University of Plymouth

PEARL https://pearl.plymouth.ac.uk
04 University of Plymouth Research Theses 01 Research Theses Main Collection
1991

Multiple Track Performance of a Digital
Magnetic Tape System : Experimental
Study and Simulation using Parallel
Processing Techniques

Jackson, Timothy John

http://hdl.handle.net/10026.1/2787

http://dx.doi.org/10.24382/1520
University of Plymouth

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with
publisher policies. Please cite only the published version using the details provided on the item record or
document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.

L‘BR“*‘ PH"'L‘"’
' It@ﬁ" hiaseaenubiahnl
‘ 5@. i Wt»tmsﬁ x
- Class -

»Aﬁg%l YT702qggg/7O

AR

’ REFERENCE ONLY

I -dedicate this thesis to

my parents, and Sarah.

Declaration.

I declare that this thesis is the result of my investigation only,
and is not submitted in candidature for the award of any other
degree. During the research programme I was not registered for the
award of any other CNAA, or any other academic institute award.

This copy of the thesis has been supplied on condition that anyone
who consults it is understood to recognise that its copyright rests
with its author and that no quotation from the thesis and no
information derived from it may be published without the author's
prior written consent

iii

Acknowledgements.

I would like to express my gratitude to all those people and
organisations who have been associated with this project, in
particular,

The supervisory team of Professor D.J. Mapps (Director of Studies),
Dr. E.C. Ifeachor and Dr. T. Donnelly of the School of Electronics,
Communication and Electrical Engineering, for their constructive
advice, encouragement and guidance throughout the project.

Dr. A. Vaidya and Mr. P.R. Evans of Thorn EMI Central Research
Laboratories for their collaboration in this project.

Those based at The Charles Cross Centre for their support, friendship
and umes of light relief.

To the Science and Engineering Research Council and Thorn EMI Central
Research Laboratories for their financial assistance.

v

Nomenclature.

X, ¥y, z = The three orthogonal cartesian axis,
X in direction of tape travel
y into the surface of the tape
z across the width of the tape.
= Interference function between tracks.
= Frequency bandwidth, H=.
= Shannon Channel Capacity.
= Head to magnetic medium spacing distance, m.
= Artangent parameter.
= Sampling frequency, Hz .
= Head gap width, mn.
= Magnetic field, Am
= Wavenumber = 27/ ., m
= Multiplier, 1024.
= Magnetisation, Am
= Displacement of head, m.
= Number of tracks.
= Number of magnetic particles.
= Read head width, m.
= Track separation, m.
= Data bit period or sampling period, S.
= Velocity of tape, ms"'.
= Write head width, m,
= Distance in x direction = Vt , m.

Mg <H® " YZIgZRIIOEDR S A QRS

§ = Magnetic medium thickness, m .
¢ = Magnetic flux, T .
x = Wavelength of recorded information, m.

bps = Bits per second.

GXO= Gated Cross-Over.

LHD= Lateral Head Displacement.
LPS = Linear Pulse Superposition.

LSB = Least significant bit.

MSB= Most significant bit.

PW50= Isolated pulse width at 50% of it's maximum amplitude.
SNR = Signal to noise ratio.

TTL = Transistor-Transistor Logic.

vi

Abstract.

Multiple Track Performance of a Digital
Magnetic Tape System : Experimental Study and

Simulation using Parallel Processing Techniques.
by
Timothy John Jackson.

The primary aim of the magnetic recording industry is to
increase storage capacities and transfer rates whilst maintaining or
reducing costs. In multiple-track tape systems, as recorded track
dimensions decrease, higher precision tape transport mechanisms and
dedicated coding circuitry are required. This leads to increased
manufacturing costs and a loss of flexibility. This thesis reports on
the performance of a low precision low-cost multiple-track tape
transport system. Software based techniques to study system
performance, and to compensate for the mechanical deficiencies of
this system were developed using eccam and the transputer.

The inherent parallelism of the multiple-track format was
exploited by integrating a transputer into the recording channel
to perform the signal processing tasks. An innovative model of the
recording channel, written exclusively in ocecam, was developed.
The effect of parameters, such as data rate, track dimensions and
head misregistration on system performance was determined from the
detailed error profile produced. - This model may be run on
a network of transputers, allowing its speed of execution to be
scaled to suit the investigation. These features, combined with its
modular flexibility makes it a powerful tool that may be applied to
other multiple-track systems, such as digital HDTV.

A pgreater understanding of the effects of mechanical
deficiencies on the performance of multiple-track systems was gained
from this study. This led to the development of a software based
compensation scheme to reduce the effects of Lateral Head
Displacement and allow low-cost tape transport mechanisms to be used
with narrow, closely spaced tracks, facilitating higher packing
densities.

The experimental and simulated investigation of system
performance, the development of the model and compensation scheme
using parallel processing techniques has led to the publication of a
paper and two further publications are expected.

vil

Contents.

Dedication...........ccoooiiiiiiiiiiiiiiii et e ii
Declaration.c.oveiuiinenii it e e iii
Acknowledgements...............ooiiiiiiiii e iv
Nomenclature.ocooiiiiiiiiiiiiiiiinr e e v
F-X 171 8 o 1 S vii
L Introduction........ccoooiviiiiieiiiiiinineniiinienania i irtiaie s e naiae e 1
1.1. The Magnetic Recording Process............ccoeciiiiiiiiiciienenen. 3
1.1.1. Digital Magnetic Recording................ccociiviiiiiiane.n. 5

1.1.2. Channel Coding........cccvvniimiiiiiiiiiiiiiiiiiiieieeeaes 10

1.1.3. Error Correction Coding..........ccovveiiiiiniieiiiennenainnns 12

1.2. The Compact-Cassette Tape Format................ccooieviiann.... 14
1.2.1. The Philips DCC Format...........ovvvrivienniivincinicinaens 15

1.3, Data PrOCESSINE. . .veeerinreiieeianenraniieanaaeensrniansrenanasasanss 16
1.3.1. Hardware or Software Processing 7.........c.ccvvvivinvinnne. 16

1.3.2. Concurrent and Parallel Processing................coovvvuennn 18

1.3.3. The accam Programming Language............cc.voevuvaeens 19

1.3.4, The INMOS transputer.ooooveuiireirireeerisiisssseens 20

1.4, Previous WOorkK......c.ooiiiiiiiiiiiiiiiiiiciin i reeaeeas 21
BTN 11111 -1 o P 23
1.6. References for Chapter L.........ccoviiiiiiiiiiiniiieiiiiciiecieaenenen 26

2. Experimental Apparatus.cccoieviiiiiininiiiiiiiiiicinniieaen 29
2.l OVEIVIBW. .ottt iie et e et te e craae s e e anene 29
2.2. The transputer and its Development System.................c...c... 31
2.2.1. The INMOS transputer...........ooiumne i arieieiianannes 31

2.2.2. The Software Development and Run-Time Environment..34
2.2.2.1. The transputer Board....................ccoeiiiall 35

2.2.2:2. Development System Software..................... 35

2.2.3. Link Adapter Interface Board.....................cocicineees 35

2.3. Signal Conditioning........ccoooiiiiiiiiiiiiii e 38
2.3.1. Write Amplifier..........ooooii 39

2.3.2. Read Amplifier...........coooiiiiiiiii 40

2.3.3. Gated Cross-0ver DEteCtOr.........ocoveeeveseeeeeserererran, 43

vill

2.4, The Tape Transport Mechanism and its Control..................... 45

2.4.1. The IBM PC Interface Card.............c..coooiiiiiiiiaiiald 45
2.4.2. The Compact-Cassette Tape Transport Mechanism........ 47
2.4.3. Solenoid Drive Card.........cocovvvviinicniiiiiiiiiinieninnnan 49
2.4.4. Record and Replay Heads...........coviiiiiiiiiniiiiniin. 49
2.5, SUMMIALY ..ottt e ea e aaaes 52
2.6. References for Chapter 2..........cooveiiiiiininiiiiiiiieniniinnnees 54
3. Theory, Modelling and Software of the Data Channels............... 56
3.1, OVEIVIEW. ...inriniiirininiininieirnrnr st enerireeaseseesenenasenanns 56
3.2. The Compact-Cassette SYSIem.....ouuuirieniiriiiniiiinenenieniannenss 56
3.2.1. Generation and Encoding of Test Sequence Data........... 56
3.2.1.1. Pseudo-Random Binary Sequence Generator.... 59
3.2.1.2. Channel Encoding and Recording................. 60
| 3.2.2. Decoding and Analysis of Replayed Data.................... 61
| 3.2.2.1. Data AcquiSition.............cccuveiuniiniinneinn.n! 62
| 3.2.2.2. Distribution of Data for Concurrent

| Evaluation............oooieviiiiiiiiiiiiinnn.. 67
‘ 3.2.2.3. Bi-Phase-L Channel Decoding..................... 69
| 3.2.2.4. Error Detection, Classification and Logging.....70
3.3. The Model of the Compact-Cassette System.......................... 74
3.3.1. Generation of Gaussian White Noise..............ccvunenen. 78
3.3.2. Model of the Replay Channel...................oeivvvennin, 79
3.3.2.1. Linear Pulse Superposition................cc.c..... 80
3.3.2.2. Determination of Isolated Pulse Shape............ 83
3.3.2.3. Signal Amplitude Fluctuations..................... 86
3.3.2.4. Drop-Outs.....cccuiiieiiiiieieie e 90
3.3.2.5. Lateral Head Displacement......................... 90
3.3.2.6. Data Skew between Tracks......................... 94
3.3.2.7. Addition of Medium Noise......................... 94
3.3.3. Model of the Replay Electronics.............................. 95

3.3.3.1. Z Domain Description of Analogue Circuit
Elements.............oooiiiiii i 96
3.3.3.2. Head Amplifier...............cooeeiiiiiiii.. 97
3.3.3.3. Gated Cross-Over Detector......................... 98
3.:%.3.4. Addition of Electronic Noise...................... 101

ix

3.3.3.5. Link Adapter Interface Board..................... 101

3.4. Lateral Head Displacement Compensation Scheme................ 102

3.5, SUMMALY. .ot 107

3.6. References for Chapter 3., 109

4. Results and Discussions.............c..cocoeviieiiiiiiiiiiiiiiieeeeeren, 113

4.1. Experimental Procedures and Operating Conditions............... 113

4.2, Accuracy of the Isolated Pulse Models....................covvvennen. 114

4.3. The Effect of Write Current on Replay Waveform................. 117

4.4. Error Rate Profiles.........oeceveiiiiniiiiiiiiiiiiii e 122

4.4.1. The Effect of Data Rate on Error Rate...................... 122

4.4.2. Simulation of a Peak Detector.............c.ccveuenennnnnn... 128

4.4.3. Varation of Error Rate Profiles between Replays......... 130

4.4.4, Head Azimuth Skew...............oooiiiiiiiiiiiiiiinnnens 133

4.4.5. The Effect of Lateral Head Displacement.................. 135

4.4.6. Lateral Head Displacement and Azimuth Skew............ 153

4.5. LHD Compensation SCheme...........cccoevviiiiiiiieeieninvninennes 156

4.6. Limitation of the Amplitude Fluctuation Mechanism.............. 161

4.7. occam and the transputer...................cocoieieiiiiiiiniiiiiiiinins 164

4.8, SUMMATY. . ..oiniiiieiii e e erenes 168

4.9, References for Chapter 4...........cccvvvviveinioiiiieieneninnannns, 172

S. Review and Conclusions.................ccooviiiiiiiiiiiiinn e 173

5.1. Suggestions for Further Work..............ccoivviiiiiiinnaennnnn. 179
Appendices.

A. Published Paper.
B. Mathematics of Magnetic Recording Theory.

C. Programme for Calculating Isolated Pulse Waveform Coefficients.
D. Polynomial CoefTicients of Analytical Pulses.
E. Circuit Diagrams.

F. Inductive Head Specification.

G. occam Programme Listings.

1. Introduction.

Since the introduction of the audio compact-cassette in 1963 and the
colour video recorder in 1976, magnetic tape has satisfied the
storage needs of the domestic market. Pushed by the demand for higher
performance, these analogue systems are being superseded by digital
systems (for example, the Compact Disc). Digital recording has many
advantages: it is highly linear and stable; can be used with very low
signal-to-noise =~ ratio channels; and allows degradation-free
duplication. Performance limitations of a digital magnetic recorder
are primarily governed by the analogue-to-digital conversion process
and not the recording process. However it requires a wider bandwidth
than analogue recording.

One of the ways of achieving this bandwidth is to use a
Rotating-Head recorder (for example R-DAT, the first consumer digital
magnetic recorder). The high head-to-tape velocity facilitates a wide
bandwidth without requiring a high tape speed. Also, rotating-head
recorders can use very closely spaced tracks, efficiently utilising
the recording surface of the tape. However, the tape transport
mechanism is complex, making it more expensive to manufacture and
miniaturization more difficult. The orientation of the tracks
precludes splicing, whilst the tape can be subject to wear problems.

Another way of achieving the required bandwidth is to combine
several low bandwidth, stationary-head channels. The main benefit of
a stationary-head recorder is the simplicity of the tape transport
mechanism. The main detraction is the increase in the signal
processing requirements (up to N times in an N-track recorder). In
the past, these signal processing requirements have been met by the
use of dedicated hardware. The potential benefits of increased
flexibility and simplified hardware have prompted investigations into
the ability of conventional microprocessors to carry out these tasks
(Donnelly, 1986 & 1987). Whilst the results confirm the benefits,
they also highlight the poor performance of microprocessors in this
application. Without sufficient computational performance, either the
complexity of the coding algorithms or the maximum data rate will be
compromised.

One reason for this poor performance is the disparity between
the inherent concurrency of the signal processing and the sequential
operation of conventional microprocessors. For example, a four track
head may produce four pieces of data in parallel, each requiring
several stages of signal processing. This does not create a problem
in recorders that use dedicated circuitry, as many circuits may be
assembled as there are tasks to be performed in parallel.

A multiple-processor system would appear to be the answer to
this computational performance problem. However, until recently such
systems have been scarce and expensive. These machines have tended to
fall into two camps: supercomputers, e.g. the Intel iPSC (Hockney et
al., 1988) designed for 'mumber-crunching' scientific problems, and
therefore not designed to operate under the constraints of a
Real-Time system; and array processors, e.g. the ICL DAP (Hockney et
al, 1988) normally designed for a very specific task and not for
flexibility or ease of programming. (A Real-Time system is one where
the correctness of results depend not only on their logical
correctness but also on the time they are produced.)

The introduction of the high level language occam and its
processor, the transputer, has changed this situation.
Multiprocessor networks with an infinity of sizes and topologies can
be assembled from transputers, and programmed in occam. This
scalable architecture allows computers to be assembled with almost
unlimited potential computational power. They may be programmed in a
very straightforward manner, allowing software techniques previously
dismissed as computationaly too complex to be realistically
considered.

Digital computers are used extensively in magnetic recording
research, for example calculating fields, modelling e.t.c. The
integration of a multiple-processor computer (that may be programmed
as simply as a standard sequential computer) into the digital
magnetic recording channel would produce a very powerful research
tool. The advantages of being able to perform the research with the
same processor architecture and language as the real-time
implementation are many. '

This application of digital computing to the magnetic

recording channel reverses the established roles of these two
technologies. The first digital computer, the ENIAC (Hockney et al.,
1988), was built 48 years after the first magnetic recorder (Smith,
1888), and soon digital magnetic recording was being used to provide
a cost-effective, reliable, non-volatile method of storing computer
programmes and data.

Magnetic recording continues to meet the demands of the
computer industry, indeed it can be argued that the recent explosion
in use and popularity of the digital computer would not have come
about if it were not for the advances that have been made in digital
magnetic recording. Although disc based magnetic storage systems have
dominated the computer industry (primarily because of their superior
access times compared to tape systems), magnetic tape is still widely
used for 'back-up' or long term storage due to its low-cost per bit,
and ability to store large amounts of data.

1.1. The Magnetic Recording Process.

The basic elements of the longitudinal magnetic tape recorder channel
are shown in figure 1.1. The magnetic tape is normally a very thin
ribbon of plastic (often Polyester) that has had a magnetic material
(often powdered gamma-Ferric Oxide) bonded to one surface. The
information to be recorded is first encoded and conditioned for the
recording channel, and then amplified to drive current through the
winding of the record head. This current produces a magnetic field, a
portion of which bows or fringes out around the gap. The flux from
this fringing field links with the magnetic tape coating, magnetising
the region of tape directly beneath the gap, with the final imprint
determined by the field beneath the 'trailing edge' of the gap. As
the tape coating will have been chosen to be magnetically ‘hard’, it
remains magnetised after it has passed the field. The magnitude and
direction of the magnetised region will be proportional to that of
the recording current.

The primary method of retrieving the longitudinally recorded
information is to use another (or the same) inductive type head.

not include any non-ideal characteristics. The three main non-ideal
characteristics are:

i) Noise, introduced at the record and/or replay stage. This
includes thermal (or Johnson) mnoise and Shot noise (from the signal
conditioning electronics) Barkhausen noise in the head and
particulate noise from the magnetic medium.

ii) The magnetic recording process itself is non-linear. The
signal induced in the replay head winding is non-linearly related to
the original record current.

iii) The magnetic recording process is frequency bandlimited.
For an inductive system, the upper and lower frequency response
limits are determined primarily by the geometry and dimensions of the
record and replay heads.

There are many other non-ideal characteristics, but these
effects can be reduced to a greater or lesser extent depending on the
signal conditioning and encoding scheme used. There are three primary
modes of signal conditioning and encoding: Direct recording of
analogue signals; Frequency Modulation (FM) of analogue signals; and
Digital recording. This project is solely concerned with the last
of these three.

1.1.1. Digital Magnetic Recording.

The word 'Digital' in the above section heading refers to the
recording process and not the information content of the signal to be
recorded. Analogue information may be stored using a digital magnetic
recorder after the appropriate analogue to digital conversion. This
text is concemed with digital magnetic recording, and does not
address the conversion to and from the digital domain.

Digital magnetic recording has many advantages. The system’s
accuracy, linearity and dynamic range are not limited by the
recording process, but by the pre-recording signal processing and

coding. Also, it is simple to multiplex several digital signals down
a single recording channel. A key factor, that will be exploited
extensively in this project, is the ease with which digital recording
systems can be integrated with computer systems, and the opportunity
this gives to exploit powerful digital signal processing techniques.

The simplest form of digital recording is NRZ-L (Non-Return to
Zero, Level). It employs virtually no conditioning or encoding. The
two binary voltage levels are directly converted into two current
directions that saturate the magnetic medium North or South (with
respect to the tapes direction).

During replay, a quantitative knowledge of the magnetic field
strength, as is required for direct recording of analogue signals, is
not required. It is only necessary that adjacent and opposing
magnetic regions are of sufficient magnitude for the transition
between then to be detectable. It 1is this latitude (between
transition and no transition) that results in digital magnetic
recording being far less susceptible to two of the three non-ideal
characteristics listed previously; noise and non-linearity.
Unfortunately the remaining non-ideal characteristic, that of limited
bandwidth, is compounded, as digital magnetic recording requires an
even greater bandwidth. Modern encoding schemes can be designed to
reduce this problem.

A solution to the limited bandwidth (and also to the desire
for higher bit packing densities) can be seen from an extension of
Shannon's Channel Capacity (Mallinson, 1987(a)), where the capacity,
C, of the channel is defined by,

C = B.logy(l + SNRy) Equ. 1.1

where B = Bandwidth of the Channel
SNRyy = Full Tape Width Signal-to-Noise Ratio

The SNR may be approximated by (Mallinson, 1987(b)),

SNRy; = Full Tape Width Signal-to-Noise Ratio

= prmz Equ. 1.2
2n

where p = Number of magnetic particles per unit volume
w = Track Width
Aq = Minimum Recorded Wavelength.

Therefore, if the width of the tape is divided into N tracks, then
(ignoring inter-track guard-bands) the SNR of each track is reduced
by 1/N, giving a total channel capacity of,

Cy = N-B.logy(1 + SNRw) Equ. 1.3
- N

Figure 1.2 shows how the channel capacity varies with the
number of tracks, assuming a SNR of 50dB and bandwidth of 12kHz
(approximate values for the compact-cassette system). The capacity
can be seen to increase nearly linearly with the number of tracks (as
will the areal packing density, assuming the same head-to-tape
velocity). In addition, equation 1.2, shows that halving the track
width reduces the SNR by 3dB, whilst halving the minimum recorded
frequency reduces the SNR by 6dB. Therefore, although doubling the
recording frequency may seen to be the simplest solution for the
designer, there are important performance advantages to be gained
from doubling the track density instead.

Rotating-head recorders use a slow tape speed and a high
rotating-head drum speed for closely spaced tracks, high bandwidth
and packing density. In a stationary-head multiple-track recorder,
the track widths and inter-track guard-bands are reduced to fit as
many tracks across the width of the tape as possible. However,
increasing the packing density in these ways increases the following
problems.

i) As tracks get narrower, the SNR becomes worse (a loss of

3dB for each halving of the track width).

ii) Drop-outs affect larger amounts of data.

reduction in SNR resulting from narrower tracks may be considerably
offset by using more sophisticated coding schemes that allow
operation nearer the Shannon Capacity.

ii) The effects of drop-outs may be dealt with by a suitable
error detection and correction scheme.

ili) To date the philosophy has largely been to reduce the
mechanical deficiencies at source rather than cope with the problems
they cause (this has previously proved fruitful). For example, the
problem of tape-to-head misregistration has been dealt with by
tightening the manufactured tolerances of the tape, tape guides,
bearings etc. This obviously increases manufacturing costs. As the
‘cost of computation’ is falling it is desirable to develop software
techniques to tackle these problems.

It is important to note that the tape is included in the list
of components that need to be manufactured to tighter tolerances (for
example, at the tape slitting process). This increases the cost of
every tape. A software solution to these problems would result in a
one-off increase in cost, and this, with the advances being made in
microprocessor technology, may well become insignificant.

iv) The solution to the problems caused by track
misregistration may well solve those caused by cross-talk, as they
both distort and corrupt signals in a similar manner. Electronic
compensation for non-varying cross-talk already exist (e.g. wvan
Gestel et al., 1982), and may be transferred to software.

Therefore the last of these problems to be solved or offset by
software techniques are those caused by mechanical deficiencies. This
project was particularly interested in the problems caused by lateral
head displacement.

Error coding involves adding extra information to the data,
allowing errors in the data at replay to be detected (and usually
corrected). An intuitive example would involve recording the data
three times, and using a majority voting logic circuit to decide the
most probable result.

There are two main types of error correcting code in use, (i)
block codes and (ii) convolution codes. Note, the standard
nomenclature confusingly duplicates symbols wused in the
characterisation of channel codes.

i) A block code splits the data stream to be encoded into
message blocks of length k bits. Each message block is converted into
a code word of length n (n greater than k). This is termed an (n,k)
block code. Block channel codes are memoryless, and therefore each
code word is dependent only on the k bits of the current message
block.

Therefore of the 27 possible code words, only 2K are used.
If a word is received that is not ome of the allowable 2X code
words then an error has occurred. In many systems the code word that
should have been received is determined by calculating which of the
valid code words is nearest to the one received. The reliability of
this type of code is largely dependent on the probability of the
corrupted code word not being a valid one.

(i) A convolution code also uses k length sequences of data
and produces n length code words. However, the code words are
dependent not only on the k bits of this message, but on m previous
message bits as well, and is therefore called an (n,k,m) convolution
code.

Error correction algorithms vary from simple correction
schemes, like Hamming, which have a correspondingly modest error
correction capability, to complex schemes, like Reed-Solomon, that
have very powerful error correction capabilities. For a thorough
introduction to the subject, Hill's book (Hill, 1986) is recommended.
Blahut's book (Blahut, 1983) covers more complex schemes (like BCH
codes and Spectral techniques) with much emphasis on their

13

its choice were:
i) It is a stationary head design. Rotating head designs are
very popular at present, but the manufacturing cost of a
rotary head mechanism is much higher than a stationary head
design because it involves more moving parts, manufactured to
tighter tolerances.
ii) The mechanisms are simple, and allow modifications to be
made easily (see section 2.4.2).
iii) It is a multiple-track format. One aspect of the project
was to investigate software processing of data from a
multiple-track format.
iv) The simplicity of its design should make techniques
developed using it be applicable to other systems.
v) It is cheap to buy and widely available as an established
system.

