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Electron Dynamics in High-Intensity Laser Fields
Christopher Harvey

Abstract

We consider clectron dynamics in strong clectromagncetic fields, such as
those expected from the next generation of high-intensity laser facilities.
Beginning with a review of constant. classical fields, we demonstrate that
the electron motion (as given by the Lorentz force equation) can be
divided into one of four Lorentz invariant cases. Parameterising the
ficld tensor in terms of a null tetracd, we ealeulate the radiative energy
spectrum for an electron in crossed fields. Progressing to an infinite
plane wave, we demonstrate how the electron orbit in the average rest
frame changes from ligure-of-eight to circular as the polarisation changes
from linear to circular. To move beyond a plane wave one must resort to
numerics. We therefore present a novel numerical formulation for solving
the Lorentz equation. Our scheme is manifestly covariant and valid for
arbitrary electromagnetic field configurations. Finally, we reconsider the
case of an inAinite plane wave from a strong licld QED perspective. Al
high intensities we predict a substantial redshift of the usual kinematic
Compton cdge of the photon emission spectrum, caused by the large,
intensity dependent effective mass ol the electrons inside the laser beam.
In addition, we find that the notion of a centre-of-mass frame for a given
harmonic becomes intensity dependent.
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Chapter 1

Introduction

1.1 Background and Motivation

This year {2010) marks the 50th aniversary of the invention of the laser [1]. When
sich a device firse appeared. it was eynically relerred to as “a solurion looking for
a problem’ [1]. Since then laser technology has become essential in a vast range
of areas, and there is no longer any doubt regarding its usefulness. In particular,
the unique properties of a laser beam - a coherent source of photons, all in phase
with each other and all of the same frequency and polarisation - make it a useful
tool in mauy disciplines of physics [2]. [t is especially interesting from a theoretical
viewpoint, since the high photon density in a laser bhean results in an electromaguetic
ficld which in some wayvs behaves classically, even though it is produced by an
inhierently quantum process.

Since the first laser in 1960, various technological breakthroughs have ensured a
steady increase i powers and intensitics. The most important of these is chirped
pulse amplification (CPA) 3. 4], which led 10 an acceleration of this upward trend.
CPA overcomes the problem of high energy pulses causing damage as they pass
through the laser optics, and therefore rendering the laser useless. [t works by

passing the pulse throngh a specially designed dispersive grating, which temporally
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stretches it and thus reduces its peak power. The long duration stretched pulse then
safely passes through the laser optics where it is amplified by conventional means,
before being passed through a second set of gratings which temporally compress it
again. This is shown diagramnmatically in Figure 1.1. The advent of CPA removed a
significant technological barrier. which has allowed the recent development of lasers
that. have unprecedented powers and intensitics; the current record being about.
1 Petal\Vatt (PW) and 10*2 W/cn? respectively [5]. This trend is expected to
contine throughout the next few years, culminating with the European Extreme
Light Infrastructure (ELI), which may deliver powers and intensities as high as 1
ExaWatt and 10%° W /cin? [6]. Such extremely high intensities will allow the probing

of fundamental physics in previously inaccessible regiimes.

Figure 1.1: Diagraan showing the process of chirped pulse amplification.

compression

seed pulse amplificalion

stretching

I AN

The utilisation of high powered laser technology can be divided into four different
areas [7]: attosecond science, photouuclear science, laser acceleration, and vacuun
physics.  Attosecond science, as its name suggests, concerns the use of extremely
short duration laser pulses. These may be used to track the motion of clectrons
on atonmic scales for example [8]: allowing the behaviour of electrons in complex
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biomolecules [12], and in semiconductor nanostructures to be studied. Photonuclear
science involves the probing of atomic nuclei with laser beams. Applications include
the probing of radioactive waste to test how well it has decayed [7], as well as (of
course) fundamental nuclear physics. Laser acceleration refers 1o the possibility of
using the laser’s electromagnetic field to accelerate charged particles. Such technol-
ogy would be extremely useful, since the current generation of conventional particle
accelerators (of which the Large Hadron Collider is a prime example [9]) are large,
expensive facilities, and so there is a need for a sinaller and cheaper alternative.
Laser accelerators could provide a solution since they will be much more compact,
raising even the possibility of ‘table-top’ devices [10]. There may also be applications
in medicine [11], one example being the use of the technology to accelerate protons.
Protons can be used to destroy deep seated cancerous growths, without. causing so
mnch damage to the overlying tissnes as conventional radiation therapies [13]. Much
researcli lias concerned the possibility of accelerating electrons from a plasina, such
as that created when a laser is fired at a target of thin foil (see e.g. {14]). However,
there is also a great deal of interest laser vacuum acceleration, where individual
electrons (such as those from a conventional accelerator) are inserted into the laser
ficld (c.g. [15]). From an experimental point of view, this would be much ‘cleaner’
than a laser-plasia interaction, and therefore easier to study. This brings us on to
the fourth arca: vacuum physics. This is the study of laser ficlds “in vacuumn’, cither
on their own, or of their interaction with individual charged particles (i.e. without a
plasma background). The theory describing the interaction of photons with charged
particles - quantun electrodynaimics (QED) - is widely accepted as one of the most,
if noi the most. successful scientific theories ever developed {16]. The high electro-
magnetic field intensities found inside a laser beam provide a unique testing ground
for this theory, allowing us to study electromaguetic interactions nunder otherwise

(technologically) unobtainable conditions. Strong field QED is a theory that suc-
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cessfully combines relativity and quantum mechanics. The case of a charged particle
in a laser field allows us to test both at the same time, since (in a strong field) the
particle will be accelerated to relativistic velocities, while interacting on a quantum

level with the laser photons.

In terins of vacuum physics, one of the most readily accessible processes is the
electron-photou scattering that occurs when an electron is inserted into the laser
beam. Oune way to do this is to bring the laser into collision with a beam of elec-
trons from a conventional linear accelerator, although in many cases it may be more
convenient to source the electrons from a laser wake-ficld induced plasia. At low in-
tensities we have the well known Thomnson/Compton scattering processes occurring,
as described in any electrodynamics textbook (sec e.g. Jackson [19] and Landau and
Lifshitz [57]). It shiould be noted that Thomson scattering is the classical limit of
Compton scattering, occurring in the limit where the laser photon energy fiw, as
seen by the electron in its rest frame, is much less than the electron rest energy mic?.

Formally, this amounts to taking i = 0

h—0
COMPTON — .. THOMNISON

hiw < mc?

and will be considered in more detail in Chapter 5. As we move to higher intcnsities

the scattering process can involve more than one laser photon ;.

e+ nyy =T . n € N. (1.1)

Such a process is known as nonlinear Compton scattering, nonlinear because the

probability for such a process (with n > 1) scales nonlinearly with the photon density
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[20]. (We note that a considerable portion of this thesis will be devoted to the study
of nonlinear Compton scattering.) At higher intensities still (~ 10% W /em?), it may
be possible to study vacuum birefringence effects caused by the vacunm laser field
being modified by virtual electron-positron pairs. Tt is predicted [21] that this will
result in the laser ficld having a non trivial refractive index, which will be different for
different. polarisations of inserted probe photons. Therefore, by examining changes
in the polarisation of probe photons (22], such effects could in principle be studied.
However, even at. ELI intensities such changes are predicted to be exceedingly siall,
althiough there is some speculation that a measurement may nevertheless be possible
[23]. Looking further to the future, if a laser field could reach a eritical field strength
of E. = m*ct/feh, corresponding to a critical intensity of ~ 4 x 102 W /cin? (beyvond
cven the reach of ELI), then it would contain enough energy to degenerate into
clectron-positron pairs (Schwinger pair production} {24, 23], An clectron inserted
into such a field would acquire an electromagnetic energy equal 1o its rest energy 1nc?
upon traversing a distance of a Compton wavelength A. = hfmec. While Schwinger
pair production may not cwrrently be accessible, a variant of the process (Breit-
Wheeler pair production [26. 27]) is. Here the cuergy threshold is overcome by
colliding extremely high energy photons with an (optical) laser beam. Oue source
of such photons is of course the nounlinear Compton scatiering process we have
just discussed.  Indeed, this method was successlully tested in the SLAC E-144
experiment. [28], where pairs were produced upon colliding 30 GeV photons with an

optical laser beain.

In this study we will confine ourselves to an analvsis of electron-photon interac-
tions, since it is these processes that will be most readily accessible with the facilities
that are due to come online in the near future. We will analvse the electron dynain-
ics in vacuum, rather than in a plasma, since this is a much cleaner envirommnent. in
which to work. In such a system there are no additional background effects (caused
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by a plasma) to take into account, and therefore the physics is more amenable to
analytics. We reason that this will give us a deeper insight into the physics in-
volved. We will be considering the situation from both a classical and a quantum

perspective, with an ongoing discussion of when each of the view-points are valid.

1.2 Description of the Laser Field

Belore we proceed further, let us briefly consider what a suitable description is for a
laser field. \We begin by enforcing the condition that any four-potential A, describing

an electromagnetic wave “in vacuo’ satisfies the vacuum wave equation [17]

8,8 A, = 0. (1.2)

We write the potential in the form

A () = Re {u,, () "‘”"} (1.3)

Substituting (1.3) into (1.2) gives us the Helmholtz equation

(V? +w?) a(z) = 0. (1.4)

If we now assume that the variation of the wave amplitude a(z) is slow within the
distance of a wavelength A = 2r¢/w, then the wave approximately maintains a plane
wave cliaracter. This means that the wave front normals are paraxial rays, and so

for a beam propagating in the z-direction

W by T wle & (1.5)
— K- 9z Lo K Fe :
s e T 02 S Ony
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We can then approximate (1.4) with the paraxial approximation of the Hehnholtz

equation

where V3 = (97 + 93). A solution to (1.6) is the Gaussian beamn solution

wo o deal Ny wle )
‘“‘_(J::i)e.\l) ( u;'l(;::;,)) exp (mlcmn (ﬁ) Im) X (1.7)

a{x) =

where wo is the focal spot radius (beam ‘waist’ size), w(wz) = wo(l+232/R2)2 is the
beam radius, and the curvature of the wave fronts is given by Cluy) = 23(14 R?/22),
where we have introduced a quantity called the Rayleigh length R = wiw/2c. If a
Caussian beam, such as we have just described, is focussed down to a waist. and then
expands again, then the rate of increase of the bean width can be considered small
over a distance 2 from the waist [18). This is summnarised in Figure 1.2, where we
also show how the electrical ficld intensity varies throngh the beam. The paraxial
approximation (1.6) is only valid if wo/ R < O(1) [29. 30]. This is satished provided
the beam is not. too strongly focussed — for most of the parameter ranges we will
consider. this is not expected to be a problem [44], although it wmay become an issuc
when considering very high-intensity facilities such as ELI.

In this study we will be devoting our attention to the case of a head-on collision
between a bean of electrons and the laser. If we assume that the diameter of
the electron beam is narrow compared to the laser waist size, then the electrons
will ouly probe the central region of the laser focus. Under such conditions the
Gaussian bean (1.7) can be well approximated by a (temporally) pulsed plane wave
[31], which for a long duration pulse tends towards an infinite plane wave. Recent
numerical modelling [44] suggests that snch assumptions are justified for parameter

values similar to the ones we will be considering here. An clectromagnetic plane
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Figure 1.2: [Top| Diagramn showing the dimensions of a typical paraxial Gaussian
laser beam. |Bottom] Magnitude of electrical field intensity of the beam. (Arbitrary
units.)

4

W)

s 5 BB BEEBE LB
=

wave is described by a field tensor satisfyving the homogeneons Maxwell equation
O " = 0 and that is a function of k-2, F* = F(k-x), where k is the laser wave

vector. As a result of the vacumn Maxwell equation we have

E)Fuu
hy———— =0, .
POk @) 0. (18)
which implies (after integrating)
k" =0, (1.9)

expressing the fact that the wave is trausverse (up to a constant homogeneous terut).

We note that as we move from an infinite plane wave to a pulsed plane wave. and
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from a pulsed plane wave to a Gaussian beam, the mathematical modelling increases

in complexity.

1.3 A Dimensionless Measure of Laser Intensity

In order to define precisely what we mean by a ‘high-intensity” laser ficld and to set
the ground for later work, we need io define a measure of laser intensity. A suitable
(Lorentz and gauge invariant) definition is [32]

.2 e {{pT"p,Y)
OT e (hop)?

(1.10)

where from now on we will take ¢ el m 1o refer to the electron charge and mass. We
define A" = w(1,n)/c where w is the laser frequency and ## the propagation four-
vector, and we have introduced the energy wmomentwin tensor 7% (see Appendix
A). and the electron four-momentun p = (E£,/c, p). where E,, is the electron energy.
The brackets ((...)) denote the proper time average. In the clectron rest frame we

have p = (e, 0) and thus

w2y ), (1.11)

- ]
Pl p, = el

For a plane wave rvpe field, & - p ~ mw, and so «ay will recover the non-Lorentz
covariant. form
.
eEl'Hlb ¢ Epns Al

fig = = 03 . (112)
K s

typically used iu the literature. Here B, = (£%)'? the root mean squared (rms)
clectric field and we have introduced the laser wavelength A = ¢/w. [rom this

definition it can be seen that ay can be considered as the ratio of two energies — the
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ratio of the energy gain of the electron as it moves over a laser wavelength with the
electron’s rest energy. We point out that the absence of any factors of i in (1.10)
and (1.12) indicate that ag is a purely classical quantity. At the same time, the
presence of the velocity of light ¢ indicates the relativistic nature of ag. It is clear
that ng > 1 describes the regime where the electrons becomne relativistic. Finally,
we note a convenient rule-of-thmmb to express ay in terms of the laser intensity /

27]

a2 237 x 10719122 (1.13)

for I in Watts/cm? and X in ygnn. We are now in a position to introduce some

exainples of laser facilities.

1.4 A Brief Overview of Experimental Facilities

There is currently a growing interest in using high-powered lasers to test fundamental
physies (see e.g. [8]). This is leading to a proliferation of uew facilities where such

experiments can be conducied. Some of the most relevant. to us are the following:

Daresbury At the Daresbury laboratory in northern England there are currently
experinments taking place with an order 10 TV laser, aq = 1, and a linear accelerator
delivering electrons of encrgy 35 AleV (giving thewn a relativistic y-factor of v = 70)

[33].

FZD The lacility that will feature most extensively in our subsequent discussions
is the Forschungszentrum Dresden Rossendorf (FZD) in Genmany [34]. This facility
has a 150 TW laser giving an oy = 20. There is also a linear accelerator ((ELBE?)
that can deliver -10 MeV electrons (7 = 10%). Compton scattering experiments arc

20



due to begin here later this year (2010). We shall often use these parameters in

subsequent discussions, referring to them siimply as ‘FZD values’.

Vulcan The UK’s Rutherford Appleton Laboratory’s Vulcan laser [35] is currently
1 PW (ap = 70). However, it has recently been aunounced [36] that. it is to be

upgraded to 10 P\V_ increasing its «q to 200.

ELI Looking to the future, the European Extreme Light Infrastructuve (ELI)
project has been initiated [6]. When this is completed it potentially could deliver
an ag ~ 5000, giving us an increase of two orders of magnitude compared to current,
facilities.

Figure 1.3: Chart showing the development of the laser as a [unction of time, to-
gether with examples of the physics that are accessible at given intensities.
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In the table below we give a summary of some of these facilities.
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1 [W/cm?) 1
FZD (150TW), Germany | 102 20
Vulean (1PW), UK 1022 70
Vulcan Upgrade (10PW) 10% 200
ELI 10% ~ 5000

In Figure 1.4 we chart the development of the laser, showing how intensities
have increased over time. It shows clearly the impact of CPA, and also how laser
inteusities are predicted to increase over the next few vears.

In this thesis we will study the phenomenology of electron-laser interactions,
including the properties of the scattered radiation. In particular, we will be consid-
ering the angular and frequency dependence of the scatiered radiation, looking for
possible experiimental signatures of intensity dependence. Note that from here on,

cxcept where stated otherwise, we will adopt ‘natural” units where = c= 1.

n
N



Chapter 2

Electron Dynamics in Constant

Fields

We begin with the simplest possible case — that of an electron in a constant clas-
sical background field. The behaviour of particles in such fields can be obtained
analytically, and so will serve as a good starting point from which to consider more

complex field configurations.

2.1 Classical Particle Motion

The classical equation of motion for an electron in an arbitrary background feld is

given by the differential equation (the Loreniz force equation) [37]

Po= it = iF’“’(:”)I)U- (2.1)

1!

where the dot denotes differentiation with respect to proper time 7. and we have

introduced the electromagnetic ficld tensor



0 E B B )

— El 0 - B:{ B?
Enu =

——
3
~

o

- Ee B:{ 0 -Bl

\ £ -B B 0 )

Equation (2.1) is a covariant generalisation of Newton’s second law. We wish to solve
it to find the particle trajectory #*(7). Note that equation (2.1) is only valid under
the assumption that any radiative back reaction effects have negligible impact on
the particle’s motion. We adopt this assumption for the moment, but it is something

that we will re-visit later.

In the case ol constant hiclds the field tensor £ will be constant, and so (2.1)
will be linear and therefore solvable directly by exponentiation. Writing ¥ in

matrix forin as F, the solution is

’)

p=cxp (,_ﬁ[rf) Po = Apo, (2.3)

wliere pg is the initial four-momentum of the electron and the matrix T has oue
mdex up and one down. Due to the antisvnunetry of F, we note that A is a Lorentz

transformation matrix.

Now that we have the four-velocity « = p/in, the particle trajectory can be found
simply by integrating (2.3). However. we can gain more insight into the properties
of the particle orbits by first considering the eigemvalues of F. In [38] Taub shows
how these can be expressed in terms of the scalar and pseudo-scalar invariants of

2




the feld sirength tensor,

1 o 0
S = -5Fuf"=E - B (2.4)

1 -
P = -ZFI,,,F”" =F. B,- (25)

where FF*¥ is the dual tensor.

We find that there are four cases and they can be classified in a Lorentz invariant

way, according to the values of § and P,

S=P=0, E? = B, E - B=0 (2.6)
S<0,P=0, B? > E?, E-B=0 (2.7)
S>0,P=0, E*> B, E-B=0 (2.8)
S#0,P#0, E?* - B? #£0, E - B#0 (2.9)

We will find that case (2.6) results in particle orbits that are puubolic, case (2.7)

elliptic, case (2.8) hyperbolic and case (2.9) lozodrownic.

It is possible to parameterise the field tensor £/ in terms of constant 4-vectors
chosen fromn a null tetrad [39]. (We will see in the next chapter that such a formalisin
will also allow us to parameterise plane wave fype ficlds in terms of a “light-cone
time’ n-z.) Here we will adopt the null tetrad (n”, it", ¢y, €2) where the propagation

vectors 1, in and polarisation vectors ¢, ¢ are delined as

' = (1,0,0,1) (2.10)
A" o= (1,0,0,—1) (2.11)
& = (0,1,0,0) (2.12)
& = (0,0,1.0). (2.13)

[\~
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Clearly n and t are light-like and ¢, and ¢, are space-like. The only nou-vanishing

scalar products are

nen = 2 (2.14)

-—

i
~
[ R
Il
I
o
—_
|
e
o
e

We take this opportunity to introduce the notation

- — 0_ 3 P
a” = nlu,=da" —a’, (2.16)

at = ifa, =a + d®, (2.17)
for an arbitrary four-vector «; this will be useful to us in later work.
Using the vectors from the tetrad, for each case we construct. the ‘standard forn’

of the field tensor

0O o0 0 0
FI‘“‘ = F (‘H."C“_; - ‘H."cg) = F (218)

0o 0o 0 0

0o 0 1 o0 _
Y= Fa{dycy — ey = 12 (2.19)

0 —1 0 0

= ('Y — nn") = F; (2.

o
3]
o
~




[_—::IU = Féﬂl + Féﬂl.
The tensors F}"¥ ; defined above are representative of each of the four cases. Any

other tensor of the saine case can be generated by a Lorentz transform.

