
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

04 University of Plymouth Research Theses 01 Research Theses Main Collection

1991

Multiple Track Performance of a Digital

Magnetic Tape System : Experimental

Study and Simulation using Parallel

Processing Techniques

Jackson, Timothy John

http://hdl.handle.net/10026.1/2787

http://dx.doi.org/10.24382/1520

University of Plymouth

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.

Multiple Track Performance of a Digital

Magnetic Tape System : Experimental Study and

Simulation using Parallel Processing Techniques.

Timothy John Jackson BSc(Hons), AMIEE.

Submitted to the Council for National Academic Awards in

Partial Fulfilment for the Degree of Doctor of Philosophy.

Sponsoring Establishment:

Polytechnic South West,

Plymouth, Devon.

School of Electronic, Communication and

Electrical Engineering.

Collaborating Establishment:

Thorn EMI,

Central Research Laboratories,

Hayes, Middlesex.

September 1991.

900205805 9

1\ll~ll\lli~\U~IIl~
l REFERENCE ONLY I

I dedicate this th~is to

my parents, and Sarah.

ii

Declaration.

I declare that this thesis is the result of my investigation only,

and is not submitted in candidature for the award of any other

degree. During the research programme I was not registered for the

award of any other CNAA, or any other academic institute award.

This copy of the thesis has been supplied on condition that anyone

who consults it is understood to recognise that its copyright rests

with its author and that no quotation from the thesis and no

information derived from it may be published without the author's

prior written consent

iii

Acknowledgements.

I would like to express my gratitude to all those people and

organisations who have been associated with this project, in

particular,

The supervisory team of Professor D.J. Mapps (Director of Studies),

Dr. E.C. Ifeachor and Dr. T. Donnelly of the School of Electronics,

Communication and Electrical Engineering, for their constructive

advice, encouragement and guidance throughout the project.

Dr. A. Vaidya and Mr. P.R. Evans of Thorn EMI Central Research

Laboratories for their collaboration in this project.

Those based at The Charles Cross Centre for their support, friendship

and times of light relief.

To the Science and Engineering Research Council and Thorn EMI Central

Research Laboratories for their financial assistance.

iv

Nomenclature.

x, y, z • The three orthogonal cartesian axis,

x in direction of tape travel

y into the surface of the tape

z across the width of the tape .

fi .. Interference function between tracks.

B • Frequency bandwidth, t-l-z.
c • Shannon Channel Capacity.

d • Head to magnetic medium spacing distance,

fx • Artangent parameter.

fs .. Sampling frequency, Hz .
g • Head gap width1 m.
H • Magnetic field, Am~'

k "' Wavenumber = 2~r I>. • m
• I

K • Multiplier, 1024.

M .. Magnetisation, Arn • I

m • Displacement of head, m.
N "' Number of tracks.
p lE Number of magnetic particles.

r "' Read head width, m.

s lE Track separation, m.
T "' Data bit period or sampling period, s.
V ... Velocity of tape, ·' ms .
w • Write head width, m.
X .. Distance in x direction = Vt , m .

6 • Magnetic medium thickness, m .
4> "' Magnetic flux, I.

>. '"' Wavelength of recorded information, m .

bps "' Bits per second.

GXO= Gated Cross-Over.

LHD• Lateral Head Displacement.

LPS ., Linear Pulse Superposition.

V

m.

LSB "" Least significant bit.

MSB"' Most significant bit.

PW5(}s Isolated pulse width at 50% of it's maximum amplitude.

SNR .. Signal to noise ratio.

ITL .. Transistor-Transistor Logic.

VI

Abstract.

Multiple Track Performance of a Digital

Magnetic Tape System : Experimental Study and

Simulation using Parallel Processing Techniques.

by

Timothy John Jackson.

The primary aim of the magnetic recording industry is to
increase storage capacities and transfer rates whilst maintaining or
reducing costs. In multiple-track tape systems, as recorded track
dimensions decrease, higher precision tape transport mechanisms and
dedicated coding circuitry are required. This leads to increased
manufacturing costs and a loss of flexibility. This thesis reports on
the performance of a low precision low-cost multiple-track tape
transport system. Software based techniques to study system
performance, and to compensate for the mechanical deficiencies of
this system were developed using occam and the transputer.

The inherent parallelism of the multiple-track format was
exploited by integrating a transputer into the recording channel
to perform the signal processing tasks. An innovative model of the
recording channel, written exclusively in occam, was developed.
The effect of parameters, such as data rate, track dimensions and
head misregistration on system performance was determined from the
detailed error profile produced. - This model may be run on
a network of transputers, allowmg its speed of execution to be
scaled to suit the investigation. These features, combined with its
modular flexibility makes it a powerful tool that may be applied to
other multiple-track systems, such as digital HDTV.

A greater understanding of the effects of mechanical
deficiencies on the performance of multiple-track systems was gained
from this study. This led to the development of a software based
compensation scheme to reduce the effects of Lateral Head
Displacement and allow low-cost tape transport mechanisms to be used
with narrow, closely spaced tracks, facilitating higher packing
densities.

The experimental and simulated investigation of system
performance, the development of the model and compensation scheme
using parallel processing techniques has led to the publication of a
paper and two further publications are expected.

vii

Contents.

Dedication ... ii

Declaration .. .iii

Acknowledgements .. iv

Nomenclature .. v

Abstract ... vii

1. Introduction .. 1

1.1. The Magnetic Recording Process .. 3

1.1.1. Digital Magnetic Recording 5

1.1.2. Channel Coding .. 10

1.1.3. Error Correction Coding12

1.2. The Compact-Cassette Tape Format.. l4

1.2.1. The Philips DCC Format.. l5

1.3. DataProcessing ... 16

1.3.1. Hardware or Software Processing ?16

1.3.2. Concurrent and Parallel Processing IS

1.3.3. The occam Programming Language19

1.3.4. The INMOS transputer20

1.4. Previous Work .. 21

1.5. Summary ... 23

1.6. References for Chapter 1.. .. 26

2. Experimental Apparatus .. 29

2. 1. Overview .. 29

2.2. The transputer and its Development System 31

2.2.1. The INMOS transputer .. 31

2.2.2. The Software Development and Run-Time Environment..34

2. 2. 2 .1. The transputer Board35

2.2.2:2. Development System Software 35

2.2.3. Link Adapter Interface Board 35

2.3. Signal Conditioning .. 38

2.3.1. Write Amplifier. ... 39

2.3.2. Read Amplifier .. .40
' 2.3.3. Gated Cross-over Detector. 43

viii

2.4. The Tape Transport Mechanism and its Control.. 45

2.4.1. The IDM PC Interface Card 45

2.4.2. The Compact-Cassette Tape Transport Mechanism 47

2.4.3. Solenoid Drive Card ... 49

2.4.4. Record and Replay Heads49

2.5. Summary .. .52

2.6. References for Chapter 2 .. 54

3. Theory, Modelling and Software of the Data Channels •.............. 56

3.1. Overview .. 56

3.2. The Compact-Cassette System56

3.2.1. Generation and Encoding of Test Sequence Data 56

3.2.1.1. Pseudo-Random Binary Sequence Generator 59

3.2.1.2. Channel Encoding and Recording60

3.2.2. Decoding and Analysis of Replayed Data 61

3.2.2.1. Data Acquisition 62

3.2.2.2. Distribution of Data for Concurrent

Evaluation67

3.2.2.3. Bi-Phase-L Channel Decoding 69

3.2.2.4. Error Detection, Classification and Logging 70

3.3. The Model of the Compact-Cassette System 74

3.3.1. Generation of Gaussian White Noise 78

3.3.2. Model of the Replay Channel.. 79

3.3.2.1. Linear Pulse Superposition80

3.3.2.2. Determination of Isolated Pulse Shape 83

3.3.2.3. Signal Amplitude Fluctuations 86

3.3.2.4. Drop-Outs ... 90

3.3.2.5. Lateral Head Displacement.. 90

3.3.2.6. Data Skew between Tracks 94

3.3.2.7. Addition of Medium Noise 94

3.3.3. Model' of the Replay Electronics 95

3.3.3.1. Z Domain Description of Analogue Circuit

Elements ... 96

3.3.3.2. Head Amplifier 97

3.3.3.3. Gated Cross-Over Detector. 98

3.3.3.4. Addition of Electronic Noise101

IX

3.3.3.5. Link Adapter Interface Board l01

3.4. Lateral Head Displacement Compensation Scheme 102

3.5. Summary ... 107

3.6. References for Chapter 3 .. .109

4. Results and Discussions •.. 113

4.1. Experimental Procedures and Operating Conditions 113

4.2. Accuracy of the Isolated Pulse Models114

4.3. The Effect of Write Current on Replay Waveforml17

4.4. Error Rate Profiles .. 122

4.4.1. The Effect of Data Rate on Error Rate122

4.4.2. Simulation of a Peak Detector.128

4.4.3. Variation of Error Rate Profiles between Replaysl30

4.4.4. Head Azimuth Skew ... 133

4.4.5. The Effect of Lateral Head Displacement.. 135

4.4.6. Lateral Head Displacement and Azimuth Skewl53

4.5. LHD Compensation Scheme .. .l56

4.6. Limitation of the Amplitude Fluctuation Mechanism 161

4.7. occam and the transputer ... 164

4.8. Summary ... 168

4.9. References for Chapter 4 .. .172

5. Review and Conclusions .. 173

5.1. Suggestions for Further Work .. .l79

Appendices.

A. Published Paper.

B. Mathematics of Magnetic Recording Theory.

C. Programme for Calculating Isolated Pulse Wavefonn Coefficients.

D. Polynomial Coefficients of Analytical Pulses.

E. Circuit Diagrams.

F. Inductive Head Specification.

G. occam Programme Listings.

X

1. Introduction.

Since the introduction of the audio compact-cassette in 1963 and the

colour video recorder in 1976, magnetic tape has satisfied the

storage needs of the domestic market. Pushed by the demand for higher

performance, these analogue systems are being superseded by digital

systems (for example, the Compact Disc). Digital recording has many

advantages: it is highly linear and stable; can be used with very low

signal-to-noise ratio channels; and allows degradation-free

duplication. Performance limitations of a digital magnetic recorder

are primarily governed by the analogue-to-digital conversion process

and not the recording process. However it requires a wider bandwidth

than analogue recording.

One of the ways of achieving this bandwidth is to use a

Rotating-Head recorder (for example R-DAT, the first consumer digital

magnetic recorder). The high head-to-tape velocity facilitates a wide

bandwidth without requiring a high tape speed. Also, rotating-head

recorders can use very closely spaced tracks, efficiently utilising

the recording surface of the tape. However, the tape transport

mechanism is complex, making it more expensive to manufacture and

miniaturization more difficult. The orientation of the tracks

precludes splicing, whilst the tape can be subject to wear problems.

Another way of achieving the required bandwidth is to combine

several low bandwidth, stationary-head channels. The main benefit of

a stationary-head recorder is the simplicity of the tape transport

mechanism. The main detraction is the increase in the signal

processing requirements (up to N times in an N-track recorder). In

the past, these signal processing requirements have been met by the

use of dedicated hardware. The potential benefits of increased

flexibility and simplified hardware have prompted investigations into

the ability of conventional microprocessors to carry out these tasks

(Donnelly, 1986 & 1987). Whilst the results confirm the benefits,

they also highlight the poor performance of microprocessors in this

application. Without sufficient computational performance, either the

complexity of the coding algorithms or the maximum data rate will be

compromised.

1

One reason for this poor performance is the disparity between

the inherent concurrency of the signal processing and the sequential

operation of conventional microprocessors. For example, a four track

head may produce four pieces of data in parallel, each requiring

several stages of signal processing. This does not create a problem

in recorders that use dedicated circuitry, as many circuits may be

assembled as there are tasks to be performed in parallel.

A multiple-processor system would appear to be the answer to

this computational performance problem. However, until recently such

systems have been scarce and expensive. These machines have tended to

fall into two camps: supercomputers, e.g. the Intel iPSC (Hockney et

al., 1988) designed for 'number-crunching' _scientific problems, and

therefore not designed to operate under the constraints of a

Real-Time system; and array processors, e.g. the ICL DAP (Hockney et

al, 1988) normally designed for a very specific task and not for

flexibility or ease of programming. (A Real-Time system is one where

the correctness of results depend not only on their logical

correctness but also on the time they are produced.)

The introduction of the high level language occsm and its

processor, the transputer, has changed this situation.

Multiprocessor networks with an infmity of sizes and topologies can

be assembled from transputers, and programmed in occsm. This

scalable architecture allows computers to be assembled with almost

unlimited potential computational power. They may be programmed in a

very straightforward manner, allowing software techniques previously

dismissed as computationaly too complex to be realistically

considered.

Digital computers are used extensively in magnetic recording

research, for example calculating fields, modelling e.t.c. The

integration of a multiple-processor computer (that may be programmed

as simply as a standard sequential computer) into the digital

magnetic recording channel would produce a very powerful research

tool. The advantages of being able to perform the research with the

same processor architecture and language as the real-time

implementation are many.

This application of digital computing to the magnetic

2

recording channel reverses the established roles of these two

technologies. The first digital computer, the ENIAC (Hockney et al.,

1988), was built 48 years after the first magnetic recorder (Smith,

1888), and soon digital magnetic recording was being used to provide

a cost-effective, reliable, non-volatile method of storing computer

programmes and data.

Magnetic recording continues to meet the demands of the

computer industry, indeed it can be argued that the recent explosion

in use and popularity of the digital computer would not have come

about if it were not for the advances that have been made in digital

magnetic recording. Although disc based magnetic storage systems have

dominated the computer industry (primarily because of their superior

access times compared to tape systems), magnetic tape is still widely

used for 'back-up' or long term storage due to its low-cost per bit,

and ability to store large amounts of data.

1.1. The Magnetic Recording Process.

The basic elements of the longitudinal magnetic tape recorder channel

are shown in figure 1.1. The magnetic tape is normally a very thin

ribbon of plastic (often Polyester) that has had a magnetic material

(often powdered gamma-Ferric Oxide) bonded to one surface. The

information to be recorded is first encoded and conditioned for the

recording channel, and then amplified to drive current through the

winding of the record head. This current produces a magnetic field, a

portion of which bows or fringes out around the gap. The flux from

this fringing field links with the magnetic tape coating, magnetising

the region of tape directly beneath the gap, with the final imprint

determined by the field beneath the 'trailing edge' of the gap. As

the tape coating will have been chosen to be magnetically 'hard', it

remains magnetised after it has passed the field. The magnitude and

direction of the magnetised region will be proportional to that of

the recording current.

The primary method of retrieving the longitudinally recorded

information is to use another (or the same) inductive type head.

3

Information to
b e Stored

Signal
Processing

Retrieved
lnformat10n

Signal
Processing

Movemen t of Tape

Fig. 1.1. The Magnetic Tape Recorder Channel.

Recent developments in the field of thin films have resulted in the

production of a non-inductive read element (being magneto-resistive

in operation). Unspecified references to recording heads imply

inductive heads (section 2.4.4 covers magneto-resistive heads).

On replay, the tape is moved back across the head. The flux

from the magnetised regions of tape links with the magnetic circuit

of the head. From Faraday's Law, a voltage is induced in the head's

winding proportional to the rate of change of flux, and therefore

proportional (albeit, non-linearly) to the original signal. The

reproduced voltage may be calculated theoretically from the various

magnetic recording parameters and the magnetic and magnetisation

fields. Although mathematically complex, a number of simplifications

may be made that reduce the complexity to reveal a number of simple

relationships. The detail of this is given in Appendix B.

This simple model of the recording process stated above does

4

not include any non-ideal characteristics. The three main non-ideal

characteristics are:

i) Noise, introduced at the record and/or replay stage. This

includes thermal (or Johnson) noise and Shot noise (from the signal

conditioning electronics) Barkhausen noise in the head and

particulate noise from the magnetic medium.

ii) The magnetic recording process itself is non-linear. The

signal induced in the replay head winding is non-linearly related to

the original record current.

ill) The magnetic recording process is frequency bandlimited.

For an inductive system, the upper and lower frequency response

limits are determined primarily by the geometry and dimensions of the

record and rep~ay heads.

There are many other non-ideal characteristics, but these

effects can be reduced to a greater or lesser extent depending on the

signal conditioning and encoding scheme used. There are three primary

modes of signal conditioning and encoding: Direct recording of

analogue signals; Frequency Modulation (FM) of analogue signals; and

Digital recording. This project is solely concerned with the last

of these three.

1.1.1. Digital Magnetic Recording.

The word 'Digital' in the above section heading refers to the

recording process and not the information content of the signal to be

recorded. Analogue information may be stored using a digital magnetic

recorder after the appropriate analogue to digital conversion. This

text is concerned with digital magnetic recording, and does not

address the conversion to and from the digital domain.

Digital magnetic recording has many advantages. The system's

accuracy, linearity and dynamic range are not limited by the

recording process, but by the pre-recording signal processing and

5

coding. Also, it is simple to multiplex several digital signals down

a single recording channel. A key factor, that will be exploited

extensively in this project, is the ease with which digital recording

systems can be integrated with computer systems, and the opportunity

this gives to exploit powerful digital signal processing techniques.