One of the aims of the project was to keep the number and
complexity of mechanical components to a minimum, (thereby reducing
cost), and to investigate how software techniques may be used to
corhpensate for those deficiencies that result, actual and envisaged.
(It is expected that the cost of computational performance will
continue to drop faster than mechanical manufacturing costs).

Several commercial digital-audio systems based on the
compact-cassette have been developed. From research papers published,
at least two companies appeared to be about to go into production of
such systems around 1984: Matsushita Electric Company (Sakamoto et
al., 1984) and Mitsubishi Electric Company (Onoshi et al., 1984). For
reasons unknown, no such systems have been commercially released.
Philips are about to to change this situation.

1.2.1. The Philips DCC Format.

Philips are due to release a new digital magnetic tape format called
Digital Compact Cassette (DCC) (Cole, 1991 and Fox, 1991). The DCC
cassette's housing is physically very similar to the analogue

15

compact-cassette, but eighteen tracks are recorded across the tape,
nine at a time (eight dedicated to audio). As with the analogue
format, the head records across half the tape width at a time, but it
is the head (and not the cassette) that is automatically turned over
in a2 DCC mechanism to access the other half.

Although each of the eight tracks of the new DCC recording
head can record shorter wavelengths signals than the compact-cassette
head (lpm compared to 2.5sm), the system cannot process data
at the rate of 2x10% bits per second as can the Compact Disc (CD)
(Watkinson, 1989). To provide a comparable level of 'audio quality'
as CD, the bit rate is reduced using a coding scheme called PASC
(Precision Adaptive Sub-band Coding). PASC coding splits the signal
into 32 frequency bands, and then (using a template of the human
ear's frequency sensitivity) encodes only those sounds that are above
the threshold of audibility. By not coding 'inaudible' sounds the
number of bits per sample is reduced from 16 to an average of 4.

The design of the recording head appears to be similar to the
one proposed in section 2.4.4, but there is as yet little definitive
information. The head is split into two sections: an inductive
Ferrite section for writing; and a Magneto-Resistive section for
reading. The track format is shown in figure 1.5. To reduce the
effects of lateral tape-to-head mis-registration, the read element is
70um wide compared to the write track width of 185um.

1.3. Data Processing.
1.3.1. Hardware or Software Processing ?

Conventionally, the signal processing and coding involved in the
recovery of data from digital magnetic recorders has been carried out
by dedicated hardware. Figure 1.6(a) shows the signal processing
tasks of a typical replay channel. As the project was concerned with
using software techniques, the question that was addressed was how
much of this channel should be implemented in hardware and how much
in software ?

16

Concurrency can therefore be thought of as pseudo-parallelism.
Historically, any concurrency in a system was at the operating system
level. For example, the UNIX operating system shares the computers
resources (often based around a MC680x0 processor) between several
users, each of which may be running several application programmes.
This sharing task is handled by UNIX's Kemel, a piece of software.
The success of UNIX demonstrates that the benefits of a multi-user,
multi-tasking environment can outweigh the performance degradation
introduced by the Kemel.

Parallel processing arose primarily from the desire for
increased performance. Their specific languages developed from the
need to programme parallel processing machines. For example, the
CRAY-2 supercomputer (Hockney et al., 1988) has four main processing
units, each with its own memory systems and multiple arithmetic
units. It has a peak theoretical performance of 2x10% floating
point operations per second. Several standard languages (e.g., C and
Fortran) are available, their compilers producing code that makes
optimal use of the multiple processing elements.

These languages were developed for sequential processing
architectures and have been extended to include support for multiple
processor architectures. The next logical evolutionary step was to
develop languages with support for parallelism designed-in from
inception.

1.3.3. The occam Programming Language.

Occam (INMOS 1988(a)) is a high-level language designed for
parallel programming. Occam programmes are constructed from
Processes. An occam Process is a named group of instructions that
perform a specific task (similar to a Procedure in a standard
sequential language). The key point is that occam allows these
processes to be constructed to run either in parallel or sequentially
with virtually equal ease. The language supports, but makes no
distinction between, parallelism and concurrency. Therefore an
occam programme is not specific to any particular topology or

19

number of processors. This not only allows pgreat flexibility, it
allows programme development initially to be carried out on a single
processor, and then transferred to a multiple processor network if
available,

The decision between executing a set of processes concurrently
or in parallel is made after the programme has been compiled: at the
Configuration stage (INMOS 1988(b)). Configuring an occam
programme allocates processes to processors. If there is only one
processor then it will be allocated all processes for concurrent
processing (that is interleaved sharing of resources). If there is
more than one processor, the processes are divided between them for
parallel processing.

Many events in the ‘'real-world' occur simultaneously or
overlap; they are not limited to a sequential ordering. A parallel
algorithm must first be transformed into a sequential form if it is
to be coded in a sequential language. This transformation will tend
to hide or mask the relationship between the solution and the
implementation of the solution, as well as introducing another step
into the coding operation, increasing the probability of a coding
error. There are therefore obvious advantages to be gained from using
a computer language that allows a similar construction of events.

The speed of execution of a programme written in a parallel
processing language is primarily dependent on the number of
processors the code is distributed over. In practice, the ultimate
performance will be governed by the granularity of the algorithm. In
other words, there will be a finite number of tasks that can take
place in parallel, and once there is a processor dedicated to each of
these, performance increases cannot be gained by using more.

1.3.4. The INMOS tansputer.

Standard microprocessors provide no support for the parallel
programming aspects of ocecam, like concurrency and
inter-processor communication. As standard microprocessors were not
designed to be connected into multiple processor arrays, it is not

20

surprising that they do not do so readily or efficiently. The INMOS
Family of transputers (INMOS 1988(c)) was designed to satisfy
this need.

Transputers are self contained microcomputers on a single
integrated circuit, designed primarily to execute occam
processes. A single transputer can perform concurrent processing,
whilst a network (of more than one) can perform parallel processing.
More detail of the transputer can be found in section 2.2.1.

1.4. Previous Work.

In Donnelly's Ph.D. thesis (Donnelly, 1989) several digital magnetic
recording systems were developed. All were based on the
compact-cassette tape format, and used a conventional microprocessor
(a Zilog Z80) for the data processing. Different recording heads,
channel codes and error correction strategies were investigated.
Several points pertinent to this project were raised:

i) Several limitations of the compact-cassette mechanism were
offset using software based techniques. In particular tape velocity
variations and head azimuth variations.

i) Tape-to-head mis-registration would assume more
significance in a narrower track system.

iii) Data were recorded across all tracks simultaneously,
i.e., a four bit word was recorded across the width of the tape in
the four track systems, see figure 1.7(a). During playback all tracks
were sampled in parallel. This parallel sampling technique reduces
the sampling rate by 1/N for an N track system compared to sampling
each track individually.

Due primarily to tape skew and tape deformation, the
individual bits of the recorded word are skewed with respect to one
another on replay, see figure 1.7(b). If the data skew between any
two tracks is less than the sampling window width, the recorded word
may still be correctly sampled. Sampling window width decreases as

21

flux reversals d rtmm. But an advantage of increasing the flux
reversal rate isAgie data transfer rate may also be increased. One
way of compensating for this is to use a parallel track format.

Parallel track systems require more signal processing: up to N
times more for an N track system. This naturally suggests a parallel
processing architecture, be it at the hardware or software level.
Parallel track formats also have their own characteristics that can
be exploited advantageously, such as the use of Adaptive Cross Parity
(Patel, 1985). _

As track widths get narrower, manufacturing tolerances of the
tape transport bearings and guides need to be tightened to keep
mechanical deficiences, such as head-to-track misregistration, at an
acceptable level, leading to increased costs. In contrast, the cost
of computation is falling, and is set to carry on doing so. It
therefore relevant to investigate how software techniques may be used
to address the problems introduced by mechanical deficiences.

The flexibility and potential capabilities of software are not
in question. Some of the benefits of using software in the data
channel have already been demonstrated (Donnelly, 1989). But digital
magnetic recorders are real-time systems, and computational
performance is a critical factor. Each data bit has only a limited
amount of time to be processed in, and this limits the sophistication
of the software. Until recently hardware was the only viable choice.

Computer simulation is a powerful tool in the Research
environment. The time constraints imposed by real-time systems
obviously do not exist during simulation. But accurately simulating
the recording process can consume vast computer resources due to its
complexity, and the fact that iterative techniques often need to be
used. Computational performance therefore remains an important issue.

Parallel Processing promises computational performance of
orders of magnitude greater than standard sequential architecture
computers. What is unrealistically complex to implement currently in
a real-time system (for example, large Neural Networks or Artificial
Intelligence techniques) will be viable in the future. The computer
industry is still at the bottom of the parallel processing ‘learning
curve', as is the magnetic recording industries use of it.

24

Occam and the transputer represent the first parallel
processing language and hardware architecture designed for general
purpose use. They reduce the architectural and semantic gaps between
the algorithm and its implementation for parallel systems. But what
benefits does this bring to digital magnetic recording ?

25

1.6. References for Chapter 1.

BLAHUT, R.E. Theory and Practice of Error Control Codes.
Addison-Wesley Publishing Co. Inc. 1983.

COLE, G. Tape Leader ?, Electronics World, March 1991, p197.

DONNELLY, T., Mapps, D.J. & Wilson, R. High Density Data Storage on
Audio Compact-cassette Tape using a Low Cost Tape Transport.
I.LE.R.E. Sixth Int. Conf. Video, Audio and Data Recording, Univ.
of Sussex, March 1986.

DONNELLY, T., Mapps, D.J. & Wilson, R. An Intelligent Microprocessor
Interface for a Low-cost Digital Magnetic Tape Recorder.
Euromicro 87, Thirteenth Symposium on Microprocessing and
Microprogramming, Portsmouth, September 1987.

DONNELLY, T. Real-Time Microprocessor Techniques for a Digital
Multitrack Tape Recorder, Ph. D. Thesis, Polytechnic South West,
1989,

EMI, Modern Instrumentation Tape Recording: An Engineering Handbook.
Thorm EMI. 1986.

FOX, B. Shots fired in the battle for DAT, Electronics Weekly,
November 28 1990.

GALLAND, F.J.(Editor), Dictionary of Computing, John Wiley & Sons,
Chichester, UK, 1982,

VAN GESTEL, W.]., Driessen, L.M.H.E. & Moeskops, J.C.F. A Multitrack
Digital Audio Recorder for Consumer Applications. Journal of the
Audio Engineering Society, Vol. 30, No. 12, December 1982.

HILL, R. A First Course in Coding Theory. Oxford University Press,
New York, 1986.

HOCKNEY, R.W. & Jesshope, C.R. Parallel Computers 2: Architecture,
Programming and Algorithms, IOP Publishing Ltd., Bristol |,
England, U. K., 1988.

INMOS Ltd., Occam 2 Reference Manual. Prentice Hall Intemational
(UK) Ltd., 1988 (a).

INMOS Ltd., Transputer Development System. Prentice Hall
Intemnational (UK) Lid., 1988 (b).

INMOS Ltd., Transputer Reference Manual. Prentice Hall International
(UK) Ltd., 1988 (c).

JACOBY, G.V. A New Look-ahead Code for Increased Data Density.
LE.E.E. Transactions on Magnetics, Vol. MAG-13, No. 5, September
1977,

JORGENSEN, F. The Complete Handbook of Magnetic Recording. TAB Books
Inc., USA, 1988.

LIN, S. & Costello, D.J. Error Control Coding: Fundamentals and
Applications. Prentice-Hall Inc., 1983.

MACKINTOSH, N.D. The Choice of a Recording Code, Int. Conf. Video
and Data Recording, Southampton, LE.R.E. Conf. Proc. No. 43,
1979 (a).

MACKINTOSH, N.D. A Superposition-based Analysis of Pulse-Slimming
Techniques for Digital Recording, Int. Conf. Video and Data
Recording, Southampton, I.LE.R.E. Conf. Proc. No. 43, 1979 (b).

MALLINSON, J.C. Recording Limitations, Chapter 5 of Magnetic
Recording, Volume I: Technology. Series Editors C.D. Mee & E.D.
Daniel. McGraw-Hill, Inc. USA, 1987 (a).

MALLINSON, JI.C. The Foundations of Magnetic Recording, Academic
Press, Inc. (London) Ltd., 1987 (b).

NOTTLEY, G.C. 3-Position Modulation (3PM): A Technical Appraisal. The
Fourth International Conference on Video and Data Recording,
Univ. Southampton, April 1982.

ONISHI, K., Ido, K., Inoue, T., Inaga, M. & Tanaka, K. Consumer use
Compact Cassette Digital Audio Recorder, Pre-print No. 2092 (H3),
75th. Convention of the A.E.S., Paris, March 1984,

PATEL, A.M. Adaptive Cross Parity (AXP) Code for a High-Density
Magnetic Tape System. IBM Journal of Research and Development,
Vol. 29, No. 6, November 1985.

POULIART, W.H.P. & Vandevenne, J.P.H. Electrical Intelligence Storage
Arrangement. U.S. Patent No. 2807004, September 1957.

SAKOMOTO, N., Kogure, T., Kitagawa, H. & Shimada, T. On High-Density
Recording of the Compact-Cassette Digital Recorder, J. Audio Eng.
Soc., Vol. 32, No. 9, September 1984,

SANDLER, M.B., Hayat L., Costa L. & Naqvi A. A Comparative Evaluation
of DSPs, Microprocessors and the Transputer for Image Processing,
LEEE., 14" Int. Conf Acoustics, Speech, and Signal
Processing, 1989,

SCHOUHAMER-IMMINK, K.A. Coding Techniques for Digital Recorders,
Prentice Hall International (UK) Ltd, 1991.

SMITH, O. Some possible forms of Phonograph, The Electrical World, 9,
161, 1888.

WATKINSON, J. The Art of Digital Audio, Focal Press, England, 1989.

28

significantly easing the desigh of multiple processor networks.
Key features of transputers are (INMOS, 1988(a)):
i) RISC-Type Central Processing Unit.

The design of the Central Processor Unit (CPU) at the heart of
the transputer was influenced by RISC (Reduced Instruction Set
Computer) ideology. The first noticeable influence is the simplicity
of many of the instructions. A simple or reduced instruction set can
be implemented with fewer transistors. This in turn allows faster
clock rates, resulting in higher computational performance. This
philosophy does not restrict the use of complex expressions, as these
may be assembled from simpler ones by the compiler (INMOS, 1988(b)).
As the CPU may be implemented with a small number of transistors it
occupies less space on the integrated circuit. This was a key factor
in the design of the transputer as the space saved was used to
implement the non-standard features mentioned above.

Transputers are Stack orented processors, unlike most
modern microprocessors that are register oriented. Transputers
store all variables in memory, loading them onto the 3 stage stack
only for evaluation. This style of architecture allows the
transputer to switch from process to process very quickly (in
less than l,uS). as very little internal state needs to be saved
(i.e. contents of registers transferred to external memory).

Stack oriented architectures can hinder computational
performance as external memory references are usually slower than
register references. To compensate for this, each transputer has
some very fast Static RAM that can be accessed in a single cycle
(nearly as quickly as a register). The IMS T414-15 (for example) has
2K bytes of memory with an access time of 67nS (this can be thought
of as five hundred 32 bit registers).

ii) Process Scheduler.

The microcoded process scheduler controls the sharing or
time-interleaving of the CPU between processes for concurrent
execution. The following is a simplified explanation of how this
concurrency is implemented. When several processes are being executed
concurrently, two lists are maintained: one lists processes that may

32

proceed immediately (the Active list), the second lists processes
that are waiting because of a communication that cannot proceed (the
Inactive list). The CPU executes the process at the top of the Active
list until a message communication cannot proceed. This situation
will arise if the process attempts to output a message to a process
that is not ready to accept it, or if the process attempts to input a
message that has not been sent. Under control of the process
scheduler, the process is de-scheduled (i.e. the CPU stops executing
it) and put on the Inactive process list, and the process now at the
top of the Active list is scheduled. The scheduler moves processes
from the Inactive list to the Active list when the communication can
proceed. In an attempt to share-out the CPU's time evenly between
processes, a process is de-scheduled and moved to the bottom of the
Active list after a certain amount of time (its time-slice period).
Section 3.2.2.1. develops these ideas using the data acquisition
process as a vehicle.

Message passing between processes or its control can be seen
to be central to the transputer's implementation of concurrency.
The rules governing inter-process communication were developed by
Hoare for the mathematical language CSP (Communicating Sequential
Processes (Hoare, 1985)). Occam may therefore be viewed as a
practical implementation of the CSP.

Controlling the process scheduling in hardware is desirable
for several reasons:

a) The concurrency is transparent to the programmer. The
corollary of this is the programmer does not know when any particular
process is being executed. This can cause considerable problems in a
real-time system (as is this system, see section 3.2.2.1).

b) The programmer does not need to write a process scheduler.
This not only lessens the number of tasks the programmer needs to do,
it also means the CPU is relieved of the extra processing involved in
executing this code.

¢) Process switches are carried out by hardware and therefore
take very little time (less than 1uS to de-schedule one process

33

and schedule the next), a very important feature for a processor that
may be concurrently processing hundreds of processes.

iii) Communication Links.

Processes constructed to run in parallel communicate via
Channels, If processes are running on the same tansputer,
channel communication takes place via an internal memory location (a
soft channel). If they are running on separate transputers, a
Link (a hard channel) is used.

Each Link is an asynchronous, autonomous, Direct Memory Access
(or DMA) engine. Each Link can bi-directionally transfer data at
rates up to 10 Mbits per second in each direction. As the Links
operate autonomously, once the communication has been initiated, the
processor plays no further part in the transfer, freeing it to
proceed with other tasks.

Transputers have a high maximum instruction throughput and
a wide I/O bandwidth, for example 10 million instructions per second
and 80Mbits per second for a 20MHz IMS T414. This makes them well
suited to the evaluation of complex algorithms at high data rates.
Occam includes a Timer type that represents the current state of
a clock when read. Transputers directly support this model of
time by providing two hardware timers, with periods of 1uS and
64uS.

2.2.2. The Software Development and Run-Time Environment.

The transputer Development System (TDS) (INMOS, 1983(c))
is a software package that supports the development of occam
programmes. Programmes may also be run from within this environment.
The TDS's software is split between a transputer board and host
computer (the IBM PC in this case).

2.2.2.1. The transputer Board.

The transputer board (a Sension JD002, an INMOS IMS BO004
equivalent) was populated with a 15MHz IMS T414 transputer
(INMOS, 1987(a)), 1 Megabyte of RAM, together with various support
circuitry (e.g. clock signal generation, memory configuration,
electrical buffering e.t.c.). One of the tansputer's four Links
is dedicated to communication with the IBM PC, via an interface card
that plugs into one of the IBM PC's peripheral slots. This Link
Interface board is bi-directional, converting between the eight bit
parallel data format of the IBM PC and the serial format of the
transputer's Links.

2.2.2.2. Development System Software.

An Editor, occam Compiler and post-mortem Debugger, as well as
several software Tools that assist the development and implementation
of transputer based systems, are included in the TDS. These run
on the transputer. The twansputer board does not have direct
access to any peripherals, such as a keyboard or screen. Instead, it
uses those of the IBM PC. The host computer runs a programme, called
the Server, that provides file input and output, screen display and
keyboard input for the transputer.

A virtue of the TDS running on a transputer is that the
same transputer may also be used to run and test the developed
code. Although the network thus formed consists of only a single
transputer, it does allow the code to be run and fully logically
debugged. '

2.2.3. Link Adapter Interface Board.

This board converts signals to and from transputer serial Link
protocol and the parallel data format of the multiple-track
compact-cassette recorder. When writing data to the cassette it

35

converts from the Link's serial format to a parallel format suitable
for driving up to B Write Amplifiers. When data is to be read, it
converts up to 8 asynchronous data channels to a format suitable for
transmission down a single Link.

An INMOS IMS CO011 Link Adapter (INMOS, 1987(b)) performs the
basic serial to parallel and parallel to serial conversion. In Mode 1
this device converts the two wire bidirectional serial Link into two,
hand-shaken, byte-wide parallel interfaces. Four hand-shake lines
(two for input and two for output) enable the Link Adapter to comply
with occam's synchronised channel communication protocol.

When data are output from the transputer to drive the
Write Amplifiers no synchronisation is required. The two output
hand-shaking lines (QValid and QAcknowledge) are therefore connected
together, effectively disabling output hand-shaking. Data received by
the Link Adapter are therefore transferred to the output interface
immediately (i.e. as soon as the data are 'Valid', they are
'Acknowledged'). A Bus Transceiver (an SN 74LS245) is used to drive
the Write Amplifiers.

Occam Channels, and therefore transputer Links, are
data or Event driven. The data driven aspects were preserved in the
operation of the Link Adapter Interface board (as opposed to using a
software polling technique). A dedicated circuit was designed
(Jackson et al., 1989) to monitor the inputs for new data. When new
data are detected they are latched, and the correct sequence of
hand-shaking signals are generated to transfer the data to the
transputer. Figure 2.4, shows the block and timing diagram of the
input circuitry.

When the magnitude comparator (an SN 74LS688) detects new data
it takes IVal high. This disables the transparent latch (an SN
741.8373) stopping further new data appearing at the comparator. When
the Link Adapter has read the data from the flip-flops (an SN
74L8374) it takes IAck high. This clocks the flip-flops, transferring
the new data to the input of the interface for the next read, making
the P and Q inputs equal. The comparator takes IVal low to complete
the cycle. The circuit reliably multiplexes up to 8 asynchronous data
channels down a single Link, without losing data that arrives whilst

36

2.3. Signal Conditioning.

The TTL voltage levels of the digital data to be recorded need to be
converted into an analogue current signal, capable of driving the
record head. The Write Amplifier performs this function. On replay,
the amplitude of the voltage waveforms are very low (approximately
1.75mV peak-to-peak when replaying a Bi-Phase-L. encoded PRBS at
Skbps), and so low noise Head Amplifiers were built to amplify them,

Section 1.3.1. introduced the idea of a compromise between the
flexibilty facilitated by the use of software, and the higher data
rates facilitated by hardware. The chosen solution was to use
hardware up to and including the detection system (although this was
modified for one part of the investigation). A Gated Cross-Over
Detector (GXO) (Whatton, 1973) was built to perform this task.

The analogue electronics was found to suffer from high levels
of electromagnetically induced noise. The noise sources were found to
be the transputer and IBM PC screen and switched mode power
supply. As these items could not be turned off during testing a
number of preventative measures were taken:

e A separate linear power supply was used for the analogue

electronics.

o Screened, twisted-pair wiring was used between the head

and head amplifiers, which in turn were housed in a separate

metal enclosure.

o A single earth return point (Star point) was used. This

was situated physically and electrically as close to the head

(i.e. the most noise critical section of the circuit) as

possible.

Although these measures reduced the noise, the residual noise

was still significantly higher than the magnetic medium noise, and
therefore a limiting factor on the performance of the system.

38

2.3.1. Write Amplifier.

The data to be recorded were output from the transputer as TTL
logic levels. It is the Write Amplifiers function to control the flow
of current through the recording head so that the magnetic field
imprinted in the tape represents these logic levels. The
representation used was saturation recording, where a logic '0'
results in the tape being saturated in one direction, and a logic 'l'
results in the tape being saturated in the opposite direction.

To record at high linear data rates, the transition between
saturated magnetic regions must be short, and therefore the reversal
of current through the head must be rapid. This not only enables high
packing densities to be recorded, but also produces a high rate of
change of magnetic field at playback, and a correspondingly large
induced voltage.

Inductors oppose any change in current passing through them.
The inductive record head used therefore opposes the rapid change in
current desired. If driven by a simple resistive source the change in
current would be exponential. Constant current sources were therefore
chosen to drive the inductive head (resulting in a near linear
increase in current). |

A bridge configuration was chosen, see figure 2.5(a). The
transistors were operated in pairs, T1 with T2, and T3 with T4. The
diagram shows T1 and T2 fully conducting, enabling current to flow in
one direction through the head. The current is reversed by removing
the base drive from T1 and T2, and driving T3 and T4 into saturation.

