by any counter proposals that he makes. In the diagram, tokens are 
shaded according to the reformulation categories and, as shown, these do not always coincide with 
Elija’s speech output or vocal action categories.
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Figure 11 — Organization of Elija’s motor and sensory memory. Newly discovered motor 
patterns and associated responses from the caregiver are shown at the bottom. These are 
recorded in raw motor and sensory memory. During a consolidation phase, clustering is 
performed to reduce redundancy in the motor patterns. This consolidation process maintains 
the associations between the motor and sensory memories. Finally clustered motor and 
sensory memories are recorded.

simply by adding up the distances to all other utterances for each utterance in turn, 
and choosing the utterance with the minimum summed distance. Then we once 
again assign each utterance to the closest exemplar. The assignment/recomputation 
process is repeated until no further change of assignment occurs.

Motor and Sensory Memory

The organization of Elija’s motor and sensory memory is shown in Figure 11.
As motor patterns are discovered, they are recorded in Elija’s current motor 

memory. When Elija uses a vocal action to generate a speech-like sound to which 
his caregiver responds, her corresponding acoustic response is retained in current 
sensory memory. In addition, an association is formed between these motor and 
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sensory patterns, which is also retained during clustering. Motor patterns which 
generate no response are discarded.

Reinforcement and Recombination of Motor Patterns

After simple V and CV motor patterns discovered by the optimization procedure 
are consolidated, they are played to the caregiver and reinforced (retained) if the 
caregiver responds acoustically. Otherwise they are discarded.

The reinforced motor patterns are used as building blocks for other motor pat-
terns. By decomposing them into C and V targets and then recombining them, the 
repertoire of plausible CVs was expanded. This is because some Cs only occurred 
with a limited number of Vs, and vice versa. This procedure corresponds to the 
activity described by Oller as segmentation, at the end of his Integrative stage (Oller 
2000). Similarly, using this procedure, more complex motor patterns were added 
to Elija’s repertoire, such as VC, CVV and VV.

Implementing Utterance Recognition

Elija has no a priori phonetic or phonological knowledge but he must learn to 
discriminate sounds in his environment.

To recognize speech it is usual to first extract features of the speech signal. 
Many representations are possible, ranging from spectrograms to Mel-frequency 
cepstral coefficients (Mermelstein 1976). Here we employ an auditory filterbank 
front-end based on a 21 channel vocoder, which generates an output frame every 16 
ms. Our analysis incorporates elementary amplitude normalization by employing 
a logarithmic scale to encode intensity, from which the total power is subtracted.

We implemented a recognition capability using a template-based dynamic time 
warping (DTW) algorithm. This algorithm aligns and locally warps the input speech 
utterances to account for differences in timing between them. It compares each 
frame in the input data with the corresponding ones in a set of reference templates 
that comprise the vocabulary of the recognizer, and returns a metric of similarity 
for each. By using dynamic programming (DP), this procedure can be computed 
efficiently. DP has formed the basis for many speech recognition systems (Sakoe 
and Chiba 1978). The implementation of the DP used in our experiments was due 
to Ellis (Ellis 2003). Although this algorithm was originally used for music recog-
nition (Turetsky and Ellis 2003), it is equally suitable for speech recognition since 
the underlying DP algorithm required is the same in both cases.

As mentioned above, the DTW algorithm is also used as the similarity metric 
in the DTW K-means algorithm.

Recognizing Caregiver Sounds

A two-stage procedure was used to recognize caregiver reformulations. This firstly 
identifies the category of an input sound produced by the caregiver based on acoustic 
similarity and then the best matching sound within that category. This procedure 
required the caregiver reformulations to be partitioned into 100 clusters, a value 
chosen by experimentation. This was performed using the DTW K-means algo-
rithm described above. The associations with vocal motor patterns were maintained 
during clustering, so that identification of a reformulation also identified Elija’s 
corresponding motor pattern. Figure 12 illustrates this process.
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Figure 12 — Clustering process used to implement the two-stage DTW speech recognizer. 
Examples are limited to two dimensions for clarity. Speech reformulations S1—S5 are clustered 
into two groups. The best exemplar in each cluster is also identified. Notice that the links to the 
associated motor patterns are maintained during this process.

During sound recognition, the DTW recognizer first uses the best exemplars 
in each cluster as the templates to identify the sound category. The recognizer then 
uses the members of the best category as templates, to identify the best specific 
matching sound. Figure 13 shows a schematic of this process. This step is also 
valuable because it identifies Elijah’s set of corresponding motor actions, which 
can then be offered as suggestions during the later labeling phase (see the later 
Object Labeling Experiment).

