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ABSTRACT 

VOID STRUCTURE, COLLOID AND TRACER TRANSPORT PROPERTIES OF 
STRATIFIED POROUS MEDIA 

Tobias John Mathews 

The characterisation of the properties of porous materials is of great importance in the 

effective management of natural and manmade systems. A sophisticated network model, 

'Pore-Cor' , of some of these properties has been previously developed. The present study has 

sigruficantly extended the scope ofthe model ' s predictive capabilities. 

Flow and transport behaviour was examined in laboratory sand columns of various 

depths. These experiments examined unsaturated flow of water and conservative solute tracer 

transport through homogeneous sand samples. Flow through these was not homogeneous or 

repeatable. Experimental observations found that this may have been due to subtle random 

variations in packing, and the network model was shown to be able to simulate these. Solute 

transport of bromide was studied, applied both uniformly and from a point source. Both 

scenarios were modelled using a convection-dispersion equation, and it was demonstrated that 

the lateral component of such transport was highly significant. It was shown how convection-

dispersion equation predictions of uniformly applied tracer transport might be improved by the 

application of the network model and a method for improving predicted lateral solute transport 

was outlined. 

It has been shown that levels of correlation in the distribution of differently sized voids 

within porous material may be responsible for large variations in permeability. This can make 

accurate modelling of permeability very difficult. A technique was developed for assessing the 

degree and nature of such correlations. The new method was tested on a variety of artificial 

and real samples and demonstrated to provide a quantitative assessment of such correlations. 

A method by which this could be used to improve network model simulations of materials 

possessing such correlation was described. 
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A method for the modelling of permeability damage due to the flow of suspensions 

through network simulations of porous media was developed. The new technique was shown 

to provide a reasonable estimate of permeability decline when compared with experimental 

results. Also, a new procedure for extrapolating the particle size distributions of the solid 

phase of simulations was created. This also performed well when compared with experimental 

results and was more sophisticated than existing methods. 
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1 Introduction 

The central aim of this research was the further characterisation of porous materials, 

with the specific intention of improving the predictive abilities of a network model of 

porous media. Experimental work was conducted at a variety of scales, from micro- to 

macro-scopic, examining various properties of several different porous materials. This 

work was used as the basis for further development of a network model, named 'Pore-Cor'. 

Model development has been conducted specifically with the intention of limiting the 

number of parameters not verifiable by experimental observation. 

Porous materials and the processes in which they take part are of importance to a 

wide range of interests. For example, in reservoir engineering knowledge of the flow 

characteristics of oil or gas bearing materials is essential to maximise efficiency of 

extraction. Ignorance of the relationships between reservoir materials and the suspended 

and dissolved materials within them can result in costly damage to, or even destruction of, 

extraction potential. An understanding of the mechanisms governing the movement of 

water and soluble agrochemicals through agricultural soils is necessary to maximise 

productivity and avoid pollution of watercourses and aquifers. In industry increases in the 

efficiency of processes such as deep bed filtration and the production and use of catalytic 

substrates can be achieved through understanding the nature of porous materials utilised. 

1.1 Network Modelling 

The void space within a porous solid can be thought of as a network of voids (pores) 

connected by comparatively smaller channels (throats). Many workers have simulated this 

using network models that represent porous materials as an array of nodes connected by 

arcs (van Brake!, J. , 1975). By positioning simulated voids of known geometry on the arcs 

and/or nodes of such a lattice, certain properties of the resultant network may be calculated 

and compared to those observed in real porous samples. 

Early models of porous media represented porosity as bundles of straight, equal 

radius capillaries with no interconnections. Network models introduced the concept of 



connectivity to the simulation of porosity. Network models vary enormously in levels of 

complexity. Such models may have two, three or more dimensions. They may range in 

nature from highly theoretical mathematical networks that cannot be represented 

geometrically to three-dimensional reconstructions of the actual void volume based on 

serial tomography of the material (Bryant, S. L. et al. , 1993 ~ Constantinides, G. N. and 

Payatakes, A. C., 1989; Koplik, J. , 1982; Spanne, P. et al. , 1994; Whittaker, 1984). 

The network model developed here compnses a three-dimensional unit cell 

constructed around a regular 1 0 x 1 0 x 1 0 lattice of nodes. Nodes are positioned using 

Cartesian x, y and z co-ordinates, although since the unit cell is isotropic these axes are 

arbitrary. Up to 1000 cubic pores are centred on the nodes, and these are connected by up 

to 3000 cylindrical throats. Specific details of the model formulation are given in the next 

chapter. The remainder of this section shall be used to discuss some other examples of 

network models. 

Blunt and King (1990; 1991) generated large (up to 80,000 features) two- and three­

dimensional networks of equally sized voids, with pore co-ordination numbers (number of 

throats connected to a pore) between 3 and 12 (Blunt, M. and King, P., 1991). The sizes of 

the uncorrelated throats were uniformly distributed. Invasion percolation and unstable 

viscous flood were modelled, and the results interpreted in terms of non-linear Darcy 

equations and Buckley-Leverett theory. 

Chatzis and Dullien (1985) used regular networks of 33 x 33 x 1 and 18 x 18 x 12 

angular bulges connected by angular capillaries to simulate percolation. After transforming 

the simulation to a pore volume network and fitting to experiment, the points of inflection 

of the modelled sandstone mercury intrusion curves fit the experiments well, although 

elsewhere the theoretical curves differed by up to 8%. 

Conner and Horowitz ( 1988b) modelled 10 x 10 x 10 networks of uniform pores and 

zero-volume throats. Mercury intrusion curves were calculated usmg the 

Washburn/Laplace equation (see Chapter 2 for details), and correction factors generated 
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for calculating pore size distributions from the first derivative of these curves. The 

unavoidable connectivity (average pore co-ordination number) of 6 was found to be 

extremely limiting. 

Further discussion of other network models, where pertinent to the ongomg 

development of Pore-Cor, is carried out in the next chapter. 

1.2 Flow and Transport in Porous Media 

Flow of water and the transport of water-borne solutes and particulates through 

porous materials have been the subjects of considerable study. Due to environmental 

considerations these processes have become increasingly significant in both saturated and 

unsaturated porous media, and an enormous range of experimental and theoretical studies 

have been conducted at every scale from microscopic to field and reservoir. Much work 

conducted at the microscopic level has aimed to characterise the fundamental mechanisms, 

largely using molecular dynamics theory, by which movements within porous solids take 

place (Adler, P . M. and Brenner, H. , 1984; Bernadiner, M. G., 1998; Sorbie, K. S. and 

Clifford, P. J. , 1991 ; Thompson, P. A. and Troian, S. M., 1997). Laboratory and field 

studies have aimed to characterise how these mechanisms manifest at length scales ranging 

from less than one metre to the field scale (Biggar, J. W. and Nielsen, D. R. , 1976; 

Bronswijk, J. J. B. et al. , 1995; Butters, G. L. et al. , 1989; Ward, A. L. et al. , 1994; Yao, J. 

et al. , 1997). 

The physical basis of both saturated and unsaturated flow has been understood for 

the best part of this century, and mathematical expressions have been derived to describe 

situations of varying levels of complexity. The first and simplest of these is Darcy' s Law, 

describing macroscopic flow in saturated porous media. An equivalent expression for 

unsaturated flow was subsequently developed in the form of the Buckingham-Darcy law, 

and the Richards equation combined this with water conservation terms to allow the 

calculation of water content or matric potential under transient flow conditions. A great 

deal of subsequent modelling has been based on these fundamental expressions. 
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The development of flow paths within unsaturated porous materials, particularly 

where preferential flow may occur, is of particular interest because of the importance of 

such phenomena in agricultural soils. Preferential flow is used to describe situations where 

large portions of a flow-conducting solid matrix, often including regions of immobile 

water, are bypassed by the mobile water fraction. Preferential flow is of particular 

importance in agricultural soils, where it can facilitate the rapid transport of nutrients and 

chemicals away from the surface to groundwaters, resulting in declining productivity in 

soils and pollution ofwater supplies. 

Preferential flow implies that anomalously large flux or high velocity of flow 

through a sample occurs through a limited number of pathways. Preferential flow can be 

identified experimentally by the appearance of an anomalously high component of flow 

through one or two members of a large array of flow detectors. There is also an 

implication, as described below, that there is a structural difference between the flow paths 

containing the preferential flow and those containing the remaining flow through the 

sample. The threshold of preferential flow, in terms of relative flux or velocity, remains 

undefined throughout the literature. ln this study, whether or not preferential flow occurs 

within certain experimental samples is considered. It follows that preferential flow must 

be identified in terms of whether the highest flow through the sample is a part of the 

overall distribution of flow through the sample, or whether it can be identified as part of a 

different distribution. For example, one might identify that the matrix flow through a 

sample was Normally distributed, and that preferential flow was characterised by an 

anomalous peak at the highest flow rates which was not part of the overall Normal 

distribution. It is in this manner, rather than any loose inference from the homogeneity or 

inhomogeneity of sample structure, that the existence of preferential flow is judged in this 

work. 

Although there is some disparity in the nomenclature for different forms of 

preferential flow, at least three different mechanisms by which it may arise have been 

identified in the literature (Kung, K. -J. S., 1990a; Kung, K. -J. S., 1990b). In a 

heterogeneous substrate, such as a cracked or stony soil, bypass flow may develop if highly 

permeable macropores extend to the soil surface or the water pressure within them IS 
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positive (Beven, K and Germann, P, 1982). An example of the first case would be a 

cracked soil experiencing heavy rainfall . If water ponds on the surface of such a soil, the 

permeable macropores will conduct water away much faster than less permeable areas, 

which may therefore remain relatively dry. Similarly, macropores underlying a layer of 

groundwater will preferentially transport water down through a porous material. 

Conversely, in soils with a negative water pressure buried macroporous regions can act as 

a barrier to the movement of water. 

Buchter et al. (1995) observed considerable bypass flow in stony (~80% gravel) soil 

monoliths and staining of the flow fields revealed considerable structural heterogeneity. 

Flury et al. ( 1994) also demonstrated that, due to the bypassing of the majority of the soil 

matrix, structured soils represented a greater risk to groundwater than homogeneous soils 

in transporting soluble pollutants. They concluded that preferential flow should be 

considered the rule rather than the exception. 

Fingering flow is used to describe the progress of unstable wetting fronts through a 

porous substrate, and it may be brought about by various mechanisms. Fingering has been 

shown to develop in sandy soils in less hydrophobic areas, and possibly correlated to 

particle size (Dekker, L. W. and Ritsema, C. J. , 1994; Ritsema, C. J. and Dekker, L. W., 

1994). Raats (1973) showed how fingering may develop if the velocity of a wetting front 

increases with depth and demonstrated, with the use of a Green and Ampt model, several 

scenarios in which this might take place. Subsequently Henrickx et al. (1993) used these 

criteria to demonstrate that fingering from a water repellent surface layer may result in 6 to 

13 times as much solute transport to groundwaters, compared with transport from a 

wettable surface. Baker and Hillel (1990) showed that fingering might arise at the interface 

between two layers of homogeneous sand when the bottom layer is coarser than the top 

layer. 

Kung (1990b; 1990a) identified a further form of preferential flow, funnel flow . 

Funnel flow takes place along inclined textural discontinuities, where a lower layer acts 

like the wall of a funnel to water moving from the upper layer. Water flows along this 
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lower layer accumulating until it reaches a critical pressure, when it then penetrates this 

lower layer by fingering flow. 

Clearly, in natural porous media it is likely that more than one of the mechanisms 

described above may be present. Detailed experimental studies have shown that the 

development of preferential flow in structured soils may be sensitive to a complex 

combination of factors that may or may not be readily identifiable (Andreini, M. S. and 

Steenhuis, T. S., 1990; Williams, A. G. et al., 1999). 

However, it has also been demonstrated that preferential flow may occur even when 

there is no discernible structural cause for such behaviour. In a dye tracing experiment on 

field plots Ghodrati and Jury (1990) observed considerable preferential flow, but were 

unable to identify the source other than to suggest that areas conducting greater flow were 

most likely to have higher permeabilities than surrounding areas. It has been suggested that 

some form of preferential flow may develop even in homogeneous samples. Porter (1968) 

postulated that water flows over random packings in rivulets, or small streams. These 

rivulets may randomly meet and coalesce to form larger rivulets, or alternatively large 

rivulets may divide. Experiments conducted on packings of uniform spheres, Raschig 

rings, Intalox saddles and Pall rings over a sampling grid appear to support this theory 

(Porter, K. E. et al. , 1968), and a method for predicting the number of rivulets at a given 

depth was presented. This has also been interpreted to imply that increasing sample depth 

may be accompanied by a decrease in the total number of rivulets, and an increase in the 

volume of water being transmitted by individual rivulets (Dexter, A. R., 1995). 

With regard to flow, the aim of this work was to investigate whether flow networks 

m homogeneous porous samples were themselves homogeneous, and whether the 

development of flow was amenable to modelling. In particular, the study aimed to 

investigate whether the network model Pore-Cor could provide supplemental information 

that might facilitate better predictions ofthe development of these flow networks (Chapters 

3-6). 
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The importance of modelling transport through unsaturated porous material, 

particularly the leaching of solutes in soil, is well documented. This introduction will 

concentrate on the most significant developments in the field and the most relevant to this 

study. For a fuller discussion of the subject readers are directed to the literature (Addiscott, 

T. M. and Wagenet, R. J., 1985; Edwards, W. M. et al., 1993; Jury, W. A. and Fliihler, H., 

1992; Costa, J. L. et al. , 1994; Ellsworth, T. R. et al., 1996; van Genuchten, M. Th. and 

Jury, W. A., 1987). 

A large number of models of unsaturated transport have been formulated with the 

intention of predicting the transfer processes at work, with particular reference to the 

movement of agricultural chemicals through the root zone of farmed soils. Broadly such 

modelling can be divided into two categories: deterministic and stochastic models. 

Deterministic models assume that a given set of events will produce a uniquely definable 

outcome, whereas stochastic models assume there to be a degree of randomness in the 

systems they simulate and account for this. 

Modelling has been dominated by deterministic models based on Fickian convective-

dispersive transport, and these still represent the majority as far as popular models are 

concerned. Based in miscible displacement theory (Nielsen, D. R. and Biggar, J. W., 1962) 

convective-dispersive equations (CDE's) are also mechanistic, that is they incorporate 

fundamental mechanisms of the transport process. Practically this implies the use of 

equations derived from Darcy's Law to describe water flow and the representation of 

solute transport by mass flow and diffusion-dispersion mechanisms. In its simplest form 

the convection-dispersion equation may be written as, 

[I] 

where c is solute concentration, t is time, z is depth, vis pore water velocity (volume flow 

rate divided by the product of cross-sectional area and volume water content), R is a 

retardation factor and D is the diffusion coefficient. 
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In the latter half of this century a large number of analytical and numerical solutions 

to Equation 1, or variants of it, have been presented (Huang, K. L. et al., 1996; Ge, S. M . 

and Lu, N ., 1996; Leij, F. J. et al., 1993; Nachabe, M . H. et al., 1995; van Genuchten, M . 

Th. and Alves, W. J. , 1982). Analytical solutions tend to have the advantage of being 

general in form and flexible. However their inability to model transport taking place under 

non-steady state conditions, with regard solute and water, limit their usefulness largely to 

laboratory studies. As a consequence various numerical solutions have been proposed to 

deal with non-steady conditions, for example the partitioning of the water-filled porosity 

into mobile and immobile phases (van Genuchten, M. Th. and Wierenga, P. J., 1976). 

The chief shortcoming of models based upon the convection-dispersion equation are 

the treatment of the flow fields across the unsaturated material as a homogeneous 

continuum. Practically this results in the assumption that modelling parameters, most 

importantly D and v, remain constant at all levels of observation. This limitation results in 

a degree of inflexibility in the modelling capabilities of these methods, and some workers 

have criticised this. However, convection-dispersion based models remain popular and 

traditional models are being augmented by research into the nature of variation in model 

parameters at the field scale. In particular, it has been suggested that the diffusion 

coefficient, D, varies according to a simple linear relationship with depth (1-luang, K. L. et 

al. , 1996; Khan, A U. and Jury, W. A. , 1990). 

Stochastic models are based upon the assumption that field-scale properties of soil 

vary spatially, and thus variations in water and solute movement will also exist. Stochastic 

adaptations of traditional mechanistic models have been developed as well as stochastic 

models that make no reference to mechanism. The former type typically incorporates a 

distribution of random input data that produces a distribution of output values. Studies 

using such models have shown variability in v to be significantly more influential than 

equivalent changes in D, that is convective processes rather than diffusive (Bresler, E. and 

Dagan, G., 1981 ). Addiscott and Wagenet ( 1985) point out that a limitation of such 

techniques is that a knowledge of the nature of the variance at the field scale is necessary, 

or some assumption as to its nature must be made. 
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The use of entirely stochastic models is dominated by transfer functions, similar to 

those often applied to industrial processes (Jury, W. A , 1982; Liu, H. H. and Dane, J. H., 

1996; Zhang, R. D., 1995). Transfer function models conceptualise the soil as bundles of 

twisted capillaries of different lengths through which water moves via piston flow. The 

probability, PL, of a solute tracer added to the soil surface at time t arriving at a depth L as 

the applied water increases from I to (I + dl) is summarised by a probability density 

function,JL(1) , which produces a distribution function, 
I 

PL (!) = J JL (I)dl [2] 
0 

It is the probability function that allows the model to represent the variability of 

hydraulic properties over the field scale. Various workers have found that, measuring 

concentrations at depth L over a number of locations, the probability density function takes 

the form of a log-normal distribution (Biggar, J. W. and Nielsen, D . R., 1976; Jury, W. A 

and Sposito, G., 1985; Butters, G. L. et al., 1989). 

Other purely stochastic methods have been developed. For example, Knighton and 

Wagenet (1987) formulated a model based on a continuous time Markov process. This 

simulated solute movement by employing a birth-death population based approach. Using 

such a method future values of a modelled property are predicted purely on the basis of 

their current value, with no reference to past values. In this instance the movement of 

solute molecules between discrete layers of a simulated soil was modelled. The modelled 

porous matrix was characterised by a single value of v, the pore water velocity. Model 

predictions were compared against a series of experiments involving repacked soil 

columns, and were found to be in reasonable agreement with the experimental results. 

However, the soil columns were so narrow (approximately I 0-cm circular diameter) as to 

make the experiments effectively one-dimensional, and measured variations in transport 

properties such as pore water velocity have typically been measured over much greater 

scales (Biggar, J. W. and Nielsen, D. R., 1976). 

The intention of this work was to conduct solute leaching experiments on 

homogeneous sand samples using apparatus developed specifically for this study. Both 
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transport of a uniformly applied conservative solute tracer and of a tracer applied to a 

discrete region on the sample surface were studied (Chapters 3 and 4). Transport of a 

uniformly applied conservative solute tracer was studied to test whether predictions of 

solute transport using a simple convection-dispersion equation could be improved by use 

of network modelling techniques (Chapter 6). Network models can provide additional 

information concerning the structure of unsaturated porous materials that may, or may not, 

be of use in simulating the movement of dissolved species through them. Transport from a 

point source was studied to investigate the degree to which this transport was symmetrical 

about the point of application, and the extent to which such behaviour might also be 

predictable using a convective-dispersive model coupled with the network model (Chapter 

6). 

In addition to solute leaching the movement and deposition of suspended particles 

through disordered porous media is also of interest. In systems such as enhanced oil 

recovery, water purification and chromatography such movement and deposition is often 

described by the term deep-bed filtration (DBF). During enhanced oil recovery, formation 

damage by fmes may be both undesirable and desirable. Suspended particulate material 

can cause extreme damage to reservoirs, and may require costly pre-filtration to prevent. 

However, in other circumstances suspended fines may be used as temporary plugging 

particles, sealing wellbores to prevent further reservoir damage. DBF theory has also been 

used to describe the industrial filtration of fine colloidal particles from liquid suspensions 

and processes involved in certain catalytic chemical reactions. Often it is the subsequent 

reduction in permeability, frequently a negative side effect ofthe process, caused by DBF 

that is of interest. 

As a consequence of the wide range of applications in which deep-bed filtration may 

be implicated, many workers have derived models to help understand and predict such 

processes. Several distinct model types have emerged. Generally these can be categorised 

as either empirical, trajectory analysis-based, stochastic or network models. Examples of 

each type and a fu ll discussion of the differences between approaches are given in the 

introduction to Chapter 9. 
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The network model being developed already features a crude model of colloidal 

deposition. Prior to this study this amounted to the removal from the simulations of all 

features smaller than a user defined minimum size. Effectively this simulated straining or 

size exclusion of particulate material within the porous matrix. The scenario this modelled 

was somewhat artificial, in that all void features that would be blocked by the modelled 

particles were accessible. That is, structural characteristics of the network such as 

connectivity played no part in the process. The development of an improved model of the 

transport and deposition of suspended material was undertaken in response to these 

obvious shortcomings. It was intended that the new model would feature, in addition to a 

more sophisticated model of straining type deposition, an alternative probabilistic model 

based in some way on the modelled conditions present in the simulated void structure and 

flowing suspension (Chapter 9). 

1.3 Correlations in the Spatial Distribution of Voids 

Many naturally occurring and manufactured porous media are inhomogeneous in 

terms of the spatial distribution of differently sized void spaces. Sandstones, for example, 

can be laminated because of sorting of the mineral grains and rock fragments during 

formation of the consolidated rock. Clay inclusion within sand stones may form clusters of 

small pores or dissolution may cause loci of larger void spaces in ' vuggy' samples. Soil 

can exhibit layering, clustering, vugs and the formation of ' peds' (regions often surrounded 

by preferential-flow channels). Manufactured porous media can also be inhomogeneous. 

Paper is a porous structure typically comprising a fibrous substrate filled and/or coated 

with china clay or calcium carbonate, which is bound to the substrate with starch or latex. 

Some catalyst substrates comprise a laminar carbon fibre mesh, bonded with resin that 

preferentially adheres to one side. 

Fluid flow is often of crucial importance in these and other porous media. In 

sandstones, the flow of oil, gas and water determine reservoir properties, and the efficiency 

of extraction of the oil and gas. As indicated previously, the movement of water and 

potentially polluting soluble chemicals through soils are of major importance, and catalysts 

can only operate successfully if the transport of fluids to and from them, through the 
ll 



substrate, is efficient. It has been shown previously (Matthews, G. P . et al., 1995) that the 

introduction of void size correlation into samples of similar porosity can change their 

permeability by several orders of magnitude. Such effects are important in the study of 

unfractured sandstone plugs, and are referred to as 'secondary porosity' by oil/gas reservoir 

simulators. Correlation effects are also important in the study of the migration of dissolved 

and colloidal species in soils, clays and siltstones, and in other porous media such as paper 

coatings on fibrous substrates (Kettle, J. P. and Matthews, G. P., 1993). 

In fundamental studies of correlation effects by other workers, void space networks are 

usually generated with pore and throat size distributions and correlation levels governed by 

pre-set mathematical functions. Such models have the advantage that the void space 

parameters can be sophisticated and precise, while having the disadvantage that they are only 

loosely related to any particular experimental sample. Li, Laidlaw and W ardlaw ( 1986; 1990) 

demonstrated analytically how for the case of a linear throat size distribution, non-wetting 

phase (mercury) intrusion occurs at a lower applied pressure in a correlated network, and less 

non-wetting phase is entrapped after secondary imbibition of a wetting phase. Wardlaw 

(1990) also demonstrated this effect in multiple intrusion/extrusion scanning loops. 

Tsakiroglou and Payatakes (1991) generated 30 x 30 x 2 and 20 x 20 x 20 networks of 

cylindrical throats and spherical pores with shaped necks, and demonstrated that simulated 

mercury intrusion curves had a less pronounced point of inflexion within pore : pore and 

pore : throat correlated models than for uncorrelated structures. Ioannidis and Chatzis ( 1993a; 

1993 b) have represented porous media with a 50 x 50 x 50 array of cubes, with different grey 

levels representing pore bodies of different sizes. Their representations were constructed 

according to pre-set pore and throat size distributions, and pre-set size auto-correlation 

functions. Correlation was shown to make mercury intrusion slightly more gradual with 

increasing pressure, to increase capillary hysteresis, and to reduce the residual mercury 

saturation. Day et al. ( 1994) point out that extreme positive and negative pore : pore size 

correlation may produce a bimodal distribution with size maxima so far apart that a two-step 

mercury intrusion curve results. 
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Most experimental studies of void size correlation effects have been based on image 

analysis of serial sections of resin or Woods metal impregnated samples. Adler and eo­

workers {1990; 1992), for example, studied resin-injected Fontainebleau sandstone sections, 

and measured correlation functions in terms of whether a void space existed or not at a 

measured distance from another void space. They then 'reconstructed' the porous medium 

using a 27 x 27 x 27 array of cubes, each cube being either solid or void. The array had the 

same porosity and correlation factor as the 2-D sections of sandstone. Wardlaw, Li and Forbes 

(1987) injected samples of Berea sandstone and Indiana limestone with Wood's metal, and 

etched the sample so that the Wood's metal stood in relief Electron micrographs of the void 

space were then examined. The diameters of pores and throats were then measured, and 

graphs of size frequency, and correlation between throat diameter and the directly connected 

pores were plotted. The throat diameters for Indiana limestone were found to cover a much 

narrower size range, and to be more size-correlated to directly connected pores, than in Berea 

sandstone. 

Wood's metal can also be partially injected into samples to give results analogous to 

mercury porosimetry (Dullien, F. A. L. and Dhawan, G. K., 1975). Lymberopoulos and 

Payatakes (1992) have measured correlation effects by serial tomography, using analyses 

based on 30 serial sections approximately 7.5 Jlm apart. Algorithms were developed to 

interpolate the void volumes between the serial sections and to distinguish pores from throats. 

Their results were also expressed as graphs of characteristics such as throat diameter versus 

the average contiguous-chamber diameter, and chamber diameter versus the average 

immediate-neighbour diameter. They found weak pore : pore correlation within a sandstone, 

but significant pore : throat correlation. Mercury intrusion was found to be weakly affected by 

pore : throat correlation. However, pore size clustering in combination with pore : throat 

correlation had a strong effect on intrusion, causing it to occur over a wider range of 

pressures. 

Little, if any, work has focussed on generating network simulations with correlations 

in the spatial distributions of voids based on experimentally observed levels. When making 

studies of porous media that include their permeability, such measures may be extremely 
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beneficial with regard model accuracy. Consequently this study also investigated whether 

the levels of correlation in several real and constructed porous samples could be quantified. 

Ultimately it was intended that this might enable the network simulations with correlations 

in void size spatial distributions similar to those observed in real samples (Chapter 7). 

1.4 Solid Phase Modelling 

In porous materials composed of particles the characteristics of the particles affect 

packing structure, which in turn affects all structural properties of the material. During the 

preparation and development of porous materials, or in the study of the migration of fluids 

through them, it is often of interest to be able to infer the particle size distribution (PSD) of 

the hypothetical unconsoHdated solid phase. For example, the effects of varying levels of 

cementation on sandstones have been investigated by analysis of thin sections taken from 

varying depths (Taylor, J. M., 1950) and by comparison of mercury intrusion curves 

(Matthews, G. P. and Ridgway, C. 1., 1997). It may also be of interest to examine what 

effect this might have on apparent particle size distribution. Work has also been conducted 

on the progressive development of different network configurations during the process of 

sintering certain materials (Aigeltinger, E. H. and DeHoff, R. T., 1975). A method of 

estimating the particle size distribution of consolidated materials could be used to simulate 

such processes. Similarly, in reservoir engineering it might be possible to examine whether 

mineral deposition in a reservoir material had the effect of increasing the apparent size of 

the original particles, or if the extra mineral material merely occluded within the pores of 

the substrate causing a reduction in connectivity. Another example might be studying the 

individual sizes of the carbon granules that, upon consolidation, form a filter or a catalyst 

substrate. 

Exact solutions have long been available which allow the calculation of the particle 

size distribution of regularly packed mono-sized spheres, derived from the 

pressure/saturation characteristics of a wetting fluid such as water or benzene (Haines, W. 

B., 1927), or of a non-wetting fluid such as mercury (Mayer, R. P. and Stowe, R. A , 

1965), the latter calculation being currently available in the control software for mercury 
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porosimeters (Micromeritics, 1996). However, the mathematics for the deduction of the 

size distribution of poly-disperse and/or randomly packed particles is intractable. 

Pore-Cor allows the inference of an approximate, but nevertheless useful, void 

structure for random porous media, based on the mercury intrusion curve. The present 

study aimed to investigate whether the network model could be used to infer the particle 

size distribution ofthe assumed-spherical particles of the solid. To the author' s knowledge 

this was the first study of this type. The method was tested using porous samples made up 

from unconsolidated grains, to judge its likely success on consolidated samples (Chapter 

8). 
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2 Pore-Cor 

2.llntroduction 

The aim ofthis study was the further characterisation of porous media in such a way 

as to allow continued development of the network model Pore-Cor. It was intended that 

experimental observations coupled with model development would facilitate increased 

understanding of certain porous systems, and enable more accurate predictions of their 

behaviour. Model development to date has been based on the principle that the number of 

arbitrary fitting parameters that cannot be verified experimentally should be kept to a 

minimum. This work described here aimed to continue in this vein. Consequently, in 

addition to model development experimental studies were conducted over a range of scales 

to compliment theoretical work. 

What follows here is a brief description ofthe processes and capabilities ofPore-Cor 

at the commencement of this work. 

2.2 Void Structure Modeling 

The field of network modelling of meso- and macro-porous media is well 

developed (Matthews, G. P. et al., 1995; Tsakiroglou, C. D. and Payatakes, A. C., 1991; 

Lowry, M. I. and Miller, C. T., 1995; Deepak, P. D. and Bhatia, S. K., 1994). The void 

space model that this project aimed to develop further is named 'Pore-Cor' (pore-level 

properties correlator), and can simulate a wide range of properties of meso- and macro­

porous media (Matthews, G. P. et al., 1995). It conceptualises the porosity of a material as 

a network of voids connected by smaller channels. It has been successfully employed in 

the modelling of a range of materials, such as sand stones, paper coatings and tablets, and a 

variety of their properties, for example porosity, permeability, colloid flow and tortuosity 

(Mathews, T. J. et al., 1997; Matthews, G. P. et al., 1996; Gane, P. A. C. et al., 1996; 

Ridgway, C. J. et al., 1997). 

The model described here has the particular characteristics that it has an explicit 

geometry upon which all properties are calculated from first principles, and that the fitting 
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parameters used to converge on experimental data are characteristics such as connectivity 

which can be checked experimentally as being within a realistic range. The absence of 

arbitrary fitting coefficients allows it to be used on any porous medium. 

2.3 Geometry 

Pore-Cor is a network model of porous media that represents the void space of 

samples as an array of cubic pores connected by cylindrical throats, the constricted 

connections between pores (Figure 2.1 ). The pores are centred on a regularly spaced 10 x 

1 0 x 10 lattice of nodes, positioned using Cartesian co-ordinates x, y and z, the distance 

between which is termed the pore row spacing. The pore row spacing is used to adjust the 

porosity of the simulated porous media. Each array of up to 1000 pores and their 

connecting throats is described as a unit cell (Figure 2.1) and for modelling purposes the 

unit cell repeats infinitely in all directions. Other parameters include the connectivity, 

which is the average pore co-ordination number (number of connected throats per pore) 

and pore and throat skews, the skew of the pore and throat size distributions respectively. 

Figure 2.1 A unit cell generated by Pore-Cor showing tbe simulation of Redhill65 sand. Mercury, 
shown in grey, has intruded corresponding to an applied pressure sufficient to fill pore diameters up to 
100 microns. Tbe large scale bar corresponds to 2.40-mm, tbe short one to 0.48-mm. 

For calculation a primary position is defined as the position of a pore centre 

displaced by half the pore-row spacing in the x, y and z directions. Each primary position 

is at the centre of a cube defined by the centres of eight adjacent pores. 
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2.4 Mercury Porosimetry 

The Washbum (or Laplace) equation is used to calculate throat diameter, d, from 

applied mercury pressure, P, 

d = 4ycosB 
p 

[I] 

where y is the interfacial tension between the mercury and air and B is the mercury contact 

angle. Limitations in the accuracy of Equation 1 arising from uncertainties in the values of 

yand Bhave been documented (van Brakel, J. et al., 1981b). Surface roughness may cause 

the contact angle to be as high as 180°. For the purposes of this work modelling 

unconsolidated packed sand (Chapters 6, 8 and 9) the commonly accepted value for 

sandstone of 140° was used throughout. The interfacial tension is taken to be 0.0485 

Newtons m -I, which reduces Equation I to, 

d = 1470 
p 

[2] 

where d is measured in microns and P is given in kilopascals. Mercury intrusion curves 

plot volume of intruded mercury, V, against P. V is often converted to a percentage of the 

total void volume and P to throat diameter using Equation 1. Typically this produces a 

sigmoidal mercury intrusion curve, an example of which is given in Figure 2.2. 

