
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

04 University of Plymouth Research Theses 01 Research Theses Main Collection

2015

Automated Creation and Provisioning of

Value-added Telecommunication

Services

Eichelmann, Thomas

http://hdl.handle.net/10026.1/3376

http://dx.doi.org/10.24382/1493

Plymouth University

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.

Copyright Statement

This copy of the thesis has been supplied on condition that

anyone who consults it is understood to recognise that its

copyright rests with its author and that no quotation from

the thesis and no information derived from it may be

published without the author’s prior consent.

Automated Creation and Provisioning of

Value-added Telecommunication Services

by

Thomas Eichelmann

A thesis submitted to Plymouth University

in partial fulfilment for the degree of

Doctor of Philosophy

School of Computing and Mathematics

In collaboration with

Darmstadt Node of the CSCAN Network

April 2015

i

Automated Creation and Provisioning of Value-added

Telecommunication Services

Thomas Eichelmann

Abstract

The subject of this research is to find a continuous solution, which allows the

description, the creation, the provisioning, and the execution of value-added

telecommunication services. This work proposes a framework for an easy and

timesaving creation and provisioning of value-added telecommunication services in

Next Generation Networks.

As research method, feasibility, comparative methods are used in this study. Criteria

and requirements for service description, service creation, service execution, and

service provisioning, are defined and existing technologies are compared with each

other and evaluated regarding these criteria and requirements. Extensions to the

selected technologies are proposed and possibilities to combine these technologies

are researched. From the results of the previous steps, a framework is defined which

offers a continuous solution for the description, creation, provisioning and execution

of value-added services. In order to test the proof of concept, this framework is

prototypically implemented. For a qualitative analysis of the research targets and the

proof of concept, an example service is created and executed within the framework

prototype. Furthermore, in order to examine the validity of the quantitative aims and

objectives of this research work, a second example service is created, and its

characteristics are measured and analysed.

The result of this research is a novel continuous approach for the creation of value-

added telecommunication services. This research introduces new possibilities for the

service description, service creation, service provisioning, and service execution

through an extension of the common telecommunication real-time execution

environment JAIN SLEE. Value-added services are described by using the business

process execution language BPEL. This language facilitates a simple and fast service

design. The service can automatically be composed from pre-defined and pre-

deployed components.

Contents

ii

Contents

Contents.. ii

List of Figures ... vi

List of Tables... xiv

Acknowledgements .. xv

Author’s Declaration ... xvi

1 Introduction .. 1

1.1 Aims and Objectives ... 2

1.2 Thesis Structure ... 5

2 Introducing the Telecommunication Infrastructure ... 8

2.1 Definition of Services ... 8

2.2 Network-based Service Provisioning .. 15

2.2.1 Internet ... 15

2.2.2 NGN (Next Generation Networks) .. 17

2.2.3 IMS (IP Multimedia Subsystem) ... 19

2.3 SIP Application Server and Media Server .. 21

2.4 Service Delivery Platform ... 26

2.5 Criteria of Service Creation, Service Execution, and Service

Provisioning Technologies for Value-Added

Telecommunication Services .. 30

2.6 Conclusion... 33

3 Current Solutions for Service Creation .. 35

3.1 Call Processing Language (CPL) .. 36

3.2 Language for End System Services (LESS).. 39

3.3 Voice XML (Voice Extensible Mark-up Language) 40

3.4 CCXML (Call-Control eXtensible Mark-up Language) 43

3.5 SCML (Service Creation Mark-up Language) .. 45

3.6 WS-BPEL .. 47

3.7 BPMN (Business Process Model and Notation) 50

Contents

iii

3.8 TelcoML (Telecommunication Modelling Library) 52

3.9 Related Research Projects ... 55

3.10 Conclusion... 77

4 Current Solutions for Service Execution and Provisioning 81

4.1 Customised Application for Mobile Network Enhanced Logic

Service Environment (CAMEL SE).. 82

4.2 OSA/Parlay, Parlay X ... 83

4.3 OMA SE (Open Mobile Alliance Service Environment) 87

4.4 JAIN SLEE (Service Logic Execution Environment) 89

4.5 SIP Common Gateway Interface (SIP-CGI) ... 104

4.6 Web Services ... 105

4.7 SIP Servlets ... 107

4.8 Related Research Projects ... 110

4.9 Conclusion... 117

5 Novel Approaches for Service Description, Creation, and Execution 120

5.1 Requirements of the Proposed Framework ... 121

5.2 Service Description Concepts ... 123

5.2.1 BPEL for Service Description .. 123

5.2.2 Describing the Service Logic in BPEL .. 124

5.2.3 Describing the Functionality in BPEL ... 128

5.3 Service Creation Concepts .. 133

5.3.1 Code Generator .. 133

5.3.2 Runtime Service Composition ... 136

5.4 Service Execution Concepts .. 138

5.4.1 Single SBB Concept ... 138

5.4.2 Parallel Program Flow Concept ... 141

5.4.3 Orchestration Concept .. 149

5.4.4 Choreography Concept... 151

5.5 Conclusion... 153

6 Proposed Framework ... 156

6.1 Architecture Overview .. 156

Contents

iv

6.2 Service Creation Environment .. 161

6.2.1 Communication Building Blocks ... 162

6.2.2 Graphical Development Tools ... 165

6.2.3 Service Management Tool ... 168

6.2.4 Marketplace & Repository ... 169

6.3 Service Execution Environment .. 171

6.3.1 Management Layer... 172

6.3.2 Service Execution Layer .. 174

6.3.3 Resource Connection Layer ... 178

6.4 Conclusion... 180

7 Services in the SEE .. 182

7.1 Service Structure ... 182

7.1.1 Framework Context .. 182

7.1.2 Variables and Variable Types .. 184

7.1.3 External Service Communication .. 185

7.1.4 Communication Channels .. 186

7.1.5 The Components of a Service .. 188

7.2 Service Life Cycle ... 191

7.2.1 States of a Service Instance .. 192

7.2.2 Service Composition Phase .. 193

7.2.3 Service Execution Phase .. 199

7.2.4 Service Reconfiguration Phase .. 204

7.2.5 Service Removal Phase .. 206

7.3 Conclusion... 208

8 Framework and Prototype Evaluation .. 211

8.1 Evaluation of the Defined Framework Requirements 211

8.2 Architecture of the Research Prototype .. 215

8.3 Proof of Concept of the Framework Components 221

8.3.1 Implementation of the Empty LSBB.. 223

8.3.2 Implementation of the Sequence LSBB ... 230

8.3.3 Implementation of the Assign LSBB ... 235

List of Figures

v

8.3.4 Implementation of the Flow LSBB .. 241

8.3.5 Implementation of the IF LSBB ... 245

8.3.6 Implementation of the Invoke LSBB together with SIP RCSBB 251

8.3.7 Implementation of the Receive LSBB together with HTTP RCSBB 259

8.3.8 Implementation of the Wait LSBB .. 265

8.3.9 Implementation of the While LSBB .. 268

8.4 Proof of the Proposed Framework Concept .. 275

8.4.1 Wake-up Test Scenario .. 275

8.4.2 Describing the Wake-up Service in BPEL ... 277

8.4.3 Composition Phase of the Wake-up Service 281

8.4.4 Execution Phase of the Wake-up Service .. 285

8.5 Analyses of the Quantitative Requirements of the Framework

Prototype ... 290

8.5.1 Evaluation Scenario ... 290

8.5.2 Comparison between Conventional and PhD Prototype Service

Creation ... 294

8.5.3 Performance Analysis of the Framework Prototype 296

8.5.4 Service Scalability .. 303

8.6 Conclusion... 305

9 Conclusion and Future Work ... 307

9.1 Achievements of the Research .. 307

9.2 Advantages of the Solution ... 313

9.3 Claims of Novelty ... 318

9.3.1 Novelties in Service Description .. 318

9.3.2 Novelties in Service Creation, Service Execution and Service

Provisioning .. 322

9.4 Limitations of the Research .. 324

9.5 Suggestions and Scope for Future Work ... 326

References .. 328

Appendix A – Abbreviations ... 339

Appendix B – Publications and Presentations ... 345

List of Figures

vi

List of Figures

Figure 2.1: Service classification (related to (ETSI TS 122.101, 2009)) 14

Figure 2.2: The structure of the Internet (related to (Trick and Weber, 2009)) 16

Figure 2.3: The architecture of a Next Generation Network (NGN) (related to

(Trick and Weber, 2009)) ... 17

Figure 2.4: NGN architecture in a strata/layer structure (related to (Trick and

Weber, 2009)) .. 19

Figure 2.5: IMS architecture in a strata/layer structure (related to (Trick and

Weber, 2009)) .. 20

Figure 2.6: Modes of operation of an application server (related to (Trick and

Weber, 2009)) .. 22

Figure 2.7: Possible environment of an SIP application server (related to (Trick

and Weber, 2007)) .. 24

Figure 2.8: Interaction between the SIP AS and media server in NGN (related to

(Trick and Weber, 2007)) ... 26

Figure 2.9: Service Delivery Platform in NGN (related to (Trick and Weber,

2009)) ... 27

Figure 2.10: SDP architecture (related to (Moriana, 2004), (Moriana, 2013)) 28

Figure 3.1: CPL Editor (Becker, 2015) .. 36

Figure 3.2: Graphical representation of a CPL script (IETF RFC 3880, 2004) 37

Figure 3.3: XML document of a CPL script (IETF RFC 3880, 2004) 38

Figure 3.4: Call models of network services and end system services (Wu and

Schulzrinne, 2003) ... 40

Figure 3.5: VoiceXML architecture (related to (W3C, 2004b)) 41

Figure 3.6: XML document of a VoiceXML dialogue .. 42

Figure 3.7: IBM WebSphere Communication Flow Builder (IBM WebSphere,

2015) (First published by IBM developerWorks at

http://www.ibm.com/developerWorks/websphere/downloads/voiceto

olkit.html) ... 43

Figure 3.8: CCXML system architecture (related to (W3C, 2011)) 44

Figure 3.9: SCML architecture (related to (IETF, 2001c)) 46

Figure 3.10: BPEL process in cooperation with other services 47

Figure 3.11: BPEL process with interface and message protocol 48

List of Figures

vii

Figure 3.12: A simple BPEL process (created with Oracle IDE JDeveloper

(JDeveloper, 2014) ... 49

Figure 3.13: BPMN example process (OMG, 2010) ... 50

Figure 3.14: TelcoML SMS example (OMG, 2013).. 54

Figure 3.15: Interface of the composite service (OMG, 2013) 55

Figure 3.16: Snapshot of high level SCE (Glitho et al., 2003) © 2003 IEEE 56

Figure 3.17: High-level service creation environment (Glitho et al., 2002) ©

2002 IEEE .. 57

Figure 3.18: SPATEL composite service logic (Drögenhorn, 2008) © 2008

IEEE ... 59

Figure 3.19: SPICE End User Studio (Drögenhorn, 2008) © 2008 IEEE 60

Figure 3.20: DiaGen processing chain (Jouve et al., 2008) 61

Figure 3.21: SPL counter service (SPL, 2013) .. 63

Figure 3.22: VisuCom example call routing (Latry et al., 2007) 64

Figure 3.23: OPUCE web editor (Sienel et al, 2009), “Reprinted with

permission of Alcatel-Lucent USA Inc.” ... 65

Figure 3.24: Example of an OPUCE Service Composition (related to (Cipolla et

al., 2007)) ... 66

Figure 3.25: TeamCom architecture (Eichelmann, 2010) .. 68

Figure 3.26: StarSLEE communication server (Venezia et al., 2006) © 2006

IEEE ... 74

Figure 3.27: StarSCE service description (Venezia et al., 2006) © 2006 IEEE 75

Figure 3.28: STAR-SLEE architecture (Venezia et al., 2006) © 2006 IEEE 76

Figure 4.1: CAMEL Service Environment (CAMEL SE) (Detecon, 2007) 82

Figure 4.2: OSA/Parlay framework (related to (Abarca et al., 2002)) 84

Figure 4.3: Parlay gateway (related to (Detecon, 2007)) ... 85

Figure 4.4: OMA SE architecture (related to (OMA, 2004)) 88

Figure 4.5: JAIN SLEE architecture (related to (Maretzke et al., 2005)) 91

Figure 4.6: JAIN SLEE event model (related to (Maretzke, 2005)) 94

Figure 4.7: Example of the event processing in JAIN SLEE ((related to

Maretzke et al., 2005)) ... 95

Figure 4.8: Elements of a deployable unit ... 98

Figure 4.9: JAIN SLEE components for the TLS-chat service 99

List of Figures

viii

Figure 4.10: Connection establishment with the chat service 100

Figure 4.11: CGI model for SIP (related to IETF RFC 3050, 2001) 105

Figure 4.12: Web services and SOA .. 106

Figure 4.13: Application server and SIP servlets (related to (Trick and Weber,

2009)) ... 108

Figure 4.14: AS with SIP and HTTP servlet container .. 109

Figure 4.15: Servlet model for SIP (related to (Fan et al., 2006)) 109

Figure 4.16: The MAMS framework (related to (Fraunhofer SIT, 2014)) 111

Figure 4.17: MAMS Service Creation Workbench (Freese et al., 2007) 112

Figure 4.18: High-level architecture of the converged execution environment

(Bessler et al., 2007) .. 113

Figure 4.19: Architecture of the ServiceMix; Mobicents integration (Bo et al.,

2009) © 2009 IEEE .. 114

Figure 5.1: Service description, creation, execution .. 120

Figure 5.2: Eclipse BPEL designer .. 125

Figure 5.3: XML-Editor from Eclipse BPEL designer .. 126

Figure 5.4: Choosing a functionality from a BPEL partner link (protocol level

example) ... 130

Figure 5.5: Choosing a functionality from a BPEL partner link (medium level

example) ... 131

Figure 5.6: Choosing a functionality from a BPEL partner link (high-level

example) ... 132

Figure 5.7: Code generator ... 134

Figure 5.8: Runtime service composition .. 136

Figure 5.9: Single SBB concept ... 139

Figure 5.10: BPEL process with sequential activities and the generated SBB 140

Figure 5.11: BPEL process with flow activity ... 142

Figure 5.12: BPEL process with flow activity and the resulting SBBs 144

Figure 5.13: Parallel Program Flow concept.. 145

Figure 5.14: BPEL process with two flow activities within a sequence and the

resulting SBBs .. 147

Figure 5.15: BPEL process with a flow activity nested within another flow

activity and the resulting SBBs .. 148

List of Figures

ix

Figure 5.16: Orchestration of SBBs ... 150

Figure 5.17: Choreography of SBBs .. 152

Figure 6.1: Framework architecture ... 158

Figure 6.2: Service execution environment ... 160

Figure 6.3: Service creation environment .. 161

Figure 6.4: Communication Building Blocks (CBBs) ... 163

Figure 6.5: BPEL-based development tools... 166

Figure 6.6: Different service descriptions and parsers ... 167

Figure 6.7: Service management tool... 168

Figure 6.8: Marketplace and repository: integration of external resources 170

Figure 6.9: Layers of the service execution environment 172

Figure 6.10: MSBBs of the management layer .. 173

Figure 6.11: Relationship between SCMSBB and service instance 174

Figure 6.12: LSBBs of the service execution layer.. 175

Figure 6.13: RCSBB in the resource connection layer .. 179

Figure 7.1: Framework context .. 183

Figure 7.2: Variable context ... 185

Figure 7.3: Unidirectional communication .. 187

Figure 7.4: Bidirectional communication .. 187

Figure 7.5: Components of a service instance ... 189

Figure 7.6: Communication channels of the SCMSBB ... 190

Figure 7.7: Communication channels of a LSBB .. 190

Figure 7.8: Communication channels of a RCSBB ... 191

Figure 7.9: States of a service instance .. 192

Figure 7.10: Service composition phase – part one ... 194

Figure 7.11: Service composition phase – part two ... 197

Figure 7.12: Notification example, service composition phase – part one 198

Figure 7.13: Notification example, service composition phase – part two 199

Figure 7.14: Service execution phase... 200

Figure 7.15 : Triggering the service execution .. 201

Figure 7.16: Notification example; service execution phase 202

List of Figures

x

Figure 7.17: Reconfiguration by replacing previous instances 205

Figure 7.18: Service removal phase ... 207

Figure 8.1: Prototype architecture overview .. 216

Figure 8.2: Eclipse BPEL developer .. 217

Figure 8.3: Research prototype implementation overview 218

Figure 8.4: Service management web interface ... 219

Figure 8.5: Web interface of interactive management servlet 220

Figure 8.6: Graphical representation of the empty BPEL process 224

Figure 8.7: XML document of the “EmptyEval” process 224

Figure 8.8: Empty composition, reconfiguration, and removal phase 225

Figure 8.9: Empty execution phase .. 225

Figure 8.10: Empty composition phase .. 227

Figure 8.11: Empty composition phase events .. 227

Figure 8.12: Empty execution phase .. 228

Figure 8.13: Empty execution phase events ... 228

Figure 8.14: Empty removal phase .. 229

Figure 8.15: Empty reconfiguration phase ... 230

Figure 8.16: Graphical representation of the sequence evaluation BPEL process 231

Figure 8.17: XML document of the “SequenceEval” process 231

Figure 8.18: Sequence evaluation composition phase ... 232

Figure 8.19: Sequence evaluation execution phase.. 233

Figure 8.20: Sequence composition evaluation log ... 234

Figure 8.21: Sequence composition phase MSC.. 234

Figure 8.22: Sequence execution evaluation log.. 235

Figure 8.23: Sequence execution phase MSC .. 235

Figure 8.24: Graphical representation of the assign evaluation BPEL process 236

Figure 8.25: XML document excerpt of the “AssignEval” process 237

Figure 8.26: Assign composition evaluation log ... 238

Figure 8.27: Assign composition phase MSC .. 239

Figure 8.28: Assign execution evaluation log .. 239

Figure 8.29: Assign execution phase MSC .. 240

List of Figures

xi

Figure 8.30: Graphical representation of the flow evaluation BPEL process 241

Figure 8.31: XML document excerpt of the “FlowEval” process 242

Figure 8.32: Flow composition evaluation log .. 243

Figure 8.33: Flow composition phase MSC ... 244

Figure 8.34: Flow execution evaluation log ... 244

Figure 8.35: Flow execution phase MSC ... 245

Figure 8.36: Graphical representation of the if evaluation BPEL process 246

Figure 8.37: XML document excerpt of the “IfEval” process 247

Figure 8.38: If composition evaluations log – part 1 ... 249

Figure 8.39: If composition evaluations log part – 2 ... 249

Figure 8.40: If composition phase MSC .. 250

Figure 8.41: If execution evaluation log .. 251

Figure 8.42: If execution phase MSC .. 251

Figure 8.43: Graphical representation of the invoke evaluation BPEL process 252

Figure 8.44: SIP CBB partner link from the “InvokeEval” process – part 1 253

Figure 8.45: XML document excerpt of the “InvokeEval” process – part 2 253

Figure 8.46: XML document excerpt of the “InvokeEval” process – part 3 254

Figure 8.47: XML document excerpt of the “InvokeEval” process – part 4 254

Figure 8.48: Invoke composition evaluation log – part 1 256

Figure 8.49: Invoke composition evaluation log – part 2 256

Figure 8.50: Invoke composition phase MSC .. 257

Figure 8.51: Invoke execution evaluation log .. 257

Figure 8.52: Invoke evaluation log SIP MESSAGE .. 258

Figure 8.53: Invoke evaluation log SIP 200OK ... 258

Figure 8.54: Invoke execution phase MSC .. 258

Figure 8.55: SIP message received in SIP user agent .. 259

Figure 8.56: Graphical representation of the receive evaluation BPEL process 260

Figure 8.57: XML document excerpt of the “HTTPEval” process 261

Figure 8.58: Receive composition evaluation log – part 1..................................... 262

Figure 8.59: Receive composition evaluation log – part 2..................................... 263

Figure 8.60: Receive composition phase MSC .. 263

List of Figures

xii

Figure 8.61: Receive execution evaluation log .. 264

Figure 8.62: Receive execution phase MSC .. 264

Figure 8.63: Graphical representation of the wait evaluation BPEL process 265

Figure 8.64: XML document of the “WaitEval” process 266

Figure 8.65: Wait composition evaluation log ... 266

Figure 8.66: Wait composition phase MSC ... 267

Figure 8.67: Wait execution evaluation log ... 267

Figure 8.68: Wait execution phase MSC ... 268

Figure 8.69: Graphical representation of the while evaluation BPEL process 269

Figure 8.70: XML document excerpt of the “WhileEval” process – part 1 270

Figure 8.71: XML document excerpt of the “WhileEval” process – part 2 270

Figure 8.72: While composition evaluation log – part 1 .. 273

Figure 8.73: While composition evaluation log – part 2 .. 273

Figure 8.74: While composition phase MSC ... 273

Figure 8.75: While execution evaluation log ... 274

Figure 8.76: While execution phase MSC ... 275

Figure 8.77: Wake-up scenario .. 276

Figure 8.78: Graphical representation of the Wake-up BPEL process 277

Figure 8.79: XML document excerpt of the “Wake-up” process – part 1 278

Figure 8.80: XML document excerpt of the “Wake-up” process – part 2 280

Figure 8.81: XML document excerpt of the “Wake-up” process – part 3 281

Figure 8.82: Wake-up composition evaluation log – part 1 282

Figure 8.83: Wake-up composition evaluation log – part 2 283

Figure 8.84: Wake-up composition phase MSC .. 284

Figure 8.85: Wake-up execution evaluation log – part 1 285

Figure 8.86: Wake-up execution evaluation log – part 2 286

Figure 8.87: Wake-up execution evaluation log – part 3 286

Figure 8.88: Wake-up execution evaluation log – part 4 287

Figure 8.89: Wake-up execution evaluation log – part 5 287

Figure 8.90: Wake-up execution evaluation log – part 6 288

Figure 8.91: Wake-up execution evaluation log – part 7 288

List of Figures

xiii

Figure 8.92: Wake-up message in SIP user agent .. 288

Figure 8.93: Wake-up execution phase MSC .. 289

Figure 8.94: Graphical BPEL representation of the chat service 291

Figure 8.95: Chat service login .. 293

Figure 8.96: Chat service text exchange .. 293

Figure 8.97: Chat service logout .. 294

Figure 8.98: Chat service logout scenario .. 297

Figure 8.99: Chat service with one SBB .. 297

Figure 8.100: Chat service with multiple SBBs ... 298

Figure 8.101: Throughput test results .. 299

Figure 8.102: Round trip time Timer for the SIPp logout scenario 300

Figure 8.103: Chat service round trip time (RTT) ... 301

Figure 8.104: Chat service CPU load ... 302

Figure 8.105: Framework scalability ... 304

List of Tables

xiv

List of Tables

Table 2.1: Classification of telecommunication services (related to (ITU-T

I.210, 1993)) ... 12

Table 3.1: TeamCom CBB overview ... 69

Table 3.2: Service creation solutions ... 78

Table 4.1: Service execution and provisioning solutions....................................... 118

Table 5.1: BPEL activities (OASIS, 2007) .. 126

Table 6.1: Overview of the LSBBs and their tasks .. 175

Table 8.1: Comparison between the approaches .. 294

Acknowledgements

xv

Acknowledgements

The research behind this dissertation could not have been accomplished without the

personal and practical support of numerous people. It would be impossible to thank

all of those who helped and contributed somehow to the development of this work. I

would like to acknowledge the contributions of the following people:

- My supervisors Prof. Dr. Woldemar Fuhrmann, Prof. Dr.-Ing. Ulrich Trick and

Dr. Bogdan V. Ghita for their professional advice, personal support, guidance in

research, and their encouragements throughout the project.

- My colleagues from the Research Group for their friendship and for their help,

whenever requested.

- My family and friends, for their support and encouragements, without which this

thesis would never have been written.

The research projects TeamCom and ComGeneration providing the basis for this

publication were partially funded by the Federal Ministry of Education and Research

(BMBF) of the Federal Republic of Germany under grant number 1704B07 and

1724B09. The authors of this publication are in charge of its content.

Author’s Declaration

xvi

Author’s Declaration

At no time during the registration for the degree of Doctor of Philosophy has the

author been registered for any other University award without prior agreement of the

Graduate Committee.

Relevant scientific seminars and conferences were regularly attended at which work

was often presented, and several papers were prepared for publication.

Word count of main body of thesis: 70.125

Signed _______________________

Date _______________________

Introduction

1

1 Introduction

Service providers have to react fast to market changes and emerging trends in order

to respond to market needs, remain competitive, and offer new services whenever

requested by the customers. Typically, the development of new services is currently

still very time-consuming and would require weeks or months to develop a new

value-added service.

In the past, telephony comprised simple audio connections between two participants.

With the new emerging possibilities like video conferencing, instant messaging,

presence or web applications, value-added services have broadened their scope.

Furthermore, today's services also need to support new resources and must be able to

integrate new protocols.

Multiple media resources can be combined into one service and, furthermore, a

service can support multiple protocols, for example, an audio conference service with

translation. Multiple participants can join this conference service, and for each

participant the voice communication is translated into the requested target language.

In this service, a signalling protocol is required to establish the connections with the

conference service and the participants. Moreover, a protocol is required to transmit

the user data from the end-user equipment to a media server that is controlled by the

service. This media server can apply voice recognition to the received user data,

translates the voice communication into text, and forwards the generated text to, e.g.,

a translation web service. The web service translates the text into the required

Introduction

2

languages and sends the translated text to the media server. The media service then

translates the text into speech and streams it to the user.

Currently, the development of value-added services requires a lot of detailed

knowledge about the communication systems and the associated protocols; lacking

the abstraction level and remaining incompatible with mainstream web application

development. Therefore, specialists with a broad technical knowledge are required

for the development process. The required deep skills hinder the expansion of value-

added services, only the telecommunication industry is able to develop value-added

services, which are costly as well as time and resource consuming. This thesis offers

a novel solution for an easy, graphical description of value-added telecommunication

services and an automated service creation from the service description. The value-

added telecommunication services are executed in an extended service execution

environment.

The detailed aims and objectives of this research are presented in section 1.1,

followed by an outline of the thesis structure in section 1.2.

1.1 Aims and Objectives

This thesis presents a novel solution for the development of value-added services. A

value-added service is described first on a logical level using well-known formal

methods used in information technology (IT). The service description is

automatically compiled into a program that can be executed in an appropriate

telecommunication real-time runtime environment. Communication Building Blocks

(CBBs) are created to provide the required resources for the formal value-added

Introduction

3

service description and implement the technical functionalities in the execution

environment.

This research work aims to find and describe a novel, approach for the creation and

provisioning of value-added telecommunication services, which spans the

description, creation, provisioning, and execution of a service. The proposed

approach uses a higher abstraction level comparable with web application

development in the context of service-oriented architectures and

reusable/composable building blocks, derives the service from the service

description, and uses predefined service components to represent it. The generated

value-added service is provided and executed by a telecommunication framework.

The service creation environment supports the application developer in designing

logical value-added services. The functionality of the service and the protocol

support are based on reusable components called “communication building blocks”

(CBBs). The CBBs are mapping the description of the functionality to the

implementation of the functionality in the service execution environment (SEE).

Within the proposed framework, the service description stage is implemented using

the Business Process Execution Language (BPEL) (OASIS, 2007). This language

was created and optimised to allow for an easy formal definition and description of

business processes. BPEL, however, was not developed for controlling real-time

communication services in heterogeneous networks. Therefore, BPEL is only used

for the description of a service, not for execution. Furthermore, a mechanism is

proposed to automatically generate the value-added service implementation from the

service description. This mechanism maps the logic elements defined in BPEL to

Introduction

4

service components in a Service Execution Environment (SEE) and composes these

components to the value-added service.

The SEE is based on JAIN SLEE (JAIN Service Logic Execution Environment) (Sun

and Open Cloud, 2008) and is enhanced by necessary extensions to support the

requirements for this framework. The provided CBBs also offer an abstraction layer

for underlying heterogeneous communication networks, allowing the developer to

focus exclusively on the application logic, rather than dealing with the respective

communication protocols. This leads to new opportunities for a rapid and efficient

service creation using a new Service Creation Environment (SCE) with a

customisable level of abstraction and automated service generation.

The main objectives of the thesis can be summarised as follows:

- To investigate the current solutions for service creation, service provisioning,

and service execution regarding existing approaches for an automated

solution for the creation and provisioning of value-added telecommunication

services. Criteria are defined that have to be fulfilled by the desired

technology. The existing technologies have to be analysed regarding the

defined criteria.

- To derive a methodology for the description of the service logic and the

description of the functionality to support an easy and fast development with

graphical support.

- To propose and analyse service creation concepts based on a set of defined

requirements.

- To design and implement a service execution environment based on a

comprehensive and flexible environment. The resulting solution must link

Introduction

5

directly the user defined requirements with the generated service through the

service execution concepts.

- Based on the results of the previous research steps, the framework

architecture and the structure of the services are derived. The result is a

solution for the creation and provisioning of value-added telecommunication

services.

- For the proof of concept and for the demonstration of the framework

functionality, a prototype of the defined framework has to be implemented

and tested.

The order of objectives declared above corresponds to the general structure of this

thesis which will be presented in the following section.

1.2 Thesis Structure

Chapter 2 describes the theoretical background of this work, and especially focuses

on the telecommunication infrastructure. In the first part of chapter 2, a more detailed

description and definition of value-added services are given. Then, the required

network capabilities are discussed, and the Internet, the Next Generation Networks

(NGN), and the IMS are explained in a brief overview. The concept of a SIP

application server for the execution of value-added services, as well as the concept of

a media server which offers media handling for the services are explained.

Furthermore, a general description of Service Delivery Platforms is presented.

Finally, the criteria of service creation, service provisioning, and service execution

Introduction

6

are defined in order to be able to evaluate existing technologies and related research

projects in chapter 3 and 4.

Chapter 3 introduces the current solutions for service creation. The limitations and

weaknesses of these approaches are analysed, and related research projects are

discussed. The technologies are evaluated regarding the criteria defined in section

2.5.

Chapter 4 discusses the problems associated with traditional service provisioning and

execution. In this context, the existing approaches and related research projects with

their limitations and weaknesses are investigated and evaluated regarding the criteria

defined in section 2.5.

Chapter 5 uses the prior research presented in chapters 3 and 4 as a starting point for

proposing a solution to address current limitations. In chapter 3, BPEL is selected as

service description solution and in chapter 4; JAIN SLEE is selected as service

execution solution. Chapter 5 describes new approaches, which cover these topics of

service description, and service execution and propose solutions for service creation.

In chapter 6, the novel framework for automated creation and provisioning of value-

added telecommunication services is proposed. This chapter uses the solutions and

techniques from chapter 5 and starts with an architectural overview. Then, the

proposed service creation and the service execution environment are analysed in

more detail.

Chapter 7 introduces the structure and the life cycle of the services generated by the

framework. The chapter starts with the description of the service structure, and

explains the framework context, the variables, and variable types. The possibilities

Introduction

7

for internal and external service communication are described and the service

components analysed. The last part of chapter 7 discusses the service life cycle with

the defined states and the life cycle phases.

Chapter 8 provides the evaluation of the developed framework against the defined

requirements and the proof of concept. There, the general layout and the architecture

of the research prototype, as well as the relevant components of the prototype are

described. The concept of this framework is proofed with the help of an example

scenario.

Chapter 9 concludes the PhD thesis with a summary of the achievements of the work,

an outline of the advantages of the proposed solution, a summary of the claims of

novelty, a discussion of the limitations of the research, and potential avenues to

pursue for future work.

Introducing the Telecommunication Infrastructure

8

2 Introducing the Telecommunication

Infrastructure

This chapter describes the theoretical background of the telecommunication

infrastructure. Criteria are defined in order to be able to evaluate the service

description technologies and service execution technologies. The first section

explains the concepts of services, service features and value-added services that are

required for this thesis. Then, a brief overview of network-based service provisioning

in the Internet, NGN, and IMS is given. In the next step, the concept of Application

Server and Media Server is described. Moreover, the concept of Service Delivery

Platforms is explained.

From the theoretical background and the aims and objectives declared above, criteria

are derived for the evaluation of service description technologies (refer to chapter 3)

and service execution technologies (refer to chapter 4).

2.1 Definition of Services

The term service is used in many domains, and there are different definitions of this

term. This thesis concentrates on software components. In this context, the following

definition is the most appropriate: the term service refers to the functionality offered

Introducing the Telecommunication Infrastructure

9

by software components at defined interfaces. Services can be composed of service

building blocks to form structured services and applications.

This thesis concentrates on value-added service of the telecommunications domain

but for a better understanding of the technologies, described in the chapters 3 and 4;

the Information Technology (IT) domain is shortly introduced in section 2.2.1.

Therefore, in this section the definitions of the term IT, IT services, and of course,

services in the telecommunications domain are presented and discussed. The first

definition concentrates on the term “IT”.

In the article “Evolution of SOA Concepts in Telecommunications” (Magedanz et

al., 2007), Thomas Magedanz, Niklas Blum, and Simon Dutkowski define the IT

domain as follows:

“The Information technology is defined as computer communications, networks, and

information systems that enable exchanges of digital objects. We can say also IT

encompasses all forms of technology used to create, store, exchange, and use

information in its various forms like business data, voice conversations, still images,

motion pictures, multimedia presentations, etc.” (Magedanz, 2007)

In the following step, the term IT service is defined.

ITILv3 (IT Infrastructure Library version 3) provides the following general

definition of the term service within the IT:

“A Service is provided to one or more Customers, by an IT Service Provider. An IT

Service is based on the use of Information Technology and supports the Customer’s

Business Process. An IT Service is made up from a combination of people,

http://www.knowledgetransfer.net/dictionary/ITIL/en/Business_Process.htm

Introducing the Telecommunication Infrastructure

10

processes, and technology and should be defined in a Service Level Agreement.”

(ITIL, 2014)

“Service: A means of delivering value to customers by facilitating outcomes

customers want to achieve without the ownership of specific costs and risks. The

term ‘service’ is sometimes used as a synonym for core service, IT service or service

package.” (ITIL, 2014)

However, these are all-encompassing general definitions of the term IT service. This

thesis is more concerned with services offered by software components. Familiar

techniques which are common in the IT are service choreography and service

orchestration. This thesis presents novel concepts based on these techniques in

chapter 5, which is why the terms orchestration and choreography need to be

clarified.

Matjaz B. Juric (Juric, 2014) defines orchestration as follows: “In orchestration,

which is usually used in private business processes, a central process (which can be

another web service) takes control of the involved web services and coordinates the

execution of different operations on the web services involved in the operation. The

involved web services do not ‘know’ (and do not need to know) that they are

involved in a composition process and that they are taking part in a higher-level

business process. Only the central coordinator of the orchestration is aware of this

goal, so the orchestration is centralized with explicit definitions of operations and the

order of invocation of web services”. (Juric, 2014)

In the same article (Juric, 2014), Matjaz B. Juric gives the following definition of

choreography: “Choreography, in contrast” to orchestration “does not rely on a

Introducing the Telecommunication Infrastructure

11

central coordinator. Rather, each web service involved in the choreography knows

exactly when to execute its operations and with whom to interact. Choreography is a

collaborative effort focusing on the exchange of messages in public business

processes. All participants in the choreography need to be aware of the business

process, operations to execute, messages to exchange, and the timing of message

exchanges.” (Juric 2014).

Telecommunications “deals with capturing, processing, transmitting, and storing

information”. In the telecommunication domain, there exist quite a number of

definitions of the term service. Service definitions of the 3GPP (3rd Generation

Partnership Project), ETSI (European Telecommunications Standards Institute) and

ITU-T (International Telecommunication Union-Telecommunication Standardization

Sector) provide the basis for the service definitions used in this thesis.

ETSI discriminate several service classes: (i) basic telecommunication services,

which can be supplemented or modified by supplementary services, (ii) value-added

non-call related services, and (iii) IP multimedia services. The general term for both

basic bearer service and basic teleservice is basic telecommunication service (ETSI

TS 122.105, 2008).

A basic bearer service is a type of telecommunication service that provides “the

capability of transmission of signals between access points” (ETSI TS 122.105,

2008), i.e. capabilities of the OSI layers 1–3.

Basic teleservices are “telecommunication services providing the complete

capability, including terminal equipment functions, for communication between

Introducing the Telecommunication Infrastructure

12

users according to protocols established by agreement between network operators”

(ETSI TS 122.105, 2008), i.e. capabilities of the OSI layers 1–7.

“A supplementary service modifies or supplements a basic telecommunication

service. Consequently, it cannot be offered to a user as a stand-alone service. It shall

be offered together or in association with a basic telecommunication service. The

same supplementary service may be applicable to a number of basic

telecommunication services” (ETSI TS 122.105, 2008).

To conclude: a telecommunication service (Table 2.1) is a combination of one or

more bearer services and/or one or more teleservices. A telecommunication service

can be modified and supplemented by one or more supplementary services (ETSI TS

122.001, 2009), (ITU-T I.210, 1993).

Table 2.1: Classification of telecommunication services (related to (ITU-T I.210, 1993))

telecommunication service

teleservice

basic teleservice
basic teleservice +
supplementary service(s)

bearer service

basic bearer service
basic bearer service +
supplementary service(s)

ETSI distinguishes two further service classes, IP multimedia services, and value-

added non-call related services.

Introducing the Telecommunication Infrastructure

13

A multimedia service (ETSI TS 122.101, 2009) combines “two or more media

components (e.g. voice, audio, data, video, pictures) within one call. A multimedia

service may involve several parties and connections (different parties may provide

different media components) and therefore flexibility is required in order to add and

delete both resources and parties” (ETSI TS 122.101, 2009). “Multimedia services

are typically classified as interactive or distributed services” (ETSI TS 122.101,

2009). “IP multimedia services are the IP based session related services, including

voice communications. IP multimedia sessions use IP bearer services provided by the

PS CN” (packed switched core network) (ETSI TS 122.101, 2009).

“Value-added non-call related services include a large variety of different operator

specific services/applications.” They do not need to be standardised. “The services

can be based on fully proprietary protocols or standardised protocols” (ETSI TS

122.101, 2009). An overview of the described definitions is given in (Figure 2.1).

Another classification is put forward by the ITU-T. A service can be an interactive or

a distribution service (ITU-T I.211, 1993). Interactive services can be classified as

conversational, messaging, or retrieval services (ITU-T I.211, 1993). Distribution

services can be categorised as distribution services without user-individual

presentation control and distribution services with user individual presentation

control (ITU-T I.211, 1993).

Introducing the Telecommunication Infrastructure

14

Figure 2.1: Service classification (related to (ETSI TS 122.101, 2009))

The following definition of the term value-added service is used in this research

work. It is a combination of several definitions and is based on (Lehmann, 2010):

“Value-added services are any functional properties that will offer a specific comfort

and additional benefit to consumers of the services. Value-added services are based

on a telecommunication service combining one or more bearer services (here solely

IP bearer services), and/or one or more teleservices, and optionally, one or more

supplementary services offered by a telecommunication operator. However, they are

not services of the transport and call-control layers of the core network (refer to

section 2.2.2). They also provide benefits that services of the transport and call-

control layers cannot provide. Value-added services can be an add-on to basic

Introducing the Telecommunication Infrastructure

15

services (bearer service and teleservice) and can sometimes be stand-alone

operationally (e.g., non-call-related services).”

Since value-added services are not provided by the transport and call-control layers

of the core network, additional network elements such as Application Servers (ASs)

and Media Servers (MSs) are required. The AS provides a Service Execution

Environment (SEE) for the value-added services. The MS processes and generates

media streams. These network elements are described in section 2.3.

2.2 Network-based Service Provisioning

Since the term value-added service was described in the last section, this section

shortly introduces the networks in which the value-added services operate. Within

this section the characteristics of the Internet, NGN and IMS are discussed. This

section is the basis for the service creation, provisioning, and execution technologies

described in chapters 3 and 4.

2.2.1 Internet

The great advantage of the Internet is its capability of integrating various services,

including multimedia services, and using IP as the underlying transport layer. It

offers an open communication platform, which is globally available. Figure 2.2

shows the basic structure of the Internet. The Internet is an IP-based packet data

network that is formed from subnets.

Introducing the Telecommunication Infrastructure

16

Despite the usage of underlying connection-based and circuit-switched networks, the

communication on the Internet is connectionless and packet-switched. The routing is

done based on IP addresses, where consecutive IP packets, despite having the same

destination address, may take different routes. Until now, the Internet is working

with best effort. All IP packets are forwarded by the router with the same priority,

independent of the type of service. In summary, this implicates that the quality of

service cannot be predicted. It is uncertain how much time a packet takes in the

network, what is the amount of the jitter of a packet, and what is the probability that

a packet gets lost. Therefore, the current Internet is very well suited for data services

such as file transfer, e-mail, and web page requests but not for broad-band real-time

services such as video conferencing or live TV (Trick and Weber, 2007).

P
ro

f.
 D

r.
-I

n
g

.
U

.
T

ri
ck

,
D

ip
l.
-I

n
g

.
A

. L
eh

m
an

n
,

F
H

 F
ra

n
kf

u
rt

 a
.M

.,
F

o
rs

ch
u

n
g

sp
ro

je
kt

: „
S

er
v

ic
es

 in
 N

G
N

“
-

A
lle

 R
ec

h
te

 v
o

rb
eh

al
te

n

Unterschiede zwischen Internet, NGN und NGN/IMS 2

Transport Network

ISDN ATM-Net

IP-Net IP-Net

64-kbit/s-

Switchinga/b

ISDN

Fixed

Connection

POP = Point Of Presence

IP = Internet Protocol

ADSL = Asymmetric Digital Subscriber Line

ADSL

Client

IP-Router

ATM-

Switching

ATM = Asynchronous Transfer Mode

LAN = Local Area Network

BRAS = Broadband Remote Access Server

ATM

IP-

Router

IP-

Router
LANLAN

IP-

Router

IP-

Router

IP-

Router

Server

Server

Server

ClientPOP/

DSLAM+

BRAS

Figure 2.2: The structure of the Internet (related to (Trick and Weber, 2009))

The Internet supports various standardised services. Services can use FTP (File

Transfer Protocol), POP3 (Post Office Protocol version 3), HTTP (Hyper Text

Introducing the Telecommunication Infrastructure

17

Transfer Protocol), and remote management via Telnet (Telecommunication

Network) as well as Internet telephony using SIP and Google Talk (Jabber/XMPP

(Extensible Messaging and Presence Protocol)) (IETF RFC 6120, 2011). However,

on the Internet also proprietary services like Skype and various other IM (Instant

Messaging) programs are offered.

2.2.2 NGN (Next Generation Networks)

Next Generation Networks (NGN) are packet-oriented networks, which are able to

provide telecommunication services. The general network structure of NGN is

presented in Figure 2.3.

P
ro

f.
 D

r.
-I

n
g
.

U
.

T
ri

c
k
,

D
ip

l.
-I

n
g
.

A
.

L
e
h
m

an
n
,

F
H

 F
ra

n
k
fu

rt
 a

.M
.,
 F

o
rs

c
h
u
n
g
sp

ro
je

k
t:

 „
S

e
rv

ic
e
s

in
 N

G
N

“
-

A
ll

e
 R

e
c
h
te

 v
o

rb
e
h
al

te
n

Unterschiede zwischen Internet, NGN und NGN/IMS 5

CS

MGW SGW

Packet-based Network with QoS + Security

channel-based

packet-based

packet-based,

radio

BS

MGW SGW

to ISDN,

GSM Mobile Networkto the Internet

MGW SGW

Access

Network

CS = Call Server

MGW = Media Gateway

SGW = Signalling Gateway

BS = Base Station

Application

Server

Figure 2.3: The architecture of a Next Generation Network (NGN) (related to (Trick and

Weber, 2009))

Introducing the Telecommunication Infrastructure

18

The NGN can make use of multiple broadband, QoS-enabled transport technologies.

Service-related functions are independent from underlying transport-related

technologies. NGN enables unfettered access for users to networks and to competing

service providers and/or services of their choice. It supports nomadic (non-seamless)

mobility, which will allow consistent and ubiquitous provision of services to users

(ITU-T Y.2001, 2004). NGN separates session control and service control layer from

the transport layer. The use of IP allows the integration of heterogeneous transport

technologies and supports open access for new services. It provides integrated

security capabilities and it is compliant with specific regulatory requirements (e.g.,

emergency calls, lawful interception, security, privacy). For the provision of value-

added services, application servers and media servers are used (refer to section 2.3).

Figure 2.4 presents the separation of the Call and Service Control Layer (Service

Stratum) and the Application Layer (Application Stratum) from the Transport Layer

(Transport Stratum).

With this separation in a strata/layer structure, a mapping from the service classes

defined in section 2.1 to the NGN layers is possible. Bearer services can be mapped

to the Transport Layer. Teleservices are executed in the Service Stratum whereby

value-added services and possibly supplementary services are executed on the AS in

the Application Stratum.

The interworking with legacy circuit-switched networks is provided by Signalling

Gateways (SGWs) for the signalling and Media Gateways (MGWs) for the user data.

These gateways are controlled by the Call Servers (CSs) or by Media Gateway

Controllers (MGCs).

Introducing the Telecommunication Infrastructure

19

Access Networks with QoS

C
S

 N
etw

o
rk

s, e.g
., P

S
T

N

SGW

SDP

SIP

SIP

SIP

SIP

e.g.,

RTP

e.g.,

RTP

H.248

ISUP

ISUP
64 kbit/s

U
se

r
E

q
u

ip
m

en
t,

 S
IP

 U
A

AS

CS

MGW

MGC

IP Core Network with QoS

o
th

er
N

G
N

 N
etw

o
rk

s

RTP

Application Stratum /

Application Layer

Service Stratum /

Call Control Layer

Transport Stratum + Physical Layer /

Transport Layer

Location

Server

AAA-

Server

Figure 2.4: NGN architecture in a strata/layer structure (related to (Trick and Weber, 2009))

The NGN supports services with defined transport layers (TCP, UDP, TLS) and

defined Quality of Service (QoS), which is important for real-time communication.

For the provisioning of IP TV, high demands on the QoS are made, since image

presentation is very sensitive to loss of data.

NGN support services with a defined QoS, a defined security protection for

signalling and for user data, and they support the national regulatory requirements of

the different countries.

2.2.3 IMS (IP Multimedia Subsystem)

IMS is a standardised control architecture to realise the session and service control in

an NGN environment (3GPP TS 23.228, 2006) (ETSI TS 122.228, 2009). The IMS

Introducing the Telecommunication Infrastructure

20

was initially standardised and implemented in the UMTS (Universal Mobile

Telecommunications System) release 5 (3GPP TS 23.228, 2013).

IMS introduces new protocols (SIP, RTP, Megaco (Media Gateway Control

Protocol), Diameter, etc.) and logical network elements (Call Session Control

Function (CSCF) and Media Resource Function (MRF), etc.). Figure 2.5 presents the

IMS architecture in a strata/layer structure.

Access Networks with QoS

C
S

 N
etw

o
rk

s, e.g
., P

S
T

N

SGW

HSS

IMS

SDP

SIP

SIP

SIP

SIP

SIP

SIP
SIP

e.g.,

RTP

e.g.,

RTP

H.248

ISUP

ISUP
64 kbit/s

U
se

r
E

q
u

ip
m

en
t,

 U
E

AS

XCAP

P-CSCF

PDF/

PCRF

I-CSCF

S-CSCF

IM-

MGW

MGCF

IP Core Network with QoS

o
th

er
N

G
N

/IM
S

 N
etw

o
rk

s

RTP

Application Stratum /

Application Layer

Service Stratum /

Call Control Layer

Transport Stratum + Physical Layer /

Transport Layer

COPS/

Diameter

Figure 2.5: IMS architecture in a strata/layer structure (related to (Trick and Weber, 2009))

In contrast to the NGN structure in Figure 2.4 the Call Control Functions are

represented by the CSCFs (Call Session Control Functions) in the Call Control Layer

(3GPP, 2006). The Serving-Call Session Control Function (S-CSCF) corresponds to

the Call Server (CS) in NGN. It is connected with the application servers that hosts

and executes the services. Furthermore, the S-CSCF is supported by the optional

Introducing the Telecommunication Infrastructure

21

Interrogating-CSCFs (I-CSCFs), which select the responsible S-CSCF for incoming

register or call requests in cooperation with the HSS. Furthermore, the I-CSCF hides

the internal network structure from the outside. The Proxy-CSCFs (P-CSCFs) offer

proxy functionality and serves as outbound proxy. Media Gateways (MGWs) and

Signalling Gateways (SGWs) are used for the integration of other networks. The

Media Gateway Control Function (MGCF) controls them. The Policy Decision

Function (PDF) and the Policy and Charging Rules Function (PCRF) are monitoring

and managing the QoS in the IP network.

In the IMS, the Media Server (refer to section 2.3) is called Media Resource

Function (MRF). The MRF is subdivided into a MRFC (Media Resource Function

Controller) and a MRFP (Media Resource Function Processor).

2.3 SIP Application Server and Media Server

In this section, the logical NGN network elements SIP AS (SIP Application Server)

and MS (Media Server) are investigated in detail. The SIP AS provides the value-

added services. The MS offers media handling functionality, which can be used by

services running on the AS. Typical services, which use the media server

functionalities, are video conferencing or IPTV.

