
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

04 University of Plymouth Research Theses 01 Research Theses Main Collection

1996

A RULE-BASED APPROACH TO

ANIMATING MULTI-AGENT

ENVIRONMENTS

YE, VICTOR

http://hdl.handle.net/10026.1/2812

http://dx.doi.org/10.24382/4939

University of Plymouth

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.

A RULE-BASED APPROACH TO ANIMATING

MULTI-AGENT ENVIRONMENTS

by

VICTOR YE

B.Sc., University of East Anglia, England, 1989

M.A., University of Bournemouth, England, 1990

A thesis submitted to partial fulfilment

of the requirements of

the University of Brighton

for the degree of

Doctor of Philosophy

Aprill996

.(1 '.

~T• I

•• 1 11

I

I
I

Ye, Victor Thur Jian

A Rule-Based Approach to Animating Multi-Agent Environments

Thesis directed by Dr. Colin Beardon

ABSTRACT

This dissertation describes ESCAPE (Expert Systems in Computer Animation Production

Environments), a multi-agent animation system for building domain-oriented, rule­

based visual programming environments.

Much recent work in computer graphics has been concerned with producing

behavioural animations of artificial life-forms mainly based on algorithmic approaches.

This research indicates how, by adding an inference engine and rules that describe such

behaviour, traditional computer animation environments can be enhanced.

The comparison between using algorithmic approaches and using a rule-based

approach for representing multi-agent worlds is not based upon their respective claims

to completeness, but rather on the ease with which end users may express their

knowledge and control their animations with a minimum of technical knowledge.

An environment for the design of computer animations incorporating an expert

system approach is described. In addition to direct manipulation of objects on the

screen, the environment allows users to describe behavioural rules based upon both the

physical and non-physical attributes of objects. These rules can be interpreted to

suggest the transition from stage to stage or to automatically produce a longer

animation. The output from the system can be integrated into a commercially available

3D modelling and rendering package.

Experience indicates that a hybrid environment, mixing algorithmic and rule­

based approaches, would be very promising and offer benefits in application areas such

as creating realistic background scenes and modelling human beings or animals either

singly or in groups.

A prototype evaluation system and three different domains are described and

illustrated with preliminary animated images.

-to my parents

ACKNOWLEDGEMENTS

My sincere thanks goes to:

my family, for their unparalleled support and encouragement through all these years.

Colin Beardon, my supervisor, for providing me with so much invaluable advice and

discussions.

John Vince, my advisor, for providing me with crucial insights into the world of

computer graphics.

Peter Comninos, my advisor, for inspiring me with the initial idea of doing a PhD.

Apple Computer Inc., for introducing the Macintosh to me since 1986.

and mostly, the Rediffusion Simulation Research Centre for financing my research.

© 1996 Victor Ye.

Software used: Claris MacDraw Pro 1.5vl, LPA-MacProlog32 vl.05, PACo Producer 2.0,
ResEdit 2.1.3 (Apple Computer Inc.), SwivelPro 2.0.4 (VPL Research), Microsoft Word 6.0.1.

Types set in: Chicago, Garamond, Garamond Book, Garamond BookCondensed, Geneva,
Helvetica, LogosPiFont, Monaco, New Baskerville ItalicOsF, New Baskerville, New BaskervilleSC
and Zapf Dingbats.

System of referencing used: Fred So wan & Ell is Horwood (1987) "Publishing with Ell is Horwood.
An authors' guide to the publication of works in science and technology". Second Edition. Ell is
Horwood Limited.

iv

CONTENTS

COLOUR PlATES vu

PREFACE 1

OUTLINE 3

1 BEHAVIOURAL ANIMATION 5

1.1 Al\JIMATION & SIMULATION 7

1.2 BEHAVIOURAL ANIMATION 13

1.3 A RULE-BASED APPROACH TO ANIMATING BEHAVIOUR 1 7

1.4 A WORKING ENVIRONMENT FOR ANI!'.!ATORS 20

1.5 STRUCTURE OF THE THESIS 2 3

2 THE SOFIWARE ENVIRONMENT 25

2.1 SOFIWARE ARCHITECTURE 27

2.2 DATA STRUCTURES 29

2.3 USER INTERFACES 37

2.4 LANGUAGE PROCESSING OF GRAM!'.!AR RULES 49

2.5 RULEBASE & RULE INTERFACE 55

2.6 INFERENCE ENGINE 63

2.7 COLLISION DETECTION 67

2.8 INPUTS & OUTPUTS 69

2 ·9 SUM!'.!ARY 7 2

·v

Contents

3 WORLD.JELLY 73

3.1 WORLD .jELLY DATABASE 7 5

3.2 RULES PARSING 81

3·3 INFERENCING 86

3·4 ORDERING g6

3·5 REsULTS lOO

3.6 SUMMARY I 1 1

4 OTHER EXAMPLES 1111

4.1 WORLD.TRAFFIC 114

4.2 WORLD.BIRD 125

4·3 SUMMARY 135

5 CONCLUSIONS 136

5.1 RESEARCH CONTEXT AND FINDINGS 138

5.2 CONTRIBUTIONS 140

5·3 LIMITATIONS & FuTURE WORK 142

5·4 INTEGRATION INTO OTHER SOFTWARE I 43

5·5 CONCLUSIONS 145

APPENDICES 147

A EXPERT SYSTEMS 148

B PROLOG 153

C DCG LISTING 1 6o

D WORLD.jELLY DOMAIN DATABASE 162

E WORLD.TRAFFIC DOMAIN DATABASE 167

F WORLD.BIRD DOMAIN DATABASE 176

REFERENCES 18o

PUBUSHED PAPERS 186

V i

-

COLOUR PLATES

.....

Plate1:

A rendered scene from the

World.Jelly animation: an

underwater world of 3 prawns,

2 jellyfish and1 rock.

Plate2:

A rendered scene from the

World.Trafflc animation:

showing the behaviour of 5

drivers approaching a

T-junction.

Pl ate 3 :

A rendered scene from the

World.Bird animation: based

on a flock of birds in flight that

have to navigate around a

number of fixed obstacles.

PREFACE

To date most computer systems that allow for three dimensional modelling and

animation are concerned entirely with the physical properties of objects. That is to say,

their objects are modelled by being given a physically defined shape, a number of

properties (e.g. colour) and a location and orientation in three dimensional space. A

2D representation of an arrangement of such objects (a single 'frame') is produced by

specifying the location and orientation of light sources and the point of view. An

animated sequence is produced by specifying how these properties change from frame

to frame. This can be done explicitly (i.e. by hand), but this is expensive. Normally it is

done implicitly by means of an algorithm. Systems can also be built that provide a set of

general-purpose procedures that are independent of any particular domain. Craig

Reynolds (1982) for example, developed the Actor/Scriptor Animation System (ASAS),

a full programming language especially designed for animation and graphics that

employs a procedural notation.

There are some very practical reasons why one might wish to supplement these

approaches based solely upon the physical attributes of objects by incorporating some

ideas from cognitive science. Within complex domains, and particularly where planning

and intentional action are involved, capturing realistic behaviour can be very time

consuming and expensive. Convincing behavioural animations require botl1 complexity

and irregularity and these cannot be easily captured algorithmically. Even if they can be

achieved for short sequences, there is a tendency towards repetition if the algorithms are

not made more complex as the length of the animation increases.

The purpose of this thesis is to seek a way to model an environment for

animating behaviour, and to describe an attempt to enhance physicalist approaches in a

principled way by incorporating one of the best known ideas from the field of Artificial

Intelligence and cognitive science, namely expert systems (or rule-based systems). A

working environment in which a rule-based approach coexists with more traditional

modelling and animation methods will be described. The environment is based upon

the functions of two different types of user: tl1e end user, who is the person producing a

Preface

particular animation; and the domain expert, who provides knowledge about the

domain being modelled.

A prototype software system is described and the use that each type of developer

will make of the system is shown. In order to validate the model, four sample

animations are described (two in Chapter 3 and two in Chapter 4) that use the software

environment. Finally some possible application areas and some limitations of the

approach will be discussed and an indication given of future work.

2

OUTLINE

The four main chapters of this document are centred around the themes: behavioural

animation, rule-based system, human-computer interaction, and domain-oriented

applications, while a fifth chapter addresses the conclusions that can be drawn from this

work. At the end of this thesis are the Appendices, References, followed by two of the

papers published by the author which are related to this research.

Chapter 1: Behavioural Animation. This chapter includes a brief introduction to the

fundamentals of traditional animation and interactive compmer graphics, in which past

approaches in creating compmer animation are discussed. This leads to a description

of some of the problems in trying to animate the behaviour of agents in traditional

animation environments. Finally the chapter discusses how an animation environment

called ESCAPE can be constructed to represent the behavioural properties of the agents,

and how this can be used within a research project to discover new knowledge about

computer animation.

Chapter 2: The Software Environment. The design of the ESCAPE system in the context

of the above themes is discussed, some possible limitations depicted, the method of

describing the behaviour of agents are illustrated and some scenarios illustrating typical

use situations of the system are provided.

Chapter 3: World.Jelly. This chapter describes how, by using the ESCAPE system, an

underwater scene with three types of object Uellyfish, prawn and rock) can be modelled

as a domain, and illustrates the principles of rule-based programming. 1t also discusses

the issues of how optimum results can be derived from the system.

Chapter 4: Other Examples. The ESCAPE system is validated by using two more

examples: a road junction traffic domain and a flocking bird domain. The chapter also

outlines the important issues in creating a new domain.

Outline

Chapter 5: Conclusions. Through the research context and findings, the research's

contributions to animating behaviour are summarised, possible application areas are

projected, some limitations of the approach discussed and an indication given of future

work.

Appendix A: Expert Systems. A brief introduction to expert system.

Appendix B: Prolog. A brief introduction to Prolog (an expert system based

programming language).

Appendix C: DCG listings. The ESCAPE implementation and a listing of the DCG IS

described.

Appendix D: World.Jelly domain database. A complete listing of the WorldJelly

database.

Appendix E: World.Traffic domain database. A complete listing of the World.Traffic

database.

Appendix F: World.Bird domain database. A complete listing of the World.Bird

database.

4

.,

IBEHAVI 101UIRAIL ANTM A TIION: . . . ' ' . ' ' . .

Chapter 1: Behavioural Animation

behaviour n. 1. manner of behaving. 2. the response of an
organism to a stimulus. 3. the action or functioning of a
machine, etc., under normal or specific circumstances.

The Collins Concise Dictionary (1988)

Chapter Overview

This chapter begins with an introduction to animation techniques ranging from

traditional to 2D and 3D computer animation. Relevant past work is described to give

the reader an overview of the techniques involved in computer animation and some of

the applications of computer animation, including visualisation and simulation.

The meanings of what is meant in the thesis by "behavioural animation" and

"agents" will be explained, and the common problems encountered in a multi-agent

environment described. Examples will be given using different traditional animation

techniques, and the problems of using these approaches outlined. Some more recent

ideas for animating the behaviour and gesture of human beings will also be examined.

The chapter then considers mle-based systems, which are derived from the field

of Artificial Intelligence and cognitive science and have been used to perform complex

decision making processes in fields such as medicine, robotics, and diagnostics. There

will be a discussion of how multi-agent behaviour might be represented in a rule-based

system, and the expected benefits of using such a system summarised. The thesis will

develop an environment in order to test whether these benefits are achievable and what

problems arise in practice.

Finally, there is a discussion of how traditional computer animation techniques,

a graphical human computer interface (HCI) and an expert system can be combined m

a production environment for animators to represent behavioural knowledge.

6

Chapter 1: Behavioural Animation

1.1 Animation & Simulation

This section starts with an introduction to traditional animation, describing how it is

produced and some of the difficulties in doing so. It then proceeds to computer

animation, outlining its various techniques in visualisation and simulation and some of

its uses. It will also look at the relationship between traditional and computer

animation.

Since this thesis is centred around 3D computer graphics, '3D computer

animation' is referred to as 'computer animation', unless otherwise stated.

1.1.1 Traditional Animation

Any animation is achieved by updating a sequence of images very rapidly at a constant

rate. In traditional animation (such as Wait Disney's classic production of Bambi, Snow

White, Pinicchio and etc.), the images were individually hand-drawn by the animators,

usually onto transparent eels. Traditional animation is a highly skilled profession, and it

is still very much practised. Usually, the chief animators would draw a few specified

painted 'keyframes', and the in-between frames are interpolated from those and drawn

/rendered by helpers. Slight deformation and displacement of the subjects on each eel

would then be produced and, when recorded on an output medium such as video or

film, frame by frame in sequence, and played back at 25 fpsl, a moving picture would be

created. The smoothness of the animation would generally depend upon the quality of

the in-betweening frames between each keyframe.

It is sufficient to say that most animations done this way are 2D, with the

exception of 2 t D, whereby multiple layers of a drawing overlap each other. For

example, the background may be on one eel, static characters on another and the

moving character on top. In this way the bottom two eels can be re-used in a number of

frames. It might also be that tl1e eels are moved relative to one another in successive

frames, without being redrawn, so that, for instance, a background could be scrolled

past to suggest the movement of the character in front. This gives 'depth' and pleasing

results in the final composition.

1 fps (frames-per-second). The standard rate for the U.K. TV is 25 fps, 24 fps for standard motion
movie films, and 30 fps for American TV.

7

Chapter 1: Behavioural Animation

One of the major difficulties in traditional animation is that a huge number of

eels have to be hand-drawn just to make a short animation. For a feature film lasting

over 160 minutes and containing of 250,000 eels, individual drawings would take 50 years

of labour if all were to be drawn by one person (Halas 1974).

1.1.2 Computer Animation

Computers have been used for some time as painting tools and for creating

geometrically shaped objects. Using computers to explore different techniques for

creating interesting visual effects, and to be able to animate them, are high on the

agenda for the potential purposes of scientific visualisation, commercial uses (e.g.

advertising), and entertainment (e.g. video games). There are some basic principles

that can be applied to animation in general and form a close link between traditional

animation and computer-based animation.

One of the pioneering works which describes the application of the basic

principles of traditional 2D hand-drawn animation to 3D computer animation was

written by Lasseter (1987). Lasseter argues that unfamiliarity with the fundamental

principles of traditional animation techniques in 3D computer environments will

produce bad animation, and that an understanding of the principles of traditional

animation is essential to producing good computer animation. Since 3D computer

animation uses 3D models instead of 2D drawings, few traditional animation techniques

can be directly applied, but some of the principles mean the same regardless of the

medium of animation; for example, motion is achieved by setting keyframes and having

the in-between frames generated from them.

Apart from the principles of traditional animation, computer animation also

inherits the basic principles of computer graphics (Foley et al. 1990, Newman & Sproull

1979, Vi nee 1992), in that objects are represented using fundamental entities such as

coordinates, transformations, modelling, rendering and textures.

The end results produced by computer animation are usually stored digitally

either on disks or magnetic tapes. To view an image, the appropriate software is

required and, most importantly, a monitor or a VDU (Visual Display Unit). As an

example, a 16 bit home PC may be able to display a palette of 512 colours at a resolution

of 320 x 200, whilst a 24 bit workstation may display any of a palette of 16.7 million

colours at a resolution of 1280 x 1024. The storage size of each digital image usually

depends on the resolution and the dimension of the actual image.

8

Chapter 1: Behavioural Animation

To preview a fully-rendered animation (with colours, shadows, lights etc.)

directly from the CPU (Centre Processing Unit), a sequence of images would need to be

pre-rendered. Depending of the size of the images and the speed of the CPU, the

playback is usually so slow that the viewer cannot get the real flow of the animation, with

the exception of a few specialist applications such as real flight simulators where super

computers are usually being used to render the animation on-the-fly. However, when

using a general animation system, the transference of rendered images onto film or

video is highly recommended in order to watch the animation playing back in real-time.

Computer animation methodologies can be characterised as belonging to one of

three categories: Keyframe Animation, Procedural Animation, and Dynamic Simulation.

1.1.3 Keyframe Animation

Keyframe computer animation is derived directly from traditional animation techniques

in which the animator constmcts what is to appear in each frame and thus explicitly

specifies the kinematics or motion of the system. The computer adds efficiency by

interpolating in-between frames from user supplied keyframes (O'Donnell & Olson

1981, Stern 1983). For display generators, early examples used the Evans and Sutherland

Picture System. This device contained special-purpose hardware which multiplied 4 x 4

matrices and transformed 3D co-ordinate data.

In more recent years, two such commercially successful keyframe animation

packages are the Alias WavefronP. and Microsoft's Softlmage'3 animation systems. These

kinds of system usually consist of three main parts: (1) a modeller for modelling objects,

(2) a visualisation interface for movement control and (3) a renderer for generating

frames for an animation. Modelling the behaviour of objects in such systems would

involve the direct manipulation of the objects by the animator via the visualisation tools

provided, and setting the keyframes explicitly. An algorithmic behaviour (for example a

flight-path defined by an equation) can be generated this way from these keyframes by

the application of computerised in-betweening.

2 Alias Wavefront, Wavefront Technologies, 530 East Montecito, Santa Barbara, CA 93101.

3 Microsoft Sofllmage, Microsoft Corporation, One Microsoft Way, Redmond, WA 98052-6399.

9

Chapter 1: Behavioural Animation

1.1.4 Procedural Animation

To achieve the degree of realism found in other areas of computer graphics, the motion

of objects can be simulated by the physical principles of kinematics/ dynamics that

govern their motion, for example objects which are subjected to external forces such as

wind and current flow. One way to do this is by scripting - writing procedures so that

the animation is determined by the interpretation of the script (i.e. a procedure that is

related to an object).

There are animation systems that incorporate this scripting ability. An example

of this type of system is CGAL 4. As the interpretation of scripts is relatively quick, it is

possible to generate previews of the animation (using simple line drawings of the

objects) very easily and an animation can be developed in a top-down manner (with

increasing detail). For this, the end user is required to have some programming

knowledge and the capability to handle the script as it becomes larger and more

complex.

Procedural graphics (Rogers 1989) are usually created using one of the many

algorithmic programming languages available today such as PASCAL, C, or C++.

Different programming languages have been designed to handle different tasks. Some

have been designed especially to handle animation and graphics, for example Reynolds'

ASAS (1982). Some organisations have attempted to set standards for computer

graphics libraries to be used in conjunction with the algorithmic programming

languages mentioned above, they include the International Standards Organization's

(ISO) Graphical Kernel System (GKS), and the American National Standards Institute's

(ANSI) Programmers' Hierarchical Interactive Graphics System (PHIGS).

Procedural methods do give animators a great deal of control over the

animation, allowing them to work very precisely, specifying where each object has to go

and what it should do next. These methods work in a way such that the next state of

each object is usually determined and amended with the incrementation of a

mathematical function on each pass through a program loop. The mechanism of the

function can be quite simple; it could have a linear entity (e.g. Y = X + 2), non-linear

4 CGAL (Computer Graphics Animation Language). Developed by Peter Comninos. Information
about CGAL can be obtained from Peter Comninos at the National Centre for Computer
Animation, Bournemouth University, U.K.

1 0

Chapter 1: Behavioural Animation

(e.g. Y = x2), or. more complex applied mathematics such as kinematic equations. They

rely on the computer's ability to determine the kinematics based on implicit instructions

rather than explicit positions.

Another class of procedural method is inverse kinematics, where the motion of

end links in a chain is specified by the animator, but the motion of interior links is

determined algorithmically (Badler et al. 1991, Girard 1986, Girard et al. 1985).

Although procedural methods have produced some of the best animation to

date, they often lack dynamic integrity especially when associated with realistic

movements under the influence of physical constraints such as gravity and external

forces such as the interaction with the ground plane. For them to interact in realistic

ways, these dynamic principles would need to be applied.

1.1.5 Dynamic Simulation

To capture the realistic appearance of a geometrical model, some degree of dynamic

motion control is needed. Dynamic motion control is derived from physical laws,

whereby the progress of the motion is controlled by the application of forces such as

gravity and friction.

An early example of Waters' (1987) initial facial animation technique, which

modelled the effects of muscle tensions over a region of skin, did not respond in a

physically realistic fashion to external forces because the model was purely geometrical

rather than physical. However, dynamic simulation has been incorporated in his latest

associated work (Lee et al. 1995), in which the algorithms devised automatically insert

contractile muscles at anatomically correct positions within a dynamic skin model and

root them in an estimated skull structure with a hinged jaw. They also synthesise

functional eyes, eyelids, teeth, and a neck fitted to the final model. This dynamic model

offers increased realism compared to the original geometrical model.

Miller (1988) focused on a method for modelling and animating legless figures

such as snakes and worms. Each segment of the creature is modelled as a cube of

masses with springs along each edge and across the diagonal of each face. For each

time interval, muscle contractions are simulated by animating the spring tensions - the

spring lengths and spring length velocities are used to compute the forces exerted on the

masses at the end of each spring. This takes into account the creature's response to

external forces, for example, forces exerted by the floor and gravitational forces.

1 1

Chapter 1: Behavioural Animation

General systems for dynamic simulation of linked figures, especially the

investigations in the field of legged animal movements similar to the human figures, have

been described in recent literature relating to robotics and biomechanics as well as

computer graphics. To help to lay the basis for controlling individual parts in the limb,

problems are addressed that are associated with modelling hierarchical limb kinematics

and dynamics (Bruderlin & Calvert 1989, McKenna & Zeltzer 1990, Phillips et al. 1990,

Raibert & Hodgins 1991), and in optimising motion in the presence of kinematics and

physically-based constraints (Cohen 1992, Ngo & Marks 1992, Ngo & Marks 1993, Witkin

& Kass 1988), satisfying the what constraints and optimising the how criteria: what it

should do: 'jump from here to there, clearing a hurdle in between", and how it should

be performed: "don't waste energy".

Another good example is an animated film called Animation Aerodynamics

(Wejchert & Haumann 1991), in which a method based on aerodynamics is used to

simulate and control the motion of flying leaves blowing in the wind. Since animation

has less stringent accuracy requirements, the authors argued that computational expense

can be avoided by dividing the system into two parts: a linear flow regime and an object

boundary regime. In the linear flow regime, instead of solving the flow numerically,

analytic solutions such as using vortices, sinks and uniform flows, are mixed linearly to

create a more complex scenario. As for the object boundary regime, each leaf is built

out of masses and springs with slight variations in geometry, mass distribution and

stiffness. Finally, the total force acting on a mass is made up of contributions from

gravity, spring stretching and the external fluid force - linear flow.

Although it serves its purpose in producing physically accurate models, it is

computationally expensive, because most dynamic simulations involve the solving of

differential equations. When dealing with behavioural animation, dynamic simulation

lacks that ability to represent intentional behaviour naturally because the way data or

information is represented and stored. By separating out some of the behavioural

properties from the physical models, and providing a communication tool between the

animator and the system, it is hoped that these consequences could be minimised.

1 2

Chapter 1: Behavioural Animation

1.2 Behavioural Animation

In this section, there will be a brief introduction of what "behaviourism" is and its

relationship with today's animation systems. What is meant in this thesis by "behavioural

animation" and "agents" will also be described.

1.2.1 Behaviourism

During the 1950s there was a philosophical movement associated with the psychologist

B.F. Skinner known as "behaviourism" (Skinner 1974). In the extreme form of

behaviourism, behaviourists argued that human behaviour must ultimately be explained

in terms of physical, observable properties. They based their approach on observing

behaviour and, in particular, they sought to determine the relationships between the

observable stimuli received by a subject and the observable response that the subject

exhibits as a result. A true science of behaviour, it was maintained, would treat a human

being as a black box and merely describe the rules that relate its input to its output.

This must be achieved without recourse to internal entities or states. Behaviourists

would generally deny the significance of internal states and some extreme behaviourists

argue that all mentalistic terms are theoretically unnecessary as they can be redefined in

terms of observable, physically describable behaviour.

Modelling and animation software that only allows the representation and

manipulation of physically observable features of objects is based upon similar

assumptions. Within such software there is no mechanism for representing the inner

states of objects and all behaviour has to be expressed and manipulated in terms of

physically describable features.

There are many examples of contemporary modelling software that are living

monuments to this behaviourist philosophy. Their objects only have physical properties

and their transformations only concern changes to the physical attributes of objects.

They are also, it has to be admitted, very successful for many purposes, especially where

no agents (see § 1.3) are involved.

Skinner's behaviourism came under attack from Noam Chomsky. Chomsky

argued (Chomsky 1959) very convincingly that there are many forms of human activity,

language being his central case, which simply cannot be explained in behaviourist terms.

He later added to his argument (Chomsky 1965) that there are complex internal and

non-observable mechanisms at work and a failure to recognise them will lead to

1 3

Chapter 1: Behavioural Animation

ineffective explanation. Chomsky himself concentrated upon the structure of language,

while others in psychology became interested in cognitive structures.

Around the same period, a program called the Advice Taker was proposed by

John McCarthy (1959). Its intention was to show common sense and improvable

behaviour by using declarative and imperative sentences as the representation, and

immediate deduction as the reasoning mechanism. The property of this "programmed­

knowledge" was expected to have much in common with what makes us describe certain

humans as having common sense. McCarthy explains:

'A program has common sense if it automatically deduces for itself a sufficiently

wide class of immediate consequences of anything it is told and what it already

knows.'

Cognitive psychology, in general, is based upon the model of the human mind

as a processor of information (with a memory). Explanations of the behaviour of

human beings are not restricted to descriptions of input and output data, but can also

refer to the internal representation, storage and processing of that data - different

outcomes can arise from different situations for example. Cognitive science and the

more applied field of Artificial Intelligence seek to complement cognitive psychology by

building computational models of sufficient richness for representing such behaviour.

Early cognitive science concerned itself primarily with psychological models of

individuals, but later the relationship of the individual to the environment, particularly

where that environment contained other individuals, became an important topic of

study.

In the early 1980s, a mathematical approach using natural language semantics

called situation theory (Barwise & Perry 1983) was introduced as an attempt to provide a

mathematical foundation for situation semantics, and since then, situation theory has

developed into a general framework for the study of information within a multi-agent

environment (Devlin 1991, Devlin 1992). Here is Devlin's definition of situation theory:

'In the situation-theoretic treatment of cognition, information-processing, and

communication, recognition is made of the partiality of information due to the

finite, situated nature of the agent (human, animal, or machine) with limited

cognitive resources. Any real agent must employ necessarily limited information

extracted from the environment in order to reason and communicate

effectively.'

1 4

Chapter 1: Behavioural Animation

The conclusion of this philosophical discussion is that: if we are to model

worlds in which there are multiple interacting agents, then we will need to enhance our

software environments to represent internal states and mechanisms. Furthermore, we

will need reasoning mechanism in our software so that "in-betweening" can be done in a

way compatible with the richness of the environment. One promising area to look for

such mechanisms is cognitive science, or more particularly Artificial Intelligence and

rule-based systems. These may provide us with more appropriate tools to represent

agents that have imperfect knowledge of the world around them and employ deliberate

strategies to decide what action to take next.

1.2.2 Animating Behaviour

In the world as described by physics, there are certain constraints upon objects, for

example, two solid objects cannot occupy the same point in space, and (on earth) an

unsupported object will fall due to the effect of gravity. Modelling and animation

systems can be envisaged that check such constraints and make objects bounce off each

other if they collide and fall to the ground if they lack support. In such systems, a

physical model exists in which it is easy to say that all physical objects display a certain

kind of behaviour.

Behavioural animation is a means for automatic motion control in which

animated objects in a multi-agent environment are capable of sensing their environment

and determining their motion (or other change) within it according to certain rules or

constraints.

Some of the earliest work on exploring behavioural animation can be seen in the

classic computer animation sequence 'Eurythmy' (Amkraut et al. 1985), in which force

fields were employed to influence the behaviour of a flock of flying birds. During their

flight, the birds' wings moved in a life-like fashion, while the birds simultaneously

avoided contact with one another. Similar behaviour has also been investigated by Craig

Reynolds (1987). In this work, the simulated flock is an elaboration of a particle system

in which each particle acts according to an identical algorithm. Each simulated bird is

considered as a particle that behaves according to the same behavioural rules as every

other. This approach assumes that the behaviour of the flock is simply the result of the

interaction between the behaviour of the individual birds. The motion is created by

evaluation of the positions and velocities of all birds in the flock. Their next position is

1 5

Chapter 1: Behavioural Animation

calculated according to three simple rules: avoid collision, match the velocity of

neighbouring birds and keep toward the centre of the flock.

Behavioural animation has gained much popularity especially in modelling

living organisms. Artificial life (Langton 1989) is an approach to synthesising lifelike

behaviours within computers. This approach can be seen in Artificial Fishes (Tu &

Terzopoulos 1994), which is presented as a virtual marine world inhabited by a variety of

fishes acting as autonomous agents. The authors pursue a procedural approach which

takes into account the superficial appearance and the basic physics of the creature,

including its environment, its means of locomotion, its perception of its world, and its

behaviour.

Other means of controlling behavioural animation is proposed by Wilhelms &

Skinner (1990) based upon the idea of a connectionist architecture (Feldman 1985).

Using the system, the user designs a network of four symbolic components: (1) sensors -

which detect designated stimuli; (2) effectors- which produce a change of state such as

motion; (3) nodes- which map input signals to output signals; and (4) connections -

which pass information through the networks from sensors to nodes and on to effectors.

Animations of a wide range of similar motions can be generated quite quickly, but the

main problem lies in the understanding of the design and the representation of the

network.

Behaviour has also been simulated by using the combination of kinematic and

dynamic specifications in human articulated figures (Isaacs & Cohen 1987, Phillips &

Badler 1991). Using such approaches animators can plan each part of the animation in

the way they perceive most suitable for the task. These behaviour constraints model

certain behavioural tendencies which capture some of the characteristics of human-like

movement, and give greater control over such elements as the balance and stability.

Successful experimental results were presented which demonstrated the ability to

provide control without disrupting the dynamic integrity of the resulting motion.

Admittedly, procedural approaches have produced convincing animations to

date but, for the animators, there is the problem of adaptation. To adapt the required

behaviour, the animator is required to program, working precisely with only the physical

properties of the subjects. An important issue in animating behaviour is the means by

which the user is able to concentrate on controlling the animation and the ease with

which the user can alter both the general nature and specific details of the motion. One

1 6

Chapter 1: Behavioural Animation

possible way to approach this is to construct an animation production environment

which consists of two separate components: one for handling the physical attributes, and

the other for the behavioural.

The idea is to take a conventional physically-based (as mentioned in § 1.1)

animation technique and enhance it with a rule-based system. The physically-based part

of the system is used for governing the physical properties of the animation such as

shapes, coordinates, and colours; while the rule-based part of the system is used for

controlling the behavioural properties such as planning and intentions within the

animation. As in any rule-based system, rules are used to give the system instructions of

how to behave. The expression of these rules can be formalised so that it is accessible

(i.e. easily read and understood) by both the system and, most importantly, the user

operating the system - one of the main drawbacks of any procedural approach.

The kinds of problem where this type of system might be of considerable

advantage would be in environments where one or more agents are involved, for

example in the simulation of flocking birds and artificial life forms.

1.3 A Rule-based Approach to Animating Behaviour

The key parameters for creating artificial life in virtual worlds have been identified in

Thalmann and Thalmann (1994). The Thalmanns note that there has been very little

visual representation of living organisms in such worlds and only behaviourally very

simply creatures in them. Already the Thalmanns have successfully incorporated into

the animation of photo-realistic human models, some purposeful human behaviour

using Schank's scripts (1980) which are cognitive, behavioural descriptions. Schank's

scripts are effective for stereotypical scenes but are limited in modelling more open

scenarios where there may be a need for planning or, more genemlly, for a form of

situated action (Such man 1987).

There are some very practical reasons why one might wish to supplement

approaches based solely upon the physical attributes of objects by incorporating some

ideas from cognitive science. Particularly within domains where planning and

intentional action are involved, capturing realistic behaviour requires both complexity

and irregularity which cannot easily be captured algorithmically. Even if they can be

achieved for short sequences, there is a tendency towards repetition if the algorithms are

1 7

Chapter 1: Behavioural Animation

not made more complex as the length of the animation increases, and this can be very

time consuming and expensive. Another advantage of using ideas from cognitive science

is the potential transparency of explanations of animated behaviour through accessibility

to the chains of reasoning employed by the system.

Rule-based (or expert) systems are a branch of Artificial Intelligence (see

Appendix A) which has played a major part in today's cognitive science. The following

definition from Barr et al. (1989) is representative of opinion in the field of AI:

'Artificial Intelligence (AI) is the part of computer science concerned with

designing intelligent computer systems, that is, systems that exhibit the

characteristics we associate with intelligence m human behaviour

understanding language, learning, reasoning, solving problems, and so on.'

In other words, AI is concerned with programming computers to perform tasks

that are presently done better by humans, because they involve such higher mental

processes as perceptual learning, memory organisation and judgmental reasoning.

Thus, a program that performs complicated statistical calculations would not be seen as

performing an Artificial Intelligence activity, while a program that designs experiments

to test hypotheses would.

Experiments based on tl1e idea of AI in computer animation which are relevant

to multi-agent environments can be seen in systems that use Actor (Pugh 1984, Reynolds

1982) and similar object-oriented systems (Agha 1986, Hewitt & Atkinson 1977,

Repenning 1993, Rettig et al. 1989, Stefik & Bobrow 1984). These systems take the view

that a single entity, an Actor (or agent), be used to represent both data and procedures.

An agent is a small processor consisting of a local knowledge base, and defined

solely by its behaviours (in a script form). Its behaviour is characterised by its response

to receiving a message. Communication between agents is achieved through the single

metaphor of message passing. If appropriate, the agent can be provided with operations

which allow other agents to interrogate and (possibly) update this knowledge base.

More about agents can be found in the current volumes (1 & 2) of the proceedings

'Intelligent Agents'S (Wooldridge & Jennings 1995, Wooldridge et. al. 1996).

5 'Intelligent Agents' are the proceedings published in conjunction with the International
Workshop ATAL (Agent Theories, Architectures, and Languages). The aim of the workshop is
to bring together the issues surrounding the design and implementation of agents, in

1 8

Chapter 1: Behavioural Animation

Expert systems are also called 'knowledge-based' or 'rule-based' because their

performance depends critically on the use of facts and rules in a similar form to that

used by experts. The systems incorporate a body of knowledge from humans who are

expert in the subject area concerned, and whose skills in the area are formalised into a

database usually in the form of rules. The domain of the subject area is necessarily

limited, but within that area the expert system can offer intelligent advice and make

intelligent decisions based on the information available in its database.

As in scientific simulation, knowledge-based programming uses digital

computers to construct models of a system and to execute these models in order to

predict or obtain information. These two methods differ in the way the system is

modelled and in how the model is used to make predictions. The behaviour of a system

in a simulation model is usually represented by mathematical equations or probability

distributions, and in a knowledge-based program by rules, which state which actions will

be performed under which conditions. Simulators predict the future state of a system by

propagating the values of system variables through time, whereas knowledge-based

programs infer facts about the state of the system or show how to achieve a predefined

state. Simulators generally function as black boxes that take numerical data as input and

produce numerical data as output, whereas knowledge-based programs are often able to

explain the reasoning process that led to a given result.

One area of human animation where expert systems have been used is in the

modelling of human/robot synthesised hand grasping (Bekey et al. 1991, Rijpkema &

Girard 1991). Observing that people adopt different grasping strategies depending upon

the shape of the object and the angle of approach, an expert system approach was used

to determine the appropriate strategy (e.g. small objects are picked with the thumb and

the index finger; mugs are picked by the handle) within a hybrid system that also

contained algorithmic approaches for the finer movements such as making contact. The

basic underlying steps in the program are: the classic shape of the target object is first

identified (e.g. block, sphere, cone, etc.); a grasping strategy associated with this is

derived from the knowledge-base of class specific, pararneterised techniques; the final

grasping motion is then adjusted to adapt to the object's deviation from the classic

shape.

particularly the link between agent theories and the realisation or using software architectures or
languages. Internet URL http://www. doe. mmu.ac. uk/STAFF/mike/ ata/95./itm/

1 9

Chapter 1: Behavioural Animation

In the above system, the expert system component was designed for the

particular task of grasping and the animator who wishes to modify the rules must

become knowledgeable about expert systems - i.e. has a good idea of how expert systems

work and how the rules are represented. The opposite approach is adopted by KidSim

(Canfield et al. 1994), a rule-based environment that aims to put the writing of rules into

the hands of the end users - in this case children. KidSim is a production environment

for building animations by declaring a set of agents and graphically describing a set of

rules by showing examples (Cypher 1993, Repenning 1993), i.e. by direct manipulation

of visual objects (Hutchins et al. 1986, Shneiderrnan 1989, Strauss 1992). The rules are

not displayed in symbolic form but rather as transformations of the graphical field. The

authors claim that KidSim is the model for more adult simulation environments, but

while the possibility of defining rules through user-friendly interfaces is to be welcomed,

its current limitations on knowledge representation and its inability to describe complex

interactions will need to be overcome before more sophisticated domains can be

simulated. Nevertheless, KidSim does provide an interesting model of user control

within a rule-based approach to modelling and animation.

In a rule-based environment, realistic behaviour of the agents can be achieved by

strategic planning or multi-level planning. This kind of planning involves reasoning

about the effects of actions and the sequencing of available actions to achieve a given

cumulative effect. This is an important aspect of behavioural modelling in some

domains, and some system such as this could be seen being included in a hybrid system

(Badler et al. 1994) with a more traditional graphical approach such as Jack6, where

animators can use expert knowledge about the behaviour of agents in order to plan

foreground animations.

1.4 A Working Environment for Animators

In this section, we will look at how a working environment for animator can be built for

the representation of behavioural knowledge. The preliminary design of the proposed

6 Jack is a software package that provides a 30 interactive environment for controlling articulate
figures. It features a detailed human model and includes realistic behavioural controls,
anthropometric scaling, task animation and evaluation systems, view analysis, automatic reach
and grasp, collision detection and avoidance. Information on Jack can be obtained on the
Internet http://www. cis. upenn.edu/-hms/jack. html

2 0

Chapter 1: Behavioural Animation

ESCAPE (Expert Systems in Computer Animation Production Environments) system will

be described.

There is not one particular method of animation that is preferable in all

situations, and in an ideal multi-agent animation environment where behaviour is of

major concern, it should be possible to influence the resulting animation in at least

three ways:

1. by directly manipulating agents within specific animation frames;

2. by specifying their properties and locations formally in the database; and

3. by representing their behaviour using a rule-based approach.

The proposed ESACPE environment (Beardon & Ye 1995, Ye 1995) has many

traditional features and one new one. Individual objects can be defined in exactly the

same way as in existing 3D modelling systems. In order to create individual frames of an

animation, objects may be manipulated manually through a traditional graphical

interface. To these traditional methods an additional facility is added by means of

which objects may have non-physical attributes. The state of each object is derived by an

inference engine from behavioural rules that are entered separately by the animator.

These rules may be qualified to refer to only particular classes of object, or to objects

only under certain conditions, and therefore require that objects be classified into

various types and have properties or states associated with them. The outcome of

applying a rule might be to change an object's properties or states, or to change its

location.

A system with the enhancement described above will. enable particular aspects of

the behaviour of tl1e agents in the domain being modelled to be represented as rules.

This extension will not just prevent physical impossibilities such as two objects being at

the same point at the same time, but also enable us to express domain knowledge - the

sort of knowledge that pertains to the content of the animation. This rule-based part of

the system can also be left to run unattended and will, if properly set up, automatically

generate an animation. However, the expert system component is not there to replace

skilled animators, but rather to assist them. The animator has control over the rules and

can experiment with them, observing their effect on the animation. The animator can

also interrupt the generated animation and use one of the otl1er modes of manual

manipulation to override what it has produced.

2 1

Chapter 1: Behavioural Animation

A major design objective here is to find a representational form for rules that

can be used by the inference engine effectively, and can lead to multiple user interfaces.

One way to construct a rule is to use the "if-then" structure, for example, an ideal

representation of a rule would be:

if a creature is near a rock, then it will avoid colliding into it.

Prolog is natural choice for the expression of such rules because there are

known implementations of expert systems in the language (see Appendix B). In

addition, what makes Prolog (particularly MacProlog7) attractive here is the built-in

grammar rule notation DCG (definite clause grammar) which can be used to provide a

common structure for the representation of textual and graphical interfaces.

Implementing a grammar in a programming language normally means writing a

parsingB program for the grammar. A grammar written in DCG is already a parsing

program for this grammar. This is especially useful in designing rules with a grammar

closer to 'natural language' (§ 2.4).

Also in MacProlog, the HCI design can be built quite easily by accessing the

standard Macintosh Graphical Library Tools, for the creation of windows, dialog boxes,

and graphical representations. There are three main areas for where good HCI design

could play an important part:

1. in the main animation window - how agents are represented and for the direct

manipulation of the agents;

2. in the presentation of agents' symbolic data; and

3. in the mle interface - so that the user can access the mlebase easily.

It is hoped that with these enhancement, animators will be able to express their

behavioural knowledge of their agents in English-like mles, and that the rule-based

system is able to handle reasonable amount of complexity and generate explanations

related to the reasoning employed by it.

7 LPA MacProlog supports the industrial standard "Edinburgh Syntax".
MacProlog can be obtained from Logic Programming Associates Ltd.,
Victoria Patriotic Building, Trinity Road, London SW18 3SX, England.

Information on LPA
Studio 4, The Royal

8 Parsing is a process that, given a sentence, effectively disassembles the sentence into its
constiiUents. The constituents then can be executed accordingly.

2 2

Chapter 1: Behavioural Animation

For development and from the developers' point of view, the emphasis on rule­

based programming implies use of a language such as Prolog; but for performance and

if it were to incorporated into a larger production environment, more efficient languages

such as Ct+ (Hu 1989) and LISP9 (Alien 1978, Winston & Horn 1984) would be

considered as potential languages for creating expert systems.

1.5 Structure of the Thesis

Throughout this chapter various computer animation techniques have been investigated

with respect to some of the problems encountered in behavioural animation. It is

envisaged that a conventional computer animation system could be enhanced with an

expert system processor, so that the behavioural part of the animation can be handled

separately. This section describes briefly the methodology that is needed to integrate the

implementation of such a system into a piece of research, and how the subsequent

chapters will elucidate the contribution to knowledge.

From the development point of view, the expected benefits from rule-based

systems are:

• transparency- know what the system is doing;

• incrementality- add and remove information independently; and

• presentability- symbolic interpretation of the rules.

A system will be designed and implemented that we fully expect to have the

following benefits from the user's point of view:

• the system is able to generate purposeful animations;

• the rules that describe the behaviour of the agents are easy to write;

• user requires minimum technical skills to use the system.

