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P-GLYCOPROTEIN-ASSOCIATED ANTHRACYCLINE RESISTANCE IN B-Cll..: 

POTENTIAL FOR CYTOKINE MODULATION 

V ARINIA GRACIELA MUNOZ-RITCHIE 

ABSTRACT 

The phenomenon of multidrug resistance (MDR) in cancer cells is generally associated 
with P-glycoprotein (P-gp) expression and presents an obstacle to successful 
chemotherapy. Attempts to overcome P-gp-associated MDR using P-gp modulators, such 
as verapamil, have been hindered by their intrinsic in vivo toxicity. In 1991, however, Scala 
et al. demonstrated the alteration of P-gp function by interferon-alpha (IFN-a) in vitro at 
non-toxic in vivo concentrations, suggesting a basis for the use of IFN-a clinically in 
patients exhibiting P-gp-associated MDR. 
Drug resistance in B-Cll.. has been linked to the phenomenon of MDR, however, 
publications regarding this have been conflicting. The contrasting results prompted further 
investigation of the role of P-gp-associated anthracycline resistance and, using isolated B­
lymphocytes from B-Cll.. patients, this investigation examined P-gp expression, function 
and IFN-a modulation in vitro. 
Optimum conditions for in vitro analysis of P-gp-associated anthracycline resistance were 
determined by examining the stability of the anthracycline, daunorubicin, in varying cell 
culture conditions. The resulting system balanced conditions affecting drug stability with 
those affecting cell survival. While other investigations have neglected the issue of drug 
stability, this study demonstrates that the instability of daunorubicin may be a critical 
variable determining the outcome of drug sensitivity studies. In RPMI + 2mM L-glutamine 
and 10% (v/v) FBS, loss of drug concentration is due to both adsorption and degradation 
and these experiments show that the presumed availability of drug may be over-estimated 
in in vitro studies. Furthermore, the degradation products might interfere with P-gp 
function and modulation. 
MDRl gene mRNA was detected in the B-cells of forty-three out of fifty B-Cll.. patients 
analysed, whereas P-gp expression, as measured by flow cytometry, resulted in only sixteen 
patients out of fifty-five being classed as positive (> 10% increase in staining as compared 
to the control). P-gp functionality and modulation studies on the B-cells of eleven patients 
confirmed the existence of an efflux mechanism with identical characteristics to P-gp using 
verapamil, the dye rhodamine 123 (rho123) and daunorubicin. Four patients were classed 
as functional low expressers (functional P-gp with low P-gp expression (7-10% increase in 
staining)), six were classed as functional high expressors (functional P-gp with high P-gp 
expression (20-57% increase in staining)) and one as a non-functional high expressor (non­
functional P-gp with high P-gp expression (13.4% increase in staining)). Verapamil 
modulated rho123 efflux in all ten patients classed as P-gp functional expressors, and 
daunorubicin efflux in eight of these patients. However, IFN-a modulated rho123 and 
daunorubicin efflux in only two and one patients, respectively, even at concentrations 
higher than SOOI.U./ml. In contrast to Scala et al. (1991), this finding suggests that at a well 
tolerated concentration IFN-a may not be suitable for use as a P-gp modulating agent in 
vivo in B-Cll.., although conclusive evidence would require a larger study. 
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1.1 NATURE OF MALIGNANT DISEASE 

1.1.1 CELL GROWTH & CELL CYCLE 

The tenn 'Cell Cycle' is used to describe a series of events necessary for the duplication of 

DNA as well as cell growth (Fig. 1.1). 

Fig. 1.1 Four phases of mammalian cell cycle. 

GO 

G2 

M 

Fig.l.l 0 1-phase - a time gap between M and S-phase; S-phase - the synthetic phase that results in the 

complete duplication of nuclear DNA; Grphase - a time gap between S and M phase; M-phase - the mitotic 

phase that is characterised by a condensation of chromosomes, spindle attachment and segregation into two; 

0 0 - sometimes referred to as a separate phase but is actually a quiescent period associated with the 0 1-phase. 

During the cycle, measures are adopted to counter the threat posed by any cell that may 

have acquired a flawed genome, the ultimate measure being that of cell death initiation. 

Failure to initiate cell death is associated with the appearance of cells containing potentially 
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damaging mutations and so the strategy adopted to deal with damaged DNA can be split 

into three components (Rich et al. 2000): 

a) DNA damage recognition 

b) damage assessment enforced by cell cycle checkpoints that monitor the 

efficacy and the completion of events, culminating in the cessation of cycle 

progress if conditions are not perfect 

c) implementation of the appropriate response (DNA repair or cell death) 

1.1.2 APOPTOTIC CELL DEATH 

The processes of cell death were being documented as early as the late 19th century and by 

1914 enough data was available for a German anatomist, Ludwig Graper, to publish a 

paper entitled (in translation) "A point of view regarding the elimination of cells." (Graper, 

1914), where he referred to what is now called apoptotic cell death as a process which, 

" ... must exist in all organs in which cells must be eliminated". 

The term "apoptosis" was first used by Kerr et al. (1972) to describe a highly regulated 

process of cell death. Since then scientists have distinguished apoptosis as a form of 

"intentional suicide" based on a genetic mechanism (Ell is et al. 1991; Hengartner et al. 

1992; Hengartner, 2000). However, although extensively described, apoptosis has no 

absolute, precise definition. Instead, scientists have defined this form of cell death using 

morphological as well as biochemical criteria. 
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1.1.2.1 Morphology 

Initially, the cell shrinks and the chromatin becomes condensed, being packed into smooth 

masses normally found against the nuclear membrane, thus giving a " horse-shoe" 

appearance (Majno and Joris, 1995). The nucleus can break up, a process known as 

karyorhexis, sometimes being incorporated into cellular processes that tend to bud off the 

cell, so the detachment procedure is known as budding, the resulting vesicles being termed 

apoptotic bodies (Fig. 1.2). 

Fig. 1.2 Morphological changes associated with apoptotic cell death 

chromatin nuclear fragmentation 

(a) (b) 

Apoptotic Body 

(c) 

Fig. 1.2 (a) "horse-shoe" chromatin (b) karyorhexis (c) budding. 

4 



Although various organelles may become compacted and re-localised, there is little or no 

swelling of the mitochondria as an intact mitochondrial structure facilitates this genetically 

controlled, ATP-dependent form of cell death. 

Changes, especially in early stage apoptosis, are easily distinguished from those associated 

with necrotic cell death. Membrane disruptants, respiratory poisons and hypoxia cause 

ATP depletion, metabolic collapse, cellular and organelle swelling and the random spillage 

of cellular contents into the extracellular surroundings leading to inflammation. These are 

typical features of necrosis. In contrast, early apoptotic cells show no obvious changes in 

plasma membrane integrity. In addition, cells undergoing apoptosis display a number of 

'eat-me' flags such that this programme of cell deletion in vivo is swift, with the final phase 

being the safe phagocytosis of intact cells. A well characterised example of this would be 

the early exposure of the 'eat-me' flag, phosphatidylserine, normally restricted to the inner­

membrane leaflet (Savill and Fadok, 2000). This phagocyte-dependent clearance allows a 

large cell turnover without the inflammatory response associated with necrotic material, i.e. 

the mechanisms allowing phagocytes to recognise apoptotic cells as 'unwanted self are 

special in that they are uncoupled from inflammatory responses. Indeed, the uptake of 

apoptotic cells actively suppresses the secretion from activated macrophages of pro­

inflammatory mediators such as tumour necrosis factor-a (TNF-a). This safe clearance is 

beneficial in preventing the secondary necrosis of apoptotic cells, with associated 

uncontrolled release of damaging contents (Majno and Joris, 1995; Savill and Fadok, 

2000). 
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1.1.2.2 Biochemistry 

Regulated destruction of a cell is a complicated process and requires the co-ordinated 

activation and execution of multiple subprograms. Most of the morphological changes 

during apoptotic cell death are caused by a set of cysteine proteases activated specifically in 

apoptotic cells. These proteases belong to a large protein family known as caspases which 

possess an active-site cysteine and cleave substrates which follow aspartic acid residues. As 

eliminating caspase activity can prevent apoptosis, caspases are regarded to be the central 

executioners of the apoptotic pathway. 

1.1.2.2.1 Caspase action and activation 

In most cases caspase activity results in the inactivation of the target protein but caspases 

can also activate proteins either directly by cleaving off a negative regulatory domain, or 

indirectly by inactivating a regulatory subunit (Fig. 1.3). 

6 



Fig. 1.3 Caspasc mechanism of action 

Loss offunct1on Gain of function 

a .., 
b) Dins~trbly 0 

<) Aotintion 

c::::=::;J actiw ci)!We..e 

Fig. 1.3 Adapted from Hengartner, 2000. 

A good example of this is the generation of the most characteristic biochemical indicator of 

apoptosis i.e. the DNA "ladder" resulting from internucleosornal fragmentation of DNA. 

This fragmentation is generally considered as evidence of endogenous endonuclease 

activation (Arends et al. 1990). The nuclease, known as caspase-activated DNase (CAD), 

cuts the genomic DNA between nucleosomes to generate DNA fragments with lengths 

corresponding to multiple integers of approximately 180 base pairs. CAD pre-exists in 

living cells as an inactive complex with an inhibitory subunit, dubbed ICAD. Activation of 

CAD occurs by means of caspase-3-mediated cleavage of the inhibitory subunit, resulting 

in the release and activation of the catalytic subunit (Enari et al. 1998; Hengartner, 2000). 

Laddering is widely used in the identification of apoptosis, however, it does not provide 

definitive criteria for distinguishing between necrosis and apoptosis as "apoptotic-like" 

7 



DNA fragmentation has been observed during hepatic necrosis following treannent of mice 

with paracetamol (Ray et al. 1993). In addition, not all cells show the characteristic 

laddering pattern during apoptosis (Wiger et al. 1997). 

As is true of most proteases, caspases are synthesised as enzymatically inert zymogens and 

three general mechanisms of caspase activation have been described (Hengartner, 2000):-

a) proteolytic cleavage by an upstream caspase - this is straightforward and 

effective, and is used mostly for activation of downstream, effector caspases 

e.g. a 'caspase cascade' strategy of activation is used extensively by cells for 

the activation of three short prodomain caspases, caspase-3, -6 and -7, which 

are considered the workhorses of the caspase family (Hengartner, 2000). 

b) induced proximity - caspase-8 is the key initiator caspase in the death 

receptor pathway of apoptosis. Upon ligand binding, "death" receptors such 

as CD95 (also known as Fas or Apo-1) aggregate and form membrane­

bound signalling complexes which then recruit, through adaptor proteins 

such as FADD (Pas-associated death domain protein), several molecules of 

procaspase-8, resulting in a high local concentration of zymogen. The model 

suggests that under these crowded conditions the low intrinsic protease 

activity of procaspase-8 is sufficient to allow the various proenzyme 

molecules to mutually cleave and activate each other (Hengartner, 2000; 

Krammer, 2000; Muzio et al. 1998). 

c) Holoenzyme formation - the most complicated mechanism is the one used 

by caspase-9. Proteolytic processing only has a minor effect on the enzyme's 

catalytic activity. Instead the key requirement is its association with a 

dedicated protein cofactor, Apaf-1, forming a caspase-9 holoenzyme. The 
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Apaf-1/caspase-9 complex is often referred to as the apoptosome and its 

large size suggests that it may well contain several additional proteins 

(Beere et al. 2000). 

In summary, effector caspases are usually activated proteolytically by an upstream caspase, 

whereas initiator caspases are activated through regulated protein-protein interactions. 

The mechanisms of apoptosis are just beginning to be unravelled and much of the 

molecular interactions remain unclear, however, protein-protein interactions are one of the 

underlying themes in apoptosis and can involve many regulatory molecules. One such 

family of apoptotic regulators is the Bcl-2 family. Named after the first regulator to be 

described, the Bcl-2 family is comprised of well over a dozen proteins which have been 

classified into three functional groups (Hengartner, 2000). The members of group I possess 

anti-apoptotic activity, whereas members of groups II and m promote cell death (Table 

1.1). 

Group Bcl-2 family members Activity 

I Bcl-2 Anti-apoptotic 

Bcl-XL Anti-apoptotic 

II Bax Pro-apoptotic 

Bak Pro-apoptotic 

m Bid Pro-apoptotic 

Table 1.1 Example of Bcl-2 family member subclassification 
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In a normally functioning cell then Bcl-2 family members are presumably in homeostatic 

balance, but the key function of those in groups II and ill seems to be to regulate the release 

of pro-apoptotic factors, in particular cytochrome c, from the mitochondrial intennembrane 

compartment into the cytosol. During apoptosis, cytochrome c is released by the 

mitochondria into the cytoplasm where it associates with the apoptosome complex and 

facilitates the initiation of a caspase cascade (Hengartner, 2000; Johnson, 2000a). 

Other regulatory aspects are emerging and it has been suggested that intracellular pH 

changes occurring early during apoptosis may play an important role in driving subsequent 

biochemical changes associated with the death process such as: phosphatidyl serine 

externalisation (Gottlieb et al. 1996; Johnson, 2000a); cytochrome c release; and 

alterations in mitochondrial membrane potential (Johnson, 2000a; Matsuyama et al. 1998). 

In addition, there has recently been evidence to suggest that noncaspases, including 

cathespins, calpains, granzymes and the proteosome complex, also have roles in mediating 

and promoting apoptosis (Johnson, 2000b), adding to the complexity of this type of cell 

death. 

The complexity of apoptosis means that an understanding of the processes involved is vital 

especially as this type of cell death is now known to be affected in neuro-degenerative 

diseases, T-cell depletion in HIV/AIDS, haematopoiesis and cancer (Cohen and Eisenberg, 

1992; Groux et al. 1992; Hickman, 1992; Orrenius, 1995). 
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1.2 HAEMATOPOIESIS AND LEUKAEMIA 

Progression of a cell through its cycle is dependent on the careful control between growth 

stimulus and apoptosis. Cancerous growth is primarily due to a disruption of this balance, 

where abnormal cells escape the normal control parameters monitoring cell status, e.g. 

checkpoints. This deregulation is commonly associated with gene mutations and 

abnormalities in the suicide program, resulting in the death of vital cells or the survival of 

dysfunctional cells and gives rise to pathological states such as functional deficiencies or 

cancer, respectively. 

The formation of different types of blood cells, i.e. haematopoiesis, is essential for 

development and survival. New cells from different lineages are produced from stem cells 

throughout life, however, any abnormalities in this production may result in haematological 

diseases, e.g. haematological malignancies (Sachs, 1996). 

The leukaemias, colloquially known as "cancers of the blood", are an example of such 

malignancies. They are a group of disorders characterised by the accumulation of abnormal 

white blood cells in the bone marrow leading to bone marrow failure, an increase in the 

circulating white blood cell count and infiltration of other organs (Hoffbrand and Pettit, 

1992). 

Historically the leukaemias have been broadly divided into two types: (I) acute, which 

without treatment is fatal within a few weeks or months, and (2) chronic, which without 

treatment is fatal in months or years. Further divisions into myeloid and lymphoid 

leukaemia depend on the haematopoietic cell in which the leukaemic transformation occurs 

and at which point in differentiation it occurs because this cell and the timing determine the 
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phenotype of the leukaemic clone. In addition, extended classification within the myeloid 

and lymphoid leukaemias can occur, e.g. lymphoid leukaemias can be further categorised 

into T-cell and B-cell dependent on cell type/differentiation (Fig. 1.4). 

Fig. 1.4 Lymphocyte differentiation 
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Stated briefly, the leukaemias represent arrested maturation of committed cell lines, where 

the malignant phenotype and the multiplicity of leukaemic syndromes depends on the stage 

at which maturation stops. 

1.2.1 B-CELL CHRONIC LYMPHOCYTIC LEUKAEMIA (B-CLL) 

The first ante-mortem diagnosis of patients with chronic leukaemia was made and 

published in the early 19th century and probably also included patients with chronic 

myelogenous leukaemia (Fuller, 1846). However, the development of histochemical 

staining techniques enabled TUrk in 1903 to distinguish between myeloid and lymphoid 

leukaemias and first describe chronic lymphocytic leukaemia as a separate clinical entity 

(Hamblin, 2000a; Johnson et al. 1996). 
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B-cell chronic lymphocytic leukaemia (B-CLL) is the most common form of leukaemia in 

western society, affecting men more than women at a ratio of 2: l. It is a disease of the 

elderly, the median age of patients being nowadays close to 70 years, however, 10-15% of 

patients are younger than 50 years (Montserrat, 2000). It comprises 90% of chronic 

lymphoid leukaemias in the U.S. and Europe (Homing, 1998), and is a neoplastic disease 

characterised by a clonal expansion of B cells with morphology typical of small, 

monomorphic lymphocytes in the blood, marrow and lymphatic tissues (Homing, 1998). 

B-CLL differs slightly from other Ieukaemias in that it is the only major adult leukaemia 

that is not thought to be associated with exposure to ionising radiation, drugs or chemicals, 

nor is there evidence for viral aetiology. More convincingly, the epidemiology of B-CLL 

suggests that sex and genetic factors influence the disease susceptibility (Diehl et al. 1999; 

Steiner et al. 1998). 

1.2.1.1 Flow cytometry and immunocytochemistry 

Flow cytometry of peripheral blood should follow review of the peripheral smear and 

immunophenotypically, B-CLL can be characterised by the expression of CD5 (a pan-T­

cell marker) as well as CD19, 20, 23 and 43. However, the levels of CD5 & CD20 

expression are lower than normal (Aimasri et al. 1992; Homing, 1998; Marti et al. 1992). 

Also expressed on B-CLL cells are CDJ la, CD18, and CD54, but due to the low levels of 

these antigens, they can be reported negative in a certain percentage of cases. Other 

antigens are not expressed, e.g. CD4, or CD8 (T-cell differentiation antigens) (Beutler et 

al. 1995). Currently, B-CLL is usually diagnosed based on a combination of morphology 

and immunophenotype. 
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1.2.1.2 Surface immunoglobulin 

The leukaemic cells from over 90% of patients express low levels of monoclonal surface 

immunoglobulin (lg) with either K or A light chains (Beutler et al. 1995). Of the heavy 

chain isotypes, over half of all cases have surface lgM and lgD, a quarter have lgM 

exclusive of IgD, and approximately 7% have Ig isotypes other than IgM or IgD (usually 

lgG or IgA). 

The immunoglobulins expressed in B-cell CLL often have reactivity for self-antigens, most 

notably for the constant region of human IgG. These antigens are 'polyreactive' e.g. a 

monoclonal autoantibody produced by a leukaemic B-cell clone may bind to IgG, single­

stranded DNA, double-stranded DNA, histones, cardiolipin, actin, thyroglobulin, and/or 

cytoskeletal components (Beutler et al. 1995). Such polyreactivity is a characteristic of 

some autoantibodies produced during early B-cell development and some CLL B-cells 

appear to have been selected for their ability to bind self-antigens. Conceivably, normal B 

cells that express such autoantibodies may be perpetually stimulated, thereby increasing 

their risk for malignant transformation into CLL. Alternatively, anti-self reactivity may 

enhance the survival of a B-cell clone subsequent to its malignant transformation. In either 

case the autoantibody activity of the leukaemic cells may be one factor in the pathogenesis 

of this disease. 

1.2.1.3 Cytogenetic and molecular abnormalities 

Today the disease is thought of in terms of molecules and clonal chromosome 

abnormalities are found in approximately half of all B-CLL, particularly among patients 

with advanced disease (Montserrat et al. 1997). However, molecular cytogenetic 
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techniques, such as fluorescence in situ hybridisation (FISH), have demonstrated 

abnormalities in more than 80% of patients with CLL (Dohner et al. 1998). FISH analysis 

in a large num~er of cases has shown strong prognostic associations with these 

abnormalities and molecular cytogenetics will play an important role in the routine 

assessment of these patients in the future. 

The most common abnormality detected by conventional cytogenetics is trisomy 12 found 

in around one-third of cases with an abnormal karyotype (Hamblin, 2000b; Juliusson et al. 

1991). Structural abnormalities of chromosome 12 also occur, most commonly at pi!, ql3 

and q22 and may result in partial trisomy. Trisomy 12 is associated with atypical 

morphology involving increased numbers of prolymphocytes or lymphoplasmacytic 

features, atypical immunophenotype, a higher proliferative rate, advanced disease and poor 

prognosis. The oncogenes that have been identified on chromosome 12 have not yet been 

shown to be activated or involved in the aetiology of CLL (Juliusson et al. 1990). 

Structural abnormalities of chromosome 13 are found in around 20% of patients with an 

abnormal karyotype but long arm deletions of chromosome 13 (usually ql4) are the most 

common abnormality demonstrated using FISH (Dohner et al. 1998). 13ql4 is the site of 

the retinoblastoma suppresser gene (RBI) which is not involved in the pathogenesis of 

CLL. However, a region telomeric to the RB I gene has been shown to be disrupted in cells 

from patients with CLL (Brown et al. 1993) and may be the site of a recessive tumour 

suppresser gene known as DBM (deleted in B-cell malignancy). Patients with single 

del(l3q) have a significantly better survival (> 15 years) than patients with del(13q) plus 

other abnormalities and patients with the other abnormalities studied (Dohner et al. 1998) 

(Table 1.2). 
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Genetic abnormality Incidence (%) Median survival (years) Clinical features 

del(l3q) single 36 >15 typical morphology 

del(l1q23) 17 6.6 bulky disease 

+12 15 10.9 atypical morphology 

del(17p) 8 3.6 drug resistance 

del(6q) 7 11 bulky disease 

Table 1.2 Incidence and prognostic significance of genetic abnormalities in CLL 

Modified from Dohner et al. 1998 and Oscier, 1999. 

Inactivation of the p53 tumour suppresser gene as a result of mutation at 17p is found in 8 

to 26% of patients with CLL (Dohner et al. 1998; Reed, 1998), usually in association with 

advanced stage. It is also associated with resistance to chemotherapy. Loss of p53 activity 

can result in both an increase in cell proliferation and also prolonged cell survival 

Chromosomes 6 is the next most commonly involved chromosome with long arm deletions 

or translocations involving either arm. Deletions of the long arm (del(6q)) have been found 

in 7% of patients (Dohner et al. 1998) and these patients had a median survival of 11 years. 

Conventional cytogenetics show structural abnormalities of chromosome 14 in 15% of 

patients with chromosome abnormalities, most commonly q32 (Dohner et al. 1998). 

Translocations involving the bc!-2 gene on chromosome 18q21 with one of the 

immunoglobulin gene regions on chromosome 2, (K light chain), 14 (heavy chain), or 22 

(or A light chain), occur in I to 4% of patients with CLL (Reed, 1998). These translocations 

are much more characteristic of follicular lymphomas in 85% of which the t(l4;18) 
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translocation is found. Translocations of the bcl-2 gene in CLL more commonly involve 

light chain loci. The result of these translocations is deregulation of the bcl-2 gene and 

constitutive high expression of the gene product. The bcl-2 protein is a potent suppresser of 

apoptosis. 

Although translocations involving the bcl-2 gene are uncommon in CLL, high levels of bcl-

2 protein, equivalent to those found in follicular lymphoma, are found in approximately 

85% of cases (Hanada et al. 1993). This appears to be due to hypomethylation of the bcl-2 

gene promoter region rather than mutation of the gene. 

1.2.1.4 Disease staging 

The Rai System (five subgroups designated with Roman numerals, I-V [early- advanced]) 

and the Binet System (three subgroups designated alphabetically, A-C [early - advanced]) 

are the two clinical staging systems commonly used. Both systems are designed to predict 

worsening prognosis with advancing stage of disease. It has been suggested that the two 

systems be amalgamated (IWCLL, 1981, 1989). 

A number of other prognostic indicators are used, including lymphocyte doubling time, 

bone marrow histology and chromosome alterations (Hamblin, 2000). Although there is no 

distinct correlation between incidence of chromosomal abnormalities and clinical stage, the 

incidence of abnormalities does increase (from 20-70%) in conjunction with progression 

from an early to an advanced and more aggressive stage of disease. 

17 



1.2.1.5 Treahnent 

Although described as indolent in nature, this disease has a highly variable clinical course 

with death occurring from several months after diagnosis to more than 10 years of life with 

no major complications, i.e. death unrelated to CLL (Juliusson, 1994). In fact, patients with 

CLL seldom die because of high white cell count, but there are other fatal, clinical 

outcomes of this disease related to immunodeficiency and autoimmunity. 

When making treatment decisions, therefore, the parameters taken into account include the 

characteristics of the patient (age, associated diseases), the accurate diagnosis of the disease 

and the prognostic features (systematic staging) with or without additional features, e.g. 

lymphocyte doubling time. 

Delaying treatment is considered the best "therapeutic" strategy for patients with indolent 

presentation and this option is always acceptable for elderly patients who have a high 

probability of having other debilitating diseases over the following 10 years after diagnosis. 

It is becoming more apparent, however, that in some patients (usually younger in age) the 

disease is not indolent. Even though a response to treatment is normally associated with 

increased survival, patients are still rarely, if ever, cured. The most important aim, 

therefore, is prolongation of survival (Montserrat, 2000). 
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1.2.1.5.1 Chemotherapy 

1.2.1.5.1.1 Single agent chemotherapy 

The alkylating agents such as chlorambucil and cyclophosphamide are important in the 

treatment of haemopoietic malignancies and have in common the generation of reactive 

carbonyl groups that attack electron-rich sites on DNA. 

Chlorambucil and cyclophosphamide were demonstrated to be active in B-CLL in the mid-

1950s (Keating, 1999). Chlorambucil is still first line treatment and is found to decrease the 

lymphocyte count in approximately two thirds of all patients. In a smaller proportion it will 

also decrease spleen size and improve platelet and haemoglobin levels. It was initially 

given at a daily dose of 0.03 to 0.3mg/kg, but now, more frequently, is given lOmg daily 

for ten days every four weeks for six months. The latter regimen gives similar efficacy but 

is less toxic. The response rate is 40 to 60% but complete remissions are rare. Side effects 

include nausea, bone marrow suppression and occasionally skin rashes (Montserrat and 

Rozman, 1993; Rai, 1993). 

Repeated administration of chlorambucil was found to be often ineffective especially in 

relapsed or refractory disease where the median survival is approximately 15 months 

(Keating et al. 1988). For this reason combination regimens are frequently used. 

Cyclophosphamide is occasionally given if chlorambucil is not tolerated. If administered as 

a single agent the dose is 50-lOOmg/day orally or 500-750mg/m2 every 3-4 weeks 

intravenously. There is, however, no good evidence for its single agent activity and it is 

more commonly found in combination regimens. 
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1.2.1.5.1.2 Combination chemotherapy 

The most popular combination regimen has been that of chlorambucil and prednisolone, 

usually given monthly, e.g. chlorambucil 10mg daily, prednisone 40mg daily both orally 

for 10 days, but the responses have ranged from 38-87% (Keating, 1999) primarily due to 

the wide variation in response criteria and drug dose schedules across all the reported 

studies. 

While the use of this combination of alkylating agent and steroid has proven popular, other 

drug combinations have included anthracycline drugs in addition to the alkylating agent 

and steroid, e.g. CAP - Cyclophosphamide, Doxorubicin & Prednisone (Beutler et al. 

1995; Keating et al. 1990) and CHOP - Cyclophosphamide, Doxorubicin, Vincristine & 

Prednisone (Beutler et al. 1995; Binet, 1993; Hansen et al. 1991). 

1.2.1.5.1.3 Emerging chemotherapies in chronic lymphocytic leukaemia: nucleoside 

analogues 

Historically, the malignant process has been associated with an uncontrolled cell 

proliferation, and therefore, it seemed logical for chemotherapy to target the process of 

DNA replication. In this respect, most effective cancer drugs either interfere with the 

synthesis of DNA or produce chemical lesions in DNA that interfere with its replication, 

e.g. alkylating agents, steroids and anthracycline antibiotics. 

Although regimens containing such drugs are still often used, the problem with past 

clinical research has been, in part, that most clinical trials in CLL primarily involved 

comparisons of various combinations of these agents. However, these agents are more 
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toxic to cells undergoing proliferation, due to the targeting of the DNA, and as CLL 

lymphocytes are not proliferating but rather accumulating (most lymphocytes are held in Go 

phase of cell cycle), these agents are not having the optimal desired effect (Cheson, 2000). 

In the late 80's purine analogues were developed which had, as one mechanism of action, 

induction of apoptosis of resting lymphocytes. The purine analogue, fludarabine, has 

shown significant anti-CLL efficacy and provided a major advance in the treatment of 

CLL. 

Fludarabine is a fluorinated purine analogue that is rapidly dephosphorylated in plasma and 

enters the cell by a carrier mediated transport mechanism. It is then phosphorylated, by 

deoxycytidine kinase, to P-ara-adenine triphosphate (F-ara-ATP) which is resistant to 

deamination by adenosine deaminase and therefore begins to accumulate in the cell. The 

activity against quiescent cells, which form the majority of malignant cells in CLL, is a 

result of disruption of nucleoside pools, which inhibits DNA repair and results in activation 

of poly (ADP-ribose) polymerase, depletion of NAD and ATP, and ultimately cell death by 

apoptosis (Robertson et al. 1993). 

Other nucleoside analogues that have shown activity in the treatment of CLL include, 

pentostatin, GW506U78 and gemcitabine (Cheson, 2000). 

Unfortunately, patients are not cured with fludarabine and there are no satisfactory standard 

options for patients who relapse after initially responding to fludarabine. 
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1.2.1.5.1.4 Comparative clinical trials 

As there has been limited progress in clinical research in chronic lymphocytic leukaemia 

with failure to improve patient outcome even with the above regimens, many trials have 

been conducted to investigate the effectiveness of various drug regimens in treating this 

disease. 

Trials by the French Co-operative Group on CLL demonstrated that treatment of patients 

with early-stage disease with chlorambucil alone or in combination with prednisolone did 

not result in a survival advantage as compared with a watch and wait approach (Montserrat, 

2000). 

The North America Intergroup three-arm trial treated patients with advanced, active disease 

with fludarabine, chlorambucil or fludarabine and chlorambucil. The fludarabine-alone arm 

resulted in a much higher response rate than the chlorambucil alone and a longer disease­

free interval, but, up to the date of the last report no differences in survival have been 

observed (Keating, 1999; Rai et al. 2000). 

A European study compared CAP (cyclophosphamide, doxorubicin, prednisolone) with 

fludarabine in both previously treated and untreated patients. In this study the responses 

were better with fludarabine as was the progression-free survival and overall survival but 

the difference did not achieve statistical significance (French Co-operative Group on CLL, 

1996; Keating, 1999). 

The French Co-operative Group has also compared fludarabine with mini-CHOP (ChOP, 

with doxorubicin at lower doses than in standard CHOP) and CAP. CAP was found to be 
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inferior to both the alternatives and, although the results were somewhat better with 

fludarabine, the difference between CHOP and fludarabine was not statistically different 

(Keating et al. 1998). 

In conclusion, the above results demonstrate that in indolent disease the watch and wait 

approach is preferable until better treatments become available. On the other hand, for early 

stage patients it may be important to identify those who are likely to progress and, in them, 

to investigate whether there is a role for tludarabine in changing the natural history of the 

disease in these patients. In advanced-disease patients, tludarabine has proven to be 

effective treatment even although survival is not improved (Montserrat, 2000). 

In cases where patients relapse after treatment with fludarabine, investigational strategies 

are appropriate. These include combination regimens with other chemotherapeutic agents 

(e.g. tludarabine and cyclophosphamide (Flinn, 1998)), emerging therapies involving 

monoclonal antibodies, vaccines or gene therapy, or combinations of these. 

1.2.1.5.2 Emerging therapies 

1.2.1.5.2.1 Immunotherapy with antibodies 

While idiotype vaccine development has been developed in lymphoma, these have not yet 

become available for CLL (Keating, 1999). 

Two monoclonal antibodies have become available for clinical trial and are being explored 

in CLL. Rituximab, which is directed against CD20, is a potent treatment for patients with 

follicular lymphoma, and a clinical trial in CLL using rituximab has shown that the overall 
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response rate is between 35-40%. There appears to be a dose-response relationship 

(O'Brien et al. 1998). 

Treatment with Campath-1H antibody directed against CD52, which is present on almost 

all patients with CU..., has been explored for a number of years and has demonstrated 

activity in early stage and late stage patients with CU... (Keating, 1999). A recent trial in 93 

patients with fludarabine-refractory CLL has demonstrated that 33% of patients can obtain 

a remission and occasional patients can obtain a complete remission (Keating et al. 1999). 

1.2.1.5.2.2 Immunotherapy with genetic modification 

Along with differentiation antigens and class I and II molecules of the major 

histocompatibility complex (MHC), the slowly dividing monoclonal B-cells in B-CLL also 

express surface immunoglobulin (lg). The Ig expressed in this disease has features that 

distinguish it from the Ig expressed by normal, non-malignant cells (Kipps, 1999) and this, 

coupled to the expression of MHC class I and II molecules, means that the leukaemic B 

cells should be amenable to host immune recognition and rejection. 

Despite expressing MHC class II molecules, CU... cells are ineffective antigen-presenting 

cells (APCs) and it is therefore necessary to change the genotype, and therefore the 

phenotype, of the leukaemia cell to stimulate a host anti-leukaemia immune response. 

In this respect, the poor APC activity of CLL cells can be corrected (Kipps, 1999). A 

critical T-cell surface molecule, CD154, which is the ligand for CD40, allows activated T 

cells to stimulate CD40-bearing normal B cells, monocytes, and/or dendritic cells. Such 

activation can induce cells to express important accessory surface molecules which are 
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required for eo-stimulatory cognate interactions with T-cells. This can trigger a cascade of 

events that can ultimately result in a leukaemic B-cell which expresses a variety of non­

expressed, or marginally expressed, stimulatory surface accessory molecules. These 

changes allow the leukaemic cell to stimulate T cells to respond productively to presented 

cells. 

These findings could develop into a strategy for immune therapy of CLL. The CLL cells 

can be stimulated either by cells expressing the ligand for CD40 (CD154) or by agents that 

cross-link CD40 on the leukaemia cell surface. Alternatively, this can be achieved by 

transferring a gene into the leukaemia cells that encodes a stable and active form ofCD154, 

which can trigger activation of leukaemia cells via its interaction with CD40 (Kato et al. 

1998). The latter approach has the potential for not only activating the leukaemia cells that 

have taken up the CD154 gene but also bystander leukemia B cells that have not (Kipps, 

1999). 

A phase-1 study of CLL cells transfected with adenovirus-CD154 (Ad-CD154) has shown 

encouraging results. In summary, the infusions were well tolerated, and dose-limiting 

toxicity was not observed. /11 vivo changes in bystander leukaemia cells and significant 

increases in the numbers of circulating T cells were observed. Also, patients experienced 

significant falls in leukaemic blood counts and lymph node size. These results have 

stimulated the design and implementation of phase II trials that examine the effects of 

administering multiple doses of Ad-CD154-infected autologous leukaemic cells (Kipps, 

1999). 
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1.2.1.5.2.3 Transplantation Therapy 

Due to its experimental nature, it is suggested that stem cell transplant (SCT) for CLL 

should not be performed outside clinical trials. While age alone does not justify the use of 

experimental treatment approaches, young patients, where B-CLL exhibits poor prognostic 

features, should be offered experimental therapies in the setting of large and well 

conducted trials (Montserrat, 2000). 

Autologous transplantation usually has a less than 10% transplant-related mortality where 

the status of the disease at the time of transplantation is the most important factor for 

survival. However, the constant pattern of relapses (about 50% at 4 years post­

transplantation) suggests that autotransplants do not cure CLL. Nevertheless, absence of 

minimal residual disease after transplantation correlates with a longer disease-free survival. 

Allogeneic transplants result in a transplant-related mortality that can be as high as SO%. In 

contrast to autologous transplants, however, in most series there is a disease-free survival 

plateau of about 40%. As in the case of autologous transplants, absence of minimal residual 

disease after transplantation is associated with a longer disease-free interval (Montserrat, 

2000). 

1.3 ANTHRACYCLINE ANTIBIOTICS 

The anthracycline glycosides were first studied in the late 1950's as pigmented antibiotics 

produced by different strains of Streptomyces. The potent antileukaemic activity of the 

anthracycline daunorubicin, isolated from S. coeroleorubidus and S. peucetius (Aubei­

Sadron and Londos-Gagliardi, 1984; Marco et al. 1963), led to the search for other 
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anthracyclines with anti-tumour activity. In 1969, doxorubicin was isolated from a 

chemically mutated strain, S. peucetius var. Caesius (Arcamone et al. 1969). Both 

daunorubicin and doxorubicin have marked side effects and consequently, various 

analogues have been developed with the object of retaining antitumour activity whilst 

reducing toxicity. 

1.3.1 STRUCTURE 

Anthracyclines are made up of a tetracyclic aglycone chromophore, (imparting the drugs 

characteristic red, orange or yellow colour) linked to a mono-, di- or tri-saccharide 

carbohydrate chain (Fig. 1.5). 

Fig. 1.5 General structure of the anthracyclines 
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Fig. 1.5 An amino sugar moiety is linked tllrough a glycosidic bond to the C7 of a tetracyclic aglycone. 

The structures of some anthracyclines of clinical and experimental importance are shown in 

Fig. 1.6. 
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Fig. 1.6 Chemical structure of various anthracyclines 
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Fig. 1.6 (a) daunorubicin (b) doxorubicin (c) idarubicin 
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1.3.2 MECHANISM OF ACTION 

The mode of action of the anthracyclines is still not completely understood but at least ten 

potentially cytostatic and cytotoxic effects have now been identified. However, it must be 

considered that while studies involving intact cells utilising extracellular drug 

concentrations above 1-2j.tM (the general plasma concentration range after bolus 

administration versus the nM concentrations found after continuous infusion) may provide 

information on potential mechanisms of action, studies using such high concentrations are 

unlikely to reflect the mechanism of action associated with the clinical use of these 

antineoplastic drugs. 

(i) Inhibition of DNA synthesis and interference with macromolecular biosynthesis 

The inhibition of DNA biosynthesis may be related to DNA intercalation or inhibition of 

DNA polymerase activity. Inhibition of DNA synthesis in breast tumour cells and rat 

hepatoma cells has been observed over the concentration range of 0.1 to 5j.tM (Fomari et 

al. 1996; Munger et al. 1988). However, other studies have shown interference with DNA 

synthesis over a much lower concentration range, 10·8 to 10-6M (Glazer et al. 1982). 

The contradictory findings have made it difficult to reach a conclusion about inhibition of 

DNA synthesis in the growth-inhibitory effects of the anthracyclines. Nevertheless, it has 

been proposed that inhibition of DNA synthesis is an early signalling event that is a 

cytostatic (and transient) component of drug action related to the growth arrest associated 

with p53 function rather than the lethality of the anthracyclines themselves (Gewirtz, 

1999). 

29 



(ii) Role of Free Radicals 

The evidence for the involvement of free radical generation in the cytotoxicity of 

anthracyclines is complex. Under the appropriate conditions, the chemistry of anthracycline 

drugs lends itself to free radical production. 

The quinone structure permits daunorubicin to act as an electron acceptor in reactions 

mediated by oxoreductive enzymes and the addition of the free electron converts the 

quinones to semiquinone free radicals. These may induce free-radical injury to DNA 

themselves or, after interaction with molecular oxygen, form superoxides, hydroxyl 

radicals and peroxides (Benchekroun et al. 1993; Feinstein et a/.1993). The generation of 

semiquinone free radicals of doxorubicin has been shown to result in the cleavage or 

degradation of deoxyribose and/or DNA (Feinstein et al. 1993). However, cell-free systems 

with supraclinical drug concentrations were used for this analysis. It is unclear whether the 

free radicals are generated at clinically relevant concentrations of the anthracyclines and at 

normal (i.e. hypoxic) oxygen tension in the tumour cell and whether such free radicals 

could be responsible for anthracycline toxicity to the tumour. Some intact cell studies have 

been performed but even these used elevated drug concentrations (Benchekroun et al. 

1993; Ubezio & Civoli, 1994). 

One consequence of intracellular generation of reactive free radical species could be DNA 

damage and some studies have been able to detect this type of damage and block DNA 

damage using free radical scavengers (Potmesil et al. 1984). A few studies have used 

clinically relevant concentrations of doxorubicin and shown protection from damage using 

free radical scavengers such as catalase and glutathione peroxidase (Cervantes et al. 1988; 

Doroshow, 1986). However, in contrast to these studies, others have failed to demonstrate 

protection against doxorubicin toxicity using these free radical scavengers (Gewirtz, 1999). 
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In addition, as the free radical scavengers used are large proteins, they should be incapable 

of crossing the cell membrane. Therefore, protection by these agents may be indicative of 

free radical generation at the cell surface. Indeed, free radical species could lead to lipid 

peroxidation, but there is thought to be insufficient evidence to implicate lipid peroxidation 

(via free radical formation) in the antitumour effects of anthracyclines. 

(iii) DNA adduct formation and DNA cross-linking 

Various studies have reported the induction of DNA adducts with anthracyclines, but 

generally they have involved high drug concentrations (Cullinane et al. I994; Cullinane 

and Phillips, I 990; Gewirtz, I 999; Phillips et al. 1989). 

The possibility that DNA binding could lead to DNA cross-linking has also been 

investigated and evidence exists to support the formation of DNA interstrand cross-links 

but, again, at elevated drug concentrations (Cullinane et al. I994; Skladanowski and 

Konopa, 1994). 

While these findings are consistent with this potential mode of action, the significance of 

these findings should be verified by studies demonstrating a relationship between DNA 

cross-linking and cytotoxic effects in intact cells at clinically relevant concentrations of 

anthracyclines. 

(iv) Interference with DNA strand separation and DNA helicase 

It has been demonstrated that low concentrations of doxorubicin interfere with DNA 

unwinding in MCF-7 breast tumour cells (Fomari et al. I994a). Although this finding 

could be related to DNA interstrand cross-linking, it may be related to drug effects at the 

level of helicases (Bachur et al. 1993; Bachur et al. 1998; Tuteja et al. 1997). 
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(v) Membrane-mediated effects 

A number of reports of doxorubicin interaction with real and artificial membranes has led 

to the hypothesis for a doxorubicin effect at the membrane surface (Rogers et al. 1983; 

Triton and Yee, 1982; Vichi and Triton, 1992). 

Vichi and Triton (1992) considered the importance of intracellular and extracellular drug in 

the cytotoxicity of doxorubicin to Ll210 leukaemic cells. The authors' argument proposed 

that drug must be present at the cell exterior to cause cytotoxicity and they reported that 

high levels of DNA in the medium prevented drug toxicity, presumably through binding of 

cell-surface associated drug to the exogenous DNA. 

Although this suggests an alternative mechanism of drug action, no insights were provided 

into the mechanism of action under conventional clinical conditions. In addition, as 

resistance to the anthracyclines is frequently mediated by the multidrug resistance pump 

(section 1.5.3) this supports the concept that drug must enter the cell to express its toxicity. 

(vi) Induction of DNA damage through interference with Topoisomerase II 

Topoisomerase II (topo Il) is likely to be one of the primary target sites for the activity of 

anthracycline antibiotics. The strongest argument in support of this are the data indicating 

that anthracycline-resistant tumour cells have reduced levels or altered activity of 

topoisomerase, with a concomitant reduction in the level of drug-associated strand breaks 

in DNA (Deffie et al. 1989; Friche et al. 1991; Webb et al. 1991). 

In conflict with this, however, are reports that have failed to demonstrate a consistent 

relationship between strand breaks and toxicity of the anthracyclines (Fomari et al. 1996; 

Munger et al. 1988; Spadari et al. 1986). 
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These conflicting data do not clarify that the mechanism of action of anthracyclines is via 

strand breaks through the inhibition of topo II. However, it has been suggested that gene­

specific damage may play a more important role in anthracycline action than bulk damage 

to DNA (Binaschi et al. 1997; Capranico et al. 1990). 

(vii) Growth arrest 

Growth arrest may be an altemati ve to apoptotic cell death with an increase in cell 

population accumulating in G2 phase of the cell cycle (Fomari et al. 1996). A study by Ling 

et al. ( 1996) demonstrated that G2 arrest by doxorubicin is related to the disruption of 

p34cdc2/cyclinB activity. 

(viii) Metal ion chelation 

Anthracyclines have the ability to chelate, or bind, various metals including copper, zinc, 

and iron. Some of the resulting chelates may be cytotoxic (Hershko et al. 1993; Link et al. 

1996; Malatesta et al. 1985). 

Cix) Induction of Apoptosis 

There is clear evidence that one consequence of treatment with doxorubicin and 

daunorubicin is the induction of apoptosis (Bose et al. 1995; Gewirtz, 1999; Jaffrezou et al. 

1996; Skladanowski and Konopa, 1993). 

Skladanowski and Konopa reported on the induction of DNA fragmentation and cell 

shrinkage associated with apoptosis at concentrations ranging between 0.7 and lOj.!M in 

Hela cells, while Jaffrezou et al. demonstrated that treatment of either HL-60 or U-937 

human leukaemic cells with daunorubicin triggered apoptosis at concentrations of 0.5 and 

1j.!M. 
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(x) Alternative Mechanisms of drug action 

One alternative mechanism may be seen during the exposure of cells to nanomolar 

concentrations of the drug, sustained by continuous infusion. At these low concentrations 

doxorubicin can induce differentiation of leukaemic cells and in breast tumour cells 

(Dinnen et al. 1993; Fornari et al. 1994b), an observation that may have implications for 

combination drug therapies. 

There is also evidence that doxorubicin can interfere with microtubular polymerisation and 

with the cellular cytoskeleton (Colombo et al. 1988; Molinari et al. 1990). 

1.4 CYTOKINES 

The beginnings of cytokine research can be traced back to the demonstration that migration 

of normal macrophages is inhibited by material released from sensitised lymphocytes upon 

exposure to antigen (Bloom & Bennett, 1966; David, 1966). The factor responsible for this 

action was termed macrophage migration inhibitory factor (MIF). Demonstration of MIF 

activity was followed by the discovery of 'lymphotoxin' activity (Ruddle & Waksman, 

1968) which in turn lead to the term 'lymphokine', coined by Dumonde et al. in 1969, to 

designate 'cell-free soluble factors (responsible for cell-mediated immunologic reactions), 

which are generated during interaction of sensitised lymphocytes with specific antigen'. 

The term 'lymphokine' has often been used less discriminately for secreted proteins from a 

variety of cell sources, affecting the growth or functions of many types of cells. To 

emphasise that such proteins could be produced by cells other than lymphocytes, Cohen et 

al. (1974) proposed the term 'cytokines'. 'Cytokine' has now become the generally 

accepted name for this group of proteins along with the interferons (lFNs), haematopoietic 
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growth factors or colony stimulating factors (CSFs) and some growth factors acting on 

non-haematopoietic cells e.g. transforming growth factor-~ (TGF-~). 

To designate individual cytokines, a group of participants at the Second International 

Lymphokine Workshop held in 1979 proposed the term 'interleukin' (IL) in order to 

develop "a system of nomenclature .. .. .. based on the proteins' ability to act as 

communication signals between different populations of leukocytes" (Aarden et al. 1979). 

The first two designations were IL-l and IL-2 and since then the interleukin series has 

increased greatly (Table. 1.3). 

Although the name 'interleukin' implies that these agents function as communication 

signals among leukocytes, Aarden et al. (1979) suggested that the term should not be 

reserved for factors that can act only on leukocytes. Indeed, a number of proteins that have 

been labelled as interleukins not only are produced by a variety of non-haematopoietic cells 

but also affect the functions of many diverse somatic cells e.g. IL-l or IL-6. 

Whereas many cytokines are now termed interleukins, others remain known by their older 

names e.g. IFN-a/~, IFN-y. 
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CYTOKINE I SOITRC'H EFFECTOR FU~1.. .JI.. ~ 

Il-l M · fibro)ll~<~• Proliferation activated B- & T-cells 
Induction PGE, & rvtnldnP< bv macrooha11:es 
Induction oeutroohil & T-adhesion molecules on enrlnthPlial cells 
Tnclnction H -6. IFN-1\ I & GM-C'\F 
Induction fever. acute ohase oroteins. bone bv osteoclasts 

IL-2 T cell Growth activated T- and B-cells; activation NK cells 
U-3 T cell Mast Cell Growth & differentiation · · orecursors 

Mast cell 11:rowth 
fL-4 CD4 T cell Mast cell. Proliferation acti_vated B- T- mast & ic orecursor 

Induction MHC Class Il 
Isotvoe switch to I11:GI & I11:E 

IL-5 CD4 T cell. Mast cell Prolife.ration activated B-cells: oroduction I11:M & I11:A 
Prnlif,.ratinn ils 

IL-6 CD4Tcell. I! e. Growth and cliff"r"ntiation B-and T-cell effectors 
acute ohase oroteins 

ll -7 Bone marrow stromal Proliferationore.cB CD4- CD8- T-ce.lls & activated mature T-cells 
ll-R ('hpmnlaYio and artivatinn neUlrODhi!S 

rhPmntaYio T-cells 
IL-9 Tcell Growth and nrnlifPration T-cells 
IL-10 CD4 T cell. B cell. lnhihits TFN-v . 

Inhibits . cell infl, 
IL-11 Bone marrow stromal Induction acute ohase oroteins 
IL-12 Tcell Activates NK-cells 
IL-13 Tcell Inhibits mononuclear oha!!ocvte inflammation 
IL-15 Bone marrow stromal Induce NK cells. T cells & neutroohils. anti-aooototic. tumouri!!enic 
IL-16 Tcells CD4+ T-cell is IL-2 receotor exnression 
IL-17 T cells Induce secretion of IL-6. lL-8. G-CSF & PGE. 
IL-18 macrooha!!es. adrenal ctx IFN-v inclnction. F:~s ~YnrP<sion 

Colonv • factors 
GM-CSF I cells. macroohal!es. Growth 11:ranulocvte & macrooha!!e colonies 

Mast cell. endothelium Activates macronhal!e. neutroohils. eosinoohils 
.G-CSF Fil endothelium Growth mature 11:ranulocvtes 
M-CSF Fibroblasts. endothelium. Growth macrooha!!e colonies 
Steel factor Bone marrow stromal Stem cell division 

. umour necrosis factors 
Tumour cvtotoxicitv: cachexia 
Induction acute ohase orote.ins 

TNF-n macroohal!es. T cell Anti-viral & anti-oarasitic activitv 
TNF-R T cell Activation oha!!ocvtic cells 

lnchtclion IFN-v. TNF-IY. H-I GM-C:SF & 11 .-6 
Endotoxic shock 

lnterfemns 
IFN-n Leukocvtes Anti-viral: exoression MHC I 
IFN-R Eibroblasts .. .. .. .. .. 
IFN-v I cell Anti-viral· macrooha!!e activation 

Exoression MHC class I & li on macrooha!!e & other cells 
Differentiation of cvtotoxic T cells 
Svnthesis I!!G2a bv activated B cell 
A . severallL-4 actions 

Others 
TGF-1\ T cell. B cell Inhibition IL-2R nnrPunlation and IL-2 """·'""""~ T- and B-cell orolif. 

