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DEVELOPMENT OF NOVEL SENSORS FOR ANIONS OF
ENVIRONMENTAL INTEREST

By

Thierry Le Goff

ABSTRACT

A range of ion-selective electrodes (ISEs) for the determination of nitrate has been
produced based upon rubbery membranes having covalently bound betaine salt sensor
molecules. The best performing electrode contained N,N,N-triallyl leucine betaine (6.5 %
m/m) covalently bound to polystyrene-block-polybutadiene-block-polysiyrene (SBS)
(43.5% m/m), with 2-nitrophenylocty! ether (2-NPOE) as solvent mediator (40 % m/m)
and dicumyl peroxide (DCP) as free radical initiator (10% m/m). The Nernstian slope was
-59.1 mV per decade over a linear range of 1 x 107-5 x 10° mol dm™ nitrate, a limit of
detection of 0.34 pmol dm™ nitrate and a selectivity coefficient for nitrate against chloride
(#*Nos., c1.) of 3.4 x 10°. The speed of response was less than 1 minute over the linear
Nernstian range. The lifetime in the laboratory exceeded 5 months with no potentiometric
drift over the linear Nernstian range. Temperafure dependency (0-25°C), pH range (2-12)
and a selection of interfering anions (F’, CI, Br, I, SCN, ClO4, HCOs, NOg, SO,
phthalate) were studied.

A field evaluation by continuous immersion in both agricultural drainage weirs and a river
were undertaken. The nitrate results obtained with the ISEs compared very favourably
(R*=0.99) with those obtained with a segmented-flow instrument in a concentration range
0.47-16 ppm nitrate-N. The electrodes performed continuously for over 5 months in run-
off water from a field and over 2 months in river water. The ISEs did not require re-
calibration and no deterioration in performance or fouling of the membrane surface was
observed.

A preliminary investigation of a phosphate ionophore based upon a heterocyclic
macrocycle was also undertaken. This work, based on previous literature, resulted in a
dibasic phosphate electrode having a linear Nernstian range from 3 x 107 to 1 x 10" mol
dm?, a slope of ~27 mV per activity decade and a limit of detection of 1 x 10 mol dm™
HPO,",
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CHAPTER 1

INTRODUCTION

1.1 Phosphate and nitrate - Cause for concern?

1.1.1 Phosphorus in soil and water

Phosphorus is an essential life supporting nutrient and occurs in both organic and
inorganic forms in soils and in water systems.

The majority of organic phosphorus compounds can contain either a P-C bond or a P-O-C
bond. They occur naturally e.g inositol hexaphosphates ((CsHsOg)(POs)s) in soil, or may
be formed from orthophosphate in biological treatment process. They can also come from
fertilizers, herbicides, insecticides and fungicides. Organic phosphorus compounds may
be necessary for plant growth and are found mostly in seeds as mixed calcium-
magnesium-potassium salts, where they are believed to be as a store of phosphate and
trace metals (Haygarth and Jarvis, 1999).

The inorganic forms of phosphorus are mainly iron and aluminium phosphates in acid
soils and calcium phosphates in alkali soils. They are extremely insoluble in water and
levels of soluble phosphorus in soil solution of surface soils are in the range from 0.01 to
0.1 mg 1" P. Inorganic phosphorus exhibits nine oxidation states from +5 fo -3. Oxoacids,
as described in figure 1.1, such -as orthophosphate, P(+5), phosphite, P(+3),
hypophosphite, P(+1) and diphosphate, P(+4) are known as well as derivatives.

Diphosphonate is known to be a phosphorylation agent for biological substances




(Fujiwara, 1994). Pyrophosphates occured in soil and are involved in biological cycling,
polyphosphates are also known to occur in soils and could be of microbial origin
(Haygarth and Jarvis, 1999) and can also come from detergents e.g sodium

tripolyphosphate (STPP) (Clark et al., 1992).