The simplest form of digital recording is NRZ-L (Non-Return to

Zero, Level). It employs virtually no conditioning or encoding. The

two binary voltage levels are directly converted into two current

directions that saturate the magnetic medium North or South (with

respect to the tapes direction).

During replay, a quantitative knowledge of the magnetic field

strength, as is required for direct recording of analogue signals, is

not required. It is only necessary that adjacent and opposing

magnetic regions are of sufficient magnitude for the transition

between then to be detectable. It is this latitude (between

transition and no transition) that results in digital magnetic

recording being far less susceptible to two of the three non-ideal

characteristics listed previously; noise and non-linearity.

Unfortunately the remaining non-ideal characteristic, that of limited

bandwidth, is compounded, as digital magnetic recording requires an

even greater bandwidth. Modern encoding schemes can be designed to

reduce this problem.

A solution to the limited bandwidth (and also to the desire

for higher bit packing densities) can be seen from an extension of

Shannon's Channel Capacity (Mallinson, 1987(a)), where the capacity,

C, of the channel is defined by,

Equ. 1.1

where B = Bandwidth of the Channel

SNRw = Full Tape Width Signal-to-Noise Ratio

The SNR may be approximated by (Mallinson, 1987(b)),

6

SNRw = Full Tape Width Signal-to-Noise Ratio

= wp).m2

211"

where p = Number of magnetic particles per unit volume

w = Track Width

).m = Minimum Recorded Wavelength.

Egu. 1.2

Therefore, if the width of the tape is divided into N tracks, then

(ignoring inter-track guard-bands) the SNR of each track is reduced

by 1/N, giving a total channel capacity of,

CN = N.B.log2(1 + SNRW)

N

Egu. 1.3

Figure 1.2 shows how the channel capacity varies with the

number of tracks, assuming a SNR of 50dB and bandwidth of 12kHz

(approximate values for the compact-cassette system). The capacity

can be seen to increase nearly linearly with the number of tracks (as

will the areal pacldng density, assuming the same head-to-tape

velocity). In addition, equation 1.2, shows that halving the track

width reduces the SNR by 3dB, whilst halving the minimum recorded

frequency reduces the SNR by 6dB. Therefore, although doubling the

recording frequency may seen to be the simplest solution for the

designer, there are important performance advantages to be gained

from doubling the track density instead.

Rotating-head recorders use a slow tape speed and a high

rotating-head drum speed for closely spaced tracks, high bandwidth

and packing density. In a stationary-head multiple-track recorder,

the track widths and inter-track guard-bands are reduced to fit as

many tracks across the width of the tape as possible. However,

increasing the pacldng density in these ways increases the following

problems.

i) As tracks get narrower, the SNR becomes worse (a loss of

3dB for each halving of the track width).

ii) Drop-outs affect larger amounts of data.

7

'Ui'
a.

.D
~
'-"'

>..
-+-
0
0
a.
0
u
Q)
c
c
0

.r:.
u
c
0
c
c
0

..c
(/)

3

2

0
0 2 4 6 8 10 12 14

Number of Tracks

Fig. 1.2. Relationship between Channel Capacity and

Number of Tracks (SNRw=50dB, B= 12kHz).

16

iii) Crosstalk increases as tracks and their respective head

assemblies get physically closer.

iv) Mechanical deficiencies in the tape transport (like tape

skew and head alignment) become more pronounced.

Addressing these points in order:

i) The realisable channel capacity of magnetic recorders is a

fraction of the Shannon Capacity. For example, a typical state of the

art recorder may have a SNR of 30dB and bandwidth of 2MHz, yet only

achieve a data rate of 4Mbps (Mallinson, 1987(b) , pl25) . The Shannon

Capacity of such a machine is 10Mbps. A recorder with the same

bandwidth capable of operating at the Shannon Capacity would require

a SNR of just 3 ·OdB to achieve the same data rate. Therefore the

8

reduction in SNR resulting from narrower tracks may be considerably

offset by using more sophisticated coding schemes that allow

operation nearer the Shannon Capacity.

ii) The effects of drop-outs may be dealt with by a suitable

error detection and correction scheme.

iii) To date the philosophy has largely been to reduce the

mechanical deficiencies at source rather than cope with the problems

they cause (this has previously proved fruitful). For example, the

problem of tape-to-head misregistration has been dealt with by

tightening the manufactured tolerances of the tape, tape guides,

bearings etc. This obviously increases manufacturing costs. As the

'cost of computation' is falling it is desirable to develop software

techniques to tackle these problems.

It is important to note that the tape is included in the list

of components that need to be manufactured to tighter tolerances (for

example, at the tape slitting process). This increases the cost of

every tape. A software solution to these problems would result in a

one-off increase in cost, and this, with the advances being made in

microprocessor technology, may well become insignificant.

iv) The solution to the problems caused by track

misregistration may well solve those caused by cross-talk, as they

both distort and corrupt signals in a similar manner. Electronic

compensation for non-varying cross-talk already exist (e.g. van

Gestel et al., 1982), and may be transferred to software.

Therefore the last of these problems to be solved or offset by

software techniques are those caused by mechanical deficiencies. This

project was particularly interested in the problems caused by lateral

head displacement.

9

1.1.2. Channel Coding

Channel codes are used to match the characteristics of the data

stream to that of the recording channel. For example, figure 1.3

shows the very poor response of the replay head at low frequencies,

producing no signal at OHz. Frequency equalisation of the replayed

signal may be used to compensate for the bandlimited nature of the

magnetic recording response. Equalisation however, will not help

solve the DC response problem when used with a code like NRZ-M code

(Non-Return-to-Zero, Mark) . NRZ-M records a flux transition for a

datum '1' and no transition for a datum '0'. A continuous stream of

'O's will result in no flux transitions; effectively a OHz signal

that the head will not respond to. This obviously makes

synchronisation and retiming of the waveform very difficult. Removing

or reducing the low frequency content of the data stream is therefore

often a prime objective of a channel code.

Amplitude (dB)

OdB

OHz Frequency

Fig. 1.3. Frequency Response of a typical Replay Head.

The Bi-Phase-L channel code completely removes the DC content

of the signal by mapping each data bit into a two bit code word

(which is then recorded using NRZ-M):

10

Data Bits Code Bits

0 1 0

1 0 1

As each code word is DC free, any sequence of code words will

also be DC free. There is a transition at the centre of each code

word, and therefore regenerating the clock signal for synchronisation

and retiming is straightforward. As Bi-Phase-L records (on average)

more transitions than NRZ-M for the same data sequence, a wider

bandwidth channel is required or the data rate must be reduced. The

choice between ease of clock regeneration and bandwidth is typical of

the type of compromise a channel code will introduce.

Three parameters (ignoring charge constraint) fully describe

the characteristics of the many channel codes developed:

d = minimum distance between transitions in coded sequence.

k =maximum 11 11 11
tl "

11

R = Rate of the Code = (m/n) where,

m = number of bits of data to be coded.

n = 11 11 11 in coded sequence.

From these three parameters, · the following three primary

characteristics may be calculated:

Detection Window = R * data bit cell period = R * T

(a wide Detection Window eases sampling)

Max:Min Pulse Width Ratio = (k + 1)/(d + 1)

(low values are desirable as this suggests small

peak-shift and good self-clocking, amongst others)

Density Ratio = R * (d + 1)

(high values suggest high signal-to-noise ratio)

Table 1.1. summarises some of the more popular channel codes,

and illustrates how the various characteristics have been

compromised. More detail on this subject can be found in Jorgensen's

book (Jorgensen, 1988), from which the data for Table 1.1. was based,

and the paper by Mackintosh (Mackintosh, 1979(b), that includes clear

descriptions of the established channel codes. However, for a

11

thorough treatment of the subject that concentrates on the design of

more recent codes (especially Run Length Limited and DC-free codes),

Schouhamer-Immink's book (Schouhamer-lmmink, 1991) is suggested.

d k m n Code Detection Pulse Density

Rate Window Width Ratio

Ratio

NRZ-L 0 CO 1 1 1 T CO 1

NRZ-M 0 CO 1 1 1 T 1

Bi-Phase-L 0 1 1 2 1/2 T/2 2 1/2

MFM 1 3 1 2 1/2 T/2 2 1

E-NRZ 0 7 7 8 7;8 7T;8 8 7;8

Miller2 1 5 1 2 1/2 T/2 3 1

ZM 1 3 1 2 1/2 T/2 2 1

3PM 2 11 3 6 1/2 T/2 4 3/2

Table 1.1. A Comparison of Various Channel Code Parameters.

1.1.3. Error Correction Coding

Digital magnetic recorders that use saturation recording (that is the

norm) benefit from a broad gap between detected states. Although this

can result in a high degree of immunity to noise, errors will still

occur. The principal cause of errors in an optimally set-up system is

tape drop-out. This is a (normally) short and severe loss of output

from the playback head, caused by: tape surface imperfections;

physical damage; or debris between the tape surface and head.

12

Error coding involves adding extra information to the data,

allowing errors in the data at replay to be detected (and usually

corrected). An intuitive example would involve recording the data

three times, and using a majority voting logic circuit to decide the

most probable result.

There are two main types of error correcting code in use, (i)

block codes and (ii) convolution codes. Note, the standard

nomenclature confusingly duplicates symbols used in the

characterisation of channel codes.

i) A block code splits the data stream to be encoded into

message blocks of length k bits. Each message block is converted into

a code word of length n (n greater than k). This is termed an (n,k)

block code. Block channel codes are memoryless, and therefore each

code word is dependent only on the k bits of the current message

block.

Therefore of the 2n possible code words, only 2k are used.

If a word is received that is not one of the allowable 2k code

words then an error has occurred. In many systems the code word that

should have been received is determined by calculating which of the

valid code words is nearest to the one received. The reliability of

this type of code is largely dependent on the probability of the

corrupted code word not being a valid one.

(ii) A convolution code also uses k length sequences of data

and produces n length code words. However, the code words are

dependent not only on the k bits of this message, but on m previous

message bits as well, and is therefore called an (n,k,m) convolution

code.

Error correction algorithms vary from simple correction

schemes, like Hamming, which have a correspondingly modest error

correction capability, to complex schemes, like Reed-Solomon, that

have very powerful error correction capabilities. For a thorough

introduction to the subject, Hill's book (Hill, 1986) is recommended.

Blahut's book (Blahut, 1983) covers more complex schemes Oike BCH

codes and Spectral techniques) with much emphasis on their

13

implementation.

1.2. The Compact-Cassette Tape Format.

Philips introduced the compact-cassette at the 1963 Berlin Radio

Exhibition. It was designed to record mono-aural audio, primarily for

the domestic market. Recordings are made on one half of the tape,

then the cassette is manually turned over to record onto the other

half. The track format was extended in 1966 to allow stereo

recording, see figure 1.4. The compact-cassette gained popularity as

a recording medium for music due to its low cost, robustness and

convenient size.

Record/ Playback Head

0 .611~- 1

2 Lateral

0 . 681~- Head
Displacement

3 ~

~= 4

0 .3 25
~ ~

Gua rd - Bands Magnetic Tap e Ta pe Movem e nt

(Dimen s ions in mm)

Fig. 1.4. The Compact-Cassette Track Format.

The choice of the compact-cassette as the recording format for

a digital recorder project may thus seem unusual, especially as many

other tape formats have been developed since the compact-cassette,

some specifically developed for digital recording. The reasons for

14

its choice were:

i) It is a stationary head design. Rotating head designs are

very popular at present, but the manufacturing cost of a

rotary head mechanism is much higher than a stationary head

design because it involves more moving parts, manufactured to

tighter tolerances.

ii) The mechanisms are simple, and allow modifications to be

made easily (see section 2.4.2).

ill) It is a multiple-track format. One aspect of the project

was to investigate software processing of data from a

multiple-track format.

iv) The simplicity of its design should make techniques

developed using it be applicable to other systems.

v) It is cheap to buy and widely available as an established

system.

One of the aims of the project was to keep the number and

complexity of mechanical components to a minimum, (thereby reducing

cost), and to investigate how software techniques may be used to

compensate for those deficiencies that result, actual and envisaged.

(It is expected that the cost of computational performance will

continue to drop faster than mechanical manufacturing costs).

Several commercial digital-audio systems based on the

compact-cassette have been developed. From research papers published,

at least two companies appeared to be about to go into production of

such systems around 1984: Matsushita Electric Company (Sakamoto et

al., 1984) and Mitsubishi Electric Company (Onoshi et al., 1984). For

reasons unknown, no such systems have been commercially released.

Philips are about to to change this situation.

1.2.1. The Philips DCC Format.

Philips are due to release a new digital magnetic tape format called

Digital Compact Cassette (DCC) (Cole, 1991 and Fox, 1991). The DCC

cassette's housing is physically very similar to the analogue

15

compact-cassette, but eighteen tracks are recorded across the tape,

nine at a time (eight dedicated to audio). As with the analogue

format, the head records across half the tape width at a time, but it

is the head (and not the cassette) that is automatically turned over

in a DCC mechanism to access the other half.

Although each of the eight tracks of the new DCC recording

head can record shorter wavelengths signals than the compact-cassette

head (l,..m compared to 2.5,..m), the system cannot process data

at the rate of 2x106 bits per second as can the Compact Disc (CD)

(Watkinson, 1989). To provide a comparable level of 'audio quality'

as CD, the bit rate is reduced using a coding scheme called PASC

(Precision Adaptive Sub-band Coding). PASC coding splits the signal

into 32 frequency bands, and then (using a template of the human

ear's frequency sensitivity) encodes only those sounds that are above

the threshold of audibility. By not coding 'inaudible' sounds the

number of bits per sample is reduced from 16 to an average of 4.

The design of the recording head appears to be similar to the

one proposed in section 2.4.4, but there is as yet little definitive

information. The head is split into two sections: an inductive

Ferrite section for writing; and a Magneto-Resistive section for

reading. The track format is shown in figure 1.5. To reduce the

effects of lateral tape-to-head mis-registration, the read element is

70,..m wide compared to the write track width of 185,..m.

1.3. Data Processing.

1.3.1. Hardware or Software Processing?

Conventionally, the signal processing and coding involved in the

recovery of data from digital magnetic recorders has been carried out

by dedicated hardware. Figure 1.6(a) shows the signal processing

tasks of a typical replay channel. As the project was concerned with

using software techniques, the question that was addressed was how

much of this channel should be implemented in hardware and how much

in software ?

16

I
I
I
I 9

Tracks Sector 1

Sector 2

Read Width 70um~ l

Fig. 1.5. The DCC Track Format.

Figure 1.6(b) shows what might be called the 'ultimate'

software solution. Hardware is only used to amplify and digitise the

signal prior to input to the computer. This solution would impose

almost no limitations on the type or complexity of signal processing

implemented.

In a real-time system, the complexity of the signal processmg

of each bit is limited to what can be done in a bit period. There is

therefore a compromise between algorithmic complexity and maximum

data rate. The more tasks that are performed in hardware, the simpler

(and therefore the faster) the software, and consequently the higher

the maximum data rate. As the information content of the signal

reduces passing through the channel, the earlier in the signal

processing chain the software takes over, the more information

17

Detector Channel Error
Decoder Detection

(a)
Replaced by

~ I ADC Hcomputerl ~

(b)

Fig. 1.6. Signal Processing of the Replay Channel.

it has to work with, and therefore the greater the potential to

recover the original data.

A single, general purpose microprocessor will be very limited

in the complexity of algorithm it can implement and/or data rate it

can sustain. Its sequential architecture is not suited to the

parallel nature of the tasks involved in the recovery of data from a

multiple-track digital magnetic recorder. Whilst processors

specifically designed for signal processing tasks would be better

suited to the evaluation of many of these tasks (Sandler et al,

1989), they are lacking in terms of support for parallel systems.

1.3.2. Concurrent and Parallel Processing

To avoid ambiguity, the following definitions (Galland, 1982) have

been adhered to:

• "Concurrency: The condition of multiprogramming; . .. "

• "Multiprogramming: in which two or more

application programmes are being executed simultaneously by

the interleaved allocation of a single set of computer

resources."

• "Parallel Processing: . executed at the same time

using multiple sets of facilities."

18

Concurrency can therefore be thought of as pseudo-parallelism.

Historically, any concurrency in a system was at the operating system

level. For example, the UNIX operating system shares the computers

resources (often based around a MC680x0 processor) between several

users, each of whtch may be running several application programmes.

This sharing task is handled by UNIX's Kernel, a piece of software.

The success of UNIX demonstrates that the benefits of a multi-user,

multi-tasking environment can outweigh the performance degradation

introduced by the Kernel.

Parallel processing arose primarily from the desire for

increased performance. Their specific languages developed from the

need to programme parallel processing machines. For example, the

CRAY-2 supercomputer (Hockney et al., 1988) has four main processing

units, each with its own memory systems and multiple arithmetic

units. It has a peak theoretical performance of 2xl09 floating

point operations per second. Several standard languages (e.g., C and

Fortran) are available, their compilers producing code that makes

optimal use of the multiple processing elements.