Traditionally the void size distribution has been obtained by taking the first derivative of 

this curve, producing a distribution with a peak at the point on the intrusion curve where 

the gradient is greatest. However, this interpretation of the data is only valid for a porous 

material comprising a bundle of tortuous, unconnected capillaries, each with a different but 

uniform diameter. 
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Figure 2.2 Example mercury intrusion curve and modelled Pore-Cor curve for Redhill 65 sand. 

Pore-Cor uses a percolation algorithm to model mercury porosimetry. The two main 

limitations to using such a method based on Washburn/Laplace have been identified as i) 

throats are considered to be cylindrical and ii) the mapping of the effective network based 

on the mercury porosimetry is not necessarily the same as the real network (Garboczi, E . 

J., 1991). Various studies into the effects of void shape have been carried out including 

using arrays of packed spheres (Mason, G. and Melior, D. W., 1991 ), rod- and plate-like 

structures (Canner, W. C. et al. , 1988a), intersecting ellipsoids (Y anuka, M. et al., 1986) 

and ellipsoid cylinders (Garboczi, E. J. , 1991). The fact that close fits to experimental 

results can be achieved using simple void geometries indicates that it is not necessarily 

valid for workers to attribute discrepancies between simple models and experiment as 

arising from subtle information such as pore and throat shape and formation damage. Pore­

Cor' s networks are based upon actual samples and are therefore closer to actual 

representations of the void network than to mathematical networks, unlike most other 

models in the literature. 

2.4.1 Hysteresis 

At sufficiently high pressures a sample will become saturated with mercury. 

However, upon decreasing the pressure more mercury remains in the sample than the 

amount intruded at corresponding pressures, and this is known as hysteresis. Even at the 

lowest possible pressure quantities of mercury remain in the samples, and this is termed 
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residual saturation. This effect is similar to the recovery efficiency of oil from a reservoir 

following displacement by a water flood, which is dependant on pore size distribution, 

connectivity and pore:throat size correlation (Wardlaw, N. C. and Cassan, J. P., 1979). 

Hysteresis may result from a number of causes. 

2. 4.1.1 Structural Hysteresis 

During intrusion throat radius controls the pressure at which throats are intruded. 

However, secondary imbibition, emptying of mercury from pores, is controlled by pore 

size. Figure 2.3 shows two cylindrical throats and a pore in series. 

Throat Pore Throat 

Figure 2.3 A one-dimensional pore and throat network. 

Considering, for the sake of simplicity, Equation 2 it can be seen that the throat of 

diameter d1 will fill with mercury when the applied pressure, P, exceeds 1470/d,. At this 

pressure the pore, d2, also fiBs with mercury. When P is raised above 1470/dJ the final 

throat will also become filled with mercury. AsP is subsequently decreased the final throat 

will empty first as the pressure falls below 1470/d3, extruding an equivalent volume of 

mercury at the sample surface. The pore will empty next, but whereas it filled as P was 

raised above 1470/d, it will empty asP falls below 1470/dl, hence hysteresis occurs. 

2. -1.1.2 Snap-off 

It has been shown that if d2 is much greater than d1 then the mercury has difficulty 

readjusting its shape to extrude through the narrower pore (Wardlaw, N. C. and McKellar, 

M., 1981 ; Chatzis, I. and Dullien, F. A. L. , 1981). The ratio of d2 to d1, R, has been 

measured for a range of sand stones and limestones ranging in value from 3 to 148.7 
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(Wardlaw, N. C. and Cassan, J. P., 1979). A potential explanation is that as the mercury-air 

interface moves through irregularly shaped channels the meniscus has to adopt non­

equilibrium shapes (Dawe, R. A and Egbogah, E. 0., 1978). It is always trying, however, 

to assume its minimum energy configuration. This can be achieved by a sudden change in 

shape, and consequently the interface may progress in a series of jumps, known as Haines 

jumps. For specific values of R this may result in snap-off of the mercury column. Trapped 

wetting phase (air) may re-expand, acting as a seed for snap-off 

Snap-off may also result from the network structure. A continuous line of unbroken 

mercury to the sample surface is required for emptying to take place. If a large pore is 

shielded from the surface by smaller voids, which drain before the pressure required for 

drainage of the large pore is achieved, all continuous mercury-filled routes to the surface 

may be broken resulting in trapping. 

2.4. 1. 3 Correlations in Void Size Distributions 

From preceding sections it can be seen that correlations between the sizes of adjacent 

pores and throats may affect intrusion and hysteresis. It has been shown that pore:throat 

size correlation has a weak effect on intrusion, while pore:throat correlation combined with 

pore:pore correlation has a strong effect (Constantinides, G. N. and Payatakes, A C., 

1989). lt has also been observed that correlation can decrease shielding effects described in 

the previous section (Li, Y. et al., 1986; Li, Y. and Wardlaw, N. C., 1990; Wardlaw, N. C., 

1990). Figure 2.4 shows the effects ofthe pore:throat size ratio on hysteresis. 
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Figure 2.4 Effect on hysteresis of changing the pore: throat size ratio, R Experimental results are 
shown by the solid lines, modelled reslllts by the dashed lines. 

The networks used in Pore-Cor are correlated by setting the size of each pore equal 

to the diameter of the largest throat entering it. Other types of correlation have also been 

simulated (Mathews, T. J. et al., 1 997~ Matthews, G. P. et al., 1995), and the work 

conducted here extends previous studies into the effects of correlations in the distributions 

of different sized pores in real porous materials (Chapter 7). 

2.4. 1. 4 Dead-end Pores 

Dead-end, or ' ink bottle', pores, that is pores connected to just one throat, also cause 

structural hysteresis. A mercury-filled dead end pore can only empty by surface flow of 

wetting phase along the walls and non-wetting phase withdrawal along the middle of the 

throat. This happens rarely and consequently dead-end pores, the number of which 

increases as co-ordination number decreases, cause trapping of mercury. 

2.4. 1.5 Contact Angle Hysteresis 

In mercury porosimetry analysis a constant contact angle is commonly assumed, 

typically 140°. However, evidence exists to suggest that contact angle hysteresis, a 

difference between intruding and extruding mercury contact angles, takes place (Kioubek, 

1., 1981 ~ Bell, W. K. et al. , 1981). Obviously a difference between intrusion and extrusion 

will have significant effect on the Washburn/Laplace equation and it has been shown that, 

in principle, irreversible mercury penetration may result from contact angle hysteresis (van 
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Brake!, J. et al., 1981 a). One suggestion is that mercury injected behind an advancing 

mercury meniscus has the effect of cleaning the meniscus, but that during extrusion 

impurities may collect on the meniscus (Wardlaw, N. C. and Taylor, R. P., 1976). 

Impurities in the meniscus have been shown to be a source of hysteresis (Shaw, D. J., 

1986). Many different estimates of contact angle magnitude for different materials have 

been made (Good, R. J. and Mikhail, R. Sh., 1981). Modelled effects of changing 

connectivity are shown in Figure 2.5. 
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Figure 2.5 Effect of changing contact angle on hysteresis where R = 5. Experimental results are shown 
by the solid lines, modelled results by the dashed lines. 

2.5 Void Space ModeUing 

A percolation algorithm, which assumes intrusion IS controlled by the 

Washburn/Laplace throat diameters, is used to model mercury intrusion. Throat lengths are 

equal to the distance between pore edges, determined by pore size and pore row spacing. 

Pore row spacing is adjusted, after the pores and throats have been positioned, to model the 

experimental porosity. Throat length has little effect on simulated intrusion, and therefore 

the porosity can be modelled independently of mercury intrusion. Throat size distribution 

is log/linear, that is equally spaced over a logarithmic scale (Figure 2.6). 
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Figure 2.6 Example pore and tbroat size distribution for Redbill 65 sand. 

The adjustable parameters are throat diameter range, skew of throat size distribution, 

pore:throat correlation and pore row spacing. Throat diameter range is calculated from the 

mercury intrusion pressure range limits and there are 1 00 throat diameters in each 

distribution. The pore size distribution, generated from the throat size distribution, may be 

checked against electron micrographs of the sample. Throat skew is defined as the 

percentage of the smallest size throats in the log/linear distribution. Figure 2.6 shows a 

skew of approximately 1% which, due to the 99 other sizes, results in an almost uniform 

distribution. The throats are randomly positioned within the unit cell, following which 

pores are assigned to the nodes. The random positioning of the throats introduces a degree 

of randomness to the pore size distribution, which can be seen in the jagged distribution 

Figure 2.6. The pore size distribution shown also features a pore skew. The pore size 

distribution is multiplied up by this factor and then any pore whose size is larger then the 

original maximum of the range is truncated to this maximum pore size. This results in a 

frequency peak at the maximum of the pore size distribution, but enables larger porosities 

to be simulated. 

Simulated mercury injection takes place normal to the xy plane of the unit cell at z = 

l ee// in the -z direction, where lcell is the length of the unit cell. An invasion percolation 
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method is used to calculate the fraction ofthe pore volume occupied at each static pressure 

(Spearing, M. C. and Matthews, G. P., 1991). 

The gradient of the intrusion curve at the point of inflection is governed by 

connectivity. For simplicity the high curvature regions of the curve above and below the 

point of inflection shall be described the upper and lower shoulders respectively. 

Increasing connectivity shifts the curve to higher throat diameters and makes the upper 

shoulder too high as a result of increasing the gradient at the point of inflection, Figure 2. 7. 

Breakthrough occurs at larger throat diameters, or lower pressures, because of the increase 

in routes through the network. This can be countered by increasing the throat skew, but 

resulting intrusion curves will still possess an exaggeratedly steep upper shoulder. 
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Figure 2.7 Changing connectivity and throat skcw, Rcdbill65. 

2.5.1 Automatic Convergence of Model onto Experimental Data 

Automatic methods of optimising connectivity and throat skew to produce the best fit 

of modelled to experimental mercury intrusion data have been developed. The curves may 

be fitted at the point of inflection by changing skew or by changing both connectivity and 

skew to improve fit, expressed on a least squares minimisation basis. 
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2.5. 1.1 Fitting the Point of inflection (The '50% Method') 

The simplest method involves varying the throat skew to achieve the best fit of 

modelled point of inflection to experimental. The only criterion for fit is that the deviation, 

~so, between experiment and simulation must be within 3% of total logarithmic range of 

the graph at the point corresponding to 50% of the total intruded mercury. Initially the 

skew is set to 1.0, then either 0.5% or 1.5% depending on which is expected to give the 

better fit. A third skew is then calculated using a linear interpolation/extrapolation 

algorithm. Further iterations are possible but previous work has shown that, generally, 

three are all that is necessary (Matthews, G. P. et al., 1995). 

2.5.1.2 Regular Spacing Algorithm 

An improved fit over that provided above is achieved by comparing the horizontal 

separation between modelled and experimental intrusion curves at intervals along the pore 

volume axis. The easiest way to achieve uniform relative weightings of deviations over 

portions of the curve would be to consider points evenly spaced along the vertical axis. 

However, the measurements obtained from mercury porosimeters are not usually evenly 

spaced in this way. Interpolation could produce such a series of points, but would also 

introduce inaccuracies because the functional form of the experimental curve is unknown. 

The compromise used by Pore-Cor is to use experimental points wherever possible but to 

remove or linearly interpolate points if the pore volume spacing is outside set limits. These 

limits are arbitrarily set at half and twice the spacing along the pore volume axis compared 

to the spacing required for the experimental points to be evenly spaced. The same set of 

comparison points is used for each simulation of a sample. The difference in experimental 

and modelled Washbum throat diameter, d, is calculated at each appropriate pore volume. 

Two measures of deviation are used, the linear deviation, ~/in, and the log deviation, ~log· 

~ = i=l lin -'=------

n 

i ~og d oxp(l~ > -log d .nm(v, > f 
~ =~j-~·------------------

1"1! n 

[3] 

where n is the number of comparison points, V, is the intruded volume at a given point and 

the subscripts exp and sim refer to experimental and simulated values respectively. 
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Minimisation of the linear deviation (the 'linear' method) tends to give greater weighting 

to fitting the curve at larger throat diameters while the 'log' method gives the best fit over 

the whole ofthe.curve. 

Both of the above methods use the 50% method to find a mid-point for optimising 

throat skew. The test range for skew is then taken to be ± 0. 70 at intervals of 0.1 0, while 

connectivity is tested over the range 2.6 to 5.0 at intervals of 0.1. Every combination of 

connectivity and throat skew is computed to find- the best-fit curve and also to plot a three­

dimensional surface which demonstrates the goodness offit and uniqueness of the result 

2.6 Tortuosity 

For a particle moving through a porous material, for example an ion passing through 

a membrane, tortuosity is defined as the ratio of the path length taken by a particle to the 

length of the porous sample. Frequently tortuosity has been assumed to be responsible for 

discrepancies between predictions and observed behaviour in various porous systems, and 

as such tends to have been employed largely as a fitting parameter. 

Pore-Cor allows the calculation of the tortuosity of simulated porous media. This is 

achieved by simulating 50 weighted random walks, from top to bottom, through the unit 

cell. A simulated particle is assumed to enter the unit cell at a random location on the top 

surface. At each pore a random throat is selected, with the choice being weighted by a 

factor of r2/l, where r is throat radius and I is throat length. Pore-Cor returns the median 

value of all the random walks as well as the inter-quartile range. 

2. 7 Permeability 

A long-standing problem in the study of porous media has been the question of how 

to calculate the permeability of a solid from a knowledge ofthe geometry of the void space 

within it. The absolute permeability k of a porous solid is traditionally defined in terms of 

Darcy's law. With reference to a cell of the solid of unit volume, this may be written: 
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p}cell 

[4] 

where pis the viscosity of the fluid, (dV/dt)ceU is the volumetric flow rate across the 

cell, ~Wee// lice// is the pressure gradient across the length Ice// of the cell, and A cell is the 

cross-sectional area. Many attempts have been made to calculate k from primary 

parameters such as the diameters, lengths and positions of the pores and throats. Other 

workers have described equations based on characteristic parameters such as porosity, the 

total externally-accessible surface area per unit volume of the solid, the characteristic 

throat diameter de (often loosely referred to as the characteristic pore diameter), the 

tortuosity, t, and the formation factor F (Matthews, G. P. et al., 1993). The most successful 

to date has been that ofThompson, Katz and Raschke (Thompson, A. H. et al., 1987): 

k=-1_d.z 
226 F 

[5] 

The equation predicts permeabilities correct to a factor of 7, for a range of sandstone 

and limestone samples covering several orders of magnitude of experimental permeability. 

An incompressible fluid flowing through a tube takes up a parabolic velocity profile, 

with maximum flow rate down the centre of the tube. If the flow at the walls is assumed to 

be zero, integration over the velocity profile yields the Poiseuille equation: 

[6] 

(dV/df)tube is the volume flow rate, rtube the radius of the tube and f>Ptube lltube is the pressure 

gradient along the tube. Poiseuillian flow has been shown to occur for oil displacement in 

capillaries down to 4-Jlm in diameter (Templeton, C., 1954). 

If Poiseuillian flow is assumed to occur across the whole cell in the -z direction, i.e. 

from the top to the bottom face of the unit cell. Then 
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Q is an averaging operator over the whole unit cell operating on the fourth power of 

the individual radii rtube;z of all tubes lying parallel to the z axis. It is calculated by means of 

the 'Dinic' network analysis algorithm (Ahuja, R. K. et al., 1997). Q is defined such that 

Equation 4 is satisfied, and generates a term which is related to the effective Poiseuillian 

capacity of the cell for flow in the -z direction. Since at this stage of the calculation, all the 

tube lengths lhobe;z are identical and ltube;z = Ice/If p, where Pis the number of tubes in the z 

direction in the unit cell (in this case 10), we can include these lengths in the averaging 

function, so that 

( ) i 4) dV __ .!!.._ r hlbe.J:• Of' 

dl ce/1;-z Bp pio.be;z cell 

_ 1r ~ro.b6;r
4

) oP -- -- -
8" I . p r- tube .z cell 

[8] 

By considering tubes in the ± x and ± y directions as well, and comparing with the 

Darcy equation, Equation 1, it follows that 

k - 1r ~r,""
4

) f..u - -- --
sp 1,""" A .. 11 cell 

[9] 

Once this equation is corrected for the square cross-section of the pore a liquid 

permeability may be calculated (Schlicting, H., 1979). 

2.8 Conclusions 

A network model capable of predicting certain experimental properties of porous 

media has been described. Through experimental observation and model development this 

study aimed to enhance understanding of porous materials by improvement of the network 

model and by its appropriate application to situations which might benefit from this. 
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3 Transport Apparatus: Construction and Testing 

3.1 Introduction 

The chief objectives of the work described in this chapter were the design and 

construction of laboratory apparatus for the study of flow and transport behaviour. 

Unconsolidated sand samples were chosen for this, for reasons discussed in the next 

chapter. In particular, the apparatus was required to allow the investigation of lateral 

variations in these processes. Consequently the provision of highly spatially uniform water 

and solute application was essential, as was the ability to identify spatial variations in 

sample outflow. With this in mind, the three essential areas of concern regarding the design 

of the apparatus were determined to be; porous material containment; sample collection; 

uniform water/solute application. 

3.1.1 Porous Sample Containment 

Sample containment was fairly simple, due to the choice of unconsolidated sand as 

the sample material. The use of sand allowed samples to be introduced directly into the 

sample container in the laboratory. Samples were prepared in a cuboid, open-ended 

Perspex container. Perspex was chosen for cost and ease of machining, and also the fact 

that degradation due to long term exposure to water was relatively limited. Further details 

are given in Section 3.2. 

3.1.2 Effluent Sampling 

Many other workers have described apparatus for the laboratory study of transport 

through porous materials. Buchter et al. (1995) stood a soil monolith upon 19 porous 

ceramic plates to examine heterogeneous flow and solute transport. Other workers have 

used a metal grid with an array of funnels machined into it (Bowman, B. T. et al., 1994; 

Phillips, R. E. et al., 1995), plastic or metal grids more like open trays (Dexter, A. R., 

1995; Andreini, M. S. and Steenhuis, T. S., 1990) and plastic sheets with triangular cross­

section corrugations cut into them (Porter, K. E. et al., 1968; Porter, K. E., 1989) to 

retrieve spatial information from sample outflows. 
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This study employed a grid Iysimeter similar to that described by Phillips et al. 

( 1995) and Bowman et al. (1994), which allowed the study of spatial variations in outputs. 

This was designed to minimise impedance to drainage from the flat undersides of 

consolidated samples by presenting as close to zero flat surface as possible. As 

unconsolidated sand was chosen the samples were actually continued into the funnels, and 

this problem was avoided entirely. Apart from these considerations the grid Iysimeter 

(described in Section 3.3) was chosen for its level of sophistication in allowing the study of 

the spatial variability of flow and transport behaviour. 

3.1.3 Water and Solute Application 

Water application in laboratory transport experiments is generally carried out using a 

rainfall simulator, the term being used to describe a range of equipment used for the 

delivery of water and tracer solutions. The most commonly used are of two types, those 

based on spray nozzles and those based on a grid of needles or needle-like drippers. Other 

systems, such as grids of capillary tubes (Dexter, A. R., 1995) and even a single catheter 

traversing the entire sample surface via a motorised assembly (Andreini, M. S. and 

Steenhuis, T. S., 1990) have also been used. 

In laboratory experiments the needle-type apparatus tends to be the more commonly 

used. This is partly due to that fact nozzles tend to produce a non-uniform distribution of 

rainfall intensities (Chow, Yen Te and Harbaugh, T. E., 1965), producing a greater 

intensity of'rain' directly under the nozzle that decreases with horizontal distance from the 

nozzle. Grids of needles are favoured for their uniformity of application (Romkens, M. J. 

M. et al., 1975; Bowman, B. T. et al., 1994; Phillips, R. E. et al., 1995; Hignett, C. T. et al., 

1995). During this work a grid of dripping hypodermic needles was selected as the most 

likely to fulfil the requirement for uniform water and solute application. Although the 

eventual design was similar to others in the literature it featured a novel mechanism for 

homogenising spatial application, details of which are given in Section 3.4. 
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3.2 Sample Containment 

The apparatus was constructed within a square cross-section, tubular steel frame 

approximately 2. 7m high (Figure 3.1 ). The sample was contained 1.24 m above the floor in 

an open-ended cuboid Perspex case of approximately half metre side (cross-sectional area 

506 x 506 mm2
) which was mounted on the grid lysimeter (Section 3.3). The container was 

constructed from four individual sheets joined at the corners by square brackets bolted 

through the plastic. The bolts used had screw heads on the inside of the container and these 

were finished below the surface of the plastic then sealed with silicone sealant. The edges 

of the plastic sides were also sealed at the corners with silicone sealant. During 

experimentation it was necessary to completely saturate samples, and thus the sample 

container had to be completely watertight. To this end it was sealed to the grid lysimeter 

using high bulk modulus silicon sealant. 
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Figure 3.1 Schematic of experimental flow/transport apparatus. 
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A grid lysimeter was constructed for the study of spatial variations in flow and 

transport similar to the designs of Phillips et al. (1995) and Bowman et al. (1994). The 

lysimeter was constructed of an anodised aluminium plate with a ten by ten array of square 

funnels of side 38 mm machined into it (Figure 3.2). Around this array larger, sloping edge 
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channels of width 63 mm were also machined to allow collection of edge flow from the 

container walls. It was also important to prevent any resistance to flow into the sampling 

array, or sample saturation discontinuities at the sampling horizon (Phillips, R. E. et al., 

1995; Bowman, B. T. et al., 1994). In the present study, the sand sample was continued 

into the sample collection funnels, thus minimising such effects. 

Figure 3.2 The grid lysimeter. 

Stainless steel tubes cemented to the outlets from the square lysimeter funnels 

conducted flow to specially constructed removable racks of sample tubes for sample 

collection. The stainless steel tubes had small quantities of glass wool inserted prior to the 

commencement of each experiment to filter out large particulate material. This required 

great care. It was necessary to use just enough glass wool to prevent the sample from 

escaping, while allowing water to drain freely. To achieve this each funnel was tested in 

turn before sand samples were introduced. 

3.4 Rainfall Simulator 

The basic design consisted of a cuboid reservoir constructed from PVC with 

dimensions 451 x 451 x 114 mm (Figure 3.3). The reservoir featured a variable height 

overflow that allowed the head of water in the reservoir to be controlled. The design used 

here was an 'open' system, in that by the head of water over the needles controlled rainfall 

intensity. Other similar systems are 'closed' and regulation of the water supply is used to 

control intensity (Chow, Ven Te and Harbaugh, T. E., 1965; Romkens, M. J. M. et al. , 
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1975). The overflow took the form of a rigid plastic tube inserted vertically through the 

floor of the reservoir, sealed with a rubber grommet and attached at its bottom end to a 

hose re-circulating water to a supply reservoir. Water ('Milli-RO' ) was supplied from this 

tank via a peristaltic pump (HR Flow Inducer, Watson Marlow Ltd., U.K.) and silicon 

tube fed through the top of the reservoir, terminating below the level of water in the 

reservoir. This was done to minimise splashing in the reservoir and therefore limit the 

formation of air bubbles that tended to block the needles. 
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Figure 3.3 Plan view of the rainfaJI simulator. 
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Protruding from the underside of the reservoir was an array of syringe needles cemented 

in place with high bulk-modulus silicon sealant. After some initial tests the size of the 

needle array was increased in comparison to that ofBowman et aJ. (1994). Array size was 

enlarged from to a twelve by twelve array (excepting two diagonally opposite needles that 

could not be included due to the overflow outlet and a screw). Although the original 

configuration matched that of the funnels in the grid lysimeter it somewhat neglected the 

areas over the side channels of the lysimeter. This may have led to dryer regions at the 

sample edges that would have influenced the saturation of the sample over the sampling 

region. Although the enhancements made here improved the uniformity of water 
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application (Section 3.5.2) ideally the array of syringe needles in the rainfall simulator 

would cover an area larger than the surface are of the entire sample. However, this would 

require extra facilities for the collection and containment of the excess water which were 

unavailable during the work described here. 

A simple mechanism was also developed for providing a degree of x-y translation to 

the rainfall simulator as it applied water or solute. This took the form of an electric motor 

that turned a vertical brass rod, upon which a cam was mounted. The cam turned within a 

PVC ring attached to an edge of the rainfall reservoir, which was supported on bearings 

running on horizontal metal plates (detail, Figure 3.3). 

Testing this arrangement revealed the degree of movement of the reservoir to be 

greater on the side of the motor/cam. To rectify this a second brass rod was placed, running 

freely, in a bearing on the opposite side, synchronised to the first. Initially these were 

joined by means of a rubber belt drive, similar to a car's fan belt, although ultimately this 

was replaced with a more robust chain drive. 

At the suggestion of Alex Vickers (Silsoe College, Cranfield Institute of Technology, 

Bedfordshire, U.K.) a stainless steel mesh (circular holes, 2 mm diameter) was interposed 

between the underside of the rainfall simulator and the sample surface to further 

homogenise application. 

3.5 Rainfall Simulator Trials 

3.5.1 Testing Application Rates 
Various combinations of needle gauge and head height were tested (Table 3.1). 

Unless stated otherwise, all tests were carried out with a head height in the rainfall 

simulator reservoir of approximately 34 mm. Originally 25G needles, internal diameter 

(I.D.) 0.241 mm, were installed, but were impossible to maintain flow through. Although 

similar numbers of needles appear blocked from one hour to the next, this does not indicate 
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that the same needles were remaining blocked. After each count of blocked needles, water 

was pumped through any that had stopped flowing until they started to drip again. 

Although filtered water was used throughout the tests and experimental period, it was 

thought that perhaps atmospheric particulate material was entering the system and causing 

the apparent needle clogging. To guard against this an inline filter unit (Part Number 1119, 

Gelman Sciences Inc., U.S.A.) fitted with 30-J..Lm filter paper (Grade 113, Whatman 

International Ltd., U.K.) was installed after the pump. However, this had no effect on 

needle blocking. Instead the problem may have arisen from capillary forces due to 

narrowness ofthe internal diameter, perhaps coupled with the presence of tiny air bubbles. 

The continuous dripping of most needles suggested that slight inconsistencies in the 

manufacturing process may have affected reliability. 

21G (0.49Smm I.D., not shown in Table 3.1) were found to drip too quickly, 

equivalent to more than 20mm rainfall hou(1
. Finally 23G (0.318mm I.D.) needles were 

installed. These delivered an acceptable rate of application of around 1659.7 ml hou(1 

(6.48 mm houf1
), with all needles flowing continuously. 

Throughout the testing process it was often necessary to remove individual needles 

that consistently became blocked and replace them. Thus in Table 3.1 there are two 

columns for 23 gauge needles, the second representing the initial set after replacement of 

those that continually failed to flow. This implied inconsistencies in manufacture. 
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Needle Gauge 25G 23G 23G 
Head Height, mm 76 34 34 

Time, min. Needles Blocked 
60 17 3 0 
120 16 4 0 
180 14 5 0 
240 17 3 0 
300 17 3 0 
360 11 0 0 
420 1 0 
480 1 0 

Table 3.1 Testing needles for tbe rainfall simulator. 

This problem of maintaining flow was not anticipated from the literature review. 

Many authors refer to similar droplet-forming systems of water and solution delivery 

(Bowman, B. T. et al. , 1994; Chow, Yen Te and Harbaugh, T. E., 1965; Andreini, M. S. 

and Steenhuis, T. S., 1990; Romkens, M. J. M. et al., 1975). Some suggest the use of 

needle gauges a small as 0.203mm I.D. (Bowman, B. T. et al., 1994), yet none refer to the 

problems described above. Often needles with much greater bore are used than tried here. 

However, this in turn gives rise to the problem of exceptionally high rates of application/ 

'rainfall'. 

3.5.2 Testing Uniformity of Application 

It was essential that spatial heterogeneities were not introduced via water/solute 

application. Throughout the development of the rainfall simulator, homogeneity of 

application was studied by running the rainfall simulator directly over the grid lysimeter 

and monitoring the volumes of water delivered to the funnels. Experiments were normally 

carried out over the course of 7-8 hours, taking volume measurements hourly. Table 3.2 

and Figure 3.4 give details of the various simulator configurations and their results. 

Simulator Conditions Applied Rainfall, ml minute-1 

Needle x-y Standard 
Arra translation Mesh M in Max Mean Deviation 
10 X 10 • • 0.163 0.340 0.280 11 .97 
10 X 10 Single cam • 0.013 0.450 0.206 47.38 
10 X 10 Single cam ./ 0.044 0.239 0.141 21.76 
10 X 10 Double cam ./ 0.080 0.229 0.173 20.34 
12 X 12 Double cam ./ 0.148 0.287 0.230 8.80 

Table 3.2 Testing the rainfall simulator. 
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Figure 3.4 Surface plots of output rates under various rainfall simulator conditions, these being a) x-y 
movement alone, b) movement plus the stainless steel mesh, c) x-y movement, enhanced with tbe 
addition of tbe belt drive, plus the mesh and d) enhanced movement, the mesh and increased needle 
grid size. 

It can be seen that some improvements were achieved adding the stainless steel mesh 

and the belt/chain drive. By far the most substantial improvements to uniformity were 

brought about by the extension of the needle array beyond the spacing of the grid 

lysimeter. Comparing relative standard deviations and coefficients of variation 

(Christiansen, J. E., 1942) to literature figures (Table 3.3) it can be seen that the apparatus 

developed here compared extremely favourably with those of other workers. Many studies 

fail to address the issue of spatial uniformity of rainfall application altogether. Those 

shown in Table 3.3 that do all employ considerably more complex designs than the 

apparatus described here, typically using two, or even three, electric motors and systems of 

gears, worm drives and so on. The design described here not only achieved acceptable 

levels of application uniformity, but did so with comparatively cheap and simple apparatus. 
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Homogeneity of Water Application 
Workers RSD,% Uniformity Coefficient,% 

This study 8.8 93.04 
Bowman et al. (1994) n/a >98.001 

Dexter(1995) «<19.0 n/a 
Phillips et al. (1995) 11.6--22.4 n/a 

Rornkens et al. (1975) 8.52 n/a 
Andreini & Steenhuis (1990) n/a 94.083 

Table 3.3 Homogeneity of application of various rainfall simulators. 

The syringe themselves were also tested (Table 3.2). It can be seen that the various 

mechanisms employed here diminished the inherent variability in the syringe needles. 

3.6 Measurement of Water Content 

The sample container also provided access for measurement of volumetric water 

content of the samples. Water content was measured by time domain reflectometry (Topp, 

G. C. et al., 1980), a widely used method for field and laboratory estimation of water 

content. TDR is extremely flexible, and it has been demonstrated that calibrating the 

technique to individual samples yields little improvement in accuracy (Topp, G. C. et al., 

1980). However, other authors have demonstrated some dependence on bulk density and 

temperature (Ledieu, J. et al., 1986). Good agreement between this method and more 

traditional gravimetric methods has been shown (Topp, G. C. and Davis, J. L., 1985). 

The method involves measuring the Jag between an incident and reflected high 

frequency electromagnetic pulse sent down parallel metal rods inserted in the water­

containing medium. This is then used to calculate the dielectric constant of the material 

between the rods. Having obtained the dielectric constant, K, the water content of the 

material, (), is then given by the equation (Topp, G. C. et al., 1980), 

() = -0.0530 + 0.0292K- 0.00055K 2 + 0.0000043K3 [1] 

Pairs of TDR probes, in the form of 3-mm diameter stainless steel welding rods 

(Rightons, Plymouth, Devon, U.K.) spaced 20-mm apart and connected to a Tektronix 

1502C cable tester, were inserted through holes drilled in the sample container at various 

depths throughout samples. At each depth two pairs of probes of two different lengths were 

1 No details given except that this figure is for rainfall rates in the approximate range 5-25 mm hour·1
• 

2 Average of five figures carried out at five different rainfall rates. 
3 Average of four figures each of which is an average of the 'before' and 'after' values for an experiment. 
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inserted, one pair of length 1 00-mm the other of 450-mm. TDR allows calculation of the 

average water content along the length of probes. For this reason two different lengths of 

probe were included so that water content could be monitored across the width of the 

sample and across the region closest to the edge of the container. This was to ensure that 

measurements across the sampling region were not greatly influenced by water contents 

near the walls. This was subsequently found not to be the case, although there did tend to 

be greater variability measured by the shorter probes, reflecting the greater averaging 

effect of the longer probes. 