Figure 1.1 Phosphorus acid species
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In excess concentrations, in a freshwater environment, phosphate may have a negative
effect on aquatic ecology and water quality. Phosphate levels in fresh water systems have
" increased in the past 50 years, for example the level of orthophosphate has increased in
the river Frome (Dorset) by 21% from 1965-1972 levels (Heathwaite ef al., 1996) and by
15% from 1980 to 1986 in the Slapton Catchment in South West England (Burt ef al,,
1996). Four different sources of phosphorus can be distinguished:

e constituents of industrial disharges e.g. commercial cleaning solutions

e livestock manure

¢ agriculture (P-fertilizers)




o effluents from sewage treatment works

¢ soil particles
Domestic sources of P have been estimated as contributing 53% of total P released to
water in the UK (Lund and Moss, 1990). However, sources of P can vary from a country

to an other as shown in table 1.1.

Table 1.1 Estimated percentage contributions to the total load of phosphorus for

selected countries in Europe from Lund and Moss, 1990

Countries Point sources % Diffuse sources % Weight total
P load

Domestic Industrial Stock Unit | Agriculture Natural (kt yr)

UK 53 5 20 16 6 68
Denmark 21 2 58 13 6 15.6
Ireland 20 2 36 30 12 17
Norway 33 3 10 10 44 7.5
Burope 37 4 30 17 14 28.1

In Japan, an average of 1.8g P person™ day™ is released in domestic wastewaters (Goda,
1986). An estimation has been made in the USA where the defergents account for about
46% of total P conient of domestic effluents (Alhajjar et al., 1989). The composition of
final effluents from domestic septic tanks has been investigated (Whelan and Titamni,
1982). This study showed that the major contaminants were N and P. Total P levels were

around 17 mg ["!, almost all present as dissolved orthophosphate. In the USA, reported







total P levels were between 11 and 31 mg I and 85% was as orthophosphate (Reneau et
al., 1989).

Traditionally, soil phosphorus (P) has been considered as imsoluble in water and past
agronomic studies considered P leaching as insignificant (Gardwood and Tyson, 1973;
Marrs ef al, 1991). For this reason, farmers were encouraged to use phosphatic fertilizers
thereby transferring small amounts of phosphate from agricultural lands to water systems.
This transfer depends on rainfall and is not strongly influenced by the quantity of P
applied to the land. However, it has been recently shown that transfer of P as small as 10
ug 1" (2-3 kg ha! yr! P) from agricultural land can contribute to eutrophication (Foy and

Withers, 1995; Haygarth, 1997).

1.1.2 The nitrogen cycle in freshwater systems

Nitrogen (N) is a very important element for life. Inorganic-N in the environment occurs
in different forms i.e ammonia (NHj), nitrite (NO;), nitrate (NOs") and gaseous nitrogen
(N). This latter form can be fixed by conversion to ammonia by the action of bacterial
genus e.g genus Rhizobium present in the roots of certain plants. Geperally, nitrate is the
main source of N in the soil for plants. Ammonia (NHs) in soils can be formed by the
breakdown of organic-N from plants by microbial action. Under conditions of good
aeration and favourable temperatures, different organisms (chemoautotrophic bacteria)
oxidise the ammonia first to nitrite (NO7) and then to nitrate (NO;3), a process called
nitrification. The oxidation from nitrite to nitfate is generally faster than that from
ammonia to nitrite, so that no nitrite accumulates. However, the opposite phenomenon can
be observed under anaerobic or microaerobic conditions which converts nitrate to

nitrogen oxides and gaseous nitrogen (denitrification) and ammonia (hitrate respiration).







In fresh water systems, nitrogen is measured as NH;-N, NO3;-N and NO;-N in mg I, The

nitrogen cycle is presented in figure 1.2.

Figure 1.2 Nitrogen cycle
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1.1.3 Nitrate in fresh water systems

Nitrate concentrations in fresh water systems are increasing (Burt ef al., 1996). This rise is
attributed to intensive agricultural practices with the use of N-fertilizers but also from
industrial and domestic wastewaters.