Tnhihition fhv TGF-1\ I) of H .-1 + C'.'\F inclncp,cl haem:~lono·esis 
lsotvneswitch toi!!A 
Wound renair and 
NP.nnlaotic , certain normal cells 

LIP Tcell embrvonic stem cells without affectin11: differentiation 
Chemoattraction and activation of ' ilo 

Table 1.3 Some cytokines, their origin and function Adapted from, Essential Immunology. lvan 

Roitt. Eighth Edition. Blackwell Science ( 1996). 
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1.4.1 MECHANISM OF ACTION 

Cytokines are regulatory polypeptides or glycoproteins, secreted by white blood cells and a 

variety of other cells in the body, that produce their actions by binding to specific high­

affinity cell surface receptors (Thomson, 1998). 

The majority of cytokine actions can be attributed to an altered pattern of gene expression 

in the target cells where, phenotypically, cytokine actions lead to an increase (or decrease) 

in the rate of cell proliferation, a change in cell differentiation state or a change in the 

expression of some differentiated functions. The pleiotropic actions of cytokines include 

numerous effects on cells of the immune system, modulation of inflammatory responses as 

well as effects on haematopoietic cells. In fact, cytokines share, with many other tissue 

specific growth factors, the capacity to prevent apoptosis. As apoptosis is a vital cell 

disposal mechanism, inhibition of apoptosis by cytokines may predispose to oncogenesis 

(Neshat et al. 2000; Panayiotidis et al. 1994; Schurmann et al. 2000). 

Proliferation of haematopoietic cells in marrow, as well as other cytokine actions, are 

governed by a co-ordinated hierarchy of growth factors. These growth factors and allied 

cytokines form complex. intracellular signal transduction pathways that can act to positively 

or negatively regulate cell proliferation and differentiation. Consequently, the discovery of 

the Janus kinase (Jak)/Signal transducers and activators of transcription (STA T) pathway in 

the early 1990s was important in deciphering cytokine mediated signalling (Touw et al. 

2000). 

The Jak/STAT pathway is one of the most important signalling pathways downstream of 

cytokine receptors. Following binding of a ligand to its cognate receptor, receptor-
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associated Jaks are activated. STAT proteins are then in turn activated by tyrosine 

phosphorylation by Jak kinases, allowing their dimerisation and subsequent translocation 

into the nucleus, where they modulate expression of target genes (lmada and Leonard, 

2000). 

1.4.2 INTERFERONS 

In 1957 Isaacs and Lindenman described a factor that conferred the property of viral 

interference, leading to the term interferon (IFN). 

Three main subspecies of human IFN have now been recognised as alpha (a), beta (~). 

gamma (y), produced by leukocytes, fibroblasts and T lymphocytes, respectively (Pestka, 

1997). The IFNs have also been divided into two major subgroups by virtue of their ability 

to bind to common receptor types (Aguet et al. 1984; Haque and Williams, 1998; Merlin et 

al. 1985). Type I IFNs all bind to type I IFN receptor and include IFN-a, IFN-~. IFN-w and 

IFN-'t. IFN-y is the sole type TI IFN, and binds to a distinct type TI receptor (Table 1.4). 

Currently at least 23 different IFN-a genes have been identified, coding for 15 functional 

proteins. There are few chemical differences between the IFN-a subtypes and their similar 

chemical activity make it unclear as to why there are so many species of IFN-a. 
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IFS IFN Hutptor Protoi~'Pic l.}jrcd r\nti· Stimulates MIIC Stimulates MIIC Slimulatcs NK 
Type uleg:orics 1)-pr c~\1 or origin prolirrratiu rffn:t' clau I nprmion cln~ 11 t'•prcuiun tdl arthalion 

Type I Alph' (Q) Ltu~ocyle \'ci Ye~ No Ye-~ 

lku!Pl .. ibroblast Yes Ye~ Slighlly \'cs 

Omcga(flll lruko.:y1< Yes Ye< No y" 

Taoltl Odnc" 
Tn,.t.obldSt 

Typtll G:~mmaly) 11 r -cells Y« "" Yes l.c~s than t)pc I 
NK ctlls 1 FNs. dt'la)ed 

Table 1.4 Interferon classification and J!rOJ!erties From Jonasch and Haluska. (2001) 

1.4.2.1 Mechanism of action of the interferons 

The JFNs possess a broad spectrum of activity and are involved in complex interactions. 

They display antiviral activity, affect cellular metabolism and differentiation, and possess 

antitumour activity. The antitumour effects appear to be due to a combination of direct 

antiproliferative, as well as indirect immune-mediated, effects. Figure 1.7 summarises the 

intracellular signalling, while figures 1.8 and 1.9 summarise the major effects of IFN-a and 

-y on NK cells, antigen-presenting cells, macrophages, T cells and tumour cells. 
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Fig. 1.7 Interferon intracellular signaJiing 

Cytoplasm 

Nucleus ISG 

~ 
~ 

GAS ISG 

Fig. 1.7 Upon binding of tFN to its receptor, the receptor undergoes oligomerisation, with 

transphosphorylation of Jaks followed by phosphorylation of the cytoplasmic tails of the receptor molecules. 

This provides a docking site for the ST ATS which are then phosphorylated by the Jaks. The phosphorylated 

STAT dimers are released from the receptor molecules, and translocate to the nucleus, where they activate 

transcription of IFN-stimulated genes (ISGs). For type I IFNs, ISGs can be identified by the presence of an 

tFN-stimulated response element (ISRE) in their promoter regions. Enhancers of IFN-y-inducible genes 

contain a unique element called the IFN-y activation site (GAS). From Jonasch and Haluska. (2001). 

40 



Fig. 1.8 IFN-a effects on NK cells, antigen-presenting cells, macrophages, T cells and 

tumour cells 
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Fig. 1.8 From Jonasch and Haluska. (2001 ) 
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Fig. 1.9 IFN-v effects on NK cells, antigen-presenting cells, macrophages, T cells and 

tumour cells 
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Fig. 1. 9 From Jonasch and Haluska. (200 I) 
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1.4.2.2 CUnical appUcation 

Their antitumour effect means that the IFNs (predominantly IFN-a) have been tested 

clinically in the treatment of lymphoproliferative disorders such as Follicular lymphoma, 

Hairy cell leukaemia, Myeloma and B-cell chronic lymphocytic leukaemia (B-CLL) 

(Jonasch and Haluska, 2001; McSweeney et al. 1993; Montserrat et al. 1991). 

The use of IFN-a as maintenance of remission following chemotherapy has been an 

attractive concept for B-CLL. Various post-remission strategies have been tried to improve 

the complete remission rate and survival of CLL patients. However, even though this agent 

has activity in patients with early stage disease and can be given on a continuous basis, the 

use of interferon in CLL showed that only one patient out of nine who was in partial 

remission at the time of starting treatment was able to achieve a complete remission on 

interferon (Keating, 1999). 

1.4.2.3 Control of apoptosis by interferons 

In addition to the IFN effects mentioned above, reports of the anti-apoptotic roles of IFNs 

have been published. In 1994 Panayiotis et al. published work reporting that IFN-a protects 

B-CLL cells from apoptotic cell death in vitro. B-CLL cells are prone to spontaneous 

apoptosis when cultured in vitro, and this study analysed the effects of IFN-a on DNA 

fragmentation, bcl-2 protein levels and cell survival in purified B-cells from 16 CLL 

patients. IFN-o: was shown to reduce the degree of spontaneous fragmentation and this 

inhibition was accompanied by an increased survival in comparison to control cells. These 

in vitro results, coupled with other studies showing similar anti-apoptotic effects of IFN-a 

(Jewell et al. 1994), and IFN-y (Buschle et al. 1993), suggest that the clinical responses of 
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some CLL patients to IFN-a cannot be explained by a direct cytotoxic effect of IFN-a on 

circulating CLL cells. 

In addition, IFNs may have another role to play, which could result in their use in 

chemotherapy schedules for patients with drug resistant tumours. It has been reported that 

IFN-a in particular may modulate drug resistance (Scala et al. 1991 ), thus restoring 

chemosensitivity to drug resistant cells. 

1.5 DRUG RESISTANCE 

The failure of chemotherapy to cure more than a minority of tumours is predominantly due 

to drug resistance. This resistance may be inherent or acquired, either as a stable change 

within the cell or induced following drug administration and can be attributed to various 

mechanisms (Fig. 1.10). 

1.5.1 GLUTATHIONE TRANSFERASES (GSTs) 

The glutathione-S-transferases (GSTs) are a supergene family of dimeric enzymes involved 

in drug detoxification (McKenna, 1997; Strange et al. 2000) and are found to be distributed 

in all organs but primarily in the liver and kidney. Two supergene families encode proteins 

with glutathione-S-transferase activity. The family of soluble enzymes comprises at least 

16 genes while the separate family of microsomal enzymes comprises at least 6 genes 

(Hayes and Strange, 2000). 

These two families are believed to exert a critical role in cellular protection against 

oxidative stress and toxic foreign chemicals. Their mode of action is by conjugation of 
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electrophilic drugs, toxins and carcinogens to reduced glutathione (GSH), via the sulphur 

atom of its cystine residue, before elimination from the cell. Their importance is suggested 

by the finding that GST enzymes are expressed in probably all life forms. 

ln man, GSTs exist in microsomal and cytosolic forms, and there are three different c lasses 

of the cytosolic form- pi(1t), alpha( a), mu()l) (Waxman, 1990). 

Fig. 1.10 Schematic diagram of various drug resistance mechanisms identified in 

mammalian cells. 

P-gp 

T opoisome.rase II ~ 

DNA repair t 
( Damage sensor 

LRP vaults 

Fig. 1.10 P-gp and MRP proteins cru1 actively efflux cytotoxic drugs from the cell. GST enzymes can 

detoxify drugs in the cytoplasm, ru1d LRP vaults may be involved in the redistribution of drugs away from the 

nucleus. Alterations in drug target e.g. topoisomerase II, increased DNA repair, and decreased susceptibi lity 

to apoptosis cru1 also confer a drug-resistant phenotype. Adapted from McKenna, 1997. 

GSTn constitutes the predominant isozyme found in human cancers with a 2- to 4-fold 

increase in its RNA levels in tumours of the colon, bladder, ovary and stomach, relative to 
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nonnal tissues. In addition, it has been found to be over-expressed in several multidrug 

resistant cell lines, particularly in doxorubicin resistant lines (Hanis and Hochhauser, 

1992). In contrast, however, other studies have shown little difference between GSTs in 

tumour cells and nonnal cells. In a study of patients with CLL, no correlation was found 

between chlorambucil resistance and GST expression in patient cells, which also did not 

vary significantly between control cells and CLL lymphocytes (Schisselbauer et al. 1990). 

It still remains to be shown that the GST activity changes observed, amount to more than 

associated stress responses, rather than definitive resistance mechanisms. However, an 

increased protection against doxorubicin, although small, has consistently been found to be 

correlated with an elevation of GSTn levels (Nakagawa et al. 1990). 

1.5.2 TOPOISOMERASE 11 

Topoisomerase 11 (topo m is the eukaryotic homologue of bacterial DNA gyrase, and is a 

170kD homodimeric protein which plays a role in DNA replication, chromosome scaffold 

fonnation, chromosomal segregation, and possibly recombination and gene transcription 

(Fortune and Osheroff, 2000; Liu, 1989; McKenna, 1997; Wang, 1985). 

The enzyme acts by producing DNA single and double strand breaks and then attaches 

covalently to the 5' ends of the break. Subsequent strand passage occurs allowing both 

supercoiling and DNA relaxation, such that, by its DNA passage reaction, topo 11 is able to 

regulate DNA over- and under-winding. 

The importance of this enzyme in cell growth and survival is demonstrated by the many 

anti-topo 11 drugs which exist. Some of these topo 11 'poisons' transfonn the enzyme into a 
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potent cellular toxin (Fortune and Osheroff, 2000) by increasing the concentration of 

covalent enzyme-cleaved DNA complexes that are normally fleeting intermediates in the 

catalytic cycle of topo IT. As a result of their action these drugs generate high levels of 

enzyme-mediated breaks in the genetic material of treated cells and ultimately trigger 

apoptosis. Alternatively, a second group, the catalytic inhibitors, prevent topo IT from 

carrying out its physiological functions (Fortune and Osheroff, 2000). Drugs of both 

categories vary widely in their mechanisms of action, yet, characteristically, there is cross 

resistance to the full range of anti-topo IT drugs. 

Different forms of topos exist with various clinical implications. A good example of this is 

the ability to reduce topo IT resistance by molecular design, e.g. one mechanism of 

resistance to the topo IT inhibitor amsacrine (mAMSA) was due to altered transport. By 

altering substituents on the anilino acridine nucleus of mAMSA this resistance has been 

overcome (Findlay et al. 1990). 

Although the resistance demonstrated by topos to anti-topo agents is important in itself, 

with respect to cross-resistance, there may be a link between MDR and topo IT regulation, 

with a possible inverse correlation of these. A study of MDR induction has shown 

simultaneous topo IT reduction although this may simply be due to a general inhibitory 

effect of the drugs on cellular metabolism rather than a specific action on topo IT regulation 

(Chin et al. 1990a). 
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1.5.3 MUL TIDRUG RESISTANCE 

Among the different mechanisms of resistance, the appearance of the multidrug resistance 

(MDR) phenotype is the most frequently observed in many cancer cell lines exposed to a 

variety of cytotoxic agents. 

MDR, or pleiotropic drug resistance, means that exposure to one drug induces cross­

resistance to a variety of other agents to which the cell has not been exposed. These agents 

are usually structurally unrelated cytotoxic compounds of natural origin such as 

anthracyclines (doxorubicin, daunorubicin, idarubicin), vinca alkaloids, 

epipodophyllotoxins, taxanes and amsacrine. 

The most common phenotypic marker associated with MDR is the overexpression of a 

170kDa protein known as P-glycoprotein (P-gp) which is located in the plasma membrane 

of cells and is encoded by the MORI gene located on chromosome 7. In addition to P-gp, 

several other proteins have been described that can also lead to the development of 

pleiotropic resistance to cytotoxic agents e.g. MRP and LRP (Sonneveld, 2000). 

1.5.3.1 Resistance associated with MDRl 

There are two different genes encoding for P-gp in humans: MORI and MDR3, both 

located on chromosome 7 (Figs 1.11 and 1.12). 
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Fig. 1.11 Map of human MDRl gene 
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Fig. 1.11 The MDRl gene includes 28 introns, 26 of which interrupt the protein-coding sequence. Exons 

are indicated by vertical lines. Adapted from Chen et al. 1990 

Fig. 1.12 Map of human MDR3 gene 
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Fig. 1.12 The MDR3 gene contains 28 exons and 27 of these contain coding sequences for the two 

homo logous halves of the prote in that correlate with functional domains. Exons are indicated by numbered 

vertical bars. Adapted from Lincke er al. 1991 

Even though the structure of MDR3 is virtually identical to that of the human MDR1 gene 

and MDR3 has been shown to be functional in cells (Arai et al. 1997), only the MDR1 

gene is associated with MDR. 

The product of the MDR1 gene is a transport protein, and as such the function of P-gp 

means that it is able to extrude drugs from the intracellular matrix preventing therapeutic 

concentrations from being reached. 

P-gp belongs to a super-family of ATP-binding cassette (ABC) transporters , a family of 

A TP-dependent transport proteins. The protein consists of two structurally homologous 
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halves, each with six transmembrane domains and one A TP-binding site (Hrycyna, et al. 

1996; Sonneveld, 2000) (Figure 1.13). 

Fig. 1.13 Schematic diagram of the MDRl product, P-glycoprotein 
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Fig. 1.13 From Sonneveld, 2000. 

Although it has been suggested that phosphorylation of P-gp might be essential for drug 

transport (Germann, 1996a), two different groups have shown that a mutation of the major 

phosphorylation sites within P-gp did not affect its transportation function (Germann et al. 

1996b; Goodfellow et al. 1996). The glycosylated si tes at the cellular outside are probably 

involved in routing and stability of the protein, but may also act as antigens for monoclonal 

antibodies recognising P-gp (Schinkel et al. 1993a). 
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1.5.3.2 P-gp Mechanism of Action 

Drugs affected by MDR are hydrophobic and positively charged and therefore bind readily 

to the negatively charged phospholipid head groups of the membrane. It has been suggested 

that in cells exposed to drugs in vitro, the low drug concentrations in the medium are in 

equilibrium with a pool of high drug concentrations present in the outer leaflet of the 

plasma membrane (Eytan and Kuchel , 1999) (see Fig. 1.14). 

Fig. 1.14 Movement of MDR-susceptible drugs in P-gp overexpressing cells. 
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Fig. 1.14 MDR susceptible drugs added to the extracellular med ium bind to and are in practical equilibrium 

(Kl) with the drug pool in the outer leafl et of the plasma membrane. The drugs nip-flop across the plasma 

membrane (fi and fo) . The drug pool in the inner leaflet of the membrane is in "effective" equilibrium with 

the drug pool in the cytoplasm (K2). Drugs in the cytoplasm are large ly bound and in equilibrium (K3) with 

the intracellular molecular sinks represented here, for simplicity, as DNA. P-gp appears to extract its 

substrates from the inner leaflet of the plasma membrane and nip them outwards . Adapted from Eytan and 

Kuchel, 1999. 
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The drug pool adsorbed to the cell surface is the direct source of drug influx into the cells. 

Drug transported from this pool into the cells is immediately replenished by drug from the 

medium. In this instance, the transmembrane movement of MDR-susceptible drugs (such 

as daunorubicin) across the plasma membrane, inward and outward, occurs within about I 

min. The drug reaching the inner leaflet of the plasma membrane is equilibrated rapidly 

with the drug pool in the cytoplasm. Due to the high affinity of the MDR-susceptible drugs 

for membranes, low concentrations of drug in the cytoplasm is in equilibrium with 

relatively high drug concentrations in the inner leaflet of the plasma membrane and drug 

reaching the cytoplasm is adsorbed by high-capacity molecular sinks such as DNA (capable 

of binding anthracyclines) or tubulin (capable of binding vinca alkaloids) (Eytan and 

Kuchel, 1999). 

In relation to the above mechanism, it is no longer believed that P-gp is a 'classical' pump 

which binds substrates and transports these over the membrane down a gradient present in 

the lipid core (Eytan and Kuchel, 1999). Instead, interaction of substrate with P-gp has 

been shown to take place within the membrane (Raviv et al. 1990). In this case P-gp would 

extract its substrates directly from the inner leaflet of the plasma membrane, functioning as 

a 'flippase' within the membrane (Eytan and Kuchel, 1999; Higgins and Gottesman, 1992). 

A long residence lifetime of a drug in the membrane leaflet therefore increases the 

probability that P-gp will remove it from the cell. 

This is one proposal for the mechanism of action of P-gp, but there is controversy over 

whether the protein protects cells by translocating drugs directly (as some type of pump) or 

indirectly (through modulating biophysical parameters of the cell). P-gp overexpression can 

change the plasma membrane electrical potential and intracellular pH and these changes 

will greatly affect the cellular flux of a large number of compounds to which P-gp 
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overexpression confers resistance. It may be these biophysical alterations that are 

responsible for many MDR mediated phenomena that have often been hypothesised to be 

due to direct drug transport by P-gp (Wadkins and Roepe, 1997). 

1.5.3.3 Mechanisms of regulation 

While antineoplastic agents are important substrates of P-gp, a variety of other clinically 

relevant drugs are also transported by P-gp. Therefore, in addition to examining P-gp 

overexpression in tumour cells, understanding the physiological mechanisms of P-gp 

regulation should help to explain patient variability with regards to drug disposition. In this 

respect, delineating regulatory pathways could enable prediction and manipulation of the 

expression of the MDRI genes in order to improve the clinical effectiveness of P-gp 

substrates. 

One of the functions of P-gp is to protect cells from harmful chemicals and metabolites, 

therefore, it is possible that these transporters play an important role in the cellular 

response against stress. In fact, numerous "stress-evoking" stimuli have been reported to 

alter MDRl expression e.g. an 8-fold increase in MDRl mRNA levels was seen in the 

renal carcinoma cell line HDP 46 in response to heat shock, ethanol, and cadmium (Chin er 

al. 1990b). This is consistent with a role for P-gp as a stress inducible gene product 

following environmental insults (Sukhai and Piquette-Miller, 2000) (Fig. 1.15). 
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Fig. 1.15 MDRl promoter region 
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Fig. 1.15 A schematic diagram showing the relative locations of transcription factor binding sites, as well as 

interacting transcription factors and signal transduction pathways. The putative binding sites for various 

"stress" transcription factors are shown including, Sp-1, NF-Y and NF-JL-6 (also known as CIEBP~). From 

Sukhai and Piquette-Mmer, 2000. 

A vruiety of physical and chemical agents affect expression and activity of P-gp either pre-

or post-transcriptionally. For instance, protein kinase C activators which increase P-gp 

activity and drug resistance have been found to enhance MDRl gene expression via both 

transcriptional and translational pathways (Chaudhary and Roninson, 1992). In addition, 

modulations in protein stability, plasma membrane incorporation, mRNA stability and 

processing, gene transcription and gene amplification have each been reported for P-gp 

(Sukhai and Piquette-Miller, 2000). Of these, alterations in P-gp expression that occur at 

the level of mRNA are perhaps the most frequently observed (Gerrnann, 1996a). 
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1.5.3.3.1 Heat shock 

Heat shock proteins are proteins that are synthesised in response to stressful stimuli. These 

often include proteins that are thought to help in stabilising and repairing cell damage. 

Identification of two strong heat shock consensus elements within the human MDRI gene 

promoter, as well as an observed in vitro increase in MDRI mRNA following cellular 

exposure to high temperature and toxic heavy metals (stress stimuli), suggest that MDRI 

could function as a heat shock gene. It has been shown that basal activity of the MDRI 

promoter requires heat shock factor (HSF) - mediated transactivation (Kim et al. 1997). 

Indeed, inhibition of the DNA-protein complex formation between HSF and its response 

element has been found to block MDRI basal transcription, sensitising drug resistant cells 

to anticancer drugs (Kim et al. 1998). 

Further, inhibition of protein kinase A (PKA) suppresses HSF DNA-binding activity as 

well as reducing expression of the heat shock proteins hsp90 and hsp70 (Kim et al. 1997). 

In addition, cells treated with antisense oligonucleotides to both hsp90 and MDRl have 

been demonstrated to display vastly decreased P-gp half-lives and increased doxorubicin 

sensitivity (Bertram et al. 1996). Consequently, hsp90 has been implicated as a possible 

"chaperone protein" for P-gp and is thought to aid in the maintenance of P-gp functional 

activity and protein half-life. Suppression of hsp90 expression would, therefore, likely 

result in decreased P-gp half life and activity (Bertram et al. 1996). 

Similarly, experiments by Kim et al (1996) have shown that the heat shock element may be 

involved in alterations of MDRI transcription rates through pathways that are dependent 

upon PKA and the Raf oncogene, i.e. Raf activation by heat shock resulted in an induction 

of P-gp activity whereas an inhibition of PKA blocked the heat shock potentiation of P-gp 
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activity. These data indicate multiple pathways of control of MDRl expression by cellular 

pathways that define the heat shock response. 

1.5.3.3.2 Irradiation 

In addition to initiating genetic mutations, ionising radiation may initiate cellular responses 

that can affect MDRl gene expression. It has been demonstrated that induction of MDRl 

expression incurred by ultraviolet irradiation results from increased MDRl gene 

transcription rates (Ohga et al. 1998). 

Evidence also suggests that the superstructure of chromatin plays a role in transcriptional 

regulation during UV irradiation. Specifically, the histone acetyltransferases and 

deacetylases that modulate DNA packaging into histones are believed to be involved. 

Incubation of a human carcinoma cell line (SW620) with an inhibitor of histone 

deacetylase has been reported to induce a 20-fold increase in MDR 1 mRNA levels (Jin and 

Scotto, 1998). This induction may be due to an increased transcription, requiring the 

sequence from -82 to -73, which contains an inverted CCAAT box element, as point 

mutations in that sequence abolished promoter response to the histone deacetylase 

inhibitor. Gel mobility shift assays establishing binding of NF-Y (Fig. 1.17) to the inverted 

CCAA T box and the involvement of NF-Y in intrinsic histone acetyl transferase activity 

also appear to indicate regulatory mechanisms of human MDRl gene expression via 

chromatin acetylationldeacetylation pathways. The CCAAT sequence has also been 

implicated in induction imposed by various stimuli including differentiation (Morrow et al. 

1994), heat shock (Mickley et al. 1989) and cytotoxic drugs (Ohga et al. 1996) as this 

sequence is thought to play a role in maintaining basal MORI promoter activity (Miyazaki 
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et al. 1992). This implies that MDR1 may be induced by radiation through a general non­

specific cellular response to environmental stress. 

1.5.3.3.3 Genotoxic Stress 

Multiple pathways involving alterations of phosphorylation of proteins and transcription 

factors mediate cellular responses to DNA damage. These alterations occur through several 

distinct protein kinases, such as ERK and JNK/SAPK, as well as the tumour suppresser 

protein p53. In particular the cyclic AMP (cAMP) responsive transcription factors such as 

NF-6B, AP-1 and CREB, transduce signals in response to protein kinase C activation. 

Several lines of evidence show a correlation between kinase activity and MDR1 expression 

which suggests that activation of cAMP-dependent protein kinases may induce the 

multidrug resistant phenotype of some tumour cells (Rohlff and Glazer, 1995). 

The c-Jun NH2-terminal protein kinase (JNK) is activated in response to many stressful 

stimuli including heat shock, UV irradiation and inflammatory cytokines (Cobb and 

Goldsmith, 1995; Hibi et al. 1993; Kyriakis et al. 1994). It has been reported that JNK is 

activated in human carcinoma cells by treatment with a number of anticancer drugs and 

that this activation correlates with increased MDR1 expression (Osborn and Chambers, 

1996). Therefore, JNK may play a role in cellular development of the multidrug resistant 

phenotype. 

Additionally, JNK is known to phosphorylate and activate c-Jun, which comprises half of 

the heterodimeric AP-1 transcription factor (Hibi et al. 1993). It is also known that there 

are AP-1 binding sites on the promoters of MDR1 genes across species (Ikeguchi et al. 
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I991) and a positive correlation between AP-1 activation and MDRI transcription has been 

reported (Volm, 1993). It is therefore possible that induction of MDRI expression 

correlates with JNK activation and thus could be traced to trans-activation by AP-1. Other 

agents which affect the JNK or protein kinase cascades may also affect MORI expression 

in this manner. 

1.5.3.3.4 Inflammatory response and cytokines 

Induction of an acute inflammatory response in experimental models of inflammation in 

rats (Piquette-Miller et al. 1998) and mice (Hartmann et al. 2001) has been demonstrated to 

decrease the hepatic expression and activity of P-gp at the level of mRNA. 

As the majority of effects seen during an acute inflammatory response are associated with 

the release of a few of the pro-inflammatory cytokines, such as IL-l~. IL-6, and TNF-a, it 

is possible that these mediators are also involved in P-gp regulation and the control of 

MDR gene expression during an inflammatory response. Indeed, in vitro treatment of 

cultured hepatocytes with recombinant IL-l~ and IL-6 elicit dose- and time-dependent 

reductions in P-gp expression and activity (Sukhai et al. 2001). Results demonstrated 

decreases in MDR 1 mRNA expression in IL-6 but not IL- I treated cells, suggesting that IL­

l~ mediates effects on P-gp expression via post-translational mechanisms, whereas IL-6 

likely influences P-gp expression by either decreasing MDRl mRNA stability or reduced 

transcription rates. 

Several studies also indicate that TNF-a, which primarily acts through NF-KB, suppresses 

MDR I b (MDR I gene equivalent in rodents) gene expression (Stein et al. 1996a; Stein et 

al. 1996b; Walther and Stein, 1994). These in vitro studies reported down-regulation of 
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POP protein and MDR1 gene expression as well as enhanced chemosensitivity in 

continuous human intestinal cell lines treated with TNF-a. A binding site for NF-KB exists 

on the MDR1b promoter (Zhou et al. 1996) which may implicate the potential involvement 

of this transcription factor in MDR1b down regulation. On the other hand, others have also 

reported a 1NK-a mediated induction of MDR l b expression in cultured rat hepatocytes 

that can be suppressed by addition of an anti-inflammatory steroid, dexamethasone 

(Hirsch-Ernst et al. 1998; Kreuser et al. I 995). 

In terms of species differences, although the inflammatory response mediates a suppression 

of P-gp in rats and mice, this phenomenon has yet to be examined in humans. Some reports 

indicate a diminished MDRI gene expression and/ or potentiation of chemosensitivity in 

human colon carcinoma cell lines incubated with a number of these cytokines including 

IFN-y and TNF-a (Stein et al. 1996a; Walther and Stein, 1994). While information in this 

area is limited, IFN-y and TNF-a effects are thought to be mediated through an inhibition 

of MDR1 gene transcription. Studies with IFN-a have also demonstrated an IFN-a 

mediated downregulation of MDR1 in a human hepatoma cell line (Takeuchi et al. 1999) 

as well as an IFN-a mediated functional reversal of the MDRI phenotype in LoVo/Dx cells 

by affecting P-gp function (Scala et al. 1991). Although the molecular pathways involved 

in the cytokine regulation of MDRl gene expression have not yet been elucidated, it is 

likely that the down-regulation of MDR1/P-gp in hepatocytes occurs through inhibition of 

gene transcription. Cytokines mediate their effects through unique signal transduction 

pathways involving only a handful of nuclear transcription factors e.g. NF-6B, CIEBP and 

APRF (Sukhai and Piquette-Miller, 2000). Although the effects of cytokines on P-gp 

expression have not been fully characterised, the many overlapping and synergistic effects 

of the cytokines suggest that their action on MDR1 gene expression is likely to occur 
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through elaborate interaction and unique effects dependent upon cytokine concentrations, 

cell type and species. 

1.5.3.4 Post-translational Modification 

Post-translational modification of MDR is highly significant and, in man, a 140kD 

precursor protein is gradually converted to a 170kD form (P-gp) over 2 to 4 h. 

In addition to this conversion, phosphorylation may also be important. P-gp appears to be 

phosphorylated in its basal state by protein kinase C (PKC), that may in turn affect drug 

transport. Drug accumulation assays in a multidrug resistant human carcinoma cell line 

showed that phorbol-ester (PMA) treatment significantly reduced 3H-vinblastine 

accumulation and that basal phosphorylation of P-gp was increased 6-fold (Aftab er al. 

1994). Staurosporine and H7 (inhibitors of PKC and cAMP-dependent protein kinase 

activity), however, did not affect overall P-gp phosphorylation, suggesting perhaps a 

different mechanism of phosphorylation. 

Another group has reported that treatment of multidrug resistant MCF-7/adriamycin 

resistant cells with heat shock can increase the phosphorylation of P-gp and that this 

response was not seen in the sensitive MCF-7 cell line (Yang et al. 1995). U-73112, an 

inhibitor of phospholipase C and staurosporine, in turn, an inhibitor of protein kinase C, 

both decreased the heat-shock-induced phosphorylation of P-gp. This suggests that heat 

shock induced phosphorylation of P-gp is mediated through the activation of the 

phospholipase C/protein kinase C pathway. 
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Studies of vincristine resistant lll..-60 cells identified another membrane-associated protein 

kinase (PK1) which also phosphorylates P-gp on serine and threonine residues and may 

regulate levels of multidrug resistance (Chambers et al. 1990; Staats et al. 1990). 

It is interesting that although the phosphorylation of P-gp (outlined above) has been 

appreciated for many years, little is known about the significance of this process. It has 

been suggested that the phosphorylation of P-gp might be essential for drug transport 

(Germann, 1996a), however two different groups have shown that a mutation of the major 

phosphorylation sites within P-gp did not affect its transportation function (Germann et al. 

1996b; Goodfellow et al. 1996). 

In contrast, the activity of P-gp as an ion channel regulator has been reported to be affected 

by phosphorylation. (Vanoye et al. 1999). Several proteins belonging to the ATP-binding 

cassette superfamily can affect ion channel function, including P-gp. Vanoye et al., 

measured whole cell swelling-activated Cl- currents (lCl, swell) in parental cells and cells 

expressing wild-type MDR1 or a phosphorylation-defective mutant. While PKC and PKA 

stimulation reduced the rate of increase in ICl, swell in cells that expressed MDR1, their 

effects were absent in the phosphorylation-defective mutants. 

1.5.3.5 Mutation 

Mutations in the MDRl gene can alter the patterns of cross resistance to certain agents 

(Szabo et al. 2000). A study conducted by Ruth et al (200 1) reported that the glycine to 

valine mutation at position 185 (G18SV) near transmembrane domain 3 of human P-gp 

increased the relative ability of P-gp to transport several drugs, including etoposide, but 

decreased the transport of other substrates. Another substitution (Il86N), adjacent to 
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G 185V, increased resistance to all the tested drugs and augmented the effect of G 185V on 

etoposide resistance. By ligand binding analysis, the K(m) value that reflects the apparent 

affinity of drugs for P-gp, and the Hill number, reflecting the apparent number of drug­

binding sites, were monitored. The results showed that an increase or decrease in drug 

resistance relative to that of the wild type was accompanied by a corresponding increase or 

decrease in the K(m) and the Hill number, suggesting that these mutations alter the ability 

of P-gp to transport agents due to a change in the affinity and number of drug-binding sites 

in P-gp. 

Similarly, Vo and Gruol (1999) have reported that a series of mutations located within 

transmembrane domains 4-6 of P-gp, proximal to the cytoplasmic interface, cause a 

reduced ability to bind steroids. The presence of hydroxyl groups, associated with specific 

steroid carbon atoms, regulates the ability of corticosteroids to be transported and this 

specificity was demonstrated by their experiments measuring the ability of steroids to 

inhibit drug transport. The results indicated that a keto oxygen, associated with the 3- and 

20- carbon atoms, as well as a 17-carbon hydroxyl group, acts to enhance steroidal P-gp 

inhibitory activity. The reported mutations seem to alter the recognition of the 17 alpha­

hydroxyl group and the 20-keto oxygen atom. 

1.5.3.6 Methods of P-gp detection 

A variety of methods exist to detect P-gp at the RNA or protein level. 
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1.5.3.6.1 Detection of RNA 

Some investigations have used MDR1 probes in conjunction with slot blot analysis which 

is specific, sensitive and quantitative (Goldstein et al. 1989), while others have used 

reverse transcriptase-polymerase chain reaction (RT-PCR) to amplify the RNA signal 

(Noonan et al. 1990). 

Sensitive RNA assays are very useful in determining drug resistance in cell lines but the 

use of pooled RNA from the tumour sample can be a major disadvantage as it does not 

reflect the heterogeneity of P-gp expression in individual tumour cells. A given 

measurement of RNA could reflect a tumour with a large number of cells expressing low 

levels of RNA or a few tumour cells expressing high levels of MDRl RNA. In addition 

there is no cut- off level of measured RNA above which clinically significant multidrug 

resistance can be measured. In situ hybridisation (ISH) is able to measure RNA expression 

at a cellular level therefore avoiding the pitfalls of measuring total tumour RNA levels 

(Vergier et al. 1993). ISH is more sensitive than dot blot hybridisation but cannot detect 

very low expression, in addition to which it is technically demanding and therefore not 

widely used. 

1.5.3.6.2 Immunohistochemistry 

Immunohistochemistry has been used often but with varying and often contradictory results 

(Ferry, 1998). 
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A large variety of antibodies is available (Table 1.5) but, where staining can be reliably 

achieved in tumours containing high levels of P-gp, the technique is unreliable when P-gp 

levels are low. 

Monoclonal A ntihorlv F.nitone 
r219 Tntracellnl ar 
.T~R~ Tntmc,.llnlar 

MRKltl Extracellular 
4El Extracellular 

11Tr2 Extracellular 

Table 1.5 Some monoclonal antibodies against P-gp 

1.5.3.6.3 Flow Cytometry/ functional assays 

By employing both anti-mouse and anti-human monoclonal antibodies, flow cytometry has 

been used to locate P-gp as well as to study its function (Ferry, 1998; Guerci et al. 1995). 

Functional assays employ many fluorescent agents to monitor their cell flux and hence 

follow the activity of P-gp. Most use rhodamine 123 and anthracycline agents such as 

daunorubicin or doxorubicin however, rhodamine 123 (the most widely used fluorescent 

probe for this application) is also transported by the gene product of another efflux pump 

gene, multidrug resistance-associated protein (MRP) (Twentyman et al. 1994). 

1.5.3.7 Clinical significance 

Using the techniques mentioned above, the highest P-gp levels in normal tissue have 

generally been found in the kidney, adrenal cortex, stomach, duodenum, colon and 

placenta. Expression occurs primarily in specialised epithelial cells on luminal surfaces, but 
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strong expression has been found in endothelial cells of capillary blood vessels at blood­

tissue barrier sites such as CNS and testes (Cordon-Cardo et al. 1989; Fojo et al. 1987). 

These observations are significant since the brain and testes constitute sanctuary sites in 

which relapse following systemic chemotherapy occurs, presumably because of failure of 

drug penetration. 

The most extensive study of P-gp expression in cancerous tissue reported on levels of 

MDR1 mRNA in over 400 human cancers (Goldstein et al. 1989). The overall findings 

were that there is an inverse correlation between levels of MDRl expression and 

chemosensitivity of the tumour type, though numerous exceptions have been found. The 

exceptions may reflect the sensitivity of the assay and uncertainty as to the level at which 

MDR1 expression becomes clinically significant within the clinical context. Whilst the 

Goldie-Coldman hypothesis predicts treatment failure if 1 cell in 106 expresses a resistance 

mechanism (Ferry, 1998), no method of analysis yet described can reliably achieve this 

degree of detection. 

From the point of view of prognosis, however, a few studies have reported a relationship 

between MDR1 expression and either the absence of remission or the presence of 

refractory disease especially in AML (Marie et al. 1991; Pirker et al. 1991; van den 

Heuvei-Eibrink et al. 2000; Zhou et al. 1992) (section 1.6.1). 

1.5.3.8 Other multidrug resistance proteins 

While many effects were thought to be due to just one drug-transport protein, i.e. the 

170kDa P-gp, several other membrane proteins of 300kD, 180kD, 170kD, 9SkD and 8SkD 

have been reported and are associated with MDR. For example, MCF-7 breast carcinoma 
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cells were made resistant to doxorubicin by exposing them to the drug in the presence of 

verapamil. P-gp expression was not elevated in these cells but a novel uncharacterised 

95kD surface membrane protein was expressed, and the presence of this protein in clinical 

samples of breast cancer refractory to doxorubicin suggested actions on membrane 

mechanisms other than P-gp (Chen et al. 1990). In fact a specific breast cancer resistance 

protein (BCRP) has now been identified (van den Heuvel-Eibrink et al. 2000). 

In addition to P-gp, the multidrug resistance protein (MRP) and lung resistance protein 

(LRP) share the ability to act as drug transport proteins and as such contribute to MDR 

(Aimquist et al. 1995; Sonneveld, 2000; van den Heuvel-Eibrink et al. 2000). Furthermore, 

five new homologues of MRP (MRP2 or MOAT, MRP3, MRP4, MRP5, and MRP6) have 

now been identified, as have other membrane-associated drug transport proteins such as the 

transporter associated with antigen processing (TAP), the anthracycline resistance­

associated protein (ARA), and sister of P-glycoprotein (sP-gp} (van den Heuvel-Eibrink et 

al. 2000). The clinical significance of these proteins has not yet been reported. 

1.5.3.9 Modulation of MDR 

Pharmacological modulation of P-gp function to increase drug bioavailability is one 

approach to enhance therapeutic effectiveness. As such, a large number of compounds have 

been investigated for their ability to reverse P-gp mediated MDR. 

Many agents have been found to reverse MDR and range from the calcium blockers such as 

verapamil and nifedipine, to tamoxifen, phenothiazines and cyclosporin (Eytan and Kuchel, 

1999). However, most of these first generation modulators required high doses of drugs to 

reverse MDR and were associated with unacceptable toxic effects (Tan et al. 2000), 
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limiting their effective clinical use. In addition, the modulation of P-gp in normal tissues 

can affect the pharmacokinetics and, thus, the toxicity of the associated chemotherapeutic 

agents. Second and third generation MDR inhibitors include PSC 833, S9788, GF120918 

and valspodar. Limitations to the use of these agents still exist and include multiple and 

redundant cellular mechanisms of resistance, alterations in pharmacokinetics of cytotoxic 

agents, and clinical toxicities (Tan et al. 2000). However, Phase IIII trials with valspodar 

have shown that this new agent can be safely administered in combination with different 

chemotherapy regiments after dose adjustments of cytotoxic drugs that are P-gp substrates, 

and reversal has been demonstrated in patients with AML (Covelli, 1999). 

The effects of PSC 833, verapamil and S9788 have been studied singly and in combination 

by various groups (Merlin et al. 2000; Mains et al. 2000). Mains et al. found a strong 

MDR reversing effect of S9788 which appears specific to P-gp and an additive effect 

between verapamil and PSC 833, suggesting a better therapeutic efficiency if used in well 

defined combinations. Similarly, Merlin et al. reported a synergistic effect with a 

combination of S9788 and PSC 833 and suggested that this might offer alternative ways to 

decrease the toxicity generated by high-dose P-gp blockers without altering the efficacy of 

the resistance modulation. 

Although the mechanism of action of these agents is not completely clear, some may act by 

binding to P-gp and preventing drug efflux, thereby causing intracellular accumulation of 

drug, while others may not affect efflux but instead cause redistribution of drug within the 

cell. 

While the above modulators are being actively studied some cytokines have also been 

found to modulate the activity of a number of chemotherapeutic agents. IFN-a can 
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modulate the actions of bleomycin (Viano et al. 1989), doxorubicin (Hoff et al. 1986; 

Scala et al. 1991), methotrexate (Welander, 1987), mitomycin C (Sklarin et al. 1988), and 

vinca alkaloids (Sidkey et al. 1987). One mechanism by which cytokines may modulate 

this activity is via the possible reversal of MDR. In 1991 Scala et al. demonstrated the 

functional reversal of the MDR1 phenotype by IFN-a. Pre-treatment of multidrug resistant 

LoVo/Dx cells for either 48 or 120h led to a reduction of the ICso dose for doxorubicin. 

This change was found not to be due to effects on the cell cycle or change in MDR1/P-gp 

expression, but rather an increased accumulation of doxorubicin in the cells treated with 

IFN-a, i.e. by affecting the function of P-gp. IFN-a, therefore, appeared to be able to 

restore chemosensitivity of the LoVo/Dx cell line through modulation of the MDR1 

phenotype. The authors suggested that this was achieved by a direct mechanism in which 

IFN-a competes for P-gp binding and, as IFN-a is well tolerated, there may be a rationale 

for its clinical use in chemotherapy schedules for patients with drug-resistant tumours 

(Scala et al. 1991 ). 

In addition to the above study, a more recent paper reported on the effectiveness of 

recombinant human interferon-alpha-2a (rHuiFN-a-2a) in enhancing the reversal of 

multidrug resistance caused by the monoclonal antibody (MAb) MRK-16 (Fogler et al. 

1995). The authors used a retrovirus-infected human colon tumour expressing the human 

MDR1 gene (HT-29mdrl) and demonstrated that the reversal of vincristine resistance, 

mediated by the anti-P-gp MAb, MRK-16, could be potentiated both in vitro and in vivo by 

non-toxic doses of rHuiFN-a-2a. The mechanism by which rHuiFN-·a-2a achieved this 

remains unclear, but it has been demonstrated that IFNs can exert an additive or synergistic 

potentiation of the cytotoxic activity of structurally and mechanistically unrelated 

chemotherapeutic agents, including multidrug-resistant and non-multidrug-resistant 

phenotype drugs (W adler and Schwartz, 1990). 

67 



1.6 RATIONALE BEHIND STUDY 

1.6.1 8-CLL AND DRUG RESISTANCE 

The dysregulation of apoptosis in B-lyrnphocytes is one physiological problem presented in 

B-CLL. Another is the ability of tumour cells to survive exposure to anticancer agents, as 

this produces a great obstacle to successful cancer chemotherapy in this disease. 

Of particular importance to the phenomenon of MDR is the expression of the MDR1 gene 

(section 1.5.3, p47). Translation of this gene results in a 170KD transmembrane protein, P­

gp that increases cellular resistance to chemotherapeutic agents such as daunorubicin, 

colchicine, and vinblastine. Even with the introduction of combination treatments for CLL 

(section 1.2.1.5.1.2, p20), there is an emerging resistance to a variety of structurally, 

chemically and phase-specific unrelated drugs used in CLL treatment regimens such as 

vinca alkaloids and anthracyclines. This resistance may be related to MDR1 gene 

expression and, although the expression of this gene is more commonly associated with 

MDR in ALL and AML, some groups have also reported an increase in the MDR1 gene 

mRNA in a subset of patients with CLL (Arai et al. 1997; Michieli et al. 1991; Sonneveld 

et al. 1992; Webb et al. 1998). Other studies have reported that approximately 40% of 

patients with B-CLL have increased levels of the MDR1 gene (Sparrow et al. 1993), while 

several authors have described a large majority of patients expressing P-gp, either before or 

after treatment (Michieli et al. 1991; Shustik et al. 1991). Recently, Svoboda-Beusan et al. 

(2000) have published a study on the relevance of P-gp expression to the treatment 

response of B-CLL. The authors found that P-gp was expressed in patients and that this 

expression decreased in patients treated with chlorambucil while expression remained 

unchanged or even increased in those patients who did not respond to therapy. 

68 



Subsequently, they concluded that sequential, follow-up P-gp expression values correlated 

with treatment response, suggesting that P-gp expression in this disease was relevant to the 

treatment response. In contrast to this, however, some groups have reported that P-gp­

associated MDR is not prevalent in B-CLL and have failed to detect increased levels of the 

MDR1 gene mRNA or P-gp (Ribrag et al. 1996). 

A related gene, but of an entirely different sequence, is the MDR3 gene also reported to be 

overexpressed, particularly in advanced disease (Herweijner et al. 1990; Larkin et al. 

1999a; Sonneveld et al. 1992). This overexpression is peculiar to B-CLL Iyrnphocytes as, 

unlike MDR1, it is not noted in normal cells. Previous reports concluded that the MDR3 

gene product had a limited role in MDR (Marie, 1995), however, as function of the MDR3 

gene product (as an efflux mechanism) has now been described (Arai et al. 1997), it is 

possible that the MDR3 gene may play a role in the pathogenesis or clonal evolution of the 

disease. 

1.6.1.1 Cytokines and Drug Resistance 

Some cytokines have been found to modulate the activity of a number of chemotherapeutic 

agents. One mechanism by which cytokines may modulate this activity is via the reversal 

of MDR. In 1991 Scala et al. demonstrated the functional reversal of the MDRI phenotype 

by IFN-a as described above. The authors suggested that the increased chemosensitivity 

was achieved by a direct mechanism in which IFN-a competes for P-gp binding. As IFN-a 

is well tolerated, and more common P-gp modulators, such as verapamil, are not well 

tolerated at the necessary physiological concentrations for P-gp modulation, there may be a 

rationale for its use clinically in patients with drug-resistant tumours (Scala et al. 1991 ). 
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The dysregulation of apoptosis may have an important role to play in the development of 

B-ClL and may present therapeutic opportunities, however, the suggestion by Sparrow et 

al. (1993) that the overexpression of resistance genes could lead to clonal evolution of the 

disease is also of interest. Add to this hypothesis the problem of MDR in B-ClL and the 

need to modulate drug resistance mechanisms becomes more pertinent. 

The conflicting results surrounding the role of MDR1 and P-gp in B-CLL MDR suggested 

that continued investigation into P-gp-associated MDR was warranted, especially in light 

of the favourable reports of IFN-a being a well tolerated resistance modulator in vitro 

(Scala et al. 1991). 

1.7 AIMS 

1] To determine whether or not P-glycoprotein is expressed in B-ClL patients. 

2] To determine whether or not P-glycoprotein is functional in B-ClL patients. 

3] To determine whether the function of P-glycoprotein in B-ClL can be modulated by 

IFN-a. 

1.8 DESIGN OF EXPERIMENTAL APPROACH 

To study P-gp expression and function in B-ClL patients, extraction and subsequent in 

vitro cell culture of B-lymphocytes was required. The determination of P-gp expression on 

the cell surface would then be studied by monitoring the presence of the protein using a 

monoclonal antibody as well as determining MDRl mRNA expression. 
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Function of the protein has characteristically involved the use of fluorescent P-gp 

substrates such as rhodamine 123 and anthracycline drugs, e.g. daunorubicin as well as P­

gp modulators such as verapamil (section 1.5.3.6.3). Although the use of anthracycline 

drugs is associated more with the treatment of AML, these agents are still used in some 

treatment regimens for B-CLL (section 1.2.1.5.1) and there has been increased interest in 

the use of the newer, more lipophilic, anthracyclines for treatment in B-CLL, e.g. 

idarubicin (Gahn et al. 2000). The potential use of anthracyclines in B-CLL treatment 

coupled to the fact that they are P-gp substrates and fluorescent (and therefore easily 

monitored) suggested their use in studying the role of P-gp in B-CLL. However, 

anthracyclines are not very stable, being prone to photodegradation as well as changes in 

pH, and, in the presence of cells, this would mean that degradation products as well as 

metabolites would eo-inhabit the cell culture environment. As the metabolites of some 

anthracycline drugs are also subject to P-gp action, the presence of degradation products 

with similar properties was of concern as it could potentially interfere with the 

interpretation of results of P-gp functionality experiments. 

This concern has not been addressed to any great extent in previous P-gp studies and few 

studies have looked at the stability of anthracycline drugs in cell culture environments. 

However, this potential instability was thought to be an important factor to consider during 

subsequent P-gp functional analysis. Therefore, the first experimental section of this thesis 

addresses the stability of the anthracycline, daunorubicin, in vitro and determines the final 

cell culture conditions employed in the following two experimental sections examining P­

gp expression and functionality. 
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2.1 INTRODUCTION 

Cell culture systems have been widely used to investigate various aspects of the 

haematological malignancies. To carry out these studies, robust cell culture systems are 

necessary, in addition to which, quick, robust and reliable analytical methods are required. 