The performance of the write amplifier was simulated using a
commercial simulation package, MSpice from Mentor Graphics, running
on an Apollo Graphics workstation. Figure 2.6 shows the results of
the analysis. The current waveform of Graph (a) shows the desired
rapid current reversal. However, Graph (b) reveals that the switching
transistors sustain a voltage spike in excess of 200 V between their
emitter and collector terminals, due to the heads inductance and the
fast switching times.

As this voltage far exceeds the transistors quoted maximum of
40V, protection diodes were placed between their collector and

39

iv) An earthed ground plane was fabricated on the component
side of the circuit board to reduce -electromagnetically induced
noise.

v) Low value resistors were used to reduce Johnson noise
(proportional to resistance} and noise produced by induced currents
(simply from Ohms Law).

2.3.3. Gated Cross-over Detector.

The analogue signal from the head amplifier must be converted into a
digital one before it can be input to the transputer. There are
many ways of doing this, each with their advantages and disadvantages
(Mackintosh, 1979). The use of a linear quantising ADC (Analogue to
Digital Converter) was rejected for the compact-cassette system as it
places a high computational demand on the software, see section 1.3.1
(although one was used for a specific part of the investigation, see
section 3.4). A Gated Cross-Over circuit was chosen as it can achieve
a high level of performance, and is simple in design. Its popular use
would also enable straightforward comparisons to be made with other
systems.

The GXO produces two intermediate signals; the first referred
to as the Gating signal indicates pulse peak-centres, the second
referred to as the Polarity signal indicates the polarity of the
peak. The Polarity signal is transferred to the output of a D-type
flip-flop by the Gating signal, see figure 2.8.

i) Gating Signal.

Pulse peak-centres are determined by differentiating the
signal, to give a 90 degree phase shift, and then passing it through
a zero crossing detector. An active differentiator (based on an LM747
operational amplifier) was chosen because of its superior performance
compared to a passive one over a wide range of frequencies. The
zero-crossing detector is a comparator (an LM 393N) with hysteresis.
The hysteresis was set at 40mV. Each zero-crossing edge was then

43

A more detailed description of the operation and optimization
of GXO detectors is given by Mackintosh (Mackintosh, 1979).

2.4. The Tape Transport Mechanism and its Control.

The compact-cassette tape transport mechanism was solenoid-
controlled. Due to the evolutionary development of the project, these
solenoids were controlled by the IBM PC via a general purpose
interface card and solenoid drive amplifiers. The transputer
therefore sent messages to the IBM PC, that in turn controlled the
mechanism.

The situation was further complicated as the IBM PC was
already running an application programme (the TDS Server). The
simplest solution was to instal a number of interrupt service
routines before starting the Server. Each interrupt service routine,
written as a DOS Terminate and Stay Resident programme in assembly
language (Scanlon, 1985), provided a basic cassette transport
function (e.g. fast forward, play, e.t.c.). To control the -tape
transport mechanism, the transputer sent the relevant interrupt
number to the Server, which generated the required interrupt. The
interrupt service routine generated the signals, which, via the IBM
PC's Interface Card and Solenoid Drive Card, energised or
de-energised the relevant tape transport mechanism solenoid.

2.4.1. The IBM PC Interface Card.

The functionality of the board can be divided into five areas, se¢
figure 2.9.

i) Buffering to the Computer.,

To lessen the possibility of an external electrical fault
damaging the IBM PC, the computer's address bus, data bus and control
signals were buffered (using two SN 741.5244s and an SN 74L5245).

45

computer.

v) Optically Isolated Outputs.

The voltages and currents associated with the solenoids are
potentially very damaging to logic circuits. Therefore the three
lines used to drive the Solenoid Drive Card were optically isolated
(using an I1.Q74). This provided a very high level of protection.

2.4.2. The Compact-Cassette Tape Transport Mechanism.

This is a standard solenoid controlled compact-cassette
tape-transport mechanism (an SF925F, available from Hart Electronics,
Hertfordshire), with a modified head-mount and tape-guide. In a
standard mechanism the head is secured by two screws that locate in
two pillars, the height of one of which may be varied a small amount.
This allows the azimuth of the head to be adjusted. In the modified
tape transport mechanism, two new adjustable mounting pillars were
machined, see figure 2.10.

This new mounting assembly allowed the head to be moved across
the face of the magnetic tape simulating lateral head displacement or
to be rotated simulating azimuth skew. Measured displacements and
skews greater than 1.2mm and 2.7 degrees respectively could be thus
introduced. Two bolts were used to adjust the heights of the mounting
pillars. Each bolt had a screw pitch of 0.4mm. The screw-driver used
to make the adjustments had a pointer (16cm long) attached to it. A
circular dial, graduated in degrees, was used to measure the angle of
rotation to an accuracy of approximately 1 degree, corresponding to a
change in pillar height of 1.1x1072 metres.

Tape guides are normally mounted on the side of the head. This
would physically distort the tape during head displacement and skew
tests. By mounting the tape-guide on a separate fixed height pillar,
the transport of the tape past the head was unaffected by the
movement of the head.

47

compact-cassette mechanism was designed to meet these requirement.

The signal conditioning circuitry required for the recording
and replay of digital data was built, This included the interfacing
circuitry required to integrate a transputer into the data
channel thus formed. The compact-cassette tape transport mechanism's
head mounting arrangements were modified to allow measured amounts of
head-to-tape misregistration and azimuth skew to be introduced. The
electronics allowed both conventional 'inductive-write,
inductive-read’ as well as 'inductive-write, magneto-resistive-read’
modes of operation to be investigated.

The write amplifier was designed to produce a rapid reversal
of current through the inductive head, permitting recordings to be
made at high data rates. The replay head amplifier was designed to
preserve as much of the SNR of the replayed signal as possible before
distribution to the rest of the signal conditioning circuitry. A
Gated Cross-over detector was built to convert the replayed signal
into a TTL compatible form suitable for input to the transputer,
The operation of the interface between the GXOs and the
transputer preserved the event driven, message passing protocol,
of occam channel communication, whilst converting between the
parallel data format of the multiple-track recording head and the
serial format of a transputer Link. Its event driven operation
saved CPU time, and reduced the communication bandwidth of the
acquisition process by a factor of approximately 9.5. A series of
interface cards also allowed the transputer to control the
compact-cassette tape transport mechanism, via the IBM PC.

Assembled together, the experimental apparatus created an
environment where data could be generated and recorded using a
multiple-track digital magnetic tape system, and subsequently
replayed and analysed, all under the control of a transputer. It
also provided the environment in which programmes could be developed,
and computer simulations performed.

2.6. References for Chapter 2.

DONNELLY, T., Time Delay Solenoid Switch using VMOS FETs., New
Electronics, 4 February, 1986.

HOARE, C.A.R. Communicating Sequential Processes. Prentice-Hall,
1985.

IBM Corporation, IBM Personal Computer Hardware Reference Manual
Library: Technical Reference. March 1986.

INMOS Ltd., Engineering Data Sheet: IMS T414 Transputer. August 1987,
(a).

INMOS Ltd., Engineering Data Sheet: IMS CO11 Link Adaptor. August
1987 (b).

INMOS Ltd., Transputer Reference Manual. Prentice Hall International
(UK) Ltd., 1988 (a).

INMOS Ltd., Transputer Instruction Set: A Compiler Writer's Guide,
Prentice Hall International (UK) Ltd., 1988 (b).

INMOS Ltd., Transputer Development System. Prentice Hall
International (UK) Ltd., 1988, (c).

INTEL Corporation, Microprocessor and Peripheral Handbook, Volume IT
Peripheral, Santa Clara, USA, 1987.

JACKSON, T.J., Mapps, D.J., Heachor, E.C. & Donnelly, T. A Real-Time
Transputer-Based System for a Digital Recording Data
Channel.", Microprocessing and Microprogramming Vol. 25, pp
281-286, 1989.

54

MACKINTOSH, N.D. The Choice of a Recording Code, Int. Conf. Video
and Data Recording, Southampton, L.LE.R.E. Conf. Proc. No. 43,
1979,

SCANLON, L.J. IBM PC & XT Assembly Language: A Guide for Programmers.
Brady Communication Company, Inc. NY, USA, 1985.

WHATTON, M.E. An economical Data Store. I.LE.R.E. Conference

Proceedings, No. 26, Video and Data Recording Conference,
Birmingham, July 1973.

35

3. Theory, Modelling and Software of the Data Channels.
3.1. Overview.

In the course of the investigation, three data channels or systems
were assembled, see figure 3.1. The core system, figure 3.1(a), was
based on the compact-cassette hardware described in chapter 2, and is
referred to as the compact-cassette system. The second, figure
3.1(b), was a model of a multiple-track tape system based on the
compact-cassette system. The third system, figure 3.1(c), used
elements from the previous two systems, combined with a digital
waveform recorder, and was used to investigate a lateral head
displacement compensation scheme. This chapter describes the software
used to implement these systems, together with the relevant theory.
All of the software presented in this chapter was written in

occam.

3.2, The Compact-Cassette System.

Figure 3.2 shows the operational flow-diagram of the compact-cassette
system. The first step was to record the test data sequences onto the
cassette tape. Pseudo-random Binary Sequences were generated in
software and used as test sequence data. The system then operated in
a semi real-time mode, the processor alternating between data capture
and data processing. During the capture phase, the data and timing
information describing up to 3x10° transitions were stored. The
capture process is then suspended and the data processed. This was
repeated to the end of the test when the results and waveforms were
filed onto the IBM PC's hard disc.

3.2.1. Generation and Encoding of Test Sequence Data.

The project was concerned with the recording channel, and not the
information content of the data recorded. By using pseudo-random

56

via one of the tansputer's Links. The data acquisition process
also recorded the time the data were read, storing the data in one
array, and the time in a second array. When the arrays were full, the
data aquisition process was suspended whilst the data were processed.
The data were demultiplexed with respect to their track, and
processed separately on a track by track basis.

3.2.2.1. Data Acquisition.

This section is used to illustrate several fundamental aspects of the
occam programming language and transputer introduced in
section 2.2.1, and is therefore considerably more detailed than
similar sections.

The hardware interface between the GXO detectors and the
transputer was Event or Data Driven. When new data were detected
the current state of all the channels was made available for the
transputer to input via a Link, As the operation of this
interface was designed to conform to eccam channel protocol, the
code to read this data is simply:

link ? new.data

When the transputer executes this line of code, it checks to see
if there is a message waiting to be read from channel "link". If
there is then it is stored in the variable "new.data" and the process
continues being executed.

If no message is waiting (i.e. no transitions have occurred)
the process is suspended and put on the inactive process list. When
the message does arrive (i.e. a transition has occurred) the process
is moved to the active process list. When the process comes to the
top of this list, it is rescheduled. The message transfer can then
occur (i.e. the message is stored in "new.data") and the process
continues being executed,

In order to perform the decoding process, the time the
transition occurred was required. This was performed by exi:ending the

62

above code to:

SEQ
link ? new.data
clock ? transition.time

This is read as "SEQentially, read new data from channel "link", then
read transition time from “"clock". The simplistic elegance of these
three lines of occam demonstrates its applicability to real-time
applications. However, what is not immediately obvious from this code
are the time intervals that may exist between the transition
occurring and the data being read and between the data being read and
the reading of the clock.

If a transition occurred immediately after the process was
descheduled, the transition would not get read until the process had
reached the top of the active process list and been rescheduled. The
length of time this takes is dependent on the number of other
processes preceding it on the list. This time interval is therefore
variable and potentially unacceptably long.

Of equal undesirability would be for the process to come to
the end of its 'time-slice' period immediately after reading the
channel. It would then get descheduled before the time was recorded.
When eventually rescheduled, the time recorded may be considerably
different to the time the channel was read (or indeed when the
transition occurred).

In an attempt to remedy this type of problem, eccam allows
Prioritization of processes (INMOS, 1988(b), Welch, 1987, Burns et
al., 1987). Low priority processes only get scheduled if no High
priority process can proceed. Running the data acquisition process at
High priority results in it being rescheduled immediately the channel
communication can proceed, and prevents it being descheduled before
the time has been recorded. A transition can therefore be timed to a
determinable accuracy (calculated later).

If n = number of tracks and r = data rate, the average time
available to process each data bit is,

=1
[proc = /(n * T) seconds

f

63

However, as Bi-Phase-L. has 1.5 transitions per data bit on average,
in a worst case situation as many as 1.5n transitions may occur in
‘proc' One solution is to use a data buffer process between the
data acquisition process and the data processing (Pountain, 1988).
This decouples the two processes, allowing data to be captured in
short bursts at high rates, and processed at the average rate.

Putting the above code into a loop, and adding a fifth line
that outputs the transition and its detected time via the channel
"to.buffer”, results in:

WHILE TRUE
SEQ
link ? new.data
clock ? transition.time
to.buffer ! new.data ; transition.time

Consider the worst case situation of a sequence of
transitions, closely spaced, yet non-coincident. The sequence of
events would be:

i) The first transition occurs and the data becomes valid to
be read from the Link.

i) The acquisition process is scheduled, the data read, the
time recorded, and the message output on channel "to,buffer”
initiated.

iii) The acquisition process is descheduled as the channel
communication cannot complete (until the data is received by the
buffer process).

iv) The buffer process is scheduled, and the data and
transition time read from the channel.

v) The Channel communication completes. The acquisition
process can now proceed and so the buffer is descheduled (being a
lower priority) to allow this.

vi) Steps i), ii) and iii) are repeated. However, the second
message communication to the buffer cannot complete until the buffer
has finished processing the first communication (it was descheduled
immediately after its receipt). This results in the High priority
acquisition process waiting for the Low priority buffer process;
precisely what was not wanted. ’

The standard technique to deal with this problem is to run the
buffer process at High priority too. This results in the buffer
process not being descheduled until it has stored the first message.
However, it also results in the time taken to store the data in the
buffer process being added to the data acquisition time, degrading
timing resolution. .

Figure 3.6 shows a further optimization of this technique
where the acquisition and buffer processes, implemented as a circular
buffer (Burns, 1988), has been combined to reduce the time involved
in scheduling processes.

WHILE TRUE 4
PRI ALT 74
from.link ? tran.data.buffer[in.pointer] 28
SEQ
clock ? tran.time.buffer[in.pointer) 11
in.pointer := (in.pointer PLUS 1) 6
IF
(in.pointer = buffer.size) 8
in.pointer := 0 2
TRUE
SKIP
buffered.items := (buffered.items PLUS 1) 6
(items.in.buffer>0) & data.request ? message 24
SEQ
data.out ! tran.data.buffer[out.pointer] ;
tran.time.buffer[out.pointer] 72
out.pointer := (out.pointer PLUS 1) 6
IF
(out.pointer = buffer.size) 8
out.pointer := 0 2
TRUE
SKIP

buffered.items := (buffered.items MINUS 1) 6

Fig. 3.6. Data Acquisition and Circular Buffer.

The figures to the right of the code indicate approximate
execution times (in CPU cycles). It therefore takes 4+74+61=139
cycles to input and time a transition, and 4+74+118=196 cycles to
output the data and the time it occurred. For a 15MHz T414
tansputer with a 67nS CPU cycle time, the maximum burst data
acquisition rate is therefore 1/(139 * 67nS)=108k transitions per
second (where the maximum burst length corresponds to ‘the buffer

65

size), and the maximum continuous data acquisiion rate is
1/((139+196)*67nS)) =45k transitions per second. This second figure
also indicates the worst-case timing resolution of 1/45k=224S.

The maximum continuous data rate stated above assumes the
acquisiion process to be the only process running on the
transputer. This was not the case. The decoding, error checking
and classification processes for all the channels were also run
concurrently on the same transputer. The performance degradation
caused by these other processes resulted in the single transputer
being unable to process the data from the four tracks at the required
rate of Skbps per track in real-time, hence the pseudo real-time
operation of the compact-cassette system.

There is a second factor that can degrade performance. The
figures quoted above for the number of CPU cycles assumes both
programme and associated data reside in the fast internal memory of
the transputer. External memory references are slower, and may
therefore degrade performance. For the transputer board used,
each external memory reference required an extra 3 processor cycles.
However, the tansputer's 4 byte instruction pre-fetch removes
this delay for linear code sequences. After a branching operation or
process-swap the pre-fetch does not help, and the programme execution
will be delayed whilst the memory reference is made.

The severity of the degradation is therefore dependent on the
code sequence. From simulation (INMOS, 1988), performance timings
should be extended by approximately 60% when the programme and data
reside in external memory. To maximise performance (Atkin, 1987), it
is possible to arrange for specific processes to reside in the
transputer's internal memory. The code for the data acquisition
process (being the most performance critical) was therefore placed in
internal memory. However as the internal memory of the T414
transputer is only 2K bytes in size, the majority of the
programme and data resides in external memory, and was therefore
subject to this degradation (although CPU cycles quoted do not
reflect this).

As it was not possible to run the code in real-time on a
single transputer, a pseudo real-time mode was used. The data

66

acquisition process was optimised to take full advantage of this, and
is shown ‘in figure 3.7.

SEQ index = 0 FOR array.size i3

SEQ
from.link ? transition.data.array[index) 28
clock ? transition.time.array[index] 1
Total 52

Fig. 3.7. Code for Pseudo Real-Time Data Acquisition
and Buffering.

The maximum burst data acquisition. rate is now the same as the
continuous rate at 1/(52*67nS) =288k transitions per second, with a
timing resolution of approximately 3.5uS. Therefore, operating in
a pseudo real-time mode not only removes the constraint of having a
limited amount of processing time, it also considerably improves the
maximum data acquisition rate and timing resolution. The only penalty
is a limit on the maximum number of contiguous transitions recorded,
but as this was approximately 3x10° this was not considered too
limiting.

Figure 3.8 illustrates how the track transition data and
timing information (for just three tracks for simplicity) is stored
by the data acquisition process. Due to a one bit buffer in the
hardware, the time of the transition marking the start of the data
item stored in location n of the data :array, is stored in location
n-1 of the time array (for clarity, this has been purposely
overlooked in the description).

3.2.2.2. Distribution of Data for Concurrent Evaluation.

At the end of the data acquisition phase, the data for all the tracks
were stored in one array, with their respective transition timing
information in a second array. The first stage in the processing of
this data was to separate the data associated with each track and
distribute it for processing on a track-by-track basis. This is shown

67

1) (2) 3 “) &)
Data Basic Actual Desired. Equivalent.
Rate. Waveform. Resultant. Resultant, Applied.
1000 0.0152 0.0332 0.0327 0.0295
2000 0.0997 0.1053 0.1039 0.0338
3000 0.1552 0.1606 0.1579 0.0413
4000 0.1933 0.1994 0.1955 0.0489
5000 0.2532 0.2610 0.2548 0.0633
6000 0.3350 0.3413 0.3363 0.0653

Table 4.5, Standard Deviations of Simulated Waveforms.

waveform. The second column contains the Standard Deviations (SDs) of
the basic waveform, produced by the superposition of uniform height
isolated pulses (i.e. zero deviation in amplitudes). The third column
contains the SDs of the waveforms produced by the model, when the
isolated pulse amplitudes had an SD of 0.029 (i.e. the value measured
from the compact-cassette system, section 3.3.2.3). The fourth column
contains the statistical addition of the SD of the basic waveform
from column 2, plus an SD of 0.029. The fifth column is the
statistically calculated value of SD that would need to be added to
the basic waveform SD to produce the values in column 3. This fifth
column would contain only the value 0.029 for a correctly implemented
amplitude fluctuation mechanism, and therefore the figures in the
column indicate the error in the implementation.

Table 4.5 also shows that as the data rate increases the
distribution of amplitude fluctuations does not remain constant. The
amplitude fluctuation process therefore needs to be modified so that

it is applied to the complete waveform, and not to individual
isolated pulses. Doing so would also allow drop-outs to be modelled
more accurately in terms of duration and severity (e.g. Baker, 1977).

4.7. occam and the transputer.

All of the results presented in this chapter were obtained (to a
greater or lesser extent) using the software described in chapter 3.
This alone is felt to vindicate the choice of the occam
programming language (and therefore the transpufor),. for this
project. This section highlights several key points and issues
concerning the semantics of occam, computational performance, and
hardware and software architectures.

The semantics of occam greatly simplified many of the
programming tasks. For example, once the Bi-Phase-L. Channel Decoding
process had been written, the code to run a number of them
concurrently was simply,

PAR track = 0 FOR number.of.tracks
. Channel Decoder Process

The following code extends the above and could have been used
to download (or PLACE) a number of Decoder processes onto a network
of transputers, where they would run in parallel.

PLACED PAR track = 0 FOR number.of.tracks
PROCESSOR track T4
.. Channel Decoder Process

The significance of the lines of occam above cannot be
overstated. The first code fragment could be used to run 1 or 1000 or
any integer number (known at compile time) of copies of the Decoder
process concurrently on a single transputer. The second code
fragment could be used to distribute any number of Decoder processes
over an array of transputers (each of type T4). The key point is:
the occam for the Decoder process remains unchanged.

As a transputer array large enough to distribute the code
over was not available, this facility could not be investigated.
However, the code was written to take advantage of this facility had
it become available. During simulation of the compact-cassette
system, 35 processes run concurrently. This code could be transferred
to a network of 35 wansputers without a single modification to

164

the process's code. A '35 times' speed-up would not occur however as
the processes are not balanced in terms of processing time i.e. the
data rate through the network would be determined by the process with
the longest processing time. Also, some simple message routing
processes would need to be written as transputers have a maximum
of 4 Links, and some of the processes need 8 channels. The second
generation of transputers (the T9000 family (INMOS, 1991)) use
automatic routing switches to avoid the need to use such extra
processes.

The semantics of the language facilitates (or even encourages)
a natural one-to-one mapping between the components of the
compact-cassette system and those of the model. Although occam
processes are not true ‘objects' in the sense of an object oriented
language (i.e. there is no inheritance mechanism or implicit
encapsulation, once written they may be manipulated in an almost
tangible manner.

The benefits this brings were most clearly demonstrated by the
modification made to the GXO detector to perform the function of a
Peak detector (section 4.4.2). The analogy between the modifications
made to the occam code and the rewiring of the circuit was clear.
The value or worth of the model is therefore increased as each
process represents a basic building block that may be re-used
elsewhere.

From this one-to-one mapping the programme is naturally formed
into a Data Driven, Data Flow style of architecture (Williams, 1990).
The code for the model formed two such data flow structures, one for
the data generation and encoding (see figure 3.3) and a second for
the data decoding and analysis (see figure 3.5). The data flowed
through the processes where it was transformed. The analogy between
the electrical signals flowing through the electronic circuitry is
clear.

The performance of the data acquisition process was analysed
in detail in section 3.2.2.1., A similar analysis was performed on the
model's code. As a single Skbps data bit was represented by 100
floating point values in the sampled data section of the model, the
investigation concentrated on the nine concurrent processes that

165

constituted this section. Firstly, the overhead in terms of CPU
execution cycles associated with the Data Flow structure was
calculated. The format of, and channel protocol between these
processes was standardised, and is shown in figure 4.35 along with
the execution times. "

PROTOCOL INT.OR.FLOAT
CASE
int ; INT
float ; REAL32

SEQ
WHILE running 9
data.in ? CASE 32
int ; char
IF
char = terminate
running := FALSE
TRUE -- else,
SKIP -- do nothing
real ; data.to.be.transformed 26
... process data
data.out ! real ; transformed.data 63
. pass on terminate.symbol
Total 130

Fig. 4.35. Standardised occam process format
(Figures indicate execution times in CPU cycles).

As no suitable floating point value was available to be used
as a 'terminate’ token, a Variant Channel Protocol (INMOS, 1988a) was
used. This allowed an integer terminate token to be passed down the
same channel as the floating point sampled data. When a floating
point number was input from the previous process, the relevant
transformation was applied, and the new data output to the next
process using the same channel protocol. When the terminate token was
received, the main loop stopped running and the terminate token was
passed to the next process. This ensured each process terminated
correctly.