Domestic waste water is not a negligible source of N in the environment. In Japan, the
average daily diet of Man contained 13.3 g N and about 85% is released in domestic
wastewaters (Ukita ef al., 1986), almost all as dissolved ammonia (Reneau ef al., 1989).
However, the excessive use of N-fertilizers remains one of the main source of nitrate in

water systems. For example in the UK, the annual usage of N-fertilizers has increased







from about 400 kt, in 1960, to 1.3 Mt, in 1980 (Gasser, 1982). However, in the mid-
1980's, the use of N-fertilizers reached a plateau in the UK (Parkinson, 1993). The
problem of using excessive amounts of N-fertilizers comes from the fact that nitrate is not
totally bound to the soil and is very soluble in water. Therefore it can leach into water
systems. Nitrate leaching is one of the loss processes of concern for both economic
reasons and its impact on water quality. The Buropean Community (EC) Nitrate Directiv_e
(CEC, 1991) requires that the concentration of nitrate-N in drinking water should not
exceed 11.3 mg I'". Figure 1.3 shows that in many areas in UK this limit is exceeded for

groundwater (Owen, 1992).

Figure 1.3 Nitrate concentrations in groundwater (from Owen, 1992)
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One of the major concerns of the environmental policies of national governments within
the EC is the optimisation of land use and farming intensity. Nitrate leaching depends on
different factors such as season, type of soils, land management including drainage and
amount of N-fertilizers used, plant cover and rainfall (Scholefield ef al., 1993; Scholefield
and Stone, 1995). Nitrate leaching follows a seasonal trend with minimum losses during '
the-growing season due to plant uptakes and lack of drainage and significant losses (_1uring
winter.

Nitrate levels in river waters also tend to follow a seasonal trend as shown in figure 1.4.

Figure 1.4 Means of weekly nitrate concentrations in river Frome (Dorset) from

1965 to 1975 plotted against time of the year (from Casey and Clarke, 1979)
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1.1.4 Eutrophication

Eutrophication of lakes, rivers, reservoirs and estuaries is probably the most visible effect

of an excess of nutrients in fresh water systems. This phenomenon occurs when inorganic
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N and P are added to a water systems. The nutrients cause a rapid growth of algae and
other aquatic plants which may be toxic to shellfish and fish, e.g. aphanizomenon flos-
aquae blue-green alga. When this excess of vegetation dies the oxygen available is
dramatically reduced, killing life in the water system and obviously making the water

non-drinkable (Hutchinson, 1969).
1.1.5 Effects in Man

Nitrate itself is not very toxic but its conversion to other products, after ingestion can be
the cause of diseases. Infantile methaemoglobinaemia or '‘Blue-Baby Syndrome' is a well
known disorder caused by the reduction of nitrate to nitrite (in the mouth or elsewhere in
the body where the pH is relatively high) and conversion of oxyhaemoglobin to
methaemoglobin restricting the oxygen uptake (European Chemical Industrj Ecology and
Toxicology, 1988). If the conversion reaches 45-65%, death can occur. However, adults
have a different enzyme-reduction system in the gut reducing the chance of suffering this
disorder. Around 2000 cases of Blue-Baby Syndrome' were reported by the World
Health Organisation (WHOQ) between 1945 and 1986, The last case of
methaemoglobinaemia in Britain was reported in 1972 (Heéthwaite et al., 1993).

Under basic conditions, nitrosamines may also be formed. In 1973, Hill ef a/. showed that
the formation of nitrosamines increased in patients suffering from bladder infections and
achlorohydria (Hill ef al., 1973). Nitrosamines were found to be carcinogenic in certain

animals. However, there is no evidence of their carcinogenicity in man (WHO, 1996).




1.2 Monitoring nitrate and phosphate in water systems

1.2.1 Determination of nitrate

The determination of nitrate in natural waters is not straigthforward, due to the presence
of interferents. Some techniques also suffer from their limited linear range: of application.
The standard methods, and others used for the determination nitrate in natural waters are
summarised in table 1.2 (Callaway, 1995). Most of the techniques presented for the
determination of nitrate are only suitable for laboratory use. Therefore field samples have
to be collected and analysed as soon as possible. Storage can affect the nitrate
concentration in the samples due to biological activity. For short term storage, it is
recommended to filter (0.45um) the sample and to keep it refrigerated (4°C for 24 hours),
for longer storage H,SO. may be used to preserve the sample but nitrate and nitrite will be
determined as a single species. Chloroform may also be used.