These languages were developed for sequential processing

architectures and have been extended to include support for multiple

processor architectures. The next logical evolutionary step was to

develop languages with support for parallelism designed-in from

inception.

1.3.3. The occam Programming Language.

Occam (INMOS 1988(a)) is a high-level language designed for

parallel programming. Occam programmes are constructed from

Processes. An occam Process is a named group of instructions that

perform a specific task (similar to a Procedure in a standard

sequential language). The key point is that occam allows these

processes to be constructed to run either in parallel or sequentially

with virtually equal ease. The language supports, but makes no

distinction between, parallelism and concurrency. Therefore an

occam programme is not specific to any particular topology or

19

number of processors. This not only allows great flexibility, it

allows programme development initially to be carried out on a single

processor, and then transferred to a multiple processor network if

available.

The decision between executing a set of processes concurrently

or in parallel is made after the programme has been compiled: at the

Configuration stage (INMOS 1988(b)). Configuring an occsm

programme allocates processes to processors. If there is only one

processor then it will be allocated all processes for concurrent

processing (that is interleaved sharing of resources). If there is

more than one processor, the processes are divided between them for

parallel processing.

Many events in the 'real-world' occur simultaneously or

overlap: they are not limited to a sequential ordering. A parallel

algorithm must first be transformed into a sequential form if it is

to be coded in a sequential language. This transformation will tend

to hide or mask the relationship between the solution and the

implementation of the solution, as well as introducing another step

into the coding operation, increasing the probability of a coding

error. There are therefore obvious advantages to be gained from using

a computer language that allows a similar construction of events.

The speed of execution of a programme written in a parallel

processing language is primarily dependent on the number of

processors the code is distributed over. In practice, the ultimate

performance will be governed by the granularity of the algorithm. In

other words, there will be a finite number of tasks that can take

place in parallel, and once there is a processor dedicated to each of

these, performance increases cannot be gained by using more.

1.3.4. The INMOS transputar.

Standard microprocessors provide no

programming aspects of occam,

support

like

for the parallel

concurrency and

inter-processor communication. As standard microprocessors were not

designed to be connected into multiple processor arrays, it is not

20

surprising that they do not do so readily or efficiently. The INMOS

Family of trsnsputsrS (INMOS 1988(c)) was designed to satisfy

this need.

TrsnsputsrS are self contained microcomputers on a single

integrated circuit, designed primarily to execute occsm

processes. A single trsnsputsr can perform concurrent processing,

whilst a network (of more than one) can perform parallel processing.

More detail of the trsnsputer can be found in section 2. 2 .1.

1.4. Previous Work.

In Donnelly's Ph.D. thesis (Donnelly, 1989) several digital magnetic

recording systems were developed. All were based on the

compact-cassette tape format, and used a conventional microprocessor

(a Zilog Z80) for the data processing. Different recording heads,

channel codes and error correction strategies were investigated.

Several points pertinent to this project were raised:

i) Several limitations of the compact-cassette mechanism were

offset using software based techniques. In particular tape velocity

variations and head azimuth variations.

ii) Tape-to-head mis-registration would assume more

significance in a narrower track system.

ill) Data were recorded across all tracks simultaneously,

i.e., a four bit word was recorded across the width of the tape in

the four track systems, see figure 1. 7(a). During playback all tracks

were sampled in parallel. This parallel sampling technique reduces

the sampling rate by 1/N for an N track system compared to sampling

each track individually.

Due primarily to tape skew and tape deformation, the

individual bits of the recorded word are skewed with respect to one

another on replay, see figure 1.7(b). If the data skew between any

two tracks is less than the sampling window width, the recorded word

may still be correctly sampled. Sampling window width decreases as

21

the data rate increases. Data skew in excess of the code bit period

at 5kbps was measured. This misalignment of data at the sample point

was a sigruficant source of errors. The effective sample time window

was doubled using software techniques, reducing the effect of the

phenomenon. Donnelly suggested that treating each track independently

would remove the problem of mis-aligned data, but would place a

further heavy computational burden on the software.

4 Tracks of Data Written in On Replay Data becomes Skewed.

Parallel across width of Tape

(a) (b)

Fig. 1. 7. Parallel Recording and Replay.

iv) The error detection method employed in the second

recording system (Donnelly, 1989, section 4.4) does not reveal which

of the four tracks was the cause of the error, or whether more than

one tracks was in error.

v) Reed-Solomon codes were investigated and finite field

arithmetic algorithms implemented, but not in real-time due to the

amount of computation required.

Simulation may be used to investigate many aspects of the

digital recording channel. Mackintosh carried out such an

investigation using superposition of isolated pulses to generate the

replayed waveform (Mackintosh, 1979(b)). In such an investigation it

is important to use a pulse shape that is representative of the pulse

produced by the system to be simulated. As Mackintosh was primarily

interested in coding schemes, a 'general purpose' shape pulse was

22

chosen. Mackintosh concluded that a good general 'fit' could be

obtained using the equation:

Equ. 1.4

but the often used Lorentzian pulse:

Equ. 1.5

was a poor representation. Neither of these basic pulse shapes (nor

any of the others Mackintosh investigated) proved to be a good

representation of the pulse produced by the compact-cassette system,

and so (as reported in section 3.3.2.2) a new basic pulse was

derived.

Mackintosh did not directly introduce noise or errors into his

simulation work. Instead their effect on the position of transitions

was simulated. Transitions were moved from their correct position by

a percentage of the PW50 (the width of the isolated pulse at 50% of

its maximum height) , referred to as . RTE (Real-Time Error). Four

values of RTE were used, ranging from 0% (indicating no noise) to 16%

(8 % representing a typical system). All error and noise sources were

therefore 'lumped' together. The model described in section 3.3

treated error sources separately as far as was possible, the

magnitude of each being based on measured or calculated values.

It is of interest to note that a CDC7600 parallel processing

supercomputer was used to run the simulation programme. Twenty years

later, a single transputer was used in a similar role.

1.5. Summary.

In the quest for higher areal bit densities, increasing the number of

tracks per mm (by reducing their width and separation) has a

fundamental advantage in terms of SNR over increasing the number of

23

flux reversals ~r mm. But an advantage of increasing the flux

reversal rate if A Bi~ data transfer rate may also be increased. One

way of compensating for this is to use a parallel track format.

Parallel track systems require more signal processing: up to N

times more for an N track system. This naturally suggests a parallel

processing architecture, be it at the hardware or software level.

Parallel track formats also have their own characteristics that can

be exploited advantageously, such as the use of Adaptive Cross Parity

(Pate!, 1985).

As track widths get narrower, manufacturing tolerances of the

tape transport bearings and guides need to be tightened to keep

mechanical deficiences, such as head-to-track misregistration, at an

acceptable level, leading to increased costs. In contrast, the cost

of computation is falling, and is set to carry on doing so. It

therefore relevant to investigate how software techniques may be used

to address the problems introduced by mechanical deficiences.

The flexibility and potential capabilities of software are not

in question. Some of the benefits of using software in the data

channel have already been demonstrated (Donnelly, 1989). But digital

magnetic recorders are real-time systems, and computational

performance is a critical factor. Each data bit has only a limited

amount of time to be processed in, and this limits the sophistication

of the software. Until recently hardware was the only viable choice.

Computer simulation is a powerful tool in the Research

environment. The time constraints imposed by real-time systems

obviously do not exist during simulation. But accurately simulating

the recording process can consume vast computer resources due to its

complexity, and the fact that iterative techniques often need to be

used. Computational performance therefore remains an important issue.

Parallel Processing promises computational performance of

orders of magnitude greater than standard sequential architecture

computers. What is unrealistically complex to implement currently in

a real-time system (for example, large Neural Networks or Artificial

Intelligence techniques) will be viable in the future. The computer

industry is still at the bottom of the parallel processing 'learning

curve', as is the magnetic recording industries use of it.

24

Occam and the transputar represent the first parallel

processing language and hardware architecture designed for general

purpose use. They reduce the architectural and semantic gaps between

the algorithm and its implementation for parallel systems. But what

benefits does this bring to digital magnetic recording "!

25

1.6. References for Chapter 1.

BLAHUT, R.E. Theory and Practice of Error Control Codes.

Addison-Wesley Publishing Co. Inc. 1983.

COLE, G. Tape Leader?, Electronics World, March 1991, p197.

DONNEI.LY, T., Mapps, D.J. & Wilson, R. High Density Data Storage on

Audio Compact-cassette Tape using a Low Cost Tape Transport.

I.E.R.E. Sixth lnt. Conf. Video, Audio and Data Recording, Univ.

of Sussex, March 1986.

DONNELLY, T., Mapps, D.J. & Wilson, R. An Intelligent Microprocessor

Interface for a Low-cost Digital Magnetic Tape Recorder.

Euromicro 87, Thirteenth Symposium on Microprocessing and

Microprogramming, Portsmouth, September 1987.

DONNELLY, T. Real-Time Microprocessor Techniques for a Digital

Multitrack Tape Recorder, Ph. D. Thesis, Polytechnic South West,

1989.

EMI, Modern Instrumentation Tape Recording: An Engineering Handbook.

Thorn EMI. 1986.

FOX, B. Shots fired in the battle for DAT, Electronics Weekly,

November 28 1990.

GALLAND, F.J.(Editor), Dictionary of Computing, John Wiley & Sons,

Chichester, UK, 1982.

VAN GESTEL, W.J., Driessen, L.M.H.E. & Moeskops, J.C.F. A Multitrack

Digital Audio Recorder for Consumer Applications. Journal of the

Audio Engineering Society, Vol. 30, No. 12, December 1982.

HILL, R. A First Course in Coding Theory. Oxford University Press,

New York, 1986.

26

HOCKNEY, R.W. & Jesshope, C.R. Parallel Computers 2: Architecture,

Programming and Algorithms, lOP Publishing Ltd., Bristol ,

England, U.K., 1988.

INMOS Ltd., Occam 2 Reference Manual. Prentice Hall International

(UK) Ltd., 1988 (a).

INMOS Ltd., Transputer Development System. Prentice Hall

International (UK) Ltd., 1988 (b).

INMOS Ltd., Transputer Reference Manual. Prentice Hall International

(UK) Ltd., 1988 (c).

JACOBY, G.V. A New Look-ahead Code for Increased Data Density.

I.E.E.E. Transactions on Magnetics, Vol. MAG-13, No. 5, September

1977.

JORGENSEN, F. The Complete Handbook of Magnetic Recording. TAB Books

Inc., USA, 1988.

LIN, S. & Costello, D.J. Error Control Coding: Fundamentals and

Applications. Prentice-Hall Inc., 1983.

MACKINTOSH, N.D. The Choice of a Recording Code, Int. Conf. Video

and Data Recording, Southampton, I.E.R.E. Conf. Proc. No. 43,

1979 (a).

MACKINTOSH, N.D. A Superposition-based Analysis of Pulse-Slimming

Techniques for Digital Recording, Int. Conf. Video and Data

Recording, Southampton, I.E.R.E. Conf. Proc. No. 43, 1979 (b).

MALLINSON, J.C. Recording Limitations, Chapter 5 of Magnetic

Recording, Volume 1: Technology. Series Editors C.D. Mee & E.D.

Daniel. McGraw-Hill, Inc. USA, 1987 (a).

27

MALLINSON, J.C. The Foundations of Magnetic Recording, Academic

Press, Inc. (London) Ltd., 1987 (b).

NOTI'LEY, G.C. 3-Position Modulation (3PM): A Technical Appraisal. The

Fourth International Conference on Video and Data Recording,

Univ. Southampton, April 1982.

ONISHI, K., ldo, K., Inoue, T., lnaga, M. & Tanaka, K. Consumer use

Compact Cassette Digital Audio Recorder, Pre-print No. 2092 (H3),

75th. Convention of the A.E.S., Paris, March 1984.

PATEL, A.M. Adaptive Cross Parity (AXP) Code for a High-Density

Magnetic Tape System. IBM Journal of Research and Development,

Vol. 29, No. 6, November 1985.

POULIART, W.H.P. & Vandevenne, J.P.H. Electrical Intelligence Storage

Arrangement. U.S. Patent No. 2807004, September 1957.

SAKOMaiO, N., Kogure, T., Kitagawa, H. & Shimada, T. On High-Density

Recording of the Compact-Cassette Digital Recorder, J. Audio Eng.

Soc., Vol. 32, No. 9, September 1984.

SANDLER, M.B., Hayat L., Costa L. & Naqvi A. A Comparative Evaluation

of DSPs, Microprocessors and the Transputer for Image Processing,

I.E.E.E., 14th Int. Conf. Acoustics, Speech, and Signal

Processing, 1989.

SCHOUHAMER-IMMINK, K.A. Coding Techniques for Digital Recorders,

Prentice Hall International (UK) Ltd, 1991.

SMITH, 0. Some possible forms of Phonograph, The Electrical World, 9,

161, 1888.

WATKINSON, J. The Art of Digital Audio, Focal Press, England, 1989.

28

2. Experimental Apparatus.

2.1. Overview.

The experimental apparatus shown in figure 2.1 . provides an

environment in which digital data may be recorded onto a

compact-cassette tape, and subsequently replayed and analysed. Part

of the channel is implemented in software running on a

transputer. The transputer's host computer, an mM Personal

Computer model XT, (referred to from now on as the mM PC) was also

used to store results and provide an interface between the

transputer and tape transport mechanism.

IBM PC

Magnetic

/ Tape

tran spu ter
Board

t r anspuler
Interface

Boar d
Hand shaking

Circuitry

transputer
Link Adapter

Playback
Signal

Cond itioning

Record
Signal

4

Conditioning 4

Record/ Playback
Head

Fig. 2. 1. The Experimental Apparatus.

Figure 2.2 is a photograph of the experimental apparatus (PC

not shown). On the right is the compact-cassette tape transport

29

Fig. 2.2. Photograph of Experimental Apparatus.

(Original in Colour)

mechanism. The five circuit boards in the card-cage to the left are

(left -to-right):

i) transputer board.

ii) Link Adapter Interface Card.

iii) Solenoid Control Board.

iv) Write Amplifier board.

v) Gated Cross-Over Board.

The Read Amplifier Boards are housed in the aluminium case
below the tape mechanism. Circuit diagrams for the above can be found

in Appendix E.

30

2.2. The transputer and its Development System.

2.2.1. The INMOS transputer.

Transputers are self contained microcomputers designed to execute

occam processes efficiently. Transputers are highly

integrated devices, fabricated on a single piece of Silicon. Figure

2.3 shows the functional block diagram for a typical transputer.

As well as supporting features common to standard microprocessors,

transputers also provide hardware support for concurrency and

inter-process communication. Transputers also incorporate much of

the external circuitry needed to support conventional processors,

-

Vt -" 32 b it
32

Pr ocessor ['I V

System

Services
/1 -" Link 32 Services '\J V

I Timers I /1 -" Link 32
"J V Interface

2k byt es
/1_ 1\ /1 -" Link Fast 32 32

St atic :"! V "J V Interface
RAM /1 -" Link 32

"J V In ter face
Vt -" /1_ -" Link 32 32

External ~ V '\J V In terface
Memor y
Inter face

I I
Even t

Fig. 2.3. transputer Block Diagram.

31

significantly easing the design of multiple processor networks.

Key features of transputerS are (INMOS, 1988(a)):

i) RISC-Type Central Processing Unit.

The design of the Central Processor Unit (CPU) at the heart of

the transputer was influenced by RISC (Reduced Instruction Set

Computer) ideology. The first noticeable influence is the simplicity

of many of the instructions. A simple or reduced instruction set can

be implemented with fewer transistors. This in turn allows faster

clock rates, resulting in higher computational performance. This

philosophy does not restrict the use of complex expressions, as these

may be assembled from simpler ones by the compiler (INMOS, 1988(b)).

As the CPU may be implemented with a small number of transistors it

occupies less space on the integrated circuit. This was a key factor

in the design of the transputer as the space saved was used to

implement the non-standard features mentioned above.

TransputerS are Stack oriented processors, unlike most

modem microprocessors that are register oriented. TransputerS

store all variables in memory, loading them onto the 3 stage stack

only for evaluation. This style of architecture allows the

transputer to switch from process to process very quickly (in

less than l~S) as very little internal state needs to be saved

(i.e. contents of registers transferred to external memory).

Stack oriented architectures can hinder computational

performance as external memory references are usually slower than

register references. To compensate for this, each transputer has

some very fast Static RAM that can be accessed in a single cycle

(nearly as quickly as a register). The IMS T414-15 (for example) has

2K bytes of memory with an access time of 67nS (this can be thought

of as five hundred 32 bit registers).

ii) Process Scheduler.