Through the subsequent chapters, we hope to discover whether the expected

benefits of rule-based systems could be realised, and what issues might arise in the

implementation that might influence an animator's ability to use the system effectively.

9 LISP (LISt Processing) is a symbolic manipulation language, invented in 1956 by John McCarthy.

2 3

Chapter 1: Behavioural Animation

Chapter 2 will concentrate on the design and the implementation of the system.

Chapter 3 & 4 will validate the system by modelling three different worlds with three

different types of problem. Here is a description of the significant features of the three

worlds:

1. World.Jelly. An underwater scene consists of different types of object

interacting with each other. This example will explore two different

approaches: goal-oriented and non goal-oriented.

2. World.Traffic. A scene of car traffic at a T:iunction. This emphasises the

spatial significance of different sections of the road and the inferences of

one car driver about other drivers.

3. World.Bird. A simulation of a flock of birds in flight that have to navigate

around a number of fixed obstacles. This investigates issues such as the role

of a 'leader', flock centering and collision avoidance.

2 4

I
I

I•

r
' ,.

'· '
'•

T

C ha p t er 2 : The Soft wa re E n vi r on m en t

"Design is intuitive. You have to give people something to
look at. It doesn't matter what it is, as long as it isn't boring ...
Although everything has been done before, George (Lucas)

somehow finds a way to do it better, differently."

Joejohnson in (Smith 1985)

Chapter Overview

Traditional animation and simulation software usually deals with the physical properties

of objects whereas we often have knowledge of how things behave in terms of their

intentions or inner states. Traditionally, object behaviour is achieved in computer

animation by the application of mathematical algorithms (e.g. procedural equations).

or is dependent on the animator explicitly indicating movement from one location to

another (e.g. keyframing). These behaviours can be expressed in terms of rules which

are used to constrain the location and properties of an object over time. One way in

which this might be done is to combine a rule-based system processor with an

animation environment.

This thesis describes a rule-based system called ESCAPE (Expert Systems in

Computer Animation Production Environments). In this chapter the software

architecture of the environment will be discussed. The areas of focus are: the data

structures (objects, language and rules), the user interfaces (animation window, tools

and rules interface), the database (domains and how information is stored), the

inference engine (expert system processor) and input/output formats.

26

C ha p t er 2 : The Software E n vir on m e n t

2.1 So ftware Architecture

The ESCAPE system allows for traditional animation through the direct manipulation of

objects on the screen and the recording of keyframes by means of an interactive control

panel. In addition there is the new facili ty for defining behavioural rules of objects or

classes of objects. The animator can thus use the system to automatically produce an

initial animation. This animation can be further refined either by the direct

manipulation of objects or by altering the set of rules and re-nmning the system.

With such an environment it is necessary to distinguish three different functions

in the animation production. These functions or levels of users are reflected in the

architecture of the software environment, as shown in Figure 2-1:

I I

Animators I Domain Experts I Software Experts
I I

USER DOMAIN I
I EXPERT SYSTEM

INTERFACE KNOWLEDGE I
I
I

• Rules Editor RULE BASE I
MENUS

•I/O
: Standard ____..

INFERENCE

r-~
• Settings Domain Specific ENGINE

I

IMI 1 ..
• Windows Domain

GRAPHICS ~-)loo Database
, ,. ••• • Tools

I : I
I I

I I

Figure 2-1 An Overview of the Software Architecture

The three levels of users shown in Figure 2-1 can be distinguished during the

development process in terms of their respective roles:

1. The software experts who develop the core expert system component, the part that is

common to all application domains/ worlds. It consists of an inference engine to

interpret the rules against a database and some very low-level rules that provide other

users with a useful set of standard predicates and operators.

2 7

C ha p 1 er 2 : The So f 1 ware En vi r on m en t

2. The domain experts who set up a particular world by modelling the different types

of object, specifying attributes they should have and their default values, and writing

the main behavioural rules they follow. The domain experts may also specify some

lower level domain specific predicates and operators directly by accessing the

Domain Database and Rulebase, thus by-passing the User Interface level. In this

respect, they need to have some knowledge of Prolog programming.

3. The animators, the end users, whose task it is to produce particular animations, are

able to update the database by direct manipulation, update the rulebase through a

special rule interface called the Rule Editor, and to invoke the inference engine.

They use the User Interfaces provided, and knowledge of any kind of programming

is not essential.

Once familiarisation with the system is reached, it is possible and relatively easy

for an animator to become a domain expert. However, some advanced knowledge of

expert systems would be needed to become a software expert.

At the heart of the system lays an inference engine, such as one may find in ·any

standard expert system (see Appendix A). When invoked it will examine the rulebase

and attempt to match the conditions and constraints of each rule against the existing

domain database, and store any relevant new facts in the working memory. For each

iteration, when successful, it will produce a set of possible solutions to be resolved by

various methods (discussed in § 3.5) to only one action which will then be carried out.

The graphical windows will subsequently be updated so the outcome of the actions can

be visualised by the animator. All these parts are explained in this chapter.

The rulebase is divided further into two parts: Domain Specific, and Standard.

Care has been taken in the design to separate the two and to determine which rules are

to be domain specific, and which will remain standard in the expert system as more

general-purpose rules capable of handling a range of domains. The rulebase is

discussed in § 2.5.

Much of the research described here concentrates on the design of the User

Interfaces, the Language Parser and the Rules Interface. The aim being to provide ease

of use for the system: there are tools for animating and manipulating objects (§ 2.2.1),

and the Rule Editor (§ 2.5.3) provides an intuitive interface, allowing the user to create

and edit rules easily.

2 8

C ha p t er 2 : The Software En vir o n m en t

As mentioned in the previous chapter, MacProlog has been chosen for the

implementation of the system. While MacProlog's built-in graphical output will suffice

for prototyping it is not suitable for a finished product due to its poor graphical output.

Since a full frame-by-frame description of each object's precise locations and properties

can be obtained from the system, a simple visualisation or preview facility can provide _

the animator some sense of what the final animation will look like. When considered

satisfactory, the results can be output using the appropriate file filters so that they can be

read into a commercially available 3D modelling/rendering software package.

A prototype system has been built at the University of Brighton using LPA

MacProlog32 running on Apple Macintosh 68030 and 68040 series computers. The

system described here models objects in a two-dimensional world as supposed to 3D

due to the graphical limitation of MacProlog. The 2D prototype is sufficient to explore

the basic architecture of the system without paying particular attention to the quality of

the graphical output. To demonstrate its potential it is possible to create a

corresponding three-dimensional world in Swivel 3D™ and for the expert system to

generate a rendered 3D animation as a QuickPICS file.

2.2 Data Structures

Data structures serve to implement and organise complex data sets. These sets are

classified into types according to the way they are used. Therefore, depending on the

point of view, a data set is characterised by its type (for the user) or by its structure (for

the implementer).

The data structures of the ESCAPE system consists of: objects (agents), rule

structures, object properties, and user-defined predicates (in standard Prolog code).

In this section, the data structures of objects will first be explained, then the

expression of rules and, lastly, how they are collected and bound together to form the

Domain database.

2.2.1 Objects&: Agents

An object is looked upon as an agent (as mentioned in § 1.5). An agent has behaviour

and intentions, which are defined by its properties and modified over time by rules

(§ 2.4).

2 9

C ha p t er 2: T h e Software En vi r on m en t

There are two layers of obj ect properties: i) types that holds information such as

class; and ii) instances, that holds personal information such as the object's name:

i) types: the part of the object which inherits the properties of objects with the

same class/ type. The following is an example of the default settings for

obj ects of type 'PRAWN':

mass:

size:

visibiJi ty:

maxSpeed:

properties:

picture:

defaults mass('PRAWN', 1).

defaults size('PRAWN', 2).

defaults visibility('PRAWN', 100).

defaults maxSpeed('PRAWN', 30).

defaults property('PRAWN', [alive]).

defaults picture('PRAWN', resource(210)).

Each default property consists of an attribute name such as mass, size

and so on, and will have a corresponding value. For example, the

property defaults mass('PRAWN', 1) is a formalisation of "the default

attribute mass, of an object type 'PRAWN' has a value of 1."

The attribute picture holds the information for the picture

representation of a particular object type. For example this is for a

'PRAWN' (Figure 2-2) :

Figure 2-2 Picture Representation of a 'PRAWN'

This picture representation will be shared by all objects of the type

'PRAWN'. This particular one is stored as a resource (created by

applications such as ResEdit - Resource Editor), in PICT format with

resource ID=210. During the animation process when a 'PRAWN'

picture is required by the system, it will be refetTed to by the ID and

then copied to the animation window to be updated at the appropriate

places.

In an animation environment, it is often desired to animate one or more

different types of object at the same time. For example in an underwater

3 0

C ha p t er 2 : The Software En vi r on men t

scene, where there are three types of object: jellyfish, prawns and rocks.

Introducing and setting up the properties for 10 individual prawns can

prove to be a tedious and laborious task. Since objects of the same type

usually possess similar properties, such as the ones listed above, a set of

default properties for each type of objects can be built, so each object

belonging to the same type or class inherits those default properties.

These properties however, will be superseded by the values of any

attributes that are repeated in instances.

ii) instances: these are the special properties of an individual object, which are

referred to as facts here. An object will typically have a specific name

(e.g. prawnl), be of a specific type (e.g. 'PRAWN'), and have a specific

location. For example:

name:

location:

fact obj_type(prawnl, 'PRAWN'),

fact location(prawnl, pt(78, 28)).

By being a 'PRAWN', prawnl inherits all the default settings such as

those mentioned in i), but the values of the attributes may be overridden

by facts. Further more, new properties may be applied to prawnl by

specifYing additional information this way, for example:

mass:

properties:

fact mass(prawnl, 2).

fact property(prawnl, [alive, hungry]).

Note that for prawnl, the value of the attribute mass is 2 (heavier than

that of the default 'PRAWN' which is l) and an extra property hungry

(an addition to the default alive). These additional properties are the

replacement values (i.e. will supersede the default values) while other

default properties such as visibility and maxSpeed etc., will remain

unchanged.

For both the animator and the domain expert, it is important tl1at these two

layers in tl1e representation of objects are clearly understood, especially when it comes

to designing a new domain, which will be discussed later.

3 1

C h a p t e r 2 : T h e S o f t wa r e E n v i r o n m e n t

2.2.2 Expression of Rules

In the ESCAPE system, a formal language has been developed for the expression of

rules. The language interpre ter and the grammar of the rules is defined using a Definite

Clause Grammar (DCG) (Bratko 1990, Clocksin & Mellish 1984, Gal et al. 1991, Marcus

1986).

The rules are expressed in the "if-then" format. Since the standard DCG

implementation requires Prolog lists for processing, a phrase is presented in the form of

a Pro log list. A Prolog list is confined by square brackets ([]) , and each item (word in

this case) is separated by a comma (,) . These Prolog lists can be processed by the DCG

implementation straightaway without the need for further manipulation. Here are two

examples of the rules written using this format:

rulel : if [objectl, is_nearby, object2]
then [objectl, meanders].

% one condition
% one action

rule2: if [objectl, has_type, PRAWN, % two conditions
and, object2, is_nearby, objectl]

then [object2, plans_getaway_from, object2, % two actions
and, undo, object1 , is_hungry] .

The language is composed of:

• keywords (e.g. :, if, then, and), % closed set

• variable names (e.g. objectl , object2), % enumerated sets

• object names (e.g. jelly I , prawn2), % closed for particular domain

• properties (e.g. PRAWN, is_hungry), % closed for particular domain

• predicates (e.g. has_type, is_nearby), % closed for particular domain

• operators (e.g. plans_encounter_to, undo) , % closed for particular domain

• 'generated facts ' (e.g. is_being_pursued_by) . % open for particular domain

The 'generated facts' are not a new type, they are predicates that are not pre­

defined but are generated by rules. They are stored in the working memory temporarily

and are used to support future testing of the conditions of other rules. For example,

is_being_pursued_by can be generated as a new fact by a rule such as rule3:

3 2

C ha p t er 2: The Software E n vi r on m en t

rule3: if [objectl, has_type, PRAWN, % conditions
and, object2, has_type, JELLYFISH,
and, objectl, is_nearby, object2]

then [objectl, is_being_pursued_by, object2]. % action

If the above conditions are met in the database, and object! and object2 are

instantiated successfully, then the action would generate a new fact (number is

incremental) and insert it into the WM, for example:

newfact(10) : is_being_pursued(prawnl, jellyl).

This 'generated fact' will be used in the subsequent testing of the rulebase for

other rules. It can be explicitly deleted by another rule using the operator undo

(§ 2.4.2), or it will be removed automatically at the end of each animation run, as it will

have no purposeful meaning in a different run.

Some commonly used system predicates and operators such as has_type,

is_nearby and plans_encounter_to are made available within the inference engine, while

other special tasks which are more domain-specific can be defined by the domain

expert. These will be covered in the following sub-sections.

The DCG language interpreter also allows for a degree of reformatting to take

place so it is ideally suited to build more English-like "front-ends" that allow users to

enter rules more naturally, while syntax checking them and converting them to a

preferred format for internal operation.

Allowing unrestricted natural language input is currently not feasible. A more

formal language has been developed and adopted within which mles are expressed to

the system as follows:

if [objectl, is_nearby, object2, and, object2, is_static] then [object!, meanders].

In an ideal version of the system users would be able to express t.heir ntles using

an interface in natural language as:

if object] is nearby an object2 which IS static, thm object] can meander.

3 3

C h a p t e r 2: The Software En vi r on m e n t

It requires that new keywords such as 'is', 'a', 'an' , 'the' and 'can ' be

implemented, and that the language parser be modified so that the meanings of these

new keywords are handled properly (see Appendix B.3 for what is involved) .

Looking to the future, it is possible that a more sophisticated language for rules

may be developed and in this case any new grammar written in DCG could be

incorporated without affecting other parts of the system (except the Rules Interface

dialogue box as it will have to be redesigned).

However, the current implementation of the grammar which involves

considerable use of arguments to check context-sensitive features and is able to extract

useful data structures, is sufficient for the purpose of this project. Since this sub-sec tion

only deals with the expression and the style of rules writing, § 2.4 Language Processing of

Grammar Rules gives a more comprehensive view on how the lan guage processing is

conducted.

2.2.3 Domain Database

A Domain file (Figure 2-3) consists of the descriptions of the database and the objects

within it From within the general system environment, differen t domains can be

opened o ne at a time.

A Domain File

[] D
defaults predicates

D D
foct s rules

Figure 2-3 A Domain File

A Domain file is made up of four sub-files: defaults, facts, rules, predicates

(order is insignificant). The reason for dividing these into different sub-fi les is because

some data are usually more stable and seldom chan ge (defaults and predicates), whilst

o the rs like Rules and Facts are inclined to be modified and updated constantly by the

3 4

Chapter 2: Th e Software Environment

system or the operator. The following information or databases are vital for the system

to run:

defaults:

facts:

contains resources for the graphics representations and default properties of

objects, as described in § 2.2.1:

%% Default database graphics representations
defaults picture('JELLYFISH', resource(200)).
defaults picture('PRAWN', resource(210)).

%% Default database for Object properties
defaults types(['JELLYFISH', 'PRAWN']).

defaults name('JELLYFISH', jelly).
defaults mass('JELLYFISH', 5).
defaults size('JELLYFISH', 16).
defaults vis('JELLYFISH', 150).
defaults maxSpeed('JELLYFISH', 10).
defaults property('JELLYFISH', [alive]).

defaults name('PRAWN', prawn).
defaults mass('PRAWN', 1).
defaults size('PRAWN', 3).
defaults vis('PRAWN', 50).
defaults maxSpeed('PRAWN', 15).
defaults property('PRAWN', [alive]).

Facts can be added when a problem is set up, or automatically generated by

the inference engine, some as described in § 2.2.1:

• instances of a type: obj_type (<object>, <type>)

fact obj_type(jelly1, 'JELLYFISH').

• attributes of a type: property(<object>, <property list>)

fact property(jellyl, [alive, hungry]).

• location of an object: locn (<object>, <time>, <point>)

fact location(jelly1, pt(65, 49)).

3 5

rules:

C h a p t e r 2 : T h e S o f t wa r e E n v i r o n m e n t

fact obj_type(jellyl, 'JELLYFISH').
fact property(jellyl, [alive]).
fact location(jelly!, pt(65, 49)) .

fact obj_type(prawnl, 'PRAWN').
fact property(prawnl, [alive]).
fact location(prawn1, pt(134, 96)).

fact obj_type(prawn2, 'PRAWN') .
fact property(prawn2, [alive]).
fact location(prawn2, pt(100, 126)).

fact obj_type(rockl , 'ROCK').
fact property(rockl, [static]).
fact location(rockl, pt(147, 173)).

contains domain specific Rules fo r the domain, here are two mle examples:

%% When an object is near a static o bjec t, then meander
rulel :
if [object1, is_nearby, object2]
then [objectl, meanders].

%% When an object is_caught_by another object
rule2:
if [object!, is_caught_by, object2]
then [object!, dies].

predicates: Domain specific predicates and operators maybe written by the domain

expert here.

%% Here's an example for changing different states
%% during driving

chauge_state(Obj, Old_state, New_state) :­
get_fact(property(Obj, [Turn, Old_state, Dir])),
delete(Old_state),
set_fact(property(Obj, [Turn, New_state, Dir]).

T he domain predicates are written in Prolog. The necessity for doing so is

d iscussed in § 2.5: Rulebase & Rule Interface.

3 6

C ha p t er 2 : The Software En vi r o n m en t

Creating New Domains. When the New ... command (§ 2.3.3) is selected from the

menu, the system creates a new domain file with four windows in it, namely Facts, Rules,

Defaults and Predicates. There is no logical order of these files, they coexist with each

other. These files are initially empty. When writing new rules using the Rule Editor, the

rules will be placed in the Rules window, and when new obj ects are created using the

New object tool, they will be placed in the appropriate Facts and Defaults windows.

Maintenance of the domain files is simple. After any changes have been made the user

can update the files by saving the current settings using the Saue command, or using the

Saue as ... command to save a copy of the same file with a different name. Both are

available as menu commands (see § 2.3.3).

2.3 User Interfaces

In recent years, human-machine communication has been the focus of a number of

computer animation researchers (Biumenthal 1990, Douglas et al. 1990, Laurel 1990).

For them the main purpose of the user interface is to make the communication easier

between the two parties. Hence the implementation of the user interface is a very

important part of any system design. Good interface design is the key to communicating

between the user and the machine successfully, so it is important th at the interface is

simple to use and quickly understood .

T here are two main fonns of interface in the ESCAPE system: a graphical and a

menu-driven interface. The graphical interface consists of windows, graphics, icons and

texts. Some lesser used tools, commands and system settings, are placed under the

menus and will be called or set upon selection, so the screen is not constantly congested

with tools and icons.

Windows and icons are amongst the strongest features within the Macintosh OS:

this is exploited by taking advantage of these features in the system. The use of dialog

boxes, buttons, and all the standard interface techniques thus make the system very

'Mac-like', any expetienced Mac-user should find familiatity in the environment as any

other Mac programs.

3 7

C ha p t er 2: The Software En vir on m e n t

2.3.1 Graphical Interfaces

The Graphical Interface is the first main window that the animator sees and is used for

the design of animations. It consists of a window showing the current state of the

animation. It uses MacProlog Graphics, which provides an easy way of dealing indirectly

with the standard Macintosh Graphics Routines. In the pro totype a 2D graphical

representation of objects is used as shown in Figure 2-4.

:1

Figure 2-4 The Animation Graphical Interface

The above figure shows in close-up the graphical representation of a domain

called "WorldJelly 1.4" (domain name shown in the title-bar of tl1e window) , which

consists of a jellyfish, a prawn and a rock. The window is a view on a larger world (se t

by world_size, see Figure 2-4). If no world_size is specified, then it takes the full range

of MacProlog's coordinate system (see Appendix B.4). On the bottom left corner, the

animator can see a dotted rectangle which represents a miniature screen section of what

is currently showing on the main window. To reposition the present view, the user can

either drag this box over to the desired area, or by using the scroll bars provided situated

on the right and bottom (up/ down and left/ right respectively) on the animation

window. The domain definition needed to show the particular scene in Figure 2-4 can

be seen in Figure 2-5:

3 8

C h a p t e r 2 : T h e S o f t wa r e E n v i r o n m e n t

% for picture representations
defaults picture('PRAWN', resource(210)).
defaults picture('JELLYFISH', resource(200)).
defaults picture('ROCK', resource(220)).

%world size
fact world_size((0,0), (400, 300)).

% for defining object types
fact obj_types(('JELLYFISH', 'PRAWN', 'ROCK']).
fact obj_type(jelly1, 'JELLYFISH').
fact obj_type(prawn1, 'PRAWN').
fact obj_type(rockl, 'ROCK').

% for defining objects' properties and locations
fact property(jelly1, [alive]).
fact location(jelly1, pt(65, 49)).

fact property(prawn1, [alive]).
fact location(prawnl, pt(134, 96)).

fact property(rock1, [static]).
fact location(rock1, pt(147, 173)).

Figure 2-5 Domain Definition for Figure 2-4.

There are eight tools shown on the left hand side which can be considered as

two sets of four. The top four tools are for changing the status of objects in the database:

EJ

EJ

Selection Tool. This is used for selecting and directly manipulating obj ects on
the screen, so the user can perform click-and-drag operation to move the
objects.

Information Tool, displays an information window which allows for updating
the database by changing symbolic information about an object, see Figure 2-8.

New object Tool, is used to create new obj ects to th e domain (by invoking a
dialog) or to add an instance of any object currently appearing in the domain,
see Figure 2-9.

Delete Tool , to delete an obj ect. Having selected this tool, double clicking on
the picture representation of the obj ect deletes it from the database.

The lower four tools are for controlling tl1e use of the expert sys tem:

B Reset Tool. This checks the default domain database, and resets a ll the objects
to their original states. This also clears any previously stored database so the
animator can start from fresh.

3 9

EJ

C h a p t e r 2 : T h e S o f t wa r e E n v i r o n m e n t

Run Tool, to invoke the inference engine and create an animation. Two options
are available: Interactive Run and Blind Run (see § 2.3.3 Menus for more
details) .

Playback Single, to view the playback of the animation in Single mode (only the
current frame is shown) . See Figure 2-6.

Playback Multi, to view the playback of the animation in Multiple mode (the
trace of each object is shown). See Figure 2-7.

~ fi
EJEJ
BEJ
~

c:·:~:::::J

~ fi
EJEJ
BEJ
[G

Figure 2·6 Playback: Single with Arrows*

Figure 2·7 Playback: Multi with Arrows•

* Arrows have been added to the diagram by the author to show the direction the o bjects are
moving.

4 0

C ha p t er 2: The Softwa r e En vir on m en t

2.3.2 Object Interfaces

By invoking the Object Information tool []], the user will be presented with an interface

which shows details on the selected object such as its name, and its associated atuibutes

and values, as shown in Figure 2-8:

®
@

(J)

@

Object lnfo

Object

Name: jelly1 ® is_aliue ~

·~ Type: JELLYFISH 0 is_static t-

Object Attributes (Defaults)
Current ~ js I Mass: Location:"'" (Change~

1 20 I H: I I Radius: 113

Uisibility: I I Y: I 57 I (saue) 129

~ MaHSpeed: I 19 I ~more ... ~ (cancel)

Figure 2-8: The Get Object Information Interface

-

r--

~ ®

This information is stored in the database (§ 2.2.2) , which has a readable

English-like format. Here, the corresponding parts are labelled by numbers, and the

database representing the above figure is given as follows:

CD picture('JELLYFISH', left, resource(200)).

® fact obj_type(jelly1, 'JELLYF1SH ').
® fact location(jelly1, pt(173, 57)).
® fact property(jelly1, [alive]) .

® defaults mass('JELLYFISH', 5).
@ defaults size('JELLYFISH', 20).
(J) defaults visibility('JELLYFISH', 120),
® defaults maxSpeed('JELLYFISH', 10).

By clicking on the Defaults button, the selected object is set back to its original

default settings (all properties preceded by the word defaults). Change will update the

database of the object to the currently set values in the fields provided, which the user

4 1

C h a p t e r 2: Th e Software En v ir o n men t

can type in via the keyboard; this however, is not a permanent change, because it only

updates the database in memory and not the domain file . To make sure that the data is

permanently saved to the current domain database, the user invokes the Saue button.

The Cancel button closes the interface window and discards any changes made after the

last use of the Saue or Change button.

Note that the Get Object Information dialog box (Figure 2-8) displays only the

minimum attribute requirements for a ' living' object. The current selection of attributes

are adequate for the purposes of this prototype system; however, for more complex

object behaviour, additional attributes will have to be accounted for and this can be

amended through an additional dialog window by activating the more ..• button.

Since all objects are categorised as eitl1er 'alive' or 'static', the properties

represented in tl1e Get Object Information dialog can be updated dynamically by the

system depending on which category an object belongs to. For example, if an object

is_static, the visibility and maxSpeed attributes will have NIL values, and the edit fields

will be disabled so the user cannot make any changes to them.

The addition of a new object to the current domain can be initiated by invoking

tl1e jn. .. I (New Object) tool button and via a dialog box as presented in Figure 2-9:

Adding an object or creating a new one

JELLYFISII [!'}
PRAWN
ROCK

(Cancel J (New ... J

Figure 2-9 Adding New Object Dialog box

A desired object type can be selected from a scroll list, activating the Add button

adds a new objec t of the selected type to the database, and Cancel exits to the previous

level. The selection provided in the scroll list is obtained by tl1e system from the

database by matching:

4 2

C h a p r e r 2: Th e So f r ware En v i r o n m e n r

fact obj_types(X)

to
fact obj_types(['JELLYFISH', 'PRAWN', 'ROCK']).

and hence instantiating X to ['JELLYFISH', 'PRAWN', 'ROCK']) .

When a domain is loaded for the first time, the sys tem keeps a record of the

number of objects of the same type, so the next object can be increm ented accordingly

to its type. Fo r example, if initially there were 3 jellyfish (jellyfish! , jellyf'lsh2 and

jellyfish3), then a new j ellyfish will be called jellyfish4. Looking back at Figure 2-8, note

that the object's name is delibe rately made so that it cannot be modified by the use r,

and this is the reason why. Every effort is made to ensure that the database is kept as

simple as possible. By no t having the ability to change the object's name by the use r,

unnecessary code for handling uncommon object names can be omitted . The name of

an object can then be used as privileged information by which the system uniquely

identifies its objects (a 'primary key' in database te rminology) .

H owever, if a new type of object is required which is not already in the types list

X , clicking on th e New ... button will initiate a further window (see Figure 2-10). Fo r

example, if a new type 'FISH' is to be added to the database, the interface will allow the

use r to set up its default settings, such as its name(e.g. fish), type (e.g. 'FISH') , size and

so on:

@ is_aliue a 0 is_static

Object ------.

Name:

Type: ._I F_I_SH __ __,

fish I

Object Attributes ------, (Get PICT)
Current
location: n Done l
H: I 44

Y: I 75 I Saue

Mass: 10
:=:==:::::::::

Radius: 15
~==:

Ulsibillty: 200

MaHSpeed: 20 n more ... J (Cancel)

Figure 2·10 Creating New Object Type Dialog box

4 3

C h a p t er 2: Th e So ft wa r e En vir o n m e n t

As in the 'Get Object Information dialog box' (Figure 2-8), this dialog displays

only the minimum attribute requirements for a 'living' obj ect, additional attributes can

be amended through an additional dialog window ac tivated by the more ... button.

The user is able to import a PICT format picture using the Get PICT button for

the graphical representation of the newly desclibed object. Once the desired

settings/values are set, the user can click on the Saue button to save it to the database.

ln the database, the system appends the new type 'FISH' to the existing X list, so the

matching of

fact obj_types(X)

will now instantiate X to ['FISH', 'JELLYFISH', 'PRAWN', 'ROCK']).

The user can then re-select another set of default settings for a new type and save

to the database. Several new types can be created in such a way, until the user cl icks on

the Done button to exit the dialog. Clicking the Cancel button exits the dialog without

saving to the database. Exiting the New Object Type Dialog box brings the user back to

the New Object dialog window as shown in Figure 2-9.

In the current implementation of the system, the file which contains the PICT

resources have to be in the same directory (location on the disk) as MacProlog. This is

the only way that MacProlog can access the resources.

2.3.3 Menus

In addition to the tools mentioned earlier, there are menu options for system settings

and extra external controls, see Figure 2-11.

The menus can be divided into two categories:

1) System : main operations for the system, valious system settings and preferences.

2) Attributes: for maintaining, editing, inputs and outputs of the domain attributes.

Under the System menus, there are:

• Solue One Highest Leuel :

• Solue Rll Highest Leuel :

option for 'One Highest Level'. See § 3.5.1.

option for 'All Highest Level'. See § 3.5.2.

4 4

C h a p t e r 2 : T h e S o f t wa r e E n v i r o n m e n t

• Others •.. :

So lue One Highest Leuel
v' Solue Rll Highest Leuel

Others ...

"'lnteractlue Run
Blind Run

Collision Detection is On

Label On
Output TeHt Is off

Reset Animation
Run Animation

• :11 ril iliU"-'tlll

New World ...
Open World •••
Close World

Saue
Saue as .••
Saue Swiuel Script ...

Saue Playbaclc as ..•
Open Playbaclc •••

Rule Editor'" •••

Facts Window
Rules Window
Defaults Window
Predicates Window

Figure 2-11 Menus for External Controls

option for 'Others .. .'. See § 3.5.3.

• I nteractiue Run : Screen is updated as every frame is resolved , so an instant

preview of the animation can be viewed. This slows the

running-time of the p rogram.

• Blind Run : The screen is dormant while the frames are bei ng resolved

by the inference engine. T he locations of objects are

remembered in buffers. This improves the run-time of the

program as the graphics representations of the objects are

not updated continually.

• Collision Detection on / off : to switch Collision Detection on/ off. (see § 2. 7) .

• Label on / off: to switch labels (names) on/ off for the objects.

• OutputTeHt on/ off : to switch the output texts on / off in the log window.

• Reset Animation : same function as the 'Reset' Tool.

• Run Rnlmatlon : same function as the 'Run ' Tool.

Under the Att ributes menus, there are:

• New World ••• : to create a new domain file.

4 5

C h a p t e r 2 : T h e S o f t wa r e E n v i r o n m e n t

• Open World ... : to load an existing domain file .

• Close World : to close the currently loaded domain fi le.

• Saue : to save the currently loaded domain fLie .

• Saue as ... : to save a copy of the currently loaded domain file under a

different name.

• Saue Swluel Script ... :

• Saue Playbacl< as ... :

• Open Playbacl< ... :

• Rules Editor ... :

• Facts Window :

• Rules Window :

• Defaults Window :

• Predicates Window :

to output the current animation in Swivel 3D™ scripts.

to save t11e current animation as a playback fi le (Prolog

fonnat), to be played back in future.

to open a previously saved playback fi le.

initiates the "Rules Editor" dialog. See § 2.5.3

bring to front tl1e 'Facts' window.

b1ing to front the 'Rules ' window.

bring to front the 'Defaults' window.

bring to front the 'Predicates' window.

The label on/off operation is useful if the animator wishes to know or trace the

objects on the screen. By turning this option on, the names indicating the objects will

be displayedjust above them (see Figure 2-12) .

jelly1

~
prawn1,

rock1

Figure 2-12 Objects with Label On

4 6

C h a p t e r 2 : T h e S o f t wa r e E n v i r o n m e n t

The Output TeHt on/off operation does not aid the production of the animation

itself. Turning it on, the user can have a detailed output log of the running of the

animation in a log window, which can be extremely useful for the animator to trace each

decision step of the inference engine. With this option on, detailed insight into the

operation of the system can be obtained, but at the cost of processing speed for

producing the animation. See Figure 2-13 for an example log of an animation run.

From the log, the first fact generated by the inference engine was

New fact: 15 plan_next 1 to 3

and note that New Fact starts from 15. This is because the first 14 were generated during

the initialisation process prior to the animation run (they hold information of all the

objects in the domain such as their locations, attributes and so on) . plan_next 1 to 3

states that the 'keyframe' to be planned next is 1, and the last 'keyframe' to be planned is

3 (a total of 3 to be done). This is only the outcome of the first pass generated by the

inference engine.

New fact: 15 plan_next 1 to 3 by main inference ...

**Pass= 1
Deleting fact; 15 : plan_next 1 to 3 by main inference ...
New fact: 16 plan_next 2 to 3 by main inference ...

**Pass= 2
New fact: 17 poss_locn(jellyl , 2, 5, pt(73, 60)) by rule4
New fact: 18 poss_locn(jelly1, 2, 7, pt(70, 28)) by rule5
New fact: 19 poss_locn(prawnl, 2, 7, pt(126,112)) by rule5
New fact: 20 poss_locn(rock1, 2, 1, pt(l47, 173)) by rule6
Level=5 New fact: 2llocn(jellyl, 2, pt(73, 60)) by resolving ...
Level=7 New fact: 22 locn(prawn1, 2, pt(126, 112)) by resolving .. .
Level=l New fact: 23 locn(rock1, 2, pt(147, 173)) by resolving .. .
Deleting fact: 16: plan_next 2 to 3 by main inference ...
New fact: 24 plan_next 3 to 3 by main inference ...

**Pass= 3
New fact: 25 poss_locn(jellyl , 3, 5, pt(88, 65)) by rule4
New fact: 26 poss_locn(jelly1, 3, 7, pt(58, 66)) by rule5
New fact: 27 poss_locn(prawn1, 3, 7, pt(l44,110)) by rule5
New fact: 28 poss_locn(rock1, 3, 1, pt(147, 173)) by rule6
Level=5 New fact: 29 locn(jellyl , 3, pt(88, 65)) by resolving ...
Level=7 New fact: 30 locn(prawnl , 3, pt(144,110)) by resolving .. .
Level=l New fact: 31 locn(rockl, 3, pt(l47, 173)) by resolving .. .
Deleting fact: 24 : plan_next 3 to 3 by main inference ...

End of Execution.

Figure 2-13 Output Log with 'Text On'

4 7

C h a p t e r 2 : Th e So ft wa r e En v ir on m e n t

During the second pass, fact 15 is deleted, and

New fact: 16 plan_next 2 to 3

is generated by the inference engine, for planning the next keyframe, 2. The inference

engine goes on doing this for each pass until the last keyframe is planned , then it stops.

During inferencing, the rule that was fired to generate a new fact is printed after

it. For example ,

New fact: 17 poss_locn(jelly1, 2, 5, pt(73, 60)) by rule4

which states that New fact 17 is generated by rule4.

by resolving ... means that this particular fac t is generated by solving several

possible solutions/ facts suggested by various other rules. This will be covered in more

de tail in § 3.6: Results.

Using the Output TeHt Off option, the user does not have a detailed log.

However, the running of the animation will be much faster. A sample of the output

whe n this option is tu rned off, see Figure 2-1 4:

**Pass= I

** Pass= 2

** Pass= 3

End of Execution.

Figure 2-14 Output Log with 'Text Off'

The dots sign ifY that a line of output on the log file would have been generated

by the inferencing (if O utput Text were turned on).

4 8

C ha p t er 2 : The Software En vi r on m en t

On the cun-ent equipment used, the inference engine does not run in real time

and the production of graphical output in conjunction with inferencing slows down its

operation further. For this reason it is often advantageous to switch off the graphical

display (use Blind Run mode and/or Output TeHt Off mode) while generating an

animation and, when it has been completed, play it back in Single or Multi format. See

Figure 3-18, Figure 4-7 and Figure 4-12 for time comparison graphs.

2.3.4 Help

Online help is available when switching on the standard Balloon Help, and the cursor

moved over any buttons, control items and user items. Also, by double clicking the

Tool Icons, a help window will be activated.

2.4 Language Processing of Grammar Rules

This section describes the syntax and semantics of the language processing of the

grammar rules used in this expert system.

As mentioned in § 2.2.2, the expression of rules are defined using a Definite

Clause Grammar (DCG) . This makes it very easy to implement formal grammars in

Prolog. A grammar stated in DCG is directly executable by Prolog as a syntax analyser.

2.4.1 Syntax

syntax n. l. the branch of linguistics that deals with the grammatical arrangement of

words and morphemes in sentences. 2. the totality of facts about the grammatical

arrangement of words in a language. 3. a systematic statement of the mles governing

the grammatical arrangement of words and morphemes in a language. 4. a

systematic statement of the mles governing the properly formed formulas of a logical

system. - (The Collins Concise 1988)

DCG definitions are a standard part of the Prolog language and thus can be

expressed witl1in the same programming language as the inference engine. Merely by

defining the grammar in DCG form, a parser is automatically available and can be

invoked by simply using the parse function or one of its variants. This makes it possible

for users to directly enter mles as free text if they prefer, though a dialogue box interface

to the rulebase is also provided.

4 9

C h a p t er 2: The Sof t wa r e En vi r on m e n t

As seen earlier, a rule is expressed in the "if-then" format:

rule: if conditions then actions.

and the basic syntax of a rule is described in Figure 2-15 (for a more complete listing of

the implementation of the DCG see Appendix C, and the detailed parsing processes of

the DCG see § 3.2). Since conditions and actions are handled the same way, they can

both be represented as a sentence:

conditions -> sentence.
actions -> sentence.

sentence - > simple_sentence, [and], sentence.
sentence -> simple_sentence.

simple_sentence -> noun_phrase, verb_phrase.

noun_phrase - > noun.
noun_phrase - > proper_noun.

verb_phrase -> trans_verb, nowl_phrase.
verb_phrase -> intrans_verb.

noun -> [Var],
noun -> [Type],
proper_noun -> [Name] ,
trans_verb -> [Trans],
intrans_verb - > [lntrans],

{ member(Var, Var_list) }.
{ member(Type, Types_list) }.
{ member(Name, Name_list) }.
{ member(Trans, Trans_list) }.
{ member(Intrans, Intrans_list) }.

Figure 2·15 Language Parser (DCG for rules)

A sentence can be made up of several simple_sentences, o r just one

simple_sentence. In the former case, simple_sentences are separated by the symbol

[and] like so:

sentence -> simple_sentence [and] simple_sentence [and] ...

The square brackets ([]) in Prolog denote lists, they are not to be confused here

in the DCG implementation as they indicate the terminal symbols. In a parser-tree,

terminal symbols are the last nodes which do not branch further.

5 0

C h a p t er 2: The Sof twa re En vir on m en t

As an example, one possible simple_sentence constructed from the DCG

language parser mentioned above can be represented as a parse-tree in Figure 2-16.

This tree allows for the stmctures of (left to right) :

simple_sentence -> noun_phrase, verb_phrase.

=> simple_sentence ->
=> simple_sentence ->
=> simple_sentence ->

noun, trans_verb, noun_phrase.
[Var], [Trans], proper_noun.
[Var], [Trans], [Name].

(note: '=>' indicates each step taken for from the parser to reach the terminal symbols)

simple_sentence

-------- ------noun_phrase verb_phrase

I /~
noun trans_verb noun_phrase

I \
[Var] [Trans] proper_noun

I
[Name]

Figure 2-16 Parse-tree

Since DCG definitions are a standard part of the Prolog language and thus can

be expressed within the same programming language as the inference e ngine. Prolog

clauses can also be used in the DCG implemen tation, they are included by the curly

brackets ({}) (e.g. {member(Var, Var_list) } - a formalisation of "Var is a member in

the list Var_list") .

If referring to the underwater jellyfish world for example, the various lists can be

obtained from the database:

5 1

C h a p t e r 2 : T h e S o f t wa r e E n vi r o n m e n t

Var_list = [object!, object2, object3]. % variable list of 3 objects
Types_list = ['JELLYFISH', 'PRAWN', 'ROCK']. % type list
Name_list = Uellyl, prawnl, rockl]. % name of actors in domain

% transitive predicates list, i.e. predicates having two parameters
Trans_list = [is_nearby, has_type, plans_getaway_from, plans_encounter_to].

% intransitive predicates list, i.e . predicates having only one parameter
Intrans_list = [is_alive, is_static, meanders, dies, stays_there].

So, if we were trying to match

simple_sentence -> [Var], [Trans], [Name]

the syntax of

[object!, is_nearby, jellyl]

would be feasible, but

[object!, is_nearby, object2]

would not because object2 is not a member of the Name_list.

Here are a some valid examples w1itten using the DCG rules in Figure 2-15:

rulel : if [object!, is_nearby, object2, and, object2, is_static]
then [object!, meanders] .

rule2: if [object! , has_type, 'PRAWN', and object2, has_type, 'JELLYFISH']
then [object!, plans_getaway_from, object2] .

rule3: if [object!, is_static]
then [object!, stays_there].

2.4.2 Semantics

semantics n. l. the branch of linguistics that deals with the study of meaning. 2. the

study of the relationships between signs and symbols and what they represent.

- (The Collins Concise 1988)

The semantics of the rulebase is handled by the Lang;uage Interpreter &

Translator module (see Figure 2-19 Inference Engine Flow Diagram) . In general, the

task of the Inte7preter is to take a rule and break it up into simple single conditions and

5 2

Chapter 2: The Software Environment

actions (left to right), then to match each condition against the database and generate

any facts in the Working Memory as appropriate. A match occurs if an exactly equivalent

item is found in the database, or if an equivalent item can be found by binding an

unbound variable name to an object name. All conditions within the conditional clause

must succeed in matching with the same bindings for the conditional clause as a whole

to succeed. For example, if rulel is given as "if conditions then actions":

rulel : if [objectl, is_nearby, object2, and, object2, is_static]
then [objectl, meanders].

and assuming it is syntactically correct, then:

conditions = [objectl, is_nearby, object2, and, object2, is_static].
actions = [objectl, meanders].

Let us now look at the conditions first. As mentioned earlier, sentence takes a

complex sentence and breaks it up into simple single sentences called simple_sentences

which we will call conditional clauses or clauses. They are then passed to the translator,

translate, so the variable instantiation process of these clauses can be carried out.

%% if there is more than one clause, then process into two parts
translate(A and B) :- translate(A), translate(B).