Experiments
A single subject (the author ISH) played the role of caregiver. For simplicity, we 
modeled developmental stages in series, rather than as the parallel and overlapping 
processes that occur in a real infant.

In all interactions, the caregiver imagined that Elija was a real infant and 
responded accordingly to his output. This usually meant that the caregiver refor-
mulated any utterance that sounded like a speech sound or word from Southern 
British English and ignored other utterances. Such reformulations are typical 
interactions observed between young infants and their caregivers (Pawlby 1977). 
In the final object labeling experiment, the caregiver spoke the name of an object 
to Elija, who responded with an attempted imitation. Again, if the caregiver liked 
Elija’s response it could be accepted, or rejected if not.

Elija developed the ability to pronounce and then pronounce words in discrete 
experiments which correspond to Oller’s five stages of protophone development 
in real infants (Oller 2000; Oller et al. 1999): phonation, primitive articulation, 
expansion, and the canonical and integrative stages. Because the articulatory 
synthesizer was unable to reliably generate nasal sounds, these were not initially 
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generated. Nasalization was only introduced to a subset of CV patterns in the final 
recombination stage.

Examples of the results are available in online supplementary material, which 
provides WAV files of Elija’s and the caregiver’s utterances. They are identified by 
the names of the experimental stages they relate to. The supplementary material 
is available at:

www.ianhoward.info/MCSupplementaryMaterial.ppt

Figure 13 — Two-level DTW utterance recognition. Template based recognition of the 
input utterance spoken by the caregiver is performed to identify the best matching caregiver 
reformulations. The reformulations have already been clustered and the best exemplar in 
the cluster has already been identified (shown in Figure 12). First, the input utterance is 
matched against all the best cluster exemplars. This identifies the cluster that best matches 
the input. A second match is then made to the reformulations within that cluster, leading 
to the identification of the overall best matching reformulation. This process requires less 
computation than directly matching against the entire set of reformulations.
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Phonation Stage Experiment

Method.  Oller’s phonation stage describes an infant’s development of the ability 
to control his vocal folds and breathing for voicing. This leads to the production 
of quasi-vowels.

Elija begins learning sounds by discovering vocal actions that generate steady-
state vowels. Initial values for 2000 single target motor patterns were created by 
random sampling from a uniform distribution of permitted values. Each motor 
pattern was then optimized on the basis of reward, by encouraging overall acoustic 
power while penalizing high frequency acoustic power and touch. Vocal actions 
which generated more high frequency than low frequency acoustic output were 
discarded, leaving 800 potentially useful vowel-like sounds. These motor patterns 
were clustered on the basis of their acoustic sensory consequences and the best 
exemplar in each was identified and retained. We found that using 50 clusters 
maintained a good balance between removing redundancy and repetition in the 
repertoire while maintaining variety.

Results.  Elija found a wide variety of vowel qualities, including some tokens 
which were unlike any used in English.

Twenty-two of the 50 clustered “vowels” that Elija found could be readily 
recognized as tense vowels in English: four as /i:/, five as /a:/, seven as /u:/ and six 
as /3:/. There were no close counterparts to /ɔ:/. 26 tokens either had some similari-
ties to the tense vowels, might be taken as lax vowels if shortened and embedded 
in a word, might be taken as diphthongs in some contexts, or might not exist in 
English but might resemble vowels in other languages. Two tokens had qualities 
that made them unlike natural vowels.

Primitive Articulation, Expansion and Canonical 
Stages Experiment

Method.  During Oller’s primitive articulation stage, the first limited articulations 
are made simultaneously with phonation. During this “gooing”, the vocal tract is 
often closed by the tongue at the rear of the mouth. In his expansion stage, infants 
articulate from a closed vocal tract to a postured full vowel while producing normal 
phonation. In this canonical stage, infants produce well-formed syllables. We 
model all of these stages in one experiment because Elija’s optimization discovers 
sounds sequentially rather than in parallel.

To find CV structures, Elija added a preceding target to the 50 previously dis-
covered vowel motor patterns. These were used to “seed” the V target in 1000 CV 
patterns. The C targets were randomly initialized. Target durations were randomly 
set in the range 300–600 ms.

When Elija attended to touch, he rewarded closure of the vocal tract and 
this mainly lead to the discovery of plosives. Similarly, when he attended to high 
frequency acoustic power he discovered fricatives. In both cases, only the initial 
consonantal part of the motor pattern was optimized.