From figure 4.35, each sample passing through each process
consumed 130 CPU cycles. As it takes approximately 20 CPU cycles to
schedule a process, and each sample results in the process being

166

Whilst a figure of nearly 6000 cycles to generate each noise sample
seems high, most GWN algorithms use trigonometric functions that are
also very time consuming (for example sin(x) consumes approximately
3400 CPU cycles).

The use of floating point arithmetic consumed approximately
30% of the CPU's resources. This may be reduced by using a T800
transputer as it has a dedicated floating point = co-processor
(INMOS, 1988b). This reduces addition and subtraction from
approximately 230 cycles to 7, and multiplication from approximately
200 cycles to 11. As floating point arithmetic was also used by the
GWN generator, considerable improvements would be expected.

To verify this the model was transferred to a 17.5MHz T800
transputer. The time to simulate each data bit was reduced from
0.2 seconds to 0.099 seconds. Compensating for the difference in
clock rates, this represents a 88% performance improvement.

In some programmes the communication overhead creates a
performance bottle-neck. Referring back to figure 4.35, each process
used 95 CPU cycles per sample (i.e. 32+63) inputting and outputing
data. Communication therefore consumed less than 5% of the CPU's
resources, and suggests little would be gained by improving the
efficiency of the message passing (for example by increasing the
length of messages).

4.8. Summary.

This section summarises the results and discussions of the three
systems investigated.

Analytic expressions were developed to describe the shape of
the isolated pulses from the inductive and magneto-resistive heads.
Although there was excellent agreement between the shapes of the
pulses produced by these equations and those from the heads, the
technique used to derive these equations had two limitations:

i) Due to the discontinuities in the waveforms, a large amount
of human intervention was required to produce reliable results.

il) With no theoretical basis, the equations derived could not

168

be manipulated in any manner that could be related to the recording
process.

The model could therefore be usefully extended by adapting a
more conventional approach to pulse shape modelling, for example one
of the methods investigated by Loze (Loze, 1990).

The recording current level was adjusted to minimise the
effects of intersymbol interference in the un-equalised channel of
the compact-cassette system. A reduction in peak-droop by more than
50% was achieved, albeit at the expense of signal amplitude and
therefore SNR. Further performance improvements were observed when
more advanced (and more expensive) recording medium tapes (e.g. metal
particle) were used.

The compact-cassette system achieved a total data rate of
22kbps at an error rate of 1x10. The simulated data rate results
agreed closely with those from the compact-cassette system, the only
notable deviation being a shift of approximately 300bps (or 6% of
Skbps) in data rate. The improved error rate performance of the
model was attributed to the use of new tapes during characterisation
of the reference pulse. Simulation indicated that the error
performance of the compact-cassette system may be increased further
by using a Peak detector. The data rate to error rate ratio maximum
of 6.7x1010 compared favourably with a similar system (Donnelly,
1989). The performance of the MR head in terms of data rates was very
disappointing. This was attributed to the lack of magnetic shields
(the pole-pieces), and increased spacing loss caused by poor
fabrication.

The correlation coefficient between the positional error
profiles was found to be high (around 0.9) between replays, but low
(around 0.1) between recordings. These findings discouraged an
investigation into using a knowledge of a cassette's positional error
profile from one recording to determine the error correction scheme
applied during subsequent recordings.

The strategy of processing the data from each track separately
proved to be successful in eliminating errors caused by .misaligned
data due to azimuth skew. The effect of azimuth skew in terms of its

169

signal attenuating property is dependant on the recorded packing
density. At Skbps, azimuth skew in excess of 20 minutes of arc needed
to be introduced before the attenuation was sufficient to directly
cause errors. This represents considerably more skew than the 4.4
minutes of arc encountered under normal operating “conditions
(Donnelly, 1989). The investigation concluded that azimuth skew was
not a severe limitation on the ultimate performance of the recording
channel.

In the compact-cassette format, the amount of Lateral Head
Displacement (ILHD) encountered under normal operating conditions does
not significantly contribute to the error rate. Significant levels of
LHD were deliberately introduced for investigative purposes. From the
LHD error rate profile the critical displacements that mark the
boundaries between acceptable and unacceptable performance were
noted. From these figures, the track separations and mutual
interference factor between interfering tracks were calculated. The
mutual interference factor was found to be highly dependant on the
relationship between the two interfering signals, and the
relationship was found to be complex.

A new figure of merit was proposed. It specifies the range of
displacements from which an acceptable level of performance may be
achieved, expressed as a percentage of the track separation. The
compact-cassette system's LHD figures of merit were 91.2% and 70% for
track separations of 0.888mm and 1.304mm respectively. From
simulation, the proposed magneto-resistive head achieved an LHD
figure of merit of 80.7%.

The simulated LHD results were in general agreement with those
from the compact-cassette system, but only to a first approximation.
The difference was highlighted by the LHD figure of merit, for which
the model produced figures of 76.5% and 74.1% (compared to 91.2% and
70%).

Although unaffected by the data misalignment caused by azimuth
skew, the signal attenuating effects of azimuth skew degraded the
performance of the compact-cassette system in the presence of LHD.
The LHD figure of merit was reduced from 91.2% to 66% (the second
figure of merit could not be calculated as head 3 never achieved an

170

acceptable level of performance reading track 2).

The LHD compensation scheme was found to be successful in
terms of estimating the on-track signal from the off-track signal.
For all displacements investigated, the correlation coefficient
between the on-track signal and the compensated off-track signal was
maintained at a value greater than 0.9, including the worst-case
displacement of half the track separation. The compensation scheme
was sufficiently effective to allow the off-track signal to be
decoded with no errors (again, including the worst-case
displacement). The RMS value of the signal was found to be a good
estimate of the magnitude of the LHD, performing better than +10% of
the exact displacement, and improving the LHD figure of merit from
43% 10 92%. '

The choice of occam and the transputer was vindicated
by the results presented in this chapter. Solutions to inherently
parallel problems were implemented in a very straightforward way, and
efficiently executed by the transputer.

171

4.9. References for Chapter 4.

BAKER, W.R., A Dropout Model for a Digital Tape Recorder. IEEE Trans.
on Magnetics, Vol. MAG-13, No. 5, September 1977.

DONNELLY, T. Real-Time Microprocessor Techniques for a Digital
Multitrack Tape Recorder, Ph. D. Thesis, Polytechnic South West,
1989.

JEFFERS, F., & Karsh, H. Unshielded Magnetoresistive Heads in Very
High-Density Recording. IEEE Trans. on Magnetics, Vol. MAG-20,
No. 3, September 1984.

ILS, Interactive Laboratory System, Signal Technology, Inc.,
California, USA, 1987.

INMOS Ltd., Occam 2 Reference Manual. Prentice Hall International
(UK) Ltd., 1988 (a).

INMOS Ltd., Transputer Reference Manual. Prentice Hall International
(UK) Ltd., 1988 (b).

INMOS Ltd., The T9000 Transputer: Product Overview. INMOS Ltd., 1991.

KATZ, E.R., & Cambell, T.G. Effect of Bitshift Distribution on Error
Rate in Magnetic Recording. IEEE Trans. on Magnetics, Vol.
MAG-15, No. 3, May 1979.

LOZE, M K., Middleton, B.K., Ryley, A, and Wright, C.D., A Comparison
of Various Methods for Characterising the Head-Medium Interface
in Digital Magnetic Recording. IEEE Trans. on Magnetics, Vol.
MAG-26, No. 1, January 1990.

WILLIAMS, S.A. Programming Models for Parallel Syatems. John Wiley &
Sons Ltd., England, 1990,

172

S. Review and Conclusions.

The impetus behind the information storage industry is to
increase the storage capacity of devices. In magnetic recording this
means increasing the areal bit packing density. This may be achieved
by reducing the space between, and width of, recorded tracks, and/or
reducing the wavelength of the recorded information. Section 1.1.1
detailed the advantages, in terms of SNR, of increasing the track
density as opposed to reducing the wavelength of the recorded
information. Techniques to deal with many of the problems exacerbated
by the use of higher track densities have been developed.

The problems of low SNRs and high error rates may be
alleviated by the use of more sophisticated coding schemes. The
higher levels of static inter-track cross-talk may be compensated for
(at least npartially) electronically. The maintenance of correct
registration between the tape and head has been achieved by
manufacturing components of the tape and tape transport mechanism to
tighter tolerances. This approach results in increased manufacturing
costs. With the advances being made in microprocessor technology, the
cost of computation is falling, and is expected to carry on doing so.
It is therefore extremely relevant to investigate how software
techniques may be used to compensate for these mechanical
deficiencies.

This project has investigated the performance of a
multiple-track digital magnetic tape system, concentrating on the
problems that a tape transport mechanism manufactured to a low
tolerance may be prone to. The following conclusions pertain to the
performance of the compact-cassette system, the structure of the
computer model developed and the impact of oceam and the

transputer on the investigation.

The Compact-Cassette System.

The successful integration of the transputer into the data
channel of the compact-cassette system was largely due to the

173

operation of the interface between the replay electronics and the
transputer's Link. Not only did it provide a seamless join
between the hardware and software, it reduced by a factor of 9.5 the
number of read operations required, compared to using a software
polling technique with the same timing resolution.

The error classification scheme devised provided significantly
more detailed information about the error rate profile than the raw
bit error count used by many researchers. Its operation is not
dependent on any specific data sequence, and only requires the
specification of two parameters - the minimum good sequence length
between bits in error, and the maximum bad sequence length.

The investigation into the effects of mechanical deficiencies
on performance concentrated on Azimuth Skew and Lateral Head
Displacement (LHD), the problems of inconsistent tape speed having
been addressed (Donnelly, 1989). Misalignment of data between tracks
of more than 1/4 of a data bit causes errors in a parallel sampling
tape recorder. By reversing the overall architecture from a
sequentially processed, N-bit paralle]l data channel, to N serial data
channels processed in parallel, the system was unaffected by such
data misalignments. Levels of azimuth skew greatly in excess of those
encountered during normal operating conditions needed to be
introduced before the resultant attenuation in signal amplitude
directly caused errors. For these two reasons, combined with the fact
that attenuation due to azimuth skew reduces with track width,
azimuth skew was not viewed as a severe limitation on performance.

The impact of LHD on error rates increases as track widths and
guard-bands decrease, and was therefore of prime interest. The
compact-cassette's track dimensions are significantly larger than the
magnitude of LHD encountered under normal operating conditions.
Artificially high levels of LHD were therefore introduced to simulate
the effects of LHD on very narrow track systems.

A system designer's objective 1s to keep the error rate within
the capabilities of the error correction scheme. There is therefore a
maximum error rate, above which an acceptable level of performance
may not be attained. As the head is displaced from its on-track
position, the system's performance (in terms of error rate) decreases

174

until it becomes unacceptable. To date, the system designer has used
this point of unacceptability to specify the maximum displacement
that may be allowed. If this approach is maintained, then as track
dimensions reduce, system performance will become even more dependent
on the mechanical tolerances of the tape transport mechanism. The
approach used for this investigation was to assume that significant
levels of LHD will be present in future systems, and to develop
schemes to cope with the resultant degradation in performance. If the
head is displaced past the point of ‘acceptability’, it will
eventually start to read the track recorded by an adjacent head. With
this approach, the LHD error rate profile forms three distinct
regions:

1) Acceptable performance reading the correct track.

it) Unacceptable performance.

iil) Acceptable performance reading an adjacent track.

A new figure of merit was proposed, one that specifies the
percentage of displacements from which an acceptable level of
performance can be achieved. For the two track separations the
compact-cassette system achieved figures of merit of 91% and 70%. If
this figure could be increased to 100%, LHD would no longer be a
constraint. Using conventional decoding techniques such a figure is
not possible: when the head is equidistant between two tracks neither
track will be decodable.

A compensation scheme was devised to improve this figure, The
scheme is effectively the inverse of the that used to introduce LHD
in the model. From a knowledge of the track format dimensions, and
an estimate of the LHD, the relative proportions of the signals from
the two interfering tracks may be calculated. Starting with the
signal from the head not corrupted by an adjacent track, the levels
of interference may be calculated, and (at least partially)
compensated for. Using this scheme, the correlation coefficient
between the optimally replayed signal and the compensated signal from
the displaced head remained greater than 0.9 (including the
worst-case displacement of half the track separation). In terms of
error rates, the compensation scheme was found to be 100% effective

175

in compensating the two outermost tracks when the exact amount of LHD
was known. The attenuation of signal amplitudes may be used to
estimate the magnitude of the LHD. Using this estimate, the
compensation scheme performed better than using +10% of the exact
value of LHD.

Although, as stated above, azimuth skew was not viewed as a
severe limitation on performance, the introduction of 13.3 minutes of
arc of azimuth skew had a considerable effect on the LHD error
profile: the first LHD figure of merit was reduced from 91.2% to 66%,
whilst the second was immeasurable. Although such high levels of
azimuth skew would not normally be encountered under normal operating
conditions, it is recognised that azimuth skew compounds the problem
of LHD, and would place a greater demand on a LHD compensation
scheme.

The investigation established that the effects of azimuth skew
need not impose a significant limitation on the performance of
multiple-track digital magnetic recording systems. However, LHD was
found to impose a severe limitation on the performance of
multiple-track system that employ narrow and closely spaced tracks.
The effects of LHD were quantified, and a compensation scheme devised
to reduce its effect on system performance. This allows low-cost tape
transport mechanisms to be used with narrower and more closely spaced
tracks, thereby increasing the packing density.

The Maodel.

The model allows investigations into the performance of a
multiple-track digital magnetic tape system to be carried-out in a
strictty controlled environment. Although based on one specific
recording Ssystem (the compact-cassette system), its modular structure
greatly simplifies the task of adapting it to simulate different
systems.

The isolated pulses that form the basis of the linear
superposition process where derived analytically: no knowledge of any
magnetic recording parameter was required. The high level of accuracy

176

of the results facilitated by this technique was gained at the
expense of flexibility: the pulses cannot be manipulated in any
manner that can be related to the magnetic recording process.

A one-to-one mapping between the physical elements of the
compact-cassette system and the model was used whenever possible. For
example, rather than simulate one track of the multiple-track system
and assume consistency between tracks, all tracks were simulated
concurrently. Therefore when the model was extended to allow lateral
head displacement to be simulated, the interfering signals from
adjacent tracks were already available. All that was required was an
occam process to introduce the relevant amount of cross-talk.

This one-to-one mapping also allowed the elements of the model
to be manipulated in an almost tangible way. This was demonstrated by
the way elements of the GXO detector were rearranged to form a Peak
detector. A direct analogy was drawn between the editing operations
involved in modifying the model's code, and the rewiring operations
that would have been carried-out, had the modifications been made to
the electronic circuit.

As the whole of the recording system was included in the
model, the effect of a parameter on performance was measured in terms
of its effect on the error rate profile of the system. The error rate
is the primary measure of a systems performance. Measurements based
on other parameters, such as frequency response or SNR, are
essentially intermediate indicators of performance. As the model has
been validated against a real recording system, the signal to error
rate conversion was known to be reliable and accurate.

The ability to simulate the performance of a complete
multiple-track digital magnetic tape system in such an explicit
manner, and the ability to measure the performance directly in error
rates makes the model innovative.

The model was developed to provide a controlled environment in
which investigations into the performance of multiple-track digital
magnetic recorders may be carried-out. Its development also became a
vehicle for a greater understanding of the recording channel. The
inspiration for the LHD compensation scheme came whilst working on
the process that mtroduces LHD in the model; one being the inverse

177

of the other. An advantage of the model's structure is that it may be
modified easily, allowing novel ideas that aim to improve the
performance of magnetic recording systems to be investigated.

occam and the transputer.

Parallelism occurs at many levels in a multiple-track digital
magnetic recording system. The semantics of the occam programming
language greatly simplified the design of the software written during
this project. As occam does not require the real-world to be
transformed into a sequential representation, the structure of the
model was designed to follow that of the hardware. The model
therefore naturally formed a Data Flow structure, with a near
one-to-one mapping between the functional blocks of the hardware and
the software.

The parallel streams of data associated with the
multiple-tracks was described directly, as were the parallel data
streams internal to the GXO detector model. A natural hierarchy of
processes within processes was developed. The overhead incurred by
the use of such a structure was found to be low. The usefulness of
occam would be considerably undermined if parallel constructs,
such as this, incurred a heavy performance penalty. However, the
transputer executes occam processes very efficiently avoiding
this. The level of efficiency achieved allows occam to be used
even in the performance-critical area of real-time processing.

A significant benefit of using occam was that it greatly
simplified the design of the code for both the compact-cassette
system and the model. This was efficiently executed by the
transputer. Many of the advantages that were gained from the use
of Occam and the transputer in this project are equally
applicable to other inherently parallel systems - not just limited to
magnetic recording. Their use was a major contributory factor to the
success of the techniques developed.

178

5.1. Suggestions for Further Work.

The isolated pulses used in the model developed were derived
using purely numerical techniques. The usefulness of the model can be
extended by using a pulse fitting technique that is based on the
parameters of the magnetic recording process. This would allow the
effect of such parameters on system performance to be included in
further investigations.

Because of the compact-cassette's track dimensions it was not
possible to investigate the performance of the LHD compensation
scheme when applied to more than two tracks. Due to the iterative
nature of the scheme, its efficacy is expected to decrease as the
number of tracks increase. This is because the signal from the nth
track is estimated initially, and then, based on this estimate, an
estimate of the signal from the (n+1)th track is made. As each
estimate is based on all previous estimates, successive estimates
will decrease in accuracy. The effect of this on the performance of
the scheme needs to be investigated. The model may be used to perform
such an investigation.

The performance of the transputer used during this
investigation was insufficient to allow the data from the
compact-cassette system to be processed in real-time. The performance
of the next generation of transputers has been dramatically
improved. Comparing the T414-1SANMOS, 1988) used in this
investigation with a T9000-50(INMOQOS, 1991), instruction throughput
has been increased 25 fold, whilst the floating point performance has
been improved approximately 350 fold. The improvement in performance
would speed-up simulations, and allow even more sophisticated schemes
to be implemented.

The envisaged data rates of HDTV recorders demands the use of
a multiple (or parallel) track format. Further investigations will
need to be made as current systems lack the necessary performance.
Tools and techniques such as those developed in this project may be
used in such studies.

179

fReferenceé for Chapter 5.

INMOS .Ltd., Transputer Reference .Manual. Preritice Hall International
(UK) Ltd:, 1988 (a). . | f

INMOS Ltd., The T9000 Transputer: Product Overview. INMOS Ltd., 1991,

180

Appendix A: Published Paper.
Presented at EUROMICRO '88. Supercomputers: Technology and

Applications, Zurich, August 1988. Published in Microprocessing and
Microprogramming 25, pp281-285, by North-Holland.

Al

References for Appendix B.

MALLINSON, J.C., The Foundations of Magnetic Recording. Academic
Press, Inc., USA, 1987,

MIDDLETON, B.K. Magnetic Recording, Vol. I: Technology, Chapter 5:

Recording and Reproducing Process. Series Editors C. D, Mee, and
E. D. Daniels, McGraw-Hill, Inc. USA, 1987.

BS

Appendix C: Programme for Calculating Isolated Pulse Waveform
CoefTicients.

Written in FORTRAN-77 by Barry Good, Computing Dept, Polytechnic
South West.

PROGRAM CALCPULSE
DOUBLE PRECISION A(9,9),B(9),C(9),X(9),Y(9),AA(9,9)
DOUBLE PRECISION WKS1(9),WKS2(9),U
C Data statements holding x,y coordinates of reference pulse
DATA X/-5.47,-2.16,-1.34,-0.95,-0.67,-0.39,0.0,0.42,0.75/
DATA Y/0.0,0.1,0.3,0.5,0.7,0.9,1.0,1.00,1.000/
P(U)=((((B(5)*U+B(4))*U+B@E)*U+B(2))*U+B(1))/
/ ((BO*U+B(E)*U+B(M)*U+B(6))*U+1.0D0))
DO11I=19
AI,D=1.0
A(L,2)=X{)
A(1,3)=XD**2
A(l,4)=XD**3
A(L5)=XD)**4
A,6)=-Y(M)*A(,2)
A1, 7 =-Y()*A(1,3)
A(l,8)=-Y()*A(,4)
A(1,9)=-Y(I)*A(L3)
1 =YD
IFAIL=0
CALL F4ATF(A,9,C,9,B,AA,9,WKS1,WKS2,IFAIL)
C Print coefficients to screen
PRINT *,'A(0) ="', B(1)
PRINT *,'A(1) = ', B(2)
PRINT *,'A(2) = ', B(3)
PRINT *,’A(3) = ', B4)
PRINT *,"A(4) = ', B(S)
PRINT *,'B(0) = ', 1.0D0

PRINT *,'B(1) = ', B(6)
PRINT *,'B(2) = ', B(7)
PRINT *,'B(3) = ', B(8)
PRINT *,'B(4) = ', B(9)
C Generate points on isolated pulse for plotting and verification
DO 2 1=-545,75,1 |
2 WRITE(*,1000)0.01D0*1,P(0.01DO0*T)
1000 FORMAT(1X,2F10.3)
STOP
END

C2

Appendix D: Polynomial Coefficients of Analytical Pulses.

This appendix lists the coefficients of the following equation used
to generate the isolated pulses for the computer model.

f(t) =a[0] + a[1]t + a[2]t? + a[3]t> + a[4}*
b[0] + b[1]t + b[2]t2 + b[3] + b[4]t?

Inductive Head.

Left Hand Side Coefficients (-0.7mS to OmS).
af0} = 1.0
a[1] = 1.686037684194E-02
a[2] = 1.010845531056E-04
a[3] = 1.791685983396E-07
a[4] = 9.465082048366E-11

b[0] = 1.0

b[1] = 1.663340065266E-02
b[2] = 1.927853391487E-04
b[3] = 9.873698980734E-07
b[4] = 5.577926897161E-09

Right Hand Side Coefficients (OmS to 0.8mS).

af0] = 1.0

a[1] = 1.069159470110E-02
a[2] = 7.919654258251E-06
a[3] = -6.665960569085E-08
a[4] = 4.802436072905E-11

b[0] = 1.0

b[1] = 1.047813788023E-02
b[2] = 1.017671231541E-04
b[3] = 1.612570906858E-07
b{4] = 7.889232628934E-10

D1

Magneto-Resistive Head.
Left Hand Side Coefficients (-4.67mS to OmS).

a[0] = 1.0

af1] = 0.543152899120
a{2] = 2.014308045450
a[3] = 0.767498500152
a[4] = 7.519105275567E-02

b{0] = 1.0

b[1] = 0.538975094171
b[2] = 2.28096305343
b[3] = -0.178560580646
b[4] = 0.872452758027

Right Hand Side Coefficients (OmS to 1.0mS).

a[0] = 1.0

a[l1] = -1.62558035337

a[2] = 0.875259954911

a[3] = -0.267186288244
a[4] = 3.260220221397E-02

b[0] = 1.0

b[1] = -1.58657485948
b[2] = 1.05682774379
b[3] = -0.202667007782
b[4] = -0.237394845510

D2

Right Hand Side Coefficients (1.0mS to 4.24mS).

a[0] = 1.0

a[1] = -1.76363990836

a[2] = 0.746573193045
a[3] = -0.207425786074
a[4] = 2.749056807106E-02

b{0] = 1.0

b[1] = -1.71609518275

b[2] = 0.952224069788
b[3] = -0.216933245992
b[4] = -0.413199507672

D3

#USE pseudort :
BOOL data.vatid, staggesed :
INT date.bps, reg.Jan, char :
hl
SEQ
{{{ Get Valid data for this run
data.valid : = FALSE
WHILE {(NOT data.valid)
SEQ
{{{ get values for this run . N
newline {screen)
write.full_string {soreen, "Input Data Freq (bps} ")
read.echo.char {(keyboard, ecreen, char)
read.scho.int (keyboard, screen, data.bps, char)
newline {screen)
write.full.etring (screen, "lnput Register Langth ™)
roead.echo.char {keyboard, sereen, char)
read.echo.int (keyboard, screen, reg.len, char)
newline {screen)
write.fill.string (screen, “"Staggered (s) or Unstaggered {u) "}
read.acho.char (keyboard, scresn, char)
IF
char = {INT 's")
staggered := TRUE
TRUE
staggered := FALSE
newline (screen):
newline (screen)

W

{{{ print out confimation
write.full .gtring (screen, "Data Freq ")
write.int (screen, data.bps, 6)
newline (screan)
write.full.string (screen, "Register Length 7)
writa.int {screan, rag.len, 4)
newline {scraen)
IF
staggered
write.full.string {screen, "Data Staggered. ")
TRUE
write.full.string (screen, "Data NOT Staggered. ")
newline (screen)
newline (screen)
newline {screan)

write.full.string {screen, * Is this correct ? (y/n) *}
read.echo.char (keyboard, screen, char)
IF

char = (INT 'y")
data.valid : = TRUE
TRUE
SKIP
1))
newline {screen}
newline (scrasn)
newline (screen)

m

{{{ Initialse

mach.init (screan} —- Send Interupt to PC Initielising 8255 PIA

mech.menu (screen) -- Sand Interupt to PC to Display Tapse Transport Manu
newline (scraen)

sot.clocks (0) — Zero transputer clock {avoids timer 'roll-over’)

)]

{{{ text stuff

write.full.string (scteen, ™ Mechanism MUST BE IN WRITE MODE ")

newline (screen)

newline {screen)

write.full.string {screen, "Press Q to Quit, any othar to continus...”}
read.char (keyboard, char)

newline {(screan)

newline {screan)

m

G5

IF
char <> {INT 'q’}

‘ {{{ otart recording
| SEQ
write.full.string {(screen, “Recording Dats.......... ®)
| CHAN OF ANY from.code, from.gen :

CHAN OF BYTE tolink :

PLACE to.link AT linkout1 :

- MAIN PROGRAMME CONSTRUCT FOR WRITING.