In the water industry air segmented continuous flow analysers are commonly used for the
simultaneous determination of nitrate, nitrite, phosphate, silicate and ammonia. They
require technical staff, chemicals and regular re-calibration. Between 20 to 80 samples
can be analysed every hour. The principle of the method to determine nitrate is based on
the conversion of nitrate to nitrite using a copper-cadmium reducing column. The nitrite
thereby generated then diazotises sulphanilamide which subsequently couples with N-(-1-
naphthyl)-ethylenediamine to form an azo dye with an absorbance at 520 nm which is

measured with a spectrophotometer or a colorimeter.




Table 1.2 Examples of methods used for the determination of nitrate in natural waters

e ]

Method Technique Sample Interferents Linear range Reference
(mg NOs-N 1)
A. Direct UV Uncontaminated  Turbidity, organic 0.03-3 Armstrong, 1963
spectrophotometry natural waters  matter, NO;, Cr®’
B. Potentiometry Nitrate-selective Fresh waters Chloride, 0.14 to 1400 Zuther ef al., 1994 and
electrode bicarbonate Sutton ef al., 1999
C. Copper Cadmium Colorimetry or Seawater, drinking Turbidity, 0.01 to 1.0 (manual) Nydahl, 1976 and

reduction

D. Chemiluminescence
E. Titanous chloride
reduction

F. Ton chromatography

G. Hydrazine reduction

H. Polarography

spectrophotomety ~ and waste waters  particulate matter
Seawater
NH; gas sensing Natural waters NHj, nitrite
electrode
Drinking waters
Colorimetry or

Seawater, drinking Turbidity,

spectrophotomety  and waste waters  particulate matter
Drinking and river

water

0.5 to 10 (automated)

0.01to 10

007to 1.8
0.01to 10

0.07-0.7

Stainton, 1974
Garside, 1972

Braunstein et al., 1980

Papadoyannis ef al., 1999
Kamphake at al., 1967
and Kempers ef al., 1988
Noufi ef al., 1990
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1.2.2 Determination of phosphate

The sampling method and storage time of phosphate samples is critical to obtaining good
accuracy. Analysis should be carried out immediately after sampling or should be filtered
(0.45 um) and stored at sub-zero temperatures for long-term storage. Depending on the
forms of phosphate to be determined, some additives can be used to preserve the sample.
For total P, hydrochloric acid can be added. For the determination of different forms of
phosphate, preservation by HgCl; is recommended (Callaway, 1995). Orthophosphate is
mainly determined using colorimetric methods and requires non-turbid and filtered
samples. These methods and a few others are summarised in table 1.3,

Air segmented continuous flow analysers (autoanalysers) are also commonly used in the
water industry for the determination of orthophosphate using the 'molybdenum blue
method'. The principle of this method is the reaction between orthophosphate, ammonium
‘molybdate and potassium antimonyl tartrate in acidic medium forming an antimony-
phosphomolybdate complex. On reduction with ascorbic acid (Murphy and Riley, 1962) a
blue colour is formed which is measured using spectrophotometry (880 nm). The
development of the blue colour depends on the temperature with an optimum at 60°C (Pai
ef al., 1990). This method can be used to measure orthophosphate levels down to 1 pg
PO P I, However, arsenate (0-1.0 mg AsOg4-As 1), silicate (0-50 mg SiOs-Si 1),
fluoride (0-200 mg F 1) and nitrite (1 mg NO;-N I') interfere with the phosphate

determination (Blomqyvist ef al., 1993).
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Table 1.3 Examples of methods used for the determination of orthophosphate in natural waters

e I — e R = e A T T e R G

Method Technique Sample Interferents Linear range Reference
(mg PO -P 1)

A. Vanadomolybdo- Spectrophotometry Seawater, As, Si, NO; and F 1-20 Abbot ef al., 1963
phosphoric acid (yellow complex) drinking and

river waters
B. Stannous chloride; Spectrophotometry Seawater, As, Si, NOzand F 0.007-0.1 Callaway, 1995
Molybdenum blue drinking and
method river waters
C. Ascorbic acid; Spectrophotometry Seawater, As, Si, NO; and F 0.01-6 (manual) Edwards ef al., 1965
Molybdenum blue drinking and 0.001-0.1 (automated) Henriksen, 1966
method river waters
D. Potentiometry Biosensor Natural waters 0.03-0.3 Conrath et al., 1995
E. lon-chromatography Saline waters 0.17-6.7 Galceran ef al., 1993
F. Reaction of Fluorimetry Seawater, 0.003-0.1 Tabata and Harada, 1992
molybdophosphate and drinking and Mﬁ; o(;?i r(;_;())'l

cationic water-soluble

porphyrin

river waters
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1.2.3 Conclusion