Until now, Elija had performed self-supervised evaluation of his productions. 
From here onwards, Elija also interacted with a caregiver. He performed each vocal 
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action and the corresponding acoustic output was played to the caregiver via a 
loudspeaker. Elija then listened for two seconds for any vocal response the caregiver 
chose to make. The caregiver found it natural to reformulate certain sounds and 
ignore others. When Elija detected the presence of acoustic power he recorded the 
reformulation. Vocal actions that provoked no response were discarded.

Elija’s self-supervised search procedure lead to the discovery of 1000 CVs and 
diphthongs. Reinforcement on the basis of caregiver reformulations cut this down to 
890, removing non-English utterances. The CV’s were decomposed into their C and 
V components. The surviving V patterns were acoustically clustered into 15 groups 
and the surviving C patterns into 40 groups on the basis of motor similarity. The 
fricative sounds were extracted from the CV’s and clustered into 10 groups. Once 
again, cluster group sizes were selected to maintain variety without redundancy.

Results.  Five of the 15 clustered “vowels” that Elija found in the primitive 
articulation and expansion stage could be readily recognized as tense vowels in 
English: one as /i:/, one as /a:/, two as /u:/ and one as /ɜ:/. The remainder either 
had some similarities to the tense vowels, might be taken as lax vowels if shortened 
and embedded in a word, or might not exist in English but might resemble vowels 
in other languages.

Fifteen of the 40 syllables produced using clustered consonants with a following 
vowel were either clearly or recognizably similar to English syllables. Two of the 
tokens were unlike natural syllables. Most of the remainder could be assimilated 
to an English syllable by a generous listener. The consonant sounds that appeared 
were /w j p-b t-d g/.

Six of the clustered fricatives might be interpreted as /f/ when heard contextu-
ally. One might be heard as /θ/. Three were too unnatural to be heard as speech 
sounds.

Four of the clustered diphthongs could be heard as /ɪə/ /aʊ/ /aɪ/ and /əʊ/. The 
others did not resemble English diphthongs.

Integrative Stage Experiment

Method.  By the end of Oller’s integrative stage, many infants recombine 
segment-sized elements of well-formed syllables to form new syllables. By 
recombining C and V targets a wide variety of new motor patterns were generated. 
The V targets were recombined to generate VVs (diphthongs). The Cs and Vs 
were recombined to generate CVs, VCs, and CVVs. Vs were recombined with Fs 
(fricatives) to generate FVs and VFs. The CV patterns were copied and nasalized 
to generate NVs. Simple Fs and Vs were also present in the new expanded 
repertoire. In total 1535 new motor patterns were generated, which were pruned 
to 915 by caregiver reformulation. The reformulations themselves were used to 
form the basis of Elija’s speech sound recognition, enabling him to now parse 
the caregiver’s speech.

The recombination procedure was fruitful because it meant that a given articula-
tion only had to occur once for it to be reused in all other contexts. This expanded 
the production repertoire without the need for further exploration.

Results.  The large majority of Elija’s recombinations can be recognized as 
similar to the caregiver’s tokens and dissimilar to other syllables that Elija 
produces. Because of the difficulty of transcribing child speech, no objective 
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measure of this has been attempted but the utterances are available for review in 
the online Supplementary Material.

Object Labeling Experiment

Method.  In the final experiment, Elija was taught the names of 25 objects by the 
caregiver. The majority of these were chosen from a list of the first words produced 
by infants (Morrison et al. 1997). A picture of each object was presented to the 
caregiver, who spoke its name. This “meaning” provided additional evidence to 
link the name spoken by the caregiver with the attempt generated by Elija. As Elija 
does not have a visual system, an identifier index was presented to Elija, so he 
could also form an association between his motor action, the object context and the 
associated caregiver speech utterance. Elija performed recognition on this input, 
and responded using a sequence of corresponding vocal actions. If the caregiver 
accepted this response, the caregiver indicated approval by moving on to the next 
picture. If not, the procedure was repeated iteratively with Elija searching through 
all the vocal actions in the category and offering other candidate imitations.

Results.  Some single syllable words were reproduced accurately because the 
syllable existed in Elija’s gestural repertoire. Others were approximated with 
recognizable results. In the case of two-syllable words, Elija’s reproductions were 
recognizable provided at least one syllable of the word could be approximated.

For 14 of the 35 words that Elija attempted to imitate (Piers, Ian, car, chair, 
door, fish, flower, house, shoe, spoon, table, tree, ball and (ba)nana), his production 
is similar to the typical words produced by early speakers. His pronunciation of 
these words would be acceptable to sympathetic (e.g., family) listeners. Although 
these results do not represent the standards of production achieved by an adult, 
they are typical of a young infant.