By comparing directly with (2.2} we see that: the tensor FI* describes the case
of crossed fields {i.e. perpendicular E and B fields of equal strength). the tensor F3™

describes a constant inagnetic B field, the tensor FI™ describes a constant. electric

E field, and the final case Fi" is a linear sum of cases 1 and 2.

kbxponentiating to find the corresponding Lorentz transformation matrices A, we

find
e HERD 0 —ERr d(ER)’
0 1 0 0
(A", = (2.22)
-Zhr 0 | -<R7
MR 0 ERT 1= LERT)
( 1 0 0 0 )
0 cos(ZF7) —siu(Slr) 0
(A2)", = (2.23)
0 sin(£F7)  cos(£F7) O
\ 0 0 0 1
/ cosh(2-F47) 0 0 sinh(2£ Fyr)
0 1 0 0
(), = (2.24)
0 0 1 0
\ sinh(22F7) 0 0 cosh(2Z Fyr) )
cosh(2;=I57) U 0 sinh(2% F37) \
0 cos(ZFor) —sin(EFor) 0
(M), = (2.25)
0 sin(;=Far)  cos( S Far) 0
\ sinh(23 Fyr) 0 0 cosh(2L Fyr)




Examining these matrices in sequence, we firstly see that the crossed field tenor
FI' results in motion that is parabolic. (We note that in the crossed field case, the E
and B fields will remain perpendicular and equal in magnitude in any given frame.)
Next we see that the constant magnetic field tensor F}" results in circular {(elliptical)
motion. The case ol the purely magnetic feld is the only one with periodic orbits
(i.e. the mmotion is bound, meaning that there is no net. acceleration). As an aside,
we note that for other tensors in this class, the resulting electron motion will be
in an cllipse with eccentricity ¢ = E/B [41], moving perpendicularly to both the
clectric and magnetic fields. Moving to the third case we find that the constant
electric field tensor F§* results in motion that is hyperbolic. The final case, A", is a
linear sum of ALY and AL”. The particle motion is a superposition of cases (2) and

(3) and is loxodromic.

Note that our F}" field tensor is an example of a null field [39], since both its
scaler and psendo-scalar invariams S and P are zero. Calculating the first few
powers ol FI" we find (using (2.14) and (2.15) and omitting the index 1 for case of

notation)

F2 o= FUF =i, (

o
[
(=]
—

F* = P FF = nngF® =0, (

[\
[\
I
Sar”

where the second result is due to the transversality of the field. Hence FI" is
nilporent. of degree 3. which is why the exponential series in ALY is truncated to just

three terms. Thus the parabolic nature of the particle orbits.

Figure (2.1} shows the motion of a charged particle in each of the four cases.

The trajectories are as we would expect for the respective fields.
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Figure 2.1: Plots showing the motion of a charged particle in each of the four cases.
Plot a) shows parabolic motion in crossed fields. Plot b) shows elliptical motion in a
magnetic ficld. Plot ¢) shows hyperbolic motion in an electrical field. Plot d} shows
loxodromic motion in combined electric and magnetic fields. (Arbitrary units.)

a)F . (Crossed fields - magnelic in X, electricin xz-direction) b) F2 {Magnetic field in xJ-direction)
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c) F3 (Electric field in x3-direction)

2.2 Particle Radiation

d) F, (Electric and magnelic fields both in xs-direcu'on)

x 10

are of interest to us in this study. The calculation of the classical radiation spectrum

A particle undergoing acceleration will radiate and the properties of this radiation

of an accelerating particle is covered in most electrodynamics textbooks (e.g. [(19).

[37]). although it most cases the problem is not treated covariantlyv. A fully covariant

discussion is however given by Mitter in M3 and further exploved in [11). The



radiation four-momentum may be expressed

——

P = /(i'l:l: a,T+". 2.28)

Emploving the energy-momentum balance equation 8,7 = 4, F" . we liave
Vg £) 1 I Ji :

P = /fl":n: Ju (2.29)

Now
G = QAT = AT, (2.30)
= OMuAY) = A, = 00 A" (231)

The second term is zero due to the continuity equation 93, = 0, and when inte-

grated the first term also disappears. leaving s wirh
P"=— /rlf'i:.': JuO" AP (2.32)
From the Maxwell equations (in the Lorentz gauge) we have, in integral formn,

AM(a) = da [ d'y Dro(x = y)i*(y), (2.33)

where Dyo (2 — y) is the retarded Green’s function which, upon inserting into {2.32),

gives

P' = —dx / g, () [1.’"y S (Y)0" Dy (t: — y). (2.34)

30




We can replace the integrand

1
9" Do (i — y) — 3 (0" () D (i — 7)) + & () Dyen (y — 1)} .

(2.35)

whiclhh amounts to nothing more than renaming the variables of integration. Then

introducing the advanced potential via
F(9) Dy — ) = = 0" () Dy (r = y):.
and defining
D = Do = Da.
we have
Pr = =2n [ 'y ()" )0 D~ )

In a. Fourier representation this becomes

1

1 Apd AON Sy 2N T Ny
P" = --—:{'.[H”L sen(APYS(AP YA 5 (h )3, (K).

(2m)

where j, is the four-dimenstonal Fourier integral of the current

.';,.(]-") = / dVa g (r)exp(ik’ - r).

(2.36)

(2.38)

(2.39)

(2.40)

and from here on we will drop the tilde in order to simplify the notation. We can

interpret &’ = w'(1.n') as the scatrered radiation wave vector, with frequency w

!

in direction ', It is the O-component of P* that gives us the radiated energy.
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Performing the &% integration in (2.39) and converting to polar coordinates, we find

1
0 _ ’ 2,000 R P
P o= BT dw'dSY (W' Y5 (R - 57 (K), (2.41)
= [rlw’d.Q plw’ ), (2.42)

where p{w', n') is the spectral density describing the amount of radiation per unit
frequency dw’, per unit solid angle d€.

In the case of the constant ficlds we are considering, the Fourier integrals (2.40)
(and thus the radiated energy P?) can be calculated exactly, although the calcu-
lations themselves are somewhat tedious. We choose here to focus our attention
on just onc of the cases = that of crossed fields. There are two reasons for this.
Firstly, the other cases are wore comnonly explored in electrodynamics textbooks,
whiercas the crossed ficld case is not (sce c.g. Jackson [19], Landau and Lifshitz
[37]). Secondly and most importantly, the crossed field case is, out ol the four cases,
the one that describes a laser beam most closely. Crossed fields describe either the
high-intensity or the long wavelength limit. of a lincarly polarised planc wave, which

we will consider in the next chaptet.

Figure 2.2: Geometry of the scattered radiation.
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To begin the calculation we must. first define the geometry, which is that given in
Figure 2.2. To simplily matters somewhat we will limit ourselves to a consideration
of the ‘head-on’ case only. Thus for a crossed field with electric component in the

a1 direction and magnetic in @2, the electron will have an initial four-velocity of
Up = 7(1: 0,0, _Ij) (243)

To evaluate the integral (2.41) we first need to find the electron’s velocity o (7) and
trajectory x#(7). These we find by solving the Lorentz equation (2.1). From (2.22)
it is clear that «*(7) will be quadratic in 7 and z#(7) cubic. Before we calculate the
spectral density p, we can make use of some features of the light-cone formalisin we
have adopted. One property of this formalisi is that we can write the nor of the

four-current as [45]

3 1 --J-‘-—-

. Lo _
Jedt =T T = (2.44)

Now, the current conscervation equation &' - § = 0 allows us to eliminate §& frowm
| J J

{2.44) giving

’ I3

- e L - —2 .12 .
JJt =202 Re(GL ) - o li - 5.l (2.45)

We begin our calculation of p(w’, ') by nding 57 (A’). From the discussion above,
we know that the argument of the exponential in (2.40) is going to be a cubic

polynomial, and thus we expect to obtain an Airy function in our solution. The

prefactor is proportional to ¢~ = «? — «® =const and so we find
oo D
JT (k) = evy(1 +;3)exp('iBg)/ du™ exp (i(bsm* + By7)) (2.46)
o0 o .
= 2ev(1 +_f3)cxp(iBr_,)/ diw™ cos(—by7* — By1). (2.47)
0
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where

3byby — b3 203 = 9bbyby

e ——— = ‘) 4
By 3y Bs 2712 (2.43)
and
1
b, = —6“/((1 + BT+ (1 = /3)1.:"), (2.49)
E
by = +(1+ ,f);ek:,, (2.50)
E41 12
e’ E?
s = —(1+ ) 2.5

Employing standard identities (see e.g. [46]), we find we may indeed express 57 in

terms of the Airy function Ai.

]
[@4]
(L)
p

G = Zev(1 + exp(iBs) ((31)3)_?:7r_‘\i(Z)) , (2.

where Z = (3b3)~"3By. So now we are just left. with finding J1 = (41, 72). From
our expression for w» we find immediately that j5 = 0. Thus all that remains is to
find j,. In the case of crossed fields we find that we can express j; in terms of the

k* derivative of j~

y LB 0

. = 2—_____ - Af’ 2::
! ' m (1 + 3) ok* (J ( )) (2.53)
: CQE . Yr —-1/3 . iy /3y , 1 bg - .
= 27 ” (1 -+ B)(3b3) ™ Pexp(i B )| #{3by) " P A(Z) - §I__L\I(Z) (2.54)
v QU3

We now have everything we require to calculate (2.44) and hence the radiated
energy P? Doing so, we find that the radiation is almost exclusively confined to
the 8 = 7 (back scattering) direction. In Figure 2.2 we show the radiation spectrum
for various initial electron v-factors. We see that the signal strength of the radiated

energy decreases as the electron v-factor increases, while at the same time the peak
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Figure 2.3: Radiated energy spectra for an clectron in constant crossed ficlds. In-
teraction is considered ‘head-on’, with initial «-factors as indicated. Evaluated at

= 7.
X 103
2.5 T T T T T
RN - - -v=5
f N e v=10
! \ ¥15
2H \ -
\
! \
hY
— \
‘L_O_‘ N\
€ 15} AN |
8 AN
< AN
3 N\
o 1F AN -1
g N
N
~
~
~
- 4
-~ S
10 15 20 25 30
w’ (eV)

cmitted frequency also decreases (is red-shified).

Now that we have given detailed consideration to the behaviour of an electron in
the four cases of constant eleciromagnetic fickds and, in particular, having calculated
the radiation spectra for an electron in crossed fields, we are veady to move on fo
consider plane wave backgrounds. Plane wave fields are the next step up in realism

and complexity in our modelling of a laser beam.




Chapter 3

Electron Dynamics in Classical
Plane Waves

3.1 Introduction

Having studied the dynamics of electrons in constant fields, we are now ready to
consicler the case of a time dependent infinite plane wave. Specifically. we consider
the case where we have (time dependent) electric and magnetic components in the
transverse (ay, wp) directions, while the wave propagates in the longitudinal (iy)

direction. Such a feld may be described by the ficld strength tensor
P ey = Fy(b-a) Y + Bk ) Y (3.1)
where the constant tensors f; ave defined
[ =ard — v dy (3.2)

We note that the tensors fi* are examples of crossed field tensors. like F1" in
the previous chapter. Since the sealar and pseado-scalar invariants vanish for such

fields. our plane wave tensor (3.1) is a null field. The field amplitudes F7; depend
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on the Lorentz invariant phase & -« where, as previously, & 1s the laser wave vector

M= wn”. Applying the Lorentz force equation

' = iF‘"”(k S [ (3.3)

11

we find that & -« is conserved in proper tune v

d(k, ") e
—_—— —_— —h F“": , « ¥
dv ‘m.l"“ “' (3.4)
= 0, {3.5)

where we have made use of (2.27) and the fact that plane waves are transversc.

Integrating (3.4) we find

k-o = 1k -u (3.6)
k- =
T how (3.7)

where we have assuined the electron is initially at the origin (:zg = 0). Hence we see
that the light-cone time’ # - x is directly proportional to the proper time 7. This
imeans that we can trade the 2 dependeuce in (3.1) for proper time 7, and so the

equation of motion (3.3) becomes linear and thus solvable by exponentiation.

So, from equation (2.1) we have

]215 [;;
= — (RN + Balr) ) o (3.9)
dr " di
which has sohution
L ,
% = exp (,%(Gl("')fl + C"z(")fz)) p. (3.9)

37




wliere

Gi(r) = [T dr' F;(7'). (3.10)

and g is the initial 4d-velocity at time 7 = 7. Using the fact that the F; are linearly

independent together with result (2.27), we have

el 2

7= 14 S GO+ Calm) ) + s (G + Gg(f)fg)] w.  (3.11)

[ntegrating to find the particle trajectory, we have (explicitly)

¥ = a4 dl(r — ) - %('u(')H,(T) ~ ugHa(7)) + 0(,:52(“ ~ar) /rf dr’ G5 + G3,
= (1]

xl = ) ud(r - 1) = %(n ~u)H (1),

2t = g u(r — 7)) — %(u ~u)Ha(7),

43 = :;:g + (T — ) ~ %('H,‘,H,(T) - 'll%]‘]g(f_)) -+ _2('_:"-:,_,(1: - ) /T d’ C."f -+ C.'f;;,

Ty

where we have defined Hj(r) such thae

[‘[J‘(T)E/ dr’ C.'J-('r')=/ rlr'/ dv" Fi(r"). (3.12)

T

These equations deseribe the motion of a particle in a transverse ficld given by any
ficld tensor satislying (3.1) and, for an infinite plane wave, agree with the expressions

found by Taub [38].

We will now use these results to study the behaviour of electrons in infinire plane
waves, considering various polarisations. For infinite plane waves, the integrals (3.12)
ave solvable analyvtically, and so we can find the electron trajectory without having

Lo resort to numerics.
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3.2 Particle Motion

To be specific, we will focus our attention on the plane wave field defined as follows

F, = §Asinwr, (3.13)

F = V1-§8Acoswr. (3.14)

Here A is the wave smplitude and the wave polarisation is encoded in the parameter
0. Linear polarisation corresponds 1o § = 0, =1; cirenlar polarisation to § = £2(=1/2),
Other values of & correspond to varying degrees of elliptical polarisation. Regardless
of the choice of 4. the rins electric field averaged over one laser evele is B, = A/ V2.
This means that we can write the laser intensity (1.12) as

cA

= —_— 3.15
= (3.13)

Figure 3.1: Electron trajectory in a plane wave of lincar polarisation fleft. plot] and
circular polarisation [right plot]. Laser intensity is ag = 1 and the particle is initially
at rest.
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We once again consider the case of a head-on collision between the electron and
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the laser field

ko= w(1,0,0.1) = w(l, 2), (3.16)

il

4(1,0.0. —3) = (1, - 32). (3.17)

‘to

Plots of typical trajectories for the linear and circular cases are shown in Figure 3.1.
[t can be scen from these plots that the particle oscillates in the transverse (), 9)
plane and propagates forwards in the longitudinal (i) direction. This forward drift
motion of the particle is worth considering in more detail. 1f we consider the 0-
and 3—components of the particle trajectory, we find that they can be decomposed

tnto a swim of their constant and oscillatory components
(7)) = @) 4+ NP(7). (3.18)

where X#(7) is the oscillatory component and the constant component () is the

Fourier zero mode

dv' " (7). (3.19)

—
=
g™
]
|\3|
=) -
ST
23
b}
.
]

(3.20)

() ud+agu (8
Udriny = (

1

2
a0) a) A+ adu (02 + 1)
It is interesting to consider the effects ol boosting to a frame where the drift velocity
is zero, i.e. to the frame where the electron is at rest on average.  The results of such
a boost for the cases of linear and circular polarisation are shown in Figures 3.2 and
3.3, respectively. In the case of linear polarisation the electron exhibits a figure-of-

cight. motion, which increases in size proportionally 1o ay. (\We note that these plots
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Figure 3.2: Electron wotion in the average rest frame (linear polarisation) for various
ap.

0.5 T T T T T T

0.4

0.3

o
-
T

x3 [c/w)
Q

|
o
e
T

|
[=]
[

1
©
i =Y

T

_0-5 1 ] ] 1 1
-5 -4 -3 -2 -1 0
x2 [clw]

are consistent with those by Sarachik and Schappert in [47].) The electron motion
follows a Lissajous curve of proportion 2:1. For circular polarisation we find that
the electron follows an elliptical trajectory. Figure 3.4 shows the electron trajectory
in the average rest frame for various degrees of elliptical polarisation. \We can see
clearly how the trajectory makes the transition from figure-of-cight to circular as we

change the polarisation.

The transverse oscillations of the electron in the laser field lcad to an interesting
and somewhat surprising cffect. Since in the average rest frame the electrons com-
plete a whole orbit. during a single laser cycle, it imakes sense to cousider only the
average motnentum of the electron over the cycle, since the laser photons cannot
resolve tlte details of the oscillatory motion [27]. Working in the average rest frame

we define a quasi-momentum ¢ such that ¢? is equal to the square of the proper
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Figure 3.3: Electron motion in the average rest frame (circular polarisation) for
various ag.
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time average of the momentum p

227

¢ = 2 dr’ p(r"y| = m2(1 + «}). (3.21)
27 o

Hence, analogously to the on-shell condition p* = w2, we are able ro define an

effective mass for the electron in the laser field
m? = ¢ =m0 + ad). (3.22)

In effect, to the laser photons the electron doesn’t appear to oscillate: instead it
appears to have an intensity dependent shifted mass m,.
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Figure 3.4: Electron motion in the average rest frame for varying degrees of polari-
sation, ag = 1. Horizontal axis we, vertical axis 4.
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3.3 Particle Radiation

As we did in Chapter 2 for crossed ficlds, we now bring our attention to the radiation
emitted by an electron in a plane wave. The radiated energy can be found once again
by evaluating the integral (2.41). This calculation involves the evaluation of several
nested integrals, and would therefore normally necessitate a recourse to nunerics.

However, for the case of circular polarisation, the civeular svunnetry of the electron’s
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orbit makes an analytical evaluation of the expression possible. Performing the
calculation, one finds that the energy radiated per unit solid angle dP"/dQ can be
expressed as an infinite series of Bessel flunctions. These Bessel sums may be written
in closed formn, giving an analytical expression for dP?/dQ. For an electron at rest

in the lab frame, this imay be written as

dpP° . e2wlal 1
- 647\ (1-0)2 (1 + LaZsin® (36))"
(cos 0 — Lajsin? (30
(1 + ;i;u% sin? (é())

(4+0%) + (1 -0%H(4+30%) |, (3.23)

where

sin @
6 - (ig Sl . -324
VE 0+ Lazsin? (20)) (3.24)

lFor details of the calculation we refer the reader to Sarachik and Schappert [47)
and Esarey ef al (48]. \We note that the solid angle measure dQ is a function of
the scatlering angle § only, siuce the circular synunetry of the electron motion in
a circularly polarised plane wave means that the radiated energy has no azimuthal
(&) dependence.

We consider the angular distribution of the radiated cnergy for various laser
intensities in Figure 3.5, This is of particular interest to us, since in Chapter 5 we
will be considering the properties of the cinitted radiation using a strong field QED
approacli. We can see from Figure 3.5 that the peak radiated energy moves towards
the § = 0 (forward scatiering) direction as the laser intensity increases. It is also
clear that the signal strength increases with the laser intensity.

Before we go on to consider the the electron dyvnamics in an infinite plane wave
front & QED perspective, in the next chapter we will introduce a nuerical scheme

to calculate the elecrron trajectory in an arbitrary classical backgronnd field.