PRI PAR
timed.output {data,bps, from.code, screen, to.link)}
PAR
gen.prbs (reg.len; staggered, keyboard, from.gen)
man.code {from.gan, from.code}
maech.stop (scraen) — When finished STOP tape mechanism
newline {screen)
N}
TRUE
SKIP
write.full.string (screen, "All done. Press any key to return to TDS..."}
read.char (keyboard, cher)
newline {screen)

Start of Simulation Code

{{{ decl's

{{{ #USE stuff
#USE pseudort :
#USE userio :
#USE intarf :
#USE userhdr :
#USE strings :
#USE t4math :

"
CHAN OF INT from.param.fold :
VAL INT top.fold IS 1 :
INT char, param.foid.result, start.time :
TIMER clock :
]
SEQ
{{{ start message
clock ? start.time
write.text.line {screen, " Started....")
2}
PAR
{{{ programme,
BOOL more.runs :
SEQ
more.runs ;= TRUE
WHILE more.runs
PRI ALT
keyboard ? char
{{{
IF
char < > stopchar
SKIP
TRUE
more.runs := FALSE

more,runs & SKIP

{{{ run programme

({{ local dec!'s "LOG" channel

INT log.fold.result, log.fold.num :

CHAN OF ANY to.log :

H

PAR
{{{ run test
{{{ decl's
{{{ CHAN decl's :
{{{ PROTOCOL DEF -- Other Definitions of 'INT.OR.FLOAT' removed.

G6

PROTOCOL INT.OR.FLOAT
CASE
int; INT
float ; REAL32

13}]

{{{ CHAN dect's

fnum.tracks]CHAN OF INT from_prbs, from.disp, from.raad :
[num.tracks][2ICHAN OF ANY from.headamp :
[num.tracks]CHAN OF INT from.gxo :

CHAN OF INT stop.prbs :

m

m

{{{ define maximun values for memory allocation
VAL REAL32TIS (one /f8) :

VAL INT max.block.size IS 300000 :
VAL INT max.data.rate IS 10000 :
VAL INT min.data.rate IS 1000 :
VAL INT ranga IS (INT ROUND {(max.neg + max.pos) / T)) :
VAL INT max.pulse.sep IS {INT ROUND
({one / (two * (REAL32 ROUND min.data.rate))} / T)) :
VAL INT max.prbs.reg.len 1S 3 :
VAL INT max.prbs.seq.len 1S 7 :
VAL INT max.snapshot.len IS 500 :
VAL INT max.his.len IS {max.prbs.seq.len PLUS 1) :
VAL INT max.ref,gize IS 8 :

W

{{{ memory ellocation

[num,tracks]{max.snapshot.len]REAL32 pre.headamp, post.headamp :
[num.tracks][max.snapshot.len]REAL32 gate.ana, pol.ana :
[num.trecks]{max.snapshot.len]BYTE gate.dig, pol.dig, gxo.dig :
[num.tracks]irange PLUS 1JREAL32 basic.pulse :
[max.block.size)BYTE data :

[max.block.size]INT times :

[num.tracks){max.his.ten]INT burst.his :

[num.tracks)INT count, class.good, class.bad :

[num.tracks]INT good.bits, bad.bits, lost.synch :
{num.tracks]REAL3 2 track.rate, skew.bits :

[num.tracks]INT skew.samples :

REAL32 rate :

[100]BYTE comment.text :

[maex.ref.size]BYTE ref.date.text :

REAL32 gate.threshold, pol.thrashold, pol.noise.pp, gate.noise.pp :
REAL32 bounce.pp, displacement, write.width, read.width, side.write width ;
INT comment.len, ref.date.len, data.rate, sim.data.rate :

INT char, fold.num, result, max.bad, min.good :

INT block.size, prbs.reg.en, his.len :

INT waveform.name.len :

[abs.id.size]BYTE waveform.filename :

BOOL steggered :

M)
{{{ PROC decl's
{{{ SC get.parameters
{{{F get.parameters
{{{ PROC get.paramaters { PARAMETER LIST)
PROC get.parametars (CHAN OF INT data.in, CHAN OF ANY acho.out,
[1BYTE waveform.filename, INT waveform.name.len,
INT data.rate,
REAL32 read.width, write.width, sido.write.width,
REAL32 gate.threshold, pol.threshald, displacement,
[JREAL32 skew.bits, BOOL ataggered,
INT max.bad. min.good, prbs.reg.len, INT block.size,
[IBYTE comment.text, INT comment.len, BOOL more.runs)
13}
{{{ decl's
#USE pseudort :
#USE strings :
#USE userio :
[40)BYTE text :

G7

INT ohar, text.len :
1))
SEQ
{{{ get weveform filaname
read.acho.text.line (data.in, acho.out, waveform.name.len,
waveform.filsaname, char)
waveform.name.len : = (wavaform.name.lan MINUS 1) - remove ¢

M
({{ get dats freq
raead.acho.char {data.in, echo.ou, ohar)
read.acho.int (date.in, echo.out, data.rate, ohar)
;ead.eoho.tom.line {data.in, echo.out, text.len, text, char)
h
{{{ get read width -
read.echo.char {data.in, echo.out, char)
read.echo.rea!32 (date.in, echo.out, read.width, cher)
read.acho.text.line (data.in, echo.out, text.len, text, char}

{{{ get write width

raad.acho.char (data.in, echo.out, char)

read.echo.real32 (deta.in, scho.out, write.width, chat)
read.acho.1ext.line (data.in, acho.out, text.len, text, cher)
m

{{{ got side write width

read.echo.cher (daeta.in, echo.out, char)

read.acho.real32 (data.in, echo.out, side.write,width, char)
read.echo.text.line {data.in, echo.out, text.len, text, char)

{{{ get gate comp thresh

read.acho.char (data.in, echo.out, char)

read.acho.real32 (dsta.in, echo.out, gate.threshold, char)

;ead.echo.text.llne {data.in, echo.out, text.len, text, char}
I

{{{ get xover comp thresh

read.echo.char (data.in, echo.out, char)

read.echo.reel32 {data.in, echo.out, pol.threshold, char)

read.echo.text.line (data.in, echo.out, text.len, text, char)

)
{{{ get track disp
read.scho.char {data.in, echo.out, char)
read.echo.real32 {data.in, echo.out, displacemsnt, char)
read.acho.text.line (deta.in, echo.out, text.len, text, char}
m
{{{ oot skew
read.echo.char {data.in, echo.out, char)
SEQ track = 0 FOR num.tracks

read.acho.reald2 (data.in, echo.out, skew bits{track], cher)
read.echo.text.line (data.in, echo.out, text.len, text, char)
H
{{{ get un/staggersd
read.acho.text.line {(data.in, acho.out, text.len, text, char)
textJen : = (text.len MINUS 1) — remove *c
VAL [IBYTE stagger.state IS "staggered "
IF

{{{ staggered

eqstr ([text FROM O FOR text.len), [stagger.state FROM O FOR text.lenl)

m

staggered : = TRUE
TRUE
staggered := FALSE

{{{ get max bad

read.echo.char (data.in, echo.out, char)

read.acho.int {data.in, echo.out, max.bad, char)
read.echo.text.line {data.in, echo.out, text.len, text, char)
I

{{{ get min good

read.scho.char (data.in, echo.out, char)

read.echo.int (deta.in, echo.out, min.good, char}
read.echo.text.line (data.in, acho.out, text.len, text, char)
m

{{{ getreglen

G8

read.echo.char {data.in, echo.out, char)
read.echo.int {data.in, echo.out, prbs.reg.len, char)
read.echo.text.line {data.in, echo.out, text.len, text, cher}

|
|]
‘ {{{ get block size
read.echo.char (data.in, echo.out, char)
read.ocho.int (data.in, echo.out, block.size, char)
read.echo.text.line {data.in, echo.out, text.len, text, char)
m
{{{ pet commant -
read.echo.text.line {date.in, echo.out, comment.len, comment.text, char
Nl)
{{{ @ot terminate or not
read.echo.text.line (data.in, echo.out, text.len, text, char) -
toxt.len : = {text.len MINUS 1) - remove “c
VAL [IBYTE last.test IS "last tast "
IF
{{{ tast run
eqstr {{text FROM O FOR taxt.len], llast,test FROM O FOR text.lan))
HH]
more.runs := FALSE
TRUE
SKIP

h
F

)}
N
{{ SC print.vals
{{{F print.vals
PROC print,vels (VAL REAL32 T,
VAL INT pulse.sep, snapshot.lan, sim.data.rate,
CHAN OF ANY data.out)
#USE userio :
SEQ
{{{ print pulse.sep
write.full.string (data.out, “Pulse Spacing ")
write.int (data.out, pulse.sap, 0)
newline (dats.out)
Y

{{{ primt T
write.full.string (data.out, "T ")

write.real32 (data.out, T, O, 0}

newline (data.out)

M

{{{ print snapshot.len

write.full.string (data.out, "snapshot.len *)
write.int {data.out, snapshot.len, O)
newline (data.out}

)]

{{{ print sim.data.rate

write.full.string (data.out, "sim.deta.rate™)
write.int (data.out, sim.data.rate, O}
newline (data.out)

B
WHF

h
{{{ SC calc.rates
{{(F cslc.rates
PROC calc.rates (VAL [IINT class.good, class.bed, lost.synch,
VAL INT max.bad, biock.size,
[IREAL32 track.rate,
REAL32 rata)
#USE pseudort :
VAL REAL32 min.error.rate IS {one / (REAL32 ROUND block.size)) :
VAL INT num.tracks IS (SIZE class.good) :
SEQ
{{{ calc rate for each track
SEQ track = 0 FOR num.tracks
VAL INT total.bits IS ({cless.goodltrack] PLUS class.bad(trackl) PLUS
{lost.synchitrack] TIMES {mex.bad PLUS 1)} :

ey St St

IF

G9

total.bits > O

{
VAL REAL32 error.rate IS ((REAL32 ROUND (total.bits -
clase.good(track))) / (REAL32 ROUND total.bits)) :
IF
arror.rate > min.error.rate
track.rateltrack] : = error.rate
TRUE
track.rateltrack] : = min.error.rate
0
TRUE
track.rate[track] : = one
M
{{{ calc overall rate
rate : = zero
SEQ track = 0 FOR num.tracks
rate : = (rate + track,.rate|track])
rata : = (rate / (REAL32 ROUND num.tracks))
I3

NG

m
{{{ SC print.totals
{{{F print.totsals
PROC print.totals (VAL {lINT count, lost.synch, class.good, class.bed,
VAL |JINT good.bits, bad.bits, [JIIINT burst.his,
VAL INT his.Jen, VAL [IREAL32 track.rate, VAL REAL32 rate,
CHAN OF ANY data.out)
#USE userio :
VAL INT num.tracks 1S (SIZE count) :
SEQ
SEQ track = O FOR num.tracks
SEQ
{{{ track
write.full.string (data.out, "Track *}
write.int (data.out, {track PLUS 1), 0)
newline (data.out)

{{{ count and lost synch
write.full.string (data.cut, "Count)
write.int (data.out, count|track], O)
write.full.string (data.out, " Lost Synch)
write.int (data.out, lost.synchltrack], O}
newline (data.out)
m
{{{ cless good and class bad
write.full.string (data.out, "Cless Good]
write.int (data.out, class.gooditrack], O}

- write.full.string {deta.out, * Cless Bad ")
write.int (data.out, class.badltreck], O)
newline (data.out)
m
{{{ good bits and bad bits
write.full.string {data.out, "Good Bits ")
wrtite.int {data.out, good.bits|track], O)
write.full.etring {data.out, = Bad 8its *}
write.int {data.out, bad.bits[track], O)
newline {data.out)

)
{{{ burst history
write.full.string {data.out, "Burat History)
SEQ b.his = 1 FOR (his.len MINUS 1)
SEQ
writa.int {data.out, burst.his{track][b.his], 4)
write.full.string {data.out, " "}
newline {data,out)
W
{{{ track rate
write.full.string (data.out, "Track Rate ™)
write.real32 (deta.out, track.rateltrack], 1, 5)
nawiline {data.out)

m

G10

{{{ overall rate

write.full_string (data.out, *Overall Rate "}
write.real32 {data.out, rate, Q, 5)

newline (data.out)

MF

1)
{{{ SC print.elapsed.time
{{{F print.elapsed.time
PROC print.elapsed.time (CHAN OF ANY data.out, VAL INT start.time)
#USE userio :
#USE pseudort ¢ -
INT elapsed, time.now, minutes, seconds :
TIMER clock :
SEQ
clock ? time.now
elapsed : = ({time.now MINUS start.tima) / lp.tps)
minutes : = (elapsed / 60)
seoonds : = (elapsed REM 60)
write.full.string (data.out, *Elapsed time ")
write.int (data.out, minutas, 0)
writa.full.atring (data.out, * mins "}
write.int (data.out, seconds, 0)
write.full.string (dete.out, * secs. ")

MIF
N
1}
SEQ
{{{ get next set of parameters from fold
{{{ message
print.elapsed.time (to.log, start.time)
write.text.line (to.log, " Resd parameters...”)

gat.parameters {from.param.fold, to.log,
waveform.filenama, waveform,namae.len,
data.rate, read.width, write.width, side.write.width,
gate.thrashold, pol.threshold, displacement, skew.bits,
staggered, max.bed, min.good, prbs.reg.len, block.size,
comment.text, comment.len, more.runs)

{{{ message

print.elapsed.time (to.log, start.time)

write.text.line (to.log, " Parameters read"”)

)

M

{{{ set VAL's for this run

VAL REAL32 gate.stan.dev IS 0.00186{REAL32) :

VAL REALJ2 pol.stan.dev IS 0,00041{REAL32) :

VAL REAL32 pulse.sep.t IS (one / (two " (REAL32 ROUND data.rate))) :
VAL INT pulse.sep IS (INT ROUND (pulse.sep.1/T)) :

VAL INT his.ten IS {(max.bad PLUS 1) :
VAL INT prbs.geq.len IS INT ROUND
((POWER (two, {REAL32 ROUND prbs.reg.len))) - one) :
VAL INT complete.snapshot.en IS (INT ROUND ({REAL32 ROUND prbs.seq.len) *
{{2.5(REAL32)) * {(REAL32 ROUND pulse.sep)))) :
VAL INT snapshot.stap.size IS (1 PLUS {INT TRUNC {{REAL32 ROUND
complete.snapshot.len) / {(REAL32 ROUND max.gnapshot.len)))) :
VAL INT snapshot.len IS {(complete.snapshot.len / enapshot.step.size) :
VAL INT settle.time IS {2 TIMES range) :
)]
SEQ
{{{ print val's out
sim.data.rate : = (INT ROUND (one / {two * {{REAL32 ROUND pulse.sep) * TH))
r;rint.vels {T. pulse.sep, snapshot.len, sim.data.rate, to.log)
)]
{{{ convert 'skew.bits' 10 "skew.samples’
VAL REAL32 bits.2.samples IS (T * (REAL32 ROUND sim.data.rate)) :
SEQ track = O FOR num.tracks
skew .samplesftrack] : = (INT ROUND {skew.bitsltrack] / bits.2.samples))

h

Gl1

{{(F fill data and time arrays

{{{ message

print.elapsed.time (to.log. start.time}

write.taxt line (to.log, " Filling array with data...,"}

h
{{{ PROC decl's

-- Cods for gen.prbs and manch.encode removed.
-- Refer to Appendix XXX for thair daclaration.

{{{
{{{F read
{{{

Hoader

- Read Process. Main Super-Position Process.

-- Reads digital data, outputs analogue data representing repiay signal.
~ Pulse Seperation defines data rate in terms of samples betwean Pulses.
- Skew is amount of Data Skew.

13);
PROC read {CHAN OF INT data.in, [IREAL32 pulse, VAL INT pulse.sep,
VAL INT skew, CHAN OF INT.OR.FLOAT data.out)
{{{ SC mao.pulse
{{{F mac.pulse
{{{ Header
-- Function calculates pulse shape chosen by Mackintosh.
- Internal to read process. Returns one REAL32.

1)
REAL32 FUNCTION mac.pulse (VAL REAL32 x)
#USE pseudort ;
VAL REAL32 squared IS {x * x) :
VALOF
SEQ
SKIP
RESULT (one/lone + (squared + (squared * squared)}))
MF
M
{{{ SC gen.gauss
{{{F gen.gauss
{{{ Headar
-- Generates Gaussian Noise.
-- Raceives Standard Deviation, Arithmetic Mean and last number in sequence.
)
PROC gen.gauss (INT32 seed,
VAL REAL32 stan.dav, mean,
REAL32 norm.num)
" #USE td4math :
#USE pssudort :
VAL INT k IS 12 : —number of random numbers summed to produce Normal Dist
VAL REAL32 twelve IS 12.0{REAL32) :
VAL REAL32 shift IS {{(REAL32 ROUND k) / two} :
-- VAL REAL32 divisor IS SQRT ({REAL32 ROUND k) / twelve) : — whank <> 12
SEQ
norm.num : = zero
SEQj = 0FORKk
REAL32 temp :
SEQ
teamp, seed : = RAN (seed)
norm.num = narm.num + temp
norm.num : = {{(norm.num - shift) * stan.dev} + mean}
-- norm.num : = {{{{norm.num - shift) / divisor) * stan.dev) + maeaan)

1}F

h

{{{ SC build.ind.pulse

{{{F build.ind.pulse

{{{ Header

-- Construct Inductive Head Isclated Pulse.

-- Internal to read process.

-- Receives data array that ig filled with REAL32 data.

ht

G12

#USE pseudort :
PROC build.ind.pulse ([JREAL32 date)
{{{ PROC's
{{{F nag.Jeft.pulpe
{{{ Header
-- Function calculates Value of curve at x, Left Side of Pulse.
-- Internal to build.ind.pulse

)]
REAL32 FUNCTION nag.left.pulse (VAL REAL32 x)
VAL INT order IS 4 : — Order of Equations used
{{{ VAL a.coef's
VAL [IREALE4 a.coeff IS | 1.0(REALG4),
1.686037684194E-02(REALG4),
1.0108455310656E-04{REAL64),
1.791685983396E-G7{REALSG4),
9.465082048366E-11(REALE4)}) :

{{{ VAL b.cosf's

VAL [IREAL64 b.coeff IS [1.0(REALB4),
1.863340065266E-C2{REALE4),
1.827853391487E-04{REALE4),
9.,8736898980734E-07{REALG4),
5.577926897161E-09{REALE4}] :

1))
VAL REAL64 microsecond IS 1.0E-8(REALG4) :
VAL REALG4 x64 IS ({REALS64 ROUND x) / microsecond):
REAL64 numer, denom, x.power :
VALOF
SEQ
x.power : = x64
numer : = a.cosff(0}
denom : = b.cosff[0]
SEQi = 1 FOR order - main loop
SEQ
numer ;= numer + (a.coetfli] * x.power)
danom ! = denom + (b.coeff(i] * x.power}
x.power := x,power * x84
RESULT (REAL32 ROUND {(numaer / denomj)

MF

{{{F nag.right.pulse

{{{ Header .

-- Function calculates Value of curve at x, Right Side of Pulse.
-- Internal to build.ind.pulse

)
REAL32 FUNCTION nag.right.pulse (VAL REAL32 x)
VAL INT order IS 4 :
{{ VAL a.cosf's
VAL [IREALE4 a.coeff IS [1.0(REALE4),
1.069159470110E-02(REALE4),
7.919654258251E-06(REALG4),
-6.665960569085E-08(REALG4),
4.802438072905E-11(REALE4) | :

m

{{{ VAL b.cosf's

VAL [IREAL6E4 b.coeff IS [1.0(REALE4),
1.047813788023E-02(REALG4),
1.017671231541E-04(REALG4),
1.812570806858E-07(REALE4),
7.889232628934E-10(REALG4) | :

M)
VAL REALG4 microsecond IS 1.0E-6(REALB4) :
VAL REALE4 x84 IS ((REAL64 ROUND x) / microsecond):
REAL64 numer, denom, xX.power :
VALOF
SEQ

x.power : = x64

numar : = a.coeff[0]

denom : = b.coeff[O]

SEQi = 1 FOR order

SEQ
numer := numer + (a.coeffli] * x.powaer}

G13

denom : = denom + (b.coeff|i] * x.powar)
x.power := X.power * x64
RESULT (REAL32 ROUND {numer / denoml)

NF

m
{{{ decl's
VAL INT serias.len IS (SIZE data) :
VAL INT pulseden IS (series.len / 1) :
VAL REAL32 head.amp.gain IS 357.0(REAL32) : - Used to correctly scale pulse
VAL REAL32 mex.ampl IS (0.625(REAL32) / head.amp.gsin) : -~ Used to scale pulse
VAL REAL3Z2 scale IS 0,9507(REAL32) :- ensures filtared pulee correct height
VAL REAL32 range IS {max.pos + max.neq) :
VAL REAL32 sample.width IS (range / (REAL32 ROUND {pulse.len MINUS 1))) :
13} ’
SEQ
{{{ build negative half
SEQi = 0 FOR ({INT ROUND (max.neg / sample,width)) PLUS 1}
VAL REAL32 x IS {{{REAL32 ROUND i) * sample.width) - max.neg) :
detali] : = ((nag.left.pulse(x) / scale) * max.ampl}

N}
{{{ build right half
SEQi = (INT ROUND (max.neg / sample.width)) FOR
({INT ROUND {max.pos / sample.width}) PLUS 1)
VAL REAL32 x IS ({{REAL32 ROUND (i PLUS 1)) * sample.width) - max.neg):
datali] : = {(nag.right.pulsaix) / scale) * max.ampl)

0

NIF
Nl
{{{ SC build.mr.pulse
{{{F build.mr.pulse
{{{ Header
-- Build Magneto-Resistive Pulse.
-- Internel to build.mr.pulse.
- In three sections, one for Left, two for Right Hand Side.
m
#USE pseudort :
PROC build.mz.puise {{IREAL32 dsta)
{{{ PROC's
{{(F nag.left.pulse
{{{ Header
- Calculate value of Left hand side of pulse.
-- internal to build.mr.pulse.

h
REAL32 FUNCTION nag.left.pulse (VAL REAL32 x)
VAL INT order IS 4 : -- Order of Equation
{{{ VAL sa.coef's
VAL [IREALG64 a.coeff IS [1.0(REALB4),
0.543152899120(REALG4),
2.014308045450(REALG4),
0.767498500152(REAL6G4),
7.519105275587E-CZ(REALE4) | :

)

{{{ VAL b.coef's

VAL (IREALE4 b.coeff IS [1.0{REALE4)},
0.538975094171(REALG4),
2.28096305343(REALG4),
-0.178560580646(REALG4),
0.872452758027(REAL6E4)] :

)
VAL REALB4 scale IS 10000,0(REALG4S) :
-- x is passed in microseconds, scale converts to mili and
-- agcounts for 10 times scaling
VAL REALG4 x64 IS ({(REAL64 ROUND x) * scale):
REAL64 numer, denom, x.power :
VALOF
SEQ
x.power : = x64
numer : = a.coeff|0]
denom ;= b,coeff[0]
SEQi = 1 FOR order

Gl4

SEQ
rnumer := numer + {a.coaffli] * x.power)
denom := denom + (b.coeffli) * x.power)
x.power := x.power * x64
RESULT {REAL32 ROUND {numer / denom})

HIF

{{{F nag.right1.pulse

{{{ Header

— Calculate value of first part of Right side of pulse.
~ Intarnal to build.mr,pulse.

