
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

04 University of Plymouth Research Theses 01 Research Theses Main Collection

2013

Non-Standard Sound Synthesis with

Dynamic Models

Valsamakis, Nikolas

http://hdl.handle.net/10026.1/2841

http://dx.doi.org/10.24382/3915

University of Plymouth

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.

Non-Standard Sound Synthesis with Dynamic Models

by

Nikolas Valsamakis

A thesis submitted to the University of Plymouth
In partial fulfillment for the degree of

DOCTOR OF PHILOSOPHY

School of Humanities and Performing Arts

Faculty of Arts

June 2013

 2

Copyright Statement

This copy of the thesis has been supplied on condition that anyone who
consults it is understood to recognize that its copyright rests with its author
and that no quotation from the thesis and no information derived from it may
be published without the author's prior consent.

 3

Non-Standard Sound Synthesis with Dynamic Models

Nikolas Valsamakis

Abstract

This Thesis proposes three main objectives: (i) to provide the concept of a new

generalized non-standard synthesis model that would provide the framework for

incorporating other non-standard synthesis approaches; (ii) to explore dynamic

sound modeling through the application of new non-standard synthesis

techniques and procedures; and (iii) to experiment with dynamic sound

synthesis for the creation of novel sound objects.

In order to achieve these objectives, this Thesis introduces a new paradigm for

non-standard synthesis that is based in the algorithmic assemblage of minute

wave segments to form sound waveforms. This paradigm is called Extended

Waveform Segment Synthesis (EWSS) and incorporates a hierarchy of

algorithmic models for the generation of microsound structures.

The concepts of EWSS are illustrated with the development and presentation of

a novel non-standard synthesis system, the Dynamic Waveform Segment

Synthesis (DWSS). DWSS features and combines a variety of algorithmic

models for direct synthesis generation: list generation and permutation,

tendency masks, trigonometric functions, stochastic functions, chaotic functions

and grammars. The core mechanism of DWSS is based in an extended

application of Cellular Automata.

 4

The potential of the synthetic capabilities of DWSS is explored in a series of

Case Studies where a number of sound object were generated revealing (i) the

capabilities of the system to generate sound morphologies belonging to other

non-standard synthesis approaches and, (ii) the capabilities of the system of

generating novel sound objects with dynamic morphologies.

The introduction of EWSS and DWSS is preceded by an extensive and critical

overview on the concepts of microsound synthesis, algorithmic composition, the

two cultures of computer music, the heretical approach in composition, non-

standard synthesis and sonic emergence along with the thorough examination

of algorithmic models and their application in sound synthesis and

electroacoustic composition.

This Thesis also proposes (i) a new definition for “algorithmic composition”, (ii)

the term “totalistic algorithmic composition”, and (iii) four discrete aspects of

non-standard synthesis.

 5

Contents Overview

Abstract... 3
Introduction ... 15

1 Microsound .. 23
2 Algorithmic Composition and Computers .. 33
3 Historical and Theoretical Foundations.. 40
4 The two cultures of computer music... 48
5 Non-standard Synthesis: Foundations ... 53

6 Non-standard Synthesis: Historical Examples .. 61
7 Sonic Emergence .. 70
8 Computers, Cognition and Music Analysis.. 77
9 Algorithmic Models ... 81
10 Extended Waveform Segment Synthesis (EWSS).................................. 113
11 Dynamic Waveform Segment Synthesis (DWSS)................................... 128
12 EWSS & DWSS in the Context of Non-Standard Synthesis 149
13 DWSS: Case Studies .. 156
14 Conclusions... 193
Apendix I – record of activities .. 204
Apendix II – sound examples.. 206
Apendix III – software: MaxMSP patches ... 209
Apendix IV – software code (MaxMSP patches screenshots) 210

Bibliography .. 244

 6

this page is intentionally left blank

 7

Table of Contents

Abstract... 3
Introduction ... 15
Research objectives ... 18
Chapter overview... 19

1 Microsound .. 23
1.1 The hierarchy of the time-level scale in relation to composition 24

1.1.1 The sound object ... 25
1.1.1.1 Spectromorphology and reduced listening of sound objects... 26

1.1.2 The micro-level ... 28
1.1.2.1 Synthesis and transformation on the micro-level .. 29

1.1.3 The sample-level ... 31
2 Algorithmic Composition and Computers .. 33
2.1 Totalistic Algorithmic Composition... 36
3 Historical and Theoretical Foundations.. 40
3.1 Information Theory .. 40
3.2 Early Algorithmic Music Approaches.. 41

3.2.1 L.Hiller and the Illiac Suite .. 41
3.2.2 Xenakis and the Stochastic Music Program ... 42
3.2.3 G-M. Koenig and the PR1 & PR2 Programs.. 44

4 The two cultures of computer music... 48
4.1 A Heretical Approach to Computer Music .. 50
5 Non-standard Synthesis: Foundations ... 53
5.1 Historical definitions of non-standard synthesis .. 55
5.2 The idiomatic character of non-standard synthesis .. 59

6 Non-standard Synthesis: Historical Examples .. 61
6.1 Dynamic Stochastic Synthesis ... 62

6.1.1 GENDY ... 63
6.1.2 Recent variations .. 64

6.2 SSP ... 64
6.3 Instruction Synthesis: PILE.. 66
6.4 SAWDUST... 67

6.4.1 Wigout & TrikTraks .. 68
7 Sonic Emergence .. 70
7.1 Hierarchical levels and emergence... 71
7.2 The emergence of higher order sonorities.. 72
8 Computers, Cognition and Music Analysis.. 77
9 Algorithmic Models ... 81
9.1 Algorithms and Musical Procedures .. 81
9.2 Permutations... 82
9.3 Stochastic ... 85

9.3.1 Probabilities.. 86
9.3.2 Random Walk .. 88
9.3.3 Markov Chain ... 90

9.4 Chaos & Fractals .. 91
9.4.1 Chaos .. 92
9.4.2 Fractals ... 96

9.5 Grammars ... 99
9.6 Lindenmayer Systems .. 102

 8

9.7 Cellular Automata .. 105
9.8 Sound Modeling .. 109
10 Extended Waveform Segment Synthesis (EWSS).................................. 113
10.1 EWSS: Basic Concepts & Definitions ... 114

10.1.1 Segment: 1st definition .. 114
10.1.2 Breakpoints ... 114

10.1.2.1 Breakpoint: Data Derivation ..115
10.1.2.2 Breakpoint: Data Generation..116

10.1.3 Link ... 117
10.1.3.1 Link: Computer Representation ...118
10.1.3.2 Link: Functions ..119
10.1.3.3 Link: Recorded Sound Segments ...119
10.1.3.4 Link: Sonification Data ..119
10.1.3.5 Link: Graphics..120
10.1.3.6 Segmentation..120

10.1.4 Segment: 2nd definition ... 121
10.1.5 Hierarchical levels: Segments, Structures, Groups, Sequences & Sound Objects. 122

10.1.5.1 Structure ...123
10.1.5.2 Group..123
10.1.5.3 Sequence ..125

10.1.6 Higher-level Hierarchy... 126
10.1.7 EWSS & the Concept of the Sound Object ... 126

11 Dynamic Waveform Segment Synthesis (DWSS)................................... 128
11.1 The computer music programming environment... 128
11.2 System Overview ... 129
11.3 DWSS:storage.. 131
11.4 DWSS:Construction... 132

11.4.1 Lists & Shapes: algorithmic generation ... 133
11.4.2 Lists & Shapes: graphic generation ... 134
11.4.3 Lists & Shapes: segmentation... 136

11.5 DWSS: algorithmic transformation ... 137
11.6 DWSS: Groups... 140

11.6.1 Groups: structure evolution with CA.. 141
11.7 DWSS: Sequence ... 146
11.8 DWSS: Synthesis ... 148
12 EWSS & DWSS in the Context of Non-Standard Synthesis 149
12.1 On the Comparison of Computer Music Systems.. 149
12.2 DWSS & the Other Non-Standard Systems... 152
13 DWSS: Case Studies .. 156
13.1 Case Study 1: soundfile segmentation and resynthesis.. 158
13.2 Case Study 2: Dynamic Stochastic Synthesis .. 160
13.3 Case Study 3: Iterated Nonlinear Functions .. 163
13.4 Case Study 4: Oscillating functions & Tendency Masks... 167
13.5 Case Study 5: Sound Synthesis with graphics & grammars .. 170
13.6 Case Study 6: Dynamic Sound Synthesis .. 173
13.7 Case Study 7: Cellular Automata Sound Synthesis ... 183
13.8 Case Study 8: Dynamic Microrythmic Morphologies ... 185
14 Conclusions... 193
14.1 Contributions to knowledge ... 193

14.1.1 The Extended Waveform Segment Synthesis (EWSS) model 193
14.1.2 The Dynamic Waveform Segment Synthesis (DWSS) model 194
14.1.3 Extensive and critical overview on the concepts of: Microsound, Algorithmic
Composition and, Non-Standard Synthesis... 195
14.1.4 Survey of Computer Models that are utilized in contemporary musical creativity 196

 9

14.1.5 Survey of Non-Standard Synthesis approaches and systems 196
14.1.6 A plausible definition for “Algorithmic Composition” .. 197
14.1.7 A proposal for the Term “Totalistic Algorithmic Composition”............................ 197
14.1.8 Categorization of Non-standard Synthesis into discrete aspects............................ 198
14.1.9 Demonstrative Contribution with a number of Case Studies.................................. 199

14.2 Recommendations for Future Work ... 200
14.2.1 Expansion and Interconnection between the hierarchical construction levels 200
14.2.2 Detailed investigation of CA transition rules ... 201
14.2.3 Grammars with complex rules .. 201
14.2.4 Improved sound segmentation algorithm.. 201
14.2.5 Graphical Interactive User Interface.. 202
14.2.6 Real-time operation .. 202

Apendix I – record of activities .. 204
Apendix II – sound examples.. 206
Apendix III – software: MaxMSP patches ... 209
Apendix IV – software code (MaxMSP patches screenshots) 210
Bibliography .. 244

List of Illustrations

Figure 1: system overview of DWSS………………………………………………………………130
Figure 2: list information in “DWSS_storage” …………………………………………………….131
Figure 3: “DWWS_construction” window………………………………………………………….133
Figure 4: the harmonic function interface…………………………………………………………133
Figure 5: the stochastic distribution interface…………………………………………………….134
Figure 6: the logistic map function interface………………………………………………………134
Figure 7: graphic drawing of list values……………………………………………………………135
Figure 8: breakpoint function……………………………………………………………………….135
Figure 9: segment shape creation with breakpoints……………………………………………..135
Figure 10: complete list……………………………………………………………………………..136
Figure 11: sound segmentation interface…………………………………………………………136
Figure 12: four segment shapes……………………………………………………………………137
Figure 13: the “DWSS_trasform” window…………………………………………………………138
Figure 14: list shaping permutation………………………………………………………………..138
Figure 15: random walk permutation………………………………………………………………139
Figure 16: add & multiply transformation………………………………………………………….139
Figure 17: scale duration transformation………………………………………………………….140
Figure 18: append list operation……………………………………………………………………140
Figure 19: the “DWSS_group” window…………………………………………………………….141
Figure 20: input list…………………………………………………………………………………..142
Figure 21: amplitude Level 1 & 2 functions………………………………………………………..143
Figure 22: global parameter A………………………………………………………………………144
Figure 23: amplitude or duration bypass…………………………………………………………..144
Figure 24: number of structures…………………………………………………………………….145

 10

Figure 25: list of groups……………………………………………………………………………...145
Figure 26: “DWSS_sequence” window……………….…………………………………………146
Figure 27: sequencing function………………………………………………………………….147
Figure 28: CA production rule……………………………………………………………………147
Figure 29: “DWSS_synthesis” window………………………………………………………….148
Figure 30: bell sound to segment………………………………………………………………..159
Figure 31: case study 2 group window………………………………………………………….162
Figure 32: case study 2 sequence window……………………………………………………..163
Figure 33: case study 3 group window………………………………………………………….165
Figure 34: case study 3 sequence window……………………………………………………..166
Figure 35: case study 4 group window………………………………………………………….168
Figure 36: case study 4 group window………………………………………………………….169
Figure 37: case study 5 group 1 window………………………………………………………..171
Figure 38: case study 5 group 2 window………………………………………………………..172
Figure 39: case study 5 sequence window……………………………………………………..172
Figure 40: case study 6.1 group window………………………………………………………..175
Figure 41: case study 6.1 sequence window……………………………………………………176
Figure 42: case study 6.2 group window………………………………………………………...177
Figure 43: case study 6.2 sequence window……………………………………………………177
Figure 44: case study 6.3 group window………………………………………………………...178
Figure 45: case study 6.3 sequence window……………………………………………………179
Figure 46: case study 6.4 group window…………………………………………………………180
Figure 47: case study 6.4 sequence window…………………………………………………….181
Figure 48: case study 6.5 group window…………………………………………………………182
Figure 49: case study 6.5 sequence window…………………………………………………….182
Figure 50: case study 7 group window……………………………………………………………184
Figure 51: case study 7 sequence window……………………………………………………….185
Figure 52: case study 8 group 1 window………………………………………………………….187
Figure 53: case study 8 group 2 window………………………………………………………….188
Figure 54: case study 8 group 3 window………………………………………………………….189
Figure 55: case study 8 group 3 window………………………………………………………….190
Figure 56: case study 8 sequence 1 window……………………………………………………..190
Figure 57: case study 8 sequence 2 window……………………………………………………..191
Figure 58: case study 8 sequence 3 window……………………………………………………..192
Figure 59: case study 8 sequence 4 window……………………………………………………..192

Figure 60: DWSS_storage…………………………………………………………………………..209
Figure 61: p create NEW BUFFER (with size)…………………………………………….………209
Figure 62: p delete buffers & messages…………………………………………………………...209
Figure 63: p create value-list buffer………………………………………………………………...210
Figure 64: p create duration-list buffer………...…………………………………………………...210
Figure 65: p create shape-list buffer………………………………………………………………...210
Figure 66: p create shape-list POLYbuffer.………………………………………………………..211

 11

Figure 67: p list-counter………………….………………….………………….……………………211
Figure 68: DWSS_construction………………….………………….……………………………….212
Figure 69: DWSS_construction (detail a).………………….………………….……………………213
Figure 70: DWSS_construction (detail b).………………….………………….……………………213
Figure 71: DWSS_construction (detail c) ………………….………………….……………………214
Figure 72: DWSS_construction (detail d) ………………….………………….……………………214
Figure 73: DWSS_construction (detail e) ………………….………………….……………………215
Figure 74: DWSS_construction (detail f) ………………….………………….…………………….215
Figure 75: DWSS_construction (detail g).………………….………………….……………………216
Figure 76: DWSS_construction (detail h).………………….………………….……………………216
Figure 77: DWSS_construction (detail i) .………………….………………….……………………217
Figure 78: p UPDATE CALL LISTS (complete) .………………….………………….……………217
Figure 79: p UPDATE CALL LISTS (append)..………………….………………….………………218
Figure 80: p UPDATE LIST BUFFER..………………….………………….……………………….218
Figure 81: p NEW SEGMENT BUFFER & COLL..………………….………………….………….219
Figure 82: p Segment Amp-Dur Monitor..………………….………………….…………...……….219
Figure 83: p Segment Shape Monitor..………………….………………….……………………….220
Figure 84: p find sample breakpoints (index, value)……………………………………………….221
Figure 85: p store segments (value, dur, shape)…………………………………………………..222
Figure 86: DWSS_transformation……………………………………………………………………223
Figure 87: DWSS_transformation (detail a)….……………………………..………………………223
Figure 88: DWSS_transformation (detail b)……………………………………..………………….224
Figure 89: DWSS_transformation (detail c)……………………………………..………………….224
Figure 90: DWSS_transformation (detail d)……………………………………..………………….225
Figure 91: p find min-max duration)……………………………………..…………………………..225
Figure 92: p BUFFER segment OPERATIONS……………………………………………………226
Figure 93: p BUFFER math-value OPERATIONS…………………………………………………226
Figure 94: p BUFFER dur-scale OPERATIONS……………………………………………………227
Figure 95: p list MODE: norm-abs…………………...………………………………………………227
Figure 96: p walk………………………………………………………………………………………227
Figure 97: p walk-in……………………………………………………………………………………227
Figure 98: p +/-rnd direction………………………….………………………………………………227
Figure 99: p ramp&indexer……………………………………………………………………………228
Figure 100: p check when done…………………………………………...…………………………228
Figure 101: DWSS_group…………………………………………………………………………….229
Figure 102: DWSS_group (detail a).…………………………………..…………………………….229
Figure 103: DWSS_group (detail b)…………………………………………………………..……..230
Figure 104: DWSS_group (detail c)…………………………………………………………..……..230
Figure 105: DWSS_group (detail d)…………………………………………………………..……..231
Figure 106: DWSS_group (detail e))…………………………………………………………..……231
Figure 107: DWSS_group (detail f)…………………………………………………………………..232
Figure 108: DWSS_group (detail g)………………………………..………………………………..232

 12

Figure 109: DWSS_group (detail h)..………………………………………………………………..233
Figure 110: DWSS_group (detail i).….……….……………………………………………………..233
Figure 111: DWSS_group (detail j)…………………………………………..………………………234
Figure 112: p Create Group Buffers…………………………………………………………………234
Figure 113: p 1st FILL Buffers………………………………………………………………………..235
Figure 114: p GROUP-SEQUENCING………………………………….…………………………..235
Figure 115: p find & set max sequence display…………………………………………………….236
Figure 116: p group & preset operations……………………………………………………………236
Figure 117: p COUNTER Structure:Segment………………………………………………………237
Figure 118: p Group_BUFFER Read-OPERATIONS……………………………………………...237
Figure 119: p Group_BUFFER Write-OPERATIONS……………………………………………...238
Figure 120: p OUTPUT_BUFFER & LIST OPERATIONS………………………………………...238
Figure 121: p grpoup-STRUCTURE-counter……………………………………..………………...238
Figure 122: p phaser…………………………………………………………………………………..239
Figure 123: p trianglewave…………….……………………………………………………………..239
Figure 124: p sinewave……………………………………………………………………………….239
Figure 125: p walk……………………………………………………………………………………..239
Figure 126: p logisticmap……………………………………………………………………………..240
Figure 127: p neighbour…………………..…………………………………………………………..240
Figure 128: p iter(sin) …………………………………………………………………………………241
Figure 129: DWSS_sequence………………………………………………………………………..242
Figure 130: DWSS_sequence (detail a)/………………..…………………………………………..242
Figure 131: DWSS_synthesis………………………………………………………………………..243
Figure 132: p Segment Reading……………………………………………………………………..243
Figure 133: p buffer-interpolating-reading…………………………………………………………..243

List of Tables

Table 1. Comparative Table of Non-Standard Synthesis Systems………………………………134

 13

Acknowledgements

I would like to express my gratitude to all the persons that took a significant part

in my life during the long road for the completion of this Thesis and especially

to:

My supervisor Eduardo Miranda for continuous guidance, advice and,

encouragement.

The colleagues I met in the Interdisciplinary Centre for Computer Music in

Plymouth and especially Joao and Eduardo for their friendship and hospitality.

My colleagues in the Department of Music Technology & Acoustics in Rethymno

and especially Chrisoula and Katerina.

All my friends in Athens and especially Dimitris, Kostas M., Kostas K., Yiannis

and, Haris.

All the friends that I met in Rethymno and now are spread around Greece,

especially Nikos, Sofia, Elena, Katerina, Yiannis, and Vaggelis.

All the friends in Rethymno and especially Lina, Manolis H, Tolis, Ourania,

Marianna, Aggelos, Alexandros D., Alexandros G., Manolis A., Stella and Vaso.

My parents Kostas and Kornelia for their love and whole-hearted support.

Marina, for her love, encouragement and, support to start it.

Evita, for her love, encouragement and, support to finish it.

 14

Author's Declaration

At no time during the registration for the degree of Doctor of Philosophy has the

author been registered for any other University award without prior agreement

of the Graduate Committee.

A record of activities can be found in Appendix I.

Word count: 48.394

12th of June 2013

………………………………..

Nikolas Valsamakis

 15

Introduction

I was always fascinated by strange sounds. I remember me as a kid, when I

was visiting during the summer the Greek island of Syros, I was enchanted

listening during the night the sounds of nature and I was thrilled by the minute

details of the sound of insects. To the same degree I was attracted by the

sound of toys, their mechanical sound, when toys unwind, when toys does not

work properly.

Through this practice of attentive focusing on the details of sound, I was

unintentionally training myself to develop what Pierre Schaeffer call reduced

listening. Moreover, with this fascination to the sounds of the soundscape and

the sounds of machines, I was somehow preparing myself, to encounter years

later, the sound world of electroacoustic music.

My first encounter with electroacoustic music was during the high school when

accidentally listened at the radio to the music of karlheinz Stochausen. This

music, completely new for me at the time, struck me immediately. Afterwards, I

discovered that the music I was listening was the electroacoustic composition

Hymnen (1969). From that moment I wanted to know how to create myself a

respective condition through sound composition that would repeat this primal

experience again.

I was lucky that, some years later at the end of the 80s, I went to the Center of

Contemporary Music Research (KSYME) in Athens. There, I was formally

introduced to contemporary music composition theory and practice as well as

electroacoustic music studio techniques. There, I started learning music

 16

programming and constructed my first simple algorithms for automated music

generation. It was at KSYME that arrived for the first time in Greece the NeXT

computer music system, equipped with the music programming environments of

Csound and Cmix.

Although I was already accustomed to the idea of algorithmic composition, it

was the music of Iannis Xenakis that provided me with the concept of

formalized music. Especially, I was fascinated by the computer-generated parts

of his landmark electracoustic composition La Legende dʼEer (1979) as well as

by GENDY (1991). Eventually, I decided to dig deeper into this subject and

went to the City University in London where I pursued my Master's degree. The

subject was precisely “Aesthetics and Techniques in the Electroacoustic Music

of Iannis Xenakis”. There I acquired an insight to the concept of direct waveform

synthesis through algorithmic procedures in a computer and the idea of

Dynamic Stochastic Synthesis that is behind the GENDY computer music

system.

Later, I encountered the radical concepts and the non-standard computer music

techniques of composers like Herbert Brun, Gottfried Michael Koenig, Paul

Berg, Agostino di Scipio and others. In parallel, I was investigating algorithms

derived from chaos theory and evolutionary artificial systems and started to

develop my own microsound synthesis systems and experiment with novel

sound sonorities in electroacoustic music composition.

The idea of creating directly the sound waveform by the application of custom

defined algorithmic procedures opened to me the question on a novel

formalization of sound modeling based on minute waveform segments. A

 17

research on such a formalization would not only encompass ideas and

techniques behind Xenakisʼs GENDY system along with the work of Brun,

Koening and others but would also provide an original paradigm of sound

modeling that investigate concepts of evolutionary computing and chaos theory.

This research aspires to provide the answer to a number of questions that

emerge from the involvement with concepts and practices on the above fields:

� is it possible to provide a new generalized sound synthesis model that is

based on waveform segments and that it would incorporate the basic

concepts of non-standard segment-synthesis techniques proposed by

Xenakis, Brun, Koening, and others?

� Is it possible to use the concept of Cellular Automata as a generalized

framework that extends the concept of stochastic waveform evolution

proposed by Xenakis in the GENDY system?

� Is it possible to use various algorithmic models (for example oscillating

functions, chaotic systems, stochastic systems) along with more

“traditional” Cellular Automata rules and achieve musically interesting

results?

� Is it possible to use higher-order algorithms (for example oscillating

functions, chaotic systems, stochastic systems, L-systems) to

automatically control multiple processes by Cellular Automata in order to

generate even more complex sequences of waveform segments in a

musical interesting perspective?

This research answer the above questions by proposing the model of Extended

 18

Waveform Segment Synthesis, by providing the paradigm of Dynamic

Waveform Segment Synthesis, and by exploring the construction of a variety of

synthesized sounds within a number of case studies.

The nature and the goals of this research project are double-sided. One side is

“scientific”: the proposal of a new sound synthesis model. The other side is

“artistic”: to provide a “compositional instrument” that is good in creating original

computer music. For my point of view these two perspectives are the two sides

of the same coin. If we are interested in creating original music we must

develop new concepts and tools and by doing so we contribute to broaden our

knowledge.

Research objectives

Formally, this Thesis proposes three main objectives:

I. to provide the concept of a new generalized non-standard synthesis model

based on minute waveform segments that would provide the framework for

incorporating other non-standard synthesis approaches;

II. to explore sound modeling through the application of Cellular Automata

and other dynamic algorithms as the engine of a new dynamic non-

standard synthesis technique for microsound composition;

III. to experiment with dynamic sound synthesis for the creation of novel

sound objects.

As part of the process of currying out the above objectives, this Thesis will

extensively cope with and critically examine the concepts of microsound,

algorithmic composition, and non-standard synthesis along with many others.

 19

These concepts will be encapsulated in a new theoretical paradigm for non-

standard synthesis that is based in the algorithmic assemblage of minute wave

segments to form sound waveforms. This paradigm is called Extended

Waveform Segment Synthesis (EWSS) and intergrades both abstract sound

structures along with structures derived from recorded sound material.

A consequent aspiration of this Thesis is to realize the basic concepts of the

extended waveform segment synthesis paradigm and to implement them in a

sound synthesis application. This application, which eventually is called

Dynamic Waveform Segment Synthesis (DWSS), would utilize a combination of

dynamic algorithmic generative and transformative models for the generation,

evolution and assemblage of sound segments. One aim is to propose the

application of continuous Cellular Automata as the algorithmic basis for the

evolutionary transformation of microsound structures.

Finally, we intend to experiment and demonstrate, in a number of case studies,

how DWSS is capable of generating sound objects that features basic

characteristics of other non-standard synthesis approaches and most

importantly, how it can generate new sound objects featuring morphologies that

belong to the heretical currents of contemporary computer music creativity:

Dynamic Sound Synthesis

Chapter overview

This Thesis is divided into 14 Chapters

“Chapter 1: Microsound” introduces to the notion of the hierarchy of time scale

levels in relation to composition, and focuses to the musical and technical

 20

concept of microsound which form the actual sonical time scale level of the

main subjects of this Thesis.

“Chapter 2: Algorithmic Composition and Computers” discusses in depth the

concept of the application of rules and procedures in music composition along

with the utilization of computer technology.

“Chapter 3: Historical Foundations” presents information theory along with the

early algorithmic music approaches of Hiller, Xenakis, and Koening as the

historical foundation of algorithmic composition and non-standard synthesis.

“Chapter 4: The two cultures of computer music” examine the notions of

disguised / explicit computer music and example based / rule based

composition as the basis for the differentiation between standard and non-

standard synthesis.

“Chapter 5: Non-standard synthesis: foundations” discusses in depth the

concept of non-standard synthesis and provides historical definitions of the term

along with an extensive collection of quotations.

“Chapter 6: Non-standard synthesis: Historical examples” presents the

implementation of non-standard synthesis paradigms of Xenakis, Koening,

Brun, Berg, Holtzman and others.

“Chapter 7: Sonic Emergence” examines the notion of emergence in relation to

the hierarchical levels of sound synthesis.

“Chapter 8: Computers, cognition and music analysis” discusses basic concepts

and methodologies of the scientific field of cognitive musicology in relation to

 21

apprehension and the analysis of sound objects generated by non-standard

synthesis.

“Chapter 9: Algorithmic models” presents the basic algorithmic models that are

utilized in sound synthesis and music composition along with historical

examples.

“Chapter 10: Extended Waveform Segment Synthesis (EWSS)” introduces to

the paradigm of Extended Waveform Segment Synthesis and proposes it as a

new generalized approach on non-standard synthesis with waveform segments.

“Chapter 11: Dynamic Waveform Segment Synthesis (DWSS)” introduces to the

first implementation of the dynamical non-standard sound synthesis concepts of

EWSS.

“Chapter 12: EWSS & DWSS in the contexts of non-standard synthesis”

describes the novelty of the concepts of EWSS and the potentiality in

synthesizing original sound objects with DWSS and place them side-by-side

with other non-standard synthesis approaches.

“Chapter 13: DWSS: case studies” presents a number of case studies that

reveal some of the synthetic capabilities of DWSS.

“Chapter 14: Conclusions” highlights the contributions to knowledge introduced

in the Thesis and make recommendations for future advancements in the field.

 22

this page is intentionally left blank

 23

1 Microsound

With the advent of technology, composers are able to apply music design

principles beyond the level of note or sound object representations. Computer

technology, along with the digital representation of sound, enabled the precise

control of sound formation. Concepts and formalizations of computer aided

algorithmic composition can be potentially applied from the construction of

whole pieces, sections and phrases down to the structuring of the sound objects

themselves. In this regard, the notion of microsound enables the integration of

the various composition levels. Phil Thomson suggests:

“microsound generally works with an integration of time scales,
relating the sub-note level with the level of sound gestures,
sections, movements and whole pieces. As such, it so far
seems to be the approach to electroacoustic music and sound
design that comes closest to realizing the long- standing dream
of ʻtotal compositionʼ: composition of everything from the overall
form to the individual sounds themselves.” [Thomson 2004, pp.
1].

Curtis Roads, a principal theorist and composer of the field, devoted a complete

book with the same title, Microsound, to present various concepts and

processes for microsonic design and transformation. Roads states in the

introduction of the book [Roads 2001, pp.vii]:

“Beneath the level of the note lies the realm of microsound, of
sound particles… Microsonic techniques dissolve the rigid
bricks of music architecture - the notes - into a more fluid and
supple medium. Sounds may coalesce, evaporate, or mutate
into other sounds. The sensations of point, pulse (regular series
of points), line (tone), and surface (texture) appear as the
density of particles increases. Sparse emissions leave rhythmic
traces. When the particles line up in rapid succession, they

 24

induce the illusion of tone continuity that we call pitch. As the
particles meander, they flow into streams and rivulets. Dense
agglomerations of particles form swirling sound clouds whose
shapes evolve over time.”

By the term “microsound” we refer both to the scale of music levels that lies

below the sound object (microsound levels, e.g. micro-level, sample-level etc)

as well as to the generative and transformational procedures that construct the

structural elements of the sound object (microsound synthesis).

1.1 The hierarchy of the time-level scale in relation to composition

Curtis Roads suggested a hierarchy of time scale levels in relation to music

composition. These levels, starting from the longest, are as follows [Roads

2001]: infinite, supra, macro, meso, sound object, micro, sample, subsample,

and infinitesimal. Four of them (macro, meso, sound object, micro, sample) are

of particular interest since they correspond to structural hierarchies of single

computer music compositions:

� macro level: the overall structure of a composition or macroform.

� meso level: phrases or sequences of sound objects.

� sound object: the notion of the basic unit of music structuring. It is a
generalization of the traditional concept of musical notes to include
complex sound events.

� Micro level: audio transient phenomena and particle structural elements
of sound objects.

� Sample level: Elementary digital audio representations. A single sample
impulse is the shortest possible sound duration in the computer
environment.

 25

The rest of the hierarchical levels suggested by C.Roads either extend below

any possible sound digital representation (subsample and infinitesimal) or

above the time span of a single composition (supra, infinite).

In this Thesis we are focusing in the construction of sound objects by non-

standard means. Our non-standard synthesis proposals operate in the micro-

level and should be considered belonging to the arsenal of microsound

composition. Therefore we are especially interested in three sound levels: the

sound object, the micro-level, and the sample-level.

1.1.1 The sound object

The notion of sound object includes any possible sound as basic music

structuring unit. The sound object extends the rather abstract notion of musical

note. The term of the sound object used in this Thesis is rather broad and

should not be confused with the term “objet sonore” proposed by Pierre

Schaeffer and in which the sound source is supposed not to get recognized by

the listener [Kane 2007].

Sound objects may have different properties and thus their perception may be

varying. Their difference is usually comprehended through their not common

properties. Properties may change over time making the sound object dynamic.

In this aspect sound objects are considered heterogeneous. The heterogeneous

concept of the sound object is contrasted to the homogeneity of the note, which

can be described by four common abstract properties of: timbre (referring to a

particular instrument), pitch, dynamic, and duration. Curtis Roads suggests that

the “loss” of homogeneity is offset by opening up electronic music into a variety

of dynamic sound formations [Roads 2001, pp.336]:

 26

“To adopt the universe of heterogeneous sound objects is to be
cast into a strange new land without conventional language.
The terrain of this land is non-homogeneous, pocked by
fractured disjunctions (intermittencies) and nonlinear transitions
from one perceived state to another.”

1.1.1.1 Spectromorphology and reduced listening of sound objects

Pierre Schaeffer, in his classic book Traite des object musicaux (1966),

suggested a taxonomy of sound objects according to their acoustic morphology.

Denis Smalley coined the term “spectromorphology” to describe perceived

morphological developments in sound object spectra over time [Smalley 1986,

1997]. Many composers consider the morphological study of sound objects

seminal to the theory of electroacoustic music. Dennis Smalley comments on

spectromorphology:

“I have developed the concepts and terminology of
spectromorphology as tools for describing and analysing
listening experience. The two parts of the term refer to the
interaction between sound spectra (spectro-) and the ways they
change and are shaped through time (-morphology). The
spectro- cannot exist without the -morphology and vice versa:
some- thing has to be shaped, and a shape must have sonic
content… A spectromorphological approach sets out spectral
and morphological models and processes, and provides a
framework for understanding structural relations and behaviours
as experienced in the temporal flux of the music.” [Smalley
1997, pp.107]

The morphological studies of sound objects make use of a specialized listening

mode that focuses on the detail and the quality of the sound itself independently

of its cause and of its meaning. This mode of listening is termed by Pierre

Schaeffer “reduced listening”. Michel Chion includes reduced listening, along

with casual and semantic, in his three modes of listening [Chion 1994]. Dennis

 27

Smalley characterizes reduced listening as: “an abstract, relatively objective

process, a microscopic, intrinsic listening” [Smalley 1997]. As we have already

seen, music perception is conditioned by cultural and historical conventions and

interpretations. As Michel Chion suggests, “perception is not a purely individual

phenomenon, since it partakes of a particular kind of objectivity; that of shared

perceptions. And it is in this objectivity-born-of-intersubjectivity that reduced

listening, as Schaeffer defined it, should be situated.” [Chion 1994].

The morphological studies of sound objects belong to the phenomenological

school. We have already seen that the phenomenological school of thought is

principally focused in the experience. Michel Chion explains reduced listening

as a phenomenological approach that targets to the materiality of the sound

object stripped off any semantic aspect:

“listening intention targets the event which the sound object is
itself (and not to which it refers) and the values which it carries
in itself (and not the ones it suggests). In "ordinary" listening the
sound is always treated as a vehicle. Reduced listening is
therefore an "anti-natural" process, which goes against all
conditioning. The act of removing all our habitual references in
listening is a voluntary and artificial act, which allows us to
clarify many phenomena implicit in our perception. Thus, the
name reduced listening refers to the notion of
phenomenological reduction (Époché), because it consists to
some extent of stripping the perception of sound of everything
that is not "it itself" in order to hear only the sound, in its
materiality, its substance, its perceivable dimensions.” [Chion
1983, pp.31]

However, reduced listening usually requires listening to the specific sound more

than one time. Computer music technology allows repeated listening that

eventually detaches the spectromorphological aspects of sound from any

reference to its cause and its meaning. Computer generated sound objects that

 28

are abstract modeled, as is the case of non-standard synthesis, are distanced

from any semantic reference already from their mode of production. Moreover,

any reference to the source, directly address to the computer algorithmic

process that generated the sound object.

1.1.2 The micro-level

Microsound synthesis is of special interest for this Thesis: non-standard

synthesis operates in its entirety by applying unconventional algorithmic

procedures for sonic composition in the micro-level. The microlevel “embraces

transient audio phenomena, a broad class of sounds that extends from the

threshold of timbre perception (several hundred microseconds) up to the

duration of short sound objects (~100 msec). It spans the boundary between the

audio frequency range… and the infrasonic frequency range…” [Roads 2001].

Micro-level transient phenomena are widely encountered throughout the natural

soundscape, its geophony and its biophony [Truax 2001], as well as to the

detailed gestures on the playing of any musical instruments. Curtis Roads

presents twenty-one different terms used in the scientific literature of acoustics

and signal processing concerning micro-level concepts [Roads 2001].