%% if there is only one clause, then tests it.
translate(A) :- test(A).

e.g., translate(X is_nearby Y and X is_alive) % two clauses

=:> translate(X is_nearby Y), % clauses I
translate(X is_alive) % clauses 2

=:> test(X is_nearby Y), % test separately
test (X is_alive).

where test tests one clause A at a time against the current database to see whether:

<D A matches an existing fact in the database (e.g. X is_alive); or

® A is a calculation (e.g. X is_larger_than Y); or

@ there is no solution (i.e. no match)

53

C h a p t e r 2 : T h e S o f I wa r e E n v i r o n m e n t

If no solution @ is encountered, the Language Parser will exit the CUJTent mle

and proceed with the next mle; but if either a successful match <D or a calculated result

® is obtained, some of the variables in the clause may be instantiated.

e.g., test(X is_alive) % if there are two live objects in the domain ...

solution No. I =>X= jellyl,
solution No.2 =>X = prawnl

For the whole thing to succeed, the instantiations will have to be consistent with

clause 1 and clause 2:

e.g., test(X is_nearby Y), test(X is_alive)

clause 1: test(X is_nearby Y)
possible solution No.1 =>X= jelly!, Y =prawn!.
possible solution No.2 =>X= jellyl, Y = rockl.
possible solution No.3 =>X= rockl, Y = prawnl.

clause 2: test(X is_alive)
possible solution No.1 =>X= jellyl.
possible solution No.2 =>X = prawnl.

% possible match
% possible match

% possible match

by matching the possible solutions of the above clauses, there are two solutions:

clause 1 and clause 2: test(X is_nearby Y), test(X is_alive) % matching
solution No. I =>X= jellyl, Y = prawnl.
solution No.2 =>X= jellyl, Y = rockl.

The semantics of Actions is similar to that of Conditions in the way that a

complex sentence is broken up into simple_sentences (clauses), except that the

conditional clauses are for testing purposes, whilst the action clauses are for executions.

The connection between the two is that, after a successful test of a conditional clause,

the instantiated variables can then be used to match the variables in the action clauses.

For example,

rulel: if [objectl, is_alive] then [objectl, meanders].

objectl in the conditional clause(objectl is_alive) will be matched and 'forced' to be

the same as objectl in the action clause (objectl meanders), so that the reference to the

same object is consistent throughout the whole mle.

5 4

C h a p t e r 2 : T h e S o f t wa r e E n vi r o n m e n t

The execution an action (do_action) may take several forms. The algorithm to

take an action is based around the following sequence of tests:

I if it contains an undo instruction, then the matching item will be removed from the

database (no action is taken if the item is not in the database):

e.g., do_action(undo(plan(1 to 16)))
=:> Deleting fact: 13 : plan (1 to 16).

2 to do two actions (A and B), do A and then do B:

e.g., do_action(A and B)
~ do_action(A and B) :· do_action(A), do_action(B).

3 if it contains a valid Prolog expression, then it will be passed to the Prolog system

and interpreted:

e.g., do_action(TimeN is 4)
:::. TimeN = 4

4 if it contains a predefined predicate or operator, then it will be resolved:

e.g., do_action(Distance between jeUy1 &: prawn I)
=:> Distance = 88.

5 otherwise the item will be added to the database (no action is taken if the item is

already present in the database),

e.g., do_action(poss_locn(prawn1, 2, 4, pt(243, 164)))
~ New fact: 22 poss_locn(prawn1, 2, 4, pt(243, 164))

Two detailed examples can be seen in § 3.2.

2.5 Rulebase & Rule Interface

The rulebase contains the behavioural rules for producing an animation. The first two

parts of this section discuss the two levels of the rulebase: standard, which is available

within the main system and to any domain that is currently running; and domain

specific, which contains special behavioural rules for solving particular problems within

the currently running domain.

These behavioural rules are represented in two formats that coexist within the

system: standard Prolog, and "if·then" format (which will be referred to as rules). The

5 5

C ha p t er 2: The Software E n vir on m en t

first two parts of this section also discusses the two formats in the designing of the

rule base:

1. is standard Prolog adequate?

2. when to implement in Prolog and when in rules?

The last part of this section discusses the design of the rule interface Rule

Editor, which is aimed to provide an easy way for the user to write, amend and access

the rulebase.

2.5.1 Standard Rulebase

The standard rulebase consists of a set of predicates which are commonly required yet

are not readily available in the 'desirable form' (explained later) in standard Prolog, and

some low-level operators for performing some commonly used tasks (predicates are

often found in 'conditions' and operators are often used for carrying out 'actions').

These operators and predicates are defined by writing special rules, building them into

the system, and providing them to every domain and making them relatively transparent.

Users may therefore use such predicates as if they were primitives of the rule-writing

language.

An example of a frequently used predicate that is not available in a 'desirable

form' is is_smaller_than. Its apparent equivalent, the standard Prolog predicate'<', does

not always behave as expected. The latter deals only with numeric arguments, whilst

sometimes the need for comparing objects is desired. Ideally, the two-place predicate

is_smaller_than should be able to deal with both numeric comparison and object

comparison (for example, comparing their sizes). It should perform its functionality

accordingly when called and distinguish which possibility to take. Here is the simplified

code for is_smaller_than:

1: A is_smaller_than B :- number(A),
number(B),
A<B.

2: A is_smaller_than B :- object(A),
object(B),
size(A) < size(B).

% check if numbers

% check if objects

% compare sizes

By rewriting such a predicate to include test routines (or other additional

features) embedded in Prolog to check for the arguments, different cases can be

56

C ha p t er 2: The Soft wa re E n vir o n m en t

handled separately and properly. Although Prolog provides a set of somewhat

cumbersome functions and procedures for manipulating numbers, when used in such a

way, it can be extended meaningfully to worlds of 2D and 3D objects. The standard

rulebase deals mainly with the calculation or comparison of locations, distances, sizes,

and object properties.

Here is a list of example predicates/operators that were written to include as

standard in the system:

Predicates/ operators with 1 parameter:

X dies:

X is_alive:

X is_close_to_edge:

X is_static:

X lives:

X moves_within_boundary:

X stay_there:

time_now _is X:

changes object X's property from alive to static.

true if object X is alive.

true if object X is close to the boundary limits.

true if object X is static.

changes object X's property from static to alive.

moves object X within the provided fixed boundary.

X's current location is same as its previous location.

returns the current frame X; useful when a specific task

is needed to be carried out at a specific lime.

Predicates/ operators with 2 parameters:

X collides_with Y:

X has_type Y:

X is_larger_than Y:

X is_nearby Y:

X is not_same_as Y:

X is_same_as Y:

X is_smaller_than Y:

true if objects X and Y are in collision.

returns the object X's type as Y.

true if X is larger than Y. Both either objects or

numeric.

true if object X is nearby object Y.

true if X is not the same as Y. (* Both arguments must

be of the same type - either object or numeric).

true if X is same as Y. (see *).

true if X is smaller than Y. (see *).

During the initial implementation stages of the system, all predicates and

operators were written in Prolog as part of the building of the system itself. Later, some

of them were withdrawn as Prolog code and rewritten using the implemented rule

structures, but some remained in Prolog codes for several reasons. There are times

57

C ha p t er 2: The Software En vi r on men t

when the need to write rules in Prolog can prove to be advantageous, for example

powerful Prolog controls such as backtracking and cuts can be used, when long and

complex rules that require flexible controls are required, and also, at some point (e.g.

the interpretation of DCG) everything must be expressed in Prolog.

The main advantage of rewriting the predicates and operators as mles is the

ability to explain. This can be illustrated by comparing the two rule formats. If rule I is

described as a rule:

rulel : if

then

[objectl, has_type, 'PRAWN',
and, object2, has_type, 'JELLYFISH']

[objectl, is_food_of, object2].

equally, is_food_of can be expressed in Prolog as:

is_food_of(Objectl, Object2) :­
Objectl has_type 'PRAWN',
Object2 has_type 'JELLYFISH'.

The resulting behaviour for using the latter is not quite satisfactory from the

expen system point of view for explanation cannot be asked for; for example, how was

the answer derived? In comparison, when the conditions of rulel are satisfied, the

results/actions are stored dynamically in the memory as 'defined facts', and the how

question can now be answered, for example "answer derived from rulel, which states

that PRAWN type is_food_of JELLYFISH type" • currently this is automatically printed

out to the log file. But when expressed in Prolog, this explanation is not available since

it is either returned as 'succeed' or 'fail'.

However, at present, it is not possible to write all predicates and operators as

rules, this is largely due to the design of the DCG. In order to do this, a more complex

DCG will have to be redesigned. Currently, sufficient complexity has been implemented

into the DCG, a sentence can distinguish three different variables (objects, properties

and numbers), multiple conditions, multiple actions, unlimited number of user defined

operators (memory permitting) and can have references to up to three objects at the

same time (objectl, object2 and object3). If the syntax of the rules is to be made more

complex (for example, allowing more primitive operators such as addition '+', output

58

C ha p t er 2 : The Soft wa re En vi r on m en t

'print' and so on), the design of the language parser will have to be able to cope with

the demand. One way to do this is to allow standard Prolog clauses in DCG.

If the redesigning of the DCG is envisaged (for example, to accommodate four

or more related objects in one sentence), one difficulty would be keeping track of

instantiated objects, and this would require a software expert who is fluent in Prolog to

modify the DCG to specification.

The above set of the standard rulebase is aimed to give the user some

foundations for writing behavioural rules as described in § 2.2.2: Expression of Rules.

It, by no means, is a complete set. However, in the likely event that more predicates or

operators are needed, the software expert can include them in the Domain Specific

Rulebase, which is described in next sub-section.

2.5.2 Domain Specific Rulebase

The standard rulebase is limited to perform generally useful tasks, so it is desirable for

some special domain specific rules to be added. This is recommended, however, only

for a domain expert as some Prolog experience is expected. The domain expert can

write such special rules in standard Prolog code and place them in the predicates file

within the domain file. For an example of the predicates file see § 2.2.3: Domain

Database.

Such occaswns may arise when for example, to satisfy all the three domains

featured in this research Uellyfish, birds, and traffic), three different ways for advancing

an object to the next location have been adopted (all have some element of

randomness):

l. meanders, which calculates a random location in all directions for an object that it

is applied to (as used in the jellyfish example);

2. meanders_forward, which calculates the next location mainly in the direction the

object is heading, but with some randomness of the object meandering sideways (as

used in the flocking bird example);

3. moves_forward, which calculates a random location mainly in the direction the

object is heading, without too much randomness (as used in the traffic example);

59

Chapte r 2 : Th e Software E n vironment

After these rules have been written by the domain expert, they served their

purposes in the particular domain and they have no further use for other domains.

Hence they can be extracted and classified as Domain Specific.

2.5.3 The Rule Interface

The currently applicable domain rules are kept in a ftle called 'Rules', a part of the

Domain file (see § 2.2.2: Expression of Rules) . These rules can be written and amended

through the use of a specially designed dialog box, see Figure 2-17.

1\.tl<ti\Jllber Qmii ti o rfliJ!Iber

Rule Editor

condltlon2 ""

Object 1 Relationship

obJectl ·I Is nearby ""I
is_allue { J;

:-.-!:

ls_statlc
ls_harmless

4} (Del Cond.)(New Cond.)

actlonl ""I I objectl ""I I meander.; ""I I
rulel:
if, objectl, isJlearby, object2, that, is..)ltatic,
thEil , objectl, I!Earder .

Object 2

Cancel) (Delete Rule) New Rule (Check Rule) (Update Rules)

Text Field

Figure 2-17 The Rule Editor Dialog Box

The dialog box can be used to create new rules and amend existing rules. If an

existing rule number is selected then the diaJogue box is automatically updated to refl ect

that particular rule. The following data corresponds to the above Rule Editor interface:

rulel : if [object!, is_nearby, object2, and, object2, is_static] then [objectl, meander].

RuleNumber =
Condition! =
Condition2 =
Actionl =
Property Objl =
Property Obj2 =

rulel ,
[objectl, is_nearby, object2],
[object2, is_static],
objectl meanders.
none selected,
[is_static]

60

C ha p t er 2: The Software En vir on m en t

The Rule Editor dialog box is divided into two main sections. The top section

reflects the grammatical structure of a rule. The pop-up menus provide all the terms

that are valid at the particular place in the rule so that the animator is restricted to

writing only valid rules. The menus also allow the animator to create new variable

names if they wish to refer to an object not already known to the system. The lower part

of the dialogue box contains a scrolling text field in which a text version of the currently

selected rule is displayed. The user may choose to enter texts directly into this field by

using input devices such as a mouse and a keyboard. Syntax errors may be introduced

this way, though, which will only be detected when the system tries to parse the

erroneous rule (which should report the e.rror). Hence it is advised that the typing

input is best handled by a domain expert, and rules are syntax checked by using the

Check Rule button (see later).

For every rule, there is at least one condition and at lease one action. When the

RuleNumber Popup menu is depressed (upon mouse click down), a popup menu shows

a selection of available rules from the Rules file within the domain database. When the

button is released and a selection made, the conditions and the actions are then put into

the TeHt Field and all parts of the dialog window will be updated. The steps are

illustrated as follows:

when_click_on(ruleNumberPopup) :­
get_item(ruleNumberPopup, RuleNumber),
RuleNumber : if Conditions then Actions,
update_text_field(Conditions, Actions),
update_all_menus.

% get the selected RuleNumber
% get the Conditions and Actions
% updates text field
% update all other popups/menus

update_all_menus updates all the fields and menus in the dialog box using the

corresponding selected rule, always starting with the first condition. There are two types

of menu in the dialog box, 'popup' and 'click-select'. The 'popup' menus include

RuleNumber, condltlonNumber, object!, objectz, Rctlons, and Relationship, the 'click­

select' menus include object! Properties and objectZ Properties.

There has to be at least one object in a rule for it to be valid and, by default, this

is set to object!. If there is no other object involved, the Relationship popup menu will

be set to None, and objectZ and its properties menus are disabled.

6 1

C ha p t er 2 : The Software E n vi r on m en t

Unlike RuleNumber, when selecting a ConditionNumber the TeHt Field is not

updated because it already has the rule printed in its entirety, so only the popup and the

click-select menus need to be updated.

The following describes the functionality of the buttons found in the dialog (see

Figure 2-17):

• Del. Cond. : deletes the currently selected condition;

• New Cond. : creates a new condition, appended to the existing condition list;

• Cancel : allows the operator to quit without saving any changes made to the
selected rule(s) after the last 'Update' (see Update Rules button);

• Delete Rule : deletes the currently selected rule;

• New Rule : creates a new rule, appended to the existing rules list;

• Check Rule : ensures that the screen information is consistent and parses the text
version for syntax errors;

• Update Rules: updates the currently selected rule to the domain's Rules file.

Creating a new rule and a new condition are somewhat similar:

CREATING A NEW RULE I CREATING A NEW CONDmON I

Increment rule number by I, and Increment condition number by 1, and

add 1 new rule + create new condition. add I new condition.

Deleting a rule and a condition are somewhat similar too:

!
I

'
DELETING A RULE DELETING A CONDITION

I

Decrement rule number by I, Decrement condition number by I,

check: minimum one rule left, check: minimum one condition left,

Delete Rule (incl. all conditions), Delete Condition, purge and
purge, and go to first rule go to first condition

6 2

C ha p t er 2: The Software E n vi r o n m en t

When the Check Rule button is invoked, it carries out the following operations:

when_click_on(checkButton) :­
get_all_selected_items,
check_syntax,
I* if OK *I updates_textfield ;
I* else *I report_ errors.

% get all selectedhems on the menus
% check if syntax is OK
% update Conds & Actions in TextField
% else if not OK, reports any errors

Mter the syntax of a rule has been checked and if there is no error, it then can

be added to the database by invoking the Update Rules button:

when_click_on(updateRulesButton) :-
check_if_rule_db_has_changed, % check if database has changed ...
add_to_rulebase. %if yes, then add it to the rulebase

2.6 Inference Engine

The Inference Engine is the heart of the system, the organiser of things, and is

responsible for :

i) problem solving- organising steps and domain knowledge (database) to construct a

solution to a problem, and

ii) reasoning - organising the computational process whereby needed information is

inferred from what is known (such as those stored in the Working Memory).

The inference engine (see Appendix A: Expert Systems for references) uses the

standard expert system approach of forward-chaining but has some additional features.

The system allows for a customised resolution of all the actions that could be fired for

any particular step and, when seeking to apply basic operators it will temporarily employ

backward chaining.

The reason why forward-chaining is generally used, even in the case of directed

animations where some goal is specified, is because it reflects a more open cognitive

model. Backward chaining tends to reflect a reasoning process based upon a single

argument structure, developed purely to give support to the derived conclusion.

Forward chaining is better suited to the exploration of multiple possibilities, some of

which may turn out to be ineffective. So by adopting this kind of reasoning process, it

63

C ha p t er 2 : The Software En vir on m e n t

does place an additional responsibility upon the modeller to specify how the system is to

resolve multiple competing claims.

Let us look at a rule example which states:

rulel : if [objectl, is_nearby, object2] then [object!, meanders].

It consists of a conditional part: [objectl, is_nearby, object2]

and an action part: [object!, meanders].

There are keywords operators (such as 'if', 'then', ': ') that enable the inference

engine to recognise a rule structure . Some operators have higher precedence order (see

Appendix B.3 for more on precedence order of operators) than others, and they are

defined in Prolog as follows:

%% special operators defined for the inference engine
:- op(890, xfx, :).
:- op(880, xfx, then).
:- op(870, fx, if).

:- op(540, xfy, and).

Le t us look at this example: rulel : if <Conds> then <Actions>. This can be

viewed as follows:

/ · ~
rule l then

/~
if <Actions>

~
<Conds> and

/~
<Condl> <Cond2>

Figure 2-18 Precedence of Operators within a Rule

6 4

C ha p t er 2: The Software En vi r on m en t

whereby, <Conds> and <Actions> can be a combination of ANDs, with sub elements

<Condsl>, <Conds2> etc. Only if all the sub elements of the <Conds> succeed the

testing routines of the Inference Engine, is the <Actions> part carried out.

The Inference Engine forms the main body of the system environment, which

links to a number of entities within the system (see § 2.1), and is responsible for the

productive output of the system. The Language Interpreter & Translato1· (§ 2.4) form

the main testing modules within the Inference Engine. The following Figure 2-19 shows

a flow diagram of the inference routines:

NO

START

sentence

Tidy Up

LANGUAGE
INTERPRETER
(Formu/aJe a Rult into c/auu5)

TRANSLATOR
(o nt c /mu e at a timt)

INFERENCE ENGINE

Figure 2-19 Inference Engine Flow Diagram

The inference routine starts by selecting a RuleNumber : if Conds then Actions,

the Conds and Actions are handled separately from this point. First, the Conds are

passed to sentence (the Language Interpreter) which transfonns each condition into

6 5

C h a p t e r 2 : T h e S o f t wa r e E n v i r o n m e n t

executable Prolog clauses. The Prolog clauses are then passed, one at a time, to

translate (the Translator) to be tested and instantiated. Instantiation maps all the

variables of Conds against the database to satisfy the Prolog clauses, it is determined at

this point whether this particular rule has any overall effect on the objects. If the rule is

not satisfied, it fails and will go no further. The parsing steps can be seen in Figure 2-20:

infer:-
Rule: if Conds then Actions,
sentence(X, Y, Z, Ml, Conds),
translate(Ml),
sentence(X, Y, Z, M2, Actions),
do(M2).

% get next Rule: Conds and Actions
% parse Conds
% instantiate X, Y, Z
% parse Actions with obtained X, Y, Z
% execute the instantiated actions M2

Figure 2·20 Rules Parsing steps

The main inference routine repeatedly applies all rules to the database until

there are no more changes to be made. In each pass, each rule is tested to see if its

conditions can be met. If they can then actions are performed and the search continues

for any other ways of satisfying the same conditions. Only when all possible ways of

meeting the conditions have been explored does the system proceed to look at the next

rule. One of the main features of Prolog is that it has the ability to backtrack. Upon

failure, Prolog returns to the previous line and searches for the next solution and

proceeds until all possible solutions are found. If the tests are successful and

instantiations persist, it then continues downwards to executing the Actions. Note that

the translation for Actions is not required since the variables are already instantiated by

the translation ofConds (see Figure 2-20). The execution of an action can be seen in

§ 2.4.2: Semantics.

Stopping criteria are needed to determine when to terminate the problem­

solving process. This is done by setting a goal, or several goals, terminating when one is

reached. In cases where there is an initial state and a goal state we declare the whole

planning process as a goal and introduce rules that try to decompose it into parts,

repeating the process until each frame is decided. One example would be, to set up a

plan of an animation consisting of X number of keyfrarnes starting from 1 (or any

number< X), which would be written as (in the database) fact plan I to X.

66

C ha p t er 2: The Software E n vi r on m en t

Another kind of goal would be to set up a stopping check, using a conditional

expression, for example:

rulelO: if [prawnl, is_captured_by, jeUyl]
tben [stop, animation]

In cases where there is no particular goal and the animation just has to run and

be realistic, there are no special planning rules and domain rules are applied to each

frame to generate the next frame. The process can be repeated indefinitely, though there

is no guarantee that the set of rules will generate change from a particular frame or they

will not generate a visually recognisable loop.

The inference engine explores every rule, matching it against the database and

generating a single list of all possible actions. On completion of the list, it groups the

possible actions for each object and passes them to a function which returns the next

stale of the object. There are many different strategies that could be adopted for this

function: one possible action could be selected and the rest discarded (e.g. select the

strongest, or the weakest), or a resultant of all the actions could be found, or a

threshold could be introduced, resolving those that meet it. Different strategies can be

adopted for different domains (see § 3.5: Results for how these strategies are used).

Two examples will be used to show how the Inference Engine behaves under

different inferencing methods (see§ 3.3).

2.7 Collision Detection

For any object, detection of possible collision is a consequence of the urge to steer away

from imminent impact with another and it plays an important part in creating realistic

animation. Much research (Baraff 1990, Moore & Wilhelms 1988, Uchiki et al. 1983)

has been carried out in the field of CAD/CAM and robotics for collision detection in

highly complex scenes.

In ESCAPE, collision detection is a meta constraint on behaviour and has been

built into the system using an unsophisticated detection algorithm (a circular bounding

box), which is sufficiently visually convincing for the chosen examples (described in the

following chapters).

67

C ha p t er 2: The Soft wa re E n vir o n m en t

The user can choose to turn collision detection on or off from the System menu

as mentioned in § 2.3.3: Menus. By default, it is turned on when the system is first

loaded. It is recommended to be left on at all time, but if for some reasons that it is not

desirable, for testing purposes for example, the option to turn it off is there.

Collisions are detected if the circular bounding boxes of two immediate objects

coincide. A static collision avoidance method is used, which is based on the relative

position of the objects and ignores their velocity. This can simply be done by adding up

the objects' individual sizes (using the radii), if the sum is greater than the distance

between the two objects, then a collision is detected:

;.----distance ----tl

O~ea I

Figure 2-21 Collision Detection Calculation

distance = sqrt(sqr(XI - X2) + sqr(YI - Y2))

Collision = distance < (RI + R2)

or to avoid the expensive square-root calculation, this can be amended to:

collision = (sqr(XI - X2) + sqr(YI - Y2)) < sqr(RI + R2)

When a collision is detected between the two objects (Objectl and Object2),

only one object is to be recalculated and moved. Which one depends on the following:

relocate_after_collision(Objectl, Object2) :­
Objectl is_alive,
(Object2 is_alive, move(Object2);

move(Objectl)),
collision_ detection(Object I, Object2).

% Object! has to be alive
% move Object2 if it is alive
% else move object!
% redo detection

The new location is passed back to the collision detection routine again, to

check for further collisions with that particular pair of objects. Unless the new location

68

C ha p t er 2: The Soft wa re E n vi r o n m en t

is feasible, the next pair of objects are test.ed, until all possible pairings have been dealt

with.

In this syst.em, a new location will have to be proposed recursively until a non­

collision is detected, which means that the overheads are going to be relatively high if

objects are very close to each other. The recalculations in move(Object) are done

using the same rule(s) that were applied to the objects initially, so a new location

generally relies on the random elements of the operator(s) specified within the rule(s).

Since this system calculates keyfrarne output for Swivel 30™, and the smoothing

of the animation is calculated by the interpolation process within the Swivel 3DTM

package, it is possible that objects will collide into each other between keyframes. An

immediate solution to this is to implement a more a sophisticated collision detection

algorithm that checks the paths of objects between each keyframe, or to perform the

calculations of all the in-between frames in Prolog. This would be a task for future

implementation.

Other future work would be to include the implementation of another

constraint, gravity. Environments using the laws of physics could be set up with different

gravity values, such as zero for a free floating experience. An alien or surreal

environment could be explored in such a way, and could enhance other disciplines of

computer animation such as VR (Virtual Reality).

2.8 Inputs &: Outputs

ESCAPE is capable of handling certain input and output files which can be seen in

Figure 2-22.

The Domain file is solely used by the ESCAPE system itself, and is written and

read in MacProlog format. The Playback file which is used to store animation

information (e.g. the location of objects) for a particular run, can also be saved or

opened from within the system in MacProlog format. Picture representation is read in

PICT format, and the interface for accessing this can be seen in Figure 2-10 Creating

New Object Type Dialog box.

69

C ha p t er 2 : The Software En vi r on men t

-

INPUT I; OUTPUT DESCRIPTION: FORMAT

Domain file:

(Defaults, Facts, Rules, and Predicates). MacProlog ./ ./

Playback file MacProlog ./ ./

Picture representation PICT ./ X

Swivel Script Swivel 3D™ Script X ./

Figure 2·22 Input and Output File Formats in ESCAPE

Swivel Scripts can be constructed and output by the system for use in

conjunction with the Swivel 3D™ software for creating 3D colour animations. A Swivel

Script can be seen in Figure 2-23, which shows an example of a three keyframes

animation run of our WorldJelly. The output is written in Swivel 3D™ script format,

comments are in brackets '() '.

Prior to running this script, a World (a Swivel 3D™ terminology for its

workspace) will have to be set up. In the example shown in Figure 2-23, there are three

objects (jeUyl, prawnl and rockl) so, in the Swivel World, 3D models of the three

object will have to be built and each appropriately named (jeUyl, prawnl and rockl),

for the script to work.

The script works by selecting one object at a time using FindObject (by its

name), moving it to the RelPos(X, Y, Z) which usually follows on the next line of the

script. After all objects have been moved, the whole scene is set by using AddKeyFrarne

(which adds the current scene as a keyframe). When all the keyframes are set, the in­

betweening operation can be started automatically by including the script Tween. The

number of in-between frames can be pre-set from within Swivel 3D™. In this example,

only the objects' locations are amended, but other properties can also be changed in

this way, for example size and colour.

7 0

C ha p t er 2; The Soft wa re En vir o n m en t

(This is swivel script output from World: WorldJelly 1.2)
(Planning keyframes from I to 3)

(This is KeyFrame = 1)
FindObject jeUy1
RelPos: 133 88 0 ,
FindObject prawn1
RelPos: 123 188 0 ,
FindObject rock1
RelPos: 150 220 0 ,
AddKeyFrame
DrawWorld

(This is KeyFrame = 2)
FindObject jeUy1
RelPos: 131 113 0 ,
FindObject prawn1
RelPos: 127 167 0 ,
FindObject rock1
RelPos: 150 220 0 ,
AddKeyFrame
DrawWorld

(This is KeyFrame = 3)
Find Object jelly1
RelPos: 130 154 0,
FindObject prawn1
RelPos: 112 173 0,
FindObject rock1
RelPos: 150 220 0,
AddKeyFrame
DrawWorld

Tween

(get the objectjellyl...)
(... set its relative position)
(get the object prawn I...
(... set its relative position

(add this as a keyframe...)
(redraw and update World ...

(add this as a keyframe...)
(redraw and update World ...

(add this as a keyframe...)
(redraw and update World ...

(start in-betweening now ...

Figure 2·23 A Swivel 30 Script File•

This produces a QuickPICS file which contains the complete series of frames for

the animation. Since Swivel 3D™ does not have the facility to preview QuickPICS files, it

is at this point that another piece of software is required to display the animation from

QuickPICS. This is called PACo Producer. It can convert QuickPICS files into

animations to be displayed on the screen. Various animation options can also be

applied such as interlace (reduce tearing), scaling, changing background colour,

looping the animation, adding sounds from external sources and so on.

• Comments on the right had side of the script are added in for the purpose of explanation.

7 1

Chapter 2: The Software Environment

2.9 Summary

The software architecture for the incorporation of a rule-based system (cognitive

approach) with a more traditional computer animation (physical approach) is

described, establishing the needs and the roles of different level of users: animators,

domain experts and software experts. Areas covered in this chapter include the data

structures, the user interfaces, the language processing and grammar rules, the inference

engine, and input/output fonnats.

The physical part of the production environment is adopted by a keyframing

method, which is centred around the direct manipulation of objects on the screen and

the recording of keyframes by means of an interactive control panel. The cognitive

approach provides the facility to define behavioural rules of objects or classes of objects

by means of using the user interfaces. The behavioural rules are expressed in natural

language-like grammar and a parser is needed for handling the meanings of the rules.

Using these behavioural rules, the production system (an inference engine) can

then be driven to suggest transition from one stage to another, the animator can thus use

the system to automatically produce an initial animation. This animation can be further

refined either by the direct manipulation of objects or by altering the set of rules and re­

running the system. This prototype system cannot produce high quality output, but it

does however allow for the output to be incorporated into a 3D modelling or rendering

software, such as Swivel 3D™.

There is no straight forward method for implementing a general purpose system

for the production of behavioural animation, but to learn from experiments. One

important fact learned from the system is that it needs to contain a reasonable set of

standard operators, predicates and vocabulary (for describing the grammar rules) so

that different types of behaviour can be described based on the existing set. Some

predicates may be of no expressive value to a certain world, for example the 'flock

centring' behaviour of living animals has no real meaning for modelling a scene of car

traffic (although the outcome maybe an interesting one!), so they can be separated out

to be included in the domain-specific set.

7 2

- 0

l-,,

Chapter 3: World.Jelly

"There is no particular mystery in animation ... it's really very
simple, and like anything that is simple, it is about the

hardest thing in the world to do."

Bill Tytla.

Chapter Overview

From the problems and difficulties in animating behaviour outlined in Chapter One, to

the design of an animation environment which combines traditional animation

techniques with an expert system processor in Chapter Two, we have seen how the

components of a system such as ESCAPE can be implemented.

In this chapter, the viability of ESCAPE is demonstrated by showing its

application to the world of underwater jellyfish and prawns (which is referred to as

WorldJelly) to give the reader an insight of how a world is set up, and how animation ts

produced from it. This chapter is divided into two parts:

l. Descriptions (§ 3.1 - § 3.2): These sections describe and show how such a world is

set up, how desired behaviours are defined in terms of rules that are

comprehensible both to the user and the Inference Engine, and how the rules are

translated and interpreted.

2. Discussion and Programming Style (§ 3.3 - § 3.5): These sections discuss the

implications of using different inferencing control techniques within the Expert

System, how output is generated, how transition from stage to stage is generated, and

how objects should be ordered. Finally, in Results, the question of what to do with

the solutions suggested by the Expert System are discussed.

7 4

Chapter 3: World.Jelly

3.1 World.Jelly Database

A fish-tank scene called WorldJelly is set up, in which there are three main types of

object: 'JELLYFISH', 'PRAWN', and 'ROCK'. To simplify the animation, one agent of

each type of object is used; they are named jellyl, prawnl and rockl respectively. The

task is to construct a set of rules to enable the simulated agents to behave in such a way

that they roam freely within the tank in any direction, seek food, avoid collisions, avoid

danger and so on: static objects must stay where they are. The graphical interface of the

WorldJelly scene can be seen in Figure 2-4 (p 34).

To set up the database for this world, four sub-files (defaults, facts, rules and

predicates) for the domain have to be constructed as mentioned in § 2.2.3: Domain

Database. Here, extracts from the database will be used to explain their significance in

the following sub-sections. A full listing of the database for this domain can be seen. in

Appendix D.

3.1.1 Defaults

Using the example above, there are three types of object and they can be defined in the

database as:

defaults types(['JELLYFISH', 'PRAWN', 'ROCK']).

and for each type of object, a generic name is given as:

defaults name('JELLYFISH', jelly).
defaults name('PRAWN', prawn).
defaults name('ROCK', rock).

name is not only beneficial for immediate recognition of an object and its type,

but is also useful for creating a new objects by incrementing the number of the objects

of the same type, for example, jellyl,jelly2,jelly3 and so forth.

7 5

Chapter 3: World.jelly

Other default properties/attributes needed to assign to the objects:

defaults property('JELLYFISH', [alive]).
defaults mass('JELLYFISH', 5).
defaults size('JELLYFISH', 21).
defaults vis('JELLYFISH', 150).
defaults maxSpeed('JELLYFISH', 40).

defaults property('PRAWN', [alive]).
defaults mass('PRAWN', 1).
defaults size('PRAWN', 4).
defaults vis('PRAWN', 80).
defaults maxSpeed('PRAWN', 40).

defaults property('ROCK', [static]).
defaults mass('ROCK', 10).
defaults size('ROCK', 25).

Note: tbe numeric values are just units, which do not represent imperial or metric

entities in any way. WorldJelly is set in 2D.

The properties/attributes may be taken to have tbe following meanings:

• property sets tbe list of properties of an object, for example whether they are initially

alive or static.

• mass is the mass of an object, it is used for dynamic calculations when the mass of

an object is needed to estimate its speed, forces and so on.

• size is the size of an object, the value is its radius.

• vis is the visibility threshold beyond which distance the object cannot see.

• maxSpeed is tbe maximum speed an object can travel.

Note also that since objects witb tbe type 'ROCK' are static in nature, vis and

maxSpeed are not required here. This part of tbe program depends on individual

intuitions - common sense.

In order for tbe viewer to see these objects, picture representations are required

to display tbem on the screen. These pictures are imported as PICT images using tbe

object tool as mentioned in § 2.3: User Interfaces. The PICTs are stored as resources in

a file called Objs.PICT.rsrc (one for all domains) which is opened by tbe system when it

7 6

Chapter 3: World.Jelly

is first run. These PICTs have their own unique ID, and the system needs to know

which PICT is representing which obj ect, so the first thing that needs to be done is to

tell the system which ID represents which object:

set_prop('JELLYFISH', left, resource(200)) .

set_prop('JELLYFISH', right, resource(201)).

set_prop('PRAWN', left, resource(210)).

set_prop('PRAWN', right, resource(211)).

set_prop('ROCK', left, resource(220)).

set_prop('ROCK', right, resource(221)).

Figure 3·1 Object Pictures for World.Jelly

• •

set_prop (se t property) is a standard MacProlog command for inserting a

property into the working memory so it can be retrieved at any time (in § 2.2.1, picture is

used instead which has the same feature) . To make the preview a little more interesting,

left/ right facing pictures for each object type have been incorporated . Although

'ROCK' type does not move, a pleasing variation is to have two different looking rocks

when setting up a scene.

3.1.2 Facts

After the defaults are set, instances(§ 2.2.1: Objects & Agents) can be introduced. The

information about the instances are kept as facts, and they can be entered via the Get

Object Information Interface as shown in Figure 2-8 (p. 41) , o r directly input into the

Domain: Facts flle by a domain expert.

In this example, the objects jelly1, prawn1 , and rock1 are declared as instances

of some type:

fact obj_type(jelly1, 'JELLYFISH').
fact obj_type(prawn1, 'PRAWN').
fact obj_type(rock1, 'ROCK').

7 7

Chapter 3: World.jelly

then addition properties and locations are given as follows:

fact property(jelly I, [alive]).
fact location(jellyl, pt(65, 49)).

fact property(prawnl, [alive]).
fact location(prawnl, pt(134, 96)).

fact property(rock1, [static]).
fact location(rockl, pt(147, 173)).

When a new object is created, it inherits all the defaults settings of its chosen

type (see page 76). For example, a further new object of type 'ROCK' will be called

rock2, and will have mass = 10, size= 25, and property = [static]. Note that defaults

properties are not the same as fact properties, here is the difference:

defaults property('ROCK', [static]). % properties for type 'ROCK'

fact property(rock2, [static]). % properties for object 'rock2'

The definition of the world and the objects is now complete. The domain is

now ready to run once some rules are defined. A start and an end goal can be set to tell

the system when to start and when to stop, this is done by including the following line:

fact plan 1 to 16.

which tells the inference engine to plan a sequence from 1 to 16 (16 time intervals),

these time intervals will form the keyframe intervals after each successful iteration. If no

special instructions are given to the system, it will run continuously (memory

permitting) until interrupted by the user by holding down the 'command · . (period)'

key combination.

3.1.3 Rules

The Rules are the driving force for the inference engine. The following are some the

rules written to produce our WorldJelly animation (full listing available in

Appendix D).

In this WorldJelly example, the behaviour of an object of type PRAWN will be

followed closely. The relationships between objects of the type PRAWN and other

7 8

Chapter 3: World.Jelly

objects of the types JELLYFISH and ROCK in the domain are represented as rules

(shown in Figure 3-2). The active objects are prawnl,jeUyl and rockl respectively.

% objects of PRAWN type are 'food_of JELLYFISH type
rulel : if [objectl, has_type, 'PRAWN',

and, object2, has_type, 'JELLYFISH']
then [objectl, is_food_of, object2].

%objects of JELLYFISH type are 'predator_of PRAWN type
rule2: if [objectl, has_type, 'PRAWN',

and, object2, has_type, 'JELLYFISH']
then [object2, is_predator_of, objectl].

% ROCK type are 'shelters_for' PRAWN type if they are near
rule3 : if [objectl, is_nearby, object2,

and, objectl, has_type, 'PRAWN',
and, object2, has_type, 'ROCK']

then [object2, is_shelter_of, objectl].

% if an object is_nearby 'a_predator' (rule2),
% then object has property 'is_escaping_from' predator
rule6 : if [objectl, is_nearby, object2,

and, object2, is_predator _of, object I]
then [objectl, is_escaping_from, object2].

% if an object 'is_escaping' (rule6) and a_shelter (rule3) is nearby,
% then moves towards it
rule7: if [objectl, is_escaping_from, object2,

and, object3, is_shelter_of, objectl,
and, objectl, is_nearby, object3]

then [objectl, plans_encounter_to, object3].

% if object 'is_ escaping' (rule6) from 'a_predator',
% then it tries to get away from predator
ruleS: if [objectl, is_escaping_from, object2]

then [objectl, plans_getaway_from, object2].

% if an object is alive, then meanders
rule9 : if [objectl, is_alive]

then [objectl, meanders].

Figure 3·2 Some Rules from World.Jelly

In Figure 3-2, the user generated facts (such as 'is_food_of, 'is_predator_of and

etc.) are shown in plain-style (non-bold) so they can be distinguished from the standard

79

Chapter 3: World.Jelly

keywords, predicates and operators (in bold). These user generated facts can be used

in subsequent mles, combining with other generated facts or any of the standard

predicates/operators to create new facts. There is no limit to how many facts can be

generated in such a way.

3.1.4 Predicates

Predicates includes clauses written in Prolog for carrying out domain-specific low level

tasks such as movements. These tasks include predicates and operators, and they need

to be "labelled" at the top level so that they exist for the inference engine prior to

executing the codes (as this is essential for the language interpreter to handle the syntax

properly). The "labelling" process is accomplished by giving a precedence order (§ 2.6)

to each operator and predicate and then dividing them into two lists: domainActionList

and domainPredicateList. If there is no defined domain predicate or operator, an

empty list ([]) is given.

In this domain, there are three domain specific actions being introduced:

meanders -for an object to move or meander in all directions; plans_encounter_to - for

an object to plan an encounter with a chosen object; plans_getaway_from- for an object

to plan an escape from another object. The "labelling" process is demonstrated as

follows:

%% operator precedence definitions
:- op(220, xf, meanders).
:- op(220, xfx, plans_encounter_to).
:- op(220, xfx, plans_getaway_from).

%% domain defined lists
domainPredicateList([]). % no defined domain predicate
domainActionList([meanders, plans_encounter_to, plans_getaway_from]}.

Since this domain is a model of a underwater scene, living objects can freely

move in any direction (360° freedom in 2D world), meanders is the means which an

object advances to the next location. The transition of meanders is carried out by

obtaining two random numbers (X and Y) based on the maxSpeed of the object

concerned, with the upper limit (Max) being the maxSpeed value, and the lower limit

(Min}, the negative value of maxSpeed. This is demonstrated as follows:

80

Chapter 3: World.Jelly

I* meanders *I
I** I

Object meanders :-
get_prop(level, meanders, Level), % get Level for meander
get_prop(rule, number, RuleNo), % get the current rule number
get_prop(frame, current, Now), % get the current frame number
get_prev_locn(Object, Now, pt(X, Y)), % get Object's previous locn
maxSpeed(Object, Max), % get Object's max speed
make_neg(Max, Min), % Min = -Max
random(XRand, Min, Max), % Xrand =random(Min, Max)
random(YRand, Min, Max),
Xl iB X + Xrand, % add the difference
Yl iB Y + YRand,
Action= poss_locn(Object, Now, Level, pt(XI, Yl)),
do(Action, RuleNo), I. % carry out Action

This is a simple form of meandering that does not take momentum into

consideration, so sometimes objects may appear to jump' unpredictably from left to

right, up and down. However, if the same object is under the influence of other rules

(hence other actions), the resultant outcome can be quite convincing. (This is covered

in § 3.5: Results to show how different methods can be used to achieve this visual

subtlety).

(See Appendix D.4 for a full listing of plans_encounter_to and plans_getaway_from.)

3.2 Rules Parsing

The Language Parser uses standard Prolog DCG (Definite Clause Grammar). The main

purposes of the Language Parser (sentence) are, for any given rule, to check the syntax

and to decompose a complex rule into simpler and manageable phrases while still

preserving meaning. The output is then passed to the translator for the instantiation of

variables to be carried out. See § 2.4: Language Processing of Grammar Rules for a full

description of how the Language Parser and Translator work.

In the following sub-sections, two rule examples taken from WorldJelly are used

to show how rules are parsed. The steps are illustrated in Figure 2-20 (p. 66).

8 1

Chapter 3: World.Jelly

3.2.1 Rule Example I

Rule example 1 consists of two conditions and one action that states:

if [objectl, is_nearby, object2,
and, object2, is_static]

then [objectl, meanders].

this can be extracted in the form:

Conds = [object!, is_nearby, object2, and, object2, is_static].
Actions= [object!, meanders].

When Conds is passed to sentence:

sentence(X, Y, Z, Ml, Conds)

=> X= _158, Y = _159, Z = _160,
Ml = X is_nearby Y and Y is_static

where, a number preceded by an under score represents a variable in Prolog. X, Y, and

Z are variables for objectl, object2 and object3 respectively. Ml is instantiated to the

original clause but as a Prolog structured object (not a Prolog list).

Ml is then passed to translate for the variables X and Y to be instantiated by

matching Ml against the current database. Z is insignificant in this example as there are

only two objects involved, and will be discarded automatically without affecting the

result.