)
REAL32 FUNCTION nag.right1.pulse (VAL REAL32 x)
VAL INT order IS 4 : - Order of Equaticn
{{{ VAL a.coef's
VAL [JREAL6E4 a.coeff IS | 1.0(REALB4),
-1.62558035337(REALB4),
0.875259954911(REALEA4),
-0.267186288244(REALG4),
3.260220221397E-0Z(REALE4)) :

)]

{{{ VAL b.ocef's

VAL [|REAL64 b.coeff IS [1.0{REALG4),
-1.58657485948(REAL6G4),
1.05682774379(REALS4),
-0.202667007782(REALG4),
-0.237394845510(REALG4)] :

VAL REALB4 scale IS 10000.C{REALEY) :
— X is passed in microseconds, scale convarts to mili and
- accounts for 10 times scaling
VAL REALE4 x84 1S ((REAL&4 ROUND x} * scals):
REALB4 numer, denom, x.power :
VALOF
SEQ
x.power ;= x84
numer : = a.coeff[0]
denom := b.coeff(0]
SEQi = 1 FOR order
SEQ
numer := numar + {a.coefflil * x.power)
deanom ;= denom + (b.coeffli] * x.power)
x.power : = X.power * x64
RESULT (REAL32 ROUND (numer / denom))
MIF
{{(F nag.right2.pulse
{{{ Header
-- Catcutate value of second part of Right side of pulse.
-- internal to build.mr.pulse.

1)
REAL32 FUNCTION nag.right2.pulse (VAL REAL32 x}
VAL INT order IS 4 : — Order of Equation
{{{ VAL a.coef's
VAL [JREAL64 a.coeff IS { 1.0{REALG4),
-1,76363990836{REALSB4),
0.746573193045(REALE4),
-0.207425786074(REALG4),
2.749056807 106E-02(REAL6G4)) :

H}

{({{ VAL b.coef's

VAL [JREAL6E4 b.coeff IS { 1.0(REALE4),
-1.71609518275(REALS4),
0.952224069788(REALG4),
-0.216233245992(REALBAY),
-0.413199507672(REALE4)] :

h

VAL REAL64 scals IS 10000.0(REALE4) -

-- X is passed in microseconds, scale converts to mili and
— accounts for 10 times scaling

VAL REAL64 x64 iS ((REAL64 ROUND x) * scale):
REALS4 numer, denom, x.power :

G15

VALOF
SEQ
x.power : = x64
numer := a.coeff{0]
denom := b.coeff|0]
SEQi = 1 FOR order
SEQ
numer : = numer + (a.coeff{i] * x.power)
denom : = denom + (b.coeffli] * x.power)
x.power != x.power * x84
RESULT {(REAL32 ROUND {numer / denomy})

F

h
{{{ decl's
VAL max.neg IS 466.0E-O6(REAL32) : -- This, and next, constant spacify the
VAL max.pos IS 424.0E-O8(REAL32) : - range of of the pulse
VAL disjoint IS 100.0E-O8(REAL32) : — spacifies where two parts of RHS join
VAL INT series.len IS {SI2E data) ;
VAL INT pulse.len IS (saries.len / 1) :
VAL REAL32 head.amp.gain IS 387.0(REAL32) : -- For scaling
VAL REAL32 max.ampl IS (0.625(REAL32) / head.amp.gain) : — For scaling
VAL REAL32 range IS (max.pos + max.neg) :
VAL REAL32 sampie.width 1S 2.0E-08(REAL32) :
VAL REAL32 scale IS 0.9507{REAL32) :-- ensures filtered pulse correct height
I
SEQ
{{{ build negative half
SEQ i = O FOR {(INT ROUND (max.neg / sample.width)} PLUS 1)
VAL REAL32 x IS ({{REAL32 ROUND i) * sample.width} - max.nag) :
datali] : = ((nag.left.pulse(x) / scale) * max.smpl)

)]
{{{ build right half
SEQ i = {INT ROUND (mex.neg / sample.width)) FOR
{(INT ROUND (disjoint / sample.width}) PLUS 1}
VAL REAL32 x IS {{{REAL32 ROUND i} * sample.width} - max.neg):
datali] := ((nag.right1.pulssa(x) / scale) * max.ampl)
SEQ i = (INT ROUND ({max.neg + disjoint) /{ sample.width)} FOR
({INT ROUND ({max.pos - disjoint) / sample.width)) PLUS 1)
VAL REAL32 x IS {({(REAL32 ROUND i) * sample.width) - max.neg):
datali) : = ({nag.right2.pulsalx) / scale} * max.ampl)
")
{{{ zero0 rest of date array
SEQi = {INT ROUND (range / sample.width)) FOR
{{SIZE data) - (INT ROUND (range / sample.width}}))
detali) := 0.0(REAL32)
h
F
m
{{{ decl's
#USE pseudort :
#USE t4math ;
{{{ VAL's
VAL INT north IS 1 :
VAL INT south IS 0 :
VAL INT mask IS #O7FFFFF : -- Gives probability of 1in 2°23, 1in 8E+6
~ Used to calculate whan to introduce Drop-Out
VAL REAL32 half IS 0.5(REAL32) :
VAL REAL32 T IS (one / fs) :
VAL REAL32 range IS {max.neg + max.pos) :

VAL REAL32 stan.dev IS 0.0290{REAL32) : -- Stan Dev of Amplitude Fluctuations
VAL REAL32 mean IS one :

H}

[3 TIMES {INT ROUND (range / T))JREAL32 cut.array : — should ba big enough for all instances
INT32 ran.seed :

INT time, dummy, cher :

TIMER clock :

REAL32 atten, step.size, new.val :

INT data, in,ptr.to.end, out.ptr.to.end, old.dir :

INT out.ptr, in.ptr : - Differnce between IN and OUT is amount of Data Skew.

BOOL running :

Gl6

h
SEQ
{{{ init
{{{ check out array is big enough
IF
{SIZE out.array) < (2 TIMES (SIZE pulse))
STOP — for debug
TRUE
SKIP

3]
build.ind.pulse (pulse)
{{{ 2ero outr.array
SEQ i = 0 FOR (SIZE out.array)
out.arrayli) : = zero
0
{{{ initislise random number stuff
clock ? dummy
ran.seed : = (INT32 dummy)
1))
out.ptr:=0
in.ptr : = (out.ptr + skew)
old.dir : = north
running : = TRUE

H}
WHILE running
SEQ
data.in ? date — get digital Datum
IF
(data = 1) OR (data = 0)
{{{F procass data
INT trans.dir IS data :
SEQ
in.ptr.to.end : = ({SIZE out.array} MINUS in.ptr} -~ How far to end of array
out.ptr.to.end : = ({SIZE out.array) MINUS out.ptr) - as above
{{{ add pulsa if transition
IF
trans.dir <> old.dir
{{{ transition, add pulse
SEQ
{{{ calc amount of attenuation
SEQ
gen.gauss (ran.seed, stan.dev, mean, atten)
clock 7 time
{{{ drop-out code
IF
(tima A mask) = ({INT ran.seed) A\ mask)
atten : = 0.1(REAL32) -- drop-out, -20dB
TRUE
SKIP

trans.dir = north
{{{ add positive pulse
- in two section; takes into acount problems in adding array to
-- non-gligned circular buffer. Amplitude fluctuation applied here.
IF
in.ptr.to.end > = (SIZE pulse)
SEQ i = in.ptr FOR (SIZE pulse}
out.arraylil : = out.errayli] + (atten * pulsali MINUS in.ptr])
TRUE
SEQ
SEQ i = in.ptr FOR in.ptr.to.end
out.arraylil : = out.arrayli] + (atten * pulseli MINUS in.ptr])
SEQ i = 0 FOR ({SIZE pulse) MINUS in.ptr.to.end)
out.arrayli]l : = out.arrayli] + (arten * pulsel(i PLUS in.ptr.to.end)])

TRUE
{{{ add negativa pulsa
- in two section: takes into acount problems in adding array to
-- non-aligned circular buffer. Amplitude fluctuation applied here (atten).
IF

G17

in.ptr.to.end > = (SIZE puise)
SEQ i = in.ptr FOR {SIZE pulse)
out.arrayli] : = out.arrayli] - {atten * pulsa[i MINUS in.ptr])
TRUE
SEQ
SEQ i = in.ptr FOR in.ptr.to.end
out.arreyli] : = out.arrayli] - (atten * pulsali MINUS in.ptr]}
SEQ i = O FOR {(SIZE pulse) MINUS in.ptr.te.end)
out.arrayli] : = out.arraylil - {atten * pulse[li PLUS in.ptr.to.end)]}
1)

ald.dir : = trens.dir
m
TRUE -
{{{ no transition, add nothing
SKIP

| m
n
‘ {{{ output part of out.array
- Ouputs section of arzay complete from super-position.
~ |n two part to take into account circular buffer.
— After data cutput, zero section of array.
IF
out.ptr.ta.end > = pulse.sep
SEQ i = out.ptr FOR pulse.sep
SEQ
date.out | float ; out.arrayli]
out.arrayli] ;= zero
TRUE
SEQ
SEQ i = out.ptr FOR out.ptr.to.end
SEQ
date.out ! float ; out.arraylil
out.arraylil := zero
SEQi = 0 FOR (pulse.sep MINUS out.ptr.to.end)
SEQ
data.out | float ; out.arrayli)
out.arraylil : = zero
W
{{{ adjust pointers -- implemants circular butfer.
in.ptr : = {in.ptr PLUS pulse.sep) REM (SIZE out.array)
out.ptr : = {out.ptr PLUS pulse,sep) REM (SIZE out.erray)
1))
HIF

data = terminate
running : = FALSE
TRUE
{{{ pass it on
data.out | int ; date
n
{{{ pass on 'tarminate’
date.out | int ; terminate — last instruction in process.

M
NG
1)

{{{ SC displace

{{(F displace
{{{ Header

- Lateral Head Displacement Simulation,

— Mixes signal according 10 Displacemant, Write, Read tracks widths and
-- Side Field contribution.
)
#USE pseudort ;
PROC displace {{[num.tracks]CHAN OF INT.OR.FLOAT data.in,
VAL REAL32 write, read, s.w.w,
VAL REAL32 disp,
[num.tracksICHAN OF INT.OR.FLOAT deta.out,
CHAN OF ANY to.scresn)
{{{ decl's
#USE t4math :

G18

#USE userio :
{{{ VAL's for Track dimensions, MEASURED dimensions
VAL REAL32 safety IS ((write - read) / two} :
VAL [IREAL32 track.sep IS 10.B28(REAL32), 1.235{(REAL32),
0.828{REAL32), 5.000(REAL32)] :
-- track.sap[3} for accuracy should be infinity
VAL [JREAL32 guard.band IS {(track.sep[0] - write),
(track.sep[1] - writa),
(track.sepl[2] - write},
{track.sep[3] - write}] :
12)]
[num.tracks PLUS 1]REAL32 data :
[num.tracks]REAL32 a, b : -
[num.tracks]INT char :
INT count, num.terminated :
BOOL running :
3]
SEQ
{{{ init
{{{ calc proportions of each track
SEQ track = O FOR num.tracks
SEQ
{{{ calc eltrack]
IF
disp < safety
altrack] : = read
disp < (safety + read)
a[track} : = {{safety + read) - disp)
TRUE
altrack} : = zaro

1}
{{{ calc b[track)
VAL REAL32 stant IS {safety + guerd.bandltrackl) :
IF
disp < start
bltrack] : = zero
disp < (start + read)
bitrack] : = {(diep - start)
disp < {start + write)
bltrack] : = read
disp < ({start + read) + write}
bltrack] : = {{{start + read} + write) - disp)
TRUE
bltrack] : = zero
i}
IF
8.W.w > Zei0
SEQ
{u
{{{ cslc a.side
IF
disp < safety
a.side := zaro
disp < (safety + s.w.w)
VAL REAL32 olap IS (disp - safety) :
a.side : = (olap - ({olap * olap) / (two * s.w.w))}
disp < (ssfety + read)
a.side (= (s.w.w / two)
disp < ({safety + read) + s.w.w)
VAL REAL32 olap IS (({safety + s.w.w) + read) - disp) :
a.side : = ({olap * olap) / {two * s.w.w))
TRUE
a.side := zaro

M
{{{ calc b.side1
VAL REAL32 start IS (safety + guerd.bandltrack]) :
IF
disp < {(start - s.w.w)
b.side1 := zero
disp < start
VAL REAL32 olap IS ((disp + s.w.w} - start) :

G19

b.sidel ;= {{olap * olap) / {two * s.w.w))
disp < ((start + read) - s6.w.w)
b.sidel := (s.w.w / two)
disp < (start + read)
VAL REAL32 olsp IS {(start + read) - disp) :
b.side1 := (olep - ((olap * olap) / (two * s.w.w))]
TRUE
b.side1 ;= zaro
m
{{{ calc b.side2 .
VAL REAL32 start IS {{safety + guard.band|track]) + write) :
IF
disp < start
b.side2 := zero -
disp < (start + 8.w.w)
VAL REAL32 olap IS (disp - start) :
b.side2 ;= {olap - {{olap * olep) / (two * s.w.w]}}))
disp < {(start + read)
b.side2 ;= (s.w.w / two)
disp < ((start + read) + s.w.w)
VAL REAL32 olap IS ({{start + read) + s.w.w) - digp} :
b.side2 : = ({olap * olap) / (two * B.w.w})
TRUE
b.side2 := 2ero
m
{{{ colect, noramalise, and put into array for later filing
altrack] : = (a.main + a.side}
bltrack] : = {{b.main + b.side1} + b.side2)

1))

TRUE

SKIP
aftrack] : = {a[track] / read)
bitrack] : = (bltrack) / read)

1))
SEQ track = O FOR num.tracks
SEQ

charltrack] : = 0O
sum|track] : = zero
sum.sqrs|track] : = zero
min[track] : = zero
max[track) : = zero

count := 0

datalnum.tracks] : = zero -- ie datal4)

num.terminated := 0

running := TRUE

1)}

WHILE running
SEQ
{{{ get data, need to get all data from all tracks in one go.
PAR track = O FOR num.tracks
data.in{track] ? CASE
int ; charltrack}
SKIP
flost ; data(track]
SKIP

{{{ check for "terminated’
SEQ track = ©C FOR num.tracks
IF
charltrack] = O - initial value
SKIP
char[track] = terminate
num.terminated ; = (num.terminated PLUS 1)

TRUE
SEQ
data.out[track] | int ; charltrack]
cherltrack] : = O — back to initiel value agsin

m
IF

num.tarminated = 0

G20

{{{ process data
SEQ
{{(mix signais
SEQ track = O FOR num.tracks
SEQ
dataltrack] : = ((dataltrack] * altrack]) + (data[track PLUS 1] * b{track]))

{{{ output signals
PAR track = O FOR num.tracks
data.ocutltrack] | flost ; data[track)

h}
W})
TRUE
{{{ sink rest of date until all terminated
-- abeorbs race-conditions,
SEQ
WHILE num.tarmineted < > num.tracks
ALT track = O FOR num.tracks
data.inftrack] ? CASE
int ; charltrack]
{{{
IF
charltrack] = terminate
num.terminated : = (num.tarminated PLUS 1)
TRUE
SKIP

float ; dataftrack]
SKIP
running : = FALSE
)]
{{{ pass on 'terminate’
PAR track = O FOR num.tracks
data.outtrack] ! int ; terminate

)

HF

}

{{ SC headamp
{{F headamp
{{{ Header

- Head Amplifier Model.

- Digital! Filter. Snapshots store waveforms (after superpostion has
-- settled down), with decimation factor snapshot.step.size

)
}
{
{

m
PROC headamp (CHAN OF INT.OR.FLOAT data.in,
' [JREAL32 pre.snapshot, post.snapshot,
VAL INT sottle.time, snapshot.step.size,
[2ICHAN OF INT.OR.FLOAT data.out)
{{{ decl's
{{{ #USE's
#USE pseudort :
#USE t4math :

H

VAL end IS ((SIZE pre.snapshot) MINUS 1) :

VAL REAL32 analog.mult IS 10000.0(REAL32) :

VAL REAL32 T IS (one / fs) :

VAL REAL32 gain IS 357.0{REAL32) : -- Gain of Headamp
{{{ cut-off freq, un-warpsad, pre-warped

VAL REAL32 fcdl IS 99.47(REAL32) : --inHz
VAL REAL32 fcdu IS 15,92E + 3(REAL32): --in Hz
VAL REAL32 wcdl IS ((two * pi) * fedl) : -- in Rad/s, un-warped

VAL REAL32 wedu IS {{two * pi) * fedu) : — in Rad/s, un-warped
VAL REAL32 wcal IS {(two / T) * TAN{((wcdl * T) / two)) : -- pre-warped
VAL REAL32 wcau IS {(two / T} * TAN((wecdu * T} / two)) : — pre-warped

{{{ filter coafficients

VAL REAL32 a IS (wcel * wcau) :
VAL REAL32 b IS {wcau - wcal) :
VAL REAL32 c IS (two /T) :

G21

VAL REAL32dIS(a + (e *{b + e :
VAL REAL32 e 1S {lb *c) /d):

VAL REAL32 IS {itwo *{a-(c *c))) /d):
VALREAL32gIS{(a + (c *{c-b})/d):

REAL32 xn, xn.minus.1, xn.minus.2, yn, yn.minus.1, yn.minue.2 :
INT count, pte, char, snap.count :
BOOL ssttling, capturing, running :
)
SEQ
{{{ init
pts, count, snap.count := 0,0, 0
xn.minus.1, yn.minus.1 := zero, zerc
¥n.minus.2, yn.minus.2 := zero, zero .
gottling : = TRUE
capturing : = FALSE
running := TRUE

1}
WHILE running
data.in ? CASE
int ; char
{{{ process char
IF
char = terminate
running := FALSE
TRUE
{{{ passiton
PAR
data.out[0] lint ; char
data.out[1) ! int ; char
)
W
float ; xn
(!
SEQ
yn:= {{{e * (xn - xn.minus.2)} - {f * yn.minus.1)) - (g * yn.minus.2))
{{{ output two copies {for the two data streams of GXO)
VAL output IS (yn * gain} :
SEQ
PAR
data.outlO] | float ; output
data.out[1] ! float ; output

13}
{{{ snep section of the number stream
IF
. settling
{if
SEQ
count := count PLUS 1
IF
settle.time > count
SKIP
TRUE
SEQ
settling : = FALSE
capturing : = TRUE
o
capturing
{{
SEQ
snap.count : = (snap.count PLUS 1)
IF
snap.count = snapshot.step.size
SEQ

pre.snapshotiptr] : = xn
post.snapshotptr] : = yn
{{{ increment ptr
IF
ptr <> end
ptr ;= ptr PLUS 1
TRUE
capturing : = FALSE

G22

I

snap.count := 0
TRUE
SKIP
33
TRUE
SKIP

{{{ updsate xn.minus, yn.minus stuff
xn.minus.2 := xn.minus.1
xn.minus.1 := xn
yn.minug.2 := yn.minus.1
yn.minus.1 := yn -
}}
)]
{{{ pass on 'tarminate’ (two copies for two data streams if GXO}
PAR
data.out[O] ! int ; terminate
data.out[1] { int ; terminate

hnl
F

F gated.cross
Header

H
ni
{{{ SC pated.cross
{{(
{{(

Gated Cross Over Detector.

h}
{{{ PROC gated.cross (Paramater List}
PROC gated.cross ((2JCHAN OF INT.OR.FLOAT data.in,

[IREAL32 gate.ana, pol.ans,

[IBYTE gate.dig, pol.dig, gxo.dig,

VAL REAL32 gate.stan.dev, pol.stan.dev,
VAL REAL32 gate.threshold, pol.threshold,
VAL INT settla.time, snapshot.step.size,
CHAN OF INT data.out)

)

{{{ CHAN decl's
CHAN OF INT.OR.FLOAT from.gate.bandpass, from.pol.bandpass :
CHAN OF INT from.gate, from.pol :

H{ PROC decl's

{{{ SC bandpass.gate
{{{F bandpass.gate

{{

{{{ Header

- Band-pass filter as Differentiator,

— Filter coeff's calc at compile tima.
- Internal to GXO

N
PROC bendpass.gate (CHAN OF INT.OR.FLOAT data.in,
[IREAL32 snapshot,
VAL INT settle.time, snapshot.step.siza,
CHAN OF INT.OR.FLOAT data.out}
{{{ decl's
#USE pseudort :
#USE t4math ;
VAL end IS ((SIZE snapshot) MINUS 1) :
VAL REAL32 analog.mult IS 10000.0(REAL32) :
VAL REAL32 T IS (one /fs) :
VAL REAL32 gein IS 14.2(REAL32) : - actual gain of circuit
{{{ frequencies, un-warped, pre-warped
VAL REAL32 fedl IS 10.0E + 3{REAL32): --inHz
VAL REAL32 fedu IS 50.0F + 3{REAL32) : - inHz
VAL REAL32 wcdl IS ({two * pi) * fcdl) : -- in Rad/s, un-warped
VAL REAL32 wedu IS {(two " pi) * fodu) : -- in Rad/s, un-warped
VAL REAL32 wcal IS {{two / T) * TAN((wedl * T) / two)) : — pre-warped
VAL REAL32 wcau IS ({two / T} * TAN{{wcdu * T) / two)) : — pre-warped
m

G23

{{{ filter coefficients

VAL REAL32 a IS {(wcal * wceu) :

VAL REAL32 b IS (woau - weal) :

VAL REAL32 c IS {two / T)~:
VALREAL32dIS(a + {c " lb + o)) :
VAL REAL32 8IS (b *c) /d):

VAL REAL32fIS {itwo "(a-{c "o} /d) :
VAL REAL32 gIS (la + {e " (c-b))} /d):

REAL32 xn, xn.minus.1, xn.minus.2, yn, yn.minus.1, yn.minus.2, output :
INT count, ptr, char, snep.count :
BOOL settling, capturing, running :

)])
SEQ

{{{ init

ptr, count, snap.count := 0,0, 0

xn.minus.1, yn.minus.1 : = zero, zero

xn.minus.2, yn.minug.2 : = zero, zero

settling : = TRUE

capturing ;= FALSE

running := TRUE

H
WHILE running
data.in ? CASE
int ; char
{{{ process char
IF
char = terminate
running : = FALSE
TRUE
data.out | int ; cher — pass it on

)

float ; xn
{
SEQ
yn := {{{e * {xn - xn.minus.2}) - {f * yn.minus.1)) - (g * yn.minus.2))
output : = (yn " gain)
data,out | float ; output
{{{ snap section of the number stream

IF
settling
{
SEQ
count : = count PLUS 1
IF
settla.time > count
SKIP
TRUE
SEQ
settling : = FALSE
capturing := TRUE
n
capturing
{{{
; SEQ
snap.count : = {snap.count PLUS 1)
IF
snap.count = snapshot.step.size
SEQ

snapshotiptr] : = output
{{{ increment ptr

IF
ptr <> end
ptr : = ptr PLUS 1
TRUE

capturing : = FALSE

snap.count := 0
TRUE
SKIP

1
TRUE
SKIP

W
{{{ update history
xn.minus.2 ;= xn.minus.t
xn.minus.1 (= xn
yn.minus.2 := yn.minus.1
yn.minus.1 := yn
}}}
m
{{{ pass on 'terminate’
data.out | int ; terminate

m -

HIF

Hl

{{{ SC bendpass.pol
{{{F bandpass.pol
{{{ Header

- Band-pass filter as gain block.