A SIP AS consists of a software platform for services, a SIP Proxy, a Redirect

Server, a SIP user agent, and/or a back-to-back user agent. The SIP AS can be

realised as a stand-alone server or as an integrated call server. Application Servers

enable a fast and cost-efficient provision of value-added services. (Trick et al. 2006)

Introducing the Telecommunication Infrastructure

22

To call a service on a SIP AS, SIP messages are routed through a Call Server (CS) to

the SIP AS. The CS routes the SIP messages based on the configured or currently

requested filtering criteria. On the base of further filter criteria, the AS decides about

which service is executed. The service can be executed via application software like

SIP servlets.

Possible modes of operation of a SIP AS (3GPP TS 23.228, 2006) are demonstrated

in Figure 2.6. In the “Content” mode of operation, the SIP AS is used as SIP UA

(User Agent) or redirect server. The UA of user A triggers the initiation of the

service. User data is transmitted between the AS and the UA of user A. This mode

can be used, e.g., to realise a voice box service.

In the “Wake-up” mode, the SIP AS acts as the initiator of the service. It represents a

SIP UA contacting the UA of user B. User data is transmitted between the AS and

the UA of user B. This mode can be used, e.g., to realise a Wake-up service.

Figure 2.6: Modes of operation of an application server (related to (Trick and Weber, 2009))

Introducing the Telecommunication Infrastructure

23

The “Call Forwarding” mode shows a SIP AS with the function of a proxy. The UA

of participant A contacts the UA of participant B. A sends a SIP message to the Call

Server (CS). Because of its filter criteria – participant B, e.g., is unknown – the CS

forwards the message to the SIP AS. The SIP AS determines the necessary data and

provides the CS with the information. The call server is now able to forward the

appropriate SIP message to participant B. After participant B confirmed the SIP

message, both participants can exchange user data.

In the “Click2Dial” mode of operation, the SIP AS is acting as a B2BUA (Back-to-

Back User Agent) to realise the Third-Party Call Control (3PCC) function. With the

3PCC function, the SIP AS arranges the session with the help of the CS between

both parties. User data is transmitted directly between the UAs of user A and user B.

To implement the examples above, the SIP AS may require other servers such as e-

mail servers, media servers, or web servers. In general, a service can make use of

various functionalities provided by different servers. This principle is illustrated in

Figure 2.7.

To provide the Click2Dial service, for instance, a web server with the corresponding

web application is required by the 3PCC service on the SIP AS. The web application

then triggers the described Click2Dial scenario on the SIP AS.

Introducing the Telecommunication Infrastructure

24

Figure 2.7: Possible environment of an SIP application server (related to (Trick and Weber,

2007))

A media server (MS) processes and generates media streams. The RTP protocol is

usually used for the transmission of the media streams. The mixing of media data,

transcoding between different media codecs, rescaling of videos, the interpretation of

Dual-tone multi-frequency (DTMF) signalling, speech recognition (SR), text to

speech (TTS), and media recording are some possible features of a media server. The

MS is controlled by the services provided by the AS. Various protocols like

VoiceXML (VXML) (W3C, 2007a), Media Server Control Mark-up Language

(MSCML) (IETF RFC 5022, 2007), Media Server Mark-up Language (MSML)

(IETF RFC 5707, 2010), and proprietary solutions has been developed for the

communication between AS and MS.

Introducing the Telecommunication Infrastructure

25

AS and MS represent important logical network elements for the realisation of value-

added services with multimedia user data. Figure 2.8 demonstrates how an AS can

involve a MS for the handling of multimedia user data.

The figure shows a possible realisation of a SIP AS, which can be combined or not

combined with a media server. The stand-alone SIP AS offers user data such as voice

data by itself, thus the MS is integrated. Furthermore, it is possible that a SIP AS and

a MS are integrated on the same computer. The MS then serves parts or all of the

multimedia user data. In this case, a service on the SIP AS can control the media

server through a proprietary interface. In the case of a non-combined media server,

the network elements are physically separated, and the services on the AS control the

MS via SIP and VoiceXML (IETF RFC 4267, 2005), SIP and MSCML (Media

Server Control Markup Language) (IETF RFC 5022, 2007), or SIP and MSML

(Media Server Markup Language) (IETF RFC 5707, 2010). (IETF, 2001a) and

(IPCC, 2002)

The value-added services running on the AS are not required to implement the media

processing, this is done by the MS. They control the media server by standardised or

proprietary protocols.

Introducing the Telecommunication Infrastructure

26

Figure 2.8: Interaction between the SIP AS and media server in NGN (related to (Trick and

Weber, 2007))

2.4 Service Delivery Platform

For the provisioning of value-added services in next generation networks, Service

Delivery Platforms are used by the providers. A Service Delivery Platform is a

scalable platform for the creation, deployment, execution, orchestration, and

management of value-added services. The Service Delivery Platform allows a service

delivery across multiple types of networks, the creation of web services, IT services,

and the usage of the providers’ network capabilities. (Moriana, 2013)

“The term Service Delivery Platform refers to a system architecture or environment

that enables the efficient creation, deployment, execution, orchestration, and

management of one or more classes of services.” (Moriana, 2013).

Introducing the Telecommunication Infrastructure

27

It is part of the application layer and offers an abstraction layer for the underlying

protocols. An overview of the Service Delivery Platforms NGN integration is shown

in Figure 2.9.

Figure 2.9: Service Delivery Platform in NGN (related to (Trick and Weber, 2009))

A Service Delivery Platform offers the provisioning of own services, the usage of

third-party services and the composition of services. It provides interfaces to the

Service Creation Environment (SCE), to Authentication, Authorisation, and

Accounting (AAA), to the Operation Support System (OSS), and to the Business

Support System (BSS) (Lehmann et al., 2007). An AAA system, also called triple-A

system, provides protected interfaces to the network elements in the transport

network, and controls the access to the network elements. An OSS is a network

management system that covers service management and network management. A

BSS is a system for the management of business processes (Trick and Weber, 2009).

Introducing the Telecommunication Infrastructure

28

A Service Delivery Platform can contain multiple application servers and media

servers. The Service Delivery Platform is complemented by the Service Creation

Environment (SCE). With this SCE, new services can be developed from scratch or

from predefined modules. Graphical development tools normally support the service

development. As result of the connection between the SCE and the Service Delivery

Platform, a direct provisioning of value-added services is possible. (Trick and

Weber, 2009)

An overview of the Service Delivery Platform architecture according to Moriana

Group (Moriana, 2004) (Moriana, 2013) is shown in Figure 2.10.

Figure 2.10: SDP architecture (related to (Moriana, 2004), (Moriana, 2013))

The Service Delivery Platform provides interfaces to BSS and OSS; it spans over

different networks and provides web, IT, and telecom applications. The Service

Delivery Platform architecture consists of five layers: Service Exposure Layer (SEL),

Service Orchestration and Management Layer, Telecom Services & Telecom

Introducing the Telecommunication Infrastructure

29

Enablers Layer, Service Creation and Execution Layer, and Telecom Network

Abstraction Layer (NAL).

To make use of the services the Service Exposure Layer (SEL) opens the access for

the services to third-party service providers and other companies. For the exposure of

the services, secure and standardised interfaces are defined. An abstraction of the

interfaces hides the complexity for the developers, so they do not need detailed

knowledge for telecommunications. (Mulvenna et al., 2008)

The Service Orchestration and Management Layer can be used for an integration of

OSS, BSS, and legacy systems, it follows the principles of SOA (Lu et al., 2008).

The Telecom Services and Service Enablers Layer provide deployable telecom

services. To process the services, the corresponding enablers are offered. These

enablers are abstract interfaces, which allow services to make use of

telecommunication resources (Lu et al., 2008).

The Service Creation & Execution Layer offers an environment to develop, change,

configure, deploy, execute, activate, and deactivate services. It supports the creation

of new services. Services can also be developed out of a set of predefined and

already existing services (Lehmann et al., 2007). This layer can be built around a

Java EE (Java Platform, Enterprise Edition), .NET or Telecom Application Server.

Services can consist of other services implemented by using different technologies

like Java 2 Platform, Standard Edition (J2SE), Java 2 Platform, Enterprise Edition

(J2EE), Java Servlets, XML (Extensible Mark-up Language) (W3C, 2008), etc.

(Mulvenna et al., 2008)

Introducing the Telecommunication Infrastructure

30

The Telecom Network Abstraction Layer (NAL) offers standardised abstract

interfaces to use the service capabilities of the networks. This layer hides the

underlying complexity of networks. (Lu et al., 2008)

2.5 Criteria of Service Creation, Service Execution, and

Service Provisioning Technologies for Value-

Added Telecommunication Services

In this section the relevant investigation criteria for service execution, provisioning,

and creation technologies are defined. Most of the criteria were identified in the

study (Lehmann et al., 2008a). The first set of criteria is relevant for service creation

technologies. The solutions for service creation in chapter 3 are evaluated regarding

these criteria. The second set of criteria is relevant for the service execution and

provisioning technologies. The solutions for service execution and provisioning in

chapter 4 are evaluated regarding these criteria. From the results of the evaluation,

the technologies for service description, creation, and provisioning are derived. The

existing technologies may not completely fulfil all of these criteria at once. Some

extensions or modifications of the existing technologies may be necessary to fulfil

the criteria completely. Moreover, it may be necessary to combine elements of

different existing technologies to fulfil the requirements.

Introducing the Telecommunication Infrastructure

31

The following investigation criteria are relevant for service creation:

- Abstraction from underlying protocols: the developer should concentrate on

the description of the service logic. Detailed knowledge of the protocols shall

not be required.

- Ability to define a broad range of value-added services: The SCE should not

be restricted to one service domain only; for example, call processing in

telecommunications, the definition of services from multiple domains, and

the support of multiple protocols should be possible. Furthermore, the

granularity of the service should be adaptable. Fine-grained service elements

should allow a high flexibility and possibilities to modify the service in detail.

Coarse-grained service elements should allow an easy and fast service

development. The developer can define services by using only a few coarse-

grained elements. When it is necessary to define these services in detail, the

developer can describe them with fine-grained elements. The services should

be abstract from the underlying protocols.

- GUI: a graphical development tool is required for the service description to

support an easy and fast service development. It must be able to describe the

service logic and the functionality of value-added services.

These criteria will be used to evaluate the service creation technologies in chapter 3.

The following criteria are relevant for service execution and provisioning:

- Supported protocols: for the development of value-added services, a service

execution environment is required that supports multiple protocols. It should

also be possible to add new protocols to the framework.

Introducing the Telecommunication Infrastructure

32

- Performance: performance means the execution speed of a typical service

(Kuthan, 2000) (Van Den Bossche et al., 2006). In the case of

telecommunication services, the Service Execution Environment (SEE)

should ensure low latency and high throughput (Maretzke, 2005). The

developed framework should be comparable to a typical service execution

environment for telecommunication services, e.g., the JSLEE implementation

mobicents. Typical values for the latency in telecommunications are in the

millisecond range. Therefore, target values within the millisecond range

would be a great result.

- The Service Execution Environment shall offer great number of service

possibilities: service possibilities indicate how many services can be defined,

based on the available functionalities (Kuthan, 2000). It should be possible to

add new functionalities to the Service Execution Environment.

- Composition capability/reusability: a composition of existing services or

service components for creating new services is desirable in order to prevent

that new services must always be developed from scratch. This capability

should allow defining service building blocks that can be used in the service

creation environment (SCE) described in section 6.2.

These criteria will be used to evaluate the service execution and provisioning

technologies in chapter 4.

Introducing the Telecommunication Infrastructure

33

2.6 Conclusion

This chapter introduces the required basics for service provisioning using NGN. It

discussed the concept of network-based service provisioning in NGN, IMS, and the

Internet. In the first section (refer to section 2.1), the term “service” was defined for

the IT domain and for the telecommunications domain. Furthermore, regarding the

telecommunications domain the classification of services were outlined.

The second section (refer to section 2.2) focused on network-based service

provisioning. In this section, the architectures in which these services operate were

analysed. The characteristics of the Internet and the characteristics of NGN and IMS

were discussed, and the support of services in these networks is described.

An overview of the network elements that are required for value-added services in

NGN was given in section 2.3. There, the required logical NGN network elements

SIP AS (Application Server) and the MS (Media Server) were presented in detail.

Section 2.4 described the Service Delivery Platforms for the provisioning of value-

added services in next generation networks and explained the general architecture.

The criteria for the service creation, provisioning, and execution technologies were

defined in section 2.5.

This chapter offered a short overview of the infrastructure addressed in the thesis.

The next step is the analysis of currently existing technologies and of related research

projects in the sector of service creation, service provisioning, and service execution.

The technologies have to be evaluated regarding the defined criteria in section 2.5.

Introducing the Telecommunication Infrastructure

34

The actual state-of-the art solutions for service creation are analysed in chapter 3.

Then, the current solutions for service execution and service provisioning are

analysed in chapter 4. From the results of chapters 3 and 4, requirements are defined

in section 5.1 that have to be fulfilled by the desired novel framework, which is

proposed in this thesis (refer to section 6).

Current Solutions for Service Creation

35

3 Current Solutions for Service Creation

This chapter investigates current solutions for service creation and related research

projects. The technologies are evaluated using the objectives and criteria introduced

in chapter 2. The evaluation criteria for service creation listed above are a user-

friendly development with a GUI, an abstraction from underlying protocols, and the

possibility to define a broad range of value-added services.

The evaluated current technologies are technologies that are typically used for

service creation in the telecommunication sector where they usually define call-

oriented actions and in the IT sector where they are used to describe business

processes. In the following section these technologies, are analysed as to whether

they are appropriate for creating value-added telecommunication services or not,

regardless of the sectors where they are typically applied.

It starts with the relevant current technologies, Call Processing Language (CPL) in

section 3.1, Language for End System Services (LESS) in section 3.2, Voice

Extensible Mark-up Language (Voice XML) in section 3.3, Call-Control eXtensible

Mark-up Language in section 3.4, Service Creation Mark-up Language (SCML) in

section 3.5, Web Service Business Process Execution Language (WS-BPEL) in

section 3.6, Business Process Model and Notation Language (BPMN) in section 3.7,

and Telecommunication Modelling Language (TelcoML) in section 3.8.

In section 3.9, related research projects are analysed, and the problems of the

regarded approaches are explained.

Current Solutions for Service Creation

36

3.1 Call Processing Language (CPL)

CPL (IETF RFC 3880, 2004) is an XML-based (Extensible Mark-up Language)

(W3C, 2008) language (Rosenberg et al., 1999). Users can write a script or use a

graphical design tool to develop a service. To make the service available, the user

has to send it to his service provider. CPL was developed for the description of

multimedia services (IETF RFC 3880, 2004) and is characterised by the

independence of the operating system and the signalling protocol. Through the

restricted instruction set, only defined actions can be executed. Thereby, CPL

provides a high level of security. Proprietary extensions of the instruction set are

possible but can affect security (Trick and Weber, 2009). Through the support of

graphical editors like the CPL Editor (Figure 3.1) (Becker, 2015), end users are able

to develop their own CPL services, which may be a significant advantage.

Figure 3.1: CPL Editor (Becker, 2015)

Current Solutions for Service Creation

37

The properties of CPL are discussed in more detail in the following example. A

graphical representation of the example service (IETF RFC 3880, 2004) is presented

in Figure 3.2. The participant “jones” is reachable in the domain “example.com”. If a

call for “jones” is received from the same domain “example.com”, the call is

forwarded to his SIP URI (Uniform Resource Identifier) (sip:jones@example.com).

In this case, after a proxy timeout of 10 seconds, the call is forwarded to the mailbox,

if participant “jones” himself is on the phone (busy), does not accept the call within

the 10 seconds, or an error has occurred. If the call is from a different domain, the

call is directly forwarded to the mailbox (sip:jones@voicemail.example.com).

Figure 3.2: Graphical representation of a CPL script (IETF RFC 3880, 2004)

The graphical representation of the CPL script shown in Figure 3.2 can be created

with the graphical editor. Figure 3.3 shows the resulting CPL script. This script can

be stored on an application server. When a call for “jones” is received, the

application server parses the script with the help of a CPL parser and processes it to

fulfil the service logic.

CPL allows creating new services very easy and fast, only little telecommunication

expertise is required. Unfortunately, CPL has a limited instruction set, only actions

which are defined there can be executed.

Current Solutions for Service Creation

38

The extension of the instruction set is possible, but this will result in proprietary

solutions and security issues. The language is not Turing-complete, and loops or

recursions are not supported (IETF RFC 3880, 2004). Therefore, CPL cannot be used

for describing more complex value-added telecommunication services but only

simple call processing services like “Call Redirect”, “Call Forward”, “Call

Screening”, “Location Filtering”, or “Conditional Routing”. In addition, the

development of more complex value-added services inheriting multiple protocols is

not supported. Since the protocol support of CPL and the possible services are

limited, CPL is not chosen as service description language of this thesis.

Figure 3.3: XML document of a CPL script (IETF RFC 3880, 2004)

Current Solutions for Service Creation

39

3.2 Language for End System Services (LESS)

The Language for End System Services (LESS) (IETF, 2005) (Wu and Schulzrinne,

2003) is an XML-based scripting language. It is an extension of the Call Processing

Language (CLP) (IETF RFC 3880, 2004), (Wu and Schulzrinne, 2007) and uses a

tree-like structure to describe telecommunication services. It is easy to understand

even without programming expertise, offers safety, simplicity, and extensibility. It

includes commands and events that provide direct interaction and control of media

applications and other end system applications. This language is targeted for end

users and for client side services at the telecommunication network end points. It

offers a collection of rules to describe the service.

The majority of service languages are designed for network services that run on

application servers, and not for user-based end system services. When developing

services for end systems, it has to be considered that the call model for end system

services and network services is different. Models for a two-party call are shown in

Figure 3.4. On the left side, the model for a network service is depicted and on the

right side the model for an end system. In the network service model, the service

establishes the connection between the communication parties. In the end system

service model, the service instructs the local application to send media to and receive

media from remote addresses. The different call models have different states, events,

and actions. Scripts for network services will be not suitable for end systems, and

scripts for end systems will also not be suitable for the application server in the

network. (Wu and Schulzrinne, 2003)

Current Solutions for Service Creation

40

Figure 3.4: Call models of network services and end system services (Wu and Schulzrinne, 2003)

LESS service scripts can be created with a text editor. Another option for the service

creation is the development of service templates. LESS templates are written in

LESS. The templates use conventions “placeholder” for configurable values. These

values can be changed by the service user, e.g. with the help of graphical tools (Wu

and Schulzrinne, 2003).

LESS is only defined for the creation of end system services and not for value-added

services that run on application servers. Because of this restriction, the possible

services are limited and therefore, LESS is not suitable as service creation language

in this research project.

3.3 Voice XML (Voice Extensible Mark-up Language)

The Voice Extensible Mark-up Language (VoiceXML) or (VXML) (W3C, 2007a) is

a high-level XML-based language for rapid development of voice applications. It

allows the user to interact with a voice browser and navigate through voice menus.

VoiceXML allows the description of applications that support synthesised speech,

playback of digitised audio files and streams, recognition of spoken words and

sentences, the recognition of DTMF key input, recording of spoken input, audio

Current Solutions for Service Creation

41

dialogue control, and some basic telephony features like call transfer and disconnect.

The goal of VoiceXML is to bring the power of web development and content

delivery to the voice response applications. The service developer should not need to

take care about low-level programming and resource management.

The architecture of VoiceXML is shown in Figure 3.5. The voice applications are

executed on an implementation platform (VoiceXML gateway) that implements the

required VoiceXML language functionality. A document server (e.g., web server)

produces and provides the voice dialogues, handles the service logic, and performs

database and legacy operations (W3C, 2007a). The VoiceXML interpreter is

responsible for interpreting the VoiceXML scripts. It is contained in the VoiceXML

interpreter context, which provides the supported functions that are required by the

interpreter.

Figure 3.5: VoiceXML architecture (related to (W3C, 2004b))

Figure 3.6 presents a typical example of a VoiceXML file that represents a dialogue

of a voice application. The application will start with reading out the first <prompt>

“Please make your choice:”, which will ask the user for a language. The user can

Current Solutions for Service Creation

42

choose among three languages. If the user does not choose a language, the

application will ask again (“Please choose:”).

Figure 3.6: XML document of a VoiceXML dialogue

VoiceXML is a good choice for developing voice applications including user

interaction, e.g., voice dialogues. Graphical development tools are available for

supporting the service development process, e.g., the IBM WebSphere Voice Toolkit

(IBM WebSphere, 2015) (Figure 3.7) which supports CCXML (refer to section 3.4)

and VoiceXML. Furthermore, the UML Profile and Metamodel for Voice-based

Applications (VOICP) (OMG, 2008) can be used to develop applications in a

graphical way by using UML tools.

The language VoiceXML is very limited and does not possess the expressiveness to

describe value-added services beyond the scope of voice applications. It is not

designed to support advanced call control applications. The restrictions of

VoiceXML lead to the conclusion that it is not a suitable solution for this research

project.

Current Solutions for Service Creation

43

Figure 3.7: IBM WebSphere Communication Flow Builder (IBM WebSphere, 2015) (First

published by IBM developerWorks at

http://www.ibm.com/developerWorks/websphere/downloads/voicetoolkit.html)

3.4 CCXML (Call-Control eXtensible Mark-up

Language)

The Call-Control eXtensible Mark-up Language (CCXML) (W3C, 2011) is an XML-

based language that supports call set-up, call monitoring, and call tear-down. It was

developed because of the call control limitations of VoiceXML (refer to section 3.3),

but it can also be used in combination with other dialogue systems. CCXML

supports some more advanced features like multi-party conferencing, conference

control, and so on. CCXML is a high-level language for call control on top of

telephony platforms.

http://www.ibm.com/developerWorks/websphere/downloads/voicetoolkit.html

Current Solutions for Service Creation

44

Figure 3.8 shows an example of a telephony architecture implementation. This

architecture consists of four elements: a caller, a dialogue server, a conference server,

and the CCXML implementation. The caller is connected via the telephone network.

The dialogue server can, e.g., be a VoiceXML implementation. The conference

server is used to mix the media streams, and the CCXML implementation manages

the connections between the caller and the dialogue server. A telephony web

application can also be integrated together with the voice web application. The

implementation of the telephony control interface and the dialogue control interface

can be an API or a protocol. (W3C, 2011)

Figure 3.8: CCXML system architecture (related to (W3C, 2011))

CCXML supports multi-party conferencing, more advanced conferences than

VoiceXML, audio control, voice applications that support its own dedicated

VoiceXML interpreter for each active line (not possible in this way in VoiceXML),

multiple-call handling and control, handling of asynchronous external events, and

interaction with outside call center platforms via events.

Current Solutions for Service Creation

45

The CCXML service creation can be done with text, XML und GUI editors. One

example of a graphical development tool is the IBM WebSphere Voice Toolkit (IBM

WebSphere, 2015) which supports CCXML and VoiceXML (Figure 3.7).

However, the creation of more complex value-added services with CCXML is not

possible. This language offers more advanced application features related to call

control than VoiceXML, but the ability to describe general value-added services is

rather limited. CCXML is therefore not a suitable service description language for

this work.

3.5 SCML (Service Creation Mark-up Language)

The Service Creation Mark-up Language (SCML) (Bakker, 2002), (IETF, 2001c) is a

XML-based scripting language based on JAIN JCC (Java Call Control) API (JSR 21,

2002). SCML is a protocol-independent high-level interface abstraction API for

describing services in NGN. It hides the complexity of the underlying network and is

easy to use, similar like CPL, but more flexible (Licciardi, 2003).

An overview of the SCML architecture is given in Figure 3.9 (IETF, 2001c). The

architecture consists of the four elements Capability Server (e.g., SCF or softswitch),

Client, Gateway, and SCML server. In the communication between the elements, the

three interfaces A, B, and C are involved.

The Capability Server executes the SCML service logic commands issued from the

SCML Server. It communicates via the Client with the elements of the IP domain,

and interacts with the underlying transport network elements.

Current Solutions for Service Creation

46

The Client receives requests from the Capability Server, sends responses to the

Capability Server, and forwards requests from the Gateway to the Capability server.

The communication between Capability Server (e.g., SCF) and client is done via

interface C.

The Gateway communicates on one side with the Client via the interface B and, on

the other side, with the SCML Server via interface A. The subscriber receives events

through the interface A, and the gateway receives the script’s disposition of the call

and initiates the services. The Gateway can communicate with the SCML Server, or

it may act as a virtual server, terminating the requests without sending them to the

Server.

Figure 3.9: SCML architecture (related to (IETF, 2001c))

The SCML Server executes the SCML scripts. It issues requests to be executed on

the Capability Server, and terminates requests or events from the Capability Server.

SCML is like CPL a scripting language. It is more flexible than CPL, but it is also

not capable to describe multimedia value-added services that span across multiple

Current Solutions for Service Creation

47

protocols. This language is, like CPL, also not suitable for service description in this

research project.

3.6 WS-BPEL

The Web Services Business Process Execution Language (WS-BPEL) is an XML-

based language to specify business processes. The activities of the business process

are implemented as web services. In 2002, Microsoft, IBM, and BEA specified

BPEL and named it BPEL4WS 1.0 (Curbera et al., 2002). In 2004, the version 2.0,

with the name WS-BPEL 2.0, was defined by OASIS (Organization for the

Advancement of Information Standards) (OASIS, 2007).

BPEL was originally developed to orchestrate web services, i.e. to compose new web

services from multiple distributed web services. Thus, BPEL processes can call other

web services and, at the same time, be called by them (Figure 3.10).

Figure 3.10: BPEL process in cooperation with other services

Current Solutions for Service Creation

48

These services are called “Partners” in the BPEL process. The interfaces of the

BPEL processes are described with Web Services Description Language (WSDL).

The SOAP protocol is used for the message exchange (Figure 3.11).

Figure 3.11: BPEL process with interface and message protocol

In Figure 3.12, a graphical representation of a simple BPEL process is illustrated.

This example was created with the BPEL plugin of the Oracle IDE (Integrated

Development Environment) JDeveloper (JDeveloper, 2014). This process realises a

database query. The Receive activity “receiveInput” gets a request from the client

and formulates the database query in the first assign element “Assign_SubscriberID-

to-DB”. With the Invoke activity “Invoke_DB”, the query is sent to the database

“db1”. With the result of the database query, the process is preparing the response for

the client in the second assign element “Assign_DBSubscribername-to-Output”, and

sends it back with the Reply activity “replyOutput”. If any errors occur during the

execution of the BPEL process, the exception handling will be activated by the

Throw activity. There, the Assign activity “Assign-ErrorString-to-Output” creates an

error message, which is sent back to the client.

Current Solutions for Service Creation

49

Figure 3.12: A simple BPEL process (created with Oracle IDE JDeveloper (JDeveloper, 2014)

To sum it up, the GUI support of BPEL offers a user-friendly possibility to define

business processes. BPEL is open for third-party development, and with the help of

the partner links BPEL can interact with other web services.

BPEL is normally used in combination with web services, but as described in chapter

4, web services are not the solution that this thesis is aiming at. Instead of web

services, JAIN SLEE was selected as SEE. Therefore, the service description

language must be able to describe JAIN SLEE-based value-added services. Section

5.2 introduces a novel approach that offers the possibility to describe the service

logic and the functionality of a value-added JAIN SLEE service with BPEL.

Current Solutions for Service Creation

50

3.7 BPMN (Business Process Model and Notation)

The Business Process Model and Notation (BPMN) (OMG, 2011b) language was

developed as a graphical representation for specifying business processes. The goal

of BPMN is to provide a notation that is usable for technical users and business users

as well.

The example process in Figure 3.13 illustrates the core concepts of BPMN (OMG,

2010). The example process is not an executable process model. It focuses on

organisational aspects of a business process. This process describes the steps a

hardware retailer has to fulfil before the ordered goods can actually be shipped to the

customer. This example uses one pool (Hardware Retailer) and different lanes for the

people involved in this process (Warehouse Worker, Clerk, and Logistics Manager).

A pool represents major participants in a process and contains one or more lanes.

Lanes organise and categorise activities within a pool according to function or role.

Figure 3.13: BPMN example process (OMG, 2010)

Current Solutions for Service Creation

51

The process starts with the start event “Goods to ship”. The next element in the

process is the parallel gateway. This indicates that there are more functions that can

be executed in parallel. The Warehouse Worker has to “Package the goods” and the

Clerk has to “Decide if normal postal or special shipment”.

The next element in the Clerk’s lane is the exclusive gateway “Mode of delivery”. As

a router, the gateway provides alternative paths. Whether the path “Normal Post” or

“Special Carrier” is selected, depends on the result of the previous element.

If the path “Special Carrier” is selected, the Clerk has to execute the activities

“Request quotes from carriers” and then “Assign a carrier & prepare paperwork”. In

case that the path “Normal post” is selected, the Clerk has to “Check if extra

insurance is necessary”. This activity is followed by an inclusive gateway with two

outgoing paths, the “Always” and the “extra insurance required” path. The “Always”

path is taken in any case, independent of the Clerk’s decision whether an extra

insurance is required or not. Therefore, the Clerk executes the activity “Fill in Post

label”. If the Clerk decides that an extra insurance is required, the Logistic Manager

can execute the activity “Take out extra insurance” in parallel to the Clerk’s

activities.

The next element is again an inclusive gateway, which is used for synchronisation.

This gateway waits until both parallel tasks of the Logistic Manager and the Clerk

have been finished. The exclusive gateway which follows synchronises the “Mode of

delivery” gateway. Before the last task “Add paperwork and move package to pick

area” can be executed, the parallel gateway ensures that both the Warehouse Worker

and the Clerk have finished their work.

Current Solutions for Service Creation

52

In the original specification of BPMN, no interchange format was defined for the

BPMN applications. In 2011, the XML format was defined (OMG, 2011b). In this

format it was described how BPMN documents have to be exchanged between

different applications. The BPMN specification also includes a definition of the

mapping from a BPMN model to BPEL. For this reason, BPMN can be used on top

of BPEL as a graphical service description tool. Since BPEL can be completely

mapped to BPMN and vice versa, both technologies seem to be suitable for this

thesis. The BPMN description can then be transformed into BPEL (refer to section

3.6) to receive executable BPEL processes. The problem with this transformation is

that the resulting processes can become very complex and are not human readable

anymore. Therefore, in this thesis, BPEL is more preferred than BPMN.

However, at the time of the evaluation of the service description solution, the XML-

based format definition has not yet been completed (OMG, 2011b). Therefore,

BPMN was not chosen as service creation environment.

3.8 TelcoML (Telecommunication Modelling Library)

The Telecommunication Modelling Library (TelcoML) specification (OMG, 2013)

defines an UML profile for advanced and integrated telecommunication services. It

provides extensions to SOAML (Service-Oriented Architecture Modelling

Language) (OMG, 2012b). SOAML is an extension to UML 2 that supports service

modelling. In fact, TelcoML provides extensions to SOAML with respect to real-

time communication services and many of the existing communication services. The

main goal is to provide a common abstraction to the existing communication services

Current Solutions for Service Creation

53

standards, so that tools can be built for Communications Service Providers to model

services in a consistent manner.

The specification consists of two parts. The first part defines the TelcoML Enabler

Library. This is a UML representation of a set of service interfaces. This set contains

some typical telecommunication enablers: “Generic Messaging”, “Click To Call”,

“Synchronisation”, “Voice recognition and TTS”, and “Privacy”. Thus, relevant

enablers that are defined in SOAML (OMG, 2012b) are now formulated as TelcoML

API facilities (IBM 2012).

The second part, called “Composition Profile” of the specification, defines a

convention to represent service compositions.

A TelcoML example service is shown in Figure 3.14 (OMG, 2013). The name of the

service is “Send_by_SMS_the_weather_in_Paris_translated_in_english”. The service

is a simple composition of the TelcoML telecom enabler “Messaging” and the two

capabilities “MeteoFrance” (weather forecast) and “Translator”.

The service starts with the definition of the composed services “Messaging”,

“MeteoFrance”, and “Translator”. Then the sequencing of the service calls is

specified. The first method is called

“getWeatherForecast(“Paris”,when)” from the “MeteoFrance” service.

The parameters for this method are the location (Paris) and the time (when). The

result of the method is stored in the variable (r1).

Current Solutions for Service Creation

54

Figure 3.14: TelcoML SMS example (OMG, 2013)

The next method in the service is the “translate(“fr_en”,r1)” method from

the “Translator” service. This method translates the input String into the destination

language. The first parameter defines the source and destination language (fr_en),

and the second parameter defines the String that should be translated. In the latter

case, the weather forecast result (r1) is translated from French into English. The

result is stored in the variable (r2).

The last method in Figure 3.15 is “sendSMS(mobile,“NatMashups”,r2)” of

the “messaging” service. This method sends a SMS to the phone number “mobile”.

The parameters are the recipient’s phone number (mobile), the sender

(“NatMashups”), and the translated weather forecast (r2).

The service interface (Figure 3.15) requires the two parameters “when” and

“mobile”. The first parameter “when” defines the time for the weather forecast, and

the second parameter “mobile” defines the destination number of the SMS.

Current Solutions for Service Creation

55

Figure 3.15: Interface of the composite service (OMG, 2013)

TelcoML is dedicated to telecommunication services and is protocol-independent.

The functionality is limited to the TelcoML enabler library. At time of writing, only

five enablers have been standardised. Therefore, the range of possible services is

limited. However, through an interworking with SOAML, the range of possible

services can be enhanced. TelcoML was not chosen as service description language,

because other languages like BPEL and BPMN are more widely spread in the

market. For BPEL, more development tools are available, and the GUI is more user-

friendly than the TelcoML GUI. Furthermore, TelcoML is a new language, which

has not been available at the beginning of this research work. Therefore, TelcoML

has not been chosen as service description language.

3.9 Related Research Projects

This section provides an overview of relevant related research project in the area of

service creation and service provisioning.

High-Level Service Creation Environment

The first research project (Glitho et al., 2002) and (Glitho et al., 2003) provides an

overview of a high-level graphical SCE, consisting of a graphical user interface

(GUI) called “SINTEL” (Figure 3.16).

Current Solutions for Service Creation

56

Figure 3.16: Snapshot of high level SCE (Glitho et al., 2003) © 2003 IEEE

A service can be developed out of the eight functions Start, Timer, Call, Loop, Join,

Sync, Play, and End. The service logic can be developed with these functions within

the GUI. The scope of the experiment is limited to services that originate calls, such

as Wake-up Call or Third-Party Call. The services can be executed in a developed

SLEE that is based on a Parlay/Session Initiation Protocol (SIP) Gateway

implementation. Therefore, the experiment only supports the SIP protocol and only

allows basic telephony services. Furthermore, the services have to be compiled. The

architecture consists of the SCE, a Common Object Request Broker Architecture

(CORBA) (OMG, 2012a) as middleware, a Service Logic Execution Environment

(SLEE), a Parlay/SIP gateway, and a SIP network (Figure 3.17).

The Java-based SCE provides the graphical user interface (GUI) with the pre-defined

service elements. The service logic can be formulated by placing the service

elements on the workspace via drop-down functionality. The services can be defined

by connecting the services within the workspace through arrows.

Current Solutions for Service Creation

57

Figure 3.17: High-level service creation environment (Glitho et al., 2002) © 2002 IEEE

The service logic can be developed with the eight functions within the GUI. From the

developed service description, the source code of the services will be generated. This

source code can be compiled and executed in the SLEE. The SLEE provides a layer

that transforms the abstract methods into API-specific interfaces. The

CORBA/Internet-Inter-Object Request Broker (ORB) protocol (IIOP) (OMG, 2012a)

is used for communicating between the Parlay application interfaces and the service

interfaces.

The Parlay/SIP gateway communicates with the SIP network. The services can be

executed in a self-developed SLEE (Service Logic Execution Environment) that is

based on a Parlay/SIP Gateway implementation. The goal of this project is to find a

high-level service description language that is suitable for non-expert service

developers.

Current Solutions for Service Creation

58

The SLEE implementation of the Parlay/SIP functionalities support only the SIP

protocol, so only services based on SIP can be realised. Another problem is to find

out the right level of abstraction. With a higher level of abstraction, the development

of services is easier, but the diversity and richness of services is reduced. With a

lower abstraction level, only experts can develop the services.

This approach cares about the service creation environment and the service

execution. However, in this thesis it is not suitable as service description language,

since it only supports a limited functionality. Furthermore, it is not capable of

supporting multiple protocols, and it was developed for basic services only.

Additionally, the services have to be compiled before execution and cannot be

composed from existing components.

SPICE

SPICE (Service Platform for Innovative Communication Environment) (SPICE,

2013) is a project in the field of Service Creation/Execution Environments for mobile

services. SPICE was a European IST project and part of the Wireless World

Initiative (WWI) that aimed to develop a software architecture that allows a fast and

easy creation of new services. The framework of SPICE is independent of network

technologies and service providers. The focus of the project is on the creation of

services that can be made available across different operator domains and over

different countries. Network operators, service providers, and content providers can

individually arrange the services. Additionally, the SPICE project integrates existing

networks and supports various service platforms. In SPICE, an extendable overlay

architecture and framework is proposed to support easy and quick creation, test, and

deployment of mobile communication and information services (SPICE NEC, 2013).

Current Solutions for Service Creation

59

The service development is separated into professional service development and end-

user service creation (Drögenhorn, 2008). On the professional side, a graphical

service description language, named SPATEL, which is based on the UML (OMG,

2011a) notation, is used for the definition of service interfaces and service logic.

From this description language, the skeleton of the service can be generated. The

UML diagram in Figure 3.18 shows an example SPATEL composite service logic.

The state machine describes a translation service. Two translation services are

available, one translation service for paying customers and one free translation

service.

Figure 3.18: SPATEL composite service logic (Drögenhorn, 2008) © 2008 IEEE

On the end user side, services can be developed using a graphical development tool

called “End User Studio”. The services that are developed by professional developers

are available as building blocks in the End User Studio. These building blocks can be

composed to services that are more complex. The development tool offers “if then”

relations and logical connections like “AND” and “OR” to formulate conditions.

Figure 3.19 presents a screenshot of the SPICE End User Studio.

Current Solutions for Service Creation

60

Figure 3.19: SPICE End User Studio (Drögenhorn, 2008) © 2008 IEEE

The SPICE platform requires professional service developers who develop service

building blocks. The end user can compose the building blocks to more complex

services. The service building blocks among which the end user can choose are

therefore coarse-grained.

This limitation of the “End User Studio” hinders the developer to define a broad

range of value-added services. Other service description languages like WS-BPEL or

BPMN offer more expressivity than the SPICE “End User Studio”. The SPATEL

service description language was designed for professional developers. It is used for

defining the service interfaces and the service logic. The output of SPATEL is the

service skeleton. Therefore, SPATEL is ruled out as service description language in

this thesis.

Current Solutions for Service Creation

61

A SIP-based Programming Framework for Advanced Telephony Applications

This approach (Jouve et al., 2008) introduces a programming framework that raises

the abstraction level for the programming of telephony applications. It provides the

programmer with a declarative language called “DiaSpec”. With this language, the

telephony entities are defined. An entity is characterised by its interaction modes,

consisting of the SIP-native interaction modes, namely messages, events and

sessions.

The DiaSpec entity declarations are then passed to DiaGen (Figure 3.20). DiaGen is

a generator that creates a high-level framework for the Java programming language.

In the first step, the area compiler parses the DiaSpec entity declarations. The

consistency is analysed, and the area-specific programming framework is generated.

With this framework, the developer can build the service source code. In the last

step, the service compiler uses the service code to generate the class files. (Jouve et

al., 2008)

Figure 3.20: DiaGen processing chain (Jouve et al., 2008)

This framework provides service discovery and high-level communication

mechanisms. DiaGen generates high-level Java methods that can be used by the

Current Solutions for Service Creation

62

programmer to develop telephony applications (Jouve et al., 2008). This approach

does not support general value-added services, since it is restricted to the creation of

SIP-based telephony applications.

To provide access to non-telephony resources (e.g., database look-up), a command

mode that is an RPC (Remote Procedure Call)-like mechanism is offered to invoke

operations.

This project offers no graphical service description tool that would allow also non-

experts to describe value-added services. Therefore, in this thesis, this approach as

service description language is no option.

Session Processing Language (SPL)

SPL (Burgy et al., 2006) is a domain-specific language (DSL) that allows the

development of robust telephony services, and offers an abstraction of the underlying

protocols and software layers (SPL, 2013). In Figure 3.21, an example counter

service is depicted. This service controls a counter of SIP calls. If a call for the

service user is forwarded to the secretary, the counter will be increased. When the

user registers, the counter is set to zero. When the user unregisters, the counter is

logged.

This language is developed around the “SIP Service Logic Execution Environment”

(SIP-SLEE) for SIP (Burgy et al., 2006). SIP-SLEE and SPL were implemented

during the project. SIP-SLEE provides a high-level design framework for service

development.

Current Solutions for Service Creation

63

Figure 3.21: SPL counter service (SPL, 2013)

SPL is specially designed for IP telephony services, but since it only addresses

routing logic, it is not sufficient to describe value-added multimedia services.

To enable the description of telephony services also for non-programmers, a

graphical service creation and execution environment called “VisuCom” (Figure

3.22) was defined on top of SPL (Latry et al., 2007).

In Figure 3.22, an example service is presented. The service describes a scenario

were the user Bob is in a meeting and receives a phone call. In the first step, the

caller is checked. If the caller is not Bob´s boss or not a member of the committee the

call is rejected, otherwise, the subject of the call is analysed. If the subject contains

not the word “important”, the call is rejected; otherwise, the call is redirected to

Bob´s current phone. If Bob is not reachable on the current phone, the call is

redirected to his cell phone.

Current Solutions for Service Creation

64

VisuCom offers intuitive visual constructs and menus that permit users a quick

development of telephony services.

Figure 3.22: VisuCom example call routing (Latry et al., 2007)

Since VisuCom is based on SPL, it is liable to the same restrictions as SPL and,

therefore, it is not suited to describe value-added multimedia services.

OPUCE

The European IST project OPUCE (Open Platform User-centric Service Creation

and Execution) “bridge the advances in networking, communication, and information

technology services towards a unique service environment where personalized

services will be dynamically created and provisioned by the end-user itself regardless

of ambiance and location” (istworld, 2014). The project offers an “open service

infrastructure” which enables service providers to create and deploy services. These

services are called “base services”. Multiple devices connected via various networks

can access these services. OPUCE’s goal is to become the next generation

telecommunications delivery platform that enables the convergence of voice, video,

and data (OPUCE, 2010).

Current Solutions for Service Creation

65

The base services are provided by the platform owner or by third parties. The base

services provide basic functionalities (e.g., sending SMS or IM, placing a phone call,

setting up an audio feed, interacting with web forms, etc.) wrapped and exposed as

atomic enablers to the OPUCE platform. High-level services can be composed by a

set of base services. (Cipolla et al., 2007)

OPUCE allows the users to create their own OPUCE services from the base services.

In order to be able to create OPUCE services, a web-based GUI based on mashups

and a mobile editor is provided. A mashup is a web application or web page that

integrates other, already existing content from other sources. The output of the

mobile editor or the web editor is a XML service description (Sienel et al, 2009). The

OPUCE services orchestrate the base services. A snapshot of the OPUCE web editor

is shown in Figure 3.23.

Figure 3.23: OPUCE web editor (Sienel et al, 2009), “Reprinted with permission of Alcatel-

Lucent USA Inc.”

An example of an OPUCE service composition is shown in Figure 3.24. The three

blocks “ReceiveIM”, “TPCC”, and “SendIM” represent base services. Each block

Current Solutions for Service Creation

66

offers actions and events that can be used by the service developer to build high-level

OPUCE services.

Figure 3.24: Example of an OPUCE Service Composition (related to (Cipolla et al., 2007))

The architecture consists of three big blocks. The first block is the Service Execution

Environment (SEE) with the base services and the WSDL interface between the base

services and the SCE. The base services can be implemented in any technology, e.g.,

JAIN SLEE or Java EE. The developed OPUCE service is translated into BPEL and

executed on a BPEL engine.

The second block is the Portal. This is the interface between the user and the

platform. The platform provides simple tools to create, share, and customise

mashups, to discover and subscribe for services, and carry out profile management.

The third block is the OSS (Operation Support System). The OSS bridges the portal

and the SEE. It consists of tools for deployment, scheduling, and provisioning, a

service repository, security features, and user management.

However, the base services in OPUCE are already complete services. The base

services themselves are fully runnable services and not building blocks, which are

only part of a service. This leads to coarse-grained high-level services. It is not

Current Solutions for Service Creation

67

possible to create the base services with the OPUCE SCE. The base services have to

be built manually.

OPUCE uses a BPEL engine as service execution environment. The attempt to define

fine-grained low-level building blocks and orchestrate them with a BPEL engine will

lead to performance issues (refer to section 3.6). Therefore, orchestration of web

services with a BPEL engine is only suitable for coarse-grained services that will

limit the possibilities of service creation. Furthermore, the mashups are specially

developed to work together with OPUCE so that only high-level services can be

composed from the base services. Altogether, this approach is not a suitable solution

for this PhD thesis.

TeamCom

The TeamCom project (TeamCom, 2010), (Lehmann et al., 2009) was established to

analyse IMS- or P2P-based Service Provisioning and Creation for Customer Tailored

Communication Processes. The aim of this approach was to obtain, for the very first

time, an easy-to-use, cost-efficient, and fast provision of services, especially for B2B

communication: evaluation of IMS and/or P2P communication, estimation of

reusable communication elements, and realisation of communication elements via a

Service Creation Environment. (TeamCom, 2010)

The fields of research of this PhD thesis were defined within the TeamCom project.

The TeamCom project is the umbrella for this research project. Therefore, the

described TeamCom approaches are part of this PhD work and are described in detail

in chapter 5.

The architecture of the TeamCom framework is presented in Figure 3.25

Current Solutions for Service Creation

68

Figure 3.25: TeamCom architecture (Eichelmann, 2010)

The framework consists of the four parts Service Creation Environment (SCE),

Service Deployment (SD), Service Execution Environment (SEE), and the Service

Transport Layer (STL).

The SCE offers a GUI-based service development. BPEL (refer to section 3.6) is

used for the description of the value-added services. The service logic is described

using BPEL activities.

Reusable building blocks called “Communication Building Blocks” (CBB) are

defined (Table 3.1), which describe the service communication or other

functionalities, e.g., video conferencing, database access, or file system operations.

The CBB concept of the TeamCom project defines eight pre-defined CBBs. The

CBBs are categorised according to the media type utilised. The idea of this kind of

Current Solutions for Service Creation

69

categorisation is to define all possible functionalities that are required for value-

added services. The CBBs offer an abstraction from the protocol communication

within the STL. In BPEL, the CBBs are represented as BPEL partner links.

Table 3.1: TeamCom CBB overview

CBBs Functionalities

Audio The Audio CBB handles all kinds of audio communication including

the establishment of a call, answering calls, manipulation of audio

streams (e.g., mixing, transcoding), as well as sending and receiving

DTMF tones.

Video The Video CBB is responsible for playing and recording video

streams. It is able to create and close video calls and combine (or mix,

transcode) different video signals for merging a new video stream.

Text This CBB exchanges text messages between two partners and has the

capabilities of handling strings, e.g., search for a specific word in a

text, replace alphabetic characters or change the encoding of a text.

File The File CBB handles creation, deletion, sending and receiving of

binary files. Another task of File is to write and read any kind of data

from and to any position in a file. Finally, this CBB is able to rename

files or directories.

Data Input The Data Input CBB processes all kinds of data queries. This includes

database queries as well as reading data from sensors.

Data

Output

The counterpart of Data Input is Data Output which is used for writing

data to a destination, e.g., to a database, or for controlling an actuator.

Conference This is a special kind of communication CBB, as it re-uses internal

functions of the previously described CBBs, e.g., audio stream mixing.

On top of this, the Conference CBB provides functionalities for

creating and deleting conference “rooms”, as well as adding and

Current Solutions for Service Creation

70

removing users to/from a room.

Data

Trigger

The Data Trigger is closely related to an event generator. If a specific

data trespasses a value, an event is triggered. This data can be a sensor

value, a timestamp, or periodical dates.

The services are executed in the SEE, which is based on JAIN SLEE (refer to section

4.4). Therefore, the developed BPEL service descriptions have to be translated into

JAIN SLEE services (Lasch, 2009a), (Lasch, 2009b). For this purpose, the Code

Generator (refer to section 5.3.1) is required. The Code Generator builds the Java

classes and the required descriptor files and puts everything into a deployable unit

(DU). The DU can be deployed on the JAIN SLEE AS. This step is done by the

service deployment.

The service structure, which is used by TeamCom, is the “Single SBB concept”

service structure as it is described in section 5.4.1. In this approach, only one

monolithic JAIN SLEE SBB is utilised for the whole JAIN SLEE service. The

“Single SBB concept” does not support the parallel execution of the service logic,

because JAIN SLEE does not support multithreading within the SBB; furthermore

the generated SBBs are not reusable for further services.