The rnicrocoded process scheduler controls the sharing or

time-interleaving of the CPU between processes for concurrent

execution. The following is a simplified explanation of how this

concurrency is implemented. When several processes are being executed

concurrently, two lists are maintained: one lists processes that may

32

proceed immediately (the Active list), the second lists processes

that are waiting because of a communication that cannot proceed (the

Inactive list). The CPU executes the process at the top of the Active

list until a message communication cannot proceed. This situation

will arise if the process attempts to output a message to a process

that is not ready to accept it, or if the process attempts to input a

message that has not been sent. Under control of the process

scheduler, the process is de-scheduled (i.e. the CPU stops executing

it) and put on the Inactive process list, and the process now at the

top of the Active list is scheduled. The scheduler moves processes

from the Inactive list to the Active list when the communication can

proceed. In an attempt to share-out the CPU's time evenly between

processes, a process is de-scheduled and moved to the bottom of the

Active list after a certain amount of time (its time-slice period).

Section 3.2.2.1. develops these ideas using the data acquisition

process as a vehicle.

Message passing between processes or its control can be seen

to be central to the trsnsputer' s implementation of concurrency.

The rules governing inter-process communication were developed by

Hoare for the mathematical language CSP (Communicating Sequential

Processes (Hoare, 1985)). Occsm may therefore be viewed as a

practical implementation of the CSP.

Controlling the process scheduling in hardware is desirable

for several reasons:

a) The concurrency is transparent to the programmer. The

corollary of this is the programmer does not know when any particular

process is being executed. This can cause considerable problems in a

real-time system (as is this system, see section 3.2.2.1).

b) The programmer does not need to write a process scheduler.

This not only lessens the number of tasks the programmer needs to do,

it also means the CPU is relieved of the extra processing involved in

executing this code.

c) Process switches are carried out by hardware and therefore

take very little time (less than 1~S to de-schedule one process

33

and schedule the next), a very important feature for a processor that

may be concurrently processing hundreds of processes.

ill) Communication Links.

Processes constructed to run in parallel communicate via

Channels. If processes are running on the same trsnsputBT,

channel communication takes place via an internal memory location (a

soft channel). If they are running on separate trsnsputers, a

Link (a hard channel) is used.

Each Link is an asynchronous, autonomous, Direct Memory Access

(or DMA) engine. Each Link can bi-directionally transfer data at

rates up to 10 Mbits per second in each direction. As the Links

operate autonomously, once the communication has been initiated, the

processor plays no further part in the transfer, freeing it to

proceed with other tasks.

Trsnsputers have a high maximum instruction throughput and

a wide 1/0 bandwidth, for example 10 million instructions per second

and 80Mbits per second for a 20MHz IMS T414. This makes them well

suited to the evaluation of complex algorithms at high data rates.

Occsm includes a Timer type that represents the current state of

a clock when read. Trsnsputers directly support this model of

time by providing two hardware timers, with periods of lpS and

64pS.

2.2.2. The Software Development and Run-Time Environment.

The trsnsputer Development System (TDS) (INMOS, 1988(c))

is a software package that supports the development of occsm

programmes. Programmes may also be run from within this environment.

The TDS's software is split between a trsnsputer board and host

computer (the IBM PC in this case).

34

2.2.2.1. The transputer Board.

The transputar board (a Sension JD002, an INMOS IMS B004

equivalent) was populated with a 15MHz IMS T414 transputar

(INMOS, 1987(a)), 1 Megabyte of RAM, together with various support

circuitry (e.g. clock signal generation, memory configuration,

electrical buffering e.t.c.). One of the transputar's four Links

is dedicated to communication with the mM PC, via an interface card

that plugs into one of the mM PC's peripheral slots. This Link

Interface board is bi-directional, converting between the eight bit

parallel data format of the mM PC and the serial format of the

transputar' s Links.

2.2.2.2. Development System Software.

An Editor, occam Compiler and post-mortem Debugger, as well as

several software Tools that assist the development and implementation

of transputar based systems, are included in the TDS. These run

on the transputar. The transputar board does not have direct

access to any peripherals, such as a keyboard or screen. Instead, it

uses those of the mM PC. The host computer runs a programme, called

the Server, that provides flle input and output, screen display and

keyboard input for the transputar.

A virtue of the TDS running on a transputar is that the

same transputar may also be used to run and test the developed

code. Although the network thus formed consists of only a single

transputar, ·it does allow the code to be run and fully logically

debugged.

2.2.3. Link Adapter Interface Board.

This board converts signals to and from transputar serial Link

protocol and the parallel data format of the multiple-track

compact-cassette recorder. When writing data to the cassette it

35

converts from the Link's serial format to a parallel format suitable

for driving up to 8 Write Amplifiers. When data is to be read, it

converts up to 8 asynchronous data channels to a format suitable for

transmission down a single Link.

An INMOS IMS COli Link Adapter (INMOS, 1987(b)) performs the

!>asic serial to parallel and parallel to serial conversion. In Mode 1

this device converts the two wire bidirectional serial Link into two,

hand-shaken, byte-wide parallel interfaces. Four hand-shake lines

(two for input and two for output) enable the Link Adapter to comply

with occsm's synchronised channel communication protocol.

When data are output from the trsnsputer to drive the

Write Amplifiers no synchronisation is required. The two output

hand-shaking lines (QValid and QAcknowledge) are therefore connected

together, effectively disabling output hand-shaking. Data received by

the Link Adapter are therefore transferred to the output interface

immediately (i.e. as soon as the data are 'Valid', they are

'Acknowledged'). A Bus Transceiver (an SN 74LS245) is used to drive

the Write Amplifiers.

Occsm Channels, and therefore transputer Links, are

data or Event driven. The data driven aspects were preserved in the

operation of the Link Adapter Interface board (as opposed to using a

software polling technique). A dedicated circuit was designed

(Jackson et al., 1989) to monitor the inputs for new data. When new

data are detected they are latched, and the correct sequence of

hand-shaking signals are generated to transfer the data to the

transputer. Figure 2.4. shows the block and timing diagram of the

input circuitry.

When the magnitude comparator (an SN 74LS688) detects new data

it takes IVal high. This disables the transparent latch (an SN

74LS373) stopping further new data appearing at the comparator. When

the Link Adapter has read the data from the flip-flops (an SN

74LS374) it takes lAck high. This clocks the flip-flops, transferring

the new data to the input of the interface for the next read, making

the P and Q inputs equal. The comparator takes IVal low to complete

the cycle. The circuit reliably multiplexes up to 8 asynchronous data

channels down a single Link, without losing data that arrives whilst

36

r__i 1
~

Enable c1Yck ~
" Din Doul Din Do ut f-- " Fro?n

r- I"" "
GXO 's Transparent Edge

Latches Triggered L1'
Flip-Flops ~

p P = Q f-

Magnitude

~
Comparator

' Q

(a)

Q

p

Nal I P=Q

lAck I Clock

Enable

(b)

Fig. 2.4. Link Interface (a) Block Diagram,

(b) Timing Diagram.

the Link Adapter is in the middle of a data transfer.

Nal
lAck

Input
Interface

Link
Adapter

LinkOul I--

Linklr

To transpule
via Link

A memory mapped port could have been used for this interface.

However this would have required a software polling technique that

would have consumed CPU time. Also, the port would need to be sampled

approximately 58 times per 5kbps bit period to provide the same

timing resolution (3.51-'S) as that of the event driven interface.

As all four tracks of Bi-Phase-L encoded data generate on average

only 6 events during the same bit period, the communication bandwidth

of the acquisition process was reduced by a factor of approximately

9.5 .

37

r

2.3. Signal Conditioning.

The TIL voltage levels of the digital data to be recorded need to be

converted into an analogue current signal, capable of driving the

record head. The Write Amplifier performs this function. On replay,

the amplitude of the voltage waveforms are very low (approximately

1.75mV peak-to-peak when replaying a Bi-Phase-L encoded PRBS at

5kbps), and so low noise Head Amplifiers were built to amplify them.

Section 1.3.1. introduced the idea of a compromise between the

flexibilty facilitated by the use of software, and the higher data

rates facilitated by hardware. The chosen solution was to use

hardware up to and including the detection system (although this was

modified for one part of the investigation). A Gated Cross-Over

Detector (GXO) (Whatton, 1973) was built to perform this task.

The analogue electronics was found to suffer from high levels

of electromagnetically induced noise. The noise sources were found to

be the transputtJr and IBM PC screen and switched mode power

supply. As these items could not be turned off during testing a

number of preventative measures were taken:

• A separate linear power supply was used for the analogue

electroniCs.

• Screened, twisted-pair wiring was used between the head

and head amplifiers, which in turn were housed in a separate

metal enclosure.

• A single earth return point (Star point) was used. This

was situated physically and electrically as close to the head

(i.e. the most noise critical section of the circuit) as

possible.

Although these measures reduced the noise, the residual noise

was still significantly higher than the magnetic medium noise, and

therefore a limiting factor on the performance of the system.

38

2.3.1. Write Amplifier.

The data to be recorded were output from the transputer as TIL

logic levels. It is the Write Amplifiers function to control the flow

of current through the recording head so that the magnetic field

imprinted in the tape represents these logic levels. The

representation used was saturation recording, where a logic 10 1

results in the tape being saturated in one direction, and a logic 1 l I

results in the tape being saturated in the opposite direction.

To record at high linear data rates, the transition between

saturated magnetic regions must be short, and therefore the reversal

of current through the head must be rapid. This not only enables high

packing densities to be recorded, but also produces a high rate of

change of magnetic field at playback, and a correspondingly large

induced voltage.

lnductors oppose any change in current passing through them.

The inductive record head used therefore opposes the rapid change in

current desired. If driven by a simple resistive source the change in

current would be exponential. Constant current sources were therefore

chosen to drive the inductive head (resulting in a near linear

increase in current).

A bridge configuration was chosen, see figure 2.5(a). The

transistors were operated in pairs, Tl with T2, and T3 with T4. The

diagram shows Tl and T2 fully conducting, enabling current to flow in

one direction through the head. The current is reversed by removing

the base drive from Tl and T2, and driving T3 and T4 into saturation.

The performance of the write amplifier was simulated using a

commercial simulation package, MSpice from Mentor Graphics, running

on an Apollo Graphics workstation. Figure 2.6 shows the results of

the analysis. The current waveform of Graph (a) shows the desired

rapid current reversal. However, Graph (b) reveals that the switching

transistors sustain a voltage spike in excess of 200 V between their

emitter and collector terminals, due to the heads inductance and the

fast switching times.

As this voltage far exceeds the transistors quoted maximum of

40V, protection diodes were placed between their collector and

39

Recording
Head

L ___ ,_ ____ _

Current path ;

t

Transient
Voltage
Protection
Diode

(a) (b)

Fig. 2.5.(a) Write Amplifier Bridge Circuit.

(b) Diode Protection of Transistors.

emitter terminals, see figure 2.5(b). The diodes introduced a low

impedance current path for the induced voltage spike, bypassing, and

thereby protecting, the transistors.

Unfortunately, this degrades the overall performance of the

circuit. The diodes not only present a low impedance path to the

unwanted induced voltage, but also to the current that should be

flowing through the head. Consequently, for the time the diodes were

conducting (i.e., whenever the induced voltage is greater than

approximately 0.6V); the current through the head did not increase as

quickly as without the diodes, see figures 2.6 (c) and (d). Though

compromised, the Write Amplifier still had a rise-time of l9pS

with a write current of 0.33mA.

2.3.2. Read Amplifier.

The output from the 4-track inductive head, whilst replaying a

Bi-Phase-L encoded 5KHz PRBS, is just 1.75mV peak to peak. The first

stage of amplification was therefore placed physically as close as

40

"'rj ,..... .
(TO

N
0\

t::;:l
:;l .
0.

(TO
~

.j:>. () ,...... -->-;
()
c ,.....
en
3
c
e a·
~

I lr /foosl
~

-:;('
f

L...URRE.I'(I 'THROUGH HEAD.
--,---

t{Q ... J::XOQf'eS .. --~- --- -

Y <' - - l I ---···-·-- ·
?
IU
n
rr
")

u •.l

,•

----~-··------- ·---- -

- 1-------f - --- - - ·--1' -- - . I

•I
(a) '(;---·--·--·-·- ----- - --~~oo------ ·---·- --~ooo

r I ><t:_. t-\IU{)SI!:CS

J , ,. 1/eto"P

---- -- ---- -

.,, _ Wl i"H DIQ(>£!5 •

<(

~ •'1- ,...-~,......,..,...,

- SLO\NE.R

!-REsPoNSE.

"' " 11
I

•J

d
(c) 'o--- ·---- - - ·---.. - l .t5rl!i-- · --,·---- -·--~?Joc

r I ME t<\1~. 5£C.$

0 1/ vc.
~ Vo LTAD E J:>.e.RDSS IRAN<; I STDR

- ------ · -- I

lll(l MO OtODES
;,......
')-
I'-'
lll,l

I ~
llr-----;-------+-----r-------1

(b)

.... _,
<"J
> - lOO

-c' l)(l

,c·--- 4- · - ·------•·•·-•- - --· .

-1--MA X. - 1'2. L. 0 V

"
300

·0----- ·-· ~~-~·a ·- --· -- ,_ - · -- "?con

I I ME Mg..flC> 5E.CS

01/Vce
~

,....._
> ..._,

'" Cl ..
' "

r;,

'

- ... - . ·-·----- --.,.---------

w en-t DtoP~~~-----------~

MA X 1-D· 6v

(d) . ·~ -~ ----------·~emu --- . -----.
,J(I\1!1

I I M I: rruc.JIO SE-CS

possible to the head to keep connector lengths as short as

possible. The connectors were screened twisted pairs. This kept

electro-magnetic pick-up to a minimum, preserving the signal to noise

ratio.

Although a 4-track inductive head was to be used initially,

the amplifier was designed to have sufficient gain for it to be able

to cope with heads that produce even lower voltages. Figure 2. 7 shows

the Read Amplifier block diagram, whilst the following points provide

more detail.

i) Standard operational amplifiers were used (a low noise

version of the NE5534) to save time rather than designing a discrete

transistor circuit, even though a discrete circuit would probably

produce the best performance.

ii) Two gain blocks were used, as any single operational

amplifier that met the specification would be expensive. Hardware

costs per track are an important consideration in a multiple-track

system.

iii) A solenoid activated 4-pole change-over relay was used

used to switch the head between the read and write amplifier. This

was mounted close to the head on the read amplifier board.

Magn etic Record / P layb ack

Ta~ p ~==H=e=a=d=============:=J From
I r Write

Amplifiers

Reed Solenoid
Relays Control

Gain
Blocks

Screened
Twisted Pair

Gain
Blocks

To GXO
Det ectors

Fig. 2.7. Read Amplifier Board Block Diagram.

42

iv) An earthed ground plane was fabricated on the component

side of the circuit board to reduce electromagnetically induced

noise.

v) Low value resistors were used to reduce Johnson noise

(proportional to resistance) and noise produced by induced currents

(simply from Ohms Law).

2.3.3. Gated Cross-over Detector.

The analogue signal from the head amplifier must be converted into a

digital one before it can be input to the trsnsputer. There are

many ways of doing this, each with their advantages and disadvantages

(Mackintosh, 1979). The use of a linear quantising ADC (Analogue to

Digital Converter) was rejected for the compact-cassette system as it

places a high computational demand on the software, see section 1.3.1

(although one was used for a specific part of the investigation, see

section 3.4). A Gated Cross-Over circuit was chosen as it can achieve

a high level of performance, and is simple in design. Its popular use

would also enable straightforward comparisons to be made with other

systems.

The GXO produces two intermediate signals; the first referred

to as the Gating signal indicates pulse peak-centres, the second

referred to as the Polarity signal indicates the polarity of the

peak. The Polarity signal is transferred to the output of a D-type

flip-flop by the Gating signal, see figure 2.8.

i) Gating Signal.

Pulse peak-centres are determined by differentiating the

signal, to give a 90 degree phase shift, and then passing it through

a zero crossing detector. An active differentiator (based on an LM747

operational amplifier) was chosen because of its superior performance

compared to a passive one over a wide range of frequencies. The

zero-crossing detector is a comparator (an LM 393N) with hysteresis.

The hysteresis was set at 40mV. Each zero-crossing edge was then

43

-
From
Head

Amplifie rs

90 Degree
Phase
Shift

Gain Block ~
- A

Zero Edge to
Crossing r-- Pulse
Detector Conversion

/
Polarity ~ D Type

Descriminator Flip-Flop

---- Input to GXO

Digilal
Output

--- Oulpul from Block

Fig. 2.8. Block diagram of the Gated Cross-Over.

Detection Circuit.

converted into a gating pulse (approximately 0.5mS wide) by

exclusively ORing it with a delayed version of itself.

ii) Polarity Signal.

Following a gain block, a comparator (an LM 393N) with

variable hysteresis (set at 0.8mV) discriminates the polarity of the

peak. It is a feature of the GXO detector that such a low value of

hysteresis may be used. Noise may produce false triggering in the

Polarity signal, but will not be gated to the output of the GXO as

the Gating signal hysteresis is set much higher.

ill) Digital output.

A D-Type flip-flop (an SN 74LS74) outputs the polarity signal

on the positive edge of the Gating signal, i.e. at the centre of the

pulse.

44

A more detailed description of the operation and optimization

of GXO detectors is given by Mackintosh (Mackintosh, 1979).