The use of anthracyclines for in vitro analysis can pose potential problems due to their 

reported instability under certain conditions (Beijnen et al. 1986; Bosanquet, 1986). Many 

different chemical and physical parameters including temperature, pH, culture media, and 

protein binding influence this stability and these parameters have been analysed by a 

variety of techniques, e.g. high-performance liquid chromatography (HPLC) and capillary 

electrophoresis (CE). 

2.1.1 HPLC 

Chromatography is a separation method that relies on differences in the partitioning 

behaviour of a compound between the flowing mobile phase, i.e. solvent/buffer system, 

and a stationary phase, i.e. column, to separate the components in a mixture. The column 

holds the stationary phase, which is usually adsorbed onto a silica support, and the mobile 

phase carries the sample through it. Sample components that partition strongly onto the 

stationary phase spend a greater amount of time on the column and are separated from the 

components that stay predominantly in the mobile phase and pass through the column more 

quickly. As the components elute from the column they can be quantified by a detector 

and/or collected for further analysis. 
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High-performance liquid chromatography (HPLC) is a variation of liquid chromatography 

that utilises high-pressure pumps to increase the efficiency of the separation of compounds 

that are dissolved in solution. The basic instrumentation consists of a reservoir of mobile 

phase, a pump, an injector, a separation column, and a detector (Fig. 2.1 ). 

Fig. 2.1 Schematic plan of an HPLC system 

Reservoirs 
Sample Injection Port 

Vacuum Pump 
Pressure Gauge 

Mixing Vessel Analytical Cohunn 

High Pressure Pump 

To wa.ste or fraction collector 

A sample mixture is injected into the system and is carried to the analytical column by the 

mobile phase. The different components of the mixture are separated as they pass through 

the column, and components in the column effluent are recorded by various means, e.g. 

UV-VIS absorption at a set wavelength. 

The resulting record is normally in the form of a chromatogram showing the 

chromatography over a certain time period (Fig. 2.2). As compounds are retained during 

chromatography, the time it takes for a component to move through the system is called the 

retention time. 
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Fig. 2.2 l OOng/ml daunorubicin analysed by HPLC 
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Fig. 2.2 lOOJll of JOOng/ml daunorubicin in RPMI culture medium was injected (full loop volume) and 

analysed for 15min at a flow rate of lmVmin. Detector sensitivity was set at 0.001 absorbance units full 

deflection. Detection occurred at 254nm. Daunorubicin was detected at a retention time of 7 .25min. 

HPLC has been the predominant method of analysis for investigation into the stabili ty of 

anthracycline drugs. Capillary E lectrophoresis (CE), however, is another method by which 

anthracycline drugs may be analysed. 

2.1.2 CAPILLARY ELECTROPHORESIS 

Capillary electrophoresis (CE) is a fami ly of related techniques that employ narrow-bore 

(20-200J..lffi internal diameter) capillaries to perform high effic iency separations of both 

large and small molecules (Fig. 2.3). 
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Fig. 2.3 Schematic plan of a CE system 
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Performing electrophoresis in small-diameter capillaries allows the use of very high 

electric fields because the small capillaries efficiently dissipate the heat that is produced. 

Increasing the voltage across the column produces very efficient separations and reduces 

separation times. The resulting separation is a combination of traditional polyacrylamide 

gel electrophoresis (PAGE) and modem HPLC. 

This technique not only requires small amounts (10-30J..Ll) of sample but also consumes 

limited quantities of reagents & is applicable to a wider selection of analytes compared to 

other analytical separation teclmiques. In addition, the simplicity and sensitivity of the 

technique provides a good way to analyse intracellular and extracellular drug 

concentrations with the minimum of sample preparation. The absence of conventional 

sample preparation techniques such as filtration or precipitation means that a more accurate 

impression of a complex culture system may be obtained. 
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2.1.3 DRUG STABILITY IN CELL CULTURE SYSTEMS 

Many similar cell culture systems have been used to investigate anthracycline resistance in 

B-CLL, but these investigations do not seem to have considered the stability of the 

anthracycline in the culture environment. This is an important consideration as the toxic 

effect of the anthracyclines is influenced by their concentration, which, in turn, is related to 

drug stability. In addition to this, the instability of a drug may influence conclusions 

derived from experiments; resulting degradation and metabolic products could exert an 

array of effects making it difficult to attribute a particular effect to any individual 

component. 

Even though daunorubicin is not normally included in the regimens used to treat CLL, 

many investigations into P-gp function have used it as a model P-gp substrate (Ayesh et al. 

1996; Beck et al. 1996; Lizard et al. 1995; Merlin et al. 2000; Roovers et al. 1999; Wang 

et al. 2000). Therefore, this anthracycline was chosen as one P-gp substrate with which to 

monitor P-gp function with the intention of continuing this line of study with other more 

relevant anthracyclines such as doxorubicin and idarubicin given sufficient time. 

Consequently, this chapter discusses the stability of daunorubicin under different test 

conditions with a view to optimising a final cell culture system for further investigation 

into P-gp expression and function. 
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2.2 MATERIALS 

Unless otherwise stated, materials used in this study were of at least analytical grade and 

obtained from Sigrna-Ald.rich Company Ltd., Poole, UK. 

All water used was 3MQ water, filtered and deionised to 18MQ by an Elga UHQ ll water 

purifier (Eiga Ltd., Buckinghamshire, UK). 

2.2.1 GENERAL MATERIALS 

Equipment 

• 15ml polypropylene tubes (Life Sciences Int. (UK) Ltd., Hanks, UK) 

• Sml polypropylene tubes (Sarstedt Ltd., Leicester, UK) 

• Autosampler vials (HPLC Technology Company Ltd., Cheshire, UK) 

• EBA 12R Centrifuge (Hettich, TuHiingen, Germany) 

Reagents 

• 3MQ Sterile Water (Baxter Healthcare Ltd., Norfolk, UK). 

• Daunorubicin (Rhone-Poulenc Rorer, Vitry-Aifortville, France). 

• Disodium Hydrogen Orthophosphate Dihydrate (Fisher Scientific, Leicestershire, UK). 

• DMEM buffered (with sodium bicarbonate & 2SmM HEPES) (Sigrna-Aidrich Company 

Ltd., Poole, UK). 

• Fetal Bovine Serum (Sigma-Aldrich Company Ltd., Poole, UK). 

• HPLC Grade Methanol (Fisher Scientific, Leicestershire, UK). 

• Hydrochloric Acid [lOM] (BDH, Poole, UK). 

• Orthophosphoric Acid (Fisher Scientific, Leicestershire, UK). 
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• Potassium Hydroxide (BDH, Poole, UK). 

• RPMI 1640 unbuffered (with sodium bicarbonate) (Sigma-Aidrich Company Ltd., 

Poole, UK). 

• RPMI 1640 buffered (with sodium bicarbonate & 25mM HEPES) (Sigma-Aidrich 

Company Ltd., Poole, UK). 

• Sodium Hydroxide (Fisher Scientific, Leicestershire, UK). 

2.2.2 HPLC MATERIALS 

Equipment 

• Cl Filtration Units (Sartorius Ltd., Surrey, UK). 

• ConstaMetric 3000 Pump (Milton Roy/LDC., Staffordshire, UK) 

• Integrator (Milton Roy/LDC., Staffordshire, UK) 

• Microfilters - Minisart [0.2J.Lm] (Sartorius Ltd., Surrey, UK). 

• SpectroMonitor 3000 UV Detector (Milton Roy/LDC., Staffordshire, UK) 

• Varian MicroPak Column SP-Cl8-5 (Varian Ltd., Surrey, UK) 

Reagents 

• HPLC grade Acetonitrile (Fisher Scientific, Leicestershire, UK). 

2.2.3 CAPILLARY ELECTROPHORESIS MATERIALS 

Equipment 

• 375J.lm OD, lOOJ.lm ID Capillary Tube (Dionex UK Ltd., Surrey, UK). 

• 375J.lffi OD, 75J.lffi ID Capillary Tube (Dionex UK Ltd., Surrey, UK). 

• AI-450 CE Software (Dionex UK Ltd., Surrey, UK). 
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• Dionex CE System (Dionex UK Ltd., Surrey, UK). 

Reagents 

• Boric Acid (Thomton & Ross, Huddersfield, UK). 

• Disodium Tetraborate (Fisons Scientific, Loughborough, UK). 

• Absolute ethanol (Hayman Ltd., Essex, UK). 

• Hydrochloric Acid (BDH, Poole, UK). 

• Medical Air (BOC Gases, Manchester, UK). 

• Medical Helium (BOC Gases, Manchester, UK). 

• Propan-2-ol (Fisher Scientific, Leicestershire, UK). 

• Sodium Dodecyl Sulphate (Fisher Scientific, Leicestershire, UK). 
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2.3 GENERAL METHODS 

2.3.1 METHOD DEVELOPMENT 

As the drug stability analysis was intended for the optimisation of a cell culture 

environment, a robust system was needed which could give reliable analysis and in 

addition, could reflect more closely the culture environment at any instant in time being 

analysed. It was realised that future in vitro cell culture experimentation would require 

manipulation of relatively small sample volumes (2ml maximum) and complex cell culture 

conditions, i.e. inclusion of culture constituents such as glutamine and foetal bovine serum 

(FBS). It was therefore imperative that an analytical method requiring minimum sample 

extraction be used, thus decreasing the risk of altering any equilibrium states between the 

solubilised drug and medium components. This prompted the use of CE as the preferred 

method of choice. 

Initially the use of simple capillary zone electrophoresis (CZE) was attempted with a 

method developed by Dionex (suppliers of the capillary electrophoresis system). CZE is the 

simplest form of CE and was employed to detect 50Jlg/ml of an aqueous daunorubicin 

solution using a IOOmM sodium dihydrogen orthophosphate buffer (pH 4.2) as the mobile 

phase. The sample was injected by gravity injection (IOOmm for 30s) and detected using 

UV absorbance at a wavelength (A.) of 234nm with a run time of 25min. Dionex had 

previously analysed varying concentrations of daunorubicin using this method and 

achieved a lower detection limit of lJlg/ml. 

The initial attempts at detection were unsuccessful and it was theorised that detection was 

not being performed at the optimum absorption wavelength. An absorption spectrum 
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showed maximum absorbency at 254nm. Continued analysis at this 'A did not result in drug 

detection. 

Conditioning of the internal capillary surface was then advised both before detection and as 

a general maintenance process using the following procedure: O.lM sodium hydroxide was 

washed through the capillary for lOmin, then water for 5 min, and finally run buffer for 10 

min. The procedure was important to ensure that the surface of the capillary was fully and 

uniformly charged, to minimise changes in migration times. This, however, also proved 

unsuccessful showing that the difficulty in detection did not seem to be related to 

interference with compound migration due to a non-uniformly charged capillary surface. 

To eliminate the possibility of capillary problems a new capillary was made to 

recommended specifications (Length = 70cm, internal diameter = 751J111) and an aqueous 

daunorubicin sample injected again. On optimisation of experimental parameters such as 

current & power (current = !SkY & power = SOOOmW) there was a detectable 

daunorubicin peak ( lO!lg/ml) but on further investigation it was apparent that detection of 

concentrations less than 5!1g/ml was not possible. 

In view of the difficulties detecting aqueous solutions of daunorubicin with capillary 

electrophoresis, HPLC was considered as an alternative method. However, method 

development for CE was continued as this method was thought to be more practical in the 

long run, i.e. it was anticipated that HPLC would pose problems when trying to determine 

protein binding as a clean-up procedure would have to be employed to prevent column 

contamination, risking a disturbance in any potential equilibrium. 
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Further development of the technique of CE was attempted by using electrokinetic 

injection and micellar electrokinetic capillary chromatography (MECC), however, 

significant limitations still occurred, as described below: 

1] It had been observed that, when diluted in the culture medium RPMI, the daunorubicin 

peak was considerably distorted. Although electrokinetic injection enabled increased 

sample concentration in the capillary leading to an increased ability to detect lower 

concentrations of daunorubicin, it did not overcome the problem of peak distortion. 

2] The use of MECC enabled improved detection of daunorubicin in water and RPMI, 

however, this technique was unsuitable for the quantitation of protein binding as MECC 

requires the use of a detergent - the most common is sodium dodecyl sulphate (SOS). The 

analysis of a protein containing sample would be impossible without the detergent 

denaturing the proteins in the solution. This would effectively destroy any equilibrium 

between free drug and protein bound daunorubicin, making accurate quantitation 

impossible. 

In view of all the individual problems encountered while attempting to optimise a CE 

technique, the technique of HPLC was explored as an alternative method of analysis. The 

mobile phase for HPLC analysis was an adaptation of the buffer used for CE analysis -

after modification the resulting phase was acetonitrile (CH3CN): lOOmM sodium 

dihydrogen orthophosphate (NaH2P04) pH 4.2, (30:70, v/v). Detection of the drug solution 

was achieved using UV absorbance at A 254nm. In comparison to CE, HPLC was found to 

have a greater ability in detecting lower concentrations (section 2.3.4, p87) and this ability 

was enhanced when using fluorescence detection rather than UV absorbance. This was 

important as it was expected that drug concentrations in the ng/ml range would be achieved 
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in cell culture environment and therefore such concentrations were used for stability 

determinations. 

In consideration of the increased sensitivity of HPLC and taking into account the problems 

encountered while attempting to optimise a CE technique, it was decided that HPLC gave 

greater flexibility of analysis for the particular conditions required in this investigation and 

this technique was further validated (section 2.3.4, p87). 

For the analysis of protein binding using HPLC, attempts were made at separating the free­

drug fraction from the assumed protein-adsorbed drug fraction using, e.g. protein 

precipitation with ammonium chloride and solvent extraction. However, on further analysis 

with HPLC, daunorubicin was found to be unstable under the required conditions and it 

was thought more efficient to use an ultrafiltration method. 

As the majority of anthracycline-protein binding has been reported to occur with large 

proteins such as albumin (Trynda-Lemiesz and Kozlowski, 1996) the filtration units used 

had a cut-off size of 20 OOOkD, i.e. lower than the majority of proteins found in the normal 

circulation and in cell culture systems. This not only resulted in a protein-free supematant 

but the technique of filtration has also been reported to afford the least intrusive method of 

protein separation and thus minimises interference with any established protein-drug 

equilibria (Whitlam and Brown, 1981; Yanagisawa et al. 1998). 
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2.3.2 PREPARATION OF GENERAL SOLUTIONS AND MEDIA 

2.3.2.1 General Solutions 

Phosphate buffered Saline (PBS) 

This was prepared by mixing PBS A (0.5M disodium hydrogen orthophosphate dihydrate) 

and B (0.5M sodium dihydrogen orthophosphate) in a ratio of 315:47ml to give a 0.5M 

phosphate buffer solution. 8.06g of sodium chloride (0.138M final concentration) was 

added to 20ml of this buffer, as was 0.2g of potassium chloride (0.0027M final 

concentration). The mixture was altered to a pH of 7.2 with IM HCI and made up to 1 Litre 

with 18MQ water. The resultant solution, i.e. PBS was stored at 4°C. Solutions A & B 

were made up with 18MQ water in SOOml glass volumetric flasks as follows: 

PBSA 

PBSB 

Na2HP04.2H20 

NaH2P04.2H20 

HPLC Mobile Phase 

44.5g/500ml 

39g/500ml 

This was prepared by mixing acetonitrile (CH3CN) with IOOmM sodium dihydrogen 

orthophosphate solution (pH 4.2) at a ratio of 30:70, v/v. 

IOOmM sodium dihydrogen orthophosphate was prepared by dissolving : 15.6g in lL of 

18MQ water. The solution was adjusted to pH 4.2 with orthophosphoric acid (85% w/v) 

and the solution degassed for 5 min using a vacuum pump. The final solution was stored at 

4°C until required. 
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Daunorubicin Standard 

5-15mg of daunorubicin hydrochloride powder was weighed into a dry, pre-weighed, 25ml, 

silanised glass volumetric flask in a Class II cabinet (designated for cytotoxic handling) 

observing good cytotoxic handling procedures at all times. The volumetric flask was 

weighed again to determine the exact amount of daunorubicin hydrochloride powder 

transferred. The daunorubicin hydrochloride was made up to volume with 18M.Q water. 

This stock solution (e.g. 320f.!g/ml) was stored at 4°C (in the dark) and was found to be 

stable for 1 month. An example calculation of the final daunorubicin concentration is 

shown in Appendix A. 

2.3.2.2 Cell Culture Media 

Dulbecco's Modified Eagles Medium (DMEM) 

This was purchased directly as an endotoxin tested, sterile-filtered solution, packaged in 

PETG plastic bottles buffered to pH7.2. During stability experimentation, it was used as a 

neat solution supplemented with 2mM L-glutamine (sections 2.4.1.3 & 2.6, p94 & p 117). 

RPMI 1640 

This was purchased as an unbuffered and buffered with 25mM HEPES (pH 7.2), endotoxin 

tested, sterile-filtered solution, packaged in borosilicate glass bottles, and during the 

stability studies was used neat or supplemented with 2mM L-glutamine (sections 2.4.1.3, 

2.4.1.4 & 2.6, p94, 95 & 117, respectively). 
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2.3.3 UV-VISIBLE ABSORBANCE INVESTIGATION 

Future investigation required the comparison of solutions of daunorubicin dissolved in both 

water (standard solution) and any prospective cell culture growth medium. For this reason a 

spectral analysis was performed for daunorubicin in H20 and daunorubicin in 

RPMJ/Mobile phase to obtain the optimum detection wavelength for the daunorubicin 

during analysis using HPLC. 

2.3.3.1 Daunorubicin Absorbance in Water <H7lli 

A disposable plastic cuvette, containing an aqueous daunorubicin solution at a 

concentration of lJlg/ml, was inserted into a Pye Unicam SPS-100 Series UV-VIS 

Spectrophotometer and the absorption spectra obtained over a wavelength range of 190 -

600 nm. 

2.3.3.2 Daunorubicin Absorbance in RPMI/Mobile Phase 

A disposable plastic cuvette, containing a daunorubicin solution in unbuffered 

RPMIIHPLC mobile phase, at a concentration of lJlg/ml, was inserted into a Pye Unicam 

SPS-100 Series UV-VIS Spectrophotometer and the absorption spectra obtained over a 

wavelength range of 190- 600nm. 

2.3.4 HPLC VALIDATION 

HPLC validation involved the use of the following method: the HPLC system was 

equilibrated with mobile phase (section 2.3.2.1, p85) for lhr. 400Jll of daunorubicin sample 
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solution was loaded into a lOOJ.A.l loop and injected onto the HPLC system, i.e. full loop 

volume. The sample was run at a flow rate of 1mUmin for 10-15min and daunorubicin was 

detected at 254nm at 0.001 AUFs (10-100nglml) or 0.01 AUFs (700-1300nglml) (Fig. 2.2, 

p75). 

This method was validated in accordance with Bressolle et al. (1996) and Kames et al. 

(1991) as described below. Validation included measurements into the specificity, 

selectivity, precision and accuracy of the method, construction of calibration plots (10 -

100nglml & 700-1300nglml), determination of limit of quantification (LOQ) and a 

daunorubicin stability analysis by forced degradation. 

2.3.4.1 Specificity 

For investigation into the specificity of the method, drug free samples of H20 and 

unbuffered RPMI were injected onto the HPLC system. A sample of RPMI was then spiked 

with a known concentration of daunorubicin and analysed in a similar fashion. Selectivity 

was determined by forcibly degrading a sample of daunorubicin under varying conditions 

and injecting the resulting samples for HPLC analysis- stability of 5J.tg/ml daunorubicin in 

H20 and in RPMI was determined using the method outlined in Appendix B (section 

2.3.4.5, p90). 

2.3.4.2 Calibration Plots of Daunorubicin in unbuffered RPM I incorporating 

lOOnglml & lug/ml 

Dilutions of a stock daunorubicin solution were made over a range of 10 -100nglml & 700 

- 1300 nglml. Each dilution was made in a 10ml silanised, glass volumetric flask using 
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18MQ water and stored at 4°C until required for assay (within 24h). IOOf.Ll of each solution 

from each concentration range was injected in triplicate for analysis by HPLC. Average 

peak area values were used to construct calibration curves, the equation of each line being 

calculated by linear regression analysis. 

2.3.4.3 Limit of Quantification 

Dilutions of a stock daunorubicin solution were made over a range of 10 -lOO ng/ml. Each 

dilution was made in a 10ml silanised volumetric flask using 18MQ water and kept at 4°C 

until required for analysis. IOOf.LI of each solution was analysed in triplicate for analysis by 

HPLC. 

2.3.4.4 Precision/Accuracy Determination 

!Ong/ml, IOOng/ml & IOOOng/ml solutions of daunorubicin were made in the culture 

medium RPMl (unbuffered) in silanised 20ml volumetric flasks and kept at 4°C until 

required for analysis. 

A sample from each solution was removed and 100f.LI injected for HPLC analysis. This 

process was repeated seven times over the course of 3-4 hours & between days. The 

coefficient of variation (C. V.) for each concentration was calculated as outlined below and 

reported as percentage: -

Coefficient of Variation 

Where, X* = mean 

= 8n-1 x 
X* 

and 8n-1 = standard deviation 
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2.3.4.5 Stability Indication/Selectivity 

Stability indication studies were performed on daunorubicin solutions (5J..lg/ml) in H20 and 

in unbuffered RPMI using six silanised lOml glass volumetric flasks. The stability 

indication studies were performed under varying conditions (as outlined in Appendix B and 

Fig. 2.10) to determine the ability of HPLC analysis to separate the analyte from 

degradation products. 

2.3.5 EVAPORATION 

As final cell culture experiments would involve the addition of an anthracycline drug 

solution into a liquid environment, it was postulated that evaporation from the cell culture 

plate during incubation could lead to erroneous drug concentration quantitation. 

Evaporation at 37°C incubation was therefore quantified by recording the weights of 

duplicate 24-well culture plates, each filled with 24ml of an aqueous daunorubicin solution, 

over time. The percentage weight loss was then calculated. 

2.4 EXPERIMENTAL METHODS 

2.4.1 STABILITY OF DAUNORUBICIN UNDER CELL CULTURE 

CONDITIONS 

An investigation into the stability of daunorubicin under different culture conditions was 

required. The investigation was conducted by varying experimental parameters. 
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2.4.1.1 Effect of Temperature & Concentration 

2.4.1.1.1 Stability of Daunorubicin in H20 and unbuffered RPMI at Different 

Temperatures 

A comparison of the stability of daunorubicin dissolved in both H20 (control) and RPMI 

(proposed culture condition) was made at different temperatures. 

A stock solution of daunorubicin, e.g. 38.2j..Lg/ml, was diluted in H20 and RPM! to give a 

final concentration of IOOng/ml. The respective solutions were made in 25ml silanised 

glass volumetric flasks and subsequently transferred to 24-Well Culture plates (in triplicate 

with 2ml per well, i.e. 4 wells per plate). 

The plates were incubated in the dark at three temperatures, i.e. 4, 25, and 37°C. Plates 

incubated at 4°C were incubated for 25.6h and sampled at 0, 2, 4, 6, 25.6 h for HPLC 

analysis. At 25°C, plates were incubated for 4 h and sampled at 0, 2 and 4h, while at 37°C, 

the plates were incubated for 2h and sampled regularly (under darkened conditions) every 

20min for analysis using HPLC. All samples were placed on ice until analysis to prevent 

any further temperature-related degradation. 

2.4.1.1.2 Stability ofDaunorubicin in H20 and unbuffered RPMI at Varying 

Concentrations 

A comparison of the stability of daunorubicin dissolved in both H20 (control) and 

unbuffered RPMI (proposed culture condition) was made at varying concentrations. 
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A stock solution of daunorubicin, e.g. 38.21J.g/ml, was diluted in H20 and RPMI to give 

final concentrations of lOO, 500, & IOOOng/ml. The respective solutions were made in 

25ml silanised glass volumetric flasks and subsequently transferred to 24-Well Culture 

plates (in triplicate with 2ml/well) and stored at 37°C in the dark. The plates were 

incubated for 2 hours and samples taken regularly every 20min (lOOng/ml) and 30min (500 

and lOOOng/ml), for analysis using HPLC. All samples were placed on ice (under darkened 

conditions) until analysis to stop any further temperature-related degradation. 

2.4.1.2 Effect of pH 

As it has been reported that the maximum stability for daunorubicin is achieved between a 

pH of approximately 4.5-7.5 (Poochikian et al. 1981), investigations were undertaken to 

examine the effect of differing the pH of the solution on the stability of the drug and 

determine the drug loss (if any) due to adsorption and degradation. 

Preliminary results demonstrated that the pH of the culture medium RPMI (unbuffered) in 

a 5% C02 incubator could change substantially in a short period of time. Subsequently the 

proposed culture medium (RPMI 1640) was buffered to a pH of 6, 7, and 7.5 (keeping the 

ionic strength of each solution constant) and these were compared to an unbuffered 

solution of RPMI (pH 7 at start of incubation and pH 5.4 at end of incubation). 

A stock solution of daunorubicin, e.g. 38.21J.g/ml, was diluted to a concentration of 

IOOng/ml in the different buffered and unbuffered solutions in 25ml silanised volumetric 

flasks. These solutions were transferred to 24-Well Culture plates (in triplicate with 

2ml/well) and incubated at 37°C for 0.5 hours in the dark. Incubation for each solution was 

staggered by 45min to enable immediate HPLC analysis for each pH after sampling at 0.5 
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hours. All samples were placed on ice (under darkened conditions) to stop any further 

temperature-related degradation. 

In addition to investigating the effect of differing pHs on drug stability, this experiment 

was designed to distinguish between drug loss due to degradation and adsorption. As a 

result, the design of this experiment was slightly more complex (see below) than previous 

analyses and, as prior investigation into the stability of lOOng/ml of daunorubicin in 

unbuffered RPMI at 37°C showed drug loss to occur within the first 0.5h of incubation 

(Fig. 2.13, pl09), this short period of incubation was thought to provide a sufficiently 

informative and convenient time frame for further study. Therefore, an incubation period of 

0.5h was used for continued stability analysis. 

To distinguish between drug loss due to degradation or adsorption, drug adsorbed to the 

culture plate was isolated by extracting bound drug from the side of the culture well using 

an organic solvent, i.e. by the gentle pi petting of 2ml of methanol along the side of the well 

(in darkened conditions) before quantification by HPLC analysis. This quantified amount 

was incorporated into the described results by adding it to the daunorubicin concentration 

remaining after incubation at 37°C for 0.5h, i.e. compensating for adsorbed drug. The 

resulting value was termed '0.5 hours no adsorption' (Table 2.3, pll2). 

Degradation was assumed to be occurring if, after compensating for adsorbed drug, the 

resulting daunorubicin concentration was different to the value at To (Table 2.3). The 

difference between the value for To and the value for '0.5 hours no adsorption' was 

calculated and described as 'Amnt lost to assumed degradation' (section 2.5.2.2, pll2). 
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2.4.1.3 Effect of Growth Media 

To optimise the cell culture system further, and considering that sodium bicarbonate is a 

weak buffer compared to HEPES, an investigation was made between HEPES buffered 

RPMI 1640, HEPES buffered DMEM and PBS (all at pH 7.2) supplemented with 2mM L­

glutamine, to test which medium afforded the greatest drug stability. The control solution 

was daunorubicin in H20. 

A stock concentration of daunorubicin, e.g. 38.2Jlg/ml, was diluted in the different media 

(in 25ml silanised volumetric flasks) to give a final concentration of IOOng/ml. The 

respective solutions were subsequently transferred to 24-Well Culture plates (in triplicate 

with 2mUwell) and incubated at 37°C. Incubation for each media type was staggered by 

45min to enable immediate analysis for each culture medium after sampling at 0.5 hours. 

All samples were placed on ice to stop any further temperature-related degradation. 

Drug adsorbed to the culture plate was isolated by extracting bound drug from the side of 

the culture well using an organic solvent, i.e. gentle pi petting of 2ml of methanol along the 

side of the well before quantifying by HPLC analysis. This quantified amount was 

incorporated into the described results by adding it to the daunorubicin concentration 

remaining after incubation at 37°C for 0.5h, i.e. compensating for adsorbed drug. The 

resulting value was termed '0.5 hours no adsorption' (Table 2.4, pll4). 

Degradation was assumed to be occurring if, after compensating for adsorbed drug, the 

resulting daunorubicin concentration was different to the value at To (Table 2.4, p114). The 

difference between the value for To and the value for '0.5 hours no adsorption' was 

calculated and described as 'Amnt lost to assumed degradation' (section 2.5.2.3, pll3). 
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2.4.1.4 Effect of added Protein 

It was hypothesised that there would be some protein binding of daunorubicin to any FBS 

in the RPMI culture medium. As the degree of binding was unknown and the experimental 

method only produced small sample volumes, a higher concentration of daunorubicin -;­

lJ.lg/ml - was used during this experimentation thus increasing the chances of detection 

and quantification even in the event of high protein binding. 

The samples were split into two groups. The control group consisted of three HEPES­

RPMI solutions+ 2mM L-glutamine devoid of FBS being spiked with 200J.ll of a lOJ.lg/ml 

stock solution of daunorubicin to a final concentration of lJ.lg/ml (final volume 2ml). The 

experimental group consisted of three RPMI solutions+ 2mM L-glutamine containing 10% 

(v/v) FBS being spiked with 200J.ll of a lOJ.lg/ml stock solution of daunorubicin to a final 

concentration of lJ.lg/ml (final volume 2ml). 

These solutions were incubated for 15min, at 37°C in 3 individual 5ml polypropylene tubes 

(in the dark) before each being transferred to 3 individual Cl filtration units (section 2.3.1, 

p81) and centrifuged at 540g for 15min, leaving a protein-free supematant. 

The filtration units were not made of polypropylene and, by using methanol to extract any 

adsorbed daunorubicin, it was found that daunorubicin adsorbed to the inside surfaces as 

well as the filtration membrane thus increasing the possibilities of an erroneous result. To 

overcome this factor the process of spiking and centrifuging the RPMI solutions was 

repeated 5 times to saturate the filtration units. This required that each 5ml polypropylene 

tube have a corresponding filtration unit. When the spiked RPMI solution had been 

incubated for the allotted time in the 5ml polypropylene tube, it was transferred to its 
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corresponding Cl filtration unit, which was then centrifuged. The same polypropylene tube 

was filled again with 2ml of RPMI then spiked and incubated. At the end of this incubation 

period the solution was transferred to the same, previously allotted Cl filtration unit. This 

procedure was repeated 5 times with all six 5ml polypropylene tubes i.e. 3 control and 3 

experimental, until saturation of each Cl filtration unit. The supernatant obtained after the 

final centrifugation of each Cl filtration unit was analysed by HPLC. 

The above was repeated at the following incubation times, 20, 30 and 60min. The 

difference between the control and experimental samples at each time point was calculated 

in triplicate and expressed as a percentage of the control, and the average value plotted for 

each time point. 

2.4.2 STATISTICAL ANALYSIS 

All statistics presented in this chapter were calculated using ANOV A with a significance 

level (P < 0.05). 
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2.5 RESULTS 

2.5.1 METHOD DEVELOPMENT RESULTS 

2.5.1.1 Absorbance 

The absorption spectrum for daunorubicin in mobile phase was taken to optimise the 

detection wavelength for HPLC analysis. The spectrum showed maxima occurring at 

254nm, 290nm, & 480nm. Figure 2.4 (spectrum for daunorubicin in mobile phase) depicts 

the profile found. 

Fig. 2.4 Absorption spectrum for daunorubicin in HPLC mobile phase. 

0.2 

190 WAVELENGTI! (nm) 600 

Fig. 2.4 !Oj..tl of a I OOj..tg/ml solution of daunorubicin in unbuffered RPM1 was diluted to I j..tglml in 990j..tl of 

HPLC mobile phase and its absorbance spectrum analysed between 190nm - 600nm and the absorbance 

maxima noted. 
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The peak at 254nm gave the highest absorbance reading and subsequently this wavelength 

was used for HPLC analysis. 

2.5.1.2 HPLC Validation 

2.5.1.2.1 S pecifi city /Selectivity 

The chromatograms comparing the blank H20 & medium (Fig. 2.5 & Fig. 2.6 respectively) 

with that of medium spiked with daunorubicin (Fig. 2.7) demonstrate the specificity of the 

system. The method unequivocally produces a response for this single analyte in the 

presence of endogenous compounds such as are found in RPMI culture medium. 

Fig. 2.5 Injection of Blank H~O 
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Fig. 2.5 100!!1 of H20 was injected (full loop volume) onto the HPLC system and analysed for 15min at a 

flow rate of lmVmin. Detector sensitivi ty was set at 0.001 absorbance units full deflection. Detection 

occurred at 254nm. A peak at 7.25min was not detected. 
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Fig. 2.6 lnjection of Blank RPMI 
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Fig. 2.6 100~-tl of unbuffe red RPMI was injected (full loop volume) onto the HPLC system and analysed for 

15min at a flow rate of lmVmin. Detector sensitivity was set at 0.001 absorbance units full deflection. 

Detection occurred at 254nm. A peak at 7.25min was not detected. 

Fig. 2.7 Injection of RPMI + daunorubicin 

7 . ~ 

Fig. 2.7 lOOfll of an unbuffered sample of RPM! containing lOOng/ml daunorubicin was injected (full loop 

volume) onto Lhe HPLC system and analysed for l5min at a flow rate of hnl/min. Detector sensitivity was set 

at 0.00 I absorbance units full deflection. Detection occurred at 254nm. A peak was detected at a retention 

time of7.25min. 
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The selectivity of the system is shown under the section 2.5.1.2.5 (pl03). 

2.5.1.2.2 Calibration Plot 

Calibration plots prepared using spiked unbuffered RPMI were linear over the range of: (a) 

10 - IOOng/ml, with a regression equation of y = 4533.2x + 5926.5, r2 = 0.99, n = 6, and, 

(b) 700 - 1300ng/ml, with a regression equation of y = 454.18x - 12266, r2 = 0.998, n = 7 

(Figs. 2.8 & 2.9). 

Fig. 2.8 Calibration plot for 10 - lOOnglml daunorubicin in unbuffered RPMI 
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Fig. 2.8 Dilutions of daunorubicin were made in unbuffered RPM! over a range of 10-1 00ng/m1 in silanised, 

glass volumetric flasks . Each dilution was injected in triplicate for analysis by HPLC and the average peak 

area values were used to construct a calibration curve. Regression analysis gave a linear equation of y = 

4533.2x + 5926.5, r2 = 0.99. 
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Fig. 2.9 Calibration plot for 700 - 1300ng/ml daunorubicin in RPMI 
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F ig. 2.9 Dilutions of daunorubicin were made in unbuffered RPM! over a range of 700-1300ng/ml in 

si lanised, glass volumetric flasks. Each dilution was injected in triplicate for analysis by HPLC and the 

average peak area values were used to construct a calibration curve. Regression analysis gave a linear 

equation of y = 4S4.18x - 12266, r2 = 0.998. 

The concentration of daunorubicin in RPMI was calculated using the linear regression 

equation appropriate for the daunorubicin concentration. Table 2.1 (pl03) shows the 

calibration data: the theoretical concentrations of daunorubicin in spiked RPMI and the 

corresponding observed concentrations determined from the calibration plot. 
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2.5.1.2.3 Limit of Quantification 

Kames et al. (1991) suggest that the LOQ is defined as the, 

" .. concentration above which quantitation is possible within a certain pre-set level of 
certainty." 

Kames et al., further conclude that the value cannot be accurately calculated but is 

estimated to be; LOQ = Ks!/S, where K is a factor indicating the desired precision at the 

lower limit, sb represents the standard deviation of the blank measurement, and S is defined 

as the slope of the calibration curve. 

Practical validation can be accomplished by defining the LOQ as the concentration of the 

lowest standard and demonstrating an acceptable standard error at lowest concentration. 

The lowest standard able to be accurately quantitated and distinguished in the RPMI 

culture medium was found to be I Ong/ml (Table 2.1, p 103). 

2.5.1.2.4 Precision! Accuracy Determination 

Accuracy and precision of daunorubicin in unbuffered RPMI at 10, lOO & lOOOng/ml are 

presented in Table 2.1: 
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C" Mean cb Daunorubicin Within-Run Between-
(nglml) daunorubicin (nglml) Assay Precision Run 

Peak Area % Of c.v. (%) Precision 
Theoretical C.V. (%) 

Calibration Standards 
10 61748.5 12.3 123.0 12.7 (N=6) 0.4 (N=2) 

50 227756.2 48.9 97.8 
60 266706.4 57.6 96.0 
80 358634.0 77.8 97.2 
90 408426.2 88.8 98.7 
100 480247.4 104.6 104.6 3.0 (N=7) 4.3 (N-7) 

700 303867.5 696.1 99.4 
800 352087.5 802.2 100.3 
900 393836.0 894.1 99.3 
1000 450678.5 1019.3 101.9 1.8 (N=7) 0.9 (N=3) 
1100 481612.0 1087.4 98.9 
1200 534310.5 1203.4 100.3 
1300 577031.5 1297.5 99.8 

Table 2.1 Accuracy and precision of the HPLC method ' Theoretical concentrations of 

standard solutions of daunorubicin in unbuffered RPM!. b Mean concentration of daunorubicin calculated for 

standards in RPM I calculated from the linear regression equations: y = 4533.2x + 5926.5 (10 -I lOng/m!) and 

y = 454.18x - 12266 (700 - 1300nglml). 

2.5.1.2.5 Stability Indication/Selectivity 

A stability indication study was perfonned on 5~g/ml daunorubicin to detennine the 

presence of potential degradation products by forced degradation under various conditions 

(Appendix B). Resulting chromatograms are shown in Fig. 2.10 (A-F). 

Stability indication investigations on daunorubicin at elevated temperature revealed a 

complete loss of drug under the basic and acidic conditions studied as well as complete 

loss when subjected to elevated temperature in the culture medium RPMI. Incubation with 

water gave a 13% loss while incubation with H20 2 gave a 78.2% loss. The HCI and H202-

degraded solutions revealed the presence of degradation products at retention times of 5.69, 

8.03 min and 6.23, 5.65, 5.39 min, respectively. The NaOH, RPMI & H20 solutions did 

not reveal the presence of any degradation products. This assay was considered to be 

stability indicating. 
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Fig. 2.10 Stability indicating chromatograms for Sug/ml daunorubicin exposed to 

various conditions 
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2.5.1.3 Evaporation Effects 

It was thought that at 37°C some evaporation might occur from the culture plates creating 

problems for the quantitation of drug concentration in future studies. Substantial 

evaporation could mean an increase in the concentration of the drug solution leading to 

erroneous quantitation. On incubation of a daunorubicin solution at 37°C in a 24-well 

culture plate some evaporation did occur over a 24 hour period, however, the results 

showed that at 37°C, there was a less than 0.5% drop in weight in the first 9 hours of 

incubation (Table 2.2). 

Time (h) % Weight loss 37°C 

0 0 

6 0.3 

9 0.4 

15 1.7 

18 2.0 

24 2.7 

Table 2.2 Percent (%) weight loss of 24-well culture plates due to evaporation. 

Although drug exposure times have varied in the literature, it was thought that 9 hours 

would be ample time for future in vitro experiments. As such, the small decrease in weight 

relating to this time period indicated that evaporation would not be a major factor for 

consideration in drug quantitation. 

105 



2.5.2 EXPERIMENTAL RESULTS 

The effect of different parameters on Daunorubicin stability was investigated and recorded. 

2.5.2.1 Effect of Temperature and Concentration 

2.5.2.1.1 Effect of different temperatures on stability of daunorubicin in water 

(HzO) and unbuffered RPMI 

It was speculated that at lower drug concentrations (some of which would be applicable to 

future work) any effects on drug stability would be more noticeable and, therefore, the 

majority of the results presented use daunorubicin at a concentration of 1 OOng/ml. 

At 4, 25, and 37°C (Figs. 2.11 - 2.13) the daunorubicin concentration fell substantially 

within a short period of time (a few hours) when dissolved in both H20 and unbuffered 

RPMI. Over a period of 2h daunorubicin loss was 45.3%, 57.0% and 49.8%, when 

incubated at 4°C, 25°C and 37°C, respectively in unbuffered RPMI. 

106 



Fig. 2.11 Stability of lOOng/ml daunorubicin in water and unbuffered RPMI at 4°C. 
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Fig. 2.11 2ml solutions of I OOng/ml daunorubicin in water or unbuffered RPM I were incubated (in 

triplicate) in a 24-well culture plate at 4°C for 25.6h and sampled at 0, 2, 4, 6, & 25.6h for HPLC analysis. ln 

both water and RPMI the concentration of daunorubicin decreased over time. Drug loss was signjficantly 

greater in RPM I when analysed by ANOY A (P < 0.05). In each case N = 3, where N = the number of separate 

experiments conducted. 
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Fig. 2.12 Stability of lOOng/ml daunorubicin in water and unbuffered RPMI at 25°C. 
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Fig. 2.12 2ml solutions of I OOnglml daunorubicin in water or unbuffered RPM I were incubated (in 

tripl icate) in a 24-well culture plate at 25°C for 4h and sampled at 0, 2, & 4h for HPLC analysis. In both water 

and RPM! the concentration of daunorubicin decreased over time. Drug loss was not significantly different 

between the two diluents when analysed by ANOVA (P > 0.05). In each case N = 3, where N = the number of 

separate experiments conducted. 
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Fig. 2.13 Stability of lOOng/ml daunorubicin in water and unbuffered RPMI at 37°C. 
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Fig. 2.13 2ml solutions of I OOnglml daunorubicin in water or unbuffered RPMI were incubated (in 

triplicate) in a 24-well culture plate at 37°C for 2h and sampled every 20min for HPLC analysis. In both water 

and RPMI the concentration of daunorubicin decreased over time. Drug loss was significantly greater in 

RPMI when analysed by ANOVA (P < 0.05). In each case N = 3, where N = the number of separate 

experiments conducted. 

2.5.2.1.2 Effect of different concentrations of daunorubicin in water (H20) and 

unbuffered RPMI 

At 37°C, when Daunorubicin was dissolved in either H20 (Fig. 2.1 4) or unbuffered RPMJ 

(Fig. 2.1 5), the stability of the drug was always l 00<500< 1 OOOng/ml, in order of increasing 

stability. 
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Fig. 2.14 Stability of 100, 500 and 1000ng/ml daunorubicin in water at 37°C. 
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Fig. 2. 14 2ml solutions of daunorubicin ( I 00, 500, & I OOOnglml) in water were incubated (in triplicate) in a 

24-well culture plate at 37°C for 2h. Samples were taken at regular intervals for HPLC analysis. ln all three 

cases, daunorubicin concentration decreased over time. Drug loss at a concentration of I OOnglml was 

significantly greater compared to 500nglml or I OOOnglml when analysed by ANOV A (P < 0.05). In each case 

N = 3, where N = the number of separate experiments conducted. 
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Fig. 2.15 Stability of 100, 500 and 1000ng/ml daunorubicin in unbuffered RPMI at 37 
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Fig. 2.15 2ml solutions of daunorubicin (1 00, 500, & 1 OOOng/ml) in unbuffered RPM I were incubated (in 

triplicate) in a 24-well culture plate at 37°C for 2h. Samples were taken at regular intervals for HPLC 

analysis. ln all three cases, daunorubicin concentration decreased over time. Drug loss at a concentration of 

I OOng/ml was significantly greater compared to 500ng/ml or I OOOng/ml when analysed by ANOV A (P < 

0.05). In each case N = 3, where N = the number of separate experiments conducted. 

As future experiments were to be conducted at 3 7°C the loss of drug at this temperature 

became the main focus of the subsequent stability studies where an attempt was made to 

differentiate between adsorption and degradation during the experimentation. 
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2.5.2.2 Effect of pH 

A comparison was made of the stability of lOOnglml of daunorubicin in RPMI buffered to 

different pH values (Table 2.3 and Fig.2.16). 

Sample Absolute Values of daunorubicin (nglml) +1- Standard Error 

Standard 0 hour (fo)s 0.5 hours no 0.5 hours Amnt lost Amnt lost to Amnl lost ID 

adsorption adsorption ioslamly adsorption assumed 

degradation 

Unbuffered 100 79.0 +1- 0.7 72.8 +1- 2.1 56.4 +1- 2.1 21.0 +1- 1.3 16.4 +1- 2.4 6.2 +1- 2.1 

RPM I 

RPMI pH6 100 69.6 +1- 1.7 73.4 +1- 1.4 61.5 +1- 1.6 30.4 +1- 1.4 11.9 +1- 1.3 0 

RPMI pH7 100 65.6 +1- 2.6 19.0 +1- 1.9 17.4+1-1.5 34.4 +1- 2.1 1.7 +1- 46.6 +1- 1.3 

0.1 

RPMI pH7.5 100 57.1 +1- 2.6 8.5 +1- 1.7 6.6 +1- 0.6 42.9 +I· 1.9 1.9 +1- 0.7 48.6 +I· 2.0 

Table 2.3 Stability of lOOnglml daunorubicin in unbuffered RPMI and in RPMI 

buffered to pH 6, 7 and 7.5. 
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Fig. 2.16 Stability of lOOng/ml daunorubicin in unbuffered RPMI and in RPMI 

buffered to pH 6, 7 and 7.5 at 37°C. 
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Fig. 2.16 2ml solutions of IOOng/ml daunorubicin in unbutfered and buffered RPMI (pH 6, 7, & 7.5) were 

incubated (in triplicate) in a 24-well culture plate at 37°C for 0.5h. After 0.5h, drug loss was observed when 

compared to T0• Significantly greater drug loss occurred at pH 7 & 7.5 when analysed by ANOVA (P < 0.05). 

Greatest stability was observed at a pH of 6.0 where decreased concentration was due to an 

instant drug loss (see later discussion) and adsorption (11.9ng/ml). At pH 7 and 7.5, 

however, drug loss was mainly due to degradation ( 46.6ng/m1 and 48.6ng/rnl, respectively). 

2.5.2.3 Growth Media 

A comparison was made of the stability of 1 OOng/ml of daunorubicin in different culture 

media (Table 2.4 and Fig.2.17). 
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Sample Absolute Values of daunorubicin (nglml) +/- Standard Error 

Standard 0 hours 0.5 hours no 0.5 hours Amnt lost Amnt lost to Amnt lost to 

(To) adsorption adsorption instantly adsorption assumed 

degradation 

l hO 100 100.4 +/- 89.4 +/- 1.8 82.5 +I- 0.6 +/- 1.0 7.0 +/- 2.2 10.9 +1- 1.7 

2.1 1.7 

Buffered PBS + 2mM 100 77.8 +1- 75.2 +/- 1.3 61.3 +I- 22.2 +/- 1.2 13.9 +/- 1.2 2.6 +/- 0.8 

L- glutamine 2.8 0.5 

Buffered RPM! + 100 79.0 +I- 72.8 +/- 1.9 56.4 +I- 2 1.0 +/- 0.9 16.4 +/- 0.6 6.2 +1- 1.2 

2mM L-glutamine 0.4 1.1 

Buffered DMEM + 100 67.6 +I- 62.8 +1- 2.1 49.5 +I- 32.4 +/- 1.3 13.3 +/- 0.9 4.8 +I- 1.4 

2mM L- glutamine 5.8 11.0 

Table 2.4 Stability of lOOnglml daunorubicin in water, PBS, HEPES-DMEM and 

HEPES-RPMI buffered to pH 7.2, supplemented with 2mM L-glutamine 

Fig. 2.17 Stability of lOOng!ml daunorubicin in water, PBS, HEPES-DMEM and 

HEPES-RPMI buffered to pH 7.2, supplemented with 2mM L-glutamine. 
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Fig. 2. 17 2ml solutions of I OOnglml daunorubicin in H20 and buffered PBS, RPM I, & DMEM (pH 7.2) 

were incubated (in triplicate) in a 24-well culture plate at 37°C for 0.5h. After 0.5h, drug loss was observed 

when compared to T0. Greatest drug loss occurred with DMEM > RPM I > PBS > H20 . 
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Drug loss between the different buffered diluent types was 17.51)g/ml, 38.7ng/ml, 

43.6ng/ml and 50.5ng/ml after 0.5h incubation for H20, PBS, RPM! and DMEM, 

respectively. In PBS, RPMI and DMEM there was an instantaneous drug loss with further 

loss occurring upon incubation. Loss during incubation occurred by both degradation and 

adsorption to the culture plate. 

2.5.2.4 Protein Binding 

The extent of protein binding on a l)lg/ml sample of daunorubicin in HEPES-RPMI + 

2mM L-glutarnine + 10% (v/v) FBS was analysed over time and the data is presented in 

Fig. 2.18. 

Protein binding after 60min incubation led to a 16.9% loss in free drug. 
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Fig. 2.18 Protein binding at 37°C for a lug/ml solution of daunorubicin in buffered 
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Fig. 2.18 A 2ml solution of lj.lg/ml daunorubicin in buffered RPM I + I 0% FBS was incubated (in triplicate) 

in a 15ml polypropylene tube at 37°C for 15min. A control solution (devoid of FBS) was incubated 

simultaneously to the experimental solution containing FBS (also in tripl icate). At the end of the 15min 

incubation the samples were centrifuged in filtration units to separate free drug from the protein-bound 

fraction. The amount of free drug for control and experimental samples was detem1ined by HPLC analysis. 

The difference between the control and experimental samples was calculated and expressed as a percentage of 

the control. The analysis was repeated for incubation times of 20, 30 and 60min and the average values 

plotted for each time point. 
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2.6 DISCUSSION 

As it was known at the start of this investigation that study of anthracycline resistance in B­

CLL would involve cell culture work, the initial aim was to set up a robust and stable cell 

culture system with which to examine this resistance. For this reason the development of a 

rapid, reliable, and robust analytical system was a priority to facilitate studies on the effects 

of different temperatures, concentrations, pH and media on drug stability, as well as the 

effects of protein addition. This information would then be used to design the final cell 

culture system for P-gp analysis in patient B-lymphocytes. 

The final, validated, HPLC analytical method (section 2.5.1.2, p98) was used to investigate 

the effect of differing temperatures on IOOng/ml daunorubicin in H20 and RPMI (the 

culture medium most commonly used in in vitro experiments involving B-CLL patient 

cells). In RPMI, the seemingly greater drug loss at 25°C was attributed to pH effects i.e. the 

drug loss after incubation at 37°C was less than expected because of a favourable pH 

change to more acidic conditions due to the 5% C02 environment in the incubator (Figs. 

2.11, 2.12 & 2.13, pages 107, 108 & 109). Continued investigation examined drug stability 

at 100, 500 and IOOOng/ml and reaffirmed that the effects on drug stability are exacerbated 

at lower drug concentrations, i.e. a loss in drug will be more significant at low drug 

concentrations than at high concentrations (Figs. 2.14, p 110 & 2.1 5, p 111 ). In both cases, 

i.e. stability investigation at varying temperatures and drug concentrations, drug loss 

appeared to be greater when the drug was dissolved in RPMI, suggesting an added 

interaction which decreased stability- see later discussion. 