-- Filter coaff’'s calc at compile tima.
-- Internal to GXO

H)
PROC bandpass.pol (CHAN OF INT.OR.FLOAT data.in, [[REAL32 snapshot,
VAL INT seottla.time, snapshot.step.size,
CHAN OF INT.OR.FLOAT data.out)
{{{ decl's
#USE psoudort :
#USE t4math :
VAL end IS ({SIZE snapshot) MINUS 1) :
VAL REAL32 analog.mult IS 10000.0(REAL32} :
VAL REAL32 T IS {one / fa) :
VAL REAL32 gain IS 3.6{REAL32) : —- actual gain of circuit 3/10/90
{{{ frequencies, un-warped, pre-warped

VAL REAL32 fcdl IS 102,.6(REAL32): --in Hz
VAL REAL32 fcdu IS 6.792E + 3(REAL32) : --in Hz
VAL REAL32 wcdl IS ((two ® pi) * fcdl) ; — in Rad/s, un-warped

VAL REAL32 wedu IS ({two * pi) * fedu) : -- in Rad/s, un-warped
VAL REAL32 wcal IS ({two / T) * TANi{wcdl * T) / two)) : — pre-warped
VAL REAL32 wecau IS {(two / T) * TAN{(wedu * T) / twe)) : -- pre-warped

{{{ filter coefficients

VAL REAL32 a IS (wcal " wcau) :

VAL REAL32 b IS (wceu - weal) :

- VALREAL32¢c IS {(two /T) :

VAL REAL32dIS(a + (c " (b + o)) :

VAL REAL32 e IS (b ®* ¢c) /d}:

VAL REAL3211S {{two "{a-(c *¢))) /d):

;IAL REAL32glIS{fa + (c *(c-b))/d):
)

REAL32 xn, xn.minus.1, xn.minus.2, yn, yn.minus.1, yn.minus.2, output :

INT count, ptr, char, snap.count :

BOOL settling, capturing, running :

)]

SEQ
{{{ init
ptr, count, shap.count := 0,0, 0
xn.minus.1, yn.minus.1 : = zarae, zero
xn.minus.2, yn.minus.2 : = zaro, zeto
sottling : = TRUE
capturing : = FALSE
running := TRUE

W
WHILE running
data.in ? CASE
int ; char
{{{ process char
IF

char = terminate

running : = FALSE
TRUE
data.out ! int ; char
W}
float ; xn
{{{
SEQ
yn := {{le * {xn - xn.minus.2)) - (f * yn.minus.1}) - (g * yn.minue.2))
output 1= {yn " gain)
data.out ! float ; cutput
{{{ snap section of the number stream
IF
settling
{{
SEQ)
count := count PLUS 1
IF
sattle.time > count
SKIP
TRUE
SEQ
settling : = FALSE
capturing : = TRUE
m
cepturing
{{{
SEQ
snap.count : = (snap.count PLUS 1)
IF
snap.count = snapshot.step.size
SEQ
snapshot|ptr] : = output
{{{ inorement ptr
IF
ptr <> end
ptr := ptr PLUS 1
TRUE
capturing : = FALSE
m
snap.count ;= 0
TRUE
SKIP
m
TRUE
SKIP

Nl
{{{ updete history
®n.minue.2 := xn.minus.1
xn,minus.1 := xn
yn.minus.2 := yn.minus.1
yn.minug.1 ;= yn
1)
m
{{{ pass on 'terminate’
data.out | int ; terminate

h

1IF
0l
{{{ SC comp

{{{F comp
{{{ Header

- Comparator model with Hysteresis,

-- Thresholding value input at run tima.

- Internal to GXO,

-- Stores snapshot of waveforms after "settle.time's samples
-- has passed, decimating by snapshot.step.size

H
PROC comp (CHAN OF INT.OR.FLOAT data.in,
VAL REAL32 stan.dev, threshold,

G26

VAL INT settle.time, snapshot.step.size,
{IBYTE snapshot,
CHAN OF INT data.out)

{{{ SC gen.gauss

{{{F gen.gauss

{{{ Header

- Generate Gaussian noise (with zero mean).

-- Internal to Comparator.
|H)]
PROC gen.gauss {INT32 seed, *
VAL REAL32 stan.dev,
REAL32 norm.num) -
#USE t4math :
#USE pseudort :
VAL INT k IS 12 : —numbaer of random numbers summed to produce Normal Dist
VAL REAL32 twelve IS 12.0(REAL32) :
VAL REAL32 shift IS ((REAL32 ROUND k) / two) :
- VAL REAL32 divisor IS SQRT ((REAL32 ROUND k) / twelve) : — whenk <> 12
SEQ
norm.num := 0.0(REAL32)
SEQj = OFORk
REAL32 temp :
SEQ
temp, seed := RAN (seed)
normM.NUM := norm.num + temp
norm.num : = {(norm.num - shift) * stan.dev)
-- norm.num := {{{norm.num - shift) / divisor) * stan.dev)
HIF
h}
{{{ decl's
#USE pseudort :
VAL REAL32 pos.thresh IS (zero + threshald) :
VAL REAL32 neg:thresh IS {zero - threshold) :
VALINT pos IS 1
VALINT neglS O:
VAL end IS ({(SIZE snapshot) MINUS 1) :
VAL REAL32 mean IS O.0{REAL32) :
INT32 ran.seed :
REAL32 noise, numbar :
INT dummy, count, ptr, char, output, snap.count :
BOOL settling, capturing, running :
TIMER clock :
m
SEQ
{{{ init
{{{ initialise raendom number stuff
clock ? dummy
ran.seed : = (INT32 dummy)
m
ptr, count, snap.count := 0, 0, C
output : = pos
gettling : = TRUE
capturing : = FALSE
running := TRUE

h}
WHILE running
data.in ? CASE
int ; char
{{
1F
char = terminate
running : = FALSE
TRUE
data.out | char —~ pass it on
h}
fioat ; number
{{{
SEQ
{{{ add noise

pgen.gauss (ran.seed, stan.dev, noise)
number := {number + noise)

{{{ calc new output
IF

output = pos
IF
neg.thresh > number
output ;= neg
TRUE
SKIP
TRUE
IF
number > pos.thresh
output : = pos
TRUE
SKiIP
)]

data.out | output
{{{ copy section of number straam
IF

sottling
{{
SEQ
count := count PLUS 1
IF
settle.time > count
SKIP
TRUE
SEQ
settling ; = FALSE
cepturing : = TRUE

capturing
SEQ
snap.count ;: = (snap.count PLUS 1)
IF
snap.count = snapshot.step.size
SEQ

snapshotiptr] : = {(BYTE output}
{{{ increment ptr
IF
ptr <> end
ptr := ptr PLUS 1
TRUE
capturing := FALSE
h)
snap.count := 0
TRUE
SKIP
1N
TRUE
SKIP

)

{{{ pase on 'terminate’
data.out | terminate

om
F
m
{{{ SC gata.out

{{{F gate.out
{{{ Header

- D-Type Flip-Flop Model.

- Internal to GXO.
— Inputs Gating signal and Polarity signal, outputs polarity
-- when gating changes. .

m
G28

PROC gate.out {CHAN OF INT from.gate, from.pol,
[IBYTE snapshot,
VAL INT gettla.time, snapshot.step.size,
CHAN OF INT data.out)
{{{ decl's
#USE pseudort :
VAL end IS {{SIZE snapshot) MINUS 1) :
INT count, ptr, snep.count :
INT polarity, gate, last.gate, output :
BOOL settling, cepturing, running :
1
SEQ
{{{ initialise
ptr, count, snap.count := 0,0, 0
output , last.gate := 0, 0
settling : = TRUE
ceapturing : = FALSE
running := TRUE
)]
WHILE running
SEQ
{{{ got both parts of data
PAR

from.pol ? polarity
from.gate ? gate
m
IF
(gate = O} OR (gate = 1)
{{{ process
SEQ
IF
gate = |ast.gate
SKIP
TRUE
SEQ
output : = polarity
last.gete : = gate
data.out ! output
{{{ snap section of the number stream
IF
settling
{
SEQ
count ;= count PLUS 1
IF
gettle.time > count
SKIP
TRUE
SEQ
gettling : = FALSE
capturing : = TRUE
m
capturing
iy
SEQ
snap.count : = (snap.count PLUS 1)
IF
snap.count = snapshot,.step.size
SEQ
snapshotjptr] : = (BYTE output}
{{{ increment ptr
IF
ptr <> end
ptr : = ptr PLUS 1
TRUE
capturing : = FALSE

snap.count : = O
TRUE
SKIP

h
TRUE

SKIP

H
nl

gate = terminate
running : = FALSE
TRUE
{{{ passiton
data.out | gate

{{{ pess on terminate
data.out | terminate

R
NIF i
1)

- The following PARallel forms the
-- Gated Cross-Over Detector Model.,

1))
PAR

{{{ bandpass d/dt v

bandpass.gate (dsata,.inl0], gate.ana, sattle.time,
gnapshot.step.size, from.gate.bandpass)

Hh

{{(v bandpass filt

bandpass.pol {dets.in[1}, pol.ana, settle.time,
snapshot.step.size, from.pol.bandpass)

h}

{{{ comparator v

comp (from.gate.bandpass, gate.stan.dev, gate.thraghaold, settle.time,
snapshot.step.size, gate.dig, from.gate)

H}

{{{ v comparator

comp (from.pol.bandpass, pol.stan.dev, pol.threshold,
settle.time, snapshot.step.size, pol.dig, from.pol)

)

{{{ >-- gate out polarity -- <

gate.out (from.gate, from.pol, gxo.dig, settie.time,
snapshol.step.size, data.out)

H

NIF
m
{{{ SC sampled.2.avent

{{{F sampled.2.ovent
{{{ Header

- Sampled-to-Event Interface.

— Inputs data in Sampled Data streem, monitors for Events,

-- converts 1o avent data stream, stores in Data and Time arrays.

— Can initiate termination sequence {via stop.prbe} when arrays full,

- All sections are robust to receiving odd numbers of samples from different
-- channels. Termination only when terminate signal received from all tracks.

1]
PROC sampled.2.avent {{]CHAN OF INT data.in,
(IBYTE data,
[IINT timas,
CHAN OF INT stop.prbs,
CHAN OF ANY to.screen)
{{{ decl's
#USE pseudon :
#USE userio :
VAL INT end.of.array IS ({S!IZE data} MINUS 1) :
VAL REAL32 T IS (one / fa) :
VAL REAL32 T.hp.tps IS ((REAL32 ROUND hp.tps} * T) : — simulates High Priority timing Resolution
VAL REAL32 range IS (max.neg + max.pos) :
VAL INT samples.to.throw.away IS (2 TIMES {INT ROUND (range / T)}) :
~ This is twice minimum for safety
REAL32 time :

G30

[num.tracks]INT char ;
INT num.terminated, ptr :
INT input, last.input :
BOOL capturing, freewhaeling :
h}
SEQ
{{{ init
time : = 2ero
jast.input ;= 0
num.terminated := O
ptr:=0
capturing : = TRUE
freewheeling : = TRUE
{{{ throw away first block of samples.
INT count :
BOOL throwing.away @
SEQ
throwing.away := TRUE
count := O
WHILE throwing.away
SEQ
{{{ get sll track data in parallel
PAR track = 0 FOR num.tracks
data.in{track] ? charltrack}

{{{ check track data one by one
input := 0
SEQ track = 0 FOR num.tracks
VAL char.track IS char{track] :
IF
{char.track = 0) OR {char.track = 1)
SEQ
input : = (input \/ (char.track < < track))
{{{ check number of samples thrown away
count := count PLUS 1

IF
count = samples.to.throw.sway
SEQ
throwing.eway : = FALSE
last.input : = (input A\ #OF) -- ready for first valid
TRUE
SKIP
)

char.track = terminate
{{{ check how many terminated
SEQ
throwing.away : = FALSE
capwring : = FALSE
num.terminated := (num.terminated PLUS 1)
IF
num.terminated = num.tracks
freewheeling : = FALSE
TRUE
SKIP
I
TRUE
{{{ pass to screen IF track|O]
IF
track = 0
write.cher (to.screen, (BYTE char[0]))
TRUE
SKIP
m
0
m

{{{ put data into array, then when fuli...
WHILE capturing
SEQ
time : = {time + T.hp.ips) -- keep time-base up to date
{{{ build input word
PAR track = 0 FOR num.tracks —~ must get all in parallet

G31

data.in{treck] ? char[track]
input := 0
SEQ track = 0 FOR num.tracks -- combine in to ocne word
VAL INT char.track IS char|track] :
IF
{char.track = O) OR (char.track = 1)
input : = linput VV (char.track < < track))
char.track = terminate
{{{ check how many terminated
SEQ
capturing : = FALSE
num.terminated : = (num.terminated PLUS 1)
IF
num.terminated
freewheeling :
TRUE
sKIP
H}
TRUE
{{{ pass to screen IF track[O)
IF

num.tracks
FALSE

track = O

write.char (to.screen, {BYTE char[O]}}
TRUE

SKiP

input : = {input A\ #0F)
m
IF
{input < > last.input) AND capturing
{{{ put time and data into array

SEQ
datalptr] : = (BYTE last.input) - lastinput because of one bit buffer in hardware.
last.input : = input — ready for next transition test

times(ptr] := {INT ROUND time)
{{{ update ptr
IF

ptr <> end.of.array
ptr := ptr PLUS 1
TRUE
capturing : = FALSE
)

h
TRUE
SKIP

{{{ clean termination
IF
freewheeling
{{{ thsow away data AND output 'terminate’
PAR
stop.prbs | terminate
{{{ throw away rest of date
WHILE freewhesling
ALT track = O FOR num.tracks
data.inf{track] ? charltrack)
IF
charftrack] <> terminate
SKIP - throw it away

TRUE
{{{ check how many terminated
SEQ
num.terminated : = {num.terminated PLUS 1}
IF

num.terminated = num.tracks
freewhaeling : = FALSE

TRUE
SKIP
)
1)
WY
TRUE

G32

SKIP
m
HF
h

(e

- The following PARallel construct models

-- the replay process.

PAR
manch.coded.prbs (keyboard, stop.prbs, prbs.rag.len, staggered, from.prbs)
PAR treck = O FOR num.tracks .
read {from.prbsitzack], basic.pulseltrack],
pulss.aep, skew.samplasitrack), from.read(track])
displace {from.read, write.width, read.width, side.write.width,
displacement, from.disp, to.log)
PAR track = O FOR num.tracks
PAR
heademp (from.displtrack],
[pre.headampltrack] FROM O FOR (SIZE pra.headamp{track))],
Ipost.headampltrack] FROM O FOR (SIZE post.headampltrack])],
gettle.time, snapshot.step.size, from.headempitrack])
gated.croes (from.headampltrack],
{gate.analtrack] FROM O FOR snapshot.len],
[pol.anaftrack] FROM O FOR snapshot.lenl,
[gate.digltrack] FROM O FOR snsapshot.len),
[pol.digltrack] FROM O FOR snapshot.len],
[gxo.digltrack] FROM O FOR snapshot.len],
gate.stan.dev, pal.stan.dev,
gate.threshold, pol.threshold,
settle.time, snapshot.step.size,
from.gxoltrack])
sampled.2.event (from.gxo, [data FROM O FOR block.sizel,
Itimes FROM O FOR block.gizel, stop.prbs, to.log)
N
}

NF
{{{ check data
{{{ message
print.elapsed.time (to.log, start.tima)
write.text.line (to.log, " Checking data....")

Nl

{{{ PROC dacl's
{{{ sc distib
{{{F distib

{{{ Header

- Distribute Event Times and Data,

— held In arrays to relevent track.
— Initiates termintaion sequence when arrays are empty,

1
#USE pseudort :
PROC distrib {l]JINT tarray,
[IBYTE datray,
[num.tracks]CHAN OF INT data.out)
{{{ Decl's
VAL first.valid IS 9 : — Let model settle down.
VAL start IS (first.valid PLUS 1) :
INT old.data, track.mask :
1]
SEQ
{{{ Initislise
old.data : = INT (darrayl[first.valid])
N
SEQ sample == start FOR {(SIZE tarray) MINUS start)
VAL new.data IS INT (darray[sample}} :
SEQ
track.mask := #01
SEQ track = O FOR num.tracks

G33

SEQ
IF -- this should be redundant, there should always be a diffarence
{ (naw.dsta A track.mask) < > (old.dste N\ track.mask))
{{{ output data to ralavant channel
data.out[track) ! (tarray|sample MINUS 1] < < 1} V/
{{inow.data A track.mask) > > track)
12)]

TRUE
SKIP
track.mask := track.mask < < 1 - adjust bit mask for next track
old.data : = new.data ’
{{{ send 'tarminate’ to &all channels now arrays empty
SEQ track = O FOR num.tracks
data.outltrack] | terminete

H) -
nIF
"
{{{ SC decode
{{{F decode
{{{ Header

- Bi-Phase-L. Channel Decoder.

- Usad simuleted data rate to calculate sample points.

),
PROC man.dec {VAL INT gim.data.rate,
CHAN OF INT data.in, data.out)
{{{ decl's
#USE pseudon :
VAL data.bit.time IS (hp.tps / sim.data.rate} : — captured at High Priority
VAL sample.period IS data.bit.time :
VAL code.period IS {data.bit.time > > 1) : — ia half
VAL margin IS {code.period > > 1) :
VAL max.drop.out IS 100 : -- ie number code bits, used for memory allocation
INT 11, t2, 13, pl.len, p2.lan, sample.time :
INT data, track.data :
INT p1.units :
BOOL running, initialising :
111
SEQ
{{{ Initialise
running : = TRUE
initialising : = TRUE

{{{ getn
data.in 7 data
IF

data < > terminate
tl1 := (data > > 1)
TRUE
SEQ
running : = FALSE
initialising : = FALSE

)}
WHILE initialising
{{{ look for interval of 2
SEQ
data.in ? data
IF
data <> tarminate
{{{ took for period *2'
SEQ
t2 := {data >> 1)
pl.en := (t2 MINUS t1)
IF
{{{ 1.75 < pl.ien < 2.25 -- Widow only half normal during synchronisation
{ { {p1.len MINUS {margin > > 1) } < sample.period) AND
{ (p¥.len PLUS [margin > > 1}) > sample.period})

m
{{{ tound period 2 long
SEQ

G34

initialising : = FALSE
sample.time := (12 PLUS semple.psriod)
pl.unite := 2
Hh]
TRUE
t1 := 12
)
TRUE
SEQ
running := FALSE
initiafising : = FALSE
H}
)}
WHILE running
SEQ
data.in ? data
IF
data <> terminate
{{{ process data
SEQ
13 := (data > > 1) -- seperate data from time
track.data ;= {data /\ #01) — separate time from data
p2.len := {t3 MINUS t2)
IF
IF p2.units = O FOR max.drop.out —~ calcs p2 in terms of deta period
{ {code.pariod TIMES p2.units) PLUS margin) > = p2.len
SEQ
{{{ process p2.units
IF

{{{ 1:20r2:2
{p2.units = 2)
n

i

SEQ

data.out | traeck.data
{{{ recalc period
SKIP

m

sample.time := (13 PLUS sample.pericd)

1

{{{ 2:1
{{p1.units = 2} AND (p2.units = 1})
m

{
SEQ

{{{ recalc period
SKIP

m
sample.time : = (13 PLUS (sample.period > > 1))

m
{{{ 1
{{(p1.unite = 1) AND (p2.units = 1))

{{{
SEQ

{{{ recatc period
SKIP
H
IF
{{{ past sample point
{t3 PLUS margin) > sample.time

n

{{{
SEQ

data.out | track.data
sampls.time : = (t3 PLUS semple.psriod)
Wl
TRUE - else, anothar transition will occur
SKIP -- befora sample point

TRUE - zero or 2 < p2.units < max drop out
{{{ freewheal for corrupted data

G35

WHILE {t3 PLUS margin) > sample.tima
SEQ
data.out | track.date
ssmple.time : = {sample.time PLUS sample.period)

m
)]
p1.units : = p2.units
TRUE — p2 > max.drop.out units long

SKIP
12 := 13
)]
TRUE

{{{ shutdown
running : = FALSE
1]

{{{ pass on "terminate’
dsta.out | terminate

n

i, gt St

SC pibs.chack
{F prbs.check
{{{ Header

- PRBS Error Check and Classification,

-- Regenerates PRBS, compares with incoming data, classifies errors:

]
PROC prba.check (VAL INT reg.len, max.bad, min.goed,
CHAN OF INT data.in,
INT count, class.good, class.bad,
INT good.bits, bed.bits, lost.synch,
[JINT burst.his)
{{{ PROC defs
-- init.pointers, move.pointers declaration removed.
-- Same as in gen.prbs.
HH
{{{ decl's
#USE pseudort :
#USE userio :
VAL his.len IS (max.bad PLUS 1) : —- History Length
{16]INT s.reg : — Shift Registar
BOOL running, in.synch, not.in.error :
INT tb1, tb2, next.fb : — Register Pointers
INT data, new.prbs.bit :
INT ass.good.bits, ass.bad.bits ;: — Intermediatte/ASSummed Results
INT recover.len, burst.lan :
1)
SEQ
{{{ initlise process
class.good, cless.bad : = O,
good.bits, bad.bits := 0, O
SEQ i = O FOR his.len
burst.his[i] := 0O
lost.synch, count := 0, O
running: = TRUE
)]
WHILE running
SEQ
{{{ initialise this stream
init.pointers {reg.len, fb1, fb2, next.fb)
ass.good.bits, ass.bad.bits := 0,0
recover.len, burst.len := 0, O
{{{ fill s.reg with incoming data, whilst monitering for Termination
{{{ decl's
INT index :
BOOL filling :
m

0

SEQ
{{{ init

index := QO

G36

filling : = TRUE

M
WHILE filling
SEQ
data.in ? data
* iF
| deta <> terminate

| {{{ putinto f/b reg
SEQ

s.reglireg.len MINUS 1) MINUS index] : = dsta
{{{ increment index
index ;= {index PLUS 1)

IF
index = rag.len -
SEQ
| filting : = FALSE
in.synch := TRUE
| not.in.error := TRUE
‘ TRUE
SKIP
1)
]
TRUE
{{{ end loops
SEQ
filling := FALSE

running := FALSE
in.synch : = FALSE

)
)]
WHILE in.synch
SEQ
data.in ? data
IF
data < > terminate
{{{ process data
SEQ
count : = count PLUS 1
{{{ clock PRBS
SEQ
move.pointers (fb1, fb2, next.fb)
new.prbs.bit : = s.reglfb1] > < s.regifb2] -- EXCLUSIVE OR
s.reg(next.fb] : = new.prbs.bit
)]
IF
not.in.arror
{{{
IF
{{{ new bit OK
{naw.prbs.bit = data)
1))
{{{
SEQ
class.good : = (class.good PLUS 1}
good .bits : = {good.bits PLUS 1)
W
TRUE
{l
SEQ
not.in.error ;= FALSE
ass.good.bits, recoverlen:= 0,0
ess.bad.bits, burst.len:= 1, 1
m
)]
TRUE - ie in.error
{{{
SEQ
IF
{{{ now data OK
{new.prbs.bit = data)

m

G37

{{{
SEQ
racover.len : = {recover.len PLUS 1)
IF
recover.len = min.good
{{{ burst finished, reacord errors
SEQ
burst.len : = (burst.len MINUS (min.good MINUS 1)}
burst.hislburst.den] : = (burst.his|burst.den]) PLUS 1)
class.good : = {class.good PLUS recovar.len) _
class.bad : = (class.bad PLUS burst.len)
good.bits ;: = {good,bits PLUS (ass.good.bits PLUS 1}}
bad.bits : = {bad.bits PLUS ase.bad.bits)
not.in.error ;= TRUE
m
TRUE
SEQ
ags.good.bits : = {(ass.good.bits PLUS 1)
burst.len : = (burst.len PLUS 1)

TRUE - new data wrong
{{{
SEQ
burst.fen : = (burst.len PLUS 1}
iIF
burst.len > max.bad
SEQ
in.synch : = FALSE
lost.synch : = (lost.synch PLUS 1)
TRUE
SEQ
ass.bad.bits : = (ass.bad.bits PLUS 1)
recover.len := 0
13
m

1}
TRUE

{{{ end loops
SEQ

running : = FALSE
in.synch := FALSE

_)
NIF

)

m

CHAN OF INT from.tee :

ll.'lum.tracks]CHAN OF INT from.distrib, from.decode :

- The following PARallel Construct implements

—- the Decodes and Error Checking.