2.4. The Tape Transport Mechanism and its Control.

The compact-cassette tape transport mechanism was solenoid

controlled. Due to the evolutionary development of the project, these

solenoids were controlled by the mM PC via a general purpose

interface card and solenoid drive amplifiers. The transputer

therefore sent messages to the mM PC, that in turn controlled the

mechanism.

The situation was further complicated as the mM PC was

already running an application programme (the TDS Server). The

simplest solution was to install a number of interrupt service

routines before starting the Server. Each interrupt service routine,

written as a DOS Terminate and Stay Resident programme in assembly

language (Scanlon, 1985), provided a basic cassette transport

function (e.g. fast forward, play, e.t.c.). To control the tape

transport mechanism, the transputer sent the relevant interrupt

number to the Server, which generated the required interrupt. The

interrupt service routine generated the signals, which, via the mM

PC's Interface Card and Solenoid Drive Card, energised or

de-energised the relevant tape transport mechanism solenoid.

2.4.1. The IBM PC Interface Card.

The functionality of the board can be divided into five areas, see
figure 2.9.

i) Buffering to the Computer.

To lessen the possibility of an external electrical fault

damaging the mM PC, the computer's address bus, data bus and control

signals were buffered (using two SN 74LS244s and an SN 74LS245).

45

Addre ss Vl " Interface
Decoding ~"Con trot l'l.______)' Boar d t o

~ j t Signals Programmable
\IV Peripheral

Buffering

Computer t o
Peripheral
Interface

Optically In terface Vi_ 1\ l'l.______)'

~ Bo a rd Isolat e d 1'1 Dat a v \IV
Buffering Outputs

Bus

~ ~ I Corn u ter Mot e p h rboard
I ~Edge Connect or Slot

Fig. 2.9. ffiM PC Interface Card.

ii) Address Decoding.

The board was mapped into the mM PC's I/0 space.

Unfortunately, the space in the I/0 map reserved for Prototype boards

at Hex 300-31F (IBM, 1986) is used by the TDS Link Adapter board. It

was therefore mapped in at Hex 360-36F, an area not used during this

project. Although only one peripheral interface IC was used, the

revised address decoding scheme provided sufficient 'Chip Select'

lines to allow up to four such IC 's to be connected without

modification.

ill) The Peripheral Interface IC.

An Intel iAPX 8255A Programmable Peripheral Interface (PPI)

integrated circuit (Intel, 1987) was selected as it was designed to

be fully compatible with the IBM PC's microprocessor, and exceeded

the required I/0 specification.

iv) Output Buffering.

The PPI is fabricated using CMOS technology and is therefore

not suited to driving long lines or low impedances. Therefore 21

lines of the PPI were buffered with TTL transceivers (SN 74LS245).

This also provides some further electrical protection for the

46

computer.

v) Optically Isolated Outputs.

The voltages and currents associated with the solenoids are

potentially very damaging to logic circuits. Therefore the three

lines used to drive the Solenoid Drive Card were optically isolated

(using an ILQ74). This provided a very high level of protection.

2.4.2. The Compact-Cassette Tape Transport Mechanism.

This is a standard solenoid controlled compact-cassette

tape-transport mechanism (an SF925F, available from Hart Electronics,

Hertfordshire), with a modified head-mount and tape-guide. In a

standard mechanism the head is secured by two screws that locate in

two pillars, the height of one of which may be varied a small amount.

This allows the azimuth of the head to be adjusted. In the modified

tape transport mechanism, two new adjustable mounting pillars were

machined, see figure 2.10.

This new mounting assembly allowed the head to be moved across

the face of the magnetic tape simulating lateral head displacement or

to be rotated simulating azimuth skew. Measured displacements and

skews greater than 1.2mm and 2. 7 degrees respectively could be thus

introduced. Two bolts were used to adjust the heights of the mounting

pillars. Each bolt had a screw pitch of 0.4mm. The screw-driver used

to make the adjustments had a pointer (16cm long) attached to it. A

circular dial, graduated in degrees, was used to measure the angle of

rotation to an accuracy of approximately 1 degree, corresponding to a

change in pillar height of l.lxlo-9 metres.

Tape guides are normally mounted on the side of the head. This

would physically distort the tape during head displacement and skew

tests. By mounting the tape-guide on a separate fixed height pillar,

the transport of the tape past the head was unaffected by the

movement of the head.

47

Standard Head- Mount Assembly

Lead- Outs Tape Guide

Fixed
/Mounts~

Modified Head- Mount Assembly

Adjustable
Head Mounts

Fig. 2.10. Modified Head Mount.

The operational mode of the tape transport mechanism depends

on the energised state of two solenoids;

Solenoid. Mode

1 2

energised energised play

energised fast-forward

energised fast-rewind

stationary

The solenoids require an initial current of 500mA, which may

be reduced to a holding current of 250mA once energised.

48

2.4.3. Solenoid Drive Card

The Solenoid Drive card inputs the TTL voltages from the ffiM PC

interface card and converts them to the higher voltages and currents

required to energise the solenoids. The circuit (Donnelly, 1986)

~hown in figure 2.11, connects one end of the solenoid 's coil to + 12v

whilst the other is connected via two FETs to Ov and -12v. To produce

the initial current of 500mA, both FETs are turned on, connecting the

solenoid's coil between + 12 V and -12 V. The voltage applied to the

gate of one of the FETs is controlled by a resister/capacitor timing

circuit. After approximately 0.1 seconds, the gate voltage drops

below the turn-on threshold, and the FET turns off. This leaves the

solenoid's coil connected between + 12v and Ov through the remaining

FET, maintaining the required holding current of 250mA.

onlrol S jgn a l c
f
I
rom Computer
nterface Boa rd ...

Limit 'ON' _., Time to
0 .1 seconds

I
+12v

Cassette
Mech a nism

Solenoid

.....111(:

Semiconductor
Switch

lov
... -

Current

(1'
I Tit O. ls ne

Semiconductor
Switc h

I_ 12V

Fig. 2.11. Solenoid Control Circuit.

2.4.4. Record and Replay Heads.

The majority of the experimental work was carried out using a

commercial 4-Track, 4-Channel audio-frequency inductive head (type

49

HQ551, available from Hart Electronics, Hertfordshire). The only

modification made to it was the removal of its tape guide (for use

with the modified head mount) . Its specification can be found in

Appendix F . The same head was used for record and replay.

In an allied research project Thin-Film techniques are being

used to fabricate heads. The components of the head are fabricated by

sputtering substances onto a substrate and then (using

photolithography) etching away the material not required. The aim is

to produce a head with 18 tracks across the same width as the

standard compact-cassette head. The track format is shown in Figure

2.12.

Write Format
9 10 11 12 13 14 15 16 17 18

~""=-'CBJCBJCBJCBJCBJCEJC51CBJCBJ~

Read Format

50 urn
k--

D D
------1 I, I

50um 150um

Fig. 2. 12 Track Format of the 18 Track Thin-Film Head.

The 18 track head is an inductive write, Magneto-Resistive

(MR) read design. The write magnetic circuit is formed by two

Permalloy pole pieces with a single turn copper coil between them.

The MR read element is a stripe of Nickel Iron (in the proportion 80%

to 20%) 40nm thick, 4011m high, fabricated between the two pole

pieces. This MR stripe gives approximately a 2% change in resistance

50

depending on the direction and strength of the sensed magnetic field .

The central 16 MR read elements (or more specifically the

flux-guides) are 501-'m wide, whilst the two outermost tracks are

1501-'m (the full written track width). It was envisaged that these

two edge tracks would be used in some way to compensate for track

misregistration.

Unfortunately a complete fabrication of the head was not

achieved in time for it to be used in this project. However, the read

elements and associated lead-out were finished. This allowed data

recorded by the inductive head to be replayed using the MR head.

Figure 2.13 shows a micrograph of 7 of the 18 read elements and

lead-outs.

Fig. 2.13. MR Read Elements.

(Original in Colour)

The write pole-pieces were designed to perform a secondary

role of providing a bias field for the MR element. As these were not

51

present, a small permanent magnet was used instead.

The MR. stripe does not produce a voltage in response to a

change of flux (as does an inductive head). Instead, its resistance

changes. This change is detected by passing a constant current

through it (2mA was used) and monitoring the change in voltage. As

the change in resistance is only 1 or 2 ohms and the lead-out

resistance is approximately 160 ohms a bridge circuit was used to

remove this offset. The MR. stripe formed one arm of the bridge, as

shown in figure 2.14.

MR Element

2.5. Summary.

Output

Differential
Amplifier

Constant
Cu rrent
Drain

Fig. 2.14. Use of Bridge to detect change

in MR. element Resistance.

The investigation required a multiple-track magnetic tape

system that would permit the recording and replay of digital data,

and allow various error causing mechanisms to be introduced in a

measured way. Much of the signal processing was to be carried out in

software using parallel processing techniques. A system based on a

52

compact-cassette mechanism was designed to meet these requirement.

The signal conditioning circuitry required for the recording

and replay of digital data was built. This included the interfacing

circuitry required to integrate a transputer into the data

channel thus formed. The compact-cassette tape transport mechanism's

head mounting arrangements were modified to allow measured amounts of

head-to-tape misregistration and azimuth skew to be introduced. The

electronics allowed both conventional 'inductive-write,

inductive-read' as well as 'inductive-write, magneto-resistive-read'

modes of operation to be investigated.

The write amplifier was designed to produce a rapid reversal

of current through the inductive head, permitting recordings to be

made at high data rates. The replay head amplifier was designed to

preserve as much of the SNR of the replayed signal as possible before

distribution to the rest of the signal conditioning circuitry. A

Gated Cross-over detector was built to convert the replayed signal

into a ITL compatible form suitable for input to the transputer.

The operation of the interface between the GXOs and the

transputer preserved the event driven, message passing protocol,

of occam channel communication, whilst converting between the

parallel data format of the multiple-track recording head and the

serial format of a transputer Link. Its event driven operation

saved CPU time, and reduced the communication bandwidth of the

acquisition process by a factor of approximately 9.5. A series of

interface cards also allowed the transputer to control the

compact-cassette tape transport mechanism, via the IBM PC.

Assembled together, the experimental apparatus created an

environment where data could be generated and recorded using a

multiple-track digital magnetic tape system, and subsequently

replayed and analysed, all under the control of a transputer. It

also provided the environment in which programmes could be developed,

and computer simulations performed.

53

2.6. References for Chapter 2.

DONNELLY, T., Time Delay Solenoid Switch using VMOS FETs., New

Electronics, 4 February, 1986.

HOARE, C.A.R. Communicating Sequential Processes. Prentice-Hall,

1985.

mM Corporation, .mM Personal Computer Hardware Reference Manual

Library: Technical Reference. March 1986.

INMOS Ltd., Engineering Data Sheet: IMS T414 Transputer. August 1987,

(a).

INMOS Ltd., Engineering Data Sheet: IMS COli Link Adaptor. August

1987 (b).

INMOS Ltd., Transputer Reference Manual. Prentice Hall International

(UK) Ltd., 1988 (a).

INMOS Ltd., Transputer Instruction Set: A Compiler Writer's Guide.

Prentice Hall International (UK) Ltd., 1988 (b).

INMOS Ltd., Transputer Development System. Prentice Hall

International (UK) Ltd., 1988, (c).

INTEL Corporation, Microprocessor and Peripheral Handbook, Volume IT

Peripheral, Santa Clara, USA, 1987.

JACKSON, T.J., Mapps, DJ., lfeachor, E.C. & Donnelly, T. A Real-Time

Transputer-Based System for a Digital Recording Data

Channel.", Microprocessing and Microprogramming Vol. 25, pp

281-286, 1989.

54

MACKINTOSH, N.D. The Choice of a Recording Code, Int. Conf. Video

and Data Recording, Southampton, I.E.R.E. Conf. Proc. No. 43,

1979.

SCANI..ON, U. ffiM PC & XT Assembly Language: A Guide for Programmers.

Brady Communication Company, Inc. NY, USA, 1985.

WHATION, M.E. An economical Data Store. I.E.R.E. Conference

Proceedings, No. 26, Video and Data Recording Conference,

Birmingham, July 1973.

55

3. Theory, Modelling and Software of the Data Channels.

3.1. Overview.

In the course of the investigation, three data channels or systems

were assembled, see figure 3.1. The core system, figure 3.l(a), was

based on the compact-cassette hardware described in chapter 2, and is

referred to as the compact-cassette system. The second, figure

3.l(b), was a model of a multiple-track tape system based on the

compact-cassette system. The third system, figure 3.l(c), used

elements from the previous two systems, combined with a digital

waveform recorder, and was used to investigate a lateral head

displacement compensation scheme. This chapter describes the software

used to implement these systems, together with the relevant theory.

All of the software presented in this chapter was written in

occam.

3.2. The Compact-Cassette System.

Figure 3.2 shows the operational flow-diagram of the compact-cassette

system. The first step was to record the test data sequences onto the

cassette tape. Pseudo-random Binary Sequences were generated in

software and used as test sequence data. The system then operated in

a semi real-time mode, the processor alternating between data capture

and data processing. During the capture phase, the data and timing

information describing up to 3xlo5 transitions were stored. The

capture process is then suspended and the data processed. This was

repeated to the end of the test when the results and waveforms were

filed onto the IBM PC's hard disc.

3.2.1. Generation and Encoding of Test Sequence Data.

The project was concerned with the recording channel, and not the

information content of the data recorded. By using pseudo-random

56

Model

(b)

Compact -Cassette

System

(a)

Symbol Key.

I Har dwa r e I

r----
1

I

• I
I

Displacement

Compensat ion

(c)

Fig. 3.1. The Three Data Channels used in the Investigation.

57

Generate Test
Sequence Data

Record Data onto

Capture Transition Time and
Data from Compact-Cassette.

Decode , Check and
Classify Errors .

More
on Compact

Cassette ?

File Error Results
and Waveforms .

Fig. 3.2. Operation of the Compact-Cassette system.

sequences of data in the analysis, worst-case conditions were

included in the investigation, ensuring any conclusions drawn were

independent of information content and are therefore more widely

applicable. Figure 3.3 shows the occam process map of the code

used to generate and encode the test sequences for four tracks.

The channel modulation code chosen was Bi-Phase-L. This is a

simple coding scheme that is widely used. It is not necessary to

'block-up' the data to be recorded, or use synchronisation words as

it is simple to synchronise to, enabling a contiguous stream of data

to be recorded.

58

Link

Fig. 3. 3. occam Process Map for the Generation

and Encoding of the test sequences.

3.2.1.1. Pseudo-Random Binary Sequence Generator.

It is very difficult to generate truly random numbers sequences.

However, it is straightforward for a computer to generate Pseudo

Random number sequences. These are sequences that have a high degree

of randomness, but are deterministically generated, are of fixed

length and therefore repeat. A technique based on a Linear Feedback

Shift Register (LFSR) (MacWilliams et al., 1976), a derivative of the

Linear Congruential Method (Knuth, 1981, section 3.2.1) was chosen to
generate the test data sequences.

The standard one dimensional LFSR was extended to two

dimensions using an array (the array index providing one dimension,

the word length the other), see figure 3.4. By using N bit words

(rather than single bits), N PRBS sequences may be generated

simultaneously for an N channel system. The LFSR was implemented as a

circular buffer controlled by three pointers (FBI, FB2 and Inp in

figure 3.4). The relationship between, and the length of sequences is

determined by the initial state of the array and array pointers

59

Sing le
Seque n ce

(a)

FB2

FBl

= 1

Inp

'n ' Bit Wor d --~

' n ' Seque n ces

(b)

Regis t e r
Le n gth

Fig. 3.4. (a) Standard one-dimensional LFSR (b) Generation of

multiple Pseudo-Random Sequences.

respectively. All sequences generated were 'complete' or 'maximum

length', and could be varied in length up to 32767 (215_1) bits.

3.2.1.2. Channel Encoding and Recording.

The channel code chosen was Bi-Phase-L (e.g. Mackintosh, 1979). It is

very simple to implement in software: for each data bit received, two

code bits are generated according to the following rules:

Data Code Word

0 1 0

1 0 1

A separate tlmmg process (run at High Priority to give a

timing resolution of 111S) output the channel encoded data at

60

timed intervals of 11(2 * data rate) seconds. This is very simple to

do in occam using the "delayed input" instruction. Although there

is a latency of typically 19 processor clock cycles before the

process is scheduled, this latency is essentially constant for a

lightly loaded transputsr (as was the case during recording), and

can therefore be ignored. The data are output to the write amplifier

for recording, via one of the transputsr's Links.

3.2.2. Decoding and Analysis of Replayed Data.

Figure 3.5 shows the occam process map used to decode and analyse

the data for the four-track system. The compact-cassette system

operated in a semi real-time mode: real-time capture of the data,

followed by off-line processing. New data were read from the hardware

~ -------

To Hos t Compute r Disc

Fig. 3.5. occam Process Map for the Decoding

and Analysis of Replayed Data.

61

via one of the transputer's Links. The data acquisition process

also recorded the time the data were read, storing the data in one

array, and the time in a second array. When the arrays were full, the

data aquisition process was suspended whilst the data were processed.