Daunorubicin is a photoreactive compound (Wood et al. 1990a). Photolysis of this 

anthracycline has been postulated to result in the formation of aglycones leading to an 
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overall decrease in parent drug concentration (Gray & Phillips, 1981). Therefore it was 

suspected that photodegradation may be partially responsible for the observed drug loss, 

but as all experiments were conducted in darkened conditions (as many lights as possible 

were turned off in the laboratory and drug solutions were wrapped in aluminium foil at all 

times), loss through photodegradation would have been kept to a minimum. The observed 

drug loss, therefore, suggested either non-photolytic degradation of the drug - especially at 

37°C where approximately 50% of the drug is lost if in RPMI - or other processes leading 

to drug loss. 

Daunorubicin has been reported to adsorb to all materials except for polypropylene and 

silanised glass (Bosanquet, 1986). Further investigation determined that adsorption onto 

the polyethylene culture plate was partially responsible for the observed drug loss. To 

overcome this problem, culture plates used in future experiments would have had to be 

made of polypropylene. Although polypropylene 96-well plates could be acquired the 

majority of the experiments needed to be performed in 24-well plates to grow a sufficient 

density of cells with which to work. As 24-well plates were not available in polypropylene 

the problem of adsorption would be a factor in the remainder of the experiments and was 

therefore quantified (Tables 2.3 & 2.4, p112 & p114). 

Drug loss due to adsorption could be quantified and would not have interfered with 

continued P-gp analysis. However, if drug loss was also due to degradation, then the 

presence of these degradative products could interfere when analysing results from P-gp 

function and modulation investigations. Previously published stability data (Wood et al. 

1990b) suggests that a degradative loss of drug is not to be expected at lower temperatures 

such as 4°C. At 37°C, under the experimental conditions used in this study, degradation 

products were detectable and therefore drug loss due to degradation was also determined 
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(sections 2.4.1.2, p92 & 2.4.1.3, p94) and considered in the investigations regarding P-gp 

function and modulation (section 4.6, p236). 

Continued analysis into the effects of pH demonstrated that drug adsorption and 

degradation at 37"C was pH dependent (Table 2.3, p112). The greatest loss occurred at pH 

7 - 7.5 and was predominantly due to degradative processes. This was of concern as, in 

general, this is the optimum pH for cell growth - see later discussion. It was also noted that 

the RPMI used for analysis until this point had been unbuffered and devoid of additional 

culture components such as L-glutamine. However, cell culture media is commonly 

buffered to within tight limits (pH 7.2-7.4) to facilitate optimum cell growth and also to 

mimic in vivo conditions as much as possible. In addition, L-glutamine is commonly 

required for cell growth. For this reason HEPES buffered RPMI (pH 7.2) was 

supplemented with L-glutarnine to a final concentration of 2mM and used in a study on the 

stability of lOOng/ml daunorubicin over 2h at 37°C (Fig. 2.19). 

The stability of lOOng/ml daunorubicin did not differ significantly between the unbuffered 

and HEPES buffered, 2mM L-glutarnine RPMI (Fig. 2.13, pl09 & 2.19, pl20). The 

HEPES buffered RPMI + 2mM L-glutamine was therefore used for continued investigation 

into drug stability in different media (also buffered and supplemented with 2mM L­

glutamine). 

It was found that drug loss at 37°C occurred by adsorption and degradation to varying 

degrees with differing culture media (Table 2.4, pll4), however, in contrast to the effects 

of varying pH, the observed drug loss was predominantly due to adsorptive processes. 

Greatest drug loss was observed in buffered DMEM (another commonly used culture 

medium) and, as it was unlikely that cells would tolerate culture in water or PBS, it was 
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thought that the supplemented, buffered RPMI provided the optimal culture medium for 

continued analysis of P-gp expression, function and modulation in patient B-lyrnphocytes. 

Fig. 2.19 Stability of lOOnglml daunorubicin in unbuffered RPMI and RPMI buffered 

with HEPES and supplemented with 2mM L-glutamine 
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Fig. 2.1 9 2ml solut ions of I OOng/ml daunorubicin, in unbuffered and buffered (pH 7.2) RPM!, were 

incubated (in triplicate) in a 24-well culture plate at 37°C for 2h. Samples were taken at regular intervals for 

HPLC analysis. In each case daunorubicin concentration decreased over time. Drug loss was not signi ficantly 

di fferent between the two diluents when analysed by ANOV A (P > 0.05). 

Further to the effects of temperature, concentration, culture media & pH, protein binding 

was also evident in the experimental system (Fig. 2.18, p 116). A large majority of culture 

systems add foetal bovine serum (FBS) to the growth medium to help sustain cell growth, 

120 



indeed many cells require its presence. The anthracyclines, however, have been reported to 

bind to albumin (Trynda-l..emiesz and Kozlowski, 1996) and therefore could also bind to 

other proteins. The experimental system (RPM! + 2mM L-glutamine + 10% (v/v) FBS) 

showed there to be protein binding, the immediate effect being a decrease in the 

availability of free drug for cellular interaction. It was also considered possible that any 

protein/drug complex could exert an individual effect on P-gp, further complicating the cell 

cui tu re scenario. 

In addition all investigations revealed an initial, seemingly instantaneous, loss when the 

drug was dissolved in diluents other than the control (water). This instantaneous loss was 

measured by spiking two solutions, water and the diluent of interest, with a known 

concentration of daunorubicin, mixing, and immediately removing a sample for HPLC 

analysis prior to any experimental incubation. As all drug solutions were made in silanised, 

glass volumetric flasks wrapped in aluminium foil, this instantaneous drug loss could not 

be attributed to either adsorption onto the walls of the glass volumetric flask or 

photodegradation. Although this phenomenon still remains unexplained it may be that a 

physico-chemical interaction between the drug and a media constituent could be 

responsible, e.g. the drug-media constituent conjugate could elute at a different time than 

expected. Indeed the amino acid content of the RPMI or DMEM could have been 

interacting with the sugar moiety of the daunorubicin, although this affords no explanation 

for the loss seen in PBS. 

Using the results generated from the stability investigations as well as considering future 

cell culture requirements, HEPES-buffered RPMI was the medium of choice for future cell 

culture work. This decision took into account the drug loss occurring with RPMI as well as 

the probability of cell survival in any of the other diluents. While it was also tempting to 
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use the results to decide the incubation period and concentration of daunorubicin to be used 

in future experiments, it was realised that these limiting conditions would only reflect the 

state of the cell environment at one instant in time. It was acknowledged that the 

investigative system would have to balance optimal drug stability conditions with cell 

survival conditions as well as experimental requirements, and therefore the attempt to 

quantitate the drug loss processes occurring at any one instant in time, in a system devoid 

of cellular material, were deemed to be impractical. This, however, did not detract from the 

importance of qualifying the processes that were occurring in the proposed cell culture 

system. 

This importance was emphasised when investigating the effect of pH on drug stability. 

Daunorubicin is most stable between a pH of 4.5 - 6.5 (Poochikian er al., 1981). The 

unbuffered RPMI (containing only sodium bicarbonate) reflected this increased drug 

stability at acidic pHs (Table 2.3, p112 and Fig. 2.16, pll3). This was attributed to a 

decrease in pH from 7.0 at the start of the incubation to 5.4 at the end of incubation. With 

the buffered RPMI solutions, the greatest daunorubicin stability was observed at an acidic 

pH of 6 and any loss, additional to the instant loss observed, was attributed solely to 

adsorption. At a higher pH of 7 or 7.5, however, the majority of the drug was lost to 

degradation, having serious implications for future cell work. 

This dilemma of which pH to choose for future experimental work was apparent when 

considering optimum cell growth conditions. A decrease in pH, although beneficial for 

drug stability, provides a hostile environment for most cells cultured in vitro. In addition, 

physiological pH is regulated between the very tight limits of 7.3 - 7.4. Subsequently, 

future in vitro work, if trying to replicate the in vivo situation as closely as possible, would 

have to keep the pH of the culture environment as close to in vivo pH values as possible. 
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Any deviation from these limits could mean an alteration in the normal physiology of the 

patient B-lymphocytes and therefore an alteration in the resistance of the cell. However, 

greatest drug loss was observed at physiological pH and this factor was of extreme 

importance because it emphasised that, along with the parent anthracycline, degradation 

products could exist in a culture environment that needs to be kept at physiological pH for 

cell survival. 

Effectively, the results have shown that it is possible to have degradation products in the 

cellular system very early on in culture as well as drug loss through protein binding and 

adsorption. Although no daunorubicin degradation products have yet been reported to exert 

toxic effects, some anthracycline metabolites, e.g. daunorubicinol and idarubicinol, have 

been shown to be toxic with idarubicinol exhibiting as much toxicity as the parent drug 

(Limonta et al. 1990). 

Previous literature reports have not attempted to dissect the processes of adsorption, 

degradation or protein binding, and as such it remains unclear whether previously reported 

alterations in resistance are due solely to interactions of the P-gp molecule with the parent 

drug or to interactions of the metabolites, degradation products or drug/protein complexes 

with P-gp. 

2.7 CONCLUSION 

Daunorubicin is an unstable drug under physiological culture conditions and, as conditions 

chosen for cell work must try to balance the stability of the drug with the probability of cell 

survival, it is possible for drug loss to occur via adsorption, degradation and protein 

binding. To aid in the isolation and identification of the molecules and systems responsible 

123 



for drug resistance itis iherefore important toridentif~ Close!)' the likely constituents onhe 

experimental mode!'. 

l'he results :presented ;in ihis chapter ledi to: 1the use of a: modified! RPMI solution; ,;. e, 

bu_fferedi to pH 7.2 .With HEPES buffer, :supplemented with'.2mM: IL~gluiamine and :10% 

(v/y) FBS, :In addition. tile ,iil,cub_atio_ri. ,iirt1es1 for 'future experiments would .. be limiied io. 

between 05-l.Sh .and daunorubicin w.ouldi be :maintained at IJig/mll concentrations :ra,t~er 

·than loWer nglmliconcentrations, depending!on experimental! requirements:, 
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3.1 INTRODUCTION 

In B-CLL, the results of studies investigating the expression of P-gp have been conflicting. 

While several authors have described a large majority of patients expressing an increased 

amount of P-gp compared to healthy controls (Michieli et al. 1991; Shustik et al. 1991; 

Webb et al. 1998), others have detected low levels (Grulois et al. 1995). 

These conflicting results may arise because different techniques have been used for P-gp 

analysis, all ranging in their sensitivities, e.g. studies on MDR1 gene expression have 

involved in situ mRNA hybridisation and reverse transcriptase-polymerase chain reaction 

(RT-PCR) to detect MDR1 mRNA (Mechetner & Roninson, 1992; Zhou et al. 1995}, 

while flow cytometry & immunohistochemistry have been utilised to locate the P-gp 

protein in the cell (Schinkel et al. 1993a; Webb et al. 1998). 

3.1.1 FLOW CYTOMETRY 

Flow cytometry is a technique enabling rapid measurements of physical and chemical 

characteristics of cells or particles as they travel in suspension, one by one through a 

sensing point. 

3.1.1.1 Hardware 

The modem flow cytometer consists of a light source, fluidics system, collection optics, 

electronics and a computer to digitally process the data. In most modem cytometers the 

light source is a laser (light amplification by stimulated emission of radiation) which emits 

a beam of light at specific, selectable wavelengths. The fluidics system of the flow 
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cytometer then delivers particles of a random three-dimensional suspension one by one to a 

specific point in space intersected by the illuminating laser beam. Scattered and emitted 

fluorescent light is collected by two lenses (one set in front of the light source, i.e. forward 

scatter, and one set at right angles, i.e. side scatter) and by using a series of optics, beam 

splitters and filters, specific bands offluorescence can be measured (Fig. 3.1). 

Fig. 3.1 Generalised flow cytometer system 
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Fig. 3.1 From Flow Cytometry; A Practical Approach. M. G. Ormerod. Second Edition. : Oxford University 

Press ( 1996). 

3.1.1.2 Analysis and Display 

Flow cytometry has many different applications that usually involve using a fluorescent 

probe covalently bound to the cell or structure of interest, e.g. antibody conjugated to a 

fluorochrome. The fluorochrome is excited by the laser light and, as it returns to the 

unexcited (ground) state, it emits light of a longer wavelength detected by the flow 
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cytometer. Table 3.1 lists the major fluorochromes, their excitation and emission 

wavelengths together with their common applications. 

Fluorochrome Excitation (run) Emission (nm) Laser type Applications 

Fluoresceio 495 520 Argon Phenotypic analysis 

Phycoerythrin 495 575 Argon Phenotypic analysis 

PerCP 488 670 Argon Phenotypic analysis 

Allophycocyanin (APC) 630 660 Helium· Neon Phenotypic analysis 

APC·Cy7 630 760 Helium·Neon Pheootypic analysis 

Hoechst 33342 350 470 Argon DNA analysis/Apoptosis 

Hoechst 33258 350 470 Argon DNA analysis/Apoptosis 

DAPI 372 456 Argon DNA analysis 

Propidium Iodide 495 637 Argon DNA analysis 

Ethidium Bromide 493 620 Argon DNA analysis 

Acridine Orange 503 530/640 Argon DNA, RNA 

Fluo-3 488 530 Argon Calcium flux measurement 

Rhodamine 123 515 525 Argon Mitochondria 

Table 3.1 Some common fluorochromes From Imperial Cancer Research Fund webpage -

http://www.icnet.uk/axp/facs/daviestnow.hlml 

Light emitted from these fluorochromes is measured by a detector - usually a 

photomultiplier tube (PMT) - so generating a current that is transformed into analogue 

voltage pulses which are digitised. Computer systems allow sophisticated analysis of this 

data, the most common and useful ways of displaying the resulting values being the 

frequency histogram and the dual parameter correlated plot, often known as a cytogram or 

dot plot (Fig. 3.2). 
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Fig. 3.2 Two forms of flow cytometer display 
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Fig. 3.2 [A] : typical frequency histogram of isolated B-lymphocytes displaying fluorescence intensity 

against number of events. [B): dot plot of isolated B-lymphocytes displaying side scatter (SS) against forward 

scatter (FS), where each cell is represented as a dot at the co-ordinates appropriate to the measured values. 
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Statistical analysis of these displays is a straightforward task for the computer and markers 

can be set at specific areas of a histogram (fluorescence intensity) allowing percentage of 

total, mean fluorescence value and other statistics to be generated for these selected events 

(Fig. 3.3[8]). More complex analyses use the ability of the program to set gates or 

windows on areas of interest so that only cells that fall within the gates are analysed further 

(Fig. 3.3[A]). 

3.1.1.2.1 Controls 

When using monoclonal antibodies as fluorescent probes, isotype controls are often used to 

define the position of the negative cells and set the fluorescence markers. The use of 

isotype controls as a reference population assumes that the same non-specific staining and 

biochemical properties are present as in the test reagents. 

An additional step that permits a measurement of non-specific staining is to analyse 

unstained cells in parallel with cells stained with a recommended panel of reagents. The 

position of the unstained cells (autofluorescence) can be compared to the isotype control 

populations observed in other samples. The separation between the populations (observed 

by overlaying the plots) provides a measure of the relative degree of non-specific binding 

of the antibodies to the cell population (Figs. 3.9 & 3.10, pi 53 & 154, respectively). 
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Fig. 3.3 Analysis of histogram and dot plot displays 
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Fig. 3.3 [A]: gated dot plot of isolated B-lymphocytes. Gated region is denoted in red. [B]: histogram of 

gated B-lymphocytes in [A]- marker, D, denotes the region of analysis (positivity). 
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3.1.1.2.2 Compensation 

Although filters select separate wavebands from fluorochromes, the emissions from some 

fluorochromes can overlap such that some fluorescence from one fluorochrome will pass to 

the detector intended to measure the fluorescence from the other and vice-versa. This 

spectral overlap can be corrected during signal processing by subtraction electronically of 

the proportion of the fluorescence due to spectral overlap and is termed compensation. 

3.1.1.3 Detection of P-gp in 8-CLL 

The major problem in detecting P-gp-associated MDR in B-CLL has been the absence of a 

standardised method for detection and quantification of the MDRI gene and P-gp. Herzog 

et al. (1992), using several cell lines with different levels of resistance, concluded that most 

techniques could detect low levels of MDRI gene expression, but RT-PCR was the most 

reliable technique. For chronic lymphocytic leukaemia (CLL), however, Wall et al. (1993) 

observed an important discrepancy between a low percentage of patients positive for 

MDRl mRNA and a higher percentage of positivity when assayed by a functional test for 

P-glycoprotein using flow cytometry analysis. 

This emphasises the effectiveness of flow cytometry as a technique for P-gp-associated 

MDR investigations, as both P-gp protein expression as well as function can be determined 

quickly and effectively. 
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3.1.1.3.1 Monoclonal antibodies (MAbs) 

Flow cytometric detection of P-gp has led to the development of several MAbs targeting 

different epitopes on the P-gp protein (Table 3.2). These MAbs can be conjugated to 

different fluorochromes for flow cytometric use (Georges et al. 1990; Weinstein et al. 

1990). 

P-gp monoclonal antibody (MA b) Location of P-gp Recognition site (epitope) 

MRK16 extracellular 

C219 intracellular 

UIC2 extracellular 

JSB-1 intracellular 

4E3 extracellular 

Table 3.2 Recognition sites £or some P-gp monoclonal antibodies (MAbs) 

Problems of non-specific hybridisation for different MAbs can lead to confusing results. 

For example, C219 recognises highly conserved amino acid sequences found in all P-gp 

isoforms characterised to date, including MDR3, but it also cross-hybridises to a small 

amount of skeletal muscle fibres. Similarly, the MRK16 MAb recognises external regions 

of the molecule but occasionally stains smooth muscle fibres. The cross reactivity exhibited 

by these MAbs does not normally present problems when using isolated B-lymphocytes, 

nevertheless, it was considered appropriate to follow consensus recommendations 

published in 1996 regarding the various P-gp detection methods used when analysing 

patients' tumours (Beck et al. 1996). A large variation between interlaboratory results was 

found and the recommendations suggested the use of more than one technique when 
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analysing P-gp, e.g. flow cytometry P-gp detection and MDRI mRNA detection as well as 

P-gp functionality experiments. 

3.1.1.3.2 Fluorochromes 

Different fluorochromes possess different quantum efficiencies affecting their ability to 

fluoresce, i.e. a greater quantum efficiency is related to greater fluorescence intensity. A 

sample with a low amount of P-gp would therefore benefit from the use of a fluorochrome 

with high fluorescence intensity. Selection of the fluorochrome is therefore an important 

consideration when determining the presence of P-gp in a sample. 

Consequently, in B-CLL, the use of phycoerythrin (PE) as the conjugated fluorochrome has 

been advised not only due to its higher fluorescence intensity (quantum efficiency) 

compared to other commonly used fluorochromes (such as fluorescein isothiocyanate 

(FITC)) resulting in an increased ability to detect low amounts of P-gp in clinical samples 

(Beck et al. 1996). 

3.1.1.3.3 Use of cell lines 

The preferred method of P-gp-associated MDR analysis is often the detection of the P-gp 

protein as the level of detectable mRNA does not always correlate with its protein 

counterpart. Accordingly, the development of a flow cytometric assay using P-gp specific 

MAbs requires P-gp positive and negative continuous cell lines to determine the specificity 

of the MAb before analysing patient samples. 
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Continuous cell lines are immortal cells which are ideal for use in vitro. These cells are 

derived from primary cells by a series of spontaneous or virus induced mutational events 

which result in rapidly proliferating transformed cells. Advantages of continuous cell lines 

include the ability to investigate cellular functions at different stages of the cell cycle and 

the relatively cheap costs of obtaining and maintaining cell lines in comparison to primary 

culture. Cell lines also provide a stable and reproducible cell culture for investigations 

within a defined set of parameters. Care must be taken however not to extend the passage 

of the cells within a single set of experiments to a number greater than 10. This is due to 

the potential for instability of cell phenotype as a result of genetic rearrangement which 

occurs following an extended number of passages. 

It is also common for cell lines employed in validating methodology for future clinical 

investigations to resemble the cells in the clinical sample to be analysed. A leukaemic cell 

line is preferable when validating an assay for the study of leukaemic cells isolated from 

patients (section 3.3.1.1.1, piS 1). 

3.1.2 REVERSE TRANSCRIPTION· POLYMERASE CHAIN REACTION (RT­

PCR) AND MDR1 mRNA DETECTION 

3.1.2.1 Background 

3.1.2.1.1 Deoxyribonucleic acid (DNA) 

In eukaroytic cells the genetic information of the cell is coded within DNA which is 

localised to the nucleus of the cell. DNA is composed of 4 different nitrogenous bases; 

adenine, guanine, cytosine and thymine. These structures are referred to as nucleotides 
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when carrymg the phosphate group and nucleosides without the phosphate group, 

consisting of only the base and sugar. The sequence of these 4 bases within a DNA 

molecule contains the genetic information. The DNA molecule is double stranded (Fig. 

3.4) with each strand being complementary to each other, so that adenine binds thymine 

and guanine binds cytosine. Hydrogen bonding between the complementary bases holds the 

two stands together within a double helix structure. The two strands that form the double 

helix are also anti parallel to each other, with their 5', 3 ' -phosphodiester bonds running in 

opposite directions. 

Fig. 3.4 Complementary arrangement of bases in double helix structure of DNA 

Phosphate 

• 
Sugar Sugar 

Fig. 3.4 From Mosby's Medical Encyclopedia for Windows 95, User's Guide. The Learning Company Inc. 

1997 Edition. 

3.1.2.1.2 Ribonucleic acid (RNA) 

The expression of the genetic code in the fotm of protein synthesis takes place in the 

cytoplasm necessitating the transfer of the appropriate coded section outwiU1 the nucleus. 

This is achieved by the use of an intermediate nucleic acid nan1ed ribonucleic acid (RNA). 

RNA forms a complementary strand to a single strand of DNA. This process is exactly the 
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same as for complementary DNA strand formation except for one exception. In RNA a 

thymine base is substituted by a fifth base named uracil. The RNA strand produced as a 

result of this process contains coding and non-coding regions, the latter of which regulate 

rather than code protein synthesis. The RNA which carries the genetic information from 

DNA to the protein synthesising ribosome is named messenger RNA (mRNA) and the 

process of mRNA formation from the DNA template is known as transcription. 

3.1.2.1.3 Reverse transcription 

Transcription, as explained in section 3.1.2.1.2, is the conversion of a DNA sequence into a 

complementary mRNA sequence. In the process of reverse transcription the opposite 

occurs and mRNA is reverse transcribed to produce complementary DNA (cDNA). The 

enzymes that carry out this function are termed reverse transcriptases. 

3.1.2.1.4 Reverse transcriptase-polymerase chain reaction (RT -PCR) 

RT-PCR is a modification of the basic technique of PCR. RT-PCR allows the study of gene 

expression at the RNA level and is extremely sensitive, in theory RT-PCR being capable of 

detecting a single RNA molecule. The technique relies upon the extraction and then reverse 

transcription of cellular RNA to produce cDNA. This reverse transcription is carried out by 

naturally occurring reverse transcriptases. 

Following reverse transcription the cDNA product is probed for the presence of a sequence 

of bases specific to the protein of interest during the process of PCR. This is achieved by 

the use of a set of primers which are short, single-stranded DNA molecules complementary 

to the ends of a defined sequence predicted to be present in the cDNA. In this study the 
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defined sequence was specific to the P-gp protein. Consequently, production of the specific 

product indicates that RNA coding for P-gp was present in the cells suggesting P-gp gene 

expression i.e. MDRl expression. 

PCR begins with denaturation, by heating, of the double stranded cDNA into single strands 

(Fig. 3.5). Following cooling, primers anneal to complementary sequences on the cDNA 

and begin to extend along the cDNA strand by the action of DNA polymerase at a 

temperature suitable for the enzyme (stage CD). This primer extension phase occurs in the 

presence of excess free deoxynucleoside triphosphates (dNTPs). This cycle produces two 

new double-stranded DNA molecules (stage ®). Strand synthesis is then repeated again by 

the process of heat denaturation, primer annealing and primer extension (stage ®). As each 

new primer region produced acts as a template for further cycles of amplification the target 

DNA sequence is selectively amplified cycle after cycle (stage ®) and its ends are 

determined by the 5' ends of the primers. The quantity of the amplified product thus 

increases exponentially. 

To allow detection and analysis, the PCR product may then be subjected to electrophoresis 

on an agarose or polyacrylamide gel and visualised by staining with ethidium bromide - a 

fluorescent dye that intercalates with DNA. Accurate size determination of the product may 

be achieved by incorporation of a base-pair size marker into the gel. 
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Fig. 3.5 Schematic representation of the PCR reaction 
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Fig. 3.5 Stage I; primer annealing & extension: Stage 2; DNA double strand production: Stage 3; repetition 

of stages 1 & 2: Stage 4; selective amplification. Adapted from O' Driscoll et al. 1993 
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3.1.2.1.5 Splicing and RT -PCR 

A primary transcript for a eukaryotic mRNA typically contains sequences encompassing 

one gene. However, the sequences encoding the polypeptide are usually not contiguous. 

Instead, in the majority of cases, the coding sequence is interrupted by noncoding tracts 

called introns; the coding segments are called exons. In a process called splicing, the 

introns are removed from the primary transcript and the exons joined to form a contiguous 

sequence specifying a functional polypeptide. Therefore, when designing or deciding on 

which primers to use for RT-PCR it is important to consider the process of splicing such 

that the primers used are designed to anneal to an exon sequence rather than an intron 

sequence. In addition, the primers should be selected so that they reside in separate exons 

to enable detection, by looking at the size of product, of any contaminating DNA which has 

been amplified. 

3.1.2.1.6 Housekeeping genes 

The levels of specific gene products rise and fall within a cell in response to molecular 

signals. Such signals may be associated with environmental stimuli such as the requirement 

for specific metabolic enzymes as food sources change or are depleted, or the 

differentiation of a cell which may require the expression of a certain protein for only a 

brief period of time. Some gene products are however required continually. Such genes are 

constitutively expressed and are termed 'housekeeping genes'. They may be used to 

indicate consistent sample preparation or as a constant arbitrary level of expression against 

which relative changes in expression of other genes may be illustrated. One such enzyme, 

hypoxanthine-guanine phosphoribosyl transferase (HGPRT), is essential in the synthesis of 

nucleotides by the cell via de novo or salvage pathways and is used as a housekeeping gene 
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product in this section of work to monitor the quality of sample preparation. 

3.1.2.2 RT-PCR detection ofMDRl mRNA 

As mentioned in section 1.5.3.6.1, detection of MDRl RNA has involved the use of RT­

PCR using primers specific to a known sequence in the MDRI gene. 

The primers chosen in this study to enable the detection of MDRl mRNA (Fig 3.6 and 

section 3.2.4) were first published by Noonan et al. (1990) and result in a region of 157bp 

being amplified (Fig. 3.7A & Fig. 3.78). The primers flank a sequence that crosses an 

intron so that MDRl DNA contamination can be detected. If the relevant area of DNA was 

amplified, a band of 1257bp would result in comparison to a band of 157bp from cDNA. 

Therefore, by virtue of the fact that the selected region has an intron present in the DNA, if 

contaminating DNA is amplified, it should be possible to identify it by its greater length in 

comparison to the amplified region of cDNA. Another strategy to detect contaminating 

DNA would be to eliminate the reverse transcription of samples such that amplification 

would be due to contaminating DNA only. A pure sample of RNA would not be reverse 

transcribed to cDNA in the absence of reverse transcriptase and there would be no 

amplification. 

These MDRl primers are both 100% homologous and specific to the MDRl mRNA so 

avoiding amplification of the MDR3 product (Fig. 3.8) which closely resembles that of 

MDRI. However, even with this specificity in primer design, the possibility of non-specific 

amplification prompted the inclusion of an additional diagnostic step. This study used a 

diagnostic restriction enzyme site, Mae I (O'Driscoll et al. 1993), so that digestion of the 
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MDRl RT-PCR product with this enzyme results in fragments 84bp and 73bp in size (Fig. 

3.7A and Fig. 3.78). 

Fig. 3.6 Complete MDRl mRNA sequence and associated primer binding sites and 

Mae I restriction site 

atggatcttgaaggggaccgcaatggaggagcaaagaagaagaacttttttaaactgaacaataaaagtgaaa 

aagataagaaggaaaagaaaccaactgtcagtgtattttcaatgtttcgctattcaaattggcttgacaagtt 

gtatatggtggtgggaactttggctgccatcatccatggggctggacttcctctcatgatgctggtgtttgga 

gaaatgacagatatctttgcaaatgcaggaaatttagaagatctgatgtcaaacatcactaatagaagtgata 

tcaatgatacagggttcttcatgaatctggaggaagacatgaccaggtatgcctattattacagtggaattgg 

tgctggggtgctggttgctgcttacattcaggtttcattttggtgcctggcagctggaagacaaatacacaaa 

attagaaaacagttttttcatgctataatgcgacaggagataggctggtttgatgtgcacgatgttggggagc 

ttaacacccgacttacagatgatgtctccaagattaatgaaggaattggtgacaaaattggaatgttctttca 

gtcaatggcaacatttttcactgggtttatagtaggatttacacgtggttggaagctaacccttgtgattttg 

gccatcagtcctgttcttggactgtcagctgctgtctgggcaaagatactatcttcatttactgataaagaac 

tcttagcgtatgcaaaagctggagcagtagctgaagaggtcttggcagcaattagaactgtgattgcatttgg 

aggacaaaagaaagaacttgaaaggtacaacaaaaatttagaagaagctaaaagaattgggataaagaaagct 

attacagccaatatttctataggtgctgctttcctgctgatctatgcatcttatgctctggccttctggtatg 

ggaccaccttggtcctctcaggggaatattctattggacaagtactcactgtattttctgtattaattggggc 

ttttagtgttggacaggcatctccaagcattgaagcatttgcaaatgcaagaggagcagcttatgaaatcttc 

aagataattgataataagccaagtattgacagctattcgaagagtgggcacaaaccagataatattaagggaa 

atttggaattcagaaatgttcacttcagttacccatctcgaaaagaagttaagatcttgaagggtctgaacct 

gaaggtgcagagtgggcagacggtggccctggttggaaacagtggctgtgggaagagcacaacagtccagctg 

atgcagaggctctatgaccccacagaggggatggtcagtgttgatggacaggatattaggaccataaatgtaa 

ggtttctacgggaaatcattggtgtggtgagtcaggaacctgtattgtttgccaccacgatagctgaaaacat 

tcgctatggccgtgaaaatgtcaccatggatgagattgagaaagctgtcaaggaagccaatgcctatgacttt 

atcatgaaactgcctcataaatttgacaccctggttggagagagaggggcccagttgagtggtgggcagaagc 

agaggatcgccattgcacgtgccctggttcgcaaccccaagatcctcctgctggatgaggccacgtcagcctt 

ggacacagaaagcgaagcagtggttcaggtggctctggataaggccagaaaaggtcggaccaccattgtgata 

gctcatcgtttgtctacagttcgtaatgctgacgtcatcgctggtttcgatgatggagtcattgtggagaaag 

gaaatcatgatgaactcatgaaagagaaaggcatttacttcaaacttgtcacaatgcagacagcaggaaatga 

agttgaattagaaaatgcagctgatgaatccaaaagtgaaattgatgccttggaaatgtcttcaaatgattca 
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agatccagtctaataagaaaaagatcaactcgtaggagtgtccgtggatcacaagcccaagacagaaagctta 

gtaccaaagaggctctggatgaaagtatacctccagtttccttttggaggattatgaagctaaatttaactga 

atggccttattttgttgttggtgtattttgtgccattataaatggaggcctgcaaccagcatttgcaataata 

ttttcaaagattataggggtttttacaagaattgatgatcctgaaacaaaacgacagaatagtaacttgtttt 

cactattgtttctagcccttggaattatttcttttattacatttttccttcagggtttcacatttggcaaagc 

tggagagatcctcaccaagcggctccgatacatggttttccgatccatgctcagacaggatgtgagttggttt 

gatgaccctaaaaacaccactggagcattgactaccaggctcgccaatgatgctgctcaagttaaaggggcta 

taggttccaggcttgctgtaattacccagaatatagcaaatcttgggacaggaataattatatccttcatcta 

tggttggcaactaacactgttactcttagcaattgtacccatcattgcaatagcaggagttgttgaaatgaaa 

atgttgtctggacaagcactgaaagataagaaagaactagaaggtgctgggaagatcgctactgaagcaatag 

aaaacttccgaaccgttgtttctttgactcaggagcagaagtttgaacatatgtatgctcagagtttgcaggt 

accatacagaaactctttgaggaaagcacacatctttggaattacattttccttcacccaggcaatgatgtat 

ttttcctatgctggatgtttccggtttggagcctacttggtggcacataaactcatgagctttgaggatgttc 

tgttagtattttcagctgttgtctttggtgccatggccgtggggcaagtcagttcatttgctcctgactatgc 

caaagccaaaatatcagcagcccacatcatcatgatcattgaaaaaacccctttgattgacagctacagcacg 

gaaggcctaatgccgaacacattggaaggaaatgtcacatttggtgaagttgtattcaactatcccacccgac 

cggacatcccagtgcttcagggactgagcctggaggtgaagaagggccagacgctggctctggtgggcagcag 

tggctgtgggaagagcacagtggtccagctcctggagcggttctacgaccccttggcagggaaagtgctgctt 

gatggcaaagaaataaagcgactgaatgttcagtggctccgagcacacctgggcatcgtgtcccaggagccca 

tcctgtttgactgcagcattgctgagaacattgcctatggagacaacagccgggtggtgtcacaggaagagat 

tgtgagggcagcaaaggaggccaacatacatgccttcatcgagtcactgcctaataaatatagcactaaagta 

ggagacaaaggaactcagctctctggtggccagaaacaacgcattgccatagctcgtgcccttgttagacagc 

ctcatattttgcttttggatgaagccacgtcagctctggatacagaaagtgaaaaggttgtccaagaagccct 

ggacaaagccagagaaggccgcacctgcattgtgattgctcaccgcctgtccaccatccagaatgcagactta 

atagtggtgtttcagaatggcagagtcaaggagcatggcacgcatcagcagctgctggcacagaaaggcatct 

atttttcaatggtcagtgtccaggctggaacaaagcgccagtga 

Fig. 3.6 Sense and antisense primer regions are shown in red while the sequence highlighted in pink 

represents the recognition sequence of the Mae l restriction enzyme. 
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Fig. 3.7 RT-PCR associated amplification of 157bp region of MDRl sequence and 

Mae I restriction sites 
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Fig. 3.8 Complete MDR3 mRNA sequence and Mae I restriction sites 

atggatcttg aggcggcaaa gaacggaaca gcctggcgcc ccacgagcgc ggagggcgac tttgaactgg gcatcagcag caaacaaaaa aggaaaaaaa cgaag,;~cagt gaaaatgatt 
tacctagaac tccqccgttt cttgcctLgt cggaccgcgg ggtgctcgcg cctcccgctg aaacttgacc cgtagtcgtc gtttgttttt tccttttttt gcttctg-r.ca cttttectaa 
ggagUttaa cattgtttcq atactccgat tggcaggata aattgtttat gtcgctgggt accatcatgg ccatagctca cggatcaggt ctccccctca tgatgatagt atttggagAg 
cctcataatt gtaacaaagc tatqaggcta accgtcctat ttaacaaata cagcgaccca tgqtagtacc ggtatcgagt gcct.agtcca gagggQgagt actactatca taaacctctc 
atgactg-aca aatttgttga tactgcagga ucttctcct ttccagtgaa cttttccttg tcgctgctaa atccaggcaa aattctggaa gaagaaatga ·atatgc atattactac 
cactgactgt ttaaaca.act atqacgtcct ttgaagagga aaggtcactt c;aaaaggaac agcgacqatt taggtccgtt ttaagacctt cttctttact tatacg: tataatgatg 
tcaggattgg gtgctggagt tcttgttgct gcctatatac aaqt:ttcatt ttggactttg gcagctggtc gacagatcag gaaaattagg cagaagtttt ttcatgctat tctacgacag 
agtcctaaoc cacqacctca agaacaacga cggatatatg ttcaaagtaa aacctgaaac cgtcqaccag ctgtctagtc cttttaatcc gtcttcaaaa aagtacqata agatgctgtc 
gaaataggat ggtttgacat caatgacacc actgaactca atacgcggct a.acagatgac atctccaaaa tcagtgaagg aac-t.ggtgac eaggttggaa tgttctttca agcagtagcc 
ctltatccta ccaaactgta gttactgtgg tgacttgaqt t.atgcgccga ttgtctactg tagaggtttt agtcacttcc ttaaccactg ttccaacctt acaagaaagt tcqt:catcgg 
acgttttttg caggattcat agtgggattc atcagaggat gga.agctcac ccttgtgata atggccatca gccctatt gactctct gcagcc;ttt gggcaaagat actctcggca 
tgcaaaaaac gtcctaagta tcaccctaag tagtctccta ccttcgagtg ggaacactat taccqgtagt cgggataa ctgagaga cgtcggcaaa cccgtttcta tgagagccgt 
tttagtgaca aagaa 1 c tgottatgca aaagcaggcg ccgtggcaga agaggctctg ggggccatca ggactgtgat agctttcggg ggccagaaca aagagctgga aaggta.tcag 
aaatcactgt ttctt !11 g acgaatacgt tttcgtccgc ggcaccgtct tctccgagac ccccggtagt cctgacacta tcgaaagccc ccggtcttgt ttctcgacct ttccatagtc 
aaacatttag aaaatgccaa agagattgga attaaaaaag ctatttcagc aaacatttcc atgggtattg ccttcctgtt aatatatgca tcatatgcac tggccttctg gtatggatcc 
tttgtaaatc ttttacqgtt tctctaacct teattttttc gataaagtcq tttgtaaa99 t acccataac ggaaCjlgacaa ttatatacgt agtatacgtg accqgaagac catacctagg 
act tea tatcaaaaga atatactatt ggaaatgcaa tgacagtttt tttttcaatc ctaat.tggag c:tttc.agtgt tggccaggct gccccatgta ttgatgcttt tgccaatgca 
tge agt atagttttct tatatgataa cctttacgtt actgtcaaaa aaaaagttag gattaacctc gaaagtcaca accggtccga cggggtacat aactacqaaa acggtt•cgt 
agaggagcag catatgtgat ctttgatatt attgataata atcctaaaat tgacagtttt tcagagagag ga.cacaaacc agacagcatc aaagg:qaatt tggagt:tcaa tgatgttcac 
tctcctcgtc gtatacacta gaaactataa taactattat taggatt.tta actgtcaaaa agtctctctc ctgtgtttgg tctgtcgtag tttcccttaa acctcaagtt actacaagtg 
ttt.tcttacc cttctcgagc taacgtcaag atcttgaagg gcctcaacct gaaggtgcag agtgggcaga cqgtggccct ggttggaagt agtggctgtg ggaagagcac aacqgtccag 
aaaagaatgg gaagagctcg attgcagttc tagaacttcc cggagttgga cttccacgtc tcacccgtct gccaccggga ccaaccttca tcaccqacac ccttctcqt9 ttgccaggtc 
ctgatacaga ggctctatga ccctgatgag ggcacaatta acattgatgg gcaggatatt aggaacttta atgtaaacta tctgagggaa atcattggtg tggtgagtca ggagccggtg 
gactatgtct ccgagatact gggactactc ccgtgttaat tgtaactacc cgtcctataa tccttgaaat tacatttgat agactccctt tagtaaccac accactcagt cctcggccac 
ctgttttcca ccacaattgc tgaoaotatt tgttatggcc gtggaaotgt aaccotggat gagotaaaga aagctgtcaa agaggcceec gcctatgagt ttatcatgaa attaccacag 
gacaaaaggt ggtgttaacg acttttataa acaataccgg cacctttaca ttggtaccta ctctatttct ttcgacagtt tctccgqt.tg cggatactca aataqtactt taatggtgtc 
aaatttgaca ccctgqt:tgg agagagaggg gcccagctga qtggtgggca gaagcagagg atcgccattg cacgtgccct ggttcgcaac cccaagatcc ttctgctgga tgaggccacg 
tttaaactgt gggaccaacc tctctctccc cgggtcgact caccacccgt cttcgtctcc tagcggtaac gtgcacggga ccaagcgttg gggttctagg aagacgacct actccggtgc 
tcagc.attgg acacagaaag tgaagctgag gtacaggcag ctctggataa ggccagagaa ggccggacc.a ccattgtgat agcacaccga ctgtctacgg tccgaaatgc agatgtcatc 
agtcgtaacc tgtgtctttc acttcgactc catgtccgtc gagacctatt cCCjlgtctctt ccqgcctggt ggta.acacta togtgtggct gacagatgcc aggctttacg tctacagtag 
gctgggtttg aggatggagt aattqtggag caaggaagcc acagcgaact qatgaagaag gaaggqgtgt acttcaaact tgtcaacatg cagacatcag gaagccag3:t ccagtcagaa 
cgacccaaac tcctacctca ttaacacctc gttccttcgg tgtcgcttga ctacttcttc cttccccaca tgaagtttga acagttqtac gtctgtagtc cttcqgtcta 99tcagtctt 
gaatttgaac taaatgatga aaaggctgcc a aatgg ccccaaatgg ctggaaatct cgcctattta ggcattctac tcagaaaaac cttaauatt cacaaatgtg tcagaagagc 
cttaaacttg etttactact tttccgacgg t ttacc ggggtttacc gacctttaga gcggataaat ccgtaagatg agtctttttg gaatttttaa gtgtttacac agtcttctcq 
cttgatgtgg aaaccgatgg acttgaagca aatgtgccac cagtgtcctt tctgaaggtc ctgaaactga ataaaacaga. atggccctac tttgtcqtgg gaacagtatg tgccattgcc 
ga.actacacc tttggct.acc tgaacttcgt ttacacggtg gtcacaggaa agacttccag gactttgact tattttgtct t.a.ccgggatg aaacaqcacc cttgtcatac acggtaacgg 
aatggggggc ttcagccggc attttcagtc atattctcag agatcatagc gatttttgga ccaggcgatg atgcagtgaa gcagcagaag tgcaacatat tctct:ttgat tttcttattt 
ttaccccccg aagtcggccg taaaagtcag tataagagtc tctagtatcg cta.aaaacct ggtccgctac tacgtcactt cgtcgtcttc acgttgtata agagaaacta aaagaetaaa 
ctgggaatta tttctttttt tactttcttc cttcagggtt tcacgtttgg gaaagctggc gagatcctca ccagaagact gcggtcaatg gcttttaaag caatgctaag acat;Jgacatg 
gacccttaat aaagaaaaaa atgaaagaag gaagtcccaa agtgcaaacc ctttcgaccg ctctaggagt ggtcttctga cgccagttac cqaaaatttc gttacgattc tgtcctgtac 
aqctgotttg atgaccataa aaacaotact QQtQcacttt ctacaagact tvccac•oat gctocccaao tccaaggagc cacag~acc aggttljlgctt taattgcaca gaatatagct 
tcgaccaaac tactggtatt tttgtcatga ccacgtgaaa gatgttctga acggtgtcta cqacgggttc aggttcctcq qtgt:ccttgg tccaaccgaa attaacgtgt cttatatcga 
aaccttggaa ctggtattat catatcattt atctacggtt ggcagttaac cctattgcta ttagcagttg ttccaattat tgctgtgtca ggaattgttg aaatgaaatt gttggctgga 
ttggaacctt gaccataata gtatagtaaa tagatgccaa ccgtcaattg ggataacgat aatcgccaac aaggttaata acgacaa~qt ccttaacaac tttacttt aa caaccgacct 
aatgccaaaa gagataaaaa agaactggaa gctgctggaa agattgcaac agaggcaata gaaaatatta ggacagttgt gtctttgacc caggaaagaa aatttgaatc aatgtatgtt 
ttacggtttt ctctattttt tcetgacctt cgacgacctt tctaacgttg tctccqttat cttttataat cctgtcaaca cagaaactgg gtcctttctt ttaaacttag ttacatacaa 
gaaaaattqt atggacctta caggaattct gtgcagaagg cacacatcta tggaattact tttagtatct cacaagcatt tatgtatttt tcctatgccg gttgttttcg atttggtgca 
ctttttaaca tacctggaat gtccttaaga cacgtcttcc gtgtgtaoat accttaatga aaatcataga gtgttcgtaa atacataa.aa aggatacqgc caacaaaagc taaaccacgt 
tatctcattg tgaatggaca tatgcgcttc agagatgtta ttctggtgtt ttctgcaatt gtatttggtg cagtggct Jgacatgcc agttcatttg ctccagacta tgctaaagct 
atagagtaac acttacctgt atacgcgaag tctctacaat aagaccacaa aagacgttaa cataaaccac gtcaccga ctgtacgg tcaagtaaac gaggtctgat acgatttcga 
aagclgtctg cagcccactt attcatgctg tttgaaagac aacctctgat tgacagctac agtgaagagg ggctgaagcc tgataaattt gaaggaaata taacatttaa tgaagtcgtg 
ttcgacagac gtcgggtgaa taagtacgac aaactttctg ttggagacta actgtcgatg tcacttctcc ccgacttcgg actatttaaa cttcctttat attgtaaatt acttcagcac 
ttcaactatc ccacccgagc aaacgtgcca gtgcttcagg ggctgagcct g;aggtgaag aaaggccaga ea ccct ggtgggcagc agtggctgtg ggaagagcac ggtggtccag 
aa.gttgatag ggtggg:;ccg tttgcacggt cacgaagtcc ccgactcgga cctccacttc tttccggtct gt ggga ccacccgtcg tcaccgacac ccttctcgtg ccaccaggtc 
ctcctggagc gqttctacga ccccttggcg gggacaqtgc ttctcgatgg tcaagaagca aagaaactca atgtccagtg gctcagagct caactcggaa tcgtgtctca ggagcctatc 
gaggacctcq ccaagatgct ggggaaccgc ccctgtcacq aagagctacc agttcttcgt ttctttgagt tacaggtcac cgagtctcga gttgagcctt agcacagaqt cctcggatag 
ctattt9act vcavcatt9c cvavaatatt !JCCtatoqag acaacaocco oottQtatca caggatgaaa ttgtgagtgc agccaaagct gccaacatac atcctttcat cqagacgtta 
gataaactga cgtcgtaacg gctcttataa cggatacctc tgttgtcggc ccaacatagt gtcctacttt aacactcacg tcggtttcga cggttgtatg taggaaagta gctctgcaat 
ccccacaaat atgaaacaag agtgggagat aaggggactc agctctcagg aggtcaaaaa cagaggattg ctattgcccg agccctcatc agacaacctc aaatcctcct gttggatgaa 
ggggtgttta tactttgttc tcaccctcta ttcccctgag tcgagagt.cc tccagttttt gtctcctaac gataacgggc tcgggagtag tctgttggag tttaggagga caacctactt 
gctacatcag ctctggatac tgaaagtgaa aaggttgtcc aagaagccct ggacaaagcc agagaaggcc gcacctgcat tgtgattgct caccgcctgl ccaccatcca gaalgcagac 
cgatgtagtc gagacctatg actttcactt ttccaacagg ttcttc<Jgga cctgtttcgg tctcttccgg cgtggacgta acactaacga gtgqcggaca ggtggtaggt cttacgtctg 
ttaatagtgg tgtttcagaa tgggagagtc aaggagcatg gcacgcatca gcagctgctg gcacagaaag gcatctattt ttcaatggtc agtgtccagg ctgggacaca gaact.tatga 
aattatcacc acaaaqtctt accctctcag ttcctcgtac cqtqcgtagt egtcqacqac cqtgtctttc cgtaqataaa aagttaccag tcacaggtcc gaccctqtgt cttgA•tact 

(A) 

Mae I Restnctlon sttes ________ _, 

I I 

(B) 

Fig. 3.8 (A) complete MDR3 mRNA sequence with Mae I restriction recognition sites hjghlighted in pink. 

(B) schematic of MDRJ mRNA sequence and associated Mae I restriction sites. Note absence of MORI 

primer binding. 
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Although methods for P-gp detection do vary between laboratories, analysis using flow 

cytometry has been well documented (Beck et al. 1996; Wall et al. 1993; Webb et al. 

1998) and as this technique provides a rapid method of detecting the P-gp protein it is a 

preferred technique when investigating P-gp-associated MDR. However, the inconsistency 

of previous investigations has meant that the role of P-gp in B-CLL drug resistance remains 

unclear, therefore, this study further investigated the issue of P-gp expression in B­

lymphocytes isolated from B-CLL patients utilising both the techniques of flow cytometry, 

to analyse P-gp expression and function, and RT-PCR, to determine MDR1 mRNA 

expression. 
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3.2 MATERIALS 

Unless otherwise stated, materials used in this study were of at least analytical grade and 

obtained from Sigrna-Aidrich Company Ltd., Poole, UK. 

All water used was 3MQ water, filtered and deionised to 18MQ by an Elga UHQ II water 

purifier (Elga Ltd., Buckinghamshire, UK). 

3.2.1 GENERAL MATERIALS 

Equipment 

• Heraeus Labofuge 400 Centrifuge (Jencons Scientific Ltd., Bedfordshire, UK). 

Reagents 

• Absolute ethanol (Hayman Ltd., Essex, UK). 

3.2.2 TISSUE CULTURE MATERIALS 

Equipment 

• 9ml vacuette Sodium Heparin blood tubes (Greiner Labortechnik Ltd., Gloucestershire, 

UK). 

• Sterile Universal tubes [2Sml] (Greiner Labortechnik Ltd., Gloucestershire, UK) 

Reagents 

• Detachabead CD 19 (Dynal (UK) Ltd., Merseyside, UK) 

• Dynabeads M-450 CD 19 (Dynal (UK) Ltd., Merseyside, UK) 
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• Fetal Bovine Serum (Sigma-Aidrich Company Ltd., Poole, UK). 

• Lymphoprep (Nycomed (UK) Ltd., Birmingham, UK ) 

• MESSA human uterine sarcoma cell line (ECACC, Wiltshire, UK) 

• MESSA/Dx-5 human uterine sarcoma cell line (ECACC, Wiltshire, UK) 

• McCoys 5A buffered medium (with sodium bicarbonate & 25mM HEPES) (Sigma­

Aidrich Company Ltd., Poole, UK). 

• RPMI 1640 buffered medium (with sodium bicarbonate & 25mM HEPES) (Sigma­

Aidrich Company Ltd., Poole, UK) .. 