The TeamCom prototype has proven to be able to describe value-added services with

BPEL and to generate executable value-added services from the BPEL service

description. However, it also become obvious that value-added services requiring

parallel processing cannot be created with the “Single SBB concept”. Therefore,

different service structures were analysed. The “Parallel Program Flow concept”

(refer to section 5.4.2) supports parallel execution. In this approach, several SBBs are

Current Solutions for Service Creation

71

created from the BPEL service description. For each parallel service part, one new

SBB is generated that realises this parallel service part. This approach was

implemented in the TeamCom prototype. With this new implementation, the

TeamCom prototype supports parallel program execution.

The service structures (Eichelmann et al., 2011) which are used in the TeamCom

project have some disadvantages, as they are inflexible, monolithic, and tightly

coupled service components. A code generator is required for generating the DUs.

The services are not easily expandable. Third-party development of service

components is difficult, and a reconfiguration at runtime is impossible. To overcome

the described problems, novel approaches were analysed in chapter 5.

Responsibilities within the TeamCom project

The author of this PhD thesis was also responsible for parts of the research in the

TeamCom research project. Some concepts that are evaluated in this thesis were

developed within the TeamCom project. The TeamCom project was the umbrella for

the PhD work, and parts of the research work presented in this thesis were carried out

by the author within the TeamCom project.

BPEL was chosen as service description language for the TeamCom project. The

definition how BPEL is used as service description language was part of the author’s

responsibilities within this project.

A categorisation of eight different classes of services (audio, video, text, data trigger,

data input, file, data output, conference) was defined by the research team of the

TeamCom project. These classes of different service categories were called

“communication building blocks” (CBBs). The CBBs used by the TeamCom project

Current Solutions for Service Creation

72

and the CBBs used in this research work address different problems. The CBB

concept described in this thesis was researched by the author. This concept describes

a middle layer for the mapping between the implementation of the functionality and

the description of the functionality and offers further features which are described in

section 6.2.1.

The service creation concept, called “code generator” (cf. section 5.3.1), was

researched by the TeamCom research team during the TeamCom project. Since it

had certain disadvantages, it was not chosen for this PhD work. Instead of this

concept, the runtime service composition concept (refer to section 5.3.2) was

selected, which had not been used by the TeamCom project.

The service execution approach, i.e. the “single SBB concept” (refer to section

5.4.1), was researched by the TeamCom research team within the TeamCom project.

Because of its disadvantages, it was not applied to the TeamCom project. Instead of

this concept, the “parallel program flow concept” (refer to section 5.4.2) was chosen

for the TeamCom project. This concept had been previously researched and analysed

by the author if this study within the context of his PhD research. The other two

concepts the orchestration concept and the choreography concept, were not used by

the TeamCom project.

Orchestration in Web Services and Real-Time Communications

In (Lin and Lin, 2007), the authors describe an approach which enables a service

creation environment for complex (orchestrated) real-time communication services

through a service broker on top of Next Generation Networks (NGN). The goal of

their research is to combine the emerging web/telecommunications service spaces

Current Solutions for Service Creation

73

with each other. For this purpose, the authors explored three languages that are able

to orchestrate workflows: BPEL (refer to section 3.6), CCXML (refer to section 3.4)

(W3C, 2011), and SCXML (W3C, 2013). Regarding converged voice-data

applications, they take a hybrid approach by encapsulating real-time communication

flows, described in CCXML or SCXML, into web services. These web services can

be orchestrated in BPEL along with other web services. The authors developed an

approach by which communication services can be composed with BPEL.

They conclude that BPEL was more suitable for orchestrating coarse-grained

services (refer to section 2.5), whereas CCXML and SCXML were better for fine-

grained services. However, using BPEL in combination with web services will work

for coarse-grained services only, but will lead to performance problems in case of

fine-grained web services. The approach that is followed up in this thesis requires

fine-grained service components for the implementation of the value-added services.

The approach described in the paper will lead to performance problems; therefore, it

is not a solution for this thesis.

StarSCE

In (Baravaglio et al., 2005), the authors analyse the benefits and drawbacks of the

web service paradigm applied to a Telco environment using web service

composition. As result of the analysis, they found that the orchestration of web

services fits to Business Process-oriented services that have no real-time

requirements and do not rely on asynchronous interactions. However, many

telecommunication web services have strong performance requirements, such as low

latency and high throughput. Web services lack in supporting the asynchronous

Current Solutions for Service Creation

74

interactions that are required by Telco components. In addition, BPEL4WS, as

described in section 3.6, does not natively support all patterns that are relevant for

telecommunication web services (Venezia et al., 2006) (Falcarin, 2003a).

Therefore, the authors built an event-based SLEE called “StarSLEE” and a graphical

SCE called “StarSCE” in order to develop value-added services. For the description

of the services, they use an XML-based language and offer a pre-defined list of

service functionalities, which are exposed as web services: third-party call, multi-

media conference, messaging, presence, and user’s provisioning. The provided

services can use different protocols depending on the capabilities of the user devices.

In (Venezia et al., 2006) a more detailed description of the StarSLEE and StarSCE

frameworks is given. An overview of the StarSLEE communication server is given in

Figure 3.26.

Figure 3.26: StarSLEE communication server (Venezia et al., 2006) © 2006 IEEE

Current Solutions for Service Creation

75

The StarSLEE platform consists of a service execution environment that is an

implementation of the JAIN SLEE specification. A SIP RA, a SOAP RA, and other

RAs depending on the services are available for the platform. The service descriptor,

defined in the StarSCE service creation environment, allows the developer to choose

the required SBBs and link them together. This can be done using a graphical

development tool. An example of a graphical representation of a service is shown in

Figure 3.27. (Venezia et al., 2006)

Figure 3.27: StarSCE service description (Venezia et al., 2006) © 2006 IEEE

All elements of the service are implemented as SBBs. Two kinds of SBBs exist,

“core SBBs” and “connector SBBs”. The “core SBBs” represent the logic of the

service. The functionalities third-party call, multi-media conference, messaging,

presence, and users provisioning, are available as “core SBBs”.

The “connector SBBs” represent elements for the communication with external

entities. The “connector SBBs” can be distinguished into “service heads” and

“service tails”. “Service heads” are SBBs that receive events from external entities

(RAs) and send events to “core SBBs” or to “service tails”. “Service tails” are SBBs

that receive, on the one hand, events from “core SBBs” or from “service heads” and,

on the other, send events to the external entities.

Current Solutions for Service Creation

76

For example, in Figure 3.27 the RecvSMS is a “service head” element, the TPCC is a

“core SBB” element, and SendSMS is a “service tail” element. Receiving an event in

the RecvSMS element triggers the service. An instance of the service is created and

the service is executed. In this case, a third-party call control is triggered by a SMS.

To make the core functionality of a service available in another protocol, the “service

head” and/or the “service tail” can be changed with a “service head” and/or “service

tail” that supports the required protocol.

To transform the developed value-added services into communication web services,

a web server with a SOAP server is added to the StarSLEE architecture (Figure

3.28). A JAIN SLEE SOAP RA communicates between a SLEE service and the

corresponding web service on the web server. Therefore, each service requires a web

service implementation on the web server.

Figure 3.28: STAR-SLEE architecture (Venezia et al., 2006) © 2006 IEEE

StarSCE offers the possibility to develop services based on the functionalities

defined within the “core SBBs”, and supports the protocols defined by the

“connector SBBs”.

Current Solutions for Service Creation

77

The disadvantage of this approach is that services can only use coarse-grained

functionalities in the “core SBBs” and combine them with the “connector SBBs”.

The SCE allows orchestrating pre-built services but does not allow defining fine-

grained services. Therefore, the possibilities of service creation are limited to coarse-

grained services. This approach exposes the services as web services. With this

possibility, the services can be orchestrated like normal web services (e.g., with

BPEL) but also suffer from the described performance problems. Nevertheless, the

SCE was not developed to define value-added services. It was developed to

orchestrate services. Therefore, this SCE was not chosen for the service creation in

this thesis.

3.10 Conclusion

In this chapter, the most relevant technologies related to service creation for value-

added services were investigated, and the advantages and disadvantages for each

technology discussed.

In the table below (refer to Table 3.2), the evaluation results are summarised. The

criteria are: service description with a GUI (Graphical User Interface), the

abstraction from the underlying protocols, and the possibility to define a broad range

of value-added services.

With the help of GUI editors or web interfaces, users can create services in an easy

and manageable way. The most of the described technologies offer possibilities for

graphical service development and are suitable for this purpose. The exceptions here

are “A SIP-based Programming Framework for Advanced Telephony Applications”

Current Solutions for Service Creation

78

and SCML which offer no graphical editor. The graphical user interface of the

project “A High Level Service Creation Environment for Parlay in a SIP

Environment” only offers rudimentary possibilities for service creation and only

allows call-related services.

Table 3.2: Service creation solutions

 graphical service

description

abstraction from

the underlying

protocols

possibility to define a

broad range of value-

added services

Call Processing Language (CPL) yes yes limited

Language for End System

Services (LESS)

yes yes limited

Voice XML (Voice Extensible

Mark-up Language)

yes yes limited

CCXML (Call-Control

eXtensible Mark-up Language)

yes yes limited

SCML (Service Creation Mark-

up Language)

XML/Text editor yes limited

WS-BPEL yes yes unlimited

BPMN yes yes unlimited

TelcoML yes, with UML

tool

yes limited to the

TelcoML enabler

library

A High Level Service Creation

Environment for Parlay in a SIP

Environment

yes, but very

rudimentary

yes limited

SPICE yes yes limited

A SIP-based Programming

Framework for Advanced

Telephony Applications

no yes limited

Session Processing Language

(SPL)

yes yes limited

OPUCE yes yes limited

TeamCom yes yes unlimited

Orchestration in Web Services

and Real-Time Communications

yes yes limited

StarSCE yes yes limited

Current Solutions for Service Creation

79

The described technologies also abstract from the underlying protocols, so also non-

experts can develop services. Since LESS is targeted for end system services, it is not

usable for a value-added service that runs on an Application Server.

In combination with the service execution solution (refer to chapter 4), the service

description language (refer to chapter 3) should support new protocols and

functionalities in order that the developer is able to describe a broad range of value-

added services. Here, with CPL, LESS, Voice XML, CCXML, and SCML it is not

possible to add functionalities and protocols from other domains. CPL, CCXML, and

SCML support only call control functionality. Voice XML only supports voice

applications. TelcoML supports both call control and voice applications but is

limited to the TelcoML enabler library and allows only coarse-grained service

orchestration. BPEL and BPMN are implemented as web services, they support the

SOAP protocol. The support of other protocols in the service description is not

directly possible. With BPEL and BPMN, it is possible to orchestrate web services

which can support other protocols. From the related research projects only SPICE,

OPUCE, TeamCom, and StarSCE, support new protocols in the service description.

Only the TeamCom project supports a wide range of possible value-added services.

The problem with TeamCom is that the adding of new protocols is very complex.

Principally, both BPMN and BPEL can be used to describe a wide variety of value-

added services, but BPEL was specially designed for the description of executable

processes. Hence, BPEL will serve this purpose better. Furthermore, BPMN can be

translated into BPEL.

Current Solutions for Service Creation

80

However, BPEL will only be used as service description language and not in

combination with a BPEL engine. Using a BPEL engine to orchestrate the service

components will work for pre-defined basic coarse-grained services. This was the

case in most of the related research projects (refer to section 3.9 and section 4.8).

Using a BPEL engine for orchestrating fine-grained services would require

implementing the services as web services, which again would lead to performance

problems.

Altogether, BPEL fulfils the required criteria and offers the most possibilities for the

description of value-added services. Because web services should not be used,

another concept was researched to support new protocols. A possibility of how to

add the support of new protocols to BPEL is described in section 5.2.3.

Current Solutions for Service Execution and Provisioning

81

4 Current Solutions for Service

Execution and Provisioning

The created value-added services have to be executed on a service execution

environment (SEE). The focus of this chapter is the actual provisioning and

execution of value-added services. The technologies are evaluated using the criteria

introduced in chapter 2.

The relevant investigation criteria described above are: supported protocols,

performance, different service possibilities, and composition capability/reusability.

The next sections will provide a description of the relevant technologies; thereafter,

related research projects will be introduced.

The specific technology JAIN SLEE will be described in more detail, since it will be

used as the basis for the prototype implementation presented in chapter 6.

Current Solutions for Service Execution and Provisioning

82

4.1 Customised Application for Mobile Network

Enhanced Logic Service Environment (CAMEL

SE)

CAMEL SE (CSE) (3GPP, 2014) is based on CAMEL IN (Customized Application

for Mobile network Enhanced Logic – Intelligent Network) services in mobile

networks. To execute services that are provided by the CSE in NGN/IMS (Next

Generation Network/IP Multimedia Subsystem), a protocol conversion is required.

This conversion is provided by the IM-SSF (IP Multimedia-Service Switching

Function). An overview of the CSE architecture with the IM-SSF is given in Figure

4.1. Here, the two protocols SIP (on the ISC interface, IMS Service Control) and

CAP (CAMEL Application Part) are translated into each other.

Figure 4.1: CAMEL Service Environment (CAMEL SE) (Detecon, 2007)

Current Solutions for Service Execution and Provisioning

83

The CSE consists of two components, the SCP (Service Control Point) and the SCE

(Service Creation Environment). The SCP manages and activates the available

services. The SCE is based on modules, which are called SIBs (Service Independent

Building Blocks). With the help of these SIBs, services can be created.

Typical services of the CAMEL-IN are, e.g., call rerouting and televoting. The

advantage of this technology is its ability to re-use already developed CAMEL-based

services. The development costs of new services using this technique are too high

and therefore not recommended; there are other techniques available which are more

cost-efficient. (Detecon, 2007)

Moreover, IN-based technologies do not provide the desired level of flexibility in

service provisioning. The service platform is limited because of its direct

interworking with the underlying network protocols and switching equipment

(Magedanz, 2006). This makes IN service development difficult which requires

specialised telecommunication knowledge. Another limitation is that CAMEL is

bound to the legacy telecommunication services and is not suited for the emerging

multimedia services (Magedanz, 2006). On the one hand, CSE shows good

performance due to its direct interworking with the network protocols, but the

number of supported protocols is rather limited.

4.2 OSA/Parlay, Parlay X

The industry consortium Parlay Group was founded in 1998 with the aim of

specifying APIs (Application Programming Interfaces) that simplify and unify the

access and control of telephone networks. Within 3GPP, the Parlay specification is

Current Solutions for Service Execution and Provisioning

84

part of the Open Service Access (OSA) architecture and is therefore called

OSA/Parlay (Parlay, 2010).

OSA/Parlay provides access to network functions that are offered as service

capability features (SCF) through service capability servers (SCS).

Basically, OSA/Parlay defines client applications (CA), service capability servers

(SCS) providing service capability features (hiding the telecommunication

networks), and a framework. The SCSs provide standardised interfaces offering

access to the network functions, i.e. service capability features (Figure 4.2).

Figure 4.2: OSA/Parlay framework (related to (Abarca et al., 2002))

The OSA/Parlay Gateway consists of several SCSs. One of the SCSs is called the

“Framework” (Abarca et al., 2002).

There are two possibilities for implementing the CAs (Figure 4.3):

 using low-level programmatic Parlay APIs of a Parlay Gateway or

 using higher-level web services offered, e.g., by a Parlay X Gateway.

Current Solutions for Service Execution and Provisioning

85

Figure 4.3: Parlay gateway (related to (Detecon, 2007))

The gateways can protect the access of the service capability features against the

client applications so that 3rd-party applications are allowed, too.

The Parlay techniques are specified in UML (Unified Modelling Language) (OMG

2011a) format. Several standard interfaces and gateways are defined, but no

application servers (ASs). A Parlay/OSA Gateway translates protocols such as SIP

into the so-called “OSA API”. The application server can be addressed with

CORBA-based (Common Object Request Broker Architecture) (OMG, 2012a)

interfaces. The gateway (Figure 4.3) itself serves as middleware to provide a secure

and abstract access to network functions for the implementation of

telecommunication services.

The Parlay specification consists of three parts: (i) the framework and service

capability features, (ii) the OSA/Parlay functionality, and (iii) the framework

functionality.

Current Solutions for Service Execution and Provisioning

86

The framework and the service capability features are connection points to the

network functionality of the telephony network. They offer, e.g., the possibility of

initiating, controlling, and stopping a call and playing an announcement.

The OSA/Parlay functionality describes services that run on special application

servers. These services implement the service logic and use the service capability

features of the telephony network.

The framework functionality offers, for instance, the functionality for authentication

and identification of the service against the service capability features and is

responsible for giving access permissions for these capabilities to the services. It also

allows the interoperability of service capability features among different providers

and services.

An advantage of this technique is the linking of a third-party application server to an

NGN/IMS in a secure way, because OSA itself offers discovery, authentication,

registration, and access control. The alternative solution, Parlay X, is based on web

services technology. With the Parlay X solution, the web services can be used to realise

an open access to NGN capabilities. Both techniques can be used in combination. The

advantages of these two solutions are the high-level of security, the possibility of

combining web services using Parlay/OSA functions, the possibility of adding the

support of new protocols through resource adaptors, its expandability, and the

support of several programming languages (C++, C#, Java). The framework was

specially developed to support telecom applications and offers a good performance

for these services; third-party development is possible, too.

Current Solutions for Service Execution and Provisioning

87

OSA/Parlay and Parlay X specify open interfaces offering service capability features,

but do not specify an execution environment for value-added services. Therefore, this

approach can only be part of the solution.

4.3 OMA SE (Open Mobile Alliance Service

Environment)

The Open Mobile Alliance (OMA) (OMA, 2013) specifies open global standards for

network-independent applications and service components, especially for cellular

mobile networks. The main requirements are the independence of operating systems,

execution environments, programming languages and vendor platforms, as well as

interoperability between devices and across networks (roaming), between

infrastructure and service providers. Therefore, various technologies like IMS,

Parlay, or web services can be used for an implementation of OMA specifications.

In Figure 4.4, an overview of the OSE architecture is shown. It consists of the

Service Enabler, the Policy Enforcer, applications, the execution environment, the

Interface Bindings, and the PEEM (Policy Evaluation, Enforcement, and

Management).

OMA mainly defines so-called “Service Enablers” and applications within the OSE

reference architecture. An example of a Service Enabler is the presence function.

OSE specifies how the Service Enablers work together and how they provide their

resources via standardised interfaces with the help of the Interface Bindings. OSE

offers an easy, safe, and secure access to network resources. The applications realise

Current Solutions for Service Execution and Provisioning

88

the communication services by utilising the Service Enablers. Hence, a service can

be realised, e.g., by using application servers within the OSE or outside the OSE

(“third-party”). The Policy Enforcer offers security rules among applications and

Service Enablers, and among several Service Enablers. The PEEM can be used as a

central Service Enabler who allows other Service Enablers to show their

functionalities. The execution environment handles aspects like service life cycle

management, load balancing, or caching (Detecon, 2007).

Figure 4.4: OMA SE architecture (related to (OMA, 2004))

The advantages are a high degree of safety, the usage of different technologies like

web services or Parlay, and the independence of the programming language. New

protocols can be supported by adding new interfaces bindings. OSE was specially

developed for telecommunication services. The performance depends on the

Current Solutions for Service Execution and Provisioning

89

implementation. The disadvantage is that the services primarily cover the mobile

area (Detecon, 2007).

4.4 JAIN SLEE (Service Logic Execution

Environment)

In March 2004, the JAIN SLEE (Java API for Intelligent Networks/Service Logic

Execution Environment) specification was introduced as JSR 22 (Java Specification

Request) (Sun and Open Cloud, 2004) into the Java Community Process (JCP) with

Sun Microsystems, Open Cloud, Fujitsu Siemens, IBM, 8x8, Motorola, Nortel

Networks, NTT, Personeta, Telcordia Technologies, TrueTel, Siemens and Vodafone

involved in the standardisation. The JAIN SLEE specification (Sun and Open Cloud,

2004) defines a Java-based and component-based runtime environment that is

designed specifically for scalable, asynchronous event processing based on concepts

similar to the Java EE (Java Platform, Enterprise Edition), but explicitly designed for

supporting intelligent networks in the telecommunication industry. In this thesis,

JAIN SLEE is used for a prototype implementation and is therefore presented in

more detail.

The main goal of the JAIN SLEE development was to achieve low latency and high

throughput, both required by communication networks, aiming to provide a response

time below 200 ms and processing of thousands of events and transactions

simultaneously as well as achieving 99.999% availability. The specification defines a

container model and components called Service Building Blocks (SBBs). Based on

Current Solutions for Service Execution and Provisioning

90

these components, the JAIN SLEE specification uses proven concepts from Java EE

and allows the decoupling of services from underlying networks through resource

adaptors. Overall, JAIN SLEE does not replace the Java platform, but is a

complementary platform for the requirements of the telecommunication industry. In

the JAIN SLEE standard, an integration of Java EE and JAIN SLEE applications is

described (Sun and Open Cloud, 2004).

Since July 2008, the version 1.1 of the JAIN SLEE specification has been published

as JSR 240 (Sun and Open Cloud, 2008). This specification is mainly an extension of

the first version with focus on the development of resource adaptors and their

architecture.

According to (Sun and Open Cloud, 2004), JAIN SLEE is an application server. An

application server (AS) provides an environment where applications can run. It

provides services to the applications and offers management and/or developer tools.

Furthermore, it can distribute requests across multiple physical servers and provides

a container model for applications (Ottinger, 2008).

The basis of the JAIN SLEE architecture contains four areas: management,

framework, component model, and resource adaptors/APIs. Figure 4.5 gives an

overview of the JAIN SLEE architecture.

Current Solutions for Service Execution and Provisioning

91

Figure 4.5: JAIN SLEE architecture (related to (Maretzke et al., 2005))

Management

For the management of the JAIN SLEE environment, the Java Management

Extensions (JMX) technology can be used, which was developed in the JCP (JSR 3,

JSR 160, JSR 255) with the participation of companies such as IBM, BEA Systems,

and Borland. With JMX, a framework is provided which allows the developers to

implement management capabilities in Java and integrate them into their

applications. Many server applications are currently using the JMX specification.

The control of a resource, which is manageable with JMX, is realised by Managed

Beans (MBeans).

The JAIN SLEE environment is also managed through standardised MBeans that

control the runtime environment, the installation of JAIN SLEE elements, and the

management of services. Furthermore, the MBeans offer service usage statistics, and

the data supply of services via profiles. With the help of the MBeans, a graphical

user interface can be implemented for administration tasks.

Current Solutions for Service Execution and Provisioning

92

Framework

The elements of the framework in the JAIN SLEE architecture form the basis of the

actual service logic: timers, alarms, traces, profiles, and the event router. A timer

triggers the service logic at specific time events. By alarms, external management

systems are notified. Traces allow the output of messages (e.g., logging). With

profiles, data related to user and service profiles are stored and managed. The most

important part of the framework is the event router which forwards received and

generated events to the appropriate SBBs or resources.

Resource Adaptor

Resource adaptors are elements of the JAIN SLEE architecture that enable the

communication with networks, systems, or databases outside the SLEE. The required

protocol APIs for communication are implemented in the resource adaptors. In the

SLEE environment, resource adaptors can be installed and used simultaneously. If

the SLEE environment receives a specific signal (e.g., a protocol message) from an

external source, the resource adaptor is converting this signal into simple Java

objects. These Java objects, which, in JAIN SLEE, are also called events, extract all

relevant information from the source and transmit this information to the SBBs. The

SBBs can register for the events they want to receive. If more than one SBB is

registered for an event, then the event is forwarded to all of these SBBs.

Current Solutions for Service Execution and Provisioning

93

Component Model

The component model is a core part of the JAIN SLEE architecture and controls the

usage of components, i.e. service building blocks (SBBs) in the SLEE environment.

It fulfils the following tasks:

 interaction of SBBs with each other and with the SLEE environment;

 execution of the components;

 packaging of services and components in JAR archives and deployment;

 configuration using deployment descriptors.

The SBBs in JAIN SLEE follow a life cycle that is controlled by the surrounding

run-time environment, similar to the Enterprise JavaBeans (EJBs) in Java EE. This

environment is responsible for managing the event processing of the SBBs and the

calls of the framework. Transactions are used for the event processing and the calls

of the framework. This guarantees that the JAIN SLEE container is always in a

consistent state, even if an error occurs.

Event Model

An event can be initiated by a signal source from outside or from inside the SLEE

environment. Figure 4.6 illustrates the JAIN SLEE event model.

Events that occur within the SLEE environment are usually produced by SBBs or

framework elements, e.g., the timer facility, in order to send signals to other

components or to communicate with them. When an event producer sends an event,

the event type has to be known by the SLEE environment. This event type defines

how the event will be routed by the SLEE environment and which SBBs will receive

Current Solutions for Service Execution and Provisioning

94

the event (Sun and Open Cloud, 2004). The event model of JAIN SLEE is based on

the publish/subscribe model. This means that the senders (publishers) themselves do

not send their events to specific recipients.

Figure 4.6: JAIN SLEE event model (related to (Maretzke, 2005))

Instead, the recipients (subscribers) have to register/subscribe for the events. The

events are sent to a central point from where they are delivered to all recipients

(subscribers) who have been registered/subscribed for the events (Sun and Open

Cloud, 2003). This central point is called “event router”.

The JAIN SLEE specification defines the concept of the activity context (AC), which

maintains the relationship between event producers and event consumers, to

implement this model. For example, the AC concept allows the processing of

subsequent events that are assigned to the activity context. A simplified example of

the event processing in the SLEE environment is illustrated in Figure 4.7.

Current Solutions for Service Execution and Provisioning

95

Figure 4.7: Example of the event processing in JAIN SLEE ((related to Maretzke et al., 2005))

The process starts with a network-generated signal that is forwarded to the resource

adaptor (1); this may be a signal for setting up a call. The resource adaptor converts

the incoming signal to a Java event and transmits it to the event router (2). Since this

event is the first one in a sequence of events to establish a telephone call, the event

router creates a new activity context (3), then the SBB component passes the event

and the activity context as parameters to the event processing (4). The service logic is

invoked, and the SBB calls specific methods (5) that are offered by the resource

adaptor to generate a response to the network (6). Upon the execution of the service

logic, the SBB will detach from the AC, then the AC will be destroyed. This

example, provided by (Maretzke et al., 2005) describes the activity context in

combination with the event processing in JAIN SLEE. The event router is always

involved in the event processing. In the following chapters, the visualisation of event

routing and activity contexts is simplified and the event router is not illustrated

anymore but in reality, it is always involved.

Current Solutions for Service Execution and Provisioning

96

Service Building Blocks (SBBs)

Service Building Blocks (SBBs) are software components that can send and receive

events. SBBs also include the service logic that is executed, depending on the type

and status of the incoming event. JAIN SLEE services and SBB components can be

differentiated from each other as follows (Sun and Open Cloud, 2003):

 An instance of a JAIN SLEE service can consist of a single SBB or can

contain multiple instances of different types of SBBs.

 The same SBB can be included in several service types.

 An SBB can only execute one event at the same time.

 Several SBBs that belong to the same JAIN SLEE service can process events

in parallel.

An SBB consists of the SBB descriptor that describes the component in XML and

the implementation of an abstract SBB base class. The developer must extend this

abstract class for each SBB and implement an event handler method for each event

that can be received by the SBB. The content of these methods represents the current

logic of the service (Haiges, 2005). The SBB descriptor of an SBB component

includes all information required for the event router to deliver the events to the

interested SBBs:

 name of the SBB;

 name of the vendor of the SBB;

 SBB version;

Current Solutions for Service Execution and Provisioning

97

 list of events that can be received or sent by the SBB component;

 names of the Java classes that implement the service logic of the SBB

component.

Similar to the deployment of EJBs in Java EE containers, several descriptors and

special structures must be created for SBBs so that they can be installed as new

components in the JAIN SLEE container. The elements that are required for the

service can be packaged in a deployable unit (DU). The DU is packed in a Java

Archive (JAR) file that can be deployed into the SLEE. The DU can contain services,

SBBs, events, profile specifications, resource adaptors, resource adaptor types,

library files, and the deployment descriptor. This descriptor mainly includes

references to all those service component or resource adaptors that can be installed

into the SLEE. These elements are also packaged in form of JAR.

Each SBB is packaged in a separate JAR archive that contains the compiled Java

SBB class and the SBB descriptor. The example DU shown in Figure 4.8 consists of

two SBBs, the SBB A in the file a_sbb.jar, and SBB B in the file b_sbb.jar. Each

SBB requires its own SBB descriptor (here a_sbb-jar.xml and b_sbb-jar.xml) and its

SBB class (“a_sbb.class” and “b_sbb.class”). The SBB descriptor references the SBB

class and the events in which the SBB is interested. This information is of central

importance for the event router that delivers the events to the interested SBBs. The

service descriptor (service.xml) contains information about the service, the contained

SBBs and the SBB hierarchies. With JAIN SLEE, it is possible to build complex

hierarchies of SBBs, e.g., for re-use. In such cases, the order of the delivery of events

must be regulated by priorities in the service descriptor. The deployable unit

Current Solutions for Service Execution and Provisioning

98

describes the classes, the profile, and the events that are used in the service. (JSR

240, 2008)

Figure 4.8: Elements of a deployable unit

With the following example service, the event processing within JAIN SLEE is

discussed in more detail. The example service is a chat service. Multiple chat clients

can connect to this service. When the service receives a chat message from one of the

chat clients, it sends out this message to the other chat clients who are connected. An

overview of the required service components is presented in Figure 4.9 and an

extract of the Message Sequence Chart (MSC) for this example is shown in Figure

4.10. The sessions are established with the SIP protocol, and the user data is

exchanged encrypted via TLS (Transport Layer Security) connections. The first step

is the establishment of the SIP session. Within the SIP session, the TLS user data

connection can be established, and the user data can be exchanged encrypted via

TLS.

Current Solutions for Service Execution and Provisioning

99

Figure 4.9: JAIN SLEE components for the TLS-chat service

The service requires one SBB (Chat SBB), which contains the service logic, and two

resource adaptors (RAs), the SIP RA and the TLS RA. The SIP RA offers the

functionality to handle the signalling part for the service and offers specific SIP

functionalities to the SBBs. The TLS RA handles the user data part for the chat

service. It offers the functionality to handle a TLS connection and transfer encrypted

user data via the TLS protocol. The users A, B, and C use their chat clients to join the

chat. The chat clients have to understand the SIP protocol for the signalling and the

TLS protocol to transfer the user data.

The MSC in Figure 4.10 shows the protocol communication between the chat clients

and the service on the left and the event communication within the service on the

right side.

Current Solutions for Service Execution and Provisioning

100

Figure 4.10: Connection establishment with the chat service

The service starts with the establishment of the SIP session between the chat client A

and the service with resulting event communication within the JAIN SLEE service.

After the SIP session is established, the TLS user data transfer between the service

and the chat client is initiated from the Chat SBB with the call of the

openTLSConnection(A) method of the TLS RA. In the next step, the TLS

session establishment and the TLS user data transfer between the service and the chat

clients is started.

In the figure, three users wish to participate in a chat. For this purpose, chat clients B

and C have already established a SIP session and a TLS connection with the service,

they are already logged into the service.

The chat client A initiates the session establishment procedure with a SIP INVITE

message. This procedure is called “SIP three-way handshake”. The chat client A

sends the SIP INVITE to the SIP RA of the application server.

Current Solutions for Service Execution and Provisioning

101

This INVITE message includes signalling and session information. The session

information is described by the Session Description Protocol (SDP) that is

encapsulated within the INVITE message. In case of the chat service, the SDP

include the kind of application (TLS chat), the IP address, and the TCP port number,

at which the chat client is listening.

The SIP RA receives the SIP INVITE, generates an invite event with the required

information, and forwards this event to the event router. The event router looks up all

SBBs that are interested in this invite event (Chat SBB) and calls the invite event

handler methods of those SBBs (onInvite(event)). The received invite event is

available as input parameter of the event handler method. The onInvite(event)

method of the Chat SBB analyses the received invite event. In this example, the

invite handler method generates a SIP response (200 OK) by calling the according

method from the SIP RA (send200OK(SDP)).

This response message includes an SDP part within its SIP body, which informs the

chat client A about the port for the TLS user data communication. As answer to this

response message, chat client A sends a SIP ACK message to the SIP RA of the

JAIN SLEE server. With the reception of this message, the three-way handshake is

finished and the SIP session is established.

The SIP RA generates an ACK event and sends this event to the event router. There

the interested SBBs are identified (here Chat SBB), and the ACK event handler

method of each SBB is called (onAck(event)). The ACK event is transmitted as

parameter of the method to the SBB.

Current Solutions for Service Execution and Provisioning

102

The onAck(event) method of the Chat SBB activates the TLS connection

establishment by calling the respective method on the TLS RA

(openTLSConnection(A)). The RA initiates the TLS connection with the TLS

handshake.

In case of a successful TLS session establishment, the TLS RA generates the event

HandshakeCompleteEvent, which is received by the event router. Again, the event

router identifies the SBBs that are interested in this event (here Chat SBB) and calls

the event handler methods of those SBBs. In this case, the HandshakeCompleteEvent

handler method onHs(event) is called. The onHs(event) method generates a

welcome (login) message for the client A and a notification message for B and for C

to inform the clients that A has logged in, by calling the methods for sending TLS

data (sendTLSData(…)) on the TLS RA. These messages are sent encrypted

within the TLS connections to the chat clients.

This example shows the abstraction of the service logic from the protocol. The

protocol-specific functionalities are handled by the RA and are offered as methods

for the SBBs.

Graphical service development

Some JAIN SLEE implementations offer tools, which support a graphical service

development. These tools can speed up the development process and simplifies the

service development. A noteworthy graphical development tool is the Rhino Visual

Service Architect (OpenCloud, 2013) from OpenCloud. This tool offers a graphical

representation of the service. It allows switching between the graphical

representation and the textual code. This tool produces parts of the service code. This

Current Solutions for Service Execution and Provisioning

103

code can be manipulated and adapted by the developer. The Rhino Visual Service

Architect generates code that includes finite state machines for asynchronous design

and resource adaptors for specific protocols. Furthermore, it supports templates.

These templates provide pre-designed starting points for the creation of a service.

(OpenCloud, 2013)

The Rhino Visual Service Architect offers a good support for the service

development, but it is required to manipulate and edit the service code, which

requires expert knowledge. Therefore, it is not a solution for the SCE of this thesis

but a good solution to support the development of the CBBs described in chapter

6.2.1.

Advantages and disadvantages of JAIN SLEE

The advantages of the JAIN SLEE technology are flexibility, platform independence,

low latency, and high throughput. The technology has been developed to fulfil the

specific requirements for telecommunications. JAIN SLEE is extensible because the

technology is based on Java. By developing and adding new resource adaptors, the

support of new protocols can be added. Furthermore, platform-dependent

programming languages such as C/C++ can be integrated through the Java Native

Interface (JNI).

The disadvantages are the required specific knowledge that also makes the

development of new resource adaptors and value-added services difficult. The

developer must have expertise in Java, JAIN SLEE, and the required protocols. The

development of a typical service would take a long time, such as 3 months or even

more (Detecon, 2007).

Current Solutions for Service Execution and Provisioning

104

The JAIN SLEE technology fulfils the requirements for the SEE. Unfortunately, the

requirements for the SCE cannot be fulfilled (refer to section 2.5). It is also not

possible to use a service creation technology directly in combination with JAIN

SLEE (refer to chapter 5). However, these shortcomings can be solved with the

proposed extension of JAIN SLEE as described in chapter 6.

4.5 SIP Common Gateway Interface (SIP-CGI)

SIP-CGI is a language-independent interface that allows interactions with programs

or scripts on an SIP Application Server (IETF RFC 3050, 2001). The advantage of

SIP-CGI is the possibility to use all programming or scripting languages, as long as

they can be executed on the SIP application server. The data from the incoming SIP

messages are passed to the executing programs. SIP-CGI scripts usually have the

same access to resources on the server as other server software. For security reasons,

only the service provider should create services.

Figure 4.11 shows the SIP-CGI model. The elements in this figure are two SIP

servers and two SIP clients. A CGI program is located on one of the SIP servers.

When the server receives a SIP request, it can execute the SIP-CGI program with the

required parameters. The SIP-CGI program computes an answer for the SIP server.

With this answer, the SIP server can modify the received SIP request or generate a

SIP response and send it to its destination.

Current Solutions for Service Execution and Provisioning

105

Figure 4.11: CGI model for SIP (related to IETF RFC 3050, 2001)

SIP CGI is an expandable interface with the feature of executing applications and

scripts on a server. SIP CGI offers many service possibilities.

Disadvantages of SIP CGI are the relatively low execution speed, especially when

scripting languages such as Perl are used, and the security problems, described

above. Another disadvantage is that the integration of other protocols and the support

of multimedia functionalities are not standardised. All these disadvantages lead to the

conclusion that SIP-CGI is not an adequate solution for the SEE in this work.

4.6 Web Services

Legacy web services (W3C, 2004a) are distributed software applications that are

based on the service-oriented architecture (SOA) (OASIS Standard, 2006). Web

services use standardised interfaces, which are described using the Web Service

Description Language (WSDL) (W3C, 2007b) and protocols like SOAP (W3C,

2007c). The Universal Description and Discovery Interface (UDDI) is used as

service registry. The legacy web services normally follow the “find-bind-execute”

paradigm of SOA (Figure 4.12). This paradigm describes the communication

between the service provider, the service registry, and the service requestor “user”.

Current Solutions for Service Execution and Provisioning

106

Figure 4.12: Web services and SOA

Web services are independent from the programming language, the execution

platform, and the transport protocol (e.g., SIP or HTTP). Based on XML messages,

web services combine distributed and object-oriented programming standards and

they are expandable with nearly unlimited service options. They can be composed

with other web services to enable services that are more complex.

The W3C identified two major classes of web services: REST-compliant web

services and arbitrary web services. The primary purpose of the services in REST-

compliant web services is to manipulate XML representations of web resources using

a uniform set of ‘stateless’ operations. The services in arbitrary web services may

expose an arbitrary set of operations. (W3C, 2004a)

Web services tend to provide a poor performance because of the overhead introduced

by protocols such as SOAP (Hammerschall, 2005). Web services are specially

developed for business process oriented services but they do not fulfil the

requirements for real-time (Baravaglio et al., 2005) services.

Current Solutions for Service Execution and Provisioning

107

For IT services this works very well, but for services from the telecommunication

domain it becomes slow due to the performance limitations of Java EE-like

application servers. These servers are designed for enterprise services based on

synchronous request-response interactions, but they do not perform well in a

telecommunication service environment using asynchronous interactions. Web

Services have been developed for composing, providing, and integrating IT services,

but there are some open issues by applying web services for telecommunication

services. (Bo et al., 2009)

However, web services can be used for the control and the management of value-

added services in telecommunications and for integrating value-added services into

IT processes. The integration of web services and value-added services is possible by

use of the resource adaptor concept of JAIN SLEE that was described in section 4.4.

4.7 SIP Servlets

SIP Servlets are HTTP (Hypertext Transfer Protocol) Servlets that were extended

with a Java programming interface for SIP communication and run on an SIP

Application Servers (ASs). SIP Servlets are standardised as SIP Servlet API in JSR

116 (Java Specification Requests) (JSR 116, 2003) and JSR 289 (JSR 289, 2008).

The AS provides the Servlet Container for the SIP Servlets. The Servlet Container is

the Java-based runtime environment for the SIP Servlets. An application router for

the composition of different applications (in this case SIP Servlets) has also been

standardised.

Current Solutions for Service Execution and Provisioning

108

The AS contains, among others, the SIP protocol stack. Received SIP messages are

filtered according to the content of a specific configuration file, the deployment

descriptor. Subsequently, the SIP Servlets, which correspond to the desired service,

are executed. Figure 4.13 presents the structure of an SIP Application Server with

SIP Servlets (IETF, 2001b).

Figure 4.13: Application server and SIP servlets (related to (Trick and Weber, 2009))

The SIP Servlet API is standardised by the Java Community (JSR 116, 2003), (JSR

289, 2008). In this standard, the interworking between HTTP Servlets and SIP

Servlets is defined. For example, in Figure 4.14 a converged service is shown, which

consists of the SIP Servlet B and a HTTP Servlet C. Both servlets are part of one

service that supports two protocols. The SIP Servlet B communicates with a SIP user

agent and the HTTP Servlet C interacts with an HTTP client. The AS provides both,

a SIP Servlet Container and an HTTP Servlet Container.

P
ro

f.
 D

r.
 T

ri
ck

,
F

.
W

eb
er

,
A

.
L

eh
m

a
n
n

;
F

H
 F

ra
n
k

fu
rt

 a
.M

.,
 S

em
in

ar
:

N
G

N
,

S
IP

 u
n

d
 M

eh
rw

er
td

ie
n

st
e

-
A

ll
e

R
ec

h
te

 v
o
rb

eh
al

te
n

SIP Servlets 2

Siehe Kap. 6.12

Servlet Container
SIP

Message

JAVA Virtual Machine

JAVA SIP AS

Service

Dispatcher

API

API API

Filter

1 1… …N N

Servlets

SIP

Stack

Current Solutions for Service Execution and Provisioning

109

Figure 4.14: AS with SIP and HTTP servlet container

Unlike the SIP-CGI approach in Figure 4.11, the SIP Servlet Container replaces the

CGI script in (Figure 4.15). The SIP Servlet Engine is invoked instead of the CGI

scripts. The SIP Servlet Engine calls the corresponding Java method on the SIP

Servlet. (Fan et al., 2006)

Figure 4.15: Servlet model for SIP (related to (Fan et al., 2006))

SIP Servlets are persistent, and as they run in threads and not in processes like most

CGI implementations, they have a higher execution speed. Servlets also provide a

high level of security because they run within the SIP server process. Therefore, they

are only accessible through the server itself. Servlets also offer all the benefits of

Current Solutions for Service Execution and Provisioning

110

Java technology, such as platform independence and extensibility, and many service

possibilities.

The disadvantage of the SIP Servlet technology is their exclusive support for SIP. To

enable the usage of other protocols, converged applications between SIP servlets and

Java EE technologies are required. Furthermore, the implementations of the

protocols are vendor-specific, unlike the JAIN SLEE technology with its

standardised RAs. Since servlets were originally defined for the HTTP protocol, they

follow the client/server principles and cannot send initial requests messages.

However, this problem can also be solved by using Java EE technologies in

combination with SIP Servlets. Nevertheless, the JAIN SLEE framework already

offers a solution, which offers the requirements for service execution, and

provisioning, therefore it is not required to build another framework on top of Java

EE in combination with SIP Servlets.

4.8 Related Research Projects

This section describes related research projects in the field of service execution and

provisioning. Most of the analysed related research projects offer both, a service

execution and a service creation solution. This chapter concentrates on the solutions

for service execution and provisioning, nevertheless, if a related research project

provides also a service creation solution this will be mentioned here.

Current Solutions for Service Execution and Provisioning

111

MAMS

The objective of the BMBF-Project MAMS (Multi-Access, Modular-Services

Framework) (MAMS, 2010) was to specify and rollout a novel, unified, open Service

Delivery Platform for Next Generation Networks (NGN) and Services. The

developed Service Delivery Platform (Figure 4.16) enables the rapid design of new

combinable services for a wide range of multimedia applications based on the use of

various network technologies and integrated voice and data. The service generation

uses a collection of core communication services that are based on the interfaces of

the OMA SE standard as described in section 4.3.

Figure 4.16: The MAMS framework (related to (Fraunhofer SIT, 2014))

The MAMS framework consists of an SCE which support the service creation

process, an SEE that is called “Open Distributed Service Delivery Platform”

(ODSDP) for the provisioning and execution of the services, and a middleware

which consists of the IMS, a network abstraction (NA) and the Intelligent Service

Orientated Network Infrastructure (ISONI). The ODSDP and the IMS provide the

Current Solutions for Service Execution and Provisioning

112

overlay to ISONI, which is based on reconfigurable, programmable nodes. The

ISONI offers, among other things, reliability and quality of service. (Fraunhofer SIT,

2014)

With the help of a Service Creation Workbench (Freese et al., 2007) of the MAMS-

Project, new value-added services can be created also by non-experts. The graphical

user interface allows creating data flow oriented services. A service consists of

preconfigured atomic services that are no more decomposable or interruptible.

Figure 4.17: MAMS Service Creation Workbench (Freese et al., 2007)

Since MAMS is based on the OMA SE interfaces, it shares its inherent advantages

(expandability and performance) and disadvantages (limited service possibilities and

limited collection of core communication services). The MAMS framework consists

of a proprietary Service Creation Workbench. Neither the OMA SE (refer to section

4.3) solution for the SEE nor the solution for the SCE is a solution for the framework

proposed in this thesis (refer to section 2.5).

Current Solutions for Service Execution and Provisioning

113

Orchestrated Execution Environment for Hybrid Services

(Bessler et al., 2007) proposes an approach, using a BPEL (refer to section 3.6)

engine deployed within a JAIN SLEE RA (Figure 4.18). The internal communication

with the BPEL engine is implemented in Java and the communication with external

web services uses SOAP. The BPEL resource adapter allows defining BPEL

processes, which combine telecommunication services and web services.

Figure 4.18: High-level architecture of the converged execution environment (Bessler et al.,

2007)

This approach inherits the advantages and disadvantages of web services and JAIN

SLEE. Web services and JAIN SLEE services can be combined within one BPEL

process. The technology is expandable because it is based on Java and open for many

services. By adding new resource adaptors, new protocols can be supported.

The disadvantage of this approach is the lower performance compared to JAIN

SLEE, which is caused by using a BPEL Engine for service orchestration.

Current Solutions for Service Execution and Provisioning

114

Orchestrated Execution Environment Based on JBI

In (Bo et al., 2009), the authors propose using BPEL (refer to section 3.6) for service

orchestration. To overcome the performance limitations of Java EE-like application

servers, this solution uses the JAIN Service Logic Execution Environment (JAIN

SLEE) that, due to its event-based service platform architecture, is suitable for

telecommunication services. An overview of the proposed architecture is shown in

Figure 4.19.

Figure 4.19: Architecture of the ServiceMix; Mobicents integration (Bo et al., 2009) © 2009

IEEE

The figure shows the proposed architecture that consists of the BPEL engine for

orchestrating web services, the Enterprise Service Bus with the NMR for exchanging

messages between the components, the HTTP Binding Component for

communicating with the web clients, and the JAIN SLEE Service Engine (SE) for

Current Solutions for Service Execution and Provisioning

115

providing telecommunication services. The JAIN SLEE SE consists of the integrated

JAIN SLEE server, a life cycle module, a deployment module, and a message

exchange module. The components communicate with each other by exchanging

Normalized Messages (NM) via a router, the Normalized Message Router (NMR).

The life cycle of the modules is scheduled by the life cycle element. The message

exchange module is a bridge between the NMR and the JAIN SLEE server. It

receives NMs from the NMR, generates JAIN SLEE events from the NMs, and fires

these events to the corresponding activities in the SLEE. The deployment module

monitors a specific folder in the file system. It scans this folder for new DUs

(Deployable Units). If a new DU is found within this folder, it is deployed to JAIN

SLEE.

The JNDI module adapts the JNDI (Java Naming and Directory Index) APIs from

JAIN SLEE to the ESB. A JAIN SLEE service requires a web service

implementation with the related WSDL file to be available for service orchestration

in BPEL.

For the interaction between the web service and a JAIN SLEE service, a SOAP RA

is used which is acting as a communication bridge. The BPEL engine communicates

via the NMR by sending Normalized Messages (NM).

Furthermore, a graphical Service Creation Environment is proposed that can expose

and re-use telecommunication web services. An IT-developer can use the exposed

WSDL interfaces for creating value-added services and communication web services

without knowing the underlying technical details of the telecommunication

protocols.

Current Solutions for Service Execution and Provisioning

116

The example implemented by the authors is a conference service. It consists of the

BPEL process and several SBBs. For mixing the audio/video streams, an external

Media Server with a mixer is used. To make a user join a conference, a web client

sends the request to the HTTP module. This module forwards the generated NM via

the NMR to the destination (BPEL engine). When a NM is received by the BPEL

engine, the corresponding BPEL process is activated. This process also generates

NMs for the communication with the JAIN SLEE services. These NMs are

forwarded across the NMR to the message exchange of the JAIN SLEE SE. There,

the events are generated and sent over the event router to the corresponding

conference SBBs. These SBBs implement the logic of the services. They are also

able to control the media server and to give orders whether to or not to send, receive,

or mix the media.

A prototype of the system was implemented, this prototype consists of the BPEL

engine ODE (Orchestration Director Engine) (ODE, 2013), the ESB implementation

Apache ServiceMix (ServiceMix, 2013), and the JAIN SLEE implementation

Mobicents with the required SBBs. In addition, the conference scenario was

developed and deployed on the prototype. In the next step, the response times of the

system were measured. ServiceMix with ODE and Tomcat providing atomic services

was compared with ServiceMix with ODE and Mobicents providing atomic services.

The Tomcat application server uses (synchronous) web services, and the Mobicents

application server is a JAIN SLEE implementation (asynchronous). As result of their

experiment, the authors showed that the prototype (ServiceMix, ODE, Mobicents)

with Mobicents is up to 10 times faster than a version that uses Tomcat (ServiceMix,

Current Solutions for Service Execution and Provisioning

117

ODE, and Tomcat). With the presented approach, the authors offer an Orchestrated

Execution Environment for one conference service.

However, a BPEL engine is used for the orchestration of the web services. As

described in section 4.6, this is not a solution for this work. Furthermore, the JAIN

SLEE services are not generated automatically. They have to be developed manually.