Discussion

Summary

Conventional accounts of how infants learn to pronounce posit a purely imitative 
mechanism. Using Elija, a computational model, we demonstrated that an alterna-
tive, in which an infant makes use of natural interactions with a caregiver, could 
also solve the correspondence problem between infant and adult speech sounds, 
and thereby enable word learning to develop. Notably, it was always the learned 
caregiver, not Elija, who judged his vocal performance. Elija followed the devel-
opmental stages described by Oller (Oller 2000).

Elija first discovered vocal actions that lead to the production of sounds on his 
own, in the absence of a caregiver. Initially these were simple, single target con-
figurations corresponding to vowels, which were then followed by simple syllables. 
His recombination of their constituent Cs and Vs expanded his sound repertoire. 
Responses from a caregiver suppressed non speech-like sounds and biased produc-
tion toward speech sounds found in the ambient language. Caregiver reformulations 
of Elija’s output allowed him to develop associations between his vocal actions and 
adult speech sounds. During a final object labeling task, Elija learnt sequences of 
vocal actions which reproduced some of the object names spoken by the caregiver.
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During this final labeling experiment, the caregiver’s objective was for Elija 
to generate an appropriate pronunciation for the object. To do so, the caregiver 
encouraged him to find the best sequence of vocal actions that he was capable of 
producing. In this, it helped when the caregiver became familiar with how Elija 
recognized and produced words. Then the caregiver could sometimes prompt him 
with modified speech utterances which evoked responses which were considered 
acceptable at this stage in his development. For this, the caregiver emphasized or 
simplified speech output away from the conventional pronunciation of the word 
in question.

Comparison with Other Computational Speech 
Acquisition Models

We now compare Elija with some other computational models.
Guenther’s DIVA model (Guenther 1994; 1995; Guenther et al. 2006) and that 

of Kröger (Kröger et al. 2009a; Kröger et al. 2009b) focus on the sensorimotor 
transformations involved in the control of articulator movements during speech 
production. They use both feed-forward and feedback control pathways and address 
the learning of low level motor control. The models by Laboissière (Laboissière 
1992) and Bailly (Bailly 1997) also learn an acoustic forward model.

In Elija, we instead follow the approach taken in HABLAR (Markey 1994), 
which was in turn inspired by Articulatory Phonology and the Task Dynamic model 
(Saltzman and Munhall 1989). Thus Elija does not learn the low level motor control 
of his articulators and can immediately repeat the motor pattern for any vocal action 
he discovers. In the Task Dynamic model, the atomic unit is a “gesture”, defined 
as the goal directed movement of a single articulator resulting in a vocal tract con-
striction (Goldstein et al. 2006). In Elija, the atomic unit is a simple articulation 
that is defined in terms of the articulatory synthesizer control parameters. In both 
models, several atomic units must be organized appropriately to build up speech 
utterances, e.g., a syllable. Thus Elija’s motor patterns are similar to the gestural 
score used in the Task Dynamic model, with the targets similarly implemented as 
point attractors and the movement of the articulators affected by attractor dynamics.

Most other models use a babbling phase, based on either a random or exhaus-
tive search of articulatory configurations, to learn a mapping between articulatory 
and auditory representations. Babbling also plays an important part in the develop-
ment of Elija’s speech. However, we use a more natural approach in which speech 
sounds are discovered by rewarded exploration. In addition, in contrast to other 
models, babbling is not used to develop inverse and forward models linking the 
trajectories of motor actions and their sensory consequences. Rather, babbling 
allows associations to be formed between the discrete events corresponding to 
Elija’s motor actions and the caregiver’s responses.

Most other models learn speech sounds by imitation, without either address-
ing the normalization problem (the fact that an infant’s production is objectively 
very different from an adult’s due to its different size vocal tract) or the fact that in 
real life infant utterances sometimes bear little resemblance to their linguistically 
equivalent adult forms. In contrast, although Elija also uses a form of imitation at 
later stages of development (copying the serial order of speech sounds in a word), 
he “learns to imitate” speech sounds, rather than this being an innate ability.
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Future Work

In our model we chose to concentrate on the natural discovery of what will become 
speech sounds and on the role played by caregiver interactions. We made no attempt 
to model motor development of low level articulator control. If we took such devel-
opment into account, we would expect some simpler vocal actions to emerge before 
more complex ones. For example, some of the syllables Elija developed would, in 
real life, develop before others due to the ease of their generation.

The articulatory synthesizer we used had limitations and in particular the quality 
of nasal sounds generated was poor. Improvements to the articulatory model are 
therefore needed, since nasals sounds are created early by real infants.