3. 7 Sampling 

An automated sampling system was devised for collecting effluent samples during 

the bulk solute transport experiments described in the next chapter. A square tray was 

constructed, dimensions 432 x 432 x 41-mm, that was suspended at a steep incline 

underneath the array of funnels. One corner of the tray fed a plastic funnel, which in turn 

was connected to a short length of PVC tubing. The tubing was connected at its other end 

to a three-way electronic timer valve, one output of which went to a waste container the 

other output feeding to an automatic fraction collector (2112 Redirac Fraction Collector, 

LKB). For most of the time the valve directed the output from the samples to the waste 

container. However once every 15 minutes the valve switched flow to the automated 

sample collector for a 15 second period, allowing a small sample to be taken. 

It was found when designing the system described above performed best when 

relatively large bore tubing was used. Initially the system was tested with comparatively 

narrow (3-mm I.D.) tubing. However, this tended to cause entrapment of small effluent 

volumes in the tubing between the valve and the fraction collector, causing cross­

contamination between samples. It was found that by using larger (6-mm I.D.) tubing the 

flow of effluent from the funnel was small enough that it trickled down the walls of the 

tube, rather than completely filling it. Consequently, even after the valve switched the flow 

back to the waste container the last drops of sample continued to drain freely. 
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3.8 Discussion 

This chapter has described the construction of apparatus for studying various flow 

and transport behaviour of porous samples, particularly lateral variations in such 

behaviour. Although the apparatus was designed with the intention of studying 

unconsolidated: sand samples, it is suitable for the study of flow through any porous 

material that can be supported by the grid lysimeter; such as soil blocks. The equipment 

designed here matches the specifications of the majority of the most sophisticated designs 

described in the relevant literature, 

The equipment was thoroughly tested to ensure that the apparatus itself did not 

contribute to horizontal heterogeneities in flow and transport processes. In particular the 

rainfall simulator was designed to provide a constant rate, uniformly applied to samples 

over extended periods of study. The grid Iysimeter was.also designed to allow the study of 

lateral variations in flow and transport. llhis was made possible by the presence of the edge 

region around the volume above the I 0 x 10 funnel array, which was intended to minimise 

the influence of edge effects and to maintain rectilinear flow above the sampling grid. 
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4 Transport Experimental 

4.1 Introduction 

The experiments and analyses described in this chapter were carried out as a means 

of investigating the 'base line' variability of the flow and transport characteristics of 

homogeneous samples, and to provide data for the modelling in the next chapter. 

To characterise the approach, it is necessary tightly to define the definition of 

homogeneous and homogeneity when applied to porous samples. In this context, a 

homogeneous sample is defined as one in which there are nothing more than small random 

differences in any pore stmcture related property when integrated over scales of the order 

of 1-mm to 1-m. Pore structure related properties include the mode of distribution of grains 

of various sizes, the packing angles and geometric arrangement of these grains, and the 

porosity of the void space between them. Size distribution, packing angles and geometric 

arrangement variations are sufficiently subtle that the perturbations caused by many 

methods - such as resin intrusion - would invalidate the measurement. In practice, 

therefore, the protocol with homogeneous samples is to prepare them by careful packing 

initially, and verify the homogeneity in terms of lack of variation of visually observable 

structure throughout the sample chamber. The random porosity variation across the sample 

can be inferred from separate porosimetry measurements. In all subsequent discussions, 

'homogeneous' will be defined in the way just described. 

As discussed in Chapter I, much work has been conducted examining flow and 

transport through saturated and unsaturated porous materials. Several authors have shown 

that preferential flow, the bypassing of significant volumes of porous media by the flowing 

fluid, may develop by a variety of mechanisms (Beven, K and Germann, P, 1982; Buchter, 

B. et al., 1995; Dekker, L. W. and Ritsema, C. J., 1994; Kung, K.-J. S., 1990b). Despite 

observations of unaccountable preferential flow (Ghodrati, M. and Jury, W. A., 1990), the 

suggestion that preferential flow may develop randomly (Porter, K. E., 1968) or that the 

extent of preferential flow in homogeneous samples will increase with depth (Dexter, A. 

R., 1995}, by and large these mechanisms are all assumed to arise as a result of structural 
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variations in the porous matrix. Consequently, the frrst hypothesis under consideration is 

that flow through homogeneous and structure-less samples, as prepared here, is 

homogeneous, and any variations in flow are statistically random. 

To study homogeneity of flow it is necessary to establish whether or not flow 

patterns arise as a result of sample structure, either inherent or introduced in the 

preparation process. Hence, in addition to monitoring the distribution of flow over each 

sample tested during the conservative tracer transport work, a further study, to investigate 

the influence of wetting and packing, was carried out. One sample was tested in detail to 

ascertain whether the flow distributions observed in the prepared samples were statistically 

random, or structured. 

In addition to the chief hypothesis described above, other studies of the flow 

distributions through homogeneous samples were carried out. The first of these secondary 

hypotheses was that the distribution of flow fluxes and velocities through homogeneous 

samples would be made more or less random by changes in sample thickness. Secondly, 

work was conducted to test the hypothesis that the distribution of flow was dependent on 

sample grain size or permeability. Finally, samples were constructed to examine whether 

or not the development of flow distributions was affected by the layering of samples of 

different grain sizes/permeabilities. 

Although transport of solute tracers applied uniformly to a sample surface has been 

studied extensively, little work has concentrated on the movement of a solute applied to a 

discrete region. The simplest such scenario would be the movement of a conservative 

solute tracer applied at a point on the surface of a homogeneous porous material. Such 

transport may be of interest for a variety of reasons. For example, in pollution incidents 

involving soluble pollutants, potential transport in the horizontal plane may be of equal 

concern to vertical movement. 'Chemirrigation' is the application of agrochemicals via 

irrigation systems (Keng, J. C. W. et al., 1998). Irrigation emitters are employed in the 

application of fertilisers and pesticides, and each one may be considered a point source. In 

such a case the likely fate of applied chemicals needs to be known to achieve the most 
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efficient placement and spacing emitters, with regards the optimal delivery of chemicals 

and minimal risk of contamination to ground waters. Only a small number of experimental 

studies of such scenarios have been made (Khan, A. A. et al., 1996; Clothier, B. E. and 

Sauer, T. J., 1988; Ellsworth, T. R. and Jury, W. A., 1991) and even less theoretical study. 

Indeed, Ward et al. (1995) comment that this is largely due to the lack of experimental 

data. Hence, the second main hypothesis under investigation in the chapter is that a 

conservative solute applied at a point on the surface of a homogeneous sample will move 

symmetrically, about the point of application, through a homogeneous sample. 

In addition to the areas of study central to the work in this chapter further 

measurements were taken to provide input data for the subsequent modelling (Chapter 6). 

Temporally detailed breakthrough curves were collected for the simpler transport scenario 

of a uniformly applied conservative solute tracer. This data was required for later model 

calibration and testing, and for establishing the general transport properties of the samples. 

A summary of the aims and methods contained in this chapter is given in Table 4.1. 
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Mode of Study 
Samples 

Redhill 30, 120-
mmDepth 

Redhill 30, 
Redhill 65 and 
Stratified 
Samples, All 
Depths 

Area of Study 
Homogeneous and Random Symmetrical Solute Transport 

Flow Distribution Distribution 
Qualitative Quantitative Qualitative Quantitative 

Contour Plots 
(Section 4.3.2.1) 

Contour Plots 
(Section 4.3.2.1) 

Number of 
Funnels 

Conducting No 
Flow/Majority of 

Flow (Section 
4.3.2.2) 

x_2-test of 
Distribution of 
Flow Velocities 
(Section 4.3.2.3) 

Mann-Whitney 
TestofFlow 

Velocities 
(Section 4.3.2.4) 

Pearson Product 
Moment 

Correlation 
Coefficient 

(Section 4.3.2.5) 

Variograms 
(Section 4.3.2.6) 

Number of 
Funnels 

Conducting No 
Flow/Majority of 

Flow (Section 
4.3 .2.2) 

x.2-test of 
Distribution of 
Flow Velocities 
(Section 4.3.2.3) 

Visual Inspection 
of Breakthrough 
Curves (Section 

4.3.4.1) 

Pearson Product 
Moment 

Correlation 
Coefficient 

(Section 4.3.4.2) 

Table 4.1 Summary of aims and methods for Chapter 4. 

4.2 Methods 

4.2.1 Samples and Preparation 

Unconsolidated sand was chosen as the sample material with the intention of striking 

a balance between the disordered, highly heterogeneous nature of a more ' natural ' medium 
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such as soil and the extremely artificial homogeneity of a material such as manufactured 

glass beads. Even in a material such as the glass beads used in Chapter 8, where the size of 

the solid phase is almost completely uniform, heterogeneities can easily be introduced to 

the void phase by the packing process. 

Two sands were used throughout this investigation, coarse grained Redhill 30 and 

finer Redhill 65 (Hepworth Minerals and Chemicals, Sandbach, Cheshire, U.K.), both 

singly and layered (two layers of equal depth, Redhill 65 on top). A summary of their 

properties is given below in Table 4.2 and further sample details are given in Appendix A. 

Permeabilities were measured by constant head permeametry, and porosities were obtained 

by mercury porosimetry. Permeabilities and porosities for the single sands are averages of 

10 measurements. 

Sand 
Redhill30 
Redhill65 
Stratified 

Porosity,% 
40.68 
44.46 

Table 4.2 Summary of sand porosity and permeability. 

Permeability, Darcies 
8.45 
2.84 
2.20 

From Table 4.2 it can be seen that the effect of combining two sands of different 

permeabilities was to create a composite material with significantly lower permeability 

than either of its constituents. Although this effect could not be investigated in detail, it 

was presumed that this occurred due to increased efficiency in the packing of the two grain 

size distributions at the interface, creating a much less permeable region. 

In initial tests it was observed that if the sand was simply poured into the sample 

container heterogeneities, visible as stripes in the sample, could be created. Consequently 

great care was taken in loading the sample into the container. The sand was taken from 

bags in a way that avoided sorting effects incurred during travel, loaded into the container 

via a spinner wheel, and finally agitated again to repack. This minimised any sorting. 

The application of simulated rainfall to a completely dry sample resulted in the bulk 

of the material remaining dry, due to the hydrophobicity of the sand. To avoid this samples 
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were pre-saturated from the bottom up. The grid lysimeter funnels were stopped with 

silicone bungs bar one, which was connected to a peristaltic pump. Water was then 

pumped extremely slowly into the sample until ponding was seen at the surface. This 

typically took at least 30 hours. Time domain reflectometry (TDR) readings were taken 

and compared with measured porosities as a check on the level of saturation achieved. 

Towards the end of the saturation the rainfall simulator was started, initially with a 

tray between it and the sample to prevent water being applied to the sample. The simulator 

was then run for several hours to establish that it was functioning correctly. Following this 

the tray was removed, allowing water to fall briefly on the ponded sample surface. Next 

the bungs were removed from the grid lysimeter allowing the sample to drain freely. For 

ease of removal they were strung together on lengths of thread allowing them to be 

removed more or less simultaneously. 

Once the sample had been saturated and drained water content and rate of drainage 

were monitored regularly. Experiments lasted in excess of two weeks, and care was taken 

throughout to ensure that conditions remained stable. Experiments were abandoned if the 

system became less stable, for example if several needles in the rainfall simulator become 

irretrievably blocked. Ideally climatic conditions would also have been under the control of 

the operator, but unfortunately in this study that degree of sophistication was not possible. 

4.2.2 Flow Distribution 

The spatial distribution of flow fluxes was monitored, via the outputs of the grid 

lysimeter, in all of the samples tested. Ideally, both the fluxes and velocities of the flow 

emerging from the sample would be measured. However, this would require separation of 

the individual flow paths, and hence a collection grid with a resolution of similar size to 

the particles grains, say at intervals of 500-IJ.m. In practice, the use of a larger scale 

collector array causes an integration of the fluxes and velocities, typically at intervals of a 

few centimetres or more, and only an integrated flux is measurable. Fluxes at length scales 

up to an order of magnitude smaller than the grid can be inferred by careful interpolation of 

the fluxes from the grid. With a sample containing grains of median size 500-IJ.m, and a 
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collection grid of say 5-cm or 50000-llm, interpolation will give resolution around one 

order of magnitude larger than ideally required, which is sufficiently precise to provide a 

very useful level of information. In this work Darcy velocity was employed as the measure 

of flow through the funnels, and is given by (Kirkham, D. and Powers, W. L., 1995), 

Vd=QIA [1] 

where Q is the volumetric flow rate and A the sample cross-sectional area. For the 

modelling of solute transport in the next chapter Darcy velocity was converted to pore 

water velocity by dividing by the average water content of the samples. 

For the study of flow velocities a 120-mm deep sample of Redhill 30 sand was 

loaded and saturated as described previously. The subsequent investigation took place over 

three phases, each interspersed by a week of drying. In phases 1 and 2, the sample was 

pre-saturated as described previously, and then the flow through the 100 funnels was 

measured approximately hourly for around 8 hours a day for a week. The third phase was 

carried out similarly, but without pre-saturation. 

The possibility of further investigating the void structure of a sample via some form 

of visual inspection, either through resin impregnation and image analysis or by staining, 

excavation and image analysis, was also considered. It was initially thought that it might be 

possible to see whether any variations in flow that might be observed had arisen as a result 

of structural differences in the packing. Unfortunately this could not be carried out for 

practical reasons. Any variation in the flow properties of the sand would be likely to have 

arisen from subtle changes in the packing. For such an unconsolidated sample it would be 

impossible to ensure that either impregnation or excavation did not alter the structure. 

4.2.3 Bulk Solute Transport 

Using the automated sampling system described in the prev1ous chapter it was 

possible to obtain temporally detailed information about transport of uniformly applied 

conservative solute tracers. This information, as well as providing supplemental 

information about the transport properties of the materials being investigated, was 

necessary for the modelling carried out in Chapter 5. 
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A bromide solute tracer was chosen for its conservative nature. Preliminary work 

showed that a potassium bromide solution made up to a concentration of 1 g r1 bromide 

produced exit concentrations suited to the range of the detection method (Section 4.2.5). 

The tracer was applied to the sample using the rainfall simulator to ensure uniformity of 

application. The rainfall was briefly stopped by placing a large tray on top of the sample 

container over the sample. Then the rainfall simulator was rapidly drained and refilled with 

the potassium bromide solution. Having restarted the rainfall simulator the tracer solution 

was then applied for a period of one minute, then replaced once more with pure water. 

During bromide application it was important that any disturbance to the flow regime 

was kept to a minimum. This was complicated by the requirement that the individual 

needles needed to be 'primed', pumping water through to remove trapped air, before re­

starting the rainfall simulator. The period during which water/solution application ceased 

was further extended due to efforts to limit cross-contamination. It was necessary, once the 

rainfall simulator had drained, to thoroughly rinse it before reintroducing solute/water. 

Nonetheless it was possible to keep this 'dead' period to within I 0-1 5 minutes. 

After bromide application sampling of the output was initiated, using the automated 

collection system. Samples were analysed by flow injection analysis (Section 4.2.5). 

Outflow was sampled every I 5 minutes, producing detailed breakthrough curves (BTC's). 

4.2.4 Solute Transport Distribution 

An experiment to observe lateral transport was also developed, with modifications to 

the solution application and sampling procedures. A procedure was designed for applying 

the solution to a small area in the centre of the sample surface then monitoring the lateral 

transport of bromide via the grid lysimeter. 

Solute application was localised by means of a specially constructed plastic 'mask', 

placed between sample and rainfall simulator. This prevented application to all but a 

square area of the sample surface corresponding to the area of the four central funnels of 

the grid lysimeter. 
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It would have been desirable to monitor bromide concentrations exiting the sample at 

all 100 lysimeter funnels. Due to the slow speed of bromide determination, approximately 

two minutes per sample, the number of samples that would have been produced (3000-

5000 per experiment) could not have been assayed with the time/resources available. An 

alternative approach was developed to obtain as much information as possible using the 

experimental conditions described. Locations chosen to yield as much information 

regarding the hypothesis stated in Section 4.1 were monitored. An example of a typical 

sampling configuration is shown in Figure 4.1. 

1 lj) 
2 9 

3 8 
4 7 

5 6 

Figure 4.1 Sampling configuration for lateral solute transport experiment 

Due to the requirement to limit the number of samples, sampling was less frequent 

than for the study of bulk transport. It was nonetheless possible to collect enough data to 

produce good breakthrough curves and enable comparison with that resulting from the bulk 

transport experiments. The specific sampling patterns varied from Figure 4.1 for individual 

samples, the choice of funnels sampled from depending on which funnels were flowing. 

4.2.5 Bromide Determination 

Bromide concentrations were determined by flow injection analysis (FIA). Other 

methods were considered, including titration, inductively coupled plasma atomic 

adsorption spectroscopy and electrical conductivity. FIA was chosen for ease and rapidity 

( cf titration) of operation, sensitivity ( cf ICP-AES) and equipment availability. The 

method was based on that of Freeman et al (1993). Bromide concentrations were 
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determined using the colourimetric chloramine-T - phenol red method of Goldman and 

Bytes (1959). Bromide reacts with the reagents to form bromophenol blue, which can be 

measured photometrically at a wavelength of 583-nm. 

4.2.5.1 Reagents 

All reagents were of analytical grade (AnalaR, BDH, U.K.). Deionized, filtered water 

(Milli Q) was used throughout. Chloramine-T was prepared by dissolving 200-mg of 

chloramine-T in 1 litre of water. Phenol red was prepared by dissolving 6. 8-g sodium 

acetate in approximately 500-ml of water, adding 1. 5-rnl concentrated acetic acid, 

dissolving 20-mg phenol red indicator and making up to 1 litre with water. 

4.2.5.2 Manifold 

The manifold used in the determination of bromide is shown in Figure 4.2. PTFE 

tubing (0.75-mrn I.D.) was used throughout and two Ismatec FIXO pumps were employed, 

a reagent pump operating at 20 rpm and a sample injection pump at 60 rpm. Mixing coils 

pre-mixed the reagent streams prior to injection of the sample and subsequently mixed the 

sample with the reagents. Detection was carried out using an LKB spectrophotometer fitted 

with a flow cell. A manually operated Rheodyne Type SO 4-way/sample injection valve 

was used for sample injection. 

ml miJjJ ·r 
Water 

1.1 

Phmol Red 
0.3 

Chloram ine'F 
0.3 

Figure 4.2 Flow injection analysis manifold used for the determination of bromide concentration. 

4.2.5.3 Modifications 

The method ofFreeman et al. (1993) was modified slightly. The original method was 

highly sensitive, with a detection limit of 4 tJ.g r1 and a narrow linear range of around 0-2 

mg r1 bromide. In this study sensitivity was not of paramount importance, however, an 

extended linear range would appreciably speed up the many sample determinations by 
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precluding the need for time consuming dilutions. The flow rate of the carrier stream was 

increased from 0. 75 ml minute-1 to 1.1 ml minute-1 and the lengths of the mixing coils from 

600-mm and 430-mm to 1 000-mm. Following these changes the acetic acid concentration 

was re-optimised to 1.5 ml r 1
• Sample volume was also decreased, in response to over-

sensitivity, using the dead volume of the sample valve, approximately 4 ~1. Although less 

sensitive, the linear range was extended to 0-12 mg r1
. 

4.2.5.4 Sample FIA Calibration 

Details of an example calibration, carried out on the manifold described in this 

section, are given in Table 4.3 and Figure 4.3. 

[Br-), mg r Absorbence Average 
0.00 0.000 0.001 0.001 0.000 0.001 0.001 
2.00 0.062 0.063 0.064 0.062 0.061 0.062 
4.00 0.118 0.118 0.117 0.117 0.117 0.117 
6.00 0.178 0.177 0.174 0.173 0.174 0.175 
8.00 0.234 0.234 0.233 0.233 0.230 0.232 
10.00 0.284 0.281 0.283 0.284 0.280 0.283 
12.00 0.325 0.320 0.322 0.321 0.321 0.322 

Table 4_3 FIA calibration data. 
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Figure 4.3 FIA calibration curve. 

4.2.5.5 Discussion 

Although FIA proved a useful method for tracer determination it did suffer some 

drawbacks from the point of view of this study, chiefly speed of determination 

(approximately two minutes per sample) and lack of automation. Speed was limited by 

reaction kinetics, which prevented further rate-enhancing improvements. 

52 



4.3 Results and Discussion 

4.3.1 Samples and Preparation 

Saturation was carefully monitored with the IDR probes. It can be seen on the left­

hand axis of Figure 4.4 that the saturation values dropped sharply over the first few 

minutes of the experiment, and then stabilised. The probe measuring the average 

saturation of the whole of the sample at the middle depth of 60-mm then remained stable 

within the saturation range 33.14% to 34.23% over all three phases ofthe experiment (0), 

with a mean value of 33 .70%. As might be expected, the surface probes ( X , o ) were 

much more sensitive to drying, and the middle edge probe ( 0 ) somewhat sensitive to 

drying. The mean level of saturation of the bulk of the sample (33 .70%) is 6.6 standard 

deviations below the mean porosity of the sand as measured by mercury porosimetry 

(40.68%). This discrepancy cannot be explained by sorting or packing effects, and must be 

due to unsaturation. The mean relative saturation of the sample, based on the mean values 

of porosity and saturation, was 82.8% throughout all three phases of the experiment. 

0 5 10 15 
Time (days) 

- -<>- ·60-mm Depth, 100-nun Probe 
---&-- 15-mm Depth, I 00-mm Probe 

20 25 

-B--60-mm Depth, 450-mm Probe 
• ::If • 15-mm Depth, 450-mm Probe 

Figure 4.4 Saturation over the three phases of the flow velocity study. 

30 

It was observed that the probes installed at the surfaces of some samples gave much 

lower readings than those installed at greater depths, suggesting regions of decreased 

saturation. Subsequent gravimetric testing, however, revealed the water content to be 

similar to that measured at other depths. During later experiments it was deduced that this 
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effect was due to the TDR probes being located too close to the sample surface. As the 

surface of the samples became progressively more pitted with continuing water application 

the probes were effectively measuring the water content of not just the sand, but also the 

air-filled 'craters' on the surface. Hence, in Figure 4.4 the readings of the upper probes, 15-

mm below the surface, are corrected by 0.3% per day during rainfall to compensate for 

cumulative pitting of the surface. Probe placement was carried out with reference to other 

work which has suggested that probes may be placed as close to the surface as I 0-mm 

(Petersen, L. W. et al., 1995; Baker, J. M. and Lascano, R. J., 1989). 

4.3.2 Flow Distribution 

4.3.2.1 Contmtr Plots 

A convenient method for examining the distribution of flow across samples was 

required. In lysimeter studies of structured soils Quisenberry et al. (1995; 1994) used three-

dimensional histogram-type plots to show spatial variations in flow and ex.it concentrations 

of a uniformly applied tracer. Here two-dimensional surface plots are used to display flux­

derived velocities, measured exiting the bottom of the samples. The 120-mm deep sample 

ofRedhill 30 used to investigate velocity distributions will be considered first. For each of 

the three phases described in Section 4.2.2 the flow through each of the 100 funnels of the 

grid lysimeter was measured regularly. Figure 4.5 shows surface plots of the Darcy 

velocities (mm minute-1
) exiting through each of the funnels over the first day of the first 

phase. 

In plotting the surface plots results from each collection point were interpolated 

using a Simpson quadratic interpolation. For an equally spaced grid, 

v(x;,yi) == C._3 .v(xH,yi_3) + C._1 .v(xH,yi_1) 

+ C.+ •. v(xi+l,yi+l) + Cn+3 .v(xi+3•Yi+3) 
[2] 

where v is the interpolated parameter at position X; .YJ, and readings are taken at positions 

(x;-J,YJ-1). (x;-3 ,y1_3 ) .... on the grid. C. are the Simpson quadratic coefficients, in this case 

0.625 and -0.125 for 11 = ±1 and ±3 respectively. A second order interpolation was also 

carried out, based on observed and interpolated points, giving a final parameter spacing of 
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one quarter of the original observation grid. A surface fitting algorithm, part of the Visual 

Groundwater (Waterloo Hydrologic, Canada) modelling package, was then used further to 

increase the visual resolution, down to about 0.1 of the original observation grid spacing, 

i.e. - 4mm. It will be seen that this is one order of magnitude greater than the median 

sample grain size. 

It can be seen that the flow patterns are almost identical from one measurement to the 

next, apart from a slight increase in the areas conducting minimal flow as the sample drains 

from saturation. This consistency was present throughout each of the three phases of this 

study. Figure 4.6 shows surface plots of the average Darcy velocities for each day of the 

second of the three phases. 

After the first two days the pattern of flow through the sample remained almost 

constant, with only a slight increase in areas of low flow. This consistency was mirrored in 

the first and final phases. 

Figure 4.7 shows the average surface plot of the last four days (ignoring the initial 

period as the sample drained down) of each of the three phases described in Section 4.2.2. 
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1103 minutes 

0.5 ml min-

0.4 ml rnin-

0.3 ml min-

0.2 ml min-

0.1 ml min-

0.0 m1 min-

1425 minutes 1485 minutes 
Figure 4.5 Surface plots of Darcy velocity (mm minute-1) through Redhill30 sand measured at 
approximately hourly intervals over eight hours on the first day of the first phase. 
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Day6 

0.5 m1 min· 

Day7 
Figure 4.6 Average surface plots of Darcy velocity (mm minute-1

) tltrough Redhill 30 sand for each day 
of tbe second phase. 
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0.5 ml min-

0.4 ml min-

0.3 m1 min-

0.2 m1 min-

0.1 ml min-

0.0 ml min-

c) 
Figure 4.7 Surface plots of average Darcy velocity through RedhillJO sand for a) the first phase, b) the 

second phase and c) the third phase. 

There is little visual similarity in patterns of flow between the three phases. The level 

of variation for phases 1 and 2 appear similar, but that of phase 3 is very different. Indeed 

in phase 3 only 18 of the 100 funnels conducted any flow at all over the four day period. 

Figure 4 .8 shows average surface plots for each of the six samples prepared for the solute 

transport experiments described in Sections 4.2.3 and 4.2.4. 
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Figure 4.8 Average surface plots of Darcy velocity (mm minute-1). 

Visual inspection of the single layer samples reveals that the shallow Redhill 65 

sample displayed by far the most extreme differences between fast and slow flowing 

regions. There is no visual evidence of bypass flow in the shallowest stratified sample, 

while the 240-mm sample displays comparatively low flow. These visual judgements are 

tested in the following sections. 
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4.3.2.2 Number of Funnels Conducting No Flow/Majority of Flow 

The cumulative numbers of funnels contributing to the total flow for each of the 

samples are summarised in Figure 4.9. The curves were obtained by ordering the average 

flows through the 100 funnels from largest to smallest. The curves plot the cumulative 

proportion of total flow against the cumulative number of contributing funnels. For the 

sake of clarity the points where the curves contact the line corresponding to 1 000/o 

cumulative flow are indicated with vertical dashed lines. 
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On initial inspection of Figure 4.9 it can be seen that most of the curves are similar. 

The proportion of flow increases gradually with number of funnels, to an asymptotal 

region as it nears 100%. The curves possess plateaus of varying lengths at 1 00% of total 

flow, depending on the number of funnels conducting zero flow. 

The curve of the 120-mm Redhill 65 sample appears to be anomalous, especially 

when its surface plot (Figure 4.8) is also taken into consideration. The curve clearly 

illustrates that a relatively small volume of the sample conducted an unusually high 

(compared with the other samples) proportion of the total flow. Even more extreme is the 

curve corresponding to the final phase (phase 3) of the flow study. Clearly flow through 

both of these samples is preferential compared to the flow through all other samples. 

Considering the Redhill 30 samples, bar the 120-mm transport sample, and the 

stratified samples it can be seen that increasing sample depth had the effect of making the 

initial gradients less steep. That is, increasing depth appeared to bring about a decrease in 

the number of funnels conducting larger volumes of water. Effectively this suggests that 

increasing sample depth caused flow to become more uniformly distributed across the 

fractions of the samples conducting flow. However, the fact that this was not the case for 

the Redhill30 transport sample, and that one of the Redhill 65 samples appears anomalous, 

makes it impossible to be certain that this was a genuine trend. 

The number of funnels conducting zero flow through each sample was highly 

variable, occurring as it did in the asymptotal regions of the curves. No trend was visible in 

the number of funnels conducting no flow, either between samples of the same materials at 

different depths or between same depth samples with different permeabilities and 

porosities. Contrary to the findings of Dexter (1995), increasing sample depth did not 

appear to increase the non-flowing fraction of the samples. Interestingly, although the 120-

mm Redhill 65 sample displayed the greatest degree of bypass flow it had, on average, no 

non-flowing funnels. Although a great majority of the flow was transported through a 

small minority of the available volume, the rest of the sample also conducted flow, albeit 

in much smaller quantities. 
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4.3.2.3 i -tests of Distribution of Flow Velocities 

Using the r! -test average velocity distributions were compared against each other 

(for the three phases of the flow investigation) and against normal distributions with the 

same means and standard deviations. The results of the tests of phases 1 to 3 of the flow 

study are given below. Each distribution of I 00 average velocities was initially divided up 

into 10 equally spaced categories. Categories containing less than 6 velocities were 

combined with adjacent categories. 

x2 Statistic Degrees of Confidence 
Phases Freedom Level,% 

1 versus 2 48.47 5 <0.01 
1 versus 3 103.79 3 <<0.01 
2 versus 3 62.65 2 <<0.01 

Table 4.4 Summary of X2 -test of phases 1-3. 

From Table 4.4 it can be seen that none of velocity distributions from any of the 

phases are at all similar. The comparisons of the experimental velocities with Normal 

distributions are summarised below . 

.. .. - ... - ... - .. .. -- ., -- -

Sand Depth, mm ·c Statistic Degrees of Confidence 
Freedom Level,% 

10.19 6 15.0 

Redhill 30 
120 31.221 6 <0.1 

16.822 6 1 
240 23.53 5 <0.1 
120 248.54 3 « 0.1 
240 19.13 5 0.1-0.5 

Redhill65 
---------------------------------------------------------------------------------------------

120 22.24 6 0.1 
240 16.75 6 1.0 

Stratified 

Table 4.5 Summary of x1-tests of velocity distributions for all transport experiment samples and 1 

pbase 1 and 1 phase 2 of tbe investigation of now patterns. 

From these results it can be seen that none of the measured distributions of Darcy 

velocity were Normally distributed. Figure 4.10 shows the frequency distributions 

compared for the first 120-mm Redhill 30 sample, the distribution most similar to a 

Normal distribution as tested here, prior to combining of categories containing less than 6 

observations. 
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was employed. The Mann-Whitney test involved ranking all of the average velocities from 

two phases. The aim was to see whether results from the two phases occurred more or less 

randomly throughout the ranking, or if results from one phase tended to be bunched at one 

end. As such it tested the null hypothesis that velocity values from one phase came from 

the same population as those from another. The results are summarised below. 

Phases 
1 versus 2 
1 versus 3 
2 versus 3 

P,% 
-30 

-o.02 
<0.02 

Result 
Strongly accept Ho 
Strongly reject Ho 
Strongly reject Ho 

Table 4.6 Summary of Mann-Whitoey test of phases l-3. 

The threshold for acceptance of the null hypothesis is a P value of 5% or more. It 

can be seen that the test gave a clear indication that the velocities of water flowing through 

the funnels of the grid lysimeter in the first two phases came from the same population, but 

that the velocities from any other combination of the three phases did not. 

4.3.2.5 Pearson Product Moment Correlation Coefficient 

Inspection of Figure 4.5 reveals that the grid location of the maximum flow paths 

varied from one saturation phase to the next. This observation can be tested statistically by 

use of the Pearson product moment correlation coefficient. This is equivalent to plotting 

two sets of values against each other on a graph - in this case Darcy velocities measured at 

the same funnel between two phases. Strongly correlated data sets produce a straight line, 

upon which linear regression may be conducted to deduce the relationship between the 

data sets. Pearson coefficients range from -1 (perfectly negatively correlated) through 0 

(uncorrelated) to + 1 (perfectly positively correlated). The coefficients for the three 

combinations of phases are shown in Table 4.7. Thus phase 1 and 2 are weakly correlated, 

whereas no other correlations were discernible. 