3.2.3 FLOW CYTOMETRY MATERIALS 

Equipment 

• Epics Elite Flow cytometer (Beckman/Coulter (UK) Ltd., Buckinghamshire, UK) 

• 7mL Falcon tubes (Greiner Labortechnik Ltd., Gloucestershire, UK) 

• Epics Elite Flow software, version 4.02 (Beckman/Coulter (UK) Ltd., Buckinghamshire, 

UK) 

Reagents 

• MAb CD19-FITC (Beckman/Coulter (UK) Ltd., Buckinghamshire, UK) 

• MAb CD45-FITC/CD14-PE (Beckman/Coulter (UK) Ltd., Buckinghamshire, UK) 

• MAb CD5-PE (Beckman/Coulter (UK) Ltd., Buckinghamshire, UK) 

• MAb lgG 1-FITC mouse isotype control (Beckman/Coulter (UK) Ltd., 

Buckinghamshire, UK) 

• MAb lgG1-FITC/IgG2a-PE isotype control (Beckman/Coulter (UK) Ltd., 

Buckinghamshire, UK) 
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• MAb lgG2a-PE mouse isotype control (Beckman/Coulter (UK) Ltd., Buckinghamshire, 

UK) 

• MAb, UIC2-PE (lmmunotech Ltd., Bedfordshire, UK) 

3.2.4 RT-PCR MATERIALS 

Equipment 

• Cetus DNA thermal cycler 480 (Perkin El mer Ltd., Buckinghamshire, UK) 

• DRl Block DB-2A Heat Block (Techne, R & D Systems Europe Ltd., Oxon, UK) 

• Genius EQ25 thermal cycler (Techne, R & D Systems Europe Ltd., Oxon. UK) 

• Software; Microsoft windows 98 & Kodak digital science lD (Kodak scientific imaging 

systems, New Haven, USA). 

Reagents 

• 123 base-pair ladder (Life Technologies, Paisley, UK) 

• 25 base-pair ladder (Life Technologies, Paisley, UK) 

• Ficoll 400 (Life Technologies, Paisley, UK) 

• Mael restriction endonuclease (Boehringer Mannheim, East Sussex, UK). 

• Primer- MDRl Antisense- 5', GTTCAAACTTCTGCTCCTGA, 3' (Life 

Technologies, Paisley, UK) 

• Primer- MDRl Sense- 5', CCCATCATTGCAATAGCAGG, 3' (Life Technologies, 

Paisley, UK) 

• Primer- HGPRT Anti sense- 5', GTCAAGGGCACATCCTACAA, 3' (Life 

Technologies, Paisley, UK) 

• Primer- HGPRT Sense- 5', CTTGCTGGTGAAAAGGACCC, 3' (Life Technologies, 

Paisley, UK) 
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• Propan-2-ol HPLC Grade (Fisher Scientific, Leicestershire, UK) 

• Trizol (Life Technologies, Paisley, UK) 

• Ultra pure Agarose- electrophoresis grade (Life Technologies, Paisley, UK) 
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3.3 GENERAL METHODS 

3.3.1 METHOD DEVELOPMENT 

3.3.1.1 Flow cytometry 

Flow cytometric assessment of P-gp presence in B-CLL patients required P-gp-positive and 

-negative cell lines with which to validate and standardise a flow cytometry assay. 

3.3.1.1.1 Choice of cell line 

For analytical accuracy, it would have been preferable to use an immortalised B-CLL cell 

line exhibiting similar characteristics to the patients' malignant B-lymphocytes. However, 

this type of cell line could not be obtained from interlaboratory contacts or the 'European 

Collection of Animal Cell Culture' (ECACC). Immortalisation of isolated B-lymphocytes 

could have been attempted in the laboratory but this option was thought to be impractical. 

Therefore, in the absence of a readily available immortalised B-CLL cell line, ECACC 

provided a doxorubicin sensitive human uterine sarcoma cell line- MESSA- and its P-gp 

overexpressing, doxorubicin resistant subline, MESSA/Dx-5. Although not ideal, these 

were the only commercially available cell lines that provided both a P-gp negative(-ve) and 

a P-gp positive(+ve) control for method validation and were used in this study. 
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3.3.1.1.2 Choice of MAb and fluorochrome 

UIC2 was the anti-P-gp antibody selected. Its use and specificity for P-gp has been well 

documented (Beck et al. 1996; Schinkel et al. 1993) and its ability to recognise an external 

P-gp epitope potentially allowed the correlation of P-gp expression with other cell surface 

antigens in multicolour flow cytometry as well as functional measurements of dye efflux. 

To increase the sensitivity of detection, the UIC2 antibody was conjugated to phycoerythrin 

(PE) which has fluorescence emission in the red region. PE has a much greater quantum 

efficiency than FITC permitting more reliable detection of low levels of P-gp expression in 

haematological samples (section 3.1.1.3.2, pl34). 

The P-gp results using the +ve and -ve cell line analysis (section 3.3.8, pl65) were 

compared and it was found that, under identical conditions, the fluorescence shift of the 

resistant cell line into the positive region compared to the sensitive cell line gave a good 

indication that the assay was able to identify the presence of the P-gp protein (Fig 3.9 and 

Fig 3.10). An ability to detect different amounts of P-gp expression was demonstrated by 

the range of fluorescence observed (Fig. 3.1 0). 
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Fig 3.9 UIC2 P-gp detection in anthracycline sensitive cells (MESSA) v IgG2a isotype 

control. 

128 

• P-gp UIC1 antibody- 0 7% 

0 = lsolype control- O.l% 
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PYT3 LOG PE Fluorescence lnlensdy 

Fig 3. 9 A region of analys is (positivity) was set using a marker on the control sample (section 3 .I. 1.2. 1 ). 

When compared with the isotype control the increase in % positivi ty using the UIC2 monoclonal antibody is 

very low with only a 0.5% increase in positivity, falling well within the acceptable margin of error for a Flow 

cytometer. ANOV A and post-hoc analysis with the Bonferroni test showed that this increase in fluorescence 

intensity was not significant (P > 0.05). 
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Fig 3.10 UIC2 P-gp detection in anthracycline resistant cells (MESSA/Dx-5) v IgG2a 

isotype control. 
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Fig 3.10 A region of analysis (positivity) was set using a marker on the control sample (section 3.1. 1.2.1 ). 

Under identical conditions the increased 99.2% positivity shows a substantial ability to detect P-gp presence. 

ANOV A and post-hoc analysis with the Bonferroni test showed that this increase in fluorescence intensity 

was significant (P > 0.05). 

Successful P-gp detection led to the use ofthis methodology for patient P-gp analysis. 
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3.3.1.2 RT -PCR 

To help corroborate the flow cytometry results, the 'Access' RT-PCR kit (Promega, 

Southampton, UK) was used to detect the presence ofMDRl mRNA (section 3.4.4, p169). 

Due to time constraints, however, substantial method development was not possible. 

Instead, the integrity (as determined by the presence of 18S and 28S ribosomal subunits) of 

extracted cellular RNA was verified by running an aljquot of the extracted samples on a 

1.4% agarose gel (section 3.4.2, pl68 and Fig. 3.11 below) and also by performing aRT-

PCR reaction on the HGPRT housekeeping genes endogenous to many mammalian cells 

(section 3.4.3, p169 and Fig. 3.12). 

Fig. 3.11 Integrity of RNA in patient samples. 
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Fig. 3.11 Lanes 1-5; healthy volunteers: Lanes 6, 29 & 49; Blank: Remaining numbered lanes; patients: 

Control and • ; control RNA from isolated mononuclear cells: MESSA; P-gp negative cell line: MESSADx-5; 

P-gp positive ceU line. A solid line, I, indicates the faint presence of RNA bands comparable to the control 

RNA samples. 

155 



The RNA extracted from some patient samples could be identified (Fig. 3.11 ). It was 

theorised that any inability to visualise RNA in the rest of the samples was due to 

variability in extraction efficiency. HGPRT RT-PCR was continued on these samples as it 

was thought that low RNA levels would not substantially hinder the PCR due to the 

amplification procedure. 

Fig. 3.12 HGPRT housekeeping gene RT-PCR product. 
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Fig. 3. 12 Control RNA; RNA isolated from mononuclear cells: H20; nuclease-free water: MESSA; P-gp -

ve cell line: MESSA/Dx-5; P-gp +ve cell line. A 97bp HGPRT RT-PCR product was detected in the control 

RNA sample as well as the positive and negative control cell lines, demonstrating the integrity of the RNA. 
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The RT-PCR for HGPRT was only performed with the cell lines due to time constraints 

and it was found that the RNA was able to be amplified by RT-PCR. Upon verification of 

RNA integrity, optimisation of the magnesium sulphate (MgS04) concentration in the 

'Access' RT-PCR kit was completed. To determine optimum MgS04 concentration for 

analysis, PCR was conducted on an H20 control and the two cell lines MESSA & 

MESSA/Dx-5 (P-gp -ve & P-gp +ve) with varying concentrations of magnesium sulphate 

(Fig 3.13). 

The results demonstrated the absence of a 157bp product with the -ve and H20 controls, 

while the P-gp +ve sample showed a clear band at a position approximately 157bp in size. 

Higher concentrations of magnesium sulphate also gave the same result but there were also 

extra bands, possibly from non-specific primer binding or DNA contamination during the 

RNA extraction procedure (section 3.3.10.2, pl67). A decision was therefore made to 

employ a magnesium sulphate concentration of 1mM throughout the remaining PCR 

analysis. 

After optimisation of the MgS04 concentration, RT-PCR analysis of MDR1 mRNA was 

performed on previously isolated patient and healthy volunteer samples using published 

sense and anti-sense primers for the MDR1 gene (Noonan et al. 1990) (sections 3.4.4 & 

3.5.1.2, p169 & 172). 
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Fig. 3.13 Optimisation of Magnesium Sulphate (MgS0 4)concentration 
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Fig. 3.1 3 Samples of water, P-gp -ve cells & P-gp +ve cells were run in triplicate with the following varying 

concentrations of Mg- lmM, 2mM & 3mM. Each Mg concentration allowed the detection of the 157bp 

MDRI RT-PCR product in the P-gp positive cell line compared to water and P-gp negative control. At 

concentrations higher than I mM MgS04, however, separation became contaminated by other bands/products 

showing optimum Mg concentration to be I mM. 
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3.3.2 PREPARATION OF GENERAL SOLUTIONS/MATERIALS 

3.3.2.1 Culture Media 

Both buffered RPMI & McCoys SA media were purchased in 500ml quantities. Frozen 

aliquots of L-glutamine and FBS were defrosted at 37°C; 55ml of medium was then 

removed from the 500ml bottles of media and replaced with 5ml of 200mM L-glutamine & 

50ml of FBS. The final media therefore had 10% FBS (v/v) and a final concentration of 

2mM L-glutamine. 

3.3.2.2 Ficoll Loading Buffer 

This loading buffer was made up as follows: -

15% (w/v) Ficoll400 

0.25% (w/v) Bromophenol Blue 

0.25% (w/v) Xylene Cyanol Blue 

3.3.2.3 Agarose gel preparation 

The appropriate amount of agarose was weighed out (Table 3.3) and transferred to a 

conical flask. 50ml of I x TBE buffer was added and the mixture was then placed in the 

microwave and heated on medium power until all the agarose had melted and no solid 

particles remained. 2.5Jll of ethidium bromide solution (IOmg/mL) was added and gently 

agitated to ensure thorough mixing, avoiding the creation of air bubbles. The agarose was 

then cooled to 50-60°C and poured into a casting tray. The gel was allowed to set for a 

minimum of 20min. 
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% agarose gel 

1.4% 2% 

r grams of agarose for 50rnL gel 0.7 1.0 

Table 3.3 Quantity of agarose for different gel strengths 

3.3.2.4 Mini polyacrylamide gel electrophoresis (PAGE) gel preparation 

lOml of the PAGE gel mix was made up according to Table 3.4. 

Stock solutions 10% gel 

Sx TBE 2ml 

H20 5.5ml 

40% (w/v) polyacrylamide 2.5ml 

10% (w/v) ammonium persulphate 50!!1 

TEMED 111-11 

Table 3.4 Constituents for PAGE gel mix 

Approximately 9ml of the PAGE mix was added to the gel casting assembly and a 12-tooth 

comb inserted, ensuring that no air bubbles were present around the comb. The gel was 

allowed to set for at least 30min. 
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3.3.3 CELL LINE HARVEST/PASSAGE & 8-LYMPHOCYTE ISOLATION 

Harvest/passage and isolation techniques were used to maintain stocks of cell lines, isolate 

peripheral blood mononuclear cells (PBMCs) from normal volunteers, and isolate patient 

B-lymphocytes. Both P-gp -ve and P-gp +ve cell lines (MESSA & MESSA/Dx-5, 

respectively) were passaged when they reached confluence. All procedures were carried out 

under aseptic conditions. 

3.3.3.1 Cell Line harvesUpassage 

Tissue culture medium (McCoys SA) was prepared and warmed to 37°C, prior to use. The 

medium in the culture flask ( IOml) was carefully decanted and a small amount of sterile 

ethylenediaminetetraacetic acid (EDTA) 0.02% (w/v) solution added. The flask was then 

incubated (37°C) for l0-15min. During this incubation the cells detached from the bottom 

of the flask. After the incubation period the flask was removed from the incubator and 

gently tapped to dislodge any remaining cells. This cell mixture was then transferred to a 

sterile universal flask and an equal amount of warmed medium added to the EDTA/cell 

mixture. The cells were dispersed using a sterile pipette and flasks were re-seeded into 4 

T25cm2 adherent culture flasks, i.e. 1:4 split. Approximately lOml of warmed medium 

were added to each new flask and adequate cell dispersal was checked microscopically 

before returning the flasks to the incubator. 

3.3.3.2 B-lvmphocyte isolation 

Peripheral blood was collected from B-CLL patients into 9rnl sodium heparin tubes. The 

B-lymphocytes from the patient sample were isolated using magnetic bead separation, 
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targeting the CD 19 antigen on the cell surface & so effecting positive cell isolation 

(Appendix C). Purity of sample from magnetic bead separation was checked on the flow 

cytometer using CD19 and CD5 as the antigenic targets with corresponding isotype 

controls (section 3.1.1.2.1, p130). 

3.3.3.3 Peripheral Blood Mononuclear Cells (PBMCs) 

Due to difficulties in isolating sufficient numbers of 8-lymphocytes from the healthy 

volunteers using magnetic beads (due to their low 8-lymphocyte count) peripheral blood 

mononuclear cells were isolated instead (Appendix D). As a mixed population of cells was 

obtained by the isolation of mononuclear cells, dual staining was carried out on these 

samples allowing the gating of CD19 +ve cells and analysis of P-gp presence in the gated 

population (section 3.1.1.2, p127). 

3.3.4 CELL CULTURE 

All procedures were carried out under aseptic conditions. 

3.3.4.1 Cell Lines 

The doxorubicin sensitive (MESSA) and doxorubicin-resistant (MESSA/Dx-5) cell lines 

were grown as a monolayer in T25cm2 adherent flasks (Sarstedt Ltd., Leicestershire, UK) 

in M"Coys 5A medium supplemented with 10% (v/v) F8S and 2mM L-glutamine. Cells 

were harvested with EDTA 0.02% (w/v) prior to experimentation (section 3.3.3.1, p161). 
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3.3.4.2 Patient B-Iymphocytes 

The isolated B-lymphocytes from patients were maintained as a suspension population in 

T25cm2 suspension flasks (Sarstedt Ltd., Leicestershire, UK) in RPMI medium 

supplemented with 10% FBS (w/v) and 2mM L-glutamine. The cells were harvested by 

centrifuging at 280g for 5 min and pelleting the cells at the bottom of a sterile universal 

flask, before resuspension in 5 ml RPMI culture medium. Aliquots of the resuspended cells 

were taken for experimentation as described in section 3.3.8 (pl65). 

3.3.5 DETERMINATION OF CELL NUMBER AND VIABILITY 

Cells were harvested as described in sections 3.3.3.1 & 3.3.3.2 (pl6l) and pelleted by 

centrifugation at 280g for 5min. The cells were resuspended in IO.lml of warmed culture 

medium and thoroughly dispersed. A IOOJ.!I aliquot of the cell suspension was mixed with 

900!-ll of Trypan Blue (dilution factor (df) of 10). A portion of this mixture was taken for 

determination of cell count using a haemocytometer. Non-viable cells took up the dye and 

appeared blue while the viable cells appeared translucent. The four outer corner squares 

and middle square of the haemocytometer grid were counted for viable and non-viable 

cells. An average cell count per haemocytometer square was taken and the cell number 

calculated as shown below: 

163 



To calculate cell number: 

Average cells/ml = average cell count per square x df x 104 

= no. cells x 104/ml 

Divide by LOO to convert to = no. cells x 106/ml 

df =Dilution factor. 

To calculate cell viability: 

Total viable cells/ Total no. of cells x 100 = % viability 

3.3.6 CRYOPRESERV ATION OF CELLS 

Previous investigations within the laboratory had shown that patients' B-lymphocytes were 

too fragile for cryopreservation, therefore, flow cytometry experimentation was always 

conducted on freshly isolated B-lymphocytes avoiding the need for cryopreservation. By 

contrast, the cell lines needed to be cryopreserved to maintain future cell stocks and were 

found to tolerate the procedure well. 

Both cell lines were harvested using EDTA 0.02% (w/v) as described in section 3.3.3.1 

(p161). The harvested cell suspension was centrifuged for 5min at 280g and the cell pellet 

resuspended in l0.1ml of RPMI medium. Cell number and viability was then determined 

(section 3.3.5, p163). The cell suspension was again centrifuged to pellet the cells which 

were then resuspended in cold cryosolution (95% (v/v) FBS, 5% (v/v) DMSO) to give a 

final concentration of 1 x 106 viable cells/ml. 1ml aliquots were transferred to cryovials 

(Fisher Scientific, Leicestershire, UK) and placed into a Cryo1°C freezing container (Fisher 

Scientific, Leicestershire, UK) with isopropanol allowing controlled rate freezing with a 
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stepwise decrease in temp of -l°C/min, when incubated at lower temperatures like- 80°C. 

The cells were left for 48h, at -80°C, in the isopropanol-filled Cryol °C container and the 

cryovials were then transferred to -l96°C (liquid nitrogen) and stored until required. 

3.3.7 CELL RECUPERATION 

McCoys SA medium was warmed to 37°C in preparation for the extraction of the required 

frozen cell aliquots. When the medium had been warmed, the cryovials were removed from 

the liquid nitrogen and heated quickly at 37°C until completely defrosted. As DMSO is 

toxic to cells, the defrosted cell suspension was transferred to a 2Scm2 culture flask as 

quickly as possible and lOml of warmed medium added to de-activate the DMSO. The 

culture flask was incubated at 37°C for 24h and the medium changed. The cells were then 

cultured as described previously (section 3.3.4.1, pl62). 

3.3.8 P-GP DETECTION IN CELL LINES BY FLOW CYTOMETRY 

P-glycoprotein was assayed by incubating lJ.lg/ml UIC2, conjugated to PE, per S x 105 

cells, for IS min at room temperature. The antibody controls used were all isotypically 

matched and used at the same concentration as the primary anti-P-gp antibody, i.e. an 

equivalent amount of Ig02a-PE antibody was added to another aliquot of cells as an 

isotype-matched negative control. After two additional washes in PBS the cells were 

resuspended in O.Sml PBS and analysed by flow cytometry using the following procedure. 

A control cell sample (unstained cells) was run on the flow cytometer for 2-3min to 

determine the position of the cell population using forward and side scatter. A gate was 

established around the unstained control cell population (Fig. 3.3[A], pl31) and a region of 

positivity marked (Fig. 3.3[8], p131). The experimental samples (including the isotype 
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control) were analysed by counting 10000 gated cells/sample and determining the percent 

positivity using the previously marked region. Cellular fluorescence associated with UIC2 

labelling was compared to that of the IgG2a control and the difference in percentage 

positivity noted. A sample was considered to be expressing P-gp if the percent positivity 

was at least 10% greater than the isotypic control value. 

3.3.9 PREPARATION OF CELLS FOR PROTEIN AND RNA EXTRACTION 

Cells (cell lines & patients' B-lymphocytes) were pelleted in a sterile universal flask by 

centrifugation at 280g and resuspended in warmed medium for cell counting. The cells 

were pelleted once more and resuspended in FBS-free medium. The cells were washed 2 

more times with FBS-free medium to remove all traces of proteins and a sample containing 

5 x 105 cells removed to a cryovial. The cryovial was centrifuged at 280g to pellet the cells 

and the medium discarded. The cell pellet was snap frozen to -80°C and then transferred to 

liquid nitrogen for storage. 

3.3.10 RNA TECHNIQUES 

3.3.10.1 General considerations for RNA work 

RNA manipulation is very sensitive to contaminant RNases and therefore a clean area was 

set aside for RNA work. Any pipettes used were regularly cleaned (3% H202) and 

designated for use with RNA-grade solutions only. Sterile tips and microfuge tubes were 

designated for RNA work only and gloves were changed frequently. RNA-grade reagents 

were used at all times with sterile nuclease-free water. 
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3.3.10.2 Extraction of RNA using TRizol reagent 

In accordance with the Trizol reagent protocol (Appendix E) RNA was extracted from the 

frozen +ve and -ve cell line pellets and the frozen patient samples. The resulting RNA 

pellet was resuspended in nuclease-free water and stored at -20°C until required 

(Chomczynski, 1993). Aliquots of these samples as well as portions of a control RNA 

sample (from isolated mononuclear cells) were run on an agarose gel (1.4%) to detennine 

the integrity of the extracted RNA and therefore the quality of the RNA extraction 

procedure (section 3.4.2, pl68), i.e. a gel was run to detennine the integrity of the 18S and 

28S ribosomal subunits. 

3.4 EXPERIMENTAL METHODS 

3.4.1 P-GPDETECTION IN PATIENTS BY FLOW CYTOMETRY 

55 patients with B-CLL and 10 healthy adult volunteers were analysed in this study. The 

patient sample population was split into 4 analytical groups to attempt to distinguish any 

relationship between P-gp expression and treatment modalities: nonnal volunteers (10 

samples); untreated B-CLL patients (33 samples ); B-CLL patients treated with drugs not 

transported by P-gp (20 samples); B-CLL patients being treated with drugs transported by 

P-gp (CHOP regimen, 2 samples). 

The entire patient sample (55 patients) could not be subsequently analysed for P-gp 

functionality. Therefore 12 of these patients were investigated for P-gp and MDRl mRNA 

expression as well as P-gp functionality. 
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In each case P-gp analysis was carried out on freshly isolated B-lymphocytes (section 

3.3.3.2, p161). A cell count was then performed (section 3.3.5, p163) and P-gp expression 

determined using the procedure described in section 3.3.8 (p165). Previous investigations 

have used a threshold limit to distinguish between P-gp positive and negative samples. An 

analytical cut-off point commonly used is that of a greater than 10% increase in P-gp MAb 

staining compared to an isotype control to denote P-gp positivity and this threshold was 

initially used in this study. 

3.4.2 AGAROSE GEL ELECTROPHORESIS OF RNA SAMPLES FROM 

ORIGINAL PATIENT SAMPLE 

Successful RNA extraction (section 3.3.10.2, pl67) was determined by running a portion 

of the extracted sample on a 1.4% agarose gel using the following procedure. The 

previously extracted RNA samples were defrosted on ice while 1j..ll of Ficollloading buffer 

was added to labelled 0.5ml microfuge tubes. 5j..ll of each defrosted RNA sample was then 

added to the appropriate microfuge tube and the remaining RNA sample was refrozen for 

PCR analysis the next day. The microfuge tubes were then heated at 65°C for 5 min in a 

DR1 Block DB-2A Heat Block (Techne, R & D Systems Europe Ltd., Oxon, UK) and 

placed immediately on ice. The samples (6j..ll) were loaded into the wells of a 1.4% agarose 

gel (containing IOmglmL ethidium bromide) and the gel was run at 100V for 20-25min on 

GNA-100 gel electrophoresis apparatus (Pharmacia). The RNA was visualised with a 3 

U.V™ Transilluminator UVP U.V. box. Pictures were taken and stored using the 

''Electrophoresis documentation and analysis system 120" from Kodak Digital Science. 
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3.4.3 DETECTION OF HYPOXANTHINE-GUANINE PHOSPHORIBOSYL 

TRANSFERASE (HGPRT) BY PCR 

RNA integrity was also investigated by performing a RT-PCR reaction on the HGPRT 

housekeeping genes endogenous to many mammalian cells. This PCR amplifies a specific 

region of the gene encoding HGPRT from cellular RNA as a method to confirm template 

quality. This test was carried out to confirm that the extracted RNA was of amplifiable 

quality. 

The HGPRT sense (5', CTTGCTGGTGAAAAGGACCC, 3') and antisense (5', 

GTCAAGGGCACATCCTACAA, 3') primers were used with the 'Access' RT-PCR kit 

following the manufacturers protocol (Appendix F). The template was replaced by 

nuclease-free water for the negative control to check for contamination of the reaction and 

a previously tested sample of RNA was used as the positive control. The PCR products 

were run on a 2% agarose gel (containing lOmg/mL ethidium bromide) at IOOV for 20-

25min on GNA-100 gel electrophoresis apparatus (Pharmacia). The PCR products were 

visualised with a 3 U.V™ Transilluminator UVP U.V box at 302nm. Pictures were taken 

and stored using the 'Electrophoresis documentation and analysis system 120' from Kodak 

Digital Science. 

3.4.4 ANALYSIS OF MDRI GENE EXPRESSION BY REVERSE 

TRANSCRIPTASE POLYMERASE CHAIN REACTION (RT-PCR) 

The cell samples used for RT-PCR were isolated simultaneously with cells isolated for 

flow cytometry analysis and stored in liquid nitrogen until required (section 3.3.9, p 166). 

The samples were stored in liquid nitrogen as quickly as possible to delay any RNA 
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degradation. However, the primers specific for amplification of the MDR1 gene yield small 

cDNA PCR products (Fig. 3.7A & 3.7B) so that even partially degraded mRNA could have 

been used as a template (Noonan et al., 1990). The stored samples were analysed in aRT­

PCR reaction using the 'Access' RT-PCR system from Promega (Appendix F) with MDR1 

sense (5', CCCATCATTGCAATAGCAGG, 3') and anti-sense primers (5', 

GTTCAAACTTCTGCTCCTGA, 3'). Optimisation of this reaction was carried out with 

regards to magnesium sulphate (MgS04) concentration by comparing the PCR product for 

the water control and the P-gp -ve & P-gp +ve cell lines using concentrations of MgS04 at 

1mM, 2mM or 3mM. Following optimisation of the MgS04 concentration to 1mM, the 

final MDR1 mRNA RT-PCR product was separated on a 2% agarose gel (containing 

lOmg/mL ethidium bromide). 

A diagnostic enzyme restriction was included as an extra test in order to differentiate 

between the MDR1 & MDR3 product in the event of non-specific primer annealing and 

amplification of MDR3 (O'Driscoll et al. 1993). If the amplified product was MDRI then 

it would be digested by the restriction endonuclease Mae 1 (Appendix G) such that a 84bp 

and 73bp fragment would be distinguishable on a 10% polyacrylamide gel after separation. 

Additionally, a gel-purified RT-PCR sample from the P-gp positive cell line control 

(MESSA/Dx-5, p148) as well as 5 random patient RT-PCR samples (also gel-purified) 

were sent to MWG Biotech (UK) Ltd. (Milton Keynes) for sequencing analysis. The gel 

purification was performed by Dr. J Farrugia who subsequently sent lOJ.IL of each DNA 

sample as well as the MDRI sense and antisense primers (120 J.1L of each at lOpmoVJ.IL) 

shown above. 
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3.4.5 STATISTICAL ANALYSIS 

Where possible chi square analysis was performed on the results in the patient contingency 

tables comparing one sample group of patients to another with regards to P-gp presence or 

absence. All other statistics in this chapter were calculated using a one-way ANOV A 

followed by post-hoc analysis at the 95% confidence interval (P < 0.05) using the 

Bonferroni test. 

3.5 RESULTS 

This study was designed to determine the expression of MDRI mRNA and P-gp in B-CLL 

patients. 

3.5.1 ANALYSIS OF P-GP AND MDRl mRNA EXPRESSION IN B-CLL 

PATIENTS 

3.5.1.1 Flow Cytometry detection of P-gp in isolated samples 

Nonnals B-CLL- Untreated B-CLL- single agent B-CLL- combination 
therapy therapy 

Pgp positive 2 10 6 0 
Pgp 8 23 14 2 
negative 
Total 10 33 20 2 
sample No. 

Table 3.5 P-gp positivity in four patient sample groups using flow cytometry analysis 

B-lymphocytes were isolated from patients with B-CLL and analysed for the presence of P-gp using the MAb 
UIC2. The PBMCs from normal volumeers were isolated and dual stained with CDI9 -FITC and UIC2-PE 
for the analysis of P-gp on B-lymphocytes. Nonnals; healthy volunteers: B-CLL untreated; patients not 
treated with chemotherapy: B-CLL single agent therapy; patients treated with single agent regime, e.g. 
chlorambucil, fludarabine: B-CLL combination therapy; patients being treated with CHOP combination 
regime. There was no significant association between P-gp positivity and B-CLL or single agent treatment of 
B-CLL by chi square analysis. No statistical analysis was possible for the patients on combination therapy as 
the sample population was Loo small. 
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Fig 3.14 Typical P-gp positivity profile in patient sample 
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Fig 3.14 The patient 8-lymphocytes were gated and analysed for P-gp expression. The samples were 

compared with each other using ANOV A followed by post-hoc analysis using the Bonferroni test. No 

signifi cant difference was found between U£C2 P-gp staining v isotype control. 
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3.5.1.2 Reverse transcriptase-polymerase chain reaction (RT-PCR) of isolated 

samples 

RT-PCR analysis on 50 patient samples and cell line controls suggests a much higher P-gp 

positivity than flow cytometry (Tables 3.5, pl71 & 3.6 and Fig. 3.15 & 3.16, p175 & 176). 

Nonnals B-CLL- Untreated B-CLL - single B-CLL- combination 
agent therapy therapy 

Pgp positive 5 26 15 2 
Pgp negative 0 7 0 0 

Sample No. 5 33 15 2 

Table 3.6 P-gp positivity in four sample groups using RT -PCR analysis Cells from healthy 

volunteers and B-CLL patients were isolated and analysed for the presence of MDRI mRNA using RT-PCR. 

Normals; healthy volunteers: B-CLL untreated; patients not treated with chemotherapy: B-CLL single agent 

therapy; patients treated with single agent regime, e.g. chlorambucil, fludarabine: B-CLL combination 

therapy; patient treated with CHOP combination regime. There was no significant association between P-gp 

positivity and B-CLL single agent therapy by chi square analysis. No statistical analysis was possible for the 

patients on combination therapy as the sample population was too small. 

The comparative increase in P-gp detection using RT-PCR versus flow cytometry had to be 

confirmed however as amplification of the MDR I product also had the potential to result in 

the amplification of the MDR3 product and both are very similar in size (O'Driscoll et al. 

1993). 

The Mael restriction enzyme recognises sites specific to the MDRI gene product. 

Therefore, the amplification of the MDRI product was confirmed by digesting the RT-PCR 

product with Mael. The ability of ~his enzyme to digest the samples for P-gp +ve cell line 
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and four B-CLL patients suggested that the amplified gene product in all these cases is that 

of the MDR 1 gene and not MDR3 (Fig. 3.17, p 177). 

However, sequencing of the amplified gene products was the only way to absolutely 

confirm that the RT-PCR products were definitely a product of MDRl gene amplification. 

Unfortunately, of the 6 gel-purified RT-PCR samples sent for sequencing, only 4 were able 

to be analysed. These four samples consisted of; Pgp +ve control cell line MESSA/Dx-5, 

patient 3, patient 4 and patient 8 (Table 3. 7). 

Sample Sequence 

Pgp +ve MESSNDx-5 tgugtctggacagcayygaaagataagaaagaactagaaggllctgcgaagatcgctactgaagcaatagaa 

aacttccgaaccgttgtllctugactcaggagcagaagtugaaca 

Patient 3 gttgtctggacaagcactgaaagataagaaagaactagaaggtgctgggaagatcgctactgaagcaatagaa 

aacttccgaaccgttglllclllgactcaggagcagaagtttgaac 

Patient 4 ttgtctggacagcactgaaagataagaaagaactagaaggtgctgggaagatcgctactgaagcaatagaaaa 

cttccgaaccgttgtttctltgactcaggagcagaagtttgaac 

PatientS aatgttgtctggaca(a)gcactgaaagataagaaagaactagaaggtgctgggaagatcgctactgaagcaat 

agaaaacttccgaaccgttglltcttlgactcaggagcagaagtttgaac 

Table 3.7 Sense seguences for the Pgp+ve control cell line, MESSA/Dx-5, and some 

random patient samples Gel purified RT-PCR samples were sent to MWG Biotech (UK) Ltd. for 

sequencing using the sense primer for MDR I (pl70). 

The homology of the above sense sequences, compared to the known MDRl sequence, was 

assessed by performing a BLAST search at the NCBI intemet site 

(www.ncbi.nlm.nih.gov/blast/Blast.cgi). The Blast search in each case returned a hit of;?: 

95% homology compared to homo sapiens P-glycoprotein (PGYI) mRNA (Appendix H) 

confirming the RT-PCR product to be that of the amplified MDRI gene and not the MDR3 

gene. 
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Fig 3.15 MDRl RT-PCR product from healthy volunteers and patient samples. 
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Fig 3. 15 One single agarose gel with 3 separate combs, [A], [B] and [C]. H20; nuclease free water: 

MESSA; P-gp -ve cell line: MESSA/Dx-5; P-gp +ve cell line. [A[ Lanes 1-5, healthy volunteers; lanes 6-18, 

untreated patients, [B) Lanes 19-23, patients on single agent therapy; lane 24, patient on combination therapy; 

lanes l-9, untreated patients. ICI Lanes 10-14, untreated patients; lanes 15- 19, patients on single agent 

therapy; and lanes 20-23, patient on combination therapy over time i. e. rectangle; same patient over time. 
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Fig 3.16 MDRl RT -PCR product of samples from eleven patients subsequently 

analysed for P-gp function. 

Fig 3. 16 H20; nuclease free water: P-gp -ve; MESSA cell line: P-gp +ve; MESSNDx-5 cell line: 'N' -RT; 

PCR ana lysis without the reverse transcription, where 'N' = H20, P-gp -ve, P-gp +ve or patient sample. 
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Fig 3.17 PAGE of digestion of patient PCR product using Mae/ restriction enzyme 

1 = 25bp ladder 

2 = Pgp +ve MESSAJDx-5 

3 = Pgp +ve MESS.A!Dx-5 Digest 
4 =Patient 8 

5 = Patient 8 Digest 

6 =Patient 9 
7 = Patient 9 Digest 
8 =Patient 10 
9 =Patient 10 Digest 

1 0 = Patient 11 

11 = Patient 11 Digest 
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Fig 3.17 Digestion of the 157bp P-gp product results in 2 fTagments, 84 & 73bp in size. 
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3.6 DISCUSSION 

With flow cytometry, the initial inability to detect P-gp in the majority of the patient 

sample (16/55 were positive) and healthy adult volunteer samples (2/10 were positive) 

(Table 3.5, pl71 & Fig. 3.14, p172) suggested that, in general, this protein was absent. In 

addition, it was only possible to compare the effect of single agent therapy on P-gp 

expression as other treatment group sizes were too small for statistical analysis. In this 

case, with chi square analysis, no association was found between single agent therapy and 

P-gp expression. 

The low P-gp incidence by flow analysis could perhaps be explained by a lack of 

sensitivity of the assay. Although the P-gp-positive and -negative control cell lines 

demonstrated that the assay was able to distinguish between presence and absence of the P­

gp molecule (section 3.3.1.1, pl51), the resistant cell line has been engineered to 

overexpress P-gp and may not reflect the true clinical levels of this protein. 

Uncertainty of the level at which MDR expression becomes significant within the clinical 

context means that although P-gp may be detected in only small quantities or not at all, its 

limited presence may still render a patient prone to drug resistance. In view of this, the 

investigation was directed towards analysis of the presence of P-gp at a molecular level. 

The detection of mRNA in the patient group and volunteer samples throws into question 

the sensitivity of the flow cytometry results. The presence of MDRl mRNA (Fig. 3.15, 

pl75; Fig. 3.16, pl76; Table 3.6, pl73) in 43/50 samples suggests that flow cytometry 

analysis may not be sensitive enough to detect very low quantities of P-gp which may still 

be significant in the clinical setting. 
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These seemingly inconsistent results have been found by others. In 1993, Wall et al. found 

that some of their patients were positive for MDR1 mRNA detection but negative when 

analysed with the P-gp monoclonal antibody, MRK 16. It is unlikely that such a similar 

result occurred du~ to coincidence and some explanations for this are proposed. 

1] The flow cytometry analysis may not have been sensitive enough to detect P-gp. Either 

the levels of P-gp were extremely low or the intensity from the fluorescent conjugate was 

not sufficient for detection (Beck et al. 1996). However, this investigation used UIC2/PE 

as the chosen monoclonal antibody/fluorescent conjugate marker, for ease of acquisition 

and its use and reliability have been well documented (Beck et al. 1996; Schinkel et al. 

1993). 

2] It may be that the mRNA is constitutively expressed in circulating peripheral B­

lymphocytes from patients and volunteers and translation into the P-gp protein requires 

another stimulus, perhaps in the form of an intense chemotherapeutic insult. This would 

sustain the recent findings by Webb et al. (1998) who reported low amounts of P-gp in B­

CLL patients in general, but a higher level in B-CLL patients treated with P-gp 

transportable chemotherapy agents. Only 2/55 patients in this study were treated with a 

chemotherapy regime containing P-gp transportable agents (CHOP regime containing, 

doxorubicin and vincristine). It is possible that without this specific toxic insult mRNA 

translation into the P-gp protein may not occur and detection of P-gp would therefore not 

be possible. 

3] It has been reported that point mutations in the MDRl gene are related to phenotypic 

diversity and that alternative splice variants of P-gp can exist (Greenberger et al 1994). 

These could presumably lead to variations in structure of the resultant P-gp protein and, 
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depending on which variant is expressed in the disease, the use of certain monoclonal 

antibodies may have negative results due to their incapacity to bind to P-gp. 

Although the above are all acceptable explanations, there is another interesting possibility 

which may offer a better explanation for the varying results. 

4] Aberrant sialylation of lymphocytes in CLL, leading to epitope masking, has been well 

characterised (Brown et al. 1985) and cells have a reported increase in levels of sialyl 

transferase. Treatment with neuraminidase, thus affecting sialylation patterns, was reported 

to greatly increase the amount of detectable fluorescence by the antibody MRKI6 in 

samples of lymphocytes from CLL patients (Cumber et al. 1990). This epitope masking 

might explain, in part, the discordance in P-gp staining of clinical samples and it is possible 

that the low P-gp flow cytometry results are due, at least in part, to this phenomenon. 

Of the two patients on a combination regime containing P-gp transportable drugs (CHOP 

regime containing doxorubicin and vincristine), the MDRl mRNA PCR signal varied with 

each subsequent analysis over an extended period of time (Fig. 3.15[C], pl75). It would 

have been interesting to compare the PCR product over time by performing quantitative 

PCR, however, this PCR technique was not utilised during this investigation. Additionally, 

there were few patients available being treated with anthracycline-containing combination 

regimes thus limiting the analysis of MDRI mRNA expression and P-gp presence versus 

anthracycline treatment. Nevertheless, Webb et al. (1998) showed a low incidence of 

MDRI mRNA (and P-gp protein) in most B-CLL patients and volunteers analysed, while 

patients treated with prolonged combination regimes showed a correlation between time 

and amounts ofMDRl mRNA. 
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3.7 CONCLUSION 

In general, a smaller proportion of patients (16/55) express P-gp when analysed by flow 

cytometry compared to RT-PCR analysis (43/50) for MDRl mRNA presence (29% and 

86%, respectively). These conflicting results make it difficult to determine the role of P-gp 

in these clinical samples. 

However, while this chapter alone does not determine the role of P-gp-associated MDR in 

B-CLL it does help to show that P-gp and MDRl mRNA can be expressed in B-CLL 

patients. Many investigators have previously assumed that the presence of the MDRl 

mRNA indicates P-gp expression even though transcription of a gene into its correspondent 

RNA is not necessarily an indication of translation. As suggested by the results, P-gp may 

be present in amounts not detectable by a flow cytometer, therefore, functionality studies 

are needed to either help support or refute the question of P-glycoprotein presence and 

activity in B-CLL drug resistance. 
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4.1 INTRODUCTION 

The investigations which were performed to determine the expression of MDR1 mRNA 

and P-gp in B-CIL patients are described in Chapter 3. Flow cytometric studies showed 

that a small proportion of patients (16/55) expressed P-gp while RT-PCR studies indicated 

the majority (43/50) were positive for MDR1 mRNA. This is not unusual and, in B-CLL, 

one explanation given for conflicting literature data on P-gp expression is the use of 

different analytical techniques. The limitations of these techniques have now been 

recognised and the recommendation for the analysis of P-gp-associated MDR is that 

detection of MDRl mRNA and P-gp should be combined with P-gp functionality studies 

(Beck et al. 1996). 

4.1.1 P-GP FUNCTIONALITY STUDIES 

4.1.1.1 Drug accumulation/efflux 

Functionality experiments were conducted firstly to evaluate the presence of low levels of 

P-gp, not detected using flow cytometric methods, and secondly to assess the potential of 

IFN-a to modulate P-gp function. 

Functionality studies examining drug accumulation and efflux apply the principle that P-gp 

function can be followed by monitoring the intracellular levels of P-gp transportable 

agents, with inherent colour or fluorescent properties. 

The theory that resistant cells expressing the P-gp molecule will exhibit a lower fluorescent 

intensity than sensitive cells has been demonstrated by many groups in vitro (Green et al. 
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2001; Guerci et al. 1995; Lizard et al. 1995; Merlin et al. 1994; Merlin et al2000; Quesada 

et al. 1996; Scala et al1991) 

The agents chosen to investigate P-gp functionality in this study were rhodamine 123 

(rhol23, a commonly used P-gp transportable agent fluorescing in the green spectrum) and 

daunorubicin (the anthracycline drug of interest fluorescing in the red spectrum). 

4.1.1.2 Drug toxicity 

Successful anticancer treatment relies on the intracellular accumulation of anticancer 

agents to therapeutic concentrations. The resultant toxicity is generally cell death, and this 

concept has been used when investigating P-gp function; since fewer cells expressing 

functional P-gp will die compared to non-P-gp expressing cells, due to lower intracellular 

drug accumulation. 

Various analytical methods have been employed to monitor the relationship between drug 

toxicity and cell viability including colourimetric cytotoxicity assays such as the 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTI) assay and detection of cell 

death by flow cytometry analysis (Table 4.1). 
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Basis of viability/toxicity assay Detection method 
Detection of esterase enzyme activity thus Use of lluorogenic esterase substrates e.g. calcein 

monitoring enzyme activity and cell permeability 

Detennination of cell membrane changes with Cell-impermeable nucleic acid stains e.g. propidium 

nucleic acid stains iodide 

Detennination of cell metabolic activity by analysis Use of water-soluble, colourless probes prone to 

of cell oxidation/reduction oxidation or reduction resulting in precipitation of 

coloured product e.g. reduction of tetrazolium salts 

to coloured formazan crystals i.e. MTT assay 

Detection of apoptotic cell death markers Detection of apoptosis-related cell surface markers 

and apoptosis-associated enzymes e.g. detection of 

phosphatidyl serine externalisation or caspase 

activity. 

Monitoring of changes in cellular ion gradients set by Measure specific ion levels or transmembrane 

ion pumps and ion channels potentials as well as changes in cell energy e.g. 

chemiluminescent detection of ATP levels 

Table 4.1. Analysis of drug toxicity and cell viability 

4.1.1.2.1 Detection of cell death by now cytometry 

It has been reported that the B-lymphocytes in B-CLL die by apoptosis (Mainou-Fowler et 

al. 1994; Panayiotidis et a/1994). Successful anticancer treatment is generally manifest as 

cell death, usually by apoptosis and, as this event can be influenced by the presence or 

absence of P-gp, it was considered a good physiological end-point with which to study the 

functionality and modulation of P-gp in B-CLL. It was postulated that a lower proportion 

of P-gp +ve (resistant) cells would undergo apoptosis compared to P-gp -ve (sensitive) 

cells due to lower intracellular drug accumulation. 

The widespread involvement of apoptosis in various disease states is becoming more 

apparent and its increasing importance has led to the development of a variety of 

185 



techniques for detection of this type of cell death. Many techniques use flow cytometry and 

can measure a variety of parameters such as changes in light scatter, cell organelles or 

plasma membrane. Some common methods for apoptosis detection are listed in Table 4.2. 

Analytical parameter Method 

Light scatter Forward scatter and dead cell exclusion 

Membrane changes Hoechst and Propidium Iodide staining 

Annexin V staining 

Merocyanine 540 staining 

Changes to cell organelles CMXRos staining 

Rhodamine 123 staining 

Table 4.2 Techniques for detection of apoptosis by flow cytometry From Imperial Cancer 

Research webpage- http://www.icnet.uk/axp/facs/davies/apop.html 

Annexin V Staining 

One of the membrane changes in the early to intermediate stages of apoptosis is the 

translocation of phosphatidylserine (PS) from the inner surface of the cell membrane to the 

outside. It is possible to detect PS by using FITC-Iabelled Annexin V, which is a Ca++ 

dependent phospholipid-binding protein. By combining staining of Annexin-FITC with 

propidium iodide (PI), a cell profile can be obtained where live cells are negative for both 

dyes, dead (necrotic) and late apoptotic cells are positive for both and early and 

intermediate apoptotic cells are positive only for Annexin-FITC. 

As Annex in V was supplied conjugated to the green fluorochrome, FITC, it was postulated 

that multiparameter analysis would also be possible, e.g. the detection of apoptotic B-

186 



lymphocytes (using Annexin-FITC/PI and a CD19 MAb conjugated to PE) could be 

attempted simultaneously to monitoring changes in intracellular daunorubicin 

concentrations. This would have meant the use of more than one red fluorochrome, leading 

to a strong degree of overlap in the red spectrum. Although compensation techniques can 

be done to limit the overlap on the flow cytometer (section 3.1.1.2.2, p132), this was 

considered to be an inaccurate method of analysis. Another option was time lapse analysis, 

where the detection of each red fluorescence is delayed and analysed sequentially. This 

would have meant reconfiguring the flow cytometer and proved impractical . 

Single parameter analysis of apoptotic cells was a logical alternative, but using 

daunorubicin as the toxic agent for inducing apoptosis meant that the cells already 

contained a red fluorescing agent, the drug itself, in the intracellular matrix. In addition, the 

two resulting red fluorescent wavelengths are identical, making even the most intricate 

colour compensation impossible. 

Due to these difficulties, another method of apoptosis detection was investigated where 

there was no necessity for fluorescent analysis. Instead the MTT cytotoxicity assay was 

employed (below and Appendix 1). The intracellular concentration of P-gp transportable 

agents in resistant cells should be lower than sensitive cells, therefore resulting in a 

decreased amount of cell death and a more intense spectrophotometric reading. The 

spectrophotometric reading is converted into '% survival fraction' using the calculation 

shown below: 

% survival fraction = experimental reading x 100% 
control reading 
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4.1.1.2.2 MTTassay 

This assay is commonly used for the detection of damage caused by cytotoxic or cytostatic 

agents (Carmichael et al. 1987; Mosmann, 1983). When exposed to 3-(4,5-dimethylthiazol-

2-yl)-2,5-diphenyl tetrazolium bromide <Mm. the dehydrogenases localised in viable 

mitochondria reduce this salt to a purple formazan crystal which can then be solubilised in 

acidified isopropanol. The intensity of the purple colour is then determined using a 

spectrophotometer where the intensity of the purple colour is proportional to cell viability. 

Cells expressing functional P-gp demonstrate greater colour intensity and thus greater cell 

viability, than P-gp -ve cells. 

The advantage of the MTT assay is that it is rapid and easy to perform, and gives a good 

indication of the effect of P-gp modulators. In the presence of modulators the percentage of 

resistant cells killed should approach that of sensitive cells. However, this technique is not 

without disadvantages. Glutathione-S-transferase enzymes (GSTs) are present to protect 

cells from toxic compounds (section 1.5.1, p44) and it has been reported that GSTs have 

the ability to reduce MTT in vitro (York et al. 1998). As GSTs, especially GST-n, are 

known to be overexpressed in a variety of tumour cells (Tew, 1994), it is possible that 

these enzymes could interfere with an MTT assay in cancer cell lines and this has to be 

considered when interpreting results as a measure of cell viability. 

Alternative assays for monitoring cell viability and cell death are becoming available and 

more recent developments include colourimetric apoptotic assays detecting mitochondrial 

enzyme activity such as caspase 3 (Choi et al. 2000; Finucane et al. 1999; Komoriya et al. 

2000). Caspase analysis also provides a fast and effective tool and seems to be a more 

robust technique avoiding interference from endogenous, intracellular compounds such as 
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GSTs. However, this type of assay also has limitations, the major disadvantage being the 

incorrect use of this assay when toxic insult causes cell death by a caspase-independent 

mechanism. Unless the mechanism of cell death triggered by a specific toxic agent is 

known, it would be inaccurate to use a technique limited to the detection of only one 

specific mechanism of cell death. In addition, recent reports have highlighted the ability of 

P-gp to protect cells from caspase-dependent apoptosis. However, P-gp was not shown to 

protect from caspase-independent cell death (Johnstone et al. 1999). The potential of P-gp 

to interfere with a caspase-dependent assay was considered, in addition to the above 

outlined advantages and limitations, and it was decided to analyse cell viability with the 

MTT assay. 

4.1.2 P-GP MODULATION 

4.1.2.1 Modulation of P-gp by Drugs 

The presence of P-gp can also be demonstrated by the use of specific inhibitors of P-gp 

function .. This group of inhibitors/modulators is chemically diverse and includes calcium 

channel blockers such as verapamil and nifedipine. 

These modulators have a varying degree of potency with regards to their ability to inhibit 

P-gp function but the well characterised modulators such as verapamil allow detection of 

the presence and function of P-gp. In the presence of a modulator the efflux of the 

fluorescent compound is impeded and therefore the fluorescent intensity of resistant cells 

should return towards the level seen in the sensitive cells. 
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Although these modulators have a significant role ill vitro, use in the clinical setting has 

been limited by their toxicity ill vivo (Fisher and Sikic, 1995; Sikic 1993). New compounds 

are being continuously designed and tested in an attempt to combat the serious problem of 

drug resistance, but, although novel compounds such as PSC 833 (currently in clinical 

trials) have potential, there are no P-gp modulators currently available for effective use in 

the clinic. 