The major theoretical basis of micro-level formations lies in the granular concept

of sound, first proposed by physicist Denis Gabor. In the granular concept, the

basic micro-level sound unit is the grain. A sound object is represented as a

concatenation of grains. The granular concept of sound combines into a single

representation the time-varying waveform and the static frequency spectrum.

 29

The Gabor theorem as well as the granular synthesis model of sound is

discussed in more detail in section (12.2.1.2).

1.1.2.1 Synthesis and transformation on the micro-level

Iannis Xenakis suggests on the possibilities of granular synthesis and

transformation [Xenakis 1992, pp.47]:

“In fact within human limits, using all sorts of manipulations with
these grain clusters, we can hope to produce not only the
sounds of classical instruments and elastic bodies, and those
sounds generally preferred in concrete music, but also sonic
perturbations with evolutions, unparalleled and unimaginable
until now. The basis of the timbre structures and
transformations will have nothing in common with what has
been known until now.”

Xenakis soon became aware of the necessity for a global organisation principle

of grains. As granular synthesis of sound uses thousands of grains, the

composerʼs focus must shift from the attributes of individual grains to the

attributes of global grain formations. Xenakis himself proposed macroscopic

grain arrangement by means of statistical and set-theory operations:

“…to work like architects on the sonic material in order to
construct complex sounds and evolutions of these entities
means that we must use macroscopic methods of analysis and
construction. Microsounds and elementary grains have no
importance on the scale which we have chosen. Only groups of
grains and the characteristics of these groups have any
meaning.” [Xenakis 1992, pp.49-50]

Curtis Roads carried a thorough research in various microsound synthesis

concepts, techniques and implementations. Concerning the global organization

of grain units, Roads proposed the following possibilities [Roads 2001]:

 30

� Matrices and Screens
� Pitch-Synchronous Granular Synthesis
� Synchronous Granular Synthesis
� Quasi-Synchronous Granular Synthesis
� Asynchronous Granular Synthesis
� Physical Models
� Algorithmic Models
� Streams and Clouds of Granulated Samples

Beyond granular synthesis, Curtis Roads proposed a variety of microsound

techniques or “varieties of particle synthesis” [Roads 2001]:

� Glisson Synthesis
� Grainlet Synthesis
� Trainlet Synthesis
� Pulsar Synthesis
� Graphic and Sonographic Synthesis of Microsound
� Particle-Based Formant Synthesis (FOF, Vosim, Window)
� Synthesis by Transient Drawing
� Particle Cloning Synthesis
� Physical Models of Particles
� Abstract Models of Particles

Synthesis techniques and transformation techniques on the micro-level are

closely related. They interchange concepts and procedures. Their main

difference is that usually synthesis begins with micro-level scale material (single

waveforms, impulses, noise bursts) while transformation begins with sound

object scale material. Curtis Roads proposed a number of microsound

transformation techniques [Roads 2001]:

� Micromontage (by graphical sound editing, script, and algorithmic
process)

� Granulation

 31

� Pitch Shifting
� Time Stretching
� Filtering
� Dynamics Processing
� Waveset and Wavecycle Distortions
� Convolution of Microsounds
� Spatialization of Sound Particles
� Sonographic Transformations

From the above microsound synthesis and transformation possibilities, our

research focuses and investigates Abstract Models of Particles in general and

non-standard synthesis in particular.

1.1.3 The sample-level

The sample-level is the level of direct signal representation into discrete

information of impulse units. Each impulse unit represents one instance within a

sequence of samples that digitally represent a sound. The timing of impulses is

determined by the sampling rate of the digital clock of the system. Each

individual impulse unit carries so little information that no sense of timbre can be

derived. Timbral significance emerges only when a relatively large number of

impulses are ordered into a sequence.

Operations on the sample-level are governed by the theoretical and

mathematical basis of the sampling theorem, proposed by Nyquist and others

[Nyquist 1928]. The sampling theorem provides the scientific framework for any

digital representation of sound and audio processing by computers. On section

(12.1) we will discuss the sampling theorem as the basis of elementary models

of sound.

 32

Some non-standard synthesis approaches operate directly on the sample level

for the construction of sound objects without necessitating in the formation and

organization of intermediate micro-level structures. Herbert Brun, was one of the

first composers that proposed the concept of composing the sound instead of

composing with sound:

“For some time now it has become possible to use a
combination of analog and digital computers and converters for
the analysis and synthesis of sound. As such a system will
store or transmit information at the rate of 40,000 samples per
second, even the most complex waveforms in the audio-
frequency range can be scanned and registered or be recorded
on audio tape. This… allows, at last, the composition of timbre,
instead of with timbre. In a sense, one may call it a continuation
of much which has been done in the electronic music studio,
only on a different scale. The composer has the possibility of
extending his compositional control down to elements of sound
lasting only 1/20,000 of a second.” [Brun 1970, pp.36]

 33

2 Algorithmic Composition and Computers

Algorithmic approaches have been applied in composition during the music

history for centuries. The production of music with automatic instruments,

algorithms and procedural rules has a long tradition. In a parallel pathway,

algorithmic processes are found in the development of technique and

technology. Algorithms are inherent in software implementations of computer

systems. With the advent and spread of computer applications in music,

algorithms play an increasing role in music representation and production. But

can we term any music produced with the help of computers as “computer

music”?

Martin Supper defined computer music as “music that cannot be created without

the use of computers” [Supper 2001]. However, this definition is too vague.

Nowadays we have specialized software and hardware for sound recording,

sequencing, mixing, restoration or notation along with automated score

generation, sound synthesis, sound processing, or interactive performances.

Computer technology has an increasing tendency in covering virtually every

aspect of music production. There are less and less aspects of music

production and performance that are distinct from any computer involvement.

In this perspective, virtually any music tends to be applicable under the term

“computer music”. Thus, the above definition is so general that tends to become

meaningless.

However, there are often diverse and innovative systems that break with

established musical paradigms, elaborate compositional resources and propose

novel models of compositional design. These systems involve some sort of

 34

conceptual attitude towards sonic creation with the computer. They involve

some manifestation of the creative modes and generative processes with the

help of the machine. In this perspective, algorithmic methods take inherent part

in the creative process.

A number of terms have been used to define usually overlapping and

occasionally identical concepts in the field: algorithmic composition, computer

music, computer aided composition, computer assisted composition, computer

composing, programmed music, automated composition. Various researchers

attempted to distinguish these terms [Spiegel 1989, Cope 1991, Burns 1994,

Truax 1999, Miranda 2000].

The term algorithm does not have a generally accepted definition. There is an

ongoing debate between researchers in formalizing the term. In an informal

attempt, we could define algorithm as "a set of rules that must be followed when

solving a particular problem” [Oxford 2006].

In our effort for a definition, algorithmic composition consists of musical

concepts that are formalized and employed by the composer in rules and

procedures that generate elements, parts or the whole musical work.

Algorithmic procedures may be applied at a variety of compositional levels, from

the macro-structure down to the micro-sonic detail. Algorithmic composition is

an inextricable amalgam of concepts, procedures and human choices.

Algorithmic procedures are interpreted in the musical domain and the generated

results are then evaluated and assessed by the musical preferences of

composers.

 35

Nevertheless, the term algorithmic composition is not specific to the use of the

computer. Although the spread of computer technology had a great impact on

the development of algorithmic composition, the use of the computer is not a

prerequisite for it. Many historical and contemporary compositional approaches

are evident for this [Nierhaus 2008]. Therefore, we consider as more

appropriate the hybrid term Computer Aided Algorithmic Composition proposed

by Ariza [2005]. With this term, we overcome the generality of other terms, like

“computer aided composition” or “computer music”, that include any manner to

facilitate the musical output (eg. sequencing or notation) and are not

considerably specific for employing generative algorithms with a computer.

Additionally, this term makes clear the distinct link between the procedures

(algorithmic) and the implementation framework (computer).

We have already seen that computer aided algorithmic procedures may be

applied either to the composition of whole musical structures or to the synthesis

of individual sounds. In the above concept, sound generation itself can be

considered as compositional activity. Stockhausen writes, “every sound is the

result of a compositional act” [Stockhausen, 1963]. Di Scipio complements,

“synthesis can often be thought of as micro-level composition.” [Di Scipio

1995b]. The difference between composition and synthesis is rather a

difference in the time level the algorithmic operation takes place than of a kind.

This is evident if we take into account that the two terms “com-position” and

“syn-thesis” are etymologically synonymous in their respective language of

origin (Latin and Greek respectively).

 36

2.1 Totalistic Algorithmic Composition

The music practice with computer aided algorithmic composition is an aesthetic

current that is followed by a number of composers with diverse approaches.

Composers apply algorithmic procedures both in different aspects and in

various degrees of composition: from score generation to direct waveform

synthesis and from the sketchy computation of individual music parts or layers

to the entire automatic generation of composition.

Compositional interest in the formalization of musical procedures as well as the

advent of computers and their enormous computability, led some composers to

support the idea of computational automation of the entire composition.

The composer York Holler, although never used the term algorithmic, utilizes

compositional operations that are capable of generating entire compositions.

Holler comments on this approach [Holler 1984, pp.35]:

“The work of art seemed to me to be above all an organism, like
an organicoenergizing system, comparable to a living organism
in nature. In such a system, all elements are linked by
functional relations; they do not result from an arbitrary
formulation, but from evolution of a process.”

Kristina Burns state further, “algorithmic composition in its strictest sense would

involve a program in which the composition is generated entirely by a series of

rules that solve a problem based on recursion” [Burns 1992].

We call “totalistic” the algorithmic music approach that utilizes computer

procedures for the generation of the entire composition up to its finest detail.

Other have used similar terms like “integrity” [Laske 1981], “pure” [Ariza 2005]

or “rigorous” algorithmic composition [Hoffman 2009].

 37

The output of totalistic algorithmic synthesis is considered as music codified in

some symbolic form, either in the form of music notation or in the form of sound

waveform data. Later, musicians may perform the notation or an audio system

may played back the soundfile. Some may suggest that a strict definition of

algorithmic composition includes only the latter case, if the composer wants to

avoid performance and human interpretation by musicians. Peter Hoffman

suggests, “the entirety of a musical artwork is computationally defined, up to

and including every atom of the sound itself” [Hoffman 2009]. However, this

approach ignores that there are no “neutral” audio systems and that sound data

reproduction also involves some form of “interpretation” by the inherent electro-

mechanical characteristics of the playback system. This debate has its roots to

the rather philosophical issue whether music exists in its symbolic form or

needs to be listened.

Following this radical approach of algorithmic music, Gregory Kramer considers

the composition as being the audification of machine instructions and

performance [Kramer 1994]. On the other extreme, the group of computer

artsist, subscribing with the single pseudonym of Netochka Nezvanova,

considers music composition as the algorithmic process of the sonification of

digital data [Nezvanova 2000].

Some suggest that totalistic algorithmic music provide some degree of

aesthetic, compositional or musical integrity. Otto Laske state accordingly, “if

the composer wishes to maintain the algorithmic integrity of the output, a

consistent strategy for resolving such conflicts should be developed” [Laske

1981]. Sever Tipei goes even further saying that subsequent interference by the

composer to the generated music is “foolish, because it cancels the most

 38

important gain offered by this kind of endeavor, that of a qualitatively approach

to composition”.

The above views tend to ignore the role of the composer and the issue of

human interpretation and decision-making, both during construction and during

operation of the algorithmic system.

Horacio Vaggione argues integrity not only in algorithmic composition but also

on any musical formalism and reductionism [Vaggione 2001, pp.54]:

”Composers, especially those using computers, have learned
— sometimes painfully — that the formal rigor of a generative
function does not guarantee by itself the musical coherence of a
result. Music cannot be confused with (or reduced to) a
formalized discipline: even if music actually uses knowledge
and tools coming from formalized disciplines, formalization does
not play a foundational role in regard to musical processes.”

Curtis Roads supports this view and challenges whether formalisms are

necessarily cognitive validated [1996, pp.846]:

“Simply, because certain parameters of a piece… conform to an
arbitrary set of axioms is no guarantee that the listener will hear
consistency or originality in the final product. Musical
consistency and originality are cognitive categories for which
little theory yet exists.”

Some non-standard synthesis approaches could be categorized as totalistic

algorithmic composition. For example, the GENDY synthesis system by

Xenakis, is a totalistic algorithmic composition system that is capable of

generating all the levels of composition. With GENDY Xenakis was able to

compose the macrostructure, individual musical layers as well as to synthesize

the sounds in microsonic detail using stochastic processes. GENDY, along with

 39

other non-standard synthesis systems, will be further discussed in section

(13.1.1).

 40

3 Historical and Theoretical Foundations

As we have already seen, algorithmic composition models have been proposed

and applied long before the advent of computer technology. The first computer

machines appeared in early 1940s including the Mark-I and the ENIAC

mainframes. Almost a decade later introduced the first research in composition

with the aid of a computer.

In parallel with the advent of the first computer technology we have the rise of

particular theories and implementations that strongly influenced the historical

development of computer-aided algorithmic composition. On the one hand we

have the theories on Information and Communication, mainly proposed by

Wiener, Shannon, and Weaver. On the other hand we have the early

algorithmic compositional experiments by Hiller, Xenakis and Koenig.

3.1 Information Theory

Harry Nyquist in 1924 provided preliminary approaches on the concept of

information and how it can be transmitted by a communication system.

However, it was Claude E. Shannon who provided the foundation of information

theory or otherwise communication theory with the publication of the seminal

text A Mathematical Theory of Communication in 1949 [Shannon 1949].

Shannon was influenced by the theories of cybernetics of Norbert Wiener as

well as by the concept of entropy in thermodynamics.

The basic notions in information theory are the transmission of a message from

a source to a receiver through a channel. Shannon also developed the concepts

of information entropy, redundancy, and introduced as well the term “bit” as a

 41

unit of information. Information theory is closely related with various theoretical

and technological advancements like adaptive systems, anticipatory systems,

artificial intelligence, complex systems, complexity science, cybernetics,

informatics and machine learning. Claude E. Shannon, together with Harry

Nyquist, proposed the sampling theorem, which is the basis for sound

representation into digital data sequence [Gleick 2011].

Information theory, is concerned with quantitative aspects of information. It does

not have anything to do with qualitative aspects like semantics and meaning.

Information theory makes extensive use of probabilities for the generation and

formation of messages. Information is formatted by selecting from a finite set of

symbols with the help of Markov chains [Shannon 1949].

The concept of information, the application of probabilities as well as the

demonstrations of algorithmic text generation were seminal influences for early

algorithmic music systems.

3.2 Early Algorithmic Music Approaches

The early works of Lejaren Hiller, Iannis Xenakis and Gottfried Michael Koenig

constitutes the historical foundation for the development of the field of

computer-aided algorithmic composition. Their work was an influence for many

generations of composers as well as for the development of various computer

music systems. To this influence contributed the detailed documentation they

provided on their theories and their implementations.

3.2.1 L.Hiller and the Illiac Suite

 42

Lejaren Hiller together with Leonard Isaacson started experimenting with

algorithmic music procedures as early as 1955. Isaacson composed the Illiac

Suite for String Quartet (1955-56) with the help of a computer program he wrote

together with Hiller. They documented their investigations in the book

Experimental Music [Hiller et al 1959]. Illiac Suite is organized in four-

movements, each demonstrating a different algorithmic approach. Although the

music application of the computer was a novelty along with the use of stochastic

methods, the musical inscription was constraint in historical formalisms of style

imitation and pedagogy. In Experiment One they created 500 monophonic

melodies. In Experiment Two they employed the 18th century Fux model for

classical counterpoint to select between randomly generated diatonic pitches.

Their composition method called “try-again process” and was described as “the

extraction of order out of a chaotic environment” [Hiller 1956]. For the end of the

second part, they applied the emulation of “simple modulations and a

movement towards a final cadence” [Hiller et al 1958]. Experiment Three was

generated to imitate constraint chromatic music. In that movement they used

Markov chains for the selection of adjacent intervals and harmonies along with

Heinrich Schenkerʼs analysis methods on the hierarchical structure [Hiller 1956,

1970, Hiller et al 1958, 1959].

3.2.2 Xenakis and the Stochastic Music Program

The style imitative approach of Hiller and Isaacson was highly criticized by

Xenakis, as a “failure to confront the real musical problems of the present”

[Matossian 1986]. Xenakis considered the work of Hiller and Isaacson more as

a “musicological research”. Instead, he insisted that his own Stochastic Music

 43

Program was the first computer music program developed for the composition

of “absolute” music [Varga 1996].

Xenakis was always looking for music originality. This trend was expressed in

his research and experimentations on new principles and procedures of music

composition. Xenakis published in 1955 an article called the crisis of serial

music where he strongly criticized the theory and practice of that dominant at

the time musical direction. Xenakis proposed as an alternative the application of

stochastic methods in composition [Harley 2004]. Xenakis himself mentions:

“I think this has been my main contribution to contemporary
music: masses of sounds controlled like clouds by means of
probabilities that shape the clouds statistically” [Varga 1997,
pp.142].

Pithoprakta (1955-56) for orchestra was the first composition in which he

applied stochastic procedures in composition. Xenakis developed the

Stochastic Music Program (SMP) in 1962 as an early attempt to automate the

compositional process with a computer. SMP took advantage of statistical

methods for the control of various musical parameters over different

compositional levels (e.g. length of sections or note parameters). The following

aspects of the composition were handled by SMP [Xenakis 1992]:

1. The average duration of each section
2. The density of notes in each section
3. The classification of instruments into timbre classes for each section
4. The timbre of each note
5. The pitch of each note
6. The glissando speed of each note
7. The duration of each note
8. The intensity evolution of each note

 44

Some of the above parameters are interdependent: the pitch class is dependant

from the timbre class, pitch is dependant from the timbre and instrument

classes, and the glissando is calculated by pitch, speed and duration

parameters. The generated musical events had the form of alphanumerical lists

and required manual transcription into notation.

Xenakis thought the algorithmic structure of SMP as a generalized formalism of

composition that is capable of generating a number of works. With the aid of

SMP Xenakis composed a number of important instrumental works including

ST/4 (1956-62), St/10 (1956-62), St/48 (1962), Atre ́es (1962), and Morsima-

Amorsima (1962) as well as some sections of Eonta (1963-64).

During that period, Xenakis was already considering the possibility of using

stochastic techniques in direct waveform synthesis:

“Although this program gives a satisfactory solution to the
minimal structure, it is, however, necessary to jump to the stage
of pure composition by coupling a digital-to-analogue converter
to the computer. The numerical calculations would then be
changed into sound, whose internal organization had been
conceived beforehand” [Xenakis 1992, pp.144].

This initial proposal was later developed into Dynamic Waveform Synthesis
[Xenakis 1992].

3.2.3 G-M. Koenig and the PR1 & PR2 Programs

G-M. Koening developed the computer program Project1 (PR1) in 1964, which

followed by Project2 (PR2) in 1967. In parallel with Xenakis, he wanted to cope

with compositional problems that he encountered with serialism. The main

objective was the “calculation of musical structures” with the combination of

 45

serial and aleatoric procedures as discrete compositional elements [Koenig

1971a].

In PR1 Koenig applied his concept of the “regular” and “irregular” opposites,

that he called the “R1 priciple”. In PR1 the R1 principle is actually a measure for

generating between periodic and aperiodic sequences of the following

parameters:

1 Instrument or instrument group

2 entry delay that work as metronomic units

3 pitch that defines the intervals of three-tone groups

4 octave register

5 dynamics

On each parameter the composer assigned a list of desired values. The

program used two discrete procedures, the “series” (random selection with

replacement) and the “alea” (random selection without replacement), for the

random selection and permutation of elements from the lists and the generation

of parameter sequences.

Similarly to the SMP program, the PR1 program generates a score-table. The

composer interprets the score-table and produces a score for any number of

instruments.

The PR2 computer program was more general and allowed greater control for

the composer. The composer defines a list with eight parameters which are

grouped in the following categories [Koenig 1971a]:

� Instrument: lists of instrument names; each melody or percussion
instrument is defined in terms of its pitch, duration and dynamic range.

 46

� Rhythm: lists for entry delays, durations, rests and tempi.

� Harmony: a choice of three harmonic principles: chord list, row,
interval table.

� Dynamics: list of dynamic indications.

� Articulation: list of articulation modes.

Parameters are hierarchical interdependent: “once a parameter has been

composed… the following parameters must adapt to those already composed”

[Koenig 1971b]. Hierarchy is either defined by the composer or generated

randomly.

In PR2 Koenig applied six discrete list selection and permutation procedures:

� series (random selection without replacement)

� alea (random selection with replacement)

� ratio (weighted random selection)

� group (selection with group of elements repetition)

� tendency (random selection within boundaries)

� sequence (composerʼs selection of individual elements)

The program requested input data for more than 60 questions. Then generated

the final score-tables autonomously, without any further intervention by the

composer.

In both programs, Koenig applied his concept of the fluctuation of parameters

between the opposites of periodic and aperiodic for the control of musical

repetition and variation. In PR2 Koenig provided more complex control by

applying the concept of “stockpiles” of parameters in list selections. Selection

and permutation procedures grouped list elements into intermediary “stockpiles”

 47

of various depths. The different list selection methods are capable of generating

stockpiles with a variety of sequences and distributions. Further selections from

specific stockpiles were possible by generating tightly constraint element

selections [1971b].

Koenig composed nine works with the aid of PR1: Projekt 1 - Version 1 (1965-

1966), Projekt 1 - Version 3 (1967), Output (1979), Segmente 1-7 (1982),

Segmente 99-105 (1982), 3 Asko Stuc̈ke (1982), Segmente 92-98 (1983),

Segmente 85-91 (1984), and Beitrag (1985-1986). Two more works composed

with the aid of PR2: U ̈bung (1969) and 60 Bla ̈tter (1992).

 48

4 The two cultures of computer music

Peter Hoffman proposed the concept of “two cultures of computer music” to

describe diverse and sometimes antagonistic practices and aesthetics in the

field of computer composition. He called these two cultures as “disguised” and

“explicit” computer music [Hoffman 2009].

The disguised computer music, which is the majority trend, is interested in

emulating aspects of music making practice within the established cultural

framework. This trend tries to “humanize” the machine and produce “natural”

and “beautiful” sound, terms that derive from the dominant western culture

positivist concepts and aesthetics. One representative of the disguised

approach and seminal researcher of physical modeling techniques is Julius O.

Smith. In a paper titled “Viewpoints on the history of digital synthesis” Smith

speculates about the future of synthesis models and projects his positivist

perspective by envisaging the disappearance of non-standard synthesis along

with other abstract methods:

“The most straightforward way to obtain interesting sounds is to
draw on past instrument technology or natural sounds… The
best way we know to understand a sonic transformation is to
study its effect on the short-time spectrum, where the spectrum-
analysis parameters are tuned to match the characteristics of
hearing as closely as possible. Thus, it appears inevitable that
sampling synthesis will migrate toward spectral modeling. If
abstract methods disappear and sampling synthesis is
absorbed into spectral modeling, this leaves only two
categories: physical-modeling and spectral- modeling. This
boils all synthesis techniques down to those which model either
the source or the receiver of the sound.” [Smith, 1991, p.9]

The explicit computer music is interested in conceptualizing the use of

machines and taking the technical means into account, stressing the

 49

computational aspect by using rigorous formalisms, and experimenting with

what is beyond the established culture in a radical approach. Theorist Michael

Hamman discusses the explicit compositional practice where the composer

designs algorithmic processes as part of his own particular compositional tools

with which the compositional process is carried out [Hamman 1999a, pp.7]:

“In this context, composition consists in enabling a composer to
compose the very means (i.e. elements within the task
environment) by which compositional activity might be carried
out. The operations and operands which define the task
environment themselves become explicit by virtue of their being
rendered as formalized elements within a symbolic system such
as a computer. Such elements include programs, data
structures as well as visual and interactive components. In such
an environment, compositional hypothesis are determinative of
both the artifacts being designed and the explicitly formulated
processes by means of which those artifacts are designed.”

Hoffmanʼs differentiation between implicit and explicit computer music cultures

is very close to the distinction Otto Laske made between, example-based

composition and rule-based composition [Laske 1991]. In example-based

composition, the composer relies on existing materials and models, on historical

experience and practice, for the design of musical processes that produce the

musical result. In rule-based composition, the composer defines and

implements his own rules and procedures that generate the music material. In

the latter approach, composers “focus on the pro-active, rather than the re-

active, aspect of their activity, [giving] them a chance to choose, rather than

suffer, their process” [Laske 1991]. Hamman suggests that what distinguishes

rule-based composition is the taking into foreground and the conscious use of

all the formalizing procedures as part of the creative process. This is called

externalization and objectification of the composition processes: “what

 50

distinguishes rule-based approaches is that there is an effort to represent

otherwise internal processes externally; to objectify them so that, as observable

objects and processes, they may be consciously moulded and manipulated”

[Hamman 2000].

Eventually, the differentiation between implicit and explicit computer music

cultures as well as between example-based and rule-based composition lead to

the concept of standard and non-standard synthesis of sound. Non-standard

synthesis, in its various implementations, is a radical approach of rule-based

composition belonging to the explicit computer music culture. The distinction

between these two sound synthesis approaches will be discussed in chapter

(7).

4.1 A Heretical Approach to Computer Music

From the beginning, electroacoustic music provided a heretical or anorthodox

paradigm for the re-interpretation and (ab)-use of technology as a means to the

creative process. Early electroacoustic techniques involved the application of

standard radio equipment in ways that went far beyond their initial conception,

design and mode of operation. For example, tape speed as well as tape speed

stability (wow and flutter) is considered as important quality factors for the

frequency response of the tape machine regarding the faithful capturing and

reproduction of sound events. However, composers took control over both tape

speed and speed stability as part of their creative means. Pitch change, time

flow reversal, time flow repetition (looping), and sound processes like phasing

and flanging were but a few of the artistic means that led the unorthodox use of

 51

the tape machine. Agostino Di Scipio comments about the heretical use of

technology in early electroacoustic music [Di Scipio 1997, pp.11]:

“In the 1940s and 1950s Elektronische Musik and Musique
Concrete were born by an unprecedented re-interpretation of
technical instruments which were solely meant for scientific
measurements and control. In that case, means of
reproduction, control and storage were bent to a form of
creative production - of poiesis - which was completely alien to
their original technical code.”

The same heretic attitude by composers towards technology in their creative

process can be found throughout the history of electroacoustic music, either

electronic or computer based. Regarding computer music, the heretical use of

technology belongs to the explicit computer music culture. Michael Hamman

suggests that computers do not only allow for the exploration of novel music

ideas but as well as for the critical assessment of the compositional process

itself [Hamman 2002, pp.93]:

“The computer provided the kinds of tools that allowed the
composer to explore more deeply, the very conceptual frames
in which musical ideas might be imagined and realized. It
enabled the composer to critically examine and assess the
musical result, the means by which the result came about, and
how the two are conceptually and generatively related”

Composers invent new approaches that go beyond standard techniques and

technologies in order to control their creative means in an original way instead

of interpreting them in a culturally established and usually commercial way. G-

M. Koenig comments on his non-standard approach in computer music [Koenig

in Roads 1985, pp.573]:

“Primarily I am very annoyed with composers using the most
modern tools of music making, like electric music, voltage

 52

control, even computers, and making twelve-tone series for
instance, or trying to imitate existing instruments. This has, of
course, its scientific value, but not necessarily a creative value
in new music making... So just to be able to avoid that, to open
up new fields of sounds you would not be able to produce or
would not think of describing in classical terms, I have chosen
this non-standard approach.”

 53

5 Non-standard Synthesis: Foundations

If we take the closely related concepts of explicit computer music and rule-

based computer music down to the microsonic level, we are eventually reaching

the realm of abstract sound modeling and non-standard synthesis.

Abstract modeling in general and non-standard synthesis in particular are

detached from any representational approach. Non-standard synthesis does not

try to emulate either the acoustical properties of the sound phenomenon, as is

the case with acoustic modeling, or the physics underlying the sound production

of the source, as is the case with physical modeling (a taxonomy of sound

modeling approaches is presented in chapter 10). The generated sounds in

non-standard synthesis are artificial abstract algorithmic microsonic structures,

without any reference to any natural phenomenon or any pre-existing model.

The abstract modeling of non-standard synthesis should be thought as an

avant-garde approach to sound construction with direct similarities to abstract

painting or abstract film.

The non-standard notion of sound has its foundation in the very concept of

sound computability. It changes the descriptive function of the sampling

theorem into a productive function. Non-standard synthesis is closer than any

other synthesis model to a reductionist concept of sound. In this approach,

sound is the audible representation of a creative compositional process and

applies aesthetics and formalizations down to the microlevel of sound

structuring. Curtis Roads states on non-standard techniques [Roads 1996,

pp.319]:

 54

“They are nonstandard in the sense that were conceived for the
production of new electronic sounds, rather than starting from
simulations of traditional instrument tones. They are motivated
by compositional aesthetics, by the desire of creative
imagination for fresh musical resources.”

Non-standard synthesis approaches are abstract instead of immitative. They

are creative instead of reproductive. Their aesthetics are rather radical and

usually stretch beyond any culturally established concept of “beauty” towards

more absurd sonorities. Their musical practice to sonic composition is

exploratory and experimental since they are dissociated from any already given,

tried and tested sound theory or model. Agostino Di Scipio describes non-

standard synthesis and recognizes the exploratory attitude one has to follow

when coping with sound design [Di Scipio 1994b, pp.4]:

“Models of standard synthesis are instances of known theories
of sound; one utilizes them in his/her own model of musical
design. In contrast, non-standard models instantiate a possible
theory of sound; one explores them, and learns how they can
mediate the sonic structure.”

“…these embody an arbitrarily devised process and reflect an
abstract model corresponding to no generalisable (acoustic)
theory. In the computer implementation of such processes, the
control-structure features primarily compositional – rather than
physical or psychophysical - parameters.”

Holtzman, Koenig, Berg, Brun and Xenakis were the first composers who

experimented with non-standard synthesis and developed a heretical approach

towards sound technology. The compositional efforts of these composers was

not intended in the generation of pleasant, natural or even plausible sounds.

Merely, they were mostly interested in creating compositional processes, which

would manifest novel sounds and sonic structures. Holtzman and Berg utilized

sequences of arithmetic and logic operations on binary numbers. Koenig

 55

applied techniques derived from serial and aleatoric composition for the

construction of sound waveform segments. Brun used abstract operations on

direct waveform segment synthesis. Finally, Xenakis utilized stochastic

processes for the formation of sound wavecycles.

5.1 Historical definitions of non-standard synthesis

Between 1978 and 1980, S.R. Holtzman in the Department of Computer

Science of the University of Edinburgh as well as G-M. Koenig and Paul Berg in

the Institute of Sonology in Utrecht carried seminal research and provided the

basic theoretical framework for non-standard synthesis. Initial implementations

of non-standard synthesis techniques found their way in the Automated Digital

Sound Synthesis Instrument (S-R. Holtzman), SSP (G-M. Koenig), and PILE (P.

Berg) computer music programs. An earlier non-standard approach in

composition has been carried by G-M. Koenig in his Project 1 (PR-1) and

Project 2 (PR-2) computer programs. This group of composers formed the

“school” of Utrecht, for whom the specificity of machine computation provided

the subject of music composition. Barry Truax states about the compositional

approach of Utrecht school [Truax 1999, pp.24]:

“In more colloquial parlance, these approaches continued what
has been called the ʻhard edge Utrecht schoolʼ of electronic
music, known for its abrasive sound quality and
uncompromising compositional structures”

During the research for this Thesis, we visited the library of the Institute of

Sonology, currently located in the Royal Conservatory of The Hague, and

carried out a thorough research on research papers and technical reports on

the above computer music programs, surveyed the concept of non-standard

 56

synthesis and collected characteristic and important passages concerning the

two terms and their applications.

Holtzman himself was the first to propose the terminology of standard and non-

standard synthesis techniques. According to his definition, non-standard

synthesis is a bottom-up approach that is based on computer instructions. The

latter determine direcly defined relationships between sound samples that do

not refer to any higher-level acoustic model. The following rather long quote

dates from 1979 and is derived from a historical research report with the title “A

description of an automated digital synthesis instrument – D.A.I. Research

Report No.59” written by S-R.Holtzman to the Institute of Sonology. This rather

long quote is highly revealing and provides an original conception of non-

standard synthesis:

“The synthesis technique used in our system rests on ʻnon-
standardʼ approach to digital synthesis: based on digital
processes, synthesis is built around a technique of applying
sequences of… instructions to samples… The synthesis
possibilities are considered ʻidiomaticʼ to the extend that the
technique is limited and build around a particular machine cpu
architecture. The meaning of non-standard is twofold: firstly it is
meant to suggest the noises this technique tends to generate
non-standard sounds in terms of the sound repertoire of
contemporary instrumental or electronic music; and secondly
that the approach to describing a sound is in terms of basic
digital processes rather than the standard descriptions that use
acoustic based sound models (e.g. Fourier models, Frequency
modulation, etc.) and traditional concepts of frequency, pitch,
timbre, overtone structure, etc.

In standard models, the relationships between samples are
created given some descriptions of a desired timbre, frequency,
attack etc… What is considered the essential qualifying feature
of standard synthesis techniques is that, working ʻtop-downʼ, the
samples and relationships between them are the function of
some higher-level acoustic model.

In non-standard synthesis, we refer to a process where the
samples are determined not in the basis of some description of

 57

timbre, frequency, etc. but rather, samples are related only one
to another, relationships created determining the timbre,
frequency etc.; ʻrelating only one to anotherʼ suggests that the
relationships are diacritically defined and do not refer to some
superordinate model or function… The samples are conceived
of in terms of machine-instructions rather than on the basis of
some acoustic theory.

Standard approaches to digital synthesis are characterized by
an implementation process where, given a description of a
sound in terms of some acoustic model machine instructions
are ordered in such a way so as to simulate the sound
described; the non-standard approach, given a set of
instructions, relates them one to another in terms of a system
which makes no reference to some superordinate model, i.e. is
self-contained, and the relationships formed are themselves the
description of the sound.” [Holtzman 1978, pp.1-2]

The PILE computer language designed by Paul Berg uses sequences of

computer instructions to generate directly the sound waveforms. This

algorithmic aproach and aesthetic on sound synthesis is characteristic of

composers around the Institute of Sonology. Berg writes about the PILE

computer language [Berg 1979, pp.30]:

“PILE instructions are based on groups of machine operations,
not on a particular acoustic model. Parameters such as
frequency, timbre, envelope, and duration are not specifically
referenced… A myriad of sound-synthesis programs are based
on models related to instrumental music or the design of a
traditional analog electronic studio… They all require the use of
a computer because of the magnitude of the task... It is a valid,
but it is certainly not the most interesting one. More interesting
ones are: to hear that which without the computer could not be
heard; to think that which without the computer would not be
thought; to learn that which without the computer would not be
learned… Computers produce and manipulate numbers and
other symbolic data very quickly. This could be considered the
idiom of the computer and used as the basis for musical work
with the computer.”

G-M. Koenig developed the SSP computer music program for non-standard

sound synthesis in 1979 at the Institute of Sonology. Koenig comments on

 58

computers, computing, music, the abstracted definition of sound and the

exploratory approach in composition:

“The computer acts as a sound-generating instrument sui
generis, not imitating mechanical instruments or theoretical
acoustic models.” [Koenig 1980, pp.111]

“We should rewrite music theory in binary terms. Create a new
grammar for computers. Something which is adapted to the
kind of systematic thinking of the computer world. Nothing
vague. Either 0 or 1.” [Koenig quoted in Holtzman 1994, pp.241]

“As opposed to programmes based on stationary spectra or
familiar types of sounds, the composer will be able to construct
the waveform from amplitude and time-values. The sound will
thus be the result of a compositional proc- ess, as is otherwise
the structure made up of sounds.“ [Koenig 1970b, pp.113-114]

Moreovere, Koenig refers to his non-standard approach in a 1979 interview with

Curtis Roads [Roads 1985, pp.572]:

“This program uses what we call the "non-standard approach"
to sound synthesis. That means not referring to a given
acoustic model but rather describing the waveform in terms of
amplitude values and time values. My first intention was to go
away from the classical instrumental definitions of sound in
terms of loudness, pitch, and duration and so on, because then
you would refer to musical elements which are not necessarily
the elements of the language of today. To explore a new field of
sound possibilities I thought it would be best to close the
classical descriptions of sound and open up an experimental
field in which you would really have to start again. It would be
the task of a later time or other people to map the new
possibilities to the old experiences.”