PAR
distrib {{times FROM O FOR block.size], |[data FROM O FOR block.size],
from.distrib)
PAR track = 1 FOR 3
PAR
man.dec (sim.data.rate, from.distribltrack], from.decodejtrack])
prbs.check (prbs.reg.len, mex.bad, min.good,
from.decodeltrack},
countftrack], class.goodItrack), class.bad[trackl],
pood.bita[track], bad.bits[track],
lost.synchitrack], burst.his|track])
man.dec (sim.data.rate, from.distrib]|0], from.decode{0])
prbs.check {prbs.reg.len, max.bad, min.good, from.decode|0],
count[0], ciass.good(0], class.bad(0],
good.bits[0], bad.bits[0],
{ost.synch[0], burst.his[0})
)3
{{{ ecatculate ratas
celc.rates (class.good, class.bed, lost.synch,

G38

max.bad, block.size, track.rate, rate)

{{{ print totals
print.totals {coum, loet.synch, class.good, class.bad, good.bits, bad.bits,
burst.his, his.len, track.rate, rate, to.log)

{{{ file waveformn arrays

VAL [IBYTE dont.file.str IS "do not file waveforms “:

IF

{{{ dont want waveforms filed....

eqstr (fwaveform.filename FROM O FOR waveform.name.len],
[dont.file.ste FROM O FOR wavsform.name.len])

nl

{ -

write.textline (to.log, "Waveforms NOT filed.”)
I
TRUE
{{{ file waveforms
{{{ local dacl's
CHAN OF ANY to.waveforms :
INT subplot.num, mesg.num, waveform.filer.result :
REAL32 xorig, yorig :

)]

{{{ PROC decl's
{{{ SC draw.graphs
{{{F draw.graphs
{{{ Header

- Draw Graphs.

- Takes snapshot data in arrays, output in TellaGraf form.
~ Starting at XOrigin,YOrigin. Each graph has unique SUBPLOT number,
3]
PROC draw.graphs ([l[JREAL32 pre.headamp, post.headamp,
[IIIREAL32 gate.ana, pol.ana,
[HIBYTE pol.dig. gate.dig, gxo.dig.
VAL INT snapshot.len,
REAL32 xorig, yorig,
INT subplot.num,
CHAN OF ANY data.out)
{{{ VAL's
VAL INT num.tracks IS (SIZE pol.op) :
VAL REAL32 ylen IS 2.5(REAL32) : -- y axis length
VAL REAL32 xlen IS 18.0{REAL32} : - x axis fength

{{{ SC plot anafogue wave

{{{F plot enalogue wave

{{{ Header

-- Wraps floating point numbers for TellaGraf PLOT.
-- Internal to Draw.Graphs

21,

PROC ptot.a.wave (VAL [JREAL32 analogue,
VAL REAL32 xorig, yorig, xlen, ylen,
INT subplot.num,
CHAN OF ANY data.out)

{{{ SC write.flost.array

{{{F write.flost.array

{{{ Header

-- Outputs "per.line’ floating point numbars per line
-- Internal to plot.analogue

N
PROC write.float.array (VAL |JREAL32 array,
VAL INT per.lins,
CHAN OF ANY data.out)
{{{ decl's
#USE userio :

M
SEQ i = O FOR {{SIZE array) / por.line}
SEQ
SEQ j = O FOR per.line
VAL INT index IS (i * per.line) PLUS j) :

G39

SEQ
wilta.real32 {(data.out, arraylindex], O, 4)
write.full.string (data.out, ")
newline (data.out)

MF

W

#USE userio :

{{{ VAL's

VAL INT fioats.per.tine IS 6 :

VAL INT analog.mult IS INT 10000 :

VAL INT anslog.y IS {{3 TIMES anslog.muit) / 2) : - ie plus 50%

3]

SEQ
{{{ continue
write.full.string {data,out, "CONTINUE ")
write.int {data.out, subplot.num, 0}
write.text.line {data.out, =.7)
subplot.num := (subplot.num PLUS 1)
n
write.text.line {data.out, "GENERATE A PLOT.")
write.text.dine {data.out, “SEQUENCE DATA.")
write.toxt.line (data.out, "*"ANALOGUE*"")
write.float.array (anslogue, fioats.per.line, data.out)
writa.text.line (data.out, "END OF DATA."}
{{{ x axis -
write.full.string (data.out, "X AXIS ORIGIN ")
write.real32 (deta.out, xorig, 0, 0)
write.full.string (data.out, *, LENGTH "}
write.rasl32 {data.out, xlen, 0, ©)
write.text.line (data.out, ", OFF."}
"
{{{ vaxis
write.full.string (data.out, "Y AXIS ORIGIN ")
write.real32 (data.out, yorig, O, 0)
write.full.string (data.out, ", LENGTH ")
write.real32 (data.out, ylen, 0, O)
write.full.string (data.out, ", MIN 7)
write.int {data.out, (0 MINUS analog.y}, 0)
wtita.full.string (data.out, ", STEP ")
write.int (data.out, analog.y, 0)
write.full.string (data.out, ", MAX ")
write.int (data.out, {0 PLUS analog.y), O)
write.text.line (data.out, ".")

{{{ subplat

writa.full.string (data.out, “SUBPLOT ")
write.int {data.out, subplot.num, 0}
write.text.line (data.out, ".")

m

- Internal to Draw.Graphs.
- Taekes Integer array, output with text for TealGraf.

112

PROC plot.d.wave (VAL [IBYTE digital,
VAL REAL32 xorig, yorig, xden, vlen,
INT subplot.num,
CHAN OF ANY data.out}

{{{ SC write.int.array
{{{F write.int.array
{{{ Header
-- Internal to plot.digital.
-- Outputs Intager array, ‘per.line' INTs per line.
h
PROC write.int.array (VAL (1BYTE array,
VAL INT per.line,

G40

CHAN OF ANY data.out}
{{{ decl's
#USE usoerio :

W
SEQ i = O FOR {(SIZE array) / per.line)
SEQ
SEQj = O FOR per.line
VAL INT index IS {{i * per.line) PLUS j) :
SEQ
write.int {data.out, (INT arraylindex]), 2)
writa.full.string (data.out, " "}
newline {data.out)

WIF .

h}

#USE userio :

VAL INT ints.per.line IS 20 :

SEQ
{{{ subplot
write.full.string (data.out, "CONTINUE ")
write.int (date.out, subplot.num, 0)
write.text.line (dete.out, "."}
subplot.num : = (subplot.num PLUS 1}
3]
write.text.line (data.out, "GENERATE A PLOT.")
writa.text.line (deta.out, "SEQUENCE DATA.")
write.text.line (data.out, "*"DIGITAL®*"")
write.int.array (digital, ints.per.line, data,out)
write.text.line (deta.out, "END OF DATA."}
{{{ x exis
write.full.string (data.out, "X AXIS ORIGIN ")
write.real32 (data.out, xorig, 0, 0)
write.full.atring (data.out, ", LENGTH ")
write.real32 (data.out, xien, 0, 0)
write.text.line (data.out, *, ANNOTATION OFF, EXISTENCE OFF.")
)
{{{ vaxis
write.full .string (data.out, Y AXIS ORIGIN 7)
write.real32 (data.out, yorig, 0, 0)
write.full.string (data.out, *, LENGTH ")
write.real32 (data.out, ylen, 0, O}
write.full .string (data.out, °, MIN ")
write.real32 (data.out, -2.0(REAL32), 0, O)
write.full.string (data.out, ", STEP "}
write.real32 (data.out, 1.0(REAL32), 0, O}
write.full.string (data.out, ", MAX 7}
write.real32 (data.out, 2.0(REAL32), 0, O)
write.text.line (deta.out, ", EXISTENCE OFF, OFF.")
m
{{{ subplot
write.full.string (deta.out, "SUBPLOT =)
writa.int (data.out, subplot.num, 0)
write.text.line (data.out, "."}

n
NIF
N
SEQ
SEQ track = 0 FOR num.tracks
{{{ output gate signals
SEQ
plot.a.wave {[gate.anaftrack) FROM O FOR snapshot.lan),
xorig, yorig, xlen, ylen, subplot.num, data.out)
plot.d.wave {[gate.digltrack) FROM O FOR snapshot.len],
xorig, yorig, xien, ylen, subplot.num, data.out)
yorig : = (yorig - ylen)

SEQ track = O FOR num.tracks
{{{ output polarity signals
SEQ
plot.e.wave ([pol.ana[track] FROM O FOR snapshot.len],
xorig, yorig, xlen, ylen, subplot.num, data.out)

G41

plot.d.wave {[pol.dig(track) FROM O FOR snapshot.len],
xorig, yorig, xlan, vlen, subplot.num, data.out)

yorig : = (yorig - ylen)

}

H
SEQ track = 0 FOR num.tracks

{{{ output gxo out

SEQ
plot.d.wave ((gxo.digftrack] FROM O FOR enapshot.len],

xorig, yorig, xten, ylen, subplot.num, data.out}

yorig : = (yorig - 1.6(REAL32})
)

MF
m
{{{ SC draw base

{{{F draw base
{{{ Header

- Prints Error Results onto Graph,

{{{ PROC header
PROC draw.base (VAL INT num:tracks, INT subplot.num, mesg.num,
VAL INT pulse.sep,
VAL REAL32 gats.threshold, pol.threshoid,
VAL REAL32 gate.noise.pp, pol.noise.pp, displacement,
VAL BOOL staggered,
VAL INT sim.data.rate, mex.bad, min.good,
VAL [|BYTE comment.text,
VAL INT comment.len, VAL [JREAL32 track.rate,
VAL REAL32 rate, CHAN OF ANY data.out)

)}

#USE usario :

{{{ PROC decl's

{{{ SC text.new.line
{{{F text.new.line

{{{ Header

-- intarnal to draw .base

m
PROC text.new.line (REAL32 ycord)
SEQ
ycord : = ycord - 0.5(REAL32)

F

SC text.new.column
F text.new.column
Headar
nternal to draw.base

1
)
{(
{(
{(

)
PROC text.new.column (REAL32 xcord, ycord)

St g, o, s S St

xcord + 4.5(REAL32)
2.5(REAL32)

x
[+]
e
(-9

[

SC write.mesg.int

{F write.masg.int

{{ Header

-- Write Message with integer.

-- Internal to draw.base. Increment Message number.

PROC write.mesg.int (INT mesg.num,
VAL []BYTE string,
VAL INT value,
VAL REAL32 xcord, ycord,
CHAN OF ANY data.out)
#USE userio ;
SEQ
write.full.string {data.out, "MSG ")
write.int (data.out, mesg.num, 0)

G42

write.full,string (data.out, = *"%)
write.full.etring (data.out, string)
IF
value <> (-1) —~ allows for no number being printed
write.int (data.out, valus, 0)
TRUE
SKIP
write.full.string (data.out, ™ *", X=")
write,real32 {data.out, xcord, 0, O)
write.full.string (data.out, ", Y=")
write.reel32 (data.out, ycord, O, 0}
write.text.line (data.out, ".%)
mesg.num : = (measg.num PLUS 1}

F

{{{ SC write.mesg.float

{{{F write.mesg.float

{{{ Header

- Write Massage with Floating point numbaer

~ Internal to draw.bass. Increment Message number.

}
LQOC write.mesg.float (INT mesg.num, VAL [|JBYTE stsing, VAL REAL32 value,
VAL REAL32 xcord, ycord, CHAN OF ANY data.out})
#USE userio :
SEQ
write.full.string (data.cut, "MSG ")
write.int (data.out, mesg.num, 0)
write.full.string (data.out, " **")
write.full.string (data.out, string)
write.real32 (deta.out, value, 1, 5)
writa.full.string (data.out, "*", X=")
write.real32 (dsta.out, xcord, 0, 0}
write.full.string (date.out, ", Y=")
write.raal32 (data.out, ycord, 0, O)
write.text.line (deta.out, =.")
mesg.num : = {mesg.num PLUS 1)

JHF

h
{{{ SC write track id
{{{F write track id
{{{ Header .
-- Annotate Graphs according to Track Number.
— Internal to draw.base
i
PROC write.track.id {INT mesg.num, VAL INT track,
VAL REAL32 xorig, yorig,
CHAN OF ANY data.out)
#USE userio :
SEQ
write.full.string {data.out, "MSG ")
write.int (data.out, mesg.num, O)
write.full.string {data.out, " *"T")
write,int (data.out, {track PLUS 1), 0)
write.full.string {data.out, "*", X=")
write.real32 (data.out, xorig, O, 0}
write.full.string {data.out, ", Y =")
wiite.real32 (data.out, yorig, O, 0}
wiite.text.line (data.out, ".")
mesg.num : = (mesg.num PLUS 1)

NIF
1)

)]

REAL32 xtext, ytext :

SEQ
{{{ continue
writa.full.string (data.out, "CONTINUE °)
write.int {data.out, subplot.num, Q)
writa.text.line (data.out, "."}
subplot.num : = {subplot.num PLUS 1)

G43

m

write.text.line {data.out, "GENERATE A PLOT.")

{{{ write general data

xtoxt, ytext := 2.0{REAL32), 2.5(REAL32)

{{{ first column

write.masg.int {mesg.num, "SIM DATA RATE ", sim.data.rate, xtext, ytext, data.out)
toxt.new.line (ytext)

write.mesg.float {(mesg.num, "GATE THRESH ", gate.threshold, xtext, ytext, data.out)
text.new.line (ytext}

write.masg.float {(mesg.num, "POL THRESH ", pol.threshold, xtext; ytaxt, deta.out)
text.new.line (ytext)

write.mesg.float (mesg.num, "GATE NOISE PP ", gate.noise.pp, xtext, ytext, data.out}
toxt.new.line {ytext)

write.mesg.float {mesg.num, "POL NOISE PP ", pol.noise.pp, xtaxt, ytext, data.out)
taxt.new.line {ytext)

{{{ second column
write.mesg.float (mesg.num, "TRACK DISP ", displacement, xtext, ytext, data.out)
text.new.column (xtext, ytext)

{{{ steggered
IF

staggered
write.mesg.int (mesg.num, "DATA STAGGERED ", -1, xtext, ytext, data,out)
TRUE
write.mesg.int (mesg.num, "DATA NOT STAGGERED ", -1, xtext, ytext, data.out)
)
gxt.naw.line {ytext}
write.mesg.int (mesg.num, "MAX BAD ", max.bad, xtext, ytext, data.out)
text.new.line (ytext}
write.mesg.int (mesg.num, "MIN GOOD *, min.good, xtext, ytext, data.out)
text.new.line (ytext)
{{{ comment
IF
{comment.len MINUS 1) > ©
write.mesg.int (mesg.num, [comment.text FROM O FOR (comment.len MINUS 1)),
-1, xtext, ytext, data.out)
TRUE
write.mesg.int (mesg.num, =-", -1, xtexi, ytext, data.out)
h
text.new.column {xtaxt, ytext}
.
{{{ third column
SEQ track = 0 FOR num.tracks
SEQ
write.full.string {data.out, "MSG ")
write.int (data.out, mesg.num, 0)
write.full.string {data.out, ® *"RATE T")
writa.int {data.out, {track PLUS 1), O)
write.full.string {data.out, ™ ")
write.real32 (data,out, track,rateltrack], 1, 5)
write.full .string {data.out, **", X ="}
write.real32 (data.out, xext, O, 0)
write.full.string (data.out, ®, Y=")
write.real32 (data.out, ytext, 0, 0)
write.text.line {(data.out, *.")
megg.num ;= (mesg.num PLUS 1)
toxt.naw.line (ytext)
write.mesg.float (masg.num, "OVERALL RATE “. rate, xtext, ytext, data,out)
text.new.column (xtext, ytext)

1))
3]
{{{ write track id's
xtext, ytext : = 19.5(REAL32), 28.5(REAL32)
SEQ track = O FOR num.tracks
{{{ output gate anotation
SEQ
write.track.id (mesg.num, track, xtext, ytext, data.out)
ytext : = (ytext - 2.5{REAL32))
H}
SEQ track = 0 FOR num.tracks
{{{ output polarity anotation
SEQ

G44

writa.track.id {mesg.num, track, xtext, ytext, data.out)
ytext : = (ytext - 2.5(REAL32))
)]

yiext ;= (ytext +1.0(REAL32})
SEQ track = O FOR num.tracks

{{{ output gxo out
SEQ

write track.id (mesg.num, track, xtext, ytext, data.out)
ytoxt : = {ytext - 1.5(REAL32))

1}

M
{{{ subplot
write.full.string {(dets.out, "SUBPLOT ")
writa,int (data.out, subplot.num, O}
write.text.line (data.out, ".")
13)]
HIF
13}
PAR
{{{ gen text
SEQ
{{{ init
xorig := 2.0(REAL32)
yorig : = 26,5{REAL32)
subplot.num := 1
mesg.num ;= 1
{{{ send message to log
write.full.string (to.log, "Waveforms filed in ")
write.text.line (to.log, [waveform.filename FROM O FOR waveform.name.len])
)]
)
{{{ generate text
SEQ
wrtite.text.line {to.waveforms, "ERROR REPORTING LEVEL 2.7)
write,text line {to.waveforms, "PAGE LAYOUT HRV.")
write.text.line {to.waveforms, "GENERATE A PLOT.")
{{{ subplot
write.full.string (to.waveforms, "SUBPLOT ")
write.int {to.waveforms, subplot.num, 0)
write.taxt.line (to.waveforms, ".")

)]

{{{ draw graphs

draw.graphs (pre.headamp, post.headamp, gate.ana, pol.ans,
gate.dig, pol.dig, gxo.dig, snapshot.len,
xorig. yorig, subplot.num, to.waveforms)}

1)
{{{ draw.base
draw.bese {num.tracks, subplot.num, mesg.num, pulse.sep,
gata.threshold, pol.threshold,
gate.noise.pp, pol.noise.pp, displacement,
staggered,
sim.data.rate, max.bad, min.good,
comment.text, comment.len,
track.rate, rate, to.waveforms}
)]
write.endstream {to.waveforms)
M)
H
{{{ file text
scsstreem.to.saerver {to.waveforms, from.filer, to.filer, waveform.name.len,
waveform.filaname, waveform.filor.result)
1}

m
I

{{{ message
print.elapsed.time (to.log, start,tims)
write.text.line {to.log, " FINISHED ! *)

m

write.endstream (to.log)

)

{{{ send text to "LOG", copied to scraen

G45

CHAN OF ANY to.iog.fold :
PAR
SEQ
scrstream,fan.out (to.log, to.log.fold, screen)
writa.endstream (to.log.fold)
gerstream.to.file (to.log.fold, from.user.filer(1], to.user.filer[1],
“log*, log.fold.num, log.fold.result}
1}

W}
{{{ clean up
keystraam.sink {from.param.fold}

{{{ using parameters read from fold
keystraam.from.file (from.user.filer[0], to.user.filer[O), from.param.fold, -
top.told, param.fo!d.result)

{{{ clesn finish
write.full.string (screen, "Press any key.... ")
;;;zd.char (keyboard, char)

- End of Simulation Code

{{{ SC antidisp
{{{F antidisp
{{{ Header

-- Displacement Compensation Scheme.

-- Uses track width, seperation and displacement.
-}- ;iecovd pre- and past-compensation waveforms (in gnapshot)
}
#USE pseudort :
VAL num.tracks IS 2 :
PROC antidisp ([num.tracks|CHAN OF INT.OR.FLOAT data.in,
VAL REAL32 w, TS, disp,
[numn.tracks]l(IREAL32 pre.snapshot, post.snapshot,
VAL INT settle.time, snapshot.step.size,
inum.tracksl{SCCOJREAL32 uncomp.gignal, comp.signal,
Inum.tracks]CHAN OF INT.OR.FLOAT data.out)
{{{ decl's
#USE t4math :
VAL INT Track1 IS O :
VAL INT Track2 IS 1 :
VAL end IS ({SIZE pre.snapsho1[0]) MINUS 1) :
VAL track2,gain IS 1,2(REAL32) :
[npum.tracke}REAL32 data :
[num.tracks)INT char :
REAL32 on.track, next.treck, coeff1, coeff2, adj.data.Trackl, adj.data.Track2 :
INT ptr, out.ptr, count, snap.count, num,.terminated :
BOOL settling, capturing, running :

SEQ
{{{ init
{{{ celc coeft's
on.track : = (w - disp)
next.track := {(w + disp) - TS)
IF
nexi.track < zero
next.track : = zero

TRUE
SKIiP
cooffl := (w / on.track)
coeff2 : = (next.track / on.track)
W

SEQ track = O FOR num.tracks
charltrack] := 0

count := Q0

ptr, out.ptr := 0,0

G46

snap.count := 0
num.terminated := 0
gettling : = TRUE
capturing : = FALSE
running : = TRUE

H

WHILE running
SEQ
{{{ get data
PAR track = O FOR num.tracks
data.inltrack) ? CASE
int ; charltrack]

float ; data[track] -
SKIP

{{{ check for 'terminated’
SEQ track = O FOR num.tracks
IF
char[track] = O - initial value
SKIP
char[track]) = terminate
num.terminated : = (num.terminated PLUS 1)
TRUE
SEQ
data.outtrack] ! int ; cherltrack]
char[track] : = O - back to initial value again
)]
IF
num.terminated = 0
{{{ process data
SEQ
{{{ de-mix signals
deta[Track2] : = {datalTrack2] * track2.gain)
{{{ record input data
uncomp.signal[Track1][out.ptr] : = datalTrack1]
uncomp.signallTrack2][out.ptr] : = datafTrack2]
1}
adj.data.Track1 : = (coeff1 " data[Track1])
ad|.data.Track2 : = {coeff1 * (data[Track2] + {coeff2 * data[Tracki])))
{{{ record compensated data
comp.signal[Track 1llout.ptr] : = adj.dete.Track1
comp.signaliTrack 2](out.ptr] : = edj.date.Track2
out.ptr : = (out.ptr PLUS 1)

I

{{{ output signals

PAR
data.out{Track1] | float ; adj.data.Track
data.out|Track2] | float ; adj.data.Track2

)]
{{{ snep section of the number stream
IF
sattling
{{{
SEQ
count := count PLUS 1
IF
gottle.time > coumt
SKIP
TRUE
SEQ
gottling : = FALSE
capturing := TRUE
capturing
SEQ
snap.count : = (snap.count PLUS 1)
IF
enap.count = shapshot.etep.size
SEQ

G47

pre.snapshot[Track 1][ptr] : = datalTrack1)
post.snapshot{Track1l[ptr] : = adj.data.Track1
pre.snapshotlTrack2llptr] : = datalTrack2]
post.snapshot(Track2]lptr] : = edj.data.Track2
{{{ increment ptr

IF
ptr <> end
ptr : = ptr PLUS 1
TRUE

capturing : = FALSE

snap.count ;= O
TRUE
SKIP
|3
TRUE
SKIP
H

1))}
TRUE

{{{ sink rest of data until ali terminated
SEQ
WHILE num.terminated < > num.tracks
ALT track = O FOR num.tracks
data.inltrack] * CASE
int ; char[track]

IF
charltrack] = terminate
num.terminated ;= {num.terminated PLUS 1}
TRUE
SKIP

float ; dataftrack]
SKIP
running := FALSE
3);
{{{ pass on "terminate’
PAR track = 0 FOR num.tracks
data.out{treck] ! int ; tarminate

W

IHF
h

G438