Pearson Product Moment Correlation Coefficient 
Phases 1 vs 2 1 vs 3 2 vs 3 

0.480 0.063 0.092 
Table 4.7 Pearson product moment correlation coefficients for phases 1 to 3. 
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there are fewer observations, this conclusion must be made with caution. The over-riding 

conclusion is that there is a gross difference between phase 3 and all the other experiments. 

4. 3.2. 7 Summary of Flow Distribution Results 

Distributions of flow velocities in homogeneous sand samples were found to be non­

repeatable - i.e. regions of high or low flow did not tend to occur repeatedly in the same 

place, confirming the homogeneity of the sample in the terms defined above. The 

exception to this was the shallowest Redhill 65 sample, discussed below. None of the flow 

distributions was Normal. When the saturation protocol for the sample was the same, as in 

phases 1 and 2, the flow distributions were differing members of the same statistical family 

of distributions, as judged by the Mann-Whitney test. These distributions were non­

Normal, with an anomalous high peak at low or zero flow. Re-allocation or removal of this 

peak left a distribution, which remained non-Normal. If preferential flow had occurred, an 

expected distribution might have been a Normal distribution of matric flow with an 

anomalously high fastest-flow peak. Extreme preferential flow may dominate matric flow 

to such an extent that an anomalously high low- or zero-flow peak appears. The observed 

distributions were thus a converse of the non-extreme preferential flow type - i.e. a mid­

range flow distribution coupled with an anomalously high low- or zero-velocity peak. 

The phase I and phase 2 flow distributions are difficult to categorise in terms of the 

flow models discussed in the Introduction. The distributions are non-Normal and therefore 

do not arise simply because of a random distribution of flow paths amongst a random 

arrangement of randomly sized grains. Preferential flow, as defined earlier, does not occur. 

There is also no evidence for any sort of rivulet flow, since this would give an anomalously 

large peak at higher flow rates. An explanation is that there is an array of non-conducting 

pathways that do not attract flow, and give the anomalous low-flow peak. These non­

conducting pathways could arise from dry, hydrophobic regions of the porous matrix, or 

from regions in which the water has become trapped due to capillary or geometric effects. 

If the sample is allowed partially to drain by gravity, and then is once again very slowly re­

saturated to completion, all non-conducting pathways are wetted, as evidenced by the TDR 

probes. When rainfall begins again, a new set of non-conducting pathways appear, but the 

67 



probes. When rainfall begins again a new set of non-conducting pathways appear, but the 

distribution, by Mann-Whitney, remains the same as previously. If the sample is not re­

saturated, as between phase 2 and phase 3, a completely different type of non-conducting 

pathway distribution results. Some non-conducting pathways stay non-conducting (Figure 

4. 7), but others can develop into fast flow channels. 'J:he tendency for areas of the porous 

matrix to act in a hydrophobic manner has not been suppressed by slow total saturation, 

and is evident to such an extent that the flow is preferential compared to all the other flow 

distributions (Figure 4.9). 

As mentioned previously, the results of the shallowest Redhill 65 sample appeared to 

be anomalous, and an outlier when compared with the results of all other samples 

considered. Whether this anomaly was a result of structural heterogeneity within the 

sample could not be investigated due to the sensitivity of these unconsolidated samples to 

perturbation. 

The results of the investigation into flow distribution, as related to Table 4.1, are 

summarised in the following table. 

68 



Homogeneous and Random Flow Distribution 
ModeofStud ualitative Quantitative 

Samples 

Redhill 30, 120-
mmDepth 

Redhill30, 
Redhill 65 and 
Stratified 
Samples, All 
Depths 

Visual inspection revealed no 
preferential flow in samples that 
were saturated prior to studying 
flow. When saturation was not 
carried out preferential flow was 
observed (Section 4.3.2.1). 

Visual inspection did not reveal 
preferential flow in any of the 
samples, bar one that was 
anomalous. Visuallythe 
development of flow did not appear 
to be dependent on sample 
type/depth (Section 4.3.2.1). 

Table 4.8 Summary of now distribution results. 

4.3.3 Bulk Solute Transport 

Inspection of the cumulative 
number of funnels conducting flow 
revealed no correlation between 
runs conducted on the same sample 
(Section 4.3.2.2). 

The ·J! test of average velocity 
distributions did not reveal any of 
them to be similar or to be normally 
distributed (Section 4.3.2.3) 

The velocities through samples 
prepared in the same way were 
drawn from the same distributions. 
If sample preparation changed this 
was not the case (Section 4.3.2.4). 

By the Pearson correlation 
coefficient there was no correlation 
in the spatial distribution of flow 
between runs conducted on the 
same sample (Section 4.3.2.5). 

Variograrns did not indicate that 
there was any correlation in the 
spatial distribution of flow within 
samples (Section 4.3.2.6). 

Inspection of the cumulative 
number of funnels conducting flow 
revealed no correlation between 
flow and sample depth, porosity or 
permeability (Section 4.3.2.2). 

The x2 test of average velocity 
distributions did not reveal any of 
them to be Normally distributed 
(Section 4.3.2.3) 

For each of the sand samples studied bulk solute transport experiments were carried out 

as detailed in Section 4.2.3. Breakthrough curves are shown below (Figure 4.12). 
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Figure 4.12 Breakthrough cunes for a) Redbill 30, b) RedbiJI65 and c) stratified sand samples. 
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As is customary the areas under the breakthrough curves of the 240-mm deep 

samples were normalised to those of the 120-mm samples. This was necessary to 

compensate for solute losses through the edge channels, which were not studied, Table 4.9 

gives details of the times corresponding to approximate areas under breakthrough curves. 

Time Corresponding to 
Area, minutes 

Sand Depth 50% 75'% 

Redhill 30 
120 255 435 
240 457 600 

Redhill65 
120 338 5-lo 
240 585 795 

Stratified 
120 375 577 
240 630 885 

Table 4.9 Times corresponding to 50% and 75% (approximately) ofthe area under breakthrough 
curves for each sample tested. 

It can be seen from Figure 4.12 a) and b) and Table 4.9 that transport of bromide 

through homogeneous sand samples was strongly dependent on sample permeability. The 

breakthrough curves through the finer, less permeable Redhill 65 were slightly retarded 

compared with those of the Redhill 30 samples. The breakthrough curves for the Redhill 

65 were also diminished in terms of maximum peak height compared with those of the 

higher permeability Redhill 30. Barring the time of arrival of the bromide peak through the 

240-mm Redhill 65 sample, transport through the least permeable stratified samples was 

slowest of all. 

Maximum bromide concentrations were greatest for the stratified sand samples, 

indicating that less bromide was lost to the side channels of the grid lysimeter. Given that 

the interface between the two sands might be expected to represent a permeability barrier, 

perhaps encouraging lateral movement, this is somewhat surprising. Evidently in this 

instance it provided no significant impediment to bromide transport. 

The results in this section were obtained primarily to provide data for the modelling 

carried out in Chapter 5. However, the results presented here indicate that the transport 

properties of the prepared samples were correlated with other sample properties, chiefly 

sample depth and permeability. The appearance of the maximum bromide concentration, 
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SO% and 75% of total measured bromide all became more retarded with decreasing sample 

permeability. Bromide breakthrough curves also became more retarded and dispersed as 

sample depth is increased. 

4.3.4 Solute Transport Distribution 

4.3.4./ Experimental Breakthrough Curves 

The breakthrough curves produced during the solute transport experiments described 

in Section 4.2.4 are shown in Figure 4.13. Figure 4.14 shows the times at which the 

maximum concentrations occurred. Figure 4.1 S shows the times corresponding to 

approximately 75% of the areas under the breakthrough curves (due to one funnel ceasing 

to flow midway through the experiment only 9 funnels are shown in the 240-mm sample of 

Redhill 30 sand). 
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Figure 4.13 Lateral transport breakthrough curves for a-b) RedbiliJO, c-d) Redbill 65 and e-f) stratified sand samples, at depths of 120-mm and 240-mm respectively in each 
case. Breakthrough curves are from funnels 1-10 from left to right, and those measured at funnels equidistant from the point of solute application are shown in the same colour. 
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From visual inspection of the breakthrough curves it can be seen that, for the most 

part, there is a correlation between distance from the point of application and breakthrough 

curve. Generally the breakthrough curves from funnels in or near the centres of samples 

have peaks of greater height that occur earlier than those measured in funnels further from 

the point of application. 

Referring to the times of appearance of maximum bromide concentration (Figure 

4.14) it can be seen that, the bromide moved more rapidly through the more permeable 

Redhill 30 than either of the less permeable Redhill 65 or stratified sand samples. Further 

evidence for this is provided by Figure 4.15, the plots of the times corresponding to 

approximately 75% of the areas under the individual BTC's. Again it can be seen that 

increasing sample depth tended to make these inter-sand differences more pronounced. 

As suggested previously, the variability in times of arrival of maximum bromide 

concentration and majority of transported bromide was generally less for the more 

permeable Redhill30 samples than for the Redhill 65 and stratified samples. This confirms 

that the range of travel times from a point source to locations at varying distances from that 

source is strongly influenced by the permeability of the porous media. 

Again the maximum concentrations exiting through the stratified samples were 

generally significantly greater than those exiting the single layers. This suggests that 

bromide losses through the side channels of the lysimeter were less for the stratified 

samples than either of the other two sample types. A possible explanation for this is that 

the presence of the more permeable Redhill 30 underneath the Redhill 65 had the effect of 

accelerating flow across the sample interface, and this actually diminished lateral 

movement. 
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Figure 4.17 Surface plots of Pearson correlation coefficients for all funnels in lateral solute transport 
experiments. 

Visually the surface plots ofPearson coefficients are very similar. The breakthrough 

curves through most of the funnels equidistant from the point of solute application are 

highly correlated. It can also be seen that the BTC's through pairs of funnels at greatly 

different distances from the point of application are not correlated. In between these two 

extremes the surfaces exhibit clear trends from high to low correlation, with only small 

fluctuations and there are no marked differences between sample types or depths. 
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4. 3.4. 3 Summary of Solute Transport Distribution Results 

The apparent similarity between the breakthrough curves measured at different 

funnels equidistant from the point of application showed that the solute plume moved 

through the samples in a manner that was reasonably symmetrical about the point of 

application. The degree of sideways movement of the bromide tracer was significant, even 

within relatively shallow samples. Indeed comparing the depth of the shallowest samples, 

120-mm, with the greatest diagonal distance from point of solute application to sampling 

location, approximately 3 50 mm, the extent of lateral solute movement was observed to be 

almost three times the vertical height of the sample. 

The results of the investigation of the distribution of solute transport paths are 

summarised in the following table. 

Mode of Stud 
Samples 

Redhill30, 
Redhill 65 and 
Stratified 
Samples, All 
Depths 

Symmetrical Solute Transport Distribution 
ualitative uantitative 

Visual inspection revealed that 
bromide transport was dependent 
on sample permeability and 
distance of sampling location from 
the point of solute application. 
Decreases in permeability and 
increases in depth both retarded 
solute transport (Section 4. 3 .4 .I). 

Breakthrough curves measured at 
funnels similar distances from the 
point of solute application were 
more correlated than funnels at 
different distances from the point of 
solute application (Section 4.3.4.2). 

Table 4.10 Summary of solute transport distribution results. 

4.4 Conclusions 

Results have been presented here for the flow of water and the transport of a bromide 

tracer through homogeneous sand samples of known grain size distribution, porosity and 

permeability. The flow distributions have been shown to be almost the converse of what 

might be expected from preferential flow, and have been explained in terms of the 

existence of non-conducting pathways. 

With regard to tracer flow, the flow from a point source displayed a high degree of 

symmetry about the point of application, and lateral flow was high compared to vertical. 
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The findings are .compatible with the homogeneity of the sample, and the lack of 

preferential flow that would cause greater non-symmetry. Both the water flow and tracer 

flow experiments show that these non-conducting pathways are randomly distributed 

within the porous matrix. This work is continued in the next two chapters. 
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5 Analysis of Tracer Migration 

5.1 Introduction 

For the purposes of the study documented here a simple solution of the convection-

dispersion equation was chosen to model the experimental data gathered. Convection-

dispersion equations are well suited to laboratory studies in that these are assumed not to 

suffer from the same degree of variation in hydraulic properties observed in field studies. 

Also, the choice of bromide as the solute tracer makes the work well suited to modelling 

with a simple analytical solution of the convection-dispersion equation (Equation 1, 

Chapter 1). The aim of the current work was to examine the accuracy of convection­

dispersion equation predictions and investigate how such modelling might be improved by 

the application of network modelling. 

The initial and boundary conditions of the experiment determined the choice of 

analytical solution. A general initial condition is, 

c(x,O) = f(x) [1] 

where c(x,O) represents the solute concentration at depth x at time I 0. j{x) can be 

constant with distance, changing exponentially or a steady-state distribution for production 

or decay. At the sample surface, x = 0, there may be a first- or concentration-type 

boundary condition, 

c(O,t) = g(l) [2] 

or a third- or flux-type boundary condition, 

Oc 
- D-+ vc = vg(l) 

Ox 
[3] 

g(l) may also take several forms, for example constant with time, a pulse or 

exponentially changing with time. 

At the lower boundary of the sample the following condition can be applied, 

Oc 
-(oo,t) = 0 
Ox 

[4] 
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This condition assumes the presence of a semi-infinite soil column. An alternative to 

this is to assume zero concentration gradient at the bottom of the column. 

Considering the experiments described in the previous chapter it can be seen that the 

initial condition is constant with depth. that is the sample contains no bromide throughout 

(verified prior to each experimental run). The boundary condition at the sample surface 

was a third-/flux-type, taking the form of a pulse of applied potassium bromide. The 

boundary condition at the bottom of the sample was taken to be semi-infinite; it has been 

noted elsewhere that little evidence exists to support the theory that the zero concentration 

gradient condition is a better description of processes at the lower boundary (van 

Genuchten. M. Th. and Alves, W. J., 1982). With these factors in mind the analytical 

solution of Equation I most appropriate is, 

c(x,t)=C; +(C0 -C;)A(x,t) [5] 

during solute application (0 < t > to), and 

c(x,t) = C; +(C0 -C;)A(x,t)-C0 A(x,t -t0 ) [6] 

for the remainder of the experiment. In Equations 5 and 6 Co and C1 refer to the applied 

and initial concentrations respectively and therefore in this instance the equations simplify 

to, 

c(x,t) = C0 A(x,t) [7] 

and, 

c(x,t) = C0A(x,t)- C0 A(x,t -10 ) [8] 

Finally, in Equations [7-8], 

[9] 
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Model parameters were adjusted to minimise the sum of the squared differences over 

approximately the first 75% of the area under each curve (ignoring some of the tail region). 

To enable comparison this sum was divided by the number of points used in its calculation 

and then the area, or total solute output, corresponding to the fitted region. A curve fitting 

routine was written in Visual Basic for Applications to automate this process. Figure 5.2 

gives experimental and modelled bulk solute transport BTC's for all samples. 
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figure. However, the fit of the model in the peak region was more limited by the range of 

possible curves, given the combinations of model parameters and experimental data. Using a 

simplex method of non-linear optimisation and ignoring all other fit criteria, bar the condition 

that all other points on the curve were at lower concentrations than the peak value, it was still 

impossible to fit peak values ofbromide concentration for any ofthe curves. 

The optimised values of R for each sample type were approximately one, as expected for a 

solute chosen specifically for its conservative nature. The optimised values of D correlated 

qualitatively to sample permeability, which is in agreement with D being proportional to pore 

water velocity (Kirkham, D. and Powers, W. L., 1972). 

5.2.2 Lateral Solute Transport 

Using the values obtained in the previous section as starting points, Equation 7 was then 

used to model the breakthrough curves produced for the individual funnels in the lateral solute 

transport experiments. Modelling the transport from a point source to a variety of locations at 

varying horizontal displacements could not be achieved satisfactorily using only the vertical 

height of the sample, x. Using a single value of x produced a single modelled BTC, rather than an 

array of different curves as observed experimentally. Instead values of x;, where i denoted the 

funnel number, were calculated for each funnel x; was calculated to be the diagonal distance 

from the centre of the sample surface to the centre of the sampling funnel. The areas under the 

modelled curves were normalised to those ofthe experimental curves. 

Utilising values of R obtained m the previous section, each experimental curve was 

modelled three times as follows: 

1. The breakthrough curves were modelled using the optimised parameters from the bulk solute 

transport experiments (Section 5.2.1 ). 

2. The improvement in fit possible by optimising a single value of D over all funnels was 

investigated. 
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Figure 5.4 Experimental and modelled breakthrough curves for individual funnels under Redhi1130 
sand at 240-mm. Crosses show experimental data points, black lines are modelled using one value of D 
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Darcy Velocity, mm minute·' 0.371 

• Observed Frequency 0 Expected Frequency 

Figure 4.10 Comparison of the velocity distribution of a 120-mm RedhiU 30 sample \\ith a normal 
distribution. 

Although the experimental distribution appears quite similar to a normal distribution, 

there is a prominent bar in the category corresponding to the lowest velocities. A low 

velocity peak was present in all of the experimental distributions, and had the effect of 

making the mean experimental velocities considerably lower than the peaks ofthe Normal 

distributions. Consequently none of the experimental distributions were statistically similar 

to the comparable normal distributions. Each experimental velocity distribution was also 

re-tested twice, after removing all of the zero velocities and after removing the entire low 

velocity peak. In both cases the normal test distributions were recalculated with the new 

experimental means and standard deviations. Even with both of these modifications none 

of the experimental velocities were normally distributed. Additionally the distributions 

were tested to see if they were logarithmically normal, as found in field studies by Biggar 

and Nielsen (1976), however this was not the case either. 

4.3.2.4 Mann-Whitney Test of Velocity Distributions 

Having demonstrated in the previous section that none of the experimental velocity 

distributions were normally distributed a non-parametric test was required to examine 

whether the any of the average velocity distributions from the flow pattern study were 

similar. For thjs purpose a simple Mann-Whitney test (Miller, J C. and Miller, J N., 1993) 
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4.3.2.6 JI£Irio~an7s 

It is also possible to measure spatial correlations between the areas of high and low 

flow observed in the surface plots using semi-variograms (see Chapter 6 for a full 

discussion ofvariograms). Various directionally dependant variograms were measured, but 

these were found to give the same information as directionally averaged (360° search 

window) variograms, as might be expected from experiments which were horizontally 

directionally isotropic. Directional variograms are shown in Appendix B. 
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Figure 4.11 Variograms of average Darcy velocity for pbases 1 to 3 and also tbe two transport 
experiments described in Section 4.2.3 and Section 4.2.4. 

It can be seen that the semi-variance of phase 3 was very much greater than those of 

phases 1 and 2. This correlates with Figure 4.7, which showed that the Darcy velocities in 

phase 3 were dominated by extremes of either rapid or zero flow, relative to the velocity 

distributions of phases 1 and 2. All distributions other than phase 3 can be seen to have 

relatively low and flat variograms - i.e. there is a low level of semi-variance between 

sampling points, and the semi-variance does not change with distance - it occurs in an 

unstructured way across the sample grid. There is no discernible difference between the 

tracer transport experiments at different sample depths. The semi-variance of phase 3, by 

contrast, is most extreme at distances up to half the overall grid size. Inspection ofFigure 

4.7 (c) confrrms that the main variance between flows is on this scale. At larger scales, 

between half and the whole grid size, pairs of observations tend to be increasingly limited 

to the edges, as central points do not have a comparison point more than 250-mm away. It 

can be seen that the edges are rather more correlated, tending mostly to low flow, but as 
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4. 3. 4. 2 Pearson Product Momel11 Correlation Coefficient 

The simple Pearson test already employed in Section 4.3.2.5 was used to examine 

whether the breakthrough curves of funnels equidistant from the point of application were 

correlated. Assuming the overall shapes of the breakthrough curves to be similar, the 

Pearson coefficient tends to measure correlations in times of bromide arrival more than 

correlations in bromide concentration. Figure 4 .16 shows three fictitious breakthrough 

curves as might be compared using the Pearson coefficient. 
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Figure 4.16 Comparison of breakthrough curves using Pearson coeflkieot. 

AJthough curves A and C are identical, but shifted in time, the Pearson coefficient 

comparing these two is only 0.34, whereas the coefficient for A and B is almost 1. Clearly 

the Pearson coefficient will measure mainly correlations in arrival time, rather than curve 

shape. However, for the purposes of this study that is an acceptable limitation. 

Figure 4.17 shows surface plots of the Pearson product moment correlation 

coefficients. Each point on the scatter plots represents the Pearson correlation coefficient 

for the breakthrough curves of one pair of funnels. To aid comparison white stars indicate 

pairs of funnels equidistant from the point of solute application, and black stars indicate 

funnels closest to the point of application paired with funnels furthest from the point of 

application. 
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Figure 5.1 shows example breakthrough curves produced by the convection­

dispersion equation described above and the effects of changing the diffusion coefficient 

and the retardation factor. 

~ ~~~H-~~~----------------------------.. 

200 400 600 800 1000 1200 1400 

-.-o =s.o --+-D = to.o .........-o=20.o ....... o- too.o 

a) 

200 400 600 800 1000 1200 1400 

b) 
Figure 5.1 Example breakthrough curves produced by a convection-dispersion equation showing the 
effects of a) varying D and b) varying R. 

Increasing D causes the breakthrough curve to become more spread out as greater 

diffusion of the solute take place within the flowing water. Increasing R causes the arrival 

of the solute peak to become delayed, which also allows greater diffusion to take place. 

5.2 Fitting Convection-Dispersion Equations 

5.2.1 Bulk Solute Transport 

The convection-dispersion equation described above was fitted to the experimental 

breakthrough curves measured in the previous chapter. Curve fitting was achieved with 

reference to the squared vertical difference between experimental and modelled BTC' s. 
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Figure 5.2 ExperimentaJ bromide breakthrough curves and fitted and predicted convection-dispersion 
equations fo r a) RedhiU 30, b) RedbiU 65 and c) stratified sand samples. 
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The values of D and R obtained from fitting the 120-mm depth samples were used to 

predict the BTC's for the deeper samples. The areas under the modelled curves and under 

the 240-mm depth experimental curve were normalised to the area under 120-mm depth 

curve to account for unmeasured losses of bromide through the edge channels of the grid 

lysimeter. 

Table 5.1 shows the optimised model parameters and goodness of fit figures used in 

the convection-dispersion equation. 

Depth, Pore Water Diffusion Retardation Goodness 
Sand mm Vel., mm min-1 Coefficient, D Factor, R of Fit 

Redhill30 
120 0.475 

10.33 0.95 
o.5e-

240 0.466 1.5e-3 

Redhill65 
120 0.378 

8.04 0.98 
0.5e-3 

240 0.396 0.6e-3 

Stratified Sand 
120 0.352 

6.99 1.06 
o.5e-3 

240 0.364 l.Oe-3 

Table 5.1 ModeiJed parameters for convection-dispersion equation modelling of experimental 
breakthrough curves. 

Visual inspection reveals that reasonable fits of model to experiment were achieved 

for all of the 120-mm deep samples. The best fit, both visually and with reference to the 

goodness of fit figures, was achieved for the 120-mm stratified sample. In the cases of the 

single layer samples subsequent predictions of transport through the 240-mm samples 

predicted the times of arrival of the solute peaks accurately, but underestimated the size of 

the peaks. For the stratified sample the model prediction for the 240-mm sample was rather 

retarded compared to the experimental BTC, but predicted the size of the peak more 

accurately. It can also be seen that generally the model did not accurately predict the 

rapidity of the decline in concentration following the solute peak, or the more gradual 

decline in the tail regions of the curves. 

It was thought that the poor fit of the model in the region of the solute peak may have 

been an artefact of the measurement of fit. All points in the region over which fit was 

measured were treated equally. The appearance of the bromide maximum took place rather 

quickly, and the initial points contributed relatively little to the overall goodness of fit 
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3. The effect of optirnising D for each of the funnels in a run was examined. 

Table 5.2 shows the values of D and goodness of fit figures obtained by the three 

methods described above (indicated by the superscript figures). The subsequent figures 

show the BTC's (for the sake of clarity only the curves produced by the latter two 

optimisations are shown). 

GOF 
Sand Depth, mm D Value % Improvement 

10.331 0.0326 
120 10.802 0.0326 0.09 

Red hill 30 -------- ------ --------~~!~i.P!f --------9: ~?~?- ---------------- )_ ~: ~ ----- -----
10.33 0.0233 

240 32.802 0.0186 20.4 

--------------------- -- ---- -------------~~!~iJ?}~~---------9: ~! ~~------ - ---- ------~ ~:~----------
8.04 0.0137 

120 9.252 0.0134 2.2 

Red hill 65 --------------------- -~~!~iJ?}~~-- - - ----_9: ~! ~~- -----------------~}----------. 
8.04 0.0125 

240 7.582 0.0124 0.34 

----------.-----------------------------~~!~i.P~~~- --------9: ~! ~?----------------- _1_ ?:~ - ---------
6.99 0.0219 

120 9.01 2 0.0204 6.9 

Stratified ----------------------~~!~i.P~~~-- ------_9: ~! ~? ___________ _____ -~?: ~ ________ _ . 
6.99 0.0449 

240 7.62 0.0447 0.4 
multiple3 0.0333 25.7 

Table 5.2 Optimised values of D for all funnels. Goodness of fit (GO F) figures arc the average over all 
contributing funnels. Bold figures show GOF using original values of D and R from Section 5.2.1. 
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Table 5.3 shows the values of D optimised for individual funnels (grey lines in the 

preceding graphs), with funnels numbers corresponding to those in Figure 5.3-Figure 5.8. 

Sand Depth, Funnel 
mm 1 2 3 4 5 6 7 8 9 10 

Redhill30 
120 11.32 8.41 8.38 10.31 9.28 9.44 8.79 9.03 17.44 42.03 

240 5.3 18.84 26.96 51.97 43.97 28.30 21.00 5.4 12.89 

Redhill 65 
120 8.54 11.55 5.83 6.33 10.43 9.84 12.78 5.68 7.47 10.36 

240 2.08 2.55 3.07 3.55 5.62 4.23 2.23 8.54 1.33 1.20 

Stratified 
120 4.76 4.62 6.48 7.17 12.99 13.77 5.65 7.91 5.65 3.14 

240 27.94 10.50 3.31 3.05 5.73 10.51 15.59 7.16 4.90 2.5 

Table 5.3 Opti.mised values of D for individual funnels. 

Visual inspection of the predicted BTC's for the 120-mm samples reveals that the 

model predicted bromide transport moderately successfully. It was less successful 

predicting transport through the 240-mm samples, particularly the Redhill30 sample. 

For most of the samples re-optimising a single value of D produced only a small 

improvement in model predictions, compared with retaining the value obtained from the 

bulk solute transport work. Re-optimising D for individual funnels produced more 

substantial improvements in the fit. However, this improvement generally arose as a 

consequence of only one or two funnels that were inadequately modelled by a single value 

of D. Examining these values of D, it can be seen that there is no obvious trend to the 

changes in value. Visually the variation appears random and unrelated to position. This is 

discussed further in Section 5.3. 

It is worth noting that in some instances re-modelling D for each funnels produced an 

improvement in fit, but visual inspection of the curves called into question how much the 

fit actually improved. In Figure 5.6g, for example, although the grey line represents an 

improved fit, as defined here, the black line more accurately predicts the time of arrival 

and magnitude of the bromide peak. 

The modelling of the lateral transport breakthrough curves was hampered throughout 

by the ' step' effect observed in the tails of the experimental breakthrough curves. In each 

case, after the maximum concentration had exited the sample the concentration declined to 
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a value of around 3-mg r1
. The bromide concentration of the exiting solution then 

remained constant for around 200 minutes, after which it dropped rapidly to almost zero. 

This feature of the experimental breakthrough curves made the fitting of the convection­

dispersion equation particularly difficult and is discussed further in Section 5. 3. 

5.2.3 Sensitivity Analysis 

An analysis of model sensitivity was carried out to investigate whether differences in 

optimised values of the model parameters appeared to be sample dependent. Using the 

goodness of fit figures from modelled bulk solute transport (Section 5.2.1) the effects of 

changing model parameters were examined. D and R were adjusted to give decreases in the 

goodness of fit figures of 5% and 10%. 

Ori2inal 

R'hill30 0.95 

R'hill 65 0.98 

R 
Giving Reduction in 

GOFof 
5% 10% 

0.92 0.99 0.91 1.00 
3% 4% 4% 5% 
0.95 1.02 0.93 1.04 
3% 4% 5% 6% 
1.03 1.09 1.02 1.10 

Ori2inal 
10.33 

8.61 

7.02 

D 
Giving Reduction in 

GOFof 
5% 10% 

9.30 11.53 8.91 12.07 
100/6 12% 14% 17% 
7.13 9.10 6.80 9.60 
17% 6% 21% 11% 
6.42 7.62 6.21 7.90 

Stratified 1.06 3% 3% 4% 4% 9% 9% 12% 13% 
Table 5.4 Sensitivity analysis of modelling parameters. For each percentage level an upper and lower 
bound, above and below the optimised values shown in Table 5.1, is given. Figures in Italics show 
percentage change in model parameter from tbe optimised value. 

The model was more sensitive to changes in R than D. Given that the expected value 

of R for these samples was 1, it is unclear whether the different optimised values of R 

represent genuine sample dependency or merely random 'noise' . The latter conclusion 

seems most likely given the nature of the solute tested. 

The model was less sensitive to changes in the value of D, which appeared to be 

related to sample permeability. Similarly to R, there was significant overlap in the tested 

ranges, even at the 5% level. Again this makes it difficult to judge the extent to which 

values of D were sample dependent. 
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The other mam source of variability within the model was the experimentally 

determined pore water velocity, v. Being the convective component of modelled transport, 

large changes in the value of v will have a significant effect on predictions. This parameter 

is based on measured values of the volume flow rate of exiting water and the water-filled 

porosities of the samples. Of these the chief uncertainty arises from the measurement of the 

volumetric water content by time-domain reflectometry (TDR). Values for the water 

content of the samples were obtained from long TDR probes, spanning the width of the 

sample volumes under test. Effectively these measured average water contents across the 

length of the probe. However, later work on the sample sands (Chapter 6) revealed that 

there might have been significant local variation in sample porosity, and therefore water-

filled porosity. 

To investigate the potential effects of uncertainty in the calculated values ofv arising 

from measured values of volumetric water content, a further sensitivity analysis was 

conducted. The best fit possible at various other values of v, corresponding to specific 

differences in the volumetric water content, were measured by re-calibrating the model to 

the 120-mm experimental BTC's. These are summarised below (percentage changes in 

water content refer to absolute changes i.e. a measured water content of 34.2% was re-

tested at 33.2%, 35.2%, 32.2%, 36.2% and so on). 

Improvement in Fit Possible (%) After Changing 

Sample 
Redhill30 
Redhill65 
Stratified 

1% 
-0.001 -0.007 
0.006 0.002 
-0.002 0.002 

Water Content By: 
2% 5% 

-0.009 -0.002 0.000 0.000 
0.003 -0.001 0.005 -0.001 
0.001 -0.010 -0.001 -0.012 

Table 5.5 Sensitivity analysis of pore water velocity/volumetric water content. 

From Table 5.5 it can be seen that the fit of model to experiment was extremely 

insensitive to changes in volumetric water content, even when these changes were 

relatively large. At each different volumetric water content re-optimising the model 

parameters D and R achieved, at best, negligible improvements in fit. 
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5.3 Discussion 

The success of the simple CDE tested here in modelling the bulk solute transport 

curves was limited. Despite the choice of a relatively unreactive solute tracer, calibrations 

of model to experiment were somewhat unsatisfactory, and subsequent predictions 

reflected this. However, the model was similarly successful in predicting solute transport 

from a point source. Re-optimising D, rather than using the value obtained from the bulk 

solute transport work, only marginally improved model predictions. Re-optimising D for 

each funnel produced more significant improvements, although this was often due to 

improving the fits of only one or two funnels. 