Figure 3.5: Plot showing the angular distribution of the radiated energy for an
electron in a circularly polarised plane wave. Calculations are for the lab frame,
where the electron is assumed to be initially at rest (v = 1).
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Chapter 4

Electron Dynamics in Arbitrary
Classical Fields

So far we hLave solved the Lorentz force equation (2.1) for the cases of constant
fields and plane waves. In these cases the electron velocities and trajectories are
obtainable analytically. However, if we are to progress to more complex/realistic

field configurations, then we will be forced to resort to numerics.

4.1 Covariant Matrix Numerics

A standard approach to munerically solving the Lorentz force cquation (2.1) would
involve taking a discretisation of proper time into steps of length h. Under such a

discretisation we would have

Ly :
=2 = Oh")#0; n>0, (4.1)

dr

for a numerical scheme of order 1. The result of this would be that the on-shell
condition p? = mc® (i.e. «® = ) would be violated. The introduction of such
an unphysicality could lead ro numerous undesirable effects including. for example,

that the acceleration 4 will no louger be spacelike. Iu fact, when the discretisation
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error is considered in relation to p*, we find that

PP =t = e+ K", (4.2)

for some constant. A'. Hence the introduction of a discretisation error can effectively
be viewed as a mass/momentum shift of the electron. In the previous chapter we
saw that, in a planc wave, an electron experiences a luser-induced mass shift. It
[ollows that if we are to study such effects using a numerical scheme. it is undesirable
for such a scheme to introduce its own discretisation-induced mass shift. With this

in wind, we present a new type of numerical scheme which is manifestly covariant

o

and precisely preserves the on-shell condition u? = 2.

Our numerical scheme is based upon a SL{2,C) representation of the four-
velocity. This method was used by lzykson and Zuber [75] to find the analytical
solution to (2.1) for constant electric and inaguetic ficlds, and is considered from
a mathematical perspective in [76]. However, what we propose here is to use the
method as a basis for a numerical scheme that can be used 10 solve the Lorentz force
equation (2.1) for completely arbitrary field configurations. We begin by introdneing

the matrix basis o = (1. o) where o denotes the thiree Pauli matrices

0 1 . 0 —i . 1 0
o= . ol = . ot = . (<1.3)
L0 i 0 0 -1
which satisfy
olot = St -+ TCub:0". (4.4)

where ¢, is the Levi-Civita tensor in three-dimensions.  Now we introduce the



matrix U which represents the particle four-velocity in this basis
U=do, €SL2.C). {4.5)
Using (:.4) we find the following commutator and anti-commutator relations
1 : o _m 1 0 k
5 [ok, U] = ickamu“c™, 5 {op, U} = ope” +«". {4.6)
Using these we find we can re-write the equation of motion (2.1) as
- (o4 . _
U=—([tU+U[E), (4.7)
m
where
E'=(E+iB)- o (4.8)
Iitrodicing the time-ordering operator
T
L)=T {/ (ir’ﬂ':f('r')} : (4.9)
Ju

we may write the implicit general solution to (41.7) as

U(r) = L(r)U0)LHT). (4.10)

In order to turn this into a mumerical method, we must discretise (4.10). To do

this we introduce a discrete sct. of #4-1 equally spaced proper times 74 (A =0....,n)

=0 o=k m,=7. E= IE(.-u(T;,.)). (4.11)



Making use of the Baker-Campbell-Hausdorff formula [65}. we then find approxi-

mately (up to order O(d7?))
L =exp {[EL(IT} X ... Xexp {[Eidr} =:L,. (4.12)
where “x " denotes matrix multiplication. Thus our numerical solution becomes
U, = LU0, (4.13)
such that

U(r) = Un(

=1

)+ Odr). (4.14)

In order to utilise this method we must solve (4.13) iteratively. We begin with an
initial guess for w(7;} based upon our value for u(7;—;). Then we use the trapeziun
rule to calaidate an initial guess for the particle position z(;). Once we have the
position we can insert it into the expression for the electric fields to find the value of
Ef{r;). which we subsequently use to find an improved fonr-velocity u(r;) via (.13).
This procedure is iterated until the particle positions x(r;) and velocities u(7;) do

not. change within given error margins.

Now a crucial point is that, i our SL(2, €C) representation, the on-shell condition

D) 9
u” = ¢ reads

detU(7) =2 = 1. (41.15)
Due to the fact that trep = 0. we have

det, exp {l[fn'r} = exp {tvr&:'{(!r} = 1. _ (4.16)
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and so

detl; = detl! = 1. (4.17)

Hence

detl,(r) = detli(0) = 2, (4.18)

ineaning that the on-shell condition is exactly preserved by the discretisation.

4.2 Numerical Examples

We test our code using a light-cone time (n - @) dependent linearly polarised plane

wave field, encapsulated in a Gaussian pulse. In the notation of Chapter 3 we have

Fy = P(n-x)sin(k - x), (4.19)

F = 0 (.20)

~

where P(n - x) = P(7) is the pulse function which we define to be

P(r) = Aexp (-(T—_Tﬂ)—z) , (4.21)

12

where we have once again traded light-coue tiime 7 -« for proper time! 7 using (3.7).
The constant 7 specifies the centre of the pulse and 5 is a measure for the munber
of laser wavelengths within the width of the pulse. Neglecting the radiative back-
reaction effects and proceeding along the same lines as in Chapter 3, we can solve

the equation of motion (2.1) analytically down to the final integrals, which must

'Note that we expressed P in terins of 7 here in the text to itmprove the clarity of notation. In
our actual numerical experitents our codes will ealculate in terms of the light-cone time o - e

20



be evaluated numerically. This will give us a benclunark against which to test our

code.

Figure 4.1: The results of calculating up numerically using our method and using
the Euler method, gy = 1. =10, d7 = 0.125.
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[ order 1o quantify the accuracy of the new method, we introduce two measures

of nunterical crror. The first is the Euclidean norut e, defined

1 T+ AT ) _L Y
foue =\ [ X7 / dr P*(7) Z‘ [ur(7) — b (P (4.22)

=37 =0

with u,,(7) being the analytical solution. Since we are now dealing with a pulsed
field. it is important to choose the region A7, over which we consider the errors, with
care. This is because the numerical errors are very small when the field strengths

are very low, and so the error can be made arbitranly simall by increasing the width




A7 of interest. Thercfore we define our parameters as follows:

e 00
0= 7 dr'r' PA(+), N :/ dr' P ('), (4.23)
N Joo o
o0
AT =2y/7p - 8, T = 5 / dr' (72 P2(7). (4.24)
Y Joo

Thus it can be seen that we are considering the Euclidean nori over a region that
covers one standard deviation each side of the centre of the pulse 7p. Our other

measure of muunerical error will be the maximum norm ¢4

i = 0% ([ (7) = ()] (4.25)
H.T

We also counsider it useful to compare our method directly with a conventional
mnnerical scheme; in this casc we will choose to compare with the Euler method
[77]. While a higher order method would be more accurate, we have chosen the
Euler method because, like our methaod, it is first order and so we will be comparing
like with like,

For a pulscd plane wave ficld our definition of ag (1.12) needs qualifying, since
Erms averaged over all proper tie will be zero. The most convenient solution is for

us to adopt the definition

_ eljumx

{p =

(4.26)

wm

Figure 4.1 shows uy for an electron subjecied to the field (4.19) for ¢y = 1, 7 = 10,
calenlated using our new method and using the Euler method. The discretisation
size is dr = (1126 = 0.02w periods. which we can see is Loo coarse for the Euler
methad 1o perform effectively. while the difference between our method and the
analytical solution is less than the thickness of the plotting lines. In Figure 4.2 we

consider the errors as a fanetion of the discretisation size. As we would expect for



Figure 4.2: Numerical errors for hoth methods as a function of the proper time
discretisation size dr.
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first. order methods, both schemes produce errors that increase linearly with dr. We

find for our method

Coue = 0.39d7,  Cuax = 0.49d7, (4.27)

and for the Euler method

Coue = 2.8d7.  Cuax = 3.1d7. (4.28)

Finally, in Figure 4.3 we demonstrate the fact that our new method preserves the
on-shell condition «? = ¢, whereas the Euler method (a conventional schene) does
not.

In sunimiary, we have developed a novel numerical scheme for solviug the Lorentz
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Figure 4.3: Plot demonstrating that our numerical scheme preserves the on-shell
condition u? = ¢2, whereas the Euler method does not.
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force equation (2.1) for an electron in an arbitrary background field. Unlike con-
ventional discretisation schemes, our method is fully covariaut, precisely preserving
the on-shell condition. The method we have presented is a first order scheme, and
s0 we have compared it directly with a conventional first order method - the Euler
method. We found our method the be well-behaved, more accurate than the Euler
method, and we confirmed numerically that the on-shell condilion is indeed pre-
served. Although we have not considered the effect. of the radiation back-reaction
on the electron motion, the scheme we have presented here coukl be adapted to
incorporate this. More information on this is given in Appendix B. [t is hoped
that the covariant method presented here will be of use to researchers studying the

effects of the beam profile on the electron dynamics.
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Chapter 5

Nonlinear Compton Scattering of
an Electron in a Plane Wave

5.1 Introduction

Having outlined the behaviour of an electron in a classical plane wave, we now
move on to study such behavionr from a quantin perspeciive. We thus consider
the nontinear Compton scattering that occurs when an electron collides with a high
intensity plane wave laser ficld. Since this study is motivated primarily by the
advent of high intensity laser facilities, we will pay particular attention to intensity
dependent effects in the scattering processes. Such scatiering processes have been
considered previously, most notably by Brown and Kibble [19]. Goldman [51] and
Nikishov and Ritus [52, 53, 20, 26]. In this chapter we will re-visit this work i light
of the recent increases in laser intensities, outlined in Chapter 1. We will consider
nonlinear Compton scattering involving a very high intensity laser (iny > 1) aml
electrons of moderate 1o high energy (i.e. v ~ 1...100). The phenomenology of
the scattering processes with such parameter values has now hecome experimentally

relevant.

o
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5.2 Volkov Electrons and the S-Matrix

Specifically. we consider the nonlinear Compton scattering that is the sum of the

sub-processes

e +nypy—oe” 4+ neEN (

n
pu—
N

wliere an electron absorbs n laser photous v,

and then emits a single photon +. For

a plane wave, the energy density T = (£2 + B?)/2 = E?. The laser photons have

energy fiw, so in a volume V' containing n, photons we have
1 hew

E‘Z = v = .‘V—rh.’.d. (

o
I
o

Since the laser intensity aq is proportional to E? (sce (1.12)), it must therefore be

proportional to the photon density A,. The precise relatiouship can be written

ag = AmaP AN {5.3)

where a is the fine structure constant and we have introduced the rescaled (dimen-

sionless) weasure of frequency

W

124

Hl

"

As the anthors state i [20], the probability for a given nth order scattering process
(5.1) is proportional 10 «g" ~ NI, Hence for n > | the probability becomes non-
linear in the photon density and thus the process is known as nonlinear Comptlon
scattering.

From (5.3) we see that for ag ~ 1 there are of order A*N. ~ 10" pliotons in
a laser wavelength cubed. Wit such a high photon density it seeis reasonable to
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neglect the effects of beam depletion in the scatiering process. Therefore we shall
adopt the formalisim used by Nikishov and Ritus [52] and Brown and Kibble [49)].
where the clectrons interact with a quantum photon field A,, plus a classical back-
ground ficld A, (x). In effect. the electron lines in the Feymnan diagrams become
‘dressed’” by the background field A,,. Diagrammmatically, they are represented by
heavy lines as shown in the lefi-hand side of Figure 5.1. Such diagrams can be
expandled into an infinite stun of conventional QED diagrams (i.e. those involving
free electron propagators), each one representing the scattering process imvolving n
laser photons. We note that the analogous S-mmatrix element, corresponding to the
Feynman diagram on the left hand side of Figure 5.1 but with ‘naked electrons’,
would vanish due to momentu conservation.

Figure 5.1: Feynman diagramn for the nonlinear Compton scattering of an electron
in a background field. The thick lines represent electrons dressed by the background

ficld. "The diagram can be expanded into an infinite series of conventional QED
Compton scattering diagrams, cach involving the absorption of 1 laser photons.

. o'

ey

Xy

o

Once again we take our background field to be a plane wave dependent on the
light-cone time k-, A, = A,(k-x). We arc fortunate that the Dirac equation can

be solved exactly for such a field (the *Volkov solution’ [34]). giving us the electron

7

<t




wave function

Wp(x) = e"s(l -+ I.:L-;uk‘:A)'“” = T u,, (5.5)

where we have adopted the Feynman slash notation, ¢ = ~+"a,, and S is the

Hamilton-Jacobhi classical action

ke
S=—-p-ux- / (1(,2')['26.A P (:EAQ] =—p-u— 1, {5.6)
Jo

2k - p

At this point we will define our background field to be

A* = af cos(k - x) + afy sin(k - x), (5.7)
where the four-ainplitudes «; are equal in magnitude and orthogonal a;-ay = —a?d,

and satisfy the Landau gauge condition «; - k& = 0. Thus we are specifically consid-
ering the case of circular polarisation, since this is the ouly case where the photon
cnission rate calculations are expressible iu ters of standard functions. In terms of
our plane wave definition given in Section 3.2, this corresponds to setting § = 2172

and multiplying the amplitudes A by a factor w.

Applving the kinetic momenium operator i—eA = i@ —eA to the Volkov solution
ppiying ] 1

(5.5). and (suggestively) denoting the time-average of the result by ¢, we find

(lnH

2k )I. =p+qe. (5.8)

q¢=p+;

Thus the electron acquires an additional intensity-dependent longitudinal momen-
tunt ¢ caused by the presence of the laser field. The zero component of the quasi
momentum ¢° was first found by Volkov [54], while the generalisation to the four-

vector ¢” is due 1o Sengupta [56]. Squaring ¢. we find that the intensity dependent
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mowmentum shift leads to an intensity dependent mass shift,
= (1 +al) = m?. (5.9)

This is precisely the same momentum/imass shift thar we found in our classical

analysis in Section 3.2.

As we are going to be studying the photon emission rates, we nexd to know the
S-matrix elements for the scattering process. These were originally calculated by
Nikishov and Ritus [52] and are presented by Landau and Lifshitz in [57]. Here we
will bricfly run through the calculation. but adopting the more physically transpar-

ent formalistu used by Heinzl et ol {59] in their study of pair-production,
The S-matrix relating the final clectron state f 1o the initial state 7 is
Spi = —ie| / | R L O (5.10)
where ¢ is the polarisation four-vector. We find
Sf,- =i / (I'l.‘n:(-'.“’-""—k’)"r.l\/l(.’f ), (5.11)

where M = r:'“"_’r-’)’ﬁ,/F,,r,(I‘,,':ll,. Since W, is an cigenfunction of p, we obtain afer

itegrating out. the spatial coordinates

—
ol
[
1A~
—

Spi = —"L‘(Qf)ad(:”(ip ~-p' =k /d..'.‘_c'-("' -k )"r.:\/l(:r:').

Now, for a plane wave, [, can be decomposed into a constant average (Fourier zero
mode) plts an oscillatory component. The average over a wavelength is precisely

the longitudinal component of the quasi-momentnm {5.8). so we find we can wrire



the action (5.6) as
Sp=—p-a— (g —p)a™ + 481, (5.13)

where (- — p_)a™ comes from the Fourier zero mode and 4/, the oscillatory con-

ponent. lntroducing the boost invariant, light-cone guasi-momentun fractions
oL _Z—-q¢-x (5.14)
and changing variables from @~ to k- @ = wx™, we can write
Spi= —ic('.ﬂ):i%(sw)(p —p - k) / d(h - a)e @ Q=N jp(f ), (5.15)

where A/ = M but with [/ = 0/, Now A is a purely oscillatory, periodic function

and so we can expand it into the Fourier series
M(k-x) = Aeintr, (5.16)
n
Thus we find

. l N T L
Sy = _r;c(-zﬁ)-‘l_—(s‘-”(p -p' =k L M3(Q — Q= K+ ). (5.17)

"
and so the S-natrix can be expressed as a “d-comb’. Hence we see that the quantity
Q — Q" — K’ + n is conserved, whichi is equivalent 1o writing - + nk_ = g_ + &',
Now, we can see from (5.8) and Section 3.2 that the quasi-momentun ¢ differs from
the momentinn p only in the light-cone componeunt, therefore it follows that the full

quasi-niomentim is conserved in the scattering process,

g+ h = + & (5.18)
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5.3 Kinematics

We now study the kinematics resulting from the quasi momentum conservation

(5.18}. We begin by introducing the Mandelstan invariants s, ¢ , «, [57, 58

Sy = (¢ +nk)? = m? 4 2uk - p, (5.19)
by = (nk = k') = ~2nk - K, (5.20)
U, = (nk = ¢')’ = m? = 2nk -, (5.21)

where we have used the fact. that, since & is lightlike,

q-k=p-k, - -k=yp kL (5.22)

Note that the three Mandelstaimn variables are not independent of each other since
Sp b by A4, = 22 Also since they are n-dependent, they will be different for cach
scattering process. From (5.19) and (5.20) it is immediately clear that the invariants

are subject to the conditions

Sp 2 Sn—1. (” > ]) (5-25)
f.rl S 0 (- _24)

We also find
Sutty = m) = dn(k - p)? <, (5.25)

which incans that one of the boundaries of the physical region in the Mandelstam

plane is a hyperbola. 1f we fix a line s = s, then, for the utl: order scattering process.
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the physically allowed ranges for ¢ and u are

2 4 .
boin = 2m% = s, — /s, ey = m /s, back scatlering

Fax = 0 Upin = 2112 — 5, forward scattering

To see how the Mandelstam paraieters relate to the scattered photon frequen-
cies, we return to the quasi-momentum equation (5.8). Squaring both sides and
substituting in (5.22), we can eliminate ¢’

2
Ui

nh-p=F-p+n+ad
e p+{ ]0'21\:-7)

Yoo A, (5.27)

since &2 = &7 = 0. I order to simplify our discassion, we will from here on assue
that the photons and electrons collide head-on. This means that there is now only

one angle to consider — the scattering angte of the photon 6. Thercfore,

k=w(l,n), p=(E, —|pn), (5.

[
no
[o2]

~

and

n-p=-pl. n-p’=—|pjcosé. (5.29)

Considering just the momentum (zero) components, we can rearrange (5.27) to
give an expression for the frequency of the scattered photon,
, n
I — , 5.30
T4, (1 = cos )’ ( )
where
, mr =3 4 agy(1 - 3)/2 .
In = (5.31)

(1 +.3)
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Figure 5.2: The dependence of t on 8 (FZD valnes). We see that ¢ attains its
minimnn for forward scattering (6 = 7).
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It can be seen that when 7, < 0 the maximumn emission frequency occurs when
the pliotons are backscatiered (6 = =). Conversely, when j, > 0 the maximun
frequency oceurs for forward scattering (@ = 0). We note that the frequency ranges
of the scattered photous are dependent on the number of laser pliotous absorbed,
. The spectrum resulting from the scattering process where 1= 1 will be referred
to as the ‘fundamental harmonic™. Where n > 1 laser photons are involved. these
spectra will he referred to as ‘higher harmonics”.

It should be noted that the linear Compton case, well known fromn physics text
books, occurs in the limit ag =+ 0. = 1 (i.e. in the low intensity Limit). Thus the
possibility of the electron absorbing . > 1 laser phiotons and subsequently generating

a higher harmonic, is exclusive to the nonlinear regime.'