Finnally, Barry Truax comments on the computer music programs of Koenig

and Berg [Truax 1999, pp.24]:

“They are termed non-standard because they are based on no
known acoustic principle or parameter, but rather on basic
microlevel data manipulations – expressed either as
amplitude/time sequences or in the logical form of machine
language operations that result in such sequences”

 59

5.2 The idiomatic character of non-standard synthesis

Non-standard systems are highly personalized, computer oriented, explicit

approaches of digital sound synthesis. In these sense they are highly idiomatic.

Stephen Holtzman highlights the rise of new idiomatic aesthetics with the

utilization of computers in music composition [Holtzman 1994, pp.240]:

“From a creative perspective, what is interesting is not how well
computers can emulate traditional human models for
performing their tasks and solving problems, but, rather, the
new territory that computers will reveal. What are the new
possibilities opened by computers? What ideas and means of
expression will we discover that are only conceivable with
computers? What new models will we develop for viewing the
world in light of computers? What means of expression are
idiomatic for computers?”

Non-standard synthesis provides a very idiomatic paradigm of music

composition whose very essence is derived from the notion of machine

computability itself. Questioning the idiomatic qualities of non-standard

synthesis, we propose in this Thesis four discrete aspects: formal, sonical,

personal and machine oriented.

� Each non-standard synthesis system proposes a novel approach in

formal sound modeling. The algorithm is an abstract conception and

does not rely on any pre-existing theory or higher order model. Any non-

standard formalization is a new proposal for a unique sound model.

� The sound world of each non-standard synthesis is highly

distinguishable. Non-standard systems are capable of generating new

 60

sound structures of unheard-off sounds. Usually, the non-standard

algorithmic models are restricted to a narrow range of sonorities that are

highly differentiated and immediate recognizable by any other model.

� Non-standard synthesis techniques are original formalized conceptions

that define a very personal artistic idiom. Each technique is based on a

specialized formalization that is capable of generating a sonic world that

eventually characterizes the artistic identity of their designer artist.

� Finally, non-standard synthesis is idiomatic to specific machine or at

least that was the case for the early examples. Historically non-standard

systems were implemented on particular computer hardware and written

for specific CPU. Nowadays algorithmic systems are usually transferable

to various computer environments. However, some implementations still

remain machine oriented (e.g. algorithms designed on the KYMA

system).

 61

6 Non-standard Synthesis: Historical Examples

For the last 40 years, on every decade new paradigms for non-standard

synthesis appear. Although those paradigms are limited in number, the

insistence on a heretical approach on computer music show the continuous

interest in non-standard synthesis.

During the mid 1970s, the first wave of non-standard synthesis systems

appeared, with Iannis Xenakisʼs Dynamic Stochastic Synthesis, G.M. Koenigʼs

SSP, Paul Bergʼs PILE, S.R. Holtzmanʼs Automated Digital Sound Synthesis

Instrument, and Herbert Brünʼs SAWDUST.

The second wave, appeared during the 1990s, with Iannis Xenakisʼs GENDY,

Arun Chandraʼs TrikTraks and Wigout, Gordon Monroʼs Fractal Interpolation

Waveforms and, Jaques Chareyronʼs LASy.

A third wave is formed during the 2000s around the research of Agistino di

Scipio on Iterated Nonlinear Functions.

In recent years, the interest for non-standard synthesis is revitalized. This takes

place especially around the concept of Iannis Xenakisʼs Dynamic Stochastic

Synthesis. This is seen in the various implementations and variations of the

GENDY system as well as with the musicological research carried on with it.

Other implementations provide a different approach, for example Stelios

Manousakisʼs Non-standard Sound Synthesis with L-Systems.

Our own research, also motivated by the GENDY system but enormously

extends it and goes beyond it, asserts its own place in the current of non-

standard synthesis.

 62

6.1 Dynamic Stochastic Synthesis

Iannis Xenakis presented the concept of Dynamic Stochastic Synthesis in 1972

in the chapter “New Proposals in Microsound Structure” of his book “Formalized

Music”. In that chapter Xenakis discussed several conceptual approaches for

composing sound in the sample level.

In Dynamic Stochastic Synthesis, waveforms are constructed by linearly

interpolating a set of breakpoints. A pair of duration and amplitude values

defines each breakpoint. At every repetition of the waveform, the amplitude and

duration values are varied stochastically with the application of a pair of random

walks (stochastic models, including random walks, are presented particularly in

chapter 11.3). Any probability distribution can be employed to determine the

size and direction of the steps (e.g., uniform, Gaussian, exponential, Poisson,

Cauchy, arc sin, logistic, nested distributions). There are as many pairs of

random walks as the number of breakpoints in the waveform. Each random

walk is forced to remain within a predefined value range by means of two elastic

barriers that reflect excessive values back into the specified range. These

barriers provide control over the frequency and amplitude of the waveform.

Xenakis envisioned a sound synthesis method ranging between determinism

and indeterminism [Xenakis 1985, pp.179-180]:

“Starting from a pressure-time curve [...] one may continue by
repeating this curve and at the same time injecting stochastic
modification into it after every repetition. This stochastic
modification is chosen so as to produce the statistically
continuous negation of the original period, affecting the timbre,
pitch, rhythm, intensity, and general evolution simultaneously.
[...] It becomes the job of the composer to master, with intuition
and reason at the same time, the doses of [this negation]. In

 63

other words, one establishes an entire range between two poles
— determinism, which corresponds to strict periodicity, and
indeterminism, which corresponds to constant renewal.”

Xenakis first investigated the possibilities of Stochastic Dynamic Synthesis at

the Centre for Mathematical and Automated Music (CMAM) at the Indiana

University. Some of the sounds of the composition of La Légende dʼEer (1979)

were created with this method.

6.1.1 GENDY

The concept of synthesis through stochastic variation of the sound waveform

was further explored with the GENDY program in mid 1990s. GENDY is the

acronym for “Génération Dynamique Stochastique” or in English “Dynamic

Stochastic Synthesis” Basically, the major difference between the new

implementation of the algorithm and the previous one is the use of a pair of

second order random walks. The role of the second order random walks was to

control the successive step widths of the primary pair random walks: the

probability distribution generates the step sizes of the first random walk (the

primary random walk); the successive positions of the primary random walk are

the step sizes of the secondary random walk [Xenakis 1992, Serra 1993,

Hofmann 2000, 2009]

GENDY provided also the automated control of the macrostructure of the

composition through the Parag program with the application of another

stochastic functions.

Xenakis used the GENDYN program for the composition of Gendy3 (1991) and

S.709 (1994).

 64

6.1.2 Recent variations

During the recent years there is a revitalization of the compositional and

musicological interest on GENDY. Peter Hoffman is the major researcher on the

subject. As part of his research he implemented the New GENDY Program and

analyzed the two compositions of Xenakis through resynthesis [Hofmann 2000,

2001, 2004, 2009]. Other researchers and composers recreated the GENDY

algorithm or used it as the basis for their own algorithm extensions: Jaeho

Changʼs XENAK [Chang 1999], Alberto de DeCampoʼs miniGENDY [Hoffman

2011], Andrew Brownʼs Interactive Dynamic Stochastic Synthesizer [Brown

2005], Sergio Luque [2009], Luc Döbereiner [2008, 2009a, 2009b], Nick

Collinsʼs iGENDYN [Hoffman 2011], and Angelo Belloʼs GenLab [Hoffman

2011].

6.2 SSP

SSP is a computer sound synthesis program designed by composer G.M.

Koenig at the Institute of Sonology in Utrecht in 1972. Previous design plans

date back to the 1960s. SSP is based on the concept that “musical sounds may

be described as a function of amplitude over time” [Koenig, 1971]. Many of the

functions of “Project 1” (PR1) and “Project 2” (PR2) programs have been

applied in SSP for the generation of sound itself. Similar to the List–Table-

Ensemble principle of PR2, “predetermined precompositional rules are used to

build a sound with the basic units of amplitude values and time values. The

rules are either aleatoric procedures or the direct enumeration of a sequence of

values.” [Banks et al 1979]. Amplitude and time values were specified, selected

and then joined into waveform segments. Segments were represented in core

 65

memory as breakpoints. The 12-bit representation of the system allowed 4096

different amplitude values. Time was expressed in microseconds with a

minimum value of 38 microseconds. In SSP, the composer worked interactively

with a number of elementary functions like: ALEA, SERIES, RATIO,

TENDENCY, SEQUENCE, and GROUP. All these functions make use of a

rather small number of parameters for the construction of larger chunks of

sequences of waveform segments [Berg 1978, 1979b, Banks et al 1979, Berg

et al 1980]. Among them, an important and distinguished feature was the

application of tendency masks for the ordering of segments. According to the

compositional experience of Paul Berg with SSP [Berg 2009, pp.84]:

The ordering of segments using tendency masks was
particularly successful. A wide selection of segments would
result in a noisy sound structure. Narrow masks led to unstable
sounds within a confined frequency region. Masks moving from
narrow to wide could produce dramatic transitions between
these two extremes.

In SSP, the userʼs task could be described as:

� LIST the source material (amplitude and time values)
� SELECT all or part of the lists
� construct SEGMENTS from the selection
� order the segments (PERMUTATIONS)
� listen to the chosen order
� return to any of the preceding steps for further refinement.

Three pieces were composed with this program: Mandolin (1979) by Paul Berg,

Blue Flute (1979) by Robert Rowe and, One Room to Another (1979) by David

Theriaul.

 66

6.3 Instruction Synthesis: PILE

PILE was a computer language for direct sound synthesis designed by Paul

Berg at the Institute of Sonology in Utrecht in 1972. The basis of PILE was a

group of machine instructions for the PDP-15 computer. Curtis Roads

suggested the term ʻInstruction Synthesisʼ to describe this approach. The

concept of Instruction Synthesis is that the sound is specified exclusively in

terms of logical instructions [Roads [1996]. Instruction Synthesis was efficient

and could be run in real-time on the most inexpensive microcomputers of the

time. PILE operated in real-time and was capable of producing several layers of

different sounds up to four channels. Instructions fell into the following

categories [Berg 1979a]:

� Manipulation of the accumulator
� Manipulation of external devices
� Manipulation of variables
� Manipulation of lists
� Manipulation of program flow

The research background of PILE was ASP (Automated Sound Programs), a

collection of 22 programs written by Berg in MACRO-15 which modeled number

manipulation and temporal distribution systems (e.g. counting, calculating,

comparing, choosing, repeating etc) to generate and manipulate binary data.

According to Paul Berg the userʼs task could be described [berg 2009, pp.83]:

A possible scenario for developing a composition was to
develop a section by writing code, listening, and refining. The
program was deterministic, such that given the same initial
values, the same result would always be reproduced. Several
sections could be developed independently and their code
concatenated to create larger structures. Different sections
could be variants of a previous section but with different initial

 67

conditions. The final result (a complete composition) would be
produced in real time.

Since the acoustic qualities of the produced sounds may not always be

predictable, the composer who uses instruction synthesis works in a trial-and-

error mode [Roads 1996].

S.R.Holtzman designed and implemented in 1979 an Automated Digital Sound

Synthesis Instrument in an attempt to provide a hierarchical organization control

of Instruction Synthesis. He developed the Program Generator that generated

text in compiled machine code, which synthesized the sounds [Holtzman 1979].

6.4 SAWDUST

SAWDUST is a computer program conceived by Herbert Brün in the 1972 and

implemented by Gary Grossman at the University of Illinois in 1976. SAWDUST

was written in the C programming language under the UNIX operating system,

running on a PDP 11/50. Jody Kravitz implemented a second expanded version

in 1980.

Like Koenigʼs SSP, SAWDUST is also concerned with the compositional

structuring of waveforms. In the program, the composer specifies waveform

segments, called elements, which are then linked, merged, concatenated,

repeated, and eventually interpolated, by the use of a limited number of

operations [Brün et al 2001, pp.5]:

The computer program which I called SAWDUST allows me to
work with the smallest parts of waveforms, to link them and to
mingle or merge them with one another. Once composed, the
links and mixtures are treated, by repetition, as periods, or by
various degrees of continuous change, as passing moments of
orientation in a process of transformations.

 68

These operations are carried by a number of functions like ELEMENT, ELIST,

LINK, MINGLE or, MERGE. An interesting function, called VARY, gradually

transforms one link into another by selecting polynomials (of degrees 3 to 7)

that connect their elements in a number of steps or samples.

 In contrast to SSP, the emphasis does not lie on a rule-based approach to

composition, but rather on the extension and relocation of musical material to

the waveform level. The composer is “forming sounds just as precisely as the

macro events of his composition” [Brün 1969].

In SAWDUST, the userʼs task could be described as [Brün et al 2001]:

� define a set of ELEMENTS (amplitude and time values)
� define a set of LINKS (sequences of elements)
� define a set of TRANSFORMATIONS between the links
� play and listen the defined transformations, links or silences in a user

specified SEQUENCE

With SAWDUST Herbert Brün composed Dust (1976), More Dust (1977),

Dustiny (1978), A Mere Ripple (1979), U-TURN-TO (1980) and, i toLD You so!

(1981).

6.4.1 Wigout & TrikTraks

Arun Chandra designed in 1994 two different programs, Wigout and

TrickTracks, both incorporating the synthesis paradigm of SAWDUST and

extending it in various degrees. The main differences are as follows:

In Wigout a segment can be one of three types: 1) a ʻwiggleʼ, a sequence of

samples at one amplitude; 2) a ʻtwiggleʼ, a sequence of samples whose

amplitudes have a linear rise to and fall from a specified peak; and 3) a ʻciggleʼ,

a sequence of samples whose amplitudes rise to a specified peak and return to

 69

their starting magnitude in two second-order polynomial curves [Chandra 1994,

Miranda 2002].

TrickTracks introduces the concepts of ʻstandardʼ, ʻpolynomialʼ and AMFM

paths. ʻStandard pathʼ refers to using a standard waveform (sine, square,

triangle, or sawtooth) to control the path of the variables amplitude and number

of samples. Polynomial paths were also used in SAWDUST in the

implementation of the VARY algorithm. Chandra used them by specifying

equally spaced zero-crossings, then scaling them to their specified limits.

AMFM paths incorporated the Amplitude Modulation (AM) and Frequency

Modulation (FM) algorithms.

 70

7 Sonic Emergence

“the collision of hail or rain with hard surfaces, or the song of
cicadas in a summer field. These sonic events are made out of
thousands of isolated sounds; this multitude of sounds, seen as
a totality, is a new sonic event. This mass event is articulated
and forms a plastic mould of time…” [Xenakis 1992, pp.9]

A significant phenomenon encountered in microsound systems is that of

emergence. The notion of emergence is also widely used in the field of

computer-generated art. It is influenced mainly by research in cognitive science,

evolutionary biology, philosophy of science, cybernetics, systems theory, and

artificial life. Despite its importance, there is no agreed definition of the notion of

emergence. Different fields disciplines tend to use the term with relatively

different meaning. McCormack [2004] and Whitelaw [2004] provide outlines of

the use of the concept of emergence in scientific and technical literature.

The Oxford English Dictionary provides a rather general definition for

emergence [Oxford 1989]: “The process of coming forth, issuing from

concealment, obscurity, or confinement. Also said of the result of an

evolutionary process.”

We may define emergence as the way complex patterns and behavior arise out

of dynamic interactions between agents in a system or environment.

Jeffrey Goldstein suggests that emergence is: "the arising of novel and coherent

structures, patterns and properties during the process of self-organization in

complex systems" [Goldstein 1999].

 71

Stephanie Forrest writes from the perspective of the field of emergent

computation [Forrest 1990, pp.8]:

“In these systems interesting global behavior emerges from
many local interactions. When the emergent behavior is also a
computation, we refer to the system as an emergent
computation. ... Three important and overlapping themes that
exhibit emergent computation are self-organization, collective
phenomena, and cooperative behavior (absence of any
centralized control).”

In chapter (11) we will see specific computer models (stochastic, chaotic,

fractals, Lindenmayer Systems, cellular automata) that are capable of

generating emergent behavior and that are taking part in this research.

7.1 Hierarchical levels and emergence

One way to comprehend emergence is to conceive a system as operating in

different levels. We consider these levels ranging from local to global or

otherwise from micro to macro. Joris Deguet and colleagues proposed that at

least two levels required for a system to exhibit emergence behavior [Deguet et

al 2005]. More than two levels make a hierarchy.

The concept of integrated levels or strata is used in ecology to describe the

organization of a range of phenomena spanning from the micro-levels of non-

biological realm (e.g. subatomic particles, atoms, molecules, macromolecules)

through the various levels of biological phenomena, to the planetary macro-level

(e.g. ecosphere). Alex Nivikov writes on the concept of integrated levels of a

structural and dynamic hierarchy and the emergent properties in biological

phenomena [Nivikov 1945, pp.209]:

 72

“The concept of integrative levels of organization is a general
description of the evolution of matter through successive and
higher orders of complexity and integration. It views the
development of matter… as continuous because it is never
ending, and as discontinuous because it passes through a
series of different levels of organization… In the continual
evolution of matter new levels of complexity are superimposed
on the individual units by the organization and integration of
these units in to a single system. What were wholes on one
level become parts on a higher one”

The above concept is useful for the conception of an integrated hierarchy of

structuring levels in generative art in general and the microsound synthesis of

sound-objects through algorithmic means in particular. The concept of

hierarchical organization of matter is in direct analogy to the hierarchy of time-

scale levels in music composition as suggested by Curtis Roads and we have

already seen in section (2.1).

Mitchell Whitelaw suggests from the perspective of artificial life and generative

art that in general two levels can be distinguished. On the lowest end, the

computational level (or a hierarchy of levels) of formal rules and interactions,

and on the higher end, the level of complex behavior and emergence:

“This shared notion of emergence can be transcribed into a
structural template made up of two levels: a local
(computational) level, where complex interactions are driven by
a set of formal rules, and a global level, where behaviors
appear as patterns in time or space.” [Whitelaw 2004, pp.214]

“The computational level can be thought of more generally as a
technological substrate, a designed framework of software and
hardware. Similarly, the global emergent level can be thought of
as the phenomenal and behavioral product of that technological
substrate.” [Whitelaw 2004, pp.214-215]

7.2 The emergence of higher order sonorities

 73

We have already seen that microsound synthesis provides the conseptual and

experimental framework of composing the sound instead of composing with

sound. Regarding that in microsound the compositional activity operates in a

level below any representation of the sound object, the composer is called to

cope with the issue of emergence of 2nd order sonorities.

Agostino di Scipio questions on the connection between the structuring of

microtemporal relationships among acoustic quanta and the emergence of the

macrostructure in the form of a sound object [Di Scipio 1997]. Di Scipio regards

that answering to this question is actually an assertion of a particular concept of

sound modeling and therefore a compositional decision. ”Any answer to this

question would require from the composer an ability to implement his/her own

theory of sonological emergence” [Di Scipio 1997].

If we focus on sonological emergence on the level of sound object construction

we can distinguish microsound operations focusing on at least two different

hierarchical levels:

(1) the micro-level: this includes granular synthesis and other varieties of
particle synthesis techniques

(2) the sample level: this includes non-standard synthesis techniques

These two hierarchical levels provide the framework for two distinct microsonic

representations. On the one hand, microsound operations on the micro-level

usually require some form of sound particle modeling which is further

distinquished in a) individual particle formation (e.g. grains, pulses, etc) and, b)

organization and sequencing of particles. Sound particles should be conceived

as separate units that are constructed in an intermediate level and feature

 74

specific sonological properties. On the other hand, non-standard operations on

the sample level usually require direct sample patterning and waveform

construction. In the latter case the composer works “in the single domain - the

linear space of the sample sequence” [Di Scipio 1997]

Iannis Xenakis, years before the application of computers in microsound

synthesis, suggests on the emergence of higher order sonorities from granular

clustering and sequencing [Xenakis 1992, pp.47]:

“The basis of the timbre structures and transformations will
have nothing in common with what has been known until now…
Suppose that each point of these clusters represents not only a
pure frequency and its satellite intensity, but an already present
structure of elementary grains... We believe that in this way a
sonority of a second, third, or higher order can be produced.”

Agostino Di Scipio further suggests on non-standard synthesis that the

modeling process whilst it utilizes microtemporal structuring actually targets the

morphological emergent epiphenomenon [di Scipio 1996, pp.67]:

“Just as musical form can be understood as the
epiphenomenon of a dynamical process captured in a model of
musical design (i.e. at some macrotemporal scale), in computer
music the properties of the sonic structure – whose local gestalt
is usually called timbre – could themselves be understood as
epiphenomenon of microtemporal compositional processes,
unrelated to acoustic models but capable of modeling a
phenomenon of morphological emerge”

Albert S. Bregman in his cognitive analysis of auditory events used the notion of

“auditory stream” to describe the distinctive perceptual identity of sound objects.

For Bregman, a stream is perceptually formatted by (1) the obscurity of its

constituent parts, and (2) the appearance of the emergent properties of the

 75

stream as a united whole. For Bregman the grouping of acoustic information on

a lower level give rise to the emergence of the auditory stream gestalt in the

perceptual level [Bregman 1990, pp.138]:

“Treating a stream as a unit involves calculating its properties
from only that set of acoustic features that has been asigned to
it. Sometimes, in the study of perception, we speak about
emergent features. These are global features that arise at a
higher level when information at a lower level is grouped. ”

Composers by applying compositional techniques below the hierarchical level of

the sound object actually work on a subsymbolic level. This is because the

micro-sonic level of operation lacks the symbolic properties that emerge as an

epiphenomenon on the higher level of listening experience. The network of

relationships between particle units in the microlevel does not have any linear

association with the perceived sound properties of the sound object and any

syntactic feature experinced by the listener. This non-linearity, sometimes

exhibited to the degree of non-association, makes rather difficult to describe the

network of relationships between particle units in terms of a musical syntax.

Thus we can regard that microsonic structuring operates in a presyntactic and

subsymbolic level.

“Thus, according to these views, Physics presents an immense
phase space of possibilities, in which it is impossible to
determine exactly what will emerge at higher levels. Emergence
can only be recognised after it has occurred, since it cannot be
predicted in principle. emergence in computation is
unrepresentable, in the sense of the product of elements
interacting in ways that give rise to properties that cannot be
predicted.” [McCormac 2001, pp.6]

Polanyi [34] recognised that while physics may be able to describe what is

going on at a micro level, the macro emergent properties cannot be predicted

 76

from the micro level physics, because they are computationally irreducible –

determined by boundary conditions at the macro level. That is, the lower level

laws are unspecific [9] with respect to the higher-level phenomena they may

produce.

 77

8 Computers, Cognition and Music Analysis

Concepts, methodologies and tools from the interdisciplinary field of cognitive

science have been used for a long time both in the analysis of existing music as

well as the creation of new music. Cognitive models consider intelligence as

information system. Mental processes are regarded as effective computations

that can be formulated by certain rules and representations. Cognitive

musicology utilizes computer modeling and simulation to study music-related

knowledge representation. Particularly, it studies how music is represented,

stored, perceived, performed, and generated with the help of computers. It

focuses more on the process of musical thinking than on products. Cognitive

musicology uses concepts and advances of Artificial Intelligence and cognitive

models are formalized, implemented and tested by empirical verification.

Otto Laske, a key researcher in cognitive approach to music composition,

proposed the concept of music analysis by synthesis, thus simulating the

generative process of music composition. Laske states on the use of computers

in the formalization of music activity [Laske 1988, pp.67]:

“For the first time in the history of musical research, the
computer program provides a medium for formulating theories
of musical activity, whereas prior to its emergence only theories
of musical artifacts had existed. As well, computer programs
inevitably drew attention to the structure of musical decision-
making in real time, thus to musical processes; they
demonstrate the possibility of formulating musical knowledge in
a procedural form, thereby highlighting the fact that musical
knowledge in humans exists largely in that form.”

Concerning composition theory, Laske states that [Laske 1989, pp.119]:

 78

“composition theory is a theory about the process that underlie
the design and realization of musical compositions. In particular
composition theory is about processes that are based on the
use of explicit rule system.”

Analysis of non-standard synthesis, as part of computer aided algorithmic

composition, can make particular use of methodologies of cognitive musicology.

In this case, the methodology of cognitive musicology to model the composition

process by computer simulation is identical to the methodology that the

composer uses in the creative process itself. The computer is not only used for

the final realization of sound, but it takes part in the processing of abstract signs

and relationships. The rules of the composition are already “there”, as part of

the creative process. Computer aided algorithmic composition systems are

capable of retaining information that in other compositional cases it is lost. G-M.

Koenig states respectively [Koenig 1983, pp.31]:

“Although the composition of music - with or without computers
– depends to a great extent on subjectively experienced criteria,
the algorithmic description of the production process adds an
objective feature; because of it, “form” is no longer the personal
manner the musical material is presented or the listenerʼs
perception is guided rather, it is the rationally discernible,
reproducible effect, detached from the composer, of an
organized system imposed on arbitrary material”

If we want to analyze the procedural aspects of a non-standard synthesis

system, we can easily reconstruct the whole or parts of it. Since the

compositional process of non-standard synthesis is computational itself, it

makes cognitive musicology potentially a suitable approach for its analysis.

However, it should be clear that not every aspect of the compositional process

could be successfully modeled by algorithmic processes. Even more, neither

 79

compositional thought nor human thought in general could be totally modeled by

cognitive science.

Any creative process, algorithmic or not, is always conditioned by human

decisions and interpretation, either directly or by the mediation of other human-

created algorithms. The creation of musical algorithms involves listening as an

integral part of it. The composer listens to the musical results, possibly

redefines the algorithm, refines the input parameters and takes compositional

decisions that affect the final realization of the compositional process.

G-M. Koenig terms this process “aesthetic integration” and suggests by

referring to algorithmic score generation system: “the algorithms embody a

general idea of a piece, while the musical data only maintain abstract relations

and support the realization of the score, which concretizes these relations.”

[Koenig 1993].

Otto Laske himself admit that listening “is a mysterious process that is little

understood, since it leaves no traces and encompasses perception as one of

many ingredients... (Listening is) massively based on imagination, that is

massively interpretive” [Laske 1993].

Additionally, Peter Kugel suggests, “musical thinking cannot be wholly

accounted for in computational terms” [Kugel 1990]. This suggestion is based

on Myhillʼs Thesis which claims that although “all musical thinking can be

characterized scientifically… certain aspects of musical thinking cannot be

precisely characterized in terms of computations alone” [Kugel 1990]. Kugel

considers Myhillʼs Thesis as the aesthetic analogue of Gödelʼs Incompleteness

Theorem or of Churchʼs and Turingʼs theorem about the undecidability of

 80

Hilbert's Entscheidungsproblem. Furthermore, Kugel suggests that the

evaluation of a composition as beautiful can never be achieved by computation,

therefore the compositional process, like listening, involves more than

computing [Kugel 1990].

In conclusion, there is always the necessity of human listening and

interpretation in the operation of an algorithmic music system. Although,

algorithmic composition in general and non-standard synthesis in particular,

provides the cognitive sciences with the most possible formalized data for its

analysis, there will always be “missing” compositional aspects that involves

human interpretation and which cannot be modeled by the computer.

 81

9 Algorithmic Models

9.1 Algorithms and Musical Procedures

The term algorithm does not have a generally accepted definition. There is an

ongoing debate between researchers in formalizing the term. In an informal

attempt, we could define algorithm as "a set of rules that must be followed when

solving a particular problem” [Oxford 2006]. Computers require algorithms to

process information. Computer programs, those written in imperative

languages, specify an algorithm using declarations, expressions, and

statements [Wilson 1993]. Algorithms vary from simple arithmetic operations to

very complex procedures.

In the field of computer composition, algorithms control, transform and,

generate some or all of the structural levels and parts of a musical composition

[Essl 2003]. During these processes an algorithm may generate ordered or

unordered musical events. Musical events may follow either dynamic or static

time evolutions. In general, any information-processing model that generates or

transforms data can potentially be applicable in the control of musical

parameters and events thus becoming a musical algorithm. Nevertheless, none

abstract process can be considered as musically neutral neither can be

definably musical [Wooler et al 2005].

Algorithmic models can be either generative or transformational. This

diversification takes the historical parallelism in the taxonomy of “classical

analog studio” devices in three categories: sound generators, sound

transformers, and mixers and recorders [Ciamaga 1975]. Generative

 82

algorithms are formalized processes that produce musical events or parameter

values. Transformational algorithms are formalized processes that permute

existing values, thus they require to be supplied by data. Both generative and

transformational algorithms may be controlled by various parameters. In turn

these parameters can be controlled either by internal processes or by other

external algorithms.

Algorithms, either generative or transformational, may encapsulate one another

in more complex formalizations. The encapsulation of algorithms within

algorithms result in a hierarchical tree where each junction is either a value or a

procedure. Thus, both generative and transformational algorithms may contain

sub-algorithmic processes of any complexity.

Algorithmic models are not definitely categorized as generative or

transformational. For example, a stochastic algorithm is transformational when

serving for the configuration of the spectral data of an existing sound. Further, a

stochastic algorithm is generative when serving for the stochastic synthesis of a

novel sound.

Algorithms can be applied onto the macrolevel, the mesolevel or the microlevel

of sound composition. For example, the chaotic model of the logistic function

can serve in the generation of a sequence of notes or it can be applied in the

direct synthesis of a sound

9.2 Permutations

The permutation of musical material is one of the earliest algorithmic musical

processes. Generally speaking, a permutation is a rearrangement of a list or a

 83

set of musical objects or values in a particular order. Permutations are studied

by the field of combinatorics. Permutations are usually simple algorithmic

models. More complex approaches lead to the practice of composing

permutations. A composition is defined by performing two or more permutations

in succession.

Permutation algorithms usually contain the transformational processes of

selection and mapping. Selection is the method of choosing one or more items

from a list. Mapping is the method of transforming a value from one scale to

another scale. The scaling function can be either linear or non-linear with

various features.

Permutation algorithms can act on replacing or substituting either musical or

extra-musical material and symbols by musical objects. One of the earliest

approaches of algorithmic composition is the automated musical structure

generation method by Guido of Arezzo, utilized in the turn of the 10th century. In

his work Micrologus, Guido of Arezzo describes a system for the automatic

generation of melodies out of a text. In that system, letters, syllables and other

components of a verse are replaced by musical notes and melodic phrases

among other mapping procedures [Essl 2007].

The twelve-tone technique invented by of Arnold Schoenberg in 1921 is one of

the most prominent examples for the application of permutations in the

generation of musical material and major landmarks of 20th century musical

thought. In the twelve-tone technique, arranging the twelve pitches of the

chromatic scale in a particular sequence formed a “tone row”. All the harmonic

and melodic material was systematically composed by permutating the original

 84

pitch series. Basic operations for the permutation of the initial series is

retrograde, inversion, transposition, augmentation and others. The next

generation of composers (Boulez, Stockhausen, Nono etc) of the serial school

extended the technique to other music material (such as duration or dynamics)

even to all possible elements of music. The term, "'combinatorial' appears to

have been first applied to twelve-tone music by Milton Babbitt in 1950 [Whittall

2008].

S.R.Holtzman use similar permutation algorithms in his Generative Grammar

Definitional Language (GGDL) program. There he defines a set of

“transformational rules” for: structural change indexes, inversion transformation,

transposition transformation, retrograde transformation and merge

transformation of musical material [Holtzman, S. R. 1980].

The SSP sound synthesis program by G.M.Koenig use algorithms called:

expansion, reduction, reorder, isolation and copy for the selection, formation

and permutation of list of data that eventually used in microsound synthesis.

These algorithms make use of tendency masks for dynamic minimum and

maximum value handling [Banks et al 1979]. A related algorithmic model is

proposed by James Tenney [Tenney 1969]. Paul Bergʼs AC Toolbox provides

among others, the “low” and “high” arguments for data generation and control in

a flexible computer music environment [Berg 2003].

The Sawdust microsound synthesis program by Herbert Brun uses the notion of

elements as structural parts of a sound waveform. Within Sawdust, the “link”

operation defines a sequence of elements while the “mingle” and “merge”

 85

operations combining “links”. The “very” operation is a complex algorithm

utilizing polynomials that transforms an initial “link” to a final one.

9.3 Stochastic

Stochastic algorithms utilize processes derived from probability theory. In

stochastic process, sometime called random processes, there is some degree

of indeterminacy involved in the evolution of the generated events. The set of

events is called “state space” while the set of parameters is called the

“parameter space”. Even if the initial condition is known, a stochastic algorithm

may give many possible results, but some of them may be more probable then

others. Thus stochastic algorithms are the counterparts of deterministic

algorithms.

Probabilities are used to describe phenomena that are either too complex to

describe in detail (molecular movement in a liquid) or exhibit an intrinsic

stochastic behavior (elementary particles). In computer music, the interest in

probabilities does not lie in describing but rather creating complex musical

events or group of events. The interest may either lie in describing macroscopic

features of a musical entity (e.g. masses of sounds) or the microscopic,

individual characteristics of one or some of its members (e.g. the occurrence

and the timbral characterostics of a particular sound).

Xenakis suggested as early as 1955 the replacement of deterministic causality

of serial composition by stochastic processes. He proposed the statistical

organization of musical events as the most appropriate representation for the

manifestation of natural events. His composition Pythoprakta (1955-56) was the

first that employed stochastic processes [Xenakis 1992]. At the same time

 86

Lejaren Hiller developed a computer program that used random processes to

compose the Illiac Suite quartet (1956-57) [Hiller et al 1958]. James Tenneyʼs

Stochastic String Quartet (1963) was inspired by both Xenakis and Hiller

[Tenney 1988]. In 1971 G. M. Koenig developed the SSP computer program

that pioneered the use of parametric boundaries or tendency masks for the

control of random algorithms in sound synthesis [Koenig 1971]. Some years

later Barry Truax incorporated also the concept of tendency masks in his POD

granular synthesis system [Truax 1973].

Stochastic algorithmic models are implemented in various computer music

systems throughout recent history, from Sever Tipeiʼs MP1 [Tipei 1975[, David

Zicarelliʼs Jam Factory [Zicarelli 1987] and Joel Chadabe M [Chadabe 1997],

through Larry Polansky and David Rosenboomʼs HMSL [Polansky et al 1985],

Heinrich Taubeʼs Common Music [Taube 1989] and Eduardo Mirandaʼs CAMUS

3D [McAlpine et al. 1999], to Paul Bergʼs AC Toolbox [Berg 2003] and

Christopher Arizaʼs AthenaCL [Ariza 2005] among others.

Stochastic algorithms have been also used beyond the framework of creative

computer music applications (mainly computer-assisted composition and

machine improvisation with human performers) to music information retrieval,

stylistic analysis and imitation of music as well as to cognitive modeling of music

perception.

9.3.1 Probabilities

Probability is the chance that a particular event will occur. A probability is a

fraction of a sample space, the set of all possible values the events may

 87

acquire. Probability is usually expressed in a scale between impossibility and

certainty. This scale ranges linearly between 0 and 1.

Probability distribution is a function that describes the probability of a random

variable taking specific values. Usually probability distributions are visualized in

a two-dimensional graph, called histogram. There are two general types of

probability distributions: discrete and continuous. In continuous distributions a

random variable can take a continuous range of value. The opposed happens to

a discrete distribution, where a random variable can take values from a set

countable of possible values [Goldberg 1986].

Frequently used discrete distributions are the Bernoulli, Bean Machine,

Discrete, Multinomial, Binomial, Geometric, Hypergeometric, Poisson, Lattice

and Zipf distribution [Goldberg 1986].

Frequently used continuous distributions are the Beta, Gaussian, Binormal,

Cauchy, Half-Normal, Rayleigh, Laplace, Rice, Lévy, Logarithmic, Standard

Normal, Logistic, Student's t, Exponential, Uniform, Gamma and Weibull

distribution [Goldberg 1986].

Stochastic distributions are relatively easy to implement in a computer

algorithm. Probability algorithms are used in computer music for the control of

various levels of composition. For example stochastic algorithms can control the

occurrence of events, which may be musical phrases, notes or sounds. They

can also control various parameters of musical events such as frequencies,

dynamics or various timbral aspects. Stochastic algorithms are utilized for the

higher level control in microsound synthesis for the formation and control of the

 88

various microevents (usually sound grains) that constitute complex sound

events [Roads 2001].

Xenakis was one of the first composers that used stochastic algorithms for the

composition of both instrumental and electronic works. Among other, he used

Stochastic algorithms in the concept of granular synthesis as well as in the

sequencing of microsound events in his GENDY computer program [Xenakis

1992].