These facts lead to the conclusion that this approach is not suitable for this work.

4.9 Conclusion

The previous sections described the common technologies used in

telecommunications for service execution and service provisioning. Advantages and

disadvantages of each technology were shown. Selected research projects using these

technologies were shortly discussed.

In Table 4.1, the evaluation of the technologies with regard to the criteria of service

execution and provisioning (refer to section 2.5) is briefly summarised.

In order to provide a flexible service execution environment, the technology should

support multiple protocols as well as a mechanism to be able to add new protocols to

the SEE. Because of this requirement, CSE, SIP CGI, and SIP Servlets are rather

unsuitable choices.

The SIP CGI technology does not fulfil the criterion of a good performance. The

orchestration of pre-built telecommunication services with web services is possible,

but the orchestration of fine-grained components of telecommunication services to

value-added telecommunication services will lead to performance problems. The

Current Solutions for Service Execution and Provisioning

118

same problem is true for the research projects Orchestrated Execution Environment

for Hybrid Services (Bessler et al., 2007) and Design of an Orchestrated Execution

Environment based on JBI (Bo et al., 2009), because they use a BPEL engine. CSE,

OSA/Parlay, OMA SE, and the research project MAMS show limitations of service

possibilities.

Table 4.1: Service execution and provisioning solutions

 Supported protocols Performance of the

framework

Service

possibilities

Composition

capability

CSE for GSM OK limited no

OSA/Parlay,

Parlay X

Resource Adaptor OK limited yes

OMA SE Binding Interfaces OK limited yes

JAIN SLEE Resource Adaptor OK unlimited yes

SIP CGI SIP slow nearly

unlimited

yes

SIP Servlets SIP OK nearly

unlimited

yes

Web services independent (SOAP

preferred)

slow nearly

unlimited

yes

MAMS Binding Interfaces

(from OMA SE)

OK limited yes

Orchestrated

Execution

Environment for

Hybrid Services

Resource Adaptor

from JAIN SLEE

OK for JAIN SLEE

services; slow for web

services and service

orchestration with

BPEL

unlimited yes

Design of an

Orchestrated

Execution

Environment

based on JBI

Resource Adaptor

(HTTP, SIP)

OK for JAIN SLEE

services; slow for web

services and service

orchestration with

BPEL

unlimited yes

Almost all technologies mentioned here make use of reusable components and

provide service composition possibilities. SIP Servlets and the Service Building

Blocks (SBBs) within JAIN SLEE offer service composition. However, composition

is limited to the service delivery platform of the operator itself. Web services allow

119

service composition across platforms. Based on the identified advantages and

limitations against the listed criteria, JAIN SLEE satisfies the requirements of service

execution and is therefore the preferred execution environment (Eichelmann et al.,

2008).

As already described in section 4.4, JAIN SLEE is only a solution for the SEE; the

criteria for service creation are not fulfilled (refer to section 2.5). The target of this

thesis is the development of novel extensions of the JAIN SLEE framework to fulfil

the criteria for service creation. Therefore, in the next chapter, novel approaches for

service description, creation, and execution are analysed.

Novel Approaches for Service Description, Creation, and Execution

120

5 Novel Approaches for Service

Description, Creation, and Execution

This chapter analyses novel approaches for the description, creation, and execution

of value-added services. The analysis of existing technologies and related work in the

previous chapters showed that the choice of BPEL and JAIN SLEE would be

appropriate for service description and service execution, respectively. However, the

output of a BPEL developer tool is the service description in form of XML-files, but

the JAIN SLEE server requires a Deployable Unit (DU) with the compiled Java

classes and the descriptor files as input. This chapter analyses methods to bridge the

gap between these two technologies (Figure 5.1).

BPEL

Service

Description

Service

Creation

Service

Execution in

JSLEE
Service

Figure 5.1: Service description, creation, execution

Novel Approaches for Service Description, Creation, and Execution

121

Section 5.1 defines the requirements for the proposed framework. Section 5.2

describes how BPEL is used for the service description. It is discussed how the

service logic and the service functionalities are described in BPEL and which

language elements are available for the service description.

The next section 5.3 addresses the creation of a new service. From the BPEL service

description, a service has to be generated automatically. The result must be

executable in JAIN SLEE. Alternative solutions for service creation are investigated

and evaluated. The best approach is selected and based on the proposed approach the

research framework is described in more detail in chapter 6.

In section 5.4, concepts for possible service structures are analysed and the best

approach is selected and presented in chapter 7.

5.1 Requirements of the Proposed Framework

In chapters 3 and 4, the service creation and service execution technologies were

evaluated. BPEL was selected as the service creation and JAIN SLEE as the service

execution technology. To reach the goal of this thesis a framework, which supports

an automated creation and provisioning of value-added telecommunication services,

is required.

This section defines the requirements of the proposed framework, which are derived

from section 2.5:

- An automated solution is required that supports the description, creation,

execution, and provisioning of value-added telecommunication services.

Novel Approaches for Service Description, Creation, and Execution

122

- To support an easy and fast service development, the service description shall

be supported by a graphical development tool.

- The developer needs to concentrate on building the logic of the service.

Detailed knowledge of the communication protocols shall not be necessary.

- The developed framework shall support a broad range of value-added

telecommunication services. Therefore, it shall be possible to describe a

broad range of services in BPEL and, furthermore, the service execution

environment shall support this broad range of services, too. Additionally, the

framework shall support new functionalities and protocols.

- In order to provide the service designer with a simple and comfortable

possibility to compose the service logic, reusable service building blocks

have to be defined, which provide a mapping between the service description

elements and the implemented logic elements in the SEE.

- Reusable service components shall offer the functionality for the value-added

telecommunication services. They shall provide a mapping between the

description of the functionality in the service description and the components

implemented in the SEE. These CBBs shall support a coarse-grained

functionality for a fast service development and a fine-grained functionality

for a detailed service development. Furthermore, they shall support a wide

range of communication protocols and the integration of new protocols.

Based on the defined requirements, different service description, creation, and

execution approaches are researched in the following sections. From the results of

Novel Approaches for Service Description, Creation, and Execution

123

this research, the framework is proposed in chapter 6 and the service structure of the

value-added services is defined in chapter 7.

5.2 Service Description Concepts

As result of the discussions in chapter 3, BPEL has been selected as service

description language. This section shows how BPEL can be used to describe value-

added services. First, the BPEL elements which could be used for describing the

service logic are introduced. In a subsequent step, it is shown, how the support of

communication protocols and other functionalities, such as database access and data

processing can be integrated into the service description.

5.2.1 BPEL for Service Description

The intention of the framework is to generate services in a simple and fast way.

Therefore, the framework requires a description language that is simple but powerful

enough to describe telecommunication services.

As already shown in section 3.6, BPEL (OASIS, 2007) is a description language that

fulfils these requirements.

In contrast to the other solutions discussed in chapter 3, no BPEL engine is used in

the approach proposed for this thesis, BPEL is only used as service description

language. Therefore, BPEL processes, generated with the service description tool

need not necessarily be BPEL processes, which are executable in a BPEL engine.

Novel Approaches for Service Description, Creation, and Execution

124

The service developer can use any BPEL description tools of his choice, to describe

the service. If a standard BPEL description tool is used, the output will be an XML

(Extensible Mark-up Language) (W3C, 2008) file. It is also possible for the

developer to use a simple text or XML editor to describe the BPEL process. Another

possibility for creating service descriptions is the usage of an interactive web

interface. This solution is described in chapter 6.

WSDL files are used for the description of the partner links in the BPEL process.

With these partner links, the functionalities can be selected from the CBBs and

combined with the service logic (refer to section 5.2.3). For complex transformations

and expressions including loops, if statements, and other conditions within the BPEL

process, XPath (XML Path Language) (W3C, 1999) can be used.

BPEL processes are normally deployed on a BPEL engine and are executed as web

services. In the proposed framework, BPEL processes neither are deployed on a

BPEL engine nor are developed as web services. Here, the output of the BPEL

development tool is passed to the Code Generator (refer to section 5.3.1) or to the

Service Description Parser of the Runtime Service Composition concept (refer to

section 5.3.2).

5.2.2 Describing the Service Logic in BPEL

The service can be described in a graphical way or by editing a XML document. A

typical BPEL editor is the Eclipse BPEL Designer (Eclipse, 2013). This tool supports

both the GUI-based and the XML editor-based process development. In Figure 5.2,

an example of the GUI-based BPEL editor is shown.

Novel Approaches for Service Description, Creation, and Execution

125

Figure 5.2: Eclipse BPEL designer

The service developer can build the BPEL process by dropping process elements,

called “activities”, into the main window and combine these activities with arrows to

form a graphical representation of a state machine. The graphical process

representation has a start point and an end point. Between these points, the activities

can be placed. The service execution will begin at the start point and finish at the end

point. The arrows will mark the execution direction. Alternatively or in combination

with the GUI editor, the XML document can be edited directly. For example, the

XML representation of the “createResponse” activity from the BPEL process

displayed in Figure 5.2 is shown in Figure 5.3.

Novel Approaches for Service Description, Creation, and Execution

126

Figure 5.3: XML-Editor from Eclipse BPEL designer

The service logic is described using BPEL activities. A list of the activities defined in

BPEL (OASIS, 2007) is given in Table 5.1.

Table 5.1: BPEL activities (OASIS, 2007)

Activity Description

Invoke The Invoke activity is used to describe a call of a method

defined within a partner link. The methods represent the

available functionality that can be used within the service.

Receive The Receive activity is used to describe a point in the workflow

of the service where the workflow should wait for an incoming

event. This activity is used to describe the possibility that the

service can be called from other services and resources, or it

waits for replies from other services and resources.

Reply The Reply activity describes the possibility that the service can

send a reply to an event that was received. The combination of

a Receive activity and a Reply activity can form a request-

response operation for the service.

Assign The Assign activity can be used to copy data from one variable

to another, insert literals into variables, and insert new values

into the variables by using expressions.

Throw The Throw activity is used to define when a service instance

needs to signal an internal fault.

Wait The Wait activity is used to define a deadline or a delay for a

period. The Wait activity will end when the specified deadline

or duration has been reached.

Novel Approaches for Service Description, Creation, and Execution

127

Empty The Empty activity does nothing; it can be used, e.g., for

suppressing a fault that needs to be caught, or for providing a

point of synchronization in a Flow activity.

Extension The Extension activity is used to define new activities that are

not defined in this table. This is a BPEL-conform possibility to

add new individual activities to the framework.

Exit To end the service execution immediately, the Exit activity can

be used.

Rethrow The Rethrow activity is used to propagate faults. It is applied in

fault handlers.

Sequence A Sequence activity is a container for one or more activities

that are executed sequentially, i.e. in the lexical order in which

they appear within the service description of the Sequence

activity.

If Conditional behaviour can be described with the If activity. The

If activity contains a list of one or more conditional branches.

This branches are the required “if” branch, the optional “elseif”

branch and the “else” branch. The order in the list of branches

also corresponds to the order in which the conditions are

analysed. If a condition is true, then the corresponding branch

will be executed; if this condition is false, the next condition

will be analysed. If no condition is true, the “else” branch will

be executed. The If activity will end, when the contained

activities of the selected branch have ended, or will end

immediately, when no condition is true and no “else” branch

has been specified.

While The While activity offers a mechanism for a repeated execution

of the contained activities. A Boolean condition is used to

check whether the contained activities are executed or not. The

condition is analysed for all iterations. Only if the condition

evaluates to true, the contained activities will be executed.

RepeatUntil The RepeatUntil activity offers a mechanism for repeated

execution of the contained activities. A Boolean condition is

used to check whether the contained activities are executed or

not. The condition is analysed after each execution of the loop.

Only if the condition evaluates to true, the contained activities

will be executed. In contrast to the “While” loop, the

“RepeatUntil” loop executes the contained activities at least

once.

Pick The Pick activity describes the possibility to wait for one event

from a set of events. It can receive different events and will

wait, until one of the events have been received; then it will

execute the activity associated with that event. After an event
has been received, no other event will be accepted by the Pick

activity.

The Pick activity will have ended after the selected activity has

finished.

Novel Approaches for Service Description, Creation, and Execution

128

Flow The Flow activity provides the developer with the possibility to

describe parallel executions. This activity can consist of

multiple branches. These branches can be executed in parallel.

Each branch can include further activities. The flow activity

will end, after all branches with their activities have been

executed.

ForEach The ForEach activity represents a loop that executes the

contained activity for a specified number of times. The ForEach

activity can execute the contained activity in a parallel or

sequential order.

Scope The Scope activity is used to define a nested context. A Scope

requires a subordinate activity that can be a complex activity

which contains further activities. The provided context is

shared for the nested activities.

Compensate The Compensate activity is used to support compensation for

inner Scopes. It compensates all inner Scopes that have already

completed successfully.

CompensateScope To compensate a Scope activity that has already ended

successfully, the CompensateScope activity is used.

Validate The Validate activity is used to validate the values of variables

against their associated data definition.

These activities consist of logic elements required to describe a service. With the

activities “invoke”, “receive”, and “reply” it is possible to describe a waiting state for

an event from the partner or to call methods at the partner. This mechanism can be

used to integrate resources and functionalities into the service.

5.2.3 Describing the Functionality in BPEL

The previous section showed how the service logic could be described with BPEL.

This section puts the focus on the description of functionalities which can be

integrated into the service. The functionalities can be provided by the service itself,

e.g., mathematical calculations or they can be provided by external applications, e.g.,

mixing of video streams, audio encoding, communication with smart devices and

home automation devices. The functionalities are implemented in methods within the

Novel Approaches for Service Description, Creation, and Execution

129

SEE. These methods provide, e.g., the functionalities which handle the protocol

communication with external applications.

The normal way to add functionality to a BPEL process is to use the BPEL partner

links to call external web services. In BPEL, the partner links are described with the

Web Service Description Language (WSDL) (W3C, 2007b). WSDL is a platform

and protocol-independent programming language for defining the interfaces of web

services. WSDL is a meta-language that allows the description of the offered

functionalities, data types, and data exchange protocols of a web service. The

operations that are accessible from the outside, as well as the parameters and return

values of these operations are defined in the WSDL files.

The proposed framework does not make use of a BPEL engine to orchestrate the web

services. Instead, all services generated from the BPEL description run on a JAIN

SLEE server (Figure 5.1). With a web service resource adaptor, the JAIN SLEE

service can use also web services, but, as already said in chapter 3, this is not a

solution for the proposed framework.

The idea is to utilise the partner links only for a description of required

functionalities. Then at the time of service creation, this description is mapped to the

corresponding service components of the SEE.

With this approach, it is possible to use BPEL for the description of the required

functions and the developer can also make use of standard BPEL developer tools to

add the required functionality through partner links.

For the mapping from the BPEL description of the functionality to the JAIN SLEE

component implementing the functionality, new Communication Building Blocks

Novel Approaches for Service Description, Creation, and Execution

130

(CBBs) (Eichelmann et al., 2008) (refer to section 6.2.1) are defined. Every partner

link can be represented by one CBB. To describe the invocation of a functionality in

BPEL, the correspondent method of the partner link has to be invoked in the BPEL

process.

The functionalities which are described through the partner links are not necessarily

complete services. Also very fine-grained functionalities can be described as partner

links; e.g., a mathematical function or a string parse operation. With this possibility,

the level of abstraction can easily be customized. The range spans from a high-level

of abstraction with the definition of coarse-grained partner links to a low level of

abstraction with the definition of fine-grained partner links. Examples of different

level of abstractions are presented in Figure 5.4, Figure 5.5, and Figure 5.6.

Figure 5.4: Choosing a functionality from a BPEL partner link (protocol level example)

Novel Approaches for Service Description, Creation, and Execution

131

In Figure 5.4 the partner link “SIP-Request” offers some protocol-specific

functionality. A drop-down list offers the available operations of the partner link. In

this case, the operation “sendInvite” is selected from the list of possible

operations, which allows to configure a SIP Invite request.

The next example (Figure 5.5) shows a partner link called “Messaging” which allows

to send out an instant message. This partner link offers functionality with a medium

level of abstraction. The level of abstraction is higher than in the first example, but

lower than that of the third example.

In this example, the service developer has to define the operation to send out an

instant message. Here, the “sendSIPMessage” operation is selected from the

drop-down list. Therefore, the service will use the SIP protocol to send out instant

messages. The service developer can choose the protocol for the instant message, but

does not need to take care about the protocol-specific communication.

Figure 5.5: Choosing a functionality from a BPEL partner link (medium level example)

The third example (Figure 5.6) presents a chat room functionality. The developer can

easily integrate the complete chat functionality into the service by using a very high

abstraction level. Here, the complete chat communication is handled by the

implementation and cannot be manipulated by the service developer. In this example,

Novel Approaches for Service Description, Creation, and Execution

132

the partner link is called “VodacomChatBox”. This partner link offers operations to

create and control a chat room. Here, the operation “createChatRoom” is selected

from the drop-down list, which allows the user to configure a chat room.

The partner link “VodacomChatBox” can also be a third-party application. The third-

party developer has to build the components that implement the functionality and the

description file of the partner link.

Figure 5.6: Choosing a functionality from a BPEL partner link (high-level example)

The partner links allow the service developer to describe the functionality of a

service in the same way as in the case of external web services are orchestrated. New

functionalities that are implemented within the JAIN SLEE components can simply

be added to BPEL by describing new partner links. The CBBs support the mapping

from the partner links in BPEL to the implementation within the proposed

framework (refer to chapter 6).

Novel Approaches for Service Description, Creation, and Execution

133

5.3 Service Creation Concepts

Once the service has been described with BPEL, the service description needs to be

translated into an executable implementation of the value-added service. The

proposed framework does not use a BPEL engine in combination with web services.

The value-added service implementation runs on a JAIN SLEE server (refer to

section 4.4). Therefore, a new solution is required to generate JAIN SLEE-based

value-added services from the BPEL service description. This work introduces two

new research approaches. The first approach is called the “Code Generator

approach”. This technique creates the service as a Deployable Unit (DU) that is

deployable on the JAIN SLEE application server (refer to section 5.3.1). The second

approach, Runtime Composition, composes the service from pre-defined service

components directly within the JAIN SLEE service container (refer to section 5.3.2).

Both approaches are evaluated, and the best approach, the second approach, is

chosen for the proposed research framework (refer to chapter 6).

5.3.1 Code Generator

The Code Generator (Eichelmann et al., 2008) will transform the BPEL process files

into Java source code and descriptor files, and create a Deployable Unit (DU). A DU

is a packed folder that includes the source code files, the descriptor files, and all

resources that are required to run the service on the application server. An overview

of the Code Generator is given in Figure 5.7.

Novel Approaches for Service Description, Creation, and Execution

134

Figure 5.7: Code generator

As input, the Code Generator uses the BPEL process file “BPEL Workflow”, the

WSDL files created by the BPEL developer tool “WSDL Service Components”, and

the XML schema files “Schema”. The input files are systematically analysed. For

each BPEL element which is found in the descriptions, such as activities, variables,

or methods that are called from a partner link in BPEL, the Code Generator will add

pre-defined code snippets to the Java “Service Template” and XML snippets to the

“Descriptor Templates”. From these template files, the Java and descriptor files are

generated. In the example which is given in Figure 5.7, the Code Generator creates

the two descriptor files “Service Descriptor A” and “Service Descriptor B”, i.e. a

Java file “ServiceSBB.java” that contains the source code of the service, and a Java

file that implements the functionality described in the partner links.

Generally, the descriptor files define the components of the JAIN SLEE service, such

as the SBBs, the events, properties, and the RAs (refer to section 4.4). The SBBs that

are defined in the descriptor files are implemented as Java classes. Furthermore, the

partner link methods that are used in BPEL are also implemented as Java classes that

Novel Approaches for Service Description, Creation, and Execution

135

can be called from the SBBs. They are mapped to one or more resource adaptors or

to other functionalities and resources (refer to section 5.2.3). The BPEL activities,

the service workflow, and the variables are also mapped to Java code snippets. For

each element used in a BPEL process, a pre-defined Java code snipped is required.

When the parser reads the BPEL process for each element that was found, the

associated Java snippets with the defined parameters are added to the source

templates of the SBBs. For every new resource adaptor that should be supported by

the Code Generator, Java snippets and Java classes have to be defined. The Java

classes and the code snippets implement the functionalities which are required for

using the new protocol that is supported by the RA. These code snippets contain the

method calls of the Java classes that implement the functionality. The results of the

code generation process are the Java classes and the descriptor files that have been

generated from the templates. From these files, the DU is created.

To be able to call the available functionalities (refer to section 5.2.3), they need to be

available in the BPEL service description. As shown in the last section, resources and

functionalities are described with the help of partner links in BPEL. Methods and

attributes which require the functionalities must be added as code snippets to the

code generator and have to be described within the WSDL file of the responsible

partner link.

When the Code Generator generates a new service, it will create a new workspace

with the needed Java code, descriptor files, build files, and libraries. After the

creation of the workspace and the Java files, the Code Generator creates the

Deployable Unit (DU) that includes all generated files. With the help of an Apache

Novel Approaches for Service Description, Creation, and Execution

136

Ant (Ant, 2010) script, this deployable unit can be deployed on a JAIN SLEE

Application Server. The Ant script copies the DU to the application server and

extracts it. Finally the service can be executed.

5.3.2 Runtime Service Composition

With the Runtime Service Composition approach (Eichelmann et al., 2011) the

services will be generated on start time from pre-deployed service components

(Figure 5.8).

Figure 5.8: Runtime service composition

These service components offer the service logic and functionalities that are required

for the service. Before a service can be composed, all of the required elements are

deployed on the application server. To generate a service with the Runtime Service

Novel Approaches for Service Description, Creation, and Execution

137

Composition approach, the service description is uploaded to the framework, e.g., by

a web interface, and passed to the service description parser. The service description

consists of the developed BPEL process and WSDL documents.

The service description parser analyses the new service description, instantiates the

required SBBs, initiates the service context (refer to section 7.1.1), and creates and

initiates the required variables (refer to section 7.1.2) and service components (refer

to section 7.1.5). The instantiated service is configured with the parameters from the

BPEL service description. After the creation and configuration of the service

instances, each service instance is triggered for execution.

The service logic and service functionalities are represented as SBBs, in contrast to

the Code Generator approach code snippets are used. This fact offers good

possibilities for third-party development. The third-party developers deliver the

SBBs together with the partner link descriptions. To use the new functionality, the

SBBs need to be deployed in the SEE and the partner links to be included into the

new BPEL process. Therefore, it is very easy for the third-party developer to develop

new functionalities, and it is easy for the BPEL developer to integrate these

functionalities into the services.

This approach also offers the possibility of an easy monitoring of the service

instances, for example, by requesting status events from the service components, and

it is also possible to reconfigure the service at runtime, e.g., with a web-based service

description and monitoring tool.

Novel Approaches for Service Description, Creation, and Execution

138

5.4 Service Execution Concepts

This section defines the representation of the service within the SEE and describes

the service execution concepts. An extension of the JAIN SLEE framework is

proposed as SEE (refer to section 6.3), so the service logic is mapped to components

called “SBBs” (refer to section 4.4). A service can consist of one or more of these

SBBs. Four concepts for service execution have been developed (Eichelmann et al.,

2009; Eichelmann et al., 2010) during the research: (i) the “Single SBB concept”

(refer to section 5.4.1), (ii) the “Parallel Program Flow concept” (refer to section

5.4.2), (iii) the “Orchestration concept” (refer to section 5.4.3), and (iv) the

“Choreography concept” (refer to section 5.4.4).

5.4.1 Single SBB Concept

In this approach, the service logic is implemented in only one single SBB. Within

this SBB, a state machine controls the service workflow. The state machine decides

which events are allowed to be received by an individual state and the actions that

are executed after an event has been received.

This concept can be used in combination with the Code Generator approach (refer to

section 5.3.1). With this approach, the required functionality can be added to the

templates before the SBB has been created. The Code Generator generates the state

machine that represents the workflow of the BPEL process. This approach was

analysed within the TeamCom project (Eichelmann et al., 2009).

Novel Approaches for Service Description, Creation, and Execution

139

The Runtime Service Composition concept is not usable in combination with this

approach, since generally logic functions and functionalities are represented as

multiple service components whereas the “Single SBB concept” allows for one

service component only.

An example of a service instance that consists of only one SBB is provided in Figure

5.9. The represented service is able to send and receive events from three RAs. It

listens for incoming events from the RAs and can call methods from the RA

interfaces.

Figure 5.9: Single SBB concept

In Figure 5.10, a simple BPEL process is shown on the left side, which contains only

three activities within its main sequence: a Receive activity called “receiveInput”, an

Assign activity called “assign”, and an Invoke activity called “invokeCallback”. This

BPEL process contains a service description for an echo service, which receives

incoming instant messages, and sends instant messages back to the sender.

Once the service has been started, it waits for an incoming event. This service logic

is represented by the Receive activity of the process. In this case, it waits for an event

that signals the reception of an instant message.

Novel Approaches for Service Description, Creation, and Execution

140

Figure 5.10: BPEL process with sequential activities and the generated SBB

When a corresponding event is received by the service, the incoming message is

analysed, and the sender address of the instant message together with the message

body are stored in variables for a later usage in the answer message. In the BPEL

process, this logic is represented as Assign activity.

In a next step, the new instant message that should be returned to the sender is

prepared. The previously stored sender address is now used to address the new

instant message, and the stored message body is used as new message body for this

instant message. Then, the new instant message is sent back to the sender of the

message. In the BPEL process, this behaviour is described with the Invoke activity

“invokeCallback”.

With the Code Generator approach, each instance of a service consists of one

monolithic SBB, and is not able to process multiple workflows in parallel.

The analysis of this approach has shown that it is sufficient for services that consist

of a sequential workflow. Services that require parallel workflows are not supported

Novel Approaches for Service Description, Creation, and Execution

141

by this approach. In JAIN SLEE, it is not allowed to use multi-threading within one

SBB. Therefore, a new approach was required which is able to support parallel

workflows.

5.4.2 Parallel Program Flow Concept

In order to realise parallel workflows, which is not possible with the “Single SBB

concept”, a new method is required.

A possibility to realise parallel program execution in JAIN SLEE is the usage of

more than one SBB (Eichelmann et al., 2009). The JAIN SLEE-compliant SEEs

support multiple SBBs running in parallel, i.e. they send and receive events and

perform multiple tasks at the same time. Parallel execution is required when several

independent tasks have to be performed, e.g., forking or handling multiple

connections in parallel, and for the composition of several service components.

In BPEL, the Flow activity and the ForEach activity can be used to describe the

parallel program execution. If the Code Generator is reaching, for instance, the Flow

activity while parsing a BPEL process, the Code Generator is generating a new

BPEL process from each branch within the flow sequence.

Figure 5.11 shows the BPEL processes that are generated from the flow branches of

a Flow activity within the main sequence of a parallel process.

This Flow activity contains two flow branches. A new BPEL process will be

generated for each branch. Additionally, all new processes get a Receive activity as

first activity of the BPEL process and an Invoke activity as last activity of the

process. Later, from these two activities, the SBB Java methods will be generated

Novel Approaches for Service Description, Creation, and Execution

142

which send and receive events for the communication with the main SBB. The newly

generated BPEL processes are delivered to the Code Generator. As a result, the Code

Generator can generate a new SBB for each BPEL process. When there are multiple

flow activities, nested within the same BPEL process, this step is repeated until all

flow branches will have been transformed into new BPEL processes and finally

translated into SBBs.

Figure 5.11: BPEL process with flow activity

In order to execute parallel service components in JAIN SLEE, the SLEE standard

offers the possibility to use several SBBs within a service. These SBBs can be

executed in parallel. Either each SBB can form its own service, or several SBBs can

form a single service together. In this approach, several SBBs are used to represent

the Flow activity. Each branch of the Flow activity is presented in its own SBB. One

SBB represents all activities from one branch of the Flow activity. If a service

consists of several Flow activities, it will be distinguished whether the Flow activities

Novel Approaches for Service Description, Creation, and Execution

143

are contained in the same sequence or whether they are contained in another Flow

activity.

The main SBB generated from the main sequence of the BPEL process uses request

events to signal to the flow representation SBBs (flow SBBs) that are generated from

the Flow activity in order to start processing. After the main SBB has fired these

request events to all flow representation SBBs, it will wait for responses from the

SBBs. With the request events, the flow SBBs will receive the required parameter

values from the main SBB. These values are used to initialise and to activate the flow

SBBs. After the processing of the flow SBBs, the parameter values are assigned to

the response events and delivered back to the main SBB. Then, the main SBB

receives the response events from all flow branches. The main SBB can copy the

parameter values from the flow SBBs and will continue with the processing.

Figure 5.12 shows on the left side a BPEL process which has been extended by a

Flow activity, and an Assign activity in comparison to the process in Figure 5.10.

Novel Approaches for Service Description, Creation, and Execution

144

Figure 5.12: BPEL process with flow activity and the resulting SBBs

The additional Assign activity, which is called “assign”, is used to copy the

variables, which have been returned by the flow SBBs into the variables of the

answer message.

The sequences within the branches of the Flow activity are processed in parallel. If a

sequence in a flow branch contains further sequential activities, the contained

activities will be sequentially processed within the flow SBB, as in the case with the

main sequence activities in the main SBB.

The BPEL process in Figure 5.12 contains two branches in its Flow activity. The

Flow activity is called “flowA”, and the sequences are called “sequenceA1” and

“sequenceA2”. In this example, both sequences contain two activities, an Invoke

activity and an Assign activity. From the BPEL process, three SBBs are generated:

the main SBB, SBB A1, and SBB A2. The main SBB of this service represents the

Novel Approaches for Service Description, Creation, and Execution

145

sequential activities of the main sequence. The SBB A1 represents the activities from

the first flow branch and the SBB A2 the activities from the second flow branch. The

SBBs resulting from this BPEL process are shown on the right side of Figure 5.12.

Request and response events have been defined for the communication between the

SBBs. Each SBB which has been generated from a flow branch is called with a

request event and answers with a response event after its processing (Figure 5.13).

Both the request and the response event contain the necessary variables that will be

available in both SBBs. The generated SBBs and the direction of the request and

response events are shown on the right side of Figure 5.12 and in Figure 5.13.

A BPEL process is not only limited to one Flow activity, it can also contain as many

flow activities as desired on different nesting levels. Two different nesting

possibilities must be considered. Several flows can be contained in the same

sequence or flow activities can also be contained in the various branches of a flow.

Figure 5.13: Parallel Program Flow concept

Figure 5.14 shows a simplified BPEL process that contains two flow activities in the

same sequence. The first Flow activity is called “flowA”, and the second is called

Novel Approaches for Service Description, Creation, and Execution

146

“flowB”. Each Flow activity consists of two flow branches, and in each branch a

sequence with further BPEL activities is contained.

For each branch in each flow, a SBB is generated. Each SBB represents the activities

of the appropriate branch in Java code. For instance, the first branch of the “flowA”

activity with the sequence “sequenceA1” from the BPEL process shown in Figure

5.14 is translated into an SBB with the name “A1”. From the BPEL process in Figure

5.14, the main SBB and four further SBBs, one for each flow branch, are generated.

During the processing of the Java code representing the main sequence of the BPEL

process, the “flowA” activity is reached first, and request events are sent to activate

the SBB A1 and SBB A2. Both SBBs now process their tasks simultaneously. The

main SBB is activated again, when both SBBs reply with a response event. If both

responses are received, the program code for the second flow, “flowB”, can be

reached. Here, the SBB B1 and SBB B2 are called with request events, and they

answer with response events. Afterwards, the Java code that represents the remaining

activities of the main sequence can be processed.

Novel Approaches for Service Description, Creation, and Execution

147

Figure 5.14: BPEL process with two flow activities within a sequence and the resulting SBBs

As already mentioned above, Flow activities can be nested within Flow activities in

BPEL. Figure 5.15 shows such a BPEL process.

“FlowB” is embedded in the right flow branch of “flowA”. A SBB is generated for

both flow branches of “flowA”. In this example, the SBBs are named as “A1” and

“A2” (on the right side of Figure 5.15). In contrast to the flow activities which are

contained within the same sequence, the request events are sent by the SBB, in which

the called flow is contained. In the example shown in Figure 5.15, the SBB A2 calls

the SBB B1 and SBB B2, so the SBB A2 sends the request events and expects the

response events. Therefore, SBB A2 can finish its processing only when SBB B1 and

SBB B2 have sent their response events. The main SBB can continue with the

processing when SBB A1 and SBB A2 are finished, and the response events are

received by the main SBB.

Novel Approaches for Service Description, Creation, and Execution

148

Figure 5.15: BPEL process with a flow activity nested within another flow activity and the

resulting SBBs

This approach has also been used in the TeamCom project. The prototypical

implementation of the “Single SBB concept” together with the Code Generator (refer

to section 5.2.1) approach was modified to support the new “Parallel Program Flow

concept”. The “Parallel Program Flow concept” is a modification of the “Single SBB

concept”. New SBBs are generated for the parallel parts of a BPEL process. The Java

classes are built from a number of code snippets. The code generator is required to

generate and compile the SBBs, and build the service and the deployable unit.

The support of new protocols and functionalities is hindered by the use of these code

snippets. It has turned out that the modifying of code snippets is extremely complex

and not applicable. Only the Code Generator concept (refer to section 5.3.1) is

applicable with this approach.

In the next two sections, the idea of the flow SBBs will be expanded. A SBB will be

defined for each activity of the BPEL process. For instance, every existing activity in

BPEL will be represented by a generated SBB that represents this BPEL activity in

Novel Approaches for Service Description, Creation, and Execution

149

JAIN SLEE. Such SBBs are called “activity SBBs”. Two composition approaches

are investigated. The first “Orchestration concept” (refer to section 5.4.3), requires a

central control SBB, which contains the common state machine and all parameters.

The control SBB controls all activity SBBs and the communication among the SBBs

is carried out via the control SBB. In the second “Choreography concept”, no special

control SBB is needed and the control is distributed among the SBBs (refer to section

5.4.4). These self-controlled SBBs communicate directly with each other.

5.4.3 Orchestration Concept

The “Orchestration concept” (Eichelmann et al., 2010) is based on the orchestration

definition (refer to section 2.1) of web services in Service-Oriented Architectures

(SOA).

The “Orchestration concept” is extended in respect to the SOA and not applied on

services, but on the components (SBBs) of a service. The workflow of the BPEL

process is subdivided into its activities. Each activity of the process is implemented

into one SBB. A special control SBB is used to control the service workflow and to

coordinate the SBBs of the service. The control SBB instantiates the required SBBs,

sets the required parameters, and defines the events on which the SBB can listen and

the events which are fired from the SBB. The control SBB contains a state machine

to decide which SBB should be called next. The state machine is derived from the

BPEL process and generated by the service description parser of the Runtime Service

Composition approach.

Novel Approaches for Service Description, Creation, and Execution

150

In Figure 5.16, the service consists of four SBBs, one control SBB and three activity

SBBs (A, B, and C) that implement the workflow of the service.

Figure 5.16: Orchestration of SBBs

The control SBB contains a state machine to decide which SBB must be called next.

In this case, SBB A is the first SBB, so the control SBB fires an event to SBB A.

This event contains the required parameters and information about the RAs used

(refer to section 5.2.3). The SBB A executes its tasks, e.g., communicating with a

RA, by calling methods from the RA interface. After finishing these tasks, an event

is returned back to the control SBB to signal the ending of the tasks. When the

control SBB receives the event from SBB A, the control SBB generates an event for

the next SBB, according to the state machine. This procedure is repeated, until the

workflow is completed.

For each step within the service workflow, the control SBB is required and called.

The “Orchestration concept” is suited in all cases where a central point of control is

required. For example, in the services defined for the proposed framework (refer to

section 7.2) this approach will be required for the control of the service creation,

Novel Approaches for Service Description, Creation, and Execution

151

configuration, removing, and monitoring. All of these tasks require central control

structures.

The drawback of this approach is that the control SBB is involved in every workflow

step, which is usually not required in the normal service execution. In the

“Choreography concept” presented in the next section, the SBBs are able to interact

directly with each other, which will reduce overhead in comparison to the

“Orchestration concept”.

5.4.4 Choreography Concept

The “Choreography concept” (Eichelmann et al., 2010) is based on the definition of

choreography of web services (refer to section 2.1) in Service-Oriented Architectures

(SOA).

Also the “Choreography concept” is extended and not applied on services but on the

components (SBBs) of a service.

In the “Choreography concept”, the BPEL workflow is subdivided into multiple

parts. For each BPEL activity, one SBB is defined. For the service execution, no

central state machine is required. The SBBs of the “Choreography concept” are not

orchestrated by a control SBB. Each SBB fulfils the tasks which are described in the

corresponding BPEL activity. Each SBBs knows its own tasks and its

communication partners.

A SBB starts to operate after it has received an event from its respective predecessor.

This event includes all required parameters. Thus, the SBB can start to process its

Novel Approaches for Service Description, Creation, and Execution

152

task after having received the required event. The tasks the SBB has to perform are

implemented within the SBB and can be configured at the start time of the service.

After the execution of the SBB tasks have been finished, an event will be prepared

and fired to the successor SBB(s) of the service.

Figure 5.17 illustrates an example service using the “Choreography concept”. This

service consists of three SBBs (A, B, and C) and two resource adaptors. The three

SBBs are generated by the Code Generator or by the service description parser of the

Runtime Service Composition approach.

Figure 5.17: Choreography of SBBs

The service is activated when the SBB A receives an event from a resource adaptor.

SBB A communicates with the resource adaptor, executes its part of the workflow,

and fires a new event to the next SBB, in this case, to SBB B. After SBB B has

executed its part of the workflow (e.g., copy and set parameters), this SBB will fire

an event to the next SBB. The tasks of SBB C include the communication with a

resource adaptor.

In contrast to the “Orchestration concept”, the “Choreography concept” requires no

central control SBB. Each SBB handle its own part of the BPEL workflow. Both of

the approaches for service creation presented, the Code Generator (refer to section

Novel Approaches for Service Description, Creation, and Execution

153

5.3.1) approach and the Runtime Service Composition (refer to section 5.3.2)

approach, can be applied in combination with the “Choreography concept”. In the

proposed framework, the Service Execution Environment (SEE) uses the

“Choreography concept” for service execution (refer to section 7.2.3). Once the

service execution has been triggered, the SBBs of the service will be able to

communicate directly with each other. Each SBB knows its communication partners.

Therefore, they can communicate directly without the communication overhead

which is produced by involving a central SBB.

5.5 Conclusion

This chapter presented several approaches for service description, service creation,

and service execution. For these approaches, different concepts were proposed and

analysed.

The first section discussed the possibility of how to describe a service. As the result

of chapter 3, BPEL (refer to section 3.6) fulfils the required criteria and offers the

most possibilities for the description of value-added services. Therefore, this thesis

uses BPEL as description language. It was shown how BPEL can be used to describe

services. On the one hand, it was explained how the service logic of the service can

be described in BPEL and which BPEL language elements are available for this

description. On the other hand, it was discussed how the BPEL partner links can be

used to describe the functionalities and resources that are required for a service.

The second section introduced two concepts for this service creation process, the

Code Generator concept and the Runtime Service Composition concept. In case of

Novel Approaches for Service Description, Creation, and Execution

154

the Code Generator concept, the service is generated from code snippets, compiled

and packed into a deployable unit. In case of the Runtime Service Composition

concept, the service is generated from SBBs at start time of the service. These

components represent the service logic and the service functionality. The second

concept allows an easy possibility to add new functionality to the framework and

offers easy possibilities for third-party development. It also offers some advanced

features for monitoring and modifying the service at runtime. Because of its

advantages and its flexibility, the Runtime Service Composition approach was

selected for this work.

In the third section, four service execution concepts were analysed. The first concept,

the “Single SBB concept”, tries to implement all of the service logic in one SBB

(refer to section 5.4.1). For this approach, a prototype of the Code Generator was

implemented, which was also used in the TeamCom research project (TeamCom,

2010). This approach shows the constraint that it does not support parallel program

execution.

When applying the second concept, the “Parallel Program Flow concept”,

(Eichelmann et al., 2009) separate SBBs will be generated for all parts of the service

that require parallel program execution (refer to section 5.4.2). The prototype of the

Code Generator was modified to support multiple SBBs. However, both concepts

show problems with the extensibility and the integration of new functionalities. It is

very difficult for third-party developers to add the support of new protocols to the

framework.

Novel Approaches for Service Description, Creation, and Execution

155

The other two concepts, the “Orchestration concept” (refer to section 5.4.3) and the

“Choreography concept” (refer to section 5.4.4), offer, in contrast to the previous

approaches, a good extensibility. For the proposed framework, the “Orchestration

concept” has been selected for service creation, configuration, removal, and control

(refer to section 7.2.2). Its main advantage is the common control SBB that allows a

centralised control point for service composition and management. However, a

service structure with a central control SBB has disadvantages for the execution of

services, since it would be involved in all communications among any SBBs. This

would cause a high processing overhead. Therefore, the “Choreography concept”

was selected for the service execution (refer to section 7.2.3). The advantage here is

the decentralised control of the service components.

Proposed Framework

156

6 Proposed Framework

This chapter presents the architecture of the framework. It describes the various

elements in more detail and begins with an overview of the architecture and its

elements (refer to section 6.1). The architecture is divided into two main parts, the

Service Creation Environment (SCE) and the Service Execution Environment (SEE).

Section 6.2 takes a closer look at the SCE. The SCE provides the developer with

tools to describe the services. It offers Communication Building Blocks (CBBs), a

graphical service management tool, a marketplace, a repository, and a graphical

development tool.

The SEE is the runtime environment for services it is described in section 6.3. The

SEE controls the services and the service’s instances and consists of a layered

structure with three layers, the service management layer (refer to section 6.3.1), the

service execution layer (refer to section 6.3.2), and the resource connection layer

(refer to section 6.3.3).

6.1 Architecture Overview

To fulfil the requirements defined in section 5.1, a framework is defined that offers

an automated solution for the creation, provisioning, and execution of value-added

telecommunication services. The architecture supports formal BPEL (refer to section

5.2) service descriptions widely used in the IT sector. For the service execution

Proposed Framework

157

environment the JAIN SLEE technology (refer to section 4.4) is selected. It is a well-

established framework in the telecommunication sector and offers the required

performance (refer to section 4.4 and section 4.9). With its Resource Adaptor

concept, the support of new protocols is possible. The high complexity of JAIN

SLEE is hidden to the service developer, since the service creation is done with

BPEL. Therefore, JAIN SLEE has been selected as service execution environment

and BPEL as service creation environment.

An overview of the proposed framework is presented in Figure 6.1. The framework

consists of the SCE and the SEE. The SCE offers the possibility to describe the

service with a service description tool (refer to section 6.2.2). The developer can

choose between an existing BPEL development tool, an XML file editor, and a web

interface for describing the services. To define the functionalities that are required

for the service, e.g., the communication with other services, or mathematical

calculations (refer to section 5.2.3), the novel concept of Communication Building

Blocks (CBBs) were defined (refer to section 6.2.1). These CBBs offer a mapping

between the formal BPEL description of the service functionalities as BPEL partner

links and the implementation of these functionalities in the SEE (refer to section

6.3.3).

With the introduction of a new marketplace and the repository (refer to section

6.2.4), it is possible to download service descriptions, CBBs, and Resource Adaptors

(RAs) from the Internet and store them in the repository. The user of the framework

can create value-added services using the downloaded service descriptions and

CBBs. In this case, no knowledge about BPEL, JAIN SLEE, or the underlying

Proposed Framework

158

protocols is required. Furthermore, complete services may be downloaded, modified

and used as base for customised own services.

Figure 6.1: Framework architecture

The SEE is based on JAIN SLEE. For this research project, the JAIN SLEE

framework has been extended. The extended framework includes the concepts of

JAIN SLEE but add further ideas to the framework. This research project adds a

layered structure with three layers (refer to section 6.3) on top of the JAIN SLEE

SBB container (refer to section 4.4). Each defined layer fulfils specific tasks.

The first layer is responsible for the management of the framework and of the

services (refer to section 6.3.1). It is controlled by the service management tool (e.g.,

a web interface) and it controls the life cycle of the value-added services and offers

Proposed Framework

159

the functionality to start and stop the services. This layer is called “Service

Management Layer”.

The second layer is responsible for the processing of the service logic (refer to

section 6.3.2). It realises and executes the logic that was described in the service

description. This layer is called the “Service Execution Layer”.

The third layer is called the “Resource Connection Layer” (refer to section 6.3.3). It

implements and executes the functionalities of the CBBs. These functionalities are

described in the service description as partner links.

To communicate with other applications, or to receive and send events between JAIN

SLEE and other applications and resources, two possibilities are defined in the JAIN

SLEE specification, namely the RA concept and the EJB concept (refer to section

4.4). Both concepts are supported in this framework (refer to section 7.1.3) and are

handled by the resource connection layer (refer to section 6.3.3).

The SEE utilises the JAIN SLEE Resource Adaptor concept to offer the support for

new protocols. The RAs are part of the JAIN SLEE Service Transport Layer.

For each of the layers on top of the JAIN SLEE SBB container, special components

are defined (refer to section 7.1.5). These components are based on the JAIN SLEE

SBBs. Figure 6.2 offers an overview of the different SBBs and their corresponding

layers. The SBBs defined in the management layer are called “Management SBBs”

(MSBBs). They are responsible for the control of the framework and the services

(refer to section 6.3.1). The SBBs in the Service Execution Layer are called “Logic

SBBs” (LSBBs); these SBBs are responsible for the service logic and are mapped

from the BPEL activities (refer to section 6.3.2). The SBBs in the Resource

Proposed Framework

160

Connection Layer are called “Resource Connection SBBs” (RCSBBs). These SBBs

are part of the CBBs and implement the methods containing the functionality that can

be used within the services (refer to section 6.3.3).

Figure 6.2: Service execution environment

The SEE supports multiple instances of a service. One service instance can contain

components from all layers. The SEE supports the creation, the execution, the

removal, and the reconfiguration of service instances. These responsibilities are

handled by the service life cycle phases (refer to section 7.2).

The communication between the components is provided by a novel communication

channel concept. This concept is part of the extensions, of JAIN SLEE. These

communication channels are based on the JAIN SLEE event concept but offer a more

flexible handling of the communication and define special events for the

communication of the framework components (refer to section 7.1.4).

Proposed Framework

161

The extended SEE offers a central point to store the management and monitoring

information, references to the service instances, components, and variables. This

central point is denoted as “framework context” (refer to section 7.1.1).

For the variable types (refer to section 7.1.2) required in the services, a mapping is

defined which is also part of the CBBs (refer to section 6.2.1). It is possible to add

new variable types to the framework by adding a new appropriate CBB.

6.2 Service Creation Environment

The main task of the SCE is to describe the value-added services. The SCE offers

tools that are required to describe the services and, furthermore, web interfaces

which allow managing the framework and the services (Figure 6.3). A BPEL

development tool (refer to section 6.2.2) is used for the description of the service.

Figure 6.3: Service creation environment

The service designer develops the service logic with the desired tools and chooses

the required functionalities, which are pre-defined in the form of Communication

Building Blocks (CBB) (refer to section 6.2.1). The complete service description is

Proposed Framework

162

then handed over to the SEE. This step is supported by the Service Management Tool

(refer to section 6.2.2). This tool provides web interfaces for managing and

monitoring the services. Service instances can be generated, started, and stopped, and

the status of service instances can be controlled and monitored.

Furthermore a marketplace (refer to section 6.2.4) and a service repository are

provided. The marketplace is a web application that offers the possibility to search

for new service descriptions, new CBBs, and resource adaptors. The marketplace

web interface connects to a marketplace server, which can be operated by the

framework provider or some other community. The repository allows the developer

to store the developed or downloaded service descriptions.

6.2.1 Communication Building Blocks

The proposed framework introduces the novel concept of Communication Building

Blocks (CBBs). The CBBs define the mapping from the description of functionalities

to their implementation (Figure 6.4). They offer the implementation of the

functionalities available in the SEE and the description of these functionalities in the

SCE.

The service developer can describe the functionalities with the help of the BPEL

partner links. A CBB defines the mapping of the functionalities offered in the SEE

and the description of these functionalities in the SCE. Figure 6.4 shows the

representation of the CBBs in BPEL (SCE) on the left side and the representation of

the CBBs in the SEE as Resource Connection SBBs (RCSBBs) on the right side.

Proposed Framework

163

Figure 6.4: Communication Building Blocks (CBBs)

In BPEL, the CBBs are represented by partner links, and the methods from the CBBs

are invoked from the BPEL process. On the right side, the CBBs are implemented in

SBBs of the SEE. These SBBs are called “Resource Connection SBBs” (RCSBBs).

RCSBBs can use RAs for handling the protocol communication with external

functionalities and resources such as database access and media server control.

The partner links are described using Web Service Description Language (WSDL)

(W3C, 2007b). WSDL describes the interfaces of web services and is independent of

platform, programming language, and protocol. WSDL is a meta-language that

allows the description of the offered functionalities, data types, and data exchange

protocols of web services in the form of WSDL files.

For each CBB, a WSDL partner link description exists. This description contains the

methods and parameters offered by the CBB. In the BPEL process, the desired

method can be selected using the partner links. Since, in the proposed framework the

Proposed Framework

164

services are not realised as web services (refer to section 5.2), web service

implementation of the WSDL descriptions are actually not needed.