The data were demultiplexed with respect to their track, and

processed separately on a track by track basis.

3.2.2.1. Data Acquisition.

This section is used to illustrate several fundamental aspects of the

occam programming language and transputer introduced in

section 2.2.1, and is therefore considerably more detailed than

similar sections.

The hardware interface between the GXO detectors and the

transputer was Event or Data Driven. When new data were detected

the current state of all the channels was made available for the

transputer to input via a Link. As the operation of this

interface was designed to conform to occam channel protocol, the

code to read this data is simply:

link ? new.data

When the transputer executes this line of code, it checks to see

if there is a message waiting to be read from channel "link". If

there is then it is stored in the variable "new.data" and the process

continues being executed.

If no message is waiting (i.e. no transitions have occurred)

the process is suspended and put on the inactive process list. When

the message does arrive (i.e. a transition has occurred) the process

is moved to the active process list. When the process comes to the

top of this list, it is rescheduled. The message transfer can then

occur (i.e. the message is stored in "new.data") and the process

continues being executed.

In order to perform the decoding process, the time the

transition occurred was required. This was performed by extending the

62

above code to:

SEQ
link ? new.data
clock ? transition.time

This is read as "SEQentially, read new data from channel alink", then

read transition time from "clock". The simplistic elegance of these

three lines of occam demonstrates its applicability to real-time

applications. However, what is not immediately obvious from this code

are the time intervals that may exist between the transition

occurring and the data being read and between the data being read and

the reading of the clock.

If a transition occurred immediately after the process was

descheduled, the transition would not get read until the process had

reached the top of the active process list and been rescheduled. The

length of time this takes is dependent on the number of other

processes preceding it on the list. This time interval is therefore

variable and potentially unacceptably long.

Of equal undesirability would be for the process to come to

the end of its 'time-slice' period immediately after reading the

channel. It would then get descheduled before the time was recorded.

When eventually rescheduled, the time recorded may be considerably

different to the time the channel was read (or indeed when the

transition occurred).

In an attempt to remedy this type of problem, occam allows

Prioritization of processes (INMOS, 1988(b), Welch, 1987, Bums et

al., 1987). Low priority processes only get scheduled if no High

priority process can proceed. Running the data acquisition process at

High priority results in it being rescheduled immediately the channel

communication can proceed, and prevents it being descheduled before

the time has been recorded. A transition can therefore be timed to a

determinable accuracy (calculated later).

If n = number of tracks and r = data rate, the average time

available to process each data bit is,

lproc =
1
t(n • r) seconds

63

However, as Bi-Phase-L has 1.5 transitions per data bit on average,

in a worst case situation as many as l.Sn transitions may occur in

i>roc· One solution is to use a data buffer process between the

data acquisition process and the data processing (Pountain, 1988).

This decouples the two processes, allowing data to be captured in

short bursts at high rates, and processed at the average rate.

Putting the above code into a loop, and adding a fifth line

that outputs the transition and its detected time via the channel

"to. buffer", results in:

WHILE TRUE
SEQ

link ? new.data
clock ? transition.time
to.buffer I new.data ; transition.time

Consider the worst case situation of a sequence of

transitions, closely spaced, yet non-coincident. The sequence of

events would be:

i) The first transition occurs and the data becomes valid to

be read from the Link.

ii) The acquisition process is scheduled, the data read, the

time recorded, and the message output on channel "to.buffer"

initiated.

iii) The acquisition process is descheduled as the channel

communication cannot complete (until the data is received by the

buffer process).

iv) The buffer process is scheduled, and the data and

transition time read from the channel.

v) The Channel communication completes. The acquisition

process can now proceed and so the buffer is descheduled (being a

lower priority) to allow this.

vi) Steps i), ii) and iii) are repeated. However, the second

message communication to the buffer cannot complete until the buffer

has finished processing the first communication (it was descheduled

immediately after its receipt). This results in the High priority

acquisition process waiting for the Low priority buffer process;

precisely what was not wanted.

64

The standard technique to deal with this problem is to run the

buffer process at High priority too. This results in the buffer

process not being descheduled until it has stored the first message.

However, it also results in the time taken to store the data in the

buffer process being added to the data acquisition time, degrading

timing resolution.

Figure 3.6 shows a further optimization of this technique

where the acquisition and buffer processes, implemented as a circular

buffer (Bums, 1988), has been combined to reduce the time involved

in scheduling processes.

WHILE TRUE 4
PRI ALT 74

from.link? tran.data.buffer[in.pointer) 28
SEQ

clock ? tran.time.buffer[in.pointer) 11
in.pointer := (in.pointer PLUS 1) 6
IF

(in.pointer = buffer.size) 8
in.pointer := 0 2

TRUE
SKIP

buffered.items := (buffered.items PLUS 1) 6
(items.in.buffer>O) & data.request ? message 24

SEQ
data.out ! tran.data.buffer[out.pointer) ;

tran.time.buffer[out.pointer) 72
out.pointer := (out.pointer PLUS 1) 6
IF

(out.pointer = buffer.size) 8
out. pointer : = 0 2

TRUE
SKIP

buffered.items := (buffered.items MINUS 1) 6

Fig. 3.6. Data Acquisition and Circular Buffer.

The figures to the right of the code indicate approximate

execution times (in CPU cycles). It therefore takes 4+74+61=139

cycles to input and time a transition, and 4+74+ 118= 196 cycles to

output the data and the time it occurred. For a 15MHz T414

trsnsputsr with a 67nS CPU cycle time, the maximum burst data

acquisition rate is therefore 11(139 • 67nS) = 108k transitions per
second (where the maximum burst length corresponds to the buffer

65

size), and the maximum continuous data acquisition rate is

1/((139+ 196)*67nS)) =45k transitions per second. This second figure

also indicates the worst-case timing resolution of 1/45k=22,.S.

The maximum continuous data rate stated above assumes the

acquisition process to be the only process running on the

trsnsputer. This was not the case. The decoding, error checking

and classification processes for all the channels were also run

concurrently on the same trsnsputer. The performance degradation

caused by these other processes resulted in the single trsnsputer

being unable to process the data from the four tracks at the required

rate of 5kbps per track in real-time, hence the pseudo real-time

operation of the compact-cassette system.

There is a second factor that can degrade performance. The

figures quoted . above for the number of CPU cycles assumes both

programme and associated data reside in the fast internal memory of

the trsnsputer. External memory references are slower, and may

therefore degrade performance. For the trsnsputer board used,

each external memory reference required an extra 3 processor cycles.

However, the trsnsputer's 4 byte instruction pre-fetch removes

this delay for linear code sequences. After a branching operation or

process-swap the pre-fetch does not help, and the programme execution

will be delayed whilst the memory reference is made.

The severity of the degradation is therefore dependent on the

code sequence. From simulation (INMOS, 1988), performance timings

should be extended by approximately 60% when the programme and data

reside in external memory. To maximise performance (Atkin, 1987), it

is possible to arrange for specific processes to reside in the

trsnsputer's internal memory. The code for the data acquisition

process (being the most performance critical) was therefore placed in

internal memory. However as the internal memory of the T414

trsnsputer is only 2K bytes in size, the majority of the

programme and data resides in external memory, and was therefore

subject to this degradation (although CPU cycles quoted do not

reflect this).

As it was not possible to run the code in real-time on a

single trsnsputer, a pseudo real-time mode was used. The data

66

acquisition process was optimised to take full advantage of this, and

is shown in figure 3. 7.

SEQ index = 0 FOR array.size 13
SEQ

from.link ? transition.data.array[±ndex) 28
clock ? transition.time.array[index) 11

Total 52

Fig. 3.7. Code for Pseudo Real-Time Data Acquisition

and Buffering.

The maximum burst data acquisition. rate is now the same as the

continuous rate at 11(52*67nS) =288k transitions per second, with a

timing resolution of approximately 3.5JJS. Therefore, operating in

a pseudo real-time mode not only removes the constraint of having a

limited amount of processing time, it also considerably improves the

maximum data acquisition rate and timing resolution. The only penalty

is a limit on the maximum number of contiguous transitions recorded,

but as this was approximately 3xlo5 this was not considered too

limiting.

Figure 3.8 illustrates how the track transition data and

timing information (for just three tracks for simplicity) is stored

by the data acquisition process. Due to a one bit buffer in the

hardware, the time of the transition marking the start of the data

item stored in location n of the data array, is stored in location

n-1 of the time array (for clarity, this has been purposely

overlooked in the description).

3.2.2.2. Distribution of Data for Concurrent Evaluation.

At the end of the data acquisition phase, the data for all the tracks

were stored in one array, with their respective transition timing

information in a second array. The first stage in the processing of

this data was to separate the data associated with each track and

distribute it for processing on a track-by-track basis. This is shown

67

Trac k 1

Track 2
I Data Array
I

Track 3 I I
1 0 0

I I I I 0 0 1
Times t1 t2 t3 t4 t5 t6 0 1 1

Read 0 1 1 0 0 1 0 1 0

Data 0 0 1 1 0 0
1 0 0 0 0 1

0 0 0
1 0 1

Fig. 3.8. Multiplexing the Data and Timing Information

for three tracks into two arrays.

in figure 3.9. For example, track 1, the data changed to a 1 at time

t2 , to a 0 at time t4 and to a 1 at time t6. This was sufficient

information to perform the channel decoding.

The transition times were stored as 32 bit words, whilst the

data occupied a single bit in a byte. It would have been inefficient

to output the single bit on its own and therefore the data bit was

combined with the time word. The time word was shifted by one bit to

the left, losing the MSB, and the data bit was introduced at the now

empty LSB position, as illustrated in figure 3.10.

Format of
Captured Data

Data
Array

1 0 0

0 0 1
0 1 1
0 1 0

0 0 0

1 0 1

Data Distributed to:

Track 3 Track 2 Track 1

0 , t1
0, t2 1, t2

Demux. .,.. 1, t3
0 , t4

0 , t5
1, t6 1, t6

Fig. 3.9. Demultiplexing the Timing and Data Information

with respect to Track.

68

32 Bits

L_ ________ _L __________ L_ ________ _L __________ ~Tirne

t Shift

t Combin e

I I I I lxl I I lnata

I I I I lxll I I
I
I
I

lxl

Fig. 3.10. Combining the Timing and Data Information.

If the data bit had replaced the LSB of the time word, the

timing resolution would be halved. This would be undesirable. Losing

the MSB of the time word halves the maximum measurable period (to

approximately 2000 seconds), which is of little consequence.

'Time-stamping' data in this way decouples it from other time

dependencies, simplifying further processing (Jackson et al., 1989).

This is especially beneficial in multi-processor systems as it

removes the need for time synchronisation algorithms (Carlini et al. ,

1988).

3.2.2.3. Bi-Phase-L Channel Decoding.

The first stage in the decoding process was synchronisation i.e.

determining whether transitions occurred at data bit centres or

boundaries. The use of Bi-Phase-L considerably eases this task

compared to most channel codes: whenever the period between two

transitions equals (within some tolerance) twice the code bit period,

the second transition occurred at the data bit cell centre, see

figure 3.11.

69

Data 1 0 0 1 0

Data Data Data
Bit Bit Bit

Centre Centre Centre
.} .} t

Waveform I I I
~ '--v--J ~

P eriod b e tween 2 '--v--J 1 ~ 2

Transitions \ ; \ I\ / \ I
2 :1 1:1 1:2 2:2

Ratio of Periods u sed
to Decode Data

Fig. 3.11. The use of Timing Ratios to Synchronise

and Decode Bi-Phase-L Sequences.

Once synchronised, the decoding process used the same 'ratio

of periods' to determine sample points, and from this, decoded the

sequence. The decoding process, detailed in figure 3.12, is divided

into two parts; i) detection of valid inter-transition periods, and

ii) a 'free-wheeling ' mode to cope ~ith missing data. If a period

greater than the data bit period is detected, data have been lost.

The 'WHILE' loop in figure 3.12 outputs the same number of data bits

that were lost, maintaining the time-base. This performs a function

similar to a Phase-Locked-Loop in a hardware decoder.

3.2.2.4. Error Detection, Classification and Logging.

Errors were detected by regenerating the PRBS and comparing it with

the received data. This was performed on a bit-by-bit basis: as each

bit was received, the PRBS was clocked to produce the next bit in the

reference sequence for comparison.

Before any comparisons were made, the reference PRBS was

synchronised with the incoming data. It is a feature of sequences

produced by Linear Congruential Shift Registers that for an n stage

70

Synchronisation (find period 2 code bits wide)
REPEAT

Get Time t3 and Data d3 of next transition
Calculate period from last transition, p2 = (t3 - t2)
Convert period to multiples of the code bit period
IF

1:2 or 2:2
past sample-point, output data (d3)
calculate next sample-point

2:1
calculate next sample-point

1:1 AND past sample-point
output data (d3)
calculate next sample-point

ELSE -- invalid period sequence detected
WHILE sample-point not reached

output data (d3)
increment sample-point by data bit period

UNTIL End Of Data

Fig. 3.12. Pseudo-code Of The Channel Decoding Process.

register, the ith value of the sequence can be calculated from the

previous n values. Therefore simply filling the reference PRBS

register with the incoming data automatically synchronised the two

data sequences (assuming the register was filled with correct bits) .

Rather than simply count individual bits in error, a more

detailed error classification scheme was devised . Initially, the use

of a multi-dimensional array as a look-up table was investigated. The

detected periods formed the indexes into the array, the contents of

which specified the decoded data sequence or the error sequence.

Although successfully implemented for the data sequence 0011 (for

which there are 64 possible period combinations that had to be

calculated), a general purpose algorithm was developed that was

independent of code sequence and length.

Figure 3. 13 shows three error sequences. In sequence (a) two

bits are in error. Rather than simply record this as two single-bit

errors, it was also recorded as a double-bit error. Sequence (b) also

appears to contain two single-bit errors. However, this may have been

caused by a three bit wide drop-out. During a multiple-bit drop-out,

statistically, 50% of the received data will match the reference data

(on average) . Sequence (b) was therefore classified as a triple-bit

71

(a)

(b)

(c)

0 0 0 1 1 1 Correct Sequence

0 0

1

1 0 1o1 I Ql 1 Two Single-Bit Errors/ L:J L~
One Double - Bit Error

0 0 1 0 1 1 1 Correct Sequence

0 0 101
L:J 0 101

L:J 1 1 Two Single- Bit · Errors/
One Triple-Bit Error

0 0 1 0 1 1 1 Correct Sequ ence

0 111 101 111
L:J L:J L:J 1 1 101

~J Multiple -Bit Errors/

L Missing Bit
Lost Synchronisation

Fig. 3.13. Classification of Errors.

error as well as two single-bit errors.

Sequence (c) appears to contain 4 closely spaced single-bit

errors. These errors were caused by a single missing bit. If the

reference and received data sequences became unsynchronised ,

statistically, 50% of all succeeding received bits would be

classified as in error. Therefore a 'Maximum Burst Error Length' was

specified. If this max.tmum is exceeded, a single 'Lost

Synchronisation' error is recorded, and the two sequences are

resynchronised. The following error counts were maintained during

testing:

Individual Correct Bits.

Individual Bits in Error.

Bits Classified as being Correct.

Bits Classified as being in Error.

Errors of Burst Length 1, 2, ... 'Maximum Burst Error Length'.

Number of times Synchronisation was lost.

Figure 3.14 shows the flow-chart of the algorithm used to

classify errors. A consequence of this classification strategy was

that many intermediate results needed to be stored during burst

72

1-Tj
00

w
.......
~

~
0 ...,
('") -~

-...J {10

w {10

Si
£
p .
0
::s
1-Tj -0
~
('")
::r
~

First Error.
Now in Burst

Error .

No

Increment
Good Sequence

Length

Yes

Still in
Burst Error.

Burst Error
Finished.

Record Error
Statist ics.

Still in
Burst Error.

Increment
Burst Error

Length.

errors, as the final result was not known until either 'minimum good'

bits or 'maximum bad ' bits had been received.

This classification scheme gives a more accurate measure of

the systems performance than does the raw bit error rate (i.e. the

total bits in error divided by the total number of bits received.

Random data achieves a raw error rate of 0.5, whilst it would be

classified at nearer zero (as it intuitively should) using this

scheme.

When all the data stored during the acquisition phase were

checked, the error counts were added to the total error counts for

the test. When the last block of data had been captured and

processed, the total error counts for the test were filed on the host

computer's hard disc.

3.3. The Model of the Compact-Cassette System.

Figure 3.15 shows the operational flow-diagram for the model of the

compact-cassette system. The model operated in a similar manner to

that of the compact-cassette system, alternating between data capture

and data processing. However, the operating cycle was extended to

allow changes to be made to various model parameters. The following

set of model parameters were read from a text file for each block of

data to be simulated:

Simulation Data Rate.

Read Track Width.

Write Track Width.

Side-Write Width.

Threshold level of Polarity Discrimination Comparator.

Threshold level of Peak Centre Comparator.

Track Displacement

Amount of Data Skew between Tracks.