9.3.2 Random Walk

The random walk algorithm generates a trajectory that consists of taking

successive random steps [Feller 1968].

Random walks eventually tend to take extremely high values. These extreme

values either exceed a meaningful compositional musical range (e.g. a range of

frequencies or dynamics), either exceed some human perception levels (e.g.

the audible range of frequencies) or exceed the computerʼs numerical

representation limits (e.g the amplitude bit-depth). Therefore there is the need to

limit the range of the random walk between some boundaries. These

boundaries are often called barriers. Barriers can be reflective, thus bouncing

the exceeding value back to the allowed phase space as a mirror, or wrapping,

thus encountering topologically the phase space as a torus.

The step of the random walk can be (1) a constant value, (2) the output of a

stochastic distribution, or (3) the output of a secondary random walk. In the

latter case we can have nested random walks of various levels. The range of

the possible step values can be controlled over time by tendency masks.

 89

The elastic barriers can (1) remain static or (2) their ranges can vary over time

by the help of tendency masks or other functions.

Random walks can take place in one, two or even higher dimensions according

to the musical parameter space. Usually, one musical parameter corresponds to

one dimension of the musical space.

Another name used for such an algorithm is Brownian Motion, which describes

the movement of particles suspended in a fluid. Random walk can be

considered as a simple form of Markov Chain that will be discussed in the next

section.

Iannis Xenakis is the first composer that employed random walks in music

composition. He states on the preface to the score of NʼShima:

“The melodic patterns of NʼShima are drawn from a computer-
plotted graph as a result of Brownian movement (random walk)
theory that I introduced into sound synthesis with the computer
in the pressure versus time domain” [Xenakis 1976, pp.1].

Xenakis used random walks in the following instrumental pieces: Cendrées

(1973), Phlegra (1975), Theraps (1976), Retours-Windungen (1976), Epei ̈

(1976), Akanthos (1977), Jonchaies (1977), Ikhoor (1978), Dikhthas (1979),

Palimpsest (1979), Anémoessa (1979), Mists (1981), Komboi ̈ (1981), Chant de

soleils (1983), Tetras (1983), and Thellei ̈n (1984). [Solomos 2001].

Random walks play an essential role in stochastic waveform synthesis. In this

synthesis technique, Xenakis utilized two separate nested random walks for the

amplitude and the duration of elementary parts of the generated sound

waveform [Hoffman 2000]. An initial approach of stochastic waveform synthesis

 90

was used in some parts of La Le ́gende dʼEer (1977). With the advent of the

GENDY program he composed GENDY3 (1991) and S.709 (1994). Stochastic

waveform synthesis and the GENDY system will be discussed in section (13.1).

9.3.3 Markov Chain

The history of Markov models is well documented in the mathematical and

scientific literature [Norris 1998, Bermaud 1999]. In Markov chain algorithms,

named for Andrey Markov, one or more past events are used for the

probabilistic calculation of the transition to the next state. The transition from

one state to the next is in sequential or chainlike manner. The Markov chain can

be represented by a transition matrix that describes the transition probabilities.

Higher-order Markov chains take into account more than one past events for the

transition probabilities. In this case the order of the Markov chain indicates the

number of the past events.

A Markov chain can exhibit various properties. An event that can be followed by

another event is regarded as accessible. If two events are bidirectionaly

accessible from one to another are regarded to communicate. The

communication between two events can have three possible properties: (1) It is

reflexive if one event communicates with itself. (2) It is symmetric if two

separate events communicate with one another. (3) It is transitive if one event

communicates with a second event and the second event communicates with

the first event. Group of events that communicate between them form

equivalence classes. In this case only one event from one class can

communicate with another event from a different class. Recurring are the

events that are certain that will occur again after one or more transitions. On the

 91

other hand, transient are the events that are certain that will not occur. A

communicating class is closed if the probability of leaving the class is zero.

Charles Ames [Ames 1983, 1987, 1989, 1990], Denis Lorrain [Lorrain 1989] and

Kevin Jones [Jones 1981] provided a thorough survey and examination of

probabilistic and Markov chain applications in automated music composition.

Lajaren Hiller and Leonard Isaacson applied Markov chain algorithms of

variable orders for the automatic generation of “experiment four” in their Illiac

Suite quartet (1956-57) [Hiller et al 1958].

Iannis Xenakis in his composition Analogiques A et B (1958-59) for nine string

instruments and tape used Markov models to control the frequencies, dynamics

and densities of musical events.

Recently, Eduardo Miranda and Adolfo Maia Junior developed a model for

granular microsound synthesis using Markov Chains for the control of the

evolution of sound in time and Fuzzy Sets for the definition of the internal

structure of the sound grains [Miranda et al 2005].

9.4 Chaos & Fractals

Fractals (otherwise, self-similar systems) and Chaos (otherwise non-linear

dynamical systems) provided a new paradigm in the understanding and

perception of nature and have been used for the explanation of a multitude of

diverse physical phenomena. Subsequently, fractal and chaos have been used

in modeling various systems.

A diversity of fields has taken advantages on this subject: architecture, art,

astrophysics, biology, chemistry, communications, computing, data

 92

compression, economics, electronics, fluid dynamics, geology, geophysics,

linguistics, meteorology, music, physics and signal processing.

Because of the complexity and the required number of calculations, the

experimentation with such systems became only possible but with the advent of

fast computing machines. The scientific work of Edward N.Lorenz and Benoit

Mandelbrot was eminent for the development of the field.

As Peter Beyls states, “complex dynamic systems are an alternative to the

constructivist approach to composition, i.e., the critical assembly of

architectures of time according to some explicit scenario” [Beyls 1991].

9.4.1 Chaos

Chaotic is any system that at particular states it is very difficult to predict and at

first glance it might be perceived as random. Chaos Theory first introduced by

the mathematician Henri Poincaré at the beginning of the 20th century.

Poincare proved that “It may happen that small differences in the initial

conditions produce very great ones in the final phenomena. A small error in the

former will produce an enormous error in the latter. Prediction becomes

impossible”. Two identical chaotic systems, set in motion with slightly different

initial conditions, can quickly produce very different results [Peitgen et al 1992].

The mathematical equations that exhibit chaotic behavior are relatively simple

and can be easily implemented in computer algorithms. The basic feature of

chaotic algorithms is iteration. The solutions produced from a single iteration are

fed back and turn into input variables for the next iteration recursively [Flake

1998].

 93

The sequence of values generated by a chaotic process is called an orbit. Since

different initial conditions may produce different results, an orbit is

representative for a particular algorithm only for that particular set of initial

conditions. Subsequently, since there are infinite possible initial conditions there

are also infinite possible orbits obtainable by a chaotic algorithm. Usually

chaotic algorithms generate orbits within a limited range of values that define an

n-dimensional phase space. The chaotic behavior of an algorithm traces orbits

within the phase space without returning to the exact same position twice

[Peitgen et al 1992].

Computers are limited to finite accuracy arithmetic. In other words, computer

accuracy to represent a real number is limited to a particular length of decimal

points. Accordingly, algorithms that are susceptible to the slightest

differentiation of their initial conditions are subjected to accumulative errors

during the iterative process. Although the global behavior of chaotic algorithms

is manifested through computer representation, the detailed generated orbits

differ due to system implementations [Peitgen et al 1992].

Chaotic systems can be classified into two categories according to the evolution

of their manifestation over time: dissipative systems and conservative systems.

Dissipative systems are those for which, after an initial transient phase, the

volume of phase space decreases over the course of time. This decrease

eventually establishes an attractor where all nearby orbits converges to it.

Attractors can be (1) fixed-point with a particular value (2) limit-cycle, where an

orbit oscillates periodically between a sequence of values, or (3) strange, where

the orbit exhibits very complex behavior and typically have non-integer phase

space and thus fractal structure. Conservative systems maintain a constant

 94

phase space throughout calculations without exhibiting a transient phase not

establishing any attractor. Nonetheless, conservative systems may exhibit

distinctive behavior similar to attractors [Peitgen et al 1988].

In some chaotic systems time evolves in discrete steps. Theses chaotic

systems (also called iterated maps) are comparable to simple feedback

systems. Discrete chaotic systems that are applicable in the computer music

context are: Arnold's cat, Baker's, Circle, Complex quadratic, Complex squaring,

Duffing, Dyadic, Exponential, Gauss, Gingerbreadman, Hénon, Horseshoe,

Ikeda, Logistic, and Tinkerbell map. In other chaotic systems, time is considered

to be a continuous quantity, and the system is expressed as a differential

equation. These systems generate orbits with smooth trajectories (comparable

to the discrete systems where orbits are usually characterized by abrupt jumps).

In the computer environment continuous time is a theoretical concept. In this

case, reformulating the differential equations into difference equations using a

process called integration simulates time continuity. Continuous chaotic

systems that are applicable in the computer music context are: Lorenz attractor,

Duffing equation, Rabinovich-Fabrikant equations, and Rössler map.

Chaos algorithms have been researched for the generation of various aspects

of music structure. Jeff Pressing worked largely with the logistic map and

explored its “quasi-chaotic behavior” for the creation of note sequences

[Pressing 1988]. Michel Cogins investigated an algorithm that stochastically

switches between different iterated function systems [Cogins 1991]. Rick

Bidlack demonstrated four different algorithms and researched its application on

pitch, dynamics, rhythm and instrumentation between note events [Bidlack

1992]. David Clark Little applied five chaotic algorithms (Lorenz, Verhulst,

 95

Hénon, Barry Martin, and the Baker) in various aspects of score generation

(designing melodic curve, defining meter, planning instrumentation,

manipulating symbols, creating ornamentation and elaboration) and

composition [Little 1993]. Gary Lee Nelson devised real-time computer

programs where he implemented the logistic and the Verhulst maps. He

generated the musical notes for his compositions The Voyage of the Golah Iota

(1993) and Colony (1994) by controlling the algorithms in a dynamic manner

[Nelson 1994]. James Harley introduced specific techniques for constructing

dynamical algorithms along with his CHAOTICS software [Harley 1994, 1995].

Chaotic algorithms are also explored in physical modeling sound synthesis.

Leon O. Chua introduced in 1983 a simple electronic circuit that exhibits non-

linear behavior. Chuaʼs circuit is easily implemented as a computer algorithm.

The chuaʼs circuit produces a chaotic attractor, known as "The Double Scroll”.

Because of its simplicity in implementation and its accurate theoretical model, it

is considered elementary in the research of chaos theory and behavior. A

number of researchers studied the chaotic behavior of the circuit in the context

of physical modeling of acoustical instruments like single-reed and double-reed

winds, brass, flutes, and bowed strings [Roded 1993, Gottfried et al 1993].

Billota and colleagues carried research on the musical implementations of

Chuaʼs circuit both in waveform generation as well as musical phrase

composition [Bilotta et al 2005]. James N. Sears utilized Chuaʼs circuit as part of

the sound design for the play Marisol (2001). J.P. Mackenzie utilized the Lorenz

attractor for the physical modeling of acoustical instruments (the tuba and the

gong), a natural phenomenon (the sound of the wind), and a machinery (the

rumble of a ventilation fan) [Mackenzie 1995].

 96

Chaotic algorithms were also explored in the research of novel sonorities. Barry

Truax explored the logistic and the quadratic maps for the higher-level control of

granular synthesis [Truax 1990]. Richard Dobson and John Fitch utilized a

modified version of the Mandelbrot set for direct synthesis and the generation

sounds, control functions or amplitude envelopes [Dobson et al 1995]. Insook

Choi investigated musically the chaotic processes of the Chuaʼs circuit in an

interactive real-time environment [Choi 1999]. Manzolli and colleagues

developed the FracWave method for the interactive real-time control of a set of

two-variable iterations, which are variations of the so-called standard map

[Manzoli et al 2000]. Agostino Di Scipio is a prominent researcher and

composer in the applications of chaos algorithms in direct synthesis of sound.

He investigated extensively various iterative function systems like the sine map

or the logistic map and explored their sonic properties in an non-standard

synthesis approach. [Di Scipio 1994, 1996, 2000, 2002a]. During our research

we have explored the non-linear behavior of two iterative cross-coupled digital

oscillators in an interactive real-time environment and applied it in the context of

a musical performance [Valsamakis et al 2005]. Georg Essl explored the

chaotic properties of simple maps, in specific ranges that produce sonorities

from chaotic, noisy-sounding responses, to pure and mixed sine wave,

amplitude modulation, and pitch bending [Essl 2006].

9.4.2 Fractals

Fractals are objects that exhibit self-similarity on all scales of magnification.

Particular patterns reoccur identically or similarly on different orders of

magnitude. Fractal structures can be found everywhere in nature or can be

 97

generated algorithmically on a computer. [Peitgen 1988]. Usually fractals are

displayed graphically. The term fractal was first introduced by Benoit

Mandelbrot:

“I coined fractal from the Latin adjective fractus. The
corresponding Latin verb frangere means to “break”: to create
irregular fragments. It is therefore sensible – and how
appropriate for our needs! – that, in addition to “fragmented” (as
in fraction or refraction”, fractus should also mean irregular,
both meanings being preserved in fragment” [Mandelbrot 1982,
pp.4].

Fractals can be classified according to the degree and type of self-similarity.

Objects that exhibit exact self-similarity on all levels are called regular fractals.

This rigid property is found only in abstractly conceived objects. However, only

some mathematical fractals, like the Sierpinsky gasket or the Koch snowflake,

are similar everywhere and infinitely, no matter where we zoom in. Other

mathematical fractals, like the Mandelbrod Set, exhibit quasi self-similarity and

appear approximately identical at different scales. Exact and quasi self-similar

fractals are deterministic. On the other hand, fractals that contain a statistical

element and exhibit statistical self-similarity are known as random fractals.

Random fractals describe natural objects and processes [Addison 1996]

There are four categories of fractals according to the generation technique they

acquire: (1) Escape-time fractals defined by a formula at each point in a space.

Examples of this category are the Mandelbrod set, the Julia set and the

Lyapunov fractal. (2) Iterated function fractals that are produced by a fixed

replacement rule. Examples are the Cantor set, the Sierpinski carpet, the

Sierpinski gasket, the Peano curve, and the Koch snowflake. (3) Random

fractals generated by stochastic processes. Examples are the Brownian motion,

 98

the Lévy flight, fractal landscapes and the Brownian tree. (4) Strange attractors

generated by chaotic models.

Fractals exhibit usually non-integer dimensions, called the fractal dimensions.

There are many specific definitions of fractal dimension. Fractal dimentions are

usually greater than the topological dimension of the generated object and less

than its Euklidean dimension.

Larry Austin composition Canadian Coastlines (1981), utilizes explicitly the

tracings of the natural fractal outlines of Canadian coasts to choose musical

parameters such as pitch, rhythm, timbre, and duration [Dodge et al 1997].

Charles Dodge interpreted the Mandelbrod set for the construction of the tape

part of his composition Viola Elegy (1987) for viola and computer processing.

Additionally, in his algorithmic tape piece Profile (1984) all the compositional

elements (timing, pitch and dynamics) were made by systematic application of

1/f fractional noise [Dodge 1988]. Garry Lee Nelson used fractal algorithms for

score generation in his microtonal composition Fractal Mountains (1988-89)

[Nelson 1996]. Charles Wuorinen has composed a number of works that

employ 1/f fractal relationships including Bamboula Squared (1984) for

orchestra and tape. Rolf Wallin used fractals in his percussion work Stonewave

(1990) [Wallin 1989]. Michael McNabbʼs interactive composition for live-

electronics The far and Brilliant Night (1990) uses real-time algorithms to adjust

resonant comb filter and produce fractal melodies [McNab 1990]. Michel Cogins

presented in 1991 his Iterated Functions System (IFS), which can produce,

connected or disconnected fractals, self-similar or non-self-similar fractals, and

fractals that appear to contain non-fractal elements [Cogins 1991]. Brian Evans

explored the Mandelbrod set in the csound programming environment [Evans

 99

2000]. From 1995 onwards, fractal algorithms has been used on various levels

of sound and music composition.

In the context of non-standard synthesis, Shahrokh David Yadegari used fractal

algorithms for direct waveform generation using the concept of midpoint

subdivision [Yadegari 1991, 1992]. In 1995, Gordon Monro proposed another

non-standard direct synthesis method, called fractal waveform interpolation

synthesis. Monro utilized a deterministic, iterated function fractal model. The

composition Dry Rivers (1995) was produced entirely by the utilization if this

method [Monro 1995].

9.5 Grammars

The Oxford Dictionary defines grammar as:

“the whole system and structure of a language or of languages
in general, usually taken as consisting of syntax and
morphology (including inflections) and sometimes also
phonology and semantics.” [Oxford Dictionaries Online]

Subsequently the Oxford Dictionary defines syntax as:

“the arrangement of words and phrases to create well-formed
sentences in a language”.

and explicating more:

“A set of rules for or an analysis of this”

Analogously, music composition, irrespective based on notes or on sound

objects, can be seen as having its own grammar and consisting of its own

morphology, syntax and rules. The hierarchical structure of language can also

 100

finds its analogy to the various parts and levels of a musical composition. The

formalization of the hierarchical syntactic relationships within a structure with

the help of abstracted notation defines a formal grammar. The linguist Noam

Chomsky first introduced the concept of formal grammars in the late 1950s in

his revolutionary book Syntactic Structure [Chomsky 1957].

There is a long debate between scholars whether music is a language or not.

Over this debate we are commenting the words of Noam Chomsky quoted by

Curtis Roads: "it all depends on one's definitions, and ultimately it is an

unnecessary question; one shouldn't be diverted by it. I take this as the starting

point..." [Roads et al 1979].

Grammars have been applied both for music analysis and composition of

music.

A generative grammar can be defined formally by a four-element structure (N,

T, P, S) where: N is a set of non-terminals, T is a set of terminals, P is a set of

production rules, and S is the root token. A terminal is a token that it cannot

decomposed. A non-terminal is a token that can be decomposed to other

tokens, either terminal or non-terminal [Miranda 2001].

Noam Chomsky categorized grammars into types according to the level of

restriction for the application of their rules. Additionally, the type is related to the

generative capacity of the grammar. The higher the grammarʼs order the more

restrictive and the more expressive it is. On the other hand, the lower the

grammarʼs order the less control it has over the generation process and

subsequently, a higher generative capacity. Chomsky proposed four grammar

types [Chomsky 1957]: (1) Type-0 or unrestricted: imposes no restrictions on

 101

the form of production rules and thus is not suitable for music composition. (2)

Type-1 or context sensitive: is capable of generating all languages that can be

recognized by a linear bounded automaton, a restricted form of nondeterministic

Turing machine. (3) Type-2 or context-free are capable for generating multi-

level hierarchical trees which is common in (most of the) music, natural

languages and programming languages. (4) Type-3 or regular grammars: is

capable of generating all languages that can be decided by a finite state

automaton. Curtis Roads added two more types: (5) transformation and (6)

regulated grammars [Roads et al 1979].

Steven Holtzman proposes five types of production rules: (1) Random selection

by employing a set of possibilities. (2) Serial selection (or blocked generation)

where tokens are selected randomly and all tokens are used before a single

token is selected again. (3) Finite-state generation by the application of a

transition matrix where tokens are selected stochastically according to the

previous selected token. (4) Higher-level control (or non-system rewrite control),

where tokens are indexed and selected by external functions of any complexity.

(5) Meta-production rules, where a new set of production rules is generated

automatically from two primary defined sets of rules [Holtzman [1981].

Bol Processor, created by Bernard Bel and James Kippen is a real-time

improvisation and composition program that constructs a generating grammar

by analyzing input musical data. Bol Processor is capable of modeling various

music styles including Western classical music, serial music, minimalism

contemporary music, and Indian classical music [Bel 1998, 2006].

 102

EMI (Experiments in Musical Intelligence), created by David Cope, is

considered as one of the most successful systems employing grammars in

music composition. EMI is capable of generating music that is highly faithful to

the style of the provided music. EMI uses three basic levels of operations: (1)

analysis and deconstruction of input music into separate parts, (2) preservation

of the most significant parts that indicate the particular style, (3) recombination

into new compositions [Cope 1991, 1996, 2000].

One of the most radical approaches in music composition with grammars is

Steven Holtzmanʼs “automated non-standard digital sound synthesis

instrument”. In this approach, a grammar that specifies the rules for ordering

machine instructions generates directly the waveform of the sound. These basic

instructions include: store, retrieve, add, subtract, multiply, divide, logical shift

etc. The generated sound is conceived as the direct monitoring of the

operations of the computer. Holtzman composed the tape work Machine Music

ICL 2970 (1978) in which every possible operation executed by the ICL2970

mainframe is employed.

9.6 Lindenmayer Systems

An Lindenmayer system or L-system is a string-rewriting algorithmic system

mainly used to formally describe the growth processes of plant development. L-

systems were introduced in 1968 by biologist Aristid Lindenmayer [Lindenmayer

1968].

In rewriting systems, sub-terms of a formula is replaced with other terms.

Whereas L-systems are closely related to Chomsky generated grammars, one

main difference is that they perform string-rewriting in parallel instead of the

 103

serial-rewriting mechanism of the latter. Additionally, due to their recursive logic

L-systems are capable of exhibiting self-similarity and thereby generating fractal

forms.

L-systems are used mainly as algorithmic implementations of the morphogenic

theory of emergence. Emergence is a formal growth process by which “a

collection of interacting units acquires qualitatively new properties that cannot

be reduced to a simple superposition of individual contributions” [Prusinkiewicz

et al 1996].

In L-systems, strings represent the current state of the modeling structure at

each turn. Strings usually consist with alphabet letters. The initial string is called

the axiom of the system. A set of rules, called productions, determines the way

the system rewrites specific symbols. Rules describe the substitution of a

predecessor symbol by a successor string. During the process, if a symbol in

the current string matches a predecessor, it is replaced by the corresponding

successor in the output string. On the other hand, if a symbol does not match

with any predecessor symbol it is copied as it is in the output string. The output

string is then fed back into the system and becomes an input string. Since the

length of the string eventually approach an infinite limit, it necessary to constrain

the number of iterations in order to allocate computational time and storage

space.

According to the type of grammar in use and the method the production rules

are applied we can have various types of L-systems: context-free or context-

sensitive, deterministic or non-deterministic, bracketed, propagative or non-

propagative, with tables, parametric, with extensions [Manousakis 2006].

 104

Przemyslaw Prusinkiewicz proposed in 1986 one potential strategy for

composing music using L-systems by performing spatial mapping of pitch height

and amplitude [Prusinkiewicz, 1986]. Garry Lee Nelson at that time was highly

influenced by Prusinkiewicz. He extended and applied L-systems in his

compositions Summer Song (1991) and Goss (1993) [Nelson 1996].

Jon McCormack explored extensively L-systems in the musical context. He

compared L-systems as successful alternatives of Nth-order Markov models,

finite state automata and Petri nets. In one of his applications, he used non-

deterministic, context sensitive grammars for the generation of complex music

compositions from relatively simple rules. [McCormack 1996].

Roger Luke DuBois explored a variety of composing methodologies with the

application of L-systems. He experimented with various mapping taxonomies of

mapping the output of L-systems to music material. His research was focused

mainly on real-time processing of live musical input [DuBois 2003].

Mapping strategies were also discussed by Francis and Jacques Soddell

[Soddel et al 2005], Worth and Stepney [Worth et al 2005] and Nigel Morgan

[Morgan 2007]. Peter Beyls created a modular Lisp environment where L-

systems (among other algorithms) can be used for real-time melody generation

and harmonization [Beyls 2000]. Pedro Pestana developed an interactive

application based in L-systems for real-time improvisation with a computer

[Pastena 2009].

Michael Cogins demonstrated a context-free L-system based on a group of

operations that abstracts and extends neo-Riemannian transformations. This L-

system is capable of generating a number of simultaneous musical voices that

 105

lead from one chord to another and finally define a complete score [Cogins

2009].

Lourenco and colleagues proposed the use of genetic algorithms to change the

set of productions rules between successive iterations to increase variability

[Lourenco et al 2009].

The composer Hanspeter Kyburz experimented with L-Systems for the

automated organization of small motifs in his work Cells, for saxophone and

ensemble (1993–1994) [Supper 2001]. Michael Edwards in his composition

Tramontana for viola and computer (2004) employs transitioning L-Systems

with the help of Fibonacci-based folding structures [Edwards 2009].

Stelios Manousakis developed a computer music program that employs L-

systems and is capable in generating musical structures from the macro-level

down to the sample level. In this context, Manousakis proposed a novel non-

standard synthesis method for direct waveform construction and experimented

with various control methods [Manousakis 2006, 2009].

9.7 Cellular Automata

The concept of Cellular Automata (CA) introduced by Stanislaw Ulam and John

von Neumann in their research on the process of reproduction and growth of

form [Burks 1970].

CA are dynamic systems that produce global self-organizing behaviour

emerging from the interactions of local elementary units. In CA time and space

are discrete. CA are of any finite number of dimensions but usually are

implemented either as a 1-dimensional linear array or as a 2-dimensional greed

 106

array. Greed boundary conditions are either fixed or wrapped around (forming a

torus). CA evolves simultaneously over time by an algorithmic process that

operates in parallel on every cell of the array. A local transition rule specifies the

new state of each cell. Rules are usually taking into account the current state of

the cell as well as the state of the cells in its nearest neighborhood. The

subsequent states of a CA are called generations. The starting state of the CA,

called the seed or initial conditions, is either randomly generated or a single cell

in the centre may be take a particular value [Wolfram 2002].

Usually, the cells in CA can take a discrete number of states. However, there is

a special category of CA in which the states of the cells are continuous, usually

in the real number range [0, 1]. Thus, Continuous CA cells can take an infinite

number of possible states [Wolfram 2002].

The behaviour of CA depends both on their rules and the starting state. Stephen

Wolfram classified CA according to their behavior in terms of complexity.

According to Wolfram there are four general classes of CA [Wolfram 1984]:

� Class 1: Patterns evolve into a stable, homogeneous state or
disappear.

� Class 2: Patterns evolve into oscillating structures.

� Class 3: Patterns evolve chaotically and never repeat.

� Class 4: Patterns evolve into complex structures. Eventually may
exhibit class 1 or 2 behaviour, but this occurs usually after a large number
of steps.

Christopher Langton called the undoubtedly interesting but relatively rare

behaviour of class 4 as “computation at the edge of chaos” [Langton 1991].

Langton also proposed the λ parameter as a phase transition indicator between

 107

ordered and chaotic behavioral regimes [Langton 1991]. Although the λ

parameter appears quite useful for the control of the behaviour of CA it should

be used with caution. Other researchers as well as Langton himself consider it

as not always being able to work correctly.

Iannis Xenakis was the firs who applied CA in instrumental music composition

in his work Horos (1986) where the state of the cells controlled the occurrence

of the musical events [Solomos 2005].

Peter Beyls started his thorough research and experiments in CA for algorithmic

composition and performance during the 1980s. He developed the first MIDI

music system with CA. In his work proposed various innovations like new types

of CA, the use of time dependent rules that change over time, history tracking of

selected previous generations, investigation of a small network of

interconnected 2D CA, the use of Langtonʼs λ parameter in a real-time

environment as well as various mapping strategies [Beyls 1989, 1990, 1991,

1997, 1998, 2000].

Computer music systems that employ CA to generate and control MIDI music

data are: the Cellular Automata Music (CAM) by Dale Millen [Millen 1990], the

Cellular Automata Workstation by Hunt, Kirk and Orton [Hunt, et al 1991], The

CAMUS and CAMUS 3D by Eduardo Miranda [Miranda 2003, Dewdney 1989],

the Reaction-Diffusion (R-D) system by Andrew Martin [Martin 1996], the

FractMus algorithmic composition system [FractMus 2005], the Softstep,

MusicWonk and Artwonk commercial modular algorithmic development

applications by Algorithmic Arts [Dunn 2006], and Harmony Seeker by Eleonora

Bilotta and her colleagues [Bilotta & Pantano 2002] among others. The majority

 108

of these systems have focused on mapping CA values to pitch and duration

[Burraston et al 2004].

A number of computer music applications use CA to generate and control a

microsound granular synthesis engine. Peter Bowcott utilized the 2D Life CA for

the automated generation of Csound data [Bowcott 1989]. The Cellular

Automata Workstation (CAW) controlled tendency masks for the synthesis

engine [Hunt, et al 1991]. Chaosynth by Eduardo Miranda used the model of the

neural reverbatory circuit to drive a bank of oscillators [Miranda 2003].

Christopher Ariza proposed implementations beyond any “pure” concept by

bending or even breaking the rules of CA. He introduced the term automata

bending analogously to the electronic circuit-bending techniques demonstrated

by Ghazala and others [Ghazala 2004; Collins 2006]. Particularly, he proposed

two types of automata bending, random cell-state mutation and dynamic

probabilistic rule-sets, concepts derived from the field of evolutionary

computing. With automata bending “CA rules that produce unexceptional

behavior can be invigorated and made into more useful generators” [Ariza

2007].

A non-standard synthesis approach for direct waveform generation is the Linear

Automata Synthesis (LASy) system by Jacques Chareyron [Chareyron 1988,

1990]. LASy employs a 1D Cellular Automaton to represent a wavetable.

Individual cell values correspond to audio sample values. After every playback

cycle, the state of every cell is computed according to the CA transition rule,

thus the automaton produces a self-modifying waveform. LASy produces a

 109

variety of sonorities according to the CA transition rules. The sound synthesis

model is very close to the Karpus-Strong algorithm [Karpus et al 1983].

9.8 Sound Modeling

We can formally define a sound synthesis model as an appropriate computer

algorithm with a finite set of control parameters. The execution of the computer

algorithm takes the set of parameter data and generates the bulk of sound data

that represent the temporal structure of a sound.

Usually, the size of the parameter data is smaller than the data of the generated

sound. Moreover, there are algorithms that with few control parameters are

capable of producing sounds with very complex temporality. In addition, there

are algorithms that are capable of generating, with the use of a finite set of

instructions, sounds with infinite duration. Viewing this from the perspective of

information theory, a sound synthesis model is a data reduction method in the

representation of a sound.

A computer algorithm, that formally describes a sound model, can be

considered as the algorithmic reduction of the generated sound. The execution

of the algorithm unfolds its inner logic into sound. The logic within the algorithm

is imprinted into the sound. However, there is no direct linking between the

complexity of the algorithm and the perceived complexity of the generated

sound. There are algorithms with simple syntax capable of producing sounds

with very complex morphologies. For example algorithms consisting of a single

iterative process can produce very complex sonic results. In contrast,

algorithms with more complex syntax are producing more or less only

monotonous sounds. This is the case of Parallel Frequency Modulation.

 110

The sonic results of a sound model are dependant by both the computer

algorithm and the parameter data. A very sophisticated computer algorithm with

some parameter data may generate very monotonous sounds or no perceivable

sound at all. In contrast, a rather crude algorithm with thoroughly chosen

parameter data may produce more interesting sonic results.

A sound model is a generalization of the sound phenomenon that tries to

represent. The tradeoff for the data reduction advantage is the incapability of

generating all possible sounds with a single sound model. Sound models are

capable of producing only a limited range of sounds. Moreover, each sound

model usually generates sounds with distinctive and characteristic

morphologies, hence limiting the listening impression. Each synthesis model

has its own characteristic mark.

Some sound models are capable of linking directly the choice of the parameter

data to the sonic result, thus producing definite predictable sounds by the

musician. For example, using simple Frequency Modulation with sinusoids, one

can achieve a totally predictable sound spectrum knowing the mathematical

basis of the method. These models help the composer in making conscious

decisions during synthesis. On the other hand, other sound models do not rely

on a closed theory and the sounds that are generating are much less

predictable. For example, this is the case of feedback Frequency Modulation or

the non-standard approach in sound modeling. In these cases the composer

needs to approach empirically the synthesis model and experiment intuitively

with it.

 111

One can classify the models of sound according to their object of modeling

[Smith 1991]. There are three approaches that model sound through a

synthesis algorithm, according to:

� the physical source of the sound

� the acoustics of the sound

� something independent of both representations

These three approaches are:

� Physical Modeling

� Acoustic Modeling

� Abstract Modeling

A fourth model of sound that cannot be viewed as a sound synthesis method

but rather as a method of sound representation or as a method of sound

transformation is:

� the digital representation of the sound itself

This approach is:

� Sampling.

If one would classify Sampling as a synthesis method, then every single sample

of the digital representation of the sound should be considered as a separate

control parameter. In this view, sound modeling through Sampling involves no

data compression.

Following the above taxonomy of sound synthesis algorithms proposed by

Julius O. Smith, non-standard synthesis should be placed as a sub-category of

 112

abstract modeling [Smith 1991]. Although Smith does not make any direct

reference to non-standard synthesis, it is obvious that it should be categorized

along with other abstract models like Wavetable, Amplitude Modulation (AM),

Frequency Modulation (FM), Waveshaping, or Phase Distortion (PD).

 113

10 Extended Waveform Segment Synthesis (EWSS)

Waveform segment synthesis techniques play a significant part throughout the

history of non-standard synthesis. In this generalized category belong non-

standard synthesis approaches like Iannis Xenakisʼs Dynamic Stochastic

Synthesis, GENDYN and all its recent variations, G.M. Koenigʼs SSP, Herbert

Brünʼs SAWDUST, Arun Chandraʼs TrikTraks and Wigout, Gordon Monroʼs

Fractal Interpolation Waveforms, or Stelios Manousakisʼs Non-standard Sound

Synthesis with L-Systems.

In waveform segment synthesis, minute wave fragments are assembled

together to form sound waveforms. These wave fragments are smaller in length

than a complete wavecycle. Waveform segment synthesis techniques operate

exclusively in the time domain and describe sound by referencing only to

amplitude and time values. The time scale of the operations is near the

threshold of auditory perception, placing the technique in the territory of

microsound. Since this technique generates the waveform with sample per

sample operations, it belongs also to the wider category of Direct Synthesis

techniques.

This Thesis proposes Extended Waveform Segment Synthesis (EWSS) as a

generalized concept that:

� Incorporates all existing waveform segment synthesis techniques into a

single model.

 114

� Constitutes the basis for a novel non-standard synthesis model proposed

in this Thesis: Dynamic Waveform Segment Synthesis (DWSS).

� Provides a framework for further future research.

10.1 EWSS: Basic Concepts & Definitions

In this section we will introduce the basic concepts of EWSS. We will provide

definitions for the notions of segment, breakpoint, function, structure, sequence,

and scheme that are essential in the synthesis and assemblage of microsonic

entities for the computer generation of novel sound objects.

10.1.1 Segment: 1st definition

In EWSS, a waveform is constructed by assembling blocks of amplitude

fluctuations with very short durations in the scale of microseconds. They are

calculated directly sample per sample. These assembling blocks are called

segments. The segment is the building unit of this synthesis technique. Each

segment can be defined by:

a) a starting breakpoint

b) an ending breakpoint

c) a link (function or shape)

All the synthetic operations in EWSS are actually aimed in the prescription and

assemblage of segments.

10.1.2 Breakpoints

 115

Breakpoints are specific junctures in the produced waveform. Every breakpoint

is defined by:

a) an amplitude value

b) a time value

The starting and the ending breakpoints of each segment are linked, sample per

sample, by a function or a predefined shape.

Since all the segments are joined together one after another, the starting

breakpoint of each segment is usually the same to the ending breakpoint of the

previous segment. This helps in the continuity of the waveform and avoids

unwanted artifacts (distortion, clicks etc). Therefore, we can consider this

technique as a succession of breakpoints joined together.

The amplitude and time values of each breakpoint can alternatively take:

� absolute values: each breakpoint is calculated by its amplitude and time

values in the wave continuum.

� relative values: each breakpoint is calculated according to its amplitude

and time differences from the previous breakpoint.

This Thesis proposes that in EWSS breakpoints can be either derived from

external data or generated internally by algorithmic operations.

10.1.2.1 Breakpoint: Data Derivation

Breakpoint values can be derived from external sources. We propose two

possible data derivation sources:

 116

� sonification data

� recorded sounds

Although the input values from these sources can be used “as it is”, usually

amplitude and time values are selected from longer time frames. These values

can be extracted using either:

� a quantization algorithm

� a juncture or transient recognition algorithm.

A more detailed description of this concept is presented in the following section

on Segmentation.