The taken approach maps the operations from the partner links to Java methods

offered by the RCSBBs (refer to section 6.3.3). These RCSBBs implement the

methods that are described in the partner links. For each partner link in BPEL, a

RCSBB exists, which implements the functionality described in this partner link. A

CBB consists of the BPEL partner links, the corresponding RCSBB, and the required

variable types.

A service that wants to use a special functionality from a CBB has to contact the

corresponding RCSBB that offers this functionality. The service calls the desired

method, assigns the required parameters, and sends an event with this information

via the communication channel (refer to section 7.1.4) to the RCSBB.

Self-developed or new functionalities and resource adaptors can easily be integrated

and used within the framework by defining a new CBB. The developers of a CBB

have to implement the RCSBB part of the CBB with the interfaces and parameters

that are required for the communication with the services and the resources.

Furthermore, the variable types for non-standard, complex data types (refer to section

7.1.2) have to be implemented. The service description part of the CBB has to be

described as partner link. The CBBs can vary in the level of granularity, and coarse-

grained CBBs may be preferred to avoid unnecessary complexity.

The advantage is that new classes and WSDL partner links have to be implemented

only once. Then, the functionalities of these classes can easily be used in the BPEL

process. The BPEL developer does not need to take care about the underlying

Proposed Framework

165

protocols, because the implemented CBBs already considered that. The BPEL

developer simply selects the desired functionalities from the pre-defined partner

links.

Depending on the external resources, the communication between the CBBs and the

resources can be very complex, but this complexity is also hidden to the service

developers.

To generate a service that uses functionality from a CBB, the corresponding RCSBB

has to be deployed on the application server. For each CBB used within the service,

an instance of the corresponding RCSBB is created. The RCSBB itself has to be

deployed on the AS before the service using the CBBs, is called.

6.2.2 Graphical Development Tools

The graphical development tools are part of the Service Creation Environment. All

services use BPEL as description language (refer to section 5.2). Services can be

designed from scratch, an existing service description can be modified, services from

the repository or acquired from the marketplace (refer to section 6.2.4) can be

composed and integrated.

The developer can choose between a graphical development tool, an XML editor,

and a web-based development tool (Figure 6.5).

Proposed Framework

166

Figure 6.5: BPEL-based development tools

Available BPEL development tools generally offer both a graphical user interface

and the possibility to edit the XML BPEL process document directly with an XML

editor, e.g., the Eclipse BPEL Designer (Eclipse 2013). Both possibilities can be used

to develop a BPEL process, and the developer can switch between both possibilities.

The web-based tool is a specially designed BPEL development tool. This tool offers

specific capabilities to develop BPEL processes and to manage services (refer to

section 6.2.3). With this tool, the developed services can be uploaded to the service

repository and triggered for execution. The web-based development tool is able to

interact with the service management (refer to section 6.3.1). This allows the

developer to monitor running service instances and service components.

Furthermore, the services that are currently executed can be reconfigured and

modified (refer to section 7.2.4).

Proposed Framework

167

The developed service description is uploaded to the service description parser which

is part of the service management (refer to section 6.3.1). It analyses the service

description and collects information for the generation of the service.

Here BPEL is used for service description, but generally, it would be possible to use

other service description languages. Figure 6.6 illustrates an example that uses other

service descriptions. In this case, suitable service description parsers have to be

added to the SEE.

Figure 6.6: Different service descriptions and parsers

For each supported description language a suitable service description parser is

required. This allows the framework provider to develop service description tools

that are tailored to the customers’ needs and support a wide range of possible service

descriptions.

Proposed Framework

168

6.2.3 Service Management Tool

For the control of the service management, the service management tool is required.

This tool is a web interface to control the service management within the SEE (refer

to section 6.3.1). With this tool, the user has the ability to send instructions, e.g.,

start, stop, and remove services and service instances. It allows the user to manage

and monitor information about the status of the services and the framework. The

management tool can be implemented as web application (e.g., as servlet).

The web application offers the possibility to choose the desired service description

(Figure 6.7) from the file system or from the repository (refer to section 6.2.4). The

selected service description is transferred to the service management of the SEE,

where the service is parsed. Service descriptions, which are loaded from the file

system, are stored in the service repository.

Figure 6.7: Service management tool

With the service management tools, services or service instances can be monitored

and controlled. Furthermore, the status of individual service components of a service

instance can be monitored.

Proposed Framework

169

6.2.4 Marketplace & Repository

The marketplace offers the download of pre-defined service descriptions and

components like resource adaptors and CBBs from a marketplace server. The

marketplace can be bound to one component provider or be an open marketplace. An

open marketplace enables opportunities for third-party developers to offer their

service descriptions, RAs, and CBBs. The repository holds all the developed or

acquired service descriptions and service components. It is linked with the service

management tool (refer to section 6.2.3) that controls the services.

The overview given in Figure 6.8 shows how the marketplace & repository can be

used to add new resources to the framework. To support, e.g., new devices, the

device developer provides the required CBBs. These CBBs include, on the one hand,

the BPEL partner links and, on the other, the RCSBBs with the implemented

functionality (refer to section 6.2.1). With these CBBs, the service developer can

describe services that use the new functionalities.

To develop and execute the services, the required CBBs have to be available in the

framework. The partner links of the CBBs are required for the SCE to describe a

service, whereas the RCSBB parts of the CBBs have to be deployed in the SEE to

execute a service.

The communication with external resources is performed with RAs (refer to section

6.3.3). New RAs can be obtained from the marketplace, e.g., from a device

manufacturer or from a third-party developer.

Proposed Framework

170

Figure 6.8: Marketplace and repository: integration of external resources

In addition, the marketplace can offer service descriptions. These service

descriptions can be stored in the repository. With the service management tool,

services can be triggered for creation and execution, or they can be transferred to the

service developer tool for modification.

Service descriptions may require CBBs or RAs that are not available within the

repository. In this case, the service developer has to acquire the required CBBs and

RAs from the marketplace.

Proposed Framework

171

A device manufacturer can provide the customer with a complete bundle that

includes everything that is needed for using the devices. This bundle may include the

required CBBs. The customer can deploy the RAs and RCSBBs and execute the

services.

The marketplace offers the great advantage that the support of new resources can

easily be added to the framework. For example, to add the support of a new protocol

to the framework, the required RA together with the corresponding RCSBB is

required. These components can be acquired from the marketplace. Service

descriptions that use the new resources can also be downloaded from the marketplace

and stored in the repository.

6.3 Service Execution Environment

As result of chapter 4, the JAIN SLEE framework has been selected as basis for the

SEE. However, the JAIN SLEE framework needs to be extended to support the

service generation at runtime (refer to section 5.3.2). The extension offers

capabilities for automated composition and management of the services, for

integration of functionalities defined in the CBBs into the services, and for the

execution of the generated services.

For these purposes, a layered structure has been proposed on top of JAIN SLEE

(Figure 6.9). This layered structure consists of three layers, the Service Management

Layer (refer to section 6.3.1), the Service Execution Layer (refer to section 6.3.2),

and the Resource Connection Layer.

Proposed Framework

172

Figure 6.9: Layers of the service execution environment

6.3.1 Management Layer

The Management Layer is responsible for the management of the framework and the

management of the services. It controls the life cycle of the value-added services and

offers the functionality to start and stop the services. The management can also

generate new services from a BPEL service description by composing SBBs. The

components of the management layer themselves are implemented as SBBs. In order

to distinguish them from other SBBs, they are called “Management Service Building

Blocks” (MSBBs). The three most important MSBBs are the Framework MSBB, the

Service Control MSBB (SCMSBB), and the Interactive MSBB (Figure 6.10).

The responsibility of the Framework MSBB is to control the framework. It creates

and manages the framework context (refer to section 7.1.1), which stores status

information about the framework and the services, references to the services, service

instances, service components (refer to section 7.1.5), and communication channels

(refer to section 7.1.4). Furthermore, it manages services and their life cycles; for

example, it triggers the creation, begin, end, and reconfiguration, and monitors them.

Proposed Framework

173

Another aspect is the communication with the SCE and the Interactive Management

SBB. The interface to the SCE is required for receiving service descriptions from the

SCE and sending status information to the SCE.

Figure 6.10: MSBBs of the management layer

The Interactive Management SBB offers interfaces for service and framework

monitoring information. The Interactive Management SBB waits for user instructions

from the Service Management Tool, e.g., start/stop/remove/create service instances,

and exchanges this information with the Framework MSBB.

A Service Control MSBB (SCMSBB) of a service instance is required for creation,

composition, configuration, monitoring, execution, and life cycle control of the

service components (refer to section 7.1.5). One SCMSBB is responsible for one

service instance (Figure 6.11).

The SCMSBBs receive their instructions and the service descriptions from the

Framework MSBB. Furthermore, a SCMSBB creates and manages the context of a

Proposed Framework

174

service instance within the framework context (refer to section 7.1.1). The service

context stores the information of a service instance, the variable instances, and

communication channels (refer to section 7.1.4) in order to be able to communicate

with the service components.

Furthermore, each SCMSBB contain a service description parser (refer to section

6.2.2). With this parser, the SCMSBB can analyse the BPEL service description and

generate the service components.

Figure 6.11: Relationship between SCMSBB and service instance

6.3.2 Service Execution Layer

The service logic is located in the Service Execution Layer (Figure 6.12). This logic

is represented by the Logic SBBs (LSBBs) (refer to section 7.1.5). The LSBBs

realise the service logic defined by the BPEL service description and the workflow of

the BPEL process (Eichelmann et al., 2010). They are created, configured,

controlled, removed, executed, and monitored by a SCMSBB.

Proposed Framework

175

Figure 6.12: LSBBs of the service execution layer

The SCMSBB configures the LSBBs by setting the required parameters and the

context, and decides on which communication channels (refer to section 7.1.4) a

LSBB has to listen for events and on which communication channels it has to fire

events. The LSBBs are derived from the BPEL activities (Table 5.1) (refer to section

5.2.2). For each BPEL activity, a corresponding LSBB is defined. In Table 6.1, an

overview of all LSBBs is given.

Table 6.1: Overview of the LSBBs and their tasks

LSBB name LSBB tasks

Invoke LSBB The Invoke LSBB is used to call methods which are

implemented in the RCSBBs (refer to section 6.3.3). These

methods implement the functionality that is described in the

partner links of the BPEL service description. The CBBs

map these BPEL partner link calls to the corresponding

RCSBB. Which functionality is called on the RCSBB is

defined in the BPEL service description. The Invoke LSBB

is mapped to the Invoke activity in BPEL.

Receive LSBB This LSBB listens for events from RCSBBs (refer to section

6.3.3). The Receive LSBB implements the Receive activity

from the BPEL service description. The BPEL Receive

activity defines the partner link for the communication. The

CBBs map this partner link description to the corresponding

RCSBB. The Receive LSBB waits for an asynchronous

event from this RCSBB.

Proposed Framework

176

Reply LSBB This LSBB allows the service to send an event in reply to an

event that was received via a Receive LSBB. The

combination of a Receive LSBB and a Reply LSBB forms a

request-response operation for the service. The Reply LSBB

is mapped to the Reply activity in BPEL.

Assign LSBB The Assign LSBB can be used to copy data from one

variable to another, insert literals into variables, and insert

new values into the variables by using expressions. The

Assign LSBB is mapped to the Assign activity in BPEL.

Throw LSBB The Throw LSBB is used when a service instance needs to

signal an internal fault explicitly. An event is sent to the

SCMSBB of the service instance where the fault is handled.

The Throw LSBB is mapped to the Throw activity in BPEL.

Wait LSBB The Wait LSBB is used to define a deadline or a duration.

The Wait LSBB completes if the specified deadline or

duration is reached. The Wait LSBB is mapped to the Wait

activity in BPEL.

Empty LSBB The Empty LSBB does nothing: it can be used, e.g., for

suppressing a fault that needs to be caught, or for providing a

point of synchronization in a flow. The Empty LSBB is

mapped to the Empty activity in BPEL.

Extension LSBB The Extension LSBB is used to define new LSBBs that are

not defined in this table. It offers the possibility to add new

individual LSBBs to the framework. The Extension LSBB is

mapped to the Extension activity in BPEL.

Exit LSBB To end the service instance immediately, the Exit LSBB is

used. The Exit LSBB is mapped to the Exit activity in BPEL.

Rethrow LSBB The Rethrow LSBB is used to propagate faults. It is applied

in fault handlers. The Rethrow LSBB is mapped to the

Rethrow activity in BPEL.

Sequence LSBB A Sequence LSBB contains one or more LSBBs that are

executed sequentially in the lexical order in which they

appear within the service description of the Sequence LSBB.

The Sequence LSBB is finished, when the last LSBB in the

sequence is executed. The sequence LSBB is mapped to the

Sequence activity in BPEL.

If LSBB Conditional behaviour is provided by the If LSBB. The If

LSBB contains a list of one or more conditional branches

defined by the “if” element and the optional “elseif” and

“else” elements. The order in the list of branches is also the

order in which the conditions are analysed. If a condition is

evaluated to true, the corresponding branch is executed; if

this condition evaluates to false, the next condition is

analysed; if no condition evaluates to true, then the else

branch is executed. The If LSBB is completed when the

contained LSBB of the selected branch is completed, or is

completed immediately when no condition evaluates to true

Proposed Framework

177

and no else branch is specified. The If LSBB is mapped to

the If activity in BPEL.

While LSBB The While LSBB offers a mechanism for a repeated

execution of the contained LSBB. A Boolean condition is

used to check whether the contained LSBB is executed or

not. The condition is analysed for all iterations. Only if the

condition evaluates to true, the contained LSBB is executed.

The While LSBB is mapped to the While activity in BPEL.

RepeatUntil LSBB The RepeatUntil LSBB offers a mechanism for repeated

execution of a contained LSBB. A Boolean condition is used

to check whether the contained LSBB is executed or not. The

condition is analysed after the iteration. Only if the condition

evaluates to true, the contained LSBB is executed again. In

contrast to the While LSBB, the “RepeatUntil” loop executes

the contained LSBB at least once. The RepeatUntil LSBB is

mapped to the RepeatUntil activity in BPEL.

Pick LSBB The Pick LSBB can receive events from different LSBBs. It

waits until one of the events are received, then it executes the

LSBB associated with that event. After an event has been

received, no other event is accepted by that Pick LSBB. The

Pick LSBB is mapped to the Pick activity in BPEL.

Flow LSBB The Flow LSBB provides parallel execution of LSBBs. It

fires events to these LSBBs and waits for events from them.

The Flow LSBB is completed after all called LSBBs have

been executed. The Flow LSBB is mapped to the Flow

activity in BPEL.

ForEach LSBB The ForEach LSBB represents a loop, which executes

associated LSBBs for a specified number of times. This

associated LSBB is invoked by events. The ForEach LSBB

can execute the associated LSBB in a parallel or sequential

order. The ForEach LSBB is mapped to the ForEach activity

in BPEL.

Scope LSBB The Scope LSBB is used to define a nested LSBB context. A

scope can have subordinate LSBBs with associated CBBs,

variables, and handlers. The Scope LSBB is mapped to the

Scope activity in BPEL.

Compensate LSBB The Compensate LSBB is used to support compensation for

inner scopes. It compensates all inner scopes that have

already completed successfully. The Compensate LSBB is

mapped to the Compensate activity in BPEL.

CompensateScope

LSBB

To compensate a Scope LSBB that has already completed

successfully, the CompensateScope LSBB is used. The

CompensateScope LSBB is mapped to the CompensateScope
activity in BPEL.

Validate LSBB The Validate LSBB is used to validate the values of variables

against their associated data definition. The Validate LSBB

is mapped to the Validate activity in BPEL.

Proposed Framework

178

All BPEL activities have to be mapped on these LSBBs. For example, the Assign

activity is mapped to the Assign LSBB.

The SCMSBB from the Service Management Layer composes the LSBBs and

RCSBBs to form a service instance (refer to section 7.1.5). One service instance can

consist of one or more LSBBs and zero or more RCSBBs. The Service Execution

Layer supports multiple service instances for multiple services. Therefore, for each

service within the SEE many service instances of this service can be running in

parallel at the same time. Each service instance is composed with and controlled by

its own SCMSBB. The LSBBs communicate with other LSBBs, with RCSBBs, and

with the SCMSBB via the communication channels (refer to section 7.1.4). To

integrate the functionalities and resources described in the CBBs into a service, the

LSBBs communicate with the RCSBBs from the Resource Connection Layer. An

overview of all components of a service is given in section 7.1.5.

6.3.3 Resource Connection Layer

The Resource Connection Layer implements the methods which can be called by the

services. Special SBBs called “Resource Connection SBBs” (RCSBBs) implement

these methods (Figure 6.13). The methods represent the service functionalities.

Typical functionalities are, e.g., video conferencing, chat, voice recognition, and text

to speech. Service functionalities can be implemented directly into a RCSBB, or it

can be offered by a RA. The RCSBBs are controlled by the SCMSBB.

Proposed Framework

179

Figure 6.13: RCSBB in the resource connection layer

RCSBBs implement the methods that are described by the BPEL partner links. CBBs

(refer to section 6.2.1) map the methods from the BPEL partner links to the

implementation of these methods in the RCSBBs. The partner links offer the BPEL

representation of the available functionalities. When a service requires a special

functionality, for example, calling a participant of a conference, the corresponding

method, which is described in the partner link handling conferencing issues, has to be

selected in the service description (Eichelmann et al., 2008). In the service instance,

which is generated from the service description, the LSBBs call the relevant

RCSBBs to invoke the implementation of the requested functionalities.

In case that an external resource sends information to the service (e.g., an incoming

call), the corresponding RA receives the appertaining protocol message (e.g., SIP

INVITE), generates an event and sends this event to the corresponding RCSBB. The

RCSBB executes its implemented functionality and generates an event for the

corresponding LSBB.

Proposed Framework

180

6.4 Conclusion

The proposed framework offers a consistent automated solution for the creation and

provisioning of value-added telecommunication services. The presented architecture

has introduced the elements of the framework in detail. For the service description,

BPEL is used. BPEL is a technology that is well established in the IT sector. To

benefit from the advantages of the technologies established in the telecommunication

sector, the service is generated and executed in a service execution environment that

is based on JAIN SLEE.

In contrast to the conventional service development with JSLEE, the service creation

environment offers a simple development of value-added services (refer to section

8.5.2). JSLEE services are developed with Java; the services that are created with the

service creation environment are described, i.e. with a graphical BPEL development

tool, a XML editor, or a web-based service description tool. In BPEL, the required

resources and functionalities are described as partner links. The service developer

does not need special knowledge about the underlying protocols. The required

functionalities only have to be invoked on the BPEL partner link. Apart from that,

describing the services with BPEL using the CBBs is much faster than programming

a conventional JSLEE service in Java. For example, developing a simple Chat

service in Java requires 3 days; defining the same service with the service creation

environment, however, requires only 5 hours (refer to section 8.5).

It is also possible to acquire services and other components like RAs and CBBs from

a marketplace of the SCE. This allows third-party developers to offer own resources

Proposed Framework

181

and services (Eichelmann et al., 2011). New protocols can be supported by providing

the corresponding RAs and CBBs. Self-developed functionalities and RAs can be

integrated into the framework by defining new CBBs. These CBBs have to define the

mapping between the resources in the RCSBBs and the functionalities described in

the partner links. Furthermore, the SCE controls the management, reconfiguration,

and monitoring of the services and service instances with its service management

tool.

The service execution environment is structured in three functional layers (refer to

section 6.3). These layers offer the monitoring and control of services and framework

and the composition and execution of the services. Services can automatically be

composed from the BPEL description with the Runtime Service Composition

approach (refer to section 5.3.2). The BPEL workflow describing the service logic is

mapped to the LSBBs in the service execution layer. The RCSBBs of the resource

connection layer offer the implementation of the functionalities. The service

management layer offers the management, composition, configuration, life cycle

control, and monitoring of the service instances.

Services in the SEE

182

7 Services in the SEE

The previous chapter has introduced the proposed framework with its main elements,

the SCE and the SEE. This chapter takes a closer look at the services that are

generated and executed within the SEE of the described framework. In the first

section (refer to section 7.1), the general structure of a service instance is discussed

in detail. The principles of communication, the service components, and the

framework context are defined. In the second section (refer to section 7.2), the life

cycle of a service instance is analysed, and execution, reconfiguration, and removal

of service instances are described.

7.1 Service Structure

A service consists of multiple elements: the framework context (refer to section

7.1.1), types and variables (refer to section 7.1.2), multiple RCSBBs, LSBBs, and the

SCMSBB (refer to section 7.1.5). This section takes a closer look at these elements

and describes the communication principles between the service components (refer

to section 7.1.4) and between service components and external resources (refer to

section 7.1.3).

7.1.1 Framework Context

The framework context offers a possibility for the framework and for the services to

store their information in one central place. This concept allows to manage the

Services in the SEE

183

consistence and persistence of the service instances and gives an opportunity for the

framework management to directly monitor the status of each service element.

Figure 7.1 illustrates the hierarchical organisation of the framework context. Each

service stores its service context into the framework context. Each service instance

stores its context into the service context and each service component stores its

context into the service instance.

Figure 7.1: Framework context

Each service stores its service context with the service description, parameters, and

all service instances in its service context. The service instances use the instance

context to store references of their service components (SCMSBB, LSBBs, and the

RCSBBs) and references of the variable types (refer to section 7.1.2). The service

components use the component context to store their information, e.g., references of

their variables, the component status information, and the references to the

communication channels (refer to section 7.1.4), which are used to communicate

with other service elements or with the framework management.

Services in the SEE

184

To get access to their contexts, all service components, service instances, services,

and the framework have to retain a reference to their contexts. A service instance can

access the contexts of components that belong to the instance but not of other service

instances. This allows to monitor the status of subordinated components and prevents

the manipulation of a service instance context from another service instance.

7.1.2 Variables and Variable Types

Like other programming languages, BPEL (refer to section 3.6) (OASIS, 2007) uses

variables to hold temporary values. Different variables are supported, e.g., WSDL

Message type for web service messages, XML Schema type for simple, or complex

XML Schema types, XML Schema element for the element attributes, and Build-in

type variables for standard and simple types.

The BPEL variables are analysed by the service description parser and mapped to

their representations in the SEE (refer to section 6.2.1). The SEE has to implement

the variable types that are defined by BPEL.

Whenever a new variable instance is created, this instance is associated with the

service instance context (Figure 7.2). If the variable is defined as a BPEL global

variable, then the variable instance can be accessed from all SBBs that belong to the

same instance of the service. If the variable is defined within a BPEL scope, then it

can only be accessed from SBBs belonging to the same scope. This ensures that

SBBs can only access variables that are defined in the same scope or globally. Each

service instance defines its own set of variables. LSBBs and RCSBBs of one instance

cannot access variables of another instance.

Services in the SEE

185

Figure 7.2: Variable context

Some resources and functionalities may require special variable types, e.g., complex

variable types, which are not available in BPEL by default. In this case, the CBB on

the one hand has to provide a WSDL/XSL document where the variable types are

defined to make them available in BPEL and on the other hand, it has to implement

the variable types to make them available for the services within the SEE.

7.1.3 External Service Communication

The SEE of the proposed framework is based on the JAIN SLEE specification 1.1

(JSR 240, 2008). The access to the SEE needs to be conformant with the JAIN SLEE

specification. The possibilities to send and to receive events to and from JAIN SLEE

are restricted in order to ensure the consistence of the services.

All SBBs and, therefore, MSBBs, LSBBs, and RCSBBs have to comply with the

specified rules. They all communicate with the help of events. The SBBs are

triggered by events and send events to other SBBs. For the service communication

Services in the SEE

186

within the framework and the service instances, the novel concept of communication

channels is proposed for the framework. This concept is described in the subsequent

section 7.1.4.

To communicate with other services or to receive and send events between the SLEE

and other services, e.g., a web application, two possibilities are defined in the

specification.

The first possibility is the standard way for communication with the SLEE using

RAs. RAs are able to listen on the network interfaces for external protocol messages.

If such a protocol specific message is received, the RA generates an event and fires

this event to the event router (refer to section 4.4). RAs can also be called from the

SBBs to generate protocol-specific messages and send them to the network. External

protocol messages can be, for example, a SIP INVITE message for establishing a

communication session but also reports from a temperature sensor or a HTTP request

from a web browser.

The second possibility to communicate with the SLEE is to use EJBs. The JAIN

SLEE specification describes a method to exchange events between EJBs and JAIN

SLEE. EJBs can use the Java EE Connection Architecture (JCA), specified in (JSR

16, 2000), to communicate with external resources by firing and receiving events

from JAIN SLEE.

7.1.4 Communication Channels

For the communication between the framework management SBBs with the service

instance SBBs, a novel concept of communication channels has been developed. The

Services in the SEE

187

communication channels are based on the JAIN SLEE event model (refer to section

4.4) but they define a channel from the source SBB to the destination SBB that is

created at configuration time of the service instance and the framework component,

respectively. This channel is used for event-based communication. As illustrated in

Figure 7.3, a communication channel offers a unidirectional point-to-point

communication path between two SBBs.

Figure 7.3: Unidirectional communication

To establish a bidirectional communication path, two communication channels have

to be defined (Figure 7.4), one from SBB A to SBB B and the other from SBB B to

SBB A.

Figure 7.4: Bidirectional communication

The communication channels are stored within the context of each component, are

able to fire, and receive a specified type of event. Different types of events have been

defined, such as configuration events for signalling and delivering new configuration

Services in the SEE

188

data, inter service events for the communication between service components, and

ready events for signalling that the component or the service is ready for something

or that an action is completed.

7.1.5 The Components of a Service

A service can consist of multiple service instances. Each service instance by itself

consists of multiple service components. The structure of a service instance is given

in Figure 7.5. A service instance consists of one Service Control Management SBB

(SCMSBB) controlling its life cycle. The SCMSBB is part of the service

management layer (refer to section 6.3.1). To realise the service logic, a service

instance also consists of one or multiple Logic SBBs (LSBBs) (refer to section 6.3.2)

which belong to the service execution layer. The methods described in the

Communication Building Blocks (CBBs) and realising the functionality of the

service description are implemented in the Resource Connection SBBs (RCSBBs).

These RCSBBs are part of the Resource Connection Layer (refer to section 6.3.3).

The components of a service instance can communicate with each other by

exchanging events via the communication channels (refer to section 7.1.4).

The SCMSBB uses communication channels to communicate with the framework

management and to control the LSBBs and RCSBBs (Figure 7.6). The framework

management fires and sends configuration events to the SCMSBB to trigger the

creation, the reconfiguration, or the removal of a service instance (refer to section

7.2.2).

Services in the SEE

189

Figure 7.5: Components of a service instance

The SCMSBB sends configuration events to all LSBBs and RCSBBs of the instance

and waits until all these SBBs have been created and configured. Upon the SCMSBB

has received the ready events from all LSBBs and RCSBBs of the instance, a final

ready event is fired to the framework management. In order to trigger the execution

of a service instance, the framework management sends an inter-service event to the

SCMSBB (refer to section 7.2.3). The SCMSBB then activates the service and sends

an inter-service event by itself to the first LSBB in the service. This is always the

(main) sequence LSBB that represents the main sequence activity in a BPEL process.

After the service workflow has been executed, the last LSBB or RCSBB sends an

inter-service event to the SCMSBB to indicate that the service execution has been

completed. This event is also signalled to the framework management with an inter-

service event.

Services in the SEE

190

Figure 7.6: Communication channels of the SCMSBB

The LSBBs (Figure 7.7) communicate with other LSBBs, RCSBBs, and the

SCMSBB to execute the service logic. They receive configuration events from the

SCMSBB to create, configure, reconfigure, and remove the LSBB and confirm the

completion of these requests with a ready event. The execution of the service logic of

the LSBB is triggered by an inter-service event from its predecessor SBB. The LSBB

signals the completion of execution to its actual successor SBB using an inter-service

event.

Figure 7.7: Communication channels of a LSBB

The RCSBBs communicate with the SCMSBB, with LSBBs, and, with components,

e.g., RAs that implement the CBB functionality described in the BPEL partner links

Services in the SEE

191

(Figure 7.8). They receive configuration events from the SCMSBB. These

configuration events can request the creation, configuration, reconfiguration, and the

removal of the RCSBB. A ready event is sent to the SCMSBB to confirm the

completion of the request.

Figure 7.8: Communication channels of a RCSBB

The RCSBBs implement the methods from the CBBs. Before executing a CBB

method with the defined parameters, the RCSBB waits for an inter-service event

from a LSBB. After its execution, an inter-service event is sent to the successor

LSBB to proceed with the service logic execution. The RCSBBs can also call

methods on resource adaptors, send events to the resources which implement a

functionality, and receive events from the resource adaptors and other resources.

7.2 Service Life Cycle

The service life cycle consists of multiple phases, (i) the service composition phase

(refer to section 7.2.2), (ii) the service execution phase (refer to section 7.2.3), (iii)

the service reconfiguration phase (refer to section 7.2.4), (iv) and the service

Services in the SEE

192

removing phase (refer to section 7.2.5). These phases change the states of a service

instance. The states of a service instance are described in the following section.

7.2.1 States of a Service Instance

The state machine of a service instance defines several states (Figure 7.9). If the

service description is loaded from the repository or from the file system, the service

instance will enter the “described” state. This means that the service description of a

service exists but the service instance is not created yet. The framework management

initiates the service composition phase (refer to section 7.2.2) to create and configure

the service instance. After this phase, the service instance is in the “created and

configured” state. In this state, the framework management can trigger the

reconfiguration phase, the service execution phase, or the service removal phase.

Figure 7.9: States of a service instance

In the reconfiguration phase (refer to section 7.2.4), a reconfiguration of the service

instance can be performed. Afterwards, the service is again in the “created and

configured” state. If the framework management triggers the service execution phase

(refer to section 7.2.3), the service instance will be executed. This will result in a

Services in the SEE

193

transition to the “executed” state. The framework will remove executed service

instances from the memory. Therefore, it will trigger the service-removal phase

(refer to section 7.2.5) for this service instance.

Furthermore, service removal phase can be triggered by the framework management

in the “created and configured” state, in the “executed” state, in the service

composition phase, and in the service execution phase. In the service removal phase

the service instance is destroyed, and the resources are freed. After the service

instance has been removed, the instance will be again in the “described” state.

7.2.2 Service Composition Phase

In this phase, the service instance is created and configured. This phase requires an

existing service description that is available within the service repository. With this

service description, the framework management can trigger the service composition

phase. A service instance consists of several components (refer to section 7.1.5), the

SCMSBB, the LSBBs, RCSBBs, the service context and the variables, and the

communication channels. Within this phase, all the components of the service

instance have to be instantiated and configured.

The framework management sends events to trigger the creation and configuration of

the service components, and upon creation and configuration, the components

respond with confirmation events.

For the creation of the service instances, the framework uses the “Orchestration

concept” described in section 5.4.3. In this phase, two relevant events, the

configuration event, and the ready event are required (refer to section 7.1.5). In the

Services in the SEE

194

first step, the framework management sends out the configuration events to create

new instances of the services or to reconfigure already running service instances. The

service management expects a ready event as confirmation of the reception and the

execution of the requested tasks triggered by the configuration event.

When the composition of a service has been triggered, e.g., by a web interface of the

framework management, the framework management generates a configuration event

and adds the references of the requested service description to the event. The event

causes the instantiation of a new SCMSBB. The SCMSBB is a component of the

framework management layer (refer to section 6.3.1). An SCMSBB is responsible

for exactly one service instance. If multiple service instances are created, the

framework management has to generate multiple SCMSBBs for the respective

service. If an SCMSBB receives a configuration event with the order to generate a

new service instance, the SBB directly starts with the composition of the new service

instance (Figure 7.10).

Figure 7.10: Service composition phase – part one

Services in the SEE

195

The SCMSBB loads the service description from the repository and starts to parse

the description. In the first step, the representation of the instance and the required

communication channels are created and stored in the service context (refer to

section 7.1.4). In the next step, the required variable types are loaded into the service

context. Each service instance has its own context. After this step, the partner links

from the service description are parsed, and their CBB representations are referenced

in the service context. Furthermore, the description of the variables is analysed. For

each variable found, an instance of the variable type is created and referenced in the

context. In the next step, the BPEL process description is parsed.

The SCMSBB analyses which service components are required for this service and

prepares the service context for the required components. Then the SCMSBB starts

sending configuration events to selected components. The components are composed

into a new service instance. The events include references to the service context, the

framework management, and lists with the required communication channels.

The required communication channels are the ready channels for the communication

between the corresponding component and the SCMSBB, and two lists of

communication channels for the communication between the service components

within the service execution phase.

Furthermore, a communication channel for configuration events is established. This

channel is required to send reconfiguration requests to the service component. Each

service component gets a unique ID to distinguish the component from other

components of the service and from the components of other instances.

Services in the SEE

196

The SCMSBB sends the configuration events and expects an answer for each of

these events. Each component that has received a configuration event has to respond

with a ready event back to the SCMSBB. The SCMSBB sends these configuration

events to LSBBs within the service execution layer (refer to section 6.3.2) or to

RCSBBs within the resource connection layer (refer to section 6.3.3). Existing

components can be reconfigured or deleted with this configuration event. Non-

existing components are instantiated, and the configuration event is forwarded to

these newly created components.

The basic configuration steps are the same for RCSBB and LSBBs. A RCSBB

implements the corresponding CBBs, which allow the service to access the required

resources. A RCSBB may implement the resources by itself; call a resource that is

offered by the framework, or it may call a resource adaptor to offer the service access

to the resource. Which of these possibilities are used by the RCSBB depends on the

particular CBB and on the methods defined in the service description.

A RCSBB or LSBB can access the service context with the component ID that was

sent with the configuration event, and it can parse its part of the service description.

The RCSBBs and LSBBs load and parse their variables; they register themselves to

the configuration and ready channels to communicate with their SCMSBB.

Furthermore, the RCSBBs and LSBBs have to register for the inter-service events.

With these events, the components communicate with other components during the

service execution phase. The configuration event contains references to two lists

created by the SCMSBBs and stored in the service context. Both of the lists contain

references to channels that are defined for inter-service events (refer to section 7.1.4).

Services in the SEE

197

The first list contains references to communication channels of all RCSBBs and

LSBBs. These communication channels are required for sending events during the

service execution phase. The second list contains references to communication

channels that wait for events from this component during the service execution

phase.

In the last step, the component confirms completion of successful configuration by

sending a ready event back via the ready channel to the SCMSBB (Figure 7.11).

Figure 7.11: Service composition phase – part two

These configuration steps are executed for all RCSBBs and LSBBs. Upon the

SCMSBB has received all ready events of all depending RCSBBs and LSBBs, the

SCMSBB also generates a ready event and sends it to the framework management to

indicate the successful creation and configuration of a new instance. Now, the

service instance enters the “created and configured state” (refer to section 7.2.1) and

it can be triggered by the framework management for execution.

For a better insight into service composition, a “notification service” example is

presented. The service waits for incoming e-mails, which are received by one

Services in the SEE

198

RCSBB, and sent out a SIP instant message by another RCSBB. The configuration

events are shown in Figure 7.12 and the ready events in Figure 7.13. This service

generates and sends a SIP instant message if an e-mail is received. As input for the

service creation, the “notification service” description is required. The framework

management copies this description for the service composition from the repository,

generates a configuration event which includes this description, and sends the event

to a newly instantiated SCMSBB.

The SCMSBB receives the configuration event, parses the “notification service”

description, and starts with the composition of the service instance.

For each BPEL activity found and for each CBB contained within the description,

the SCMSBB generates a configuration event for the corresponding LSBB or

RCSBB. The structure of the generated service is derived from the structure of the

service description.

Figure 7.12: Notification example, service composition phase – part one

The notification service consists of five LSBBs and two RCSBBs. The first element

is the main sequence LSBB. It holds a list of sub-elements that should be executed

Services in the SEE

199

sequentially during the service execution phase. This sequence LSBB includes four

sub-components, two assign LSBBs, one receive LSBB, and one invoke LSBB. The

first element within the sequence is an assign LSBB, followed by a receive LSBB

and another assign LSBB. The last element of the sequence is the invoke LSBB. All

of the RCSBBs and LSBBs receive the configuration events from the SCMSBB.

Upon an element has been completely the configured, it generates a ready event and

sends it back to the SCMSBB (Figure 7.13). If all components of the service are

configured and the SCMSBB has received ready events from all components of the

instance, the SCMSBB also generates a ready event and sends it to the framework

management to signal that the service is ready for execution.

Figure 7.13: Notification example, service composition phase – part two

7.2.3 Service Execution Phase

After the composition of services in the previous section, here the execution of

services is described. The framework management initiates the execution of a service

instance. This can be triggered by a user interaction on the management web

interface or automatically, after the service instance was created and configured by

Services in the SEE

200

the framework management itself. To trigger the execution of a service instance, the

framework management fires an inter-service event using the inter-service channel to

the SCMSBB of the corresponding service instance (Figure 7.14).

Figure 7.14: Service execution phase

When the SCMSBB receives an inter-service event, the service instance enters the

service execution phase. Within this phase, the individual components of the service

instance are activated and executed in the order as they are listed in the service

description.

The SCMSBB triggers the execution of the service instance by activating its first

service component. The inter-service channel of the first service component was

stored in the service context during the service composition phase. The SCMSBB

loads this channel and sends an inter-service event to the first component. This event

serves as service trigger for the execution of the instance.

In the service description, the first process activity is always a BPEL Sequence

activity that includes all other BPEL activities within its body. In the service

composition phase, an appropriate LSBB has been created that represents this

Services in the SEE

201

Sequence activity ([main] Sequence LSBB) (Figure 7.15). So the inter-service event

is sent from the SCMSBB to this Sequence LSBB.

Figure 7.15 : Triggering the service execution

The Sequence LSBB identifies the next LSBB or RCSBB of the workflow by

loading the corresponding inter-service communication channel from the context.

During the service composition phase, the communication channels for all service

components were established and stored within the service context (refer to section

7.2.2). The next component is triggered for execution by sending an inter-service

event from the main Sequence LSBB to this component.

This procedure is repeated for all the LSBBs and RCSBBs of the service workflow.

The LSBBs execute the service logic, e.g., by manipulating variable values, handling

errors, and choosing the next components for execution. If the LSBB has executed its

service logic, it generates an inter-service event and sends it via the inter-service

channel to the next LSBB or RCSBB.

The RCSBBs start with their tasks, upon they have received an inter service event.

They offer the requested method implementations of the CBBs to the service

instance. Similar to the LSBBs, also the RCSBBs send an inter-service event to the

next LSBB or RCSBB in the workflow.

Upon the last LSBB or RCSBB of the service workflow has completed its execution,

the service instance needs to be stopped, the framework to be informed that the

execution of the instance is finished, and the memory and other resources have to be

Services in the SEE

202

released. The last component loads the inter-service destination channel from its

context. This communication channel offers a connection from the last workflow

component to the SCMSBB. The inter-service event which is sent via this channel

triggers the SCMSBB to release the service context in order to remove the service

instance with all components (refer to section 7.2.5) and to close the connections to

the resources. To notify a successful execution of the service instance, the SCMSBB

sends a ready event to the framework management.

The following example presents the service execution phase for the “notification

service” which was described in section 7.2.2. The basic procedure of this phase is

shown in Figure 7.16. The depicted service waits for an incoming e-mail. If an e-mail

is received by the server, a SIP instant message (IM) is generated and sent.

Figure 7.16: Notification example; service execution phase

All involved components are already configured for execution. The framework

management triggers the service instance with an inter-service event that is received

by the SCMSBB. The SCMSBB fires an inter-service event to the first LSBB of the

service instance. As described in section 7.2.2, the first SBB of a service instance is

always a sequence LSBB. Within the service instance, all communication between

Services in the SEE

203

the services elements is performed via inter-service events. The next element in the

workflow is the assign LSBB. This LSBB sets the required values of all variables

that are necessary for receiving an e-mail. Furthermore, filters for incoming e-mails

and outgoing instant messages can be defined. After this step, the receive LSBB is

triggered, which prepares the variables and parameters for the Mail RCSBB. The

Mail RCSBB is responsible for receiving mails. In this state of the service execution,

the Mail RCSBB is activated by the Receive LSBB and waits until it is triggered by

the MailRA. The Mail RCSBB is able to receive events from the Mail RA. If the

Mail RA receives an e-mail, it generates the corresponding inter-service event.

Depending on the defined filter criteria, the Mail RCSBB may be triggered. Upon an

appropriate e-mail has been received by the RA, it fires an inter-service event to the

Mail RCSBB to trigger the execution of the next component.

The next SBB within the workflow is again an assign LSBB. This LSBB manipulates

variables within the service instance. In this example, the destination of the IM needs

to be configured, and parts of the content of the received mail need to be copied from

the mail content variable to the IM content variable. When all the required variables

are set, the invoke LSBB can trigger the SIP RCSBB to send out the IM. The SIP

RCSBB is the last service element in the workflow. After the SIP RA has generated

and sent out the IM, the SIP RCSBB returns a ready event back to the SCMSBB to

signal the completion of the workflow. The SCMSBB will free the resources, clean

up the executed service elements, and inform the framework management about the

execution of the service instance.

Services in the SEE

204

7.2.4 Service Reconfiguration Phase

This section describes the reconfiguration of a service. The framework offers the

possibility to modify the configuration and the structure of a service at runtime. It is

possible to modify a service that has already been configured or that is being

executed.

If the service is configured but not yet executed, all its service instances are in the

state “created and configured”. To reconfigure a service, each service instance has to

be replaced (Figure 7.17). In case that the execution of the service has already been

started, the instances that are in the “service execution phase” are still executing the

previous service workflow. However, all service instances that are within or before

the “created and configured” state are replaced by the new service instances. After

reconfiguration, all new service instances are executing the new service workflow.

For reconfiguration of a service, the previous service description has to be replaced

by the new version. This new version of the service description is stored in the

service repository and overwrites the previous one. The framework management

analyses the running instances of the service. If no service instance of this service is

currently being executed, all previous service instances are replaced by the new

instances. This procedure is similar to the service composition phase (refer to section

7.2.2), but with the difference that previous service instances will be removed (refer

to section 7.2.5).

The framework management sends configuration events to initialise the creation of

new service instances. Each previous service instance will be replaced by a new

Services in the SEE

205

instance. If a new service instance has been generated, the SCMSBB of this new

instance confirms the instance creation by sending a ready event to the framework

management. If the framework management receives such an event, it will start to

remove the previous instance. To do so, the framework management generates a new

configuration event and sends it via the configuration channel to the previous

SCMSBB to trigger the removal of the instance components. After the previous

service instance has been released and all components have been removed, the

SCMSBB confirms this step with a ready event. The framework management repeats

this procedure for all service instances that need to be replaced. Finally, all service

instances of the service represent the new workflow. When the first new service

instance reaches the state “created and configured”, the service can be executed. The

framework management does not need to wait until all instances are reconfigured.

Each new service instance can be executed upon reconfiguration.

Figure 7.17: Reconfiguration by replacing previous instances

In case that a service should be replaced by a new version of the service and some of

the current service instances are already being executed, then the procedure needs

some modifications.

Services in the SEE

206

The service instances that are in the “created and configured” state will be replaced

by instances of the new service as described before. Previous service instances will

execute the remaining workflow using the previous configuration. After the

SCMSBB of a previous service instance confirms the execution and removal of its

service instance by firing an inter-service event to the framework management, the

new service instance is created from the new version of the service description. With

this strategy, all previous versions of the service instances are replaced by new

versions, as soon as the SCMSBB of the previous service instance confirms the

completed execution of its instance.

7.2.5 Service Removal Phase

The framework management or the SCMSBB can decide to remove a service

instance.

The framework management triggers the service removal phase to remove a service

instance from the SEE. This can be initiated, for example, using the web interface or

during the reconfiguration phase. If a complete service together with all its instances

shall be removed from the SEE, the framework management triggers the service

removal phase for all service instances of this service.

The SCMSBB triggers the service removal procedure after the service execution

phase to remove all remaining LSBBs and RCSBBs of its service instance. The

LSBBs and RCSBBs that have been used during the service execution phase will

automatically be removed after their execution has been completed. However,

components of a service instance that have not been executed during the service

Services in the SEE

207

execution phase, e.g., these components were part of a branch that was not executed,

have to be removed with the following procedure after the execution of the service

instance.

The service removal phase is triggered by a configuration event. In case that the

framework management is the initiator of this phase, it sends a configuration event

that contains the removal instruction to the SCMSBB (Figure 7.18).

Figure 7.18: Service removal phase

The SCMSBB analyses this event and sends configuration events that contain the

removal instruction to all components of the service instance. These components

parse the configuration event and release their resources. To confirm the execution of

the removal instruction, they send a ready event to the SCMSBB.

The SCMSBB waits for the ready events from the service components and releases

its own resources allocated in the SEE. It also removes its service context and

confirms the removal to the framework management by sending a ready event.

Services in the SEE

208

7.3 Conclusion

This chapter described the concept of the services, their structure, and life cycle. The

proposed novel service structure enables the mapping of the BPEL service

description to the JAIN SLEE architecture. The service structure that is automatically

generated from the service description consists of multiple service components (refer

to section 7.1.5).

One central SCMSBB is responsible for each service instance. This has the

advantage that all components can be controlled and monitored in this central place.

During the service execution phase (refer to section 7.2.3), the service components

are communicating directly with each other and the central element is only required

for triggering the execution. This novel service concept combines the advantages of

the “Orchestration concept” (refer to section 5.4.3) and the “Choreography concept”

(refer to section 5.4.4). The “Orchestration concept” supports the service

configuration, service control, and service monitoring. The “Choreography concept”

in turn supports the direct communication between the service components. Each

component executes its part of the service and delegates the remaining parts to the

subsequent components.

The context concept (refer to section 7.1.1) introduced in this chapter offers a

location to store all the component-specific configuration information and a

possibility to access the variable values in a consistent and centralised way. It allows

the monitoring of the framework and of the service instances.

Services in the SEE

209

With the “Variables and Variable Types” concept (refer to section 7.1.2), it is

possible to map the BPEL variable types within the service description to the

corresponding implementations of the SEE. New variable types can be part of CBBs.

These CBBs have to include the WSDL description and an implementation of the

variable types.

Section 7.1.3 describes two possibilities for RCSBBs to communicate with external

resources. The normal way is the use of RAs for external protocol communication.

Another possibility is an event-based communication with EJBs. Both possibilities

are described in the JAIN SLEE specification (JSR 240, 2008) and are allowed for

RCSBBs.

The new concept of communication channels (refer to section 7.1.4) was introduced

for the internal service communication. This concept offers an event-based

communication between the components within a service instance and enables the

framework to communicate with the service instances.

The second part of the chapter describes the service life cycle (refer to section 7.2).

This life cycle consists of the states “described”, “created”, “executed”, and of the

phases “composition”, “removal”, “execution”, and “reconfiguration”.

Each RCSBB and LSBB has its own configuration. This configuration is performed

during the composition phase. The BPEL activity or CBB, which is represented by a

SBB, is derived from the BPEL process. Depending on the service, more than one

instance of a LSBB or a RCSBB may be necessary. The configuration is set at

runtime and can be changed in the reconfiguration phase.

Services in the SEE

210

The advantage of this concept is that only one Deployable Unit (DU) (refer to section

4.4) has to be compiled and deployed for each type of a LSBB and a RCSBB. The

LSBBs and RCSBBs that are required for a service do not need to be deployed for

each service, they just need to be deployed once, e.g., while starting the Service

Execution Environment. If a RCSBB or LSBB is required in a service instance, an

instance of the component with the specific configuration is created and initiated

during the composition phase.

Framework and Prototype Evaluation

211

8 Framework and Prototype Evaluation

In this chapter, the framework is evaluated and the research prototype is introduced.

Each of the defined criteria (refer to section 5.1) is analysed whether it fulfils a

specific criteria within the framework (refer to section 8.1). Afterwards the research

prototype, which was used for the proof of concept of the framework, is introduced.

The research prototype was designed to demonstrate the overall framework

functionality. It consists of the important components of the SCE and SEE to allow

the creation of value-added multimedia services. The architecture of the prototype is

introduced in section 8.2. In section 8.3, the proof of concept of the SEE components

is demonstrated. The qualitative analysis of the requirements for the proposed

framework concept is described in section 8.4. An analysis of the quantitative

requirements established in this PhD thesis and a comparison between conventional

service development and the service description with the PhD framework prototype

is presented in section 8.5. There, an analysis of the framework performance and

scalability is carried out, too.

8.1 Evaluation of the Defined Framework

Requirements

This section evaluates the framework regarding its requirements as defined in section

5.1. Each of the six requirements is analysed whether it is fulfilled within the

framework.

Framework and Prototype Evaluation

212

- The first requirement was an automated solution that supports the description,

creation, execution, and provisioning of value-added telecommunication

services. To fulfil this requirement, the developed framework supports all of

these parts, the description, the creation, execution, and the provisioning of

the service. The service is described in BPEL (refer to section 5.2 and section

6.2), which can be done with a graphical/text-based BPEL development tool.

The service description parser (refer to section 5.3.2) analyses the service

description, and triggers the creation of the service. The service is composed

automatically from pre-defined SBBs (refer to section 7.2.2). After a

successful creation and configuration of the service, it can be executed,

provided and managed by the SEE (refer to section 6.3).