4.1.2.2 Cvtokine modulation of P-gp 

The general aim upon discovering a resistance mechanism is to find methods to overcome 

this resistance. The problem of ill vivo toxicity experienced with many P-gp modulators 

means that cytokines present attractive candidates for use as reversing agents and 

publications regarding their modulatory abilities are of great interest (Fogler et al. 1995; 

Scala et al. 1991; Tambur et al. 1998). 

4.1.2.2.1 Cytokine modulation of P-gp function in 8-CLL 

Although the role of P-gp-associated MDR in 8-CLL has yet to be clarified, some groups 

have detected the presence and function of P-gp in a number of patient samples (Arai et al. 

1997; Webb et al. 1998). Continued investigation into the role of P-gp-associated MDR 

could confirm the presence and function of P-gp in a large percentage of the patient 

population. Consequently, if P-gp transportable drugs are included in the therapeutic 

regime, these patients may benefit from treatment with a P-gp modulator that does not 

possess the ill vivo toxicity associated with the majority of agents studied so far. The 

publication by Scala et al. ( 1991) concerning the reversal of doxorubicin resistance by 

recombinant interferon-alpha (IFN-a) was therefore of particular interest as IFN-a is 
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already used for disease treatment and, although it has its own inherent toxicity in vivo, the 

effective IFN-a concentration reported by Scala et al would give acceptable toxicity in vivo 

(Guttermann et al. 1982). 

The aims of this study were, subsequently, to investigate the function and modulation of P­

gp in both sensitive (MESSA) and resistant (MESSA/Dx-5) cell lines as well as isolated 

patient B-lymphocytes and to determine the effect of IFN-a as a potential P-gp modulator. 

The effects of two concentrations of verapamil (21J.M & 201J.M) were compared (Quesada et 

al. 1996) while the IFN-a - in the cell line investigations - was used at what was 

determined experimentally, in this study & others, to be a non-toxic concentration i.e. 500 

I.U/ml (Guttermann et al. 1982). For analysis of IFN-a modulation in patient B­

lymphocytes, three concentrations of IFN-a were investigated; 500 I.U/ml; 1000 I.U/ml; 

5000 I.U/ml. The rationale behind the use of higher IFN-a concentrations was the 

suggestion that higher concentrations of IFN-a were tolerated in the clinic (personal 

communication). 
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4.2 MATERIALS 

Unless otherwise stated, materials used in this study were of at least analytical grade and 

obtained from Sigrna-Aidrich Company Ltd., Poole, UK. 

All water used was 3MQ water, filtered and deionised to 18MQ by an Elga UHQ ll water 

purifier (Eiga Ltd., Buckinghamshire, UK). 

4.2.1 GENERAL MATERIALS 

Equipment 

• Heraeus Labofuge 400 Centrifuge (Jencons Scientific Ltd., Bedfordshire, UK). 

Reagents 

• Absolute ethanol (Hayman Ltd., Essex, UK). 

4.2.2 TISSUE CULTURE MATERIALS 

Equipment 

• 24-well culture plates (Sarstedt Ltd., Leicestershire, UK) 

• 9ml vacuette Sodium Heparin blood tubes (Greiner Labortechnik Ltd., Gloucestershire, 

UK) 

• 96-well culture plates (Sarstedt Ltd., Leicestershire, UK) 

• Epson LX-300 Plate reader (Dynex Technologies, Middlesex, UK) 

• Sterile Universal tubes [25ml] (Greiner Labortechnik Ltd., Gloucestershire, UK) 
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Reagents 

• Detachabead CD19 (Dynal (UK) Ltd., Merseyside, UK) 

• Dynabeads M-450 CD19 (Dynal (UK) Ltd., Merseyside, UK) 

• Fetal Bovine Serum (Sigma-Aidrich Company Ltd., Poole, UK). 

• Lymphoprep (Nycomed (UK) Ltd., Birmingham, UK) 

• MESSA human uterine sarcoma cell line (ECACC, Wiltshire, UK) 

• MESSA/Dx-5 human uterine sarcoma cell line (ECACC, Wiltshire, UK) 

• McCoys SA buffered medium (with sodium bicarbonate & 25mM HEPES) (Sigma­

Aidrich Company Ltd., Poole, UK). 

• RPMI 1640 buffered medium (with sodium bicarbonate & 25mM HEPES) (Sigma­

Aidrich Company Ltd., Poole, UK). 

4.2.3 FLOW CYTOMETRY MATERIALS 

Equipme/lt 

• Epics Elite Flow cytometer (Beckman/Coulter (UK) Ltd., Buckinghamshire, UK) 

• 7mL Falcon tubes (Greiner Labortechnik Ltd., Gloucestershire, UK) 

• Epics Elite Flow software, version 4.02 (Beckman/Coulter (UK) Ltd., Buckinghamshire, 

UK) 

Reagents 

• Annexin-V binding buffer (PharMingen, Oxford, UK) 

• Annexin-V-FITC (PharMingen, Oxford, UK) 

• Annexin-V-FITC Apoptosis Kit (Calbiochem-Novabiochem, CN Biosciences, 

Nottingham, UK) 

• MAb CDI9-FITC (Beckman/Coulter (UK) Ltd., Buckinghamshire, UK) 
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4.3 GENERAL METHODS 

4.3.1 PREPARATION OF GENERAL SOLUTIONS/MATERIALS 

4.3.1.1 Culture Media 

This was prepared as described in section 3.3.2.1, pl59 

4.3.2 CELL LINE HARVEST/PASSAGE & 8-LYMPHOCYTE ISOLATION 

This was used to maintain stocks of cell lines, and isolate patient 8-lymphocytes. Isolation 

of PBMCs from normals was not performed as functionality experiments required a pure 

cell type to enable final experimental analysis. Both P-gp -ve and P-gp +ve cell lines 

(MESSA & MESSA/Dx-5, respectively) were passaged when they reached confluence. All 

procedures were carried out under aseptic conditions, using methods described in section 

3.3 (pl51). 

4.4 EXPERIMENTAL METHODS 

4.4.1 CELL LINE GROWTH CURVES 

21, 25cm2 culture flasks of MESSA (sensitive) and MESSA/Dx-5 (resistant) cells were 

plated at 30000cells/cm2 and grown in buffered McCoys 5A medium (section 3.3.2.1, 

pi 59) for 144h. 3 flasks were harvested in triplicate at each of the following time points 0, 

24, 48, 72, 96, 120, and 144h, and a viable cell count performed using Trypan Blue. 

Average number of viable cells/m! was plotted against time to determine the growth curve 
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profile for each cell line. For each cell line N = 3, where N is the number of separate 

experiments performed. 

4.4.2 CYTOTOXICITY INVESTIGATIONS 

4.4.2.1 Interferon-alpha toxicity in sensitive and resistant cell lines 

MESSA (sensitive) and MESSNDx-S (resistant) cells were plated at 30000cells/cm2/well 

in 96-well plates (1801!1 cell solution/well) and grown for 48h, i.e. until the start of the 

exponential phase of growth. After 48h the medium was changed and the cells were further 

cultured in the presence or absence of IFN-a at SOO, 1000, 10,000, SO,OOO, and 100,000 

I.U./ml for 72h using the following procedure. A sterile, freshly made stock solution of 1 x 

106 I.U./ml IFN-a (3ml) was diluted to SOOO, 10,000, 100,000, SOO,OOO I.U./ml in sterile, 

plastic Bijou bottles using sterile, buffered McCoys SA medium (section 3.3.2.1, p!S9). 

20111 of each solution, including the stock, was added to the appropriate wells (6 replicates 

per concentration), giving a 10 fold dilution of each. After 72h of further cell growth the 

surviving cell fraction was evaluated by MTI assay (Appendix 0 compared to the control 

containing no IFN-a. 

4.4.2.2 Daunorubicin toxicity in sensitive and resistant cell lines 

This method followed that described in section 4.4.2.1, but after 48h the medium was 

changed and the cells were further cultured for 72h in the presence or absence of 

daunorubicin at 0.2, 0.8, 1.2, 2, and 6 1-lg/ml using the following procedure. A sterile, 

freshly made stock solution of 368!-lg/ml daunorubicin in 18MQ water was diluted to 2, 8, 

12, 20, and 60!-lg/ml in sterile, plastic Bijou bottles using sterile, buffered McCoys SA 
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medium (section 3.3.2.1, p159). 20111 of each daunorubicin solution was added to the 

appropriate wells (6 replicates per concentration) giving a 10 fold dilution of each. After 

72h of further cell growth the surviving cell fraction was evaluated by MTI assay 

(Appendix I) compared to the control without daunorubicin. 

4.4.2.3 Effect of P-gp modulators on daunorubicin toxicity in sensitive and resistant 

cell lines 

MESSA and MESSNDx-5 cells were plated at 30000cells/cm2/well in 96-well plates 

(160111 cell solution/well) and grown for 48huntil the start of the exponential phase of 

growth. After 48h the medium was changed and the cells were further cultured for 72h in 

the presence or absence of daunorubicin at 0.2, 0.8, 1.2, 2, and 6 11g!ml with or without 

21-lM verapamil, 201-lM verapamil or 500 I.U./ml IFN-a using the following procedure. A 

sterile, freshly made stock solution of 368!lg/ml daunorubicin in 18M.Q water was diluted 

to 2, 8, 12, 20, and 6011g!ml in sterile, plastic Bijou bottles using sterile, buffered McCoys 

5A medium (section 3.3.2.1, p159). Similarly, sterile, freshly made stock solutions of 

6001-lM verapamil and 1 x 106 I.U./ml IFN-a in 18M.Q water were diluted to 201-lM, 

2001-lM and 5000 l.U./ml, respectively. 20111 of each daunorubicin solution was added to 

the appropriate wells in triplicate with or without 20111 of 201-lM verapamil, 2001-lM 

verapamil or 5000 l.U./ml IFN-a, giving a 10 fold dilution of each daunorubicin solution 

as well as each verapamil and IFN-a solution. After 72h of further cell growth the 

surviving cell fraction was evaluated by MTI assay (Appendix I) compared to the control 

without daunorubicin. 
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To detennine the effect of modulators on daunorubicin toxicity a comparison was made 

between the IC50 values (concentration of daunorubicin resulting in 50% growth inhibition) 

for daunorubicin toxicity alone and daunorubicin toxicity in the presence of modulator. The 

IC50 value was detennined from the survival curve generated for each cell line (Figs 4.4 & 

4.5, p209 & 212) by reading the concentration (X-axis) equating to 50% survival (Y -axis). 

4.4.2.4 Interferon-alpha toxicity in isolated patient B-Iymphocytes 

Isolated patient B-lymphocytes were plated at 180000cells/cm2/well in 96-well plates 

(180)ll cell solution/well) and cultured in the presence or absence of IFN-a at 500, 1000, 

10,000, 50,000, and 100,000 I.U./ml for 72h using the following procedure. A sterile, 

freshly made stock solution of 1 x 106 I.U./ml IFN-a (3ml) was diluted to 5000, 10,000, 

100,000, 500,000 I.U./ml in sterile, plastic Bijou bottles using sterile, buffered RPMI 

medium (section 3.3.2.1, pl59). 20)ll of each solution, including the stock, was added to 

the appropriate wells (6 replicates/concentration), giving a lO fold dilution of each. After 

72h of cell culture the surviving cell fraction was evaluated by MTT assay (Appendix I) 

compared to the control containing no IFN-a. 

4.4.2.5 Daunorubicin toxicity in isolated patient B-Iymphocytes 

This method followed that described in section 4.4.2.4, but cells were cultured for 72h in 

the presence or absence of daunorubicin at 0.2, 0.8, 1.2, 2, and 6 J..lg/ml using the following 

procedure. A sterile, freshly made stock solution of 368J..lg/ml daunorubicin in 18MQ water 

was diluted to 2, 8, 12, 20, and 60J..lg/ml in sterile, plastic Bijou bottles using sterile, 

buffered RPMI cell culture medium. 20)ll of each daunorubicin solution was added to the 

appropriate wells (6 replicates per concentration) giving a lO fold dilution of each. After 
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72h of cell culture the surviving cell fraction was evaluated by MTI assay (Appendix n 

compared to the control without daunorubicin. 

4.4.3 DRUG ACCUMULATION/EFFLUX STUDIES 

4.4.3.1 Cell lines 

MESSA and MESSNDx-5 cells were plated at 30000 cells/cm2/well in 24-well plates 

( 1.8ml cell solution/well) and grown for 48huntil the start of the exponential phase of 

growth (Fig 4.1, p204). Fresh medium was then added to 6 control wells, as well as 

medium containing 2J.l.M rho123 (6 wells) and 2J.lg/ml daunorubicin (6 wells). The cells 

were immediately returned to incubate at 37°C for 30min for drug accumulation (Quesada 

et al. 1996). After the 30min incubation, 3 wells of each treatment were harvested (section 

3.3.3.1, pl61) and the contents of each well placed into a separate tube on ice until flow 

cytometry analysis. In the remaining wells the medium was replaced with drug-free 

medium and the cells incubated for a further 90min to allow for drug efflux (Quesada et al. 

1996). At the end of the 90min period the remaining wells were harvested, as above, and 

the cells washed and then placed on ice for flow cytometry analysis (section 3.1.1, p126). 

Analysis was carried out according to the following procedure. A control cell sample 

(unstained cells) was run on the flow cytometer for 2-3min to determine the position of the 

cell population. A gate was established around the unstained control cell population and a 

region of positivity marked i.e. from the end of the unstained cell peak to the end of the X­

axis (Fig. 3.3, p 131 ). The triplicate experimental samples were analysed by counting 10000 

gated cells per sample and determining the percent positivity using the previously marked 

region. The mean percent positivity for each triplicate was calculated and accumulation of 

199 



2J.LM rhol23 and 2jlg/ml daunorubicin after 30min incubation was compared to the 

harvested control cells (no addition of either rhol23 or daunorubicin), while efflux of 

rho123 and daunorubicin was compared to the rhol23 and daunorubicin samples harvested 

after the 30min accumulation period. 

4.4.3.2 Isolated patient B-Iymphocytes 

Isolated B-lymphocytes (section 3.3.3.2, p161) were plated out at 1 x 106 cells/well in 24-

well plates. Each well contained a final volume of 1.8ml and as patient B-lymphocytes 

have been reported to spontaneously apoptose in vitro (Mainou-Fowler et al. 1994), the 

following procedure was performed as quickly as possible. 200Jll of a sterile, freshly made 

20J.l.M rhodamine 123 stock solution or 20Jlg/mL daunorubicin stock solution was added to 

each of 6 wells, giving a final concentration of 2J.LM and 2Jlg/mL, respectively, and the 

cells incubated at 37°C for 30min for drug accumulation (Quesada et al. 1996). At the end 

of the 30min incubation period the cells in 3 rhol23-containing wells, 3 daunorubicin­

containing wells and 3 control wells (no rhol23 or daunorubicin addition) were harvested 

(section 3.3.3.2, pl61), the contents of each well placed into a separate tube on ice until 

flow cytometry analysis. In the remaining wells the medium was replaced with drug-free 

medium and the cells incubated for a further 90min, to allow drug efflux. At the end of the 

90min period the remaining wells were harvested, as above, the cells washed and then 

placed on ice for flow cytometry analysis (section 3.l.l, pl26). Analysis was carried out as 

in section 4.4.3.1. 
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4.4.4 MODULATION OF DRUG ACCUMULATION/EFFLUX 

For cell lines and patient 8-lymphocytes , flow cytometric studies of P-gp modulation were 

conducted over a 2h time period rather than the 72h time period used for MTI studies. As 

these flow cytometry experiments were looking at drug accumulation and efflux, the lack 

of a significant difference in cell death between the two cell lines at 21J.g/ml daunorubicin 

was not thought to pose a problem with this shorter type of experiment. In addition, a clear 

difference in drug accumulation between the sensitive (MESSA) cells and resistant 

(MESSNDx-5) cells could be seen at this concentration and, for this reason, 21J.g/ml 

daunorubicin was used for flow cytometry P-gp modulation analysis. 

4.4.4.1 Cell lines 

MESSA and MESSNDx-5 cells were plated at 30000 cells/cm2/well in 24-well plates 

(1.8ml cell solution/well) and grown for 48h until the start of the exponential phase of 

growth (Fig 4.1, p204). Fresh medium was then added to 15 control wells, medium 

containing 21J.M rho123 to 15 wells and medium containing 21J.g/ml daunorubicin to a 

further 15 wells. The cells were immediately incubated at 37°C for 30min for drug 

accumulation (Quesada et al. 1996). After the 30min incubation, 3 wells of each treatment 

were harvested (section 3.3.3.1, p161), the contents of each well placed into a separate tube 

on ice until flow cytometry analysis. In the remaining wells the medium was replaced (in 

triplicate) with medium with or without P-gp modulator, either verapamil (21J.M or 201J.M) 

or IFN-a (500 I.U./ml), and the cells incubated for a further 90min to allow drug efflux 

with or without modulation (Quesada et al. 1996). At the end of the 90min period the 

remaining wells were harvested, as above, and the cells washed and then placed on ice for 

flow cytometry analysis (section 3.1.1, pl26). Analysis was carried out as in section 4.4.3.1 
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where modulation of rho123 and daunorubicin efflux was assessed by comparing 

intracellular fluorescence intensities to those of cells having effluxed 2~ rhodamine123 

in the absence of modulators. 

4.4.4.2 Isolated patient B-lymphocytes 

Isolated B-lymphocytes were obtained from 6 untreated and 6 treated B-CLL patients. 

Isolated B-lymphocytes (section 3.3.3.2, p161) were plated out as described in section 

4.4.3.2. 200J.ll of sterile RPMI medium (section 3.3.2.1, p159) was added to 21 control 

wells and 200j.i.l of a sterile, freshly made 20~ rhodamine 123 stock solution in addition 

to a 20j.i.g/mL daunorubicin stock solution was each added to 21 wells, giving a final 

concentration of 2~ and 2j.i.g/mL, respectively. The cells were then incubated at 37°C for 

30min for drug accumulation (Quesada et al. 1996). At the end of the 30min incubation 

period the cells in 3 rho123-containing wells, 3 daunorubicin-containing wells and 3 

control wells (RPMI only) were harvested (section 3.3.3.2, p161), the contents of each well 

placed into a separate tube on ice until flow cytometry analysis. In the remaining wells the 

medium was replaced (in triplicate) with medium with or without P-gp modulator 

(verapamil (2~ or 20~) or IFN-a (500 I.U./ml, 1000 I.U./ml or 5000 I.U./ml) and the 

cells incubated for a further 90min to allow for drug efflux with or without modulation. At 

the end of the 90min period the remaining wells were harvested, as above, the cells washed 

and then placed on ice for flow cytometry analysis (section 3.1.1, p126). Analysis was 

carried out as in section 4.4.3.1 where modulation of rho123 and daunorubicin efflux was 

assessed by comparing intracellular fluorescence intensities to those of B-lymphocytes 

having effluxed 2~ rhodaminel23 in the absence of modulators. 
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4;4;5: STA'FISTICAL ANAI>Y:SIS 

All :statistics in' this chapter were calculated,using:a onec.wa~ ANO:V'Afollo.wed [by. :either~ 

stti~e_rlt Hest or post-hoc analysis at the 95.%. confidence interval iW < 0.05): using a 

10unneti' s t~st 
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4.5 RESULTS 

4.5.1 CELL LINES 

4.5.1.1 Growth curves 

Analysis of MESSA (sensitive cell line) and MESSA/Dx-5 (resistant cell line) growth 

curves showed the exponential phase of growth, in both cell lines, commencing at 48h (Fig. 

4.1 ). As deleterious effects on cell growth or viability are more noticeable during the 

exponential phase of growth, drug additions and incubations during cell line 

experimentation were started at 48h. 

Fig. 4.1 Rate of cell growth for MESSA (sensitive) and MESSA/Dx-5 (resistant) cell 

lines 

Fig. 4.1 21 , 25cm2 flasks of MESSA and M ESSNDx-5 cells were grown for 144h. 3 flasks were harvested 

in triplicate at each of the following time points 0, 24, 48, 72, 96, 120, and 144h, and a viable cell count 

performed using Trypan Blue. For each cell line N = 3, where N is the number of separate experiments 

performed. 
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4.5.1.2 Cytotoxicity investigations 

4.5.1.2.1 Interferon-alpha toxicity in sensitive and resistant cell lines 

Initial investigation into IFN-a toxicity had dissimilar results in the sensitive and resistant 

cells (Fig. 4.2). 

Fig. 4.2 IFN-a toxicity in sensitive and resistant cell lines 
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Fig. 4.2 MESSA and MESSNDx-5 cells were grown for 48h until exponential phase of growth and then 

incubated for 72h in the presence of varying concentrations of IFN-a. Cell viability was determined using the 

MIT assay. lFN-a was significantly more toxicity to MESSA/Dx-5 cells than the MESSA cells (P < 0.05), 

using ANOV A. For each cell lineN = 3, where N is the number of separate experiments perfonned. 

Minimum cell death was observed at a concentration of 500 I.U. in both cell lines with 

greater growth inhibition occurring on increasing IFN-a concentrations, however, the 
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resistant cell line showed a greater susceptibility to IFN-a toxicity than the sensitive one 

(section 4.6, p236). 

As the data presented in Fig 4.2 shows least cell death in both cell lines to occur at 500 

I.U./ml and both Gutterman et al. (1982) and Scala et al. (1991) suggested that an IFN-a 

concentration of 5001.U./ml could be well tolerated in vivo, 500I.U./ml was the 

concentration of IFN-a used for consequent P-gp modulation analysis in cell lines. 

4.5.1.2.2 Daunorubicin toxicity in sensitive and resistant cell lines 

Prior to P-gp modulation analysis in both MESSA and MESSA/Dx-5 cell lines, the effect 

of differing concentrations of daunorubicin was established using the MIT assay 

(Appendix n. Fig. 4.3 demonstrates the effectiveness of the P-gp molecule in the resistant 

cell line MESSA/Dx-5. Increased cell survival was seen in this cell line at daunorubicin 

concentrations of 0.2- 1.21J.g/ml compared to the sensitive MESSA cell line, indicating the 

presence of a lower intracellular toxic drug concentration due to the function of the P-gp 

efflux pump. At higher concentrations of 2-6jlg/ml, however, no significant difference in 

percent cell kill was seen. 
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Fig. 4.3 Degree of daunorubicin toxicity in sensitive and resistant cell lines 
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Fig. 4.3 MESSA and MESSA/Dx-5 cells were grown for 48h until exponential phase of growth and then 

incubated for 72h in the presence of varying concentrations of daunorubicin. Cell viability was detennined 

using the MTT assay. * : statistically significant (P < 0.05), using ANOV A followed by student t-test. For 

each cell lineN = 3, where N is the number of separate experiments performed. 

It was speculated that at higher concentrations of daunorubicin, the P-gp molecules had 

become saturated with daunorubicin over the 72h period and, although functioning, were 

not able to expel sufficient amounts of intracellular drug to prevent a similar degree of cell 

death as seen in the sensitive cell line. Even though the difference between cell death in 

sensitive and resistant cell lines was not significantly different at concentrations of 2 and 6 

Jlg/ml, for completeness of analysis these higher concentrations were still included in P-gp 

modulation investigations using MTT assay. 

The flow cytometry investigations into P-gp modulation, using both cell lines and patient 

B-lymphocytes (sections 4.4.3.1, pl99 & 4.4.3.2, p200), were conducted over a shorter 
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time period than that using MTI analysis with total experiment times of 2h v 72h, 

respectively. As these flow cytometry experiments were looking at drug accumulation and 

efflux, the lack of a significant difference in cell death between the two cell lines at 2j..Lg/ml 

daunorubicin was not thought to pose a problem with this shorter type of experiment. In 

addition, a clear difference in drug accumulation between the sensitive (MESSA) cells and 

resistant (MESSA/Dx-5) cells could be seen at this concentration and, for this reason, 

2j..Lg/ml daunorubicin was used for flow cytometry P-gp modulation analysis. 

4.5.1.2.3 Effect of P-gp modulators on daunorubicin toxicity in sensitive and 

resistant cell lines 

The investigation continued with the examination of the effect of P-gp modulators on the 

sensitivity of cell lines to daunorubicin. These effects were first determined with the 

sensitive cell line using 2j..LM & 20j..LM verapamil and IFN-a. at a concentration of 500 

I.U./ml. 

As MESSA does not express P-gp it was speculated that these modulators would have no 

effect on the sensitivity to daunorubicin. 
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Fig. 4.4 Effect of 2uM & 20uM verapamil and SOOI.U./ml IFN-a. on daunorubicin 

toxicity in sensitive cell line, MESSA 
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Fig. 4.4 MESSA cells were grown for 48h until exponential phase of growth and then incubated for 72h in 

the presence of varying concentrations of daunorubicin +/- modulator (2J.lM verapamil, 20J.lM verapamil or 

500LU./ml IFN-a). Cell viability was determined using the MIT assay. No significant difference was found 

between control cells and those exposed to the djfferent modulators. 

Fig. 4.4 confirms this hypothesis, showing that treatment with 2JlM & 20JlM verapamil, as 

well as 5001.U./ml of IFN-a., did not significantly modulate the daunorubicin sensitivity of 

MESSA cells i.e. at the daunorubicin concentrations used, cells were inhibited to 50-90% 

of control (no daunorubicin) and both veraparnil and IFN-a. did not change the sensitivity 

to daunorubicin (Tables 4.3-4.5 & Fig. 4.4). 
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In contrast, treatment with 2j.IM & 20j.IM of verapamil decreased the resistance of 

MESSA/Dx-5 cells while IFN-a did not significantly change the sensitivity to 

daunorubicin, i.e. MESSAJDx-5 cells alone were resistant to the daunorubicin 

concentrations, but after 72h treatment with verapamil (2j.IM & 20j.IM) there was growth 

inhibition to 50% of control with 200ng/ml of daunorubicin (Tables 4.3-4.5 & Fig. 4.5, 

p212). 

Although not investigated, it is speculated that higher doses of IFN-a would not result in 

significantly greater daunorubicin toxicity and would instead result in toxicity due to IFN-a 

alone (Fig. 4.2, p205). In addition, the concentration of IFN-a was being kept to that 

reported to be tolerated in vivo rather than increasing the concentration to more toxic levels 

(Gutterman et al. 1982). 

IC50 to MESSA cells (l!g/ml) JC50 to MESSA/Dx-5 cells (l!g/ml) 

VER. lCso + ICso- Gain ICso+ ICso- Gain 
TIME 
72h 0.17 0.20 1.18 0.20 1.20 6.00 

Table 4.3 Effect of 2uM verapamil on daunorubicin toxicity in sensitive and resistant 

cell lines MESSA and MESSA/Dx-5 cells were incubated for 72h with different concentrations of 

daunorubicin +/- 2j.LM verapamil. Cell survival was measured using the MTT assay. The !C50 was measured 

in the presence (IC50 +)and absence (!C50 -)of verapamil. The gain in sensitivity was defined by the IC50 -

IJC50 + ratio. The gain for the MESSA/Dx-5 cells was statistically significant (P < 0.00 I) but not for the 

MESSA cells, using student 1-lest. 
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IC50 to MESSA cells (~ml) IC50 to MESSNOx-5 cells (J.!g/ml) 

VER. !Cso + ICso- Gain ICso+ IC50- Gain 
TIME 
72h 0.17 0.20 1.18 0.20 1.20 6.00 

Table 4.4 Effect of 20u.M verapamil on daunorubicin toxicity in sensitive and 

resistant cell lines MESSA and MESSNOx-5 cells were incubated for 72h with different concentrations 

of daunorubicin +1- 201-iM verapamil. Cell survival was measured using the MTT assay. The IC50 was 

measured in the presence (IC50 +) and absence (IC50 -) of verapamil. The gain in sensitivity was defined by 

the IC50 -!IC50 + ratio. The gain for the MESSNOx-5 cells was statistically significant (P < 0.00 I) but not for 

the MESSA cells, using student Hest. 

IFN 
TIME 
72h 

IC50 to MESSA cells (J.!g/ml) 

ICso + ICso-

0.20 0.20 

IC50 to MESSNDx-5 cells (J.!g/ml) 

Gain IC50+ IC50- Gain 

1.00 1.06 1.20 1.13 

Table 4.5 Effect of SOOI.U./ml IFN-a on daunorubicin toxicity in sensitive and 

resistant cell lines MESSA and MESSNOx-5 cells were incubated for 72h with different concentrations 

of daunorubicin +1- 5001.U./ml IFN-a. Cell survival was measured using the MTT assay. The IC50 was 

measured in the presence (IC50 +)and absence (IC50 -)of IFN-a. The gain in sensitivity was defined by the 

IC50 -/IC50 + ratio. The gains for the MESSNOx-5 and MESSA cells were not statistically significant. 
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Fig. 4.5 Effect of 2uM & 20uM verapamil and 500I.U./ml IFN-a. on daunorubicin 

toxicity in resistant cell line, MESSA/Dx-5 
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Fig. 4.5 MESSA/Dx-5 cells were grown for 48h until exponential phase of growth and then incubated for 

72h in the presence of varying concentrations of daunorubicin +/- modulator (2).1M verapamil, 20).1M 

verapamil or 500I.U./ml TFN-n). Cell viability was determined using the MTI assay. * = statistically 

significant (P < 0.05), using ANOV A followed by student Hest. 
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4.5.1.3 Drug accumulation/cmux studies 

To confinn that verapamil was decreasing resistance by increasing intracellular drug 

concentrations, rhol23 and daunorubicin accumulation was measured by flow cytometry. 

The two cell lines were characterised by detennining total rhodamine 123 (rhol23) 

accumulation in addition to total daunorubicin accumulation. As a well characterised P-gp 

transportable agent, rhol23, was thought to be an ideal second agent for the investigation 

of P-gp-associated drug resistance. Intracellular accumulation was investigated by 

comparing the fluorescence intensities of each compound after loading an equal number of 

cells from each cell line with 21JM rhol23 and 2J..Lg/ml daunorubicin for 30min (Quesada et 

al. 1996). 

Greater accumulation of both compounds was observed in the MESSA sensitive cell line 

compared to the MESSA/Dx-5 resistant cell line (Figs. 4.6 & 4.7). The resistant cells 

showed a large population of cells achieving a fluorescent intensity (x-axis) similar to the 

control cells (no drug loading) verifying the presence of an active efflux mechanism. 

Monoclonal antibody investigations showed this active efflux to be P-gp related (section 

3.3.1.1, pl51). 
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Fig. 4.6 Rhodamine 123 accumulation in sensitive and resistant cell lines 
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Fig. 4.6 After gating, a region of positivity was marked, using the control population (no drug load ing) as 

the reference, i.e. I 01-104 units of fluorescence intensity. The difference in sensitivity between each cell line 

was easily d istinguishable on single nuorescence histograms: the MESSA cells not expressing P-gp showed a 

s ignificantly stronger accumulation of rho 123 and strong positivity (P < 0.05 using student t-test) than the 

MESSNDx-5 cells express ing P-gp which demonstrated a weaker accumulation of rho 123. 
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Fig. 4. 7 Daunorubicin accumulation in sensitive and resistant cell lines 
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Fig. 4. 7 After gating, a region of positivity was marked, using the control population (no drug loading) as 

the reference. The difference in sensitivity between each cell line was easily distingujshable on single 

fluorescence histograms: the MESSA cells not expressing P-gp showed a significantly greater accumulation 

of daunorubicin (P < 0.05 using student t-test) than the MESSA/Dx-5 cells expressing P-gp. 

It was noted that for both rho123 and daunorubicin, the results revealed a small sub-

population in the resistant cells demonstrating similar fluorescence intensity (x-axis) to the 

sensitive cell line. As the MESSNDx-5 cells were selected to overexpress P-gp, it was 

speculated that this sub-population represented a minority of MESSNDx-5 cells either 

devoid of the P-gp protein or a sub-population expressing non-functional P-gp, therefore 
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exhibiting characteristics identical to those of the sensitive cells. The presence of this sub­

population was noted in the remainder of the cell line experiments. 

4.5.1.4 Modulation of drug accumulation/emux 

The activities of the P-gp reversing agent, verapamil, as well as IFN-a, were evaluated 

from green (rhodamine) and red (daunorubicin) fluorescence histograms. Verapamil was 

used at concentrations of 2J.I.M and 20J.I.M, while IFN-a was used at SOOI.U./ml. 

Comparisons were initially performed on the sensitive MESSA cells where little 

modulation was expected to occur due to the absence of the target P-gp protein (Figs. 4.8 & 

4.9). 
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Fig. 4.8 Rhodamine 123 accumulation, efflux, and P-gp modulation in sensitive cell 
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Fig. 4.8 [A]: After 30min drug loading MESSA cells were exposed to fresh medium +/- verapamil (2f.1M & 

20pM) and left to incubate at 37°C for 90min (efflux). Intracellular fluorescence intensities were compared to 

those of cells having effluxed 2f.1M rhol23 in the absence of modulators. [B]: After 30rnin drug loading 

MESSA cells were exposed to medium +/- lFN-a (500J.U./ml) and left to incubate at 37°C for 90min 

(efflux). Intracellular fluorescence intensities were compared to those of cells having effiuxed 2f.lM rho 123 in 

the absence of modulators. Control: MESSA cells not loaded with rhol23 . No significant modulation was 

detected with verapamil or IFN-a- P > 0.05, using ANOV A followed by Dunnett's post-hoc analysis. 
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Fig. 4.9 Daunorubicin accumulation, efflux, and P-gp modulation in sensitive ceU line 
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Fig. 4.9 [A]: After 30min drug loading MESSA cells were exposed to medium +/- veraparnil (2j..!M & 

20JlM) and left to incubate at 3r c for 90min (efflux). Intracellular fluorescence intensities were compared to 

those of cells having effluxed 2f.lg/ml daunorubicin in the absence of modulators. [B]: After 30min drug 

loading MESSA cells were exposed to medium +/- IFN-a (500l.U./m1) and left to incubate at 37°C for 90min 

(efflux). Intracellular fluorescence intensities were compared to those of cells having effluxed 2f.lgfml 

daunorubicin in the absence of modulators. Control: MESSA cells not loaded with daunorubicin. No 

significant modulation was detected with verapamil or I FN-a - P > 0.05, using ANOV A followed by 

Ounnett' s post-hoc analysis. 
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As expected, neither verapamil nor IFN-a had any significant (P > 0.05 using ANOV A and 

Dunnett's post-hoc analysis) modulatory effect on the amount of fluorescent agent lost 

from the cells after incubation. It was considered that in the absence of P-gp, any observed 

decrease in fluorescent intensity would be due to either diffusion or the activity of another 

membrane protein pump, however, the results did not show much decrease in intensity. 

The reverse was seen in the resistant cell line when exposed to the two different 

concentrations of verapamil (Figs. 4.10[A] & 4.11[A]). In both cases 2j.tM verapamil 

restored the fluorescent intensity to that determined before efflux. When exposed to 20j.tM 

verapamil, the intensity exceeded that recorded before efflux. A possible explanation for 

this could be a slight toxicity on the cells from such a high concentration of verapamil 

(Sikic, 1997), effectively leading to membrane-altered cells and presenting an opportunity 

for greater drug accumulation. 500 I.U./mliFN-a had no modulatory effect on the amount 

of fluorescent agent effluxed from the cells after incubation (Figs. 4.10[B] & 4.11 [B)). 
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Fig 4.10 Rhodamine 123 accumulation, effiux, and P-gp modulation in resistant cell 
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Fig 4.10 [A]: After 30min drug loading MESSNDx-5 cells were exposed to medium +/- verapamil (2JlM & 

20JlM) and left to incubate at 37°C for 90min (effiux). Intracellular fluorescence intensities were compared to 

those of cells having effiuxed 2J..!M rhol 23 in the absence of modulators. [B]: After 30min drug loading 

MESSA/Dx-5 cells were exposed to medium +/- fFN-a (500LU./ml) and left to incubate at 37°C for 90min 

( effiux). Intracellular fluorescence intensities were compared to those of cells having effiuxed 2J..!M rho 123 in 

the absence of modulators. Control: MESSA/Dx-5 cells not loaded with rho 123. Significant modulation was 

achieved with 2J..!M & 20J..!M verapamil (P < 0.05 using ANOV A followed by Dunnett's post-hoc analysis), 

while LFN-a had no significant effect (P > 0.05). 

220 



Fig. 4.11 Daunorubicin accumulation, efflux, and P-gp modulation in resistant cell 
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Fig. 4.11 [A]: After 30min drug loading MESSNDx-5 cells were exposed to medium +/- verapamil (2JJM 

& 20JJM) and left to incubate at 37°C for 90min (efflux). Intracellular fluorescence intensities were compared 

to those of cells having effiuxed 2 JJg/ml daunorubicin in the absence of modulators. [B): After 30min drug 

loading MESSA/Dx-5 cells were exposed to medium +/- IFN-a (500l.U./ml) and left to incubate at 37°C for 

90min (effiux). lntracellular fluorescence intensities were compared to those of cells having effiuxed 2JJg/ml 

daunorubicin in the absence of modulators. Control: MESSNDx-5 cells not loaded with daunorubicin. 

Significant modulation was achieved with 2JJM & 20JJM verapamil (P < 0.05 using ANOV A followed by 

Dunnett's post-hoc analysis), while IFN-a had no significant effect (P > 0.05). 
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4.5.2 ISOLATED PATIENT B-LYMPHOCYTES 

To confirm the presence of P-gp in B-CLL, further analysis of P-gp function was required 

in patient cells. 

4.5.2.1 Cytotoxicity Investigations 

4.5.2.1.1 Interferon-alpha toxicity in isolated B-lymphocytes 

Although giving a faster and more efficient analytical method than Annexin V/PI detection, 

the MTI assay, in this case, was not 'suitable' for use on patients' B-lymphocytes. It was 

found that on a 96-well spectrophotometric plate reader with the number of B-lymphocytes 

required in each well to maintain optimum cell density (approx. 180 000 - 200 000 

cells/1801JL!well i.e. l x 106 cells/ml), no purple colour could be detected. Neither the 

control cells (not exposed to cytotoxic drug or modulator) nor the cells exposed to drug and 

modulator resulted in a detectable purple colour suggesting either total cell death or 

insufficient cell density. As other groups have used the MTI assay to investigate drug 

toxicity over a period of 96h (Sargent et al. 1999), and flow cytometry analysis performed 

on the day of isolation demonstrated viable cells, it was theorised that the problems 

associated with MTI analysis were due to insufficient cell density- Sargent et a/ describe a 

cell concentration of 3 x 106 cells/ml. However, higher cell densities were not possible due 

to limitations in the number of B-lymphocytes able to be extracted from patient blood 

samples. Therefore, the MTI assay was not used for analysis of daunorubicin toxicity or P­

gp modulation in patient B-lymphocytes. 
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4.5.2.1.2 Daunorubicin toxicity in isolated 8-lymphocytes 

As section 4.5.2.1.1 above 

4.5.2.2 Drug accumulation and modulation 

4.5.2.2.1 Rhodamine cmux and modulation 

An investigation using B-lymphocytes isolated from 12 patients (11 patients full analysis, L 

patient restricted analysis) revealed an efflux of 2!J.M rhodamine from the gated cells in 

11/12 patients after incubation at 37°C for 90min. In each case rhodamine efflux was 

modulated by verapamil and, in some cases, by IFN-a (Figs. 4.13, 4.15 & 4.16). 

4.5.2.2.1.1 U11treated patiellts 

These six patients had not been previously treated for B-CLL. Typical results from an 

untreated patient are presented in Fig 4.12 (for other patient data, see Appendix J), and a 

summary of data from untreated patients presented in Fig 4.13. 
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Fig. 4.12 Rhodamine accumulation, efflux, and P-gp modulation in patient# 4 
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Fig. 4.12 Patient B-lymphocytes were simultaneously exposed to [A] 2~M rhodamine 123 +/- verapamil 

(2~M & 20~) and [B] 2~M rhodamine 123 +/- lFN-a (500I.U./ml, I OOOI.U./ml and 50001.U./ml) then left 

to incubate at 37°C for 90min (efflux). Intracellular fluorescence intensities were compared to those of B-

lymphocytes having effluxed 2~M rhodaminel23 in the absence of modulators. Significant modulation was 

achieved with 2~M & 20~M verapamil as well as 500LU/rnllFN-a (P < 0.01 using ANOVA followed by 

Dunnett's post-hoc analysis). IOOOI.U/ml & 50001.U/ml IFN-a had no significant effect (P > 0.05). 
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Fig. 4.13 Summary of rhodamine accumulation, efflux, and P-gp modulation in untreated patients 
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Fig. 4.13 *: statistically significant difference compared to efflux control. (P < 0.0 l using ANOV A followed by Dunnett' s post-hoc analysis). 
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Singie age11f;tt:e(lted,patients 

Five ,patients were itreated for :B:-GlL wiih, ,either clilorambucil m fludarabine: IFypical! 

results from'a treated patient are!presented.in,Fig 4.14 (fm other, patient data, see Appendix 

f1);,andla1 summar~ of' data from .treated patients presented!in 1FigAJ5. 
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Fig. 4.14 Rhodamine accumulation, effiux, and P-gp modulation in patient# 11 
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Fig. 4.14 Patient 8-lymphocytes were simultaneously exposed to [A] 211M rhodamine 123 +/- verapamil 

(211M & 2011M) and [8] 211M rhodamine 123 +/- IFN-a (500LU./ml, IOOOI.U./ml and 5000LU./ml) then left 

to incubate at 37°C for 90min (efflux). Intracellular fluorescence intensities were compared to those of 8-

lymphocytes having effluxed 211M rhodaminel23 in the absence of modulators. Significant modulation was 

achieved with 211M & 2011M verapamil (P < 0.0 I using ANOV A followed by Dunnett's post-hoc analysis). 

IFN-a had no significant effect (P > 0.05). 
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Fig. 4.15 Summary of rhodamine accumulation, efflux, and P-gp modulation in treated patients 
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Fig. 4.1 5 *: statistically significant difference compared to effiux control. (P < 0.0 I or 0.05 using ANOY A followed by Dunnett's post-hoc analysis). 
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4.5.2.2.1.3 Combination treated 

Restricted analysis on one patient treated with CHOP was possible. Rhodamine 123 efflux 

was examined along with modulation by 2J.!M, 20J.!M verapamil and 500 I.U./ml IFN-a 

(Fig. 4.16) 

Fig. 4.16 Rhodamine 123 accumulation, efflux, and P-gp modulation in B-

lymphocytes isolated from a patient on combination therapy (patient # 12) 
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Fig. 4.16 Patient B-lymphocytes were simultaneously exposed to 2f.1M rhodamine 123 +/- verapamil (2f.1M 

& 20f.1M) and 2f.1M rhodamine +/- IFN-a (5001.U./ml) then left to incubate at 37°C for 90min (efflux). 

Intracellular fluorescence intensities were compared to those of B-lymphocytes having eftluxed 2flM 

rhodamine in the absence of modulators. Significant modulation was achieved with both verapamil 

concentrations (P < 0.05 for both 211M & 20f.1M using ANOV A followed by Dunnett's post-hoc analysis) 

while IFN-a had no effect (P > 0.05 using ANOY A). 
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4.5.2.2.2 Daunorubicin effiux and modulation 

An investigation using B-lymphocytes isolated from 10 patients (5 previously treated and 5 

untreated) (insufficient cells were isolated from patient 3 to analyse daunorubicin efflux) 

revealed an efflux of 2J.lg/ml daunorubicin from the gated cells in 9/10 patients after 

incubation at 37°C for 90min. In each case daunorubicin efflux was modulated by differing 

concentrations of verapamil and, in some cases, by IFN-a (Figs. 4.18 & 4.20). 

4.5.2.2.2.1 Untreated patiellts 

These five patients had not been previously treated for B-CLL. Typical results from an 

untreated patient are presented in Fig 4.17 (for other patient data, see Appendix J), and a 

summary of data from untreated patients presented in Fig 4.18. 
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Fig. 4.17 Daunorubicin accumulation, efflux, and P-gp modulation in patient# 2 
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Fig. 4.17 Patient B-lymphocytes were simultaneously exposed to [A) 2~g/m l daunorubicin +/- verapamil 

(2J..LM & 20J..LM) and [B) 2J..Lg/ml daunorubicin +/- IFN-a (500I.U./ml, lOOOI.U./ml and 5000LU./ml) then left 

to incubate at 37°C for 90min (efflux). Intracellular fluorescence intensities were compared to those of B-

lymphocytes having effiuxed 2~g/ml daunorubicin in the absence of modulators. Significant modulation was 

achieved with 2J..LM & 20J..lM verapamil (P < 0.0 I using ANOV A followed by Dunnett's post-hoc analysis). 

IFN-a had no significant effect (P > 0.05). 
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Fig. 4.18 Summary of daunorubicin accumulation, effiux, and P-gp modulation in untreated patients 
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Fig. 4.18 *: statistically significant difference compared to efflux controL (P < 0.0 I or 0.05 using ANOY A followed by Dunnett's post-hoc analysis). 
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Fig. 4.19 Daunorubicin accumulation, efflux, and P-gp modulation in patient# 8 
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Fig. 4.19 Patient 8-lymphocytes were simultaneously exposed to [A] 2J.ig/ml daunorubicin +/- verapamil 

{2J..lM & 20J.1M) and [8] 2J..lg/ml daunorubicin +/- IFN-a (500LU./ml, lOOOLU./ml and 5000LU./ml) then left 

to incubate at 37°C for 90min (efflux). Intracellular fluorescence intensities were compared to those of 8-

lymphocytes having effluxed 2J..lg/ml daunorubicin in the absence of modulators. Significant modulation was 

achieved with 2J.1M & 20J.1M verapamil (P < 0.0 I using AN OVA followed by Dunnett's post-hoc analysis). as 

well as all concentrations of [FN-a (500LU./ml, P < 0.05; 1 OOOLU./ml & 5000LU./ml, p < 0.0 I). 
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Fig. 4.20 Summary of daunorubicin accumulation, efflux, and P-gp moduJation in treated patients 
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Fig. 4.20 *: statistically significant difference compared to efflux controL (P < 0.0 l or 0.05 using ANOV A followed by Dunnett' s post-hoc analysis). 
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4.6 DISCUSSION 

In 1991, Scala et al. indicated that IFN-a could have a potential role in the modulation of 

P-gp-associated MDR, avoiding the high concentrations traditionally associated with 

classical P-gp modulators such as verapamil. For this reason, the objective of this study 

was primarily to evaluate the potential of IFN-a as a P-gp modulator in B-CLL including 

analysis of P-gp functionality in an attempt to clarify P-gp presence on isolated CLL B­

lymphocytes. 

Initial studies on the toxicity of IFN-a to the doxorubicin-sensitive and doxorubicin­

resistant cell lines (MESSA and MESSNDx-5, respectively) demonstrated that 500 I.U./ml 

IFN-a had the least toxic effect on cell survival and also demonstrated that the 

MESSNDx-5 cells were more susceptible overall to the effects of IFN-a (Fig. 4.2, p205). 

This increased IFN-a toxicity in the resistant cell line was unexpected but may be 

explained by a recent publication demonstrating that IFN-a treatment abrogated cell 

proliferation in a cell line expressing high levels of P-gp (KTCTI..-26) whereas 

proliferation of a cell line expressing low levels of P-gp (KTCTI..-2) was only partially 

inhibited (Frank and Pomer, 1999). These findings suggest that IFN-a-induced 

antiproliferative activity requires P-gp-mediated transport. The findings also suggest that 

susceptibility to the antiproliferative effects of IFN-a may correlate with P-gp expression, 

therefore, the increased IFN-a toxicity observed for the MESSNDx-5 cell line could be 

due to P-gp overexpression. 

This phenomenon was not thought to pose a problem with further analysis of P-gp function 

and its modulation using IFN-a, as at 500 I.U./ml IFN-a toxicity was similar in both cell 
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lines. It is interesting, however, that Scala et al. (1991) reported that both the doxorubicin­

sensitive and doxorubicin-resistant cells used in their laboratory (LoVo & LoVo/Dx, 

respectively) had a similar sensitivity to IFN-o: in general, over a concentration range of SO 

I.U./ml to 10 000 I.U./ml. The fact that the resistant cell line used by Scala et al. 

(LoVo/Dx) showed little difference in IFN-o: sensitivity compared to the sensitive cell line 

(LoVo) suggests differences in the function of P-gp protein expressed in MESSA/Dx-5 

cells compared to LoVo/Dx, although this would need further investigation. 

MTT analysis of P-gp modulation was performed by comparing the effect of verupamil 

(2!-IM and 20!-IM) with a non-toxic concentration of IFN-o: (500 I.U./ml), and showed that 

verapumil increased the sensitivity of resistant cells to daunorubicin toxicity, while IFN-o: 

had no effect (Fig. 4.5, p212). Flow cytometric analysis showed this increase in sensitivity 

to be due to an increase in drug accumulation, i.e. an alteration in P-gp functionality, while 

no such drug accumulation was detected using IFN-o: (Figs. 4.10, p220 & 4.11, p221). The 

in vitro results suggested an inability of IFN-o:, ut 500 I.U./ml, to modulate P-gp function. 

Therefore, in these cell lines, IFN-o: did not give the same promising results described by 

Scala et al.(1991).However, not only were different cell types used in this investigation 

but, due to this fact, different cell culture media was also used. A delay in cell culture 

medium change has been reported to alter the function of P-gp (Hegewisch-Becker et al. 

1996), therefore, changes in culture media could potentially interfere with any functional 

alteration exerted by IFN-o: and lead to conflicting conclusions. 

As the mechanism by which IFN-o: exerted the modulatory effects reported by Scala et al. 

(1991) is yet unknown and there were differences in experimental conditions which may 

have influenced the effect of IFN-o: on P-gp function, investigation into the effects of 
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verapamil and IFN-a on patient B-lymphocytes was continued. It was possible that an IFN­

a concentration of 500 I.U./ml did not modulate P-gp function in the cell lines MESSA & 

MESSNDx-5, but was effective at modulating P-gp expressed by patients' B-lymphocytes. 

Modulation with higher concentrations of IFN-a was also investigated after it had been 

suggested that patients could tolerate higher concentrations of IFN-a in vivo than originally 

thought (personal communication from Dr. A Prentice, 2000), thus leading to a greater 

potential for modulation. 

Eleven patients were analysed fully for P-gp functionality. These patients were analysed for 

rhodamine 123 and daunorubicin efflux where efflux was defined as a loss in cell 

fluorescence that could be reversed by verapamil, either 2j.lM or 20j.lM. 