10.1.2.2 Breakpoint: Data Generation

Breakpoint data can be generated using a variety of approaches. EWSS

incorporates various generative processes that have been already applied in

other non-standard synthesis approaches, agglomerates many of them into a

single framework and expands them by adding additional data generation

models. EWSS proposes breakpoint data generation by using at least the

following algorithmic models:

� permutations

� stochastic processes (probabilities, random walks, markov chains, etc)

� chaotic functions (e.g. the logistic map)

� cellular automata

� grammars

 117

An overview of the above models as well as other models used in non-

standard approaches is provided in chapter (11) of this Thesis.

10.1.3 Link

Successive breakpoint values are linked together through a function or shape.

In other non-standard synthesis implementations (for example SSP,

SAWDUSTS or GENDYN) the breakpoints are usually linked together through

linear interpolation [Banks et al 1979, Brün et al 2001, Hoffman 2011]. Nick Collins

proposed in his SplineSynth software the use of spline functions [Collins 1999,

2000] while Gordon Monro the use of fractal interpolation [Monro 1995].

This Thesis proposes a variety of link functions or shapes. These can either be

generated internally by an algorithm or derived from various external resources.

Link shapes can be generated or derived by:

� continuous functions (e.g. linear, spline)

� non-linear functions (e.g. fractal, chaotic)

� recorded sounds

� sonification data

� graphics

We have seen that particular continuous or non-linear functions have already

been proposed by other researchers and composer and have been taken part in

various historical implementations of non-standard synthesis techniques. One of

the contributions of this Thesis is the generalized proposal that any linear or

 118

non-linear function can be used as a segment shape along with shapes derived

from other resources like sound segments, sonification data or hand-driven

computer graphics.

10.1.3.1 Link: Computer Representation

In most of the non-standard synthesis approaches, each segment is produced

algorithmically during synthesis by some kind of linear function, usually by linear

interpolation.

We have seen that in EWSS a variety of link function or shapes are applied. For

algorithmic integrity and operational efficiency link functions or shapes are

stored and recalled in computer lookup-tables that we call link-tables. Thus, link

functions and shapes, either algorithmic generated or derived from external

sources, are stored in computer memory.

Since each segment lasts from microseconds to a few milliseconds, usually it

requires a small amount of computer memory. Thus, the size of each link-table

does not usually exceed 256 or 512 memory indexes. Simultaneously used link-

tables can have arbitrary sizes. For algorithmic simplicity, link-tables are read by

normalized indexing, in the range from 0 (table start) to 1 (table end).

Additionally, a requirement for EWSS is that the link shapes are all stored with

an ascending value direction: the first index of each link-table takes always the

minimum amplitude value while the last index takes always the maximum

amplitude value. This is further explained in the section on Segmentation.

Amplitude values in each link-table are stored normalized, thus taking values in

the range from 0 to 1.

 119

10.1.3.2 Link: Functions

Segments may be defined by algorithmically generated data. The output from

simple trigonometric functions or polynomials to various non-linear functions like

chaotic functions or fractals can be used to generate a variety of synthetic

sound segment shapes. These shapes can range from fragments of familiar

and widely used wavecycles (eg. sine-waves or harmonic waveforms) to

portions of chaotic orbits of strange attractors.

10.1.3.3 Link: Recorded Sound Segments

Sounds with very short duration or portions of a longer recorded soundfile may

be used as segments. These microsonic events preserve the transient

characteristics and complex sound morphologies of the recorded sound. The

assemblage of sound segments is capable of producing sounds characterized

by microtemporal detail in a wide range: from the recreation of recorded sound

events (when the segments are played in particular order and adjustment) to

the idiomatic creation of environmental sounding abstractions. The concept

behind the use and assemblage of segments derived from sound sources is

very close to the Brassage technique [Wishart 1994] or the Sample Granulation

technique, but transferred and applied to a lower time domain.

10.1.3.4 Link: Sonification Data

Sonification data or a frame of it can define a segment link. Sonification data is

mostly derived from natural phenomena but they are not restricted to them.

They can be imported in EWSS and stored as a link. For some signals, the data

 120

have to change the time scale to fit the range of the human hearing mechanism

and human perception. Therefore, time-stretching and amplitude normalization

techniques are required. Moreover, the original signal can be quantized or

filtered. An overview on the concept and applications of sonification techniques

is presented in section (12.2.4).

10.1.3.5 Link: Graphics

Segment shapes can be also designed graphically. Shapes can be drawn by

the hand with an onscreen pencil and displayed on a computer monitor. The

application of a tablet input devices is very useful. The use of graphical

synthesis allows the composer to design the microstructure of sound events in

detail [Roads 2002]. Graphical design of wave segments is a fast way of

producing a variety of segment shapes.

10.1.3.6 Segmentation

Externally provided data, either in the form of a sound waveform or in the form

of sonification data can be segmented into a list smaller entities. The

segmentation process provides three different lists:

� amplitude values

� duration values

� link shapes

 121

In EWSS we propose an automated segmentation algorithm that identifies

characteristic amplitude junctions in the provided data. For example, a sound

waveform may be segmented at the following points:

� zero crossing

� minima & maxima points between each zero crossing

Additionally, more points can be detected by analyzing amplitude transitions,

e.g:

� phase direction change

10.1.4 Segment: 2nd definition

Taken into account from the above discussion that a) a segment is defined by

two successive breakpoints that are linked together, b) the starting breakpoint of

each segment is usually the same to the end breakpoint of the previous

segment and, c) a breakpoint can take relative values to the previous one, we

can provide a 2nd definition for the segment. Thus a segment can be also

defined by:

a) an amplitude value

b) a duration

c) a link

The amplitude value is actually the value of the ending breakpoint. The

duration is the time difference between the starting and the ending

 122

breakpoint. A link is a function or shape that connects the breakpoint ends of

the segment.

10.1.5 Hierarchical levels: Segments, Structures, Groups,
Sequences & Sound Objects

In EWSS sound construction takes a hierarchical approach: from small

waveform fragments towards complete sound objects. Although in EWSS

hierarchical construction approach may have an arbitrary number of levels, we

propose at least four different levels:

� the segment level

� the structure level

� the group level

� the sequence level

� the sound object level

The segment level is the lowest construction level and the sound object is the

highest construction level. Although there may be an arbitrary number of levels

in between, we propose at least three intermediate levels: the structure level,

the group level and, the sequence level. As we have already seen in chapter (2)

all sound construction levels that are below the sound object belong to the

territory of micro-level. In the above hierarchical approach, sound objects

generated in the context of EWSS may exhibit a vast range of their internal

structural complexity. In the next section there will be presented the concepts of

structure, group, sequence and sound object.

 123

10.1.5.1 Structure

We have seen that segments constitute the building units in EWSS. Segments

are assembled together and form larger entities. The smallest sound entity that

is formed by a number of segmets is called a structure. Α structure may be

constructed from a single segment up to an arbitrary number of segments

predefined by the user. The structure is the minimum synthetic construction in

EWSS. A structure is defined by:

� a list of amplitude segment values

� a list of duration segment values

� a list of link shape-tables

The actual form and meaning of the structure is derived from the musical

context that EWWS is taking place. For example, the concept of the structure

may correspond to the concept of a wavecycle in GENDY, a pulsaret in Pulsar

synthesis or a grain in Granular synthesis.

10.1.5.2 Group

In EWSS a structure is usually subjected to algorithmic variations and evolution.

The assemblage of successive variations of a structure constructs a larger

entity called a group. In other words, a group is articulated by a number of [n]

successive structures, where each of them is usually an algorithmic variation of

the former. Α group may be constructed from a single structure up to an

arbitrary number of sequential transformations of the initial structure.

A group can be defined by:

 124

� an initial structure

� a length of [n] generated structures

� a transformational algorithm

The degree and the form of the variation between succeeding structures

depends on the chosen transformational algorithm. In the simplest case

each generated structure is an exact copy. A transformational algorithm may

vary in each structure generation any or all of the syntactic elements of a

structure:

� the amplitude values of the segments

� the duration values of the segments

� the link shape-tables

A transformational algorithm may be of any complexity and combine one or

more simpler algorithmic processes. For example, a transformational

algorithm may consist of two nested random walks (similarly to GENDY).

Additionally the elastic barriers of each random walk may be modulated by

some mathematical function (e.g. a sinewave). Although there may be used

a vast number of transformational algorithms, in EWSS we propose the use

of at least of the following categories:

� permutation

� stochastic

� chaos

 125

� evolutionary

� fractal

� grammars

10.1.5.3 Sequence

In EWSS a number of groups may be assembled in a higher-level structure

called a sequence. The complexity of a sequence may vary from a simple

occurrence of a single group to complex structures formed by a large number of

different groups. A sequence is defined by:

� an initial list of groups

� a length of [n] generated groups

� an ordering algorithm

The ordering algorithm can choose among groups that are provided in an initial

list and assemble them in a sequence. A sequence is constructed by a number

of [n] successive groups. Α sequence may be constructed from a single group

up to an arbitrary number of groups predefined in a list by the user.

An ordering algorithm may be of any complexity and combine one or more

simpler algorithmic processes. For example, an ordering algorithm may consist

of one nested random walk whose step is controlled by a chaotic process while

its elastic barriers are controlled by envelope generators. Although there may

be used a vast number of ordering algorithms, in EWSS we propose the use of

at least of the following categories:

 126

� permutation

� stochastic

� chaos

� grammars

10.1.6 Higher-level Hierarchy

The concept of the hierarchical structure of EWSS can be of an arbitrary depth.

There can be as many different levels as the user can define. Every additional

structuring level may share similar properties to the concept of the sequence

level. Thus, the relationship between groups and sequence can be repeated on

different levels. We can easily imagine assembladges of sequences forming a

higher-level sound structure and so on.

Morovere, if the hierarchical levels share the same or similar properties,

especially the same ordering algorithms, than they can produce complex

assembladges with self-similar or fractal construction.

10.1.7 EWSS & the Concept of the Sound Object

We have seen that the synthesis structure in EWSS takes the form of

hierarchical levels that ranges from small microsonic wave fragments up to the

whole construction of a sound object. The total structure provided by the highest

hierarchical level should be considered as equal to the internal macro-structure

of the generated sound object. For the scope of this Thesis we have presented

the hierarchy of four different levels: segment, structure, group, and sequence.

 127

Therefore, in the framework of this Thesis, the internal structure of the sound

object that is generated by EWSS equals the above-mentioned hierarchy.

 128

11 Dynamic Waveform Segment Synthesis (DWSS)

In the previous chapter we have presented Extended Waveform Segment

Synthesis (EWSS) in an attempt to (i) incorporate existing waveform segment

synthesis techniques into a generalized framework and, (ii) provide a novel

paradigm of non-standard synthesis with dynamic algorithmic models.

In this chapter we will propose Dynamic Waveform Segment Synthesis (DWSS)

as a new non-standard direct synthesis model. DWSS implements the concept

of EWSS in a computer music environment. DWSS uses the notions of

segment, structure, group, and sequence and apply them in a collection of

dynamic microsound algorithmic procedures for the generation of novel sound

objects.

Although DWSS is a novel approach on non-standard sound synthesis, it takes

into account and incorporates various concepts and features from other non-

standard approaches like G.M. Koenigʼs SSP, Herbert Brünʼs SAWDUST, Arun

Chandraʼs TrikTraks and Wigout. However, DWSS should be considered as an

offspring of the Stochastic Sound Synthesis and the GENDY systems

developed by Iannis Xenakis. Taking into account the relations with the above-

mentioned non-standard systems, we will provide direct references to the above

systems throughout the description of DWSS for the purposes of comparison

and clarity of the concepts.

11.1 The computer music programming environment

 129

DWSS algorithms were developed in the computer music programming

environment of Max/MSP. This includes the sound synthesis engine, the

algorithmic control structures and the user interface.

Having in mind that this system could be expanded in subsequent

implementations, some of its components were intentionally kept simple. This is

the case, for instance, of the synthesis engine, which at the time of this

research is programmed to operate in non-real-time.

However, all the concepts of EWSS were implemented. Non-standard synthesis

with dynamical models is achieved with a group of five separate applications

that serve for initial segment list generation, sound segmentation, segment list

values transformation, segment list order transformation, structure evolution in

groups, group evolution in sequences, synthesis and the relevant user

interfaces.

Additionally, the user interface is kept simple in order to serve the merely

objectives of this Thesis and it is not designed for any operation of the

applications by the public. However, all aspects of software functionalities are

taken into concern and are carefully represented in the user interface.

In the following Sections, DWSSʼs main components are described.

11.2 System Overview

In DWSS a sound object is generated algorithmically by the definition,

transformation and articulation of a number of short waveform fragments. The

program applies the notions of segment, structure, group, and sequence that

are proposed by EWSS.

 130

The user defines the procedures and provides the control data for the

algorithmic generation of sound in six applications that share data, are

interconnected and should be considered as operating in parallel.

Figure 1: system overview of DWSS

The “DWSS_storage” application is responsible for the storage of structures,

groups & sequences.

The “DWSS_generation” application is responsible for the tasks of a) generation

of structures, and b) segmentation of soundfiles into structures.

The “DWSS_transformation” application is responsible for the tasks of a) re-

ordering of the segments within a structure, and b) transformation of the values

of the segments within a structure.

The “DWSS_group” application is responsible for the tasks of a) the definition of

groups, b) storage of groups, and c) the CA evolution of structures into groups

and sequences

The “DWSS_sequence” is responsible for the control of the assemblage of

groups into structures

 131

The “DWSS_synthesis” is responsible for the tasks of a) sound synthesis of

sequences, b) playback of synthesized sound, and c) storage of synthesized

sound.

11.3 DWSS:storage

In DWSS, structure lists are represented as computer tables and thus are

accessed and processed through lookup-table techniques. The

“DWSS_storage” application is responsible for the dynamic memory allocation

and the creation or destruction of memory buffers. Each structure list stores

segment data in three buffers: segment amplitude values, segment duration

values, segment shape number along with data for each segment shape that

are stored on separate buffers.

Additionally, the “DWSS_storage” application collects and displays information

on the current lists:

� the list number

� the number of amplitude values

� the number of duration values

� the number of assigned segments

� the valuesʼs mode (whether amplitude and duration values are normalized
within the range 0.-1. or have absolute values)

� the length of each segment shape (in samples)

Figure 2: list information in “DWSS_storage”

 132

11.4 DWSS:Construction

In “DWSS_construction” application, each list represents one structure. The

structure is the smallest sound entity formed in DWSS. A structure is assembled

together by a group of segments. As we have already seen in EWSS in section

(14.1.5.1), a structure is defined by a set of values specifying the amplitude, the

duration, and the link-shape for each segment.

The first user task in DWSS is the construction of the initial data-lists. These

lists will eventually provide the pull for the selection of the appropriate amplitude

and duration values as well as the shapes that take part in the construction of

waveform segments and structures. Thus, the user constructs three initial lists

according to the requirements of segment definition in sections (14.1.1 and

14.1.4):

� list of amplitude values

� list of duration values

� list of shapes

Lists can be constructed in four possible ways by the operations of: algorithmic

generation, soundfile segmentation, algorithmic transformation and group

sequencing. We will discuss the first two operations in this chapter. List

construction through algorithmic transformation is discussed in chapter (11.5),

while the operation of group sequencing is discussed in chapters (11.6) and

(11.7).

During the initial list construction, the content values of the lists were indexed in

parallel. Thus, amplitudes, durations and, link-shapes are already interrelated.

 133

This allows for single indexing of the three lists by a single algorithmic process.

Since each structure list consists by a series of segments, the user has to

define the total number of them.

Figure 3: “DWWS_construction” window

11.4.1 Lists & Shapes: algorithmic generation

Lists can be generated algorithmically by applying complex algorithmic

functions. The user can choose among the following algorithmic functions:

� constant value. One constant value is applied to all indexes of the list.

� harmonic function. One cycle of composite waveform is generated. The

waveform is made up of the weighted sums of 8 simple sinusoids in

harmonic relationship.

Figure 4: the harmonic function interface

 134

� stochastic function. The values are generated by a stochastic

distribution. The stochastic distribution is defined graphically by the help

of a breakpoint function.

Figure 5: the stochastic distribution interface

� chaotic function (the logistic map). The user chooses the rate of

reproduction [r].

Figure 6: the logistic map function interface

Although any of the above algorithmic procedures is capable of producing a

large variety of numerical lists, DWSS provides the option of chaining together

serial generations for even further variety and complexity. There can be as

many serial generations as the total length of the list permits.

11.4.2 Lists & Shapes: graphic generation

DWSS provides a user interface for the graphic generation of lists. The system

provides the user with the appropriate graphic tools with which the relative lists

are filled. Two insertion modes are provided:

 135

� free-hand drawing: the user fills the graphic table by hand movements

with the aid of an on-screen pencil tool. The use of a graphic tablet is a

useful option.

Figure 7: graphic drawing of list values

� breakpoint functions: the user defines specific breakpoints in the table

and the computer provides intermediate data through interpolation. The

user can select linear interpolation or define any curvature between

breakpoints.

Figure 8: breakpoint function

In the two-dimensional graphic tables, the horizontal axis represents the table

index while the vertical axis represents the amplitude or duration value.

Similarly, the user can define, with the help of breakpoint function, one or more

segment shapes. To assure signal continuity during segment articulation, the

first table index should take the minimum value, while the last table index, the

highest. The user defines also the length of the segment.

Figure 9: segment shape creation with breakpoints

 136

Since the segment data types (amplitude, duration & shape) are interrelated,

the final list should have the same number of amplitudes, durations and shapes.

If the number of shapes is less than the amplitude and duration values then the

system can complete the list by assign serially the already defined shapes to

the unoccupied indexes. This operation is carried by the “complete list” function.

Figure 10: complete list

11.4.3 Lists & Shapes: segmentation

List values and shapes can be also provided from given soundfiles or

sonification data. An automated segmentation process derives the values and

shapes.

Figure 11: sound segmentation interface

In DWSS we defined a simple segmentation algorithm that identifies zero-points

as well as intermediate points with the minimum and maximum values. The

three required values that define a segment are derived as follows:

� the amplitude value is derived from the value of each identified point

� the duration value is derived by the difference (or in other words the

length) in samples between successive identified points

 137

� the shape is derived by the fragment of samples between successive

identified points.

Figure 12: four segment shapes

Since these three data types (amplitude, duration & shape) are interrelated,

they are stored in the created lists sequentially and take the same index

number.

11.5 DWSS: algorithmic transformation

Once the amplitude, duration and shape lists are defined into structures, they

can be the subjects of further transformation. The “DWSS_transform”

application, provides two categories of transformations with two distinct

operations each:

� index permutation

o list shaping

o list random walk

� value transformation

o add & multiply

o duration scaling

 138

Figure 13: the “DWSS_trasform” window

With index permutation, the input list indexes are re-ordered with two different

operations: a) list shaping and b) list random walk.

In list shaping the list is re-ordered with the help of a shaping function that is

defined graphically by the user. The horizontal axis represents input list indexes

while the vertical axis represents output list indexes. The user defines the

shaping function by the help of breakpoint functions.

Figure 14: list shaping permutation

In list random walk, input list indexes are scanned by the help of a random walk.

The user defines the lower and higher length of the step. At each step, the

operation selects randomly a) the length of the step, and b) the direction of the

 139

step (forward or reverse). Thus, succeeding chunks of the input list, within

predefined limits, are re-ordered and assembled to the output list.

Figure 15: random walk permutation

With value transformation, input list values are altered by two different

operations: a) add & multiply, and b) duration scaling.

In the add & multiply operation, each value of the amplitude or duration segment

list is added to or multiplied by a corresponding constant, which is defined by

the user.

Figure 16: add & multiply transformation

In the scale durations operation, each value of the amplitude or duration

segment list is scaled within a defined range. Initially, the input list range is

automatically set by a function that finds the minimum and maximum value of

the list. The user can adjust the ranges of both the input and the output list.

 140

Figure 17: scale duration transformation

Finally, the append list operation provides the option of pasting the whole input

list at the end of the output list. In this manner two or more list can be combined,

making even complex segment structures.

Figure 18: append list operation

11.6 DWSS: Groups

A group is articulated by an initial list structure and the concatination of a

number of its variations. In the “DWSS_group” application, a recursive dynamic

algorithm generates successive variations of one structure after another. Thus,

within a group, every next structure is the evolutionary offspring of the last one.

The application of the dynamic algorithm provides continous microsonic

variations of various degrees on the generated sound. The initial structure

together with the number of generated structure variations defines the length of

the group.

 141

Figure 19: the “DWSS_group” window

11.6.1 Groups: structure evolution with CA

As we have already seen, in EWSS a structure is defined by a set of segment

amplitude and duration breakpoints and the link-shapes that joints the

breakpoints together. In “DWSS_group”, as a group is produced by generating

one structure after another, both the amplitude and duration values of the

segment breakpoints vary after each new structure generation. In the current

implementation of “DWSS_group”, the link-shape of each segment remains

unaltered.

In “DWSS_group”, the user selects the input list structure among the available

lists that are provided by the “DWSS_storage” application. The input list defines

the initial set of segment values to the CA automaton or in other words, the

initial conditions.

 142

Figure 20: input list

The set of amplitude and duration segment values correspond to individual cells

of the CA. Thus, the two CA are 1-dimensional arrays with a number of cells

that is equal to the number of segments that define the input list structure. In

other words, the CA size is equal to the number of the segments of the input list

structure.

Since the generative process of the CA depends on the interaction between

neighbor cells, a special attention should be made on the processing of the cells

on the boundaries of the 1-dimensional arrays. In “DWSS_group”, the boundary

conditions of the CA are wrapped around, thus forming a torus.

The output of the CA affects directly the computation of the waveform of the

sound object therefore it requires the computation of numbers with floating-point

precision, within the range of [-1, 1]. Actually, in “DWSS_group” the CA

generates real numbers within the range of [0, 1] that are linearly remapped in

the user specified output range. Therefore, the state of each cell has to be

continuous with infinite number of states. Thus, the construction engine of

“DWSS_group” is driven by the special category of continuous CA [Wolfram

2002].

 143

There are different transition rules for each CA. The transition rules specify the

new state of each cell or in other words specify the new breakpoint values of the

next generated segment. Thus, the transition rule of the CA is actually

responsible for the microsonic variation within a group.

In “DWSS_group”, the variation of both the amplitude and duration breakpoint

values of each segment are controlled by two independent Cellular Automata

(CA) operating in parallel. The “DWSS_group” application offers a variety of

transition rules, thus is capable of exploring a large number of sonic

transformations. Actually, the user selects between two layers of algorithmic

functions, one (the upper layer or 2nd local level) providing control parameters to

the other (the lower layer or 1st local level). Each function and its input

parameters correspond to a separate transition rule.

Figure 21: amplitude Level 1 & 2 functions

The provided algorithmic functions for each layer are:

� cyclic phaser

� cyclic triangle

� cyclic sine

� stochastic random walk

� chaotic logistic map

� chaotic iterative sine

 144

� weighted value from neighbor cells

The values produced by each function are bounded within a user-defined range.

These boundaries are reflective, thus returning values that exceed the limits

back to the nominal levels.

Additionally, “DWSS_group” provides automated control to the input parameter

(called global parameter A) of the upper level. There are two available modes:

a) stochastic distribution, and b) envelope function. Both modes are graphically

defined by the user. The parameter A values generated by the selected function

are also limited within a user-defined range.

Figure 22: global parameter A

Sometimes the segment values of either the amplitude or the duration structure

is sensible to remain unaltered, without any evolution through the CA. In this

case “DWSS_group” can be set to bypass the amplitude or duration process.

Figure 23: amplitude or duration bypass

 145

The total number of structures generated by “DWSS_group” is defined

automatically by a specific function. The system provides two modes: a)

stochastic distribution, and b) envelope function. Both modes are graphically

defined by the user. The selected mode decides automatically for the total

number of structures for the current group within a pre-defined range (minimum

and maximum number of structures).

Figure 24: number of structures

Finally, a group is defined by the input list structure, along with all the selected

generative functions, the control values, the boundary levels and the total length

function. “DWSS_group” provides the functionality of storing, editing, recalling

and deleting a number of different groups.

Figure 25: list of groups

Comparing the concept of breakpoint recurrent variation in DWSS with Iannis

Xenakisʼs GENDY system [Xenakis 1992] we can distinguish that DWSS

 146

expands this concept and uses the more generalized notion of CA. In this

context, the 2nd order random walks of the GENDY system, that provided the

stochastic variations of the breakpoints, is but a subset of the possible transition

rules of the CA in DWSS. Moreover, the floating-point precision of DWSS differs

from the discrete number of states of the GENDY system, a requirement that

highly affects the produced sonorities and their microsonic properties. Peter

Hoffman provides a detailed description of the effect of the application of

discrete states within GENDY [Hoffman 2009].

11.7 DWSS: Sequence

A sequence is articulated by the assemblage of groups. A sequence may

consist of a single group or by a number different groups. Each group may

appear one or more times within a sequence. The “DWSS_sequence”

application is responsible for the construction of groups into sequences.

Figure 26: “DWSS_sequence” window

 147

The list-of-groups are defined from the “DWSS_group” application. Sequences

are generated and assembled by the algorithmic selection of specific groups

from the list-of-groups. The list-of-groups is indexed algorithmically by applying

complex computer algorithmic procedures. The available functions are:

� oscillating phaser

� oscillating triangle

� stochastic random walk

� chaotic logistic map

� L-system

The selected function is provided with a single input parameter.

Figure 27: sequencing function

Additionally, in the case of the L-system the user provides also the production

rule in the symbolic form of MaxMSP.

Figure 28: CA production rule

For visualization purposes, the “DWSS_sequence” displays the values of global

parameter A, Level 2, and Level 1 for both the amplitude and duration of the

generated segments.

For sonification purposes, “DWSS_sequence” provides playback option for the

list of the Level 1 amplitude values. This is especially practical in the special

case where all the durations are set to 1 sample. In this case, the list of the

 148

Level 1 amplitude values consist the actual sound object. Level 1 amplitude

values can be also saved as a soundfile.

The generated sequence is saved as separate amplitude, duration, and shape

lists in “DWSS_storage”. These lists can be treaded afterwards as any other

lists of structures. In this approach sequences can be the input of a new group

and thus, we can have sequences of sequences.

For technical reasons, part of the algorithmic processes of assembling groups

into sequences where implemented in the “DWSS_group” application and

controled from the “DWSS_sequence” application.

11.8 DWSS: Synthesis

 The final process of articulating the amplitude, duration, and shape data for

each segment, assembling them into a sound waveform and producing the

audible sound object is undertaken by “DWSS_synthesis”. The generated

waveform can be played back in various speeds for monitoring purposes and

better assessment of its sound morphologies. Finally, the generated waveform

can be saved as a soundfile.

Figure 29: “DWSS_synthesis” window

 149

12 EWSS & DWSS in the Context of Non-Standard
Synthesis

The main focus of this Thesis is the proposal of a generalized concept that

incorporates all existing waveform segment synthesis techniques into a single

model (Extended Waveform Segment Synthesis - EWSS) as well as the

realization of a novel non-standard synthesis model (Dynamic Waveform

Segment Synthesis – DWSS) which would allow the exploration of various non-

standard synthesis ideas derived from that concept.

In this chapter we will try to place EWSS and DWSS in the context of non-

standard synthesis. We will attempt to describe the novelty of the concept

behind EWSS and the potentiality in synthesizing original sound objects with

DWSS. Accordingly, we will first discuss the framework of comparison and

evaluation between computer aided algorithmic composition (CAAC) systems in

general and non-standard synthesis systems in particular. Consequently,

having established the appropriate evaluation framework, we will attempt to

place EWSS and DWSS side by side with other non-standard synthesis

approaches.

12.1 On the Comparison of Computer Music Systems

The utility of computer aided algorithmic composition systems is not easily

evaluated. Systems for music generation, or for any generative aesthetic

production in general, cannot be assessed merely by its output. The generative

results are highly depended on the users, their skill, musicianship and creativity

 150

with the system as well as with their interpretation and utilization of the music or

sound results. In this aspect, computer music systems are like any other

creative tool or instrument, such as a paintbrush or a violin. The creative results

of a tool cannot be entirely measured by analyzing one or more produced

instances. Regarding these observations, but talking on hardware rather than

software, Gustav Ciamaga suggests that [Ciamaga 1975, pp.117]:

“no machine or system has been proven superior to any other
despite the claims and counterclaims of designers,
manufacturers, or composers… ideally, the composer chooses
among the available electronic music systems for their creative
potential and not because of any claims of efficiency.”

The efficiency of an aesthetic production system cannot be evaluated by a

precise standard of measurement. B.W.Pennycook, surveying computer music

systems, suggests that in contrast to other ordinary systems, “in which

measures of productivity can be gathered empirically, in most musical settings

productivity and aesthetic value become hopelessly confused” [Pennycook

1985]. Music or sound creation computer systems are even more difficult to

compare and evaluate. Simon Holland suggests that “in open-ended domains

such as music composition, there are in general no clear goals, no criteria for

testing correct answers, and no comprehensive set of well-defined methods”

[Holland 2000]. Computer music systems should be rather evaluated toward

determining limits and potentiality.

If the condition of evaluating computer music systems in general is

questionable, the situation is more controversial for non-standard synthesis

systems. We have already seen in chapters (5, 6 and, 7) that the non-standard

approach belongs to the heretical and explicit culture of computer music. In this

 151

cultural area the objective is the design of algorithmic processes as part of very

personalized tools with which the compositional or sound design process is

carried out. In non-standard synthesis the composer does not rely on culturally

established materials and models, or on any historical experience and practice,

but rather defines and implements his own rules and procedures for the

generation of the music material. Non-standard synthesis is radically creative

instead of reproductive. Although non-standard approaches provided novel

models of sound, they are not meant to make available a generalized

algorithmic music framework for wide public use but rather they were initially

designed to serve particular musical needs of individual composers. This

inherent trend towards constant renewal, through the heretical use of

technology, of both the music language and material, makes non-standard

systems even more arguable to compare.

Moreover, other more practical issues contribute to the difficulties of comparing

between non-standard synthesis systems. Since most of the systems are

designed for specific compositional objectives by particular composers, they are

not publicly available or the access to them is provided only in particular

institutions around the world. Other systems are hardware dependant or the

target platform is obsolete, as is the case of the hystorical systems. Additionally,

for some of the systems the source code does not exist or they are only

superficially documented.

However, as we have already seen in chapter (10), non-standard synthesis, as

part of computer aided algorithmic composition, can make particular use of

methodologies of cognitive musicology. As Michael Hamman suggests,

 152

algorithmic music systems allow the critical assessment of the compositional

process itself [Hamman 2002, pp.93]:

“The computer... enabled the composer to critically examine
and assess the musical result, the means by which the result
came about, and how the two are conceptually and generatively
related”

In algorithmic composition, rules of the composition or of sound design are

already “there”, as part of the creative process. The identity of the generated

sound object is formalized in the algorithmic generation process. In this respect,

the formalization of the algorithmic process may be considered as objectified

theory. This objectification makes possible the comparison, if not of the

complete musical systems, at least some integral parts of them.

12.2 DWSS & the Other Non-Standard Systems

A non-standard synthesis system, along with any computer aided algorithmic

composition system, may be analyzed by dividing it into components. Generally,

we can divide the components of a computer music system into three groups:

models of sound/music material, models of sound/music procedures and, the

large-scale architecture. This division is in reference to the classic division of

software into data structures, algorithms and, system configuration [Winograd

1979].

As we have seen, concerning the models of the sound material, there are two

general groups of non-standard synthesis systems. First, systems where the

generated sound object is represented as a construction of individual samples.

Second, systems where the generated sound object is represented as a

 153

construction of sound segments. DWSS is enlisted in this latter category.

However, since a segment may take the minimal value of one sound sample,

this categorization is obscure.

The substantial discretion between non-standard systems lies on the utilized

algorithmic models. As we have already see in chapter (6-7), in non-standard

synthesis, compositional aesthetics and formalizations are applied to the direct

construction of the sound waveform itself. This is a bottom-up approach that is

based on computer instructions. The applied algorithmic procedures and

models actually distinguishes the particular non-standard systems and are the

fundamental base for the potential sound-object generation.

By reviewing non-standard synthesis systems we arrived at specific algorithmic

models that provided distinctive functionality and were responsible for the

generation of characteristic sonological features of the sound objects. These

algorithmic models are: list generation, list permutation, tendency mask,

trigonometric functions, stochastic variation, chaotic variation, cellular automata

and grammars. These algorithmic models, their significant features and, how

they contributed to particular sound models and synthesis approaches were

presented in chapter 11. We will compare the implementation of these

algorithmic models to various non-standard synthesis systems along with

DWSS. These systems are: G.M. Koenigʼs SSP, Herbert Brunʼs SHAWDUST,

Arun Chandraʼs TrikTraks and Wigout, Jaques Chareyronʼs LASy, Iannis

Xenakisʼs GENDY, Stelios Manousakisʼs Non-standard Sound Synthesis with L-

Systems (NSSSLS) and Agostino di Scipioʼs Iterated Function Synthesis (IFS).

 154

The concept of algorithmic list generation, along with algorithmic list

permutation was applied in SSP, SAWDUST, TrikTraks and Wigout.

Furthermore, SSP introduced the concept of tendency masks. TrikTraks and

Wigout expanded the concept of SAWDUST by incorporating trigonometric

functions among others. Stochastic variation is an integral aspect of the GENDY

system and its successors. Chaotic variations are explored in Iterated Function

Synthesis (IFS) along with other Agostino di Scipioʼs implementations. The use

of cellular automata was first introduced in direct sound synthesis in LASy.

Finally, the utilization of grammars is extensively explored in resent research in

Non-standard Sound Synthesis with L-Systems (NSSSLS). Table (1) provides

an overview of the utilization of various algorithmic models in different non-

standard synthesis system. The last column demonstrates the integration of all

these models in DWSS.

 S
S
P

S
A
W

D
U

S
T

T
ri

kT
ra

ks

W
ig

o
u
t

LA
S
y

G
E
N

D
Y

N
S
S
S
LS

IF
S

D
W

S
S

list generation X X X X X
list permutation X X X X X
tendency mask X X
trigonometric functions X X X
stochastic variation X X
chaotic variation X X
cellular automata X X
grammars X X
graphics X

table 1. Comparative Table of Non-Standard Synthesis Systems

However, all these algorithmic models are not isolated features in DWSS that

are responsible for the generation of particular categories of sound

morphologies. DWSSʼs architecture provides complex configurations and

combination of these models, thus is capable of generating a wider range of

sound objects than the stand-alone operation of a single algorithmic model.

 155

Finally, system architecture, the third component of a computer music system,

defines how its components interact and are displayed to the user at the highest

level. One aspect of this level is the choice of the user interface, graphical or

otherwise. Although the user interface is an important aspect of the usage of a

computer music system, our research rather focuses on concepts and

procedures. The examination and discretion on the basis of system architecture

in general and the implication of the user interface in particular is beyond the

scope of this Thesis.

 156

13 DWSS: Case Studies

Dynamic Waveform Segment Synthesis is capable of generating sound objects

that feature a broad range of sonic morphologies. Since in DWSS, sound

construction operates in hierarchies, from segment units towards the complete

sound object, any differentiation on any level is capable of generating diverse

results. Thus, synthesis approaches may focus more or less on initial segment

lists, structures, groups or sequences. Any differentiation on any hierarchical

level opens a range of possibilities in sound construction.

As we have already seen in the previous chapter, the morphologies of sounds

generated by DWSS depend on the following factors:

� initial list(s) properties

� group definition

� sequence definition

In the simplest case, where the sequence consist of only one group, there are

already a significant number of factors: (2) parameter A modes [stochastic,

envelope] and (7) possible function for Level 2 and Level 1 operations [phasor,

triangle, sine, walk, logistic map, iter(sin) and neighbor rule]. That means that

there are 98 combinations (2 x 7 x 7), separately, for the amplitude and duration

definition of segments. That makes in total 9604 possible combinations (98 x

98) of functions that could define a Group.

To the above complexity one has to consider the number of values for each

function as well as the variety of the generated behavior. That makes a vast

algorithmic parameter space that requires a systematic research that goes

 157

beyond the scope of this Thesis and it is questionable that can fully explore and

categorize all the morphological properties of the possible generated sound

objects. However, in order to investigate the basic functionality of DWSS and to

present some of its generative properties we conducted a number of basic

experiments within the framework of eight (8) case studies.