When translate(Ml) is initiated, the clauses X is_nearby Y and Y is_static are

tested separately, but the variables X and Y are kept consistent. Since is_nearby and

is_static can be found in the standard rulebase (see § 2.5.1, p. 56), this operation is

effectively interpreted as standard Prolog: is_nearby(X, Y), Y is_static. This will search

for all possible solutions of any two objects that are nearby each other at this time,

where one is a static object. Mter matching the database, in this case, there are two

solutions:

8 2

Chapter 3: World .Jelly

N2 1 Ml = jellyl is_nearby rockl and rockl is_static.
(where objectl =jelly I and object2 = rockl)

N22 Ml = prawn} is_nearby rockl and rockl is_static.
(where objectl = prawnl and object2 = rockl)

The syntax of Actions is also tested in the same way as mentioned above:

Actions= [objectl, meanders].

sentence(X, Y, Z, M2, Actions)

X = _158, Y = _159, z = _160,
M2 = _158 meanders

Since only object! is required in M2 and it has already been found in Ml that

there are two possible solutions to object} (N111 = jellyl , N°2 = prawnl), they can be put

directly into M2 (further translation for Actions is not required since the variables are

already instantiated by the translation of Conds, see Figure 2-20). So there are two

actions to be carried out:

N°l M2 =jelly I meanders.
(when objectl = jellyl)

N°2 M2 = prawnl meanders.
(when objectl = prawnl)

A graphical approach showing how the Language Parser handles this particular

rule can be seen in Figure 3-3. There are three objects in the domain: jellyl, prawnl

and rockl.

8 3

C h ap t e r 3: Wor ld .J e ll y

fact jellyl has_ type ' JELLYFI SH ' .
f act l ocation(jel lyl, pt(Xl , Yl)).
fact j elly! i s_alive.

f act prawnl has_t ype 'PRAWN'.
f act location(prawnl, pt(X2, Y2)).
f act prawnl i s_a live .

fact r ockl has_type 'ROCK' .
fact location(rockl, pt(XJ, Y3)).
fac t r ockl is_static

(a) Initial State

Conditions Actions

object! is_nearby object2 and obj ect2 is_s t atic object! meanders

Condition! Condition2

object! is_nearby objec t 2 objec t 2 is_stati c

Optionl

ob j e c t l(j e llyl)
ob j e c t 2 (prawnl)

No Match

Actions

Option2

obj ectl(j ellyl)
obj ect2 (rockl)

and

object2 (rockl)

Matchl

obje ctl(jellyl)
object2 (rockl)

Option3

object l(prawnl)
object 2 (rockl)

Match2

objectl (p rawnl)
object2 (rockl)

(b) Interpretation of a Rule

Figure 3-3 Rule Parsing to Executing Actions: (a) Initial State {b) Interpretation of a Rule

8 4

C h a pt e r 3 : W o rld .J e ll y

By matching the database, Condition! (object! is_nearby object2) gives 3

optio ns and Condition2 (object2 is_static) gives only 1 option. When the combina tions

are paired , only two match , Matchl and Match2, and as a result, two Actions

(meanders(jellyl), and meander(prawnl)) are carried out.

The log output would be:

jellyl is_nearby prawn!.
jellyl is_nearby rockl.
prawnl is_nearby rockl.
New fact: 18 poss_locn(jellyl, 1, pt(73, 60))
New fact: 19 poss_locn(prawnl, 1, pt(26, 12))

3.2.2 Rule Example 2

Rule example 2 consists of three conditions and one action that states:

if [object!, is_escaping__from, object2,
and, object!, is_nearby, object3,
and, object3, is_shelter_of, object!]

then [objectl, plans_encounter_to, object3].

this can be extracted in the form of:

Conds = [objectl, is_escaping__from, object2,
and, objectl, is_nearby, object3,
and, object3, is_shelter_of, object!].

Actions = [object!, plans_encounter_to, object3].

When Conds is passed to sentence:

sentence(X, Y, Z, Ml, Conds)

X = _192, Y = _193, Z = _194,
Ml = X is_escaping__from Y and X is_nearby Z and Z is_shelter_of X

Similarly, Ml is then passed to translate for the variables X, Y and Z to be

instantiated by matching Ml against the current database. M ter matching the database,

in this case, there is only one solution for the conditions:

8 5

Chapter 3: World.Jelly

N°l Ml = prawnl is_escaping_from jeUyl,
and prawnl is_nearby rockl,
and rockl is_shelter_of prawnl.

(where object} = prawnl , object2 = j ellyl and object3 = rockl)

objectl and object3 from the solution can now be applied to the action

associated with it (object2 is not required in Actions) :

Actions= [object!, plans_encounter_to, object3)

sentence(X, Y, Z, M2, Actions)

X= _192, Y = _193, Z = _194,
M2 = _192 plans_encounter_to _194

Since only object! and object3 are needed now, and they have to be consistent

in both cases of Conds and Actions, there is only one solution:

N 2 1 M2 = prawnl plans_encounter_to rockl.
(where object} = prawn I and object3 = rock})

These illustrations show that the system generates all possible future states from

an initial state and a set of rules. At present, all actions eventually lead to the generation

of suggested transitions from one location to another. However, in the fu ture, more

sophisticated behaviour such as the changing of colour and size can also be

incorporated.

3.3 lnferencing

In the second part of this chapter, the various different inferencing/ control methods

and programming styles in implementing the system are discussed.

At the global level of control within an expert system, the rules can be driven

backwards or forwards. A conclusion that a user wishes to establish can be chained

backward, by establishing the conditions necessary for its veracity, and thus seeing if it

can be supported by the initial facts. In this case, special goal statements in the working

memory are matched against the right-hand side of the rules. Modifications to working

memory then manipulate these goal statements (e.g. replacing them with subgoals), as

8 6

Chapter 3: World.)elly

well as modifying patterns of data. In the case of medical diagnosis, where backward

chaining methods are often used, (for example MYCIN Appendix 82), the existence of

evidences about the symptoms of an illness can be traced backwards to find their

medical cause. This type of reasoning gives a tight logical argument in a narrow

structure to work directly towards a goal.

However, those conditions that are known to be true (established facts) can be

chained forward towards conclusions by matching the data in working memory against

the left-hand side of the rules. An example of type of system is RI, the program that

configures VAX computers (Appendix 82).

When trying to model varied and more life-liked behaviour of living objects, one

possible way is to influence the future of individual object by taking different intentional

actions under certain situations. As in real life, the future is unpredictable. One could

argue that one cannot predict future events, but one can try to steer towards a goal.

Intentional action is not aimed at bringing about a particular state but rather at steering

a course between various constraints hopefully in the general direction of one or more

goals - what Such man (1987) calls "situated action". A goal for a simple animal as an

example would be to stay alive; but this also means that it has to eat and avoid being

eaten by another animal.

Forward chaining seems to suit this situation well because it has a tendency to

branch forward, exploring all possibilities. Forward chaining gives a \vider variation of

choices (am I hungry? eat now or later? is there a danger nearby?), however, it has to be

carefully conu·olled and the branching has to be confined otherwise it will produce

more information than that needed. This will be discussed further in the next two

sections (§ 3.4 & § 3.5).

Although the system uses a forward chaining algorithm, problems can be

presented to it in two different forms: goal-oriented and non goal-oriented. Each of

these will be demonstrated with working examples.

3.3.1 Example 1 : Goal·Oriented

The system is given a set of facts representing the final goal and a set of rules containing

all constraints and it applies all its rules to these facts, generating new facts until the goal

state is reached or no solution can be found (e.g. all frames are planned or it can go no

further).

8 7

Chapter 3: World.Jelly

The important part of the problem solving strategy adopted in this example is

how the initial time slot is divided and subsequently subdivided into smaller ones, so

different actions can be carried out according to the locations of the objects and their

speed. For example, if object X is going from location A to location B, depending on

the distance between A and B and also the amount of time available to get there, X can

choose to propel (swim faster) or meander (swim slower). These will be explained

later.

In this example there are three objects (jellyfish I, prawn I and rock I). Their

initial and final locations as well as the time and location of two encounters are

apprised. Figure 3-4 shows the facts that are needed and these form the initial state of

the database. A set of rules are also needed which tell the system such things as how to

plan a sequence (by subdividing it), how to plan a particular state and how to make

objects move. Figure 3-5 shows some such typical rules.

% basic facts about each object
obj_type(jellyl, [alive]).
obj_type(prawnl, [alive]).
obj_type(rockl, [static]).

% facts about this run: planning from time I to 16
plan l to 16.

% initial positions for objects
% location(Object, Time, Loc)
location(rockl, I, pt(83, -108)).
location(jelly1, I, pt(-200, -130)).
location(prawn1, 1, pt(172, -170)).

% final positions for objects
% location(Object, Time, Loc)
location(jelly1, 16, pt(-200, -130)).
location(prawn1, 16, pt(172, -170)).

% the encounters
jelly1 encounters rock1 at time(3) at pt(83, -108).
jelly1 encounters prawn1 at time(10) at pt(-183, 27).

Figure 3-4 Facts Required for Example 1: Goal Oriented

88

Chapter 3: World.Jelly

% if there is an encounter within a sequence, then plan the encounter,
% then plan the sequences before and after it
rule2: if plan Timet to Time2

and jelly encounters Something at time(TimeN) at P
and TimeN between Timet &: Time2

then plan_state TimeN at P
and plan Timet to TimeN
and plan TimeN to Time2
and undo(plan Timet to Time2).

% if the jellyfish has to move slowly (average speed =<45),
% then make it meander
rule6: if move(Timet, Time2)

and is_average_speed(Timet, Time2, A)
and less_than_or_equal_to(A, 45)

then meander(Timet, Time2).

% if the jellyfish encounters a static object,
% then make the jellyfish move upwards 80 units one frame later
rulel2: if encounter(jelly, Object, Timet, SomePlace)

and property(Object, static)
and move(Timel, Time2)
and after(Timel, I, TimeN)
and not(location(jelly, TimeN, _))

then above(SomePiace, 80, NewPiace)
and plan_state TimeN at NewPiace
and planmove TimeN to Time2
and undo(move(Timet, Time2)).

Figure 3·5 Some Rules Required for Example 1: Goal Oriented

The main inference routine repeatedly applies all rules to the database until

there are no changes. In each pass, each rule is tested to see if its conditions can be

met. If they can, the actions are performed and the search continues for any more ways

of satisfying the same conditions. Only when all possible ways of meeting the conditions

have been explored does the system proceed to look at the next rule.

The language used for defining rules in Figure 3-5 has certain operations which,

as we have seen, will be performed when the rule is fired. These may vary from

application to application but are mainly logical, spatial and temporal operators, these

are some example of operators for example 1:

89

C h ap t e r 3:

above,
below,
greater_than,
has_type,
is_between_places,
is_ bigger _than,
is_not_same_as,
is_same_size_as,
is_smaller_than,
less_than,

World.Jelly

after,
between,
greater_than_or_equal_to,
is_average_speed,
is_between_times,
is_nearby,
is_same_as,
is_same_type_as,
less_than_or_equal_to,
position_ of

The system is initiated and an extract from its log output is shown in Figure 3-6:

**Pass 1
New fact: 13 plan(1 to 16) by rule1
New fact: 14 plan_state(3 at pt(83, -108)) by rule2
New fact: 15 plan(1 to 3) by rule2
New fact: 16 plan(3 to 16) by rule2
Deleting fact: 13 plan(1 to 16) by rule2

% encounter at time 3
% move plan I
% move plan 2

%% an e ncounter at time 3 has been used to divide the plan into 2 parts

New fact: 22 move(1, 3) by rule7 % move identified
New fact: 23 move(10, 16) by rule7 % move identified
New fact: 24 location(jelly1, 3, pt(-83, -108)) by rule9 % encounter pt I fixed
New fact: 25 location(jelly1, 10, pt(-183, 27)) by rule9 % encounter pt 2 ftxed
New fact: 26 location(prawn1, 10, pt(-183, 27)) by rule10 % encounter pt 2 fixed
%% some positions are fixed and two moves are identified

**Pass 2
New fact: 27 plan_state(10 at pt(-183, 27)) by rule2
New fact: 28 plan(3 to 10) by rule2
New fact: 29 plan(10 to 16) by rule2
New fact: 30 propel(1, 3) by rule4
New fact: 31 meander(10, 16) by rule6
%% the nature of the j ellyfish 's move is decided

New fact: 37 location(jelly1, 6, pt(-107, -18)) by rule6

%encounter at time 10
% move plan 3
% move plan 4

%% an intermediate position of the jellyfish move is calculated

** Pass 3
New fact: 39 meander(3, 10) by mle6
%% jellyl meanders from time 3 to 10

Figure 3·6 Runtime Extracts for Example 1: Goal Oriented

9 0

Chapter 3: World .Jelly

It can be seen that how the initial time slot is being divided and subsequently

subdivided into smaller ones. A simple graphical view of how the time slots are planned

can be seen in Figure 3-7:

1 3

I
I(

10 16 time

•• Pass 1

plm (I to 16) t-1 T-: ------------71~ by rulel

pbn (!to 16)
I

1--------~)o by rule%
lpbn (1 to~ 1
I I

~---- plm (3to 10) plm (10 to 16)

jeUy1 encountersrocld jeUyl encouotersprawol
here at pt(85 .J~) here at pi(·185, '17)

Figure 3-7 Time-planning

**Pass 2

by rule%

Eod of mimatioo

As shown in Figure 3-6, processing starts from •• Pass 1. rule1 initiates the

planning process by planning the whole period as one, plan(1 to 16). When rule2

detects the first encounter at time = 3 between jelly1 and rock1 (told, see Figure 3-4), a

new plan is obtained by division:

plan(1 to 16) = plan(1 to 3) and plan(3 to 16).

For administrative purposes, the old plan plan(1 to 16) will have to be deleted

from the database (shown in Figure 3-7 in boxes) by using the undo operator. lf left, it

would continue to generate sub-plans for each time-slot.

During •• Pass 2, again rule2 detects an encounter at time = 10 (between jelly1

and prawn1), a further plan is needed from plan(3 to 16) (as 10 falls between these

times):

plan(3 to 16) =plan(3 to 10) and plan(10 to 16).

Similarly, plan(3 to 16) is deleted from the database. Since there are no other

known encounters, the final number of plans to be completed are three:

9 1

Chapter 3: World.Jelly

plan(I to 3), plan(3 to 10) and plan(10 to 16).

Within each of these time-slots, the movement is conducted by using either the

meander or propel operators. Since the encounter locations and the time (e.g.

plan(1 to 3) to get there are known, an average speed can be calculated, a threshold

value can then be set (in this case 45 units, see rule6 in Figure 3-5) to determine which

operator will be used. If the average speed is larger than the threshold value, it means

that the object is in a hurry to get to its destination, so it will have to propel, otherwise it

will meander. The need to have these two different operators lies in the randomness in

each case: propel tends to have a 'focus' on the location it is heading for, thus the

randomness in the degree of direction would be less than that of meander. When an

object has more time than it needs to get to its destination, it can 'waste-time' by

meandering about.

Mter 13 passes, the system can make no more changes to the database and

creates, as output, a list of all the locations it has determined, see Figure 3-8:

% locations for jelly 1
location(jelly1, 1, pt(-200, -130)).
location(jelly1, 3, pt(83, -108)). % encounter with rock!
location(jelly1, 5, pt(-65, -71)).
location(jelly1, 6, pt(-107, -18)).

location(jelly1, 10, pt(-183, 27)) % encounter with prawn!

location(jelly1, 16, pt(-200, -130)).

% locations for prawn!
location(prawn1, 1, pt(172, -170)).
location(prawn1, 3, pt(72, -55)).
location(prawn1, 5, pt(-33, 9)).
location(prawn1, 6, pt(-103, 31)).

location(prawn1, 10, pt(-183, 27)). %encounter with jelly!

location(prawn1, 16, pt(172, -170)).

% locations for rock!
location(rock1, I, pt(83, -108). % since rock! is static ..

% ... all the locations are ..
location(rockl, 16, pt(83, -108). % ... the same.

Figure 3·8 Location output for Example 1: Goal Oriented

9 2

Chapter 3: World.jelly

Where there are no details for a time slot (for example Time = 2, 4 etc.) then

simple averaging is used to calculate these positions from within the system. The final

output can then be converted and fed into the Swivel 3D™ model to drive the

animation.

The goal-oriented approach requires that the goals (as facts) and rules be

entered into the system. Rules written this way do not suggest but rather, determine the

future states by sub-dividing time-slots. The main drawbacks with this version are the

complexity of writing the rules, the inability to see the detailed effect of rules on the

animation and the absence of any means to control the animation rather than by

formally specifYing facts or rules.

3.3.2 Example 2 : Non Goal-Oriented

In the second example, the system is given only an initial state and a set of rules and

successive frames are planned until the required time period is completely planned.

There is no final goal state and no additional constraints.

The main inference routine used in this example differs slightly from the

previous example. All the rules in this example refer to changes between one frame and

its successor so the result from one complete pass of the rules is a set of possible moves

that each object could sensibly make. The inference engine then decides on the

resulting location for each object. The progress of the animation can be monitored in a

graphics window.

The same three objects, jelly I, prawn I and a rock I participate. Figure 3-9 shows

the facts that are needed and these form the initial state of the database.

plan I to 7.

object(rockl, rock, [static]}.
location(rockl, pt(150, 220)).

object(prawnl, prawn, [alive]}.
location(prawnl, pt(168, 154)).

object(jelly I, jellyfish, [alive]}.
location(jelly I, pt(123, 103)).

Figure 3·9 Facts Required for Exampie 2: Non-Goal Oriented

93

Chapter 3: World.jelly

Unlike the goal-oriented example as seen earlier, non-goal oriented planning

does not subdivide time-slots, but works from a set of rules which change the state of

objects or directly calculate their next location. Figure 3-10 shows some typical rules:

% When objects are near, the prey plans to escape
rule 3 : if objectl is_nearby object2

and object2 is_predator_of objectl
then objectl plans_getaway_from object2.

% When objects are near, the predator plans to attack
rule 4 : if objectl is_nearby obejct2

and object2 is_food_of objectl
then objectl plans_encounter_to object2.

% When no objects are near, then meanders
rule 5 : if objectl is_alive

then objectl meanders.

% When no objects are near, then stay there
rule 6 : if objectl is_static

then object stay_there.

Figure 3-10 Some Rules Required for Example 2: Non-Goal Oriented

When the animation is run, an extract from the log is shown in Figure 3-11.

Here, operators (such as plans_encounter_to, meanders etc.) triggered by the rules are

assigned priority levels (lower number denotes higher priority). Looking at the log

output in Figure 3-11, at Pass= 7, there are two poss_locn (possible locations) for jellyl

as generated in Newfact 62 and 64:

New fact: 62 poss_locn(jellyl, 7, 3, pt(l66, 94)) by rule 4
New fact: 64 poss_locn(jellyl, 7, 4, pt(l56, 55)) by rule 5

9 4

%level 3
%level 4

Chapter 3: World.jelly

•• Pass= I
% poss_locn(Object, Time, Priority_level, Location)
New fact: 16 poss_locn(prawn1, 1, 4, pt(245, 139)) by rule 1
New fact: 17 poss_locn(jelly1, I, 4, pt(IOO, 95)) by rule 1
New fact : 18 poss_locn(prawn1, I, 2, pt(245, 139)) by rule 3
New fact: 19 poss_locn(rockl, 1, 5, pt(150, 220)) by rule 6
Deleting fact: 2 :plan (1 to 7) by main inference ..•
New fact : 20 plan (2 to 7) by main inference .•.

'"*Pass= 2
New fact: 22 poss_locn(prawn1, 2, 4, pt(243, 164)) by rule 5
New fact : 23 poss_locn(jellyl, 2, 4, pt(l04, 74)) by rule 5
New fact: 24 poss_locn(rockl, 2, 5, pt(l50, 220)) by rule 6
Deleting fact: 20 : plan (2 to 7) by main inference ...
Level =4 New fact: 25 location(jellyl, 2, pt(104, 74)) by resolving ..•
Level =4 New fact: 26 location(prawnl, 2, pt(243, 164)) by resolving ...
Level =5 New fact: 27 location(rockl, 2, pt(l50, 220)) by resolving ...
New fact: 28 plan (3 to 7) by main inference ...

**Pass= 7
Distance Btw jelly I and prawn1 is 88. By Rule 4
New fact: 62 poss_locn(jellyl, 7, 3, pt(l66, 94)) by rule 4 %level 3
New fact: 63 poss_locn(prawnl, 7, 4, pt(l89, 194)) by rule 5
New fact: 64 poss_locn(jelly1, 7, 4, pt(l56, 55)) by rule 5 %level 4
New fact: 65 poss_locn(rockl, 7, 5, pt(l50, 220)) by rule 6
Deleting fact: 60 : plan (7 to 7) by main inference ...
Level =3 New fact: 66. location(jellyl, 7, pt(l66, 94)) by resolving ...
Level =4 New fact : 67 location(prawnl, 7, pt(l89, 194)) by resolving .•.
Level =5 New fact: 68 location(rockl, 7, pt(l50, 220)) by resolving ...

Figure 3-11 Runtime Extracts for Example 2: Non-Goal Oriented

This situation arises when jellyl satisfies the two mles, rule4 : "if nearby food

then plans encounter to food" and rule5 : "if alive, meanders". Since

plans_encounter_to (level 3) has a higher priority than meanders (level 4) it determines

the final location of jelly I (see § 3.5: Results for how levels are defined and how different

solutions are solved):

New fact: 66 location(jellyl, 7, pt(l66, 94)) by resolving ...

Unlike the goal-<>riented example, having completed the nm, all seven keyframes

will have a location allocated to each object involved so no extra averaging or in­

betweening process is needed. A list of these locations for all objects can be printed out

9 5

Chapter 3: World.jelly

in Swivel Script format to generate the keyframes and animations from within Swivel

3D™, see Figure 3-12:

(This is KeyFrame = 1)
jellyl: 100, 95, 0
prawnl: 245, 139, 0
rockl: 150, 220, 0

(This is KeyFrame = 2)
jelly!: 104, 74, 0
prawnl: 243, 164, 0
rockl: 150, 220, 0

(This is KeyFrame = 7)
jellyl: 166, 94, 0
prawnl: 189, 194, 0
rockl: 150, 220, 0

Figure 3·12 Output for Swivel Script of Example 2: Non-Goal Oriented

The non goal-oriented approach, once again produced a number of acceptable

animations. This approach was adopted for further development as the number of rules

and the complexity of writing them are reduced considerably when compared with the

goal-oriented approach. Moreover, this approach also produced more interesting

results because it allowed for further branching and exploring all possibilities of

different situations. However, these 'branches' would need to be filtered in order to

make the system more productive at solving problems rather than suggesting more than

what was needed. These filtering processes will be discussed in § 3.5: Results.

3.4 Ordering

Why is ordering a problem? Prolog objects are handled in the memory by their names

(e.g. jellyl), which are picked sequentially one at a time when called from the existing

objects list (e.g. (jellyl, prawnl, rockl]). By (Prolog's) default, these names are sorted

into ascending alphabetical order within the described ESCAPE system.

Take an example of pairing any two of these four objects, A, B, C, and D.

Assuming objects cannot pair with themselves, (e.g. AA, BB, CC and DD) and repeated

96

Chapter 3: World.Jelly

pairings are discarded (i.e. AB = BA, AC = CA etc.), it would give six possibilities as

shown in Figure 3-13:

AB, AC, AD,

BC, BD,

CD.

(AA)

(IV I BB)

(C.A,CB, CC)

Figure 3-13 Pairing Sequence of Four objects

Also, assuming that the testing routines within the inference engine involve only

the interaction between two objects, the above pairings would form the basis of all the

testing sequences to be examined by all the rules.

In this section, the issues involved in the ordering of objects are discussed. The

problem lies in the order in which they are presented. This is one of those problems

that was not foreseen until the later stages of the designing of the system.

3.4.1 Object Ordering

The order of the pairing sequence as shown in Figure 3-13 is satisfactory if these objects

are in a world where there is not much happening apart from roaming around, avoid

colliding into each other, and there is no fear of getting eaten or killed. In the case of

resolving a collision, it doesn't matter which object remains static and which has its

position adjusted.

However, such an approach would not be feasible when representing examples

such as flocking birds, a school of fish, or a herd of animals, because here, ordering

does play an important role. In these cases, there is usually a leader which other

flockmates tend to follow. Each flockmate has the same chance of moving ahead and

effectively becoming the leader, so it is important that the new leader and their location

is resolved first.

Let us assume that there are four birds in a flock, birdl, bird2, bird3, and bird4.

If finding a leader is not a priority, then the pairing sequence as shown in Figure 3-13 is

adequate; but if a leader is required then some ordering process is needed. Given their

locations and the directions the birds are travelling, an order can be constnacted in

which the front most bird (relative to the flock) is placed first in the list, followed by the

second and so on.

97

Chapter 3: World.jelly

Let us say, after sorting, the order of a flock of birds is: [bird3, birdl, bird4,

blrd2], where the leader is bird3, then followed by birdl, bird4, and bird2. The

inference engine works in a way that bird3 is examined first and after certain routines of

movement and collision detection, a desirable location is given to bird3. When the

second in the list, birdl is being examined, it has only one bird to check against for

collision(bird3 with its new location). If all goes well for birdl, bird4 is in place for

examination, against bird3 and birdl. If say, bird4 is found to be in collision with bird I,

immediately a new location can be recalculated for bird4 and rechecked so that the new

location is compatible with bird3 and birdl. This continues until a suitable location is

obtained, then it goes on to the next bird, bird2. If no such ordering is applied, the

whole behaviour of the flock could be different.

3.4.2 Situated Action Ordering

Situated action ordering derives from Situated Action (Such man 1987), which suggests

that in a multi-agent environment, under certain situations, agents naturally possess

different intentional actions which are aimed at steering towards the general direction of

one or more goals.

This can be illustrated in an imaginary chasing scene where a hungry jellyfish is

pursuing a nearby prawn. It can be looked at from two different points of view: the

pursuing agent and the agent being pursued. Realistically, the motion of the jellyfish

depends on the prawn's location, so it only makes sense that a location for the prawn is

determined before the jellyfish's. OtheiWise, if the location of the pursuing jellyfish is

obtained before the prawn's, the prawn could be moving in the opposite direction and

the jellyfish would not be pursuing it.

What will happen if during the chasing scene, the prawn sees a small fish

(prawn's favourite food) meandering nearby? Will it pursue the fish, or will it continue

to avoid the jellyfish?

If objects are given 'memory', and can 'remember' their situated actions at the

previous time interval, an order for objects as mentioned earlier would not have any

significant impact. In the jellyfish example above, the next location for the jellyfish will

still be advanced one step closer to the prawn because it remembers it was pursuing the

prawn. These 'memories' can be suggested to include in the property list of an object

as:

98

Chapter 3: World.Jelly

property(f"lsh1, [is_alive, meandering at_time 13]).
property(jeUy1, [is_alive, is_hungry, pursuing(prawn1) at_time 14]).
property(prawn1, [is_alive, is_hungry, escaping(jeUy1) at_time 13,

sees_food(f"lsh1) at_time 13]).

This should give the same continuity as ordered object lists with respect to the

pursuing ability of the jellyfish, but also combine a hint of unpredictability into the

objects' actions. Imagine, if the prawn suddenly makes a sharp turn to the left, the

jellyfish would not have the empirical information (the next location of the prawn) until

one time interval later, so the action can only be rectified after the subsequent time

interval. Similarly for the jellyfish, using its 'memory' of where the prawn was last seen,

it can predict the direction of the prawn's next move.

But what should the prawn (or in fact any other object) do when faced with the

choice of eat or run? lf some kind of hierarchical ordering is applied whereby different

situated actions are given priorities (situated action ordering), a suitable action can be

resolved. An example can be constructed as:

(higher priority) escaping > pursuing > eating > meandering (lower priority)

For the prawn, there are two situations to be considered: eating and escaping.

The domain can be set up and the inference engine adopted so that both these

situations are taken into consideration, and depending on the chosen resolving method

(for example, it could consider both situations, either one, or the one with the higher

priority and so on), a suitable solution can be obtained.

Both the object ordering and situated action ordering methods contribute to

achieving realistic animation, but it is the situated action ordering method that has been

chosen to be implemented into the ESCAPE system, due to the fact that it produces

significant improvement and provides better control that the other. This, and different

resolution methods, with some of their uses, will be explained in § 3.5: Results.

In future, it is envisaged that both methods will be implemented into the system

leaving the user to choose which method is most suitable in a given domain.

99

Chapter 3: World.Jelly

3.5 Results

The inference engine explores every rule, matching it against the database and

generating a single list of all possible actions. When this has been completed, it groups

the possible actions for each object and passes them to a function which returns the

next state of the object. There are many different strategies that could be adopted for

this function: one possible action could be selected and the rest discarded (e.g. select

the strongest, or the weakest), or a product of all the actions could be found, or a

threshold could be introduced, resolving those that meet it. Different strategies can be

adopted for different domains.

The WorldJelly domain is used as an example here. Several methods will be

discussed for resolving these possible locations. Assuming, the animation of WorldJelly

is governed by these rules,

rule2: if [objectl, is_nearby, object2, and, object2, is_predator_of, objectl]
then [objectl, plans_getaway_from, object2].

rule3: if [objectl, catches, object2, and, object2, is_food_of, objectl]
then [object2, dies].

rule4: if [objectl, is_nearby, object2, and, object2, is_food_of, objectl]
then [objectl, plans_encounter_to, object2].

rule5: if [objectl, is_alive]
then [objectl, meanders].

rule6: if [objectl, is_static]
then [objectl, stay _there],

that the animation has already been started and it is currently at frame number 2. This

is the current database:

frame number = 2,
% there are 3 objects and these are their properties
jeUyl is_alive,
prawnl is_alive,
rockl is_static

jeUyl is_nearby prawnl, % these are the situations
jeUyl is_predator_of prawnl.
prawnl is_food_of jeUyl.

1 0 0

Chapter 3: World.Jelly

Upon running, the system produces the following possible locations

(poss_locn) for all the objects for this frame, the rules that fired the facts are printed

after the facts:

"'*Pass= 2
% poss_locn(Object, Frame, Priority_level, Location)
New fact: 16 poss_locn(prawnl, 2, 1evel_3, pt(l26, 112))
New fact : 17 poss_locn(prawnl, 2, Ievel_2, pt(l30, 120))
New fact : 18 poss_locn(jellyl, 2, Ievel_4, pt(73, 60))
New fact: 19 poss_locn(jeUyl, 2, level_6, pt(70, 28))
New fact : 20 poss_Iocn(prawnl, 2, leve1_6, pt(IOO, 110))
New fact: 21 poss_locn(rock1, 2, Ieve1_1, pt(147, 173))

Figure 3·14 Possible locations of objects

by rule number
by rule2
by rule3
by rule4
by rule5
by rule5
by rule6

Looking at the output in Figure 3-14, the immediate problem here is that some

of the objects have more than one possible location effected by different rules, for

example, prawnl appeared in three newfacts(l6, 17, and 20), andjellyl appeared in two

(18 and 19). This is to be expected, because the conditions of different rules can be

satisfied in more than one way (this will be explained later). But, there can only be one

final move assigned to each object, so a method will have to be found to solve this

problem. Since every poss_Iocn is triggered by a rule, for example,

New fact: 16 poss_locn(prawnl, 2, level_3, pt(l26, 112)) by rule2

is triggered by rule2:

rule2: if objectl is_nearby object2 and object2 is_predator_of objectl
then objectl plans_getaway_from object2.

and it can be seen that the situated action for this rule is plans_getaway_from.

With careful observation, different priorities are given to different actions

according to their importance and urgency. Figure 3-15 shows how a priority table can

be constructed (which may vary for different objects).

1 0 1

Chapter 3: World.jelly

PRIORfiY LEVELS ACTIONS

level_l (Highest) stay_tbere

level_2 dies

level_3 plans_geUn¥ay_fromn

level_4 plans_encounter_to

level_5 mneanders_forward

levei_6(Lowest) mneanders

Figure 3-15 Default Priority Levels for Various Actions

It is arranged in a way such tl1at, mneanders is considered to be least important

(because all living objects move anyway), so it is given tl!e lowest priority 6. Escaping

(plans_getaway_from) is considered to be more important tl!an plans_encounter_to

(food for example), so plans_getaway_fromn has a higher priority level. When an object

is trying to escape from a predator (plans_getaway_from), and it is caught and killed

(dies), the information about it being killed is more important than that of escaping, so

dies has a higher priority. Static objects usually don't move, so stay_there is considered

to have tl!e highest priority. These are tl!e default settings shared by all objects in

WorldJelly.

A different order can be constructed in a similar fashion according to tl!e

actions adopted and tl!e type of domain being modelled, and entered into tl!e database

(at present, only) by tl!e domain expert. One future implementations would be, for all

objects to have a 'priority level table' which can be accessed by tl!e user tl!rough a

graphical interface, so that different settings can be applied to different objects.

Having applied tl!e priorities to different actions, tl!e one final solution of an

object can be deduced by using tl!e priority table. Several methods will be discussed

following tl!is. For tl!e next tl!ree metl!ods, Priority Level metl!ods will be used, and for

tl!e fourtl! a Vector metl!od. Then oilier factors such as randomisation will be

discussed, and finally, the results will be presented.

3.5.1 One Highest Priority Level

This is the simplest method. In this case, only tl!e highest priority level is considered. If

tl!ere is more tl!at one possible solution for tl!e same priority, tl!en only one (tl!e first

one) is chosen and tl!e rest discarded.

1 0 2

Chapter 3: World.jelly

From Figure 3-14, for jelly1, the possible levels were 4 and 6:

New fact: 18 poss_locn(jellyl, 2, leve1_4, pt(73, 60)) by rule4
New fact: 19 poss_locn(jelly1, 2, leve1_6, pt(70, 28)) by rule5

Since level_ 4 has a higher priority than level_7, so Newfact: 18 is chosen to become the

final location for jelly1:

Level= 4 New fact: 22 locn(jelly1, 2, pt(73, 60))

For prawnl, level_2 has the highest priority over level_3 and level_6:

New fact: 16 poss_locn(prawnl, 2, level_3, pt(126, 112))
New fact : 17 poss_locn(prawnl, 2, level_2, pt(l30, 120))
New fact : 20 poss_locn(prawnl, 2, leve1_6, pt(lOO, 110))

so Newfact: 17 is chosen:

Level= 2 . New fact: 23 locn(prawnl, 2, pt(l26, 112))

by rule2
by rule3
by rule5

This option is implemented in the system, under the System menu Solue One

Highest Leuel option.

3.5.2 All Highest Priority Levels

Here, the principle is the same as One Highest Priority, with the exception that if there

is more than one possible solution for the highest priority, then all will be taken into

consideration. This situation arises when different solutions are suggested by different

rules but with the same action. For example,

rule3: if [objectl, is_alive]
then [objectl, meanders].

rule7: if [objectl, is_nearby, object2, and object2, is_static]
then [objectl, meanders].

1 0 3

Chapter 3: World.Jelly

If both the rules succeed (say for prawn1), there will be two different

(randomness permits) possible solutions (say in Ieve1_6):

New fact: 17 poss_locn(prawn1, 2, leve1_6, pt(126, 112))
New fact : 18 poss_locn(prawn1, 2, level_6, pt(l30, 120))

by rule3
by rule7

then the average of the two points pt(126, 112) and pt(130, 120) is the new location:

Level= 2 New fact: 22 locn(prawnl, 2, pt(l28, 116))

This method can represent actions in the face of multiple competing goals and

give that extra unpredictability characteristic of a real-world situation. For example,

when a jellyfish senses a group of prawns nearby, naturally, it tends to go for the centre

of the group, thinking that the chances of catching more than one is high, but that in

fact is not a good strategy.

This option is implemented in the system, under the System menu Solue All

Highest Leuel option.

3.5.3 Combination of Highest Priority Levels

This method involves selecting a number of possible priority levels and finding the

resulting vectors from these selected possible locations.

Let us assume that an object at any time, has the following three possible

locations from the following actions:

PRIORI'IY LEVElS

../ leve1_3

../ level_4

level_6

1 0 4

ACTIONS

plans_getaway _from

plans_encounter_to

meanders

Chapter 3: World.jelly

The user can set a "depth of priority level" value K, whereby only calculations to

the K number of vectors of the highest priorities are performed. Say if K = 2 in the above

example, the two highest priority levels are 3 & 4 as indicated with '.I'.

This gives the user that extra option to choose how much information (out of all

those suggested by the system) is to be used. This option is not implemented in the

system, but is planned for future implementation under the System menu : Others ...

option.

3.5.4 Resultant Vectors

The current approach of considering each object in isolation dearly has some

limitations and it would be preferable, particularly in complex and crowded domains,

for the states of all objects to be resolved together. It is envisaged that a more

sophisticated resolution method could be introduced here. If agents were treated as sets

of vectors, a more sensitive method could be used to resolve them into a single

movement.

The possible actions can be represented as vectors (Andersen 1992) and more

complex vector resolution algorithms can be introduced. This form of representation

could also have benefits for future debugging software.

Let us look at the possible locations for jellyl. In this resultant vector method,

the priority level is made redundant. The following is extracted from Figure 3-14:

New fact: 18 poss_locn(jelly1, 2, level_4, pt(73, 60))
New fact: 19 poss_locn(jellyl, 2, level_6, pt(70, 28))

by rule4
by rule5

Since the previous location of jelly1 is predetermined from the database:

locn(jelly1, 1, pt(65, 49))

the vector values for pt(73, 60) and pt(70, 28) can be calculated from pt(65, 49) .

1 0 5

Chapter 3: World.jelly

A vector has value and direction, so by resolving all the vectors acting o n an

object, a resultant vector can be obtained, and therefore determining where the object is

going next. See Figure 3-16.

R5 (1)

\ RjeUy 'R5(1)
R...prawn

"" R3 (6)
R"--4-(-4)--.

R5(1) =Vector force of a value 1,
acted on by ruleS,

R6

Rjelly = resultant vector for j elly.
R_prawn = resultant vector for prawn.

Rjelly = R5(1) + R4(4)

Figure 3-16 Resultant Vectors

It is also envisaged that these vectors could be presented by arrows (as shown

above) in the graphical windows to give the animator an indication of which rules have

the greatest influence on the whole. This would also be helpful for debugging purposes,

as the rules that are not behaving as intended can be located and perhaps amended.

This is one of the areas to be implemented in future.

3.5.5 Randomisation

Randomisation is important because it helps the user to avoid unrealistically smooth

motion in any results obtained. However, extreme caution has to be taken to ensure its

effect is kept within limits, otherw·ise the results appear frenetic. It is important to know

how to cut down randomisation when needed.

Randomisation is used in all the implemented operators involved in obtaining a

possible location. For example, the operator meanders is used to determine a random

location of an object in all direction. The code is as follow:

1 0 6

Chapter 3: World.jelly

I* meanders *I
I** I

Object meanders :-
get_prop(level, meanders, Level), % get Level for meander
get_prop(rule, number, RuleNo), % get the current rule number
get_prop(frame, current, Now), % get the current frame number
get_prev_locn(Object, Now, pt(X, Y)), % get Object's previous Iocn
maxSpeed(Object, Max), % get Object's max speed
make_neg(Max, Min), % Min = -Max
random(XRand, Min, Max), % Xrand =random(Min, Max)
random(YRand, Min, Max),
X1 is X + Xrand, % add the difference
Y1 is Y + YRand,
Action= poss_locn(Object, Now, Level, pt(X1, Yl)),
do(Action, RuleNo), !. % carry out Action

A random number is obtained from a range limited by the min. and max. values

derived from maxSpeed (see § 2.2.1)- min. is negative value and max. is the positive

value. These random numbers, Xrand and Yrand, are then added to the previous

location of the object, X1 and Y1, to get X and Y. X and Y are then set as a newfact with

level_6 (priority level for meanders).

3.5.6 Results and Output

These are the results produced by the ESCAPE system for World.Jelly with various

options selected. Times are measured in seconds by averaging several runs of the same

animation using MacProlog's internal time resolver, based on the following statistics:

World: World.Jelly 2.3

N° of Frames: 10

N° of Rules: 12

N° of Objects: 6 (2 jellyf"tsb, 3 prawns and 1 rock)

1 0 7

Chapter 3 : World.jelly

~ :-: - .--

I I : ' i
I
I

Text On 51.93 50.42 60.30 59.87

Text Off 38.83 38.62 49.83 49.10

Interactive Run vs. Blind Run 18%

Text On vs. Text Off 21%

Collision On vs. Collision Off 1%

"Full-option" vs. "Minimum-option" * 36%

Figure 3·17 Various Time (in Seconds) Taken to Run World.Jelly 2.3

And it can be seen in the chart in Figure 3-18:

INTERACTIVE
Run

Collision off

Collision on

BLIND Run

Collision off

Collision on

0 10 20 30 40

Time in seconds

Figure 3-18 Time Chart for World.Jelly 2.3

50 60 70

• "Full-option" = Interactive Run + Text Output On+ Collision On and "Minimum-option" = Blind
Run + Text Output Off+ Collision On.

1 0 8

Chapter 3: World.jelly

From Figure 3-17, it is clear that by using the Blind Run option, on average, it

runs 18% (all percentages here are approximated} faster than the lnterattlue Run option.

The biggest time saver is the TBHt Output Off option, which can save time up to 21% on

some runs. Collision detection on the other hand, has not contributed any significant

impact due to small number of objects involved (only 1% longer here with 6 objects as

supposed to 33% in World.Bird with 16 objects, see Figure 4-12, p. 130).

If collision detection is to be switched on at all times, comparing the "Full­

option" (Interactive Run +Text Output On) to the "Minimum-option" (Blind Run +

Text Output Off), the "Full-option" takes nearly 36% longer than the "Minimum­

option".

Although time is not a factor in this thesis, this comparison is important because

it gives the viewer an idea of how to produce fruitful animations given the resources and

options available. Compromises can then be made based on these consumption in

different situations to save time, for example, if a traced log is not a prime priority, it is

best switched off. It also gives the viewer a concept of processing time (machine

dependent) to run an animation given different number of frames, rules and objects

(see § 4.2.2).

Figure 3-19 shows 8 keyframes (out of 10) generated from the above run. Some

behaviour can be observed from these keyframes especially for the prawns. In JI, the

prawns detect the presence of the two jellyfish, and take immediate actions to move

towards the rock. This behaviour is defined in a collection of rules and facts which tell

the prawns to plan an encounter to a shelter (rock) if a predator Uellyfish} is nearby.

Similarly for the jellyfish, rules and facts contributed to the detection of food (prawns)

nearby, so they move towards them.