Out of the eleven patients studied, ten demonstrated a loss in rhodamine fluorescence 

intensity that could be significantly altered by 2j.lM or 20j.lM verapamil (Figs. 4.13 and 

4.15). Considering the affinity of verapamil for P-gp and also the trend of verapamil 

treatment returning the fluorescence intensity towards the levels seen before initial drug 

efflux (Figs. 4.12 & 4.14), i.e. fluorescence intensities associated with drug accumulation, 

the results strongly suggested that rhodamine was being actively expelled by the action of 

P-gp and that this action was being modulated by the addition of verapamil. This implied 

that, in those patients with detectable P-gp levels (Table 4.6, p240), the protein was also 

functional. 

However, 4 out of the 10 patients demonstrating rhodamine efflux had been classed as 

negative for P-gp by flow cytometry analysis (Table 4.6, below). It is possible that another 

efflux mechanism was responsible for the decrease in rhodamine levels in these patients. 

However, the practice of denoting thresholds to differentiate between negative and positive 
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in experimental samples (Beck et al. 1996) is arbitrary and may incorrectly suggest the 

absence of an important cellular component. For example, the four patients (patient nos 1, 

2, 4 & 10) who were reported as negative for the presence of P-gp all had values just below 

the 10% cut-off (range 7 to 9%) but nevertheless effluxed rhodamine (Table 4.6and Figs. 

4.12 & 4.17). This indicated the need for a different definition of P-gp expression such that 

P-gp presence could be described in grades rather than in absolutes. Instead of yes or no 

definitions for P-gp expression, in these patients it would be more accurate to describe P­

gp expression as low or high while still retaining the 10% cut-off point for these 

descriptions. With this new definition 10 patients analysed by rhodamine efflux would be 

classed as expressing functional P-gp (6 high expressers and 4 low expressers) with only 

one patient out of the eleven not expressing functional P-gp. 
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Patient# P-gp expression rhodamine Modulation. of rhodamine emux dauno. Modulation of daunorubicin effiux 

.. mu., efflux 
Modo.- ver. Modo. - IFN-o: Modo.- ver. Modo. - IFN-o: 

2 j.LM 20 j.LM 500I.U 1000 I.U 5000 I.U 2 j.LM 20 j.LM 500 I.U 1000 I.U 5000 LU 

I no (8.3%) yes yes yes no no no yes yes yes no no no 

2 no (7.3%) yes yes yes no no no yes yes yes no no no 

3 yes (44.9%) yes yes yes yes no no no data no data no data no data no data no data 

4 no (9.4%) yes yes yes yes no no no no no DO no no 

5 yes (28.6%) yes yes yes no no no yes no yes no no no 

6 yes (29.1%) yes yes yes no no no yes yes yes no no no 

7 yes (37.5%) yes yes yes no no no yes no yes DO no no 

8 yes (57.0%) yes yes yes no DO no yes yes yes yes yes yes 

9 yes (13.4%) no no no no yes yes yes yes yes no yes yes 

10 no(7.2%) yes yes yes no no no yes yes yes no no yes 

11 yes (20.5%) yes yes yes DO no no yes yes yes no no no 

12 no (8.9%) yes yes yes no no data no data no data no data no data DO data no data no data 

Table 4.6 P-gp expression, function and modulation in patient group Patient Number: 1-6 untreated, 7-11 previously treated, 12 treated with combination therapy. 

Patients 1-11 were fully analysed with rhodamine efflux and verapamil modulation, while patient 12 was only partially analysed. 
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In the same patient sample, only 10 out the eleven patients were able to be analysed by 

daunorubicin efflux. Nine patients demonstrated a loss in daunorubicin fluorescence 

intensity that could be significantly altered by 21-!M or 201-!M verapamil (Figs. 4.18 and 

4.20) again suggesting that, in these patients, daunorubicin was being actively expelled by 

the action of P-gp. As anthracycline drugs are known P-gp substrates, these results not only 

indicated the presence of functional P-gp but also suggested a potential drug resistance 

problem for treatment regimens incorporating P-gp substrates such as CHOP. 

In light of this it would have been advantageous to analyse patients on a combination 

regimen to compare with the above patient sample. This type of therapy could potentially 

increase the possibility of P-gp-associated resistance, not only by inducing P-gp expression 

but also by promoting a selective clonal expansion of these P-gp expressing cells. 

Isolated B-lymphocytes from one such patient (patient # 12) were able to be examined 

although full analysis was not possible. Consequently only rhodamine efflux and 

modulation were examined using 21-!M and 201-!M verapamil as well as 500 l.U./ml IFN-a 

(Fig. 4.16 & Table 4.6). Cells from this patient were negative for P-gp when analysed by 

flow cytometry but expressed MDRI mRNA when analysed by RT-PCR. When analysed 

functionally, these cells exhibited efflux of rhodamine 123 and on analysis with verapamil, 

similar results to the other patients' samples were obtained, i.e. verapamil was effective at 

modulating this efflux. In a similar fashion to the other P-gp negative patients, expression 

was just below the 10% threshold (8.9%) but as rhodamine efflux was detected from these 

cells this patient was also classed as a low functional expresser for P-gp. 

As the efflux pattern did not differ from the other patients expelling rhodamine 123 and as 

P-gp expression was low, treatment with CHOP, in this case, did not seem to support the 
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theory that anthracycline-containing regimens could alter P-gp expression or affect clonal 

expansion and thus potentially increase the chances of drug resistance. However, this 

analysis was performed on only one patient and to reach any conclusion about the 

relationship between anthracycline treatment and the progression of drug resistance, a 

much larger analysis would need to be performed (Ferry, 1998). 

On the other hand, even if treatment with an anthracycline did not result in increased 

chances of resistance, the above results demonstrate that low and high expression of P-gp 

can occur in B-Cll patients and that, in cases of both high and low expression, rhodamine 

123 as well as daunorubicin efflux can be detected. Therefore, in the event of treatment 

with regimens incorporating a P-gp substrate, use of a P-gp modulator exhibiting low 

toxicity could be beneficial. 

In view of this, analysis of rhodamine 123 and daunorubicin efflux in the 11 patient sample 

indicated that, in the presence of differing concentrations of IFN-a, effective P-gp 

modulation occurred in some cases. 

Rhodamine efflux in cells of 2 out of 10 patients was reversed by 500 I.U./ml of IFN-a and 

in the case of daunorubicin efflux, cells in 1 out of 9 nine patients responded to 500 I. U/ml 

of IFN-a. If including higher concentrations of IFN-a, these statistics become 3 out of 10 

for rhodamine modulation and 3 out of 9 for daunorubicin. Although it is possible that 

higher concentrations of IFN-a were needed in these cases, it is likely that the higher 

concentrations of IFN-a had an effect due to a toxicity exerted on the cells rather than any 

direct effect on P-gp function e.g. for patient 9, incubation with 1000 I.U/ml and 5000 

I.U./ml of IFN-a returned the decreased fluorescence intensity for rhodamine back towards 

the values for rhodamine accumulation (Fig. 6.8 [Appendix J], p286) even in the absence 
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of verapamil modulation. It seems unlikely that a P-gp-specific modulator such as 

verapamil would have had no effect at all on P-gp function but that a high concentration of 

IFN-a would exert a specific effect on this membrane pump. In addition, if it were only a 

matter of modulator concentration then reversal of P-gp function should have been 

observed for each patient at the higher concentrations of IFN-a. Similarly, for the patient 

treated with CHOP no modulation of rhodamine flux was detected with 500 I.U./ml IFN-a 

(Fig. 4.16), however it may be that higher concentrations were needed. 

The variability of IFN-a in the patient analysis together with the total absence of 

modulation in the cell line analyses not only conflict with the results published by Scala et 

al. (1991) but also vary from the published IFN-a enhancement of MRK16 (MAb against 

P-gp) circumvention of MDR (Fogler et al. 1995). However, in 1993 Kang & Perry 

reported no change in Chinese hamster ovary cell doxorubicin retention by IFN-a and it 

has been reported that, rather than having a toxic effect on B-lymphocytes, IFN-a can up­

regulate bcl-2 expression and protects B-CLL cells from cell death (apoptosis) in vitro and 

in vivo (Jewell et al. 1994; Panayiotidis et al. 1994). 

Although the results presented in this chapter regarding the modulatory actions of IFN-a 

seem to show that IFN-a is not a very good reversing agent, this discussion demonstrates 

the complexity surrounding the many reported actions of IFN-a and, in light of such 

conflicting information and the small sample size of this investigation, the potential of 

IFN-a as a P-gp modulator still cannot be dismissed. 

Quesada et al. (1996) offer an explanation for the differing results regarding the ability of 

IFN-a to modulate P-gp function. Resistant cells, identified by exposure to increasing 
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concentrations of a single anticancer drug, may not only acquire cross-resistance but may 

also undergo a phenomenon termed 'collateral sensitivity' to other drugs including some 

chemosensitising agents such as verapamil. With this phenomenon there may be no 

correlation between the cytotoxic effects of chemosensitising agents on MDR cells and 

their ability to potentiate the accumulation of anticancer agents. P-gp has been suggested to 

be the target molecule in collateral sensitivity to verapamil and in that case compounds 

such as verapamil are toxic to the MDR cells at concentrations much lower than those toxic 

to the parental cells. Therefore, anticancer drugs exhibiting increased toxicity in a 

cytotoxicity assay might not be doing so due to an inhibition of P-gp. Instead increased 

toxicity would be due to a selective toxicity of the chemosensitising compound to the 

resistant cells. 

Quesada et al (1996) also showed that the LoVo/Dx cells used by Scala et a/.(1991) 

demonstrated a sensitivity to verapamil suggesting the collateral sensitivity phenomenon. 

Such an effect was not observed in LoVo parental cells. Therefore the positive cytotoxicity 

result obtained by Scala et al (1991) for IFN-a may not have been due to P-gp modulation 

but could have been due to the phenomenon of collateral sensitivity. This explanation 

would therefore support the data in Fig. 4.5 (p212), showing that IFN-a does not have a 

modulatory action on P-gp in comparison to a modulator such as verapamil. This theory is 

unlikely however, as Scala et al. (1991) had also demonstrated that the IFN-a effects which 

they observed were coupled to an increased accumulation of doxorubicin, negating the 

possibility of collateral sensitivity being responsible for the IFN-a effects in this cell line 

and supporting the theory of P-gp modulation. 

Another explanation for the interlaboratory variation is the ability of P-gp to be 

phosphorylated. The 170 kDa P-gp has been reported to be phosphorylated in its basal state 
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by protein kinase C (PKC) and it has been suggested that this phosphorylation of P-gp 

might be essential for drug transport (Germann, 1996a). Similarly, Sato et al. (1990) and 

Chambers et al. (1990 & 1992), theorised that phosphorylation of P-gp could activate it as 

inhibition of PKC increased drug accumulation and decreased drug resistance. Studies 

using vincristine resistant HL 60 cells demonstrated that another membrane associated 

protein kinase (PK1), which also phosphorylates P-gp on its serine and threonine residues, 

may regulate levels of multidrug resistance (Chambers et al. 1990; Staats et al. 1990). In 

contrast, two different groups showed that a mutation of the major phosphorylation sites 

within P-gp did not affect its transportation function (Germann et al. 1996b; Goodfellow et 

al. 1996). It has also been demonstrated that staurosporine and H7, which are inhibitors of 

protein kinase C and cAMP dependent protein kinase activity, do not affect overall P-gp 

phosphorylation (Harris, 1992). In addition, verapamil treatment which inhibits P-gp 

function and increases drug accumulation in MDR cells, results in P-gp 

hyperphosphorylation (Hamada, 1987). 

This paradox suggests a complex role for phosphorylation in relation to P-gp function. 

Assuming, however, that phosphorylation of P-gp activates the protein and therefore allows 

it to act as an efflux pump, anything altering this phosphorylation should inhibit P-gp 

function. IFN-a has been reported to activate protein kinases e.g. tyrosine kinases (Uddin 

et al. 1998; Yan et al. 1998). Protein kinases are responsible for the phosphorylation of 

many cell proteins and are involved in complex signal transduction pathways. It is possible 

therefore that IFN-a P-gp modulation may vary depending on the levels & types of protein 

kinases within different cell lines as well as the signal transduction mechanisms in which 

these kinases are involved. 
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Another explanation involves the drug stability data presented in Chapter 2 (p72) where the 

different physical processes identified in the in vitro experimental system could have 

interfered with IFN-a P-gp modulation. Scala et al. (1991) suggested that IFN-a affected 

drug accumulation by altering P-gp function rather than expression. Modulation involving 

direct IFN-a interaction with the P-gp molecule could be possible and, in view of the 

stability studies that identified the degradation of daunorubicin (and possibly rhodamine 

123), lack of modulatory action could be explained by the presence of degradation 

products. For example, it is known that verapamil modulates P-gp function by competing 

with substrates for the P-gp binding site (Doppenschmitt et al. 1999; Neuhoff et al. 2000). 

IFN-a may have a binding site different to that of verapamil but similar or identical to that 

of degradation products from daunorubicin and perhaps rhodamine. It is possible that 

daunorubicin degradation products establish higher binding affinities to IFN-a binding 

sites than for verapamil binding sites, meaning that degradative products could be 

competitively inhibiting the IFN-a from binding to P-gp, thereby preventing modulation of 

P-gp function. The likelihood of this is remote however as IFN-a acts via specific receptors 

(section 1.4.2.1, p39) and the binding affinity of IFN-a for its own receptors would be 

expected to be higher than for P-gp. 

4.7 CONCLUSION 

The functionality investigations presented in this chapter suggest that an efflux mechanism 

resembling P-gp in activity and modulation is expressed in CLL B-lymphocytes to varying 

degrees. Furthermore, this study also demonstrates that, depending on the techniques used 

and the analytical thresholds applied, the occurrence of P-gp-associated MDR in B-CLL 

could be misrepresented. 
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In addition, the variability of IFN-a modulation demonstrated in these patients suggests 

that IFN-a would not be a suitable candidate for clinical use as a drug-resistance reversing 

agent. However, the complexity surrounding the actions of IFN-a as well as the conflicting 

inter-laboratory in vitro results suggest that the ability of this cytokine to modulate P-gp 

function cannot be dismissed until further investigations have been performed with a larger 

sample group. In addition, a study examining the toxicity of IFN-a to isolated B­

lymphocytes would be needed to determine the usefulness of increasing IFN-a 

concentrations in an attempt to achieve P-gp modulation. 
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,5 OYERALLDISClJSSION, CON€LUSION AND.FUTl!JRE WORK 



5.1 DISCUSSION 

The discovery that MDRI and P-gp were responsible for clinical resistance to several 

classes of chemotherapeutic drugs led to a major effort to find agents able to inhibit P-gp­

mediated MDR. In clinical trials most of these modulators have produced major side­

effects such as cardiotoxicity (verapamil) or immunosuppression (cyclosporin A), which 

limit their clinical use at the concentrations needed to achieve inhibition of MDR {Eytan 

and Kuchel, 1 999; Mechetner, 1 992; Tan et al. 2000). Therefore, the finding by Scala et al. 

( 1991) that IFN-a could modulate P-gp function at a concentration tolerated in vivo 

together with several conflicting reports regarding the level of expression of the MDR1 

gene & P-gp protein in B-CLL (Arai et al. 1997; Ribrag et al. 1996; Sparrow et al. 1993; 

Webb et al. 1998), prompted this investigation into both P-gp associated anthracycline 

resistance in B-CLL patients and the ability of IFN-a to modulate P-gp function. 

Initially, the stability of the anthracycline daunorubicin was examined, and it was found 

that there was decreased drug concentration at 37°C over time (a 49.8% reduction over 2h) 

due to both adsorption and degradation (section 2.6, p 117). This novel finding not only 

suggested that drug availability in vitro could be overestimated, but also illustrated that 

degradation products could exist in an analytical culture system, potentially interfering with 

functionality experiments during analysis of cell efflux mechanisms (section 4.6, p 236). 

These two findings may have implications for the accuracy and validity of previous studies 

on drug sensitivity in vitro. 

Following the drug stability analysis, flow cytometric analysis of the patient population's 

cells showed a low frequency of P-gp expression (section 3.5, pl71) when compared to 
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expression of MDR1 mRNA by RT-PCR. Many studies have investigated P-gp expression 

in B-CLL using different techniques (Arai et al. 1997; Bosanquet et al. 1996; Maynadie et 

al. 1997; Michieli et al. 1991; Ribrag et al. 1996; Sparrow et al. 1993; Webb et al. 1998) 

but have reported conflicting findings as to the presence and relevance of P-gp in B-CLL. 

The somewhat conflicting results obtained using flow cytometry and RT-PCR were 

therefore not uncommon and corroborate the findings of Beck et al. (1996) who warned of 

the need to combine functional analysis with P-gp expression analysis when investigating 

the issue of P-gp-associated MDR. 

This situation led to further investigation of P-gp functionality. Analysis of both rhodamine 

123 and daunorubicin efflux was continued in a sample of 11 patients (either untreated or 

treated with a non-P-gp-transportable single agent), and an analysis of rhodamine efflux 

was performed in one patient treated with an anthracycline containing regimen (CHOP). 

The B-lymphocytes from the majority of patients sampled demonstrated a loss in 

rhodamine 123 (11112 patients) and daunorubicin (9/10 patients) fluorescence intensity that 

could be significantly altered by exposing the cells to 2j!M or 20j!M verapamil (Figs. 4.13, 

4.15, 4.16, 4.18 and 4.20). This strongly suggested that, in these patients, both rhodamine 

and daunorubicin were being actively expelled by the action of P-gp and that this action 

was being modulated by the addition of verapamil. Consequently, this implied that, in 

addition to being expressed (presence of mRNA and membrane protein) in these B­

lymphocytes, the protein was also functional even at low levels of expression (section 4.6, 

p236) 

Furthermore, analysis of B-cells from the patient treated with an anthracycline-containing 

regimen (CHOP) showed a similar rhodamine efflux pattern to that observed in the other 

10 patient samples. The B-cells expelled rhodamine 123 and this expulsion was modulated 
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by verapamil even though P-gp was not as strongly expressed as in some of the untreated 

patients or others on single agent therapy. 

As already mentioned, P-gp expression, whether analysed by detection of protein or MDR1 

mRNA, has been investigated by many groups but the results have been conflicting. While 

some have reported a possible relationship between increased P-gp expression levels, drug 

resistance and treatment response (Svoboda-Beusan et al. 2000; Webb et al. 1998) others 

have reported no change in P-gp expression levels and no clinical relevance to B-CLL 

(Ribrag et al. 1996) or have described P-gp levels of expression which do not correlate 

with Rai stage of disease, with ex vivo drug sensitivity, or with patient survival (Bosanquet 

et al. 1996). 

However, many of these reports do not include results of study of the functionality of the 

protein and this alone may explain the findings in the literature. While the levels of P-gp 

expression may be an important factor in drug resistance, protein expression may not 

necessarily correlate with function. For this reason the results for P-gp expression and 

function from this study were compared to determine the relationship between P-gp 

expression and rhodamine or daunorubicin efflux. (Figs. 5.1 & 5.2). 

A linear regression was performed in each case and a trend was observed for both 

rhodamine efflux (Fig. 5.1) and daunorubicin efflux (Fig. 5.2), both increasing with P-gp 

expression. As the percentage of P-gp expression increased so did the percentage of drug 

efflux. This was more obvious for daunorubicin efflux, although one atypical patient's 

analysis showed a far greater efflux compared to protein expression (Fig. 5.2). 
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Fig. 5.1 Relationship between %P-gp expression and %rhodamine efflux in patient B-

lymphocytes. 
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Fig. 5.2 Relationship between %P-gp expression and o/odaunorubicin efflux in patient 

B-lymphocytes. 
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This observed relationship between increasing P-gp expression and increasing drug efflux 

suggests that P-gp expression in B-CLL could be a factor in treatment failure when using 

P-gp transportable drugs. Interestingly in this case, P-gp expression and therefore drug 

efflux did not seem to correlate with either age, sex or stage of disease (Appendix K, Table 

5.1 & 5.2), suggesting that these factors did not influence P-gp expression nor were they 

paramount to the efficacy of the pump activity. Of course a larger sample population would 

have to be obtained to permit a full evaluation of the influence of patient age, patient sex 

and stage of disease on P-gp expression and activity. 

It has been shown recently that P-gp overexpression can be down-regulated in some B-CLL 

patients by P-gp-independent drugs (Svoboda-Beusan et al. 2000). However, even when P­

gp expression remains unchanged in other patients given P-gp independent drugs, 

successful outcome of therapy still correlates with P-gp expression (Svoboda-Beusan et al. 

2000). This correlation, plus the finding that both the patient treated with CHOP and the 

other patients expelling rhodamine 123 had similar efflux, even with low P-gp expression, 

does not support the recent suggestion that P-gp effects drug resistance only in patients 

treated with P-gp transportable drugs (Webb et al. 1998). Neither does the result from the 

CHOP treated patient support the theory that anthracycline-containing regimens could alter 

P-gp expression or affect clonal expansion and thus potentially increase the chances of 

drug resistance. However, this analysis was performed on only one patient and to reach any 

conclusion about the relationship between anthracycline treatment and the progression of 

drug resistance, a much larger analysis is needed (Ferry, 1998). 

The above results demonstrate that varying degrees of expression of P-gp can occur in B­

CLL patients and that, in cases of both high and low expression, rhodamine 123 as well as 

daunorubicin efflux can be detected. Therefore, in the event of treatment with regimens 
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Patient Stage of Sex of Age of patient P-gp rhodamine Modulation of rhodamine effiux (% of total calculated effiux) 

# _diwase natient (vears) el<llreso;ion efflux 
Modo.- ver. Modo. - IFN-a 

2 j.il\1 20 j.il\1 500 I.U 1000 I.U 5000 I.U 

I ll(B) F 58 no (8.3%) yes (70.0%) yes (61.0%) yes (67.6%) no (3.2%) no (0.0%) no (0.0%) 

2 O(A) F 76 no (7.3%) yes (45.3%) yes (81.6%) yes (94.1 %) no (0.0%) no (0.0%) no (0.0%) 

3 no data M no data yes (44.9%) yes (83.5%) yes (53.3%) yes (64.1 %) yes (5.0%) no (2.3%) no (1.9%) 

4 O(A) M 47 no (9.4%) yes (61.5%) yes (67.1 %) yes (78.5%) yes (7.2%) no (4.3%) no (0.5%) 

5 O(A) M 72 yes (28.6%) yes (71.6%) yes (95.7%) yes ( 100.0%) no (0.0%) no (0.0%) no (0.5%) 

6 O(A) F 54 yes (29.1%) yes (68.7%) yes (100.0%) yes (I 00.0%) no (3.0%) no (0.0%) no (2.2%) 

7 11 (A) M 86 yes (37.5%) yes (36.6%) yes (19.8%) yes (22.1%) no(2.1%) no (5.4%) no (3.2%) 

8 0 (A) M 66 yes (57.0%) yes (93.5%) yes (48.1 %) yes (68.7%) no (1.3%) no (0.0%) no (0.0%) 

9 0 (A) M 66 yes (13.4%) no (14.1%) no (64.3%) no (35.1%) no (0.0%) yes (72.6%) yes (95.7%) 

10 Ili(C) M 59 no (7.2%) yes (19.4%) yes (65.7%) yes (87.9%) no (5.2%) no (0.0%) no (0.0%) 

11 IV (C) M 72 yes (20.5%) yes (22.0%) yes (18.5%) yes (23.0%) no (0.0%) no (0.0%) no (0.0%) 

12 ll(B) M 52 no (8.9%) yes (31.3%) yes (79.9%) yes (64.2%) no (0.0%) no data no data 

Table 5.1 Clinical data, P-gp expression, function and modulation in patient group using rhodamine efflux Patient Number: 1-6 untreated, 7-11 previously 

treated, 12 treated with combination therapy 
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Patient Stage of Sex of Age of patient P-gp Dauno Modulation. of daunorubicin effiux (% of total calculated effiux) 

# disease oatient lvears) exnre.~"'ion emux 
Modn. - ver. Modo. - IFN-a 

2JlM 20JlM 500 I.U 1000 I.U 5000 I.U 

1 II(B) F 58 no (8.3%) yes (70.5%) yes (16.6%) yes (27.1 %) no (4.5%) no (2.5%) no (4.9%) 

2 O(A) F 76 no (7.3%) yes (43.1 %) yes (13.6%) yes (2!.4%) no (2.6%) no (0.0%) no (5.8%) 

3 no data M no data yes (44.9%) no data no data no data no data no data no data 

4 O(A) M 47 no (9.4%) no (34.6%) no (8.6%) no (23.9%) no (13.4%) no (14.5%) no (19.0%) 

5 O(A) M 72 yes (28.6%) yes (39.1 %) no (20.0%) yes (33.0%) no (0.0%) no (0.0%) no (0.0%) 

6 O(A) F 54 yes (29.1 %) yes (39.4%) yes (19.8%) yes (40.2%) no (2.7%) no(5.1%) no (4.6%) 

7 II (A) M 86 yes (37.5%) yes (52.8%) no (3.2%) yes (1l.l %) no (0.0%) no (4.5%) no (4.9%) 

8 O(A) M 66 yes (57.0%) yes (63.7%) yes (16.9%) yes (17.8%) yes (6.5%) yes (8.8%) yes (7.6%) 

9 O(A) M 66 yes (13.4%) yes (38.2%) yes (17.0%) yes (18.6%) no (!.5%) yes (13.8%) yes (17.6%) 

10 III(C) M 59 no (7.2%) yes (38.7%) yes (23.9%) yes (27.5%) no (6.3%) no (0.5%) yes (16.1%) 

11 IV (C) M 72 yes (20.5%) yes (44.1 %) yes (10.1%) yes (16.6%) no (2.6%) no (0.4%) no (1.7%) 

12 II(B) M 52 no (8.9%) no data no data DO data no data no data DO data 

Table 5.2 Clinical data, P-gp expression, function and modulation in patient group using daunorubicin emux Patient Number: 1-6 untreated, 7-11 previously 

treated, 12 treated with combination therapy 
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incorporating a P-gp substrate, use of a P-gp modulator exhibiting low toxicity could be 

beneficial. 

Analysis of rhodamine 123 and daunorubicin efflux in the 11 patient sample demonstrated 

that effective P-gp modulation occurred in nearly all cases with verapamil and also in a few 

cases in the presence of differing concentrations of IFN-a (section 4.6). However, in the 

presence of verapamil and IFN-a, an alteration in the efflux pattern of rhodamine and 

daunorubicin (depicted by the graphical representations of the flow analysis) in some 

patients was not visibly apparent even though the statistics showed otherwise. For the 

rhodamine efflux profiles where the modulation with verapamil was unquestionable in 

most cases, in patients 7, 10 and 11 the changes in fluorescence intensity were not easy to 

visualise from Figs. 6.6, 6.9 & 4.14, respectively. This was also apparent when examining 

the profiles for rhodamine in the presence and absence of interferon at different 

concentrations. Similarly, from the graphical profiles, it was difficult to see how some of 

the changes in fluorescence intensity for daunorubicin efflux and modulation could be 

found to be statistically significant. 

For this reason, the raw data for each patient was analysed twice with two different 

statistical packages (PRISM and SPSS). The statistics were found to be the same in each 

case, but this was not surprising considering that most statistical packages use the same 

algorithms for their analyses. As the calculated statistical significances between the efflux 

and modulation values (Figs. 4.12, 4.14, 4.16, 4.17, 4.19 & Appendix J) were indisputable, 

this statistical analysis denotes a significant difference in values and upon further 

evaluation it was theorised that this graphical presentation of the flow analysis may not 

have been the best way to present the drug flux profiles for each patient. Using the 

available flow cytometry software, the x-axis fluorescent values of these graphs were 
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plotted on a logarithmic scale while the statistical analysis correctly took the actual 

triplicate values of each analysis and proceeded with a linear scale analysis. Of course, 

when analysing similar values on a linear scale, small numerical differences will be more 

apparent than if attempting to depict these same values visually on a logarithmic scale. 

Additionally, the role of a statistical analysis is to help find differences in situations where 

a large biological difference may not be immediately apparent and which may therefore be 

difficult to discern. 

Paradoxically, the question of whether the statistically significant numerical differences 

reflect a clinical significance remains unanswered. It would be encouraging to witness a 

relationship between degree of modulation versus percent efflux and percent P-gp 

expression and somehow relate that to disease progression and prognosis. However, a high 

percent rhodamine modulation with verapamil was found in patients with low P-gp 

expression and high rhodamine efflux (Patient #I, Table 5.1, Fig. 6.1) as well as patients 

with very little visible modulation in the graphical representations (Patient #10, Table 5.1, 

Fig. 6.9). Modulation with IFN-a occurred to a lesser degree and the degree of modulation 

was also less. This was also true of the efflux and modulation of daunorubicin (Table. 5.2), 

suggesting that the ability to modulate the function of P-gp is not a uniform inter-patient 

phenomenon but rather a very distinct action varying from patient to patient and probably 

depending on a number of inter-related factors. 

Taking into consideration this critical evaluation, it would be interesting to have been able 

to proceed with a follow-up investigation to determine if those patients not exhibiting an 

immediately obvious efflux and modulatory pattern, developed a different profile over 

time. 
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In the absence of this opportunity, the analytical correlation between the two statistical 

packages was viewed as satisfactory evidence to argue that, in addition to demonstrating 

that P-gp is present in B-CLL patient B-lymphocytes and that the protein can be functional, 

(posing a potential drug resistance problem for treatment regimens incorporating 

anthracycline P-gp substrates such as doxorubicin or idarubicin (Gahn et al. 2000)), P-gp 

function was also subject to modulation to varying degrees in the presence of verapamil 

and IFN-o:. Even so, compared to verapamil, the overall inability of 5001.U./mL IFN-o: to 

modulate drug efflux in the cell line, MESSA/Dx-5, coupled with the sparse patient 

response even at higher concentrations, suggests that IFN-o: is unsuitable for use as a P-gp 

regulatory agent. 

There are many possible explanations for the inactivity of 5001.U./ml IFN-o: in modulating 

P-gp function in the resistant cell line, MESSA/Dx-5 and the majority of patient B­

lymphocytes. One explanation not presented in chapter 5 concerns the stability of IFN-o:. 

Although the stability of daunorubicin under cell culture conditions was investigated 

(section 2.5.2, p 106), the stability of IFN-o: was not. Even though IFN-o: exerts its effects 

via binding to its receptor, Scala et al. (1991) hypothesised that IFN-o: may exert a 

modulatory action by binding directly to P-gp. However, if IFN-o: is not stable in the 

required culture conditions, changes in its concentration and structure could affect the 

ability of IFN-o: to bind to P-gp directly, therefore preventing a potential modulatory 

action. Scala et al. (1991) used different cell culture medium for the cell lines, LoVo & 

LoVo(Dx), and it may be that the RPMI medium used in this investigation affected the 

stability of IFN-o: leading to the variation in the results regarding P-gp modulation. 
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The limited IFN-a-mediated modulation observed in this study may not be directly related 

to problems with IFN-a binding, stability or mechanism of action, but may instead result 

from the many actions of P-gp. P-gp can act as a chloride ion channel regulator (Vanoye et 

al. 1997) as well as an efflux pump (Arai et al. 1997; Dalton et al. 1997; Webb et al. 1998) 

and has recently been reported to have a role in regulating cell death (Johnstone et al. 

1999). If the P-gp protein is capable of manipulating other cellular mechanisms, such as 

cell death, it could also be interfering with the potential antiproliferative effects of IFN-a. 

The issue of IFN-a modulating P-gp function becomes even more complex with the data 

from Frank and Pomer (1999) showing an increased antiproliferative effect for IFN-a on a 

cell line expressing P-gp at high levels compared to a cell line expressing low levels. In the 

absence of a chemotherapeutic agent this suggests that the anti proliferative effects of IFN­

a may correlate with P-gp expression and that P-gp facilitates the transmembrane transport 

of IFN-a. Although the interferons are known to interact with membrane receptors 

(Jonasch and Haluska, 2001; Mandelli et al. 1994), Drach et al. (1996) concluded that P-gp 

also participates in the transport of cytokines (IL-2, IL-4 and IFN-gamma) in normal 

peripheral T lymphocytes. 

Thus the issue of IFN-a modulation of P-gp-associated MDR in B-CLL is complex and 

requires further definition. The possibility of P-gp modulation by cytokines is being 

pursued, and in 1998 Tambur et al. demonstrated that the expression and function of P-gp 

activity on NK cells (leukaemic and normal) could be reversed with IL-4. 

However, based on the efficacy of P-gp being dependent on its pumping capacity, affinity 

toward the particular drug, the rate of transmembrane diffusion of the drug, the affinity of 

the pharmacological target in the cell for the drug, and the affinity of intracellular trapping 

sites for the drug, the ideal modulator should exhibit all of the following properties: high 
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affinity of the active site(s) of P-gp; a fast rate of transmembrane exchange; low toxicity 

and side effects; low affinity of cellular components, other than P-gp (Eytan and Kuchel, 

1999). It is not known whether IFN-a fulfils these criteria. 

Given its wide distribution, modulation of P-gp has not been without problems. 

Modulation of P-gp in normal tissues can affect the pharmacokinetics and, thus, the 

toxicity of associated chemotherapeutic agents (Covelli 1999; Silverman, 1999; Tan et a/, 

2000) and most agents have produced severe toxic effects at doses required to block P-gp 

function. The relationships between the structure and MDR reversal effects of potential 

modulators are under investigation. A variety of studies have been performed on the 

identification of structure-activity relationships (SARs) and quantitative SARs (QSARs) of 

different MDR reversing agents concluding that the careful selection of relevant structural 

and biological data processed with appropriate QSAR and 3D-QSAR methods is a 

promising approach to structure-activity studies of MDR reversers (Wiese and Pajeva, 

2001). Unfortunately, even with these efforts, a possible drawback of finding a specific P­

gp inhibitor, in terms of circumventing MDR in patients with B-CLL and malignancy in 

general, is that it may not necessarily be an efficient inhibitor of alternative MDR 

mechanisms that may be present such as MRP, LRP, MDR3, or as yet unidentified 

mechanisms (Tan et al, 2000). 

Alternative approaches to combat MDR are therefore necessary and have included the 

design and synthesis of new non-cross-resistant drugs with physicochemical properties that 

favour the uptake of such drugs by resistant cells. Garnier-Suillerot et al., (2001) have 

discussed the improvement of drug cytotoxicity in resistant cells by increasing drug 

lipophilicity thereby avoiding the P-gp resistance pump. Consequently, they have referred 

to the increased efficacy of idarubicin against MDR tumour cell lines in vitro compared to 
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daunorubicin and doxorubicin. Gahn et al. (2000), published the results of a multicenter 

phase II study of oral idarubicin in treated and untreated patients with 8-CLL. While they 

demonstrated that as a single agent idarubicin was of limited effectiveness in B-CLL, they 

acknowledged the need for further studies to assess different doses and schedules of oral 

idarubicin and to test it in combination with other therapeutic agents. Newer lipophilic 

anthracyclines are also being investigated such as annamycin which has an even greater 

lipophilicity than idarubicin which, although more effective than daunorubicin and 

doxorubicin, may still be affected by the presence of efflux pumps such as P-gp (Ross et al. 

1995). Studies are also being undertaken to analyse the effectiveness of MDR L -targeted 

anti sense oligonucleotides in the treatment of B-CLL (Dassow et al, 2000). 

Alternatively, the particular and consistent dysregulation of apoptosis in B-CLL makes the 

cell death pathway an attractive target for treatment. There is even greater dysregulation of 

apoptosis in advanced and chemotherapy-resistant disease (Bentley and Pepper, 2000) 

perhaps contributing to the reason for pleiotropic multidrug resistance in this disease. 

Advances in the understanding of the complexities of the apoptotic pathway have lead to 

therapeutic opportunities for the modulation of this pathway as a target for specific 

treatment. Investigation of this has included the targeting of cell surface receptors (Kato et 

al. 1998), Bcl-2 family members (Hirsch et al. 1998; Pepper et al. 1999a & b) and caspases 

(Chandra et al. 1998; Masdehors et al. 1999). 

These novel treatment strategies are encouraging. However, the mechanism of MDR 

resistance in B-CLL is still far from clear. Other efflux proteins have been identified in B­

CLL patients. Multidrug resistance protein (MRP) has been reported to be highly expressed 

in B-CLL (Burger et al. 1994). The expression of different MDR genes encoding separate 

P-gp isoforms may also be a mechanism for generating diversity of response, this concept 

261 



being emphasised by the detection of MDR3 as well as MDR1 in B-CLL samples (Arai et 

al. 1997). Analysis of MDR3 expression in B-cell malignancies has revealed that the 

expression is associated with the maturation stage of the neoplasm (Herweijner et al. 

1990). Previous investigations have reported that MDR1-associated P-gp, MDR2/3 gene 

product and MRP are all able to be expressed in malignancies. However, while transfection 

of MDR2/3 did not confer resistance, the transfection of the other two genes did (Marie, 

1995). Even so, high levels of MDR3 expression have been found in CLL (Herweijner et 

al. 1990) and, despite Sonneveld et al. (1992) finding that these high levels were not 

responsible for drug resistance, Arai et al. (1997) saw increased accumulation of rho123 in 

P-gp -ve, MDR3 +ve cells exposed to the modulator, cyclosporin A, demonstrating an 

efflux function for the MDR3 product. Although the role of MDR3 in B-CLL remains 

undefined, the ability of the MDR3 product to act as an efflux mechanism means that it too 

may be involved in malignant B-cells' drug resistance and its presence may need to be 

investigated simultaneously with MDRl mRNA, P-gp and MRP. This is especially 

important when evaluating the potential of novel P-gp modulators. Clearly, modulation of 

the MDR I P-gp would be erroneously reported if the investigation had unintentionally used 

a model primarily expressing the MDR3 gene product. MAbs to P-gp have been found to 

bind to the MDR3 gene product in a non-specific manner (section 3.1.1.3.1, pl33) and the 

MDR3 gene product may also respond to the same array of modulators as the MDR I P-gp. 

Even with intense investigation into the expression and function of an ever increasing 

number of efflux proteins, MDR in 8-CLL remains a complex matter and it is unlikely that 

efflux mechanisms alone will account for all of the cellular resistance mechanisms 

involved. This investigation has not touched on the other potential mechanisms mentioned 

in section 1.5 (p 43) such as increased GST levels, but it is probable that part of the drug 

resistance in B-CLL is associated with other MDR mechanisms such as increased GST 
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levels and topo II mutations (section 1.5, p 43). Additionally, it is likely that there are many 

obstacles to apoptosis intrinsic to the B-CLL cell, many of which will not be influenced by 

modulation of MDR (Haraguchi et al. 2000; Tamm et al. 2000; Zhang et al. 2000). 

Identification and quantification of the relative contributions of each mechanism causing 

resistance at any one moment is essential in research in the field of MDR. However, other 

challenges within this area also include the use of modulators where low potency and non­

specificity result in a dose-limiting toxicity. In addition to the fact that P-gp modulators can 

alter anticancer drug pharmacokinetics, P-gp is expressed in many normal tissues, 

including parts of the liver, kidneys, intestines, and at the blood-brain barrier (Fromm, 

2000). As a result, drugs that affect the activity of P-gp can increase the toxicity of 

anticancer drugs to normal tissues, so that the dosage of anticancer drugs must be reduced 

when the two are given in combination. In addition to these challenges, there is the 

possibility that a modulating agent can suppress one or more mechanisms of drug 

resistance while enhancing others (Dalton et al. 1997). 

Current strategies in overcoming the problem of MDR and associated modulator toxicity 

encompass the design of better targeted, less toxic agents such as PSC833 which is active 

in MDR I expressing cell lines in vitro and is in clinical trials (Beketic-Oreskovic et al. 

1995). Gene therapy is another potential avenue of investigation by activation of the MDRI 

gene in blood and bone marrow stem cells with a view to protecting them selectively from 

cytotoxic drugs so that these cells are able to withstand high-dose chemotherapy. The use 

of anticancer drugs such as the newer anthracyclines that are not as susceptible to the 

actions of P-gp (idarubicin) or that bypass the P-gp resistance mechanism altogether 

(annamycin) is another possibility (Consoli et al. 1996). 
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Although many alternatives are being studied, treatment of patients exhibiting P-gp­

associated MDR would still benefit from a modulator devoid of the in vivo toxicity 

associated with inhibiting agents. Although the results of this study are not favourable 

towards the use of IFN-a as a P-gp modulator, the uncertainty about the mechanisms of 

IFN-a action means that it would be presumptuous to conclude that IFN-a is not a suitable 

P-gp modulator in B-CU... However, it does seem likely that elevated concentrations of 

IFN-a may be required in some cases whereby dose-related toxicity could be a limiting 

factor in its clinical use as a P-gp modulator. 

5.2 CONCLUSION 

Daunorubicin is not a stable anthracycline in the cell culture conditions used for P-gp 

analysis, thus leading to a decreased drug availability in the in vitro experimental system. 

This drug loss is due to both adsorption and degradation resulting in the presence of 

degradation products in the analytical culture system which could potentially interfere with 

HPLC analysis and flow cytometry analysis of P-gp functionality. Thus, the stability of 

components in a culture system, e.g. drug and protein modulator, is an important factor and 

should be taken into consideration. 

The results presented by this investigation help resolve the issue of P-gp expression in B­

CU.. where protein expression is demonstrated in patients to varying degrees. In addition, 

the active expulsion of P-gp substrates such as rhodamine 123 and daunorubicin from 

patient B-lymphocytes suggests a role for the expressed P-gp in the efflux of these drugs 

and anthracyclines in general. Further analysis of P-gp expression and function suggests the 

presence of a P-gp-associated efflux mechanism in B-CU.. which may be only partially 
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regulated by 5001.U./ml IFN-a, questioning the initial idea that this cytokine may be a 

potential candidate for use as a P-gp modulator in the clinic. 

This study also proposes that this form of MDR is easy to misrepresent depending on 

which analytical techniques are employed during investigation. Consequently, this 

investigation shows that P-gp is present and functional in B-CLL but, due to variations in 

analytical techniques, could have been so far underestimated. This possibility, coupled to 

the varying interlaboratory results, reinforces the need to integrate a variety of analytical 

methods to gain a more accurate understanding of P-gp-associated anthracycline resistance 

in B-CLL and other tumours. Analyses should include measurement of MDRl mRNA, of 

P-gp protein (monoclonal antibody detection and protein isolation) and of P-gp 

functionality. The combined use of such would allow the confirmation of at least one 

resistance mechanism at work in B-CLL. 

5.3 FUTURE WORK 

If deemed clinically appropriate, determining why IFN-a did not modulate P-gp function to 

a greater degree in the in vitro B-lymphocyte culture could include investigations into the 

stability of this cytokine which should be undertaken before continuing with a more 

extensive patient analysis of P-gp function and modulation using IFN-a. Analysis could 

look at IFN-a stability in various culture media and at different temperatures. However, 

investigations on a hybrid interferon-alpha (BDBB) have reported that pH plays a key role 

in its degradation, therefore, studies on the stability of IFN-a in RPMI at physiological pH 

would be beneficial for continued study into P-gp modulation in B-CLL. Possible 

analytical techniques include HPLC and SDS-PAGE (Alien et al. 1999) 
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In addition, the fact that more ATP-binding cassette proteins are becoming associated with 

MDR in B-CLL (Arai et al. 1997; Webb et al. 1998) necessitates continued evaluation of 

resistance-inducing efflux mechanisms in this disease. Future investigations should include 

a wider spectrum of analysis including the detection of proteins such as MRP and the 

MDR3-associated gene product. For ease and speed of analysis, flow cytometry is still a 

practical technique although not without its problems, e.g. low sensitivity depending on 

choice of monoclonal antibody. However, the conflicting reports regarding P-gp expression 

in B-CLL, demonstrate the importance of isolating and purifying the protein. Consequently 

it is promising that there are recent reports of such isolation and purification of P-gp 

proteins (Figler et al., 2000, Julien et al., 2000, Lemer-Marmarosh et al., 1999) and other 

proteins such as MRP (Mao et al., 1999) from cell membranes. In addition there are reports 

regarding the use of reconstituted P-gp in proteoliposomes to further investigate its 

functional properties with a view to gaining a better understanding of function and 

modulation (Lu et al. 2001). 

Although only speculative in nature, the theory that daunorubicin degradation and 

metabolic products could have impeded a potential IFN-a modulatory effect is an 

interesting explanation for the disappointing IFN-a results on P-gp modulation (section 

4.6, p236) and one that may result in discovery of more clinically useful data if further 

investigated. Analysis of protein-protein interactions between P-gp and IFN-a could 

potentially resolve the question of whether IFN-a can exert a direct modulatory effect on P-

gp. 

In the longer term, identification, isolation and analysis of structure of P-gp isotypes may 

increase the understanding of the resistance mechanisms at work in B-CLL. Similarly, 

further study of P-gp isoforms may lead to the identification of a disease-specific P-gp, 
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6.1 APPENDIX A 

Sample calculation of final stock daunorubicin concentration: 

Weight of dry, silanised, glass volumetric flask+ lid = 30g 

Weight of dry, silanised, glass volumetric flask+ lid+ daunorubicin powder= 30.010g 

Weight of daunorubicin powder transferred = 30.010- 30g = O.OlOg 

Final volume in flask = 25ml 

Concentration of daunorubicin = 0.010g/25ml 

= 0.0004glml 

= 0.4mglml 

= 400ug/ml 
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6.2 APPENDIX 8 

Stability indication procedure: 

1] Take six, silanised, lOml volumetric flasks and label (a)-(f). 

2] Add 1 ml of lOJ.lg/ml daunorubicin stock solution to each. 

3] Add the following to each: 

flask (a) 

flask (b) 

flask (c) 

flask (d) 

flask (e) 

flask (f) 

1 ml disti lied water 

1 ml distilled water 

lmlRPMI 

N/1 HCl (lml) 

N/1 NaOH (lml) 

20vol H20 2 (1ml) 

4] Immerse flasks (b)-(f) in a boiling water bath for 20min and maintain flask (a) at 

fridge temperature as a control. 

5] Cool the flasks and then neutralise (d) & (e) with 1ml of NaOH or HCl 

respectively. 

6] Adjust all flasks to volume with 18MQ distilled water and assay (HPLC). 
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6.3 APPENDIX C 

Positive CD19 dynabead!DETACHaBEAD cell isolation: 

Dvnabead washing 

All Dynabeads should be washed before use. A general washing procedure is as follows; 

I] Resuspend the Dynabeads M-450 in the vial by gentle vortexing and/or shaking. 

2] Transfer the required amount of Dynabeads M-450 to a washing tube. 

3] Place the washing tube on a Dynal Magnetic Particle Concentrator for two minutes, and 

pipette off the fluid. 

4] Remove the tube from the Dynal MPC, and resuspend in an excess volume of washing 

buffer (PBS pH 7.2). 

5] Repeat step 3 and resuspend the washed Dynabeads M-450 in washing buffer. 

Dynabead separation technique 

Cool buffers and suspensions and keep at 4°C at all times to prevent non-specific 

phagocytosis of Dynabeads M-450 

I] Prewash a calculated number of Dynabeads M-450 CD19 according to above procedure 

and cool whole blood sample to 2-4°C. 

2] Add Dynabeads to the cell suspension containing target cells (e.g. whole blood). 

3] Incubate at 4°C with slow tilting and rotation for 30min for whole blood samples. 

4] Isolate the rosetted B cells by placing the tube in a Dynal MPC for 2min. 

5] Pour or pipette the supematant from the tube while the rosetted cells are attached to the 

wall of the test tube by the Dynal MPC. 
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6] Remove the test tube from the dynal MPC and resuspend the rosetted cells in a washing 

buffer. Avoid resuspension using vigorous pipetting or vortexing as the exerted shear 

forces may cause damage to the cells. Repeat steps 4-6 five times, and then resuspend the 

cells in the desired volume of an appropriate buffer or cell-culture media. 

Detachment protocol using DET ACHaBEAD 

1] Perform cell isolation with dynabeads CD19 as recommended above. 

2] Resuspend the rosetted cells in 300!!1 of cell culture medium. 

3] Add five units (50!!1) DETACHaBEAD to the rosetted cells 

4] Incubate for 45-60min at ambient temperature on an apparatus that provides both gentle 

tilting and rotation 

5] Remove the released beads by placing the test tube in the Dynal MPC for 2min. 

6] Pipette the cell suspension from the test tube while the beads are attached to the wall of 

the tube by the Dynal MPC. 

7] To obtain the residual cells, wash the detached beads 2-3 times in cell culture medium, 

and collect the supernatant. 

8] Wash the detached cells thoroughly by resuspending the cells and centrifugation for 

lOmin at 800 x gav, 2-3 times, to remove DETACHaBEAD from the solution. 

9] Resuspend the cells in the desired volume of an appropriate buffer. 

The cells can now be used for several research applications. 
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6.4 APPENDIX D 

Isolation of PBMCs: 

1] Extract patient blood into Sodium Heparin tubes at room temperature. 

2] Mix blood by inverting (to prevent clotting) and transfer to universal flask. 

3] Dilute blood with equal volume of RPMI- 10: lOml = 20ml. 

4] Add lOml of density gradient medium (lymphoprep) to each of two universal flasks. 

5] Layer equal volume (lOml) of diluted blood onto lymphoprep. 

6] Centrifuge for 20mins at 400g (2000rpm). 

7] Harvest interface PBMC layer into universal flask. 

8] Dilute with RPMI to 20ml and mix well. 

9] Centrifuge LOmins at 240g (l200rpm). 

J 0] Discard supematant and resuspend pellet in 5ml of RPMI. 

11] Wash x 2 in RPMI (5 min at 240g) and resuspend in 5-IOml RPMI culture medium. 

12] Count cells in Haemocytometer. 

273 



6.5 APPENDIX E 

Trizol RNA extraction: 

1] Remove the aliquot of mononuclear cells to be analysed from the liquid nitrogen store 

DIREC1L Y to ICE. 

2] Add lml ofTRIZOL to the cell pellet as soon as possible while the pellet is still frozen. 

3] Pipette to allow full cell lysis. 

4] Transfer the cell/reagent mix to a fresh 1.5ml tube and incubate at room temperature for 

5 min. 

5] Add 200fll chloroform and shake vigorously for 15s. Do not vortex. Incubate at room 

temperature for a further 3min. 

6] Centrifuge at approx. J0,800g at 4°C for 15min. 

7] Transfer the aqueous (top) phase to a fresh J.5ml tube, JOOj.Ll at a time avoiding the 

interface layer. 

8] Add 500j.Ll isopropanol to the RNA solution. 

9] Invert the tube several times to mix and incubate at room temperature for IOmin to 

precipitate the RNA. 