The eight (8) case studies cover two categories of sound generation

approaches. On one hand, we will provide examples that indicate how DWSS is

capable of generating sound objects that are characteristic of other approaches.

Thus, we will illustrate how DWSS functions as a generalized framework that

incorporates basic features of other microsound synthesis techniques. In this

category belong the case studies:

1) Soundfile Segmentation and Resynthesis

2) Dynamic Stochastic Synthesis

3) Iterated Nonlinear Functions

4) Oscillating functions & Tendency Masks

5) Sound Synthesis with Graphics & Grammars

One the other hand, we will provide examples disclosing the novelty of DWSS

and how it can generate sound objects featuring morphologies that belong to

the heretical currents of contemporary computer music creativity. In this

category belong the case studies:

6) Dynamic Sound Synthesis

7) Cellular Automata Sound Synthesis

8) Dynamic Microrythmic Morphologies

 158

However, as has already mentioned above, since DWSS belongs to the non-

standard synthesis approaches, the provided case studies are but a subset of

the potential sound morphologies. Non-standard synthesis requires a lot of

laborious experimentation but recompense with the discovery of new sonic

territories.

13.1 Case Study 1: soundfile segmentation and resynthesis

In the case study described in this section, the aim was to segment and

resynthesize an existing soundfile with DWSS. Although DWSS, as any non-

standard synthesis technique, belongs to the explicit culture of computer music,

which is not interested in the emulation or re-creation of existing sound objects,

this basic experiment had twofold intention:

� to examine the segmentation and recosnstruction functions of the

system.

� to validate that the system can provide the composer with the

morphology of an existing sound object as the starting point for further

sound mangling and experimentation

For the purposes of this study, we recorded directly into the computer, with the

aid of a quality microphone and audio interface, the sound of a small bell. The

soundfile was first edited in a sound editor so any silence was removed from the

beginning and the end of the recording, resulting in duration of 328 msec.

 159

Figure 30: bell sound to segment

With the help of the segmentation option of the “DWSS_generation” application,

the soundfile was segmented into 294 segments. The amplitude, duration and,

shape data of the segments was stored sequentially into the appropriate lists.

For the purposes of this study, the target sound object is the exact resynthesis

of the initial soundfile. Since the segment data was stored sequentially, there

was no need for any algorithmic transformation of the lists. Thus, the soundfile

could be reconstructed with the sequential assemblage of the initial segments.

This operation could be easily performed with the help of the “DWSS_synthesis”

application. The stored segments were re-assembled with the help of a single

function: a linear reading of all the contents of the lists and without any other

proccess.

In this perspective, the target sound file was represented as only one structure.

What is interesting is that this case study provides also an example of how the

final sound object is constructed with operations carried in only one level, the

structure level. Therefore, there was no need for further operations in the group

and the sequence levels: there was only one group that consist of a single

structure without any internal operation of the Cellular Automaton mechanism

as well as a sequence that consist of that single group.

The overview of the hierarchical structure of the sound object within DWSS is:

 160

� one long structure representing the initial soundfile

� one group without any internal CA evolution

� one sequence with one group occurrence

Comparing the initial soundfile sample-by-sample to the resynthesized soundfile

completed the aim of this case study. The comparison was carried with the aid

of a specially programmed algorithm. The comparison resulted in two identical

files, thus the resynthesized soundfile was an exact recreation of the initial

sound.

13.2 Case Study 2: Dynamic Stochastic Synthesis

It is already said that DWSS should be considered as an offspring of the

Stochastic Sound Synthesis and the GENDY systems developed by Iannis

Xenakis. In this case study, the aim was to emulate with DWSS the sound

engine of the GENDY system. Dynamic Stochastic Synthesis and GENDY was

introduced and discussed in section (13.1).

The first step was to create the initial segment lists with the help of the

“DWSS_generation” application. We chose to construct an evolving structure

that is assembled by 8 segments, therefore we defined the amplitude, duration

and, shape lists with the corresponding length. GENDY generates sounds that

always start from silence or as Peter Hoffmann poetically describes it, music out

of nothing [Hoffmann 2009]. Thus, we chose to set all indexes of both the

amplitude and duration lists with zeroes. This selection was carried by choosing

the constant value option in the algorithmic generation of the lists. Moreover,

the GENDY system uses linear interpolation for the linking of the breakpoints.

 161

Therefore, we created a single linear shape of 100 samples duration using the

algorithmic generation and straight-line options.

The second step was to define the group and to emulate the stochastic

displacement of the breakpoints. For this purpose we used the “DWSS_group”

application. The emulation of GENDYʼs sound engine would be carried by the

Cellular Automaton mechanism of DWSS: within a group, the variation of the

amplitude and duration breakpoint values of the structure would be controlled by

two independent CA operating in parallel. For this purpose we defined the

creation of a group with the following settings: We chose the same transition

rule for both CA. This rule consists of two random walks for each algorithmic

layer. The output of the higher random walk was set to control the step of the

lower. Although the ordinary operation of CA take into account the values of the

neighbor cells, for the purposes of this case study we didnʼt used the weight of

the neighbor cells and took into account only the stochastic operations within

the internal transition rule.

Since the internal structure evolution within a group is sufficient in emulating the

stochastic sound generation of the GENDY engine, the final sound object

hierarchy requires only one group with one occurrence within the sequence.

For the generated sequence of the segments we used one group with the

following values:

� group length: 5000 structures

� amplitude global parameter A: stochastic mode with range 0.-0.1

� amplitude Level 2: walk function with range 0.-0.1

� amplitude Level 1: walk function with range -1. – 1.

 162

� duration global parameter A: stochastic mode with range 0.-0.01

� duration Level 2: walk function with range 0.-0.05

� duration Level 1: walk function with range 0.-1.

Figure 31: case study 2 group window

Since the durations of generated segments were normalized (0.-1), we further

used the “DWSS_transformation” application and scaled the durations within

the range of 10 – 100 samples.

The overview of the hierarchical structure of the sound object within DWSS is:

� one small structure representing GENDYʼs wavecycle

� one group with the CA representing GENDYʼs stochastic evolution

� one sequence with one group occurrence

 163

Figure 32: case study 2 sequence window

The requirements for the exploration of GENDYʼs sound morphologies was the

experimentation with:

� different number of segments for the initial wavecycle

� different stochastic distributions for each random walk

� different elastic barriers for each random walk

With the particular hierarchical structure and by taking into account the

requirements for GENDYʼs sound exploration described above, we were able to

experiment and synthesize various Dynamic Sound Synthesis sound

morphologies.

13.3 Case Study 3: Iterated Nonlinear Functions

In this case study, the aim was to emulate with DWSS the Iterated Nonlinear

Functions (IFS) approach of Agostino Di Scipio as well as to create a variety of

associated sound objects.

 164

IFS utilize an iterative function that operates in the sample level and generates

sound objects that exhibit chaotic morphologies. IFS require the generation of a

stream of individual values that represent the stream of audio samples. In this

case we need to unify the basic construction unit between IFS and DWSS. The

construction unit in IFS is the sample while the construction unit in DWSS is the

segment. Thus we need to prepare DWSS so the length of the segment equals

to one sample. The consequence of this assumption is that only the amplitude

parameter of the segment is to be taken into account while both the duration

and the shape are actually indifferent.

Accordingly, with the use of the “DWSS_generation” application, the initial lists

are constructed with only one element. Similarly, only one structure is

constructed and the structure consists of only one segment.

The iterative process can be easily implemented in DWSS with the help of the

Cellular automaton with the “DWSS_group” application. In this case study, the

iterative function, which is actually the sine map function, is set as the transition

rule for the CA. Actually, only the lower of the two layers of the provided

algorithmic processes is required. Moreover, since the sine map iterations

utilize only internal algorithmic processes within the transition rule, the evolution

of each CA cell is independent of the neighbor cells. Thus, the weight of the

neighbor cells was set to zero.

Since the internal structure evolution within a group is sufficient in emulating the

chaotic sound generation of IFS, the final sound object hierarchy requires only

one group with one occurrence within the sequence generated by the

“DWSS_sequence” application.

 165

Figure 33: case study 3 group window

For the generated sequence of the segments we used one group with the

following values:

� group length: 100.000 structures

� amplitude global parameter A: function mode with range 3.4 – 3.4

� amplitude Level 2: bypass

� amplitude Level 1: walk function with range -1. – 1.

� duration global parameter A: stochastic mode with range 3.2 – 3.2

� duration Level 2: bypass

� duration Level 1: walk function with range 0.-1.

 166

Since the durations of generated segments were normalized (0.-1), we further

used the “DWSS_transformation” application and scaled the durations within

the range of 10 – 100 samples.

The overview of the hierarchical structure of the sound object within DWSS is:

� one structure with only one segment

� the segment has minimal duration equal to one sample

� one group with the CA representing IFS chaotic evolution

� one sequence with one group occurrence

Figure 34: case study 3 sequence window

In general, the requirements for the exploration of IFS sound morphologies is

the experimentation with:

� different initial value [x] for the chaotic function

� different scaling factor [r] for the chaotic function

With the particular hierarchical structure and by taking into account the

requirements for IFS sound exploration described above, we were able to

experiment and synthesize various chaotic sound morphologies.

 167

13.4 Case Study 4: Oscillating functions & Tendency Masks

In this case study, the aim was to emulate with DWSS some special and

distinctive features of the SAWDUST and SSP systems. In particular we wanted

to emulate the oscillating features of the SAWDUST system in parallel with the

tendency mask features of the SSP systems.

The oscillating features are able to generate sound objects exhibiting

modulating morphologies ranging from simple to complex tremolo and vibrato

effects, up to Amplitude Modulation (AM) and Frequency Modulation (FM)

sonorities. Additionally, the tendency mask is an expressive function that

provides dynamic minimum and maximum value control over other functions,

reducing the output of the latter within a specific range and thus providing a

powerful control over the morphological evolution of the generated sound object

over time.

For the purposes of this study we decided to construct sound objects that rely

on long modulating structures.

Initially, we generated, with the help of “DWSS_generation” application, lists

with 7 segments each. Next, we used the “DWSS_group” application for the

definition of the modulating and tendency mask operations. The chosen

algorithmic structure consisted of two oscillating functions, one modulating the

other. A tendency mask further controlled the output of the higher level function.

In both the amplitude and duration sections, in Level 1 used a sine function, in

Level 2 a triangle function and for the global parameter A used the function

mode as tendency mask. This procedure was chosen to generate structures

 168

with 5.000 segments length. Particularly, for the generated sequence of the

segments we used one group with the following values:

� group length: 5.000 structures

� amplitude global parameter A: function mode with range 50 - 100

� amplitude Level 2: triangle function with range 10 - 25

� amplitude Level 1: sine function with range -1. – 1.

� duration global parameter A: function mode with range 100 - 400

� duration Level 2: triangle function with range 20 – 50

� duration Level 1: sine function with range 0.-1

Figure 35: case study 4 group window

For the purposes of this case study, the construction process and the length of

the generated structure was sufficient for the obtainment of our aims. Thus, no

further processing was necessary for the construction of other structures and

 169

groups. The final sound object hierarchy requires only one group with one

occurrence within the sequence.

Since the durations of generated segments were normalized (0.-1), we further

used the “DWSS_transformation” application and scaled the durations within

the range of 10 – 100 samples.

Figure 36: case study 4 group window

The overview of the hierarchical structure of the sound object within DWSS is:

� one structure

� one group with CA evolution through double cyclic modulation and
tendancy masks

� one sequence with one group occurrence

The requirements for the exploration of modulating sound morphologies

controlled by tendency masks was the experimentation with:

� the length of the oscillating functions

� the degree of modulation of one function with another

� the control of the modulation with tendency masks

 170

With the particular hierarchical structure and by taking into account the

requirements for oscillating sound exploration described above, we were able to

experiment and synthesize various modulating sound morphologies ranging

from simple tremolo or vibrato up to complex Amplitude (AM) or Frequency

Modulations (FM). We were also able to control the various levels and degrees

of modulations with the help of the tendency masks.

13.5 Case Study 5: Sound Synthesis with graphics & grammars

In this case study, the aim was to generate with DWSS novel sound objects by

using a formal grammar and a set of formation rules. The concept of sound

synthesis by rules has been discussed in the algorithmic models of grammars

(section 11.5), Lindenmayer Systems (section 11.6) and, fractals (section

11.4.2).

First, we created with the help of the “DWSS_generation” application two

different sets (amplitude, duration, link) of lists. These lists were decided to

have very short length, each consisting of 8 values. For the construction of each

list, we used the graphic generation option. For both lists were used one linear

link-segment.

Next we defined with the help of the “DWSS_group” application two different

groups. For both groups we applied the concept of Stochastic Waveform

Synthesis where one random walk controls another. For the first group we used

the following settings:

� group length mode: function with range: 5 – 10 structures

� amplitude global parameter A: function mode with range 0.01 – 0.4

 171

� amplitude Level 2: walk function with range 0. – 0.1

� amplitude Level 1: walk function with range -1. – 1.

� duration global parameter A: function mode with range 0. – 5.

� duration Level 2: walk function with range 2 – 10

� duration Level 1: walk function with range 5-40

Figure 37: case study 5 group 1 window

For the second group we used the following settings:

� group length mode: function with range: 5 – 10 structures

� amplitude global parameter A: function mode with range 0. – 0.1

� amplitude Level 2: walk function with range 0. – 0.2

� amplitude Level 1: walk function with range -1. – 1.

� duration global parameter A: function mode with range 2. – 10.

� duration Level 2: walk function with range 0. – 10.

� duration Level 1: walk function with range 50 - 100

 172

Figure 38: case study 5 group 2 window

next, within the “DWSS_sequence” application we activated the grammars

option where we defined the alphabet (A,B) by selecting the two already

generated set of list. We provided two simple production rules: (A→AB) and

(B→A). These production rules are identical to Lindenmayer's original L-system

for modelling the growth of algae. The initial string or the axiom of the grammar,

were set to (A). Finally we decided to generate a sequence of 5.000 seqments.

Figure 39: case study 5 sequence window

 173

Since the scope of this case study was focused on the exploration and

demonstration of the sound generation function by the application of a simple

grammar, we decided that the formatted list was sufficient. Thus, no further

processing was necessary for the construction of other structures and groups.

The final sound object hierarchy requires only one group with one occurrence

within the sequence.

The overview of the hierarchical structure of the generated sound object within

DWSS is:

� one very long structure generated by grammars

� one group without any internal CA evolution

� one sequence with one group occurrence

The requirements for the exploration of sound morphologies generated by

grammars was the experimentation with:

� the construction of initial list that served as the alphabet of the grammar

� the set of production rules

� the initial axiom

13.6 Case Study 6: Dynamic Sound Synthesis

We have already seen in case study 2 that DWSS is capable in providing the

framework for dynamic stochastic synthesis. In this case study we wanted to

explore some novel possibilities of DWSS in dynamic sound synthesis

generation. We used the hierarchical sound object definition of case study 2 as

 174

the basis for further exploration. Actually, we kept all the sound object definition

intact. Therefore, we retained the following conditions:

� one small structure representing the evolving wavecycle

� one group with the CA representing the dynamic sound engine

� one sequence with only one group occurrence

The aim of this case study was to explore different types of transition rules that

are responsible for the displacement of the waveform breakpoints through

stochastic displacement on the lower level. By the term type we refer to the

algorithmic formalism that take the form of two layers of processes, the upper

layer controlling the lower. As we have already seen, there are four different

categories processes available for each layer: cyclic, stochastic, chaotic and

classic CA. Since in the cyclic category DWSS provides three different functions

(phaser, triangle and sine) we chose to experiment with only one of them, the

triangle function. Thus, we have five different possible combinations between

level 2 and level 1 functions, that form five different sub-cases:

� triangle → random walk

� random walk → random walk

� logistic map → random walk

� iterative sine → random walk

� CA neighbor rule → random walk

The first sub-case utilizes a random walk whose step or elastic barriers are

controlled by a trigonometric function. This combination generates oscillating

morphologies that range between a static sound (when the trigonometric

 175

function outputs zero) and full stochastic behavior (when the trigonometric

function outputs the maximum value). The global parameter A was set to

function mode that controlled the length of the triangle function. The settings

used within the “DWSS_group” application for this case study was:

� group length: 8.000 structures

� amplitude global parameter A: function mode with range 100. – 300.

� amplitude Level 2: triangle function with range 0. – 0.15

� amplitude Level 1: walk function with range -1. – 1.

� duration global parameter A: function mode with range 100. – 500.

� duration Level 2: triangle function with range 0. – 4.

� duration Level 1: walk function with range 2. – 50.

Figure 40: case study 6.1 group window

 176

The behavior of the triangle function controlling the walk function can be

observed graphically from the corresponding monitor windows of the

“DWSS_sequence” application.

Figure 41: case study 6.1 sequence window

The second sub-case utilizes a random walk whose step or elastic barriers are

controlled by a second random walk function. This is the dynamic stochastic

synthesis type that we have already explored in case study 2. This type is

capable of generating dynamic stochastic sound morphologies that are found in

the GENDY system of Iannis Xenakis. The global parameter A was set to

function mode that controlled the step of the walk function in leve 2. The

settings used within the “DWSS_group” application for this case study was:

� group length: 8.000 structures

� amplitude global parameter A: function mode with range 0. – 0.01

� amplitude Level 2: walk function with range 0. – 0.05

� amplitude Level 1: walk function with range -1. – 1.

� duration global parameter A: function mode with range 0. – 4.

� duration Level 2: triangle function with range 0. – 5.

� duration Level 1: walk function with range 2. – 50.

 177

Figure 42: case study 6.2 group window

The behavior of a random walk function controlling a second random walk

function can be observed graphically from the corresponding monitor windows

of the “DWSS_sequence” application.

Figure 43: case study 6.2 sequence window

 178

The third sub-case utilizes a random walk whose step or elastic barriers are

controlled by a chaotic logistic map function. This type is capable of generating

dynamic stochastic sound morphologies that are even more unstable or noisy

than in the previous case study. The global parameter A was set to function

mode that controlled the [r] value of the logistic map in a range that is capable

of exploring all the chaotic behavior of the latter. The settings used within the

“DWSS_group” application for this case study was:

� group length: 8.000 structures

� amplitude global parameter A: function mode with range 2.5 – 4.

� amplitude Level 2: logistic map function with range 0. – 0.2

� amplitude Level 1: walk function with range -1. – 1.

� duration global parameter A: function mode with range 2. – 3.9

� duration Level 2: triangle function with range 0. – 5.

� duration Level 1: walk function with range 2. – 50.

Figure 44: case study 6.3 group window

 179

The behavior of the logistic map function controlling the walk function can be

observed graphically from the corresponding monitor windows of the

“DWSS_sequence” application.

Figure 45: case study 6.3 sequence window

The fourth sub-case utilizes a random walk whose step or elastic barriers are

controlled by a chaotic iterative sine function. Since the iterative sine function is

capable of producing values that range between smooth long oscillations to

short oscillations to abrupt jumps, this type is capable of generating dynamic

sound morphologies that range between the oscillating features of the triangle

function and the noisy feature of the logistic map function. The global parameter

A was set to function mode that controlled the [r] value of the iterative sine

function in a range that is capable of exhibiting rather smooth oscillations during

the beginning. The settings used within the “DWSS_group” application for this

case study was:

� group length: 8.000 structures

� amplitude global parameter A: function mode with range 3 – 4.

 180

� amplitude Level 2: iterative sine function with range 0. – 0.1

� amplitude Level 1: walk function with range -1. – 1.

� duration global parameter A: function mode with range 3.4 – 3.9

� duration Level 2: iterative sine function with range 0. – 5.

� duration Level 1: walk function with range 2. – 50.

Figure 46: case study 6.4 group window

The behavior of the logistic map function controlling the walk function can be

observed graphically from the corresponding monitor windows of the

“DWSS_sequence” application.

 181

Figure 47: case study 6.4 sequence window

The fifth sub-case utilizes a random walk whose step or elastic barriers are

controlled by taking into account the values of neighbor segments. This is a

typical Cellular automaton behavior. The provided settings produced a

behaviour that started with two long oscillations that stabilized the stochastic

behavior to two succeeding pitches and eventually led to more complex and

noisy patterns. The global parameter A was set to function mode that controlled

the weight of the sum of neighbor segments. The settings used within the

“DWSS_group” application for this case study was:

� group length: 8.000 structures

� amplitude global parameter A: function mode with range 3 – 4.

� amplitude Level 2: iterative sine function with range 0. – 0.1

� amplitude Level 1: walk function with range -1. – 1.

� duration global parameter A: function mode with range 3.4 – 3.9

� duration Level 2: iterative sine function with range 0. – 5.

� duration Level 1: walk function with range 2. – 50.

 182

Figure 48: case study 6.5 group window

The behavior of the cellular automaton function controlling the walk function can

be observed graphically from the corresponding monitor windows of the

“DWSS_sequence” application.

Figure 49: case study 6.5 sequence window

 183

13.7 Case Study 7: Cellular Automata Sound Synthesis

In this case study, the aim was to generate with DWSS novel sound objects by

utilizing the Cellular Automaton algorithmic process. Although the CA has

already been demonstrated, this case study focuses especially on the exhibition

of self-organizing behavior that emerges from the interactions between sound

segment values.

For this case study we constructed with the “DWSS_generation” one relatively

simple structure. This structure consists of nine breakpoints connected with

linear link-shapes. We decided to focus the CA activity on both the amplitude

and duration breakpoint values. All amplitude values were set at random

between the values of 0. and 1.. This initial structure represents also the initial

conditions of the CA.

Within the “DWSS_group” application we used set the Level 1 to “neighbor”

function which takes into account the values of neighbor cells. The Level 2 was

not used, so it was set to bypass mode. The transition rule was also simple: in

every next CA generation, the new cell value is calculated by taking into

account the current state of the cell as well as the weighted state of adjacent

cells. The global parameter A was set to the function mode which controlled the

weight between the values of 0.1 and 0.3. When the calculated next value

exceeded the nominal range [0.-1.] then a) it was reflected back by the

application of the elastic barriers and b) swap the sign of the weight. The group

values used in this case study was:

� group length: 4.000 structures

� amplitude global parameter A: function mode with range 0.1 – 0.3

 184

� amplitude Level 2: bypass

� amplitude Level 1: neighbor function with range -1. – 1.

� duration global parameter A: function mode with range 2. – 10.

� duration Level 2: bypass

� duration Level 1: neighbor function with range 0. – 1.

Figure 50: case study 7 group window

With the above transition rule, each segment breakpoint exhibited smooth but

unstable modulation changes. The rate of the modulations was not constant but

changed continuously according to the interactions of adjacent cells. One factor

that was responsible for the rate of the modulation was the weight of the state of

the cells. In this case study we explored the generation of a novel sound object

by the utilization of the CA mechanism of DWSS.

 185

Figure 51: case study 7 sequence window

13.8 Case Study 8: Dynamic Microrythmic Morphologies

The aim of this case study was to investigate the capabilities of DWSS to

generate dynamic microrythmic morphologies. By the term microrythmic

morphologies we define rhythmic properties of a sound object that occur within

the microsonic domain. In other words, a special category of rhythmic structures

where the rhythmic elements have very short time durations, usually lasting up

to 40 milliseconds.

DWSS is capable of generating sequences that are the assemblange of groups

sound structures. Each group may be considered as an individual microrythmic

element. Consequently, each sequence may be considered as the framework

for the assemblage of microrythms. Microrythms are another morphological

emergence within DWSS, as the result of the application of dynamic algorithmic

processes in the assemblage of structures into group and groups into

sequences.

 186

The “DWSS_sequence” application provides four categories of assembling

procedures:

� oscillating functions (phasor & triangle)

� random walk

� chaotic functions (logistic map)

� L-system

First, for the purposes of this case study we defined the properties for four

group structures. We used the DWSS_group” application for the generation of

four group structures. The same four groups used for the construction of

different sequences that investigate a variety of microrythmic assemblages by

the application of phasor, random walk, logistic map and L-system functions.

The four identical group structures provided the basis of common sound

morphologies that would help for the identification of the microrythmic properties

of the four functions in use. For each group we provided the same functions for

both the amplitude and duration sections. The length for all groups was chosen

by a stochastic distribution within the range of 4-8 structures. The generated

sequence was set for all the examples to 5.000 segments.

The first group is distinguished by the stochastic evolution of the segment

values. Both Level 2 & Level 1 uses walk functions. Particularly, the group

values used in the first group was:

� group length: stochastic mode with range 4 - 8 structures

� amplitude global parameter A: stochastic mode with range 0. – 0.1

� amplitude Level 2: walk function with range 0. - 0.2

� amplitude Level 1: walk function with range -1. – 1.

 187

� duration global parameter A: stochastic mode with range 0. – 0.05

� duration Level 2: walk function with range 0. - 0.1

� duration Level 1: walk function with range 0. – 1.

Figure 52: case study 8 group 1 window

The second group is distinguished by cyclic evolution of the segment values.

Both Level 2 & Level 1 uses triangle functions. Particularly, the group values

used in the first group was:

� group length: stochastic mode with range 4 - 8 structures

� amplitude global parameter A: function mode with range 30. – 50.

� amplitude Level 2: triangle function with range 10. – 20.

� amplitude Level 1: triangle function with range -0.22. – 0.22

� amplitude global parameter A: function mode with range 30. – 50.

� amplitude Level 2: triangle function with range 50. – 100.

� amplitude Level 1: triangle function with range -1. – 1.

 188

Figure 53: case study 8 group 2 window

The third group is distinguished by the stochastic evolution of the segment

values controlled by cyclic function. Particularly, the group values used in the

first group was:

� group length: stochastic mode with range 4 - 8 structures

� amplitude global parameter A: stochastic mode with range 30. – 50.

� amplitude Level 2: triangle function with range 0. - 0.1

� amplitude Level 1: walk function with range -1. – 1.

� duration global parameter A: stochastic mode with range 30. – 50.

� duration Level 2: triangle function with range 0. - 0.1

� duration Level 1: walk function with range 0. – 1.

 189

Figure 54: case study 8 group 3 window

The forth group is distinguished by chaotic evolution of the segment values.

Both level 2 & level 1 uses chaotic functions. Particularly, the group values used

in the first group was:

� group length: function mode with range 4 - 8 structures

� amplitude global parameter A: function mode with range 3.3 – 3.5

� amplitude Level 2: logistic map function with range 3.1 – 3.8

� amplitude Level 1: iterative sine function with range -0.89. – 0.89

� amplitude global parameter A: function mode with range 3. – 3.1

� amplitude Level 2: logistic map function with range 3. – 3.1

� amplitude Level 1: iterative sine function with range -1. – 1.

 190

Figure 55: case study 8 group 3 window

The first example of this case study is dynamic cycling microrythm. The

microrythmic properties of the sound structure was generated with the help of

the phasor function. The oscillating functions in general and the phasor function

in particular performs cyclic scan through the microrythmic elements, therefore

is the most appropriate for the generation of repetitive microrythms.

Figure 56: case study 8 sequence 1 window

 191

The second example of this case study is dynamic stochastic microrythm. The

microrythmic properties of the sound structure was generated with the help of

the walk function. The random walk functions performs stochastic scan through

the microrythmic elements. The random walk generates various kinds of

stochastic microrhythms according to the function and the step. For this case

study we defined 0.2 as the random step value.

Figure 57: case study 8 sequence 2 window

The third example of this case study is dynamic chaotic microrythm. The logistic

map chaotic function generates various dynamic microrythmic morphologies

according to the behaviour of the attractor: from monotonic microrythms (fixed-

point), to microrythmic repetitions (limit-cycle) to complex chaotic behaviour

(strange). For this case study we defined 3.89 as the initial condition for the

chaotic function.

 192

Figure 58: case study 8 sequence 3 window

The fourth example of this case study is dynamic grammar microrythm. The L-

system is capable of generating various evolving microrythms according to the

provided production rule. For this case study we defined the production rule:

(A→BD), (B→AC), (C→BAD) and (D→A).

Figure 59: case study 8 sequence 4 window

 193

14 Conclusions

14.1 Contributions to knowledge

The contributions to knowledge introduced in this Thesis are presented below:

14.1.1 The Extended Waveform Segment Synthesis (EWSS)
model

This Thesis introduces (chapter 14) a novel non-standard synthesis paradigm

that utilizes dynamic algorithmic models for the generation of sound objects.

This paradigm, the Extended Waveform Segment Synthesis (EWSS) model,

provides a generalized concept that:

� Incorporates all existing waveform segment synthesis techniques into a

single model.

� Constitutes the basis for a novel non-standard synthesis model proposed

in this Thesis: Dynamic Waveform Segment Synthesis (DWSS).

� Provides a solid framework for further future research.

Since in EWSS, a waveform is constructed by assembling blocks of amplitude

fluctuations with very short durations in the scale of microseconds, this Thesis

provides definitions for the notions of segment, breakpoint and, link.

Additionally, this Thesis proposes a hierarchical approach in sound construction

within the paradigm of EWSS, from small waveform fragments towards

complete sound objects. EWSS actually proposes four different levels: segment,

structure, group, sequence and, sound object level.

 194

14.1.2 The Dynamic Waveform Segment Synthesis (DWSS)
model

This Thesis describes the implementation of the concepts and ideas of EWSS

in a computer music environment. These concepts are implemented in Dynamic

Waveforms Segment Synthesis (DWSS), a novel model for non-standard

synthesis model. DWSS applies the notions of segment, structure, group, and

sequence and utilizes a combination of dynamic algorithmic generative and

transformative models. These models are: list generation, list permutation,

tendency mask, trigonometric functions, stochastic functions, chaotic functions

cellular automata and grammars.

The application of CA for the transformation of structures is one of the main

contributions of this Thesis. One or more CA, with simple or complex rules, are

responsible for the transformation of the structures into groups. Two

independent Cellular Automata (CA) operating in parallel controls the variation

of the amplitude and duration breakpoint value of the structure. In order to fulfill

the requirements of floating point arithmeticʼs, of DWSS is driven by the special

category of continuous CA. DWSS is using a variety of transition rules that

incorporate chaotic, stochastic, trigonometric algorithmic models.

The utilization of CA along with other dynamic algorithmic models constitutes

DWSS capable of generating sound objects that feature a variety of sound

morphologies as well as exhibiting the phenomenon of emergence of 2nd order

sonorities.

 195

14.1.3 Extensive and critical overview on the concepts of:
Microsound, Algorithmic Composition and, Non-Standard
Synthesis

This Thesis provides an extensive and critical overview on a number of

fundamental concepts on the subject of this research.

First, we investigated the concept of microsound (chapter 2) and the hierarchy

of the time-level scale in relation to music composition. In this respect, we

discussed (i) the sample level, (ii) the micro level along with synthesis and

transformation approaches, (iii) the sound object level along with the concepts

of spectromorphology and reduced listening. Moreover, we further examined

the phenomenon of sonic emergence (chapter 8) as well as, the dialectics of

music form and the sonic material (chapter 9).

Second, we discussed the concept of algorithmic composition (chapter 3). We

critically examined some principle definitions of the term that has been

historically used to define usually overlapping and occasionally identical

concepts in the field. We discussed different approaches from various

composers and musicologists and we focused in the concept of “totalistic

algorithmic composition”. In this respect, we researched and provided the

historical and theoretical foundations of the term (chapter 4).

Third, we reviewed the concept of Non-Standard Synthesis (chapter 7) and

provided important historical definitions. For his purposes we discussed the

concepts of “two cultures of computer music” (chapter 5), the heretical approach

 196

to computer music (chapter 6) and the idiomatic character of non-standard

synthesis (section 7.2).

14.1.4 Survey of Computer Models that are utilized in
contemporary musical creativity

This Thesis introduces (chapter 11) fundamental algorithmic models that are

utilized in contemporary composition and synthesis of sound. Most of these

models provide the basis for and are applied in Dynamic Waveform Segment

Synthesis proposed in this Thesis. The models surveyed are: permutations

(section 11.2), stochastic – probabilities (section 11.3.1), random walk (section

11.3.2), Markov chain (section 11.3.3), chaos (section 11.4.1), fractals (section

11.4.2), grammars (section 11.5), Lindenmayer systems (section 11.6) and

cellular automata (section 11.7). These models were discussed along with

important musical and compositional applications.

14.1.5 Survey of Non-Standard Synthesis approaches and
systems

This Thesis introduces (chapter 11) diverse non-standard synthesis approaches

and surveys a number of systems that implements them. We discussed the

following systems: Iannis Xenakisʼs Dynamic Stochastic Synthesis (13.1),

GENDY (13.1.1) and recent variations (13.1.2), G.M. Koenigʼs SSP (13.2), Paul

Bergʼs PILE (13.3), Herbert Brünʼs SAWDUST (13.4), and, Arun Chandraʼs

TrikTraks and Wigout (13.5).

 197

14.1.6 A plausible definition for “Algorithmic Composition”

During the discussion of the concept of algorithmic composition and the critically

examination of some principle definitions of the term, we concluded the term

does not have a generally accepted definition. This Thesis regards that

algorithmic procedures may be applied at a variety of compositional levels and

that it is an inextricable amalgam of concepts, procedures and human choices

regardless the use of the computer. In this respect, this Thesis proposes a

plausible definition (chapter 3):

“Algorithmic composition consists of musical concepts that are
formalized and employed by the composer in rules and
procedures that generate elements, parts or the whole musical
work.”

14.1.7 A proposal for the Term “Totalistic Algorithmic
Composition”

During the discussion of the term algorithmic music, we investigated the

concept of algorithmic operations that are capable of generating entire

compositions from the whole macro-structure down to the micro-sonic detail.

Although other composers and researchers have used terms like “integrity”

[Laske 1981], “pure” [Ariza 2005] or “rigorous” algorithmic composition [Hoffman

2009] this Thesis considers as more appropriate and proposes the term

totalistic. We state in section 3.1:

We call “totalistic” the algorithmic music approach that utilizes
computer procedures for the generation of the entire
composition up to its finest detail.

 198

14.1.8 Categorization of Non-standard Synthesis into discrete
aspects

This Thesis regards that non-standard synthesis provides a very idiomatic

paradigm of music composition whose very essence is derived from the notion

of machine computability itself. Questioning the idiomatic qualities of non-

standard synthesis, this Thesis proposes (section 7.2) four discrete aspects:

formal: each non-standard synthesis system proposes a novel approach in

sound modeling. The algorithm is an abstract conception and does not rely on

any pre-existing theory or higher order model. Any non-standard formalization is

a new proposal for a unique sound model.

sonical: the sound world of each non-standard synthesis is highly

distinguishable and non-standard systems are capable of generating novel

sound structures of unheard-off sounds.

personal: non-standard synthesis define a very personal artistic idiom. Each

non-standard approach is based on a specialized formalization that is capable

of generating a sonic world that eventually characterizes the artistic identity of

its designer artist.

machine oriented: non-standard synthesis is idiomatic to specific machine or at

least that was the case for the early examples.

 199

14.1.9 Demonstrative Contribution with a number of Case
Studies

This Thesis presents (chapter 17) eight case studies that reveal the capabilities

of Dynamic Waveform Segment Synthesis (DWSS) into generating particular

sonic morphologies.

On the one hand, we provide a number of case studies that indicate how DWSS

is capable of generating sound objects that are characteristic of other

approaches and that incorporate basic features of other microsound synthesis

techniques: Soundfile Segmentation and Resynthesis (section 17.1), Dynamic

Stochastic Synthesis which is the basis of Xenakisʼs GENDY system (section

17.2), Iterated Nonlinear Functions which is the basis of Di Scipioʼs Iterated

Nonlinear Functions (section 17.3), Oscillating functions & Tendency Masks

which are the basis of Koeningʼs SSP and Brunʼs SAWDUST systems (section

17.4), Graphics and Grammars which is the basis of Manousakis;s “Non-

standard Sound Synthesis with L-Systems” (section 17.5)

One the other hand, we provide a number of case studies disclosing the novelty

of DWSS and how it can generate new sound objects featuring morphologies

that belong to the heretical currents of contemporary computer music creativity:

Dynamic Sound Synthesis (section 17.6), Cellular Automata Sound Synthesis

(section 17.7) and, Dynamic Microrythmic Morphologies (section 17.8)

However, since DWSS belongs to the non-standard synthesis approaches, the

provided case studies are but a subset of the potential sound morphologies.

Non-standard synthesis requires a lot of laborious experimentation and

recompense with the discovery of new sonic territories.

 200

14.2 Recommendations for Future Work

Although DWSS provides a solid implementation of non-standard synthesis with

dynamic models, further improvements are recommended for future work and

expansion of the system.