The methods commonly used to determine either nitrate or phosphate require sampling,
technical staff, chemicals and regular re-calibration. For environmental work, the
technique to be used should be capable of continuous or 'spot’ on site monitoring (the
former to be operator independent for a reasonable period), non-polluting i.e no waste
involved, simple to use by a variety of personnel (i.e non-chemists). An ion-selective

electrode best fits those requirements.

1.3 Ion-selective electrodes (ISEs)

1.3.1 Theory

1.3.1.1 Response mechanism |

ISEs are a type of chemical sensor. They are categorised as potentiometric sensors and
can be sub-divided into two main groups: solid state and liquid membranes.

The theory of ISEs is well established especially owing to the pioneering work of
Eisenman's group (Eisenman ef al., 1957, 1969) and others (Morf, 1975, 1976; Boles and
Buck, 1973; Nicolsky, 1937).

The most important part of an ISE is the ion-selective membrane. In the case of polymeric
membranes, a water insoluble viscous liguid is placed between the sample and the inner
filling solution as shown in figure 1.5. The liquid membrane is generally composed of
66% m/m plasticizer, 33% m/m polyvinyl chloride (PVC) and 1% m/m sensor molecule

{Craggs et al., 1974).
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The electrochemical cell for a potentiometric sensor is composed of:
e A sensing electrode consisting of the liquid membrane, an inner reference electrode

(Ag/AgCl) and the inner filling solution (a mixture of chloride and analyte salts).

e An external reference electrode

A typical electrode arrangement is illustrated in figure 1.5.

Figure 1.5 Electrode arrangement
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Ag/AgCl inn Reference electrode
reference

lon-selective membrane

Figure 1.5 can also be represented as:

Sensing electrode
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Double junction reference electrode

2 o S & e ™
Hg, Hg,Cl, | Satd. KCl || Outer ||Sample| Liquid Internal | AgCli Ag
S filling ion-selective | filling
solution membrane solution

Calomel electrode
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ISEs develop an electrical potential when they are placed in a solution containing the ion
of interest. The potential arising at the interface between the ion-selective membrane and
the sample is related to the activity of the analyte (a;) as opposed to its concentration [J].
[J]is related to ay by equation 1.1:

a, =7,/ D
where y; is the activity coefficient.

vycan be determined since it is related to a quantity termed the ionic strength (I), defined
below, by the Debye-Hiickel limiting law which can be written:

logy, = —Az>\T (1.2)
where A is a constant depending on relative permitivity, temperature and solvent and has

a value of 0.509/ (mol kg)™ for an aqueous solution; z is the ionic charge and I, the ionic

strength of the solution is given by:
I1=05y 7]z _ (1.3)

the limiting law only applies if:

» The dissociation of the electrolyte is complete

» The ionic interactions are qualitatively described by the Coulomb's law for point
charges

e The cause of the solution non-ideality is due only to coulombic interactions between
the ions

It can be seen that if I—0 then log y;—0 and therefore y;—>1 and activities approach

concentrations.

Accordingly to equation 1.3 if [J] increases, the ionic strength (I} of the solution increases

and thus y; decreases. Using equation 1.2, the relationship between a;y and [J] is non-linear.

15




For this reason, the use of an Ionic Strength Adjustment Buffer (ISAB) is recommended

to keep the ionic strength to a constant value.

The response mechanism of an ISE depends upon the sensor used. Three cases have to be
differentiated, neutral carrier-based ISE (a), charged carrier-based ISE (b) and ion-

exchanger-based ISE (c) as shown in figure 1.6.

Figure 1.6 Equilibria_between membranes, sample and inner filling solution in_the

case of a cation-selective membrane (from Bakker ef al., 1997)

Sample Inner filling Sample Inner filling
solution solution

44— r L4 44— R L 4

T I < . J* = s - X

E ok Uk r ey
Polymeric membrane Polymeric membrane
() (b)
Sample Inner filling
solution

£ I a;

r ks R »

Polymeric membrane

(©)

(a) L is an electrically neutral carrier, R are anionic sites and J is the cationic analyte; (b)

L  is the charged carrier and R are cationic sites; (c) R’is a cation-exchanger.