Maximum number of Errors before assuming synchronisation lost.

Minimum number of correct bits between Burst Errors.

PRBS Register Length.

74

Read next Parameter Set
from File

Genera te Test
Sequence Data

Simulation of the
Data Channel.

Capture Transition Time and
Data from Simulation.

Yes

Decode, Check a nd
Classify Errors .

File Error Results
and Waveforms.

More
Parameter Sets

1n File ?

Fig. 3.15. Operation of the Model.

Multiple sets of parameters may be stored consecutively in the

same parameter file, enabling whole sequences of tests to be

initiated one after the other without intervention.

There was also the option to record not only the error results

for a particular test, but also a 'snapshot' of the simulated

75

waveforms. For each track the following sampled data waveforms could

be recorded and stored on the IBM PC's hard disc:

•Head Amplifier, input and output (analogue).

•Gating signal, comparator input (analogue) and output

(digital) .

•Polarity signal, comparator input (analogue) and output

(digital) .

•GXO detector output (digital).

It would take 14K bytes of memory to store the complete

waveform for one lkbps 7-bit PRBS, at a sampling frequency of 500kHz,

therefore the waveform data was decimated in time to reduce memory

usage. The decimation factor was calculated at run-time to make

maximum use of the memory declared for waveform storage (normally 500

words per waveform).

As neither the host computer, nor the TDS, provided support

for graphical display, a separate display package, TellaGraf

(TellaGraf, 1987), running on the Polytechnic's central PRIME

minicomputer was used for display and plotting of waveforms. The raw

waveform data were encapsulated with the relevant TellaGraf commands

to produce a correctly scaled, annotated and positioned display. The

waveform data plus commands form a TellaGraf Command File, which may

be directly input to the package. Figure 3.16 shows a typical set of

waveforms from the model. This display facility was an invaluable

feature of the model; during system development as well as during

simulated investigations.

The data generation and channel encoding, as well as the

decoding, error checking, classification and storage of results used

in the model was the same as that used in the compact-cassette

system. Being able to use exactly the same code in the two systems

not only saved time, more importantly it guaranteed consistency

between the two systems. The following sections describe the

processes used to model the compact-cassette system.

76

Gatlng Signal (Analogue and Digital)