'The emission of higher (v = 2. 3) harmonics has heen observed experimentally by colliding an
electron with a linearly polavised laser bemn. In sueh a beane the eleciron (classically speaking)
exhibils a lignre-of-eight motion. which eanses the scattered photon frequency spectrin ta have an
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Figure 5.3: The dependence of t on v/ (FZD values).
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From {5.30) we can see that #/,(0) = nr. Thus, in the case 4, < 0 the emitted
photon frequency is blue shifted relative to laser photous. and in the case j, > 0 it

is red shifted,

Jn < 0= nv </ (0) </ (%) Dlue shift (5.32)

Jo > 0= v (7) </ (0} < ne red shift. . {5.33)

Sometimes, in the literature, the case of a red shift is referred to as *‘Compton
scatiering” and that of a blue shift as ‘inverse Compton scattering’. Since these are
frame dependent statements, we choose not. to inake the distinction in this discussion.

The frequency range given by (5.32), (5.33) corresponds to the ¢ interval in the

additional dependence on the azimwihal angle. @. The second ad third harmonics were then able to
he identified by observing the resulting quadrapole and sextupole radiation patterns, respectively
[61. 60] (see also [19]). Such an observation is not possible using a circularly polavised laser, due to
the azimuthal svinmetry of the seattered photon distriburion (resulting from the circulmr motion
ol the elecirons in such a field).
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Figure 5.4: Plot showing the relationship between & and v'. v = 100, w = 1,
m = 0.511 NMeV, ag = 20.
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Mandelstam representation (5.26). Evaluating the Mandelstam invariants explicitly

in terms of v and &, we have

S, = m? -+ 2!1.11:21/7(1 + A) (5.34)
t, = =2nm /{1 —cosh) (5.35)
we = wt — 2P (41 4 ,3) = v'(1 = cos6)). (5.36)

Fignres 5.2 and 5.3 show the relationship between t, and ¢ and » respectively. As
discussed, we see that £, achieves its minimun when v = v, or § = 7. Figure 5.3
shows that there is a linear relationship between ¢, and +/, unlike between ¢, and 8,
where there is a rapid decrease in the value of ¢, as ¢ — .

We return now 1o consider the relationship between the scattered photon fre-

quency 7 and the scattering augle 8. Figure 5.4 shows a plot. of ' as a function of §
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for typical parameter values. It is evident that emitted frequency is maximal when
¢ = 7 (backscattering). Provided j, # 0, it is possible to use (5.30) to trade v’ for 8
in our expressions (and vice versa). (When j, = 0 the scattered frequency v/, looses
its 0-dependence, collapsing to the line nv.)

For parameter values similar to those at the FZD (i.e. ag ~ 20, v ~ 100) we find

Jn > 0, and so the maximum frequency of the emitted photons is given by

(1+ B)y*nv

T ) 5.37
max(FZD)} 1+ (,;.2) - '21/“.(1 -+ ﬁ)'y (J )
For large v this gives us
, 4v2ny - .
Ymax(zp) ¥ T e (5.38)
0

At this point it is uscful to define an effective v, much in the same spirit. as our

cflective mass,

E? ~2
2 _ Tp / .
1= = o 5.39
! m? 1+ ad (5.39)
thus (5.38) becoes?
2 b
V.’nax(Fzm = dy;nv. (5.42)

For a given » we can plot the fixed line s = s, on the Mandelstain diagram. For

n=1, 2, 3, 4, these lines are shown in Figure 5.5. From our above consideration

<9 - . . . . . .
“It is interesting to compare this to the case of linear Compton seattering, where we have

143w
’ _ =
Panx = | + -'ITV- (j'"))
which for large ~ becomes
4 _~ .f~2 -
Ponx = A7 (D.-”)
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of t, we can see thal, as we move downwards along the sections of these lines that

are in the physical region, we are moving along the ranges v' = v/ and

min "~ -

7
° UIINL\'.

6 = 0...2%. The point where the lines s = s,, meet the hyperbola su = ! is the

’

max aNd @ = 7.

point where v' = v,

Figure 5.5: Mandelstam plot for noulinear Compton scattering (5.1) using FZD
values. The shaded area shows the physical region of the Mandelstam plane.

5.4 Photon Emission Rates

We now return to our S-matrix calculation (5.17). The S-matrix may be trauslated
into an emission rate, which we wounld expect to be comnprised of Bessel functions,
since it consists of an exponential of Volkov phases. Indeed. we find that the differ-

ential rate for the emission of a single phioton of frequencey ” Hy the nth harmonic

67




process (5.1) is

div,, 1 , _
d - (l + .'l.')Q l’(”": v.v,, Z), (-_). 13)

which was previously obtained by Nikishov and Ritus [20]. The function J, is
] ) A

defined
i} a9 -':? L) 2 2
Tulan. v, 2) = 2 J2(2) + (2 + T VR 4 o) — 2, (5
TH 1+

where J, are the Bessel functions of the first kind. We have introduced the three

new kinematic (and Lorentz) invariants «, y and z

LE——., Yy =

k& 2nk - p
ll' - ]) i

)
m,

Physically, ¥, represents the maxinuun recoil of the electron during the scattering

process. The relationship of @ and ¢ to the Mandelstam invariants is

{

&= — 5.46
u— (5-46)
hj

gy = —— 1L (5.47)
1

From our analysis of the physically allowed ranges of the Maudelstam invariants in
Section 5.3, we find that the kinematically allowed range of x for the nth harmonic

is

0<a<y,. (5.48)

Ontside of this range the rate for the nth harmonic vanishes. (We see that for @
124

ontside of this range the Bessel parameter z becowes complex.) To obtain the total




emission rate we simply sumn over all the harnnonics,

dWw S dw,
= —_— 5.4
dx — o (5.49)

In Figure 5.6 we show the first few partial emission rates as a function of «. It

Figure 5.6: Partial emission rates for nonlinear Compton scatiering as a function
of & (FZD values). The emission rate for linear Compton scattering is shown for
colmparison.

(arb. units)

dW_ /dx
n

can be seen that the higher annonics have a reduced signal strength compared to
the fundanental harmonic, and that each subsequent higher harmonic is reduced
compared to the previous one. Also tncluded in the plot is the emission rate cor-
responding 1o lincar Compton scattering. A striking observation is that the edge
x = g of the (nonlinear) fundamental harmonic, which we will froin hiere on refer to
as the ‘Compton edge’. has been shifted to the left by several orders of magnitude
compared to the linear case. The size of this shift may be calculated analyrically as

G6Y



follows. Evaluating y, explicitly we find

29(1 4+ 3w (
Yy = ——————— = J1iY).
Yn 1+ ad “n

o
o
<
N

Thus we way express y, as a luuction of ug, allowing us 1o write

7

1+ ad

Yn = Yn(ao) = nyr{ag) = 1(0). (5.51)

We can therefore see that the fundamental harmonic will be shifted by a factor of
1/(1 + a3) to the left compared to the lincar case. This is a highly significant result
since it offers an experimentally detectable signal of the mass shift (5.9).

Figure 5.7 shows the total emission rate sunnned to 30, 60 and 100 harmonics.
We can see that couvergence only becones an issue at the far extremity of the plot
(s 2 107%). An interesting observation is that the peak at the Compton edge (from
here on known as the ‘Compton peak’) gets bolstered by the higher harmonics,

increasing the signal strength compared to the linear peak.

Frequency Parameterisation

Using (5.30) to eliminate 0 from our expressions, it. is possible 1o express the emission
rate (5.43) in terms of the scattered photon frequency v/
dW,  dVV, da 1

W " dm A g, e 2 &

Lh
<]
(3]
—

The frequency range of each individual harmonic is determined by (5.32) and (5.33).

In Figure 5.8 we have plotted the first few individual harmonics for FZD parame-
ter values. As with the w parameterisation, we see that each harinonic has a reduced
signal strength compared to the previous one, the difference being most noticeable

hetween the fundamental and second harmonic.
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Figure 5.7: Sum of partial emission rates as a function of x (FZD values). Dashed,
lower curve: n = 1...20, dotted, middle curve: n = 1...00, solid, top curve: n =
1...100. The emission rate for linear Compton scattering is shown for comparison
(1 grey).
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Figure 5.9 shows the total spectruin for the smne parameter values. It is clearly
evident that, analogously to the phenomenology of the & parameterisation, the
Compton edge experiences a frequency red shift, compared to the linear Comnpion
case. We emphasise that the total frequency range is blue shified, relative to the
incoming photon frequency v, due to the presence of the higher harmonics. This can
be seeu from (5.32) and (5.33). Once again it can be seen that the higher harmonics
bolster the (fundamental harmonic’s) Commpton peak, increasing its signal strength

as compared 1o linear Compion scattering.
In an experimental context the red shift of the spectra is important for two

reasons. Firstly, the observation of the frequency shift will provide experimental

evidence of the cleciron mass shift.  Secoudly, the measurcment of the red shift
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Figure 5.8: Individual harnonic spectra for nonlinear Compton scattering (FZD
values). The spectrum for lincar Compton scattering is included for comparisou.
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could be used to determine the laser intensity eg by (5.30) and (5.31). Looking
ouce again at the emission spectra in Figure 5.9, we see that it should, in principle,
be possible to observe the peaks corvesponding to n = 1, 2, 3 and even 4. This
assnimes of conrse that the presence of varions background effects, not included in
our theoretical analysis, will not be too detrimental 1o the signal quality.
Previously we have discussed the dependency of the scattered photon frequency
" on the sign of 4,. We now consider this in more detail in the context of the
emission spectra. Recall from (5.32) and (5.33) that, for 5, < 0 (> 0), the emitted
photon frequency (for a given scattering process) is blue (red) shifted relative to
the laser photons. This implies that, by tuning the ‘free’ parameters v and aq, it
should, at least in principle, be possible 1o change from a blue shift to a red shift.

In particular, at the point where j, changes sign the nth harmouic will collapse to

the single line ), = nwr. Setring (5.31) equal to zero we find that. in order for the
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Figure 5.9: Emission spectrum for nonlinear Compton scattering (FZD values).
Spectruin for linear Compton scaktering is included for comparison.
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nth harmonic to collapse, the critical value of ag must be

B - )

Uiy cvin, = T (5.53)
For large 7 we find
Ui = 27 — ny — 3+ "jif—i_ v O(A:_,) (5.54)
Thus we may approximate
Up.eriv = 27, (5.95)

for large ¥ and oll small 1 (i.e. n* < 4%). In the case of linear Compton scattering,

the point where there is no frequency shift in the scattering process (v = v} is the
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point. where the total momentum P = k + p equals zero. This is, of course, the
centre-of-mmass frame for the collision. Making the analogy to nonlinear Compton
scattering, we see that the point where the uth hanmonic collapses is the point
where the total momentumn P = nk + g = nk + p + q, cquals zero. Thercfore we
can consider the point where j, = 0 to define a ‘centre-of-mass’ frame for the nth

scatlering process.

Evaluating (5.53) for the FZD values we find that the fundamental harmonic
will collapse for ag = 200. In Figure 5.10 we show a sequence of plots of the
total spectra with ug going from 20 to 300. Looking at the plots we observe the
following. In the subcritical regime (up < wnen; first three plots) the harmonic
ranges arc blue shified relative to the frequencies ny (shown as dotted vertical
lines). This is more clearly seen in Figure 5.11 where we have plotted the individual
harmounics. As ay is increased the harimonic ranges shrink (i.e. the right-hand edges
arc inereasingly less blue shifted) and gaps begin to appear between the individual
harmonics. At the critical ¢ the fundamental harmonic does indeed collapse to
the line v = v, disappearing from the plot. The n = 2, 3, 4. ... harmonics are
very narrow for this value of ¢p since, assuming that v is large enough for (5.54)
to hold, the expansion of ag gy is only n dependent in the second term and above.
As ay increases further (into the supercritical regime), the fundamental and first
few higher harmonics are red shifted relative to the lines ni (again best seen from
Figure 5.11). The harmonic ranges hegin to increase again and the gaps begin to
close. Hence, as we have discussed, there is an analogy between tuning the laser
parameter ag and changing the Lorentz frame in which the processes are considered,
as the quasi-momentum (and hence P} change continuously as a function of wq.

This is shown diagrammatically in Figure 5.12.
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Figure 5.10: Sequence of emission spectra for noulinear Compton scattering showing
the transition from the subcritical (ag < agqi) to the supercritical (1o > aocrin)
regime. 7 = 100, ageriv = 200. The vertical {dotted) lines correspond to the
frequencies nw.
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Angular Parameterisation

Alternatively we can consider the emission rates as a function of the scattering angle

8. Using (5.30) to now eliminate ¢’ from onr expressions, we calculate the angular
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Figure 5.11: Sequence of individual emission harinonics for nonlinear Compton scat-
tering showing the transition from the subecritical {ag < agai) to the superceritical

(g > ttg.erir) regimeE. -

= 100. ¢g.qiv = 200. The vertical {dotted}) lines correspond to

the frequencies niv. The grey lines show the total (sunmmned) spectra. The liarmonics
are coded: dashdot:n = 1, dashed:n = 2, dotted:n = 3. solid:n = 1.

a, =20 a, =50
0.03¢ 0.03—
. 002k . . 002fk:: :
ke, l:'\-. 71 5 iy, /!
: s i ;!
001 P 001): " < /_,‘ .
S | e -
0"’ = Oi;/ =
0 1 2 0 2 4
v -4 v -5
_ x 10 - x 10
a, =150 a, =201
0.05 2
i '
0.04 ! ' ;
) " ’E \ 1.5 !
50090 s | !
2 0.02 o 2 i
[ .
VA H
o NS ; :
0 0.5 1 0 0.5 1
Vv -5 v -5
1
a, =250 x 10 a, =300 x10
0.04 0.02 -
|| z o
0.03 | 0015} | | : _
" . o l l . : .
2 fA 2 - : ) :
© ! © 1yl ' ' :
A vl ,
0.01p 1M : 0.005f /i : : :
A YAV : | ) Vf‘é o ‘
0 i i TN 0 L P e,
0 0.5 1 0 0.5 1
v x 107° v x 107"
ciission raie to be
d1, A\, dr ns ,
—_— e — = w100 2. 5.56
o) de dQ (14 D[+ j.(1 —('()sﬂ)]'-’j g1, 2) (5.56)

76



Figure 5.12: Diagrams showing how the centre-of-mass frame becoies intensity

dependent.
Ag < Agcrit
subcritical
q nk
| Ap = Ag ciit
‘centre-of-mass’
q nk
dg = 8¢ crit
supercritical
q nk

Here we have used the angular measure dQ = sin@df, which is the solid angle

weaswre up to a factor of 27 since the circularly polarised laser field is not dependent

on the azinnuthal angle ¢.

In Figures 5.13 and 5.14 we show the first few individual angular harionics for
the FZD values. We see that for these parameter values, the main emission intensity
for cach harmonic is concentrated in the region close to ¢ = = (back scattering
direction). However, it is ouly the fundamental harinonic that is non zero actually
at the point. § = . The higher harimonics fall to zero at this point, exhibiting what
arc known as ‘dead cones’. Thus true back scattering occurs only for the scattering
process where n = 1.

Figure 5.15 contains a sequence of plots of the individual harmonics for various
g (again, FZD values). \Ve sce that as aq is increased, the bulk of the signal for
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Figure 5.13: First 5 angular harmonics for nonlinear Compton scattering (FZD
values). Only the fundamental harmonic contributes at # = «.
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each harmonic begins to shift away from ¢ = 7. As g reaches 200 the harimonics
becowme synunetrical about § = x/2, with the fundamental harmonic contributing in
both the forward (# = 0) and back scattering (6 = 7) directions. As uq is increased
further, the harmonics shift further to the forward direction. Just as it did in the
back scabtering direction for low aq, the fundamental harmonic now contributes in
the forward direction while the higher harmonics, though moving increasingly close
to # = 0, still exhibit dead cones at this actual point.

Before we can sumin the harmonics to calculate the total emission rate, we are
forced to confront the issue of convergence. (We note that this was not an issue with
the v’ parameterisation since. due to (5.32) and (5.33), a given frequency interval
only contains a finite nuber of harmonics. With the # parameterisation afl the
harmonics are constrained to the finite range 8 = 0...7.) To begin, we note that

the kinematic invariants xx and z both have an n dependence, which we will now
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Figure 5.14: Log plot of the first 5 angular harionics lor nonlinear Compton scat-

tering (FZD values).
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write explicitly as x, =« and z, = z. Evaluating these invariants we find that they

scale with n like

2nv(1 - COSO)
(1 4 3L+ cos) + (1 4+ )1 = 3)(1 = cos 0))

i
2 () = u 1—— = nz (0. 5.58
(1) \/1+~n\/u. u. nz (). (5.58)

and we already have y,, = nyy from (5.50). We hnd it aseful an this point to introduce
4 Yn I

= nay(8)  (5.57)

the rescaled variable

[l
|
=
IA
IA

(5.59)



Figure 5.15: Scquence of plots showing the first 5 angular harmonics [or various g
(v = 100). Solid line (black): n = 1, dashed: n = 2, dotted: » = 3, dashdot: n = 4,

solid grey: n = 5.
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Thus we may rewrite (5.58) as
>
: “n -
2a(0) = 20\ [ —2 5 /T = 7). (5.60)
\ 1+ ap
A simple differentiation shows that z; achieves its maxinin when + = 1/2, and
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thus z; lies in the interval

(5.61)

Figure 5.16: Log plot of the angular ¢mission rate summed to the first 5000 har-

monics (FZD values).
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We arce now ready to consider the total emission rate

=AW, ni
L dQ T (14 31+ F.(1 — cos 0)]‘2‘7"(“")’

where we now have

q ., 2a? o o
Tal(z)) = —“—,-,._l,',(uzl) + (9 + —”A—) (J,;H(n,::l) - Jf_,(nz.) - '2.],;(“,21)) .
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Figure 5.17: Angular emission rate summed to 5000 (solid liue) and 10000 (dotted
line) harmonics (FZD values). They only differ at the point § = 8y = 2.94, which is
the location of the peak.
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Ewploving the Bessel function identity [46}
n ’ -
']n:l:l(z) = ;J,,(Z) + '],,(2): (363)

where the prime denotes the derivative of the Bessel function with respect to the

argument. z, we may write the emission rate as

Mg

X,
2

n=l n

) ((l =2t 201 = 22t (1 - 32;2)"’“)-],?,'(1131)

: - +
, (1 4wy )3 (1 0y )3 (1+ nwy)®
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B L— + L4 - ) 2(02).
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where A and B are the n-independent. prefactors

v+ 7((1 + 3) = (1 = ad){1 = 3)

ragzi(1 — cos6) '
B - A1 — 2820 + (1 + B) — (1 + a2)(1 = 9)))
2v:3(1 — cos ) '

We see that the termns of interest are the series of the forin

2 v
Pz and — —J(nz
2—‘1-!-!11 1 )3 w{n21) Z(]—i—nr) 2 liz).

n=|\

where N € {1,2,3}. Since @y > 0 we can bound the series from above, e.g.