The EMF measured across the cell (Ecg) is the sum of the individual potential
contributions such as liquid junction potentials, membrane potential (En), electrode

potential of the reference electrode and electrode potential of the sensing electrode. If we
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make the assumption that apart from E, all the other contributors of the cell potential

remain constant (E) then the observed potential is directly related to the membrane

potential.

Ecell = Eost + Eny (1.4)

En can be divided into three separate potential contributions: the phase boundary
potervltials;u-at the sample-merpbrane interface and membrane-inner filling solution interface

and the diffusion potential. For a very long time it was assumed that electrode potential

was due to ion transport through a membrane (Donnan, 1911; §tefanac and Simon, 1966).

Recently, however, several workers have shown that the diffusion potential can be
considered negligible (Pungor, 1992, 1997; Bakker ef al., 1994a). Also the potential
arising at the interface between the membrane and the inner filling solution is sample
independent. Therefore, the membrane potential is established at the interface between the
membrane and the sample, in the first nanometers of the membrane (Bakker ef al., 1997,
Pungor, 1998).

Em=Epp+ Ec (1.5)
Epp is the difference between the electrical potentials for the aqueous phase (sample) and

the organic phase (membrane). The relationship between electrical ((aq)),

electrochemical ( ,; (aq)) and chemical {p{aq)) potentials for the aqueous phase can be

expressed as shown in equation 1.6 (Guggenheim, 1930):

aq) = iaq) + 2F ¢(aq) . (1.6)

And pu(aq) can be expressed as in equation 1.7:
#aq) = pi,, + RTIna, (aq) (1.7)

By combining equation 1.6 and 1.7, equation 1.8 can be obtained
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#(aq) = iy + RTma, (ag) + 2F plag) (1.8)

And if we do the same for the organic phase, equation 1.9 can be obtained:

#(0rg) = peey + RT M a, (0rg) + zF g(org) (1.9)
where i is the standard chemical potential, J is the ion, z is the ionic charge, F is the

Faraday constant, T is the absolute temperature and R is the gas constant.

In equilibrium, the electrochemical potentials, ;z, of the agueous phase ( ,;, (aq)) and the

organic phase ( ;z (org)) are equal for all the ions present, and therefore ;t(aq)== ;t(org)
(Stulik, 1994). The phase boundary potential (Epg) is the difference between the electrical

potential for the organic and aqueous phase, as shown in equation 1.10:
Epy =A¢ = ¢(mg) “¢(aq) (1.10)

From equations 1.8 and 1.9, Epp can be expressed as in equation 1.11:

E,, = Yo~ Fow LRT, a,(ag) (1.11)
zF zF  a,(org)

Using equations 1.5 and 1.11 the membrane potential (E.) can be related to the activity of

the analyte in the organic and aqueous phase as in equation 1.12:

E, =E_ + " Fo LRT a,(aq) (1.12)
zF zF  a,(org)

The activity of the ion in the organic phase (ai(org)) is a function of the concentration of
the sensor molecule and is a sample independent parameter (Bakker ef al, 1997).

Therefore, En, can be expressed in the well-known Nernst equation 1.13:

E, =E"+£lnaﬂ,(aq) ‘ (1.13)
zF _ _

where E is defined as the standard electrode potential regrouping all the saniple

independent potential contributions. It was mentioned previously that the use of an ISAB
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will keep the activity coefficient (y) to a constant value, therefore by combining equations

1.1, 1.4, 1.13 the cell potential (E.n) can be related to the logarithm of the concentration

of the analyte as in equation 1.16.

, RT

E,=E +Eln(}’[.]](aq)) . (1.14)
. RT _ RT |

By =By +-zj:—1n([J](aq)) | (1.15)

LB, =E° +-%23—§-;—I}-—I-'-Iog([J](aq)) (1.16)

Therefore, by substitution the theoretical Nernstian slope for a singly charged anion

is -59.12 mV per decade.
1.3.1.2 Selectivity

No electrode has total specificity for one ion in the presence of all other ions. The
selectivity is one of the most important characteristics of a sensor molecule. Different
types of interferences may be encountered in practice. Ions with the same charge sign as

the analyte may be sensed by the electrode.