As mentioned previously, re-optimising the diffusion coefficient of each individual 

breakthrough curve yielded a very broad range of values of D. Re-optimised values of D 

were plotted against distance from the point of solute application to examine whether a 

linear relationship between D and depth can be observed (Huang, K. L. et al., 1996). 
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Clearly there is no discernible relationship between D and distance using the values 

of D obtained here. 

As mentioned in the previous section, almost all the breakthrough curves for the 

individual funnels showed a concentration plateau of around 3 mg r' following the output 

of the maximum concentration. These plateaus tended to last approximately 200 minutes 

before declining rapidly. The fact that this effect occurred uniformly throughout the 
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samples studied indicates that, rather than some experimental anomaly, this was a product ofthe 

process being examined. 

One explanation of this behaviour is that, as the original pulse of bromide moved through 

the sample, reservoirs of relatively high bromide concentrations were created in regions of 

immobile water. It has been noted in systems such as this that there may be two distinct regions 

to the water-filled porosity (Bai, M. et al., 1995; Brusseau, M. L. et al., 1994; Hu, Q. H. and 

Brusseau, M. L., 1995). Low penneability microporous regions, filled here during the saturation 

process, may contain an immobile water fraction, or 'old' water. Regions of larger water-filled 

mesopores contain the mobile fraction responsible for the majority of transport, which may be 

referred to as 'new' water. As the original tracer pulse moved through the sample bromide may 

have diffused into regions of immobile water. As the pulse passed and bromide concentration in 

the mobile water phase declined, bromide may then have re-diffused back out of the immobile 

water fraction. If this was the case it would appear that the effect was ' averaged' out in the 

combining of all outputs in the bulk solute transport work. 

5.4 Conclusions 
The simple convection-dispersion equation employed here managed to reproduce gross 

features of the experimental solute transport, such as time of arrival of the solute peak and 

approximate shape of the breakthrough curve. The convection-dispersion equation was not 

significantly less successful in modelling solute transport from a point source than it was in 

modelling bulk transport. 

The model employed only two parameters that could not be directly measured 

experimentally, the retardation coefficient, R, and the diffusion coefficient, D. These behaved in 

ways that appeared to be related to observable properties of samples. The modelled retardation 

coefficients took values of around 1 for all of the samples studied, which was appropriate given 

the nature of the solute studied. D appeared to be dependent on sample penneability (measured 

in Section 6.2). Sensitivity analyses of both of these parameters showed that the 
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model was not as sensitive to changes in their values as might be expected, gtven 

differences between the experimental samples studied. 

Although there was a degree of uncertainty in the accuracy of the measured 

volumetric water content, and therefore the pore water velocity, it was demonstrated that 

the model was extremely insensitive to changes in this value. 

To conclude, although the simple model employed here managed to reproduce some 

features of the experimental breakthrough curves, the experimental processes were 

ultimately too complex to be accurately predicted. Clearly the solution of the convection­

dispersion equation employed here did not adequately represent the experimental 

conditions present, even in these comparatively uncomplicated samples. The most likely 

source of the discrepancy between experiment and model was the implicit treatment of the 

simulated material as a homogeneous continuum. In the following chapter this assumption 

is investigated, and the possibility of enhancing the model used here via network modelling 

is studied. 
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6 Network Modelling of Flow ard Transport 

6.1 Introduction 

Work described m Chapter 4 examined the flow and transport behaviour of 

homogeneous sand columns. It has been demonstrated that flow through homogeneous 

samples was not randomly distributed. It has also been shown that flow paths through the 

same sample, prepared identically, were not reproducible and did not appear to be related 

to measurable changes in sample structure. Work prior to this has suggested that 

heterogeneities in flow arise as a result of observable variations in sample structure, such 

as barriers to permeability or structural discontinuities (Miyazaki, T., 1993a). 

It has also been suggested that flow heterogeneities may develop in random packings 

as a function of sample depth. Porter (1968) presented a ' rivulet' model of flow for 

predicting flow at given depths. Subsequent work (Porter, K. E. et al., 1968) showed flow 

to be Normally distributed, and this has been shown not to be the case for these samples. 

Dexter (1995) presented a simplified version of this theory, whereby rivulets could 

coalesce but never split, and concluded that preferential flow in random packings should 

become more pronounced with depth. Again this relationship has been shown not to hold 

for the depths considered here. 

Work described in Chapter 5 demonstrated that, although capable of reproducing 

gross aspects of solute transport, the simple convection-dispersion equation (CDE) was 

limited in its predictive abilities. Typically the response to this limitation has been more 

complex solutions of the CDE, using a greater number of model parameters to cope with 

the disparity between model and experiment. Although in many cases this has resulted in 

more accurate simulations, these solutions tend to be of limited usefulness beyond the 

scope of the studies in which they were developed, and it has been concluded that such 

models are seldom employed beyond the initial study (Addiscott, T. M. and Wagenet, R. 

J. , 1985). 
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Implicit in the derivation of the basic CDE is the assumption that the experimental 

transport volume may be considered a one-dimensional homogeneous continuum. 

Although a few workers have developed solutions that somehow extend the CDE beyond a 

single dimension, for example by employing a logarithmically normal distribution, based 

on experimental observations (Biggar, J. W. and Nielsen, D. R., 1976), of inputs to 

generate a spatial array of breakthrough curves (Amoozegar-Fard, A. et al., 1982) 

The experimental results obtained thus far appear to indicate that the homogeneous 

random packings of sand tested here have not behaved as homogeneous continua in terms 

of the properties upon which flow depend. In this chapter more subtle information 

regarding homogeneity, or otherwise, of the packings is extracted. This is done to 

investigate whether the variability experienced experimentally may be simulated using a 

network model, and whether this model might be able to provide supplemental information 

to enable more accurate models of the porous materials studied. 

6.2 Characterisation of Redbill Sands 
The two grades of sand used in Chapters 4 and 5 were characterised experimentally 

and then modelled using the network model Pore-Cor. Certain details regarding the 

chemical compositions and particle size distributions of the two sands were provided by 

the suppliers (Hepworth Minerals and Chemicals, Sandbach, Cheshire, U.K.) and are given 

in Appendix A. In addition to these details porosity and permeability were also examined. 

6.2.1 Porosity 

Sample porosity was obtained via mercury intrusion. Mercury intrusion curves were 

also required as the chief input for the network modelling. For each of the sands ten runs 

were carried out on a Micromeritics Autopore m (Micromeritics, Atlanta, Georgia, 

U.S.A.) to examine the effects of different random packings on the apparent void size 

distribution and porosity. Mercury intrusion curves are shown in Figure 6.1 below, and the 

corresponding porosities are given in Table 6.1. 
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Figure 6.1 Mercury intrusion curves for a) Redbill30 and b) Redbill65 sands. 

Average 
Standard Deviation 

Porosity,% 
Redhill30 
34.98854 

38.8200 
39.8622 
39.9417 
40.2365 
40.6789 
41 .2894 
41.6162 
41.6824 
41.9841 

40.68 
1.05 

Redhill65 
39.6508 
43.8329 
44.4028 
44.6231 
44.9501 
45 .2838 
45.3392 
45.389 

45.4483 
45.6633 

44.46 
1.78 

Table 6.1 Porosities of Redbill sands obtained by mercury intrusion. 

100 

100 

It can be seen from both the intrusion curves and range of porosities that, at the 

scales observed here, void volume and void size distribution appear highly sensitive to 

4 Assumed to be anomalous and ignored. 
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packing. From these results it can be inferred that there may have been significant local 

variation in porosity within the transport samples studied in the previous two chapters. 

6.2.2 Permeability 

The permeabilities of the two sands were obtained by constant head permeametry. 

Ten measurements were taken for each sand, each measurement being the average of five 

readings. These are presented below. 

Average 
Standard Deviation 

Permeability, Darcies 
Redhill 30 Redhill 65 

7.99 3.78 
7.12 2.87 
9.48 3.38 
10.46 2.07 
9.32 3.26 
6.27 1.86 
6.99 2.79 
7.80 2.20 
9.46 2.94 
9.58 3.46 
8.45 2.84 
1.39 0.65 

Table 6.2 Constant bead permeabilities of RedhilJ sands. 

There was considerable variation in the measured permeability. Considering the 

standard deviations it can be seen that permeability varied considerably more than 

porosity. Clearly permeability is even more sensitive to packing than porosity. 

6.2.3 Unsaturated Permeability 

The permeabilities measured in the previous section represent the saturated liquid 

permeabilities, or specifically the saturated hydraulic conductivities. However, the samples 

tested and modelled in the previous two samples were unsaturated. Unsaturated 

permeability is typically only a fraction of the saturated value, and is a non-linear function 

of water content (Jury, W. A et al. , 1991 ). The saturated permeabilities of different porous 

materials display a wide range of sensitivities to changes in volumetric water content 

(Miyazaki, T., 1993a). However, experimental measures of unsaturated permeability are 

significantly more difficult to obtain than those of saturated permeability. Generally 
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unsaturated permeability is estimated using methods that employ the water characteristic 

curve as the chief experimental input. Traditionally this has been achieved using a simple, 

Poiseuille-based capillary tube model of the porous media, where the number and size of 

capillaries is selected to reproduce the experimental characteristic curve (Jury, W. A. et al. , 

1991 ). More recently a large number of alternative methods of calculating the unsaturated 

permeability based on the water characteristic curve have been presented (Brooks, R. H. 

and Corey, A. T., 1964; Peat, D. M. W. et al., 1998; Kosugi, K., 1994; Mualem, Y. , 1976). 

The unsaturated permeability may also be estimated using the Buckingham-Darcy 

flux law. 

8H 
v0 = -K(h)-

8z 
(1] 

Here vd is the Darcy velocity, K(h) is the unsaturated permeability, His the hydraulic 

head and z is depth. 

In this study it was not possible to obtain the water characteristic curve for the 

samples studied. Due to the relatively high permeability of the two sands used drainage 

would have been too rapid to measure with the apparatus available. Neither was the 

hydraulic head, necessary to use Equation 1, in the unsaturated samples known. This meant 

it was not possible to estimate the unsaturated permeability of the sands used in the 

transport studies. However, other workers have conducted studies of the relationship 

between volumetric water content and unsaturated permeability, and the results of some of 

these are shown below (Miyazaki, T., l993b). 
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Figure 6.2 Unsaturated permeability versus volumetric water content (Miyazaki, T., 1993b). 
Volumetric water content corresponding to transport experiments in Chapter 4 shown in grey. 

Figure 6.2 suggests that for the range of fractional volume water contents 

experienced here, 0.32-0.36 cm3 cm-3, a decrease in water content of 0.1 cm3 cm·3 may be 

accompanied by a decline in permeability of just under one order of magnitude. Given the 

broad range of permeabilities measured in the previous section, it seems reasonable to 

assume that unsaturated permeability will display, at the very least, a similar variability. 

During the experiments described and modelled in the previous two chapters, the range of 

porosities measured in Section 6.2.1 would be likely to give rise to an even broader range 

of water contents. Given that microporous regions in the samples are likely to remain 

almost saturated, while areas of larger pores may drain almost completely, local saturation 

may be extremely variable. In turn this may produce a range of unsaturated permeabilities 

significantly greater than the range of saturated permeabilities measured in Section 6.2.2. 

6.3 Modelling of Red hill Sands 
Previous work using the network model 'Pore-Cor' has not attempted to reflect the 

experimental variability demonstrated in Sections 6.2.1 and 6.2.2. In mercury porosimetry 

it is customarily assumed that intrusion curves for homogeneous materials such as sand 

display minimal variability from one run to the next. Consequently, network simulations 
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tend to have been based on a single experimental intrusion curve. However, the results 

presented above indicate that, for the two sands considered here, the assumption of 

reproducibility between sub-samples of these bulk materials is invalid. An alternative 

modelling approach is required to account for this experimental variability. 

It must be assumed that the variability observed in measured values of porosity and 

permeability arose from variations in packing. That is, different random arrangements of 

the loose particulate materials appear to be responsible for local variations in the 

characteristics of the bulk materials. As discussed in Chapter 2, Pore-Cor simulations are 

based around the initial random positioning of throats within the 1 0 x I 0 x 1 0 lattice of 

nodes comprising the unit cell. As such different stochastic generations, that is different 

initial random arrangements of throats, of the unit cell for a given material can be thought 

ofas equivalent to different packings of the experimental material. 

A new modelling strategy was therefore devised in an attempt to model the 

variability experienced experimentally. Mercury intrusion curves corresponding to the 

most and least porous examples of the two sands were used as inputs to the network model. 

For each of these four simulations, twenty different stochastic generations were created. 

Modelling details are summarised below and unit cells corresponding to ten stochastic 

generations of the least porous Redhill 30 sample are given in the following figure. 
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Stochastic Permeability, 
Generation ThroatSkew Connectivity PoreSkew Darcies 

1 0.07 3.3 9.46 
2 0.08 3.2 7.68 
3 -0.05 3.0 4.32 
4 0.09 3.1 10.81 
5 0.45 3.9 14.24 
6 0.09 3.3 6.62 
7 0.30 3.6 6.28 
8 -0.03 3.2 8.37 
9 -0.03 3.0 10.56 
10 0.04 3.1 10.51 
11 0.15 3.3 6.68 
12 0.33 3.5 19.01 
13 0.01 3.1 7.01 
14 0.15 3.4 10.37 
15 -0.11 3.0 8.38 
16 -0.03 3.0 6.17 
17 0.20 3.4 11.13 
18 -0.06 3.1 9.48 
19 0.38 3.7 10.85 
20 0.14 3.3 8.05 

Average 9.30 
Table 6.3 Modelling details for Redhill 30 sand, porosity - 38.82%. 

Stocbastic Permeability, 
Generation Throat Skew Connectivity Pore Skew Darcies 

I 0.17 3.3 7.25 
2 0.08 3.2 7.99 
3 0.52 3.8 15.97 
4 -0.02 3.1 13.67 
5 0.55 3.9 11.56 
6 0.09 3.3 7.22 
7 0.39 3.7 5.60 
8 0.07 3.2 6.86 
9 -0.03 3.0 11.892 
10 0.04 3.1 11.94 
11 0.05 3.1 11.45 
12 0.32 3.5 22.59 
13 -0.20 2.9 7.43 
14 0.55 3.9 7.07 
15 -0.12 3.0 9.02 
16 0.06 3.2 13.02 
17 0.19 3.3 9.42 
18 0.33 3.5 20.80 
19 0.38 3.7 11.94 
20 0.50 3.8 17.32 

Average 11.50 
Table 6.4 Mode16ng details for Redhill 30 sand, porosity= 41.98%. 
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Stochastic Permeability, 
Generation Throat Skew Connectivity Pore Skew Darcies 

1 0.64 3.3 1.2 1.1 s 
2 0.49 3.2 1.2 1.90 
J. 0.95 3.8 1.2 4.07 
4 0.72 3.2 1.2 2.18 
s 0.53 3.2 1.2 2.05 
6 0.60 3.2 1.2 1.22 
7 0.96 3.8 1.2 1.58 
8 0.29 3.1 1. I 1.40 
9 0.58 3.3 1.1 2.01 
10 0.66 3.2 1.2 1.72 
11 0.44 3.0 1.2 3.27 
12 0,64 3.3 1.2 2.44 
13 0.42 2.9 1.2 1.11 
14 0.73 3.6 1.1 3.30 
15 0.42 3.0 1.1 1.93 
16 0.62 3.2 1.2 2.01 
17 0.72 3.3 1.2 2.24 
18 0.72 3.3 1.2 2.19 
19 0.85 3.7 1.2 2.46 
20 0.62 3.3 1.2 L39 

Average 2.08 
Table 6.5 Modelling details for RedbiU 65 sand, porosity = 39.65%. 

Stochastic Permeability, 
Generation Throat Skew Connectivity Pore Skew Darcies 

I 0.59 3.3 1.3 1.77 
2 0.53 3.2 1.3 2.10 
3 0.50 3.0 1.3 1.63 
4 0.67 3.2 1.3 3.40 
s 0.98 3.9 1.4 2.92 
6 0,64 3.4 1.3 2.09 
7 0.90 3.8 1.3 2.70 
8 0.53 3.2 1.3 1.68 
9 0.52 3.3 1.2 3.35 
10 0.60 3.1 1.3 2.72 
11 0.58 3.1 1.3 2.31 
12 0.59 3.3 1.3 3.56 
13 0.37 2.9 1.3 1.70 
14 0.67 3.4 1.3 2.48 
IS 0.36 3.0 1.2 3.03 
16 0.57 3.2 1.3 4.00 
17 0.67 3.3 1.3 4.11 
18 0.68 3.3 1.3 3.71 
19 0.89 3.7 1.3 2.86 
20 0.57 3.3 1.3 2.06 

Average 2.71 
Table 6.6 Modelling details for RedhiU 65 sand, porosity = 45.66%. 
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Figure 6.3 Unit cells of ten stochastic generations of the least porous Redhill 30 simulation. 
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6.3.1 Porosity 

Porosity is one of the constraints employed in the modelling process. As such 

modelled porosities reflect experimental porosities extremely accurately. 

6.3.2 Permeability 

The stochastic modelling process generated a range of permeabilities. Figure 6.4 

compares average experimental permeabilities to average modelled permeabilities. Error 

bars show ± one standard deviation. 
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Figure 6.4 EXJ)Crimental and modelled permcabilitics for Rcdhill sands. 

From Figure 6.4 it can be seen that the modelled permeability ranges generally 

represent the experimental values extremely well, especially considering the accepted 

difficulties in modelling permeability experienced by other network models (Chapter 2). In 

particular, the simulations of the less permeable Red hill 65 are very close to the measured 

values, both in terms of average permeability and range. It should be noted again that there 

are no calibration factors in these calculations whatsoever. 

Ideally some statistical comparison should be made between the experimental and 

modelled permeability distributions. This was not possible in this study as it was not 

possible to take enough experimental measures of permeability that a statistical test would 

be reliable. 
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6.3.3 Unsaturated Permeability 

The measurements in the previous section represent the saturated permeabilities of 

the modelled sands, being based on the entire available void network. However, 

unsaturated permeabilities are more relevant to the studies carried out here. Although 

direct estimation of the unsaturated permeabilities of the samples studied was not possible, 

some idea of expected experimental permeability decline with decreasing water content 

can be gained from previous studies (Figure 6.2). 

The network model around which this work is based features no facility for the direct 

estimation of unsaturated permeability. However, it does include an analogous simulation, 

adapted here to estimate unsaturated permeability. An air intrusion algorithm exists, for 

modelling the effects of invasion of a simulated sample through one surface by air. In 

terms of the experiments conducted here, the saturated samples were allowed to drain 

while air intruded via the top surface, so this model is highly appropriate. The simulation 

of unsaturated permeability was achieved as follows. 

Air was considered to be entering the unit cell through the top layer of the unit cell. 

Features larger than a user-specified minimum size became filled with air and blocked. 

Modelled air was able to move through the unit cell until it encountered a feature smaller 

than the minimum size. Large features near the top surface of the unit cell remain saturated 

if features smaller than the minimum size shield them. It was possible to incrementally 

decrease the size of the minimum feature until the new porosity of the unit cell was similar 

to the water-filled porosity of the experimental sample. Having achieved a new modelled 

porosity similar to the experimental volumetric water contents (unsaturated) permeability 

could be re-calculated. 
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~ ~ 
Figure 6.5 The unit cells of two stochastic generations of the least porous Rcdhill 30 sample. Features 
that have been intruded by air are shown as dark blue. The scale bars represent a) long - 2.46-mm, 
short- 0.49-mm and b) long - 2.40-mm, short- 0.48-mm. 

Although the volumetric water contents of the experimental samples were known, 

further uncertainty arose from the range of porosities measured for each of the sands 

(Section 6.2.1 ). Thus, it was necessary to model a range of effective water-filled porosities 

reflecting the full range of water-filled porosities possible for the sand samples. Table 6. 7 

summarises measured volumetric water contents and ranges of experimental porosities for 

the 120-mm samples. 

Redbill30 
Redbill65 

Volumetric Water 
Content,% 

30.96 
34.63 

Porosity,% 
Minimum Maximum 

38.82 41.98 
39.65 45.66 

Table 6.7 Porosity ranges and water-filled porosities of the Redbill sands. 

Clearly the water-filled porosities could account for quite different proportions of the 

total porosity, depending on the paclcing of the sands. Consequently a range of simulations 

were carried out using Pore-Cor, to represent the full range of experimental conditions. 

Using the modelled parameters obtained previously (Section 6.3) the first ten 

stochastic generations of each of the samples were re-modelled to simulate air intrusion 

resulting in (approximately) the water-filled porosities given in Table 6. 7. The 

experimental samples re-modelled corresponded to the mercury intrusion curves exhibiting 

the minimum and maximum porosity. The average modelled water-filled porosities and 
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saturated and unsaturated hydraulic conductivities are given in Table 6.8 and the following 

figure shows all of the modelled results. 

Porosity, Water-Filled Porosity,% Permeability, Darcies 
Sample % Experimental ModeUed Initial Final Decrease, % 
Redhill 30 38.82 33_70 33.38 8.89 2.40 73.0 

41.98 33.48 9.99 1.83 81.7 
---- --- -------- ---------------------------------- --- --------------------------- ---- ---------------------------- ------
Redhill 65 39.65 35_10 35.03 1.93 0.55 71.5 

45.66 35.93 2.44 0.21 91.4 
Table 6.8 Experimental and modelled water-filled porosities and permeabilities before and after 
simulation of air intrusion. 
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From Table 6.8 it can be seen that modelled unsaturated permeability was in the 

range 9-29% of the saturated values, with the greatest decreases seen in the higher porosity 

samples. It can also be seen that, on the logarithmic scales usually used to compare 

permeabilities, unsaturated permeability tends to track with saturated permeability. The 

exception to this is the most porous Redhill 65, although only one point on the unsaturated 

permeability line appears to deviate from this trend. The differences between saturated and 

unsaturated volumetric water contents were between S-8%. The permeability results agreed 

with the predictions, based on previous studies of a permeability decline, of around one 

order of magnitude decrease in permeability for a 10% drop in water content (Figure 6.2). 

6.4 Discussion 

Significant insight has been gained into the nature of local random variability within 

homogeneous sand columns. It was demonstrated that the network model Pore-Cor, given 

adequate input data, is capable of realistically modelling the extensive local variability 

observed experimentally within apparently homogeneous sand samples. The usefulness of 

these insights in enhancing the modelling of porous materials is considered here. 

6.4.1 Flow 

The flow patterns through random packings of sands observed in Chapter 4 were 

neither random nor reproducible. They appeared to develop as a result of immeasurable 

microscopic changes in structure and/or saturation and were unaffected by differences in 

sample depth or permeability. It is likely that the variability observed in the permeability 

and porosity of different random packings of the same material was, at the very least, 

partly responsible for the development of flow within experimental samples. 

Similar variability was observed in the modelled values of permeability to that 

observed in the experimental measurements. This suggests that the network model may be 

capable of generating estimations of flow distributions similar to those observed in Chapter 

4. Given the small size of the unit cell, this is not directly possible at present. However, a 

possible method by which this might be achieved would be the construction of composite 

simulations, based upon unit cells from a number of different stochastic generations of a 
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modelled material. Additionally, different stochastic generations of these composite 

simulations could also be generated. Were this possible, the composite simulations would 

possess randomly positioned regions with different porosity and permeability 

characteristics. It would then be possible to model the development of flow through 

simulated samples, and to compare these with experimental samples. 

6.4.2 Bulk Solute Transport 

The variability of porosity and permeability demonstrated here must be, at least 

partially, responsible for the limited success of the convection-dispersion equation tested in 

the previous chapter. Solute transport will be greatly influenced by variability m 

unsaturated permeabilities within the experimental samples. Here this variability is 

assumed to be similar to that observed in measured saturated permeabilities. The network 

model has been shown to be capable of modelling ranges of unsaturated permeability that, 

as far as they could be tested here, are realistic. 

One method of testing whether the ranges of modelled unsaturated permeabilities 

could enhance the predictions of the convection-dispersion equation would be to use them 

to generate a range of inputs to the model, then to analyse whether this enhanced model 

calibrations and/or predictions. The model parameter most closely related to sample 

permeability is, v, the pore water velocity. It is not possible to directly calculate values ofv 

from modelled unsaturated permeability, however, it is possible to generate a range of 

values of v that are in some way similar to those of the modelled unsaturated 

permeabilities. 

This was tested by generating a random set of (20) values of v, with an average 

similar to that of the experimentally measured value and relative standard deviation (ratio 

of sample standard deviation to sample mean) similar to that of the modelled unsaturated 

permeability values. This set of random values of was then used to generate a suite of 

modelled breakthrough curves, which in turn were averaged to produce one curve. The 

remaining model parameters, D and R, were then used to recalibrate this single curve to the 

experimental breakthrough curve of the 120-mm Redhill 30 sample and to predict transport 
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in the 240-mm sample. This was carried out using the modelled unsaturated permeabilities 

based on the least and most porous Redhill 30 sands. The results are summarised below. 

Standard Relative Standard 
Distribution Average Deviation Deviation, % 
Modelled Unsaturated Permeability 
Pore Water Velocity 

1.83-2.40 
0.462 

0.74-1.02 
0.198 

40.3-42.5 
42.8 

Table 6.9 Details of modelled distributions. 
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Figure 6.7 Experimental and re-modelled breakthrough curves for RcdbiiiJO sand. 

Goodness of Fit Figure 

1600 

Depth, mm Original 
o.59 x w-3 

1.51 x w-3 

New Improvement, % 
0.30 X 10·3 49.2 120 

240 1.16 x w-3 23 .2 
Table 6.10 Table of goodness of fit figures before and after re-modelling. 

Comparing the new modelled breakthrough curves with those in Chapter 5, it can be 

seen that the fit of the calibration to the 120-mm sample was very much better than 

previously. The predicted transport to 240-mm was also considerably more accurate, 

although by a smaller margin of improvement than the calibration. It was also found that, 

by altering the goodness of fit criteria to give special weighting to the points of the solute 

peak, the appearance of the maximum concentration could also be modelled more 

accurately. 

6.4.3 Lateral Solute Transport 

The above approach represents the spatial averaging of a finite number of one­

dimensional models of solute transport. As such there is no lateral component to transport, 
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and it could not be directly applied to the study of lateral transport from a point source, 

Chapter 4. The lateral solute transport observed experimentally must be represented in two 

or three dimensions, because there is movement in all directions on the plane perpendicular 

to vertical in addition to the vertical transport. The modelling of such a phenomenon would 

correspondingly require the extension of the conceptual basis of the model into two, if not 

three, dimensions. 

The method described previously used stochastic generations of a network model to 

estimate a range of pore water velocities with which to model solute transport. Essentially 

the network model was used to provide the convection-dispersion equation with 

supplementary information about the convective component of the experimental solute 

transport. Were lateral solute transport to be modelled, information regarding the 

horizontal component to solute movement would be required. An element of this, at least, 

must be dependent on diffusive processes and this might be where network modelling 

could provide supplementary information. The following figure summarises the increase in 

complexity engendered in moving from one- to three-dimensional transport, and a possible 

method by which the more complicated situation could be investigated. 
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One-Dimensional Solute Transport 

1 Stochastic 'dimension' 

+ 
Three-Dimensional Solute Transport 

1 Stochastic 'dimension' 

OR 

1 Stochastic 'dimension' 

...... 
Figure 6.8 Modelling of one- and 'quasi' three-dimensional solute transport. 

lt Experimental 
+Dimension 

The network model employed here has previously been used to simulate diffusion in 

sandstones (Matthews, G. P. and Spearing, M. C., 1992) using a random walk based 

method. This could potentially be adapted to predict the diffusive properties of unreactive 

solutes moving through partially saturated porous materials, such as those modelled here. 

As implied by the above figure, this could be attempted in one of two ways. Diffusion of 

solute molecules entering through the centre of the top surface of a unit cell could initially 

be modelled over a number of stochastic generations to identify the small-scale spread to 

the whole range of base exit throats of the same unit cell. However, it might be envisaged 

that the usefulness of predictions based on such a limited length scale would be limited. 

Alternatively a repeating 'clone' unit cell configuration could be employed, where the 

progress of solute applied to the top of a central unit cell could be monitored over more 

extensive distances. Again, this latter approach might benefit from the construction of 

composite simulations, based on different stochastic generations of the modelled material. 
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Ultimately both approaches would need to be tested and compared against experimental 

results and their usefulness evaluated. 

6.5 Conclusions 

The work presented in this and previous chapters has gone some way towards 

identifying how network models can enhance the understanding and simulation of flow and 

transport behaviour of homogeneous porous media. Experimental work carried out to 

characterise the flow behaviour of two sands has demonstrated that flow does not develop 

in a way that is readily predictable. This unpredictability may result from random 

variations in packing that give rise to large differences in certain important properties of 

these materials. It has been demonstrated that similar variability can be reproduced in 

network simulations of the experimental materials. Although the network model employed 

cannot predict the development of flow paths in its present form, it clearly possesses the 

potential to do so, and a possible method of achieving this has been suggested. 

The convection-dispersion equation used to model the experimental results obtained 

in Chapter 4 was only able to reproduce gross features of the experimental tracer transport. 

However, the work carried out here has gone some way towards identifying possible 

sources of inconsistency between the simple solute transport model and experimental 

results. In this chapter it has been shown that a stochastic-detenninistic approach may be 

applied to this problem, utilising network simulations of the porous materials studied 

experimentally. These simulations allow the prediction of certain sample characteristics 

that may be used to enhance the predictions of transport behaviour. A speculative method 

for predicting solute transport from a point source has also been proposed. 

120 



7 Void Size Correlation in lnhomogeneo us Porous Media 

7.1 Introduction 

As discussed in Chapter I, correlations in the spatial distributions of differently sized 

voids within porous materials can have a marked effect on permeability. In the previous 

chapter it was demonstrated that random differences in packing of the solid phase, and 

therefore the spatial arrangement of the void phase, at this scale may greatly affect porosity 

and permeability. Correlation of these physical arrangements may, in turn,. have a 

pronounced effect on the bulk characteristics of porous materials. Models of porous media 

that aim to predict the transport properties of such materials may be improved, in terms of 

accuracy, if some measure of correlation is available. In this chapter the development of 

such a method, based on variogram surfaces derived from image analysis of sections, is 

described, and the means by which it might be employed to enhance the simulations of a 

network model discussed. Although the method described below was developed to 

quantify levels of correlation in the spatial distribution of differently sized voids at the 

microscopic level, it could easily be adapted to any length scale. 

The primary requirement of any method developed to examine levels of correlation 

in void size distribution is some way of accurately determining the sizes and positions of 

voids within real porous samples. Ideally these spatial distributions would be determined in 

three dimensions. Other workers have used sophisticated microtomographic methods to 

generate reconstructions of the entire void phase of certain porous media (Spanne, P. et al., 

1994; Anderson, P. et al., 1994), although these do retain certain limits in terms of 

resolution. However, the equipment required for such determinations is expensive and not 

widely available. A more readily available technique for acquiring such information is the 

image analysis of two-dimensional representations of the void phase. Methods exist for 

interpolating between serial sections, thus allowing a three-dimensional reconstruction of 

the void phase (Lymberopoulos, D. P. and Payatakes, A. C., 1992; Yanuka, M. et al., 

1984). However, the resolution of such methods is limited by the minimum distance 

between sections, about 7-J..Lm., which limits their usefulness at the scales of interest here. 

In this study details of the distributions of voids within porous samples were obtained by 
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image analysis of sections taken through various samples. The primary requirement of 

such a method was to obtain images of the porous materials in which the solid phase and 

void spaces were unambiguously identified, and in which their precise sizes and positions 

were revealed. Other issues concerning this process are discussed in the following sections. 

7.l.llmage Analysis of Sections 

In image analysis, once the void space has been identified as a two-dimensional array 

of irregularly shaped features, various geometrical analyses may be carried out. A standard 

procedure, used in this work, is to assume that the position of each feature is its centroid 

(i.e. the centre of gravity of a uniformly thin sheet of the same shape). The image analyser 

also measuresferets, a feret being the spacing between parallel tangents to a void feature in a 

given direction, Figure 7. 1. The length of the void is the maximum feret, and was used as a 

measure of pore diameter by Ruzyla (1986), and Dullien and Dhawan (1975). The breadth of 

a void is either defined as the shortest feret or the feret perpendicular to the longest feret. 

Lymberopoulos and Payatakes (1992) defined the pore section diameter as the diameter of a 

circle of area equal to that ofthe cross section of the pore, and used this measure for the plots 

such as pore diameter versus neighbouring throat diameter mentioned earlier. Best et al. 