= ny = N o i
2 Ty e < 3 nSina) = S, (5.64)
n=1 n=|
= n e
Z‘ (1 + )3 Jr’uz(”riﬁ) < 2‘”4\7']:2(“2') = 5:\"' (565)
n=l "l n=I

The series Sy and S4 are examples of Kapteyn series of the second kind and are
known to converge when 0 < 2, < I, which is true in our case duc to (5.61). For
an excellent. discussion of these series and their convergence, we refer the reader
to the papers [62] and (63] by Lerche and Tamz. In [62] the authors siate that
summing the series to 1000 terms yields errors below 107% for z; < 0.95. However,
the convergence becomes very slow for z close to 1. Thus the convergence will he
slowest when 2y is aximal, which we found earlier to be when » = 1/2. Calculating

roexplicitly, we find the angle where 2 15 maximised to be

I+ + (1 -3)
T4ag++(1+3)

fy = arccos {5.G66)
Figure 5.16 shows a plot of the emission rate stunmed to 5000 terms. \We expect
the convergence to be good evervwhere apart [rom the small region around § =

fo = 2.94, which is the location of the peak. In order to test how well the series
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Figure 5.18: Sequence of plots showing the angular emission rate sunmmed to 5000
harmonics for various uq (v = 100).
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has converged, in Figure 5.17 we have plotted the cinission rate (for FZD values)
summed to 5000 and 10000 terms. We can sce that, as predicted, thev only differ at
the actual peak and so Figure 5.16 provides a relatively accurate representation of
the angular emission rate. Considering this plot now with more confidence, we note

the following observations. Firstly, for these parameter valies the peak emission
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Figure 5.19: Black dotted {outer lines): the angular positions of the two emission
rate peaks as a function of ng (sunmmed to 5000 harmonics, ¥ = 100). Grey solid
(inuer line): the angle #y which defines the maximum of z;. We see that the point
where z; is maximal and the convergence is slowest, corresponds to the local minima
between the two peaks.
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is close to the back scattering (0 = @} direction, although the rate falls ofl ai

f = 7 (the remaining shoulder at this point being solely due to the fundamental
harmenic). Secondly, the angular rate is practically zero in the forward scattering
{8 = 0) direction.

In Figure 5.18 we investigate the dependence of the augular spectra on vy, We
sce that as wq is increased, the peak emission rate moves from the back scattering
direction to the [orward direction. In other words the laser gets ‘stiffer’ compared
to the electron beamn - the photons don’t ‘hounce back’ (backscatter) so easily, but
continue forwards (i.e. forward scatter) instead. It can be seen that the peak takes
the form of a double peak which becomes syimmetrical for ag = 200. In Figure 5.19

we determine numerically the positions of the two peaks and compare them to our
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expression for 6y (5.66). It can be seen from this plot that 8y, the point where z, is
maximal and convergence is slowest, corresponds to the local mintima between the

two peaks.

5.5 The Classical Limit

Having calculated the photon emission rates quantinin mechanically, we now assess
how Lhese calculations compare to their classical counterparts. Keeping with the
formalism we have used throughout this chiapter, the classical limit may be expressed

as (see Nikishov and Ritus [52])

Y = —5 XK 1, (567)

which is equivalent. to stating that on, is the dominam energy scale. Since y, repre-
sents the recoil of the electron during the scattering process, the classical {Thomson)
limit amounts 1o neglecting the transfer of momentumn from the laser pliotons to the
electron. From (5.67) we can see that we are in the classical limit if we have a large
g, aud are not considering harmonics with a very large harmonic nunber. Since

2y < i, (5.67) may be expressed as

e K L. (5.68)

Thus we reach the classical linit il we take @, = nz) to zero in our sumns (5.64),
(5.65). This argument is valid for large «ag since for low harmonic mnnbers (5.68)
clearly holds, and for high harmonic numbers the contributions to the smns are
heavily suppressed by .J2. In other words, this mecans that the bounding expression
(5.64). (5.65) lor the sunmmed angular emission rate (5.62) is also the classical limnit.

I we now compare the quantun and classical (i.e. ‘Compton’ and ~Thomson’)
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emission rates we find, for g = 20, that the graphs are nearly indistinguishable.
Plotting the relative difference we find that it is effectively zero evervwhere apart

fromn a small region around & = &,, where it rises to about. 0.7% (Figure 5.20). This
g g

Figure 5.20: Relative difference of the photon emission rates |Compton —
Thomson|/Compton as a function of the scattering angle ¢. FZD values, with har-
monics sununed to n = 10000.
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is as we would expect since, for the FZD, y, ~ O(107%) « 1 putting us squarely
in the classical regime. However, if we consider the SLAC E-144 experiment [2§]
where 7 = 10° and 1 = 0.4, then y, ~ O(1) implving that quantun effects should
be important. This is indeed the case — the diflerence between the quantum and

classical calculations is as high as 60% (Figure 5.21).

As a final remark, we note that throughout this chapter we have considered the

emission spectra in terms of the photon emission rates 1, \We can relate these 1o
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Figure 5.21: As Figure 5.20 but for parameter values corresponding to the SLAC
E-144 experiment.
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the cuiitted photon intensity df,, by the relation [52]

df,, = m/ V. (5.69)

5.6 Summary

To suimmarise, we have considered the plienotnenology of laser-clectron collisions us-
ing a strong field QED approach. NModelling the laser beamn as an infinite plane wave,
we analysed the sighatures of intensity effects in Compton scattering. The main in-
tensity effects are due 1o the intensity dependent mass shift 1m® — m? = m?(1 + o)
of the electron in the laser field. We preclict that this will result in a redshift of the
kinematic Compton edge for the fundamental harmonie, with the harmonic collaps-

ing to a line spectrum for a critical ag. If observed. this will provide experimental
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evidence of the electron nass shift. Our analysis also predicts the presence of higher
harmonic peaks (# > 1) in the photon spectra. We emphasise that, for a circularly
polarised laser field, the higher harmonics have not been detected in any previous
experinent. We then cousidered the angular distribution of the emitted photons.
This involved evaluating the sums of infinite series. the terms of which being func-
tions of Bessel functions. This we achieved by employing Kapteyn series results.
We subsequently found that, for low intensities, the peak emission is in the back
scattering (0 = w) direction. As the laser intensity is increased, the peak moves
towards the forward scattering (0 = 0} direction. Loosely speaking, at higher inten-
sities the laser beamm becomes “stiffer’ and so the laser photons stop ‘houncing back’
from the electron (back scattering), instead continuing to move forwards (forward
scattering). Finally, for the FZD parameters we found that the classical limit was in
good agrecient (£ 0.7%) with the strong field QED calculation. Thus, when carry-
ing out more detailed modelling of the FZD experiments (considering the effects of
the beam profile, for example), one can utilise the numerical scheme we presented
in Chapter 4. For different paramcter values, where g, € 1 no longer holds, the
classical limit no longer offers a suitable approximation and so one must. proceed

using strong ficld QED.
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Chapter 6

Conclusion and Outlook

6.1 Summary

It is now 50 years since the invention of the laser and we find owrselves pushing
the limits of what can be achieved. The next few years will sce a succession of new
experimental facilities coming online, each one with a power unmatched by anything
that has gone belore it. The resulting, unprecedentedly high, electromagnetic field
strengths will allow the probing of fundamental physics in previously inaccessible
regimes. The kinds of physics available (strong field QED - nanely Compion scat-
tering. vaciun birefringence and pair production) were outlined in Chapter 1. [l-I
this thesis we chose to devote our attention to the dynamics of clectrons in such
fields, with particular attention paid to intensity effects in the nonlinear Compton
scattering emission spectra.  The reason for this 1s that, out of all the different
phvsical processes that it is possible to stucy using a laser field, nonlinear Compton
scattering is the only one that does not have a minimum threshold of laser intensity,
and is the most readily accessible with the facilities we expect to become available
in the next few years.

We began our study in Chapter 2 by considering the classical heliaviour of an

clectron in a constant electromagnetic field. Neglecting the effects of the radiative
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back-reaction on the electron motion, the governing equation of motion is the Lorentz
force equation (2.1). For the case of constant fields, this is solvable directly by
exponentiation. The resulting electron orbits can be divided into four (Lorentz
invariant) cases, classified by the values of the scalar and pseudo-scalar invariants
of the field strength tensor. Parameterising the field tensor using a null tetrad, we
demonstrated that the lour cases result in electron motion that is either parabolic,
clliptic, hyperbolie or loxodremic. Tn the paraholic case the field tensor deseribes
crossed felds, Crossed ficlkds are the most relevant case lor us, since they represent
either the high intensity or the long wavelength limit of an infinite plane wave.
We thus proceeded to calculate the radiated energy spectra for an electron in a
crossed Aeld background. Doing so. we found that the radiation is almost exclusively
backscattered, and the rachation signal strength decreases as the initial electron ~-

factor is increased.

Having considered crossed fields, we then moved on to study infinite planc waves.
The plane wave ficld tensors we considered were lincar combinations of the (constant)
crossed field tensors. multiplicd by a light-cone time (1 - 2) dependent prefactor.
These ficlds arc null and. due 1o their transversalivy, we found that the light cone
time is directly proportional to the particle’s proper time 7. Hence the Lorentz force
equation becoies Huear, and once again solvable by exponentiation. Calculating
the electron trajectories we conlirmed that, in the average rest frame, the electron
exhibits figure-of-cight motion for a linearly polarised wave. and circular motion for a
circularly polarised wave. The size of the orbits is proportional to the laser intensity
ag. Cousidering the proper time average of the electron’s momentuin over a laser
cycle, it was shown that the electron acquires a quasi-momentum, which in tarn
gives rise to an intensity dependent wmass shift. In the case of circular polarisation,
the radiated encrgy can be expressed in closed form. Evaluating the expression

given by Sarachik and Schappert [47] for an electron initially at rest, we found that
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the signal strength of the emitted radiation increases with the laser intensity. \We
also found thai the emission peak moves closer to the forward scattering (6 = 0)

direction as the intensity is increased.

If one is to move on to consider more realistic/complex field configurations (mod-
elling the laser ficld as a Gaussian beamn, for example). then the Lorentz force equa-
tion will have to be solved numerically. Conventional numerical schemes are not
covariant and will introduce a discretisation error into the on-shell condition. There-
fore, in Chapter 4 we introduced a novel, first order numerical scheme based upon a
SL(2, C) representation of the electron four-velocity. Our method is fully covariant
and so precisely preserves the on-shell condition. Using the example of a pulsed
plane wave, we successfully demonstrated our new method and also compared it
dircetly with a conventional first order scheme (the Enler method). We found our
method to bhe more accurate. and we confirmed numerically that the on-shell con-
dition is indeed preserved. We also remark that our method could be adapted o
incorporate the radiative back-reaction, by solving the Landau-Lifshitz equation.
More details are given in Appendix B.

Once we had studied the electron dynamics classically, we returned to consider
the case ol an infinite plane wave from a strong held QED perspective. Motivated by
recent advances in laser technology. we paid particnlar attention to intensity cects
in the emitted photon spectra. We found that the intensity dependent electron mass
shift 1n? = m? = (1 + af) gives rise to an intensity dependent [requency shift of
the kinematic Compton edge for the fundamental harmonic (w' = d+*w — dy%w/a3).
In fact, for a given harmonic, we found that the notion of a ‘centre-of-mass’ frame
becomes intensity dependent. with the first few harmonics collapsing to line spectra
for apaiw = 27. For paramecter values away from g = wpei we found that the
presence of the higher harmonics in the ewission spectra serve to bolster the signal
strength of the Compton peak. If detected in an experiment, this would be the
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first time that the higher harmonics are detected for a circularly polarised laser
field. After considering the emission spectra, we then turned our attention to the
angular emission rates. We found that for low «g most of the emitted radiation is
in the backscattering (0 = ) direction. However, as ag is increased the emission
peak moves away from 8 = 7 and towards the forward scatteving direction. This
can be inderstood fignratively by saving that at low infensities the laser photons
‘hovnce back® off the electron (e backseatter), whereas at higher intensities the
laser becornes sstiffer” and so the photons continue in a forwards direction (forward
scatter). In order to calculate the angular rates we had to sum over an infinite
number of harmonics. We solved this problemn by realising that the suns could be
bounded by Kapteyn serics that can be written in closed form. We also found that
the bounding expressions represent. the classical limit to the problem, enabling us
to compare the classical and quantwn calculations with each other. For the FZD
parameters we found that the classical limit was in very good agreement. (< 0.7%)
with the full strong ficld QED calculation. This means that if one were to carry out
more detailed modelling of the FZD experiments (e.g. considering the effects of the
heam profile), one could utilise the numerical scheme we developed in Chapter 4.

However, for different parameter vahies. where the condition

ik p < (6.1)

n =
2

no longer holds. the classical limit no longer offers a suitable approximation and
so one mmst proceed using sirong field QED. This was aptly demonstrated for the
SLAC [Z-144 experiment. where we found thar the relative difference hetween the

classical and QED calculation is as high as 60%.
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6.2 Further Developments and Outlook

Over the next few years we can expect a wealth of new experimental data against.
which to compare our theoretical predictions. The results from the FZD will be
especially interesting for us, since they will allow us to gauge the validity of our
reasoning in Chapter 5. It would be particularly exciting to confirm our predictions
regarding the tunability of the Compton peak in the emission spectrum. If demon-
strated, this process could potentially provide a source of monochromatic X-rays
of tunable frequency, which could be of use in cancer therapics and other scientific
ficlds. Interms of fundamental pliysics benelis, if the experiments are able to detect
the presence of the higher harmonics in the emission spectrum, this would be the

first. time that they were detected for a circularly polarised laser field.

While our analysis of an infinite plane wave laser model was an important first
step, the challenge now is to consider a more realistic model of the laser hean. In-
deed, since our wo.rk on the emission spectrum for an electron in an infinite plane
wave was carried out. other authors have begun to give consideration to the effecrs
that clianging from an infinite plane wave to a pulsed plane wave has on the spec-
trum. In particular, the work by Heinzl, Seipt and Kampfer [44] contains a classical
calewlation of the emission spectrum for an electron in a circularly polarised, pulsed
plane wave (not including the radiative back-reaction). Their key finding was that,
since the field strength varies as the electron passes through the pulse, radiation
generated at. different times will be of different. frequencies. The result of this is that
the emission harmonics develop additional oscillatory substructures, which are not
present in the plane wave analysis. As well as considering finite temporal cffects.
at much higher intensities it will also be necessary to consider finite spatial effects.
This is because one of the ways in which the laser intensity can be increased is by

focussing the beam more strongly. This will mean that the electron beam will no
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longer be narrow compared to the laser beam waist size, and so we can no longer
assume that the electrons probe just the central focus region - see Figure 6.2. Thus
one must move bevond plane wave models and treat the laser as o Gaussian beam.
For parameter values that place us well within the classical domain, the numerical
scheme we introduced in Chapter 4 can be utilised. However, outside of the classical
reginne we will be foreed to find a way to perform such ealenlations using strong ficld
QED.

Figure 6.1: The implications of beam focussing on our modelling. For a strongly

focussed beam, the clectrons can no longer be assmued to probe just the central
focus, and so spatial cffects must. be taken into consideration.

weakly electron
focussed beam
laser

e
strongly electron
focussed beam
laser

N

Aside from nonlinear Compton scattering, the intensitics available at future fa-
cilities — ELI in particular — will allow other processes 1o be studied. The intensities
expected at ELI may be high enough to detect the effects of vacinum birefringence on
the polarisation of probe photons, although it will still be well below the Schiwinger
limit at which vacuum pair production may take place. However, pair production
experiments are possible, utilising phenomena such as the Breit-\Wheeler process.

Finally, we nmst make somne remarks concerning the radiative back reaction. In this

)
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thesis our classical analysis neglected these effects, and so took the Lorentz equation
to govern the electron motion. However, the numerical scheme introduced in Chap-
ter 4 could be adapted to solve the Landau-Lifshitz equation, which incorporates the
back reaction via reduction of order. Nevertheless, one often finds that for parame-
ter ranges where the back reaction becomes important. quantum effects also become
significant. Thus we must ask whether one can disentangle the radiation reaction
from quantuin corrections. There are many contributions to the literature on this

subject, but we consider the notes by MceDonald [79] 1o be particularly usefu).
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Appendix A

Notation

Throughout we will be working in four-dimensional Minkowski space, defined with
a metric such that a covariant vecior @, (2 =0, 1 .2, 3) is related to its contravariant

counterpart @# by
€y =g, g =diag(l,—-1,-1,-1), (A1)

where repeated indices are sunnmed over. A particle’s position {7} is parameterised

by its proper time 7, such that

dr = \fdua,dxr. (A.2)
Thus we mayv define a particle’s four-velocity as
_ du, .
du, = - = 1(c. v), (A.3)

where v is the standard three-velocity v = da/da® and

P S— (A.4)



Similarly, a particle’s four-momentum is simply p, = mu, = (E,/c,p), where m
is the particle mass and £, = my is its energy. An electromagnetic field is char-
acterised by its four-potential A, = (¢. A), which in turn allows us to define the

electric field intensity £

10A .
E= —Em - glcl(ld). (A.-_))
and the magnetic feld intensity
B = curlA. (A.6)

We define the antisynunetric tensor F,, (the eleciromagnetic field tensor)

1?11!1 = a’l -“u - aﬂ-“ﬂ (1"\ 7)
0 B B B )
- El 0 - B:; By

- , (A.8)
—E. By 0 -8B

-E5 -8B, B 0

where we have introduced the notation

0 d

We also introduce the electromagnetic energy-momentum tensor

A

1 - 1 :
T, = — ( — Fpo ™, - —g,,,.F"‘F;,-.,). (A.10)
fto 4
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Appendix B

The Radiation Back-Reaction

In this Appendix we consider the full equation of motion for an electron in an
electromagnetic field - including the radiative back-reaction. The classical action

for such a system can be written as [37)

L f o e
S = —um /LIT —-¢ /(l":::j".‘l,, ~ 3 / A= E,,. (B.1)

where the gauge potential A* refers to the total field aud §# is the four-current as
defined in (2.40). We can express the field strength tensor as a sim of the tensor

describing the external laser field FJ . plus the tensor describing the back-reaction

JL3s

on the field F}
cny i o
Y=+ R (B.2)
Assuming the laser field is a solution of the vacuum Maxwell equations

8, Fe = 0, (B.3)
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and varying the action with respect to the gauge field A and to the trajectory x*

one finds the following governing equations

0 ‘r'lm — J"(-":): (B‘I)
o= g i 5
i m( w+ FY Y. (B.5)

The solution to these equations is due to Lorentz (69}, Abrahamn [70] and Dirac (71
and is presented clearly by Coleman [72]. The resulting equation of motion is known

as the Loremz-Abrahaim-Dirac equation and can be expressed in the formn

¢ 2 ¢
> (154 -
W' = —Flu, — 3

1 B
m 3dmm

(a" + '1'12'11"). (B.6)

We draw the reader’s attention to the prescuce of the infamous second derivative

terin @ (third derivative of =), which leads 1o the existence of runaway solutions.

A well known solution 10 this problem is 1o replace the @ and 4* terus using the
Lorentz force equation (2.1) [37], thus reducing the order’ of (B.6). The resulting

equation is known as the Landau-Lifshitz equation

i IH"

2 2
- ¢ WG 2e” e, Jio 4 c” S0 3 m -
W= =My, — 31n —-—1 u, + —F P, — —u P F Juga” 3 (B.T)
ne

where we have changed notation to ' = F.y and we will from now on drop the
subscript for clarity. This derivation is valid under the conditions that, in the in-
stantaneous electron rest frame, both the laser frequency fiw and the electric field
energy ¢ £ are inuch smaller than the electron rest energy me? [37]. The derivation
of the Landau-Lifshitz cquation has recentdy been underpinned with more mathe-
matical rigour in (73] and [7-1].
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Denoting the square of " hy ©#”

oM = FrOF", (B.8)
we can write (B.7) as
. v 7] = 4
= — (" + ")y, = —H"u,, (B.9)
m "
where
G = e Ly i (v"®", —u'O" Yu" . (B.10)
3da | m m? “ ° ’ -

is manifestly anti-synunetric. We note once again that in the special case of a plane
wave field @ = 7", The fact that the Landau-Lifshitz equation can be expressed
as a cowbination of anti-synnnetric tensors (B.9) means that the new munerical
scheme we presented in Chapier 4 could be adapted 10 solve it.