A rendered image taken from the WorldJelly animation, produced by Swivel

30™ can be seen in Colour Plate 1 (p. vii)

1 0 9

fr •

!J

•

!5

!7

Chapter 3: Wor ld . jelly

•
..,
.., .., ..
• ..,

P"
P" ..

/2

!4

f6

JB

• • ..,
.., ..,

• •
'"..., ..,

.., ..,

Figure 3-19 Keyframes for World.Jelly 2.3

..

..

The pursuing/ escaping scenes goes on until J7, when one of the prawns is

entangled between the two jellyfish and cannot get nearer to the rock, and is

consequently caught by one of the jellyfish (j8), while one shoots off to tl1e clear ground

above the rock (partly to avoid colliding into tile rock), and tile other moves in front of

the rock to hide.

1 1 0

Chapter 3: World.jelly

3.6 Summary

In this chapter, a domain of a fish-tank scene of jellyfish, prawns and rocks is

demonstrated, and is used as an example of how such a domain database is constructed.

Rules for describing the behaviour of the objects in this domain are also illustrated, and

it is shown how they are parsed using some underlying rules.

Within the ESCAPE system, a forward chaining algorithm has been adopted, and

two different strategies were also presented: goal-<Jriented and non goal-<Jriented. It has

been shown that by adopting these two different approaches, problems can be presented

and solved in different ways. Generally, distinct sets of rules had to be written for each

approach.

The goal-<Jriented approach presented in this example achieved the objective of

producing purposeful animation on the basis of facts and rules entered into the system.

The main drawbacks with this version are the complexity of writing the rules, the

inability to see the detailed effect of rules on the animation and the absence of any

means to control the animation by direct manipulation of the objects.

Unlike the goal oriented approach, in the non goal-<Jriented approach, new

types of states are suggested by the rules which affect future behaviour of an object but

do not determine it. These states can then be used to control the animation accordingly

using various ordering methods (§ 3.4: Ordering) and resolution methods

(§ 3.5: Results). Also, the number of rules and the complexity of writing them are

reduced considerably using this method. The non-goal approach has been adopted for

further development.

1 1 1

'CHAPWER 4

'0'THER EXAM.PIL:ES

Chapter 4: Other Examples

"Occasionally, it [computer graphics] will be used to create
banal graphics, and it will get the blame. Equally. it will

produce stunning, exciting images and be denied recognition.
But I believe eventually it will find its natural place alongside
other systems and enjoy a healthy life, and eventually we will

all wonder what the fuss was about."

John Vince (1985)

Chapter Overview

It has been shown from the WorldJelly domain that the ESCAPE system is capable of

producing convincing animation from the problems presented. It should be equally

important that it has the ability to handle a diversity of problems in order to be a useful

tool.

To validate this, the integrity of the ESCAPE system is tested by applying it to two

further domains which have different kinds of problem to solve, and are governed by

different rule sets to that of the WorldJeUy domain. They are domains of a traffic

junction and a flock of birds.

By extending the application to a total of three domains we are hoping, with a

degree of confidence, to further clarify the boundaries between those tasks that be long

with the system, those in the domain and those with the end user.

1 1 3

Chapter 4: Other Example s

4.1 World.Traffic

In this domain there is a Tjunction and a number of cars. Each car arrives on the

scene at a specified location and at a specified time with its destination through the

junction predetermined. A set of general rules are written to determine how each driver

behaves. In general cars aim to go as fast as they can up to their maximum speed, but

have to slow down if their way ahead is blocked or they wish to turn. If a vehicle should

stop, then other vehicles behind it will slow down and stop; if a vehicle wishes to turn it

will stop and wait until it estimates that the way ahead is clear.

A UK left-hand-drive road system is adopted, and for simplicity, the motorists

have the following special conditions:

•
•
•

•
•

they have perfect vision and knowledge of the road;

there is no overtaking on the road;

they either move vertically (north <-> south) or horizontally (west <-> east)

within the road;

priority is given to vehicles on the major road;

they follow the flow of the traffic (see Figure 4-1) .

Flow of Traffic

Figure 4·1 Flow of Traffic

1 1 4

Chapter 4: Other Examp l es

4.1.1 Traffic Database

In order for the motorists to have knowledge of the road, different areas at the junction

have to be defined. These areas are the key to describing the behaviour of the traffic

because they give indications of the direction of the flow of traffic as shown in

Figure 4-1. Eight areas can be divided and illustrated as below:

area I area2

------------,----~----- - -------- --
1 I I
I I I

area3 1 area4 1 area5 I area6
----------i--- _I_---.,.~--------

area7 areaS

Figure 4-2 Direction Areas

Areas 1-3 and 6-8 are straightforward as they allow only a single flow of u·affic.

area4 and area5 are slightly different because traffic in these areas could be moving in a

different direction depending on whether it is turning or moving forward. For instance,

traffic in areal can only travel in the easterly direction, while in area4, either northerly o r

westerly. The directions and areas are defined as fo llows:

set_junction_areas :-
% set property into memory
set_prop(poss_dir, areal, [east]) ,
set_prop(poss_dir, area2, [east]),
set_prop(poss_dir, area3, [west]),
set_prop(poss_dir, area4, [north, west]) ,
set_prop(poss_dir, area5, [west, south]),
set_prop(poss_dir, area6, [west]),
set_prop(poss_dir, area7, [north]),
set_prop(poss_dir, areaS, [south]).

1 1 5

% unidirectional

% bi-directional

Chapter 4: Other Examp l es

To represent the motorists, there is the introduction of one object type 'CAR' in

this domain, and it is defined as:

defaults types(['CAR']).

whereby objects of the type ' CAR' have the following default settings:

%% Default Objects database
defaults mass('CAR', 1).
defaults size('CAR', 2).
defaults vis('CAR', 100).
defaults maxSpeed('CAR', 30).
defaults stopTime('CAR', 6).
defaults stopDistance('CAR', 40).

% visibility distance
% maximum speed
% time taken to stop
% distance taken to stop

Five cars ar e introduced and, ini tially, each given a behaviour plan (e.g. 'take

first left turn', 'park there'). Uno additional behaviour plan is given, then it just fo llows

the road ahead. Cars which are on the move will have the property 'alive' and those

which are parked or stopped have the property 'static'. Five instances are created as

fo llow:

fact obj_type(earl, 'CAR').
fact property(earl , [alive]).
fact location(earl, pt(39, 28)).

fact obj_type(car2, 'CAR').
fact property(car2, [alive]).
fact location(car2, pt(152, 26)).

fact obj_type(car3, 'CAR').
fact property(car3, [static]) .
fact location(car3, pt(279, 26)).

fact obj_type(car4, 'CAR').
fact property(car4, [alive, left]).
fact location(car4, pt(279, 60)).

fact obj_type(car5, 'CAR').
fact property(car5, [alive, left]).
fact location(car5, pt(170, 174)).

% moving (no turning)

% moving (no turning)

% park there

% turning left at the first junction

% turning left at the first junction

Once these are constructed, the cars can then be d isplayed in the graphics

window (Figure 4-3), and the system awaits input from the user.

1 1 6

Chapter 4: Ot h e r Examp l es

Wur1d;Tratnt 2.0

D

Figure 4-3 World.Traffic Graphical Representation

The drivers know the initial direction to go (by being in the allocated areas),

and they also obey rules which desclibe the behaviour for dealing with events such as

turning, slowing down when approaching a j unction or coming close to the car in front:

% if a car is moving and ahead is clear, then moves forward
rulel : if [object!, is_alive, and, object!, ahead_is_clear]

then [object! , moves_forward].

% if a car is moving and ahead is no t clear, then slows down
rule2 : if [objectl, is_alive, and, object! , ahead_is_not_clear]

then [object! , slows_down].

% if a car is stop, then stay there
rule3 : if [object!, is_stop]

then [objectl , stay_there] .

% if a car is turning, then slows down
rule4 : if [object! , is_turning]

then [object!, slows_down].

% if a car is stop waiting to turn but ahead is not clear, then stay there
rule5 : if [object! , is_stop, and, object! , is_turning,

and, object!, ahead_is_not_clear]
then [object! , stay_there].

% if a car is stop waiting to turn and ahead is clear, then turns
rule6 : if [object! , is_stop, and, object! , is_turning,

and, object!, ahead_is_clear]
then [object!, turns].

% if a car is parked there, then stay there
rule7 : if [object! , is_static]

then [objectl , stay_there].

Figure 4-4 Rules for World.Traffic

1 1 7

Chapter 4: Other Examples

There domain predicates and operators needed in this domain, and they are:

ahead_is_clear
ahead_is_not_clear
is_stop
is_turning

moves_forward,
slows_ down,
turns,

ahead_is_clear and ahead_is_not_clear are domain predicates for determining if

the road ahead is clear or not. They are carried out by checking if there are any vehicles

immediately in front. This depends on the visibility distance (vis) of each vehicle, and is

confined to the ongoing traffic that is moving in front. At this stage of modelling,

overtaking is not allowed (as stated in one of the special conditions in p . 114), so only

the forward moving traffic is checked. It is estimated that an extra set of rules,

predicates and operators would have to be defined to implement this feature . For

instance, when overtaking is to be incorporated, all areas have the same potential of

handling vehicles moving in any direction, and a more complex algorithm for

determining whether ahead is clear or not is needed. Also when overtaking, a car does

not only have to deal with the immediate traffic in front, but also any oncoming traffic.

This is the stmcture (though not the actual code) of the ahead_is_clear

predicate:

Object ahead_is_clear :-
get_objects_ahead(Object, List), % get all the objects ahead of Object
(List= (] ->EXIT % if none then EXIT(ahead is clear)

; nearest_object(List, Nearest_obj), % else get the nearest obj from List
visible(Object, Nearest_obj, Ans), % is the nearest object visible?
Ans = NO -> EXIT % if No, then EXIT (ahead is clear)
% else FAIL (ahead_is_not_clear)

) .

moves_forward and slows_down are operators for advancing an individual

vehicle one time slot, the distance travelled depending on the 'speed' of the vehicle.

'speed' is a property which has a value between 0 and 5, where 0 means stopping (for

the predicate is_stop) and 5 travelling at full speed. moves_forward implies that the

'speed' of the vehicle is maintained (i.e. the current value is the same as previous) , or

accelerating (i.e. the current value is higher that previous) . slows_ down means that the

current 'speed' value is set lower than that previously defined.

1 1 8

Chapter 4: Other Examples

is_turning is a predicate that checks if a vehicle has a plan for turning and if it is

approaching a junction. Since the junction areas are set and are known to the

motorists, the predicate approachingjunction can be used to check if a junction is

approached:

Object is_turning :­
property(Object, List),
(member([left] , List)

; member([right], List)),
approachingjunction(Object) .

% get the properties of Object
% if List has either the property 'left',
% or the property 'right'
% and if approaching a junction

A vehicle possesses an additional property called 'direction' which records its

direction at different time intervals. This additional property is useful for manoeuvring

operators (such as turns) which use it to resolve the subsequent direction for any

vehicle.

turns is another operator for advancing movements, and it is used in a rule that

describes what happens when a car moves into the relevant area. For example in

Figure 4-3, car5 is travelling north, and has a property to take the first left turn at the next

junction. When the driver arrives at the junction, steps into area4 (provided the road is

clear), then compares its direction and the possible directions of area4 and turns

accordingly. In this case, car5 turns and drives in a westerly direction, see below:

car5 direction turns direction area4 [directions]

[west, north]

result

north north+ left
=west

west [match]

And as mentioned earlier, one of the special conditions for the motorists is that:

• they either move vertically (north <-> south) or hotizontally (west <-> east)

within the road;

this is arranged for simplicity so that only four basic directions are considered (north,

east, south, west). A table for the turning directions can be constructed based on the

four directions as below:

1 1 9

Chapter 4: Other Examples

car directions +turns = turning directions

north left west
north right east

east left north
east right south

south left east
south right west

west left south
west right north

Figure 4·5 Turning Directions

The seven rules in Figure 4-4 produce convincing and predictable road traffic

animation. Of course, more complex behaviours such as overtaking, crashing into each

other by introducing human fatigue, random elements and so on can be achieved by

constructing additional rules, or more importantly, a different and more complex road

area layout. Some complex road layout may restrict drivers' vision, for example when

vision is obscured by a building or a hedge. Other external incentives such as traffic

lights could also be applied, and it would be interesting to see what might occur if some

motorists were given a predisposition to jump red lights.

For a full listing of current database see Appendix E.

4.1.2 Traffic Results

These are the results produced by the ESCAPE system for World.Traffic with various

options selected. Times are measured in seconds by averaging several runs of the same

animation using MacProlog's internal time resolver, based on the following statistics:

World: World.Traffic 2.0

N11 of Frames: 12

N2 of Rules: 7

N2 of Objects: 5 (cars)

1 2 0

C h a pter 4 : Other Exa mpl es

~~-~-
Text On 27.60 26.33 36.67 35 .47

Text Off 21 .05 19 .40 29.82 28.72

Interactive Run vs. Blind Run 28%

Text On VS. Text Off 21%

Collision On VS. Collision Off 5 %

"Full-option" vs. "Minimum-option"* 43%

Figure 4·6 Various Time (in Seconds) Taken to Run Worid.Traffic 2.0

And it can be seen in the following cha rt:

INTERACTIVE
Run

Collision off

Collision on

BLIND Run

Collision off

Collision on

. ww

.

'

.

c Text output off

• Text output on

.¥ ,, t ,.,
¥

I

I
® 19.40

!< l
21.05

~8.72 I
35.41

29 .82
36J

I
26-13

27,60

7

0 5 10 15 20 25 30 35 40
Time in seconds

Figure 4·7 Time Chart for World.Traffic 2.0

*"Full-{)ption" = Interactive Ru n + Text Output On + Collision On and
"Minimum-{)ption" = Blind Run + Text Output Off + Collis ion On.

1 2 1

Chapter 4: Other Examples

From the two figures above, by using the Blind Run option, on average, it runs

28% faster than the lnteractlue Run option. The TeKt Output Off option saves time up to

21% on some runs. Collision detection has not contributed any significant impact due

to the smallness of the number of objects involved, 5% longer here with 5 objects

compared to 33% in World.Bird with 16 objects (see Figure 4-12 p .130) .

If collision detection is to be switched on at all times, the "Full-option" takes

nearly 43% longer tl1an the "Minimum-option". The results are similar to those found

for World.Jelly because the pre-condition settings are rather alike. See § 4.2.2 for a

comparison for all three domains.

Here are some comments on the keyframes as illustrated in Figure 4-8, showing

the first 10 keyframes (out of 12) generated from the above run. In j1 (each car is

labelled here so they can be followed witl1 the explanations), ear3 on the top right hand

corner is parked there, and ear2 is moving eastwards behind ear3. ear2 soon detects that

ear3 is not moving, and gradually reduces its speed, eventually coming to a halt (around

/7) just behind ear3, but within a safe distance. This safe distance is the result of tl1e

calculations of the stopDistanee (valued at 40 units) and the stopTime (which is set to

be 6) between the car and the car in front. Similarly, earl , which is behind ear2, slows

down as ear2 slows down, keeps on moving at a safe distance, and eventually stops at

around f9 after ear2 has come to a complete stop.

ear4 is travelling westwards and is told to take the first left turn at tl1e junction,

and since tl1ere is no traffic in front of it, it just makes the turn as it arrives at the

junction and continues its journey southwards. ear5 is travelling nortlnvards, and is also

told to take the first left turn at the junction. It slows down as it approaches the junction

and eventually stops at !5 when ear4 is detected coming from tl1e right, and earl is

detected immediately in front. ear5 starts to turn as soon as ear4 has made its turn,' and

can see that earl is travelling on a different route, then continues in a westerly direction.

This produces a predictable animation as tl1e objective is to demonstrate the

effects of the rules (as a recognisable road scene) by positioning the vehicles in a

predictable way.

1 2 2

C h a p t e r 4 : 0 t. h e r E x a m p I e s

!DJ car3 !DJ

earl car2 !DJ car4

!5 f 6

!DJ !DJ !DJ

El

! 7 JB

!DJ !DJ !DJ

19 f ro

Figure 4·8 Keyframes for World.Traffic 2.0

1 2 3

Chapter 4: Other Examples

Modelling of this domain has highlighted two important issues. In the

WorldJeUy example, points or regions in the spatial field were not significant, but in this

one different regions are important. The background represents the road junction and

it is relatively complex. It can be divided into road and non-road regions and within the

road regions there are important distinctions to be made (for example, each side of the

road, the region before the stop-line for traffic approaching the major road, etc.). The

modelling and representation of the domain background becomes an important issue.

Also featured in this model is the ability for drivers to plan on the basis of their

models of other drivers. When considering a move, each driver must calculate the

current velocity and acceleration of every other vehicle to decide whether or not it is

likely to interfere with their progress. In normal cases, if there is any possibility of

collision then no move is attempted. However, if an attribute representing the degree of

patience of the driver is added and it is reduced as their waiting time increases , then the

result will be that the driver is prepared to make a move even if this depends upon

vehicles slowing down. This interaction of agents is a novel feature for the model but it

seems to introduce no particular difficulties. In a more complex situation, the strategy

of moving one object at a time might not suffice and the type of solution proposed in

the next example may be preferable here too.

A high-level strategy has also been experimented, which identified a number of

'drive-states' (e.g. 'free', 'turning', 'slowing'). All cars are in one of these states at any

time. Rules have been written for the identification of particular traffic situations and

which lead to the transition from state to state. Further rules have been written to

describe the behaviour of cars within each driving-state. As a general approach this

seems to be a good way to handle potential complexity.

A rendered image taken from this domain can be seen in Colour Plate 2 (p. vii).

1 2 4

Chapter 4: Other Examples

4.2 World.Bird

In this domain, a model is investigated where a flock of birds in flight that have to

navigate around a number of fixed obstacles. Reynolds (1987) has developed a

sophisticated animation of birds in flight using an algorithmic approach. It simulates

the flock using an elaboration of a particle system in which each particle acts according

to an identical algorithm so that each bird is considered as behaving according to the

same constraints as every other bird. This approach assumes that the behaviour of the

flock is simply the result of the interaction between the behaviour of the individual birds.

The next position of each bird is calculated according to three simple mles:

1) Collision A voidance: avoid collision with nearby Jlockmates,

2) Velocity Matching: attempt to match velocity with nearby Jlockmates,

3) Flock Centring: attempt to stay close to nearby flockmates.

The following two paragraphs are quoted from Reynolds' 1987 paper because it

is felt that Reynolds' explanations cannot be made any clearer:

"Static collision avoidance and dynamic velocity matching are complementary.

Together they ensure that the members of a simulated flock are free to fly within the

crowded skies of the flock's interior without mnning into one another. Collision

avoidance is the urge to steer away from an imminent impact. Static collision avoidance

is based on the relative position of the flockmates and ignores their velocity. Conversely,

velocity matching is based only on velocity and ignores position. It is a predictive

version of collision avoidance: if the bird does a good job of matching velocity with its

neighbours, it is unlikely that it will collide with any of them any time soon. With

velocity matching, separations between birds remains approximately invariant with

respect to ongoing geometric flight. Static collision avoidance serves to establish the

minimum requirement separation distance; velocity matching tends to maintain it."

"Flock centring makes a bird want to be near the centre of the flock. Because

each bird has a localised perception of the world, 'centre of the flock' actually means

the cenu·e of the nearby flockmates. Flock centring causes the bird to fly in a direction

that moves it closer to the centroid of the nearby birds. If a bird is deep inside a flock,

the population density in its neighbourhood is roughly homogeneous; the bird density is

approximately the same in all directions. In this case, the centroid of the

neighbourhood birds is approximately at the centre of the neighbourhood, so the flock

1 2 5

Chapter 4: Other Examp l es

centring urge is small. But if a bird is on the boundary of the flock, its neighbouring

birds are on one side. The centroid of the neighbourhood toward the body of the flock.

Here the flock centring urge is stronger and the flight path \vill be deflected somewhat

toward the local flock centre."

Reynolds' formulation of the above rules has been adopted and used to

construct the World.Bird domain.

4.2.1 Bird Database

For this domain, there are two types of object: 'BIRD' and ' OBST' (obstacles). The

picture representations and default database settings can be organised in the Domain:

defaults file as follows.

%% Default Objects pictures
set_pict_descs :-

set_prop('OBST', _, circle(0, 0, 10)) ,
set_prop('BIRD', left, resource (300)),
set_prop('BIRD', right, resource(400)).

%% Default Objects database
defaults types(['BIRD', 'OBST']).

defaults name('BIRD', bird).
defaults mass('BIRD', 1).
defaults size('BIRD', 6).
defaults vis('BIRD', 100).
defaults maxSpeed('BIRD', 15).
defaults property('BIRD', [alive]).

defaults name('OBST', obstacle).
defaults size('OBST', 10).
defaults property('OBST', [static]).

% is a circle with radius 10 units
% PICT resource ID is 300

% 2 types of objec t in this domain

% size with radius of 6 units

% with default property alive

% size with radius of 10 units
% with default property static

And for the instances, there are three birds and three obstacles. The properties

and their initial locations can be included in Domain: facts flle and defined as follows:

1 2 6

Chapter 4 : Other Examples

%% facts about the birds
fact obj_type(birdl, 'BIRD').
fact property(birdl, [alive]).
fact location(birdl, pt(258, 178)).

fact obj_type(bird2, 'BIRD').
fact property(bird2, [alive]).
fact location(bird2, pt(279, 162)).

fact obj_type(bird3, 'BIRD').
fact property(bird3, [alive]).
fact location(bird3, pt(321, 190)).

%% facts about the obstacles
fact obj_type(obstacle!, 'OBST').
fact property(obstacle!, [static]).
fact location(obstacle!, pt(232, 125)).

fact obj_type(obstacle2, 'OBST').
fact property(obstacle2, [static]).
fact location(obstacle2, pt(175, 204)) .

fact obj_type(obstacle3, 'OBST').
fact property(obstacle3, [static]).
fact location(obstacle3, pt(91, 162)).

When the above defaults and facts files are set, the user can immediately see the

objects appearing in the animation window as illustrated in Figure 4-9.

0

IT
EJEJ
BEJ
~~

0
0

0

Figure 4-9 Animation Window for World.Bird

1 2 7

Chapter 4: Other Examples

In this domain, the birds are set to fly only in one direction (e.g. toward the

west), and while doing so, they must obey the three following rules:

% if an object is alive, then just meanders forward
rulel : if [objectl, is_alive]

then [object!, meanders_forward] .

% if an object is alive, then try to flock towards the centre of the flock
rule2 : if [objectl, is_alive]

then [objectl, flock_centering].

% if an object is static, then stay there (mainly for the obstacles)
rule3 : if [objectl, is_static]

then [objectl , stay_there].

When compared with the three rules suggested by Reynolds (in p. 125):

Collision Avoidance YES built-in

Velocity matching YES rule 1: meanders_forward

Flock centring YES rule2: flock_centering

others rule3: Static rule

Figure 4-10 Rules Implementation Comparison Between Reynolds' Model and ESCAPE

All Reynolds' rules are implemented in ESCAPE (in some way). However, there

is an extra rule in ESCAPE, that is the Static rule (rule3, which states: if an object is

static, then stay there).

The origin of this Static rule is from the first two examples, World.Jelly and

World.Traffic, where it was realised that objects can change their property from one

state to another (for example, from alive to static) through the action clause of rule. In

World.Jelly, a world where there are predators and potential preys, one living object

might become static when captured/ eaten; and in the latter, a world where a moving car

might stop at a junction and become static.

1 2 8

Chapter 4: Other Examples

There are two options for the implementation of the Static rule. One is to build

it into the system as basic (similar to collision detection) , and the other to write it

explicitly as a mle. Since movements of objects (having the property is_alive) are put

into mles (e.g. meanders, meanders_forward and so on) , why not have a mle for static

objects? It just happens that all tl1e examples featured here have permanently non­

moving static objects. There are occasions when static objects could move under some

conditions, for example, hit by a moving object. The advantage of describing such

behaviour as a mle is that it can be changed easily to accommodate the requirements

without having to modify the inference engine.

For a full listing of current database including how meanders_forward and

flock_centering operate, see Appendix F.

4.2.2 Bird Results

The database for the objec ts are slightly different for this example. Firstly, the 'BIRD'

picture representation is changed from the picture of a 'bird' to merely a 'black dot' in

the animation window to gain processing time, and the number of objects has been

increased from 6 to 16 to show the effects better. The three mles still remain the same.

These are the results produced by the ESCAPE system for World.Bird with

various options selected. The times are measured in seconds, by averaging several runs

of the same animation using MacProlog's internal time resolver, based on the fo llowing

statistics:

World: World.Bird 2.0

N2 of Frames: 16

N2 of Rules: 3

N2 of Objects: 16 (9 birds and 7 obstacles)

1 2 9

Chapter 4 : Other Example s

ilii----Text On 206.27 134.28 238.25 165.97

Text Off 162.95 1 04 .23 199.55 138.48

Interactive Run vs. Blind Run 18%

Text On VS. Text Off 19%

Collision On VS. Collision Off 33%

"Full-option" vs. "Minimum-option"* 32%

Figure 4·11 Various Time {in Seconds)Taken to Run World.Bird 2.0

And it can be represented in the following chart:

INTERACTIVE
Run

Collision off

BLIND Run

m Text output off

Collision off ~=--·---·~~~3~

0 50 100 150

Time In seconds

Figure 4-12 Time Chart for World.Bird 2.0

*"Full-option"= Interactive Run+ Text Output On + Collision On and
"Minimum-option" = Blind Run + Text Output Off + Collision On.

1 3 0

200 250

Chapter 4: Other Examples

From both the figures above, it can be seen that by using the Blind Run option,

on average, it runs approximate 18% faster. The TeKt Output Off option, which can save

time up to 19% on some run. Collision detection however has contributed a significant

impact due to the numerous number of obj ects involved (33% here with 16 objects

comparing to, I % in WorldJelly with 6 objects - see Figure 3-18 in p. I 08). It can be

concluded that, as objects increase, collision detection algorithm becomes apparent.

Here is a comparison between the all three domains featured in the examples:

number of frames 10 12 16

number of rules 12 7 3

number of objects 6 5 I6

Time for "Full-option" 60.3 36.67 230.25

Time for "Min-option" 38.62 I9.4 I04.23

The relevant of this exercise is to link the performance of the system influenced

under different options, so that the viewer becomes aware of what contributes to the

production of an animation using this kind of system. From the table, a pattern can be

seen whereby as the number of objects increases, the time it takes to complete an

animation increases almost uniformly. By contrast, the number of rules and the number

of frames do not seem to contribute much to the computational time. So writing fewer

rules does not improve the execution time, but reducing the number of objects does.

1 3 1

C h a pt e r 4: O th e r Exa mpl es

Figure 4-13 shows 8 keyframes (out of 16) generated from the above run:

fr

0

!5

0

!9

0

j IJ

0

0 0

0 0 0
0 0

0 0

0 0 0
0 0

0 0

0 · ·· . 0 ·. . . 0
0 0

0 0

o ·.· 0 :0

0 0

! J

0

! 7

0

f rr

:O

f 15

·: 0

0
0

0

0 ..
0

0

0

0

0

0 0

0

0 0

0 0

0

0 0

Figure 4-13 Keyframes for World.Bird 2.0 (with obstacles)

. .

Initially, th e birds (presented by black dots} are dellberately placed at d istance

from each other, so the effect of flock cen tring can be seen as the animation progresses:

they stay together as a group, occasionally split up when encountering the obstacles

(circles) , but rejoin again whenever possible, while maintaining a safe distance be tween

1 3 2

Chapter 4: Other Examples

them (effect of collision avoidance). They are also flying roughly at the same speed

(effect of velocity matching) as each other, as none fly too far ahead, nor too far behind.

ji !J

! 7

!9 jii

jiJ

Figure 4-14 Keyframes for World.Bird 2.1 (without obstacle)

1 3 3

Chapter 4: Other Examples

In Figure 4-14, the keyframes were produced using the same set of rules and the

same number of birds, but without the obstacles.

When comparing the last keyframe (/r5) between Figure 4-13 and Figure 4-14,

the birds facing obstacles tend to fly 'faster', this is caused by a number of factors. As an

individual bird tries to match its speed with the rest of the flock, when combined with

the quick change of direction in order to swirl around and to avoid colliding into an

obstacle, this combination of actions makes the bird fly forward marginally faster.

It can be seen that in Figure 4-13 the flock sometimes splits apart to go around

an obstacle. This shows one of the advantages for adopting the situated action ordering

approach over 'follow the leader' ordering (§ 3.4). Flock centring allows simulated

flocks to bifurcate. Whilst an individual bird stays close to its nearby neighbours, it does

not matter if the rest of the flock turns away. More simplistic models proposed for flock

organisation (such as a central force model or a follow the designated leader model) do

not allow splits.

These principles are followed in this approach, but instead of the procedural

approach to specify each bird 's behaviour, they are expressed in rules. By writing a few

rules concerning how birds position themselves with respect to the other birds around

them, it is possible to generate possible moves for each bird. In this case the

sophistication really lies in the method of resolution for it seems infeasible to allow each

bird to determine its own position. The major reason for this is that the overriding

principle of flocking motion is that there are never any collisions. If an approach is

adopted whereby the position of each bird is determined in turn and an unavoidable

collision is identified when placing one of the later birds, the system would have to

backtrack to place a previous bird in another place. At present, finding a new place

depends upon a new random number being generated. A random procedure is not

really wanted here for it may take a very long time before it comes up with an acceptable

solution. If a crowded situation is likely to occur it is preferable to calculate an optimal

solution rather than hoping to hit upon a set of acceptable placements by chance.

Therefore, it is our intention to introduce a resolution algorithm for this domain that

will consider all birds together and find a solution with least penalties.

A rendered image can be seen in Colour Plate 3 (p. vii) .

1 3 4

Chapter 4: Ot h er Examp l es

4.3 Summary

The examples included so far establish that convincing animations can be generated

using expert system techniques, and that they can be embedded in an environment that

emulates those proficiencies provided by more sophisticated software. Because the

environment package is domain selective, 'plug-ins' of different domains can be chosen

and this gives us the ability to test the more general environment on several different

domains and types of animation problem.

The following are "World" dependent (i.e. information derived varies from

"World" to "World") : the definition of the environment, the types of object, the graphics

representation of obj ect, the instances of obj ect, and the user defined predicates and

operators.

As may have been expected, the performance of the system depends on the

quality of graphical output, the quality of log output and, especially, the collision

detection calculations - the significance is particularly clear as the number of object

increases .

1 3 5

CHA!PTER5 . . ' .

C.ONCLUSTONS

Chapter 5: Conclusions

"Note that wanting to make computers be intelligent is not
the same as wanting to make computers simulate

intelligence."

Patrick Henry Winston on AI (1977)

Chapter Overview

The demonstrations of the ESCAPE system have helped clarify the type of architecture

(Figure 2-1) needed, the functionality that might be expected and the users who may be

able to successfully exploit such a system. It provides the opportunity to use a new kind

of knowledge, designed for the animators to simulate the behaviour of objects within a

modelled environment.

The three examples (Worldjelly, World.Traffic and World.Bird) illustrated

some potential for rule-based enhancements to animation software. They have shown

that the architecture can be used in different domains, and have enabled us to begin to

separate domain specific problems from more general ones.

Some important issues were raised during the implementation of the system that

had not been foreseen, for example, the significance of the respective textual and

graphical interfaces, the use of different chaining methods for the inference routines,

and the different methods for resolving possible solutions suggested by the inference

engine.

This final chapter also provides some useful insights into the limitations of the

approach, the types of animation problem where it might be useful, the possible future

work that needs to be done, and some suggestions of utilising the output generated by

the system with more purposeful generalised graphical languages available in the current

graphics industry.

1 3 7

Chapter 5: Conclusions

5.1 Research Context and Findings

In behavioural animation, an animator using the computer usually does not have any

programming skills, but has some good ideas of how his/hers agents to behave. One of

the main difficulties here is the representation of the information which allows these

agents to act in a purposeful manner - as the animator intended. ESCAPE is a prototype

system with an 'enhanced environment', designed especially for the animator in the

pursuit of capturing behavioural animation within a multi-agent environment. This

enhancement is developed by incorporating a rule-based system with conventional

computer animation techniques so that the behaviour of the agents can be driven by the

inference engine, and the physical side of the animation by the conventional

counterparts. The rule-based system uses English-like rules which allow the user to read

and write rules easily. It is claimed that through the kind of experimentation described

in this thesis, our understanding of some of the problems in behavioural animation has

been increased.

There is not one particular method of animation that is preferable in all

situations, and in an ideal multi-agent animation environment where modelling

intentional behaviour is of main concern it should be possible to influence the resulting

animation in at least three ways: by directly manipulating agents within specific

animation frames; by specifying their properties and locations formally in the database,

and by providing rule-based constraints on their behaviour using an expert system

approach. All three have been allowed for in the ESCAPE system, however, it is the

implication of using the mle-based approach that is highlighted as the major

contribution of this research.

Within the ESCAPE system, a user can describe the behaviour of the agents in

English-like rules using the textual interfaces and the proposed rulebase. The utilisation

of natural language technology in the rulebase is aimed at the user, so that their

knowledge about agents' behaviour is not only easier to describe and understood (by

both the user and the system), but is also capable of producing realistic behavioural

animations.

Realistic animations need planning, the planning process of the animation can

be done either explicitly, or implicitly by the animator. In traditional explicit techniques

such as keyframing, the outcome of the animation depends entirely on the animator

moving each object to the desired locations usually using a graphical interface. This

1 3 8

Chapter 5: Conclusions

works well in animation where the number of objects remains small, but in a multi­

agent environment, problems arise when the number of objects increases because every

single object has to be dealt with by the animator. One way to address this problem is

to write routines to deal with the objects implicitly.

Implicit methods are generally implemented using algorithmic approaches.

Algorithmic approaches work well in producing physically accurate models, giving the

animator convenience control by applying scripts to obtain certain desired behaviour,

but they lack the ability to represent intentional behaviour where the modelling of

complex behaviour in a multi-agent environment is of concern. One way to do this is to

consider some ideas from AI and rule-based systems.

In complex scenarios such as flocking, algorithmic techniques are difficult to

organise because the individual behaviour as well as the group behaviour has to be

captured. Reynolds (1987) for example has developed AI-based realistic flocking

behaviour using an object-oriented approach: he represents his 'rules' in the form of an

abstract programming language, but not in the way that an animator or a domain expert

can understand easily.

One of the features of rule-based systems is that they are suitable for handling

symbolic meanings and domain-oriented problems. A dedicated rulebase can therefore

be constructed incorporating a natural language syntax to handle simple grammatical

meanings, so that the symbolic form of the rules can be readily comprehended by the

user. Incrementality is another attractive feature of the rule-based approach, so that new

knowledge can be added to the system at any time to build up the knowledge database.

This knowledge can be presented in the form of rules, facts and properties that describe

an agent.

Once properly set up, the rule-based part of the system can be left to nm

unattended and will automatically generate an animation. However, the expert system

component is not there to replace skilled animators, but rather to assist them. The

animators can interrupt the generated animation at any time by manual manipulation to

override it. This coexistence between the user interactions and the expert system can be

seen as a context of working practice for the animators, as the animators have control

over the rules and can experiment with them, observing their effect on the animation.

The kind of architecture (§ 2.1) described in this thesis allows us to adopt a

methodology that will begin to separate domain specific problems from more general

1 3 9

Chapter 5: Conclusions

ones. The more general ones are built into the ESCAPE system which include the main

inference engine, the natural language interpreter and other shared system routines, and

the domain specific ones are built into separated modules called domains or worlds.

To make a readily usable system it is necessary to provide a good set of general

predefined predicates and operators in terms of which domain-specific behavioural

predicates may be defined. A useful set has been identified along the way, but it is by no

means complete.

5.2 Contributions

The ESCAPE system is a fully working prototype with its limitations (§ 5.3), and it is

capable of generating convincing animation sequences as illustrated in the examples

throughout the thesis. Following is a summary of the successful features of the current

implementation of ESCAPE system. This implementation:

* confirms the software architecture for the incorporation of a rule-based system with

a more conventional keyframe animation;

* establishes the needs and the roles of different level of users: animators, domain

experts and software experts;

* provides a working environment incorporating a rule-based element based on the

architecture mentioned above;

* enables us to separate domain-independent materials from domain-dependent ones;

* contains a formal language for the expression of rules;

* incorporates interfaces for user interaction;

* integrates GUI, symbolic and rule-based approaches; and

* has been successfully demonstrated on three model worlds.

Some important issues were raised during the implementation of the system that

had not been foreseen, these include the significance of the respective textual and

graphical interfaces, ordering, hybrid systems, and the quality of graphics output.

The textual interfaces are closely linked with the rulebase, they provide a high

level of readable natural language interfaces aiming to make the tasks of rule-writing

(edit, amend and delete) easier for the animator and the domain expert. Initially, these

interfaces were designed to show only the available options in some special popup

menus, so that they could be manipulated with the use of a mouse. It was hoped that by

1 4 0

Chapter 5: Conclusions

minimising the use of other input devices such as a keyboard, any possible erroneous

syntax input by the user could be minimised. Later, it was discovered that sometimes

the use of a keyboard was inevitable, when for example a new word was to be introduced

into the rulebase, so a syntax checker was incorporated into the system to account for

that. The final textual interfaces allowed for both menus and keyboard input methods.

For an experienced user of the system, the latter method would seem to be more

attractive because a particular rule can be viewed in its entirety and be accessed directly.

The reason to use natural language processing techniques is that they provide a

formal mechanism for expressing our verbal knowledge, for instance in describing

abstract information of how something should behave. Since the formalisation of the

complete syntax and meaning of the English language would not be possible \vi thin the

scope of this research, the adaptation of relative simple subsets of natural language has

been adequately formalised and implemented in the ESCAPE system. Even with the

limited syntax capability, this natural language extension has allowed us to represent

(some of) our verbal knowledge as simple rules and these have been successfully

applied to the example animations.

The graphical interfaces are mainly designed for the animators for indirect

access to the domain database which was originally set up by either the domain expert

or the software expert. The functionality of the graphical interfaces includes the

manipulation of agents, controlling the animation by means of using the animation

tools, and choosing the current environment settings. The main animation window

allows the animators to manipulate the agents directly and they can immediately observe

the actions being taken, as each agent is represented by its physical location rather than

its precise coordinates in numerical notation.

The order in which rules are applied to object is especially significant. For

example, given two rules in that order (rule 1, rule2):

rulel: if condsl then actions!.

rule2: if conds2 then actions2.

The inference engine reads in a rule from 'top' to 'bottom', in this case if

action1 would result in conds2 being true, then action2 will be performed. However, if

they are in the reverse order, then action2 will not be performed. It is important that the

user has an understanding of how expert systems work.

1 4 1

Chapter 5: Conclusions

Rule-based systems seem more appropriate for some types of problem than

others. As some researchers discovered (Koga et al. 1994, Rijpkema & Girard 1991), an

expert system was useful for dealing with complicated tasks where strategic planning was

involved, for example determining a grasping strategy, but a procedural approach was

best suited to the finer movements involved, for example in making contact. A rule­

based approach is not likely to serve well in areas that require much mathematical

calculation, but an algorithmic approach is also unlikely to serve well where strategic

planning is required. A possible direction is therefore the flexibility of hybrid systems

(see § 1.3), incorporating both algorithmic and rule-based approaches.

Since ESCAPE system was developed using MacProlog, the poor quality of

graphics output from MacProlog was not fully realised until the expert system elements

have been implemented. This can be seen as a limitation rather than an inadequacy,

and this will be discussed in the next section.

5.3 Limitations & Future Work

The small rulebases in the examples raise the question of whether the approach will

scale up. The question here is not primarily a technical one, for there is little problem

(except execution time) in presenting the inference engine with 250 rules instead of 15.

The question is more whether domain experts and animators can comprehend what the

system is doing if it contains a large number of rules. In this respect, it is believed, the

interesting research question is how animators might use this new facility creatively, and

this will depend crucially on their ability to understand the effect of individual actions.

The current text-based log file may give some insight into the workings of the inference

engine but it is not always possible to quickly extract from it a clear understanding of

why an object is behaving in a particular manner.

The major problem is not the ability of the inference engine to cope with things

on a larger scale but the ability of users to visualise the decisions tl1e system is making.

To this end there is a need to develop specific techniques for visualising the actions of

the inference engine itself. For debugging purposes, in the future, it is envisaged that

the user would be able to switch on an option that makes visible the vectors acting on an

object at each stage in the inferencing which relates them to the rules from which they

originated. There is even a suggestion of a visual representation for rules that might be

called up and assigned to objects, possibly with strengths that may be set by the

1 4 2

Chapter 5: Conclusions

animator. Several researchers have contributed this visual way of representing expert

system for analysis, debugging and understanding (Selig 1990, TPM10, Yao et al. 1990).

At present, the planners developed in ESCAPE system only use very basic search

strategies (§ 3.4: Ordering and § 3.5: Results) and are integrated fiXed into the system.

An animator activates any one mode at a time by selecting from a selection of pre­

defined options in the menu. These strategies are completely uninformed in the sense

that they do not use any domain-specific knowledge in choosing among alternatives. In

future, a second level of rulebase can be incorporated into the system, so an extra set of

rules can be used to describe strategic planning. Instead of selecting an option from the

menu, the animator can construct a custom-made planner by writing rules to decide:

• what order of the goals are attempted;

• which alternative action will be tried to achieve the given goal; and

• which of the alternative regressed goal sets to consider next.

This rums to give the animator the provision for higher level planning and

greater control over the animation, and an opportunity to try out different strategies for

the agents.

LPA Prolog for the Apple Macintosh was chosen for the development of the

ESCAPE system, it provides a full set of operators for graphics windows and interactivity,

as well as DCG as an extra bonus. The greatest limitation of this choice is the software's

approach to graphical output. The agents in the animation are represented by PICT

resources which are contained within their own rectangle. Whenever an agent is moved

on the screen the entire rectangle becomes white and is then re-drawn resulting an

extremely jerky animation. This is adequate for quick previewing purposes, but the only

solution for a smooth preview is to use rendering software, such as Swivel 3D™.

10 TPM (Transparent Prolog Machine), a debugging tool for MacProlog.
Information about TPM for Macintosh can be obtained from Human
Laboratory, The Open University, Milton Keynes MK7 6AA, U.K.

1 4 3

By Fred Kwakkel.
Cognition Research

Chapter 5: Conclusions

5.4 Integration Into Other Software

The existing ESCAPE system is a prototype and does not produce quality output. To do

this the approach needs to be integrated into a more sophisticated animation

production system. The architecture that would be needed for this to be done has been

described, the only issue to be resolved would be the interface language between the

systems.