Ross (Ross, 1967) studied the effect of foreign cations on his calcium-selective electrode
potentials and showed that for all ions investigated (', Na*, K*, NH,", Mg®* and B2*")
the potentials fitted the empirical equation 1.17 known as the Nicolsky-Eisenman
equation (Nicolsky, 1937):

Zy
L, =FE° +R—§;1n|:qr {IN+kia, (]J)z" :| (1.17)
Z

I
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Where z; and zy are the charge and sign of the primary and secondary ion, a(lJ) is the
activity of the primary ion (I) in the mixed solution (IT), a,I) is the activity of the
interfering ion (J) in the mixed solution (I7) and #*°1y is the selectivity coefficient
(potentiometric). The "%y value is a measure of the degree of selectivity shown by the
electrode for the analyte, I, in the presence of an interferent, J. The Nicolsky-Eisenman
equation is used to determine A*%y. Different experimental methods are available to

determine A**;; using the Nicolsky-Eisenman equation.

The value for the selectivity coefficient for a primary ion (I) versus an interfering ion (J)
depends on the method used to determine it and comparisons between different 2*% is
difficult unless the same method is used. However selectivity coefficients are useful

parameters for ISEs. There are three main methods for their determination.

The first method named the Separate Solution Method (SSM) (TUPAC, 1979) consists in
measuring and comparing the cell potential (E;) of a solution containing only the primary
ion (I) with that (Ej) of a solution containing only the interfering ion (J). The method has
the advantage of being rapid and convenient. This is especially useful when studying a
large number of interferent ions, but the measured data are often not representative for a

real mixed sample solution. The selectivity coefficient **y may be calculated from the

Nernst equation and Nicolsky-Eisenman equation as described in equation 1.17 as

follows:
E, =F° +£1na1 {H (1.18)
z, F
RT 2
E, =E°+—ln{k§‘”a',(.])z’} (1.19)
z,F
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Z;
E, -k = %[l [k*””‘aJ(J)z‘] logaI(I)J (1.20}
T

When af{D=anl), equation 1.20 can be reduced to 1.21

E,-E, g [ 2
S3BET =logk}; {z’:—ljlogc{r 0 (1.21)
z I
Rearranging to
E, -F z
pt _ Ly 75y [ Z
log &} = S 30RT +[1 Zj]logal(f) (1.22)

zF

The second method called the Fixed Interference Method (FIM) overcomes the
disadvantage with the separate solutions method and was used for all selectivity
coefficient determinations in this work unless stated otherwise. This was performed
according to TUPAC recommandations (Guilbault, 1976). Solutions were prepared with a
constant level of interfering jon (generally 1.0 x 10 mol dm™) and varying the level of

the primary ion. The determination of &**; follows from the graph illustrated in figure

1.7.
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The second one is based on the assumption that in the curve region (BC) both ions are
contributing equally to the observed electrode potential. Therefore, equation 1.24 can be

written:

Zp

&, (1) = Ka, (I)¥ (129

and by combining equation 1.17 and 1.24, equation 1.25 is found:

E, =FE° +-}%1n[2a, @] (1.25)
Z

8.
T
Now the difference between the electrode potential in a solution containing the primary
ion only, I, (equation 1.13) and that in a solution of primary ion with a background of

interefering ion , J, (equation 1.17) can be written as in equations 1.26 and 1.27.

2.303RT
~———(log[

AE = 2a,(I)]-logla, (D)) (1.26)

ZI
If a;(17)=ar(I) equation 1.26 can be reduced to 1.27:

AE = —2'3O;RT log2 = E (1.27)

z z,

Thus, the point at which the calibration curve for the primary ion (singly charged) in the
presence of a constant background of interféring ion differs from the extrapolation of the
Nernstian slope (AB) by 18 mV, the potentiometric selectivity coefficient can be
calculated as expressed in equation 1.23:

o = % (IJ)Z_[ (1.23)
a, (IJ)ZJ

The third method is called Matched Potential Method (MPM) and has been developed by

Gadzekpo and Christian (Gadzekpo and Christian, 1984; Christian, 1994).
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