To solve the Landau-Lifshitz eqnation using our numerical scheme, we would
adopt a SL(2, €C) basis and discretise, just as in Chapter 4. However, when defining

our electric field matrix (4.8)

tt=(E+iB) o, (B.11)

we now take our E and B ficlds (o include the full eleciromagnetic field, i.e.

Hoi(a)} =: E{x).  Hu(€) =1 —€jpn B (). (B.12)

It has recently been shown by Di Piazza. [68] that, for the case of a plane wave
fiekd. the Landau-Lifshitz equation can be solved analytically. Using this solution,

in Figure B.1 we show a plot of the electron ~-factor for the FZD parameters, show-
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ing both the Lorentz (no back-reaction) and Landau-Lifshitz (with back-reaction)

solutions. The difference between them is O(1%4) over the first laser cycle.

Figure B.1: Plot showing the electron v-factor for a circularly polarised plane wave,
with and without radiation damping eflects (FZD values).
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HARVEY. HEINZL. AND ILDERTON

ap=5 % 10* P[PW]. (3)

s0 that ¢, is of order 107 for a laser in the Petawalt class.
SLAC E- 144, on the other hand, had &, of order 1, hence by
modem standards was in the low-intensity. high-energy re-
gime. As high cnergy implics huge gamma factors and felds
close to £, this is also the genuine quantum regime.

In this paper we will concentrate on the segment of the
QED parameter space that has become accessible only re-
cently. characterized by large intensities. a,2 1. and com-
paratively low energies, w<me, typicel for experiments
with an all-optical setup. We will thus stay far below the
Breit-Wheeler pair-creation threshold and will have to con-
sider a process that is not suppressed by either unfavorable
powers or exponentials. A natural process that comes to mind
is a crossing image of the Breit-Wheeler one. namely, strong-
field Compton scattering where o high-intensity beam ol la-
ser photons y, collides with an ¢lectron beam emiting a
photon y. In this cuse one has to sum over all n-photon
processes of the type

¢ ERY T+ Y. (<)

The study of this process(es) hus i history almost as long as
that of the luser. Intensity effects were addressed as early as
1963/64 in at leust three independent contributions by Ni-
kishov, Riws. and Nurozhnyi [19-22]. Brown and Kibble
[23]). and Goldman [24]. These works are writtien from a
particle physics perspective. i.e.. essentially by working out
the relevant Feynman diagrams. For modern reviews of these
developments, the reader is referred 10 [15.18). Nikishov and
Ritus in [22] pointed out that af is proportional 1o £7 and
hence the photon density n1,. The precise relationship is

N
) fre- .
ay= =5 n,=dmar X, {5)
mcTw

where r=hw/me? is the dimensionless laser frequency and
,\"‘n, is the number of photons in a laser wavelength cubed.
As the probability for the process (4) is proportional to ay”
~a'. it becomes nonlinear in photon density for n2> 1 and
hence is culled nonlinear Compion scarntering [22]. Some-
whil in parallel. the same process has been considered by the
laser and plasma physics communities with an emphasis.
however. on the very low-energy and hence classical aspects.
The appropriate notion is therefore nonlinear Themson scat-
tering. These discussions were based on an analysis of the
clussical Lorentz-Maxwell equation of motion, typically us-
ing a noncovariant formulation and neglecting radiation
damping. Some early references are papers by Senpupta [25).
Vachaspati [26]. and Sarachik and Schappert [27). Since then
there has been an enormously large number of papers from
this perspective. many of which are quoted in the concise
review [28].

The main intensity effect can indeed be understood clas-
sicully. the reason being the huge photon numbers involved.
Xln = 10, in u luser wavelength cubed. Due 1o the quiver
motion in a (circularly polarized) plune-wave kser ficld the
clectron acquires a quisifour momenium given by

PHYSICAL REVIEW A 79. 063407 (2009)

3 7
ri'flr+(f;ik~l’+q,,- (6)
2kp
Hence. the electron acquires an additional.  intensirv-
dependent longitudinal momentum g, caused by the pres-
ence of the laser fields. I may be obtained as the proper time
average of the solution p,(7) of the classical equation of
motion with p,=p,(0) being the initial electron four-
momentum and k, = win,, the lightlike four-vector of the wave
(29]. Historically, Eq. (6) was first found in the context of
Volkov's solution [30] of the Diruc equation in a plane elec-
tromagnetic wave, Volkov explicitly wrote down the zero
component ¢* while the generalization (6) seems 1o be due 10
Sengupta {note added at the end of his paper [31]: cf. also the
textbook discussion in [32]). Upon squaring ¢ one infers as
an immediate consequence the intensity dependent muss
shift,

mt—mi=ml uf,). (7

Although first predicted by Sengupta in 1952 [31] (see also
[23.29]), it has so fur never been observed directly [33]. A
central topic of this paper will be to (refassess the prospects
for measuring effects due to the mass shift (7).

The paper is organized as follows. We begin in Sec. 11 by
reviewing the coherem-state model of laser ficlds. which pro-
vides the link between classical laser light and light guanta
(photons) in quantum theory. We then describe scatiering
amplitudes between these coherent states in QED and how
they are generated by an effective action describing interac-
tions with a classical background ficld. We illustrate this
theory with nonlinear Compton scattering. in Sec. 111 and
give a thorough discussion of the kinematics of the coltiding
particles. In Sec. 1V we give a variety of predictions for both
Loremz invariant and laboratory-frame photon emission
spectra. Our conclusions are presented in Sec. V.

1L QED WITH CLASSICAL BACKGROUND FIELDS

We first address the guestion which asymptotic in state we
should 1ake to describe the laser field. In principle, we would
simpty take the multiparticle state containing the appropriate
number of photons of laser frequency and momentum. en-
coded in the four-vector k=(w,k). We are immedimely faced
with the problem of not knowing exacily how many photons
are in the beam. Similarly. as we do not know how many
phatons will interact with. say. an electron during an experi-
ment, we do not know what to take for the outstate. To over-
come these problems we invoke the comespondence prin-
ciple: due 1o the huge photon number in a high-intensity
beam it should be feasible to treut the laser classicallv as
some fixed background field. Formally. (his is achieved by
describing the faser beam, asymptotically. in werms of coher-
ent states of radiation [33-37). The coherent states have the
usual exponential form

[Ch=exp \R’Jr

where @, is the photon creation operator. C, (k) gives the
tnormalized) polarization und momentum distribution of the

3.

ooy CH(kYa, {k)]0). (8)
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photons in the beam. and N is the expectation value of the
photon number operator (the average number of photons in
the beam). As usual. the state is an eigenvector of the posi-

tive frequency part of fiu since
a, (K)|C) = \NC,()C). (9)

Expanding the exponential in Eq. {8). we see that calculating
S-matrix clements between states including coherent pieces
is equivalent to a particulur weighted sum over S-mairix el-
ements of photon Fock states. Working with coherent states
may also be thought of, physically, as neglecting depletion of
the laser beam. i.e.. waking the number of photons in the
beam to remain constant [38.39). There is a natural connee-
tion between classicat ficlds and coherent stales as these
states are the “most classical™ availuble, having minimal un-
certainty. The associated classical field is essentiadly. as we
shall see. the Fourier transform of the distribution function
C. To see this we turn 0 the calculation of S-matrix elements
between coherent stiates.

Consider some scattering processes with an asymptotic in
state containing the coherent state € and some collections of
other particles. For reasons which will shortly become clear,
we will summarize all those particles ror in the coherent
state by “in,” so that our state is [in: €). Similarly, we take an
out state of the form {out; C] where we have, in accord with
the assumption of no beam depletion. the same coherent
state, In operator language. we are interested in calculating
matrix elements (0u|;C|1:i|in:C) of the S-mutrix operator

S Texp| - ILJ‘ dIf:l,(l) (10)
! =

Here fl,(r) is the interaction Hamiltonian (in the interaction
picture) and 7 denotes time ordering. We now write the co-
herent state (8) as a translation of the vacuum state (see. e.g..
[40]).

|C)=Tclo). (1)

where the commutator of the translation operator and the
photon annihilation operator is

[, (k). Te) = C (k)T (12)
Extracting the translation operator from the states.' we are
lelt with ordinary asympiotic Fock states but with a modified
S-matrix operator

(out:ClSlin: C) = (out]'.iz—'l':r'i'plin). (13)

From the definition (10) of S, the effect of the tanslution
operators is 1o shift any photon operator fi‘_‘ appearing in the

interaction Hamiltonian by (the Fourier transform of) C,(k}
which we denote by A,,(r}. Hence, the fermions interact with

"Under the usual assumption of no forward scattering. For the
photons. 1his requires C'ﬂ(k'i:l) for any scaitered photons of mo-
mentum k.
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the full guantum photon ficld ri“ and a classicat background
field. A (x).

To be precise. and switching to a4 more common quantum
field sheory language, S-matrix elemenis are given by the
on-shell Fourier transform of Feynman diagrams with ampu-
tated external legs. as usual. but where the Feynman dia-
grams are generated by the action

- | -
S[a. A yg]= f dix— ZFW}"‘”’+ Milh+ie A +icA] = )i

{14

This is almost the ordinary QED action. but the photon field
in the interaction term is shified by A, explicilly given by
—k-\

C (k) +cc

= . (15)
(211')]"\2|k| e

A,ly)= WV f &k

This poteniial gives the classical ¢leetromagnetic fields asso-
ciated with the momentum distributions C,(k}. Note that
only the interaction terms of the action are affected by the
presence of the background feld, following Eq. (13). We
therefore have a nawral and quite elegant way to
calculate—we do not need to directly add up the individual
contributions of the infinite series of werms generated by ex-
panding the asympiotic coherent state. Instead. we simply
include a classical background in the action which contains
all the information about the chosen asymptotic photon dis-
tributions. Following [29.41] these results can be summa-
rized by

{out: ClSin:C) = out]TZ ST cliny  (out|S[ATjin}, (16)

where. on the right-hand side, the asymptotic states are ordi-
nary particle number states. with no coherent pieces, und the
photon ficlds in the S-matrix operator are translated by A,

Bricfly. the same resuli can be recovered entirely in the
path integral, or functional, language. following, c.g.. [42).
The construction of S-matrix elements between coherent
states proceeds just as for elements between Fock states. but
the asymplotic vacuum wave functional musi be repliced by
coherent-state wave functionals. Ordinarily it is the vacuum
which is responsible for introducing the ie prescription into
the action and from there into the field propagators. A coher-
ent state does this and more—it translaies the phoion ficld in
the interaction terms by ihe classical field (15). recovering
Eq. (16).

Note that the modified action (14) remains quadratic in
the fermion field. Al etfects of the background are therelore
contained in a modification of the clectron propagator. The
result is that. in Feynman diagrams, the propagator becomes
“dressed” by 1he background ficld A, which surrounds the
electrons. The propagaior will be represented by a heavy line
as in Fig. | and has a perturbative expansion in terms of a
frec-electron propagator interacling an infinite number of
times with A,,. as represented by the dashed line.

The Feynman rules of the theory are otherwise unchanged
from QED—there is a single three-field vertex which joins
the photon propagator and two of the dressed fennion propa-
gators. This background-ficld approach is cquivalent 10
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- + - -

FIG. |. Perturbative expansion of the electron propagator in a
background licld.

adopting u Furry picture [43}. in which the “interaction™
Hamiltonian describes the quantum interactions while the in-
teraction with the background A, is treated as part of the
“free” Hamiltoniun.

In general. the fermion propagator will have no closed
form expression. Since an intense background will be char-
acterized by numbers larger than | (such as the intensity
parameter ag). a perturbative expansion in the background is
not suituble. We can of course use a coupling expuansion. but
this leaves us with an infinite number of Feynman diagrams
o culculue for any process. even at tree level, Fortunately,
for the backgrounds considered in this paper and discussed
below. the electron propugator is known exactily, allowing us
to treat the background field exactly. We will now illustrate
these ideas by applying them to the process of interest in this
puper: nonlinear Compton scattering.

L NONLINEAR COMPTON SCATTERING

in this process an electron. incident upon a laser. scatters
a photon out of the beam. Using the background-ficld ap-
proach described ubove, we use the action (14), which con-
tains the effects of the laser. and take the asymptotic in—and
out—states 1o be. respectively.

' A). (' Nk e (17)

The pair (p.X) gives the momentum and spin state of the
incoming electron. similarly (p".A') describe the outgoing
etectron. and (k' . €) are the momentum and polarization ten-
sor of the scattered photon. Only one Feynman diagram con-
tributes to this process ar tree level. shown in Fig. 2. Note
that the analogous scauering amplitude with “naked” elec-
trons, corresponding 10 sponlaneous photon emission in
vacuum. vinishes due 10 momentum conservation,

Calculating the corresponding S-matrix element amounts
to amputating the external legs and integrating over the
single vertex position. Amputating and Fourier transforming
the electron propagator in a background field give us the
solutions of the Dirac equation in that  background
(19.23.24.29]). We will write these electron wave functions as
Woalx). The S-matrix element of the process in Fig. 2 there-
fore reduces to

‘L

FIG. 2. Nonlinear Compton scattering Feynman diagram using
dressed ¢lectrons (subscript L).
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1’

p' A :k'.el.‘gl.ﬁ\_”p.)\) =— i('f tf'l.\"r’p-‘\'(.\')‘—l,=£‘l‘,,,‘(,r).
V2K’
(18)

To proceed we need 1o pick i background lield so that we
can explicitly culculate the wave functions W, (x) and there-
fore the S-muatrix element (18). This is the focus of the next
section.

A. Plane waves and Volkov electrons

We will model the laser by a plane wave. A, = A, (kx).
with & a lightlike four-vector characterizing the luser beam
direction. The electron wave functions in such a background.
or “Volkov electrons [30].” are known exactly. The propaga-
tor is also known and may be derived either in field theory or
using a lirst quantized {proper time) method [11]. For a text-
book discussion, see [32]. The Volkov electron is

| ey
ol =™ exp) ——dE2ep ALE) - 2 A°(§)
2ikp

¢
X I+T_P1A-up. (1)

where p*=m” und 1ty 15 the usual electron spinor.

To beuter understand this wave function we specialize
from here on 10 the case of A, being a circubarly polarized
plane wave of amplitude «.

# = gy costhy) + af sinfky). (20)

R -
where a k=0 and a=—a*8,. The electron wave function
becomes

. Ly, . P
Won(x) = exp| = igx — fe——xin{kx) + ie==—cox(kx)
kp kp
(21}

We have not given the explicit form of the spinor part: it is
edstly written down and not needed for the discussion in this
section. The importam effect is that the electron acquires the
quasi-four momentum ¢ delined in Ey. (6) from the Liser
ficld with the intensity parameter a,, given by

Techmically. the origin of the quasimomentum lies in o sepi-
ration of the exponent in Eq. {19) into a Fourier 7ero mode
and oscillutory pieces. with the zero mode causing the mo-
mentum shift, p —g. Inserting the wave functions (21) into
Eq. (18) and omitting the details of the calculusion [21]. we
find that the scattering amplitude is a periodic function with
Fourier series
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k) Cly)

LT k)
"y} =

FIG. 3. The cifective Feynman diagram describing the uth har
monic process; an electron of mass m,e absorbs n laser photons of
momentum &, and emiis a photon of momentum A';.

(p' Nk €S Allp )

L
= " E 2
(2K’ |2E,.2E,)

x

D MEMNG+uk—g' - k')

n=1
(23)

A discussion of the amplitudes M{n) may be found in [32].
We will give below the explicit form of the squared ampli-
tudes summed over spins A. X', and polarizations e. We do
not consider polarized scattering and angular distributions in
this paper. though these topics are interesting in themselves
and are discussed in. for instance, [44-46].

The sum in Eg. (23) is not & coupling expansion. nor does
it appear directly from an expansion of the coherent state
into Fock states. Instead. the momentum-conserving delia
function in the sth term implies that AMf(n) can be identified
with the amplitude for an electron of momentum g and mass
n1., absorbing n photons of momentum . and emitling one
scuttered photon of momentum &',

elg)+nHk) —e(g')+ Hk'). (24)

as illustrated in Fig. 3. As pointed out in Sec. |, these multi-
photon processes are the origin of the name “nonlinear™
Compton scattering. It is simplest 10 use the language of
guasimomenta to formulate the kinematics of Eq. (23) as Eq.
(24) is a process involving etfective particles. The
asymplotic particle kinematics may be reconstructed from
the relation {6) between p and ¢. The processes with 1> 1
correspond 16 higher harmonics. Note that the #= 1 process is
analogous to ordinary. “linear” Compton scuttering. It is pos-
sible 1o normalize such tha1 one does indeed recover the
Compton cross section at ag=0. We will use this below as a
reference cross section for experimental signals.

B. Kinematics—forward and backscattering

We will now study the Kinematics implied by the momen-
tum conservation in Eq. (23). finding an cxpression for the
emitied photon frequency in terms of incoming particle data
which generalizes the standard Compton formula for the
photon frequency shitt. This will later be used when we pre-
dict the emited photon spectrum.

PHYSICAL REVIEW A 79. 063407 (2009}

u=p 5=

FIG. 4. (Color online) Mandelstam plot for nonlinear Cempton
scattering. Solid segments of dashed lines correspond 1o allowed u,,
and r,, regions (or each depicted value of s,

The deha function in Eq. (23) implies the momentum con-
servation equation
qg+nk=g" +k’, 125)

where ¢ is given by Eg. (6) and ¢’ being defined analogously
with p reptaced by p’. As & is lightlike we have

gk=pk. g'k=p'k. (26)
It is usetul to first discuss the Kinematics in lerms ol 1he
Mandelstam invariants

s, =g+ kY=t + 2nkp = w. (27)
1= (k= k'Y == 2nkk" =0, (28)
u,=(nk=q'y=m’ = 2nkp". (29)

Recalt that these are not independent as .s‘,,+.r,,+n,,='_’m§. As
each of them depends on the photon number # they will be
different for each of the subprocesses {24). The physically
allowed parameter ranges are displayed in the Mandelstam
plot of Fig. 4. For the n-photon subprocess. if s=s, is held
fixed. the allowed ¢ and o ranges C(highlighted in red/full
segments of dashed lines) are

2 1 4
P = 2007 =5, =11’ ls,, =nrls,

mm = buckscauering

“lT..I\
b - 0

ton=0 Wy =2m> -y, forward scattering.