14.2.1 Expansion and Interconnection between the hierarchical
construction levels

In the current implementation of DWSS, sound construction takes a hierarchical

approach that incorporates four different levels: segment, structure, group and,

sequence.

In a future expansion of the system, the incorporation of more levels would

provide further structural detail in the assemblage of smaller units into larger

entities and the final sound object. One relatively simple solution would be the

addition more levels above the sequence level with similar algorithmic

procedure(s).

Another feature that might provide interesting microsonic results would be the

interconnection between the different hierarchical levels. For example, the

algorithmic output of a lower level (eg. group) might control and affect the

construction of a higher level. This would transform DWSS into a large recurrent

system where the hierarchy is questioned and the construction levels become

interdependent. Since recurrent systems are capable of exhibiting different

types of chaotic behavior, this option may open new possibilities both in non-

standard waveform construction as well as the generation of novel sound

morphologies and sonorities.

 201

14.2.2 Detailed investigation of CA transition rules

In the current implementation of DWSS, Cellular Automata play an important

role in the final construction of the sound object. One important aspect of CA

that plays significant role on the evolution of the system is the transition rule. In

this Thesis we have explored only a limited number of simple transition rules. A

further experimentation with either different simple rules or with more complex

rules would be proved useful for the further investigation of the role of the CA in

sound construction as well as the systematization of the algorithmic procedure.

14.2.3 Grammars with complex rules

In DWSS, grammars may be utilized for the initial segment list construction.

Since the initial lists, with the relevant optimizations of the system, may highly

affect the final construction of the sound object, the use of grammars may play

an important role. Therefore, another important expansion of the system would

be the potentiality of setting more complex grammarsʼs rules. This option would

take DWSS closer to the “Non-standard Sound Synthesis with L-Systems”

approach of Stelios Manousakis.

14.2.4 Improved sound segmentation algorithm

In DWSS sound segmentation is an important feature since it incorporates the

utilization of sound samples or sonification data as the starting point for non-

standard sound transformation. In DWSS we defined a simple segmentation

algorithm that identifies zero-points as well as intermediate points with the

minimum and maximum values. The current algorithm segments each

wavecycle of a waveform at best into four segments. A possible improvement of

 202

the algorithm would identify more segmentation points and therefore would

produce a larger number of link-shapes.

14.2.5 Graphical Interactive User Interface

The implementation of a graphical user interface (GUI) would highly improve the

user experience of the system. A GUI would help the user to easily comprehend

the hierarchical structuring levels as well as the involved algorithmic

procedures. Additionally, a GUI would provide the user with all the necessary

tools to navigate more easily the system and control in an intuitive way its

parameters. Moreover, a GUI gives important feedback on the current state of

the system as well as the sound output.

14.2.6 Real-time operation

Finally, the real-time operation of DWSS would improve its functionality and

provide the user another option to investigate the various algorithmic features of

the system and experiment more thoroughly with the generated sound objects.

Real-time operation would require the transfer of the system to another

programming environment, probably C or C++. This would improve the

processing speed on operations carried in the sound sample level.

 203

 204

Apendix I – record of activities

1. Papers

Valsamakis N., E.Miranda (2005), “Extended Waveform Segment Synthesis, o
Nonstandard synthesis model for microsound composition”, Sound & Music
Computing 2005, Salerno, Italy

Valsamakis N., E.Miranda (2005), “Iterative Sound Synthesis by means of Cross
Coupled Oscillators”, Digital Creativity. 16(2):79-92, 2005, Routledge – Taylor &
Francis Group.

2. Public Performances

16-18 March 2012. Di.P.Art. Festival. Kodra, Kalamaria, Thessaloniki, Greece

2-4 December 2011. Electroacoustic Music Days 2011. Dept. Of Music Technology &
Acoustics, TEI of Crete, Greece

9 November 2011. Hellenic Association for Electroacoustic Music. Music, Technology
and Innovation Research Center, De Monfort University, UK

29-31 October 2010. Electroacoustic Music Days 2010. Dept. Of Music, Ionian
University, Greece

13-16 November 2009. Electroacoustic Music Days 2009. Dept. Of Sound
Technology & Acoustical Instruments, TEI of Ionian Islands, Greece

15-21 June 2009. Electroacoustic Composition “Voices of the Desert” (2009) for the
performance/installation “Mystical Illusion” by Doris Hakim. Athens Fringe Festival
2009, Technopolis, Gazi, Athens

25-28 October 2008. Electroacoustic Music Days 2008. Dept. Of Music Technology
& Acoustics, TEI of Crete, Greece

21 June 2008. European Music Day. Xia-Mass & Municipality of Chania, Chania,
Greece

21-24 November 2007. Electroacoustic Music Days 2007. Dept. Of Sound
Technology & Acoustical Instruments, TEI of Ionian Islands, Greece

11-13 July 2007. Sound and Music Computing International Conference 2007
(SMC07). University of Athens, Ionian University, SMC, Lefkada, Greece

3 March 2006. Cage Mix. Appolo 39 Bac Bar, IDAT, Plymouth Univercity, UK

28-30 October 2005. Electroacoustic Music Days 2005. Dept. Of Music Technology
& Acoustics, TEI of Crete, Greece

8 October 2005. 2nd Marathon of Electroacoustic Music. Goethe Institute, Athens,
Greece.

3 July 2005. SYNC Festival. Technological & Educational Park, Lavrio, Greece

24 March 2005. Electronics in Action. Small Music Theater, Athens, Greece

 205

26 February 2005. Peninsula Arts Contemporary Music Weekend. University of
Plymouth, Plymouth, UK

3. Seminar Presentations

Valsamakis, N. 2005. “Dynamic Sound Synthesis”, Postgraduate research seminar,
Plymouth University, UK

Valsamakis, N. 2005. “Extended Waveform Segment Synthesis”. Paper presentation
in Sound & Music Computing 05, Salerno, Italy.

Valsamakis, N. 2004. “Elica, real-time granular synthesizer”. Postgraduate research
seminar, Plymouth University, UK

Valsamakis, N. 2004. “Non-Standard Waveform Synthesis for Microsound
Composition”, Postgraduate research seminar, Plymouth University, UK

 206

Apendix II – sound examples

The following sound examples are provided in as separate cd-rom.

All sound examples are 44.100Hz sampling rate, 16 bit

example 2.aiff

Case Study 2: Dynamic Stochastic Synthesis (chapter 13.2)

A typical sound produced by the GENDY system of I.Xenakis Both segment

amplitudes and durations are controlled by random walks (duration 00:05)

example 3.aiff

Case Study 3: Iterated Nonlinear Functions (chapter 13.3)

A typical sound produced by the chaotic IFS system of Agostino di Scipio. The

segment amplitudes are controlled by iterative sine function. Since IFS operates at

the sample level, all segment durations are 2 samples long, thus eventually lasting

only one sample (duration 00:05)

example 4.aiff

Case Study 4: Oscillating functions & Tendency Masks (chapter 13.4)

An audio example where both segment amplitude and segments are controlled by

triangle oscillating functions. This examples features Amplitude Modulation &

Frequency Modulation (duration 00:07)

example 5.aiff

Case Study 5: Sound Synthesis with graphics & grammars (chapter 13.5)

A sound example that features sound synthesis by the help of a L-system. Two

group of structures alternating rapidly (5-10 wavecycle repetition each). The

microrythm is generated according to the production rule of the L-system (duration

00:05)

example 6_1.aiff

Case Study 6a: Dynamic Sound Synthesis (chapter 13.6)

In this example a random walk that is responsible for the generation of segment

amplitude and duration values is controlled by triangle oscillating functions. This

process generates oscillating morphologies that range between a static sound -

 207

when the trigonometric function outputs zero - and full stochastic behavior - when

the trigonometric function outputs the maximum value - (duration 00:04)

example 6_2.aiff

Case Study 6b: Dynamic Sound Synthesis (chapter 13.6)

In this example a random walk that is responsible for the generation of segment

amplitude and duration values is controlled by a second random walk. This is

another typical sound produced by the GENDY system of I.Xenakis (duration 00:02)

example 6_3.aiff

Case Study 6c: Dynamic Sound Synthesis (chapter 13.6)

In this example a random walk that is responsible for the generation of segment

amplitude and duration values is controlled by a chaotic logistic map.This process is

capable of generating dynamic stochastic sound morphologies that are even more

unstable than in the previous example (duration 00:02)

example 6_4.aiff

Case Study 6d: Dynamic Sound Synthesis (chapter 13.6)

In this example a random walk that is responsible for the generation of segment

amplitude and duration values is controlled by a chaotic iterative sine function.

Since the iterative sine function is capable of producing values that range between

smooth long oscillations to short oscillations to abrupt jumps, this type is capable of

generating dynamic sound morphologies that range between the oscillating features

of the triangle function and the noisy feature of the logistic map function (duration

00:04)

example 7.aiff

Case Study 7: Cellular Automata Sound Synthesis (chapter 13.7)

In this examples the segment amplitude and duration values are controlled

according to the values of neighbor segments. This is a classic Cellular Automaton

procedure. With the chosen transition rule the sound exhibits smooth but unstable

modulations (duration 00:06)

example 8_1.aiff

Case Study 8a: Dynamic Microrythmic Morphologies (chapter 13.8)

 208

This example features four group structures alternating repeatedly and producing

cycling mycrorythmic morphologies (duration 00:08)

example 8_2.aiff

Case Study 8b: Dynamic Microrythmic Morphologies (chapter 13.8)

This example features four group structures alternating with the help of a random

walk and producing stochastic mycrorythmic morphologies (duration 00:09)

example 8_3.aiff

Case Study 8c: Dynamic Microrythmic Morphologies (chapter 13.8)

This example features four group structures alternating with the help of the chaotic

logistic map and producing chaotically unstable mycrorythmic morphologies

(duration 00:10)

example 8_4.aiff

Case Study 8d: Dynamic Microrythmic Morphologies (chapter 13.8)

This example features four group structures alternating with the help of an L-

system and producing unstable mycrorythmic morphologies that evolve according

to the provided production rule (duration 00:10)

 209

Apendix III – software: MaxMSP patches

The following MaxMSP patches are provided in a separate cd-rom:

DWSS_storage.maxpat
DWSS_construction_061.maxpat
DWSS_transformation_033.maxpat
DWSS_group_34.maxpat
DWSS_sequence_052.maxpat
DWSS_synthesis_02.maxpat

The following MaxMSP externals where used in the provided patches:

lp.bernie.mxo
lp.poppy.mxo
lp.scampf.mxo
lp.scampi.mxo
lp.shhh.mxo
from the Litter Power package by Peter Castine
http://www.bek.no/~pcastine/litter/

gen10.mxo
from the PeRColate by Dan Trueman and R. Luke DuBois
http://music.columbia.edu/percolate/

 210

Apendix IV – software code (MaxMSP patches
screenshots)
1) DWSS_storage

Figure 60: DWSS_storage

Figure 61:p create NEW BUFFER (with size)

Figure 62: p delete buffers & messages

 211

Figure 63: p create value-list buffer

Figure 64: p create duration-list buffer

Figure 65: p create shape-list buffer

 212

Figure 66: p create shape-list POLYbuffer

Figure 67: p list-counter

 213

2) DWSS_construction

Figure 68: DWSS_construction

 214

Figure 69: DWSS_construction (detail a)

Figure 70: DWSS_construction (detail b)

 215

Figure 71: DWSS_construction (detail c)

Figure 72: DWSS_construction (detail d)

 216

Figure 73: DWSS_construction (detail e)

Figure 74: DWSS_construction (detail f)

 217

Figure 75: DWSS_construction (detail g)

Figure 76: DWSS_construction (detail h)

 218

Figure 77: DWSS_construction (detail

Figure 78: p UPDATE CALL LISTS (complete)

 219

Figure 79: p UPDATE CALL LISTS (append)

Figure 80: p UPDATE LIST BUFFER

 220

Figure 81: p NEW SEGMENT BUFFER & COLL

Figure 82: p Segment Amp-Dur Monitor

 221

Figure 83: p Segment Shape Monitor

 222

Figure 84: p find sample breakpoints (index, value)

 223

Figure 85: p store segments (value, dur, shape)

 224

3) DWSS_transformation

Figure 86: DWSS_transformation

Figure 87: DWSS_transformation (detail a)

 225

Figure 88: DWSS_transformation (detail b)

Figure 89: DWSS_transformation (detail c)

 226

Figure 90: DWSS_transformation (detail d)

Figure 91: p find min-max duration

 227

Figure 92: p BUFFER segment OPERATIONS

Figure 93: p BUFFER math-value OPERATIONS

 228

Figure 94: p BUFFER dur-scale OPERATIONS

Figure 95: p list MODE: norm-abs Figure 96: p walk

Figure 97: p walk-in Figure 98: p +/-rnd direction

 229

Figure 99: p ramp&indexer

Figure 100: p check when done

 230

4) DWSS_group

Figure 101: DWSS_group

Figure 102: DWSS_group (detail a)

 231

Figure 103: DWSS_group (detail b)

Figure 104: DWSS_group (detail c)

 232

Figure 105: DWSS_group (detail d)

Figure 106: DWSS_group (detail e)

 233

Figure 107: DWSS_group (detail f)

Figure 108: DWSS_group (detail g)

 234

Figure 109: DWSS_group (detail h)

Figure 110: DWSS_group (detail i)

 235

Figure 111: DWSS_group (detail j)

Figure 112: p Create Group Buffers

 236

Figure 113: p 1st FILL Buffers

Figure 114: p GROUP-SEQUENCING

 237

Figure 115: p find & set max sequence display

Figure 116: p group & preset operations

 238

Figure 117: p COUNTER Structure:Segment

Figure 118: p Group_BUFFER Read-OPERATIONS

 239

Figure 119: p Group_BUFFER Write-OPERATIONS

Figure 120: p OUTPUT_BUFFER & LIST OPERATIONS

Figure 121: p grpoup-STRUCTURE-counter

 240

Figure 122: p phaser Figure 123: p trianglewave

Figure 124: p sinewave Figure 125: p walk

 241

Figure 126: p logisticmap

Figure 127: p neighbour

 242

Figure 128: p iter(sin)

 243

5) DWSS_sequence

Figure 129: DWSS_sequence

Figure 130: DWSS_sequence (detail a)

 244

6) DWSS_synthesis

Figure 131: DWSS_synthesis

Figure 132: p Segment Reading

Figure 133: p buffer-interpolating-reading

 245

Bibliography

Addison, P. 1996. Fractals and chaos: an illustrated course. CRC Press.

Adorno, T. 1997. Aesthetic theory. University of Minnesota Press.

Alexjander, S. 1994. Sequencia. Audio compact disc. Berkeley, California: Science and
the Arts STA080.

———. 1999. "The infrared frequencies of DNA bases: science and art". IEEE
Engineering In Medicine and Biology 18(2). http://www.healingmusic.org/SusanA/

Ames, C. 1983. “Stylistic Automata in Gradient.” In The Music Machine. C. Roads, ed.
Cambridge: MIT Press.

———. 1987. “Automated Composition in Retrospect: 1956-1986.” Leonardo 20(2):
169- 185.

———. 1989. “The Markov Process as a Compositional Model: A Survey and
Tutorial”, pp. 175-187, in: Leonardo 22:2, 1989.

———. 1990. “Statistics and Compositional Balance.” Perspectives of New Music
28(1): 80-111.

Ames, C. and M. Domino. 1992. “Cybernetic Composer: An Overview.” In
Understanding Music with AI: Perspectives on Music Cognition. M. Balaban, K.
Ebcioglu and O. Laske, eds. Cambridge: AAAI Press.

Andrews, I. 2002. "Post-digital aesthetics and the return to modernism".
http://radioscopia.org/postdig.html

Ariza, C. 2005. "Navigating the Landscape of Computer-Aided Algorithmic
Composition Systems: A Definition, Seven Descriptors, and a Lexicon of Systems and
Research." In Proceedings of the International Computer Music Conference. San
Francisco: International Computer Music Association. 765-772.

———. 2007. "Automata Bending: Application of Dynamic Mutation and Dynamic
Rules in Modular One-Dimensional Cellular Automata". Computer Music Journal,
31(1):29– 49.

———. 2008. "Python at the Control Rate: athenaCL Generators as Csound Signals".
Csound Journal 9.

 246

———. 2009. "Sonifying Sieves: Synthesis and Signal Processing Applications of the
Xenakis Sieve with Python and Csound". ICMC Montreal 2009, ICMA

Assayag, G. and C. Rueda, M. Laurson, C. Agon, O. Delerue. 1999. "Computer-
Assisted Composition at IRCAM: From PatchWork to OpenMusic". Computer Music
Journal 23(3): 59-72.

Axen, U., and I. Choi. 1996. "Investigating Geometric Data with Sound". Proceedings
of the 1996 International Conference on Auditory Display.

Badiou, A. 2004. Fifteen theses on contemporary art. Lacanian Ink, 23.

Bain, R. 1990. "Algorithmic Composition: Quantum Mechanics & the Musical
Domain". Proceedings of the 1990 International Computer Music Conference. San
Francisco: International Computer Music Association, pp. 276–279.

Balestrini, N. 1968. “Tape Mark I." in Cybernetic Serendipity. J. Reichardt, ed. London:
Studio International, W. & J. Mackay. 55-56.

Banks, J. D, P. Berg, R. Rowe, and D. Theriault. 1979. “SSP — A Bi-Parametric
Approach to Sound Synthesis.” In Sonological Reports. Utrecht: Institute of Sonology.
5.

Barlow, C. 1987. “Two Essays on Theory.” Computer Music Journal 11(1): 44-60.

Barnsley, M. 1988. Fractals Everywhere. Academic Press.

Bartetzki, A. 1997. “CMask, a Stochastic Event Generator for Csound.” Internet:
http://gigant.kgw.tu-berlin.de/~abart/CMaskMan/CMask-Manual.htm.

Barthel-Calvet, A.S. 2001. “Chronologie.” Portrait(s) de Iannis Xenakis. Paris:
Bibliothèque national de France. 25-80.

Bel, B. 1992. “Symbolic and Sonic Representations of Sound Object Structures.” In
Understanding Music with AI: Perspectives on Music Cognition. M. Balaban, K.
Ebcioglu and O. Laske, eds. Cambridge: AAAI Press / MIT Press. 65-109.

 247

———. 1998. “Migrating Musical Concepts: An Overview of the Bol Processor.”
Computer Music Journal 22(2): 56-64.

———. 2006. "The Bol Processor project: musicological and technical issues". Seminar
of the Music, Informatics and Cognition research group, University of Edinburgh. (2006
October 31: Edinburgh, UK).

Bello, Angelo. 2000. “Simultaneous Spatialization and Synthesis of Sound with
Nonlinear Functions”. Proc. Journées d’Informatique Musicales 2000. Bordeaux.

Bentley, P. J. and Corne, D. W. 2001. Creative Evolutionary systems. San Francisco,
CA: Morgan Kaufmann

Berg, P. and R. Rowe, D. Theriault. 1980. “SSP and Sound Description.” Computer
Music Journal 4(1): 25-35.

Berg, P. 1978. A User’s Manual for SSP. Utrecht: Institute of Sonology.

———. 1979a. “PILE - A Language for Sound Synthesis.” Computer Music Journal
3(1): 30-41.

———. 1979b. "SSP. A Bi-parametric Approach to Sound Synthesis". Sonological
Reports. Institute of Sonology, Utrecht. 9-32.

———. 1996. “Abstracting the Future: The Search for Musical Constructs.” Computer
Music Journal 20(3): 24-27.

———. 2003. Using the AC Toolbox. Den Haag: Institute of Sonology, Royal
Conservatory.

———. 2009. Composing sound structures with rules. Contemporary Music Review,
28 (1).

Bernstein, A., and Cooper, E. 1976, "The Piecewise Linear technique of Electronic
Music Synthesis", Journal of the audio Engineering Society, vol 24, 446-454.

Beyls, P. 1989. “The Musical Universe of Cellular Automata”, Proceedings of the
International Computer Music Conference (ICMC), Columbus, OH, USA, 1989.

———. 2000. “Selectionist Musical Automata: integrating explicit instruction and
evolutionary algorithms.” Proceedings of the International Computer Music Berlin 2000

———. 2004. "Cellular Automata Mapping Procedures", Proceedings of the
International Computer Music Conference, Miami, USA, 2001

 248

Bidlack, R. A. 1992. “Chaotic Systems as Simple (but Complex) Compositional
Algorithms.” Computer Music Journal 16(3): 33-47.

Biles, J. A. 1994. “GenJam: A Genetic Algorithm for Generating Jazz Solos.” In
Proceedings of the International Computer Music Conference. San Francisco:
International Computer Music Association. 131-137.

———. 2003. “GenJam in Perspective: A Tentative Taxonomy for GA Music and Art
Systems.” Leonardo 36(1): 43-45.

Bilotta, E., S.Gervasi and P.Pantano. 2005. "Reading Complexity in Chua's Oscillator
Through Music. Part I: A New Way of Understanding Chaos". International Journal of
Bifurcation and Chaos, Vol. 15, No. 2. (2005), pp. 253-382

Bimber, B. 1990. “Karl Marx and the Three Faces of Technological Determinism.”
Social Studies of Science 20(2): 333-351.

Birkhoff, G. D. 1933. Aesthetic Measure. Cambridge: Harvard University Press.

Blum, T. 1979. “Herbert Brü n: Project Sawdust.” Computer Music Journal 3(1): 6-7.

Boersma, Paul & David Weenink 2009. Praat: doing phonetics by computer (Version
5.1.05) [Computer program]. Retrieved May 1, 2009, from http://www.praat.org/

Boulanger, Richard Charles. 2000. The Csound Book: Perspectives in Software
Synthesis, Sound Design, Signal Processing, and Programming. Cambridge: MIT Press.

Bogaards, N., A. Röbel, and X. Rodet. 2004. "Sound Analysis and Processing with
Audiosculpt 2." Proceedings of the 2004 International Computer Music Conference.
San Francisco, California: International Computer Music Association, pp. 462-465.

Bracewell, R.N., The Fourier Transform and Its Applications (McGraw-Hill, 1965, 2nd
ed. 1978, revised 1986)

Brinkman, A. 1981. “Data Structures for a Music-11 Preprocessor.” In Proceedings of
the International Computer Music Conference. San Francisco: International Computer
Music Association.

 249

Brown, A. 2005. Extending dynamic stochastic synthesis. International Computer
Music Conference, Barcelona.

Brü n, H. 1968. “Composition with Computers.” In Cybernetic Serendipity. J.
Reichardt, ed. London: Studio International, W. & J. Mackay. 20.

———. 1969. “Infraudibles.” In Music by Computer. H. von Foerster and J. W.
Beauchamp, eds. New York: John Wiley & Sons. 117-120.

———. 1970. “From Musical Ideas to Computers and Back.” In The Computer and
Music. H. B. Lincoln, ed. Ithaca: Cornell University Press. 23-36.

———. 1970. When Music Resists Meaning, chapter From Musical Ideas to Computers
and Back. Wesleyan University Press, 2004.

———. 1971. “Technology and the Composer.” In Music and Technology
(Proceedings of the Stockholm Meeting organized by UNESCO). Paris: La Revue
Musicale. 181-192.

———. 1980. “Dust, More Dust, Dustiny.” In UNESCO Computer Music: Report on
an internationl project including the international workshop held at Aarhus, Denmark in
1978. M. Battier and B. Truax, eds. Canadian Commission for UNESCO. 85-86.

Brü n, H. and A. Chandra. 2001. "A Manual for SAWDUST.".
http://grace.evergreen.edu/~arunc/brun/sawdust

Burks, A. (Ed) 1970. "Essays on Cellular Automata". Univ. of Illinois Press.

Burraston, D., E. Edmonds, D. Livingstone, and E. Miranda. 2004. "Cellular Automata
in MIDI based Computer Music". Proceedings of the 2004 International Computer
Music Conference.

Burraston, D. and Edmonds, E. 2005. "Cellular Automata in Generative Electronic
Music and Sonic Art: A Historical and Technical Review." Digital Creativity 16(3):
165-185, Taylor and Francis.

Burns, K. H. 1994. The History and Development of Algorithms in Music Composition,
1957-1993. D.A. Dissertation, Ball State University.

Burt, W. 1996. “Some Parentheses Around Algorithmic Composition.” Organised
Sound 1(3): 167-172.

 250

Buxton, W. 1975. Manual for the POD Programs. Utrecht: Institute of Sonology,
University of Utrecht.

———. 1978. Design Issues in the Foundation of a Computer-Based Tool for Music
Composition. Toronto: Technical Report Computer Systems Research Group.

Buxton, W., Patel, S., Reeves, W., and Baecker, R Object and the Design of Timbral
Resources. Computer Music Journal, 6(2) (1982), 32-44.

Buxton, W. and W. Reeves, R. Baecker, L. Mezei. 1978. “The Use of Hierarchy and
Instance in a Data Structure for Computer Music.” Computer Music Journal 2(4): 10-
20.

Cascone, K. 2000. The aesthetics of failure: post-digital tendencies in contemporary
computer music. Computer Music Journal 24(4): 12–18.

Castagné, N. et Cadoz, C. ''GENESIS: A Friendly Musician-Oriented Environment for
Mass- Interaction Physical Modeling'', Proceedings of the International Computer
Music Conference, San Francisco, International Computer Music Association, 2002.

Chadabe, J. 1997. Electric Sound: The Past and Promise of Electronic Music. New
Jersey: Prentice-Hall.

Chandra, A. 1993 “CounterWave: a program for controlling degrees of independence
between simultaneously transforming waveforms” in Proceedings of the Inter national
Association of Knowledge Technology and the Arts, Osaka, Japan: September.

———. 1994. The linear change of waveform segments causing non-linear changes of
timbral presence. Contemporary Music Review 10(2): 157–69.

Chang, J. 1999. Composing Noise. Institute of Sonology.

Chapman, D., Clarke, M., Smith, M., Archbold, P. 1996. “Self-similar Grain
Distribution: a Fractal Approach to Granular Synthesis”. In Proceedings of ICMC,
Hong Kong, pp212-213, ICMA, San Francisco, 1996.

Chareyron, J. 1990. "Digital Synthesis of Self-Modifying Waveforms by Means of
Linear Automata." Computer Music Journal 14(4):25-41

 251

Chion, M. 1982. La musique électroacoustique. Paris: Presses universitaires de France.

———. 1983. Guide des Objets Sonores. Eds. Buchet/Chastel, Paris. 1995 translation
by John Dack/Christine North. Accessed (13/8/2010):
http://www.ears.dmu.ac.uk/spip.php?rubrique219

Chion, M. 1994. "The Three Listening Modes," in Audio/Vision: Sound on Screen
(New York: Columbia University Press, 1994), 25-34.

Chomsky, N. 1957. Syntactic Structures. The Hague: Mouton.

Chowning, J. 1973. "The Synthesis of Complex Audio Spectra by Means of Frequency
Modulation". Journal of the Audio Engineering Society 21 (7

Chowning, J. and Bristow, D. 1986. FM Theory and Applications for Musicians.
Tokyo: Yamaha Music Foundation.

Ciamaga, G. 1975. “The Tape Studio.” In The Development and Practice ofElectronic
Music. J. H. Appleton and R. C. Perera, eds. Englewood Cliffs: Prentice-Hall. 68-137.

Clarke, M. 1996. Composing at the intersection of time and frequency. Organised
Sound 1(2): 107–17.

Clifton, Thomas. 1983. Music as Heard: A Study in Applied Phenomenology. New
Haven and London: Yale University Press.

Gogins, M. 1991. “Iterated functions systems music,” Computer Music Journal, vol. 15,
no. 1, pp. 40–48.

———. 2009. "Score Generating Lindenmayer Systems In The Generalized Contextual
Group". Internet: http://michael-
gogins.com/pdf/Lindenmayer_Systems_Based_on_Riemannian_Transformations.pdf

Cohen, J. E. 1962. “Information Theory and Music.” Behavioral Science 7(2): 137-163.

Collins, N. 1999. "SplineSynth: An Interface to Low-Level Digital Audio". Proceedings
of the Diderot Forum on Mathematics and Music, Vienna, ISBN 3-85403-133-5, pp 49-
61.

 252

———. 2000. "SplineSynth2: Interpolating Break-Point Sets To Obtain Sound
Transformations Distinct From a Cross-Fade". Unpublished research report on the
SplineSynth2 software.

———. 2008. Errant Sound Synthesis. International Computer Music Conference,
Belfast.

———. 2008. The analysis of generative music programs. Organised Sound, 13, 237–
248.

———. 2009. 'Musical Form and Algorithmic Composition', Contemporary Music
Review, 28: 1, 103 — 114

Collins, N. and d'Escrivan, J. (eds.). 2007. The Cambridge Companion to Electronic
Music. Cambridge: Cambridge University Press

Cope, D. 1991. Computers and Musical Style. Oxford: Oxford University Press.

———. 1993. “Algorithmic Composition [re]Defined.” In Proceedings ofthe
International Computer Music Conference. San Francisco: International Computer
Music Association. 23- 25.

———. 1996. Experiments in Music Intelligence. Madison, WI: A-R Editions.

———. 2000. The Algorithmic Composer. Madison, WI: A-R Editions.

Cranfield, B. 2002. Producing noise: Oval and the politics of digital audio. Parachute
no. 107: 42–51.

Dahlhaus, C. 1982. Esthetics of music. Cambridge & New York: Cambridge University
Press.

Dannenberg, R. B. 1997. “The Implementation of Nyquist, A Sound Synthesis
Language.” Computer Music Journal 21(3): 71-82.

Degazio, B. 1997. “The Evolution of Musical Organisms.” Leonardo Music Journal 7:
27-33.

De Poli, G., A. Piccialli, and C. Roads, eds. 1991. "Representations of Musical Signals."
MIT Press.

 253

Delatour, T. 2000. Molecular music: the acoustic conversion of molecular vibrational
spectra. Computer Music Journal 24(3): 48–68.

Deguet, J., Y. Demazeau and L. Magnin, 2005. “Elements about the emergence issue: A
survey of emergence definitions.” Proceedings of ECCS’05, European Conference on
Complex Systems Paris, 14-18 November 2005.

Dewey, J. 1934. Art as Experience. Reprint edition by Perigee Books, The Berkley
Publishing, Group, New York, 1980

Di Scipio, A. 1994a. Micro-time sonic design and timbre formation. Contemporary
Music Review 10(2): 135–48.

———. 1994b. “Formal Processes of Algorithmic Composition Challenging the
Dualistic Paradigm of Computer Music.” In Proceedings of the International Computer
Music Conference. San Francisco: International Computer Music Association. 202-208.

———. 1995a. “On Different Approaches to Computer Music as Different Models of
Compositional Design.” Perspectives of New Music 331-2: 360-402.

———. 1995b. Inseparable models of materials and of musical design in
electroacoustic and computer music. Journal of New Music Research 24(1): 34– 50.

———. 1996. Functional iteration synthesis: A revitalization of non-standard synthesis.
Journal of new music research 25(1).

———. 1997. “Towards a Critical Theory of (Music) Technology. Computer Music
and Subversive Rationalization.” In Proceedings of the International Computer Music
Conference. San Francisco: International Computer Music Association. 62-65.

———. 1998. “Compositional Models in Xenakis’s Electroacoustic Music.”
Perspectives of New Music 36, no. 2: 201-243

———. 1998. Questions concerning music technology. Angelaki, 3 (2).

———. 2000. Sound synthesis by iterated non-linear functions. In Virtual Sound:
Sound Synthesis and Signal Processing, Theory and Practice with Csound, pp. 385–97.
Rome, Italy: ConTempo.

———. 2002a. “The Synthesis of Environmental Sound Textures by Iterated Nonlinear
Functions, and its Ecological Relevance to Perceptual Modeling”, Journal of New
Music Research, 31(2):109-117.

———. 2002b "Systems of embers, dust, and clouds: Observations after xenakis and
brü n". Computer Music Journal, 26(21).

Di Scipio, A. and Prignano, I. 1996 Synthesis by functional iterations. a revitalization of
nonstandard synthesis. Journal of New Music Research 25(1) 31–46.

 254

Dobereiner, L. 2009a. "PV Stoch: A Spectral Stochastic Synthesis Generator", In
Proceedings of the Sound and Music Computing Conference '09 (SMC '09), Porto.

———. 2009b. Compositionally Motivated Sound Synthesis, In Proceedings of next
generation 3.0, ZKM Karlsruhe, 2009

———. 2011. Models of Constructed Sound: Nonstandard Synthesis as an Aesthetic
Perspective, Computer Music Journal 35(3): 28–39

Dobson, R. and Fitch, J. 1995. “Experiments with Chaotic Oscillators”, Proceedings of
the 1995 International Computer Music Conference, 45-48. San Francisco, CA:
International Computer Music Association (ICMA).

Dodge, C. 1988. “Profile: A musical fractal.” Computer Music Journal 12(3): 10-14.

Dodge, C. & Jerse, T. A. (1997) Computer music: synthesis, composition and
performance. N.Y.: Schirmer.

Doornbusch, P. 2004. “Computer Sound Synthesis in 1951: The Music of CSIRAC.”
Computer Music Journal 28(1): 10-25.

Eco, U. 1989. The Open Work. Translated by A. Cancogni. Cambridge: Harvard
University Press.

Edwards, M. 2009. "Algorithmic Composition: Computational Thinking in Music",
School of Arts, Culture and Environment University of Edinburgh Edinburgh, UK,
accessed: http://people.ace.ed.ac.uk/staff/medward2/algorithmic-composition.pdf
(22/5/2011)

Englert, G. 1981. “Automated Composition and Composed Automation.” Computer
Music Journal 5(4): 30-35.

Essl, G. 2006. "Circle maps as a simple oscillators for complex behavior: II.
Experiments" In Proceedings of the International Conference on Digital Audio Effects
(DAFx), Montreal, September 18-20, 2006.

 255

Essl, K. 2007. “Algorithmic Music.” In The Cambridge Companion to Electronic
Music, Cambridge: Cambridge University Press, edited by Nick Collins and Julio
d’Escriván

Evans, B. 2000. “Hearing the Mandelbrot Set,” The Csound Book, ed. R. Boulanger,
(2000), MIT Press: Cambridge.

Fact Index: Noise Music. 2004. http://www.fact-index.com/ n/no/noise_music.html,
visited 9 September 2004.

Feenberg, A. (1990). The ambivalence of technology. Sociological Perspectives, 33(1).

———. (1991). A critical theory of technology. Oxford University Press.

Feller, W. 1968. An Introduction to Probability Theory and its Applications (Volume 1)

Flake, W.G., 1998. The Computational Beauty of Nature: Computer Explorations of
Fractals, Chaos, Complex Systems, and Adaptation, Cambridge, MA: MIT Press.

Freed, A. and X. Rodet, Ph. Depalle. 1993. Performance, Syn thesis and Control of
Additive Synthesis on a Desktop Computer Using FFT. Proc. ICMC, 1993.

Fry, C. 1980. “Flavors Band: A Language for Specifying Musical Style.” In The Music
Machine. C. Roads, ed. Cambridge: MIT Press. 295-309.

Garton, B 1997. RTcmix - Using CMIX in Real Time, In Proceedings of the
International Computer Music Conference. San Francisco: International Computer
Music Association

Gabor, D. 1947. Acoustical quanta and the theory of hearing. Nature 159(4044): 591–4.

Ganguly, N Sikdar, B. Deutsch, A. Canright, G. Chaudhuri, P. 2003. “A survey on
cellular automata”, Technical report, Centre for High Performance Computing, Dresden
University of Technology.

 256

Geiger, G. 2006. "Table lookup oscillators using generic iIntegrated wavetables", in
Proc. Conf. on Digital Audio Effects (DAFX-06), Montreal, Canada, Sept. 2006

Gleick, J. 1987. Chaos: Making a New Science, Viking Penguin.

———. 2011, The Information: A History, a Theory, a Flood, New York: Pantheon

Gogins, M. 1991. “Iterated Functions Systems Music”, Computer Music Journal 15,
March 1991.

———. 1995. “Gabor Synthesis of Recurrent Iterated Function Systems”, Proceedings
of the International Computer Music Conference, September 1995. Goldberg, S. 1986.
"Probability: An Introduction", New York: Dover.