Our memory model uses associations between actions and acoustic utterances. 
A real infant will develop more complex relationships between input and output, 
and relate them to internal rewards and desires. It should be possible to formulate 
Elija’s learning and response generation in a Bayesian framework which can take 
the evidence (and reliability) of each data source into account. In addition, latent 
variables in such models are able to model hidden structure, such as cooperation 
between the agent, the caregiver and meaning (Frank et al. 2009). This is important 
because cooperation of the caregiver must be taken into account by Elija to take 
advantage of reformulations.

Including the constraints imposed by speech breathing would also be beneficial 
since they play a role in the development of timing and prosody in pronunciation 
(Messum 2008b), and we have already made preliminary steps in this direction 
(Howard and Messum 2008). To improve the experience of interacting with Elija, 
he would benefit from having an animated face synchronized to his acoustic output. 
A real infant would also have access to multimodal input, including vision. This 
would provide additional visual cueing from the caregiver (Huckvale et al. 2009).

In the field of speech technology, it is increasingly recognized that current 
engineering solutions are reaching limits of performance (Moore 2007). We believe 
that a deeper understanding of how infants learn to perceive and produce speech, 
in particular as embodied agents that interact with their caregivers, offers a new 
way forward through building systems which learn to speak and listen rather than 
having these capabilities specified by their designers.

Finally, our non-imitative account of learning to pronounce incorporates prin-
ciples that are likely to apply to the development of a wide range of motor abilities, 
such as learning the control of skilled hand and arm movements.

Notes
1. For example, among the theoretical problems, Messum distinguishes the ecological situa-
tions of child first language learners and older second language learners (Messum 2008a; Messum 
2007). The latter are able to engineer situations to improve their pronunciation. In these situations, 
they are presented either with speech sounds spoken in isolation or with words that they have 
requested and/or expect to hear. The older learners can then listen to these sounds/words with the 
attentional set required to hear the acoustic signal veridically, i.e., in Pisoni’s “phonetic mode” 
(Pisoni 1973). This contrasts with a listener’s normal attentional set (Pisoni’s “auditory mode”) 
which is to listen to recognize words, in which case the veridical signal is not retained.

A child learner must almost always listen with this second attentional set, since his 
verbal interactions with his caregivers are the result of one or both sides wishing to express or 
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communicate something. Thus he rarely gets the opportunity to compare his own speech sound 
production with that of others.

Among the child speech phenomena which cannot be explained satisfactorily under imitative 
accounts, there is the well-known “fis”/“fish” phenomenon (Clark and Clark 1977; Locke 1979; 
Priestly 1980). Here, a child pronounces “fish” as “fis” and when questioned as to why he did 
so, insists firstly that he can hear the distinction in the two forms made by the adult and secondly 
that he did not say the incorrect form himself. Imitative accounts cannot explain this because 
they assume that the infant learns speech sounds by copying the adult form, in which case it is 
paradoxical that he can hear a difference in adult speech but not hear it in his own. In our model, 
on the other hand, production and the parsing of words for speech sound equivalences are initially 
separate from general speech perception. As such, production forms can differ from those used 
in general word perception and the “fis”/“fish” phenomenon has an uncomplicated explanation.

Among the problematic adult phenomena, there is the data on speech shadowing (e.g., Fowler 
et al. 2003). Under conventional accounts of speech sound acquisition by acoustic matching, it 
appears that speech is an exception to the otherwise universal response time differences in simple 
and choice reaction time tests. In our model, the data are explained more simply, because the 
production and perception of speech sounds is directly associated rather than going via a common 
form, whether acoustic or gestural.

These and other possible problems with conventional accounts of how pronunciation develops 
are discussed further in Messum (2007).

2. The Maeda articulatory synthesizer uses a 2-dimensional model to represent the cross-
sectional profile of the vocal tract along the midsagittal plane. The parameters in the model were 
estimated (by Maeda) using factor analysis of a dataset. This consisted of cine-radiographic 
vocal tract profiles and frontal lip shape recordings of 2 female French speakers producing 10 
French sentences. The vocal tract was divided up into 3 sections—lip aperture, principal vocal 
tract and pharynx. The principal vocal tract was characterized in semi polar coordinates, the lips 
by an ellipse and the larynx by its height. A jaw model (Lindblom and Sundberg 1971) was used 
to represent the dataset in terms of the parameters jaw, tongue-body, tongue-tip, lip height, lip 
width and larynx height. The vocal tract shape is determined by a linear combination of these 
primitive elements found using a directed factor analysis. In contrast to normal factor analysis, 
this method allowed Maeda to represent the data in terms of the parameters he had selected.
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