Given this vision of a fully working system and the limited resources available, it

became necessary to define a project that addressed only the most central issues and

utilised the most effective software for the task. Though the eventual output will need to

be fully-rendered three dimensional colour graphics, it is not necessary to go to these

lengths to demonstrate the principles of rule-based constraints. What is required is that

the system produce a full description of each frame in terms of the objects involved,

their precise location and a list of their properties, that some visualisation or preview

facility is available, with the possibility of linking to a more sophisticated 3D modelling

and rendering software package. One possible future extension would be to produce

descriptions in more generalised languages such as VRMLII (Fievet 1995) or JavaTMI2_

VRML is an open, platform-independent file format for 3D graphics on the

Internet. Similar in concept to the Web standard for text, HTMLi3, VRML encodes

computer-generated graphics into a compact form for transportation over a network. As

with HTML, a user can view the contents of a file - in this case an interactive 3D graphics

file - as well as navigate to other VRML "worlds" or HTML pages. However, VRML is an

emerging standard for 3D-model definition, but it does not yet support transformation,

so any transformation has to be done from within the VRML browsers (e.g.,

WebSpace™ Navigator14 , and WhurlWindTMI5); or to have the ESCAPE system to

produce a full description of the animation in Java.

11 VRML (Virtual Reality Modelling Language). Further information and relevant bibliography
on VRML can be obtained at the Internet URL http://www.ncsa.uiuc.edu/General/I'RML/

12 JavaTM, see SUN MicroSystem'sjava home page at the Internet URL http://java.sun.com/

l3 HTML (HyperText Markup Language). Comprehensive online information on HTML can be
accessed at the Internet URL http://lcweb.loc.gov/global/html.html

14 WebSpace"' Navigator, a VRML browser available for most platform, see SGI's (in Europe)
home page on the Internet at http:/www-europe. sgi. eo m/

1 4 4

Chapter 5: Conclusions

Java is an object-oriented programming language intended to be used in

networked/distributed environments, its neutral architecture means that the same

version of the application encoded in Java will run on all platforms (SUN, SGI, IBM,

Macintosh, PowerPC etc.), hence making it ideal for the net. Java applications can be

incorporated into any HTML files and can open and access data across the net via URLs

with the same ease that programmers are used to when accessing a local file system. To

take full advantage of these features, the use of Hotlava™ Browser (see footnote 12,

p. 144) is highly recommended.

5.5 Conclusions

Would mle-based systems do a better job than traditional methods such as a simulator

in producing behavioural animations? Simulators wtitten in high-level programming

languages or specialised simulation languages can, in theory, handle systems of any

complexity. These simulators are still black boxes, however; they take numbers as input

and generate numbers as output. There is a lot of information about the system that

cannot be obtained in this way, for example, they can predict the occurrence of events

such as traffic flow, but they do not tell us how to handle such events. Perhaps most

importantly, a numetical simulator provides no interpretation or explanation of its

output; it just generates numbers and leaves their interpretation to the user.

By integrating a rule-based system into the ESCAPE system, it has enabled the

possibility of handling the interpretations and explanations to a certain limit. The

generated text-based log files keep track of every step of the inference routine, showing

which rule is being fired and what the outcomes are, and the interpretation of these can

be followed in a (limited) natural language format. Provided the rulebase is of a

'manageable size' (comprehensible by the animator), the animator should not find

difficulties in following the explanations. This approach has also shown the potential of

giving the animator valuable information especially for debugging proposes.

The compatison between using algorithmic approaches and using a rule-based

approach for representing multi-agent worlds is not based upon their respective claims

15 WhurlWindTM, a VRML browser available for the Apple Power Macintosh, a free copy can be
obtained from the ftp site: ftp://ftp.sdsc.edu in the /puh/vnnl/software/hrowsers directory.

1 4 5

Chapter 5: Conclusions

to algorithmic completeness or efficiency, but rather on the ease with which end users

may express their knowledge and control their animations with a minimum of technical

knowledge (i.e. very little or no programming knowledge). For example, an (English)

expert in the behaviour of bees who does not have any programming knowledge, can

operate the system by expressing his/hers expertise about the behaviour of the bees in

English-like rules, without having to spend time trying to learn the programming

language.

It is not proposed that a rule-based approach is suitable for all modelling or

animation needs. There are many aspects of modelling that are best expressed

algorithmically, but with the limitations mentioned above. However, it is believed that

there are at least two types of problem where a rule-based approach could have distinct

advantages.

One is the creation of a realistic animated background scenery, where it can be

used in stand-alone mode to produce convincing, non-repetitive animations where detail

is not particularly significant, e.g. World.Traffic, situations like this can be advantageous

to real-time flight simulator especially when a street scene is present, the system can

automatically produce a realistic simulation of traffic flow without having to prepare tl1e

animation earlier. The other is strategic planning. Strategic planning is an important

aspect of modelling in some domains and some system such as this could be seen being

included in a hybrid system.

To conclude, it is argued that, animating sophisticated beings with minds of

their own requires a modelling environment that can represent internal mental states

and internal mental processes. It is believed that in order to model and produce

behavioural animations in a complex multi-agent environments, there is a need to

enhance CUJTent applications software to include the ability to model cognitive

mechanisms and processes. One way to do this is to take some ideas from Artificial

Intelligence and rule-based systems and to provide an additional tool whereby users can

define properties, predicates, operators and rules to determine the behaviour of objects.

It is not possible, at this point in time, to determine the best representations and

strategies for all domains, or even for each particular domain, but the precise nature of

the approach will develop through experimentation of the kind that has been described

in this work.

I 4 6

' •' ,,

Appendix A: Expert Systems

APPENDIX A

EXPERT SYSTEMS

A. I An Overview of Expert Systems

An expert system (Bratko 1990, Clocksin & Mellish 1981,Jackson 1986, Kononenko &

Lavrac 1988, Lloyd 1984, Marcus 1986) is a computing system capable of representing

and reasoning about some knowledge-rich domain. With a view to solving problems

and giving advice, some more famous examples have been in the areas of internal

medicine or geology (Shapiro 1987). An expert system can be distinguished from other

kinds of AI program by the following characteristics:

A.l.l Knowledge Acquisition

Knowledge acquisition is defined as 'the transfer and transformation of potential

problem-solving expertise from some knowledge source to a program', which sometimes

is also known as 'machine learning'. Learning programs associated with expert systems

differ considerably in the extent to which the program learns by being told, by modifying

or manipulating what it already knows, by induction from some set of examples, or by

discovering new concepts.

A.l.2 Knowledge Representation

Knowledge representation is a substantial sub field in its own right on the borderline

between AI and cognitive science. It is concerned with the way in which information

might be stored in the human brain, and the (possibly analogous) ways in which large

bodies of knowledge can conveniently be stored in data structures for the purposes of

symbolic computation (non-numeric computations in which the symbols can be

constructed as standing for various concepts and relationships between them).

1 4 8

Appendix A: Expert Systems

A.l.3 Knowledge Application

This related to the issues of planning and control in the field of problem solving. Expert

systems design involves paying close attention to the details of how knowledge is

accessed and applied during the search for a solution. Knowing what one knows, and

knowing when and how to use it, seem to be an important part of expertise; this is

usually termed 'meta-knowledge', i.e. knowledge about knowledge.

Different strategies for bringing domain-specific knowledge to bear will generally

have marked effects upon the performance characteristics of programs. Most knowledge

representation formalisms can be employed under a variety of control regimes, and

expert systems researchers are continuing to experiment in this area.

A.l.4 Generating Explanations

The whole issue of how to help a user understand the structure and function of some

complex piece of software relates to the comparatively new filed of human/computer

interaction, which is emerging from an intersection of AI, engineering, psychology and

ergonomics. The contribution of expert systems researchers to date has been to place a

high priority upon the accountability of consultation programs, and to show how

explanations of program behaviour can be systematically related to the chains of

reasoning employed by rule-based systems. This issue sometimes goes under the name

of 'transparency', i.e. the ease with which one can understand what the program is doing

and why.

A.2 Inside An Expert System

The driving mechanism of an expert system consists of three major parts, namely, the

inference engine(A.2.1), the rules (A.2.2) and the controls (A.2.3). The resultant

programs consist of a number of relatively independent modules (e.g. rules, structures

or clauses) which are matched against incoming data and which manipulate data

structures.

Although expert systems research has grown out of more general concerns in

Artificial Intelligence, it still maintains strong links with related topics in its parent

discipline. Some of these links are outlined below:

1 4 9

Appendix A: Expert Systems

Expert systems are known for the following features:

• problem-solving: capable of using domain-specific knowledge.

• user-interaction: which includes explanation of the system's intentions and

decisions during and after the problem-solving process.

• rules: which allows for the if-then scenario, giving us the choice of using two

basic ways of control: backward chaining, and forward chaining.

A.2.1 Inference Engine

There are three essential ingredients to any such engine:

l. A collection of modules which are capable of being activated by incoming data

which matches their 'trigger' patterns.

2. One or more dynamic data structures that can be examined and modified by an

active module.

3. An interpreter that controls the selection and activation of modules on a cyclic basis.

For the inference engine to recognise these modules, a precedence order would

have to be constmcted. See Appendix 8.3 for how this is assembled.

A.2.2 Rules

The rules are a formalism which saw some use in automata theory, formal grammars

and the design of programming languages, before being pressed into the service of

expert systems.

A production system consists of a rule set, a rule interpreter that decides how

and when to apply which rules, and a working memory (WM) that can hold data, goals

or intermediate results.

Rules consist of condition-action pairs, for example:

if Cl& ... &Cn,

then Al & ... & An

They can be interpreted in two ways:

1 5 0

Appendix A: Expert Systems

1. production rules (f01ward chaining): with the reading 'if conditions Cl & ... Cn are

true, then perform actions AI & ... An'.

2. logical implication (backward chaining): with the reading 'if you want to prove A 1 &

... An are true, then one way to do this is to prove Cl & ... Cn are true'.

(see Appendix A.2.3: Controls for forward and backward chaining.)

These are the advantageous features within the production rules:

• Expressibility: each rule defines a small, relatively independent piece of

knowledge.

• lncrementability: new rules can be added to the knowledge base relatively

independently of other rules.

• Degradability: existing rules can be deleted from the knowledge base

relatively independently of other rules.

• Modifiability (as a consequence of modularity): old rules can be changed

relatively independently of other rules.

• Support system's transparency: the system's ability to explain its decisions

and solutions.

A.2.3 Controls

Controlling the behaviour of rule-based systems poses non-trivial problems. There are

two general approaches to this: global and local control. A global control regime tends

to be domain-free, in that the strategy employed does not use domain knowledge to any

significant extent. Local control regimes tend to be domain-dependent, in that special

rules are required which use domain knowledge to reason about control. Global

techniques are usually 'hard-coded' into the interpreter, and therefore difficult for the

programmer to change, while local techniques are often 'soft-coded' in the sense that

the programmer can write explicit rules to create particular effects.

At the global level of control, production rules can be driven forward or

backward. We can chain forward from those conditions that we know to be true,

towards conclusions which the facts allow us to establish, by matching data in working

memory (WM) against the left-hand side of the rules. However, we can also chain

1 5 1

Appendix A: Expert Systems

backward from a conclusion that we which to establish, towards the conditions

necessary for its truth, to see if they are supported by the facts. In this case, we match

special goal statements in WM against the right-hand side of rules, modifications to

working memory then manipulate these goal statements (e.g. replacing them with

subgoals), as well as modifying patterns of data.

Forward chaining does not start with a hypothesis, but with some confirmed

findings. An example of this type of expert system is R1 - now called XCON

(McDermott 1980), which incorporated about 1000 if-then rules needed to configure

orders for Digital Equipment's VAX computers and eliminated the need for DEC to hire

and train many new people to perform a task that had proved difficult and that had

resisted solution by conventional computer techniques.

Backward chaining starts with a hypothesis, then reasons backwards following a

chain of rules in the inference network, to the pieces of evidence. An example of this

type of expert system is MYCIN (Shortliffe 1976) which incorporated about 400

heuristic rules written in an English-like if-then formalism to diagnose and treat

infectious blood diseases, but its major impact on the field arose from its ability to

explain lucidly any conclusion or question it generated.

I 5 2

APPENDIX B

PRO LOG

B. I An Overview of Prolog

Pro log stands for programming m logic (Ciocksin & Mellish 1981) - an idea that

emerged in the early 1970s to use logic as a programming language. The early

developers of this idea included Robert Kowalski at Edinburgh (on the theoretical side),

Maarten van Emden at Edinburgh (experimental demonstration), and Alain Colmerauer

at the University of Marseilles (implementation). The present popularity of Prolog 1s

largely due to David Warren's efficient implementation at Edinburgh in the mid 1970s.

Prolog is a programming language for symbolic, non-numeric computation. It

is specially well suited for solving problems that involve objects and relations between

objects. Prolog as a programming language is centred around a small set of basic

mechanisms, including pattern matching, tree-based data structuring, and automatic

backtracking. This small set constitutes a surprisingly powerful and flexible

programming framework. Prolog is especially well suited for problems that involve

objects - in particular, structured objects - and relations between them. Prolog can

reason about the spatial relations. and their consistency with respect to the general rule.

Features like this make Prolog a powerful language for Artificial Intelligence and non­

numerical programming in general.

A question to Prolog is always a sequence of one or more goals. To answer a

question, Prolog tries to satisfy all the goals. To satisfy a goal means to demonstrate that

the goal is true, assuming that the relations in the program are true. In other words to

satisfy a goal means to demonstrate that the goal logically follows from the facts and

rules in the program. If the question contains variables, Prolog also has to find what are

the particular objects (in place of variables) for which the goals are satisfied. The

particular instantiation of variables to these objects is displayed to the user. If Prolog

Appendix B: Prolog

cannot demonstrate for some instantiation of variables that the goals logically follow

from the program, then Prolog's answer to the question will be 'No'.

An appropriate view of the interpretation of a Prolog program in mathematical

terms is then as follows: Prolog accepts facts and rules as a set of axioms, and the user's

question as a conjectured theorem; then it tries to prove this theorem - that is, to

demonstrate that is can be logically derived from the axioms.

Real numbers are not handled well in Prolog, as it is primarily a language for

symbolic, non-numeric computation, as compared to scientific mathematical languages

such as Fortran. In symbolic computation, integers are often used, for example, to

count the number of items in a list, but there is little need for real numbers.

B.2 Language Processing in Prolog

All Prolog implementations provide a notational extension called DCG (definite clause

grammars) (Bratko 1990, Clocksin & Mellish 1981, Gal et al. 1991, Marcus 1986). This

makes it very easy to implement formal grammars in Prolog. A grammar stated in DCG

is directly executable be Prolog as a syntax analyser. DCG also facilitates the handling of

tlte semantics of a language so that the meaning of a sentence can be interleaved with

the syntax. This section shows how a grammar parser can be constructed in DCG.

B.2.1 Categories and Structures

Constituent structures (or simply, constituents) are built up from the basic syntactic

categories. The most usual basic lexicon categories are as follows:

• nouns (N): e.g., table, computer, John

• determiners (DET): e.g., the, some, most

• verbs (V): e.g., eats, eating, sleep, slept, have

• adjectives (ADJ): e.g., big, fast, his

• adverbs (ADV): e.g.,)'esterday, rarely, rather, very

• auxiliaries (AUX): e.g., has, will, is, are, must, should

• conjunctions (CONJ): e.g., and, or

• prepositions (PREP): e.g., to, 011, with, ill

• pronouns (PRON): e.g., he, who, which

I 5 4

Appendix B: Prolog

The constituents found in standard theories are defined in terms of these basic

categories. Here are some of the more usual ones:

• sentence (S): a whole sentence,

e.g., It is raining.

The man who John met yesterday is a painter.

What is the capital of France?

• noun phrase (NP): a noun or pronoun together with elements which modify it, i.e.

determiner, acljectives, relative clause, etc.

e.g., the computer

the man who John met yesterday

some of the richest people in the world

• verb phrase (VP): a verb or verb group and its immediate complements (direct,

indirect and prepositional objects).

e.g., is sleeping

gave Mary a book

must be looking for something

• prepositional phrase (PP): a preposition followed by a noun phrase.

e.g., with a telescope

at the bottom of the garden

• adjective phrase (ADJP): an adjective together with its modifiers, i.e. adverbial,

qualifying phrases.

e.g., very big

bigger that anyone expected

small for an elephant

• adverbial phrase (ADVP): an adverb together with its modifiers.

e.g., yesterday evening

less often

as quickly as possible

This list is intended to be indicative rather that definitive: for different

applications it may be more advantageous to recognise different intermediate

1 5 5

Appendix B: Prolog

constituents between sentence and word. Also, not all types of text will have all the

possible varieties of each type of construction.

B.2.2 Description of the Structures

The basic syntactic categories mentioned above can be adjoined to form the description

of a kind of "natural language" sentence. Note that "natural language" is not to be

confused with "human language". To be able to understand human language, a

computer would need to-possess the kind of knowledge about the language that humans

possess referred to as "context" (Marcus 1986).

The DCG syntax of the natural language with categories can be seen as follows:

s -> NP, VP.

VP -> V, NP, ADVP.

VP -> AUX, V, PP

pp ->PREP, NP.

NP -> DET, N.

NP -> DET, ADJP, N.

N -> [dog].

N -> [cat].

DET -> [the].

PREP -> [in, front, of].

ADJP -> [big, small].

Since allowing unrestricted natural language input is currently not feasible, a

more formal language has been developed and adopted. The current implementation

of the grammar is sufficient for the purpose of this project, which involves considerable

use of arguments to check context-sensitive features and able to extract useful data

structure. This will be mentioned in Appendix C.

B.3 Operator Precedence in Prolog

As mentioned in Appendix A.2.1, an inference engine needs a collection of modules to

drive. For the inference engine to recognise these modules, a precedence order would

have to be constructed so that they can be distinguished and extracted easily by the

language processing routines. Here is a rule example:

1 5 6

Appendix B: Prolog

rulel : if [objectl, is_nearby, object2] then [objectl, meanders].

there are keywords (such as 'if', 'then', ':'and 'and') and modules (such as 'is_nearby'

and 'meanders') that enable the inference engine to recognise a rule structure. Some

have higher precedence order than others, and they are defined in Prolog as follows:

%% special operators defined for the inference engine

:- op(890, xfx, :).
:- op(880, xfx, then).
:- op(870, fx, if).

:- op(540, xfy, and).
:- op(220, xfx, is_nearby).
:- op(220, xf, meanders).

Take 'and' for instance. This tells Prolog that we want to use 'and' as an

operator, whose precedence is 540 and its type is 'xfy', which is a kind of infix operator.

The form of the specifier 'xfy' suggests that the operator, denoted by •r, is between the

two arguments denoted by 'x' and 'y'.

Notice that operator definitions do not specify any operation or action.

Operators are normally used, as functors, only to combine objects into structures and

not to invoke actions on data, although the word 'operator' appears to suggest an action.

Operator names are atoms, and their precedence must be in some range which depends

on the implementation. Typical range is between 1 and 1200, but the upper limit is

often implementation dependent.

There are three groups of operator types:

1) infix operators of three types:

xfx xfy

2) prefix operators of two types:

3) postfiX operators of two types:

I 5 7

Appendix B: Prolog

There is a difference between 'x' and 'y'. If an argument is enclosed in

parentheses or it is an unstructured object then its precedence is 0; if an argument is a

structure then its precedence is equal to the precedence of its principal functor. 'x'

represents an argument whose precedence must be strictly lower than that of tl1e

operator. 'y' represents an argument whose precedence is lower or equal to tl1at of tl1e

operator. Note also that, the higher the number, tl1e higher the precedence order.

B.4 LPA MacProlog's Coordinate system

Within the MacProlog's GDL (Graphics Description Language), the mathematical

coordinate system used corresponds to the coordinate system used by the internal

graphic system QuickDraw on the Macintosh. Note tl1at this differs in some important

ways from traditional mathematical coordinate systems.

The coordinate plane is a two-dimensional grid, as shown in Figure B-1.

-32768

-32768 32768

32768

Figure B-1 The Coordinate System of MacProlog

1 5 8

·'
"

.A p!p:en;d i.x ·B> ;p r.o•.l o;,g

Coordinates: must be. integers 'in_,i.he range "32768 to +32768~. vhe coordinate:

origin, •(0; '0)1 is in •the;:• c~_:nire of'ihe :_gri(l. As i11• trilditiona! coordinate systems, tlie

horizontal :coordinates increase as you :move: from the left to• :right,: blit; unusually for

rnaihfrn_atiq.l systems, the ve!ti_caJ' coorcliJlates incre_ase as y()u' move from top •tii•'bottoiri.

APPENDIX C

DCG LISTING

This is the implemented DCG version of the Language Interpreter & Translator in the

ESCAPE system. The language parser (sentence) can refer to three variables in a phrase.

Each variable can be an object (object!, object2 or object3), an object type (domain­

dependent), or a calculated value (numeric).

%% - DCG lANGUAGE COMPILER
%% -Contains codes for checking Rules languages,
%%
%% -Written by Victor Ye,© 1995, RSRC, University of Brighton

% X = object!, Y = object2, Z = object3
sentence(X, Y, Z, P and Q) -> simple_sentence(X, Y, Z, P), [and), sentence(X, Y, Z, Q).
sentence(X, Y, Z, P) -> simple_sentence(X, Y, Z, P).

% simple_sentence can be an 'undo', a 'calculalion' or a 'slandard' simple_sentence
simple_sentence(X, Y, Z, oodo(Assn)) -> [oodo], simple_sentence(X, Y, Z, Assn), !.
simple_sentence(X, Y, Z, Assn) -> calculation(X, Y, Z, Assn), I.
simple_sentence(X, Y, Z, Assn) -> noun_pbrase(_, Obj), verb_phrase(X, Y, Z, Obj, Assn).

% a noun_phrase can be a proper_nonn {e.g. jelly!) or a type {e.g. 'JELLYFISH')
nooo_pbrase{ X, Y) -> proper_nooo(A, T), { T = obj, X= A·; T = type, Y =A}, I.
noun_pbrase(X, Y) -> noun(X, Y).

% if a trans_verb is between two objects; e.g.: objectl trans_verb object2
verbmbrase(X, Y, Z, Objl, Assn) -> traos_verb(A, B, Assn), noon_pbrase(B, Obj2),
{ Ob 1 =object!, Obj2 = object2, A= X, B = Y; Ob)l = o~jectl, Ob).2 = object3, A= X, B = Z
; Ob I = object2, ObJ2 = ob~ectl, A= Y, B =X; Ob~ I= ob ect2, Ob 2 = obJect3, A= Y, B = Z
; Ob 1 = object3, Obj2 = objectl, A= Z, B =X; ObJI = ob1ect3, 0~12 = object2, A= Z, B = Y }, !.

%if a trans_verb is between an object and a type; e.~: object] trans_verb type
verb;-J'brase(X, Y, Z, Obj, Assn) .-> trans_verb(~· Type, Assn), nooo_pbrase(_, Type),
{ ObJ = objectl, A= X; Obj = object2, A= Y; ObJ = object3, A= Z }, I.

% if it is an intransiti\'e verb
verb_pbrase{ X, Y, Z, Obj, Assn) -> intrans_verb{ A, Assn),
{ Obj=objectl, A= X; Obj=object2, A= Y; Obj=object3, A= Z }, I.

% new-verb = user defined
% if a new_ verb is between two objects; e.g.: object] new_verb object2
verb_P.brase(X, Y, Z, Objl, Assn) -> new_verb(A, B, Assn), nooo_pbrase(B, Obj2),
{ ObJ.l = objectl, 0~2 = object2, A= X, B = Y; ObJI = o~jectl, O~j2 = object3, A= X, B = Z
; Ob 1 = ob~ect2, Ob 2 = ob~ectl, A= Y, B =X; ObJl =ob ect2, Ob 2 = obJect3, A= Y, B = Z
; Obh = object3, Ob 2 = objectl, A= Z, B =X; Objl = o~lect3, 0~j2 = object2, A= Z, B = Y }, I.

% if a new verb is between an objects and a type; e.g.: object I new_ verb type
verb_pbrase(X, Y, Z, Obj, Assn) .-> new_vem(A,_ Type? Assn), oooo_f.brase(Y, Type),
{ ObJ =object!, A= X; Obj = obJect2, A= Y; ObJ = object3, A= Z }, .

% if it is an new intransitive verb
verb_pbrase(X, Y, Z, Obj, Assn) -> oew_verb(A, Assn),
{ Obj=objectl, A= X; Obj=object2, A= Y; Obj=object3, A= Z }, I.

Appendix C: DCG Listing

% if it is a calculation of one parameter, then calculate the value (e.g. time_now_is X)
calculation(X, Y, Z, Calc(A)) -> [Calc], value(_, A), { calcableUst(Ust), member(Calc, List)}, I.

% if it is a calculation of two parameters, then Frform the calculates
calculation(X, Y, Z, Calc(A, B)) -> calculation2(X, Y, Z, Calc(R, B)),
(R =obJect I, A= X; R = object2, A= Y; R = object3, A= Z), I.
calculation(X, Y, Z, Assn) -> calculation2(X, Y, Z, Assn).

calculation2(X, Y, Z, Calc(A, B))-> [Calc(A, B)], { calcableU..t(List), member(Calc, Ust)}, I.

% a noun can be one of the variables object!, object2 or object3
noun(X, Object) -> [Object], { member(ObJect, [object!, object2, object3))), I.
% or it can be a value (perfonned by a calculauon)
noun(X, Var) -> value(X, Var), { atomic(Var); var(Var)].

% if it is a value, then c_~py it
value(X, Var) -> [Var].

% a proper noun can be one of the object types (domain-dependent, e.g. :JELLYFISH')
proper_noun(Type, type) -> [Type], { deFaults types(TUst), member(Type, TUst)).
% or it can be one of the existing actors in the domain (domain-dependent, e.g.jellyl)
proper_noun(Object, obj) -> [Object], { get_actors_list(AUst), member(Object, AUst)).

% an intrans_verb can be a 'property' or a 'I r,arameter operator' (domain·dependent e.g. is_alive)
lntrans_verb(X, lntrans(X)) -> [lntrans ,
{ propertyUst(PU.t), actionlList(AList), append(PU..t, AUst, TUst), member(lntrans, TUst)), I.

% an trans_,·erb can be a 'relation' or a '2 parameters operator' (domain-dependent e.g. is_nearby)
trans_verb(X, Y, Tl1lllB(X, Y)) -> {TI1lllB],
{ relationUst(RUst), action2Ust(AUst), append(RUst, AUst, TUst), member(Trans, TUst)), I.

% new verb (user defined) can be transitive (2 parameters) or intransitive (1 parameter)
new_verb(X, Y, Verb(X, Y)) -> [Verb).
new_verb(X, Verb(X)) -> [Verb).

1 6 1

APPENDIX D

WORLD.JELLY DOMAIN DATABASE

Overview

This section lists the database of the domain WorldJelly 2.2.

Number of objects:

Number of rules:

D.l Facts

6 (2 JELLYFISH, 3 PRAWNS, I ROCK).

12

%% facts required for World. Bird 2.2

%% planning script from X toY
fact plan 1 to 10.

%% defining the boundary of the world
fact world_size((0, 0), (400, 300)).

%%facts and properties of objects
fact obj_type(jeUyl, 'JELLYFISH').
fact property(jelly1, [alive]).
fact location(jeUy1, pt(197, 72)).

fact obj_type(jeUy2, 'JELLYFISH').
fact property(jelly2, [alive]).
fact location(jelly2, pt(99, 56)).

fact obj_type(prawo1, 'PRAWN').
fact property(prawo1, [alive]).
fact location(prawo1, pt(203, 206)).

fact obj_type(prawo2, 'PRAWN').
fact property(prawo2, [alive]).
fact location(prawo2, pt(180, 153)).

fact obj_type(prawo3, 'PRAWN').
fact property(prawo3, [alive]).
fact location(prawo3, pt(178, 185)).

fact obj_type(rock1, 'ROCK').
fact property(rock1, [static]).
fact location(rock1, pt(226, 212)).

Appendix D: World.jelly Domain Database

D.2 Defaults

%% Default Objects pictures for WorldJelly 2.2 for use with the Rules Maker

set_pict_descs :· set_prop('JELLYFISH', left, resource(200)),
set_prop('JELLYFISH', right, resource(201)),
set_prop('PRAWN', left, resource(210)),
set_prop('PRAWN', right, resource(211)),
set_prop('ROCK', left, resource(220)),
set_prop('ROCK', right, resource(221)),
set_area.

set_area :· fact world_size((_, _), (Y, X)),
set_prop(region, areal, box(·Y, -X, Y, X)),
set_prop(poss_dir, areal, [left, right]).

%% Default Objects database

defaults types(['JELLYFISH', 'PRAWN', 'ROCK']).

defaults mass('JELLYFISH', 5).
defaults size('JELLYFISH', 21, 21).
defaults vis('JELLYFISH', 150).
defaults maxSpeed('JELLYFISH', 40).
defaults property('JELLYFISH', [alive]).

defaults mass('PRAWN', 1).
defaults size('PRAWN', 4, 4).
defaults vis('PRAWN', 80).
defaults maxSpeed('PRAWN', 40).
defaults property('PRAWN', [alive]).

defaults mass('ROCK', 10).
defaults size('ROCK', 25, 25).
defaults property('ROCK', [static]).

defaults name('JELLYFISH', jelly).
defaults name('PRAWN', prawn).
defaults name('ROCK', rock).

I 6 3

Appendix D: World.Jelly Domain Database

D.3 Rules

%% rule base required for WorldJelly 2.2

% objects of 'PRAWN' type are food_of JELLYFISH' type
rulel : if [objectl, has_type, 'PRAWN',

and, object2, has_type, 'JELLYFISH']
then [objectl, is_food_of, object2].

% objeclS of 'JELLYFISH type are predator_of 'PRAWN' type
rule2 : if [objectl, has_type, 'PRAWN',

and, object2, has_type, 'JELLYFISH']
then [object2, ili_predator_of, object}].

% if an object is nearby a predator, then set escaping property
rule3 : if [objectl, is_nearby, object2,

and, object2, is_predator_of, objectl]
then [objectl, is_escaping_from, object2].

% if an object is nearby food, then plans encounter and set pursuing property
rule4 : if [objectl, is_nearby, object2,

and, object2, is_food_of, objectl,
and, object2, is_alive]

then [objectl, plans_encounter_to, object2,
and, objectl, is_pursuing, object2].

% if an object collides into food, kills it and stay for l keyframe
rule5 : If [objectl, is_pursuing, object2,

and, objectl, collides_ with, ohject2,
and, object2, is_food_of, objectl]

then [object2, dies,
and, objectl, stay _there,
and, undo, objectl, is_pursuing, object2].

% if a 'PRA\NN' is nearby a 'ROCK', 'ROCK' becomes a shelter for 'PRAWN'
rule6 : if [objectl, is_nearby, object2,

and, object}, has_type, 'PRAWN',
and, object2, has_type, 'ROCK']

then [object2, is_shelter_of, objectl].

% if an object is escaping and is nearby a shelter, then move towards it
rule7: if [objectl, is_escaplng_from, object2,

and, object3, is_shelter_of, objectl,
and, objectl, is_nearby, object3]

then [objectl, plans_encounter_to, object3].

% if an object has an escaping property, then plans get away
ruleS : if [objectl, is_escaping_from, object2]

then [objectl, plans_getaway_from, object2].

% if an object is alive, then meanders
rule9 : if [objectl, is_alive]

then [objectl, meanders].

% if an object is static, then stay put
rulelO : if [objectl, is_static]

then [object}, stay_there].

% if an object is alive and is a 'PRAWN', then flock centering
rulell: if [objectl, is_alive, and, objectl, has_type, 'PRAWN']

then [objectl, flock_centering].

% move objects within the boundary
rulel2: if [objectl, is_alive, and, objectl, is_close_to_edge]

then [objectl, moves_within_boundary].

1 6 4

Appendix D: World.jelly Domain Database

0.4 Predicates

%% domain specific operators
:- op(220, xf, meanders).
:· op(220, xf, flock_centering).
:- op(220, xfx, plans_encounter_to).
:- op(220, xfx, plans_getaway_from).

%% domain defined lists

% domainActionlList = l parameter, domainAction2List = 2 parameters
domalnActioniList([flock_centering, meanders]).
domainAction2List([plans_encounter_to, plans_getaway_from]).

% domainPredicate I List = I parameter, domainPredicate2List = 2 parameters
domainPredicatelList([]).
domainPredicate2List([]).

%% see F.4 World.Bird: Predicate for code for nock_centering

/* meanders *I
/**/

Object meanders :-
get_prop(level, meanders, Level), % Level (6) for random move
get_prop(rule, number, RuleNo),
get_prop(frame, current, Now),
get_prev_locn(Object, Now, pt(X, Y)),
maxSpeed(Object, Max), %get maxSpeed of object
make_neg(Max, Min),
rand_ize(XRand, Min, Max), % random number generator
rand_ize(YRand, Min, Max),

XI is X + XRand,
Yl is Y + YRand,
Action = poss_locn(Object, Now, Level, pt(XI, Yl)),
do(Action, RuleNo), I.

/* plans_encounter _to *I
/**/

Object! plans_encounter_to Object2 :-
Object! is_aUve, % make sure that only live object moves
get_actors_list(AList),
member(Object2, Alist), % make sure that object2 is a valid obj
get_prop(rule, number, RuleNo),
do_plans_encounter(Object!, Object2, Action),
do(Action, RuleNo).

do_plans_encounter(Object!, Object2, Action) :­
get_prop(frame, current, Now),
get_prev_locn(Object!, Now, pt(XI, Yl)),
get_prev_locn(Objectl!, Now, pt(X2, Y2)),
distance(XI, X2, Yl, Y2, ObjsDist),
maxSpeed(Object!, ObjMaxSpeed),

Ratio is ObjMaxSpeed/ObjsDist,
distance(XI, X2, X),
distance(Yl, Y2, Y),
DX is Ratio*X, nx_int is int(DX),

% then move only within the speed range

% DX = X distance to travel, maximum

1 6 5

Appendix D: World.jelly Domain Database

DY is Ratio*Y, DY_int is int(DY), % DY = Y distance to travel, maximum

% get the X and Y signs, whether they're +ve of -ve
X_diff is X2 - XI, X_sign is sign(X_diff),
Y_dlff Is Y2 - YI, Y_sign is sign(Y_diff),

(ObjMaxSpeed < ObjsDist
-> X_temp Is XI + X_sign•DX_int,

Y_temp is YI + Y_sign*DY_int
; X_temp Is XI + X_sign*X,

Y_temp is YI + Y_sign*Y),

% if object2 is outside the speed range
% move towards it

% else move within full speed

NewLoc is_between_places pt(XI, Yl) Be pt(X_temp, Y_temp) ,
get_prop(level, plans_encounter_to, Level),

Action = poss_locn(Objectl, Now, Level, NewLoc), !.

/* plans_getaway_from */
I** I

%% At the moment, the one escapes in random mode
Objectl plans_getaway_from Object2 :-

Objectl ls_alive, % make sure that only live object moves
get_actors_list(AList),
member(Object2, Alist), % make sure that object2 is a valid obj
get_prop(frame, current, Now),
get_prop(level, plans_getaway_from, Level),
get_prop(rule, number, RuleNo),
do_plans_getaway(Objectl, Object2, Now, Level, Action),
do(Action, RuleNo).

do_plans_getaway(Objecti, Object2, Now, Level, Action) :-
r-md_direction(Object2), % find object2's direction
Prev_time is Now - I,
direction(Object2, Prev_time, Direction),
Upper_limlt is Direction + 45,
Lower _limit is Direction - 45,
rand_ize(Movin_direction, Upper_limit, Lower_limit),
get_dlrection_signs(Movin_direction, X_sign, Y_sign), % standard in system

get_prev_locn(Objectl, Now, pt(XI, Yl)),
get_prev_locn(Object2, Now, pt(X2, Y2)),

distance(XI, X2, YI, Y2, BigDist),
maxSpeed(Objectl, Speed),
Max_dist Is Speed I sqrt(2),
Max_dist_int is int(Max_dist),
(Speed < BlgDist % if Obj2 is outside the speed range

-> Percentage is Max_dist_int • 8/IO, % 80 percent speed
Percentage_int is int(Percentage), % force to become an integer
rand_ize(X_dist, Percentage_int, Speed),
rand_ize(Y_dist, Percentage_int, Speed),

x_temp is XI + X_sign*X_dist,
Y_temp is Yl + Y_sign*Y_dist,
NewLoc is_between_places pt(XI, Yl) Be pt(X_temp, Y_temp)

; X is XI + X_sign*Speed, % else just move at maxSpeed
Y is Yl + Y_sign*Speed,
NewLoc = pt(X, Y)),

Action = poss_Iocn(Objectl, Now, Level, NewLoc), I.

1 6 6

APPENDIX E

WORLD.TRAFFIC DOMAIN
DATABASE

Overview

This section lists the database of the domain World. Traffic 2.0.

Number of objects:

Number of rules:

E.l Facts

5 (5 CARS).

7

%%facts required for World. Traffic 2.0

%% planning script from X toY

fact plan I to 12.

%%facts and propenies of objects

fact obj_type(earl, 'CAR').
fact property(earl, [alive, none]).
fact location(earl, pt(39, 28)).

fact obj_type(car2, 'CAR').
fact property(car2, [alive, none]).
fact location(car2, pt(152, 26)).

fact obj_type(car3, 'CAR').
fact property(car3, [none, static]).
fact location(car3, pt(279, 26)).

fact obj_type(car4, 'CAR').
fact property(car4, [alive, left]).
fact location(car4, pt(279, 60)).

fact obj_type(car5, 'CAR').
fact property(car5, [alive, left]).
fact location(car5, pt(170, 174)).

Appendix E: World.Traffic Domain Database

E.2 Defaults

%%Default Objects pictures for World. Traffic 2.0

set_plct_descs :- set_prop('CAR', east, resource(500)),
set_prop('CAR', west, resource(500)),
set_prop('CAR', north, resource(501)),
set_prop('CAR', south, resource(501)),
set_junction_areas.

set_junctlon_areas:- set_prop(region, area1, box(1S, 0, 34, 197)),
set_prop(region, area2, box(1S, 196, 34, 240)),
set_prop(region, area3, box(51, 0, 34, 159)),
set_prop(region, area4, box(51, 15S, 34, 39)),
set_prop(region, area5, box(51, 196, 34, 39)),
set_prop(region, area6, box(51, 234, 34, 200)),
set_prop(region, area7, box(S4, 15S, 200, 39)),
set_prop(region, areaS, box(S4, 196, 200, 39)),

set_prop(poss_dir, area1, [east]),
set_prop(poss_dir, area2, [east]),
set_prop(poss_dir, area3, [west]),
set_prop(poss_dir, area4, [north, west]),
set_prop(poss_dir, area5, [west, south]),
set_prop(poss_dir, area6, [west]),
set_prop(poss_dir, area7, [north]),
set_prop(poss_dir, areaS, [south]).

%% Default Objects database

defaults types(['CAR']),
defaults mass('CAR', 1).
defaults size('CAR', 2).
defaults vis('CAR', 100).
defaults maxSpeed('CAR', 30).
defaults stopTime('CAR', 6).
defaults stopDistsnce('CAR', 40).
defaults property('CAR', [alive, left]).

defaults name('CAR', car).

1 6 8

Appendix E: World.Traffic Domain Database

E.3 Rules

%% rulebase required for World. Traffic 2.0

% if an object is alive and ahead is clear, then move forward
rulel : if [objectl, is_alive,

and, ahead_clear(objectl, yes)]
then [objectl, moves_forward].

% if an object is alive and ahead is not clear, then slow down
rule2 : if [objectl, is_alive,

and, ahead_clear(objectl, no)]
then [objectl, slows_down].

% if an object is stop, then stay there
rule3 : if [objectl, is_stop]

then [objectl, stay_there].

% if an object is turning, then slow down
rule4 : if [objectl, is_turning]

then [objectl, slows_down].

% if an object is stop, ready to turn, and ahead is not clear, then stay put
ruleS : if [objectl, is_stop,

and, objectl, is_turning]
and, ahead_clear(objectl, no),

then [objectl, stay_there].

% if an object is stop, ready to turn, and ahead is clear, then go ahead and turn
rule6 : if [objectl, is_stop,

and, object I, ls_turning]
and, ahead_clear(objectl, yes),

then [objectl, turns].

% if an object is static, copy previous position
rule7 : if [ohjectl, is_static]

then [objectl, stay_there].

1 6 9

Appendix E: World.Traffic Domain Database

E.4 Predicates

%% domain specific operators
op(220, xf, ahead_is_clear).
op(220, xf, ahead_is_not_clear).
op(220, xf, is_stop).
op(220, xf, is_turning).
op(220, xf, moves_forward).
op(220, xf, slows_down).
op(220, xf, turns).

%% domain defined lists

% domainPredicate I List = I parameter, domainPredicate2List = 2 parameters
domainPredicate I List([ahead_is_clear, ahead_is_not_clear, is_stop,

is_ turning]).
domainPredicate2List([]).

% domainAction I List = 1 parameter, domainAction2List = 2 parameters
domainActioniList([moves_forward, slows_down, turns]).
domainAction2List([]).

/* check if object I is stopped */
/**/

Obj is_stop :· get_actors_list(List),
member(Obj, List),
get_prop(Obj, speed, 0). % Obj is_stop if speed= 0

/* check if object I is turning */
/**/

Objectl is_tuming :·

/*

get_prop(frame, current, Time),
Objectl is_alive, % make sure that only live object moves
get_prev_locn(Objectl, Time, pt(X, Y)),
which_area(pt(X, Y), Area),
get_prop(poss_d.ir, Area, List_of_poss_dirs),
get_prev_direction(Objectl, Time, Dlr),

stopDistance(Objectl, StopDist),
Dist is StopDist/2, % make it halved the travel StopDist ahead
correct_location(Dir, X, Y, XI, Yl, Dist),
which_area(pt(XI, Yl), Area2), % find which area it is in

change_direction(Objectl, Time, Area2, Dir2),
Dir2 \== Dir, I. % object is turning if directions are not the same

ahe ad_is_clear or not *I
/**/

Object ahead_is_clear :· ahead_clear(Object, yes).
Object ahead_is_not_clear :· ahead_clear(Object, no).

ahead_clear(Objectl, Answer) :·
Objectl is_alive,

1 7 0

Appendix E: World.Traffic Domain Database

get_prev_time(Prev_time),
f'md_objects_ahead(Objectl, Objects_ahead_Ust), % get list of objects in front
(Objects_ahead_Ust = []

-> (set_prop(Objectl, is_behlnd, none), % if list is empty, then it's clear
Answer = yes)

% else check if the nearest object in front is within the viewing distance
find_nearest_object_in_llst(Objectl, Prev_time, Objects_ahead_Llst,

Nearest_object),
outside_viewlng_distance(Objectl, Nearest_object, Prev_time, Answer)).