- The service development should support a graphical method for describing

the services. The framework supports BPEL as service description language

(refer to section 5.2). Several service development tools are available for

BPEL; most of these tools support a graphical process design and,

furthermore, a text-based service development. The service designer can

choose the method which he prefers for describing the service.

- The developer is able to concentrate on describing the logic of the service.

Detailed knowledge of the communication protocols is not necessary; this

requirement is solved by the CBBs (refer to section 6.2.1). The CBBs offer,

on one hand, a protocol-independent possibility to describe the required

functionality of the service in the SCE (partner links) and, on the other hand,

the implementation of the functionality within the SEE (RCSBBs, RAs).

Moreover, functionalities can support different levels of abstraction. To do

Framework and Prototype Evaluation

213

this, the CBB has to offer methods with different granularity for the same

functionality (refer to section 5.2.3). Therefore, it is also possible to develop a

fine-grained service, which allows a detailed configuration of special aspects

of the protocol messages.

- A service consists of several components (SBBs). For these SBBs, a structure

is defined that is able to support a broad range of value-added services. The

SEE consists of a three-layer structure (refer to section 6.3): a management

layer, a service logic layer, and a resource connection layer. The service logic

is executed in the service execution layer. Special components, the LSBBs,

were developed to execute the service logic in the SEE (refer to section

7.1.5). These LSBBs support the logic functions, which can be described in

the SCE with BPEL. The BPEL activities are mapped to these LSBBs (refer

to section 5.2.2). Therefore, the developed services support the same logic

functions that can be described with BPEL. With the CBBs, it is possible to

add new functionalities and protocol support to the services. Therefore, new

functionalities and protocols can be supported by the framework by adding

them as CBB.

- To describe the service logic, reusable service components (LSBBs) were

defined. The service designer describes the service logic with BPEL. The

service is generated from the workflow that was described in BPEL. The

BPEL activities are mapped to LSBBs in the SEE. For each type of activity in

BPEL, a LSBB version exists. The service description parser of the service

analyses the service workflow. For each activity in the workflow, it triggers

Framework and Prototype Evaluation

214

the creation and configuration of the correspondent LSBB in the SEE. The

service is generated from the workflow that was described in BPEL.

- Reusable service components offer the functionality for the value-added

services. To define services that use these functionalities, the description of

the reusable service components also needs to be available in the service

description language. Regarding the reusable service components, a mapping

is defined which maps these components from the service description to the

SEE. This requirement is solved with the CBBs.

The SEE should be able to support a wide range of communication protocols.

The integration of new protocols should be possible. Here again, the CBBs

come into play (refer to section 6.2.1). The CBBs within the SEE consists of

the RCSBBs and RAs (refer to section 6.3.3). The RCSBBs implements the

methods, which provide the functionalities that are required for the services.

The RCSBBs can use the RAs to communicate with the outside world. The

RAs offer the protocol-specific communication.

The support of a new protocol can be established by providing a new CBB. If

the new RA and the new RCSBB is deployed within the SEE, the services

can use the new functionalities provided by the CBB. New CBBs, RCSBBs,

and RAs can, for example, be acquired from the Marketplace (refer to section

6.2.4). On the other side, the CBBs offer the new functionalities in BPEL as

partner links. The service designer can use the partner links in BPEL to

describe services that use these new functionalities in a service description.

The generated service can call the new RCSBBs and RAs during service

execution (refer to section 7.2.3).

Framework and Prototype Evaluation

215

Fine-grained elements and coarse-grained elements should be available for

the service developer when he is describing the services. As already said, the

service designer can choose the level of abstraction (refer to section 5.2.3). A

CBB can offer coarse-grained and fine-grained methods to call the

functionalities. The developer can choose its level of abstraction by calling

and configuring the desired methods. A combination of different levels of

abstraction is also supported. Therefore, it is also possible to develop a fine-

grained service, which allows a detailed configuration of special aspects of

the protocol messages.

The framework supports all defined requirements. For the proof of concept, parts of

the framework are implemented. The architecture of the prototype is introduced in

the next section.

8.2 Architecture of the Research Prototype

A research prototype was developed to show that the proposed process for the

creation of value-added services can be provided efficiently in a consistent and

automated manner. The implementation of the prototype included several tasks, the

implementation of the SCE, the SEE, the CBBs, RCSBBs, LSBBs, and the MSBB.

For the proof of concept of the proposed framework, an example use case was

selected and described by using a BPEL design tool. This example service was

created and executed by using the prototype framework, and the results were

analysed. Not all elements of the proposed framework have been implemented for

Framework and Prototype Evaluation

216

the proof of concept. The implemented architecture of the proposed framework

consists of the elements shown in Figure 8.1.

Figure 8.1: Prototype architecture overview

The required parts of the SCE are the CBBs, the service management tool, the

service repository, and the graphical service description tool. For the evaluation, two

CBBs have been developed, the HTTP CBB and the SIP CBB. The HTTP CBB

consists of the HTTP RA, the HTTP RCSBB and the “HTTPServices” BPEL partner

link. The SIP CBB consists of the SIP RA, the SIP RCSBB and the “SIPServices”

BPEL partner link.

The implemented service management tool offers the possibilities of loading a

service description into the framework, monitoring the service, and triggering the

service creation, execution, removal, and its stopping.

A repository is used to save the service descriptions. The framework management

handles this repository. With the service management tool, new service descriptions

Framework and Prototype Evaluation

217

can be loaded into the repository, removed from the repository, and loaded from the

repository for service creation.

The marketplace is part of the proposed real-world framework architecture (refer to

section 6.1), however it has not been implemented in the prototype. It is required for

a real-world implementation but not for evaluation purposes. Therefore, the

marketplace was not implemented into the prototype.

For service description, the Eclipse BPEL Designer (Eclipse, 2013) was selected.

The example service for the framework evaluation is generated with this BPEL tool.

The Eclipse BPEL developer tool allows a graphical development with drag and drop

features for the service components and the possibility to modify the BPEL

document within an XML editor directly. Figure 8.2 gives an impression of the

Eclipse BPEL Designer with the graphical drag-and-drop editor on the left and with

the XML editor on the right side.

Figure 8.2: Eclipse BPEL developer

Figure 8.3 presents an overview of the implemented framework prototype

components and their interaction.

Framework and Prototype Evaluation

218

Figure 8.3: Research prototype implementation overview

For loading the service description into the framework repository, a servlet called

“Service Management Servlet” in combination with an EJB, called “Management

EJB”, was developed. A screenshot of the web interface is shown in Figure 8.4. The

user of the framework can select the service description, which shall be loaded into

the repository. The Service Management Servlet then sends the service description to

the Management EJB. With the help of the Java EE Connection Architecture (JCA)

(refer to section 7.1.3), the EJB generates a JAIN SLEE event which include the

service description and fires this event to the Framework Management. A MSBB,

which is called “Framework MSBB”, analyses this event and stores the service

description in the repository. This MSBB is the main MSBB of the framework. It

controls the service life cycle and the framework context.

Framework and Prototype Evaluation

219

Figure 8.4: Service management web interface

The SCE prototype provides another servlet which is responsible for creating,

starting, stopping and monitoring the service instances. This servlet is called

“Interactive Management Servlet”. The servlet web interface is shown in Figure 8.5.

This servlet is communicating with the framework by using a HTTP RA (refer to

section 7.1.3). The servlet communicates with the HTTP RA which generates the

corresponding JAIN SLEE events and sends them to the framework management.

The SEE implementation is based on the open-source Mobicents JAIN SLEE

application server (Mobicents, 2014). A MSBB, which is called “Interactive MSBB”,

analyses these events and triggers the requested tasks. It manages the monitoring

information and offers service control functionalities to the framework user. The

Interactive MSBB communicates with the Framework MSBB in order to receive

monitoring information from the framework and send requests from the user to the

Framework and Prototype Evaluation

220

framework. Furthermore, it communicates with the Interactive Management Servlet

via the HTTP RA to receive user requests and send monitoring information.

Figure 8.5: Web interface of interactive management servlet

As described in section 7.2.2, the composition, execution, and removal of service

instances is triggered by the Framework Management. In the prototype, the

Framework MSBB is responsible for this task. It communicates with the responsible

SCMSBB which communicates with the LSBBs of the service logic layer and the

RCSBBs of the resource connection layer. For the evaluation of the framework, the

SCMSBB and a selection of useful LSBBs and RCSBBs has been developed.

The following components of the service logic layer have been implemented: Assign

LSBB, Empty LSBB, Flow LSBB, If LSBB, Invoke LSBB, Receive LSBB,

Sequence LSBB, Wait LSBB, and While LSBB.

In the resource connection layer, two RCSBBs have been implemented: The SIP

RCSBB offers basic SIP functionality, and the HTTP RCSBB provides HTTP

Framework and Prototype Evaluation

221

support. As already mentioned, these RCSBBs are part of the corresponding CBBs.

The two RAs, which are part of the CBBs, are the SIP RA and the HTTP RA realised

by Mobicents JAIN SLEE implementation.

BPEL supports x-Path as standardised scripting language to define expressions (refer

to section 5.2.1). For this prototype, the x-Path language was not implemented, but to

support conditions for the while- and if- activities and to define expressions within

the Assign activity, a limited set of conditions and expressions are supported. For the

proof of the concept, the insertion of literals into variables, the reading of variable

values, the writing of values into other variables, and the manipulation of a variable

with an “INC” operation are supported.

Further components have been implemented for the evaluation of the framework: the

framework context (refer to section 7.1.1) and the communication channels (refer to

section 7.1.5) with ready event, configuration event, inter-service event, and an event

for communication with the management EJB interface (refer to section 7.1.3).

8.3 Proof of Concept of the Framework Components

This section describes the implemented components of the framework which are

involved in the service instance life cycle. The relevant components are the

SCMSBB of the service management layer, the LSBBs from the service logic layer,

and the RCSBBs from the resource connection layer.

As already mentioned in the last section, only a limited set of important LSBBs has

been implemented for the proof of concept:

Framework and Prototype Evaluation

222

- Empty LSBB: This LSBB provides no own functionality. This basic LSBB is

used for the proof of concept to evaluate the life cycle phases of the service

instances (refer to section 8.3.1).

- Sequence LSBB: Sequential execution of the embedded components is

controlled by this LSBB (refer to section 8.3.2).

- Assign LSBB: This LSBB is required for the manipulation of variable values

(refer to section 8.3.3).

- Flow LSBB: Parallel execution of components is controlled by this LSBB

(refer to section 8.3.4).

- If LSBB: The If LSBB offers the if-condition logic to services (refer to

section 8.3.5).

- Invoke LSBB: The invoke LSBB is required to call functionalities of

RCSBBs (refer to section 8.3.6).

- Receive LSBB: Waits for events from the RCSBBs (refer to section 8.3.7).

- Wait LSBB: Provides timer functionality to services (refer to section 8.3.8).

- While LSBB: Loop support to services is provided by the while LSBB (refer

to section 8.3.9).

In the service life cycle, also the components of the resource connection layer are

involved. Two implemented examples, the SIP RCSBB and the HTTP RCSBB, are

evaluated in combination with the invoke LSBB (refer to section 8.3.6) and the

receive LSBB (refer to section 8.3.7).

Framework and Prototype Evaluation

223

8.3.1 Implementation of the Empty LSBB

The Empty LSBB is the most basic component of the service execution layer. It can

be used as a representation for the evaluation of other LSBBs. It offers basic LSBB

functionality, and it is able to send and receive events. The Empty LSBB can be used

to illustrate the service life cycle. In the composition phase (refer to section 7.2.2),

the LSBBs will be created and configured, in the reconfiguration phase (refer to

section 7.2.4) the configuration of the LSBBs can be modified, and in the removal

phase (refer to section 7.2.5) the LSBBs can be deleted. In the execution phase (refer

to section 7.2.3), the Empty LSBB waits for an inter-service event from its

predecessor. When the LSBB is triggered by this event, it will load the inter-service

channel from the context and send an inter-service event to its subsequent

component.

Only for the Empty LSBB all four phases are described in this thesis, for all other

framework components, only the configuration phase and the execution phase are

presented, because the other two phases are almost similar to those shown in case of

the Empty LSBB.

For the proof of concept of the Empty LSBB, a BPEL process with one Empty

activity was developed. The graphical representation of this process is shown in

Figure 8.6. The process consists of a starting point, an end point, and the Empty

activity called “Empty”.

Framework and Prototype Evaluation

224

Figure 8.6: Graphical representation of the empty BPEL process

The XML representation of the process is depicted in Figure 8.7. This XML file has

been generated using the Eclipse BPEL developer tool. The name of the BPEL

process is “EmptyEval” (line 1). A normal BPEL process starts with a Sequence

activity that encapsulates other BPEL activities, but for the evaluation, the process

parser also allows the Empty activity (line 12). The rest of the process, the

namespace definitions (line 2 to 5) and the imports (line 8 to 10), are irrelevant in

this case.

Figure 8.7: XML document of the “EmptyEval” process

This BPEL process is uploaded to the service repository, and the life cycle is

triggered. The expected behaviour of the framework components in the composition

phase is illustrated in Figure 8.8.

Framework and Prototype Evaluation

225

Figure 8.8: Empty composition, reconfiguration, and removal phase

To generate the service, the framework management sends a configuration event to

the responsible SCMSBB. This SBB analyses the service description and determines

the required components. In this case, only one component, the Empty LSBB, is

required to realise the service. The SCMSBB sends a configuration event to the

Empty LSBB, and the Empty LSBB sends a ready Event back to the SCMSBB after

finishing its configuration steps. The SCMSBB confirms the service creation with a

ready event to the framework management, and the service is ready to be triggered

for execution. The expected behaviour in the execution phase is shown in Figure 8.9.

Figure 8.9: Empty execution phase

The framework management triggers the execution phase, it sends an inter-service

event to the responsible SCMSBB. This SCMSBB sends an inter-service event to the

first LSBB of the service, in this case the Empty LSBB. When the Empty LSBB

Framework and Prototype Evaluation

226

receives this event, it generates a new inter-service event and sends it to the next

service component. This service consists of one LSBB only there is no RCSBB. The

Empty LSBB is the first and the last component of the service instance. Because of

this, the event is sent back to the SCMSBB. When receiving this event, the service

instance is executed and can be removed. The SCMSBB confirms the execution of

the instance to the framework management with an inter-service event.

The behaviour in the reconfiguration phase is similar to the behaviour in the

composition phase. Instead of setting an initial configuration of the Empty LSBB, an

existing configuration is changed to a new one. In the removal phase, the executed

Empty LSBB and the SCMSBB will be removed. The received and sent messages

will be the same in all three phases, the composition phase, the reconfiguration phase

and the removal phase (Figure 8.8).

To evaluate the behaviour of the service components, logging outputs were added to

interesting components. Each logging output starts with the name of the component.

The framework management is represented as “FrameworkManagementSBB”. The

SCMSBB is represented as “ServiceControlMSBB” and the Empty LSBB as

“Empty”. In order to give an overview of the exchanged events, screenshots of the

logging outputs for all four phases and message sequence charts (MSCs) are shown

in the following figures.

The first screenshot in Figure 8.10 represents the logging output of the service

composition phase, and Figure 8.11 represents the corresponding MSC.

Framework and Prototype Evaluation

227

Figure 8.10: Empty composition phase

As expected, the framework management triggers the service composition with a

configuration event. The SCMSBB receives the event and starts with the analysis of

the received BPEL process. The SCMSBB finds the name of the process, the

imports, and the Empty activity. To create and configure an Empty LSBB, the

SCMSBB sends a configuration event to the LSBB. The Empty LSBB receives the

event and returns a ready event when the configuration is finished. The SCMSBB

receives this ready event and sends a ready event to the framework management.

Now the service is configured and ready for execution.

Figure 8.11: Empty composition phase events

The logging output of the service execution phase is shown in Figure 8.12 and the

corresponding MSC in Figure 8.13.

Framework and Prototype Evaluation

228

Figure 8.12: Empty execution phase

The framework management triggers the execution of the service instance with an

inter-service event. The responsible SCMSBB receives the event and starts the

execution of the Empty LSBB by sending an inter-service event to this LSBB. The

Empty LSBB only supports the basic LSBB functionality, which is implemented in

all LSBBs, but it has no special extra functionality. The Empty LSBB receives the

inter-service event and generates a new inter-service event, which is sent back to the

SCMSBB. When the SCMSBB receives this event, the service instance is executed.

To inform the framework about the execution of the service instance, an inter-service

event is generated and sent to the framework management.

Figure 8.13: Empty execution phase events

The service removal phase is triggered, e.g., when a service instance should be

removed from the framework. The screenshot in Figure 8.14 represents the logging

output of the service removal phase. The MSC corresponds to the MSC of the service

composition phase in Figure 8.11. In this example, the service instance is already

created and configured. The framework management triggers this phase with a

configuration event. The responsible SCMSBB receives this event and determines all

Framework and Prototype Evaluation

229

components of the service instance that have to be removed. In this case, the Empty

LSBB has to be removed, so the SCMSBB sends a configuration event to this

component. The Empty LSBB receives the event and generates a ready event. The

ready event is sent to the SCMSBB and the Empty LSBB is removed. The SCMSBB

receives this event and waits until all components have confirmed its removal. In this

case, only the Empty LSBB has to confirm its removal, so the SCMSBB can

generate a ready event and send it as confirmation to the framework management.

The SCMSBB removes the service context and the service instance.

Figure 8.14: Empty removal phase

The service reconfiguration phase is triggered, e.g., when the configuration of a

service instance should be changed. The screenshot in Figure 8.15 represents the

logging output of the service removal phase. The MSC corresponds to the MSC of

the service composition phase in Figure 8.11. The service instance is already created

and configured. The framework management triggers this phase with a configuration

event. The SCMSBB of the service instance receives this event and sends

configuration events to all components of the instance that need to be changed. In

this case, it sends a configuration event to the Empty LSBB. The Empty LSBB

changes its configuration and sends a ready event back to the SCMSBB. The

Framework and Prototype Evaluation

230

SCMSBB confirms the reconfiguration of the service instance with a ready event to

the framework management.

Figure 8.15: Empty reconfiguration phase

The fundamental functionality of the SCE and SEE has been demonstrated within

this section. An example BPEL process that contains the Empty LSBB was analysed.

The service components, which are evaluated in the next sections, make use of this

functionality.

8.3.2 Implementation of the Sequence LSBB

The Sequence LSBB is mapped to the Sequence activity in BPEL. It is required to

describe the sequential execution of activities in BPEL. Most useful service

descriptions always require the Sequence activity. Therefore, the sequence LSBB is

implemented in the service execution layer.

A Sequence activity is a container for one or more activities that are executed

sequentially, in the lexical order in which they appear within the service description

of the Sequence activity. A Sequence LSBB is normally the first SBB within a

service instance and is triggered by the SCMSBB. In addition, the Sequence LSBB

can be encapsulated within other LSBBs to support a sequential execution order

within these LSBBs. Examples for this are the While LSBB, the If LSBB, and the

Framework and Prototype Evaluation

231

Flow LSBB. The graphical representation of the example BPEL process in Figure

8.16 consists of a Sequence activity called “main” and an Empty activity called

“Empty”.

Figure 8.16: Graphical representation of the sequence evaluation BPEL process

The Empty activity is encapsulated within the sequence. The XML document of the

BPEL process is shown in Figure 8.17.

Figure 8.17: XML document of the “SequenceEval” process

The BPEL process describes a service that will start executing the sequence. The

components within the sequence are executed in the top-down order. The Sequence

activity contains only one element, the Empty activity. The name of this BPEL

Framework and Prototype Evaluation

232

process is “SequenceEval” (line 1). The sequence (line 12 to 14) encapsulates the

Empty activity (line 13).

For the evaluation of the Sequence LSBB, the service composition phase and the

service execution phase are analysed. In the composition phase (Figure 8.18), it is

expected that the framework management triggers the service composition with a

configuration event sent to the SCMSBB. The SCMSBB analyses the service

description of the BPEL process and configures the required components. The

sequence description is analysed for any encapsulated components. Communication

channels for the service execution phase are created according to the order of the

encapsulated components. The SCMSBB by itself sends out configuration events to

create and configure the LSBBs and waits for ready events from these LSBBs. When

the ready events are received, the SCMSBB sends a ready event to the framework

management to confirm the creation of the service instance.

Figure 8.18: Sequence evaluation composition phase

In the service execution phase (Figure 8.19), the framework management triggers the

execution of a service instance by sending an inter-service event to the SCMSBB.

The SCMSBB starts the execution by sending an inter-service event to the first

component of the service, in this case the Sequence LSBB. The Sequence LSBB

Framework and Prototype Evaluation

233

sends an inter-service event to the first SBB that is encapsulated within the sequence;

in this case, the Empty LSBB and the Empty LSBB send an inter-service event back

to the SCMSBB. Once the service instance is executed, the SCMSBB confirms the

execution to the framework management with an inter-service event.

Figure 8.19: Sequence evaluation execution phase

The service description from Figure 8.17 was loaded into the repository and triggered

for creation and execution. The log output for the service composition phase is

shown in Figure 8.20, and the log output for the service execution phase is depicted

in Figure 8.22. For a more detailed analysis, the event communication of both phases

is shown in the following MSCs. The MSC for the composition phase is shown in

Figure 8.21 and for the execution phase in Figure 8.23.

The log output in Figure 8.20 and the MSC in Figure 8.21 confirm the expected

behaviour in the service composition phase. The framework management triggers the

creation of a new service instance. The SCMSBB parses the service description and

sends configuration events to the Sequence LSBB and to the Empty LSBB. Both

LSBBs respond with a ready event and the SCMSBB confirms the creation of the

service instance with a ready event to the framework management.

Framework and Prototype Evaluation

234

Figure 8.20: Sequence composition evaluation log

Figure 8.21: Sequence composition phase MSC

The service execution phase (Figure 8.22 and Figure 8.23) is initiated with an inter-

service event. This even is send from the framework management to the SCMSBB of

the service instance. The SCMSBB fires an inter-service event to the first LSBB of

the workflow that is the Sequence LSBB. The next LSBB is the Empty LSBB,

encapsulated within the sequence. This LSBB is the last element of the workflow.

Therefore, it fires an inter-service event back to the SCMSBB, which confirms the

execution of the instance to the framework management with an inter-service event.

Framework and Prototype Evaluation

235

Figure 8.22: Sequence execution evaluation log

Figure 8.23: Sequence execution phase MSC

For both phases, the behaviour of the service instance is as expected. The Empty

encapsulated within the Sequence activity was successfully parsed, and the

correspondent LSBBs of the sequence and the empty activities created and executed.

8.3.3 Implementation of the Assign LSBB

The Assign LSBB supports initialisation, copy, and manipulation of variable values.

It is possible to insert literals into the variable and to define expressions in order to

insert and manipulate values.

An appropriate example BPEL process has been defined for the evaluation of the

Assign LSBB. The graphical representation of this process is shown in Figure 8.24,

and an excerpt of the corresponding XML representation in Figure 8.25. The name of

the BPEL process is “AssignEval” (line 1). Two integer variables “var1” (line 13)

and “var2” are defined for the assign of integer values to the variables (line 14). The

Framework and Prototype Evaluation

236

process consists of two assign activities that are contained within the Sequence

activity “main” (line 17 to 42).

Figure 8.24: Graphical representation of the assign evaluation BPEL process

The first Assign activity “Assign1” (line 18 to 27) contains two “copy” operations.

Both “copy” operations define literals in their “from” part that are copied into the

variables described in the “to” part. Both variables are integer type variables. The

literals are parsed with the “parseInt” operation, and their integer values are

assigned to the variables. The first operation copies the literal “9” to the variable

“var1” (line 19 to 22), and the second operation the literal “5” to variable “var2”

(line 23 to 26).

The name of the second Assign activity is “Assign2” (line 28 to 41). It contains two

“copy” operations. The first one (line 29 to 34) shows how a variable value can be

read from a variable with the operation “getVariableProperty(…)”. Here the

value of the variable “var1” is copied to the value of the variable “var2”. In the

second “copy” operation (line 35 to 40), the value of variable “var1” is read with

Framework and Prototype Evaluation

237

the “getVariableProperty(…)” operation and incremented with the

“INC(…)” operation. The result is stored in variable “var2”.

Figure 8.25: XML document excerpt of the “AssignEval” process

The service description is transferred to the service repository and triggered for

creation and execution by the web interface of the Interactive Management Servlet.

The log output of the service composition phase is given in Figure 8.26.

Framework and Prototype Evaluation

238

In the composition phase, it is expected that the SCMSBB parse the service

description. All service components, which are found in the description, are created

and configured.

Figure 8.26: Assign composition evaluation log

The framework management triggers the service composition by sending a

configuration event to the SCMSBB. The SCMSBB parses the service description

and identifies the required LSBBs. Then configuration events are sent to all three

LSBBs, the Sequence LSBB and the two Assign LSBBs. Upon their creation and

configuration, ready events are returned to the SCMSBB, and the SCMSBB returns a

ready event to the framework management to confirm the creation and configuration

of the service instance. The MSC with the event communication within the

composition phase is shown in Figure 8.27.

Framework and Prototype Evaluation

239

Figure 8.27: Assign composition phase MSC

It is expected that the components are executed during the execution phase in the

same order as they are described in the process workflow. The Assign LSBBs should

copy the variable values described in the “copy” operation “from” part to the

variables described in the “copy” operation “to” part. For the assign evaluation, the

results of the “copy” operations are printed into the log output (Figure 8.28).

Figure 8.28: Assign execution evaluation log

The service execution phase is triggered by an inter-service event from the

framework management. The SCMSBB, which receives this inter-service event,

activates the Sequence LSBB. The Sequence LSBB sends an inter-service event to

the first Assign LSBB. The first “copy” operation copies the “9” into the variable

“var1”. As expected, the log output for this “copy” operation prints out the value

Framework and Prototype Evaluation

240

“9” as new value of variable “var1”. In the next “copy” operation “5” is copied to

the variable “var2” and the result “5” printed into the log output.

After finishing both “copy” operations of the first Assign LSBB, the second Assign

LSBB is triggered. The first “copy” operation of “Assign2” reads the value from

variable “var1” and copies it into variable “var2”. The new value of variable “var2”,

which is also printed to the log output, is “9”. The last “copy” operation again reads

out the variable “var1”. The variable is incremented by “1” and copied into variable

“var2”. The log output for the second “copy” operation is “10” (9 + 1). The MSC

with the event communication of the execution phase is shown in Figure 8.29.

Figure 8.29: Assign execution phase MSC

Once the two “copy” operations of the last assign are executed, an inter-service

event is sent to the SCMSBB. To inform the service management that the execution

of the service instance has been completed, the SCMSBB sends an inter-service

event to the framework management.

This section has verified the first basic functionality of the Assign LSBBs; further

functionalities of the Assign LSBB will be evaluated in section 8.3.5, section 8.3.6,

section 8.3.7, section 8.3.9, and in the Wake-up scenario in section 8.4.

Framework and Prototype Evaluation

241

8.3.4 Implementation of the Flow LSBB

The Flow activity provides the service developer with the possibility to describe

parallel execution. This activity can consist of multiple branches that can be executed

in parallel. Each branch can include further activities. The Flow activity is completed

after all branches with their activities have been executed.

The BPEL Flow activity supports parallel execution as well. The Flow activity has

been selected to demonstrate the parallel execution capabilities of service

components in the prototype. The activities of a branch are encapsulated within a

Sequence activity. With these sequences, also multiple activities within a flow

branch are supported. Furthermore, these sequences can contain flow activities.

A minimal example BPEL process with one Flow activity has been chosen for the

proof of concept. The graphical representation is shown in Figure 8.30, and the XML

document representation can be seen in Figure 8.31.

Figure 8.30: Graphical representation of the flow evaluation BPEL process

Framework and Prototype Evaluation

242

The name of the BPEL process is “FlowEval” (line 1). The first activity of the

process is the Sequence activity “main” (line 8 to 17). It contains a Flow activity

“flowtest1” (line 9 to 16), which consists of two branches. Each branch contains a

Sequence activity (“sequence1” (line 10 to 12) and “sequence2” (line 13 to 15) with

an Empty activity (“empty1” (line 10) and “empty2” (line 14)).

Figure 8.31: XML document excerpt of the “FlowEval” process

For the composition phase, it is expected that a service instance can be generated

from the service description. In the execution phase, the two sequences within the

flow together with their included components are executed in parallel. The log output

of the composition phase is illustrated in Figure 8.32 and of the service execution

phase in Figure 8.34. The event communication between the service components is

shown in Figure 8.33 for the service composition phase and in Figure 8.35 for the

service execution phase.

Framework and Prototype Evaluation

243

Figure 8.32: Flow composition evaluation log

In the composition phase (Figure 8.33), the framework management triggers the

SCMSBB, which analyses the service description. For each component found in the

description, it sends configuration events to create and configure these components.

The components confirm their creation and configuration with a ready event. Upon

the SCMSBB has received ready events from all components, it will send a ready

event to the framework management to confirm that the service instance is ready for

execution.

Framework and Prototype Evaluation

244

Figure 8.33: Flow composition phase MSC

The created service instance can now be executed (Figure 8.34 and Figure 8.35). To

start the service, the framework management send an inter-service event to the

SCMSBB. The SCMSBB triggers the first LSBB of the service instance, the

Sequence LSBB, and the Sequence LSBB triggers the Flow LSBB.

For each branch of the Flow activity, the Flow LSBB sends an inter-service event to

the contained Sequence LSBBs. The Sequence LSBBs start their execution

independent from each other. Both Sequence LSBBs with their contained Empty

LSBBs are executed in parallel.

Figure 8.34: Flow execution evaluation log

Framework and Prototype Evaluation

245

The Flow LSBB waits until all branches have completed their execution before it

sends out an inter-service event to the SCMSBB. The SCMSBB confirms the

execution of the service instance back to the framework management with an inter-

service event.

Figure 8.35: Flow execution phase MSC

The example BPEL process demonstrates the possibility of the framework for

parallel execution of service components within the same service instance.

8.3.5 Implementation of the IF LSBB

Conditional behaviour can be described with the If activity. It contains a list of one

or more conditional branches defined by the “if” condition and the optional “elseif”

and “else” conditions. The order in the list of branches is also the order in which the

conditions are analysed. If a condition is evaluated to be true, the corresponding

branch is executed. If a condition evaluates to be false, the next condition is

analysed. If no condition evaluates to be true, the “else” branch is executed. The If

LSBB is completed, when the components contained in the selected branch have

been executed, or immediately when no condition evaluates to be true and no “else”

branch is specified.

Framework and Prototype Evaluation

246

The If LSBB is evaluated with the help of a BPEL process, the graphical

representation of the process is depicted in Figure 8.36, and the XML document of

this process is shown in Figure 8.37.

Figure 8.36: Graphical representation of the if evaluation BPEL process

The process “IfEval” (line 1) contains six activities, a Sequence activity “main” (line

22 to 50), an Assign activity “setValue” (line 24 to 33), the If activity

“IfCheckValue” (line 35 to 49), and three empty activities, namely “Empty1” (line

39), “Empty2” (line 44), and “Empty3” (line 47). The Sequence activity contains the

other five activities. An integer variable with the name “counter” (line 19) is defined

within the process. In the Assign activity, this variable is initialised with the value

“5”. The If activity contains three branches, one “if” branch (line 35 to 39), one

“elseif” branch (line 40 to 45), and one “else” branch (line 46 to 48). As described in

section 8.2, the prototype supports some example operations, expressions, and

conditions. The condition in the “if” branch reads out the value of the variable

“counter”. To do this, it uses the “getVariableProperty(…)” operation.

Framework and Prototype Evaluation

247

Figure 8.37: XML document excerpt of the “IfEval” process

In the “if” condition, the “counter” variable is analysed. If the value is lower than or

equal (<=) to “15”, the condition is evaluated to true and the “if” branch with the

“Empty1” activity is executed. If the condition is evaluated to false, the “elseif”

condition is analysed. In this condition, the variable value is compared with “16”. If

the value is equal (==) to “16”, the condition evaluates to true and the “Empty2”

Framework and Prototype Evaluation

248

activity contained in the “elseif” branch is executed. In case that the “elseif” branch

evaluates to false, the “Empty3” activity in the “else” branch is executed.

In the composition phase, it is expected that all LSBBs are created and configured,

including all three “if” branches. In the execution phase it is expected that only the

first “if” branch is executed. The “if” branch evaluates to true because the value of

the “counter” variable is set to “5”, and the “if” condition evaluates to “true” when

the variable value is less than or equal to “15”. After the “if” branch with the

“Empty1” LSBB has been executed, an inter-service event should be sent back to the

SCMSBB. The other branches should not be executed.

For the evaluation of the IF LSBB, the service description is loaded into the service

repository, and the service is triggered for configuration and execution by the web

interface of the Interactive Management Servlet. The log outputs of the service

composition phase and of the service execution phase are analysed. The log output of

the composition phase is given in Figure 8.38 and Figure 8.39, the corresponding

MSC showing the event communication in Figure 8.40. The log output of the service

execution phase is shown in Figure 8.41 and the MSC with the event communication

in Figure 8.42.

The framework management triggers the composition phase with a configuration

event (see Figure 8.38 and Figure 8.40). The SCMSBB analyses the service

description and identifies the required components and variables. For creation and

configuration of the LSBBs, configuration events are sent to these components.

Framework and Prototype Evaluation

249

Figure 8.38: If composition evaluations log – part 1

Once all service components have been created, they receive their configuration

events (Figure 8.39 and Figure 8.40).

Figure 8.39: If composition evaluations log part – 2

Framework and Prototype Evaluation

250

Upon configuration, the service components return a ready event back to the

SCMSBB. The SCMSBB sends a ready event back to the framework management

when it has received the ready events of all other components.

Figure 8.40: If composition phase MSC

The execution phase starts with an inter-service event from the framework

management (Figure 8.41). The workflow of the service instance is executed in

accordance to the service description, and inter-service events are sent from the

executed LSBB to the subsequent one. The “counter” variable is initialised to “5” in

the Assign LSBB and analysed in the “if” condition of the If LSBB. If the value of

the variable is less than or equal to 15, the condition evaluates to be true. In this case

the condition evaluates to “true”, and the “if” branch with the Empty1 activity is

executed.

The execution of the “if” branch is finished after the execution of the Empty1 LSBB.

This LSBB sends back an inter-service event to the SCMSBB. The other empty

LSBBs, Empty2 LSBB and Empty3 LSBB, are not executed, because the “if”

condition already evaluates to true. The SCMSBB sends an inter-service event to the

framework management, and the execution of the service instance is completed.

Framework and Prototype Evaluation

251

Figure 8.41: If execution evaluation log

Figure 8.42: If execution phase MSC

8.3.6 Implementation of the Invoke LSBB together with SIP

RCSBB

In BPEL, the Invoke LSBB is represented by an Invoke activity. It is used to call

methods within a partner link. In the SEE, it communicates with a RCSBB. This

RCSBB implements the methods that offer the service functionalities and protocol

specific communication though the RAs.

An example BPEL process is used for the proof of concept of the Invoke LSBB. The

graphical representation of the BPEL process is shown in Figure 8.43. Excerpts of

Framework and Prototype Evaluation

252

the corresponding XML representation of the process are given in Figure 8.44,

Figure 8.45, Figure 8.46, and Figure 8.47.

Figure 8.43: Graphical representation of the invoke evaluation BPEL process

The BPEL process describes the configuration and sending of a SIP MESSAGE

request. Only three BPEL activities are required for this process; a Sequence activity

that contains the other two activities, one Assign activity (line 28 to59, Figure 8.46)

for a creation of the SIP MESSAGE request, and one Invoke activity (line 60 to 65,

Figure 8.47) for sending the SIP request.

For this service, the SIP protocol will be used, and a CBB that supports this protocol

is required. Therefore, for the prototype a CBB called “SIP CBB” has been

developed that supports the functionalities required for this service.

The SIP CBB consists of the SIP RCSBB, the (JAIN SLEE) SIP RA, the

“SIPServices” partner link, the SIP request, and SIP response data types. The SIP

CBB partner link description is shown in Figure 8.44.

Framework and Prototype Evaluation

253

Figure 8.44: SIP CBB partner link from the “InvokeEval” process – part 1

Before the SIP MESSAGE request can be sent, it must be configured. Therefore, a

“sipRequestType” variable is required. In Figure 8.45, this variable is created with

the name “sendSIPRequest”. The complex “sipRequestType” variable belongs to the

SIPCBB and consists of multiple parts. This allows the configuration of the SIP

request header fields. The implemented SIP CBB will set the most header fields

automatically, but some header fields can be manipulated in BPEL by the service

developer, e.g., the “From” and “To” display names, the “From” and “To” SIP URIs,

the Contact SIP URI, and the SIP message body.

Figure 8.45: XML document excerpt of the “InvokeEval” process – part 2

The SIP request variable is configured within the Assign activity (Figure 8.46). The

Assign activity consists of five “copy” operations. In the first operation (line 29 to

34), the “From” display name of the request is set to “testservice”. The second

“copy” operation (line 35 to 40) configures the “From” URI, the third “copy”

operation (line 41 to 46) the “To” display name, and the fourth (line 47 to 52) the

“To” URI of the request. In the last “copy” operation (line 53 to 58), the message

body of the SIP MESSAGE request is set to “test message”.

Framework and Prototype Evaluation

254

Figure 8.46: XML document excerpt of the “InvokeEval” process – part 3

The last activity of the BPEL process is the Invoke activity “InvokeSIP” (Figure

8.47). This activity invokes the operation “doSIPMessage” on the “SIPServices”

partner link with the variable “sendSIPRequest”. The Invoke activity describes the

sending of the SIP Message request defined in the variable “sendSIPRequest”.

Figure 8.47: XML document excerpt of the “InvokeEval” process – part 4

The described service is loaded into the service repository of the SEE and is

triggered by the framework management. In the composition phase, it is expected

that all components of the service instance are created and configured, the SCMSBB,

Framework and Prototype Evaluation

255

the three LSBBs (Sequence LSBB, Assign LSBB, and Invoke LSBB), and the SIP

RCSBB, which is part of the SIP CBB and implements the required SIP functionally.

In the execution phase, it is expected that the framework management triggers the

service execution. The components of the service instance communicate with each

other using inter-service events.

The Invoke LSBB triggers the SIP RCSBB to send out the configured SIP

MESSAGE request. This RCSBB prepares the SIP Request, which is sent by the SIP

RA of the SIP CBB. To fulfil the SIP transaction, a 200 OK response from the called

SIP user agent is expected. The SIP RA handles the SIP 200 OK message. After the

SIP message has been sent, the SIP RCSBB should fires an inter-service event to the

SCMSBB, which upon reception also sends an inter-service event to the management

framework to confirm the execution of the service instance.

The log output of the service composition phase is shown in Figure 8.48 and Figure

8.49. The corresponding MSC shows the event communication in Figure 8.50. For

the service execution phase, the log output is given in Figure 8.51. The SIP

MESSAGE request is illustrated in Figure 8.52 and the corresponding 200 OK

response in Figure 8.53. The MSC with the event communication and the SIP

transaction is shown in Figure 8.54.

Framework and Prototype Evaluation

256

Figure 8.48: Invoke composition evaluation log – part 1

As expected, the management framework triggers the service composition phase with

a configuration event sent to the SCMSBB (Figure 8.48 and Figure 8.50). The

SCMSBB analyses the service description and identifies the required variables and

the components of the service instance. Configuration events are sent to create and

configure the service components.

Figure 8.49: Invoke composition evaluation log – part 2

Each service component receives its configuration event, sets the new configuration,

and returns a ready event to the SCMSBB. To confirm the creation and configuration

Framework and Prototype Evaluation

257

of the SCMSBB, a ready event is also sent to the framework management (Figure

8.49, Figure 8.50). With this step, the service instance is ready for execution.

Figure 8.50: Invoke composition phase MSC

The execution phase is initiated with an inter-service event from the framework

management to the SCMSBB (Figure 8.51, Figure 8.54). The SCMSBB activates the

Sequence LSBB, which starts the Assign LSBB. The Assign LSBB configures the

parameters of the request message variables. When finalised it sends an inter-service

event to the Invoke LSBB that triggers the SIP RCSBB.

Figure 8.51: Invoke execution evaluation log

The SIP RCSBB creates and configures the SIP MESSAGE request (Figure 8.52)

and sends it out with the SIP RA. The SIP softphone that receives the SIP request

(Figure 8.55) returns a 200 OK response (Figure 8.53) to the SIP RA. In the next

Framework and Prototype Evaluation

258

step, the SIP RCSBB sends an inter-service event to the SCMSBB, which also

returns an inter-service event to the framework management.

Figure 8.52: Invoke evaluation log SIP MESSAGE

Figure 8.53: Invoke evaluation log SIP 200OK

Figure 8.54: Invoke execution phase MSC

To get an impression of the result of this example service, a screenshot of the SIP

softphone receiving the SIP MESSAGE request is shown in Figure 8.55. The

softphone is called “PhonerLite” (PhonerLite, 2014). In the text window on the right

side of the screenshot, the received message “test message” is displayed. The

message was received from “testservice@192.168.67.49”. The SIP URI of the user is

“sip:testuser@192.168.67.15” (displayed on the status line).

Framework and Prototype Evaluation

259

Figure 8.55: SIP message received in SIP user agent

8.3.7 Implementation of the Receive LSBB together with HTTP

RCSBB

The Receive LSBB can receive events from RCSBBs. The execution of the service

waits until the Receive LSBB receives an inter-service event from the corresponding

RCSBB.

The example service, which is used for the proof of concept, waits for a HTTP GET

request. Therefore, a HTTP CBB was developed. The HTTP CBB supports the

HTTP protocol functionalities that are required for this service. The HTTP CBB

consists of the HTTP RCSBB, the (JAIN SLEE) HTTP RA, the “HTTPServices”

partner link, the HTTP request, and HTTP response data types. When the HTTP RA

receives an HTTP GET request, it sends an “onGETEvent” event to the HTTP

RCSBB that triggers the Receive LSBB with an inter-service event.

The graphical representation of the example BPEL process is depicted in Figure

8.56. An excerpt of the corresponding XML document is shown in Figure 8.57.

Framework and Prototype Evaluation

260

Figure 8.56: Graphical representation of the receive evaluation BPEL process

The name of the BPEL process is “HTTPEval” (line 1). The partner link, which is

required for the service, is called “HTTPServices” (line 11 to 16). An HTTP request

variable is required to define the URI on which the HTTP RA is listening for

incoming HTTP requests. The variable is from the type “httpRequestType” with the

name “HTTPRequest” (line 18 to 20).

The BPEL process consists of three activities, a Sequence activity “main” (line 22 to

36) an Assign activity “assign1” (line 23 to 30), and a Receive activity

“receiveHTTPGet” (line 31 to 35). The Sequence activity contains the other two

activities. The Assign activity consists of one “copy” operation (line 24 to 29).

Here, the “RequestURI” part of the service variable “HTTPRequest” is set to the

request URI “/mobicents/rcsbbtestB”. The Receive LSBB defines the partner link,

method, port type, and the variable that should be used in this service.

Framework and Prototype Evaluation

261

Figure 8.57: XML document excerpt of the “HTTPEval” process

In the service composition phase it is expected that the LSBBs and the HTTP

RCSBB are identified, created, and configured. The composition phase is triggered

by a configuration event sent from the framework management to the SCMSBB,

which then sends configuration events to the identified service components. When

the components have completed their configuration tasks, each of them sends a ready

event to the SCMSBB, which then itself sends a “ready event” back to the

framework management.

During the execution phase, inter-service events are sent between the components, in

the order defined by the service description. The framework management triggers the

execution by sending an inter-service event to the SCMSBB. From there an inter-

service event is sent to the Sequence LSBB, which sends an inter-service event to the

Framework and Prototype Evaluation

262

Assign LSBB. After the request variables have been configured, the HTTP RCSBB

is triggered and starts waiting for “onGETEvent” events from the HTTP RA. When

the HTTP RA receives an HTTP request, it generates an “onGETEvent” event. This

event is sent to the HTTP RCSBB. With this event, the HTTP RCSBB is triggered

and executed. It creates an inter-service event that is sent to the Receive LSBB. The

Receive LSBB is the last LSBB of the service instance. Therefore, it will send its

inter-service event to the SCMSBB, which also sends an inter-service event to the

framework management to inform it about the successful execution of the service

instance.

The log output of the service composition phase is illustrated in Figure 8.58 and in

Figure 8.59. The MSC of the event communication between the components in the

composition phase is shown in Figure 8.60. The log output of the service execution

phase is given in Figure 8.61. The corresponding MSC with the event

communication and the HTTP protocol communication is shown in Figure 8.62.

Figure 8.58: Receive composition evaluation log – part 1

The SCMSBB receives the inter-service event from the framework management and

starts analysing the service description. It finds the partner link “HTTPServices” and

Framework and Prototype Evaluation

263

the “HTTPRequestType” variable. The SCMSBB identifies the required LSBBs and

the HTTP RCSBB, and sends configuration events for the creation and configuration

of these components (Figure 8.58 and Figure 8.60).

Figure 8.59: Receive composition evaluation log – part 2

After the components have finished their configuration, they send ready events back

to the SCMSBB (Figure 8.59 and Figure 8.60). The SCMSBB waits until all ready

events have been received, and then it sends an own ready event to the framework

management. Now, the service is created, configured, and ready for execution.

Figure 8.60: Receive composition phase MSC

The execution phase starts with an inter-service event from the framework

management to the SCMSBB (Figure 8.61 and Figure 8.62). The components are

executed in the expected order. After the Assign LSBB has configured the request

Framework and Prototype Evaluation

264

URI in the HTTP request variable, it will fire an inter-service event to the HTTP

RCSBB. The RCSBB waits until it receives an “onGETEvent” from the HTTP RA

with the defined request URI, then it sends an inter-service event to the Receive

LSBB. This LSBB is the last LSBB of the service instance. It sends an inter-service

event back to the SCMSBB. To confirm the successful execution of the service

instance, the SCMSBB informs the framework management by sending an inter-

service event.

Figure 8.61: Receive execution evaluation log

Figure 8.62: Receive execution phase MSC

Framework and Prototype Evaluation

265

8.3.8 Implementation of the Wait LSBB

The Wait activity offers the possibility to define a delay before the next activity is

executed. The Wait activity is completed when the specified deadline or duration is

reached. This activity is required for the test scenario in section 8.4.

For the evaluation of the Wait activity, a minimal example BPEL process has been

developed. The graphical representation of the process is given in Figure 8.63, and

the XML document representation in Figure 8.64.

Figure 8.63: Graphical representation of the wait evaluation BPEL process

The name of the BPEL process is “WaitEval” (line 1). It consists of only two

activities, the Sequence activity “main” (line 8 to 12), and the Wait activity “wait1”

(line 9 to 11). The Wait activity is contained within the Sequence activity. The

duration of the Wait activity is set to 20000 milliseconds (line 10).

Framework and Prototype Evaluation

266

Figure 8.64: XML document of the “WaitEval” process

It is assumed that the service instance has been created and configured in the

composition phase. In the execution phase, the service is executed until the Wait

LSBB is reached. Then the Wait LSBB starts the timer and waits 20000 milliseconds

until the timer is expired. A timer event then activates the Wait LSBB again, and the

execution of the service instance continues.

The log output of the framework during the service composition phase is given in

Figure 8.65, and the MSC of the event communication between the service

components is shown in Figure 8.66.

Figure 8.65: Wait composition evaluation log

Framework and Prototype Evaluation

267

As expected, the composition phase is triggered by the framework management. The

description is parsed by the SCMSBB, and the creation and configuration of the

Sequence LSBB and of the Wait LSBB is triggered by configuration events. Both

LSBBs answer with a ready event and the SCMSBB confirms with a ready event to

the framework management that the service instance has been created.

Figure 8.66: Wait composition phase MSC

The log output of the execution phase is shown in Figure 8.67, and the event

communication during the execution phase in the MSC of Figure 8.68.

To evaluate the Wait LSBB, some log output was added. This output consists of a

timestamp shortly before the Wait LSBB starts the timer, and a timestamp shortly

after the timer event has occurred.

Figure 8.67: Wait execution evaluation log

Framework and Prototype Evaluation

268

The execution starts with an inter-service event from the framework management.

Each LSBB in the workflow is executed until the Wait LSBB is reached. The Wait

LSBB prints out the timestamp (1389548229047 ms), starts the timer (20000 ms),

and waits until the timer ends. When the timer event occurs, a new timestamp is

printed out (1389548249051 ms). The difference (1389548249051 ms -

1389548229047 ms = 20004 ms) confirms the expected value. The addition of 4 ms

is caused by timer setup, event handling, and the print instruction. The Wait LSBB is

the last service component of the service; it sends an inter-service event to the

SCMSBB, and the SCMSBB confirms the service instance execution to the

framework management with an inter-service event.

Figure 8.68: Wait execution phase MSC

This section discussed the implementation of the Wait LSBB and demonstrated how

the Wait activity can be used in order to realise the wait functionality.