Goldstein, J. 1999, "Emergence as a Construct: History and Issues", Emergence:
Complexity and Organization 1 (1): 49–72

Gottfried M-K, I.Choi, N.Weber, R.Bargar. 1993." Musical signals from Chua’s
circuit", IEEE Transactions on Circuits and Systems II: Analog and Digital Signal
Processing 40

Grossman, G. 1987. ''Instruments, Cybernetics and Computer Music'', Proceedings of
the 1987 International Computer Music Conference, San Francisco: ICMC, pp. 212-
219.

Hedelin, F. 2008. Formalising form: An alternative approach to algorithmic
composition. Organised Sound, 13(3), 249–257.

Hamman, M. 1994. “Dynamically Configurable Feedback/Delay Networks: A Virtual
Instrument Composition Model,” Proceedings of the 1994 International Computer
Music Conference. San Francisco: ICMA.

Hamman, M. 1995. "Computation as Mediation in Composition - From the Technical to
the Technological". <http://www.shout.net/~mhamman> [accessed: 17/05/2011]

———. 1999a. "Structure as Performance: Cognitive Musicology and the
Objectification of Compositional Procedure." In Otto Laske: Navigating New Musical
Horizons. Edited by Jerry Tabor. 37-52.

———. 1999b. "From Symbol to Semiotic: Representation, Signification and the
Composition of Music Interaction." Journal of New Music Research 28.2:90-104.

 257

———. 2000. "Priming Computer-Assisted Music Composition through Design of
Human/Computer Interaction," Mathematics and Computers in Modern Science, ed. N.
E. Mastorakis. World Scientific Engineering Society

———. 2002. "From Technical to Technological: The Imperative of Technology in
Experimental Music Composition." Perspectives in New Music 40.1:92-120.

Harley, J. 1994. “Algorithms Adapted From Chaos Theory.” In Proceedings of the
International Computer Music Conference. San Francisco: International Computer
Music Association. 209-212.

———. 1995. "Generative Processes in Algorithmic Composition: Chaos and music."
Leonardo Music Journal 28.3.

———. 2002 “The Electroacoustic Music of Iannis Xenakis.” Computer Music Journal
26(1): 33-57

———. 2004. Xenakis: his life in music. London: Taylor & Francis Books

Herman, Martin. 1993. "Deterministic Chaos, Iterative Models, Dynamical Systems and
Their Application in Algorithmic Composition." Proceedings of the International
Computer Music Conference 194-197.

Hiller, L. 1956. “Abstracts: Some Structural Principles of Computer Music.” Journal of
the American Musicological Society 9(3): 247-248.

———. 1970. “Music Composed with Computers: An Historical Survey.” In The
Computer and Music. H. B. Lincoln, ed. Ithaca: Cornell University Press. 42-96.

———. 1981. “Composing with Computers: A Progress Report.” Computer Music
Journal 5(4): 7-21.

Hiller, L. and L. Isaacson. 1958. “Musical Composition with a High-Speed Digital
Computer.” Journal of the Audio Engineering Society 6(3): 154-160.

———. 1959. Experimental Music. New York: McGraw-Hill.

Hinojosa C. R. 2003. "Realtime Algorithmic Music Systems From Fractals and Chaotic
Functions: Toward an Active Musical Instrument ." PhD Thesis, Universitat Pompeu
Fabra.

Hoffman, P. 1998. "Evaluating the dynamic stochastic synthesis." Publications du
Laboratoire de Mecanique et d'Acoustique 148: F4.1-F4.8.

———. 2000. “A New GENDYN Program.” Computer Music Journal 24(2): 31-38.

 258

———. 2001. “Analysis through Resynthesis.” Presences of Iannis Xenakis.
Paris:CDMC: 185-194.

———. 2002. “Towards an ‘Automated Art’: Algorithmic Processes in Xenakis’
Compositions.” Contemporary Music Review 21(2-3): 121-131.

———. 2004. “‘Something rich and strange’: Exploring the Pitch Structure of
GENDY3.” Journal of New Music Research 33(2): 137-144.

———. 2009. “Music Out of Nothing? A Rigorous Approach to Algorithmic
Composition by Iannis Xenakis.” PhD diss., Technischen Universitä t Berlin.

———. 2011. “Xenakis Alive!” Explorations and extensions of Xenakis’
electroacoustic thought by selected artists". Proceedings of the Xenakis International
Symposium, London.

Horner, A. 2003. "Auto-Programmable FM and Wavetable Synthesizers,"
Contemporary Music Review, 22(3), 21-29.

Holtzman, S.R. 1978. “A Description of an Automatic Digital Sound Synthesis
Instrument.” D.A.I. Research Report No. 59. Edinburgh: Department of Artificial
Intelligence

———. 1980. “A Generative Grammar Definition Language for Music.” Interface 9: 1-
47.

———. "Using Generative Grammers for Music Composition." Computer Music
Journal 5.1:51-64. {366-0.0}

———. 1994. Digital Mantras: the Languages of Abstract and Virtual Worlds.
Cambridge, MA: MIT Press.

———. 1997. Digital Mosaics: the Aesthetics of Cyberspace. New York: Simon and
Schuster.

Horner, A. 1998 “Nested modulator and feedback FM matching of instrument tones”.
IEEE Trans- actions on Speech and Audio Processing 6(4), 398–409.

Jacob, B. 1996. “Algorithmic Composition as a Model of Creativity.” Organised Sound
1(3): 157-165.

Jaffe, David A. Ten criteria for evaluating synthesis techniques. Computer Music
Journal, 19(1):76-87, 1995

Johnson, R. S. 2006. "Composing with Fractals". In J. Fauvel, R. Flood and R. Wilson,
eds., Music and Mathematics, 2006.

 259

Jones, K. 1981. “Compositional Applications of Stochastic Processes.” Computer
Music Journal 5(2): 45-61.

———. 1995. “The Algorithmic Muse: New Listening Paradigms and the Harmonies
of Chaos.” In Proceedings of the International Computer Music Conference. San
Francisco: International Computer Music Association. 19-22.

Kane, B. 2007, L’Objet Sonore Maintenant: Pierre Schaeffer, sound objects and the
phenomenological reduction, Organised Sound 12(1): 15-24, Cambridge University
Press.

Karpus, K. and A. Strong. 1983. “Digital Synthesis of Plucked-String and Drum
Timbres.” Computer Music Journal 7(2): 43-55.

Keller, D., and Truax, B. 1998. Ecologically-based granular synthesis. Proc. of the 1998
Int. Computer Music Conf., pp. 117–20. San Francisco: Computer Music Association.

Kirke, A. and Miranda, E. R. 2007. “Capturing the aesthetic: Radial mappings for
cellular automata music” Journal of the ITC Sangeet Research Academy, 21, pp. 15-23.

Koenig, G. M. 1959. Studium im Studio. Die reihe #5, English edition 1961, pp. 30–9.
Bryn Mawr: Theodore Presser Company.

———. 1969. “Project One.” In Electronic Music Report. Utrecht: Institute of
Sonology. 2: 32-46.

———. 1970. “Project Two - A Programme for Musical Composition.” In Electronic
Music Report. Utrecht: Institute of Sonology. 3.

———. 1970b. “The Use of Computer Programs in Creating Music.” In Music and
Technology (Proceedings of the Stockholm Meeting organized by UNESCO). Paris: La
Revue Musicale.

———. 1971a. Summary Observations on Compositional Theory. Utrecht: Institute of
Sonology.

———. 1979. PROTOCOL: A Report of the 1974/75 Class in Programmed Music at
the Institute of Sonology. Utrecht: Institute of Sonology, University of Utrecht.

———. 1980a. “Composition Processes.” In UNESCO Computer Music: Report on an
international project including the international workshop held at Aarhus, Denmark in
1978. M. Battier and B. Truax, eds. Canadian Commission for UNESCO. 105-126.

———. 1980b. PRIXM Manual. Utrecht: Institute of Sonology, University of Utrecht.

 260

———. 1987. Genesis of form in technically conditioned environments. Interface
16(3): 165–76.

———. 1983. “Aesthetic Integration of Computer-Composed Scores.” Computer
Music Journal 7(4): 27-32.

———. 1991. "Working with 'Project One': My Experiences with Computer
Composition." Interface 20.3-4:175-180.

———. 1992. "Segmente: A structural landscape." Interface [Journal of New Music
Research] 21.1:43-51.

———. 1999. “PROJECT 1 Revisited: On the Analysis and Interpretation of PR1
Tables.” In Otto

Kollath, Z. & Keuler, J. O. 2005. "Stellar acoustics as input for music composition".
Musicae Scientiae, Special issue 2005-2006, 161-183.

Kopec, G. 1992. "Signal Representations for Numerical Processing," in A. Oppenheim
et al. (Eds.). Symbolic and Knowledge-Based Signal Processing. Englewood Cliffs:
Prentice Hall.

Kramer, Gregory, ed. 1994. Auditory Display: Sonification, Audification, and Auditory
Interfaces. Santa Fe Institute Studies in the Sciences of Complexity. Procedings Volume
XVIII. Reading, MA: Addison-Wesley. ISBN 0201626039.

Kramer, G., Walker, B. N., Bonebright, T., Cook, P., Flowers, J., Miner, N., et al. 1999.
The Sonification Report: Status of the Field and Research Agenda. Report prepared for
the National Science Foundation by members of the International Community for
Auditory Display. Santa Fe, NM: International Community for Auditory Display
(ICAD)

Kugel, P. 1990. “Myhill’s Thesis: There’s More than Computing in Musical Thinking.”
Computer Music Journal 14(3): 12-25.

Langton, C. G. 1991. Life at the Edge of Chaos. In Artificial Life II, Proceedings Vol.
X. SFI Studies in the Sciences of Complexity, Addison-Wesley.

Laske, O. 1973a. “In Search of a Generative Grammar for Music.” Perspectives of New
Music 12(1): 351-378.

———. 1973b. “Toward a Musical Intelligence System: OBSERVER.” Numus West 4:
11-16.

 261

———. 1980. "On Composition Theory as a Theory of Self-Reference," Allos. La
Jolla: Lingua Press.

———. 1981. “Composition Theory in Koenig’s Project One and Project Two.”
Computer Music Journal 5(4), In The Music Machine. Edited by Curtis Roads.
Cambridge: MIT Press.

———. 1988. “Introduction to Cognitive Musicology.” Computer Music Journal 12(1):
43-57.

———. 1989. “Composition Theory: An Enrichment of Music Theory.” Interface 18(1-
2): 45-59.

———. 1990. “The Computer as the Artist’s Alter Ego.” Leonardo 23(1): 53-66.

———. 1991. “Toward an Epistemology of Composition.” Interface 20(3-4): 235-269.

———. 1992a. “Artificial Intelligence and Music: A Cornerstone of Cognitive
Musicology.” In Understanding Music with AI: Perspectives on Music Cognition. M.
Balaban, K. Ebcioglu and O. E. Laske, eds. Cambridge: AAAI Press / MIT Press. 3-28.

———. 1993. “What is Composition Theory?.” In Proceedings of the International
Computer Music Conference. San Francisco: International Computer Music
Association. 28-30.

———. 1999. Navigating New Musical Horizons. Westport: Greenwood Press

Laurson, M. and M. Kuuskankare. 2002. “PWGL: A Novel Visual Language based on
Common Lisp, CLOS, and OpenGL.” In Proceedings of the International Computer
Music Conference. San Francisco: International Computer Music Association. 142-145.

Le Brun, M. 1979. "Digital Waveshaping Synthesis", Journal of the Audio Engineering
Society, 27:4, p. 250

Leach, J. and J. Fitch. 1995. “Nature, Music, and Algorithmic Composition.” Computer
Music Journal 19(2): 23-33.

Lerdahl, F. and R. Jackendoff. 1983. A Generative Theory ofTonal Music. Cambridge:
MIT Press.

Little, D. 1993. “Composing with Chaos: Applications of a New Science for Music.”
Interface 22(1): 23-51.

Lorrain, Denis. 1989. "A Panoply of Stochastic 'Cannons'." In The Music Machine.
Edited by Curtis Roads. Cambridge: MIT Press.

 262

Loy, D. G. 1989. “Composing with Computers: a Survey of Some Compositional
Formalisms and Music Programming Languages.” In Current Directions in Computer
Music Research. M. V. Mathews and J. R. Pierce, eds. Cambridge: MIT Press. 291-396.

Loy, D. G. and C. Abbott. 1985. “Programming Languages for Computer Music
Synthesis, Performance, and Composition.” ACM Computing Surveys 17(2).

Lourenco, B.F., J.C.L.Ralha, M.C.P.Brandao. 2009. "L-Systems, Scores, and
Evolutionary Techniques", Proceedings of 6th Sound and Music Computing
Conference, Portugal, pp. 113-118

Luque, S. 2006. Stochastic Synthesis: Origins and Extensions. Master's Thesis, Institute
of Sonology, Royal Conservatory, The Netherlands.

———. 2009. The Stochastic Synthesis of Iannis Xenakis. Leonardo Music Journal 19:
77-84

Manzolli, J., F. Damiani, P. J. Tatsch, and A. Maia. 2000. A Non-Linear Sound
Synthesis Method. In Proceedings of the 7th Brazilian Symposium on Computer Music,
Curitiba.

MacGregor, B. 2002. “Cybernetic serendipity revisited.” In Proceedings ofthe 4th
conference on creativity & cognition. New York: ACM Press. 11-13.

Mackenzie, J.P. 1995. 'Chaotic Predictive Modelling of Sound'. Procs. International
Computer Music Conference (ICMC '95), pp 49-56, Banff, Canada, September 1995.

MacLennan., B. J. 1990. “Continuous spatial automata”. Technical Report CS-90-121,
University of Tennessee, Dept. of Computer Science, Knoxville.
http://www.cs.utk.edu/mclennan/eldcompbiblio.html, accessed 04/01/2010.

Mandelbrot, B. 1982. The Fractal Geometry of Nature. New York: W. H. Freeman.

Manousakis, S. 2006. "Musical L-systems", Master's Thesis, Institute of Sonology,
2006

———. 2009. "Non-standard Sound Synthesis with L-systems", Leonardo Music
Journal, MIT Press, issue 19, December 2009

 263

Marino, G. and M. Serra, J. Raczinski. 1993. “The UPIC System: Origins and
Innovations.” Perspectives of New Music 31(1): 258-269.

Marino, G. 1990. “The New UPIC System.” In Proceedings of the International
Computer Music Conference. San Francisco: International Computer Music
Association. 249-252.

Mathews, M. V. 1963. “The Digital Computer as a Musical Instrument.” Science
142(3592)

———. 1969. The Technology of Computer Music. Cambridge: MIT Press.

Matossian, N. 1986. Xenakis. London: Kahn & Averill. McAlpine, K. and E.

Maurer, J.A., IV. 1999. ‘A Brief History of Algorithmic Composition’ Stanford
University, accessed at: http://ccrma-www.stanford.edu/~blackrse/ algorithm.html (Dec
2004)

Mauss, Marcel. 1966. The gift; forms and functions of exchange in archaic societies.
London: Cohen & West.

McAlpine, Kenneth. 1999. "Applications of Dynamical Systems to Music
Composition." Ph.D. dissertation, Department of Mathematics, University of Glassgow.

McCartney, J. 1996. “SuperCollider: a New Real Time Synthesis Language.” In
Proceedings of the International Computer Music Conference. San Francisco:
International Computer Music Association.

———. 2002. “Rethinking the Computer Music Language.” Computer Music Journal
26(4): 61- 68.

McCormack, J. 1996. “Grammar-Based Music Composition”. In Stocker et al, eds.
Complex Systems 96: from local interactions to global phenomena, 321-336. IOS Press

McCormack, J. 2003. The Application of L-Systems and Developmental Models to
Computer Art, Animation, and Music Synthesis. Ph.D. thesis, School of Com- puter
Science and Software Engineering, Monash University, Clayton

 264

McCormack, J. 2004. Impossible Nature: The Art of Jon McCormack. Melbourne:
Australian Centre for the Moving Image.

McNabb, M. 1990. "The Far and Brilliant Night", inernet:
http://www.mcnabb.com/music/works/fbn.html

McAlpine, K. and E. Miranda, S. Hoggar. 1999. “Making Music with Algorithms: A
Case-Study.” Computer Music Journal 23(2): 19-30.

Miner, N. E., and Caudell, T. P. 2002. Using wavelets to synthesize stochastic-based
sounds for immersive virtual environments. Presence: Teleoperators and Virtual
Environments 11(5): 493–507.

Miranda, E. R. 1993. “Cellular Automata Music: An Interdisciplinary Project.”
Interface 22: 3- 21.

———. 2000a. Composing Music With Computers. Burlington: Focal Press.

———. 2000b. “Regarding Music, Machines, Intelligence and the Brain: An
Introduction to Music and AI.” In Readings in Music and Artificial Intelligence. E. R.
Miranda, ed. Amsterdam: Harwood Academic Publishers. 1-13.

———. 2001. "Evolving Cellular Automata Music: From Sound Synthesis to
Composition", Proceedings of the Workshop on Artificial Life Models for Musical
Applications - ECAL 2001, Prague, Czech Republic.

———. 2002. Computer Sound Design: Synthesis Techniques and Programming.
Oxford: Elsevier.

Miranda, S. Hoggar. 1999. “Making Music with Algorithms: A Case-Study.” Computer
Music Journal 23(2): 19-30.

Miranda, E.R., McAlpine, K., Hoggar, S. 1997. Dynamical systems and applications to
music composition: A research report. In: Proceedings of Journees d’Informatique
Musicale (JIM97). French Society for Musical Informatics (SFIM), Lyon, France

Miranda, E. R. and Maia Jr., A. 2005. "Granular Synthesis of Sounds Through Markov
Chains with Fuzzy Control", Proceedings of the International Computer Music
Conference 2005, Barcelona

Miranda, E-R., Biles, J. (Eds.) . 2007. Evolutionary Computer Music. London:
Springer

 265

Monro, G. 1995. “Fractal Interpolation Waveforms”, Computer Music Journal, Vol. 19,
No. 1, pp. 88-98

Moore, F. R. 1977 "Table Lookup Noise for Sinusoidal Digital Oscillators," Computer
Music Journal 1(2) 26-29

———. 1980. “The Futures of Music.” Perspectives of New Music 19(1-2): 212-226.

———. 1990 Elements of computer music. Englewood Cliffs, N.J.: Prentice Hall.

Moorer, J. 1972. “Music and Computer Composition.” Communications ofthe ACM
15(2): 104-

Morgan, N. 2007. "Transformation and mapping of L-Systems data in the composition
of a large-scale instrumental work", Proceedings of ECAL 2007 Workshop on Music
and Artificial Life (MusicAL 2007), Lisbon (Portugal).

Munakata, N., and K. Hayashi. 1995. a Gene Music: Tonal
AssignmentsofBasesandAminoAcids.o InProceedings of the 1995 Visualizing
Biological Inform ation, Conference. Singapore: World Scientific, pp. 72-83.

Murail, T. 2005. The revolution of complex sounds. Contemporary Music Review, 24
(2).

Myhill, J. 1952. “Some Philosophical Implications of Mathematical Logic: Three
Classes of Ideas.” Review of Metaphysics 6(2): 165-198.

———. 1978. “Some Simplifications and Improvements in the Stochastic Music
Program.” In Proceedings of the International Computer Music Conference. San
Francisco: International Computer Music Association. 272-317.

Nattiez, J-J. 1990. Music and Discourse: Toward a Semiology of Music . Translated by
Carolyn Abbate. Princeton: Princeton University Press.

Negroponte, N. 1995. Being Digital. London: Hodder & Stouton.

 266

Nelson, G-L. 1993. "Sonomorphs: An Application of Genetic Algorithms to the Growth
and Development of Musical Organisms." Proceedings of the Fourth Biennial Art And
Technology Symposium.

———. 1994. "Wind, Sand, and Sea Voyages: An Application of Granular Synthesis
and Chaos to Musical Composition." Available on-line at http://www-ks.rus.uni-
stuttgart.de/people/schulz/fmusic/gnelson.html

———. 1996. Real Time Transformation of Musical Material with Fractal Algorithms.
Computers Math. Applic. 32,1 (1996) 109-116.

Nierhaus,G. 2008. Algorithmic Composition - Paradigms of Automated Music
Generation. Springer

Novikoff, A. 1945. "The Concept of Integrative Levels and Biology", Science, Volume
101, Issue 2618, pp. 209-215

Olson, H. F. and H. Belar. 1961. “Aid to Music Composition Employing a Random.
Probability System.” Journal of the Acoustical Society of America 33(9): 1163-1170.

Oxford Advanced Learner's Dictionary 2006

Oxford Dictionaries Online. Accessed: http://oxforddictionaries.com/ (21/3/11)

Papadopoulos, George and G. Wiggins. 1999. "AI Methods for Algorithmic
Composition: A Survey, a Critical View and Future Prospects."
http://www.soi.city.ac.uk/ ~geraint/ papers/ AISB99b.pdf

Pinkerton, R. C. 1956. “Information Theory and Melody.” Scientific American 194(2):
77-86.

Peitgen, H-O., and D. Saupe, eds. 1988. The Science of Fractal Images. New York:
Springer-Verlag.

Peitgen, H-O, H.Jurgens, and Saupe, D. 1992; Chaos and Fractals, New Frontiers of
Science. New York, NY: Springer-Verlag.

 267

Pereverzev, S. V., et al. 1997. aQuantum Oscillations between Two Weakly Coupled
Reservoirs of Super- fluid 3He.o Nature 388:449± 451.

Polansky, L. and D. Rosenboom. 1985. “HMSL.” In Proceedings ofthe International
Computer Music Conference. San Francisco: International Computer Music
Association. 243-250.

Polotti, P. & Evangelista, G. 2001. “Fractal Additive Synthesis via Harmonic-Band
Wavelets”. Computer Music Journal, 25:3, pp. 22–37, Fall 2001

Pope, S. T. 1995. “Fifteen Years of Computer Assisted Composition.” Proceedings of
the Second Brazilian Symposium on Computer Music 6.

Pressing, J. 1988. “Nonlinear maps as generators of musical design”, Computer Music
Journal, 12(2): 35-46.

Prusinkiewicz P. and Α.Lindenmayer 1990. “The Algorithmic Beauty of Plants.” New
York: Springer-Verlag,

———. 1994. “Novelty, Progress and Research Method in Computer Music
Composition.” In Proceedings of the International Computer Music Conference. San
Francisco: International Computer Music Association. 27-30.

Puckette, M. 1991. “Combining Event and Signal Processing in the MAX Graphical
Programming Environment.” Computer Music Journal 15(3): 68-77.

———. 1997. “Pure Data.” In Proceedings of the International Computer Music
Conference. San Francisco: International Computer Music Association. 224-227.

———. 2002. “Max at 17.” Computer Music Journal 26(4): 31-43.

———. 2007. The theory and technique of electronic music. World Scientific.
ISBN 9789812700773.

Quinn, M and Meeker, L-D. 2001. "Research set to Music: The Climate Symphony and
Other Sonifications of Ice Core, Radar, DNA, Seismic and Solar Wind Data".
Proceedings of the 2001 International Conference on Auditory Display, Espoo, Finland

Rahn, J. 1990. “The Lisp Kernel: A Portable Software Environment for Composition.”,
Computer Music Journal 14(4): 42-64.

 268

Reichardt, J. 1968. Cybernetic Serendipity: The computer and the arts. London: Studio
International, W. & J. Mackay.

Reiners, P. 2004. “Cellular automata and music”, developerWorks, IBM, 2004

Reynolds, S. 1996. Low end theory. http://www.mille-plateaux.net/
theory/download/raynolds-thewire.pdf. As originally published in The Wire #196
(March 1996).

Risset, J-C. 1969. An Introductory Catalogue of Computer Synthesized Sounds, Bell
Telephone Laboratories, Murray Hill, New Jersey, reprinted in The Historical CD of
Digital Sound Synthesis, Computer Music Currents 13, Wer 2033-2, Schott Wergo
Music Media GmbH, Meinz, Germany.

Roads, C. 1977. “Composing Grammars.” In Proceedings of the International Computer
Music Conference. San Francisco: International Computer Music Association. 26-30.

———. 1984. “An Overview of Music Representations.” In Musical Grammars and
Computer Analysis. Firenze: Leo S. Olschki. 7-37.

———. 1985a. “Research in music and artificial intelligence.” In ACM Computing
Surveys. New York: ACM Press. 17(2): 163-190.

———. 1985b "Interview with Gottfried Michael Koenig". In Curtis Roads and John
Strawn, editors, Foundations of Computer Music, pages 568–580. MIT Press,
Cambridge, MA, London, 1985.

———. 1996. The Computer Music Tutorial. Cambridge: MIT Press.

———. 2002. Microsound. Cambridge: MIT Press.

Roads, C. and Wieneke, P. 1979. Grammars as Representations for Music. Computer
Music Journal. 3(1) (March 1979), 48-55

Robindoré, B. 1996. “Eskhaté Ereuna: Extending the Limits of Musical Thought-
Comments On and By Iannis Xenakis.” Computer Music Journal 20(4): 11-16

Rodet, X. and P. Cointe. 1984. “FORMES: Composition and Scheduling of Processes.”
Computer Music Journal 8(3): 32-48.

Rodet, X. 1993. "Models of musical instruments from Chua’s circuit with time delay",
IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing
40, no. 10, 696–701.

 269

Russcol, H. 1972. The Liberation of Sound: An Introduction to Electronic Music.
London: Prentice- Hall International.

Sangild, T. 2002. The Aesthetics of Noise. Datanom.

Scaletti, C. 2002. “Computer Music Languages, Kyma, and the Future.” Computer
Music Journal 26(4): 69-82.

Schaeffer, P. 1970. “Music and Computers.” In Music and Technology (Proceedings
ofthe Stockholm Meeting organized by UNESCO). Paris: La Revue Musicale. 57-92.

Schoenberg, Arnold. 1975. Style and Idea, edited by Leonard Stein with translations by
Leo Black. Berkeley & Los Angeles: University of California Press.

Serra, M.H. 1993. “Stochastic Composition and Stochastic Timbre: GENDY3 by Iannis
Xenakis.”. Perspectives of New Music 31, no. 1: 236-257

Serquera, J. Miranda, E. R. 2008. “Spectral Synthesis and Control with Cellular
Automata” Proceedings of the International Computer Music Conference, Belfast, NI,
2008.

Shannon, C. E. 1948. “A Mathematical Theory of Communication.” Bell Systems
Technical Journal 27: 379-423, 623-656.

Shannon, C. E. and W. Weaver. 1949. A Mathematical Theory of Communication.
Urbana: University of Illinois Press.

Simoni, M. 2003. Algorithmic Composition: A Gentle Introduction to Music
Composition Using Common LISP and Common Music. Ann Arbor: Scholarly
Publishing Office, the University of Michigan University Library.

Smalley, D. 1986. “Spectro-Morphology and Structuring Processes.” In The Language
of Electroacoustic Music. S. Emmerson, ed. London: Macmillan Press. 61-93.

 270

Smalley, D. 1997. Spectromorphology: Explaining sound-shapes, Organised Sound:
Vol. 2, no. 2. Cambridge: Cambridge University Press: 107-126.

Smith, J-O. 1991. ``Viewpoints on the History of Digital Synthesis'', Proceedings of the
International Computer Music Conference (ICMC-91, Montreal), pp. 1-10, Computer
Music Association, October 1991.

———. 2005. Physical Audio Signal Processing. Draft.
https://ccrma.stanford.edu/~jos/pasp05/

Smith, L. 1972. “SCORE — A Musician’s Approach to Computer Music.” Journal of
the Audio Engineering Society 20(1): 7-14.

Soddell, F and Soddell, J. 2005. "Of Lindenmayer systems, Fungi and Music".
Proceedings Australasian Computer Music Conference

Solomos, M. 2001. “The Unity of Xenakis’s Instrumental and Electroacoustic Music:
The Case for ‘Brownian Movements’”. Perspectives of New Music 39, no. 1: 244-254

Spiegel, L. 1986. “Music Mouse — An Intelligent Instrument.” Internet:
http://retiary.org/ls/programs.html.

———. 1989. “Distinguishing Random, Algorithmic, and Intelligent Music.” Internet:
http://retiary.org/ls/writings/alg_comp_ltr_to_cem.html.

Stair, Ralph M., et al. (2003). Principles of Information Systems, Sixth Edition.
Thomson Learning, Inc..

Stiny, G. and J. Gips. 1972. “Shape Grammars and the Generative Specification of
Painting and Sculpture.” In Information Processing 71. C. V. Freiman, ed. Amsterdam:
North Holland. 1460-1465.

———. 1978. Algorithmic Aesthetics. Berkeley: University of California Press.

Stone, Harold S. (1972). Introduction to Computer Organization and Data Structures
(1972 ed.)

Sturm, B. L. 2001. ‘‘Composing for an Ensemble of Atoms: The Metamorphosis of
Scienti� c Experiment Into Music.’’ Organised Sound 6(2):131–145.

 271

Supper, M. 1997: Elektroakustische Musik & Computermusik, Wolke Verlag: Hofheim

———. 2001. “A Few Remarks on Algorithmic Composition.” Computer Music
Journal 25(1): 48-53.

Tache, O. and Claude Cadoz (2009). Organizing mass-interaction physical models: the
CORDIS-ANIMA Musical Instrumentarium. Proceedings of the 2009 International
Computer Music Conference, Montréal (Canada), pp. 411-414.

Taube, H. 1997. “An Introduction to Common Music.” Computer Music Journal 21(1):
29-34.

———. 2004. Notes from the Metalevel. New York: Routledge.

Tenney, J. 1963. “Sound Generation by Means of a Digital Computer.” Journal of
Music Theory 7(1): 24-70.

———. 1966. “Musical Composition with the Computer (Abstract from the 71st
Meeting of the Acoustical Society of America).” Journal of the Acoustical Society of
America 39(6): 1245.

———. 1969. “Computer Music Experiments.” In Electronic Music Report. Utrecht:
Institute of Sonology. 1: 23-60.

———. (1988). Stochastic String Quartet. Score, Smith Publications/Sonic Art
Editions, Baltimore, USA.

Thomson, P. 2004. "Atoms and errors: towards a history and aesthetics of microsound".
Organised Sound, 9(2).

Toguchi, S., Akamine, Y., Satoshi, E.,2008. “Research into the Generation of Sound
Effects Using a Cellular Automaton” Lecture Notes in Computer Science: Cellular
Automata, Volume 5191/2009, Springer.

Truax, B. 1973. “The Computer Composition — Sound Synthesis Programs POD4,
POD5 and POD6.” In Sonological Reports. Utrecht: Institute of Sonology. 2: 57.

———. 1976. “A Communicational Approach to Computer Sound Programs.” Journal
of Music Theory 20(2): 227-300.

———. 1982. Timbral Construction in Arras as a Stochastic Process", Computer Music
Journal, 6(3), 1982

 272

———. 1990. “Chaotic Non-Linear Systems and Digital Synthesis: An Exploratory
Study”. Proceedings of ICMC, Glasgow, pp100-103, International Computer Music
Association, San Francisco, 1990.

———. 1992. "Musical Creativity and Complexity at the Threshold of the 21st
Century," Interface, 21(1), 1992, 29-42.

———. 1997. "The Inner and Outer Complexity of Music," Perspectives of New
Music, 32(1), 1994, 176-193. Italian translation in Musica/Realtà , No. 43, April 1994;
Polish translation in Monochord, 14-15, 1997.

———. 1999. "Sonology: A Questionable Science Revisited", In Tabor, J. (Ed.) Otto
Laske: Navigating New Musical Horizons. London: Greenwood: 21-36.

———. 2000. "The aesthetics of computer music: a questionable concept
reconsidered," Organised Sound, 5(3), 119-126, 2000

———. 2001. Acoustic Communication, 2nd ed., Ablex Publishing.

Vaggione, H. 2001. “Some Ontological Remarks about Music Composition Processes.”
Computer Music Journal 25(1): 54-61.

Varèse, E. 2004. “The Liberation of Sound.” In Audio Culture: Readings in Modern
Music. C. Cox and D. Warner, eds. New York: Continuum. 17-21.

Varga, B-A. 1996. Conversations with Iannis Xenakis. London: Faber and Faber.

Voss, R. F. and J. Clarke. 1975. “1/f Noise in Music and Speech.” Nature 258: 317-318.

Vickers, P. ''Ars Informatica - Ars Electronica: Improving Sonification Aesthetics,'' in
Understanding and Designing for Aesthetic Experience Workshop at HCI 2005 The
19th British HCI Group Annual Conference (L. Ciolfi, M. Cooke, O. Bertelsen, and
L. Bannon, eds.), (Edinburgh, Scotland), 2005.

Wallin, R. 1989. "Fractal Music - Red Herring or Promised Land? or Just Another of
those Boring Papers on Chaos", Lecture given at the Nordic Symposium for Computer
Assisted Composition Stockholm 1989. Internet:
http://www.rolfwallin.org/Fractalarticle.html

Waschka, R., Kurepa, A. 1989. “Using Fractals in Timbre Construction: an Exploratory
Study”. Proceedings of ICMC, Columbus, pp332-335, International Computer Music
Association, San Francisco, 1989.

 273

Weisstein, E.W. 2006. "Bernoulli Distribution." MathWorld--A Wolfram Web
Resource. http://mathworld.wolfram.com/BernoulliDistribution.html

Whitelaw, M. 2003. "Sound Particles and Microsonic Materialism", Contemporary
Music Review: Vol. 22, Issue 4. London: Routledge: 93-100.

Whitelaw, M. 2004. Metacreation: Art and Artificial Life. Cambridge, MA: MIT Press

Whittall, A. 2008. The Cambridge Introduction to Serialism. Cambridge Introductions
to Music, p. 272. New York: Cambridge University Press.

Wiener, N. 1948. Cybernetics. Cambridge: MIT Press.

Wilson, G. 1988. “The Life and Times of Cellular Automata”, New Scientist October
1988:44-47, Reed Business Information.

Wilson, L. B. 1993. Comparative Programming Languages, Second Edition. Addison-
Wesley.

Winograd, T. 1979. “Beyond Programming Languages.” Communications of the ACM
22(7): 391-401.

Wishart, T. 1994. Audible design. OTP Ltd.

Wolfram, S. 1983. Statistical Mechanics of Cellular Automata. Reviews of Modern
Physics, 55(3): 601-644

———. 1984. Universality and Complexity in Cellular Automata. Physica D. 10D, 1-
35.

———. 2002. A New Kind of Science. Wolfram Media.

Wooller, Rene, Brown, Andrew R, Miranda, Eduardo, Diederich, Joachim, & Berry,
Rodney (2005) A framework for comparison of process in algorithmic music systems.
In David, Burraston & Ernest, Edmonds (Eds.) Generative Arts Practice, 5-7 December
2005, Sydney, Australia.

 274

Worth, P., S. Stepney. 2005. "Growing Music: Musical Interpretations of L-Systems".
EvoWorkshops: 545-550

Xenakis, I. 1955. “La crise de la musique sèrielle.” Gravesaner Blatter 1.

———. 1965. “Free Stochastic Music from the Computer. Programme of Stochastic
music in Fortran.” Gravesaner Blä tter 26.

———. 1966. “The Origins of Stochastic Music.” Tempo 78: 9-12.

———. 1976. Foreword. N’Shima [score]. Paris: Editions Salabert.

———. 1985. “Music Composition Treks.” In Composers and the Computer. C. Roads,
ed. Los Altos: William Kaufmann, Inc.

———. 1992. Formalized Music: Thought and Mathematics in Music. Indiana: Indiana
University Press.

———. 1996. "Determinacy and Indeterminacy." Organised Sound 1(3): 143-155.

Yeh, D. T. and Pakarinen, Jyri (2009). "A Review of Digital Techniques for Modeling
Vacuum-Tube Guitar Amplifiers", Computer Music Journal, 33:2, pp. 89-90

Yadegari.Sh. D. 1991. “Using Self-Similarity for Sound-Music Synthesis.”
International Computer Music Conference 1991.

———. 1992. “Self-Similar Synthesis - On the Border Between Sound and Music.”
MIT Thesis.

Zalta, N. 2011. Stanford Encyclopedia of Philosophy. Accessed (13/8/2011):
http://plato.stanford.edu/

Zaripov, R. 1969. “Cybernetics and Music.” Perspectives of New Music 7(2): 115-154.

Zicarelli, D. 1987. “M and Jam Factory.” Computer Music Journal 11(4): 13-29.

 275

 276

 277