I 0] Centrifuge at I 0,800g at 4°C for lOmin. CAREFULLY pour off the supematant. 

11] Wash the RNA pellet by adding lml 70% ethanol and centrifuging at 7,400g at 4°C for 

5min. 

12] Carefully pour off the supematant. Add a further lml 100% ethanol to the RNA pellet 

and centrifuge at 7,400g at 4°C for 5min. 

13] Pour off the supernatant. Cover the open tube with a piece of parafilm and pierce the 

film 2 to 3 times with a needle. 

14] Dry the pellet of RNA under vacuum. DO NOT OVERDRY THE RNA PELLET. 

15] Resuspend the RNA pellet in RNase-free H20 and store at -20°C for later analysis. 
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6.6 APPENDIX F 

'Access' RT-PCR Kit Protocol 

1] Following the table below, prepare the reaction mix tubes by combining the volumes of 

nuclease-free water, AMVfffl 5X reaction buffer, dNTP Mix and 25mM MgS04 in thin-

walled 0.5ml reaction tubes on ice. 

Components Vol. in reaction mix ful) Vol. template and primers full 
Nuclease-free water 26.4 

AMV/TI15X reaction buffer 10 
dNTP mix I 

Downstream primer 3.3 (50pmol) 
Upstream primer 3.3 (50pmol) 
25mM MgS04 2 

AMY reverse transcriptase I 
Tfl DNA polymerase I 

RNA sample or control 2 

2] Make corresponding individual tubes of RNA sample/primers for denaturing as shown 

in table above. 

3] Denature RNA sample/primer tubes at 94°C for 2 min. 

4] During denaturing, fetch enzymes on ice. 

5] Put enzymes in reaction mix and keep on ice. 

6] Remove denatured tubes to ice and spin briefly before adding contents to corresponding 

reaction mix tubes. 

7] Run following RT-PCR profile-

I cycle 48°C for 45min reverse transcription 

I cycle 94°C for 2min AMY RT inactivation and RNA/cDNA/primer denaturation 

40 cycle 94°C for 30sec denaturation 

60°C for lmin annealing 

68°C for 2min extension 

1 cycle 4°C soak 

8] Run samples on 2% agarose gel 
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6.7 APPENDIX G 

Restriction Endonuclease Mae 1: 

1] Turn on water bath to 45°C and allow to heat. 

2] Briefly centrifuge the samples to collect any condensation. 

3] Aliquot SJ.ll of each sample into O.Sml microfuge tubes and label. 

4] Add Sjll of enzyme reaction buffer to each tube. 

3] Remove the enzyme form the freezer DIRECTLY ONTO ICE. 

4] Add 1 unit of enzyme (O.Sjll of a 2unit/jll stock) to each sample, using a fresh pipette tip 

for each one. Keep on ice until all samples are ready for incubation. 

5] Brietly centrifuge to mix and place in a float in the water bath for 2h. 

6] When digested, briefly centrifuge the samples to bring down any condensation and load 

lOjll of each (plus 1111 Ficoll DNA loading buffer) onto a 10% polyacrylamide gel and run 

at 20mA for approximately 30min then check the position of the bromophenol blue dye 

front. Keep checking until the gel has run far enough. 

7] At the end of the run stain with ethidium bromide for Smin and visualise with a 3 UV TM 

Transilluminator UVP U.V. box. 
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6.8 APPENDIX H 

Blast searches 

6.8.1 PGP +VE CELL LINE CONTROL, MESSA/DX-5, SENSE SEQUENCE 

BLASTN 2.2.1 IApr-13-20011 

RID: 1012185135-76-27242 

Query= MDRlS 
(120 letters) 

Database: All GenBank+EMBL+DDBJ+PDB sequences (but no EST, STS, 
GSS, or phase 0, 1 or 2 HTGS sequences) 

1,079,142 sequences; 4,647,298,756 total letters 

Alignments 

1] Homo sapiens ATP-binding cassette, sub-family B (MDR/TAP), member 1 
(ABCBl), mRNA 

Length = 4549 

Score= 210 bits (105), Expect= le-52 
Identities= 117/121 (96%), Gaps= 1/121 (0%) 
Strand = Plus I Plus 

Query: 
59 

Sbjct: 
3019 

Query: 
119 

Sbjct: 
3079 

1 

2960 

60 

3020 

tgttgtctggaca-gcayygaaagataagaaagaactagaaggttctgcgaagatcgcta 

1111111111111 Ill 11111111111111111111111111111 11111111111 
tgttgtctggacaagcactgaaagataagaaagaactagaaggttctgggaagatcgcta 

ctgaagcaatagaaaacttccgaaccgttgtttctttgactcaggagcagaagtttgaac 

I I I I I Ill I I I 11 I 11 I I I I I I I I I I I I I I I 11 I 11 I I I I I I I I I I I I I I 11 I I I I I I I I 
ctgaagcaatagaaaacttccgaaccgttgtttctttgactcaggagcagaagtttgaac 

Query: 120 a 120 
I 

Sbjct: 3080 a 3080 
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2] Homo sapiens ATP-binding cassette, sub-family B (MDRITAP), member 1 
(ABCBl), rnRNA 

Length = 4643 

Score = 202 bits (101), Expect = 4e-50 
Identities = 1161121 (95%), Gaps = 11121 (0%) 
Strand = Plus I Plus 

Query: 1 tgttgtctggaca-gcayygaaagataagaaagaactagaaggttctgcgaagatcgcta 
59 

1111111111111 Ill 1111111111111111111111111 Ill 11111111111 
Sbjct: 3054 tgttgtctggacaagcactgaaagataagaaagaactagaaggtgctgggaagatcgcta 
3113 

Query: 60 ctgaagcaatagaaaacttccgaaccgttgtttctttgactcaggagcagaagtttgaac 
119 

111111111111111111111111111111111111111111111111111111111111 
Sbjct: 3114 ctgaagcaatagaaaacttccgaaccgttgtttctttgactcaggagcagaagtttgaac 
3173 

Query: 120 a 120 
I 

Sbjct: 3174 a 3174 

3] Homo sapiens P-g1ycoprotein (PGY1) rnRNA, complete cds 
Length = 4646 

Score = 202 bits (101), Expect = 4e-50 
Identities= 1161121 (95%), Gaps= 11121 (0%) 
Strand Plus I Plus 

Query: 1 tgttgtctggaca-gcayygaaagataagaaagaactagaaggttctgcgaagatcgcta 
59 

1111111111111 Ill 1111111111111111111111111 Ill 11111111111 
Sbjct: 3057 tgttgtctggacaagcactgaaagataagaaagaactagaaggtgctgggaagatcgcta 
3116 

Query: 60 ctgaagcaatagaaaacttccgaaccgttgtttctttgactcaggagcagaagtttgaac 
119 

111111111111111111111111111111111111111111111111111111111111 
Sbjct: 3117 ctgaagcaatagaaaacttccgaaccgttgtttctttgactcaggagcagaagtttgaac 
3176 

Query: 120 a 120 
I 

Sbjct: 3177 a 3177 
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6.8.2 PATIENT 3 SENSE SEQUENCE 

BLASTN 2.2.11Apr-13-20011 

RID: 1012185587-3428-18719 

Query= Patient 3 
(119 letters) 

Database: All GenBank+EMBL+DDBJ+PDB sequences (but no EST, STS, 
GSS, or phase 0, 1 or 2 HTGS sequences) 

1,079,142 sequences; 4,647,298,756 total letters 

Alignments 

1) Homo sapiens ATP-binding cassette, sub-family B (MDRITAP), member 1 
(ABCB1), mRNA 

Length = 4643 

Score= 236 bits (119), Expect 
Identities = 1191119 (100%) 
Strand = Plus I Plus 

3e-60 

Query: 
60 

Sbjct: 
3114 

Query: 
119 

Sbjct: 
3173 

1 

3055 

61 

3115 

gttgtctggacaagcactgaaagataagaaagaactagaaggtgctgggaagatcgctac 

I I 11 I I I 11 I I I I I I I I I I I I I I I I I I 11 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 
gttgtctggacaagcactgaaagataagaaagaactagaaggtgctgggaagatcgctac 

tgaagcaatagaaaacttccgaaccgttgtttctttgactcaggagcagaagtttgaac 

I I I I I I I 11 I I I I I 11 I I I 11 11 I I I I I 11 11 I 11 I 11 I I I I I I I I I I I I I I Ill I I I I 
tgaagcaatagaaaacttccgaaccgttgtttctttgactcaggagcagaagtttgaac 

2) Homo sapiens P-glycoprotein (PGYl) mRNA, complete cds 
Length = 4646 

Score= 236 bits (119), Expect= 3e-60 
Identities = 1191119 (100%) 
Strand = Plus I Plus 

Query: 
60 

Sbjct: 
3117 

Query: 
119 

Sbjct: 
3176 

1 

3058 

61 

3118 

gttgtctggacaagcactgaaagataagaaagaactagaaggtgctgggaagatcgctac 

I I I I I I I I I I I 11 I I I I I I I I I I I I I I I I I I Ill I I I 11 I I I I 11 I I I I I I I I I I I I I I I 
gttgtctggacaagcactgaaagataagaaagaactagaaggtgctgggaagatcgctac 

tgaagcaatagaaaacttccgaaccgttgtttctttgactcaggagcagaagtttgaac 

I I 11 I 11 11 11 I I I I 11 I I I I I I I I I 11 I 11 I I I I I I I I I I I I I I I I I I I I I I I I I I I I 
tgaagcaatagaaaacttccgaaccgttgtttctttgactcaggagcagaagtttgaac 

279 



3) Homo sapiens P-glycoprotein (mdrl) mRNA, complete cds 
Length = 4192 

Score= 236 bits (119), Expect 3e-60 
Identities = 119/119 (100%) 
Strand Plus I Plus 

Query: 1 
60 

gttgtctggacaagcactgaaagataagaaagaactagaaggtgctgggaagatcgctac 

111111111111111111111111111111111111111111111111111111111111 
Sbjct: 2750 gttgtctggacaagcactgaaagataagaaagaactagaaggtgctgggaagatcgctac 
2809 

Query: 61 tgaagcaatagaaaacttccgaaccgttgtttctttgactcaggagcagaagtttgaac 
119 

11111111111111111111111111111111111111111111111111111111111 
Sbjct: 2810 tgaagcaatagaaaacttccgaaccgttgtttctttgactcaggagcagaagtttgaac 
2868 
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6.8.3 PATIENT 4 SENSE SEQUENCE 

BLASTN 2.2.1 !Apr-13-20011 

RID: 1012185815-5202-10736 

Query= Patient 4 
(117 letters) 

Database: All GenBank+EMBL+DDBJ+PDB sequences (but no EST, STS, 
GSS, or phase 0, 1 or 2 HTGS sequences) 

1,079,142 sequences; 4,647,298,756 total letters 

Alignments 

1] Homo sapiens ATP-binding cassette, sub-family B (MDRITAP), member 1 
(ABCB1) , mRNA 

Length = 4643 

Score= 218 bits (110), Expect= 7e-55 
Identities= 1171118 (99%), Gaps= 11118 (0%) 
Strand = Plus I Plus 

Query: 
59 

Sbjct: 
3115 

Query: 
117 

Sbjct: 
3173 

1 

3056 

60 

3116 

ttgtctggaca-gcactgaaagataagaaagaactagaaggtgctgggaagatcgctact 

I I I I I I I I 11 I I Ill I I I I I 11 I I I I I 11 Ill 11 11 11 I I I I 11 Ill I I I I I I I I I Ill 
ttgtctggacaagcactgaaagataagaaagaactagaaggtgctgggaagatcgctact 

gaagcaatagaaaacttccgaaccgttgtttctttgactcaggagcagaagtttgaac 

I I I I I I I I I I I I I I I I I I I I 11 I I I I I I I I I I I I I I I I I I I I I I I I 11 11 I I I I I I I I 
gaagcaatagaaaacttccgaaccgttgtttctttgactcaggagcagaagtttgaac 

2] Homo sapiens P-glycoprotein (PGYl) mRNA, complete cds 
Length = 4646 

Score= 218 bits (110), Expect= 7e-55 
Identities = 1171118 ( 99%), Gaps = 11118 ( 0%) 
Strand = Plus I Plus 

Query: 
59 

Sbjct: 
3118 

Query: 
117 

Sbjct: 
3176 

1 

3059 

60 

3119 

ttgtctggaca-gcactgaaagataagaaagaactagaaggtgctgggaagatcgctact 

I I I 11 I I 11 I I 11 I I I I I I I I 11 11 I I I I I 11 I I I I 11 I I 11 I I I I I I I I I I I I I I I I I 
ttgtctggacaagcactgaaagataagaaagaactagaaggtgctgggaagatcgctact 

gaagcaatagaaaacttccgaaccgttgtttctttgactcaggagcagaagtttgaac 

I I I I I I I I 11 I I I I I I I I I Ill I I I I I I I I I I I I I I I I I I I I I I I 11 I I I I 11 I I I I I 
gaagcaatagaaaacttccgaaccgttgtttctttgactcaggagcagaagtttgaac 
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3) Homo sapiens P-glycoprotein (mdrl) rnRNA, complete cds 
Length = 4192 

Score= 218 bits (110), Expect= 7e-55 
Identities = 117/118 (99%), Gaps = 1/118 (0%) 
Strand Plus I Plus 

Query: 1 
59 

ttgtctggaca-gcactgaaagataagaaagaactagaaggtgctgggaagatcgctact 

11111111111 111111111111111111111111111111111111111111111111 
Sbjct: 2751 ttgtctggacaagcactgaaagataagaaagaactagaaggtgctgggaagatcgctact 
2810 

Query: 60 gaagcaatagaaaacttccgaaccgttgtttctttgactcaggagcagaagtttgaac 
117 

1111111111111111111111111111111111111111111111111111111111 
Sbjct: 2811 gaagcaatagaaaacttccgaaccgttgtttctttgactcaggagcagaagtttgaac 
2868 
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6.8.4 PATIENT 8 SENSE SEQUENCE 

BLASTN 2.2.1 [Apr-13-2001[ 

RID: 1012186004-6832-1536 

Query= Patient 8 
(122 letters) 

Database: All GenBank+EMBL+DDBJ+PDB sequences (but no EST, STS, 
GSS, or phase 0, 1 or 2 HTGS sequences) 

1,079,142 sequences; 4,647,298,756 total letters 

Align men Is 

1] Homo sapiens ATP-binding cassette, sub-family B (MDR/TAP), member 1 
(ABCBl), rnRNA 

Length = 4643 

Score= 242 bits (122), Expect 
Identities = 122/122 (100%) 
Strand = Plus I Plus 

5e-62 

Query: 
60 

Sbjct: 
3111 

Query: 
120 

Sbjct: 
3171 

1 

3052 

61 

3112 

aatgttgtctggacaagcactgaaagataagaaagaactagaaggtgctgggaagatcgc 

I 11 11 I I I I I I I I I I I I I I I I I I I I I I 11 I I I I I I I I I I I I I I I 11 I I I I I I I I I I I I I I 
aatgttgtctggacaagcactgaaagataagaaagaactagaaggtgctgggaagatcgc 

tactgaagcaatagaaaacttccgaaccgttgtttctttgactcaggagcagaagtttga 

I Ill I I I I I I I 11 I I I 11 I I I I I I I I I 11 I I I I I I I I I I I I I I I 11 I I I I I I I I I 11 I I I 
tactgaagcaatagaaaacttccgaaccgttgtttctttgactcaggagcagaagtttga 

Query: 121 ac 122 
I I 

Sbjct: 3172 ac 3173 
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2] Homo sapiens P-glycoprotein (PGYl) mRNA, complete cds 
Length = 4646 

Score = 242 bits (122), Expect 
Identities = 1221122 (100%) 
Strand Plus I Plus 

5e-62 

Query: 1 aatgttgtctggacaagcactgaaagataagaaagaactagaaggtgctgggaagatcgc 
60 

111111111111111111111111111111111111111111111111111111111111 
Sbjct: 3055 aatgttgtctggacaagcactgaaagataagaaagaactagaaggtgctgggaagatcgc 
3114 

Query: 61 tactgaagcaatagaaaacttccgaaccgttgtttctttgactcaggagcagaagtttga 
120 

111111111111111111111111111111111111111111111111111111111111 
Sbjct: 3115 tactgaagcaatagaaaacttccgaaccgttgtttctttgactcaggagcagaagtttga 
3174 

Query: 121 ac 122 
11 

Sbjct: 3175 ac 3176 

3] Homo sapiens P-glycoprotein (mdrl) mRNA, complete cds 
Length = 4192 

Score = 242 bits (122), Expect 
Identities = 1221122 (100%) 
Strand Plus I Plus 

5e-62 

Query: l aatgttgtctggacaagcactgaaagataagaaagaactagaaggtgctgggaagatcgc 
60 

111111111111111111111111111111111111111111111111111111111111 
Sbjct: 2747 aatgttgtctggacaagcactgaaagataagaaagaactagaaggtgctgggaagatcgc 
2806 

Query: 61 tactgaagcaatagaaaacttccgaaccgttgtttctttgactcaggagcagaagtttga 
120 

111111111111111111111111111111111111111111111111111111111111 
Sbjct: 2807 tactgaagcaatagaaaacttccgaaccgttgtttctttgactcaggagcagaagtttga 
2866 

Query: 121 ac 122 
11 

Sbjct: 2867 ac 2868 

284 



6.9 APPENDIX I 

MTT Assay 

I] Setup cells in 96-well plates and treat as required. 

2] Set up blank wells that has medium alone, without cells. 

3] After required period of growth and exposure to experimental agent, wash wells 2 x 

with fresh medium and add 1/10 vol. of MTI reagent (5mg/ml). 

4] Incubate at 37°C for 3-4h. Keep incubation time the same for cell lines that are going to 

be compared against each other. 

5] If working with adherent cells, remove medium completely and add 0.2ml of 

solubilisation solution, i.e. acidic isopropanol (0.04-0.1N HCl in absolute isopropanol). 

Pipette up and down thoroughly to dissolve crystals. If working with suspension cells the 

dye is added directly and dissolution is accomplished by trituration. 

6] Measure OD of converted dye in cell-containing wells at 570nm v the blank wells 

without cells, i.e. subtract the blank from all experimental values. 

7] Calculate% survival fraction as shown below. 

% Survival fraction = OD reading for experimental sample x 100 
OD reading for control 1 

For example, 

OD reading for cells+ 500 I.U./ml IFN-a x 100 
OD reading for cells without IFN-a l 
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6.10 ~PPENDIX.;:f 

'6.lO.cl;l tJntreated ,patients. 

[See1Fig. 6,1 onwards. 
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Fig. 6.1 Rhodamine accumuJation, effiux, and P-gp modulation in patient# 1 

[A] 

• Ccmttol- uonainod ul!s - 2J m!' 

• l!hodulina loadl•co:umw.lioo. 9006 mf 

0 Rho<t.mnttl!!uz-m.t ..r 
• EJ!lux + 2uM voup..W · 661.8 mf 

[J l!lllur + :lluM """'"""' . 701.1 mf 

[B) 
• Corutol- unJtaoud cells -1J mf 

• l!hoclu!lill.o loadlaccumulwm • 900.6 mf 

0 Rhoclamine efth.a - 187.8 mf 

• El!lux+.lOO I U 1Fll-elpho-307.9mf 

EJ El!lux + lOOJ I U. IFN-elpho -181.6 mf 

• El!lux+500ll U IFN-elpho -2j9.4 mf 

Rhodamme Ftu.oresc1nte lntm111y 

Fig. 6.1 Patient B-lymphocytes were simultaneously exposed to [A] 2J.!M rhodamine 123 +/- verapamil 

(2J.!M & 20J.!M) and [B] 2J.!M rhodamine 123 +/- IFN-a (500l.U./ml, IOOOl.U./mJ and 5000l.U./ml) then left 

to incubate at 37°C for 90min (efflux). Intracellular fluorescence intensities were compared to those of B-

lymphocytes having effiuxed 2).!M rhodamine 123 in the absence of modulators. Significant modulation was 

achieved with 2).!M & 20).!M verapamil (P < 0.01 using ANOVA followed by Dunnett's post-hoc analysis), 

whjle IFN-a had no significant effect (P > 0.05). 
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Fig. 6.2 Rhodamine accumulation, efflux, and P-gp modulation in patient# 2 

[A] 

• Coatrol· U!UtaiD<d ctlt . 3 0 mf 

• RhodlmiDt kn4/uC18Uiallon • 7Q 7 m! 

0 Rhodamme efllux • 4:193 mf 

• EJI!ux+luMnroplllllll -68Hm! 

Cl Eftlwt + llluM ._-.~ . m .s ..r 

RhodemJne Pluoresc.ence lntmJrty 

[B] 

• Conuol · umtomtd ceOt • 3 0 ..r 

• Rbodtm!.ooloadlt<CUIIlulolion. 7Q.7 mf 

0 Rbodammoeftlw: • 419 3 mf 

• E.Hita + 500 I U. IFN·alpba · 3139 mf 

[j Efllwt+ 100:> I U. IFN.alpht • 363D mf 

• Etllwc + 5000 I U lfN.alpbt • 4J3.6 mf 

Fig. 6.2 Patient 8 -lymphocytes were simultaneously exposed to [A] 211-M rhodamine 123 +/- verapamil 

(2pM & 20pM) and [8] 2~tM rhodamine l23 +/- IFN-a (500LU./ml, IOOOLU./ml and 5000LU./ml) then le ft 

to incubate at 37°C for 90min (effl ux). Intracellular fluorescence intensities were compared to those of 8 -

lymphocytes having eftluxed 2pM rhodamine l23 in the absence of modulators. Significant modulation was 

achieved with 2pM & 20pM verapami l (P < 0.0 I us ing ANOV A followed by Dunnen 's post-hoc analysis), 

while IFN-a had no significant effect (P > 0.05). 
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Fig. 6.3 Rhodamine accumulation, efflux, and P-gp modulation in patient # 3 

[A] 

• Control. unJt&ined con. -1.6 mf 

Rhodarmneload/accumulol.ioo • 1193.6 mf 

0 RhodU!IIM eflllllt • 196.3 mf 

• EJIIuz+2uM vorapllmll. msmt 
0 Ef!lux+20uMvaupamil · 83.l..Smf 

Rhodtmint Fluorescence tntantity 

[B) 

• Conltol· uo.stained celll -1.6 mf 

• RhodaJNneloadlaccumulabon • 1193 6 mf 

0 Rhodsauno of!M • 196.3 mf 

• Eilh.a + j()) I U IFN-alpha • 246.9 mf 

(J Ef!!Ult+IOOli.U JFN.alpha -219 4mf 

• Eilh.a + lOOl J.U IFN-alpha - 21 S.5 mf 

Rhodamine fluorucmcolnlemily 

Fig. 6.3 Patient B-lymphocytes were simultaneously exposed to fA] 2f.!M rhodamine 123 +/- verapamil 

(2f.!M & 20f.!M) and [B] 2f.!M rhodamine 123 +/- IFN-a (500I.U./ml, IOOOI.U./ml and 50001.U./ml) then left 

to incubate at 37°C for 90min (efflux). Intracellular fluorescence intensities were compared to those of B-

lymphocytes having effluxed 2f.!M rhodamine l23 in the absence of modulators. Significant modulation was 

achieved with 2f.!M & 20f.!M verapamil as well as 500l.U/ml lFN-a (P < 0.0 I using ANOYA followed by 

Dunnett's post-hoc analysis). IOOOI. U/ml & 50001.U/mllFN-a had no significant effect (P > 0.05). 
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Fig. 6.4 Rhodamine accumulation, efflux, and P-gp modulation in patient # 5 

156 

[A] 

• Conlrol- unshined cen. - 2.8 ml' 

Rhod...m.loadlucumulllion - 953.2 m! 

0 Rhodamine .mu. -27U m! 

• Ell!ln+2uM verapomil-9n9mf 

[J Ell!lD + 20uM vmpamil - 1009 m! 

I~ 
Rhodamine Fluoretce:nce Intensity 

[B] 

• Conlcol- unstained cells - 2.8 mf 

Rhodomine load/accumulation -953.2 mf 

0 Rhodamine efth.a - 271.1 mf 

• l!ftlux + 500 l.U . IFN- olpho - 2fil .5 mf 

0 Elllux+l!llll.U. IFN-olpha -2573m! 

• 

Rhodamine F'luotescencelntensity 

Fig. 6.4 Patient B-lympbocytes were simultaneously exposed to [A] 2J..LM rhodamine 123 +/- verapamil 

(2~-tM & 20~-tM) and [B] 2~-tM rhodamine 123 +/- lFN-a (500LUJ ml, IOOOI.UJ ml and 5000LUJ ml) then left 

to incubate at 37°C for 90min (efflux). Intracellular fluorescence intensities were compared to those of B-

lymphocytes having effiuxed 21-lM rhodaminel23 in the absence of modulators. Significant modulation was 

achieved with 21-lM & 20f-1M verapamil (P < 0.0 I using ANOV A followed by Dunnett' s post-hoc analysis). 

fFN-a had no significant effect (P > 0.05). 
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Fig. 6.5 Rhodamine accumulation, efflux, and P-gp modulation in patient# 6 

[A] 

• Conltol- urulained oells - U mf 

• RhcclamineiD•dlaccumultlion - 6513 mf 

0 Rhodamine e!llu. - W .1 mf 

• !!ffiux+2uMvmpomil-6719mf 

[] !!ffiux + 20uM vu<pomil - 1l13 mf 

Rhodarnin.e Fluorescmce lnt.ensity 

[B] 

• Conlrol- uns\41ned cons - 25 mf 

• Rhodeminelo•dl.ccumulotion. 6.l7.3 mf 

0 Rhodemine oftlu:r - 21l5.7 mf 

• Effiu. + 500 1 U. lFN-olph•- 219 7 mf 

L] Effiu. + ltm LU. lFN-olpha -189.4mf 

• Effiu. + 5tm LU . lFN-oll>h• - 222.7 mf 

Rhodamine Fluorescence lniensrt.y 

Fig. 6.5 Patient 8-lymphocytes were simultaneously exposed to [A] 21-1-M rhodamine 123 +/- verapamil 

(2!-IM & 20!-IM) and [B] 2!-IM rhodamine 123 +/-IFN-a (5001.U./ml, IOOOI.U./ml and 5000LU./ml) then left 

to incubate at 37°C for 90min (efflux). lntracellular fluorescence intensities were compared to those of B-

lymphocytes having effiuxed 2!-IM rhodamine 123 in the absence of modulators. Significant modulation was 

acbieved witb 2~1M & 20J.1M verapamil (P < 0.0 l using ANOV A followed by Dunnett' s post-hoc analysis). 

IFN-a bad no significant effect (P > 0.05). 
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6.10.1.2 Single agent treated patients 

Fig. 6.6 Rhodamine accumulation, effiux, and P-gp modulation in patient# 7 

[A] 

• c ....... ....,.,...d u!J-Ua/ 

• Rho<IM-.. loodlu- -19111 ol 

0 - · llluz-tll6nol 

• -.. + lulol•otopiDI . 1399J ., 

Emur+lluN ytttptai · lo416.D'ltll 

[B] 

• Coc:rol- Ulllt..m.ed uh · lJ trl 

• Rbt:ll!emmelo&dlacrundcbCWl • 19112 et 

0 Rho<!ommoollka - 12l6nat 

• EJib +lOO I U lfll-llph• -1271J oof 

E.llb+lllll l U !FII-alpba -IJJ9.l>a 

• Ellb+JIXIl i U !Flf ........ !liD O.t 

Fig. 6.6 Patient 8-lymphocytes were simultaneously exposed to [A) 2JlM rhodamine 123 +/- verapamil 

(2JlM & 20J1M) and [B) 2J1M rhodamine 123 +/- IFN-a (5001.U./ml, IOOOLU./ml and 50001.U./ml) then left 

to incubate at 37°C for 90min (effiux). Intracellular fluorescence intensities were compared to those of 8-

lymphocytes having effluxed 2JlM rhodamine 123 in the absence of modulators. Significant modulation was 

achieved with 2J1M & 20J1M verapamil (P < 0.0 I using ANOV A fo llowed by Dunnett' s post-hoc analysis). 

I FN-a had no significant effect (P > 0.05). 
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Fig. 6.7 Rhodamine accumulation, efflux, and P-gp modulation in patient# 8 

[A] 

Contzol- wulailud eeU. -2.9 mf 

• Rhocianunoloadloceumul4lion - llj89 mf 

0 Rhocianune el!luz - 75.6 mf 

• Etllw: + 2uM venpcmil - 596j mf 

[J E.lllux + 20uM nropcmil - 818j mf 

[B] 
• Conl!ol- unstained coU• - 2.9 mf 

Rhodamine loadlacCWill.lla1ion - 11589 mf 

0 Rhodamine efllux - 75.6 mf 

• Efl!w: + 500 I.U . lFN-alpha - 902 mf 

0 EJllux+ ICDJ I.U. II'N-alpha - 7J_j mf 

• EJllux + .lml I U. !FN -alpha - 703 mf 

Rhodamine Fluorescence Intensity 

Fig. 6.7 Patient 8-lymphocytes were simultaneously exposed to [A] 2J..tM rhodamine 123 +/- veraparnil 

(2J..LM & 20J..LM) and [B) 2J..LM rhodamine 123 +/- TFN-a (500LU./ml, IOOOLU./ml and 5000LU./ml) then left 

to incubate at 37°C for 90min (efflux). Intracellular fluorescence intensities were compared to those of 8-

lymphocytes having effiuxed 2J..LM rhodamine 123 in the absence of modulators. Significant modulation was 

achieved with 2~tM & 20J..LM verapamil (P < 0.0 L using ANOV A followed by Dunnett's post-hoc analysis). 

rFN-a had no significant effect (P > 0.05). 
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Fig. 6.8 Rhodamine accumulation, efflux, and P-gp modulation in patient# 9 

[A] 

• Control- WUI4lned etU. -19 mf 

• Rhodo=l•loadl .. cumullboo • 1670.3 mf 

0 Rbodo=l• .mu. . 1433.8,., 

• l!lllu:t+2uM.._an:d - IID8mf 

Eftlur + "lDuM nnpamtl • l.lll 7 mf 

Rhodemm.• FWarttcanct lniaudy 

[B] 

• Cooltol- WliWntd e.n. - 1.9 mf 

• Rhoclamuu loadla<eumullllon • 16103 mf 

0 Rhodomioe e1llux • 1433.8 mf 

• Elllux+ .lOO I U. !Ftl-llpha - 1341.61!"! 

I:J Elllux+IIIXJIU. !FH-alpha-161l.6mf 

• Elllux + XOO I.U. IFH-alpha - 16141 mf 

Rhodamine Pluorueence lnt.eruity 

Fig. 6.8 Patient 8-lymphocytes were simultaneously exposed to [A] 21-!M rhodamine 123 +/- verapamil 

(2J..1M & 20J..1M) and [B] 2J..1M rhodamine 123 +/- IFN-n (5001.U./ml, IOOOLU./ml and 50001.U./ml) then left 

to incubate at 37°C for 90min (efflux). Intracellular fluorescence intensities were compared to those of B-

lymphocytes having effiuxed 2f.1M rhodamine 123 in the absence of modulators. Significant modulation was 

achieved with IOOOI.U./rnl & 5000I.U./mi iFN-n (P < 0.05 using ANOVA followed by Dunnett's post-hoc 

analysis). 2f.1M & 201-!M verapamil as well as 5001.U./miiFN-n had no significant effect (P > 0.05). 
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Fig. 6.9 Rhodamine accumulation, efflux, and P-gp modulation in patient# 10 

[A] 

• ConlnJI. unnco•6 cells -l9 ..r 
• Rho.W..O.IoodlaccutiiUiaUon • 1690ll rol 

0 RhocluNoo .mu. - 13619 mf 

• Ellluz+'luM Vltlf"'""' · IIDJmf 

Ellluz+lOuM nraptlllll - 16499ml' 

Rhodt.m:~ne Fluo:rttettlce JnlmJity 

[B] 

• Con!rol· U11614mt6 colll · 19 mf 

• Rhodamsntloadlar:ruowlwoo . 1689.9 mf 

0 Rhod61D11lt ef!!..u • 1361.9 mf 

• Efthu + SOO I U IFN.atpba • 1390B mf 

0 Eftlux+ IOOll U IFN-alpba · 1353 7 mf 

• Eftlux+500ll U IFN. alplu . 13l1Bmf 

Rhodlmlne l'luoructnCelnhruJiy 

Fig. 6.9 Patient B-lymphocytes were s imultaneously exposed to [A] 2jlM rhodamine 123 +/- verapamil 

(2j.tM & 20j.1M) and [B) 2 jlM rhodamine 123 +/- IFN-a. (5001.U./ml, IOOOI.U./ml and 50001.U./ml) then left 

to incubate at 37°C for 90min (effiux). Intracellular fluorescence intensities were compared to those of B-

lymphocytes having effiuxed 2J.1M rhodamine 123 in the absence of modulators. Significant modulation was 

achieved with 2jlM & 20jlM verapamil (P < 0.0 I us ing AN OVA followed by Dunnett 's post-hoc analysis). 

IFN-a. had no significant effect (P > 0.05). 
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6.10.2 PATIENTS' DAUNORUBICIN EFFLUX & MODULATION PROFILES 

6.10.2.1 Untreated patients 

Fie:. 6.10 Daunorubicin accumulation, efflux, and P-e:p modulation in patient# 1 

[A] 

[B] 

• c-.~ . ......... ".., .u.m 
• O~lndi.:CI.-=l~~~to:n · lW.l .r 

0 D"""""""'omu. - PU""' 
• Elllux+:Zu>h~. 1133 ... 

Ill Elllux+llluMTtRpud · l:ZO.ld 

8 Coottol - uruh icetl een. -l.l mf 

11 o....,....,...,,...,,.""""'.,;"".'soJ..r 
0 o...,orubUOD dftul . 98J .m 

• Emux+XDIU.!FH-olpha -lOJD..r 

(J EJ!Iu<+lCIXI I.U.IFli-olf>h• -101 Dmf 

• EJ!Iu< + l!DlLU. IFN-olpla- 1027af 

Fig. 6.10 Patient B-lymphocytes were simultaneously exposed to [A] 2J..Lg/ml daunorubicin +/- verapamil 

(2J..LM & 20J..LM) and [B] 2J..lg/ml daunorubicin +/-IFN-a (500l.U./ml, IOOOI.U./ml and 50001.U./ml) then left 

to incubate at 37°C for 90min (efflux). Intracellular fluorescence intensities were compared to those of B­

lymphocytes having effluxed 2J..lg/ml daunorubicin in the absence of modulators. Significant modulation was 

achieved with 2pM & 20J..LM verapamH (P < 0.0 I using ANOV A followed by Dunnett's post-hoc analysis). 

IFN-a had no significant effect (P > 0.05). 
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Fig. 6.11 Daunorubicin accumulation, efflux, and P-gp modulation in patient# 4 

[A] 

• Conlto1-wuWne6ceU. -2Jmt 

• Daunotubictnloadll<c:waulelu>n -1215.0mt 

0 Daunorubicin a1lhu - 82 2 mf 

• Eftlux + 2uM nreplftlll -86.0 mf 

EJ Efllw + :IOuM nrepemil - 93 4 m! 

Daunorubicin.Fluorescence Intensity 

(B] 
• Conitol- unrltazud coli< -17 mf 

Ill Daunorulmin loadlt<cunwlalioo - 126.0 mf 

0 Daooorulllcin a1lhu - 82.2 mf 

• l!lllux + 500 IU IFN-alpha - 88 4 mf 

0 Efllw + HDJ I U IFN-a!pha - 88.0 mf 

• Effiux+500JIU IFN-alpha -905mf 

Fig. 6.11 Patient B-lymphocytes were simultaneously exposed to [A] 2!lg/ml daunorubicin +/- verapamil 

{2JlM & 20JlM) and [B] 2Jlg/ml daunorubicin +/- IFN-a (SOO LUJml, IOOOI. U./ml and SOOOI.U./ml) then left 

to incubate at 37°C for 90min (efflux). Intracellular fluorescence intensities were compared to those of B-

lymphocytes having effluxed 2 J-1g/ml daunorubicin in the absence of modulators. Significant modulation was 

not achieved with either verapamiJ or IFN-a (P > 0.05 using ANOV A) 
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Fig. 6.12 Daunorubicin accumulation, efflux, and P-gp modulation in patient# 5 

[A] 

[B] 

• Con!tol- uru1411'1ed ceiiJ -l7 mf 

DauooNl>i<tn loadlac<WIIUlalion • lll7 mf 

0 Daunorubicin tfllux • 133 mf 

• Eftlux+luM•orap~ .nlmf 

0 l!llluz + 20uM nrap&mil · 83D mf 

• Con!tol- urutomed ceiiJ . 2 7 mf 

• Daunorulnrm loadlac<UI!IUI&hon • 112 7 mf 

0 Daunorulnan efllux • 733 mf 

• Eftlux + 500 I U IFN-alph• • 101 mf 

G) Eftlux+IOOIIU JFN.atpba -727 mf 

• Eftlux + .lOOJI U IFN-alph• · 133 mf 

Daunorubaan Fluoretc:ence lnt.e:ru.Jl.y 

Fig. 6.12 Patient B-lymphocytes were simultaneously exposed to [A] 2J..lg/ml daunorubicin +/- verapamil 

(21-lM & 2011M) and [B] 211glml daunorubicin +/- IFN-a (500l.U./ml, IOOOI.U./ml and 50001.U./ml) then left 

to incubate at 3rc for 90min (efflux). Intracellular fluorescence intensities were compared to those of B-

lyrnphocytes having eftluxed 211glml daunorubicin in the absence of modulators. Significant modulation was 

achieved with 2011M veraparnil (P < 0.05 using ANOV A followed by Dunnett's post-hoc analysis). 211M 

veraparni l and lFN-a had no significant effect (P > 0.05). 
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Fig. 6.13 Daunorubicin accumulation, efflux, and P-gp modulation in patient# 6 

[A) 
• Control- u.utein•d ctO. -2.8 mf 

Dwnorubacmlo&<llotnwuloboo -ID7mf 

D Dounorubicin alllux - 741 mf 

• EJiha + 2\lM vu opomil -84.4 mf 

Q Eitrur +».M n ropomil -93.8 mf 

Daunorubu:in FhJort se: mu lnlUlJlly 

(B] 
• Conlrol- Ul1rtulod tela -1.8 mf 

Dtunorubac:m Jo&d/acC\JIDUW1on · In 1 mf 

D DlUOOIUb<an- - 14 7 mf 

• EJiha + 5111 LU ll'N-olplu - 79 4 mf 

C!) E111ux +lOCO LU. Il'N-elpht - 16.9 mf 

• E1llux + XlXl tu ll'N-elph• - 80.0 mf 

Dtunorubecin Fluoresc:tcet lnLtruily 

Fig. 6.13 Patient 8 -lymphocytes were simultaneously exposed to [A] 2J.lg/ml daunorubicin +/- verapamil 

(2f.LM & 20f.LM) and [B) 2J.lg/ml daunorubicin +/- JFN-a (5001.U./ml , IOOOLU./ml and 5000LU./ml) then left 

to Incubate ar 37°C for 90mln (efflux). Intracellular fluorescence intensities were compared to those of 8-

lymphocytes having eftluxed 2f.Lg/ml daunorubicin in the absence of modulators. Significant modulation was 

achieved with 2f.LM & 201-lM verapamil (P < 0.05 and 0.0 I, respectively, using ANOV A followed by 

Dunnett's post-hoc analysis). IFN-a had no significant effect (P > 0.05). 
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6.10.2.2 Single agent treated patients 

Fig. 6.14 Daunorubicin accumulation, efflux, and P-gp modulation in patient# 7 
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Fig. 6.14 Patient B-lymphocytes were simultaneously exposed to [A] 21-lg/ml daunorubicin +/- verapamil 

(2!-lM & 20!-lM) and [B] 21-lg/ml daunorubicin +/- lFN-a (5001.U./ml, IOOOI.U./ml and 5000I.U./ml) then left 

to incubate at 37°C for 90min (efflux). Intracellular fluorescence intensities were compared to those of B­

lymphocytes having effiuxed 2!-lg/ml daunorubicin in the absence of modulators. Significant modulation was 

achieved with 20!-lM verapamil (P < 0.0 I using ANOV A followed by Dunnett's post-hoc analysis). 2!-lM 

verapamil and rFN-a had no significant effect (P > 0.05). 
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Fig. 6.15 Daunorubicin accumulation, emux, and P-gp modulation in patient# 9 
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Fig. 6.15 Patient B-lymphocytes were simultaneously exposed to [A] 21J.g/ml daunorubicin +/- verapamil 

(21J.M & 201J.M) and [B] 21J.g/ml daunorubicin +/-lFN-a (5001.U./ml, lOOOI.U./ml and 5000I.U./ml) then left 

to incubate at 37°C for 90min (eftJux). Intracellular fluorescence intensities were compared to those of B-

lymphocytes having effiuxed 21J.g/ml daunorubicin in the absence of modulators. Signjficant modulation was 

achieved with 21J.M & 201J.M verapamil (P < 0.05 & 0.01 , respectively, using ANOV A followed by Dunnett' s 

post-hoc analysis). as well as I OOOI.U/ml & 5000I.U./ml of IFN-a (P < 0.05). 500I.U./ml IFN-a had no 

significant effect (p > 0.05). 
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Fig. 6.16 Daunorubicin accumulation, efflux, and P-gp modulation in patient# 10 
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Fig. 6.16 Patient B-lymphocytes were simultaneously exposed to [A] 2Jlg/ml daunorubicin +/- verapamil 

(2JlM & 20JlM) and [B) 2 Jlg/ml daunorubicin +/- JFN-a (5001.U./ml, I OOOI.U./ml and 50001.U./ml) Lhen left 

to incubate at 37°C for 90min (efflux). Intracellular fluorescence intensities were compared to those of B-

lymphocytes having effiuxed 2Jlg/ml daunorubicin in the absence of modulators. Significant modulation was 

achieved with 2J.1M & 20J.1M verapamil (P < 0.0 I using ANOV A followed by Dunnett's post-hoc analysis). 

as well as 5000LU./ml of IFN-a (P < 0.01). 5001.U./ml & IOOOI.U/ml IFN-a had no significant effect (p > 

0.05). 
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Fig. 6.17 Daunorubicin accumulation, efflux, and P-gp modulation in patient# 11 
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Fig. 6.17 Patient 8-lymphocytes were simultaneously exposed to [A] 2j.lg/ml daunorubicin +/- verapamil 

(2~tM & 20j.lM) and [8] 2Jlg/ml daunorubicin +/- IFN-a (5001.U./ml, I OOOI.U./ml and 5000I.U./ml) then left 

to incubate at 3rc for 90min (efflux). Intracellular fluorescence intensities were compared to those of 8-

lymphocytes having effiuxed 2f.Lg/ml daunorubicin in the absence of modulators. Significant modulation was 

achieved with 211M & 20f.LM verapamil (P < 0.05 & 0.0 I, respectively, using ANOV A followed by Dunnert ' s 

post-hoc analysis). JFN-a had no significant effect (P < 0.0 I). 
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6.11 APPENDIX K 

Fig. 6.18 Relationship between %P-gp expression and patient age and sex 
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Fig. 6.19 Relationship between %P-gp expression and stage of disease 
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Introduction and Objective: Daunorubicin has been studied extensively in research into 
anthracycline-related multidrug resistance (MDR). There are no published reports, 
however, on the drug's concentration after in vitro alterations in physico-chemical 
variables which may affect the stability of daunorubicin. This study reports the effect of 
time, temperature, culture media, and pH on daunorubicin concentration in an in vitro 
system initially devoid of cellular material. 
Method: Aqueous solutions of daunorubicin (I OOng/ml) were incubated in cell culture 
plates at 4°C, 25°C & 37°C, sampled at various time intervals over 24h and subjected to 
HPLC assay. Subsequently, I OOng/ml solutions of daunorubicin in various culture media 
(RPMI, DMEM and PBS) and H20 (control) were incubated in culture plates at 37°C and 
sampled for assay after O.Sh. Solutions of daunorubicin in RPMI (1 OOng/ml) were then 
buffered to pH values of6, 7, and 7.5 and incubated in culture plates at 37°C for 0.5h prior 
to assay using a validated LC method. Parallel solvent elution experiments were 
performed to quantify drug adsorbed to the culture plates. 
Results: Over a period of2h daunorubicin loss was 23%, 35% and 70% when incubated at 
37°C, 4°C and 25°C, respectively. The drug loss after incubation at 37°C was less than 
expected because of a favourable pH change to more acidic conditions due to the 5% C02 

environment in the incubator. Drug loss between the different diluent types was 17.5%, 
38.7%, 43.5% and 50.5% for H20, PBS, RPMI and DMEM, respectively. In PBS, RPMI 
and DMEM there was an instantaneous drug loss with further loss occurring upon 
incubation. Loss during incubation occurred by both degradation and adsorption to the 
culture plate. Greatest stability was observed at a pH of 6 where drug loss was solely due 
to adsorption (38.5%), whereas at pH 7 and 7.5 there was significant loss due to 
degradation (82.6% and 93.4% total loss, respectively). 
Conclusion: Under typical in vitro experimental conditions significant loss of 
daunorubicin occurred over short (0.5h) incubation periods. Drug loss was attributable to 
simultaneous adsorption and pH-dependant degradation processes. These phenomena 
could exert a profound effect on in vitro MDR studies and must be considered in 
experimental design. Techniques to avoid drug loss prior to cellular assimilation could be 
employed although this approach may also influence the MDR process. 
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IMPLICATIONS OF ANTHRACYCLINE STABILITY IN IN VITRO SYSTEMS 
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Research into the multidrug resistance (MDR) associated with ?-glycoprotein (P­
gp), has involved the use of many agents including Daunorubicin (DNR). There are no 
published reports, however, on the drug's concentration after in vitro alterations in physico­
chemico variables which may affect the stability of DNR. This study reports the effect of 
time, temperature, culture media, pH and protein binding on DNR concentration in an in 
vitro system devoid of cellular material. It also highlights the effects of DNR cytotoxicity, 
as well as one of its derivatives, Daunorubicinol (DOL), on a sensitive and MDRl 
expressing cell line. All analysis was performed, using a validated Liquid Chromatography 
method, on protein free DNR solutions (I OOng/ml) or deproteinated DNR filtrates 
(l11g/ml). Over a period of 2h DNR loss (in RPMI) was 23%, 35% and 70% when 
incubated at 37°C, 4°C and 25°C respectively. The drug loss after incubation at 37°C was 
less than expected because of a favourable pH change to more acidic conditions due to the 
5% C02 environment in the incubator. The increased loss at 4°C and 25°C was attributed to 
an unfavourable pH change. Drug loss between the different diluent types was 17 .5%, 
38.7%, 43.5% and 50.5% after 0.5h incubation for H20, PBS, RPM! and DMEM, 
respectively. In PBS, RPMI and DMEM there was an instantaneous drug loss with further 
loss occurring upon incubation. Loss during incubation occurred by both degradation and 
adsorption to the culture plate. Greatest stability was observed at a pH of 6 where drug loss 
was solely due to adsorption (38.5%), whereas at pH 7 and 7.5 there was significant loss 
due to degradation (82.6% and 93.4% total loss, respectively). Protein binding after 
incubating a l11g/ml DNR solution at 37°C in RPMI, resulted in a final 16.9% loss. 
Investigations into the cytotoxic effects of DNR and DOL show that both agents are toxic 
to .cells. Although DNR is more potent than DOL, they both exhibit the same trend, 
showing a greater cell kill on the sensitive cells v the resistant cells. Under typical in vitro 
experimental conditions significant loss of DNR occurred over short (0.5h) incubation 
periods where drug loss was attributable to simultaneous adsorption and pH-dependent 
degradative processes. DNR is known to be a substrate for P-gp however little work has 
been done to identify the interactions of its degradation and metabolic products with P-gp. 
In B-cell Chronic Lymphocytic Leukaemia, we have found P-gp expression to be minimal, 
but for those haematological malignancies in which P-gp is a major contributor to MDR, 
the instability of the parent anthracycline and the presence of the resulting degradation and 
metabolic products could exert a profound effect on in vitro MDRIP-gp studies and must 
be considered in experimental design . 
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Extensive research into anthracycline-related 
multidrug resistance (MDR) has involved the 
use of many agents including daunorubicin 
(DNR). There are no published reports, 
however, on the drug's concentration after in 
vitro alterations in physico-chemical 
variables which may affect the stability of 
DNR. Similarly, current reports on 
multidrug resistance comment solely on the 
cytotoxic effects of the parent anthracycline, 
neglecting the potential interference from 
degradation products. This study reports the 
effect of time, temperature, culture media, 
pH and protein binding on DNR 
concentration in an in vitro system devoid of 
cellular material. It also highlights the effects 
of DNR cytotoxicity, as well as one of its 
derivatives, on a sensitive and MDR I 
expressing cell line. 
All analysis was performed, using a validated 
LC method, on protein free DNR solutions 
(I OOng!ml) or deproteinated DNR filtrates 
(IJ.lg/ml). 
Over a period of2h DNR loss (in RPM I) was 
23%,35% and 70% when incubated at 37°C, 
4°C and 25°C, respectively. The drug loss 
after incubation at 37°C was less than 
expected because of a favourable pH change 
to more acidic conditions due to the 5% C02 

environment in the incubator. The increased 
loss at 4°C and 25°C was attributed to an 
unfavourable pH change. Drug loss between 
the different diluent types was 17.5%, 
38.7%, 43.5% and 50.5% after 0.5h 
incubation for H20, PBS, RPMI and DMEM, 
respectively. In PBS, RPMI and DMEM 
there was an instantaneous drug loss with 
further loss occurring upon incubation. Loss 
during incubation occurred by both 
degradation and adsorption to the culture 

plate. Greatest stability was observed at a pH 
of 6 where drug loss was solely due to 
adsorption (38.5%), whereas at pH 7 and 7.5 
there was significant loss due to degradation 
(82.6% and 93.4% total loss, respectively). 
Protein binding after incubating a IJ.lg/ml 
DNR solution at 37°C in RPMI, resulted in a 
final 16.9% loss - see Fig. I. 

Tirn:(min) 

Fig. I Protein Binding for lllg/mL Daunorubicin at 
37"C N=3 

The investigations into the cytotoxic effects 
of DNR and its derivative are currently 
ongoing. 
Under typical in vitro experimental 
conditions significant loss of DNR occurred 
over short (0.5h) incubation periods. Drug 
loss was attributable to simultaneous 
adsorption and pH-dependant degradation 
processes. This loss, including the presence 
of degradation products, could exert a 
profound effect on in vitro MDR studies and 
must be considered in experimental design. 