8.3.9 Implementation of the While LSBB

A possibility to define loops in BPEL is the While activity. The While LSBB is the

equivalent of the While activity in the SEE and has been implemented in the

prototype. The condition of the While activity is evaluated for each loop. If the

Framework and Prototype Evaluation

269

condition evaluates to true, the activities contained within the While activity are

executed. If the condition evaluates to false, then the next activity after the While

activity is executed.

The While LSBB is evaluated with the help of an example BPEL process. The

graphical representation of the process is shown in Figure 8.69, and the XML

document of this process is depicted in Figure 8.70 and Figure 8.71.

Figure 8.69: Graphical representation of the while evaluation BPEL process

The BPEL process “WhileEval” consists of five activities, two sequences, a while

loop, and two assigns. The integer variable “counter” is required to demonstrate the

behaviour of the while condition.

Framework and Prototype Evaluation

270

Figure 8.70: XML document excerpt of the “WhileEval” process – part 1

The first activity of the process is the Sequence activity “main” (Figure 8.70, line

16), which contains all other activities. The first activity within the sequence is the

Assign activity “setValue” (Figure 8.70, line 17 to 22). The “copy” operation of the

assign sets the value of the counter variable to “3”. This value is required for the

condition of the While activity.

Figure 8.71: XML document excerpt of the “WhileEval” process – part 2

The name of the While activity is “whileTest” (Figure 8.71, line 24 to 38). The while

condition is evaluated to “true”, if the counter variable is lower than or equal (<=) to

“3”. As described in section 8.2, some example operations, expressions, and

conditions are supported by the prototype. To read out the value of the variable

Framework and Prototype Evaluation

271

“counter”, the “getVariableProperty” operation is used. The While activity

contains the Sequence activity “sequence2” (Figure 8.71, line 28 to 37), which,

again, contains the Assign activity “changeValue” (Figure 8.71, line 29 to 36). The

research prototype requires a Sequence activity within the While activity. Activities

that should be added to the while loop must be added to this Sequence activity. In the

“copy” operation (line 30 to 35) within the Assign activity, the value of the variable

“counter” is read with the “getVariableProperty” operation and incremented

with the “INC” operation.

In the configuration phase, it is expected that the SCMSBB starts analysing the

service description when it receives a configuration event from the framework

management. It creates the integer variable “counter” and identifies the required

LSBBs. The creation and configuration of the LSBBs is triggered with configuration

events. Upon configuration of components, they should answer with ready events.

The SCMSBB waits for the ready events from the LSBBs and sends a ready event to

the framework management to confirm the creation and configuration of the service

instance.

In the execution phase, the SCMSBB receives an inter-service event from the service

management. The SCMSBB sends an event to the first LSBB of the service, the

Sequence LSBB. This LSBB activates the Assign LSBB “setValue” to set the value

of the variable “counter” to “3”. Then the While LSBB starts its execution. In the

first step, the condition is evaluated. The value of the variable “counter” is “3”;

therefore, the condition evaluates to “true” (3 <= 3), and the components contained

within the loop are executed. The Sequence LSBB “sequence2” receives an event

Framework and Prototype Evaluation

272

from the While LSBB and executes the contained LSBBs in a sequential order. The

only component within the “sequence2” is the Assign LSBB “changeValue”. The

“copy” operation of the Assign LSBB increments the value of the variable

“counter” to “4”.

Now, the components within the while loop are executed once, and the condition is

checked again. The value of the variable “counter” is “4”, which is why the condition

should evaluate to “false” (4 <= 3) and the While LSBB sends an inter-service event

to the next component after the loop. The While LSBB is the last LSBB of the

service instance; therefore, the event is sent back to the SCMSBB, and the SCMSBB

confirms the execution of the service instance to the framework management with an

inter-service event. The service description is uploaded to the service repository and

triggered by the user for composition and execution through the interactive web

interface. The log output of the composition phase is given in Figure 8.72 and Figure

8.73. The MSC with the event communication during the composition phase is

depicted in Figure 8.74. The log output of the execution phase is illustrated in Figure

8.75, and the correspondent MSC with the event communication during the

execution phase is shown in Figure 8.76.

The framework management starts the composition phase with a configuration event

for the SCMSBB. As expected, the service description is analysed, the variable is

found, and configuration events are sent to the required LSBBs. The LSBBs return a

ready event to the SCMSBB when they are created and configured. Then the

SCMSBB confirm the creation and configuration of the service instance to the

framework management with a ready event.

Framework and Prototype Evaluation

273

Figure 8.72: While composition evaluation log – part 1

Figure 8.73: While composition evaluation log – part 2

Figure 8.74: While composition phase MSC

Framework and Prototype Evaluation

274

The framework management triggers the execution phase by sending an inter-service

event to the SCMSBB. The workflow is executed as expected. The Sequence LSBB

“main” is the first LSBB that is executed. It triggers the Assign LSBB “setValue”,

which sets the value of the variable “counter” to “3”. The next component is the

While LSBB. As expected, the while loop is executed, because the condition was

evaluated to “true”. The Sequence LSBB “sequence2” and the Assign LSBB

“changeValue” within the loop are executed, and the variable “counter” is increased

to “4”.

The Assign LSBB sends an inter-service event back to the While LSBB, and the

condition is evaluated again. Now, the value of the variable “counter” is “4”. The

while loop is not executed anymore because the condition (4 <= 3) is evaluated to

“false”, the While LSBB fires an inter-service event back to the SCMSBB. The

framework management receives an inter-service event from the SCMSBB as a

confirmation that the service has been executed.

Figure 8.75: While execution evaluation log

Framework and Prototype Evaluation

275

Figure 8.76: While execution phase MSC

8.4 Proof of the Proposed Framework Concept

In order to prove the novel concept proposed in this thesis for automatic service

generation from formal service descriptions, the whole prototype framework has to

be evaluated. It has to be examined if the proposed example services can be

developed with the help of the service description language and the CBBs. The

services have to be automatically generated from the service descriptions, and

executed within the SEE. It has to be shown that new services can be developed with

the framework.

8.4.1 Wake-up Test Scenario

For the proof of concept, an appropriate test scenario is defined. This test scenario

realises a typical example of a value-added service, the Wake-up service. This

scenario is similar to a conventional service scenario (Martens, 2011) defined for

JAIN SLEE mobicents (Mobicents, 2014). The conventional mobicents SIP Wake-up

scenario is designed as tutorial how to develop JAIN SLEE services with Java for

mobicents. This tutorial already shows the complexity of developing a conventional

Framework and Prototype Evaluation

276

value-added service for JAIN SLEE. Advanced knowledge in Java, a consolidated

understanding of the SIP protocol, and XML knowledge for defining the descriptor

files is required. The source code of the conventional JAIN SLEE SBB has more

than 400 lines, and several XML descriptor files have to be defined. A development

of such a service with conventional service development would certainly take some

days.

In this section, the Wake-up service is developed with the research prototype. An

overview of the scenario is shown in Figure 8.77.

The service user can send a SIP MESSAGE defining a waiting time in milliseconds.

After this duration, a Wake-up SIP MESSAGE will notify the user. SIP has been

chosen as an example application protocol. To complete the SIP transactions, the SIP

request messages are answered by 200 OK SIP responses.

Figure 8.77: Wake-up scenario

The service instance in the application server analyses the message body of the

received SIP MESSAGE request and reads out the waiting duration in milliseconds.

With this duration a timer is started. Upon timer expiry, the service generates and

sends a Wake-up SIP MESSAGE request with waiting duration in milliseconds from

the received SIP MESSAGE.

Framework and Prototype Evaluation

277

For this scenario, the SIP CBB is used. The service developer does not need detailed

knowledge of the SIP protocol. The SIP CBB performs the required protocol specific

tasks and hides the complexity of the protocol from the developer.

8.4.2 Describing the Wake-up Service in BPEL

The service designer uses a BPEL development tool to develop the service

description. The graphical representation of the BPEL process is shown in Figure

8.78. This process was developed with the Eclipse BPEL Designer (Eclipse 2013).

The XML description of the BPEL process is shown in Figure 8.79, Figure 8.80, and

in Figure 8.81.

Figure 8.78: Graphical representation of the Wake-up BPEL process

Framework and Prototype Evaluation

278

The process consists of seven activities: one Sequence activity (refer to section

8.3.2), three assign activities (refer to section 8.3.3), one Receive activity (refer to

section 8.3.7), one Wait activity (refer to section 8.3.8), and one Invoke activity

(refer to section 8.3.6). The Sequence activity encapsulates all other activities and

describes a sequential execution order from the top to the bottom of the process.

The name of the process is “WakeUp” (Figure 8.79, line 1). As already mentioned,

the SIP CBB is used for this service. The name of the correspondent partner link for

the SIP CBB is “SIPServices” (Figure 8.79, line 12 to 17). Three variables are

required for this service: (i) one integer variable “timerValue” to store the timer

value, (ii) one “SIPRequestType” variable “receivedSIPRequest” to store the

received SIP request, and (iii) one “SIPRequestType” variable “sendSIPRequest” for

the outgoing SIP Message request (Figure 8.79, line 20 to 25).

Figure 8.79: XML document excerpt of the “Wake-up” process – part 1

Framework and Prototype Evaluation

279

The Sequence activity with the name “main” includes all other activities (Figure

8.80, line 27; Figure 8.81, line 89). The first activity within the sequence is an Assign

activity with the name “AssignInitialValues”, which consist of two “copy”

operations (Figure 8.80, line 28 to 39). In the first “copy” operation, the SIP request

URI (sip:wakeup@192.168.67.49) is stored in the “SIPRequestToURI” part of the

“receivedSIPRequest” variable. SIP requests for this SIP URI will be handled by the

Wake-up service. The second “copy” operation initiates the “timerValue” variable

with “0”.

The next activity in the service description is the Receive activity

“ReceiveSIPMessage” (Figure 8.80, line 41 to 44). Here it is defined that the

“onSIPMessage” operation of the “SIPServices” partner link is used within this

activity. The Receive activity uses the “receivedSIPRequest” variable to define the

SIP URI on which the service is listening for incoming SIP MESSAGES and on

which the SIP RCSBB will be triggered within the service execution phase. In this

example service the SIP URI is “sip:wakeup@192.168.67.49”. The received SIP

request is also stored within the “receivedSIPRequest” variable.

The next activity after the Receive activity is an Assign activity called

“AssignTimerValues” (Figure 8.80, line 46 to 51). The contained “copy” operation

copies the timer value from the “receivedSIPRequest” variable to the “timerValue”

variable. With this “timerValue”, the Wait activity is initiated (Figure 8.80, line 53 to

55). In the execution phase, the Wait activity will wait until the timer has expired.

Framework and Prototype Evaluation

280

Figure 8.80: XML document excerpt of the “Wake-up” process – part 2

The third Assign activity “AssignMessageValues” consists of five “copy”

operations (Figure 8.81, line 57 to 81). This Assign activity is required to configure

the new SIP MESSAGE request “sendSIPRequest”, which is sent as Wake-up

message back to the user of the service. The first “copy” operation reads the SIP

request “To display name” from the received SIP request and copies this value to the

SIP request “From display name” of the “sendSIPRequest”. The next “copy”

operation sets the “From URI” of the “sendSIPRequest” by means of the “To URI”

of the received SIP request. The third “copy” operation sets the “To display name”

of the “sendSIPRequest” by using the “From display name” of the received SIP

request. The fourth “copy” extracts the “Contact URI” from the received request

and copies it to the “To URI” of the “sendSIPRequest”. The last “copy” operation

Framework and Prototype Evaluation

281

defines a Wake-up string for the “sendSIPRequest” and adds the defined timer value

to the string.

Figure 8.81: XML document excerpt of the “Wake-up” process – part 3

The Invoke activity “invokeReturnMessage” is the last activity of the service

description (Figure 8.81, line 83 to 89). It calls the “doSIPMessage” operation

from the “SIPServices” partner link and takes as variable the previously configured

“sendSIPRequest”.

8.4.3 Composition Phase of the Wake-up Service

The service description discussed in the last section is uploaded using the service

management servlet and transferred to the management EJB. From there it is handed

Framework and Prototype Evaluation

282

over to the framework management and stored in the service repository. The service

can be triggered for composition and execution by the interactive web interface. The

log output of the SEE is shown in Figure 8.82 and Figure 8.83. The correspondent

MSC is given in Figure 8.84.

The composition phase is initiated with a configuration event from the framework

management. The SCMSBB parses the service description and analyses the

“SIPServices” partner link, the three variables and the activities within the service

description (Figure 8.82). For all activities found within the service description, the

SCMSBB sends configuration events to create and configure the correspondent

LSBBs and the required RCSBBs (Figure 8.83).

Figure 8.82: Wake-up composition evaluation log – part 1

Framework and Prototype Evaluation

283

The SCMSBB waits until it has received the ready events from all components. Then

it sends a ready event to the framework management. Upon the framework

management has received this event, the service instance is created and ready for

execution.

Figure 8.83: Wake-up composition evaluation log – part 2

Framework and Prototype Evaluation

284

Figure 8.84: Wake-up composition phase MSC

Framework and Prototype Evaluation

285

8.4.4 Execution Phase of the Wake-up Service

After the service creation phase is completed successfully, the generated service

instance is ready to be triggered for execution by the framework management. The

log output of the service instance is given in Figure 8.85 to Figure 8.91. The Wake-

up message from the service is shown in a screenshot of the SIP softphone

“PhonerLite” (Figure 8.92). The MSC of the event communication in the service

execution phase is shown in Figure 8.93.

To start the execution, an inter-service event is sent to the SCMSBB (Figure 8.85).

The execution of the LSBBs occurs in the order described in the BPEL process.

When one component is executed, it sends inter-service events to the following

element. The SCMSBB starts sending an event to the Sequence LSBB, and the

Sequence LSBB sends an event to the Assign LSBB.

Figure 8.85: Wake-up execution evaluation log – part 1

The next SBB after the Assign LSBB is the SIP RCSBB. If the SIP RCSBB receives

the inter-service event from the Assign LSBB, it starts waiting for an

“onMessageRequest” event from the SIP RA. When the SIP RA receives such an

event for the Wake-up service, it sends an “onMessageRequest” event to the SIP

RCSBB. The RCSBB is triggered, when the service receives a SIP MESSAGE

Framework and Prototype Evaluation

286

request from the service user. Figure 8.86 displays the received request. This request

was sent from the SIP user agent “PhonerLite” which has the “From URI”:

sip:testuser@192.168.67.15. The user of the service requests a Wake-up message,

which should be sent in 5000 milliseconds back to the user.

Figure 8.86: Wake-up execution evaluation log – part 2

The SIP RCSBB receives the “onMessage” event from the SIP RA and calls the

“sendResponse()” method on the SIP RA. The RA sends out a 200 OK SIP

response to the softphone to end the SIP transaction. This SIP response message is

shown in Figure 8.87.

Figure 8.87: Wake-up execution evaluation log – part 3

Upon the SIP RCSBB has been executed, it sends an inter-service event to the next

component of the service, the receive LSBB (Figure 8.88). Then the Assign LSBB,

and afterwards the Wait LSBB, is executed. In the Wait LSBB, the service instance

waits for the defined duration. In this case, it waits 5000 milliseconds, before the

Framework and Prototype Evaluation

287

next component, the Assign LSBB, is executed. The Assign LSBB is followed by the

Invoke LSBB.

The Invoke LSBB triggers the sending of the Wake-up message back to the user of

the service. It sends an inter-service event to the SIP RCSBB, which creates the SIP

MESSAGE request and calls the SIP RA to send it to the user of the service.

Figure 8.88: Wake-up execution evaluation log – part 4

The SIP MESSAGE request with the Wake-up message is shown in Figure 8.89. It is

sent to the request URI: “sip:testuser@192.168.76.15”. The Wake-up message

includes the text, “Hello, this is your wakeup message! 5000”.

Figure 8.89: Wake-up execution evaluation log – part 5

The SIP RCSBB is the last component of the service description. After having sent

out the SIP MESSAGE request, the SIP RCSBB is completed and sends an inter-

Framework and Prototype Evaluation

288

service event to the SCMSBB. The service instance has completed its execution, and

the SCMSBB sends an inter-service event as confirmation to the framework

management.

Figure 8.90: Wake-up execution evaluation log – part 6

The SIP MESSAGE request is sent to the “PhonerLite” softphone. The softphone

answers with a SIP 200 OK response to complete the SIP transaction (Figure 8.91),

and the received Wake-up message is displayed in the “PhonerLite” message

window (Figure 8.92).

Figure 8.91: Wake-up execution evaluation log – part 7

Figure 8.92: Wake-up message in SIP user agent

Framework and Prototype Evaluation

289

The complete MSC of the service execution phase is shown in Figure 8.93.

Figure 8.93: Wake-up execution phase MSC

Framework and Prototype Evaluation

290

8.5 Analyses of the Quantitative Requirements of the

Framework Prototype

This section analyses the framework prototype. For this purpose, one example

service will be defined. This service will be developed in two versions. The first

version is developed as conventional value-added service with JSLEE and the second

version with the framework developed in this PhD thesis. Both services are

compared with each other; in this context their length of the code, their development

time, their numbers of SBBs, their latency, and their throughput are analysed.

Finally, based on the example service, the scalability of services within the

developed framework is analysed.

8.5.1 Evaluation Scenario

The service that is used for the evaluation is a Chat service that is based on the SIP

protocol. The service uses SIP messages to transfer the chat data. Multiple

participants can log in into these chat services. They can use their SIP user agents to

communicate with the service. The user can log in into the service and logout from

the service. The chat data that is received by one user is sent to all other users in the

chat room. Multiple chat rooms can be realised by starting multiple service instances

with different room names.

The conventionally developed service consists of one SBB. It was developed with

the Java programming language. The service that was developed with the proposed

Framework and Prototype Evaluation

291

framework consists of 20 SBBs. It was described with the Eclipse BPEL developer

tool. The graphical BPEL representation of the service is shown in Figure 8.94.

Figure 8.94: Graphical BPEL representation of the chat service

Within the main sequence, the process begins with the initialisation of the service;

the assign activity “Assign” configures the SIP URI of the chat room and initialises

some variables.

The while loop “While” contains the main logic of the service. Within this loop, the

chat room functionality is described. In the service execution phase, this loop runs

until the service is stopped by the framework management.

Framework and Prototype Evaluation

292

The receive activity “Receive” listens for a SIP MESSAGE request that is sent to this

chatroom. The required information from the received SIP MESSAGE is stored in

variables by the assign activity “Assign1”.

The content of the SIP MESSAGE is evaluated in the “if” activity. The left if-branch

is taken when the SIP MESSAGE contains the content “login”. In this case, the

sender of the SIP MESSAGE tries to log in into the service and is added to the chat

user list. A confirmation is sent back to this user. The second if-branch in the middle

of the “if”-activity shown in Figure 8.94 is executed when the content of the SIP

MESSAGE contains “logout”. In this case, the correspondent chat user is removed

from the user list, and a confirmation is sent to this user. In case that the SIP

MESSAGE content contains a chat message, the right if-branch is executed. This

branch contains another while-loop, “While1”. Within this if-branch, the received

text message is sent to all connected chat users.

After one of the if-branches has been executed, some variables are configured in the

assign activity “Assign5”, and the while-loop starts again. The service waits for the

next SIP message.

Both of the services, the manually developed service and the service which is

generated from the BPEL service description, offer the same functionality. The

protocol-specific communication for both services consists of three parts, the login,

the chat communication, and the logout.

Framework and Prototype Evaluation

293

The MSC in Figure 8.95 represents the login process of user agent A (UA A) into the

service.

Figure 8.95: Chat service login

The login process is initiated with a SIP MESSAGE request sent to the Chat service.

It contains the content “login”. This SIP request is answered with a 200 OK SIP

response. The chat service creates a SIP MESSAGE request which contains a

confirmation message. The SIP MESSAGE is sent to UA A, to inform that the login

process was successful. Now, UA A is connected to the chat service.

The chat functionality itself is depicted in Figure 8.96. There, UA A is sending a SIP

MESSAGE request with the content “hello”. The server answers the SIP request with

a 200 OK response. In the next step, the Chat service sends the text of the received

SIP MESSAGE request to all other participants that are registered to the service. The

UAs confirm the reception of the SIP request with a SIP 200 OK response.

Figure 8.96: Chat service text exchange

Framework and Prototype Evaluation

294

The logout process (Figure 8.97) is triggered by the UA by sending a SIP MESSAGE

request with the content “logout” to the service. The service answers the request with

a 200 OK response. The successful logout is confirmed by the service with a SIP

MESSAGE request that contains the disconnection information. This request is

answered with a SIP 200 OK response by the SIP UA.

Figure 8.97: Chat service logout

8.5.2 Comparison between Conventional and PhD Prototype

Service Creation

The service that was described in the evaluation scenario in section 8.5.1 was

developed for the JSLEE framework and for the framework proposed in this thesis.

The manually developed JSLEE service was created with the Eclipse Java IDE and

the service for the proposed framework with the Eclipse BPEL developer. A

comparison between the two approaches is given in Table 8.1.

Table 8.1: Comparison between the approaches

 Conventionally developed

JSLEE value-added service

Value-added service

generated with the proposed

framework

Development time 24 h 5 h

Lines of code Java file: 252 lines BPEL file: 196 lines

Framework and Prototype Evaluation

295

sbb-jar file: 59 lines

deployable unit: 8 lines

service.xml: 19 lines

build.xml: 109 lines

total: 447

total: 196 lines

Number of SBBs 1 SBB 20 SBBs

The development of the JSLEE service requires three working days (24h), and the

service has a length of 447 lines of code. The service that was developed with the

proposed framework requires only 5 hours development time. The service was

developed with the Eclipse BPEL developer in a graphical way, and the length of the

XML code is only 196 lines. The manual development of the Chat service requires

more than twice as much lines of code and lasts nearly 5 times longer than the

service created with the proposed framework. Furthermore, the manually developed

service requires knowledge about Java programming, SIP, and, additionally,

knowledge about writing the support files like deployment files. For describing the

service with the proposed framework, only basic BPEL knowledge is required.

Therefore, the development of this service with BPEL is faster and simpler than the

development of the conventional JSLEE service.

In general, the BPEL code is shorter than the Java code. The service description in

BPEL is more abstract; it is not required to care about all the details like in Java. The

service for the proposed framework requires no descriptor and deployment files.

Apart from that, the graphical service description speeds up the development process.

Framework and Prototype Evaluation

296

8.5.3 Performance Analysis of the Framework Prototype

In this section, the performance of services that are developed with the proposed

framework is analysed. The performance of a service that is created for the proposed

framework is measured and compared with an equivalent service created

conventionally for the JAIN-SLEE framework. For the performance analysis, the

Chat service scenario from section 8.5.1 is used again.

To compare the performance of services that consist of one SBB with services that

consist of more SBBs, one SBB was used for the manually developed service and 20

SBBs for the service that was generated with the proposed framework.

It is expected that the approach which consists of multiple SBBs will lead to worse

latency compared to the approach that consists of one SBB.

Relevant for the performance of telecommunication services is the throughput and

the latency. The latency is the time that is required for transmitting a signal from the

sender to the receiver. In this scenario, instead of the latency, the round trip time

(RTT) is measured. The RTT is the time from sending a signal until receiving the

answer for this signal. In this scenario, it is the duration of a timer that starts when a

SIP MESSAGE request is sent out, and stops when the response for this SIP

MESSAGE is received. The SIPp testing tool simulates the required SIP user agents

and measures the throughput and the latency.

Both versions of the service are tested on the same machine with 3 GB RAM and 2 *

1.7 MHz processors. A Debian 6 operation system is installed on this computer with

a 2.6.32-5-686 Linux Kernel. The SIPp test script is running on a separate computer.

Framework and Prototype Evaluation

297

As JSLEE implementation, Mobicents 2.4.1 final (Mobicents, 2014) is deployed on a

JBOSS v5.1.0 application server.

For testing the throughput of the service, the SIPp tool is configured to send out SIP

messages to the service. The logout scenario is used again in order to measure the

throughput. The SIP communication is shown in Figure 8.98.

Figure 8.98: Chat service logout scenario

In the service scenario with one SBB, all service logic is implemented in this SBB

(Figure 8.99).

Figure 8.99: Chat service with one SBB

To receive and to generate SIP protocol messages, the service communicates with the

SIP RA. It is listening for events from the SIP RA and calling methods on the SIP

RA to generate and send SIP responses and SIP MESSAGE requests.

The service that is generated with the PhD Framework consists of 20 SBBs. These

SBBs need to be created and configured before the service can be executed.

Framework and Prototype Evaluation

298

In the execution phase, the framework management starts the execution of the

service. In the BPEL process (Figure 8.94), the outer “While” loop is executed until

it reaches the “receiveLSBB” (Figure 8.100) within this loop. The “receiveLSBB”

waits for an incoming SIP MESSAGE request from a user agent. The “whileLSBB”

and its containing SBBs are executed each time a SIP MESSAGE request is received

(Figure 8.100).

Figure 8.100: Chat service with multiple SBBs

For each time the logout scenario is triggered, 4 SIP messages must be handled by

the service; the incoming SIP MESSAGE request, the corresponding 200 OK

response, the SIP MESSAGE request with the login confirmation, and the 200 OK

response for this confirmation message.

The SIPp tool controls the SIP messages that are sent to the service and measures the

number of successful logouts in calls per second (CPS) that can be handled by the

service. This is done by increasing the number of logouts until messages are lost or

not handled correctly. The results of these tests are presented in the diagram in

Figure 8.101.

Framework and Prototype Evaluation

299

Figure 8.101: Throughput test results

The SIPp tool defines a SIP message communication with the same call ID as call,

which is why the performance of the PhD prototype is measured in CPS. On the X-

axis, the logouts in CPS are plotted that are forced by the SIPp testing tool. The Y-

axis represents the logouts in CPS that are achieved by the services. The red dotted

line represents the successful logouts per second with one SBB, and the blue line

represents the successful logouts per second with multiple SBBs.

As expected, the manually developed service with only one SBB is able to handle

more logouts per second than the service which consists of multiple SBBs. The

multiple SBB service reaches a maximum of 252.1 CPS, and the service which

consists of one SBB reaches 619.5 CPS. Both of the services reach good results, also

the service that is generated from 20 SBBs reaches more than 250 CPS.

The results can be explained with the more complex internal communication between

the SBBs in the multiple SBB scenarios and with the developed PhD framework

prototype implementation, which is not optimised for performance testing. For

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

Chat service with
one SBB

Chat service with
multiple SBBs

CPS forced by SIPp

CPS handled by the Chat services

Framework and Prototype Evaluation

300

simple services, the single SBB approach is more is more efficient than a solution

that consists of multiple SBBs, but complex services cannot be mapped to one SBB

only. Furthermore, JSLEE services require multiple SBBs, e.g. for parallel execution.

The next performance criterion is the round trip time (RTT). Again, the logout

scenario is selected for this test (Figure 8.102).

Figure 8.102: Round trip time Timer for the SIPp logout scenario

To measure the RTT, SIPp starts a timer when the SIP MESSAGE request with the

logout command is sent to the service. The timer is stopped when the 200OK

response is received. The RTT of both services is measured in dependence with the

number of logouts per second in CPS. The CPS value is controlled by SIPp. The

RTT is measured in milliseconds of some specific CPS values; each CPS value is

measured for a period of 5000 calls. The results of these tests are displayed in Figure

8.103.

The diagram shows the average RTT in ms of both Chat services. The CPS value is

represented by the X-axis and the RTT by the Y-axis. The values for the single SBB

Chat service are represented with a red dotted line, and the values of the service with

multiple SBBs are represented as a blue line.

Framework and Prototype Evaluation

301

Figure 8.103: Chat service round trip time (RTT)

Both services reach an average RTT of 10ms. This value is constant until they reach

their maximum CPS value. The multiple SBB Chat service supports a maximum of

252.1 CPS. Higher CPS values influence the average RTT negatively, the service is

not able to handle all SIP requests in time, and SIP responses are delayed or dropped.

The service that consists of one SBB supports 619.5 CPS. Increasing this max CPS

value with SIPp will lead to delayed or dropped SIP responses.

The test system is not able to handle all logouts correctly beyond the maximum CPS.

This means that the computing resources of the test computer might be the

bottleneck. Figure 8.104 shows the dependence between CPS and CPU load.

The diagram below shows the number of logouts in CPS triggered by SIPp on the X-

axis and the CPU load on the Y-axis. The results of the single SBB service are

represented as a red dotted line and the results of the multiple SBB service as a blue

line.

0

200

400

600

800

1000

0 60 121 182 244 305 366 425 486 547 609 670

RTT multiple
SBBs
RTT single
SBB

CPS

RTT in ms

Framework and Prototype Evaluation

302

Figure 8.104: Chat service CPU load

As expected, both services reaching around 100% CPU load at their maximum CPS

values. This means that the processor resources are the bottleneck for the maximum

CPS. The average CPU load without running a service is about 9 MHz. The multiple

SBB service reaches the 100% CPU load at about 250 CPS, the single SBB solution

at about 620 CPS. The result shows that the single SBB solution reaches a higher

performance than the solution with 20 SBBs. The event-based communication and

the handling of the SBBs require some CPU load, but as already said above, complex

JSLEE service cannot, too, consists of only one SBB, and the developed research

prototype is not optimised for performance testing. The reached results are very

good, and the advantages (refer to section 9.2) of the multiple SBB solution prevail.

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

CPU load
multiple SBB
service

CPU load single
SBB service

CPS

CPU in %

Framework and Prototype Evaluation

303

8.5.4 Service Scalability

This section contains a discussion on the scalability of multiple service instances.

The prototype developed in this PhD thesis is able to handle multiple service

instances. This has the advantage that user requests can be handled simultaneously.

In this section, the scalability of these service instances is analysed.

To analyse the scalability of the prototype, a test scenario is defined. Here again, the

logout scenario with the Chat service from the previous section (refer to section

8.5.3) is used. The number of possible service instances is limited by the system

RAM. The test system is a 32-bit system with 3 GB RAM. For the prototype

including the Java VM, the JBOSS application server, and the JSLEE Mobicents

framework, 1700 MB of RAM was available.

Relevant for the scalability are the logouts per second in CPS in dependence of the

number of instances (Figure 8.105).

The figure shows the scalability of the service instances. On the X-axis the number

of instances is displayed, and on the Y-axis the logouts per second are shown in the

unit of CPS. The blue line represents the maximum reached CPS value for a specific

number of instances.

Framework and Prototype Evaluation

304

Figure 8.105: Framework scalability

Increasing the number of parallel running instances also increases the maximum

supported CPS value, until a number of 1000 service instances are reached. A further

increase of the number of instances will cause a drop of logouts per second. With

more than 1000 instances, there is not enough free RAM available for a fast

execution of the service instances. The JVM needs to handle/swap the memory and

requires therefore more CPU resources. The maximum number of instance that can

be instantiated with the test machine is around 4000. However, the execution of a

service instance also requires RAM. When applying the logout scenario to the 4000

instances, the CPU load rises to 100%, and most SIP messages get lost or the

instances stop working. Higher numbers of instances lead to the same behaviour or

directly to “Out of Memory” exceptions.

This analysis leads to the result that the number of instances influences the CPS.

Rising the number of instances also offers a support of more CPS. However, the

0

50

100

150

200

250

300

0 500 1000 1500 2000 2500 3000 3500 4000

CPS

Chat service

number of
instances

Framework and Prototype Evaluation

305

number of instances is limited by the available RAM. In addition, the execution of

the service instances requires free RAM and CPU.

The developed framework is scalable. The scalability is limited by the available

amount off RAM. Therefore, new service instances can be generated and executed

until the maximum amount of RAM is used and the Java VM starts swapping the

RAM to the hard drive.

8.6 Conclusion

In this chapter, the framework was evaluated regarding the defined requirements.

The requirements were analysed whether or not they are fulfilled within the

framework. The proposed framework meets all requirements successfully.

In the next step, the architecture of the prototype was systematically introduced. The

prototype implements the most important components of the SCE and SEE to allow

the creation of an example service for the proof of concept.

The required SEE components, which are involved in the service instance life cycle,

were described and evaluated. For all components the whole life cycle, – from the

service description and the automatic creation to the execution – was presented and

the results were analysed. The research prototype was successfully adopted for a

proof of concept evaluation of the proposed framework, which demonstrates its

functionalities as well as its general applicability.

The proposed novel concept was demonstrated using a typical value-added service.

A Wake-up service was described with a BPEL design tool. A similar scenario exists

Conclusion and Future Work

306

(Martins, 2011), which was defined for conventional means of service development

with Java for mobicents JAIN SLEE.

In the previous section, the framework prototype was practically analysed. An

evaluation scenario was defined, and a value-added service which was created with

the framework was compared with a conventional JSLEE service. This conventional

scenario requires substantiated knowledge of Java, SIP, and XML. Moreover, it will

take three days to develop the value-added service.

The service for the PhD framework was developed with a graphical BPEL tool, no

special knowledge about the protocols is required, and the same service can be

developed within 5 hours. The example demonstrates the applicability of the PhD

framework prototype for developing value-added services. It shows that service

developers can create their services in an easy and fast way and that the services

fulfil the performance requirements for value-added telecommunication services.

Conclusion and Future Work

307

9 Conclusion and Future Work

This chapter concludes the thesis. The achievements of the research work (refer to

section 9.1) are summarised, the advantages of the solution are outlined (refer to

section 9.2), the claims of novelty are presented (refer to section 9.3), the limitations

of the research are discussed (refer to section 9.4), and suggestions and ideas for

further research are proposed (refer to section 9.5).

9.1 Achievements of the Research

Based on the identified deficits, the aim of the performed research work was to find a

method for description, an automated creation, execution, and provisioning of value-

added telecommunication services. With the help of the methods found, the

developers should be able to describe value-added services, even if they are not

experts on all the relevant communication protocols that are required for a full-

fledged service.

For the description of the services, BPEL is used as service description language.

The service logic is described with BPEL, and the functionality is offered by the

CBBs that are represented in BPEL as partner links. The service is generated

automatically from the BPEL service description. To realise this automated creation

of the services, a service execution environment was defined which is based on JAIN

SLEE. The result of this research is an automated solution for the creation and

provisioning of value-added telecommunication services.

Conclusion and Future Work

308

Various other solutions in the field of service creation, execution, and provisioning

were reviewed. Criteria for the required solution were defined and existing

technologies and other research works were analysed regarding these criteria.

In the first step, current solutions for service creation and research projects dealing

with this issue were analysed (refer to chapter 3). The existing solutions were

evaluated regarding the criteria (i) support of a graphical development tool, (ii)

abstraction from underlying protocols, (iii) support of new protocols in the service

description, and (iv) the ability to define a broad range of value-added services.

The research revealed that BPEL fulfils the defined criteria and offers the

possibilities required for the description of value-added services. Therefore, BPEL

was chosen as service description language.

In the next step, the fields of technologies for service execution and service

provisioning were analysed (refer to chapter 4). Individual advantages and

disadvantages of each technology were shown, and research projects related to the

topic were discussed. The technologies were evaluated regarding the criteria, which

are (i) supported protocols, (ii) expandability, (iii) performance, (iv) service

possibilities, (v) composition capability/reusability, and (vi) programming language.

In summary of this step, with regard to the defined criteria, the JAIN SLEE

environment was selected as base framework for the service execution and

provisioning.

With BPEL, a wide variety of value-added services can be described. In this

approach, BPEL was chosen for service development and JAIN SLEE for service

execution. Therefore, no BPEL engine is needed for the service execution. A BPEL

Conclusion and Future Work

309

development tool can be used to create the service description. Instead of developing

web services which can be composed to more complex services, value-added

services will be created automatically from the service description. The created

services will be executed in JAIN SLEE. From the results in chapter 3 and chapter 4,

the requirements for the proposed framework were derived in section 5.1.

The gap between the service description in BPEL and the service execution in JAIN

SLEE was researched in the next step. New ideas for a combination of the

advantages from both selected technologies were discussed (refer to chapter 5). It

was defined how a value-added service has to be described in BPEL. The service

logic is described with the BPEL activities of a BPEL process. BPEL offers all logic

elements that are required for a service. A value-added service also needs the

possibility of communicating with other services, reading from databases, sending

and receiving data, invoking other resources, and listening for other resources. These

functionalities can be described with the BPEL partner links.

From the BPEL service description, a value-added service has to be generated. Two

possible approaches were analysed, the Code Generator and the Runtime Service

Composition. The advantages and disadvantages of both approaches were discussed,

and the Runtime Service Composition approach was recommended for the

framework.

In the next step, the general service structure was analysed. Several different service

structure concepts were discussed. The advantages and disadvantages of each

technology were analysed, and two technologies, the “Orchestration concept” and the

“Choreography concept”, were chosen for the framework.

Conclusion and Future Work

310

As result of the previous research steps, a framework for the creation and execution

of the value-added services was defined (refer to chapter 6). This framework consists

of the Service Creation Environment (SCE) that supports the description and

management of the services, and of a Service Execution Environment (SEE) for the

provisioning and execution of the value-added services.

The SCE consists of the Communication Building Blocks (CBBs), the service

management tool, the graphical service description tool, the marketplace, and the

service repository. With the service management tool, the service life cycle can be

controlled and monitored. A BPEL development tool can be used for the graphical

service description. The repository is a place where existing service descriptions can

be stored. With the marketplace, new service descriptions and new resources can be

acquired through the Internet.

CBBs define the available functionalities, resources, and supported protocols. With

this concept, the new protocols, resources, and functionalities can be added to the

framework. The CBBs provide a simple and comfortable possibility for the service

designer to combine the service logic with the required functionalities. The service

logic is described with the BPEL activities. The resources and the functionalities are

described as BPEL partner links.

A CBB consists of multiple components. Some components are available within the

SCE and some within the SEE. The SCE part of the CBBs consists of the partner

links and the variable types. The partner links define methods, which correspond to

the methods implemented in RCSBBs of the SEE. With these partner links, the

functionalities can be described in the service description, which can be called from

Conclusion and Future Work

311

the service implementation in the SEE. The service designer can choose and

configure the desired method that offers the required functionality from a BPEL

partner link. When a CBB requires a variable type that is not available in the SEE,

then this variable type is also part of the CBB.

The other parts of a CBB are the implementation of the functionalities, the adaptors

to the resources, and the methods that call the new functionalities. The description of

the functionalities and resources in BPEL is mapped to their implementation in the

RCSBBs of the SEE.

The granularity of the functionality depends on the particular CBB. Fine-grained

functionality and coarse-grained functionality can be provided to the service

developer for describing the services. A CBB can hide the complexity of the

underlying protocols from the developer, and the developer can concentrate on the

logic of the service. In this case, detailed knowledge of the communication protocols

is not required. On the other hand, it is also possible that a CBB offers fine-grained

methods for a more detailed control of the protocol communication.

To support a new protocol, resource, or functionality, an appropriate CBB is

required. CBBs can be provided by the framework developer, by third-party

developers, or by the developers of a resource, functionality, or protocol. For the

prototypical implementation, two CBBs were developed, the HTTP CBB and the SIP

CBB.

The developed BPEL service description is analysed by the framework and the

value-added service is generated from this description automatically.

Conclusion and Future Work

312

A layered structure was defined for the SEE. This structure consists of three layers, a

management layer, a service logic layer, and a resource connection layer. The

management layer controls the framework and offers the possibilities to control the

framework and the services via web interface. The service management also controls

the creation and the execution, as well as the removal and reconfiguration of service

instances. The service logic layer offers the components that are required to execute

the service logic. The components of this layer are mapped from the activities in

BPEL. The resource connection layer consists of the implementation of the

functionality that was defined in the CBBs. The methods of the partner links are

implemented in RCSBBs. RCSBBs in combination with the RAs offer the resources

for the services. These RAs are also part of this layer and offer the protocol-specific

communication.

The value-added services were examined in chapter 7. There, the service structure

and the service life cycle were defined. A service consists of several components.

Each component belongs to one of the defined layers of the SEE. The

communication between the service components of a service instance on the one

hand, and between components of the framework management on the other, is done

via events.

In the last step (refer to chapter 8), the framework was evaluated regarding the

defined requirements, and the proof of concept of the proposed framework was

presented. For each requirement, it was analysed if it is fulfilled. The research

prototype of the framework was introduced and the overall prototype functionality

outlined. The research prototype was successfully adopted for a proof of concept of

the proposed framework. Important service components were evaluated

Conclusion and Future Work

313

systematically. For each component, a minimal service description was developed,

and the correspondent service was automatically generated and analysed.

Furthermore, a typical value-added service was developed by the help of the

framework prototype. The service was described with a BPEL development tool and

loaded into the service repository. With the service management tool, the service was

triggered for creation and execution. The SEE creates and executes the service

successfully. As proof of concept, the research prototype has demonstrated its

applicability for developing and executing value-added telecommunication services.

9.2 Advantages of the Solution

This section analyses the most important advantages of the proposed solution.

Fast service development

Compared to the conventional development of value-added services, the

development of services with the proposed framework is faster (refer to section

8.5.2). In the proposed framework, the value-added services are described with a

BPEL (refer to section 3.6) development tool. In section 8.5.2, the service

development with the proposed framework is compared with the conventional

service development of the JSLEE framework (refer to section 4.4) in Java. With the

proposed framework, the lines of code that are required for a service are significantly

reduced. The BPEL process description is shorter than the Java code. In the example

service in section 8.5.1, the length of the Java code is 252 lines. Compared to the

BPEL code with a length of 196 lines, the Java code is quite longer. Furthermore, the

Conclusion and Future Work

314

conventionally developed JSLEE service requires additional support files for the

deployment. The total lines of code of the conventional JSLEE service are 447,

whereas the BPEL code consists of 196 lines.

The length of code can be influenced by the granularity of the CBB methods (refer to

section 6.2.1) that are used in the service, but the total lines of code of a BPEL

service description can vary. If more fine-grained services are developed, the service

description is longer than a coarse-grained service but shorter than the Java code. In

BPEL, only the functionality offered by the CBBs is described. The implementation

of the CBB functionalities is done in Java.

The BPEL process descriptions can also be developed with a graphical service

description tool. Compared to the conventional service description with Java, the

graphical service description is faster than writing the Java code by hand.

The example service described in chapter 8.5.1 can be developed with Java within 3

days (24 hours). The service was developed conventionally with Eclipse and the

JSLEE plugin for Eclipse in Java. The service development of the same value-added

service with the PhD framework and the Eclipse BPEL designer takes only 5 hours.

In general, the description of services with BPEL is faster than developing the

service with Java. The BPEL service description is more abstract than the Java code.

The graphical service description with the BPEL activities and the partner links

facilitates a more abstract service development. It is not required to describe all of

the details, as would be necessary when developing a service in Java.

Easy service development

Conclusion and Future Work

315

The development of conventional JSLEE services requires a deep knowledge of

Java, of the JSLEE specification, and of the underlying protocols (refer to section

4.4). Therefore, only experts are able to develop value-added JSLEE services. JSLEE

supports various protocols, and new protocols can be supported by adding a JSLEE

resource adaptor for the new protocol. The developer has to understand how to use

the protocol with the JSLEE resource adaptor.

The PhD framework facilitates the description of the services in BPEL. Many BPEL

development tools offer a graphical user interface, which allows a graphical service

development. The developer can use CBBs that encapsulate the functionality to

communicate with other resources, e.g. web services or media servers. The CBBs

hides the complexity of the underlying protocols and the communication with the

resource adaptors from the developer. It is a middle layer which maps the description

of the functionality to its implementation. The abstraction level of the CBB methods

can vary in granularity. This offers a user-specific set of CBB methods, which can be

used by the developer in BPEL (see next paragraph). The graphical service

development together with the CBBs facilitates an easy development of value-added

services (refer to section 8.4.2).

Fine-grained/coarse-grained

The CBB methods offer different levels of granularity for describing the

functionalities (refer to section 6.2.1). The CBBs can provide coarse-grained

methods, which facilitate a simple, more abstract usage of external resources,

services, and other functionalities. A CBB method can encapsulate a complex

functionality with complex protocol communication, which is hidden from the

Conclusion and Future Work

316

developer. Furthermore, CBBs can provide fine-grained methods for describing

value-added services. This offers the possibility for a more detailed influence and

more individuality in the service behaviour but the development of the service would

require more knowledge and take more time. A CBB can provide multiple levels of

granularity and the possibility to mix methods from different levels of granularity.

Support of the requirements of telecommunication services

The developed PhD framework supports the requirements of telecommunication

services (refer to section 8.5.3) and the advantages of the JSLEE framework (refer to

section 4.4). The advantages of JSLEE are flexibility, platform independence, low

latency, and high throughput. The PhD framework is based on JSLEE, and JSLEE is

specially developed for telecommunications. All elements of the developed

framework consist of elements from the JSLEE framework. Therefore, the PhD

framework, too, supports the requirements of telecommunication services.

Runtime service composition

The value-added services developed with the PhD framework consist of predefined

elements. These elements are parts of the framework and are deployed together with

the framework on the JSLEE AS server. The new services will not be deployed on

the framework; they are orchestrated and instantiated at start time of the service from

SBBs that are already deployed. This allows the monitoring and reconfiguration of

the services at runtime (refer to section 5.3.2).

Conventional JSLEE services need to be deployed on the application server.

Additional files for the service deployment are required. For new versions of the

Conclusion and Future Work

317

service, a new deployable unit with the service code and the deployment descriptors

is required.

Expandability

The PhD framework is based on the extensible JSLEE framework (refer to chapter

6). JSLEE is based on Java, which is an extensible programming language. New

resource adaptors can be added to the framework for supporting new protocols.

Additionally, other than JSLEE, the PhD framework supports CBBs. These CBBs

offer, in combination with the resource adaptors, a support of new protocols.

Furthermore, they offer methods, resources, functionalities, and other services. New

CBBs can be added to the framework by deploying them to the application server

and using the CBB partner links for the service description in BPEL. The service

developer can describe services which support these new functionalities by choosing

the appropriate method from the partner link.

Service possibilities

Based on the functionality of this framework, a great number of services can be

defined (refer to chapter 4). As described above, new resource adaptors and CBBs

can be added to the framework. This offers a high number of possible services. In

comparison to the other technologies described in chapter 4 the PhD framework

offers nearly unlimited service possibilities, similar to JSLEE. The CBBs (refer to

section 6.2.1) offer the possibility to use the new functionality in the BPEL service

description as partner link. Therefore, it is possible to describe many value-added

services with the framework. Apart from that, the composition of reusable service

components is possible and will be described in the next paragraph.

Conclusion and Future Work

318

Composition capability/reusability

The PhD framework consists of reusable components by which value-added services

can be composed (refer to section 6.3), the logic components (LSBBs), and the

resource components (RCSBBs/CBBs). All these service components are predefined

and can be used to orchestrate new services. These reusable components can be

utilised in multiple services and only need to be developed once.

In addition, the BPEL service description can be reused, and new services can be

developed, based on already defined service descriptions.

Furthermore, services that are already developed can be embedded in a CBB. In this

case, the required BPEL partner link methods for this CBB have to be defined to

make the service functionality available in BPEL. This CBB can be used in future

services to reuse the already developed services.

9.3 Claims of Novelty

This research work offers novel features in the fields of service description, service

creation, service execution and service provisioning. This section summarises the

most important novelties.

9.3.1 Novelties in Service Description

Describing value-added services with BPEL

This research work proposes BPEL for describing value-added services. Business

processes are normally described with BPEL. There, a BPEL engine executes these

Conclusion and Future Work

319

business processes as web services. Other research projects also use BPEL to

orchestrate telecommunication web services (OPUCE, Orchestration in web services

and real-time communications, StarSCE, Orchestrated Execution Environment for

Hybrid Services, and Orchestrated Execution Environment Based on JBI). In these

projects, the value-added service can be controlled via web service interfaces through

the BPEL process description, which is executed on a BPEL engine.

The approach taken in this research work uses BPEL to describe the service directly,

without a BPEL engine and without using web services. The value-added service is

created directly from the BPEL service description (refer to section 5.2).

BPEL offers the elements of a standard programming language and allows a wide

range of service possibilities. In a normal business process, the BPEL process is used

for the logic of the business process workflow. BPEL supports all elements that are

required for a programming language including elements for parallel execution and

loops. This thesis demonstrates the possibility to use BPEL as description language

for the services (refer to section 5.2).

Graphical service description with existing BPEL description tools

This PhD work offers a possibility to describe value-added services with BPEL (refer

to section 5.2.1). For BPEL, many graphical development tools are available which

allow a graphical design of business process descriptions. With these tools, the

service logic of a value-added service can be described graphically. The service

developer can, therefore, choose which type of service creation environment is to be

preferred – a graphical one or a textual one – or he can switch between both.

Conclusion and Future Work

320

The BPEL process description is the input for the service creation

The output of the BPEL developer tool is the BPEL process service description (refer

to section 5.3.2). A normal BPEL process is executed on a BPEL engine. In the

research projects mentioned above (OPUCE, Orchestration in web services and real-

time communications, StarSCE, Orchestrated Execution Environment Based on JBI),

a BPEL engine is used to execute the telecommunication web services. In the

research project “Orchestrated Execution Environment for Hybrid Services”, a BPEL

engine is deployed in a JSLEE resource adaptor and the BPEL process is executed on

this engine. In this PhD work, the BPEL process is not executed on a BPEL engine.

The BPEL service description is generated with a BPEL development tool and is

uploaded into the developed PhD framework. The BPEL process description is

parsed, and the value-added service is orchestrated and configured with the help of

the service description.