(I 985), showed that void sizes in graphite, measured as area+ perimeter, overestimated the 

void size distribution compared to mercury porosimetry. This may be explained by the fact 

that mercury is a non-wetting fluid, and the extent of its intrusion when applied to a porous 

sample is therefore predominantly determined by the smallest width of the void feature 

normal to the direction of injection. Bouabid et al. (1992) used a multidirectional minimum 

chord method for the study ofthe void spaces within soils, and recommended that the smallest 

chord length of a feature be used as a measure of its effective capillary diameter with respect 

to water uptake in soils. 
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Breadth 

Length 
Figure 7.1 A 'feature' measured by image analysis. 

Apart from simple measurements of features image analysis can also be used to 

manipulate images to obtain more detailed information. A process known as erosion removes 

a pixel width line from around each feature. As an image is eroded, each complicated void 

shape may split into a series of smaller, simpler shapes, which are individually identified. 

Dilation is the reverse of erosion, and is capable of re-growing each feature back to its 

original shape. However, the identification of each individual feature is retained, and a 1-pixel 

boundary is marked between each. The result ofthe overall erosion, identification and dilation 

process, collectively known as segmentation, is an image of the original void space in which 

complicated shapes are split into individual features, (Glasbey, C. A and Horgan, G. W., 

1995). Ehrlich and eo-workers (1991) have characterised the shapes of pores by eroding them, 

re-dilating with no memory of the original shape, and plotting the rounding process as a 

histogram. 

Thompson et al. ( 1992) state that any measurements of the two-dimensional image 

will only be representative of the three-dimensional sample if the sample is homogeneous 

in the z direction perpendicular to the xy plane of the cut. This statement is normally true -

it is unlikely, for example, that one could generate an accurate three-dimensional 

reconstruction of a laminated sample merely on the basis of a randomly oriented two-
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dimensional section. However, there are some rarer circumstances, exemplified by a three­

dimensional regular chequer-board structure, where a two-dimensional image is 

representative of a non-homogeneous but isotropic sample, provided that the two­

dimensional image is large enough to assure statistical homogeneity. Thompson et al. 

(1992) also discuss the other main problem of image analysis, which is that the resolution 

limit, in this case 512 x 512 pixels, cannot easily be overcome by integrating over different 

scales. 

7.1.2 Remaining Problems In Image Analysis 

Although there are well developed fundamental, experimental and image analysis 

methods for measuring void space correlation effects and their effect on fluid intrusion, three 

major problems remain. The first is the well-known problem of stereology. Suppose a sample 

comprised spherical pores embedded in a solid. A serial section through the solid would cut 

the spheres at different distances from their centre points, and in many instances only small 

chords would be cut by the section plane. Thus the image analyser detects a seemingly 

random mixture of large and small voids. This stereological effect is illustrated in Figure 7.2, 

in which the black circles show the full size of the spherical pores, and the grey inner portions 

show the areas revealed by slicing the pores at random vertical (z) distances from their 

centres. Correction methods are available for this simple case (Williams, M. A., 1977). 

However, if the sample comprised packed solid spheres with void space in between, the 

opposite would be true - serial sections would suggest unrealistically small regions of solid 

phase. For a natural sample, it is difficult to say which of these cases holds in practice, even if 

the sample nominally comprises lightly cemented spherical grains. What is clear, however, is 

that the image analysis of serial sections will incorporate a randomisation, akin to a signal 

noise, in the measurement of void size or particle size distributions. 
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Figure 7.2 Representation of the computer generated 'laminated spheres' sample. 

The second problem is that it is virtually impossible to make accurate measurements of 

connectivity by image analysis, because of the subjectivity of the algorithms, which must be 

used to interpolate between the serial sections, which are typically more than 5 Jlm apart. The 

accurate mapping of clean sandstone samples without the need for interpolation would require 

accurately located serial sections about 0.1 Jlm apart, and for reservoir sandstones with clay 

inclusions, the spacing would need to be 0.01 Jlm or less. If a sample is isotropic, the 

connectivity, which is observed within the plane of inspection, can be assumed to be equal to 

the overall connectivity of the sample, and measurement becomes theoretically possible. In 

practice, however, what is seen is an irregular array of voids of varying shapes and sizes, and 

there is no objective way of identifying which are throats, or of generating a three-

dimensional throat network of the correct connectivity from the observed two-dimensional 

one. Slight changes in connectivity can have a huge effect on permeability (Matthews, G. P. 

et al. , 1993), and one response to this problem has been to estimate connectivity (and pore and 

throat size distribution) from a frt to a carefully selected portion of the mercury intrusion 

curve (Matthews, G. P. et al., 1995). 
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The third problem is in measuring distance-related correlation effects such as 

lamination. Ringrose et al. (11992) address this problem for the case of permeability 

correlations on a larger scale than considered here, and generate variogram functions for 

mixed sine periodicities. Pore-Cor already obeys the adjacent pore: throat size correlation for 

sandstone measured by Wardlaw et al. (1987) when appropriate, and can mimic arbitrarily 

clustered and~laminated samples (Matthews, G. P. et al., 1995). rhe purpose of this study is to 

add distance-related correlation effects to provide another source of data for the void-space 

model. The approach employed has been to measure, rather than generate, variogram 

functions. The procedure presented here uses an extension of standard sample preparation, 

electron microscopy, image analysis and variogram techniques, together with a newly 

developed spline smoothing technique. 

7.2 Method 

7.2.1 Samples 

Three types of sample were analysed usmg this new combination of methods; 

computer generated artificial samples, an artificial 'real' sample of two sintered glass discs 

of markedly different pore size ranges and two types sandstone. 

Two artificial samples were generated by computer of the same form as the image 

analyser output, that is, comprising the x and y co-ordinates and feature size of the 'voids'. 

The first of these was a straightforward random distribution of spherical pores, the second 

was a laminated sample comprising two regions of randomly distributed pores with greatly 

different mean radii. A diagrammatic representation of the second of the computer­

generated samples is given in Figure 7.2. 

The sintered glass disc samples were prepared by resin filling and joining two filter 

discs with two different pore size ranges, one containing pores in the range 16-40 t.tm the 

other in the range 100-160 J.lm. These samples were cut and polished perpendicular to the 
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join plane. The backscattered electron micrograph of a sintered glass disc sample is shown 

below. 

Two types of sandstone sample were prepared. Fontainebleau sandstone, chosen for 

its apparent mineralogical simplicity and structural homogeneity was prepared using the 

resin impregnation method, while another sandstone (a feldspathic litharenite from the 

Upper Vosgian Unit, France) was analysed using the simpler method due to its 

impermeability to resin. Sample micrographs of the two types are shown in Figure 7.4 and 

Figure 7.5. 
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Figure 7.4 Electron micrograph of a resin-impregnated Fontainebleau sandstone sample. 

Figure 7.5 An electron micrograph of a feldspar sample. 

Two methods of impregnation were attempted on this second sandstone, the epoxy 

resin method mentioned above and a more sophisticated crystic resin impregnation 

128 



(Belbin, S. P., 1994). Despite the latter method being carried out under vacuum and with 

various viscosities of resin neither method produced penetration of anything bar the very 

surface pores of the samples. This feldspar sample was chosen for its apparently highly 

correlated structure, visible to the naked eye as prominent lamina. Although clearly 

laminated it was not known at the outset whether this would translate into correlations in 

the void size distribution, or whether the visible layers were entirely mineralogical in 

nature. 

7.2.2 Void Space Identification by Electron Microscopy!Image Analysis 

During this study the unambiguous identification of void and solid phases was of 

paramount importance. Two techniques were developed to achieve this. The simpler, less 

efficient method merely involved taking electron micrographs of the cut and polished faces of 

the porous samples. By careful optimisation of the electron microscope (a Jeol6100) settings 

micrographs of reasonably high contrast could be produced, but with a small degree of 

ambiguity in separating void from solid. The more sophisticated method involved forcing 

epoxy resin under pressure into the samples prior to image analysis. A cut and polished (using 

silicon carbide paste) face was then observed by backscattered electron microscopy, which 

unambiguously revealed the low molecular mass resin, and hence the original void space, as 

dark areas. 

The correct identification of these dark areas by an image analyser (Quantimet 570) 

relied upon the correct adjustment of the analyser threshold grey level as described by Gong 

and Newton ( 1992). For the non-resin-saturated samples this involved a subjective analysis of 

which grey levels represented void and which represented solid phase. In the resin-saturated 

samples however, where solid-void/resin contrast was much greater than in the samples with 

no resin, the grey level peak was situated in the black void zone, and the threshold, which was 

now on the edge of the peak, could be chosen with only a small degree oflikely error. 

Both of the procedures described above produced two-dimensional images from a 

three-dimensional sample. Any measurements of a two-dimensional image will only be 
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representative of the three-dimensional sample if the sample is homogeneous in the 'z ' 

direction perpendicular to the 'xy' plane of the cut (Thompson, M. L. et al., 1992). To avoid 

erroneous edge effects, an inner guard frame is defined within the image and only voids with 

a particular pixel inside the guard frame (e.g. bottom right-hand) are included in the analysis. 

Samples with wide void size distributions are difficult to analyse completely within one 

image because ofthe limit of digitised image resolution, in the present case 512 x 512 pixels. 

Unfortunately there is no easy way of integrating image analysis results from different scales 

(Thompson, M. L. et al., 1992). 

The position of each feature in the present study was assumed to be the centroid. 

Initially many of the voids observed on an electron micrograph formed large, inter-

connected regions rather than a larger number of distinct voids. Segmentation was used to 

identify individual features. Three erosions of each image were carried out. 

(a) (b) 

(c) (d) 

Figure 7.6 (a) Electron micrograph of sintered glass discs, (b) back-scattered electron-micrograph, (c) 
segmented image and (d) segmented image minus edge features. 
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Figure 7.6 shows the electron microscopy and image analysis of one of the sintered 

glass disc samples. The difference between Figure 7.6 a) and b) clearly demonstrates how 

resin impregnation in conjunction with the backscattered electron detector provides a more 

definitive representation of the sample porosity. Comparing Figure 7.6 b) and c) 

demonstrates the effect of segmentation of the image, while Figure 7.6 d) illustrates the 

removal of features overlapping the guard frame. 

7.2.3 Measurement of Void Size Correlation Using Variograms 

The most direct method of quantifying such correlation is to measure the breadth of 

each feature, and plot the difference between log (breadth) of a particular feature and log 

(breadth) of every other feature as a function of distance between the features. (Using a log 

scale identifies relative rather than absolute differences in breadth). In practice, this does 

not produce meaningful results. Even visually obvious correlations, such as can be seen in 

the micrographs of the glass discs, may be masked in straightforward correlation plots and 

this method has been shown to be of little use (Mathews, T. J. et al., 1997). 

Four methods that can be used to produce meaningful results involve the use of 

semi-variograms, auto-correlation functions, Fourier transforms or wavelets. The first three 

methods all give mathematically analogous results. Wavelets provide a powerful means of 

investigating the structure, but suffer from the major disadvantage that a positional origin 

needs to be defined, thus introducing a major source of subjectivity when studying natural 

samples. 

Semi-variograms, or variograms as they are generally described, were used to study 

pore size correlations in all the samples studied. Variograms are based upon regionalized 

variable theory (Knighton, R. E. and Wagenet, R. J., 1988). A regionalized variable is a 

continuously distributed variable with geographic variation too complex to represent with a 

mathematical function. Regionalized variable theory assumes that although samples 

located near one another may possess similar values, individual values cannot be predicted 

based on those close by. A regionalized variable is a function, Z(x), that takes a value at 

every point in the space under consideration but cannot be directly described. 
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Semi-variance is a measure of the increment change in Z(x) over a distance /. Semi­

variance, ;{f), is defined as (Journel, A. G. and Huijbregts, C. J, 1978), 

y(/) = ~ Var(Z(x;)- Z(xi+1 )) [1] 

As the semi-variance is dependent on the value of Z at the positions x; and X;+I it is 

important that the value of Z is independent of the manner in which those positions are 

chosen. 

A method was used here to calculate directional semi-variograms of the image 

analysed samples (Knighton, R. E. and Wagenet, R. J., 1988; Ringrose, P. S. et al., 1992). 

Variograms were used to examine how at different scales of observation pore sizes differ, 

that is whether at any scale the sizes of different pores were any more or less likely to be 

similar in size. Initially the study was carried out calculating variograms in one direction 

only (Mathews, T. J. et al., 1997). However, this was then extended to multiple directions 

to remove the subjective step of choosing a single search direction. 

The variograms of the output from the image analysis was calculated using the public 

domain computer program GESS (Knighton, R. E. and Wagenet, R. J., 1988). As well as 

the sample data files the program also required various other parameters for the calculation 

of the variograms. The first of these were the number of lags and the fag distance. The 

number of lags determines the number of distance intervals over which semi-variance was 

calculated, and therefore the number of points on the semi-variogram. ln most of the 

studies carried out here it was set to between 10-30. The Jag distance,/, is the size of the 

distance intervals and was determined by dividing the maximum distance between two 

voids in a sample by the number of lags. Thus for the 'sample' shown in Figure 7.7 the 

maximum distance d could be divided into 15 lags, dt, d2, d3 ... dts, to give a Jag distance 

ofd/15. 
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Figure 7.7 Measurement of d in a cross-section of an artificial sample. 

The next parameter required by the program is the search window. This angle (in 

degrees) together with the Jag distance defines an arc used to determine which pairs of 

features are compared when calculating semi-variance. The fmal parameter, search 

direction, is another angle, this one determining the orientation (measured from 'East', or 

parallel to the x axis, away from they axis) of the arc. 

An example is shown in Figure 7.8. Here the Jag is d1, search window is 90° and 

search direction is 0°. At each Jag distance interval, I 1, the program places arcs on each 

feature in the sample and calculates the semi-variance between all pairs made up of the 

feature and any other centred within the arc. The semi-variance associated with each Jag is 

the mean of all the semi-variances calculated in that Jag, Equation 2. 

1 n(l) 

r(l) = - L[Z(x;) - Z(xi+r)f 
2n(l) i=J 

n(l) is the number of paired observations located at a Jag distance, /, apart. 

[2] 

The variogram is a plot of each calculated value of semi-variance against weighted 

average of Jag distance range, < l j >. It should be noted that the semi-variances calculated 

were all based on different numbers of pairs of features, hence each point on the line was 
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of different statistical significance. This was taken into account when fitting the curves, 

Section 7.2.4. 
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Figure 7.8 Calculation of semi-variance over the first lag, d,. 

A typical variogram is shown in Figure 7.9. It can be seen that initially as distance 

increases so does semi-variance, almost linearly, until it reaches some maximum where it 

then remains constant. Thus it can be seen that at small distances of observation the 

features are fairly similar, however as distance increases the features become increasingly 

independent until semi-variance is no longer a function of distance or direction. This 

plateau on the curve is described as a sill, the smallest distance separating statistically 

independent pairs is the range and the distance equal to this is known as the zone of 

influence. 
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Figure 7.9 A typical semi variogram. 
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Initial studies focussed on taking a single variogram across a sample, typically with a 

search direction equivalent to 'North' on the micrograph, or alternatively with a search 

direction based upon the orientation of apparent correlations in the structure. Obviously the 

subjectivity of choosing a single search direction is not particularly desirable, hence, after 

preliminary studies (Mathews, T. J. et al., 1997), an alternative method was developed. 

This involved taking multiple variograms at 15° intervals over 180° and plotting the 

resultant variograms as a surface. This removed the subjectivity of choosing a search 

direction and also gave more detailed information about the presence of correlations in the 

distribution of differently sized voids. 

Normally the variogram points are simply joined up to indicate the overall variogram 

shape as shown in Figure 7.9. However, many samples exhibit scatter in the values of 

semi-variance. The scatter may be caused by real correlation features, or random statistical 

variations, or stereological effects, or any combination of these effects. Reducing the size 

of each lag distance range increases the closeness and number of points in the variogram, 

but reduces the averaging within the range thus increasing the scatter. Therefore the 

variogram must be smoothed to reveal the features which are not due to random statistical 

effects. When carrying out this smoothing, additional information can be gleaned from the 

variogram by noting two points. Firstly, the variogram points are based on different 
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numbers of observations, and their corresponding statistical weights W typically range over 

between one and two orders of magnitude. Moreover, the statistical weighting tends to be 

greatest in the middle of the lag distance axis, with lower weighting as < l j > ~ 0 and/or 

< l j > ~ l,ax. This precludes standard fitting procedures, such as polynomial fits, since 

these become unstable in the high and low < l j > regions, which are nevertheless important 

in determining correlation within the sample. Secondly, in a typical natural sample, high 

lag distance ranges involve a larger inspection area, which is therefore likely to be a more 

highly averaged observation. Both of these features can be taken into account by fitting a 

suitably designed cubic spline regression curve. 

7 .2.4 Curve Fitting 

The cubic spline smoothing curve was designed on the basis of the following 

assumptions: 

(i) The minimum investigation distance was limited by the fact that the 

digitised image was in the form of pixels. Because of this resolution 

cut-off, it is reasonable to assume that the variogram and its first 

derivative should both tend to zero as < l j > ~ 0. 

(ii) It was assumed that the magnification level had been chosen such that 

the larger I values were greater than the correlation distances of 

interest, i.e. greater than those distances corresponding to features 

affecting fluid migration characteristics on a plug scale. It then 

follows that the variogram of the properties of interest can be assumed 

to tend to a constant value, and its first derivative to zero, as I 

becomes large. 

(iii) As I increases, the radius of investigation increases, and so do the 

chances of features being masked by other property values Z. Hence 

the flexibility of the variogram curve decreases with/. 

These three conditions are independent of the fractal nature of the sample, which is 

masked by the resolution lower limit and the investigation area upper limit. Obviously the 
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resolution couJd easily be improved by increasing the magnification, but this might then 

invalidate assumption (ii) above. 

Two best fit spline algorithms, a cubic spline for fitting lines (NAG library E02BAF) 

and a bicubic spline for fitting surfaces (NAG library E02DAF) were used, accounting for 

both the statistical weights and the three characteristics listed above. A fuller explanation 

ofbest fit splines is given elsewhere (Mathews, T. J. et al., 1997). 

7.3 Results 

7.3.1 Computer Generated Samples 

Any variogram smoothing procedure is only worthwhile if it is stable to stereological 

interference. The stability of the method described here was tested using the samples 

described previously. 
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Figure 7.10 Variogram of computer generated structures showing statistical weights. 

Figure 7.1 0 shows the vanograms of two of the computer -generated samples, 

namely the random spherical pores, and the laminated spherical pores of Figure 7 .2. Also 

shown in Figure 7.2 are the sizes of the circular sections through the spheres, assuming that 

the sectioning has occurred a random distance from the centre of each sphere. The 

corresponding variograms of the unfragmented and fragmented pores are also shown in 
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Figure 7.10. Also shown in the figure are the cubic spline curves through the structures. It 

should be remembered that the statistical weights of the points vary widely, and affect the 

fitting of the spline curves shown in this and other figures. It can be seen that the pairs of 

spline curves have similar shapes. The lamination of second computer generated sample is 

still evident in the spline of the fragmented sample, but it is rather more difficult to 

identify, and the apparent inter-lamina distance decreases. 

7 .3.2 Siotered Glass Discs 

As explained in Section 7.1.2 stereological interference in a natural sample will be 

more random than applied in Figure 7.10. Random positive and negative signals were 

therefore applied to the void size measurements before formation into variograms. The 

ranges were :o; ± 10% of the measurement, :o; ± 200/o and :o; ± 50%. This stereological noise 

had the effect of increasing the semi-variance values. The effects on sample 3, the glass 

disc sample shown in Figure 7.3, is shown in Figure 7.11. It can be seen that the lamination 

is clearly indicated by all the spline curves regardless of stereological noise level. 
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Figure 7.11 Variograms of the sintered glass disc sample showing statistical weights. 

Following the original work constructing the two-dimensional vanograms, 

exemplified by Figure 7.10 and Figure 7.11, the glass disc samples were later re-analysed 

using the new technique for looking at variogram surfaces. The variograms produced for 

the sample tested previously by the simpler method are given below. 
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Figure 7.12 a) Variogram surface and b) bicubic spline fitted variogram surface for sintered glass disc 
sample. 

Clearly the more sophisticated technique yields more information regarding 

correlations in the distribution of void sizes. From Figure 7.12 it can be seen that at search 

directions of around 0-15° and 150-165° there is a sudden increase in the semi-variance 

that starts at a distance of around 0.5 mm with a maximum at around 1 mm. Between 

search directions of 15-75° and 150-90° the steep gradient between 0.5 - 1 mm gradually 

becomes much shallower until, for search directions between 75-90° the increase in semi-

variance is much more gradual, with little change in rate. 

Comparing this information with the original micrograph it can be seen that the 

variogram gives a clear representation of the two vertical lamina. These lamina lie 

perpendicular to the search direction of roughly 0/180° and are approximately half the 

image width thick (about 1 mm each). 

7.3.3 Sandstone Samples 

The void space within sandstones is of greater complexity than that of the sintered 

glass model, and any correlation present is harder to measure. 

A backscattered electron micrograph of the Fontainebleau sandstone was shown in 

Figure 7.4. The same stereological interference levels were applied to the Fontainebleau 
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sample as were applied to the sintered glass disc sample, Figure 7.13 . Here it can be seen 

that the interference increased the undulation in the curves, and might have tended to 

mistakenly imply the presence of correlation features. However, the sharp rise with lag 

distance (minimal range of influence) remains a clear indication of a random structure. In 

practice, there would also be positional as well as size interference, which would tend to 

decrease the undulations. It could be suggested that the spline curve should be made less 

flexible by the inclusion of fewer knots, but this would increase the risk of missing 

features . As explained in Section 7.2.4, the inclusion of more knots would amount to 

statistical over-fitting. 
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Figure 7.13 Variograms of Fontaineblcau sandstone. 
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The more sophisticated procedure for constructing variogram surfaces was applied to 

the feldspar sandstone samples. The variograms for Figure 7.4 are shown below. 
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Figure 7.14 a) Surface ' 'ariogram of feldspar sample and b) surface variogram after bicubic splinc 
fitting. 

From Figure 7.14 it is evident that the sample possesses laminations. At search 

directions corresponding approximately to 'East' (0-30° and 13 5-165°) only a gradual 

increase in semi-variance occurs. However, at search directions approximately 

perpendicular to this (90°), parallel to they axis of the micrograph, it is clear that at a Jag 

distance of around 2 mm there is a sharp increase in semi-variance to a maximum at 

approximately 3 mm. It would also appear that at distances beyond roughly 4 mm the 

semi-variance briefly starts to decline again. (Less significance should be placed on the last 

3-4 points of each individual curve as these were calculated from much smaller numbers of 

pairs than the rest ofthe curves). 
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There would appear to be a clear indication of the presence of at least two, ir not 

three, horizontal laminations in the sample at distances of approximately 0-2 mm, 2-3 mm 

and perhaps 4+ mm. Referring back to the original micrograph it can be seen that there 

would appear to be a band of small pores running along the bottom 1 mm of the image. 

Above this there is a larger region, approximately 3 mm in height, of larger pores and the 

last 2 mm appears to be a region of mixed pore sizes. (It should be borne in mind that the 

area of the variograms described by the x and y axes does not correspond to the x and y co­

ordinates of the original micrograph). The maximum at 3 mm in the smoothed variogram 

corresponds to the spacing between the mid-points of neighbouring unlike laminae, the 

minimum at 0-2 mm reflects the presence of at least two layers at least 2 mm thick. 

7.4 Discussion 

A method has been developed for quantitatively measuring the degree of void size 

correlation within resin-filled, sectioned porous solids, using spline-smoothed variograms. 

The procedure has been successfully tested against an artificially correlated void network, 

consisting of two sintered glass discs of different void size ranges. Spline-smoothed 

variograms of these samples correctly revealed the obvious lamination features. The 

smoothing procedure has been shown to be insensitive to stereological interference, 

although such effects have been shown to dampen and shorten the variogram features. For 

sandstone samples, those with lamina visible by inspection both ofthe sample itself and its 

electron micrograph also reveal their structure in variograms. Any lesser degree of 

lamination is more difficult to detect in the variograms, at least in part because of 

stereological effects. Such effects in natural samples are difficult to correct, because it is 

difficult to judge whether a small void space region is genuinely a small void, or a chord 

near the edge of a large void. 

In response to previously discussed shortcomings inherent in conducting the 

variogram studies using user -specified search directions (Mathews, T. J. et al., 1997) the 

technique has been modified to be carried out over a range of directions. The resultant 

variogram surfaces have been smoothed using a bicubic spline-fitting algorithm. 
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Additional work would be required to extend this work to the modelling of correlated 

structures using a network model. The first problem to be overcome would be the 

superimposition of measured correlations onto a simulated network of voids. As discussed 

in Chapter 1, other workers have constructed similar network models to that described 

here, which feature some degree of correlation. Unfortunately these have been, at best, 

very loosely related to experimental measures of correlation. Many studies by other 

workers have tended to examine the, often entirely theoretical, effects of various levels of 

correlation between neighbouring void features on simulated materials. Adler et al (1997; 

1992) simulated porous media with the same correlation in phase distribution as their 

experimental samples. However, modelling correlations in the spatial distribution of 

differently sized voids via a network model does not appear to have been addressed 

elsewhere. 

There is no direct method of back calculating from the surface variograms described 

here to a porous network model with the same level of correlation as an experimental 

sample. To produce simulations with the same properties as observed experimentally, it 

would be necessary to use correlation as a further constraint on the modelling procedure. 

At present the network model described here features a basic simulated microtoming 

algorithm. This routine effectively takes sections through simulated porous media and 

calculates the areas of void features cut by the plane of the section. Bitmap images, 

analogous to electron micrographs and suitable for image analysis, may be produced in 

addition to files containing numerical details. At present, however, this routine is 

somewhat limited in that it can only take sections parallel to the x, y and z axes of the unit 

cell, which would be of limited usefulness in extending the investigation of correlation 

discussed here. To use this algorithm in the simulation of correlated networks it would 

require reformulation to take random sections, in all possible planes, through the simulated 

networks. The complex geometries exposed by such sections would make this process far 

more complicated than the simple algorithm described above. Additionally it would be 

necessary to incorporate code for the calculation of semi-variograms. However, the 

addition of these routines would allow the calculation of multidirectional variograms, 

144 



equivalent to those obtained experimentally in this work, from simulations of porous 

media Once these were in place it would then be possible to use experimentally obtained 

measures of correlation as a fitting parameter within the network model, accepting only 

void space generations with spatial correlations similar to those observed experimentally. 

Were this work to be incorporated into the network model as described above, a 

limitation that would he encountered in its .present form stems from the relatively small 

size of the unit cell. Currently the unit cell is based around a I 0 x 10 x I 0 cubic lattice, 

upon which the simulated void structure is constructed. Thus the dimensions of this base 

unit are limited to a cube of side length somewhat greater than ten times the diameter of 

the largest pore. Exact dimensions depend on the pore row spacing required to model the 

experimental porosity. Consequently it would be extremely difficult to model correlations 

measured over scales greater than this. The diameters-of the largest features of the samples 

tested here were around 300-l.lm and 1000-l.lm for the sintered glass and the Fontainebleau 

sandstone respectively (both measured by mercury porosimetry), and around 350-l.lm for 

the feldspar sample (from image analysis results). If the unit cell side length for each of 

these hypothetical simulations was at least ten times these measurements it can be seen that 

for the first two samples the unit cell would be considerably larger than the length scale 

over which correlation was measured. The minimum side length of the feldspar simulation 

would be around 3.5-mm, slightly less than the measured correlation length scale. 

However, it is highly likely that the actual pore row spacing would be somewhat larger 

than this minimum dimension. Extension of the unit cell size, however, would enable the 

simulation of correlations measured over scales greater than those considered here. 

Were void size correlations measured over scales greater than the dimensions of a 

Pore-Cor simulated unit cell, .an alternative modelling approach would need to be adopted. 

It has been suggested elsewhere (Chapter 6) that composite simulations could be 

constructed, based on different stochastic generations of the same modelled porous 

material. In much the same way described above, correlation could be used as a constraint 

on the construction of these stochastic composites. Although complex, software currently 

exists for performing such calculations, and could be incorporated into Pore-Cor. 
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8 Particle Size Distribution Estimation 

8.1 Introduction 

The work in this chapter was carried out to investigate whether information 

regarding the particle size distributions of simulated porous media could be extracted from 

the network model Pore-Cor. It is useful to consider the approximations, successes and 

deficiencies of the method developed here within the context of the exact solutions 

mentioned earlier (Chapter 1). Haines,(I927) described in detail the intrusion-and extrusion 

of a wetting fluid around the points of contaCt of regularly packed spheres. His 

considerations were expressed mainly as the development of a capillary 'pressure 

deficiency' plotted against 1'/a, T being the surface tension of the wetting fluid and a the 

radius of the spheres. The results were compared qualitatively to real randomly packed, 

approximately mono-disperse samples such as glass beads, lead shot, starch, sand and the 

confection 'Hundreds and Thousands'. 

A more easily usable approach arose from the work ofMayer and Stowe (1965) for 

fluid penetration in packed arrays of uniform spheres. These packings were defined in 

terms of a single packing angle, u (see Figure 8.1 ), calculated from the porosity of the 

sample. The packings have largest access openings ('pore-throat entries') varying in shape 

from 'square' for the most porous (highest values of a) packings to 'triangular' for the 

closer packed (smallest values of u) structures. A relationship is given which relates the 

porosity, surface free energy of the mercury and experimental breakthrough pressure to a 

single particle diameter, de, characteristic of all particles in the packing. A single example 

is given by Mayer and Stowe (1965), in which the calculated diameter for a packing of 

glass beads is shown to be within the measured size range of the beads. 
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b) 

c) 
Figure 8.1 a) Illustration of the packing angle, cr, in an array of uniform spheres and examples of b) the 
square and c) triangular openings formed by packing angles of 90° and 60° respectively. 

Current mercury porosimeter software (Micromeritics, 1996) extends this procedure, 

applying it to every point on a mercury intrusion curve rather then a single breakthrough 

pressure. Effectively this represents the porous material as being composed of spherical 

shells of regularly packed uniform spheres, with the smallest on the outside and largest in 

the middle. A simplified cross-section of such a structure is shown in Figure 8.2. The 

packing angle o- is assumed to be the same throughout the sample. At successively higher 

pressures mercury breakthrough occurs through the progressively smaller voids between 

packings of progressively larger spheres until the material becomes saturated. In fact the 

geometry inferred by this particular use ofMayer and Stowe's relationship is impossible to 

represent in two or three dimensions. It is not possible to construct such a simulation with a 

constant packing angle, which is some indication of the extent to which this is a mis-

application of the original work. 

Figure 8.2 A cross-section through a solid as retlresented by the modified Mayer and Stowe (MMS) 
method of estimating particle size distributions. 
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'Jhe aim of this study was to improve upon the conceptual shortcomings of this 

approach, termed here the Modified Mayer and Stowe (MMS) method. This was done by 

frrst generating a void space structure using the network model Pore-Cor. The geometrical 

inverse of this void structure is an irregularly shaped solid phase structure. In the present 

study the sizes of a regularly spaced array of spherical particles that lie within this solid 

phase were determined. There are a series of approximations implicit in this calculation, 

including the simplified geometry of the void space structure, and the fact that the spheres 

do not fully represent the solid phase structure. llhis study sought to determine whether, 

despite these approximations, the new method could provide a useful guide to ,particle size 

distributions, and one that was better than the current MMS method. The judgement was 

made by comparing the modelling predictions with measurements made by the suppliers 

using sieves, and measurements carried out during this study using a Malvern Instruments 

Mastersizer X laser diffractometer. 

8.2 Theory 

For calculation purposes a primary position, p, is defined. This is the position of a 

pore centre displaced by half the pore-row spacing in the x, y and z directions. Each 

primary position is at the centre of a cube defined by the centres of eight adjacent pores. In 

addition to more sophisticated calculations described below, two bounding calculations 

were made for the sizes of solid spheres associated with each primary position. If each 

sphere were infinitely compressible, it could be deformed into a shape that fully occupied 

the solid phase space associated with each primary position. If this deformed sphere were 

then allowed to return to a spherical shape with the same volume, then the diameter of this 

sphere would be given by: 

3 
3 x [s3 

- (~ ± C/ + _! t 1r r/ L)] 
8 k=l 4 k=l 

D =2 
c 41!' 