%% find objects ahead

f'md_objects_abead(Object!, List_of_objects_abead) :­
get_prop(frame, current, Time),
get_actors_llst(AList),
if_in_front(Objectl, AL!st, Time, [], List_of_objects_ahead).

if_in_front(_, [], _, Ust, List) :- I.

if_in_front(Object!, [Object21Rest], Time, Ustl, List2) :­
get_prev_locn(Object!, Time, pt(XI, Yl)),
wbicb_area(pt(XI, Yl), Area I), % find which area is object I in
wbicb_direction(Object!, Time, Area I, Dir), % direction it's travelling
get_prev_locn(Object2, Time, pt(X2, Y2)),
wbicb_area(pt(X2, Y2), Area2), % find which area is object2 in
(is_infront_of(Dir, X2, Y2, XI, Yl), % if in front and same direction

wblch_direction(Object2, Time, Areal, Dir),
append([Object2], Ustl, Ust3), I

; Ust3 = Ustl),
if_in_front(Object!, Rest, Time, Ust3, Llst2).

% if pt (X2, Y2) is in front of pt(X I, Y1) towards the east
is_infront_of(east, X2, Y2, XI, Yl) :- X2 > XI, Yl =< Y2, Y2 < YL

% ifpt(X2, Y2) is in front ofpt(XI, Yl) towards the west
is_infront_of(west, X2, Y2, XI, Yl) :- X2 < XI, Yl =< Y2, Y2 < Yl.

% if pt(X2, Y2) is in front of pt(XI, Yl) towards the north
is_infront_of(north, X2, Y2, XI, Yl) :- Y2 < Yl, XI =< X2, X2 < XI

% ifpt(X2, Y2) is in front ofpt(XI, Yl) towards the south
is_infront_of(south, X2, Y2, XI, Yl) :- Y2 > Yl, XI =< X2, X2 < XI.

is_infront_of(right, X2, Y2, XI, Yl) :- is_infront_of(east, X2, Y2, XI, Yl).
is_infront_of(left, X2, Y2, XI, Yl) :- is_infront_of(west, X2, Y2, XI, Yl).

%% find nearest object in list

% if only one, then it is the nearest
f'md_nearest_object_in_llst(_, _, [Nearest_object], Nearest_object).

find_nearest_object_in_llst(Objl, Time, [First, SecondiRest], Nearest_object) :­
find_nearest_object_in_list(Objl, Time, [SecondiRest], NearRest),
nearer_object(Objl, Time, First, NenrRest, Nearest_object).

nearer_object(Objl, Time, Obj2, Obj3, Nearer) :­
get_objects_dist(Objl, Obj2, Time, Distancel),
get_objects_dist(Objl, Obj3, Time, Distance2),
min(Distance!, Distance2, MinDist),
(MinD 1st = Distance I

1 7 I

Appendix E: World.Traffic Domain Database

·> Nearer = Obj2
; Nearer = Obj3).

%% check if objects are within the viewing distance
outside_viewing_distance(Objectl, Object2, Time, Answer) :·

vis(Objectl, VisDist), % get the Visible Distance
get_objects_dist(Objectl, Object2, Time, Distance),
(Distance less_than_or_equal_to VisDist % front not clear)
·> ((Object2 is_static % if the object in front is stopped

; (direction(Objectl, Time, Dir), %or if both going in same direction
direction(Object2, Time, Dir)))

·> Answer = no, set_prop(Objectl, is_behind, Object2)
; Answer = yes, set_prop(Objectl, is_bebind, none)) ,

Answer = yes, set_prop(Objectl, is_behind, none)),

I* moves_forward *I
/**/

Object moves_forward :·
get_prop(frame, current, Now),
get_prop(level, moves_forward, Level),
get_prop(rule, number, RuleNo),
do_moves_forward(Object, Now, Level, Action),
do(Action, RuleNo), I.

do_moves_forward(Object, Now, Level, Action) :·
get_prev_locn(Object, Now, pt(X, Y)),
whicb_area(pt(X, Y), Area),
whicb_direction(Object, Now, Area, Dir),
set_object_dlrection(Object, Now, Dir), I,

maxSpeed(Object, MaxSpeed),
stopDistance(Object, StopDist),
stopTime(Object, StopTime),

set_speed_values(Object, ace),
get_prop(Object, speed, Value),
Step is ValueiStopTime,
Ace is (2*StopDisti(StopTime•2)),
XX is (MaxSpeed*Step + (0.5*Acc*(Step•2))),
Distance_travelled Is int(XX),

% find which area is object in
% see below

% see later

% distance to go
% make XX an integer

correct_Iocation(Dir, X, Y, Xl, Yl, Distance_travelled),
cbeck_within_boundary(Area, Dir, Xl, Yl, X2, Y2),
Action = poss_locn(Object, Now, Level, pt(X2, Y2)),

I* set the correct location for Directions, and distances" travelled *I
correct_location(north, X_in, Y_in, X_in, Y_out, Distance_travelled) :·

Y_out is Y_in · Distance_travelled, I.

correct_location(east, X_in, Y_in, X_out, Y_in, Dlstance_travelled) :·
x_out is X_in + Distance_travelled, I.

correct_location(south, X_in, Y_in, X_in, Y_out, Dlstance_travelled) :·
Y_out is Y_in + Distance_travelled, I.

correct_location(west, X_in, Y_in, X_out, Y_in, Dlstance_travelled) :·
X_out is X_in • Distance_travelled, I.

I 7 2

Appendix E: World.Traffic Domain Database

/* keep location within the road boundary • I
cbeck_within_boundary(Area, north, X_in, Y_in, X_out, Y_out) :­

cbeck_within_boundary(Area, south, X_in, Y_in, X_out, Y_out).

cbeck_within_boundary(Area, south, X_in, Y_in, X_out,
get_prop(region, Area, box(_, Left, _, Width)),
XI is ((Width/3) + Left),
X2 is int(X1), % make Xl an integer

Y_in) :-

rand_lze(XRand, -1, 1),
X_out is X2 + XRand, I.

% obtain a little randomisation

cbeck_within_boundary(Area, east, X_in, Y_in, X_out, Y_out) :­
cbeck_within_boundary(Area, west, X_in, Y_in, X_out, Y_out).

cbeck_wlthin_boundary(Area, west, X_in, Y_in, X_in,
get_prop(region, Area, box(Top, _, Depth, _)),

Y_out) :-

Yl is ((Depth/3) + Top),
Y2 is int(Y1), % make Yl an integer
rand_lze(YRand, -1, 1),
Y_out is Y2 + YRand, I.

% obtain a little randomisation

cbeck_witbin_boundary(_, _, X_in, Y_in, X_in, Y_in). % else if nothing fits

/* slows_ down *I
I** I

Object siows_down :-
Object is_alive, % make sure that only live object moves
get_prop(frame, current, Now),
get_prop(level, slows_down, Level), % Level (5) for meanders_forward
get_prop(rule, number, RuleNo),
do_slows_down(Object, Now, Level, Action), !,
do(Action, RuleNo).

do_slows_down(Object, Now, Level, Action) :­
get_prev_locn(Object, Now, pt(X, Y)),
wbicb_area(pt(X, Y), Area), % find which area is object in
wblcb_dlrection(Object, Now, Area, Dir),
set_object_dlrection(Object, Now, Dlr), I,

get_prev_time(Time),
maxSpeed(Object, MaxSpeed),
stopDistance(Object, StopDist),
stopTime(Object, StopTime),

get_prop(Object, is_bebind, Object2),
get_actors_list(List),
(member(Object2, List) % if Object2 is an object then ...

-> get_objects_dist(Objectl,
Distance = StopDist) ,

Object2, Time, Distance)
% in case of turning

Distance =< StopDist
-> set_prop(Object, speed, 0), % emergency stop I

StoppingDistance = 0
; StoppingDistance is Distance - StopDist), % StopDist = 40 (2 cars length)

set_speed_values(Object, deacc),
get_prop(Object, speed, Value),

Step Is Value/StopTime,
DeAcc is (2*StoppingDistance/(StopTimeA2)),
XX is (MaxSpeed*Step - (0.5*DeAcc*(StepA2))), % distance to go

1 7 3

Appendix E: World.Traffic Domain Database

Dlstance_traveUed is int(XX), % make XX an integer

correct_location(Dir, X, Y, XI, Y1, Distance_travelled),
check_within_boundary(Area, Dir, X1, Y1, X2, Y2),
Action = poss_locn(Object, Now, Level, pt(X2, Y2)), I.

get_junction_stopping_dlstance(Area, pt(X, Y), Distance) :­
get_prop(region, Area, box(Top, Left, Bottom, Right)),
(Area = area1 -> D is Left + Right - X, Distance is abs(D), I

; Area = area6 -> D is X - Left, Distance is abs(D), I
; Area = area7 -> D is Y- Top, Distance is abs(D), 1).

set_speed_values(Object, Type) :­
get_prop(Object, speed, Value),
set_speed_value(Object, Type, Value)

; set_prop(Object, speed, 4), I. % if it has not a value, then give it 4

set_speed_value(Object, Type, stop). % if it is stop, then do nothing
set_speed_value(Object, Type, Value) :- % else check the value

(Type = ace -> Temp = 1
; Type = deacc -> Temp = -1),

NewValue is Value + Temp,
(NewValue >= 6 -> set_prop(Object, speed, 6)

; NewValue < 0 -> set_prop(Object, speed, 0)
; set_prop(Object, speed, NewValue)), I.

!* making an object turn */
/**/

turns Object :-
Object is_alive, % make sure that object is alive
get_prop(frame, current, Now),
get_prop(level, turns, Level),
get_prop(rule, number, RuleNo),
write(Object), writenl(' is supposed to turn here .. .'),
do_tums(Object, Now, Level, Action),
write(' ... turned here with '), write(RuleNo), write(' ... '),
do(Action, RuleNo), I.

do_turns(Object, Now, Level, Action) :­
get_prev_locn(Object, Now, pt(X, Y)),
which_area(pt(X, Y), Area),
change_direction(Object, Now, Area, Dir),
set_ohject_direction(Object, Now, Dir), I,

maxSpeed(Object, MaxSpeed),
stopDistance(Object, StopDist),
stopTime(Object, StopTime),

set_speed_values(Object, ace),
get_prop(Object, speed, Value),
Step is Value/StopTime,
Ace is (2*StopDist/(StopTimeA2)),

% find which area is object in
% see below

XX is 5+ (MaxSpeed*Step + (0.5*Acc*(StepA2))),
Distance_traveUed is int(XX),

% distance to go
% make XX an integer

correct_location(Dir, X, Y, X1, Y1, Distance_traveUed),
check_within_boundary(Area, Dir, X1, Y1, X2, Y2),
Action = poss_locn(Object, Now, Level, pt(X2, Y2)), I.

1 7 4

Appendix E: World.Traffic Domain Database

%% Check object when turning, turning+ possible directions
change_direction(Obj, Now, Area, Direction) :­

property(Ohj, PropertyList),
find_next_turing(PropertyList, Next_tum), % find the next turning

get_prop(poss_dir, Area, Ust_of_poss_dirs), % get all the possible directions
length(List_of_poss_dirs, Length), % find the number of directions
(Length= I

·> [Direction] = List_of_poss_dirs
get_prev_direction(Obj, Now, Heading),
resolve_dir(Heading, Next_tum, TheDirection),

(member(TheDirection, List_of_poss_dirs) % if it is possible
·> Direction = TheDirection

; Direction = Heading)). % else stay with the original direction

find_next_turing(Prop_List, Next_tum) :-
member(none, Prop_List), Next_tum = none, I.

find_next_turing(Prop_List, Next_tum) :-
member(left, Prop_List), Next_tum = left, I.

find_next_turing(Prop_List, Next_tum) :-
member(right, Prop_List), Next_tum = right, I.

resolve_dir(north, left, west).
resolve_dir(north, right, east).
resolve_dir(east, left, north).
resolve_dir(east, right, south).
resolve_dir(south, left, east).
resolve_dir(south, right, west).
resolve_dir(west, left, south).
resolve_dir(west, right, north).
resolve_dir(Heading, none, Heading).

I 7 5

APPENDIX F

WORLD.BIRD DOMAIN DATABASE

Overview

This section lists the database of the domain World.Bird 2.0.

Number of objects:

Number of rules:

F.l Defaults

16 (9 BIRDS, 7 OBSTACLES).

3

%%Default Objects pictures for World.Bird 2.0

set_pict_descs :- set_prop('OBST', left, circle(0, 0, 10)),
set_prop('OBST', right, circle(0, 0, 10)),
set_prop('BIRD', left, flllclrcle(0, 0, 2)),
set_prop('BIRD', right, f111clrcle(0, 0, 2)),
set_area.

set_area :- set_prop(region, areal, box(-500, -500, 500, 500)),
set_prop(poss_dlr, area1, [left, right)),

%% Default Objects database
defaults types(['BIRD', 'OBST']).
defaults mass('BIRD', 1).
defaults size('BIRD', 6, 6).
defaults vis('BIRD', 100).
defaults maxSpeed('BIRD', 15).
defaults property('BIRD', [alive]).

defaults size('OBST', 13, 13).
defaults property('OBST', [static]),

defaults name('BIRD', bird).
defaults name('OBST', obstacle).

Appendix F: World.Bird Domain Database

F.2 Facts

fact plan I to 16. %% planning script from X toY

fact obj_type(bird!, 'BIRD').
fact property(bird!, [alive]).
fact location(bird!, pt(32S, 161)).

fact obj_type(bird2, 'BIRD').
fact property(bird2, [alive]).
fact location(bird2, pt(341, 131)).

fact obj_type(bird3, 'BIRD').
fact property(bird3, [alive]).
fact location(bird3, pt(3SS, 194)).

fact obj_type(bird4, 'BIRD').
fact property(bird4, [alive]).
fact location(bird4, pt(3S3, 141)).

fact obj_type(birdS, 'BIRD').
fact property(birdS, [alive]).
fact location(birdS, pt(371, 22S)).

fact obj_type(bird&, 'BIRD').
fact property(bird&, [alive]).
fact location(bird&, pt(40S, 191)).

fact obj_type(bird7, 'BIRD').
fact property(bird7, [alive]).
fact location(bird7, pt(409, 96)).

fact obj_type(birdS, 'BIRD').
fact property(birdS, [alive]).
fact location(birdS, pt(432, 194)).

fact obj_type(bird9, 'BIRD').
fact property(bird9, [alive]).
fact location(bird9, pt(436, 7S)).

fact obj_type(obstacle1, 'OBST').
fact property(obstacle!, [static]).
fact location(obstacle!, pt(271, 20S)).

fact obj_type(obstacle2, 'OBST').
fact property(obstacle2, [static]).
fact location(obstacle2, pt(266, 113)).

fact obj_type(obstacle3, 'OBST').
fact property(obstacle3, [static]).
fact location(obstacle3, pt(233, 160)).

fact obj_type(obstacle4, 'OBST').
fact property(obstacle4, [static]).
fact location(obstacle4, pt(17S, 204)).

fact obj_type(obstacleS, 'OBST').
fact property(obstacleS, [static]).
fact location(obstacleS, pt(191, l2S)).

fact obj_type(obstacle&, 'OBST').
fact property(obstacle&, [static]).
fact location(obstacle&, pt(131, 16S)).

1 7 7

Appendix F: World.Bird Domain Database

fact obj_type(obstacle?, 'OBST').
fact property(obstacle?, [static]).
fact location(obstacle?, pt(27, 172)).

F.3 Rules

%% Rule base required for World.Bird 2.0

% if an object is alive, then meanders forward
rulel : if [object1, is_alive]

then [objectl, meanders_forward].

% if an object is static, then copy previous position
rule2 : if [objectl, is_static]

then [object), stay_there].

% if an object is alive, the flock centering
rule3 : if [objectl, is_alive]

then [objectl, flock_centering].

F.4 Predicates

%% domain specific operators
:- op(220, xf, flock_centering).
:- op(220, xf, meanders_forward).

%% domain defined lists

% domainAction I List = 1 parameter, domainAction2List = 2 parameters
domainActionlList([flock_centering, meanders_forward]).
domainAction2List([]).

% domain Predicate I List = 1 parameter, domainPredicate2List = 2 parameters
domainPredicate 1 List([]).
domainPredicate2List([]).

/* flock_centering */
/**/

Object flock_centering :­
get_prop(frame, current, Now),

Time is Now - 1,
Object has_type Type, I,
find_flock_centre(Type, Time, pi(CentreX, CentreY)),
not(CentreX = -9999), % proceed if there's a centre
findall(Level, poss_locn(Object, Now, Level, _), LeveiList),
sort(LeveiList, [Highestl_]), % find the current heightst priority level
poss_locn(Object, Now, Highest, pt(PossX, PossY)),

1 7 8

Appendix F: World.Bird Domain Database

centering_calc(PossY, CentreY, Y),
centering_calc(PossX, CentreX, X),
get_prop(rule, number, RuleNo),
do(poss_locn(Object, Now, Highest, pt(X, Y)), RuleNo), I.

% get it if the centre coordinates are already available
find_flock_centre(Type, Time, Point) :­

get_prop(flock, Time, [Type, Point]), I.

% otherwise, find it
flnd_flock_centre(Type, Time, pt(X, Y)) :·
findall(Loc, (Obj has_type Type, Obj is_alive, Obj is_nearby _,

locn(Obj, Time, Loc)), List),
% if this is the only object, then do not apply flock centering
length(List, I) ·> X = ·9999, Y = ·9999, I

List = [pt(A, B)lRest], I, % else
length(list, Number_in_list),
find_sum_of_locns(A, B, Rest, pt(X_sum, Y_sum)),
X is int(X....sumiNumber_in_list),
Y is int(Y_sumiNumber_in_Iist)),

set_prop(fioek, Time, [Type, pt(X, Y)]), I.

centering_calc(Poss, Centre, X) :­
Diff is Poss - Centre,
N is int(sqrt(abs(Diff))),
Mid_point is int((Poss + Centre)l2),
rand_lze(The_point, Poss, Mid_point), % put some randomisation in it

X is The_point • sign(Diff)•N.

I* meanders_forward *I
/**/

Object meanders_forward :­
Object is_alive,

Level),

% make sure that object is alive
get_prop(frame, current, Now),
get_prop(level, meanders_forward,
get_prop(rule, number, RuleNo),
do_meanders_forward(Object, Now,
do(Action, RuleNo).

Level, Action),
% see infer, test ...

do_meanders_forward(Object, Now, Level, Action) :­
get_prev_locn(Object, Now, pt(X, Y)),
which_area(pt(X, Y), Area), % find which area is object in
which_direction(Object, Now, Area, Dir), % see below
set_object_direction(Object, Now, Dlr),
get_prev_locn(Object, Now, pt(X, Y)),
maxSpeed(Object, Speed),
UpperLimlt is Speed + 10,
rand_ize(XRand, Speed, UpperLimit),
rand_lze(YRand, ·20, 20),
XI is X - XRand,
Yl is Y + YRand,

% fixed, so it goes in one direction
%fixed

Action = poss_locn(Object, Now, Level, pt(XI, Yl)) .

1 7 9

,,

References

"With regard to the practice of quoting, in the margin, such
books and authors as have furnished you with sentences and

sayings for the embellishment of your history .. ."

To bias Smolleu's translation of Don Quixote (1986),
Andre Deutsch

Alien, J. (1978) Anatomy of USP. McGraw-Hill, New York

Andersen, P. B. (1992) Vector Spaces as the Basic Components of Interactive Systems:
Towards a Computer Semiotics. Hypcnnedia 4(1), 53-76

Agha, G. (1986) Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge, Massachusetts

Arnkraut, S., Girard, M, & Karl, G. (1985) Motion Studies for a Work in Progress
entitled 'Eurythmy'. In SIGGRAPH Video Review, 21, 2nd item, 3:58-7:35

Badler, N. 1., Barsky, B. & Zeltzer, D.; Eds. (1991) Making Them Move - Mechanics,
control and animation of Articulated Figures. Morgan Kaufmann

Badler, N. 1., Phillips, C. B. & Webber, B. (1994) Simulating Humans. Oxford
University Press, Oxford

Baraff, D. (1990)
simulation.

Curved surfaces and coherence for non-penetrating rigid body
Computer Graphics (Proceedings SIGGRAPH) 24, pp.19-28

Barr, A., Cohen, P. R. & Feigenbaum, E. A. (1989) The Handbook of Artificial
Intelligence. Volume IV. Addison-Wesley

Barwise, J. & Perry, J. (1983) Situations and Attitudes. MIT Press, London

Beardon, C. & Ye, V. (1995) Using Behavioural Rules in Animation. Computer
Graphics: Developments in Virtual Environments. Academic Press, London, pp.
217-234

Bekey, G. A., Iberall, T., Tomovic, R. & Liu H. (1991) Knowledge Based Models of
Human & Robot Grasping. Identification & System Parameter Estimation 1991.
1&2, pp. 699-704

Blumenthal, B. (1990) Strategies for Automatically Incorporating Metaphoric Attributes
in Interface Design. Proceedings of the AGM SIGGRAPH Symposium on User
Interface Software and Technololf)', Snowbird, Utah, pp. 66-75

Bratko, I. (1990) PROLOG Programming for Artificial Intelligence. Second Edition,
Addison-Wesley, Wokingham

Bruderlin, A. & Calvert, T. W. (1989) Goal-Directed, Dynamic Animation of Human
Walking. Computer Graphics 23 (3), 233-242

1 8 1

References

Canfield, D. S., Cypher, A. & Spohrer,]. (1994) KidSim: Programming Agents Without
a Programming Language. Communicatiom of The AGM 37 (7), 55-67

Chomsky, N. (1959) Review of Skinner's Verbal Behaviour Language 35, pp 26-58

Chomsky, N. (1965) Aspects of the Theory of Syntax. MIT Press, Boston, Massachusetts

Clocksin, W. F. & Mellish, C. S. (1981) Programming in Prolog. Springer-Verlag, New
York

Cohen, M. F. (1992) Interactive Spacetime Control for Animation. Computer Graphics
(Proceedings SIGGRAPH) 26(2), 293-302

Cypher, A. (1993) Watch What I Do: Programming by Demonstration. MIT Press,
Boston, Massachusetts

Delvin, K. (1991) Logic and Information, Cambridge University Press, Cambridge

Delvin, K. (1992) Situation Theory and Design. Department of Mathematics and
Computer Science, Colby College, Waterville, Maine, USA. Rewrite

Douglas, S., Doerry, E. & Novik, D. (1990) QUICK: A User-Interface Design Kit for
Non Programmers. Proceedings of the AGM SIGGRAPH Symposium on User
Interface Software and Technology, Snowbird, Utah, pp. 47-56

Feldman,]. A.; Ed. (1985) Cognitive Science. 9(1). Special Issue on Connectionist
Models and Their Applications.

Fievet, C. (1995) The 3rd dimension of Internet. Cybersphere, August 24, 1995.
Available on the Internet http://www. quelm.fr/CSphere/NJ/ A naJDU. html

Foley,]. D., van Dam, A., Feiner, S. & Hughes,]. (1990) Computer Graphics
Principles & Practice. Second Edition, Addison-Wesley, Massachusetts

Gal, A., Lapalme, G., Saint-Dizier, P. & Somers, H. (1991) PROLOG for Natural
Language Processing. Wiley, Chichester

Girard, M. (1986) Interactive Design of 3D Computer Animated Legged Animal
Motion. 1986 Workshop on Interactive JD Graphics. Chapel Hill, North Carolina,
October 1986

Girard, M. & Maciejewski, A. A. (1985) Computational Modelling for the Computer
Animation of Legged Figures. Computer Graphics (Proceedings SIGGRAPH) 19
(3). 263-270

Halas, J.; Ed. (1974) Computer Animation. Focal Press, London

Hewitt, C. & Aitkinson, R (1977) Parallelism and Synchronization in Actor Systems.
AGM Symposium on Principles of Programming Languages 4, Los Angeles,
California, January 1977

Hu, D. (1989) C/C++ for Expert SJStems. MIT Press, Boston, Massachusetts

Hutchins, E. L., Hollan, J.D. & Norman, D. A. (1986) Direct Manipulation Interfaces,
in User Centred System Design, Norman, D. A & Draper, S. W, Eds., Lawrence
Erlbaum Associates, Hillsdale, NJ, pp. 87-127

1 8 2

References

Isaacs, P. M. & Cohen, M. F. (1987) Controlling Dynamic Simulation With Kinematic
Constraints, Behaviour Functions and Inverse Dynamics. Computer Graphics
(Proceedings SIGGRAPH) 21 (4), 215-224

Jackson, P. (1986) Introduction to Expert Systems. Addison-Wesley, Wokingham

Koga, Y., Kondo, K., Kuffner, J. & Latombe, J. (1994) Planning Motions with
Intentions. Computer Graphics (Proceedings SIGGRAPH) 28, pp. 395-408

Kononenko, I. & Lavrac, N. (1988) Prolog - Through Examples: A Practical
Programming Guide. SIGMA Press, Wilmslow

Langton, C. (1989) Artificial Life. Addison-Wesley, Reading, Massachusetts

Lasseter, J. (1987)
Animation.

Principles of Traditional Animation Applied to 3D Computer
Computer Graphics (Proceedings SIGGRAPH) 21 (4), 35-44

Laurel, B. (1990) The Art of Human-Computer Interface Design. Addison-Wesley,
Wokingham

Lee, Y., Terzopoulos, D. & Waters, K. (1995) Realistic Modeling for Facial Animation.
Computer Graphics (Proceedings SIGGRAPH) 29, pp. 55-62

Lloyd, J. W. (1984) Foundations of Logic Programming. Springer-Verlag, Berlin

Marc us, C. (I986) Prolog Programming: Application for Database Systems, Expert
Systems, and Natural Langnage Systems. Addison-Wesley, Reading, Massachusetts

McCarthy, J. (1959) Programs with Common Sense. Mechanization of Thought
Process. Her Majesty's Stationary Office, London. pp. 77-84

McDermott, J. .(1980) RI: An Expert in the Computer Systems Domain, in Proceedings
of the First Annual National Conference on Artificial Intelligence, Stanford, CA,
pp. 269-271

McKenna, M. & Zeltzer, D. (1990) Dynamic Simulation of Autonomous Legged
Locomotion. Computer Graphics (Proceedings SIGGRAPH) 24, pp. 29-38

Miller, G. (1988) The Motion Dynamic of Snakes & Worms. Computer Graphics
(Proceedings SIGGRAPH) 22(4), I69-I78

Moore, M. & Wilhelms, J. (1988) Collision detection and response for computer
animation. Computer Graphics (Proceedings SIGGRAPH) 22(4), 289-298

Newman, W. & Sproull, R. (1979) Principles of Interactive Computer Graphics. 2nd
Edition, McGraw-Hill, New York

Ngo, J. T. & Marks, J. (1992) Physically Realistic Trajectory Planning in Animation: A
Stimulus-Response Approach. Technical Report TR-21-92. Centre for Research
in Computing Technology, Harvard University, October 1992

Ngo, J. T. & Marks, J. (1993) Spacetime Constraints Revisited. Computer Graphics
(Proceedings SIGGRAPH). 27, pp. 343-350

O'Donnell, T. J. & Olson, A. J. (1981) CRAMPS- A Graphics Language Interpreter for
Real-Time, Interactive, Three-Dimensional Picture Editing and Animation.
Computer Graphics (Proceedings SIGGRAPH) 15(3), I33-I42

1 8 3

References

Phillips, C. B. & Badler, N. I. (1991) Interactive Behaviours for Bipedal Articulated
Figures. Computer Graphics (Proceedings SIGGRAPH). 25 (4), 359-362

Phillips, C. B., Zhao,]. & Badler, N. I. (1990) Interactive Real-time Articulated Figure
Manipulation Using Multiple Kinematic Constraints. In ACM Proceedings of
Symposium on Interactive 3D Graphics (Snowbird, Utah, March, 1990). 24,
pp. 245-250

Pugh, J. R. (1984) Actors- The Stage is Set. SIGPLAN Notices 19(3), 61-65

Raibert, M. H. & Hodgins, J. K. (1991) Animation of Dynamic Legged Locomotion.
Computer Graphics (Proceedings SIGGRAPH) 25(4), 349-358

Repenning, A (1993) Agentsheets: A Tool for Building Domain Oriented Dynamic,
Visual Environments. PhD. Thesis, University of Colorado

Rettig, M., Morgan, T., Jacobs, J & Wimberly, D. (1989) Object Oriented Programming
in Al. AI EXPERT, January 1989, pp.53-69

Reynolds, C. W. (1982) Computer Animation with Scripts and Actors. Computer
Graphics (Proceedings SIGGRAPH) 16(3), 289-296

Reynolds, C.W. (1987) Flocks, Herds, and Schools: A Distributed Behavioural Model.
Computer Graphics (Proceedings SIGGRAPH) 21 (4), 25-34

Rogers, D. F. (1989) Procedural Elements for Computer Graphics. McGraw-Hill,
London

Rijpkema, H. & Girard, M. (1991) Computer Animation of Knowledge-Based Human
Grasping. Computer Graphics (Proceedings SIGGRAPH) 25 (4), 339-348

Schank, R. C. (1980) Language and Memory, Cognitive Science 4(3), 243-284

Selig, W.]. & Johannes,]. D. (1990) Reasoning Visualization in Expert Systems: The
Applicability of Algorithm Animation Techniques, in 3rd International
Conference on Industrial & Engineering Applications of AI & Expert Systems 1 &:
2, pp. 457-466

Shapiro, S.C. Ed. (1987) Encyclopedia of Artificial Intelligence. Volume 1 & 2. John
Wiley, Chichester

Shneiderman, B. (1989) Direct Manipulation: A Step Beyond Programming Languages,
in Human-Computer Interaction: A Multidisciplinary Approach, Beaecker &
Buxton Eds., Morgan Kaufmann Publisher, Inc. pp. 461-467

Shortliffe, E.H. (1976) Computer-Based Medical consultation: MYCIN. America!
Elsevier, New York

Skinner, B. F. (1974) About Behaviourism. Alfred Knopf, New York

Smith, T. G.; Ed. (1985) Industrial, Light & Magic: The Art of Special Effects.
Columbus, London

Stefik, M. & Bobrow, D. G. (1984) Object-Oriented Programming: Themes and
Variations. The AI Magazine, pp. 40-61

1 8 4

References

Stern, G. (1983) Bbop - A Program for 3-Dimensional Animation. Nicograph 1983
Proceedings. pp. 403-404

Strauss, P. S. & Carey, R. (1992) An Object-Oriented 3D Graphics Toolk.it. Computer
Graphics (Proceedings SIGGRAPH) 26(2), 341-347

Suchman, L. A. (1987) Plans and Situated Actions: The Problem of Human-Machine
Communication. Cambridge University Press, Cambridge

Thalmann, D. (1994) Animating Autonomous Virtual Humans in Virtual Reality. 13th
World Computer Graphics Congress 94, 3, pp. 177-183

Thalmann, N. M. & Thalmann, D.; Eds. (1994) Introduction: Creating Artificial Life in
Virtual Reality. In Artificial Life and Virtual Reality, pp. 1-10, Wiley, London

Tu, X. & Terzopoulos, D. (1994) Artificial Fishes: Physics, Locomotion, Perception,
Behaviour. Computer Graphics (Proceedings STGGRAPH) 28, pp. 43-50

Uchik.i, T., Ohashi, T. & Tokoro, M. (1983) Collision Detection in Motion Simulation.
Computers and Graphics 7 No. 3-4

Vince, J. (1985) Computer Graphics for Graphic Designers. Frances Pinter, London

Vi nee, J. (1992) 3-D Computer Animation. Addison-Wesley, Wokingham

Waters, K. (1987) A Muscle Model for Animating Three-Dimensional facial Expression.
Computer Graphics (Proceedings SIGGRAPH) 21 (4), 17-24

Wejchert, J. & Haumann, D. (1991) Animation Aerodynamics. Computer Graphics
(Proceedings SIGGRAPH) 25(4), 19-22

Wilhelms, J. & Skinner, R. (1990) A "Notion" for Interactive Behavioural Animation
Control. IEEE Computer Graphics and Applications 10, pp. 14-22

Winston, P. H. (1977) Artificial Intelligence. Addison-Wesley, Wokingham

Winston, P. H. & Horn, K. P. H. (1984) Lisp. 2nd Edition, Addison-Wesley, Wok.ingham

Witk.in, A. & Kass, M (1988) Spacetime Constraints. Computer Graphics (Proceedings
SIGGRAPH) 22(4), 159-168

Wooldridge, M. & Jennings, N. R.; Eds.(1995) Intelligmt Agents. Springer-Verlag,
London

Wooldridge, M., Miiller,J. P. & Tambe, M.; Eds.(1996) Intelligent Agents ll. Springer­
Verlag, London

Yao, Y., Jawahir, 1. S., Jamieson, D. & Fang, X. D. (1990) Computer Animation of Chip
Flow and Chip Curl in an Expert Process Planning System for Metal Machining.
TrallSactions of the North American Manufacturing Research Institution of SME.
pp. 161-166

Ye, V. (1995) Expert Systems in Computer Animation. Digital Creativity: (Proceedings
CAD£'95), University of Brighton, pp. 222-227

1 8 5

I·

l. 8! 6

Ex:pert Systems:. in Compute~ Animation

Production Environments (1ESCAPE)
0

Victor. Ye

•Paper presented,;ilt :Q\DE: Cgn(erel)ce,

{)ni\oersiiy of ~iighton,

1 ~2Ii April) 995,

:As Printed in ~Digital Creativity: •Proceedirigs:cAI)E '95, •PP 222-227.

Expert Systems in Computer Animation Production Environments (ESCAPE)

Expert Systems in Computer Animation Production

Environments (ESCAPE)

Victor Ye

Rediffusion Simulation Research Centre,
University of Brighton,
Grand Parade,
Brighton
BN2 2JY, UK

EM ail: V.T.J.Ye@bton.ac.uk

Abstract:

Traditional computer animation environments can be enhanced by adding rules that describe the

behaviour of objects and an inference engine. An environment for the design of computer

animations incorporating an expert system approach is described. In addition to direct manipulation

of objects the environment allows users to describe behavioural rules based upon both their physical

and non-physical attributes. These can be interpreted to suggest the transition from frame to frame

or to automatically produce a longer animation. The output from the system can be integrated into

a commercially available 3D modelling and rendering package. Experience indicates that a hybrid

environment, mixing algorithmic and rule-based approaches, would be very promising and offer

benefits in application areas such as creating realistic background scenes and modelling human

beings or animals either singly or in groups.

Keywords:

Artificial life, behavioural models, computer animation, computer animation environments, expert

systems, human modelling, intentional action, rule-based systems.

CADE'95 -2-

Expert Systems in Computer Animation Production Environments (ESCAPE)

1 Introduction

To date most computer systems that allow for three dimensional modelling and animation are

concerned entirely with the physical properties of objects. That is to say, their objects are modelled

by being given a physically defined shape, a number of properties (e.g. colour) and a location and

orientation in three dimensional space. A 20 representation of an arrangement of such objects (a

single 'frame') is produced by specifying the location and orientation of light sources and the point

of view. An animated sequence is produced by specifying how these properties change from frame

to frame. This can be done explicitly (i.e. by hand) but this is expensive; or implicitly by means of

an algorithm (e.g. Miller, 1988; Waters, 1987; Wejchert & Haumann, 1991). Systems can also be

built that provide a set of general purpose procedures that are independent of any particular domain.

Craig Reynolds (1982), for example, developed the Actor/Scriptor Animation System (ASAS), a

full programming language especially designed for animation and graphics that employs a procedural

notation.

There are some very practical reasons why one might wish to supplement these approaches

based solely upon the physical attributes of objects by incorporating some ideas from cognitive

science. Within complex domains, and particularly where intentional action is involved, capturing

realistic behaviour can be very time consuming and expensive. Convincing animations require both

complexity and irregularity and these cannot be easily captured algorithmically, also, there is a

tendency towards repetition if the algorithms are not made more complex as the length of the

animation increases.

In this paper we describe an attempt to enhance physicalist approaches in a principled way by

incorporating one of the best known ideas from the field of artificial intelligence and cognitive

science, namely expert systems (or rule-based systems). A working rule-based approach

environment is described, which is based upon the functions of two different types of user: the end

user, who is the person producing a particular animation; and the domain expert, who provides

knowledge about the domain being modelled. In order to validate the model, three different domains

(jellyfish world, traffic junction with cars, and flocking birds) are tested that use the software

environment. Finally some possible application areas and some limitations of the approach will be

discussed and an indication given of future work.

2 An Artificial Intelligence approach to animation

There are strong similarities between the physicalist approach embodied in current animation

software and the psychological theory of behaviourism put forward by B. F. Skinner (1974).

Behaviourists argue that a true science of behaviour must be modelled on the physical sciences.

CADE '95 -3-

Expert Systems in Computer Animation Production Environments (ESCAPE)

Within such domain, there is no mechanism for representing the inner states of objects and all

behaviour has to be expressed in terms of physically describable features.

Cognitive psychology on the other hand, is based upon the model of the human mind as a

processor of information, which exhibits the characteristics we human take for granted -

understanding language, learning, reasoning, solving problems and so on.

Rijpkema and Girard (1991) introduced an expert system when modelling a human hand

grasping an object. In their system, the classic shape of the target object is first identified (e.g.

block, sphere, cone, etc.) and a grasping strategy associated with this is derived from the knowledge­

base of class specific, parameterised techniques. The final grasping motion is then adjusted to adapt

to the object's deviation from the classic shape.

The above system is designed for the particular task of grasping and the animator who wishes

to modify the rules must become knowledgeable about expert systems. The opposite approach is

adopted by KidSim (Canfield Smith, Cypher & Spohrer, 1994), a rule-based environment that aims

to put the writing of rules into the hands of the end users - in this case children. KidSim is an

environment for building simulations by declaring a set of agents and graphically describing a set of

rules by showing examples. The rules are not displayed in symbolic form but rather as

transformations of the graphical field. The authors claim that KidSim is the model for more adult

simulation environments, but while the possibility of defining rules through user-friendly interfaces

is to be welcomed, its current limitations on knowledge representation and its inability to describe

complex interactions will need to be overcome before more sophisticated domains can be simulated.

Nevertheless, KidSim does provide an interesting model of user control within a rule-based approach

to modelling and animation.

In Artificial Fishes (1994), Tu & Terzopoulos designed an underwater world of fishes. These

fishes are hard-coded to have sensors and intention, and bringing computer animation into the

Artificial Life era.

3 The software environment

3.1 Software Architecture

The three functions in the development process are reflected in the architecture of the software

environment, as shown in Figure I.

At the heart of the system lay an inference engine such as one may find in any standard expert

system. When invoked it will examine the rule base and attempt to match the conditional part of

CADE '95 -4-

Expert Systems in Computer Animation Production Environments {ESCAPE)

each rule against the data base. Where successful this will generate a set of possible actions. When

all the rules have been fully explored the system will examine all the possible actions for each

object and will decide how it should be transformed for the next frame. This will update the

database which, in turn, will update the graphical window being used by the animator.

I
USER DOMAIN I EXPERT SYSTEM INTERFACE KNOWLEDGE I

I
I

>I I
I

GRAPHICS • Windows ,~
Data base

~ [;] INFERENCE
• Tools i/ M ENGINE

'--, '
' 11.;

• Rules Editor
Rule base MENUS • 1/0 ..,

• Settings I I

I Domain Specific I Standard
I I

Figure 1 Software architecture

3.2 User Interfaces

The Graphical Interface used by animators contains a window showing the current state of the

animation. In the prototype a 2D graphical representations of objects is used as shown in Figure 2.

A set of tools is provided. The Select tool is used for the direct manipulation of objects on the

screen, while the Information tool allows for updating of the database by changing symbolic

information about an object. See Figure 3.

In addition there are menu options that allow the user to: load or unload a description of a

particular animation; load or unload the definition of a particular domain; allow labels to be

displayed next to objects on the screen; invoke the rules interface; direct output to a Swivel-3D

Script file; switch the graphical display on or off while the inference engine is running.

Rules can be written and amended through the use of a specially designed Rules Editor.

See Figure 4.

4 Conclusions

The preceding examples illustrate some potential for rule-based enhancements to animation

software. They provide the opportunity to use a new kind of knowledge to simulate the behaviour

CADE '95 -5-

Expert Systems in Computer Animation Production Environments (ESCAPE)

, ... : ... - ... !
I !
'----~--.1

Figure 2 The animator's graphical interface

Object lnfo

Object Name: jelly I ® is_aliue

~ Object Type: JELLYFISH 0 is_static

Object Attributes

Mass: Is I Current Location:
(Defaults J

~
H = lt 7l I Size H:

~ Change J) Y:
y =157 I 0

Ulslbility: lt20 I Stopping Time: INOLR I (Saue l
MaHSpeed: I• 0 I Stopping Dist: INOLR I (Cancel l

Figure 3 Information about an object

Rule Editor'"

I rule I ... I I condition I ... I
Object 1 Object 2

I object I •I I object2 ... I re Relationship ~
is_allue K:~;

I ls_nea rby •]

is_aliue 1.~:?-..
is_static .. (t;--'11, k. isJlarmless ... is_ha rmless ..

(Del Cond.)(New Cond .J ·-!} -::

11
action 1 ... I I object I ... 11 meander ... I I ... 11

rulel: ;,£
if. object!, is_.nearby, object2, that, is static,

... . .
then, objectl, meander. -

...
:<:

i Cancel) (Delete Rule) [New Rule) (Chec le nu le) (Corn pile Rule)

Figure 4 The Rules Editor

CADE '95 -6-

Expert Systems in Computer Animation Production Environments (ESCAPE)

of objects within a modelled environment and these initial demonstrations have helped clarify the

type of architecture needed, the functionality that might be expected and the types of user who may

be able to successfully exploit such a system. They also provide us with some useful insights into

the limitations of the approach, the types of animation problem where it might be useful and the

significant work that needs to be done.

The existing system is a prototype and cannot produce quality output. To do this the approach

needs to be integrated into a more sophisticated animation production system. We have described

the architecture that would be needed for this to be done. To make a readily usable system it is

necessary to provide a good set of predefined predicates and operators in terms of which domain­

specific behavioural predicates may be defined. We have gone some way in identifying a useful set

but it is by no means complete.