{30)

Obviously. the allowed 7 range increases with photon number
i,

In order to find the generalization of Compion’s formula
for the scattered phoion frequency (thus abandoning manifest
covariance) we square Eq. {25) so that we may remove ¢’
trom the gume via

nkg=k'q" =gk’ + nkk'. (31

where the second equality follows directly from Eq. (25).
Using definitions (6) and {26}, we trade g for p. arriving w
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an equation in terms of the asymprotic. on-shell momenta

7
, 5 N ,
nkp=k'p+n+ag— Jkk’. (32)
2kp
where &'3=0 and p =2, We will assume. in what follows,
that the electron and luser meet in a head-on collision. Thut
is. incident momenta are

k= w(l.n). /J“=(Ep.—|p|n). [n] = 1. (33)

Primed {outguing) quantitics arc defined analogously, For a
heuad-on collision the only ungle in play is the standard scat-
tering angle £ of the photon. determined via n-n’ =cos o).
The remaining scalar products become

n-p==pl. n'-p=-|plcos 0. (34)

From now on we measure all energies in units of the (bare)
clectron mass. ¢ This introduces the dimensionless param-
eters

E
v=—, y=-=cosh( BYEMEsinh L. (35)
m m m

where £ is the rapidity such that

= —=\I-l/y¥=tnh?. (36}
E,

Of course. 8 and y ure the usual Lorentz factors character-
izing the frume of reference from the electron’s point of
view. =0, for instance. corresponds to the (asympiotic)
clectron rest frame., Using these detinitions, Eq. (32) may be
rearanged o express the intensity-dependent scattered pho-
ton frequency as

ny

1+ w,(ayye™(1 —cos 0)

v (= an

Here. ¢7¢ is the (inverse) Doppler shift factor for a head-on

collision,
. 1 -
cTt=el - )= \f:% (38)

Guing back w0 Eq. (37) we see that all the intensity depen-
dence resides in the coetficient
Kolag) = nv-By+ r.r,z,y( | -BW2=nv—-sinh {+ 1:,‘1,("-".’2.
(39)
Standard (“linewr™} Compton scattering is reobtained by sei-
ting n=1 and ay=0 (o intensity effects). In this case Egs,
(37) und (39) give buck the ordinary Compton formula,
v

4+ (= Byiyl - BY1 —cos )

14

"1+ (v—sinh De(1 —cos 0)

-
py =

(40)

So. technically speaking. the two intensity effects on the
scattered frequency ure the replacements (i vr—uv in the
numerator and (i) #(0)— &, {a,) in the denominator, Ex-
plicitly. the later ix

PHYSICAL REVIEW A 79. 063407 (2009)

v—By—nv-By+ alz,y{l =312, or

. . +
v=xinh { — nv—sinh £+ age™2. @n

The possibility of the incoming electron absorbing n> | la-
ser photons may be interpreted. in a classical picture, as the
generation of the ath harmonic. modulated by both relativis-
tic and intensity effects. Using a linearly polarized beam the
first few harmonics have indeed been observed experimen-
tally by analyzing the photon distribution as a function of
azimuthal angle. ¢. The second and third harmonics have
clearly been identificd from their quadrupole and sextpole
radiation patterns [47].

For each harmonic number i the allowed range of scat-
tered photon frequencies v, is finite. The boundary values of
this interval (which is the  interval in the Mandelstam plot
Fig. 4) correspond to forward and backscattering at /=0 and
. respectively,

v (0= nu, e

(42)

w{m) = —_—
I+ 2k, (ug)e™
The assignment of minimum and maximum depends on the
sign of &,

Ky > 0= vi(m) < () < nw

redshift " Compion. ™

Ky <UO=ne< o (0) < vi(m)

blueshift " inverse Compton.” (43)

So. if ,>0. the allowed scattered photon energies v, are
recshifted relative 10 no. the energy of the » absorbed luser
photons. This clearly includes the cases ay=0. y=1. and »
=1 which describe Conmpton’s original scatlering experiment
in the electron rest frume. In accelerator lunguage. this case
sees the laser fired omo a fixed electron target: the laser
photon transfers energy 1o the wrget. so that the scatiered
photon is redshifted (' <aur).

On the other hand. if «, <0, the scaltered photon’s energy
is blueshified from nv. The situation when the photon gains
energy from the electrons is often referved 10 as inverse
Compton scatiering. This is of relevance in astrophysics, for
instance, in the Sunyuev-Zeldovich effect [48~50]. A particu-
lurly simple and important scenario is provided by the back-
scattering of the laser pulses. #=_ in the high-energy limit
(inverse Compton reginie). We 1uke ¥ | so that =2y and
we assume &, <0. whersupon the scattered frequency be-
comes. from Eq. (37).
o2t

)
" dynv

v,(m)= 3 = . (44)
1 +ay+2nvet | +u(2,+4ym1
where the approximation is valid for high energy. In this

regime one may distinguish between two different limits,

vdm) =d¥uviay il Amv<el <ag. (45)
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vilm=y il 1 +ay<dmr. {46)

It is the former subcase which is typically realized” for opti-
cal photons (v= 107%) and moderate values of harmonic
number #. Thus, as long as ¢y=2+y. the back scatiered fre-
quency {43) is (i) blueshified with respect to the incoming
nth harmonic frequency nw and (ii) for #= 1, redshifted com-
pared 1o the linear “kinematic edge™ (the maximal. backscat-
tered frequency. v,,.) as emphasized already by McDonald
[18]. Explicitly. this redshift is

4fu—-4yzuln(z,. Y2 l. dme<kl @(1(1). (47)

From the definition of x, given in Eq. (39) it is clear thay,
given any fixed cxpevimental scwp (i.e.. incoming electron
energy and intensity parameters Z and @), , will eventually
become positive and remain so for all higher harmonics with
- - 2 -0 ]
">lsmh L -age I-IE"u- (48)
[
where | 5] denotes the nearest integer less than or equal 1o b,
Thus. for a given experimental setup. scatiered photons cor-
responding to harmonic generation with 2>, can only have
energies redshifted relative 10 the energy nrv ubsorbed by the
clectron. Allernatively, we can lix o and so deline a critical
intensity. from the vanishing of x,. which allows us 1o tailor
the emission spectrum. The critical intensity parameter is

”:-).Cl'll(”) = 2)’“ + B} By-n v)

!
=2¢f(sinh L -nv)= e et — 120, (49)

For ay=cgqqlng) all harmonics with n > ny (n<ny) will be
redshified (blueshifted). For the exireme choice of ny=1. all
scattered frequencies will be redshifted for intensities above
tpern(1). 85 in. for example. lixed-target mode (y=1). We
are. however, more interested in the colliding mode (high
energy). Then, for ¥ 1. we can approximate aa_“-“ from Eq.
(49) us .

n:‘,_cm =dy ~dynp. (50)
When 4yne<€ | as above, ay o;, becomes effectively # inde-
pendent

=ef=2y.

(50

As 1 numerical example, consider the facility at the Fors-
chungszentrum Dresden-Rossendorf (FZD) with o 100 TW
laser and a 40 MeV linac [513. This implies y=80. v=2
X 107", and agy == 20. so that all harmonics are relatively biue-
shitted up 1o 1= 3.9 X 107—as we will see, emission rates at
this # are basically zero. In this case. the critical value of ay.
above which all harmonics (n2= 1) are relatively redshifted
compared 10 nv, is ag = 2y=160, | order of magnitude above
the expected available intensity. One may verily. for ex-
ample. that for a,=200, «,>0 for all .

The discussion above will be illustrated in the next scc-
tion when we discuss the photon spectra as a function of

yerit

ISLAC E- 144 had yr=0{1) so oll terms in the denominator of
Eq. {44} were of comparable magnitude,
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scattered frequency, v’ In particular, we will see that, even if
backscattering does not necessarily maximize the scattered
photon frequency. it nevertheless gives us the strongest sig-
nal for which to search experimentally, namely. the redshift
of the Compton edge (parameters permitting).

To better understand the different behaviors of the har-
monics. it is useful o write «, in terms of luboratory-frame
variables. For a head-on collision (which we assume). say
along the z axis, all momenia involved are longitudinal. The
total three-momentum, call it P. is then given by

P=nk+qg=nk+p+q,
=mlnv-sinh {+ade )i =mr,i. (52)
The lab-frame physics involved in a head-on collision

(p=-(By/ v}k) depends crucially on the relative magnitude
of the three terms contyined in .

nlk|tm =nv, (53)
[plm = sinh £, (54)
lg b = age™4r2. (55)

Censider again Compion’s original experiment with an elec-
tron at rest and ay=0. This corresponds to g, =p=0. so the
only three-momentum is that of the single incoming photon
which delivers part of its energy to the electron and hence is
redshifted. If we now increase the electron energy in the
laboratory {using u standard or wake ficld acceleration
scheme) this redshift turns into a blueshift {#' > v) as soon as
|p|> |k|=m . This happens exactly where the total momen-
tum, P=k+p. changes direction from pointing in direction &
1o =k. Hence. al this panicular point P passes through zero.
which. of course. defines the center-of-mass (c.nm.) frume
where there is no frequency shift at all. »' =

If we now tum on intensity (ag>0) the total momentum
acquires an additional, laser-induced contribution g, along k.
So. in fixed-targel mode large intensity will result in a sig-
nificant enhancememt of the Compton redshifl. If. on the
other hand, we assume colliding mode with a blueshift at
ay=0. then the g, contribution in P works against the “inllu-
ence” of p. As aresult. the blueshift #' > v at zero intensity is
reduced, resulting in a redshift of the kinematical Compton
edge (v, ). If ay is large enough this latter redshift may
completely cancel the inverse Compton blueshift. Again, this
happens when the total momentum P=k+p+q, vanishes
{k,=0). i.e.. in the “c.m. frame™ which is now an intensity-
dependent notion as g, depends on ag.

If we finally allow for higher harmonics n#> 1. with the
total momentum becoming P=nk+p+q,. we can balance p
by increasing ag. n. or both. The wansition point. ¥,=0. de-
fines a c.m. frame lor the nth process. Al this point, the range
of the nth allowed harmonic collapses to a point, v, (O)=nv.
as the @ dependence in Eq. (37) drops out. Strictly speaking.
this can only occur for at most one value of n. but neighbor-
ing »'s will still have rather small spectral ranges (see Fig.

9).

063407-7



HARVEY. HEINZL. AND ILDERTON

IV. PHOTON EMISSION RATES
A. Lorentz invariant characterization

The S-matrix element represented by the Feynman dia-
gram of Fig. 2 and given implicitly in Eq. {23) may readily
be trunslated into an emission rate [19.32). The nontrivial
contribution 1o the differential rate for emiiting a photon of
frequency w'=mt' per unit volume per unit time. in the nth
harmonic process, i.e.. the process (24). comes from the dif-
ferential probability” [32)

dW, ]
—— =———7d,(z(x). n=1. 56
PRT +x)_(] (z(x)) (56)
where ais the dimensionless Lorentz invariant
kk' I
X = —}:—"-——.,20. (57)
kp'  u, -

The kinematically allowed range for nth harmonic generation
is given by the interval

O=x=y,. (58)
It
=kt 2, (59)
m, o

which comesponds to the ¢ runge given in Eq. {30) high-
lighted in Fig. 4. The end points x=y, are located on the
hyperbola sw=m]. For x outside of this range the nth partial
rate vanishes.

The function 3, is

4 ” .,2 9 . ] -
I ==5A0+ (z P )[J,-,-.(:) + 02, - 28R,
0y | +x

(60)

where J, being Bessel functions of the first kind. Their argu-
ment is another Loremtz invariant

w) = 61)

AT I+a(.'; '
Both upper and lower limits of x correspond to z=0 and
hence zeros of J,(z) for all n> 1. The first few partial emis-
sion rates for £,=50 MeV. w=1 eV (hence y=10% »=2
X 107°). and a,=20 are plotied in Fig. 5. Linear Compton
{ay=0 and n=1) data are presented for comparison.

The figure clearly shows the appearance of higher har-
monics (#> 1} with, however. a reduced signal strength as
compared o the fundamental frequency. Writing the Comp-
ton edge (59) as

N
Y= .‘.n(au) = _\'|(O)_—1' . (62)
| +ag
where y,(0) corresponds to linear Compton scattering. we
see that the edge x=y{dy) of the first harmonic will always

1 . . . .

“We normulize such thal we recover the Klein-Nishina cross sec-
tion for lincar Compton scatiering for n=1 as ay—0 (see. e.p.
(32
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FIG. 5. (Color online) Partial emission rates (a=1...4) lor non-
linear Compton scattering as a function of the Lorentz invariant v at
intensity ag=20 compared 10 linear Compion scatiering (wg=0
curve). Hornizontal log scale.

be shifted to the left by a factor 1/{1+cl). The same is true
for the higher harmonics until n>1+a; For ay® | these
large harmonics will. however. be invisible due to their very
small signal strength.

To obtain the total rate. one just sums over photon num-
bers n. i.e.. over all harmonics.

AW  w dW,
—_ 2‘ l_' (63)

dv dvy

n=1
where it is understood that the nth term is supported on 0
=x=y,. with v given in Eq. (57). The partial sums up to n
=30. 60. and 100 are shown in Fig. 6. along with the linear
Compton spectrum. Again we note the significant shiit of ihe
fundamental Compion edge at v=y,(a,) together with side
maxima due to the higher harmonics. Interestingly, the fun-
demental (n=1) signal gews amplified due 10 superposition of
the higher harmonic rates from Fig. 5. This suggesis that, for
ty> 1. the signal-to-noise ratio may become larger thun for
the linear case. while the full width at hall maximum may
become smaller. By wning ay to an optimal value one may
thus design x rays of a given frequency and width,

B. Laboratory kinematics: Energy dependence

Any actual Compton scattering experiment will be per-
formed in a laboratory (frame) with the elecirons either at
rest (fixed target mode) or in motion. In what follows. we
will assume the laner together with a head-on collision be-
tween laser pulse and eleciron beam (coilider mode) as dis-
cussed in the previous section. In this case the Kinematic
invariants x and x, from Eqgs. (37) and (59) become functions
of the scattered frequency ¥ and the scattering angle .

(1 —cos v

= 64
! et = (1 —cos O (64)
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SIGNATURES OF HIGH-INTENSITY COMPTON SCATTERING

25} a,=20 1
2
n=1
) a,z
[
E
o 15F
L]
=
n
3t
051
N
o e .-c —1
10 10 10

FIG. 6. (Color onling) Sum of partial emission rates from n
=1...30 (dashed. lower curve). 60 (dotted. middle curve). and 100
{solid {black). top curve) for nonlinear Compton scattering (head-on
collision) al intensily ap=20. The curves are indistinguishable for
15310°%. Linear Compton data (blue. n=1. ap=0) added for
comparison.

nvet

Y= 3. (65}

1 +ap
Either the scattering angle ¢ or the frequency », may be
eliminated via Eq. (37), allowing us 10 plot the emission rute
as a function of # or 0. respectively.’ In this section we
focus on the ' dependence of the partial and total emission
rates which are depicted in Figs. 7 and 8. respectively. Simi-
lar plots (for ay of order 1) have been obtained before in
[16.18.44.46].

Analytically the partial rates are

aw,

i

dW, dx Jalz)

dv dv' ~ K,

dv (66)

The allowed range for ' is given in Eqs. (42) and (43). The
argument : defined in Eq. (61) becomes a function of «' via
its dependence on

nv—v'

r=x,(v)=—— (67)

K,—ne+ '

upon eliminiting # from Eq. (64) via Eq. (37).

For the parameters chosen (y=10°. »=2> 10"% und o,
=20) Figs. 7 and 8 are fairly similar 10 their invariant pen-
dants. Figs. 5 and 6. In particular. the previous shift in .« now
corresponds 10 a redshift of the linear Compton edge by a
factor of 1+a}=400 from about 40 to 0.1 keV. i.e.. from the
hard 1o the sofl x-ray regime. Note that the frequency range
is still blueshifted relative to the incoming frequency v (cor-
responding to the left-hand edge in Figs. 7 and 8 given by

“The relationship between angle and frequency spectrum (371 s
invertible provided «,+0. For x,=0 the mh harmonic spectral
range shrinks to a point (sec below).
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FIG. 7. (Color online) Individual hammonic spectra (n=1...4)

for nonfincar Compton scaltering at intensily ay=20 compared to
lincar Compion scattering (n=1. ay=0) as a function of »'.

r=2xx 107*). Again, there is a noticcable enhancement of the
total emission rate a1 v (m =4y vla; [cf. Eq. (45)] due 10
the generation of peaks corresponding to higher harmonics,.
> t. with the peak values decreasing rapidly with n. We
note that the edge values of the higher harmonics which are
clearly visible in Fig. 7 get washed out by the superposition
of more and more partial rates dW, in Fig. 8. This will re-
duce the visibility of the associwted maxima. as will. of
course, all sorts of background etfects which have not been
included in the theoretical analysis above.

The properties of the photon spectrum depend crucially
on electiron parameters (8, y. or £} characterizing the labo-
ratory frame and. in particular. the intensity parameter a,. To
illustrate this dependence ulong with the discussion of Sec.
HI B. we have culculated the photon spectra as a function of
dy. ranging from a,=20 up to 300. The outcome is depicted
in the movielike sequence of plots of Fig. 9. As y=100 the

00251

<.

002

0015}

oo

AW, dv’ (arb. unas)

o0os

?u“ 107 10" 107 w? 107
v
FIG. 8. (Cotor online) Theoretical photon spectrum {sum of first
50 harmonics) for nonlincar Compton scatiering al inlensity ay
=20 compared 1o lincar Compton scaltering (n=1. ay=0) as o
function of .
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critical ay from Eq. (49) defining the ¢.m. frame of the first
harmenic is gy, (1) =200 corresponding to the fourth plot in
Fig. 9. There. the fower harmonic spectrum collupses to lines
tocated w the individual harmonics with frequencies v, =nv
{marked by red vertical lines throughout).

It we go through the whole sequence the following pic-
ture emerges. For small dy <dapg,(n). all harmonic ranges
with counting lubel less than n are blueshifted. Plots 1 and 2
show the harmonic range for n=1 (and pan of n=2). both to
the right of their red end edges (1 and 2 v, respectively). The
right-hund. blue end. maximum of the fundamental range is
enhanced due 1o contributions of higher harmonics. For «,,
approaching its critical value the harmonic ranges shrink und
a gap between ihe firstand second appears (plot 3) so that the
fundamental  maxima  becomie af equal height, At w,
=ge( 1) = 200 the first harmonic range shrinks (almost) to a
point. with the neighboring ranges abo becoming very nar-
row (plot 4). Once ayl 1) becomes supercritical. all harmonic
ranges ure redshifted [i.e.. located 10 the lefi of the ventical
{red) lines. », <unv]. with the ranges increasing again and
gaps closing (plots 5 and 6). In plot 6. the first and second
harmonics overlap again. leading to maximi of different
height with the one at vy =1 being the lurger. Thus. by wning

ay we cffectively change frames of references with dgg,(1)
representing the border between inverse Compion scatiering
(blueshift) and Compion scattering {redshift).

C. Laboratory kinematics: Angular dependence

As mentioned earlier. the emission rates may be consid-
ered as functions of either scauered frequency ») or scatter-
ing angle f—the wo being related via Eq. (37). In terms of
the scattering angle ¢ the rutes become

dW,  dW, dy et .

d T dyv dQ n{l —cos M2(1 +X,)

]au(:n) .

< o< 7, (68)

where x, i< (for the ath harmonic) and 7, are o be viewed
as functions of 7 (see below). Our angular measure is df)
“df)sin 0, which is the »olid angle measure up 1o a factor of
2, as the azimuthal angle ¢ does nol contribute due to axial
symmetry. Note that this is differemt for linear polarization
or. more generally, if there is another preferred direction
which. for instance. could be induced by noncommutative
seometry [32].
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FIG. 10. Theoreiical photon spectrum tor the first five individual
harmonics as a function of scaltering angle ¢. Parameters: y= 100,
ap=20. Leti: ventical scale logarithmic: Right: vertical scale linear,
roomed into range 2.7<8< 71,

In terms of their angular dependence the various invari-
ants may all be expressed. using Eqgs. (37) and (57). in terms
of the variable x; defined by

2l —cos

eH1 +cos )+ 0751 + uf,)(l —eos 0

XA (o=

(69)
with v, between x,(0) =0 and xy(7)=y, as in Eq. (39). where

2 11
= (70)

|+

The argument of J, in Eq. (68) becomes
ay —_
A0 =nz (0 =2n =\ r{l ~r). (71}
v+

where we have introduced the rescaled variable

PHYSICAL REVIEW A 79, 063407 (2009)

e 51 +a7)(1 ~cos 0)

rooxdy =3 - — 5 .
(1 +cos U) +e7*(1 + ag)( 1 — cos 1)

0=r=1.

(72)

As a result, ) becomes maximal for r=1/2 and so0 2 is less
than unity.