[1] 

Here De is the diameter of the compressible sphere, S is the Pore-Cor pore row 

spacing, C is side length of the cubic pores and r is the radius of cylindrical throats. De 
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then provides the upper bound to the sphere diameter at the chosen primary position. The 

corresponding lower bound, termed the hard sphere diameter Dlb is equal to the minimum 

diagonal distance between opposite pores surrounding the primary position. An example is 

shown in Figure 8.3, in which the central sphere is touching the opposite pores 1 and 8. Dh 

is given by the equation: 

[2] 

C1 and Cn are the side lengths of the two diagonally opposed pores giving the smallest 

value of Dh. 

Figure 8.3 Calculation of the hard sphere diameter, D •. 

Within the range defined by these two bounding calculations lies the actual sphere 

diameter associated with each primary position, i.e. the diameter of the largest sphere that 

can be fitted between the eight pores and up to twelve throats without distortion. In 

practice the mathematics required to find this value is analytically impossible, and would 

require a laborious, Monte Carlo -like calculation for its determination. An approximation 

to the solution can be found by ignoring the throats, which are usually smaller than, and 

never larger than, the pores, and then calculating the diameters of spheres that touch 

varying numbers of adjacent pores. The hard sphere calculation represents a two-contact 

calculation, three- and four-contact calculations carried out by vector mathematics will 

now be described. To a good approximation, the actual sphere diameter is equal to the 

largest of the two-, three- and four-contact diameters. 
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The method of calculating the three- and four -contact diameters, DJ and D 4, was as 

follows. The starting point was a spherical 'seed' particle centred on the mid-point between 

the eight nodes of the pores, with diameter DJ<< S. The diameter of the seed particle was 

then increased to a size at which it made contact with the inner-corner of the largest of the 

eight pores surrounding it. If p is a vector defining the position, in three-dimensions, of the 

centre of the seed particle, and c1 is the vector defining the position of the first contact 

point (with the corner of the largest pore), then the position vector u of a point lying on the 

line through p and c can be defined, 

u = (1 +A }p - AC1. [3] 

It is then possible to move u, by incrementing A from zero, until the distance from 

u to c1 is equal to the distance to one of the remaining seven inner-corners of the pores. 

Thus a second contact point, c1, is found, giving three non-collinear points, p, c1 and c1, 

and a sphere diameter D 2 equal to the distance from u to c1 or c1 . It is now possible to 

move the centre ofthe sphere away from the final position ofu in a plane determined by p, 

c1 and c:z, perpendicular to the line between c1 and c1 . Its new position vector, v, is given 

by, 

v =(I+ ,u)u- .U (c1 +c1 ). 
2 

[4] 

1.1 is incremented until another contact point, c3, is found, equidistant from the sphere centre 

to c1 and c1. Meanwhile the diameter has incremented to the value of DJ. 

To find the fourth contact point, c4, the sphere is moved along the line, 

w=v+vn [5] 

n in the above equation is normal to the plane through Ct, c1 and c3, and is given as, 
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0 
= ( c3 - c2) x ( c2 - c,) 

jcJ - c21!c2 -et! 
[6] 

As before the sphere's position is altered by minutely incrementing v until a fourth 

equidistant contact point, c4, is found. Figure 8.4 a-e) gives a graphical representation of 

five successive stages in the four contact point method, or D4 calculation. ('D4' is used to 

denote the procedure, although in certain cases, described below, less than four points of 

contact may be made). 

d) e) f) 

Figure 8.4 mustration of the iterative process for calculating the diameter, D4, of a sphere that makes 
contact with four pores. a) shows the initial array of pores and b-e) show the calculation of the 
individual points of contact f) shows the s11here making contact with the edge of the imaginary cube 
bounding the volume available for the spherical particle. 

In certain instances the configuration of pores around the primary position is such 

that the sphere can make contact with the edge of the cubic volume defined by the centres 

of the eight pores surrounding it. If the particle were allowed to continue growing it would 

therefore 'bulge' into an adjacent volume, Figure 8.4f Due to the extra level of complexity 

this would add to the calculation the D4 calculation is aborted whenever a sphere makes 

contact with this imaginary boundary and the particle size, D4, taken to be the diameter at 

this point. 
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In most cases, D4 > D3 > D2 R: Dh . In some unusual cases, for example when all the 

largest pores are to one side of the primary position, Figure 8.5, D4 < Dh. Overall, the final 

sphere diameter D was taken to be the maximum of D4 and Dh. 

Figure 8.5 A pore configuration that would result in D4<< Dh. 

8.3 Method 

Four different Redhill sands (Hepworth Minerals and Chemicals, Sandbach, 

Cheshire, U.K.) were modelled using this new technique. They were Redhill 30, Chelford 

60, Redhill 65 and Redhill HH. They contained between 96.7 and 99.3% Si02, with other 

main constituents F~03 , Ah03 and K20 . A binary mixture ofRedhill 30 and Redhill HH 

sands, the coarsest and finest grades respectively, and a sample of soda glass Ballotini 

beads of narrow size range were also studied. Experimentally derived particle size ranges 

are summarised in Table 8. 1. 
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RedhllllO Chelfonl60 Redhlll65 RedhlllHH Redhill HH-Redhill 30 llullotiDIBeadll 

Portlde As Masterslzer, As Masterslzer, As Masterslzer, As Masterslzer, As SappUed, Masterslzer, As SappUed, Masterslzer, 
Slze,flm SappUed, % SappUed, % SappUecl, % SappUecl, % % % % % 

% % % o/o 
'Pan' 0.00 0.01 0.1 0.00 0.10 0.00 51.30 43.17 2'-65 22.16 nla 76.28 
63 0.00 0.02 0.3 0.00 0.40 0.00 29.10 28.21 14.55 33.30 nla 33.72 
90 0.10 0.10 2.7 0.34 3.00 0.50 13.40 18.34 6.75 12.55 nla 0.00 
125 0.40 0.54 23.7 7.76 17.10 9.10 5.00 8.60 2.70 15.93 nla 0.00 
180 2.10 2.31 38.5 25.62 37.70 25.76 0.70 1.35 1.40 15.84 nla 0.00 
250 19.30 10.75 24.2 42.20 33.80 36.74 0.30 0.04 9.80 0.22 nla 0.00 
355 48.50 30.38 8.3 20.77 7.50 22.14 0.20 0.21 23.85 0.00 nla 0.00 
500 27.50 34.95 1.9 3.31 0.30 5.69 0.00 0.03 13.75 0.00 nlo 0.00 
710 3.00 15.12 0.2 0.01 0.10 0.07 0.00 0.00 J.SO 0.00 nla 0.00 
1000 0.10 4.39 0.1 0.00 0.00 0.00 0.00 0.00 0.05 0.00 nla 0.00 
1410 0.00 1.43 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 nla 0.00 
2000 0.00 0.00 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 nlo 0.00 

Table 8.1 PSD's as supplied (sieved) and as measured by laser diffraction using a Malvern Instruments Mastersizer X. 'Pan' refers to particles smaller than 63-llm, which drop 
through to the final pan during sieving. 
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It should be noted that the two experimental methods of determining the particle size 

distribution.do not.produce identical results. 'f.his is to be expected, and arises from differences 

in the methods themselves. fletermining particle size distribution by sieving is relatively 

simple. The unconsolidated sample is passed through a series of successively finer mesh 

sieves. The sample fraction retained on each sieve is weighed and attributed to the mesh size 

of that sieve. 

Measuring particle size distribution by laser diffraction is a more complex procedure. 

The particles-of a sample are passed through a monochromatic, collimated beam of laser light, 

the scattering of which is used to calculate the size of the each particle in the<sample. The most 

important difference between the two methods is that, in laser diffraction, sizing is achieved 

by calculating the radii of spheres of volume equal to those of the measured sample particles. 

The effects of this difference will be most pronounced for samples dominated by 

particles of a certain shape. For example, samples dominated by long thin particles may appear 

to be composed of smaller particles when measured by sieving than by laser diffraction. A 

particle of such dimensions may pass through a mesh size similar to the two smallest of the 

three orthogonal dimensions of the particle, i.e. the particle is characterised by its 'thin-ness' 

rather than its 'long-ness'. However, the radius of a sphere with equivalent volume to that of 

the particle, as measured by laser diffraction, may be considerably greater than this apparent 

size. It is most likely that it was this difference between the two techniques that gave rise to 

the difference in measured values, 

Mercury porosimetry curves were obtained for the samples, usmg a Micromeritics 

Autopore Ill (Micromeritics Ltd., Dunstable, Bedfordshire, U.K.) instrument. The intrusion 

curves, shown with the simulated curves in Figure 8.6, were then input into the network 

model. The simulated intrusion curves were fitted to the experimental curves either by 
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(i) minimising the sum of the squared differences between the logarithms of the effective 

pore-entry diameters corresponding to each point on the intrusion curve and the 

equivalent points on the simulation, (log fit), or 

(ii) by minimising the linear difference between the values, (linear fit), as explained in a 

previous publication (Matthews, G. P. et al., 1995). 
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Figure 8.6 Experimental and simulated mercury intrusion curves for a) RedhillJO sand, b) Redhill 65 
sand, c) RedhiiJ BB sand, d) Chelford 60 sand, e) Ballotini beads and f) the 50-50 mixture of RedhiiJ HH 
and RedhiU 30 sands. The dark grey line shows the log fit, the pale grey line the linear fit 

It can be seen that on the logarithmic abscissa usually used to plot mercury intrusion 

curves, the logarithmic fits look the more satisfactory. The linear fits can be used as a visual 

measure of the sensitivity of the final calculated PSD to both the type and closeness of the fit. 

The parameters corresponding to the fitted curves are given in Table 8.2. 
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Sample Type Throat Pore Connectivity 
of Fit Skew Skew 

Redhill30 Log 1.67 1.25 2.9 
Linear 1.97 2.20 3.7 

Redhill65 Log 1.17 1.52 2.9 
Linear 1.87 2.40 3.7 

Redhill HH Log 0.92 1.39 2.8 
Linear 1.12 1.29 3.8 

Redhill HH Log 0.85 1.10 2.8 
-Redhill30 Linear 0.85 - 4.0 
Chelford 60 Log 0.87 1.25 2.9 

Linear 0.87 1.25 2.9 
Ballotini Log 0.77 1.20 2.9 

Beads Linear 0.97 1.20 3.8 
Table 8.2 Pore-Cor parameters and results for SlDlulated sand samples. 

Two ofthe Pore-Cor unit cells corresponding to these parameters are shown in Figure 

8.7, the remaining samples are given in Appendix ??. The unit cells were then used for the 

calculation of pore and throat size distributions, Figure 8.8, and absolute liquid permeabilities. 

a) b) 
Figure 8.7 The Pore-Cor simulated unit cells for a) Redhill30, where tbe large vertical scale bar is 
equivalent to 2191-~m, the small horizontal bars show 438-~m, and b) Redbill HH sand where the large 
scale bar is equivalent to 601-~m, and the small scale bar to 120-~m. 
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Figure 8.8 The simulated pore and throat size distributions of a) RcdbiJIJO, b) 65 and c) BB sand, d) 
Chclford 60 sand, c) Ballotini beads and f) the 50-50 mixture of RcdhiU HH and Rcdhill 30 sands. The to1• 
graphs represents the log fit, the bottom show tbe linear fit, except for Chclford 60 where both fits gave the 
same result. 

An artefact is that modelling is affected by the maximum and mmtmum experimental 

pressures on the intrusion curves, even if these pressures vary outside the range over which 

intrusion takes place. This arises from inefficient packing of the pores and throats coupled 

with the smallness of the unit cell, To control this effect, the experimental curves were each 

truncated at equivalent diameters of <dcf5 and > 5 de , where de is the pore size at the point of 

inflection of the intrusion curve. 
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8.4 Results 

The results of the particle size calculations take the form of a list of 1000 sphere 

diameters, best viewed as frequency histograms. The results and experimental measures of 

PSD's for the samples are given in Figure 8.9. For clarity, three histograms,are shown for each 

sample, covering the same size intervals. The middle histogram shows the experimental 

measurements of particle size distributions, measured by laser diffraction for all samples, and 

by sieving for all the sand samples. The top histogram for each sample shows the bounding 

calculations for the two types of fit to the mercury intrusion curve. The bottom histograms 

show the D4 and MMS calculations, 
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Ideally, the quality of the results should be judged in the light of statistical analysis. 

However, in this case, such.an analysis is difficult. The major problem is that the frequency of 

the 'Pan' fraction (i.e. the fraction of particles smaller than 63-!lm) is often too large to be 

ignored or combined with another size category. Since it refers to .a size range with only an 

upper limit, and is part of a distribution on a logarithmic scale, it precludes calculation of the 

distribution mean, and hence also the standard deviation. Two other statistical analyses, 

namely x2
- and F-tests, avoid this problem. However, x2 analyses in this case are overly 

sensitive to the spreads of the distribution on the size axis. F-tests can only be carried out on 

the variance of the percentage readings, with no size information included, and therefore shed 

little light on these results. Also F-tests require samples to be drawn from· Normal 

distributions, which is clearly not the case for some of the particle size distributions shown in 

the previous figure. One is therefore left with a visual, qualitative judgement as the criterion 

for success in this case. 

It can be seen from Figure 8.9 that, as expected, the compressible and hard sphere 

methods provide the upper and lower bounds for the D4 method. In the cases of the four 

unmixed sand samples and the glass beads, visual inspection of the D4 PSD's show that it 

reproduces the shapes of the experimental distributions well, though skewed slightly towards 

larger particle sizes. For most of the sands the MMS method also overestimated the number of 

larger particles, although slightly less than the D4 calculation. 

The glass beads comprise uniform spheres over a narrow size distribution, Figure 8.1e. 

It might be expected that the MMS method would accurately predict this system. In fact it 

drastically overestimates the size if the largest particles. From this it may be inferred that the 

MMS method is over-sensitive to the intrusion at low pressures. In this case an unmodified 

Mayer and Stowe method, based solely on de, produces a result of just under 28 11m. This 

figure falls comfortably within the tallest peak on the experimentally derived distribution and 

illustrates the limitations of extending the method over a range of intrusion pressures. In 
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contrast to the problems experienced using the MMS method, the D4 calculation modelled the 

PSD ofthe:glass beads with considerably greater accuracy. 

The mixed sand sample has, as expected, a bi-modal size distribution which is clearly 

indicated by both experimental methods in the centre histogram of Figure 8.9f This bi­

modality is also manifest in the two-step mercury intrusion curve, Figure 8.6f Unfortunately, 

the Pore-Cor unit cell network is not extensive enough to model bi-modal distributions, and 

the possible simulated PSD's are therefore restricted to uni-modal distributions. The 

consequence of this can be seen in Figure 8.6f- the simulated curves have a single point of 

inflection and are a poor fit to the shape of the two-step experimental intrusion curve. The fit 

at low intrusion is also affected by the essential 5 de cut-off mentioned above. Nevertheless, 

the fitted curves do straddle the range of the experimental curve, and the D4 calculation gives a 

very much better approximation to the range of particle sizes than does the MMS method, 

Figure 8.9f 

8.5 Conclusions 

It is evident from the results that the distributions produced by the new four contact 

point method, or D4 calculation, fall between the bounds of the compressible and hard sphere 

methods, and compare well with those produced by the MMS method. Both the D4 and MMS 

calculations produced acceptable approximations of the PSD's of the unmixed sand samples, 

although both methods tend to overestimate the fractions of larger particles. For the glass 

beads and mixture of sands the D4 method provided a significant improvement over the MMS 

method. 

The D4 method presented here is based on a wide range of approximations, some of 

which may be addressed in future work. Thus it would not be sensible to use the method to 

study unconsolidated material, since the direct experimental methods described here are much 

more reliable. Nevertheless, the theoretical approximations are less gross than those within the 
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MMS method. It has been demonstrated, by the trials with unconsolidated material, that the 

new method could be a useful tool in the study of consolidated material where no direct 

experimental methods are available for particle size measurement. 

8.6 List of Symbols 

a 

A 

c 

s 

s 

T 

V 

Radius ofsphere 

Cross-sectional area of cell 

Pore side length 

Characteristic throat diameter 

Minimum and maximum throat diameters 

Sphere diameter produced by new 'D4' method 

Compressible sphere diameter 

Hard sphere diameter 

Formation factor 

Absolute permeability 

Length 

Number percent of throats of diameter d 

Primary position 

Throat skew 

Pore row spacing 

Time 

Surface tension of wetting fluid 

Volume of fluid 

8.6.1 Greek Letters 

B 

A-

17 

Number of tubes in the z direction 

Incremental parameter 

Viscosity of fluid 
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() Packing angle 

f-1 Incremental parameter 

u Incremental parameter 

n Averaging operator 

If/ Pore skew 

8.6.2 Subscripts 

cell 

tube 

x, y, z 

Cell 

Tube 

Pertaining to the x, y or z axis direction, may be positive or negative. 

8.6.3 Vector Notation 

c 

n 

p 

u, v, w 

Three-dimensional position vector of a cubic pore corner 

Vector normal to a plane 

Three-dimensional position vector of the centre of a spherical 'seed' particle 

Three-dimensional position vectors 
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9 Particle Induced Permeability Damage Study 

9.1 Introduction 

As discussed in Chapter I models of deep-bed filtration developed over the last 20-30 

years can generally be attributed to one of four types: empirical, trajectory-analysis based, 

stochastic and network based. Model complexity varies from extremely simple statistically 

based simulations, featuring no mechanistic components at all, to highly sophisticated 

molecular dynamics type simulations, requiring the processing power of supercomputers. A 

description·ofmodel types and some notable examples are given below. 

Empirical models, originally developed by Ives (1960), Heertjes and Lerk (1967) and 

Ison and lves.(1969), based on macroscopic continuum conservation equations depend largely 

on a system-dependant empirical 'filter coefficient'. Simple empirical models are not 

concerned with morphological considerations regarding the pore space, and cannot predict 

permeability decline or effluent concentration. Such models have been criticised for their 

simplified representations of porous media. For example, such models tend to use the 

empirical Kozeny-Carman equation for calculating pressure drop across the porous material, 

which, although appropriate in systems of parallel independent pores, may not be suitable for 

systems of interconnected pores. 

An example of a more sophisticated empirical model is that devised by Gruesbeck and 

Collins (1982) for predicting productivity declines in producing wells. This model considered 

two types of pore. The first included those that were smaller than, and therefore became 

plugged by, the suspended particles. The second were larger pores in which non-plugging 

deposition could take place. Deposited particles could also be re-entrained, possibly leading to 

later plugging of the smaller pores. The model allowed the estimation of permeability decline, 

albeit using unquantified phenomenological constants. Soo and Radke ( 1986) devised another 

sophisticated empirical model based on this model combined with the trajectory analysis 

simulation of Payatakes et al. (1973). Their model simulated the(Tien, C. et al., 1979) 
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filtration of dilute stable emulsions. Although the model did allow the prediction of effects of 

filtration on permeability results were rather inaccurate, possibly arising from the Kozeny­

Carman capillary assumption implicit in the trajectory analysis calculations. 

Trajectory analysis models, used either in isolation (Tien, C. et al., 1979; Nabzar, L. et 

al., 1996) or coupled with some other technique as described above, tend to consider the 

porous material to be a number of unit bed elements connected in series. As first described by 

Payatakes et al. ( 1973) each of these is said to consist of a number of unit cells, which may be 

a variety of geometric shapes. Particle trajectories are calculated using streamline analysis and 

consideration of other forces, such as gravity, inertia and van der Waal's forces. Such models 

tend to give accurate predictions of the filter coefficients and filter efficiency, but do not tend 

to predict resultant changes in the pressure drop across samples. 

Stochastic models are less commonly employed and tend to rely on probabilistic 

approaches. Fan et al. ( 1985) devised a simple model based on a probabilistic birth-death 

approach to predicting the blockage of pores. Here a birth event was equated with clogging of 

a feature by deposited particles and a death event was equated with a feature becoming 

unblocked by the removal ('scouring') of deposited particle from its surfaces. The model was 

calibrated to experimental data, but was over simplistic in that it could only model uniformly 

sized pores. 

More recently network models have been employed to model particle transport 

behaviour with varying degrees of success. Although many authors favour the use of two­

dimensional networks, it has been pointed out that three-dimensional models are likely to be 

more accurate in their ability to allow flow to bypass regions of low permeability 

(Constantinides, G. N. and Payatakes, A. C., 1989). Similarly, many models rely on one void 

type only, typically composing networks purely of cylindrical throats connected at nodes 

representing pores of zero volume (Rege, S. D. and Fogler, H. S., 1988; Imdakm, A. 0. and 

Sahimi, M., 1991 ). 
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Particle transport has been simulated in these network models in a number of ways. 

Todd et al. (1984) devised a model coupling an unbiased random walk method with two 

different capture mechanisms, random capture and one based on the geometric relationship 

between particles and voids. Predicted results were rather inaccurate, and the authors 

attributed this to failings in the capture mechanisms. 

Sharma and Yourtsos (1987) developed an effective medium approximation of the flow 

field in their network model of deep bed filtration, using this to calculate changes in 

permeability due to particle capture. Particle capture was governed by population balance type 

equations, solutions of which were provided for three specific scenarios Certain 

dimensionless parameters were used to fit the modelled data, although these could be 

determined from experimental results. Again modelled predictions, here of the data of 

Baghdikian et al. ( 1989), were not very accurate. 

Rege and Fogler (1987; 1988) developed a two-dimensional network model in which a 

probabilistic method was used in addition to size exclusion to model particle capture. 

Although the model featured some empirical parameters and included no facility for the 

scouring of deposited particles, it proved reasonably successful in modelling various 

experimental results (Baghdikian, S. Y. et al., 1989; Soo, H. and Radke, C. J., 1986) and has 

been adapted for use elsewhere (Wenrong, M. et al., 1996). 

Jmdakm and Sahimi (1987; 1991) developed a model based on a cubic network of 

cylindrical pores. The flow field over the network was calculated using Hagen-Pouseuille to 

calculate pressure drops, and finite numbers of particles were moved through the network 

using the trajectory analysis model of Payatakes and Tien (1973; 1979). Although 

computationally complex, the model was in good agreement with the experimental data 

against which it was tested. 
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Salles et al. ( 1993) developed a theoretical technique for calculating particle deposition 

and clogging in a variety of different simulated porous media. A numerical scheme was 

devised, partly based on a random walk model, which tracked the progress of a finite number 

of particles through the fluid filled material. Particles were deposited when they collided with 

feature walls, and features were removed from the void matrix when the level of deposition 

within them exceeded a prescribed level. Although reasonably sophisticated, the model was 

not compared with any experimental results. 

Pore-Cor, as previously described, is a three-dimensional network model, featuring two 

void types and variable connectivity. Although a small amount of work has already been 

carried out with regard permeability damage due to deposition of solid material, this has been 

fairly unsophisticated. A 'colloidal damage' routine has been developed that effectively 

blocks, or removes, all voids smaller than a certain size (the radius of the uniformly sized 

particles in a 'colloidal suspension'). Effectively this models an idealised form of size 

exclusion, where all voids smaller than the mobile particles are accessible to them and become 

blocked. Due to the small size of the unit cell and the nature of the permeability algorithm, 

which looks for paths of maximal flow, this tends to have the effect of producing decreases in 

simulated permeability disproportionately large compared to those observed experimentally 

(Mathews, T. J. et al., 1994). 

In a similar vein a more sophisticated 'polymer plugging'/'air intrusion' routine has also 

been formulated. A polymer/air front is simulated moving through the unit cell, blocking all 

features it passes through but unable to pass through features smaller than a certain size. The 

modelling of this process uses the same percolation algorithm employed by the mercury 

intrusion routine. Thus, as the front penetrates the randomly arranged voids of the sample it 

becomes uneven as different areas of the front become stationary. Eventually the entire front 

ceases to move. This has been used elsewhere (Chapter 6) in this thesis to simulate the partial 

water saturation of sands. 
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A major limitation of both of the methods described above is that neither can model the 

cumulative effects of continuous flow through samples. Nor can either of the simulations 

model deposition of a range of particle sizes. Finally, the partial blocking of features by 

comparatively small particles cannot be modelled. Thus, although the mechanisms for 

modelling simplified particle capture behaviour were in place further development was 

required to develop a more realistic simulation. The current work aimed to investigate the 

possibility of incorporating a more sophisticated simulation of the flow and deposition of 

dilute suspensions into the existing network model. 

9.2 Model Formulation 
All modelling of actual samples was carried out as described elsewhere (Chapters 2 and 

6) with modelling of particle-induced permeability damage taking place subsequently. 

One potential method of modelling permeability damage due to fines migration would 

be to adapt the routines already employed in the calculation of tortuosity within the unit cell. 

These could be adapted to model the movement of individual particles within the voids. Other 

workers have utilised both random walk (Todd, A. C. et al., 1984) and flow-biased random 

walk (Rege, S. D. and Fogler, H. S., 1988) methods with varying degrees of success. 

Alternatively, it would be possible to adopt a trajectory analysis-based approach, as developed 

by Payatakes and Tien (1973; 1979) and used by Imdakm and Sahimi (1987; 1991). However, 

both of these approaches would increase computing times dramatically, especially on the 

platforms for which the network model has been designed (medium specification IDM PC's 

and compatibles), without necessarily producing a proportional increase in accuracy. 

Rather than looking at individual particles and their progress through the unit cell 

consideration was given instead to individual features (pores and throats) and the likelihood of 

differently sized particles being deposited within those volumes. Particle capture was 
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governed by two processes. The first of these was straining or size exclusion, where particle 

diameter was greater than that of the feature being considered. The second was a probabilistic 

method of determining whether particles were likely to be deposited within feature· as a result 

of various physicochemical forces. 

The first step in the modelling procedure was to calculate a transport volume, that is the 

volume passing an imaginary observation point, in each individual throat in the unit cell. The 

Poisei.Jille equation, re-arranged in terms of transport volume passing through a void, v;, 

yields, 

4 

V =I MnR, 
I 8pl, [1] 

where I is the time step, R, is the throat radius, L, is the throat length, J.1 is the viscosity of 

the suspension and l'l.P is the pressure drop across the throat. M, calculated prior to v;, is also 

given by re-arranging Equation I, calculating in terms of flow across the entire sample rather 

than a single feature. 

[2] 

where Q is the volumetric flow rate across the sample, K is sample permeability, A is 

sample cross-sectional area and L is sample length. 

Although flow in they-axial throats was assumed to be from top to bottom, neither these 

calculations nor any others made any assumptions about the direction of flow in the x- and z-

axial throats. 
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The equivalent transport volumes were then calculated for the cubic pores in the 

network. Because the Poiseuille equation is applicable only to capillaries and no simple 

equivalent is readily available for cubic voids an estimate of the transport volumes was 

required. This was achieved by simply halving the sum of the transport volumes of all the 

throats surrounding each pore. This simplification is at least justifiable in that it is equivalent 

to assigning half the flow through each pore to input and the other half to output. 

Having determined these transport volumes it was then possible to calculate how many 

of the differently sized particles would pass in that time. Given the concentration, density and 

particle size distribution of a suspension, and assuming the particles to be uniformly 

distributed theroughout, it was relatively simple to calculate the number of differently sized 

particles within a given volume. The total volume of fines, Vf, present in the pore volume of 

the unit cell, Vp, is given by, 

[3] 

where C was the initial concentration of fines in suspension and d the fines density. It 

was then possible to calculate the number of fines of each size present in the unit cell, N1, N2, 

N3 .... N,, where i is the number of size categories in the particle size distribution. For the 

purposes of modelling it was necessary to make some assumption about the shape of the 

suspended particles. For the sake of simplicity particles were assumed to be spherical. Given 

this assumption the number of fines in a given size category, N,, present in one pore volume is, 

JfY, 
N.=-­

, 41CR.3 
' 

[4] 
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Here fi is the frequency of fines in size category i and R; is the fine radius, obtained 

experimentally. ln this way the initial 'reservoir' of solid material available for deposition was 

calculated. 

Having calculated transport volumes and total number of available fines, deposition was 

then considered. The features of the unit cell were considered sequentially, moving through 

the pores in ascending numerical order by pore index. Although this sequence is arbitrary it is 

realistic in that it simulates the suspension becoming more and more depleted as it flows from 

plane to plane, perpendicular to the direction of flow. After considering deposition in a pore 

each of the throats connected to it in the positive x, y and z directions were considered, before 

moving onto the next pore in the matrix. Initially this involved calculating the number of 

particles, n;, of a certain size present in a given feature, given by, 

n. = (N -D)_!j_ 
I I I V 

p 

[5] 

VP was the pore volume ofthe unit cell and D; the number of fines in size category i that 

have already been deposited. 

Having determined whether any particles of a given size were present in a feature the 

next step was to establish whether deposition would take place due to straining/size exclusion. 

This was achieved simply by comparing particle radius, R; to feature radius, R, in the case of 

the cylindrical throats, or Lp/2, where Lp is side length, in the case of the cubic pores. lf fine 

radius was greater than feature radius then the feature was assumed to have become blocked 

and D; was incremented by 1. 

A second mechanism by which straining might take place was also used, where no fines 

of a certain size were expected within a feature (Equation 5) but fines of this size were still 
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present within the unit cell (i.e. n; < I, N; - D; > 0). In such cases a biased Monte Carlo type 

method was used to determine whether a particle would be ,present in a pore or throat. A 

pseudo-random number generator was used to return a value, Xran, between zero and one. 

Then, if the condition, 

nV, 
-·-~x V ran 

p 

(6] 

was met a particle was deposited and D; incremented by one, By using the ratio V,! Vp 

the likelihood of deposition taking place by this method was skewed towards the larger sized 

features, where particles were statistically more likely to be present, without ruling out the 

possibility of deposition taking place in even the smallest pores and throats. 

If no straining took place then a probabilistic method was used to determine whether 

deposition took place due to other forces. The probability of deposition of fines smaller than 

the voids they are travelling through, P, has been defined for cylindrical throats as (Rege, S. 

D. and Fogler, H. S., 1988), 

P = 4[(BR, I R, Y -(BR, I R, Y] + (BR, I R, t [7] 

where B is a lumped parameter that accounts for factors such as fluid velocity, ionic 

conditions, pH and fluid properties. When the relationship between BR; and R, is such that P is 

equal to, or greater than, I then deposition will take place. Equation 7 was also used to 

determine the probability of deposition taking place in the cubic pores by substituting Lp/2 for 

R, although this obviously represents a fairly crude approximation of the depositional 

probability within a pore. Equation 7 is based on the determination of an annular region of size 

BR, within a cylindrical feature experiencing laminar flow, and as such cannot be directly 

applied to cubic volumes. However, in the absence of a more sophisticated model this 

adaptation of Equation 7 was employed. 
173 



Ois definedin this work as (Rege, S. D. and Fogler, H. S., 1988), 

0 =00 exp(-v/v*) [8] 

Oo being a constant dependant on ionic conditions, v representing fluid velocity in the feature 

and v* being a critical velocity. A value for v* can be found either theoretically (Rege, S. D. 

and Fogler, H. S., 1988) or by calibrating to experimental results, as was done here. Similarly 

a value for 00, another lumped parameter accounting for ionic strength and pH, can be found 

by adjusting it such that predictions fit experimental data for one run, then using this value for 

all further predictions. Having already calculated the volume flowing through a throat in a 

given time v can be calculated as, 

V, 
v= --'--=-

t.n.R,2 
[9] 

or by substituting L/ for nR/ in the case of pores. 

Deposition of a particle within a feature naturally alters the flow characteristics of that 

void, causing a reduction in flow equivalent to decreasing the effective radius of the feature. 

Subsequent depositional probability calculations using Equation 7 should reflect this. It was 

therefore necessary to have some means of determining the new effective radii of features in 

which fines have been deposited. It has been shown that, considering Poiseuille flow and 

employing the relevant boundary conditions, the increase in pressure drop· due to the presence 

of a spherical particle in a feature, L1Pp, may be defined (Happel, J. and Brenner, H., 1980), 

llP =l2J.lR.Uol_(1-R)2fK 
p R 2 L1 I . I 

I 

[10] 

where U0 is the centreline velocity through the feature (here taken to be v) and K1 is given by, 

K = 1-(%XR;/R,Y -0.202(RJR,Y 

I 1- 2.l(R;/RI )+ 2.09(R; /R~)3 -l.71(RJI~r + o.73(R; IR~t 
[ 11] 
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The total pressure drop, L1P1otal, through the feature can be described by, 

[12] 

where M is.the pressure drop across the feature prior to deposition. M 1otal may therefore 

be calculated and substituted back into the Poiseuille equation (Equation I) which, upon re­

arranging, yields the new effective radius of the feature. 