The smallness of the rule bases in the examples raises the question of whether the approach

will scale up. The question here is not primarily a technical one, for there is little problem (except

execution time) in presenting the inference engine with 250 rules instead of 15. The question is

more whether domain experts and animators can comprehend what the system is doing if it contains

so many rules. In this respect the interesting research question, we believe, is how animators might

use this new facility creatively and this will depend crucially on their ability to understand the effect

of their actions. The text-based log file may give some insight into the workings of the inference

engine but it is not always possible to quickly extract from it a clear understanding of why an object

is behaving in a peculiar manner.

The major problem is not the ability of the inference engine to cope with things on a larger

scale but the ability of users to visualise the decisions the system is making. To this end there is a

need to develop specific techniques for visualising the actions of the inference engine itself. In the

future we would like to be able to switch on an option that makes visible the vectors acting on an

object at each stage in the inferencing and relates them to the rules from which they originated. We

even go so far as to suggest a visual representation for rules that might be called up and assigned to

objects, possibly with strengths that may be set by the animator.

Rule-based systems seem more appropriate for some types of problem than others. As

Rijpkema and Girard (1991) discovered, an expert system was useful for determining a grasping

strategy, but a procedural approach was best suited to the finer movements involved in making

contact. A rule-based approach is not likely to serve well in areas that require much mathematical

calculation, for example, but an algorithmic approach is also unlikely to serve well where strategic

planning is required. The solution is therefore the flexibility of hybrid systems, incorporating both

algorithmic and rule-based approaches.

There seem to be several situations where such an approach could give real benefit. One is the

creation of a realistic animated background scenery, the detail of which is not particularly

CADE '95 -7-

Expert Systems In Computer Animation Production Environments (ESCAPE)

significant. For example, an animation may need a background of a realistic street scene that is not

predictable, but neither is it particularly remarkable. A suitably set up domain could generate

endless such scenes which would be very tedious or difficult to produce by any other method.

The other area of beneficial use is where animators can use expert knowledge about the

behaviour of humans (or other animals) in order to plan foreground animations. Thalmann is

already incorporating some modelling of purposeful human behaviour into the animation of photo­

realistic human models (Thalmann, 1994). The system currently uses pre-written scenes derived

from the work of Schank (1980). Schank's scripts are effective for stereotypical scenes but are

limited in modelling more open scenarios where there may be a need for planning or, more

generally, for a form of situated action.

It is not possible, at this point in time, to determine the best representations and strategies for

all domains, or even for each particular domain. The precise nature of the approach will develop

through experimentation of the kind we have described in this paper. What we do argue is that

animating sophisticated beings with minds of their own requires a modelling environment that can

represent internal mental states and internal mental processes.

References

Canfield Smith, D., Cypher A. & Spohrer J. (1994) KidSim: Programming Agents Without a
Programming Language. Communications of The ACM 37(7), 55-67.

Miller G. (1988) The Motion Dynamic of Snakes & Worms. Computer Graphics 22(4), 169-178.

Reynolds C.W. (1987) Flocks, Herds, and Schools: A Distributed Behavioural Model. Computer Graphics
21(4). 25-34.

Reynolds C.W. (1982) Computer Animation with Scripts and Actors. ACM S/GGRAPH '82 Proceedings
16 (3), 289-296.

Rijpkema H. & Girard M. (1991) Computer Animation of Knowledge-Based Human Grasping. Computer
Graphics 25(4), 339-348.

Schank, R.C. (1980) Language and Memory. Cognitive Science, 4 (3), 243-284.

Skinner, B.F. (1974) About Behaviorism. Alfred Knopf, New York.

Thalmann, D. (1994) Animating Autonomous Virtual Humans in Virtual Reality. In: Duncan, K. &
Kreuger, K. (Editors) Proceedings 13th World Computer Congress 94, Volume 3. Elsevier
Science B.V. (North-Holland), Amsterdam, 177-184.

Th X. & Terzopoulos D. (1994) Artificial Fishes: Physics, Locomotion, Perception, Behaviour.
Computer Graphics 28, 43-50.

Waters K. (1987) A Muscle Model for Animating Three-Dimensional facial Expression. Computer
Graphics 21(4), 17-24.

Wejchert J. & Haumann D. (1991) Artimation Aerodynantics. Computer Graphics 25(4), 19-22.

CADE '95 -8-

(2)

Using Behavioural1 Rules in Animation

Colin Beardon & Victor Ye

Paper presented at Computer Graphics International 95,

University of Leeds,

2&:30June 1995

In Computer Graphics: Developments in Virtual Environments, ,pp 217-234.

Academic Press, London.

Using Behavioural Rules in Animation

Using Behavioural Rules in Animation

Colin Beardon & Victor Ye

1 Introduction

To date most computer systems that allow for three dimensional modelling and animation are

concerned entirely with the physical properties of objects. That is to say, their objects are modelled

by being given a physically defined shape, a number of properties (e.g. colour) and a location and

orientation in three dimensional space. A 20 representation of an arrangement of such objects (a

single 'frame') is produced by specifying the location and orientation of light sources and the point

of view. An animated sequence is produced by specifying how these properties change from frame

to frame. This can be done explicitly (i.e. by hand) but this is expensive. Normally it is done

implicitly by means of an algorithm (e.g. Waters, 1987; Wejchert & Haumann, 1991). Systems

can also be built that provide a set of general purpose procedures that are independent of any

particular domain. Craig Reynolds (1982), for example, developed the Actor/Scriptor Animation

System (ASAS), a full programming language especially designed for animation and graphics that

employs a procedural notation.

There are some very practical reasons why one might wish to supplement these approaches

based solely upon the physical attributes of objects by incorporating some ideas from cognitive

science. Within complex domains, and particularly where intentional action is involved, capturing

realistic behaviour can be very time consuming and expensive. Convincing animations require both

complexity and irregularity and these cannot be easily captured algorithmically. Even if they can be

achieved for short sequences, there is a tendency towards repetition if the algorithms are not made

more complex as the length of the animation increases.

In this paper we describe an attempt to enhance physicalist approaches in a principled way by

incorporating one of the best known ideas from the field of artificial intelligence and cognitive

science, namely expert systems (or rule-based systems). A working environment in which a rule­

based approach coexists with more traditional modelling and animation methods will be described.

The environment is based upon the functions of two different types of user: the end user, who is the

person producing a particular animation; and the domain expert, who provides knowledge about the

domain being modelled. A particular prototype software system is described and the use that each

type of developer will make of the system is shown. In order to validate the model, four sample

animations are described that use the software environment. Finally some possible application areas

and some limitations of the approach will be discussed and an indication given of future work.

CGI'95 ·2 •

Using Behavioural Rules in Animation

2 Background

2.1 An Artificial Intelligence approach to animation

There are strong similarities between the physicalist approach embodied in current animation

software and the psychological theory of behaviourism put fmward by B. F. Skinner (1974).

Behaviourists argue that a true science of behaviour must be modelled on the physical sciences.

They base their approach on observing behaviour and, in particular, they seek to determine the

relationships between the observable stimuli received by a subject and the observable response that

the subject exhibits as a result. Behaviourists generally deny the significance of internal states and

some extreme behaviourists argue that all mentalistic terms are theoretically unnecessary as they can

be redefined in terms of observable, physically describable behaviour. Modelling and animation

software that only allows the representation and manipulation of physically observable features of

objects is based upon similar assumptions. Within such software there is no mechanism for

representing the inner states of objects and all behaviour has to be expressed in terms of physically

describable features.

Cognitive psychology is an alternative approach which, in general, is based upon the model of

the human mind as a processor of information. Explanations of the behaviour of human beings is

not restricted to descriptions of input and output data, but can also refer to the internal

representation, storage and processing of that data. Cognitive science and the more technical field of

artificial intelligence seek to complement cognitive psychology by building computational models

of sufficient richness. In order to explore the potential of this approach, environments must be

developed in which the manipulation of data that refers to physical attributes can be enhanced

through the use of a model of internal mental processes and expen systems seem particularly well­

suited to represent such processes.

Rijpkema and Girard (1991) introduce an expen system when modelling a human hand grasping

an object. While previous studies of grasping have sought to record and analyse the physical

motions, there argue the need to focus on the problem of synthesising grasping motion. Observing

that people adopt different grasping strategies depending upon the shape of the object and the angle

of approach, they use an ex pen system approach to determine the appropriate strategy. In their

system, the classic shape of the target object is first identified (e.g. block, sphere, cone, etc.) and a

grasping strategy associated with this is derived from the knowledge-base of class specific,

pararneterised techniques. The final grasping motion is then adjusted to adapt to the object's

deviation from the classic shape.

In the system designed by Rijpkema and Girard the expen system is designed for the particular

task of grasping and the animator who wishes to modify the rules must become knowledgeable

about expen systems. The opposite approach is adopted by KidSim, a rule-based environment that

CGI '95 -3-

Using Behavioural Rules in Animation

aims to put the writing of rules into the hands of the end users - in this case children (Canfield et

al., 1994). KidSim is an environment for building simulations by declaring a set of agents and

graphically describing a set of rules by showing examples. The rules are not displayed in symbolic

form but rather as transformations of the graphical field. The authors claim that KidSim is the

model for more adult simulation environments, but while the possibility of defining rules through

user-friendly interfaces is to be welcomed, its current limitations on knowledge representation and

its inability to describe complex interactions will need to be overcome before more sophisticated

domains can be simulated. Nevertheless, KidSim does provide an interesting model of user control

within a rule-based approach to modelling and animation.

2.2 A working environment for animators

In the world as described by physics there are certain constraints upon objects. For example, two

solid objects cannot occupy the same point in space, and (on eartb) an unsupported object will fall

due to the effect of gravity. Modelling and animation systems can be envisaged that check such

constraints and make objects bounce off each other if they collide and fall to the ground if they lack

support. In such systems a physical model exists in which it is easy to say that all physical objects

display a certain kind of "behaviour".

The rule-based enhancement that we propose enables an extension of the scope of such rules to

include knowledge about the domain being modelled. By 'domain knowledge' we mean the sort of

knowledge that refers to the subject matter or content of the animation. For example, in an

animation of an underwater scene knowledge may be available of how various creatures behave under

different conditions (e.g. if a jellyfish is hungry and it detects the presence of a prawn it will pursue

it; or, if a prawn is being pursued by a predator it will try to hide). The proposed system provides a

way of using such knowledge so that the objects can be constrained to act in a purposeful manner.

It is hoped that this will result in animations that are not only more realistic, but whose

development cost is fixed regardless of their duration.

The environment proposed has many traditional features and one new one. Individual objects

can be defined in exactly the same way as in existing 30 modelling systems. In order to create

individual frames of an animation, objects may be manipulated manually through a traditional

graphical interface. A scripting system can also be employed to algorithmically describe changes in

the world from frame to frame. To these traditional methods an additional facility is added by means

of which objects may have non-physical attributes and the state of each object is derived by an

inference engine from behavioural rules that are entered separately.

This rule-based part of the system can be left to run unattended and will, if properly set up,

automatically generate an animation. However, the expert system component is not there to replace

skilled animators, but rather to assist them. The animator has control over the rules and can

experiment with them, observing their effect on the animation, The animator can also interrupt the

CGI '95 -4-

Using Behavioural Rules in Animation

generated animation and use one of the other modes (manual manipulation or algorithmic) to

override it.

With such an environment it is necessary to identify different functions in the development

process. The software experts develop the core expert system component, the part that is common

to all application domains. It consists of an inference engine to interpret the rules against a data base

and some very low-level rules that provide other users with a useful set of standard predicates and

operators. The domain expert sets up a particular world by modelling the different types of object,

specifying attributes they should have and their default values, and writing the main behavioural

rules they follow. The domain expert may also specify some lower level domain specific predicates

and operators. The animator, whose task it is to produce particular animations, is able to update the

data base by direct manipulation, update the rule base through a special rules interface and invoke

the inference engine.

3 The software environment

3.1 Software Architecture

The three functions in the development process are reflected in the architecture of the software

environment, as shown in Figure I.

Animator's
Interface

Graphical
interface

Rules
Interface

.....

....

...

I
I
I
I •
I

I
I
I

Domain
Knowledge

Data base M--.

./
Rule base

... I

Domain I Standard
Specific

I
I

Figure 1 Software architecture

Expert
System

Inference
Engine

At the heart of the system lay an inference engine such as one may find in any standard expert

system. When invoked it will examine the rule base and attempt to match the conditional part of

each rule against the data base. Where successful this will generate a set of possible actions. When

all the rules have been fully explored the system will examine all the possible actions for each

CGi '95 -5-

Using Behavioural Rules in Animation

object and will decide how it should be transformed for the next frame. This will update the

database which, in turn, will update the graphical window being used by the animator.

Great care has been taken in this design to separate domain-specific information from the other

parts of the system which remain as a general-purpose animation environment capable of handling a

range of domains.

The rules are of the standard "if ... then ... " format. In an ideal version of the system users

would be able to express their rules in natural language:

if a prawnlawws it is being p11rs11ed and it is aware of the preseiiCe of a medi11m or ilJrge rock

then it will tend to try to get behind it.

Allowing unrestricted natural language input is currently not feasible and so a more formal language

has been developed within which rules are expressed to the system. For example,

if object1 is_a prawn and is_nearby predator

then object1 plans_getaway.

The language is composed of:

keywords (e.g. 'if, 'then' & 'and'),

variable names (e.g. 'object!'),

properties (e.g. 'prawn', 'predator'),

predicates (e.g. 'is_a', 'is_nearby'), and

operators (e.g. 'plans__getaway').

Some commonly-used predicates and operators are made available with the inference engine

while other, more domain-specific, operators are defined by the domain expert or the animator. The

language is described in more detail in Section 3.3.

A prototype system has been built at the University of Brighton using LPA MacProlog32

running on an Apple Macintosh series II machine. The system described here models objects in a

two-dimensional world which enables us to concentrate upon significant design issues. A version

that contains a three-dimensional modelling environment has been built and while this introduces

more complexity it raises no fundamentally new issues. The 20 prototype is sufficient to explore

the basic architecture of the system without paying particular attention to the quality of the

graphical output. To demonstrate its potential it is possible to create a corresponding three­

dimensional world in Swivel 30TM and for the expert system to generate a rendered 30 animation as

a QuickPICS file.

CGI'95 -6-

Using Behavioural Rules in Animation

3.2 Graphical Interface

The Graphical Interface used by animators contains a window showing the current state of the

animation. In the prototype a 2D graphical representations of objects is used as shown in

Figure 2.

World.Traffic 1.1

~
0

IT !Ill !Ill !Ill

EJEJ !DJ

BEJ
~~

§
~--.,

LJ

Figure 2 The animator's graphical interface

The eight tools shown on the left can be considered as two sets of four. The tools at the top

are for changing the status of objects in the data base (and hence on the screen).

Select to move an object;

Information

New

Delete

to view or update symbolic information about an object;

to create a new object (by invoking a dialog);

to delete an object.

The Select tool is used for the direct manipulation of objects on the screen, while the

Information tool allows for updating of the database by changing symbolic information about an

object (Figure 3).

Object lnfo

Object name: IJellyl I ® ls_allue

~ Object Type: I.I~LUEISII I 0 is_statlc

Object Attribute•

Mass: [r=J Object location:

Size H:

~
H ·~

Y: Y·~ 8

Ulslblllty: !:!!!:]
(change J

MaHSpeed:(!O (Cancel)

Figure 3 Information about an object

CGI'95 -7-

Using Behavioural Rules in Animation

The lower tools are for controlling the use of the expert system.

•

•

Reset

Run

Playback Single

to reset the objects to an original state;

to invoke the inference engine and create an animation;

to view the playback of the animation in Single format (only the current

frame is shown);

Playback Multi to view the playback of the animation in Multi formal (the trace of each

object is shown).

In addition there are menu options that allow the user to:

load or unload a description of a particular animation;

load or unload the definition of a particular domain;

• allow labels to be displayed next to objects on the screen;

• invoke the rules interface;

• direct output to a Swivel-3D Script file.

switch the graphical display on or off while the inference engine is running.

On current equipment the inference engine does not run in real time and the production of graphical

output slows down its operation further. For this reason it is often advantageous to switch off the

graphical display while generating an animation and, when it has been completed, play it back in

Single or Multi format.

3.3 Rule Base & Rule Interface

As indicated in Section 3.1, a formal language has been developed for the expression of rules. The

grammar of rules is defined using a Definite Clause Grammar (DCG) (Ciocksin & Mellish, 1984)

which has a number of advantages. DCG definitions are a standard part of the Prolog language and

thus can be expressed within the same programming language as the inference engine. Merely by

defining the grammar in DCG form, a parser is automatically available and can be invoked by

simply using the 'parse' function or one of its variants. This makes it possible for users to directly

enter rules as free text if they prefer, though a dialogue box interface to the rule base is also

provided. Looking to the future, it is possible that a more sophisticated language for rules may be

developed and in this case any new grammar written in DCG could be incorporated without affecting

other parts of the system (except the Rules Interface dialogue box). The grammar used involves

considerable use of arguments to check context-sensitive features and extract useful data structures

but the basic syntax of rules is as described in Figure 4.

CGI'95 -8-

rule

conditions

conditions

actions

actions

condition

action

action

noun_phrase

noun_phrase

verb _phrase

verb_phrase

vp

vp

rel_clause

rel_clause

noun

noun

proper_noun

trans_verb

intrans_verb

Using Behavioural Rules in Animation

--> (iij, conditions, [then], actions.

--> condition, [and]. conditions.

--> condition.

--> action, [and], actions.

--> action.

--> noun_phrase, verb_phrase.

--> verb_phrase.

--> condition.

--> noun, rel_clause.

--> proper_noun.

--> vp, [and). vp.

--> vp.

--> trans_verb, noun_phrase.

--> intrans_verb.

--> [that], verb_phrase.

--> o.
--> [Variable]

-->[Type],

-->(Name],

--> [Trans],

--> [lntrans),

{member_of(Variable, (object1, object2, ...)}.

{member_of(Type, types_list)}.

{member_of(Name, actors_list)} .

{member_of(Trans, trans_list)}.

{member_of(lntrans, intrans_list)}.

Figure 4 DCG for rules

Rules can be written and amended through the use of a specially designed dialog box (see

Figure 5). The Rules Interface dialog box is divided into two main sections. The top section

reflects the grammatical structure of a rule. The pop-up menus provide all the tenns that are valid at

the particular place in the rule so that the animator is restricted to writing only valid rules. The

menus also allow the animator create new variable names if they wish to refer to an object not

already known to the system. The lower section of the dialogue box contains a scroll ing field in

which a text version of the rule that is being created appears. The user may enter text directly into

this field, though syntax errors may then be introduced which will only be detected when the system

comes to parse the rule.

The dialog box can be used to create new rules and amend existing rules. If an existing rule

number is selected then the dialogue box is automatically updated to reflect that particular rule. The

"Check Rule" button will ensure that the screen information is consistent and parse the text version

for syntax errors. The "Compile Rule" button will permanently update the Rule base for the

selected rule.

The semantics of rules is based upon the way that the inference engine interprets them. In

general, the conditional clause is broken up into simple conditions (left to right) and each condition

is matched against the database to see if there is an item that matches it. A match occurs if an

CGI'95 -9-

Using Behavioural Rules in Animation

exactly equivalent item is found in the database, or if an equivalent item can be found by binding an

unbound variable name to an object name. All conditions within the conditional clause must

succeed in matching with the same bindings for the condi tional clause as a whole to succeed.

Rule E dlt or"'

rule 1 conditlon2

rTReh tionship~
I Is nearb!.l ~I

Object 1 Object 2

object 1 ,..I
ls_allue ~~~
ls_statlc
ls_h arm le ss (Del Cond.](New Con d.]

actlonl ~I object 1 ~ I I meanders ~ I I

ru lel'
if. o bje:: t l , iSJ1EBrQi , obje::t2 . t hat , is_static ,
thm, obj ectl , l!'eander .

Cancel) (Delete Rule] (New Rule] [Check Rule] [update Rules)

Figure 5 The Rules Interface dialog box

If all the condi tions are satisfied, then the action clause is interpreted using the bindings

generated by the conditional clause. Each simple action has one of four possible interpretations:

if it contains a valid Prolog expression, t11en it will be passed to the Prolog system and

interpreted,

TimeN is 4 by Prolog.

if it contains an 'Undo' instruction, then the matching item will be removed from the database

(no action is taken if the item that is not in the database),

Deleting fact: 13 : plan (1 to 16} by rule 2.

if it contains a predefined predicate or operator, then it will be resolved,

Distance Between jelly1 and prawn1 is 88 by predicate 4.

otherwise the item will be added to the database (no action is taken if the item is already present

in the database),

New fact : 22 poss_locn(prawn1, 2, 4, pt(243, 164)) by rule 5.

Predefined predicates and operators are those which are commonly required yet are not readily

available in tile desirable form in standard Prolog. (Predicates appear in conditions and operators

appear in actions.) For example, we may frequently wish to use a predicate ' Iess_than ' (as in 'A

CGI '95 -10-

Using Behavioural Rules in Animation

less_than B') but find that the sllllldard Prolog predicate '<' does not always behave as we would

expect. We may need to embed the call in code to check whether the arguments are instantiated to

numbers, for example. We handle such cases by writing special rules, providing them to every

domain and making them relatively transparent. Users may therefore use such predicates as if they

were primitives of the rule-writing language. Some examples are: 'between', 'after', 'above',

'greater than', 'greater than or equal to', 'is bigger than', 'is same size as' and 'is same as'.

3.4 Data Base

The database contains descriptions of the domain and the objects within it. A domain is specified

by declaring predicates and operators and defining each type of object. They are declared as having

either one or two arguments (and will therefore be constrained to appear as intransitive or transitive

verbs):

predicate_1_List([is_alive, is_static, is_stopped, is_turning)).

predicate_2_List([is_near)).

action_1_List([move_forward, slow_down, stay_there)).

action_2_List([avoid_collision_with, turn)).

A type is declared by describing its graphic(s) and default facts that will apply if no other facts

are declared:

set__prop('CAR', east, resource(500)),

defaults mass('CAR', 1).

defaults size('CAR', 2, 2).

defaults vis('CAR', 100).

defaults maxSpeed('CAR', 30).

defaults stop Time('CAR', 6).

defaults stopDistance('CAR', 40).

defaults property('CAR', [alive, lelt)).

defaults name('CAR', car).

Particular objects are declared by entering facts. There are certain sllllldard formats for

representing common data which are referred to by predelined predicates and operators. Other facts

can be added when the problem is set up or by the inference engine.

• instances of a type: obj_type(<object>, <type>)

fact obLtype(car1, 'CAR').

• attributes of a type: property(<object>, <property list>)

fact property(car1, [alive, none)).

• location of an object: locn(<object>, <lime>, <point>)

fact locn(car1, 1, pt(33, 28)).

CGI '95 - 11 -

Using Behavioural Rules in Animation

• planning task: plan <time!> to <time2>

fact plan 1 to 12.

From within the general environment different domains can be opened one at a time. Domains

can be kept as files.

3.5 Inference Engine

The inference engine primarily uses the standard expert system approach of forward-chaining but has

some variations. The system allows for a customised resolution of all the actions that could be

fired for any particular step and, when seeking to apply basic operators it will temporarily employ

backward chaining. The reason why forward-chaining is generally used, even in the case of directed

animations where some goal is specified, is because it reflects a more open cognitive model.

Backward chaining tends to reflect a reasoning process based upon a single argument structure,

developed purely to give support to the derived conclusion. Forward chaining is better suited to the

exploration of multiple possibilities, some of which may turn out to be ineffective. This seems to

match better the reasoning processes that needs to be modelled, though it does place an additional

responsibility upon the modeller to specify how the system is to resolve multiple competing

claims.

In cases where there is an initial state and a goal state we declare the whole planning process as

a goal and introduce rules that try to decompose it into parts, repeating the process until each frame

is decided. In cases where there is no particular goal and the animation just has to run and be

realistic, there are no special planning rules and domain rules are applied to each frame to generate

the next frame. The process can be repeated indefinitely, though there is no guarantee that the set of

rules generate no change from a particular frame or they generate a visually recognisable loop.

The inference engine explores every rule, matching it against the data base and generating a

single list of all possible actions. When this has completed, it groups the possible actions for each

object and passes them to a function which returns the next state of the object. There are many

different strategies that could be adopted for this function: we could select one possible action and

discard the rest (e.g. select the strongest, or the weakest), or we could find the resultant of all the

actions, or we could introduce a threshold and then resolve those that meet it. Different strategies

can be adopted for different domains.

The current approach of considering each object in isolation clearly has some limitations and it

would be preferable, particularly in complex and crowded domains, for the states of all objects to be

resolved together. To make this easier, possible actions can be represented as vectors (Andersen,

1992) and more complex vector resolution algorithms can be introduced. This form of

representation could also have benefits for future debugging software (see Section 5).

CGI '95 -12-

Using Behavioural Rules in Animation

4 Sample anlmations

A number of animations have been generated using the environment and these have served to clarify

the distinction between the functionality of the core software system and the kinds of knowledge

that a domain expert might be expected to express.

4.1 Example 1: Goal planning in the Jellyfish domain

The ftrst domain we consider contains three types of object: jellyfish, prawns and rocks. Realistic

motion in such domains can be achieved by the algorithmic approach (e.g. Miller, 1988). An

attempt to model behavioural characteristics of the motion of fish is described by Tu and

Terzopoulos (1994). They declare a set of intentional attributes of their fish and adopt an

algorithmic approach to testing them and applying the outcome to the fish's motion. This is

therefore not an expert system approach, though inner states have been modelled.

In our first example there is one object of each type and we are told the initial and final

locations of the objects as well as details of two encounters that are to take place.

% basic facts about each object

fact obj_type(rocky1, rock).

fact obj_typeijelly1, jelly1ish).

fact obj_type(prawn1, prawn).

fact property(rocky1, [static)).

fact propertyijelly1, [alive)).

fact property(prawn1, (alive)).

% initial position for objects

fact locn(rocky1, 1, pt(168, 128, 0)).

fact locnijelly1, 1, pt(-200, ·130, -50)).

fact locn(prawn1, 1, pt(172, -170, -150)).

We then add facts that state the problem to be solved

% facts about this run

fact plan 1 to 16.

% final position for objects

fact locnuelly1,16, pt(-200, -130, -50)).

fact locn(prawn1, 16, pt(172, -170, -150)).

% the encounters

jelly1 encounters rocky1 attime(3) at pt(83, ·1 08, 0).

jelly1 encounters prawn1 at time(10) at pt(-183, 27, 0).

CGI'95 -13·

Using Behavioural Rules in Animation

The set of rules is defined next and contain two types of rule. The first is a rule that is concerned

with how to plan a sequence of frames (i.e. by subdividing it).

% if the jellyfish encounters something within a sequence then plan the

% encounter, and plan the sequences before and after it

rule 2 : if plan Time1 to Time2

and jelly encounters Something at time(TimeN) at P

and TirneN between Time1 & Time2

then plan_state TimeN at P

and plan Time1 to TimeN

and plan TimeN to Time2

and undo(plan Time1 to Time2).

The second is a rule that is concerned with how and when to change the location of an object.

% if the jellyfish encounters a static object, then it will move

% upwards 80 units one frame later

rule 12 : if jelly encounters Something at time(T1) at Some Place

and property(Something, static)

and move(T1, T2)

then above(SomePiace, 80, NewPiace)

and TN is T + 1

and plan_state TN at NewPiace

and pianmove TN to T2

and undo(move(T1, T2)).

For this example fifteen rules are put in the rule base and the inference engine is invoked. The

output is an animation (which can be played back) and a log file. The facts loaded at initialisation

were all numbered and new facts are given the next number in sequence. The log file entry contains

details of all new facts and deleted facts, indicating the rule that led to the particular action.

Deleting fact: 13 : plan (1 to 16) by rule 2

New fact: 23 move(10 to 16) by rule 7

In the following extract an encounter at time 3 has been used to divide the plan into two parts:

•• Pass 1

New fact : 14 plan_state (3 at pt(83, -1 08, 0)) by rule 2

New fact: 15 plan (1 to 3) by rule 2

New fact : 16 plan (3 to 16) by rule 2

Deleting fact: 13: plan (1 to 16) by rule 2

Later, some of the strategies for moving are decided and an intermediate position calculated:

CGI '95 -14-

Using Behavioural Rules in Animation

•• Pass 2

New fact : 31 propel(1 to 3) by rule 4

New fact : 32 meander(10 to 16) by rule 6

%% the jellyfish's strategy for moving is decided

New fact: 37 locationUelly1, 12, pt(-190, -37, -23)) by rule 9

%% an intermediate position of the jellyfish move is calculated

After thirteen passes the inference engine can make no more changes to the database and creates,

as output, a list of all the locations it has determined. Where there are gaps in the location of an

object for a particular time slot then an inbetweening algorithm is used to calculate the location. If

the appropriate option has been selected by the user, commands are then passed to Swivel-3D to

create a rendered animation (see Figure 6).

Figure 6 Rendered scene from jellyfish animation

The approach adopted in this example achieves the objective of producing credible purposeful

animations on the basis of facts and rules entered into the system. Because of a random factor

introduced in some rules, each animation is different. In producing the animation some

modification of the original set of rules was required, particularly the rules that determine how a

jellyfish should 'meander'. This was readily identified as the problem and solving it was not

particularly difficult.

4.2 Example 2: non-goal-oriented movement in the Jellyfish domain

In the second example, the system is given an initial state and a set of rules and successive frames

are to be produced until the system is told to stop. The same three objects (a jellyfish, a prawn and

a rock) participate but a more complex set of attributes is employed. The following facts form the

CGI '95 - 15-

Using Behavioural Rules in Animation

initial state of the database.

fact obj_type(rocky1, rock).

fact object(rocky1, [static]).

fact locn(rocky1, 1, pt(150, 220)).

fact obj_type(prawn1, prawn).

fact object(prawn1, [alive]).

fact locn(prawn1, 1, pt(168, 154)).

fact obj_type(jelly1, jellyfish).

fact object(jelly1, [alive]).

fact locn(jelly1, 1, pt(123, 1 03)).

fact massijellyfish, 5).

facl mass(prawn, 1).

fact sizeijellyfish, 20, 20).

facl size(prawn, 3, 3).

fact visibilityijellyfish, 1 00).

fact visibility(prawn, 50).

fact maxSpeedijellyfish, 1 0).

fact maxSpeed(prawn, 8).

fact food_type(prawn, jellyfish).

fact predator_typeijellyfish, prawn).

% prawn is food to a jellyfish

% jellyfish is predator of prawn

By defining function names as infix or prefix operators, a more English-like presentation is

achieved, as can be seen in the following typical rules.

%When a predator is near, the prey plans to escape

rule 3 : if object1 is nearby predator

then plans_getaway.

% When the prey is near, the predator plans to attack

rule 4 : if object1 is nearby food

then plans_encounler.

%Move randomly (if no other move is made)

rule 5 : if objec11 is alive

then random_move.

An extract from the output log is shown in Figure 7. Having explored all the rules and

generated all possible actions, the inference engine then decides on the resulting action to take for

each object. In this example, rules are assigned a priority level and lower numbered rules take

precedence over higher numbered ones. We see the effect in Frame 7 of Figure 13 where two

possible locations for jetty I are considered (New facts 62 & 64), but resolution results in only the

former becoming realised (New fact 67).

CGi '95 -16-

Using Behavioural Rules In Animation

•• Fmme = 1

New fact : 16 poss_locn(prawn1, 1, 4, pl(245, 139)) by rule 1

New fact : 17 poss_locnijelly1, 1, 4, pt(1 00, 95)) by rule 1

New fact: 18 poss_locn(prawn1, 1, 2, pt(245, 139)) by rule 3

New fact: 19 poss_locn(rocky1, 1, 5, pt(150, 220)) by rule static.

Deleting fact: 2 : plan (1 to 7) by rule main inference ..

New fact : 20 plan (2 to 7) by rule main inference ..

•• Frame=2

New fact: 22 poss_locn(prawn1, 2, 4, pt(243, 164)) by rule 5

New fact: 23 poss_locnijelly1, 2, 4, pt(104, 74)) by rule 5

New fact : 24 poss_locn(rocky1, 2, 5, pt(150, 220)) by rule static.

Deleting fact: 20 : plan (2 to 7) by rule main inference. . .

Level= 4 New fact: 25 locationijelly1, 2, pt(104, 74)) by resolving ...

Level= 4 New fact: 26 location(prawn1, 2, pt(243, 164)) by resolving ..

Level= 5 New fact : 27 location(rocky1, 2, pt(150, 220)) by resolving .

New fact : 28 plan (3 to 7) by rule main inference. . .

•• Frame= 7

Distance Between jelly1 and prawn1 is 88. By predicate 4

New fact: 62 poss_locnijelly1, 7, 3, pt(166, 94)) by rule 4

New fact: 63 poss_locn(prawn1, 7, 4, pt(189, 194)) by rule 5

New fact : 64 poss_locnijelly1, 7, 4, pt(156, 55)) by rule 5

New fact: 65 poss_locn(rocky1, 7, 5, pt(150, 220)) by rule static.

Deleting fact: 60 : plan (7 to 7) by rule main inference. . .

Level= 3 New fact: 66 locationijelly1, 7, pt(166, 94)) by resolving .. .

Level= 4 New fact: 67 location(prawn1, 7, pt(189, 194)) by resolving .. .

Level= 5 New fact: 68 location(rocky1, 7, pt(150, 220)) by resolving.

Figure 7 Example 2 - log file

When the required number of frames are planned the system has output a list of all the locations

it detennined. Though the animations are currently rather short, some purposeful behaviour

consistent with the rules can be observed.

4.3 Example 3 -traffic at a road junction

In this domain there is a T-junction and a number of cars. Each car arrives on the scene at a

specified location and at a specified time with its destination through the junction predetermined. A

view of the animators interface is shown in Figure 2 and a view of the resulting animation shown

in Figure 8.

CGI'95-17-

Using Behavioural Rules in Animation

Figure 8 Rendered frame from the Traffic World

Two approaches have been used in modelling parts of this domain. As a high-level strategy, a

number of 'driving-states' have been identified (e.g. 'free', 'turning', ' slowing') and all cars are in

one of these states at any time. Rules have been written for the identification of particular traffic

situations and which lead to the transition from state to state. Further rules have been written to

describe the behaviour of cars within each driving-state. As a general approach this seems to be a

good way to handle potential complexity.

At a lower level, a set of general rules have been written to determine how each driver behaves.

In general cars aim to go as fast as they can up to their maximum speed, but have to slow down if

their way ahead is blocked or they wish to turn. If a vehicle should stop, then other vehicles behind

it will slow down and stop; if a vehicle wishes to turn it will stop and wait until it estimates that

the way ahead is clear.

Modelling of this domain has highlighted two important issues. In previous examples points

or regions in the spatial field were not significant, but in this one different regions are important.

The background represents the road junction and it is relatively complex. It can be divided into road

and non-road regions and within the road regions there are important distinctions to be made (for

example, each side of the road, the region before the stop-line for traffic approaching the major road,

etc.). The modelling and representation of the domain background becomes an important issue.

We also include in our model the ability for drivers to plan on the basis of their models of other

drivers. When considering a move, each driver must calculate the current velocity and acceleration

of every another vehicle to decide whether or not it is likely to interfere with their progress. In

normal cases, if there is any possibility of collision then no move is attempted. However, if we add

attributes representing the degree of patience of the driver and reduce this as their waiting time

increases then the result will be that the driver is now prepared to make a move even if collision

avoidance depends upon other vehicles slowing down. This interaction of agents is a novel feature

CGI '95 -18-

Using Behavioural Rules in Animation

for the model but it seems to introduce no particular difficulties. In a more complex situation, the

strategy of moving one object at a time might not suffice and the type of solution proposed in the

next example may be preferable here too.

4.4 Example 4- a flock of birds

In this domain we model a flock of birds in flight that have to navigate around a number of fixed

obstacles (Figure 9). Reynolds has developed a sophisticated animation of birds in flight (Reynolds,

1987). The simulated flock is an elaboration of a particle system in which each particle acts

according to an identical algorithm so that each bird is considered as behaving according to the same

rules as every other bird. This approach assumes that the behaviour of the flock is simply the result

of the interaction between the behaviour of the individual birds.

0

Figure 9 Graphical Interface showing three birds and a number of obstacles

We follow this principle in our approach but instead of the procedural approach to specify each

bird' s behaviour we express the bird's behaviour in rules. By writing a few rules concerning how

birds position themselves with respect to the other birds around them, we are able to generate

possible moves for each bird. In this case the sophistication really lies in the method of resolution

for it seems infeasible to allow each bird to determine its own position. The major reason for this

is that the overriding principle of flocking motion is that there are never any collisions. If we adopt

an approach whereby the position of each bird is detennined in turn and we identify an unavoidable

collision when placing one of the later birds, we would have to backtrack to place a previous bird in

another place. At present, finding a new place depends upon a new random number being generated.

We do not really want a random procedure here for it may take a very long time before it comes up

with an acceptable solution. If a crowded situation is likely to occur it is preferable to calculate an

optimal solution rather than hoping to hit upon a set of acceptable placements by chance. We

therefore intend to adopt a resolution algorithm for this domain that will consider all birds together

and find a solution with least penalties.

CGI'95 - 19 -

Using Behavioural Rules In Animation

5 Conclusions

The preceding examples illustrate some potential for rule-based enhancements to animation

software. They provide the opportunity to use a new kind of knowledge to simulate the behaviour

of objects within a modelled environment and these initial demonstrations have helped clarify the

type of architecture needed, the functionality that might be expected and the types of user who may

be able to successfully exploit such a system. They also provide us with some useful insights into

the limitations of the approach, the types of animation problem where it might be useful and the

significant work that needs to be done.

The existing system is a prototype and cannot produce quality output. To do this the approach

needs to be integrated into a more sophisticated animation production system. We have described

the architecture that would be needed for this to be done. To make a readily usable system it is

necessary to provide a good set of predefined predicates and operators in terms of which domain­

specific behavioural predicates may be defined. We have gone some way in identifying a useful set

but it is by no means complete.

The smallness of the rule bases in the examples raises the question of whether the approach

will scale up. The question here is not primarily a technical one, for there is little problem (except

execution time) in presenting the inference engine with 250 rules instead of I 5. The question is

more whether domain experts and animators can comprehend what the system is doing if it contains

so many rules. In this respect the interesting research question, we believe, is how animators might

use this new facility creatively and this will depend crucially on their ability to understand the effect

of their actions. The text-based log file may give some insight into the workings of the inference

engine but it is not always possible to quickly extract from it a clear understanding of why an object

is behaving in a peculiar manner.

The major problem is not the ability of the inference engine to cope with things on a larger

scale but the ability of users to visualise the decisions the system is making. To this end there is a

need to develop specific techniques for visualising the actions of the inference engine itself. In the

future we would like to be able to switch on an option that makes visible the vectors acting on an

object at each stage in the inferencing and relates them to the rules from which they originated. We

even go so far as to suggest a visual representation for rules that might be called up and assigned to

objects, possibly with strengths that may be set by the animator.

Rule-based systems seem more appropriate for some types of problem than others. As

Rijpkema and Girard (1991) discovered, an expert system was useful for determining a grasping

strategy, but a procedural approach was best suited to the finer movements involved in making

contact. A rule-based approach is not likely to serve well in areas that require much mathematical

calculation, for example, but an algorithmic approach is also unlikely to serve well where strategic

CGI '95 -20-

Using Behavioural Rules in Animation

planning is required. The solution is therefore the flexibility of hybrid systems, incorporating both

algorithmic and rule-based approaches.

There seem to be several situations where such an approach could give real benefit. One is the

creation of a realistic animated background scenery, the detail of which is not particularly

significant. For example, an animation may need a background of a realistic street scene that is not

predictable, but neither is it particularly remarkable. A suitably set up domain could generate

endless such scenes which would be very tedious or difficult to produce by any other method.

The other area of beneficial use is where animators can use expert knowledge about the

behaviour of humans (or other animals) in order to plan foreground animations. Thalmann is

already incorporating some modelling of purposeful human behaviour into the animation of photo­

realistic human models (Thalmann, 1994). The system currently uses pre-written scenes derived

from the work of Schank (1980). Schank's scripts are effective for stereotypical scenes but are

limited in modelling more open scenarios where there may be a need for planning or, more

generally, for a form of situated action.

It is not possible, at this point in time, to determine the best representations and strategies for

all domains, or even for each particular domain. The precise nature of the approach will develop

through experimentation of the kind we have described in this paper. What we do argue is that

animating sophisticated beings with minds of their own requires a modelling environment that can

represent internal mental states and internal mental processes.

CGI '95 • 21 •

Using Behavioural Rules In Animation

References

Andersen P.B. (1992) Vector spaces as the basic components of intemctive systems: towards a

computer semiotics. Hypem1edia, 4(1), 53-76.

Canfield Smith, D., Cypher A. & Spohrer J. (1994) KidSim: Programming Agents Without a

Programming Language. Communications of The ACM 37(7), 55-67.

Clocksin, W.F. & Mellish, C.S. (1984) Programming in Prolog, 2nd Edn. Springer-Verlag,

Berlin.

Miller G. (1988) The Motion Dynamic of Snakes & Worms. Computer Graphics 22(4), 169-178.

Reynolds C.W. (1987) Flocks, Herds, and Schools: A Distributed Behavioural Model. Computer

Graphics 21(4), 25-34.

Reynolds C.W. (1982) Computer Animation with Scripts and Actors. ACM SIGGRAPH '82

Proceedings 16 (3), 289-296.

Rijpkema H. & Girard M. (1991) Computer Animation of Knowledge-Based Human Grasping.

Computer Graphics 25(4), 339-348.

Schank, R.C. (1980) Language and Memory. Cognitive Science, 4 (3), 243-284.

Skinner, B.F. (1974) About Behaviorism. Alfred Knopf, New York.

Thalmann, D. (1994) Animating Autonomous Virtual Humans in Virtual Reality. In: Duncan, K.

& Kreuger, K. (Editors) Proceedings 13th World Computer Congress 94, Vol11me 3.

Elsevier Science B. V. (North-Holland), Amsterdam, 177-184.

Tu X. & Terzopoulos D. (1994) Artificial Fishes: Physics, Locomotion, Perception, Behaviour.

Computer Graphics 28, 43-50.

Waters K. (1987) A Muscle Model for Animating Three-Dimensional facial Expression. Computer

Graphics 21(4), 17-24.

Wejchert J. & Haumann D. (1991) Animation Aerodynamics. Computer Graphics 25(4), 19-22.

CGI '95 -22-