= =<1, (73)

which will be important later when we discuss the conver-
gence of the emission rate sum. Solving r(th}=1/2 we find
that 2, is maximized at the angle

; .
| +al - e

2

Y (74
+ag+ e

{, = arccos

We will now relate these results to the emission spectra as
functions of #. In Fig. 10 we show the angular distribution of
the photon yield. as determined by Eq. {68), for the lowest
individual harmonics. n=1.....5. For the purameters chosen
{y=10% v=2X 10", and ay=20) the largest signal is due to
the fundamental harmonic, n=1. This is also the only one
contributing on axis. i.e., in the forward and backward direc-
tions. 0=0 and . respectively. For the clussical intensity
distribution this was also found by Sarachik and Schappert
[27]. Thus. in particular. real backscattering at =7 only
occurs for n=1. while for the higher harmonics one has
“dead cones™ with an opening angle of about 0.1 rad. slightly
increasing with harmonic number #, as seen from the mag-
nitied plot in Fig. 10 (right panel).

The dead cones are controlled by the angle 8, from Eq.
(74): their opening angles are bounded by 8= 6,— . For
| <€y <€ ¥ the former are quite narrow such that most of the
radiation {in particular the location of the maxima at &) is
near backward.® Quantitatively one ftinds that the dead cone
opening angles are less than

Op=agly<1. (75)
which. for the parameters of Fig. 10. comesponds 10 0
=0.2 rad. (For the intensity distribution of classical radia-
tion the relation (75) was found in [45])

To determine the total emission rate we have to sum Eq.
(68) over all hurmonic numbers, n. It is not entirely obvious
that the ensuing series converges. To prove this we employ
the Bessel function identity [53].

Ju=a(2} = @J,,(:) F 202, (76)

where the prime denoting the derivative with respect to ihe
. . R 2 b
argument Z in order to rewrile J in terms of J; and J)°.

*We mention in passing that the situation for lincar polarization is
different. As pointed out by Esarey er al. {45] for Thomson scatter-
ing with lincarly polurized photons, odd harmonics do get backscat-
tered (no dead cones).
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FIG. 1t. Theoretical photon spectirum, Parameters: y= 100. ap=20. Lefl: vertical scale lincar. harmonics summed up (o = 5000 (full line)
and n1=10 000 (dashed linc). Right: vertical scale logarithmic. harmonics summed up to n=5000.

2L (-]

L) -

I+ nx,

pl
) = 3-’.21("3-1)[- S+ (2 +
ay

+ 21,',2(”:])(2 +

According to Eq. (68). in the rates this is multiplicd with an
n-dependent factor 1/ (1 +nx,)%. Thus, upon summation. we
encounter series of the form

~ ~
- 1 1 ‘. N 9
—J.nz) and 2, — MJ,','(H:,).
w1+ m) wso (1 4013))

(78

where M e {1.3} and M e{2.3}. We can eusily bind these
series from above, for example,

z -—-—-‘-’-‘—-——1_[,2'(”;‘} < 2 HJ;':(H.'.|) = S| . (79)
oo (L+nv))? a>0
< w J',( )< E 112( =5 (80)
» ——2 (- nJ Az ) = 5;.
n‘;’l) ( | + ".rl):1I ui n>0 ? I !

(und likewise for J72). The series S, and Sy on the right-hand
side are examples of Kapteyn series [54] which are known 1o
converge. Remarkably. some also have analytic expressions
for the sum. These results do not seem particularly common,
s0 we collect them in the Appendix. Although we have not
yet been able 1o explicitly perform our sums (which have a
more complicated 1 dependence than the Kapteyn series) we
can now he confident that they converge. This is an ¢x-
tremely satisfying result confirming the validity of the back-
ground licld picture we have employed and our analysis
based around the summution of individual harmonics.
Lerche and Tautz [55] stated that a sununation of the first
1000 terms in Kapteyn series such as Eq. (79) or (80) yields
errors below 107 for z, £0.95. We need to include z; values
closer to one where the convergence rate is at its lowest. This

occurs near the angle &, defined in Eq. (74). Increasing the
maximum harmonic number from 5000 to 10 000 yields bu-
sically identical plois except thut the height of the narrow
peak at £, increases as shown in Fig. 11 (left panel). The
maximum is indeed locuted wt 0=0,=2.94 (or Oy=ay/y
=(1.2) as given in Eys. (74) und (75). The shoulder near ¢
== (#"=0) is entirely due to the fundamental harmonic (#n
=1),

Finally. we again vary ay and plot o movie of the angular
distribution for fixed y=100 in Fig. 12. The main features
are (i) a propagation of the main peak from near-backward
direction (when a,<2y) to new-forward direction (when
ag® 2y) consistent with the formula {74} for 4, and (ii) the
appearance of a double peak which (iii) becomes symmetric
for ay=2y at an angle #y==/2. The luter situation corre-
sponds to cos 0,=0. hence,

ap=e¥-l=e¥=dy. (I <a}<¥). {81)

This latter value (approximately) coincides with the critical
dag of Eq. {51). The locutions of the two peuks in the spec-
trum are plotted in Fig. 13. along with the angle 0, given in
Eq. (74) as a function of ay. IUis clear from this plot that the
maximum value of z; corresponds 1o the local minimum be-
tween the \wo peaks.

D. Thomson limit: Emission rate and intensity

Al this point one should mention that thorough discus-
sions of the intensity distributions employing classical radia-
tion theory have appeared before [27.45] It is useful 10
check that our quantum calculations based on the Feynman
diagrams of Fig. 3 describing nonlinewr Compton scaltering
reproduce the results for nonlinewr Thomson scattering in the
classical limit. According 10 Nikishov and Rits [19] the
classical limit is given by
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2npk
.‘-n = 4
"

F]

<€, (82)

which is just the statement that m, is the dominant energy
scale. Note that this can be achieved by having large g and
may be counterbalunced by large #. Hence. harmonics with
sulficiently large harmonic number a1 will behave nonclassi-
cally {if they ure observable at all despite their suppression).
As v, is the upper bound tor x,,. Eq. (82) may equivalently be
formulated as

<€, (83)

such that we may neglect v,=nx, on the lefi-hund sides of
Egs. (79) and (80) which hence ceincide with S, and Sy in
the classical limit. Even if Eqgs. (83) no tonger holds (i.e.. for
large n}. contributions o the sum are still suppressed by J,z,.
Comparing the guantum and classical (Compton vs Thom-
son) rates by evaluating all sums numerically. the graphs are
indistinguishable. Plotting the reluiive difference for our pa-
rameier values one finds a small discrepancy near fi=4, of
the order of 19» {see Fig. 14). Note that the classical series §;
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and 8, have a \‘Iighllv slower rate of convergence (in particu-
lar near 7, = . 0=0,). where the suppression is mainly
provided by J7 (n ,) henee least efficient at 2= 1. We have
tound, for instance. that the peak in Fig. 14 increases from
(.45 10 0.75 when we increase the maximum » from 3000
o 10 000. Nevertheless. Fig. 14 provides a nice confirmalion
that for high-intensity optical lasers the background cin in-
deed be treated as classical 10 a very good approximation,
We are left with relating photon production probabilities
dW, to intensities di,,. This problem has also been addressed
by Nikishov and Ritus [19] who stated that the intensity is
given by the zero component of the radiation four-vector,

P, 2| dwk. (84)
n )
We thus have di,=mv'dW, o
di, Lo "
— =me-* = — Ju(nzy). (83)

I
o sin® ﬂuu( I+ ¥

Compared to Eq. (68) we thus hive an additional factor

ni{F+nx)). In the classical limit. vy = 1. this is just 1 so that
Eq. (85) i1s bounded not by the Kapteyn series Sy and 55, but
by the analytically known series §» and Sy as given in the
Appendix.

V. CONCLUSIONS

In this paper we have (reassessed the prospects for ob-
serving intensity effects in Compton scattering. The physical

scenario assumed is the collision of a high-intensity laser
hc m with an clectron beam of sufficienily high energy (y
=2 10°) produced in a conventional accelerator or by a suit-
able laser plasma acceleration mechanism. 1n technical terms
we were interested in the features present in cross sections or
photon entission rates which are enhanced with increasing
dimensionless laser amplitude, ay=cal/m. where a is the
magnitude of the laser vector potential. The possible effects
are of a mostly Cl..l\'ledl nature. being fundamentally due to
the nvass shift. m® — m?=m*( 1 +3). caused by the relativistic
quiver motion ot an electron in a laser licld. Ranked in order
of their relevance the main intensity effects are (i) a redshift
of the kinematic Complon edge for the fundamental har-
monic w’ =4 y-w-a4y'mluu for the purameters we have
wsed, (ii) the appearance of higher harmonic peaks (n> 1) in
the photon spectru. and (iii) a possible vansition from in-
verse Compton scattering (o' > w) to Complon scattering
(w' < w) upon wning ay,. The redshifi (i) may be explained in
terms of the Luger effective electron mass. m, > m, the gen-
eriation of which costs energy that is missing when it comes
to "boosting™ the photons to higher frequencies. This has. for
instance. an impact on x-ray generation via Compton back-
scattering. To avoid signilicant cnergy losses {reducing the
x-ray frequency) the amplitude oy should probably not ex-
ceed wnity significantly. However, one is certainly dealing
with a fine-tuning problem here, as item (ii), the generation
of higher harmonics. improves the x-ray beum energy distri-
hution. For ay> 1 there is a larger photon yield due to super-
position of the harmonics and the full width at half maxi-
mum poes down. As a result. the x rays tend 10 become more
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FIG. 14. (Color onling) Relative difference of photon emission rates [Complon—Thomson|/Compton as a funciion of scatiering angle .

Harmonics summed up 10 n=10 000, y=100. ag=20.

monochromatic once higher harmonics become involved.
ltem (iii). the transition from inverse to ordinary Compton
scaltering. once d, increascs beyond 2 y illustrates the energy
“loss™ just mentioned. When ay=27y the laboratery frame
can be interpreted as an intensity-dependent center-of-mass
frame for which w,=nw. at least for low harmonics. Thus
there is no longer an energy gain of the emitted photons: the
luser beam has become so “stif " that. in this frame, electrons
begin to bounce back from it {gaining energy) rather than
vice versi.

The next step is o actually perform the experiments re-
guired for measuring the effects listed above. We emphasize
that nonlinear Compton scattering provides a unigue testing
ground for strong-ficld QED as the process is not suppressed
in terms of « or £/ E_ by powers or exponentially. Hence. the
experiments at Daresbury {y=50. ay=2) [56] und the FZD
{¥=80. a,=20) planned for the near future should indeed
be able to see the eflects analyzed in this paper. This will
provide crucial evidence for the validity of the approuch 10
strong-ficld QED adopted here. based on the clectron mass
shifi. the Volkov solution. and the Furry picture.
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APPENDIX: KAPTEYN SERIES
The Kapteyn series [34] (see also [57]) of the second kind

involve squares of Bessel functions or their derivatives. We
use the nolation

Sv= 2 IlN..f,z,(H.’_n. (A1)
n>Q
Sy= > n¥J2(nzy). (A2)

n>0

where 0<z, < | in keeping with our carlier discussion. The
sums with a closed-form expression are

.2
So= 2 ning) = ':-:— (A3)
n>0
- |
So= 2 Jnz)) = ——=- . (A4)
A 2 -2 2
23 2
S 2 54+
Si= S nkhinz) = L) (AS)

lﬁ(l - :'i’)ﬂz *

n>0
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o 4 (64 + 59227 + 4725 + 2758
Sa= 2. H"J,-.(HCI) = o 2 H(l‘b I)
>0 256(' B :I) o

(AG)

The lirst is a result of Nielsen [58] according 10 Schoit who
derived the second and third results [59], while the fourth
can be found in f60] [note that our notation differs from that
paper. which also contains a typographical error in their Eq.
(24) for S5]. The sums involving J), are

- - 44 3:2
Si= 2w :

>0 = W (A7)
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2 ,-2 -3 -6
5)= » n"J,',z(n:,) _ 64 + 6242y + 6322] + 452

NI . (AS)
n>0 256(' - :;)”’-

given in [27.60). respectively. The latter paper also gave a
double integral representation for the series S_; (there de-
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Abstract:

This paper discusses the predicied signatures of nonlinear Compion scattering, that
will occur when a high-intensity laser beam is brought into collision with a beam of
electrons from a linac. We consider various intensity effects on the emission spectrum
of the scatiered photons, both in terms of their frequencies and in terms of their
scattering angles. At high intensities we predict a substantial redshifi of the usual
kinematic Compron edge of the photon spectrum caused by the large, intensity-
dependent effective mass of the electrons inside the laser beam. In addition, we Sfind

that the notion of the centre-of-mass frame for a given harmonic becomes intensity
dependent.
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1 Introduction

Recent technological breakthroughs have led to
lasers of unprecedented powers and intensities. the
current records being about |1 PetaWau (PW) and
107 Wiem’. respectively. During the next few
years further increases are expected. most notably
at the planned European “Extreme Light
Infrastructure”™ (ELI), where the power and
intensity may be as much as 3 orders of magnitude
higher than any curremt facility (2]. This will allow
for an experimental probing of a previously
inaccessible region of the QED parameter space.
and so motivates this theoretical reassessment of
intensity effects in QED.

To be specific. we will be considering the
nonlinear Compton scatiering thiat occurs when o
beam of electrons from a linac is brought into
collision with a high-intensity laser. In this case an

electron ol momentum p absorbs n laser photons ¥,
each of momentum 4. then emits a single photon of
momentum A’. giving us the process

e (pytny (kY= e (pY+ k). n
If we assume that the eleciron and laser photons
collide head-on. then there is only one angle to
consider — the scattering angle of the emiued
photon @ The incident four-momenta are then

K =afl.n). p*=(E,.p). (2

with the ouwgoing (primed) quantities detined
analogously.

We will model the laser field by a circularly
polarised plane wave of amplitude «

A = ui"cos(k )+ ué’sin(k -x). 3
where & is the (light-like) propagation four-vector
and the Lorentz gauge condition is satisfied. The
Dirac equation can be solved exactly for electrons
in such a background (Volkov solution [4]). and
for a therough discussion we refer the reader to [5].

The laser beam is characlerised by the
‘dimensionless laser amplitnde” ay
mc

This is a purely classical quantity. a ratio of two
energies — the ratio of the energy gain of the
electron moving over a laser wavelength A, with
the electron’s rest mass. [t may be generalised to
an explicitly Loreniz and  gauge-invariant
expression {3]. but for our purposes it is sufficient
to adopt a rule-of-thumb formuta expressing ay in
terms of laser power [6]

tly =



ag =5%10° P[PW]. (5)

In this paper we will be considering the
phenomenology of the high inensity a,>1 but
relatively low energy ax<mnc regime. As
mentioned earlier. this region of the QED
parameter Space has only recently become
experimentally accessible.

2 Kinemalics
2.1  Momentum/Mass Shift

Due to the presence of the laser field. the Volkov

clectrons acquire a quasi four-momentum ¢

Q2
agn

2k-p
Hence the electrons acquire un additional,
intensity-dependent longitudinal momenwum ¢,
caused by the presence of the laser ficld. This may
be found by applying the kinetic momentum
operator lo the Volkov solution and taking the
time-average of the result. However. it may also

g=p+ ksp+q,. (6)

be understood classically as the time-average of

the electron ‘quiver’ motion in the plane wave.
Squaring ¢ allows us to define an ctfective eleciron
MASS e

mi = g° =m:(l+u§). N

Calculating the scauering amplitde. we find that
the quasi momentum is conserved in the scattering
process [1. 5]

g+ nk =gk (8)

2.2 Scattering Frequency

Inserting the momentum expressions (2) into (8),
the intensity-dependent scattered photon frequency
1s found 10 be

_ nv B
0+, (1-cos8)
where ¥ is the initial electron energy and v=a/m.
Notice that the sign of j, determines whether the
scautered photon is red or blue shifted relative 10
the aser photons.

1

‘"

Jn = ju("- 7-"'-“0)- )]

3 Photon Emission Rates

We now consider the emission rates for the
scattered photons. For a circularly polarised plane
wave the cross section can be expressed
analyvcally [5]

3.1 Frequency Dependence

We begin by considering the emission rates in
terms of the scauered photon frequencyv'. For an
individual harmonic we find

dw, 1
=- 7 ag.v.v,). (10)
v }'(H'ﬂ)j,, A1) "
where ¥, f are the electron Lorentz parameters and
the function J, is composed of Bessel functions.
To obtain the total rate one simply sums over all
the harmonics.

0025
002 =7
- o0
2 nol
g
8 0018
2
3
2 om
0.00%
[+]
w0 10"

Figure 1: Theoretical photon spectrum {sum of first 50
harmonics) for intensity «p=20 compared to lincar
Compton scautering (n=1, uz=0) as a lunction of v'.
Initia! electron 3=100.

A plot of the emission spectrum is shown in Figure
I for ay=20, where we have also included the text
book linear Compton (Klein-Nishina) case (n=I,
a=0) for comparison. From the plot several
features are apparent. Firstly. and mosi
significantly, is the red shift of the Compton peak
by a factor of 1+ai =400 compared to the linear

case. Secondly. we observe a series of secondary
peaks to the right of the main Compton ‘edge’. due
to the presence of the higher harmonics (n=2.3....).
Assuming that these are not washed out by
background effects not included in our analysis.
this would be the first time that any higher
harmonics were experimentally detectable for a
circularly polarised laser field.

We showed earlier how the sign of j(as
determines whether the scatlered photon is red or
blue shifted relative to the laser photons. This
suggests that by tning yand a, it should be
possible 1o change the scattered photon spectrum
from a blue shift 1o a red shift. In particular, at the



point where j, changes sign, the n™ harmonic
spectrum  will collapse 10 the line ,'=nv.
Analytically we find that this will occur when a,
attains its critical value of

2B-nv

collapses is the poini where P=nk+q=nk+p+q,
equals zero. In a cenain sense therefore, the point
where j, changes sign can be used to define a
‘centre-of-mass’ frame for the »n™ scautering
process. Thus by twning ag. as we have done in

Meriv = =B Z5) =1y. (n Figure 2, we are effectively changing the frame of
reference in which the scatiering process is viewed.
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Figure 2: Sequence of plots showing the photon specira for different values of ¢ (arb. units). Parameters
are such that a,.=200. Vertical (grey) lines correspond to frequencies nw.,

In Figure 2 we show a sequence of emission
spectra for the case apes=200 (n=1). If we go
through the whole sequence. the following picture
emerges. For the subcritical case. ¢p<dag.m. the
harmonic ranges are blue shifted (i.e. located to the
right of 1the respective vertical lines v'=nv). As qy
approaches its critical value the harmonic ranges
shrink and a gap between the first and the second
appears (ithird plot). At ap= gy the first harmonic
range shrinks to a point, with the neighbouring
ranges also becoming very narrow. Once ag
becomes supercritical the harmonic ranges are red
shifted, with the ranges increasing again and the
gaps closing.

To understand what is happening we consider the
collision momenta. Recall that, in the case of
linear Complon scattering, there is no frequency
shift when P=k+p equals zero (i.e. in the centre-of-
mass frame of the collision). Now. making the
analogy 10 nenlinear Complon scattering, we see
that the point where the n™ harmonic spectrum

3.2 Angular Dependence

We may also consider the cemission rates as o
function of the scattering angle 6 Performing the
necessary calculations. we find the angular
emission rate for a given harmonic 1o be

W ik _Jylagv)  (12)
a4 i+ B+ iy (1~ coso)f?
Note that here we have used the angular measure
df2=sinGd 8. since for a circularly polarised laser
field there is no dependence on the azimuthal angle
¢. In Figure 3 we show the angular emission rates
for the first five individual harmonics. We see ihat
the fundamental (n=1) harmonic contributes most
strongly in the backscautering (€=m direction,
while the higher harmonics also peak near this
point.

Unlike with the v paramewerisation where & given
frequency interval only contains a finite number of
harmonics. with the @ parameterisation all the