When deposition took place in a modelled void there were often large numbers of 

particles of the same size present in the feature. A process was derived for governing the 

precise number of particles deposited in this situation. The deposition of particles causes the 

conditions that govern further deposition within a feature to change. One approach would be 

to re-calculated these conditions after the capture of every individual particle. The other 

extreme would be that all particles originally present in the feature were deposited, ignoring 

the dynamic nature of particle capture. 

In preliminary studies both methods were tested for suitability and although the latter 

process resulted in excessive permeability damage (in terms of pore volumes of the suspension 

required) the former added to computing times to such a degree as to make the program 

unusable. The solution took the form of a compromise between the two extremes. Initially the 

effective size of the feature was calculated assuming that all of the particles under 

consideration were deposited. Then an intermediate feature size, Rmt, was calculated as 

follows. Assuming permeability to be proportional to R4 then an estimate of this intermediate 

throat diameter, RmL can be made. If the permeabilities of the throat initially and after 

deposition of all particles are K, and Knew respectively then, 
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K, oc R/ [13] 

K R 4 
new OC new [14] 

Taking logs this can be expressed, 

[15] 

[16] 

To estimate a throat diameter, Rtnt, producing an intermediate permeability the average of the 

right hand sides of Equations 15 and 16 is taken. 

[ 17] 

From Equation 17 it can be seen that Rint can be calculated directly as the geometric mean of 

the two other radii, i.e., 

[18] 

This value of Rmt was then put back into Equation 7, and if the probability of deposition 

was still greater than 1 then particle capture occurred depositing all available particles. This 

new method, with probability of deposition now skewed to favour the larger pores and throats, 

went some way towards dealing with the problem of rapid permeability decline while not 

adding significantly to computation times. 

Having defined all the processes by which fines deposition may take place in the model, 

the program was structured such that permeability could be re-calculated each time one pore 

volume of the modelled suspension exited the unit cell. Finally the model was programmed to 
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run repeatedly until the volume of fines deposited from one pore volume became zero, that is 

until all possible deposition, given the new effective volume of the unit cell and concentration 

ofthe suspension, had taken place. 

9.3 Modelling Permeability Decline 
Having formulated the model it was tested and its predictions compared to some 

experimental data. The model requires results from core flooding experiments run at at least 

two different flow rates before it can be used to predict the results of successive runs. It was 

necessary to start by using the results from an experimental run canied out at a low flow rate 

such that it could be assumed that the exponential in Equation 8 would equate to I. Thus Bo 

could then be set to provide the best fit of modelled to experimental results. Having done this 

it was then possible, using the results from a second run carried out at a faster flow rate, to 

determine a value for v* in the same manner. Having established values for these two 

parameters it was then possible to predict the results of successive runs. The fit of modelled to 

experimental curves was quantified by a simple sum of the squared differences between 

experimental data points and modelled predictions, the aim being to minimise these values in 

each case. 

9.3.1 Sandstone Sample 

Initially limited testing of the model was conducted using results from a single core 

flooding experiment (supplied by Ambellia Consulting, Wiltshire, U.K.) canied out on a plug 

of sandstone (origin unknown) using unfiltered North Sea water. Experimental details are 

shown below. 

Piu Details 
Initial Permeability, K 3.296 Darcies 

Porosity 39.1 % 
Length, L 40mm 

Cross-sectional area, A 114mm2 

Table 9.1Summary of experimental details. 

Solution Details 
Concentration of Solids 36.843 g r 

Viscosity, Jl 1.35 cps 
Flow Rate, Q 10 m1 min"1 
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9.3.1.1 Pore-Cor Modelling 

The details of the Pore-Cor simulation of the sample are shown in Table 9.1 and the 

experimental and modelled mercury intrusion curves are shown in Figure 9.1 
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Figure 9.1Exl>erimental and modelled mercury intrusion for sandstone sample. 

Parameter 
Modelled Porosity 

Modelled Permeability 
Type of Fit 

Throat Skew 
Pore Skew 

Minimum Throat Diameter 
Maximum Throat Diameter 

Connectivity 
Table 9.2 Pore-Cor modelled parameters. 

Value 
39.09% 

0.832 Darcies 
Log 
1.33 
1.17 

10.14 ~m 
212.00 ~m 
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It can be seen that the fit of modelled mercury intrusion curve to experimental was 

somewhat inaccurate. This was probably due largely to the shape of the experimental curve. 

The network model is most suited to modelling intrusion curves of a more sigmoidal shape 

than that available here. In fact, the original experimental curve ended at the penultimate point 

of the line shown in Figure 9.1, the final point at 100% (obscured by the modelled curve) had 

to be added here to enable Pore-Cor to model the sample at all. 
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The difficulties of curve fitting are indicative of a commonly encountered problem when 

modelling porous media using this network model. Pore-Cor requires accurate, detailed and 

complete mercury intrusion curves to produce·accurate simulations. Often mercury intrusion is 

carried out using a small number of pressure points over a narrow pressure range. While this 

may be adequate for some purposes Pore-Cor is most successful when modelling samples with 

a greater number of points over the complete range of pressures under which intrusion takes 

place. Intrusion carried out under such conditions tends to produce the sigmoidal curves most 

suitable for the model. 

9.3.1.2 Results 

Due to the lack of data covering core flooding carried out at different volumetric flow 

rates, only one stage of the procedure developed here could be tested. Nonetheless, this was 

carried out to ascertain whether the model was likely to be of any use in modelling further 

experimental data. 

Using the supplied data the model was fitted to the experimental results. This was 

achieved by setting the exponential in Equation 8 equal to one (equivalent to assuming that the 

experiment was conducted at such a rate that v was extremely small compared to v*) and by 

then adjusting 00. Figure 9.2 shows the effect on the model of changing Oo, including the best 

fit line, which was accomplished by setting the value of 00 equal to I 5.9. It can be seen that, 

although the model somewhat overestimated the rapidity of the permeability decline, it was 

possible to achieve a satisfactory fit of model to the experiment. Considering the ratio KemiKo, 

where Kend is the final permeability, we have 0.717 for the experimental and 0.721 for the 

modelled. 
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Figure 9.2 Results of varying 00 for sandstone sample. 
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The differences in rates of permeability damage as (}0 was varied can be interpreted as 

simulating the effects of varying ionic conditions in experimental work. Increasing ionic 

strength experimentally would be expected to have the effect of increasing the likelihood of 

particle deposition taking place, due to the greater attractive forces that would be expected to 

be present within the system. Hence, increasing 00 causes 0 to become larger, increasing the 

probability of fines being captured in features too large for size exclusion to take place and 

causing accelerated permeability decline. When size exclusion is the chief mechanism of 

deposition (low values of 8) rates of permeability decline will be slow if, as is the case here, 

the suspension contains few large (cf pore size) particles. 

9.3.2 Baghdikian Data 

The new model was also tested more fully using the experimental data ofBaghdikian et 

al. (1989) who examined particle plugging behaviour by flushing a Bentonite suspension 

through Ottawa sandpacks. Part of this study involved carrying out several core-flooding 

experiments keeping all conditions constant apart from flow rate, and these runs (12-14) were 

used to assess the reliability of the model developed here. A summary of the experimental 

details is given in Table 9.3. 
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Sam le Details 
Sample Ottawa sand 

Particle Size Range 40/170 mesh 
Initial Permeability, K 1.36 Darcies 

Porosity 37.5% 
Length,L 322 mm 

Cross-sectional area, A 3117.2 mm2 

Table 9.3 Summary of experimental details. 

9. 3. 2.1 Pore-Cor Modelling 

Solution Details 
Bentonite Cone. 400 ppm 

Density of Solid Phase 2.35 
Viscosity, p 1.35 cps 

Flow Rates, (b 5.4 rnl min-1 

(b 11.4 ml min-1 

21.4 rnl rnin-1 

The sample was modelled using Pore-Cor. Table 9.4 shows the modelled conditions and 

Figure 9.3 shows the modelled and experimental mercury intrusion curves. 
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Figure 9.3 Experimental and modelled mercury intrusion for Baghdikian data. 

Parameter 
Modelled Porosity 
Modelled Permeability 

Type of Fit 
Throat Skew 
Pore Skew 

Minimum Throat Diameter 
Maximum Throat Diameter 

Connectivity 
Table 9.4 Pore-Cor modelled parameters. 

Value 
37.47% 

0.453 Darcies 
Log 
0.47 
None 

5.4780 
45.3913 
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As can be seen from Figure 9.3 an extremely close fit of modelled to experimental 

mercury intrusion curve was achieved. Although the modelled permeability was somewhat 

low, it was deemed close enough to be acceptable for the purposes of this exercise. The 
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absolute value of the modelled permeability was not of great importance in this specific case 

as the study focussed on the ratio K/1(0, where Kd was the permeability after deposition and 

K0 was initial permeability. 

9.3. 2.2 Results 

Using the new particle capture program permeability damage due to fines deposition 

was simulated using the experimental conditions employed by Baghdikian et al. (1989). 00 

was determined by assuming that the run canied out at the lowest volume flow rate, 5.4 ml 

minute-1
, was slow enough that the exponential term in Equation 8 could be ignored. Then 00 

was varied until the best fit of model to experiment was achieved. Having done this the newly 

acquired value of 00 was used to determine a value for v* by fitting modelled results to 

experimental for the experimental run carried out at the intermediate flow rate, 11.4 ml 

minute-1
. Once both ofthese values had been found they were re-input into the model and used 

to predict the results ofthe run carried out at the highest flow rate, 21.4 ml minute-1
. By this 

process the values of 00 and v* were found to be 35.2 and 9 mm s-1 respectively. Details of 

experimental and modelled permeability decline for each run are shown in Figure 9.4 while 

Table 9.5 summarises experimental and modelled values of Kent!K0. 
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Figure 9.4 Results of modelling Bagbdikian experimental data. 
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Flow Rate,.ml minute-1 

5.4 
11.4 
21.4 

Experimental Ken/Ko 
0.17 
0:28 
0.55 

Table 9.5 Ratios of K.,.iKo for penneability decline modelling. 

ModeUed Ken/Ko 
0.207 
0.338 
0.388 

Although the model predicted a changing rate of decline between experimental runs it 

was ratherinsensitive to changes in flow rate. Final values of relative permeability (Table 9.5) 

deviate from the experimental results by just3.7% and 5.8% for the 5.4 and 11.4 ml minute·' 

flow rates respectively. However, the new model somewhat overestimates the permeability 

damage for the run carried out 21.4 ml minute·', predicting a final relative permeability of 

approximately two-thirds the experimental value. An unusual feature of the simulation is the 

fact that curves produced for the two highest flow rates cross over between I and 2 pore 

volumes. This is discussed in the next section. 

9.4 Conclusions 

From the results presented it can be seen that the model described here, although 

possessing shortcomings in its present form, could be developed into a useful model within the 

framework already provided by Pore-Cor. The new model produced cumulative permeability 

damage similar to that observed experimentally. The probabilistic determination of particle 

capture extended the method to a three-dimensional network model where .previously it had 

only been applied to two-dimensional triangular (Rege, S. D. and Fogler, H. S., 1988) or 

square networks (Wenrong, M. et al., 1996). 

An artefact of the modelling process was the crossing over of the modelled 11.4-ml min-

1 and 21.4-ml min- 1 curves between 1 and 2 pore volumes (Figure 9.4). This effect arose as a 

result of the complex combination of changing conditions (i.e. flow rate), the fact that 

deposition is modelled by considering the features of the unit cell sequentially and the 

sensitivity of the modelled permeability to the specific geometry of the unit cell. During the 

modelling process changes in the modelled flow rate affect the depth in the unit cell to which 

suspended particles may be transported prior to deposition. Due to the relatively small size of 
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the writ cell, certain regions of void features may contribute significantly to the overall 

modelled permeability. Hence, if the effect of a certain modelled flow rate is that a larger 

number of particles are deposited, coincidentally, in such a region, a large permeability 

drop will be observed. 

Clearly the situation described above represents a limitation in the modelling 

procedure presented here. The unit cell modelled by Pore-Cor is relatively small and, as a 

consequence, even individual features may have a considerable effect on simulated 

permeability as demonstrated here. However, expansion of the unit cell was beyond the 

scope of this study. 

With regards the model formulated in this study there are several areas that would 

need to be addressed to produce more accurate simulations. Perhaps most obvious of the 

theoretical problems is the use of the Navier-Stokes equations (Equations l 0 and ll) to 

non-cylindrical volumes. Rectification of this would require the use of equivalent 

expressions developed for cubic volumes. Although many workers have examined laminar 

flow in cylindrical voids, which is therefore fuirly well characterised, relatively little 

equivalent work has been conducted on larninar flow in cubes. 

At present the model takes no account of particle-particle interactions, post­

deposition particle 'scouring' from the sample surface or the effect of particle deposition 

on the parabolic velocity profiles assumed to be present within the features. Although it is 

theoretically possible to model these processes, inclusion would add further levels of 

complexity to the calculations and would add greatly to computation times. Also it was 

necessary to approximate the suspended particles to spheres. Clearly this is a rather gross 

approximation, for example the Bentonite modelled in Section 9.3.2 is made up of platelet 

shaped particles. It is possible that future work could incorporate equivalent solutions of 

the relevant hydrodynamic equations that would allow the modelling of alternate particle 

shapes. Another limitation concerning particle deposition is that deposition morphology 

was not considered. 
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Particles were assumed to deposit uniformly on the void surfaces. Were the model to be 

developed further it would be worth considering modelling some form of dendritic deposition. 

With reference to the processes included in the model so far, further improvements 

could also be achieved by enhancing the method of determining how much material would be 

deposited in a feature containing a large number of fines (Equation 18). Ideally particles 

would be removed from suspension singly, re-calculating effective feature dimensions after 

each. However, as mentioned in Section 9.2, this had the effect of increasing computing times 

on a 166 MHz Pentium PC to over 12 hours .per pore volume. l'he compromise used here 

served the purpose of allowing this feasibility study to be completed, however were the work 

to be continued it would be desirable to find a more sophisticated estimate of the number of 

particles that would be deposited in such circumstances. 

The lack of sensitivity experienced here, expressed as the narrow range of possible 

permeability declines, could be addressed by enlargement of the Pore-Cor unit cell and a 

corresponding increase in the number of pore sizes within each simulation. The current I 0 x 

I 0 x I 0 array of pores coupled with the limit of only I 00 pore or throat sizes has the effect of 

limiting the range of permeability declines available through the varying of 80 and v*. 

Were this topic to be pursued further, a more fundamental model of particulate 

behaviour might be more appropriate than the empirical approach employed in this study. The 

network model as it stands would lend itself well to a trajectory analysis method. The existing 

procedure for determining the flow field across simulated media could be retained and 

enhanced, and the relevant calculations, for example those developed by Payatakes and Tien 

(1973; 1979) for determining particle motion superimposed onto this: For the purposes of this 

preliminary study, however, the extra computation time required by such a process rendered 

such an approach unsuitable. 
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10 Conclusions and Future Work 

10.1 Conclusions 

The aim ofthis research was to advance the modelling of porous materials via network 

modelling, with specific reference to the model Pore"Cor. This has been attempted through a 

combination of experimental study coupled with advanced modelling techniques. 

In the present study it has been demonstrated that flow through apparently homogeneous 

sand samples was not homogeneous or reproducible. For the samples tested here, the 

development of flow was not Normally distributed and did not appear to be caused by gross 

heterogeneities within the sample structure. Nor did it appear to be affected by sample grain 

size, average permeability, depth or the layering of different sample types, Subsequently it was 

shown that different random packings alone could give rise to great localised variation in 

sample porosity and permeability. It was also shown that a network model could accurately 

reproduce both average values and ranges of these experimentally measured properties. This 

was achieved by generating different stochastic representations, analogous to different random 

packings of the real materials, of the simulated porous media. Although the network model 

cannot at present reproduce the flow paths observed experimentally, the potential to do so has 

been clearly identified. 

A simple analytical solution of the convection-dispersion was tested. The transport of a 

conservative solute tracer, applied both uniformly to the sample surface and to a point source, 

through laboratory sand columns was modelled. The model predictions of the uniformly 

applied solute transport were only partially satisfactory. The accuracy of the predictions of 

lateral solute transport were similarly accurate, although generally less so for the deeper 

samples. 

The localised variability in sample properties presumed to be responsible for the 

unpredictable development of flow paths was also thought to be responsible for inaccuracies 

186 



in the predictions of the convection-dispersion equation. The convection-dispersion equation 

conceptualises the theoretical transport volume as being a homogeneous continuum, 

characterised by single values of a diffusion coefficient, a retardation coefficient and the pore 

water velocity. Using single values of each ofthese parameters was shown to impose a great 

degree of inflexibility on the model, limiting its ability to even achieve a completely 

satisfactory calibration. 

However, it was found that conservative tracer transport could be modelled more 

accurately using a range of pore water velocities, although no information about the nature of 

variability of this parameter could be inferred from the present study. The network model was 

used to simulate the samples upon which transport experiments were conducted. A range of 

unsaturated permeabilities was modelled, based on different stochastic generations ofthe same 

simulated materials. A small distribution of pore water velocities was then generated, with a 

similar variability to the modelled unsaturated permeabilities, and used to re-model the 

experimental solute transport more successfully than previously possible. Although this 

modelling was based on a simplified model it clearly demonstrated the potential of the 

network model to enhance the simulation of transport in porous materials. 

Although it was not possible to directly improve the convection-dispersion equation 

modelling of lateral tracer transport, a possible method by which the network model might be 

able to assist in this was outlined. 

Continuing the theme of examining the influence of microscopic variations in packing, 

standard image analysis, variogram and curve-fitting techniques were combined and refined to 

produce an objective method of quantifYing levels of correlation in the spatial distribution of 

differently sized voids within porous materials. The new method, when applied to real and 

artificial porous samples, gave a clear indication of different levels of correlation in void size 

distributions. Such information could in future be used as a constraint on network modelling, 
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enabling the generation of simulations that were more realistic with greatly improved 

si mutations of permeability. 

An initial study was also carried out concerning the solid phase of network simulations, 

to the author's knowledge the first of its kind. It was shown that a theoretical particle size 

distribution could be extracted from the inverse of the void structure generated by the model. 

'fhe new method was tested against experimental measures of particle size distribution for a 

variety of samples. Although the new model gave only a partial representation of the available 

solid phase, the results compared well with those of the only other available method and gave 

grounds for future development. 

The transport and deposition of colloidal suspensions was also considered. A method of 

calculating the deposition of particles from a flowing suspension was incorporated into the . 

network model. The new model featured deposition by both size exclusion and a probabilistic 

method, the latter having previously only been applied to two-dimensional networks. 

Although the work was chiefly a feasibility study, it demonstrated that the new method could 

model permeability declines similar to those observed experimentally. 

10.2 Future Work 

In Chapters 4-6 it was demonstrated that the network model Pore-Cor can be used to 

model the flow and transport characteristics of the samples studied here. It was shown that, 

through the use of stochastic network modelling, properties of the experimental samples could 

be accurately reproduced. However, in this study it was not possible to fully realise the 

potential of some of these findings. 

Clearly a limitation of the network model in its present form is the size of its base unit, 

the unit cell, although it is not unusually small compared to other models in the literature. 

Currently this is constructed around a I 0 x 10 x I 0 cubic lattice, and as such represents only a 
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small volume of most simulated porous media. Much of the work carried out during this 

research has identified the unit cell size as a constraint on further improvements in modelling 

accuracy, and as such addressing this limitation might be seen as the natural next step were the 

current study to·be continued. Various approaches to addressing this limitation exist. 

Perhaps most obviously, the size of the unit cell could be increased. To date the size of 

the unit cell has been limited by the computing power offered by the platforms for which it has 

been developed, medium specification mM-compatible PC's. Increases in the side length of 

the lattice result in something approaching a cubing of the computing time required for most 

calculations involving the unit cell. However, current technology is now such that the size of 

the unit cell could be probably be increased significantly, without increasing computing times 

to such a degree as to render the model unusable. The complex re-programming this would 

involve, however, was beyond the scope of the current study. 

As mentioned previously, an alternative to increasing the unit cell size, though more 

computationally complex, would be to enable the model to construct composite simulations 

based on a number of different stochastic generations of a given material. As discussed in 

Chapter 6, this could allow more accurate si mutations of the development of liquid flow paths 

within porous materials. In conjunction with enhancement of the simulated microtoming 

routines described in Chapter 7, it could also facilitate the simulation of materials with void 

size correlations over larger scales than those considered here. Such an ambitious development 

would certainly yield interesting results, and software already exists, such as that used by oil 

and gas reservoir engineers in the simulation of fossil fuel reservoirs, for constructing complex 

simulations based on discrete, well characterised elements. 

With particular reference to the flow and transport work, both the modelling and 

characterisation aspects would benefit from further exhaustive experimental testing. As a 

consequence of this study the experimental apparatus has been re-designed, and is currently 
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being automated to allow sampling from all of the outputs of the grid lysimeter. This should 

allow further intensive study of samples similar to those described here. 

The results of the new method for predicting the particle size distributions of simulated 

porous. materials only accounted for a portion of the available solid volume, Although 

algorithms to employ more of this available volume would be considerably more complex 

than those developed here, they would be likely to improve the quality of model predictions. 

The feasibility study of modelling suspended particulate transport and deposition 

demonstrated that the network model provides a suitable foundation for simulating such 

processes. Permeability response to deposition was somewhat insensitive, and either of th~ 

developments described above for addressing the limitations arising from unit cell size, would 

probably improve this. In particular the model requires exhaustive testing against experimental 

data to determine whether significant improvements to the current calculations can be made. 

10.2.1 Tbe Upscaling Problem 

Beyond direct extension of the research carried out here, future work would also aim to 

address certain other perceived limitations of current network modelling theory. In particular, 

work would focus on the problems inherent in using microscopic representations of porous · 

media to predict behaviour at the macroscopic scale, described in the literature as the problem 

of upscaling. The upscaling problem is well known in network modelling, particularly with 

reference to the prediction of permeability (Wen, X. H. and Gomez-Hernandez, "J. 1., 1996; 

Zhang, Q. and Sudicky, E., 1997). It has been demonstrated here and elsewhere (Tidwell, V. 

C. and Wilson, J. L., 1997; Tidwell, V. C. and Wilson, J. L., 1997) that permeability can 

exhibit great variability within apparently homogeneous samples. In sandstone and limestone 

samples it has been demonstrated that permeability may exhibit only weak, point to point 

spatial correlations (Henriette, A. et al., 1989). Although current upscaling methods attempt to 

cope with this variability they do not attempt to explain it at a fundamental level. The 

stochastic method presented here could enable study of the degree to which packing variability 
190 



causes this variation, and lead to an improved understanding of the upscaling problem in 

general. An outline of how this might be achieved follows a brief summary of upscaling 

below. 

The upscaling problem may be defined by reference to Figure 10.1 (Wen, X. H. and 

Gomez-Hernandez, J. J. , 1996). 

a) b) 
Figure 10.1 Examples of a) tbe measurement scale, and b) tbe numerical scale. 

Figure 10.1 (a) illustrates a grid at the measurement scale, with possibly millions of cells. 

Figure 1 0.1 (b) shows a grid at the numerical scale on which the flow problem is to be solved. 

The objective of upscaling is to compute the conductivity block values in (b) from the 

corresponding values in (a). Following Rubin and Gomez-Hernandez (1990), the block 

conductivity Kv is defined from an extension ofDarcy's law as: 

[1] 

where V represents the block support, Qw is the specific discharge vector at cell (t) within the 

block, u the position vector which sweeps the inside of the block, and Vhw is the gradient of 

the piezometric head at cell (t). Vector integration can be performed by integration of its 

components in the Cartesian co-ordinates x, y, and z. 

This equation cannot be solved without additional information about q cJ:u) and VhJ.u). 

Most approaches detailed in the current literature on the problem involve its circumvention by 

making approximations not about qJ.u) and Vhro(u), but by formulating the problem as the 

much simpler relationship: 
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Kv ~ ~ JK(l) (u) du ~ r(K(l)) , 
[2] 

where Km is the permeability of the cell ro, and r is an averagmg operator. These 

approximations are reviewed by Wen et al. (1996). The simplest approximations involve 

averaging operators that range between the geometric and arithmetic mean. For shales, a 

tortuous stream tube approximation has been employed, analogous to the model shown in 

Figure 1 0.2, although with a higher tortuosity than that shown. Laplacian techniques involve 

solution ofthe Laplace equation, with various areas and boundary conditions. 

Figure 10.2 Schematic representation of tortuosity 

Other approaches include that of 'energy dissipation' (Renard, P. and Demarsily, G., 

1997), the use of elastic grids and wavelets (Chu, L. F. et al., 1998; Nilsen, S. and Espedal, M. 

S., 1996; Nilsen, S. and Espedal, M. S., 1996), and the calculation of pseudo-relative 

permeabilities (Barker, J. W. and Thibeau, S., 1997). The common theme which runs through 

all these approaches to upscaling is that the problem is being solved by manipulating the 

property itself, or by solving the Laplacian parameters directly underlying permeability 

(Indelman, P., 1993; Sanchez-Vila, X. et al., 1995; Sanchez-Vila, X. et al. , 1995). 

qJu) and Vhoo(u) could be investigated by incorporating additional information related 

to variations with u , i.e. explicit structural relationships below the continuum level. However, 

these relationships would have to contribute directly to the property in question, namely 

permeability. One source of information derives from the property adjacent to permeability on 

the 'displacement phase diagram' of Lenormand (1988), namely percolation, which can be 

measured by mercury porosimetry. Another derives from image analysis. The problem here is 
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that thin sections cannot reveal connectivity, even though workers try to approximate this 

(Vogel, H. J. and Kretzschmar, A., 1996). Permeability is very dependant on connectivity, an 

increase in connectivity from 2,8 to 4 causing a permeability increase of four orders of 

magnitude (Matthews, G. P. et al., 1995). Literature values from thin sections could be used to 

specify the void size range, and, for example, the three-dimensional image analysis of 

Wardlaw et al. (1987) to give the void: throat size auto-correlation for sandstone (Matthews, G. 

P. and Spearing, M. C., 1992). 

As mentioned above, methods of upscaling have tended to involve either manipulation 

of the permeability property itself, or the solving of equations involving the pressure gradients 

and flow capacities from which permeability is derived. Although variations in permeability 

are recognised as arising rrom local variations in void geometries, these variations are not 

usually explicitly related to void geometries. Where such relationships have been derived 

(Mourzenko, V. V. et al., 1995; Ma, S. X. et al., 1996), they have not been upscaled. 

Additional insights could be obtained by incorporating such information, derived rrom 

percolation characteristics and image analysis. 

The network model, Pore-Cor, used in this study allows such information to be 

incorporated via a simulated network geometry. A brief outline of how it might be used to 

provide further insight into the question ofupscaling follows. 

The first step in such a study would be to characterise as fully as possible a simple 

porous material, such as the Clashac sandstones upon which initial model development was 

based. In terms of permeability this could be achieved by measurement over both the core 

scale, using a through-flow permeameter, and at a more localised scale by taking many spot 

permeameter measurements throughout the sample. Porosity could also be measured at both 

levels in an analogous way. 
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The network model could then be used to model the percolation characteristics 

gained from the porosimetry. Permeability simulations could be compared to experimental 

results at the plug scale, attributing variability between stochastic generations to geometric 

arrangements at the single-grain level. The range of modelled permeabilities could then be 

compared with samples with identical, and varying, mercury percolation characteristics. 

Permeabilities could then be upscaled using finite difference software and the Pore-Cor 

Dinic network analysis algorithm. The underlying variability of the permeability could be used 

to generate successive upscaled permeabilities, which could be compared with the actual 

upscaled values. The interpretation would be based on the nature of the difference between the 

simulated and actual upscaled distributions. If, for example, the simulated distribution at the 

upscaled distance had a wider standard deviation than the experimental distribution, then this 

unwanted discrepancy could arise either from incorrect upscaling or from lack of constraints 

used in the generation of the simulated values at the unit-cell scale. The constraints at unit-cell 

level could be modified using additional data from the experimental samples (e.g. a more 

precise pore:throat correlation), and by altering the nature of the constraints. Currently, for 

example, connectivity is unconstrained - it attains an average value over the whole unit cell, 

and has the same expectation value for voids of any size. Fractal arguments would suggesUhat 

the connectivity should change with void size, and this additional constraint could be imposed. 

If, however, the range of simulated values was less than the measured values the additional 

variability in the experimental samples might be attributed to un-modelled geometric and 

surface interaction factors. In any case, the subsequent study of further porous materials would 

be expected to cast further light on the processes involved. 

The generic method described here could be used over any range of scales incorporating 

the same heterogeneity characteristics. Samples such as fissured rock, which exhibit increased 

heterogeneity at larger scales, could also be better understood in terms of superimposition of 

the fissure heterogeneity on the modelled variability of the fundamental matrix permeability. 

These developments are the subject of a proposed future project. 
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Appendix A Sample Details 

A.l Chemical Composition 
Chemical Analysis, % 

Si~ 
FezOJ 
A:lz01 

KzO 
Lost on ignition 

Redhill30 
99.30 
0.05 
0.07 
0.01 
0.10 

Table A.t Chemical composition of sands. 

Redhi1165 
99.20 
0.06 
0.11 
0.01 
0.09 

Redhill BB Chelford 60 
98.30 96.70 
0.29 0.18 
0.32 1.65 
0!06 1.00 
0:22 0.28 

The Ballotini Beads (Phase Separations Ltd, Deeside, U.K.) were made of soda glass. 

No information was available on the compositions of either the sample used by Baghdikian et 

al. (1989) or the sandstone sample used in Chapter 9. 

A.2 Panicle Size Distribution 

Particle Beads Redbill30 Redbill65 Redbill BB Cbelford 60 
Size, !,!m MX Su~~Ued MX Su~~lled MX Su~~lled MX Su~~lied MX 

'Pan' 76.28 0.00 0.01 0.10 0.00 51.30 43.17 0.1 0.00 
63 33.72 0.00 0.02 0.40 0.00 29.10 28.21 0.3 0.00 
90 0.00 0.10 0.10 3.00 0.50 13.40 18.34 2.7 0.34 
125 0.00 0.40 0.54 17.10 9.10 5.00 8.60 23.7 7.76 
180 0.00 2.10 2.31 37.70 25.76 0:70 1.35 38.5 25.62 
250 0.00 19.30 10.75 33.80 36.74 0.30 0.04 24.2 42.20 
355 0.00 48.50 30.38 7.50 22.14 0.20 0.21 8.3 20.77 
500 0.00 27.50 34.95 0.30 5.69 0.00 0:03 1.9 3.31 
710 0.00 3.00 15.12 0.10 0.07 0.00 0:00 0.2 0:01 

1000 0.00 0.10 4.36 0.00 0:00 0.00 0:00 0.1 0.00 
1410 0.00 0.00 1.436 0.00 OiOO 0.00 0:00 0.0 0.00 
2000 0.00 0.00 0:00 0.00 0:00 0.00 0.00 0.0 0.00 

Table A.2 Particle size distributions as supplied (sieved) andras measured by laser diffraction with a 
Malvern lri!ltruments Ma!ltersizer X (MX). 

No information was available on the compositions of either the sample used by 

Baghdikian et al (1989) or the sandstone sample;used in Chapter 9. 

195 



A.3 Porosity and Permeability 
Sample 
Redhill30 
Redhill65 
Redhillllll 
Chelford 60 
Redhillllll on Redhill 30 
Redhill 65 on Redhill 30 
Ballotini Beads 
Sandstone (Chapter 9) 
Baghdakian Data 

Porosity,% 
40.68 
44.46 
48.62 
43.05 

39.10 
37.50 

Permeability, Darcies 
8.447 
2.842 
1.070 
2.070 
2.300 
2.200 
1.460 
3.296 
1.360 

Table A.3 Experimental porosities, measured by mereury porosimetry and permeabilities. The methods of 
measurement for the last two samples are unknown. Permeabilities for all others were measured by 
constant bead permeametry, except for Red hiD BB and the Ballotini beads, which were measured by 
falling bead permeametry. 
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Appendix 8 Flow Study Variograms 

These are the directional variograms from phases 1-3 ofthe flow study in Chapter 4. 
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Figure 8.1 Directional variograms for phases a) 1, b) 2 and c) 3 of the flow study in Chapter 4. 
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