Concept of the Communication Building Blocks (CBBs)

This PhD work introduces the concept of CBBs (refer to section 6.2.1). This concept

defines a middle layer and describes the mapping between the implementation of the

functionality and the description of the functionality. The functionality is

implemented in JSLEE SBBs called RCSBBs. With these RCSBBs, the

communication with the underlying JSLEE framework or the protocol-specific

communication in combination with resource adaptors can be realised. The CBBs are

mapped to the partner links in the BPEL service description. The service developer

uses the partner link methods to describe the functionality of the service in BPEL.

The CBB partner link methods offer an adaptive level of abstraction. The CBB

developer can customize the granularity of the CBBs to meet the user’s needs: he can

Conclusion and Future Work

321

use fine-grained CBB methods for a detailed service developing and course-grained

CBB methods for a more abstract service description. When the CBB methods offer

multiple levels of abstraction, the developer can choose the preferred level of

abstraction.

Mapping of service logic (activities) to SEE components

This research work proposes the possibility to describe the service logic of the value-

added services within BPEL (refer to section 5.2.2). The BPEL activities offer the

required elements to describe the logic of the service. These activities support, for

instance, loops, parallel execution, partner link calls, copy operations, sequences, and

if-clauses. Furthermore, XPath is supported regarding complex transformations and

expressions. Conventional value-added JSLEE-based services are developed with the

Java programming language. Other research projects use BPEL to orchestrate their

telecommunication web services and do not describe the value-added service

directly.

Level of abstraction and abstraction from protocols

The CBBs define functionalities on top of the protocol-specific communication (refer

to section 6.2.1). They define a middle layer between the implemented functionality

and the service description. The CBBs are mapped to the partner links in BPEL. The

granularity of the functionality depends on the particular CBB. Fine-grained

functionality and coarse-grained functionality can be provided to the service

developer for describing the services. This offers the possibility for a user-specific

customisable level of abstraction. Depending on the knowledge and the requirements

of the developer, a user-specific level of abstraction can be selected.

Conclusion and Future Work

322

A CBB can hide the complexity of the underlying protocols from the developer, and

the developer can concentrate on the logic of the service. In this case, detailed

knowledge of the communication protocols is not required. On the other hand, it is

also possible that a CBB offers fine-grained methods for a more detailed control of

the protocol communication. In dependence of the functionality, which is offered by

the CBB, the service developer can choose the preferred level of abstraction and can

combine different levels of abstraction within the same service. A coarse-grained

service description normally offers a more abstract way for describing a service and

requires less understanding of the underlying protocols but reduces the possibility of

establishing individual characteristics of the service.

9.3.2 Novelties in Service Creation, Service Execution and

Service Provisioning

Services are automatically created from BPEL process descriptions

The developed BPEL process description is uploaded to the PhD framework. The

value-added telecommunication service is generated automatically from the uploaded

BPEL service description (refer to section 5.3.2). Therefore, the SCMSBB of the

service parses the service description. It analyses the service description and

orchestrates all LSBBs and RCSBBs which are required for the service. Each LSBB

receives its individual part of the service description and can configure itself. For the

service creation and configuration, the orchestration concept (refer to section 5.4.3)

is used. The SCMSBB send events to all LSBBs and RCSBBs for their instantiation

and configuration. When the SBBs are configured, they send an event to the

Conclusion and Future Work

323

SCMSBB. With this event, they signal that they are ready for execution. From now

on, all the elements of the service use the choreography concept (refer to section

5.4.4) for service execution. Each element knows how to execute its own part of the

service workflow, and each element knows its communication partners.

In contrast to the conventional service creation, the services do not need a deployable

unit and do not need to be compiled before. The service is orchestrated from already

deployed components of the PhD framework. This architecture offers the possibility

to monitor and reconfigure the service at runtime, for instance from a BPEL

developer web interface.

The SEE of the framework is based on JSLEE

The framework is based on JSLEE (refer to chapter 6). All the defined components,

the framework management components, the SCMSBBs, the LSBBs, and the

RCSBBs of the framework, consist of JSLEE SBBs. A layered structure is defined

on top of the JSLEE component container. The three layers are a management layer,

a service logic layer, and a resource connection layer.

The framework management SBBs and the SCMSBBs are part of the management

layer, whereas the LSBBs belonging to the service logic layer and the RCSBBs are

part of the resource connection layer. Therefore, the management, the execution and

the communication with resource adaptors and other resources is done by SBBs.

The result of the service creation is a value-added telecommunication service, which

also consists of components of the JSLEE framework and therefore fulfils the

requirements of telecommunication services.

Conclusion and Future Work

324

Other research projects which use BPEL execute these services on a BPEL engine.

They use BPEL to orchestrate their telecommunication web services. The services

that are orchestrated with the BPEL process have to be developed conventionally.

The development of value-added services with BPEL is not within the scope of these

projects, because a BPEL engine does not fulfil the requirements of

telecommunication web services.

9.4 Limitations of the Research

Although the overall objectives of the research project had been met, some decisions

had to be taken which resulted in limitations imposed on the work. Those decisions

were caused by practical reasons, or were made to delimit the considered research

project from related fields of study which could not be fully covered by this research

due to generally given time scope limitations for the accomplishment of research

degree studies. The key limitations are summarised below.

1. In this research, BPEL was selected as service description language, which

consists of numerous elements. For the prototype, not all of the possible

BPEL language elements and concepts are implemented. This also affects the

BPEL activities. For the prototypical framework implementation, only those

BPEL activities are implemented that are required for the proof of the

concept. The rest of the activities can be considered for a real-world

implementation. Other BPEL concepts, e.g., the BPEL fault-handling concept

and the correlations concept have not been considered.

Conclusion and Future Work

325

2. Furthermore, the prototype does not analyse all parts of the BPEL process.

This affects, e.g., the import part and the namespace declarations, parts which

are not relevant for the prototype.

3. BPEL supports the x-path language; this language was not implemented

within the prototype. However, to support conditions for the while- and if-

activities and to define expressions within the Assign activity, a limited set of

conditions and expressions are supported.

4. For the evaluation of this work, two CBBs were implemented, a CBB for

HTTP functionality and a CBB for SIP functionality. Both of the CBBs only

support a limited range of the SIP and HTTP functions. Only the functions

that are required for the evaluation have been implemented.

5. The marketplace interface, which is described in the architecture overview,

was not implemented. For the prototypical implementation, it was not

necessary to demonstrate how to acquire CBBs or service descriptions from

the Internet. The service descriptions can be transferred from a computer’s

file system into the repository by using a web interface. The marketplace is

required for a real-world product but is not relevant for the prototype.

6. The architecture offers the possibility to support different service description

parsers. However, this is a possibility and not a requirement. Therefore, the

prototype only supports BPEL as service description language. How another

service description can be supported by the framework, may be part of further

research.

Despite these limitations, the research project made valid contributions to knowledge

and provided sufficient proof of concept for the proposed approaches.

Conclusion and Future Work

326

9.5 Suggestions and Scope for Future Work

This research project extended the field of automated service creation. However, a

number of areas for future work can be identified upon the results of this project.

Some of these areas have already been mentioned in previous chapters. Possible

areas for future work, enhancements, and improvements are:

1. Further research may address the issue how multiple service description

languages can be supported. Regarding the service description, this research

work focused on BPEL. Other service description languages can be supported

by adding service description parsers for these new service description

languages.

2. Another extension could be an interactive web interface for graphical service

development, monitoring, managing, and runtime manipulation of a service.

This work requires a service description from a BPEL developer tool. The

service description is uploaded to the service repository with a web interface.

The web interface is also used for the management of the service. In the next

step, the services, too, can be developed with a web interface. The idea is to

develop the service within a graphical web interface or to load an existing

service from the repository into the graphical web interface. The graphical

representation of the service in the web interface could be the graphical

BPEL process. This graphical representation may display the status and the

configuration of each service component of a service instance at runtime.

With this web interface, it could be possible to develop the services like in a

Conclusion and Future Work

327

BPEL development tool. The service could be started, monitored, and

manipulated directly from this web interface.

3. In this research work, the external resources and functionalities are available

through CBBs. Partner links are used to call resources and functionalities in

the service description. In the same way, an already developed service could

be used in a new service description. To make the developed services

available for the usage within the service description of another service, the

partner link description and, e.g., the RCSBB would have to be developed

manually. An automated creation of the RCSBBs and the BPEL partner link

description could be a comfortable way to develop services which use the

functionality of already developed services. This step could result in a new

CBB that can be the base for new service.

4. In the proposed concept, each activity is mapped to one LSBB in the service

execution layer. In a further step it could be researched which of the activities

could be integrated to other LSBBs. Maybe the “if” condition, the assign or

the loops could be integrated to other LSBBs. This optimisation might reduce

the number of SBBs per service instance and the amount of event

communication between the service components during the event execution.

References

328

References

1. 3GPP TS 23.228 TS 23.228 (2006), Technical Specification, “IP Multimedia

Subsystem (IMS); Stage 2 (Release 5)”, 3GPP

2. 3GPP TS 23.228 (2013), Technical Specification, “Digital cellular

telecommunications system (Phase 2+); Universal Mobile

Telecommunications System (UMTS); LTE; IP Multimedia Subsystem (IMS);

Stage 2 (Release 11)”, 3GPP

3. 3GPP (2014), “THE Mobile Broadband Standard”, http://www.3gpp.org (last

visited: 2014-03-24)

4. Abarca, C.; Bennett, A.; Moerdijk A. J.; Unmehopa, M. (2002), “Parlay/OSA:

an open API for service development”, 3GPP,

http://www.3gpp.org/ftp/tsg_sa/WG3_Security/TSGS3_22_Bristol/Docs/PDF/

S3-020126.pdf (last visited: 2014-06-14)

5. ANT (2010), “The Apache ANT Project”, http://ant.apache.org/ (last visited:

2010-12-28)

6. Autili, M.; Berardinelli, L.; Cortellessa, V.; Di Marco A.; Di Ruscio D.;

Inverardi, P.; Tivoli, M. (2007), “A Development Process for Self-adapting

Service Oriented Applications”, in proceeding of ICSOC 2007 (442-448),

Vienna, Austria

7. Bakker, J. L.; Jain, R. (2002), “Next Generation Service Creation Using XML

Scripting Languages”, Proc. IEEE Intl. Conf. on Comm. (ICC), IEEE

8. Baravaglio, A.; Licciardi, C. A.; Venezia, C. (2005), “Web service

applicability in telecommunication service platforms”, IEEE International

Conference on Next Generation Web Service Practices 2005 (NWeSP 2005),

ISBN: 0-7695-2452-4, 22-26, IEEE

9. Baresi, L.; Di Nitto, E.; Ghezzi, C. (2006), “Toward Open-World Software:

issues and challenges”, IEEE Computer, Volume 39, No. 10: 36-43, IEEE

10. Becker (2015), “CPL-Editor”, X-ING project, Lehrstuhl Systemarchitektur,

Institut für Informatik, Humbold-Universität Berlin,

http://www2.informatik.hu-berlin.de/~xing/CPLEditor/ (last visited: 2015-05-

13)

11. Bessler, S.; Zeiss, J.; Gabner, R.; Gross, J. (2007), “An Orchestrated

Execution Environment for Hybrid Services”, In Proc. Kommunikation in

verteilten Systemen (KIVS), Bern, Springer

12. Bo, Ye; Da, Zhu; Yang, Zhang; Junliang, Chen (2009), “The Design of an

Orchestrated Execution Environment Based on JBI”, Computer Science-

Technology and Applications, IFCSTA ’09, International Forum on

Computing & Processing (Hardware/Software), 2009, pp. 367-371, IEEE

References

329

13. Burgy L.; Consel C.; Latry F.; Lawall J.; Palix N.; Réveillère L. (2006),

“Language Technology for Internet-Telephony Service Creation”, IEEE

International Conference on Communications 2006, Instanbul, ISBN: 1-4244-

0355-3

14. Chen L.; Wassermann B.; Emmeric W.; Foster H. (2006), “Web Service

Orchestration with BPEL”, Proceedings of the 28th international conference

on Software engineering, Shanghai 2006, pp. 1071-1072, 2006, ISBN:1-

59593-375-1

15. Cipolla, D.; Cosso, F.; Demartint, M.; Drewniok, M.; Moggia, F.; Rendetore,

P.; Sienel, J. (2007), “Web Services Based Asynchronous Service Execution

Environment” Service-Oriented Computing - ICSOC 2007 Workshops, pp.

304-316, Vienna, Austria, 2007, Springer Berlin Heidelberg, 2009, ISBN:

978-3-540-93851-4

16. Curbera, F.; Goland, Y.; Klein, J.; Leymann, F.; Roller, D.; Thatte, S.;

Weerawarana, S. (2002), “Business Process Execution Language for Web

Service (BPEL4WS) 1.0”, BEA Corp., IBM Corp. and Microsoft Corp.

17. Detecon (2007), “Abschlussbericht Detecon – Services in NGN” (translated

title: “Final Report Detecon – Services in NGN”), University of Applied

Sciences Frankfurt am Main and Detecon International GmbH

18. Drögenhorn, O.; König, I.; Belaunde, M.; Le-Jeune, G.; Cupillard, J.; Kovacs,

E. (2008) “Professional and End-User-Driven Service Creation in the SPICE

platform”, World of Wireless, Mobile and Multimedia Networks (WoWMoM

2008), Newport Beach, 2008, 978-1-4244-2099-5, IEEE

19. Eclipse (2013), “BPEL Designer Project”, The Eclipse Foundation,

http://www.eclipse.org/bpel/ (last visited: 2013-10-17)

20. Eichelmann, T.; Fuhrmann, W.; Trick, U.; Ghita, B. (2008), “Creation of

value-added services in NGN with BPEL”, Internal Publication, In (Bleimann,

U.; Dowland, P. S.; Furnell, S. M.; Grout, V. M.) Proceedings of the Fourth

Collaborative Research Symposium on Security, Elearning, Internet and

Networking (SEIN 2008), Wrexham, UK 2008. Centre for Security,

Communications and Network Research, University of Plymouth, Plymouth,

UK, 2008, ISBN: 978-1-84102-196-6, pp186–193

21. Eichelmann, T.; Fuhrmann, W.; Trick, U.; Ghita, B. (2009), “Support of

parallel BPEL activities for the TeamCom Service Creation Platform for Next
Generation Networks”, Internal Publication, In (Bleimann, U., Dowland, P.S.,

Furnell, S.M., Grout, V.M.) Proceedings of the Fifth Collaborative Research

Symposium on Security, E-learning, Internet and Networking (SEIN 2009),

Darmstadt 2009. Centre for Security, Communications and Network Research,

University of Plymouth, Plymouth, UK, ISBN: 978-1-84102-236-9, pp69–80

22. Eichelmann, T.; Fuhrmann, W.; Trick, U.; Ghita, B.V. (2010) „Enhanced

Concept of the TeamCom SCE for Automated Generated Services Based on

References

330

JSLEE“, Proceedings of the Eighth International Network Conference (INC

2010), Heidelberg, Germany, 8-10 July, ISBN: 978-1-84102-259-8, pp75-84

23. Eichelmann, T.; Fuhrmann, W.; Trick, U.; Ghita, B.V. (2011) “Discussion on

a Framework and its Service Structures for generating JSLEE based Value-

Added Services“, Proceedings of the Fourth International Conference on

Internet Technologies & Applications 2011 (ITA 2011), Wrexham, UK, 2011,

ISBN: 978-0-946881-68-0, p 169-176

24. Eichelmann, T.; Fuhrmann, W.; Trick, U.; Ghita, B.V. (2012), “A JSLEE

based Service Creation and Service Delivery Framework for value-added

services in Next Generation Networks”, Proceedings of the 3rd International

Conference on Internet and Applications 2012 (ITAP 2012), Wuhan, China,

2012, ISBN: 978-1-4577-1575-4

25. ETSI TR 180 001 V1.1.1 (2006), Technical Report, “Telecommunications and

Internet converged Services and Protocols for Advanced Networking

(TISPAN); NGN Release 1; Release definition”, ETSI

26. ETSI TS 122.001 V8.0.0 (2009), Technical Specification, “Principles of

circuit telecommunication services supported by a Public Land Mobile

Network (PLMN)”, ETSI

27. ETSI TS 122.101 V9.3.0 (2009), Technical Specification, “Service aspects;

Service principles”, ETSI

28. ETSI TS 122.105 V8.4.0 (2008), Technical Specification, “Services and

service capabilities”, ETSI

29. ETSI TS 122.228 V8.6.0 (2009), Technical Specification, “Service

requirements for the Internet Protocol (IP) multimedia core network subsystem

(IMS)”, ETSI

30. EURESCOM 0241-1109 (2001), “Next Generation Networks: the service

offering standpoint”, Eurescom

31. Falcarin, P.; Licciardi, C. A. (2003a), “Analysis of NGN services creation

technologies” IEC Annual Review of communications, volume 56

32. Falcarin, P.; Licciardi, C. A. (2003b), “Technologies and Guidelines for

Service Creation in NGN” 8th ITU-IEEE ICIN, Bordeaux

33. Fan, Q.; Glitho, R.; Khoumsi, A. (2006), “Creation of internet-telephony

services using Siplet technology”, Proceedings of the International Conference

on Telecommunications and International Conference on Internet and Web

Applications and Services (AICT-ICIW 2006), IEEE, 0-7695-2522-9/06,

2006, Heidelberg, Germany, 8-10 July, ISBN: 978-1-84102-259-8, pp75-84

34. Fraunhofer SIT (2014), “MAMS Multi-Access, Modular-Services”,

https://www.sit.fraunhofer.de/en/offers/projekte/mams/ (last visited: 2014-03-

17)

35. Freese, B.; Stein, H.; Magedanz, T.; Dutkowski, S. (2007), “Multi-access

modular-services framework - supporting SMEs with an innovative service

References

331

creation toolkit based on integrated SDP/IMS infrastructure”, 11th

International Conference on Intelligence in Service Delivery Networks, ICIN

2007. Proceedings. CD-ROM : Bordeaux, 8-11 October 2007

Bordeaux

36. Glitho, R. H.; Poulin, A.; Khendek, F. (2002), “A High Level Service Creation

Environment for Parlay in a SIP Environment”, ICC 2002 IEEE International

Conference, pp 2008-2013

37. Glitho, R. H.; Khendek, F.; De Marco, A. (2003), “Creating Value Added

Services in Internet Telephony: An Overview and a Case Study on a High-

Level Service Creation Environment”, Systems, Man, and Cybernetics, Part C:

Applications and Reviews, IEEE Transactions, pp 446 - 457

38. Görtz, M. (2005), “Effiziente Echtzeit-Kommunikationsdienste durch Einbe-

ziehung von Kontexten” (translated title: “Efficient Real-time Communication

Services through the using of Contexts”), Dissertationsschrift TU Darmstadt

39. Haiges, S. (2005), “Einführung in die JAIN/SLEE-Technologie” (translated

title: “Introduction to the JAIN/SLEE Technology”), it-republik

40. Hammerschall, U. (2005), “Verteilte Systeme und Anwendungen” (translated

title: “Distributed Systems and Applications”), Pearson

41. IBM Corporation (2012), “SOA + Telecommunications = TelcoML!: An

introduction to the TelcoML design standard, an UML Profile for Integrated

Telecom”, IBM

42. IBM WebSphere (2015), “WebSphere Voice Toolkit V6.2”, First published by

IBM developerWorks at

http://www.ibm.com/developerWorks/websphere/downloads/voicetoolkit.html

All rights retained by IBM and the author(s) (last visited: 2015-05-13)

43. IETF (2001a), Internet Draft “An Application Server Component Architecture

for SIP”, IETF

44. IETF (2001b), Internet-Draft, “SIP Servlet API Extensions”, IETF

45. IETF (2001c), Internet Draft, “A Service Creation Markup Language for

Scripting Next Generation Network Services (SCML)“, IETF

46. IETF (2005), Internet-Draft “LESS: Language for End System Services in

Internet Telephony”, IETF

47. IETF RFC 3050 (2001), Request for Comments, “Common Gateway Interface

for SIP”, IETF

48. IETF RFC 3362 (2002), Request for Comments, “Real-time Facsimile (T.38) -

image/t38 MIME Sub-type Registration”, IETF

49. IETF RFC 3880 (2004), Request For Comments, “Call Processing Language

(CPL): A Language for User Control of Internet Telephony Services”, IETF

50. IETF RFC 4267 (2005), Request For Comments, “The W3C Speech Interface

Framework Media Types: application/voicexml+xml, application/ssml+xml,

http://www.ibm.com/developerWorks/websphere/downloads/voicetoolkit.html
http://www.ibm.com/developerWorks/websphere/downloads/voicetoolkit.html

References

332

application/srgs, application/srgs+xml, application/ccxml+xml, and

application/pls+xml”, IETF

51. IETF RFC 5022 (2007), Request for Comments, “Media Server Control

Markup Language (MSCML) and Protocol”, IETF

52. IETF RFC 5707 (2010), Request for Comments, “Media Server Markup

Language (MSML)”, IETF

53. IETF RFC 6120 (2011), Request For Comments “Extensible Messaging and

Presence Protocol (XMPP): Core”, IETF

54. IPCC (2002), “Reference Architecture”, International Packet Communications

Consortium

55. ITIL (2014), “Glossar”, http://www.itil.org/en/glossar/glossarkomplett.php

(last visited: 2014-03-03)

56. IST NGN Initiative (2002), “NGNI Roadmap 2002”, NGNI

http://www.ngni.org

57. istworld (2014), “Open platform for user-centric service creation and

execution”, http://www.ist-

world.com/ProjectDetails.aspx?A=1&DataSelectionDataType=Project&DataS

electionSelectionType=classification&DataSelectionSourceDatabaseId=7cff92

26e582440894200b751bab883f&FindClassificationEntityName=Project&Fin

dClassificationCategoryName=Top%2FScience%2FChemistry%2FNuclear_

Magnetic_Resonance%2FCommercial_Companies%2FMagnet_Service&Find

ClassificationDisplaySubs=true (last visited: 2014-06-16)

58. ITU-T I.112 (1993), Recommendation, “Integrated Services Digital Networks

(ISDN) General Structure”, ITU-T

59. ITU-T I.210 (1993), Recommendation, “Principles of Telecommunication

Services supported by an ISDN and the means to describe them”, ITU-T

60. ITU-T I.211 (1993), Recommendation, “B-ISDN Service aspects”, ITU-T

61. ITU-T Q.1200 (1997), Recommendation, “General series Intelligent Network

Recommendation structure”, ITU-T

62. ITU-T Y.2001 (2004), Recommendation, “General overview of NGN”, ITU-T

63. JDeveloper (2014), “Oracle JDeveloper”,

http://www.oracle.com/technetwork/developer-tools/jdev/overview/index.html

(last visited: 2014-03-18)

64. Jouve, W.; Palix, N.; Consel, C.; Kadionik, P. (2008), “A SIP-based

Programming Framework for Advanced Telephony Applications”, In

Principles, Systems and Applications of IP Telecommunications Services and

Security for Next Generation Networks, IPTCOM 2008, Heidelberg, Germany

65. JSR 3 (2000), Java Specification Requests, “JSR-000003 Java
TM

 Management

Extensions (JMX) v1.0 Specification (Final Release)”, Sun Microsystems, Inc.

References

333

66. JSR 16 (2000), Java Specification Requests, “JSR-000016 J2EE
TM

 Connection

Architecture (JCA) v1.0 Specification (Final Release)”, Sun Microsystems,

Inc.

67. JSR 19 (2001), Java Specification Requests, “JSR-000019 Enterprise

JavaBeansTM v2.0 Specification (Final Release)”, Sun Microsystems, Inc.

68. JSR 21 (2002), Java Specification Requests, “JSR-000021 Java
TM

 Call Control

API Specification (JCC
TM

) v1.1 Specification (Final Release)”, Sun

Microsystems, Inc.

69. JSR 22 (2004), Java Specification Requests, “JSR-000022 Specification, JAIN

SLEE 1.0 Specification, Final Release”, Sun Microsystems Inc., Open Cloud

70. JSR 116 (2003), Java Specification Requests, “JSR-000116 Specification,

“SIP Servlet API, Final Release”, Sun Microsystems, Inc., dynamicsoft inc.

71. JSR 160 (2003), Java Specification Requests, “JSR-000160 Java
TM

Management Extensions (JMX) Remote API 1.0 (Final Release)”, Sun

Microsystems, Inc.

72. JSR 208 (2005), Java Specification Requests, “Java™ Business Integration 1.0

(JBI 1.0)”, Sun Microsystems, Inc.

73. JSR 240 (2008), Java Specification Requests, Final Release, “JAIN SLEE

(JSLEE) 1.1”, Sun Microsystems, Inc

74. JSR 255 (2008), Java Specification Requests, “JSR-000255 Java
TM

Management Extensions (JMX
TM

) v2.0 Specification (Early Draft Review)”,

Sun Microsystems, Inc.

75. JSR 289 (2008), Java Specification Requests, JSR-000289 Specification, Final

Release, “SIP Servlet Specification, version 1.1, Sun Microsystems, Inc.,

Oracle, BEA

76. Juric, M. B. (2014), “A Hands-on Introduction to BPEL”, In: Developer: J2EE

Web Services, http://www.oracle.com/technetwork/articles/matjaz-bpel1-

090575.html (last visited: 2014-03-14), Oracle

77. Kanbach, A.; Körber, A. (1999), “ISDN – Die Technik” (translated title:

“ISDN – The Technology”), Hüthig

78. Keiser, J.; Kriengchaiyapruk, T. (2008), “Bringing Creation of Context-Aware

Mobile Services to the Masses”, In: IEEE SOA Industry Summit (SOAIS

2008), Hawaii, USA

79. Kuthan, Jiri (2000), “Moving Telephony from Intelligent Networks to Dumb

Net-works”, SIP2000 Konferenz Paris

80. Lasch, R.; Ricks, B.; Tönjes, R. (2009a), “Service Creation Environment for

Business-to-business Services”, 4th International IEEE Workshop on Service

Oriented Architectures in Converging Networked Environments, Bradford,

UK

References

334

81. Lasch, R.; Ricks, B.; Tönjes, R. (2009b), “Konzept eines BPEL zu JSLEE

Compilers auf Basis wieder-verwendbarer Kommunikationsbausteine”

(translated title: “Concept of a BPEL to JSLEE Compiler based on re-usable

Communication Building Blocks”), In (Tönjes, R., Roer, P.)

Mobilkommunikation – Technologien und Anwendungen – Vorträge der 14.

ITGFachtagung from 13th to 14th May 2009 in Osnabrück, Osnabrück 2009,

VDE, Berlin, 2009. ISBN 978-3-8007-3164-0k

82. Latry F.; Mercadal J.; Consel C. (2007), “Staging Telephony Service Creation:

A Language Approach”, In Principles, Systems and Applications of IP

Telecommunications, IPTComm, New-York, NY, USA, ACM Press

83. Lehmann, A.; Trick, U.; Oehler, S. (2007), “NGN und Mehrwertdienste –

Technische Lösungen” (translated title: “NGN and Value-added Services –

Technical Solutions”), ntz Nachr.-tech. Z. 60 (2007) H. 7-8, S. 30 –33

84. Lehmann, A.; Trick, U.; Oehler, S. (2008a), “NGN und Mehrwertdienste –

Geschäftsmodelle und Szenarien” (translated title: “NGN and Value-added

Services – Business Models and Scenarios”), ntz Nachr.-tech. (2008) H. 1, S.

22 –25

85. Lehmann, A.; Eichelmann, T.; Trick, U.; Lasch, R.; Tönjes, R. (2009),

“TeamCom: A Service Creation Platform for Next Generation Networks”, In

(Perry, M.; Sasaki, H.; Ehmann, M.; Bellot, G. O.; Dini, O.) The Fourth

International Conference on Internet and Web Applications and Services

(ICIW 2009), Venice 2009, IEEE Computer Society, Los Alamitos, CA, USA,

2009, ISBN 978-0-7695-3613-2

86. Lehmann, A. (2010), “Optimisation of SIP-based peer-to-peer communication

under special consideration of provisioning and composition of distributed

value-added services”, University of Plymouth, United Kingdom

87. Licciardi, A. C.; Falcarin, P. (2003), “Technologies and Guidelines for Service

Creation in NGN”, exp Volume 3 -- n. 4

88. Lin, L.; Lin, P. (2007), “Orchestration in Web Services and Real-Time

Communications”, IEEE Communication Magazine

89. Lu, H.; Zheng, Y.; Sun, Y. (2008), “The Next Generation SDP Architecture:

Based on SOA and Integrated with IMS”, Second International Symposium on

Intelligent Information Technology Application (IITA’08), Volume 3, pp.

141-145, IEEE

90. Magedanz, T.; Sher, M. (2006), “IT-based Open Delivery Platforms for

Mobile Networks: From CAMEL to the IP Multimedia System”, The

handbook of mobile middleware, Boca Raton, CRC Press, 2006, ISBN 978-0-

8493-3833-5, pp. 999-1034

91. Magedanz, T.; Blum, N.; Dutkowski, S. (2007), “Evolution of SOA concepts

in Telecommunications”, IEEE Computer Magazine

References

335

92. MAMS (2010), “Multi-Access, Modular-Services Framework (MAMS)”,

Fraunhofer FOKUS, BMBF-Project, http://www.mams-platform.net (last

visited: 2010-12-28)

93. Maretzke, M. (2005), “JAIN SLEE Technology Overview”,

http://www.maretzke.de/pub/lectures/jslee_overview_2005/JSLEE_Overview

_2005.pdf (last visited: 2014-06-24)

94. Maretzke, M.; Haiges, S.; Bröcker, C. (2005), “Ereignisorientierte

Komponenten mit JAIN SLEE”(translated title: “Event-oriented Components

with JAIN SLEE”), Java Spektrum 05/2005

95. Martins, E. (2011), “Mobicents JAIN SLEE SIP Wake Up Example User

Guide, Revision 2.0”, http://docs.jboss.org/mobicents (last visited: 2014-06-

18), Oracle

96. Mobicents (2014), “The Open Source JAIN SLEE”,

http://www.mobicents.org/slee/intro.html (last visited: 2014-01-18)

97. Moriana Group (2004), “SDP Thought Leader Community: Service delivery

Platforms and Telecom Web Services – An Industry Wide Perspective”,

Report on Service delivery Platforms, The Moriana Group

98. Moriana Group (2013), “Moriana on SDP 2.0: Service Delivery Platforms –

definition and evolution”, Technology Article, Available at:

http://www.morianagroup.com/index.php?option=com_content&view=article

&id=148&Itemid=233 (last visited: 2014-03-15)

99. Mulvenna, M.; Valetto, G.; Hayden, C.; McConnel, R.; Lawrynowicz, A.;

Baumgarten, M.; (2008), “The Potential for Autonomic Service Delivery

Platforms”, Proceedings of the 2008 International Conference on

Communication in Computing (CIC 2008), CSREA Press, USA, pp. 188-194

100. OASIS Standard (2006), “Reference Model for Service Oriented Architecture

1.0”, OASIS

101. OASIS (2007), “Web Services Business Process Execution Language Version

2.0”, OASIS

102. ODE (2013), Apache ODE (Orchestration Director Engine),

http://ode.apache.org/ (last visited: 2013-03-4)

103. OMA (2004), “OMA Service Environment Approved Version 1.0 – 07 Sep

2004”, OMA-Service_Environment-V1_0-20040907-A, OMA

104. OMA (2013), “Open Mobile Alliance”, http://www.openmobilealliance.org

(last visited: 2012-12-28)

105. OMG (2008), “UML Profile and Metamodel for Voice-based Applications

Specification (VoicP)”, Version 1.0

106. OMG (2010), “BPMN 2.0 by Example”, Version 1.0 (non-normative)

References

336

107. OMG (2011a), “Unified Modeling Language (OMG UML), Infrastructure”,

Version 2.4.1

108. OMG (2011b), “Business Process Model and Notation (BPMN)

Specification”, Version 2.0

109. OMG (2012a), “Common Object Request Broker Architecture (CORBA)

Specification”, Version 3.3

110. OMG (2012b), “Service oriented architecture Modeling Language (SoaML)

Specification”, Version 1.0.1

111. OMG (2013), “UML Profile for Advanced and Integrated Telecommunication

Services (TelcoML) Specification”, Version 1.0

112. OpenCloud (2013), “Rhino Visual Service Architect”,

www.opencloud.com/products/rhino-VSA/ (last visited: 2014-08-06)

113. OPUCE (2010), “Open Platform User-centric Service Creation and

Execution“, http://www.redhat.com/solutions/telco/industry/opuce.html (last

visited: 2010-12-28) or http://www.opuce.tid.es/ (not accessable on 2010-12-

28)

114. Orthman, F. D. (2003), “Softswitch – Architecture for VOIP”, McGraw-Hill

115. Ottinger, J. (2008), “What is an App Server?”,

http://www.theserverside.com/news/1363671/What-is-an-App-Server (last

visited: 2015-03-09)

116. P1109 (2001), “Next Generation Networks: the service offering standpoint”

Eurescom

117. Parlay (2010), “Parlay Informationen” (translated title: “Parlay Information”),

http://www.parlay.org (last visited: 2010-12-28)

118. PhonerLite (2014), “PhonerLite”, http://www.phonerlite.de/ (last visited:

2014-05-25)

119. Rosenberg, J.; Lennox, J.; Schulzrinne, H. (1999), “Programming Internet

Telephony Services”, IEEE Internet Computing Magazine

120. ServiceMix (2013), Apache ServiceMix, http://servicemix.apache.org/ (last

visited: 2013-03-1)

121. Sienel, J.; Martin, A. L.; Zorita, C. B.; Goix, L. W.; Reol, A. M.; Martinez, B.

C. (2009), “OPUCE: A telco-driven service mash-up approach”, Bell Labs

Technical Journal (Volume:14, Issue1), Alcatel-Lucent, 2009, ISS: 1089-

7089, IEEE

122. SPICE (2013), “Service Platform for Innovative Communication Environment

(SPICE)”, European IST-FP6 project, http://www.ist-spice.org (last visited:

2013-12-28)

123. SPICE NEC (2013), “SPICE Service Platform for Innovative Communication

Environment”, NEC Europe Ltd. European IST-FP6 project

References

337

http://uk.nec.com/en_GB/emea/about/neclab_eu/projects/spice.html (last

visited: 2013-10-13)

124. SPL (2013), “SPL (Session Processing Language – A DSL for IP telephony

services)”, http://phoenix.inria.fr/software/past-projects/spl (last visited: 2013-

07-08)

125. Stallings, W. (1999), “ISDN and Broadband ISDN with Frame Relay and

ATM”, Pearson Education

126. Steffen, B.; Margaria, T.; Nagel, R.; Jörges, S.; Kubczak, C. (2006),“ Model-

Driven Development with the jABC”, IBM Haifa Verification Conf. (HVC

2006), LNCS 4383, Springer-Verlag, pp.92-108

127. Steffen, B.; Narayan, P. (2007), “Full Life-Cycle Support for End-to-End

Processes”, IEEE Computer Magazine

128. Sun Microsystems; Open Cloud (2003), “JAIN™ SLEE Tutorial Serving the

Developer Community”, Sun and Open Cloud

129. TeamCom (2010), “TeamCom- IMS- or P2P-based Service Provisioning and

Creation for Customer Tailored Communication Processes”,

http://www.ecs.hs-osnabrueck.de/24009.html (last visited: 2010-12-28)

130. Trick, U., Weber, F. (2006), “Mobilität und Next Generation Networks

(NGN)”, Band 1 “VDE Kongress 2006 Aachen – Innovations for Europe”,

S.181-186, October 2006

131. Trick, U.; Weber, F. (2007), “SIP, TCP/IP und Telekommunikationsnetze”

(translated title: “SIP, TCP/IP and Telecommunication Networks”),

Oldenbourg, ISBN: 3-486-27529-1

132. Trick, U.; Weber, F. (2009), “SIP, TCP/IP und Telekommunikationsnetze (4
th

edition)” (translated title: “SIP, TCP/IP and Telecommunication Networks (4
th

edition)”), Oldenbourg, Munich, Germany, ISBN: 3-486-59000-5

133. Van Den Bossche B.; De Turck F.; Dhoedt B. and Demeeste P. (2006),

“Enabling Java-based VoIP backend platforms through JVM performance

tuning” Department of In-formation Technology (INTEC)

134. Venezia, C.; Licciardi, C.A. (2006), “Communication Web Services

Composition and Integration”, IEEE International Conference on Web

Services 2006 (ICWS ‘06), ISBN: 0-7695-2669-1, 18-22 Sept. 2006, IEEE

135. W3C (1999), “XML Path Language (XPath) Version 1.0”, W3C

136. W3C (2004a), “Web Services Architecture”, W3C

137. W3C (2004b), Recommendation, “Voice Extensible Markup Language

(VoiceXML) 2.0”, W3C

138. W3C (2007a), Recommendation, “Voice Extensible Markup Language

(VoiceXML) 2.1”, W3C

139. W3C (2007b), Recommendation, “Web Service Description Language

(WSDL) Version 2.0 Part 1: Core Language”, W3C

References

338

140. W3C (2007c), Recommendation, “SOAP Version 1.2 Part 0: Primer (Second

Edition)”, http://www.w3.org/TR/2007/REC-soap12-part0-20070427/ (last

visited: 2014-06-24) , W3C

141. W3C (2008), Recommendation, “Extensible Markup Language (XML) 1.0

(Fith Edition)”, W3C

142. W3C (2011), Recommendation, “Voice Browser Call Control: CCXML”,

Version 1.0, W3C

143. W3C (2013), Last Call Working Draft, “State Chart XML (SCXML): State

Machine Notation for Control Abstraction”, W3C

144. Wu X.; Schulzrinne H. (2003), “Programmable end system services using

SIP”, IEEE International Conference on Communications, May, 2003, 2nd

New York Metro Area Networking Workshop, IEEE

145. Wu X.; Schulzrinne H. (2007), “Handling Feature Interactions in the

Language for End System Services”, Computer Networks: The International

Journal of Computer and Telecommunications Networking, Volume 51 Issue

Appendix A – Abbreviations

339

Appendix A – Abbreviations

3GPP Third Generation Partnership Project

3PCC Third Party Call Control

A

AAA Authentication, Authorization, and Accounting

AC Activity Context

API Application Programming Interface

AS Application Server

ASDL Asymmetric Digital Subscriber Line

ATM Asynchronous Transfer Mode

B

B2BUA Back-to-Back User Agent

BMBF Federal Ministry of Education and Research

BPEL Business Process Execution Language

BPMN Business Process Model and Notation

BRAS Broadband Remote Access Server

BS Base Station

BSS Business Support System

C

CA Client Application

CAMEL Customised Applications for Mobile networks Enhanced Logic

CAP CAMEL Application Part

CBB Communication Building Block

CCXML Call Control Extensible Mark-up Language

CGI Common Gateway Interface

CN Core Network

CORBA Common Object Request Broker Architecture

Appendix A – Abbreviations

340

CPL Call Processing Language

CS Call Server

CSCF Call Session Control Function

CSE Customised Application for Mobile Network Enhanced Logic Service

Environment

D

DSL Domain-Specific Language

DTMF Dual-tone multi-frequency

E

EJB Enterprise JavaBeans

ESB Enterprise Service Bus

ETSI European Telecommunications Standards Institute

G

GSM Global System for Mobile communications

GUI Graphical User Interface

GW Gateway

H

HSS Home Subscriber Server

HTML Hypertext Mark-up Language

HTTP Hypertext Transfer Protocol

I

IDE Integrated Development Environment

IETF Internet Engineering Task Force

IIOP Inter Inter-Orb Protocol

IM Instant Messaging

IMS IP Multimedia Subsystem

IM-SSF IP Multimedia-Service Switching Function

Appendix A – Abbreviations

341

IN Intelligent Network

IP Internet Protocol

ISDN Integrated Services Digital Network

ISONI Intelligent Service Orientated Network Infrastructure

ITU-T International Telecommunication Union - Telecommunication

Standardization Sector

J

JAIN Java APIs for Integrated Networks

JAR Java Archive

JAVA EE JAVA Platform, Enterprise Edition

JMX Java Management Extensions

JNDI Java Naming and Directory Interface

JSLEE JAIN Service Logic Execution Environment

JAIN SLEE JAIN Service Logic Execution Environment

JSR Java Specification Request

L

LAN Local Area Network

LESS Language for End System Services

LSBB Logic Service Building Block

M

MAMS Multi-Access Modular-Services

MAP Mobile Application Part

MEGACO Media Gateway Control Protocol

MGW Media Gateway

MGC Media Gateway Controllers

MMS Multimedia Messaging Service

MSBB Management Service Building Block

Appendix A – Abbreviations

342

N

NA Network Abstraction

NGN Next Generation Networks

NM Normalized Message

NMR Normalized Message Router

O

OASIS Organization for the Advancement of Information Standards

ODSDP Open Distributed Service Delivery Platform

OMA Open Mobile Alliance

OMG Object Management Group

OPUCE Open Platform User-centric Service Creation and Execution

ORB Object Request Broker

OSA Open Service Access

OSE OMS Service Environment

OSS Operation Support System

P

P2P Peer-to-Peer

PEEM Policy Evaluation, Enforcement, and Management

PLMN Public Land Mobile Network

POP Point of Presence

PSTN Public Switched Telephone Network

Q

QoS Quality of Service

R

RA Resource Adaptor

RCSBB Resource Connection Service Building Block

RFC Request for Comments

RPC Remote Procedure Call

Appendix A – Abbreviations

343

RTP Real-time Transport Protocol

S

SBB Service Building Block

SCE Service Creation Environment

SCF Service Capability Features

SCMSBB Service Control Management Service Building Block

SCML Service Control Mark-up Language

SCP Service Control Point

SCS Service Capability Server

SCXML State Chart XML

SD Service Deployment

SDP Session Description Protocol

SEE Service Execution Environment

SGW Signalling Gateway

SIB Service Independent Building Blocks

SIP Session Initiation Protocol

SLEE Service Logic Execution Environment

SMS Short Message Service

SOA Service-Oriented Architecture

SOAML Service-Oriented Architecture Modelling Language

SPICE Service Platform for Innovative Communication Environment

SPL Service Processing Language

SQL Structured Query Language

SS7 Signalling System No 7

STL Service Transport Layer

T

TCP Transmission Control Protocol

TLS Transport Layer Security

TV Television

Appendix A – Abbreviations

344

U

UA User Agent

UAC User Agent Client

UAS User Agent Server

UDDI Universal Description and Discovery Interface

UDP User Datagram Protocol

UML Unified Modeling Language

UMTS Universal Mobile Telecommunications System

URI Uniform Resource Identifier

USSD Unstructured Supplementary Services Data

UUS User-to-User Signalling

V

VoIP Voice over IP

Voice XML Voice Extensible Mark-up Language

W

W3C World Wide Web Consortium

WS Web Service

WSDL Web Service Description Language

WWI Wireless World Initiative

WWW World Wide Web

X

XCAP XML Configuration Access Protocol

XML Extensible Mark-up Language

Appendix B – Publications and Presentations

345

Appendix B – Publications and

Presentations

The following list includes publications and presentations related to the area of this

research, to which the author of this thesis has contributed during the course of

research.

1. Eichelmann, T.; Fuhrmann, W.; Trick, U.; Ghita, B. (2008), “Creation of

value-added services in NGN with BPEL”, Internal Publication, In (Bleimann,

U.; Dowland, P.S; Furnell, S.M.; Grout, V.M.) Proceedings of the Fourth

Collaborative Research Symposium on Security, Elearning, Internet and

Networking (SEIN 2008), University of Plymouth, School Of Computing,

Communications And Electronics, UK, 2008, ISBN: 978-1841021966, pp186–

193

2. Eichelmann, T.; Fuhrmann, W.; Trick, U.; Ghita, B. (2009), “Support of

parallel BPEL activities for the TeamCom Service Creation Platform for Next

Generation Networks”, Internal Publication, In (Bleimann, U.; Dowland, P.S.;

Furnell, S.M.; Grout, V.M.) Proceedings of the Fifth Collaborative Research

Symposium on Security, E-learning, Internet and Networking (SEIN 2009),

University of Plymouth, School Of Computing, Communications And

Electronics, UK, 2009. ISBN: 978-1-84102-236-9, pp69–80

3. Eichelmann, T.; Fuhrmann, W.; Trick, U.; Ghita, B.V. (2010) “Enhanced

Concept of the TeamCom SCE for Automated Generated Services Based on

JSLEE”, Proceedings of the Eighth International Network Conference (INC

2010), In (Bleimann, U.; Dowland, P.S.; Furnell, S.M.; Schneider, O.)

University of Plymouth, School Of Computing, Communications And

Electronics, UK, 2010, ISBN: 978-1-84102-259-8, pp75-84

4. Eichelmann, T.; Fuhrmann, W.; Trick, U.; Ghita, B.V. (2011) “Discussion on

a Framework and its Service Structures for generating JSLEE based Value-

Added Services”, Proceedings of the Fourth International Conference on

Internet Technologies & Applications (ITA 11), In (Grout, V.M.; Picking, R.;

Appendix B – Publications and Presentations

346

Oram, D.; Cunningham, S.; Houlden, N.) North East Wales Institute, UK,

2011, ISBN: 978-0-946881-68-0, p 169-176

5. Eichelmann, T.; Fuhrmann, W.; Trick, U.; Ghita, B.V. (2012) “A JSLEE

based Service Creation and Service Delivery Framework for value-added

services in Next Generation Networks”, Proceedings of the 3rd International

Conference on Internet and Applications 2012 (ITAP 2012), Wuhan, China,

2012, ISBN: 978-1-4577-1575-4

6. Lehmann, A.“ Eichelmann, T.“ Trick, U. (2008b), “Neue Möglichkeiten der

Dienstebereitstellung durch Peer-to-Peer-Kommunikation” (translated title:

“New ways of service provisioning through peer-to-peer communication”),

ITG-Fachbericht 208 Mobilfunk, VDE-Verlag

7. Lehmann, A.; Eichelmann, T.; Trick, U.; Lasch, R.; Tönjes, R. (2009),

“TeamCom: A Service Creation Platform for Next Generation Networks”, In

(Perry, M.; Sasaki, H.; Ehmann, M.; Bellot, G.O.; Dini, O.) The Fourth

International Conference on Internet and Web Applications and Services

(ICIW 2009), Venice 2009, IEEE Computer Society, Los Alamitos, CA, USA,

2009, ISBN 978-0-7695-3613-2

Copies of the papers most closely related to the research described are enclosed

within this appendix.

Appendix B – Publications and Presentations

347

Published in Proceedings of the Fourth Collaborative Research Symposium on

Security, Elearning, Internet and Networking (SEIN 2008) pp186–193, University of

Plymouth, School Of Computing, Communications And Electronics, UK, 2008

ISBN: 978-1-84102-196-6

Appendix B – Publications and Presentations

348

Appendix B – Publications and Presentations

349

Appendix B – Publications and Presentations

350

Appendix B – Publications and Presentations

351

Appendix B – Publications and Presentations

352

Appendix B – Publications and Presentations

353

Appendix B – Publications and Presentations

354

Appendix B – Publications and Presentations

355

Published in Proceedings of the Fifth Collaborative Research Symposium on

Security, E-learning, Internet and Networking (SEIN 2009), pp69–80, University of

Plymouth, School Of Computing, Communications And Electronics, UK, 2009,

ISBN: 978-1-84102-236-9

Appendix B – Publications and Presentations

356

Appendix B – Publications and Presentations

357

Appendix B – Publications and Presentations

358

Appendix B – Publications and Presentations

359

Appendix B – Publications and Presentations

360

Appendix B – Publications and Presentations

361

Appendix B – Publications and Presentations

362

Appendix B – Publications and Presentations

363

Appendix B – Publications and Presentations

364

Appendix B – Publications and Presentations

365

Published in Proceedings of the eighth International Network Conference (INC

2010), pp75-84, University of Plymouth, School Of Computing, Communications

And Electronics, UK, 2010, ISBN: 978-1-84102-259-8

Appendix B – Publications and Presentations

366

Appendix B – Publications and Presentations

367

Appendix B – Publications and Presentations

368

Appendix B – Publications and Presentations

369

Appendix B – Publications and Presentations

370

Appendix B – Publications and Presentations

371

Appendix B – Publications and Presentations

372

Appendix B – Publications and Presentations

373

Appendix B – Publications and Presentations

374

Appendix B – Publications and Presentations

375

Published in Proceedings of the Fourth International Conference on Internet

Technologies & Applications 2011 (ITA 2011), pp. 169-176, North East Wales

Institute, Wrexham, UK, 2011, ISBN: 978-0-946881-68-0

Appendix B – Publications and Presentations

376

Appendix B – Publications and Presentations

377

Appendix B – Publications and Presentations

378

Appendix B – Publications and Presentations

379

Appendix B – Publications and Presentations

380

Appendix B – Publications and Presentations

381

Appendix B – Publications and Presentations

382

Appendix B – Publications and Presentations

383

Published in Proceedings of the 3rd International Conference on Internet and

Applications 2012 (ITAP 2012), Wuhan, China, 2012, ISBN: 978-1-4577-1575-4

Appendix B – Publications and Presentations

384

Appendix B – Publications and Presentations

385

Appendix B – Publications and Presentations

386