F65LEL~ T•a<k 1

~~~ T•a<k2 

FblfJ-hl:,El.F T•a<k 3 

t~G5LR£ T•a<k< 

Polarity Signal {Analogue and Digital) 

~ n 17'\1 V\] N ' T•a<k 1 
'-./\TVVV~ 

r ~ v:sJ j?'\J J7"\j .17\J T•a<k 2 vv \J\1~1\ 

j\AA?v~qp T•a<k 3 

FlV\P~ T•a<k
4 

Galed Crou-Over Digital Output 

Track 1 

Track 2 

Track 3 

Track 4 

Fig. 3.16. Typical Waveform Output from the Model. 

77 



3.3.1. Generation of Gaussian White Noise. 

Several sections of the model required a Gaussian or Normally 

distributed noise source. In common with most computer systems, the 

TDS has a standard random number generator. Although this produces a 

Uniformly distributed pseudo-random number sequence, a Gaussian 

distribution may be derived from it. 

The most popular method of generating pseudo-random number 

sequences is the Linear Congruential Method, defined by, 

xn + 1 =(axn +c) MOD m Equ. 3.1 

where Xn + 1 is the next number in the -sequence. The length and 

degree of randomness of the sequences generated is determined by the 

values of a, c, m and x0, and must therefore be chosen with care. 

The TDS uses this algorithm with: 

a=1664525 c=l xo< >o 

Several methods for generating pseudo-random sequences with a 

Gaussian distribution exist (Knuth, 1981, section 3.4.1). However, 

the simpler methods take a long time to compute, whilst the fast ones 

are complex to implement. An algorithm that produced an approximation 

to the Gaussian distribution was therefore used. The scaled summation 

of several uniformly distributed number sequences can be used to 

produce an approximation to a Standard Normally distributed sequence 

(Gordon, 1978). If xi Is the ith number m a uniformly 

distributed sequence, then the number sequence defined by, 

k 

Zn =)xn~+i - (k/2) 

i = l 

Equ. 3.2 

approximates to a Standard Normal distribution. This may be 

78 



transformed into a Gaussian distribution using, 

x = za + JJ EQ.u. 3.3 

where a is the Standard Deviation and JJ is the Mean. The 

approximation improves as k increases. A convenient value of k that 

gives a good approximation is 12. This reduces the summation to: 

k 

zn= )xn¥+i- 6 

i=l 

EQ.u . 3.4 

A procedure was written that generated Gaussian White Noise (GWN) 

('White' because it contains all frequencies) using equation 3.4 

above, where values of x were generated using the TDS function RAN 

(INMOS, 1988a). 

3.3.2. Model of the Replay Channel. 

A Sampled Data model with a sample period of 2,us, was used to 

model the read process and analogue electronics of the 

compact-cassette system. This may seem an unnecessarily high sampling 

frequency (500kHz) to simulate a 5kHz waveform. However, 2JJS is 

the nearest convenient sampling frequency to the 3.5JJS timing 

resolution of the compact-cassette system, allowing direct 

comparisons to be made. 

It is important to note, a general purpose simulation 

programme was not written. General purpose solutions to problems such 

as deadlock, race-conditions e.t.c. (e.g. Dowsing, 1985, Nevison, 

1989, Djahanguir et al ., 1989) did not therefore need to be solved. 

This greatly simplified the design of the model and enhanced 

performance. Solutions to the above problems were dealt with 

individually and wherever possible internally to the modules, 

maintaining a modular approach that simplifies future modifications. 

The first stage in the simulation was the generation of the 

79 



analogue waveform representing the signal from the replay head. 

Linear Pulse Superposition was used to generate these waveforms. The 

shape and width of the isolated pulses have a large bearing on the 

accuracy of the model, and were therefore carefully derived. Once the 

basic waveform had been generated, various error sources were 

introduced. These included drop-outs, amplitude fluctuations, lateral 

head displacement and noise. 

Digital fllters were used to model the components of the 

signal conditioning circuitry, i.e. the Head Amplifier and Gated 

Cross-Over detector. All sources of electronic noise were lumped 

together and incorporated at the analogue to digital conversion 

stage. The digital output from the simulated Gated Cross-Over 

detector was 1 time-stamped I and stored in an array, in exactly the 

same manner as the compact-cassette system, for decoding and 

analysis. The occam process map for this section of the model is 

shown in figure 3.17. 

3.3.2.1. Linear Pulse Superposition. 

Figure 3.18 shows an isolated flux reversal or transition together 

with the single isolated replay voltage 1pulse1it generates. Linear 

Pulse Superposition (LPS) (Mallinson et al., 1969) applied to 

magnetic recording states that the voltage waveform produced by a 

series of flux reversals is the algebraic sum of a series of isolated 

pulses, centred on the flux reversals. 

Expressed mathematically, the combination of n isolated 

pulses, f(t) , separated by T/2, where T = 1/data rate is given by, 

0resultant(1) = E.f(t + n T/2) Equ. 3.5 

n 

Once the shape of the isolated pulse has been determined, the 

replay voltage waveform for any recorded data sequence, at any 

packing density , may be generated by combining pulses with the 

appropriate spacings. 

80 



3.3.2.2. Determination of Isolated Pulse Shape. 

The accuracy of simulation of a waveform using LPS is dependent on 

the shape and width of the isolated pulse used. Equation 3.6 

(developed in appendix B) states the voltage produced by a single 

magnetic transition (of arctangent form): 

ex(X) = c3.1n [(fx+d+c5)2+x2 

(fx+d)2+x2 l 
where C3 = constant of proportionality (given in Appendix B) 

fx = arctangent parameter 

d = head to tape spacing 

c5 = Medium thickness 

Equ. 3.6 

A further simplification may be made by assuming (near) zero medium 

thickness, 

1 

1 + (x I (d + f))2 Equ. 3.7 

This is referred to as the Lorentzian shape pulse. Several methods 

exist to experimentally estimate the parameters in this expression 

(Loze et al. , 1990). However, the objective was to simulate a 

specific recording channel. The mathematical function used to 

generate the isolated pulse does not need a rigid theoretical basis. 

It is only necessary for the isolated pulse generated to match that 

of the system to be simulated. 

Mackintosh (Mackintosh, 1979(b)) investigated nine analytical 

expressions, including the Lorentzian, concluding that: 

f(x) = 1 

(1 +x2 +x4) Equ. 3.8 

produced the isolated pulse most representative of the systems under 

investigation. The shape of the isolated pulse this generates is 

83 



shown in figure 3.19, together with that from the inductive head. It 

can be seen that this is not an accurate fit, as were none of the 

other expressions Mackintosh investigated and dismissed. 

The pulse used by Mackintosh was symmetrical, whereas the 

pulse from the compact cassette system was asymmetrical. This 

asymmetry was attributed to the perpendicular or y component of the 

magnetic medium, and would be zero in an ideal longitudinal medium. A 

closer match was found using different expressions for the left and 

right side (as suggested by Mackintosh), but significant differences 

were still apparent, especially at the base of the pulse. It was 

therefore decided to find new analytical expressions for the pulses. 

The fust step was to determine the shape of the isolated 

pulses from the heads to be modelled. Sixteen such pulses (four per 

track) were captured at random using an oscilloscope, and 

subsequently plotted onto paper. For each pulse, twelve time periods 

were measured, referenced to the pulse peak, see figure 3.20. 

The sixteen values for each time period were averaged to 

produce a reference pulse. It was suggested (Good, 1989) that an 

analytical expression for the reference pulse could be determined 

using standard numerical analysis routines . This task was 

considerably more involved than initially thought. A single 

analytical expression that accurately described the complete pulse 

could not be found. The main problem was discontinuities in the 

waveforms. Although many equations could be found that gave a good 

overall fit, they all contained at least one discontinuity. Figure 

3.21 shows two such curves, each with a discontinuity. However, the 

pulses could be accurately modelled by carefully combining two or 

three expressions that had their discontinuities in different parts 

of the curve. Each expression had the form: 

f(t) = a 0 + a1 t + a2t2 + a3t3 + a4t4 

b0 + b1 t + b2t2 + b3t3 + b4t4 Equ. 3.9 

A small FORTRAN-77 programme (listed in Appendix C) was 

written to determine the coefficients. This task was viewed as the 

solution of a set of simultaneous linear equations. The NAG routine 

84 



PRBS 

Data Acquisition 
(Data Stored in Arrays) 

To Decoder Software 

Fig. 3.17. occam Process Map for the Replay Channel Model. 

81 



Isolated Reversal--:;:;:=- - - +---- +-----~ 
of Magnetic Field ~ ___ ----._::...,_----._::::_..,_----. _ _::..,___L_._...:.• __ :-::.._ _ _::-:___ _ _:S;.~ 

Flux Sensed by 
Replay Head. 

Isolated Replay Pulse . 

Replayed Waveform, 
result of Linear 
Superposition 

Fig. 3.18. Linear Superposition applied to Magnetic Recording. 

As the data rate increases the isolated pulses overlap and 

interfere with one another more. This does not cause a problem when 

they are regularly spaced: the interference is regular and 

symmetrical. Irregularly spaced pulses - as is the norm - combine to 

produce a waveform where the peaks vary in height and position. At 

sufficiently high data rates the amount of peak shift and peak 

attenuation due to this Inter-Symbol Interference (ISI) can cause 

errors. For each code there is a specific combination of pulse 

spacings that will cause the largest peak shift and attenuation. This 

worst-case combination is normally a sequence of pulses spaced by the 

smallest amount the code allows, immediately followed by a sequence 

of pulses spaced by the largest amount the code allows. 

82 



1 \ 

I \ 

I I 
0·8 

I I Reel Pulse 

Mackintosh I I ,-... ----o 
I I 

Cl) 
(/) ·-

I I 
0 0·6 
E 
~ 

I I 0 
z 
'-"' 

I \ Cl) 
-o 
:l 0·4 

I 
~ ·-
0. 
E 
<( 

0·2 

a~~~----~--~----~--~~~~ 

0·2 0·4 0·6 0 ·8 1 1·2 1·4 

Time (mS) 

Fig. 3. 19. Isolated Pulse Shapes. 

85 



90% 

I I 
I I 

70% ~--~ 

I I I I 

5o% t-:- -t-:- PW50 
I I I I I I 
I I I I I I 

30% -~-~-~--~-~-~--

1 I I I I I I I 
I I I I I I I I 

--~-~-1-1 -~~-~--~----

Tl T2 T3 T 4 T6 T7 T8 T9 T 1 0 
T5 

Tll T1 2 

Fig. 3.20. Characterisation of the Isolated Pulses. 

F04ATF (NAG, 1987) was used to solve this set (using Crout's 

factorisation method), thereby determining the coefficients. The 

values of a and b coefficients for the inductive and MR heads can be 

found in Appendix D. The isolated pulses produced by the combination 

of expressions exactly matched that of the reference pulse at the 

points specified. 

3.3.2.3. Signal Amplitude Fluctuations. 

The amplitude of the replayed signal displayed on an oscilloscope 

could be seen to fluctuate or 'bounce'. The four main causes of 

signal amplitude variations are stated below, and may be derived from 

equation 3.10 (taken from Appendix B). 

86 



1 

0·8 
Discontinuities 

~ 

"'0 
Q) 
(I) 0·6 
0 
E .... 
0 z ....._,. 
Q) 

0·4 "'0 
:J -a. 
E 
<( 

0·2 

04---------+---------~--------r-------~~------

-0·5 0 0·5 1·5 

Time (mS). 

Fig. 3. 21 . Discontinuities in analytical pulse expressions. 

e(X)= c1 Vw. ko. (e-kd). (1-e-ko}. si&~~f). cos(kX) 
ko 

Spacing Thickness 
Egu. 3,1Q 

Gap Loss 

Loss Loss 

i) Tape speed variations. 

The output voltage is proportional to the 

head-to-tape velocity V. Sources of tape speed variations 

poorly controlled motor speed, capstan and capstan 

relative 

include 

shaft 

eccentricity, as well as inconsistent friction in items such as 

bearings, and between the tape and its pressure pad and tape guides. 

The time between transitions will also vary as the tape speed varies, 

87 



causing problems at the decoding stage. Software based, velocity 

independent channel decoders that compensate for this effect have 

been developed (Donnelly, 1989). 

ii) Dynamic Lateral Head Displacement. 

The output voltage is proportional to the track width w. 

Lateral Head Displacement (LHD) effectively reduces the track width, 

attenuating the signal. The linear relationship between track width 

and signal amplitude results in a 3dB attenuation for a LHD of w/2. 

iii) Head-Medium Spacing Loss. 

This is one of the most critical parameters in magnetic 

recording as the amplitude of the reproduced signal is exponential!~ 

related to the spacing between the head and the medium, according to, 

exp(-kd) 

where d = head to medium spacing. 

k = wavenumber. 

Although theoretically d =0 for in-contact recording (as should 

be the case for the compact-cassette)", the surface roughness of the 

medium effectively makes d > 0. Further increases in the spacing can be 

caused by inconsistent pressure between the head and tape (exerted by 

a spring-loaded felt pad in the compact-cassette) and buckled or 

twisted tape. (Debris between the head and tape will also temporarily 

increase the spacing loss, but this was classified as a drop-out and 

treated separate! y, see section 3. 3. 2.4.) 

iv) Dynamic Azimuth Skew variations. 

This is not the static azimuth skew error that can occur when 

different heads or different machines are used for record and 

playback. Dynamic azimuth skew variations are caused by the tape 

'weaving' across the head in a serpentine manner, due primarily to 

imperfectly slit tapes, see figure 3.22. Plastic deformation of the 

tape can also produce an azimuth skew error. 

88 



Head Angle~ ~Head An gle 
Durin g Write \ I During Replay 

~-.\--A..----

Tape 

\ I \ 
\ . I \ 
\ e I \ \ 
\ I \ ~w. tane 
\! ~ 

w= Track Width 

Fig. 3.22. The Effect of Azimuth Variations. 

The effect of azimuth skew is linked to the gap loss term in 

equation 3.10. The gap width obviously does not change. However, if 

the read head gap orientation is different to the write head gap 

orientation, the full width of the written transition will not be 

sensed by the read gap at the same instant. Instead, the flux from 

the transition will be sensed over a distance x. tane, reducing 

the sensed rate of change of flux. From Faraday 's Law this will lead 

to a reduction in signal amplitude. The attenuation is frequency 

dependent, defmed by, 

sin(kwe/2) 

(kwe/2) 

where w = read head gap width. 

For a 5kHz signal recorded on a compact-cassette (tape 

velocity of 4.75cm.s-1 and track width 0 .61mm) , an azimuth error of 

just one quarter of one degree gives an attenuation of approximately 

3dB. 

Rather than attempt to model all these error sources 

individually, a statistical model of their combined effect was 

derived . A Bi-Phase-L encoded 'all-ones' signal was recorded onto 

tape. The peak amplitude of 1028 replayed signal pulses were captured 

(using a digital waveform analyser) and downloaded to a computer for 

89 



statistical analysis, using MINITAB (MINITAB, 1989). 

The probability distribution of the amplitude fluctuations was 

correlated with the Gaussian distribution (Miller, 1988), producing a 

correlation factor of 0.998. The amplitude fluctuations could 

therefore be accurately modelled by GWN of the appropriate Standard 

Deviation and Mean: 0.029 and zero respectively. 

3.3.2.4. Drop-Outs. 

A drop-out is classified as a short and severe loss of output from 

the playback head. In order to simulate this error source accurately 

the level of attenuation and its duration are required. This 

information was not available. Theoretical models concerning 

drop-outs do exist, but again require parameters not available. For 

example, Baker (Baker, 1977) used the physical dimensions of the head 

and the debris causing the drop-out to calculate the spacing loss and 

related this to the SNR and bit error rate. 

At data rates significantly less than 5kbps the error rate 

remained essentially constant at lxlo-7. These errors were 

attributed to drop-outs, as ISI is negligeable at these data rates, 

and as the comparator threshold levels could be raised considerably 

higher than the noise level with no effect on this base error rate. 

Drop-outs were therefore modelled using a Uniform probability 

distribution (of lxlo-7), attenuating the isolated pulse by 20dB. 

3.3.2.5. Lateral Head Displacement. 

In the compact-cassette system the head mount was modified , allowing 

the head to be physically displaced. The model had similar 

capabilities, allowing the introduction of static Lateral Head 

Displacement (LHD), in controlled and measured amounts, in addition 

to the dynamic LHD discussed in section 3.3.2.3. This section 

describes how this was implemented. 

Track misregistration attenuates the replay signal in 

90 



proportion to the reduction of effective flux linking the magnetic 

circuit of the head (Abbot et al. , 1988). The magnitude of this 

attenuation is therefore not only dependent on the distance the head 

is displaced, but also on the dimensions and geometry of the head and 

track format. 

Additionally, in a parallel track system, large values of LHD 

may result in the head of one track linking with flux from an 

adjacent track. For a standard compact-cassette system the amount of 

displacement normally encountered is insignificant, when compared to 

the dimensions of the tracks. As track dimensions decrease (to 

increase areal bit densities) LHD becomes more of a problem. In order 

to investigate significant amounts of LHD, both the compact-cassette 

system and its model were modified to be able to introduce sufficient 

LHD for the nth head to align with data recorded by the (n-1)th 

head. 

Figure 3.23 shows a single written track with its associated 

read head, which as indicated may be a different width to the write 

head. The written track is shown divided into 3 regions. The central 

region, w wide, corresponds to the write head gap core width. The 

total written track width is known to be wider than w due to 

side-writing effects (Lindholm, 1977, and Ichiyama, 1977). 

I 
I 

SF~, 

/ Read Head 
k---r__.J/ 

I I / Written 

["\ 
1,. I ,...l .... o------w-------;~1 

~ ~ 

I 

~SF 

Track Flux 

Fig. 3.23. Relationship between Written Track 

and Read Head. 

Side-reading effects also exist (van Herk, 1977) and are exponentialy 

related to the distance between the read head and written track. 

Also, from van Herk, the recorded transition width increases 

91 



proportionally with the distance, effectively 1 smearing 1 the 

off-track sensed flux in the time-domain. The total effect of these 

three side-field related phenomena was simplified in the model to a 

linear reduction in signal amplitude with distance, from the 

normalised maximum to zero in a distance of SF, as shown. 

Figure 3.24 shows two written tracks (n and n-1). with their 

associated read heads. The read heads are shown with increasing 

amounts of displacement, m, from correct alignment, figure 3.24(a), 

to displacement equal to the track separation, figure 3.24(g). Figure 

3.24(d) illustrates the worst-case situation for the nth head. On 

figure 3.24(d), six hatched areas are indicated, corresponding to the 

amount of flux linking a head. For example, the area indicated by 

bn:n-1 corresponds to the amount of the (n-1)th track's side 

field that the nth head links with. Figure 3.24(g) shows the nth 

head perfectly aligned with the (n- l)th track, and the (n-1)th 

head linking with no flux (effectively off the tape). 

If f(n) and f(n-1) represent the optimal reproduction of 

tracks n and n-1 respectively, and f1(n) and rcn-1) the actual 

signals detected by replay heads n and n-1 respectively, then: 

f1(n) = <Ctn:n+bn:n)f(n) + <Ctn:n-1 +bn:n-l)f(n-1) 

w w 

Eqn. 3.11 

Like all magnetic fields, side fringing fields are affected by 

spacing loss, i.e. attenuation by exp(-kd) . The effects of side 

fringing fields are therefore critically dependent on d and k. For 

wide write widths and low frequencies (as used in the 

compact-cassette system), their effects are negligible and may be 

ignored. Their inclusion in the model allows narrow track systems, 

where their effects may be considerable, to be investigated. 

Therefore, during simulation of the compact-cassette system the 

side-fringing field width was set to zero. As the read head width 

equals the write head width, the derivation of coefficients a and b 

simplifies to, 

92 



(a) 

Headn Headn -1 
j Tra~ Trackn-1 

,~,;, ,; 
/~""/~~. 

s 

I I I 
I I I I 

(b) / ~ '--/-----"~....L..L...L..L~I 

I I 

(c) / ~ 1~---;,..-r:;~'777""1 

Displacement --... 
:-i • ~mm______,.{_l -:=_-:=_-:=_-:=_-:=_-:=_-:=_] 

(d) 

(e) 

(f) 

(g) 

I : 

bn :n - 1----' 

an - l :n - 1 

I 

L___/ ___ "i~: ~ 

I I 
I I 

£.__/ ___ ~______,. ~ 

I 
I I 

I 
I 

"i 

"----/ __ ___,.~ / ~ ~ 

Fig. 3.24 The Effect of Track Misregistration on the amount 

of Flux linking with the Read Head. 

93 



b=O 

Cln:n =(w-m), Cln:n-1 =0 0 < m < (s-w) 

Cln:n =(w-m), Cln:n-1 =(m+w-s) (s-w) <m< w 

Cln:n =O, Cln:n-1 =(m+w-s) w <m< s 

In the model, LHD was simulated by calculating the values of 

the a and b coefficients (using the track format dimensions and the 

displacement) and using equation 3.11 to introduce the required level 

of cross-talk. 

3.3.2.6. Data Skew between Tracks. 

Each track was processed as a separate bit-serial data channel, 

therefore the relationship between the tracks, in terms of alignment 

of data, had no effect on the performance of the system (under normal 

operating conditions) . However, when the head displacement is large 

enough for adjacent tracks to interfere, the alignment of data 

between tracks becomes very important. To accommodate this in the 

model, the amount of data skew for each track was specified. 

As the LPS waveforms were assembled using an array, the 

desired amount of data skew was introduced by adjusting the array 

pointer that specifies the location from which data was output. 

3.3.2. 7. Addition of Medium Noise. 

The Electronic Noise in the compact-cassette system was so large as 

to prevent measurement of the Medium Noise. As most state-of-the-art 

systems are medium noise limited, this error source was included in 

the model for completeness, even though it was set to zero during 

simulation of the compact-cassette system. 

As it was not possible to measure the magnitude of the Medium 

94 



Noise, the level of medium noise introduced was that which would 

produce the same amount of Electronic Noise, measured at the GXO 

detector comparators. The addition of GWN with a Standard Deviation 

of 1.82xlo-6 produced comparable values, as shown below. 

Peak Circuit 

Polarity Circuit 

SD of Electronic Noise, SD of noise m~ured at 

measured at comparators. the comparators when 

1.86x10-3 

4.lxl0-4 

Media Noise with 

SD= 1.82x10-6 added. 

1.93xlo-3 

3.97xlo-4 

Using the RMS value of the noise and the simulated 5kbps 

Bi-Phase-L encoded PRBS waveform, the SNR of the simulated system was 

calculated to be: 

20log 8.0lxl0-
4 

= 52.9 dB 
1.82xlo-6 

This is a realistic value for a compact-cassette system (AGFA, 1973). 

The medium noise was added to the waveform prior to the Head 

Amplifier. 

Medium or Particulate noise power is dependent on the number 

of magnetic particles sensed by the replay head. This is usually 

assumed to fit a Poisson distribution (Mallinson, 1987b, 5.2.3). 

Using GWN (which has a Normally distribution) is therefore an 

approximation, but one that is often made (e.g. Abbot et al., 1988). 

Thin-Film media noise is strongly dependent on the signal, and would. 

require a completely different model (Wood, 1987). 

3.3.3. Model of the Replay Electronics. 

The replay electronics was composed of the Head Amplifier, Gated 

Cross-Over detector and Link Adapter Interface Board. The Head 

95 



Amplifier and GXO's analogue electronics were assembled from circuit 

elements whose primary tasks were to amplify and modify the frequency 

content of the signal. These elements were therefore modelled as 

digital filters . The operation of the digital electronics of the GXO 

detectors and the Link Adapter Interface Board was described directly 

m occam. 

3.3.3.1. Z Domain Description of Analogue Circuit Elements. 

The frequency modifying effects of the head amplifier and analogue 

elements of the GXO were modelled using digital filters based on 

1st Order Bandpass Butterworth analogue filters. This approximation 
be<:.o-u.6e od 1 th · 1 1 · was made ;.. to m e e vanous e ements accurate y would requrre 

filters of hlgher order. These take more time to compute, due 

primarily to the increase in the number of floating point 

multiplications required (a time consuming operation). 

The frequency response of the filters were determined by their 

coefficients and the effective sampling frequency. These were 

calculated at run-time from the two -3dB corner frequencies . An 

indirect design methodology (e.g. Terre!, 1980), using a prototype 

continuous filter together with the Bilinear Transform, was chosen. 

There are three stages in thls design process: 

i) Determine Filter Specification. 

Thls is dependent on the circuit elements being modelled, and 

is specified by the upper and lower corner frequencies (fu and 

f1) . These frequencies need to be converted into their angular 

frequency forms, and then Pre-Warped to compensate for the frequency 

warping effect of the Bilinear Z-Transform, thus: 

(I . .!c) 
(2 21f Equ. 3.11 

ii) Design Continuous Filter. 

The Normalised low-pass 1st order Butterworth filter is 

defined by: 

96 



G(S)= 1 

(S+ 1) 

It is transformed into its bandpass form using the substitution: 

S -- > (S2+(wcl/wcu)) 

S(wcu-wcl) 

iii) Transform from S-plane to Z-plane representation. 

Equ. 3.12 

EQu. 3.13 

This was done using the Bilinear Z-Transform, defined by: 

S = 2. (Z-1) 

T (Z+ 1) EQu. 3.14 

This results in an equation in the form: 

G(Z) = a(1-z-2) = Y(Z) 
1+bz-I+cz-2 X(Z) EQu. 3.15 

As the z-1 terms represents a delay of one sample period, the above 

equation can be readily rewritten in the sampled time domain , thus: 

Equ. 3.16 

This is the equation used in the occam programme to 

implement the filter. It requires 3 floating point multiplications 

and subtractions per sample. This takes approximately 1300 CPU cycles 

or 861-'S for a 15MHz T414 transputer. 

3.3.3.2. Head Amplifier. 

The compact-cassette Head Amplifier was a two stage design: two 

low-pass gain blocks, AC coupled. This was approximated to a bandpass 

filter in the model, with f1 and fu being determined by the 

coupling stage and the first stage of amplification respectively, see 

97 



Gain Block Coupling Gain Block 
Low Pass High Pass Low Pass 

-k= I 
~ 

< 

fu l 

Sim p lifie d t o : 

Fig. 3.25. Approximation of Head Amplifier by Bandpass Filter. 

figure 3. 25. 

3.3.3.3. Gated Cross-Over Detector. 

The model of the GXO detector was divided into the same three 

distinct functions as the hardware was (detailed in section 2.3.3) , 

ie: 

i) Gating Signal or Peak Centre Detection. 

This was performed in the compact-cassette system by an 

operational amplifier based differentiator, high-pass coupling stage, 

and a comparator with variable hysteresis. The -3dB frequency of the 

coupling stage was 1OOHz. As the preceding stage (the differentiator) 

had already attenuated the signal at 100Hz by 17dB, the effect of the 

coupling stage was not included in the model. The differentiator was 

modelled as a bandpass filter (as detailed in section 3.3.3.1), with 

f1 = 10kHz and fu =50kHz. 

The variable hysteresis comparator was modelled easily in 

occam by: 

98 



IF 

(output=HIGH) AND (input < negative.threshold) 

output:=LOW 

(output=LOW) AND (input > positive.threshold) 

output:=HIGH 

TRUE -- else, 

SKIP -- output remains unchanged 

The threshold value was read-in at run-time from the parameter 'fold' 

(see section 3.3) . A value of 40mV was used during compact-cassette 

system simulation. Transitions of the digital output signal 

corresponded to centres of peaks in the analogue waveform. This 

formed the Gating signal. 

ii) Peak Polarity Discrimination. 

This was performed in the compact-cassette system by an 

operational amplifier based low-pass gain block, high-pass coupling 

stage, and comparator with variable hysteresis. The low-pass gain 

block and the high-pass coupling stage were modelled as a bandpass 

filter (as detailed m section 3.3.3.1), with f1 =102Hz and 

fu =6.8kHz. The comparator is as for the Peak Detector, with the 

threshold level set at 1.5mV during compact-cassette system 

simulation. The level of the output signal corresponded to the 

polarity of the peaks in the analogue waveform. 

iii) Digital Output. 

It is necessary to combine the timing information of the Peak 

Detector signal with the data of the Polarity signal. Figure 3.26 

shows how this was achieved in the compact-cassette system, and how 

it was modelled. 

Once the basic elements of the GXO detector model were 

written , they were 'connected' together in much the same way as the 

hardware, see figure 3.27. Instead of electrical signals passing 

along wires, numeric values representing the magnitude of the signals 

99 



Peak 
Centre 

Peak 
Polarity 

Clock 

D 

D-Type 
Flip-Flop 

(a) 

Digital 
Oulpul 

IF 

p:Bk.sit;J1al_ <> old.peak.signal 

outpJt := polarity.signal 

TRUE -- ELSE 

SKIP -- output unchanged 

(b) 

Fig. 3.26. Combining the Timing and Polarity Information, 

(a) Hardware, (b) Software. 

were passed down occam channels. 

(a) Hardwar e 

i/p 

(b ) Occam Simulation 

AC 
Coupling 

AC 
Coupling Comparator 

D- Type 

Flip-Flop o/ p 

/ occam 
/ Chann els 
r 

i/p 

Differentia tor 

Gain Comparator 

Fig. 3.27. GXO Detector (a) Hardware Block Diagram 

(b) occam Process Diagram. 

100 

o/ p 



3.3.3.4. Addition of Electronic Noise. 

All Electronic circuits generate noise. There are two main electrical 

noise sources (e.g. Connor, 1982): Thermal Noise; and Shot Noise. 

Both are due to the random motion of the electrons as they move 

through the conductor. Thermal Noise relates this randol1llless to the 

temperature of the conductor, whilst Shot Noise relates the random 

arrival of electrons to the magnitude of the average current. Both 

these noise sources have approximately uniform spectral densities for 

the frequencies of interest, and were therefore modelled by GWN (see 

section 3.3.1). 

Although the majority of the electronic noise is usually 

generated by the first stage of amplification (Mallinson, 1987, 

section 5.2.1) (as it is amplified by the total gain of the system), 

its effect is most evident at the level thresholding comparators of 

the GXOs. When the signal is near to the switching threshold, a small 

amount of noise may be sufficient to cause a false trigger, as 

illustrated in figure 3.28. 

Electronic noise was added at the comparator stage of the Peak 

Detector and Polarity Discriminator. To characterise the noise, a 

waveform analyser was used to digitise the noise between the two 

input pins of each comparator. The digitised waveforms were 

downloaded to a computer for statistical analysis (using MINITAB). 

The probability distribution of the noise was correlated with the 

Normal distribution (Miller, 1988). The correlation factor was 1.000 

(i.e. to three decimal places) for both waveforms. The electronic 

noise could therefore be accurately modelled by GWN. The Standard 

Deviations were 1.86x1o-3 and 4.1x10-4 for the Peak Detector and 

Polarity Discriminator Comparators respectively. 

3.3.3.5. Link Adapter Interface Board. 

The data from the model must be in exactly the same format as the 

data from the compact-cassette system, as the same software is used 

to process both data streams (see figure 3.1). The sampled data 

101 



i/ p 
~Comparator 

>---.---- o I P 

~ i/ p 

-------- --- +ve) Threshold 
-~--- -ve Levels 

I 
I 

lr-1 --+-- o/ p 

t l Correct Switc hing Point 

L False Switching Point , 
caused by Noise 

Fig. 3.28. The Effect of Noise on the Operation 

of a Comparator. 

stream of the model must therefore be transformed to an Event data 

stream. The input data stream from all channels was monitored for 

changes in data (i.e. events). When an event was detected, the data 

from all the channels were combined to form a new data word, and the 

time of its occurrence was reconstructed. The new data word was 

stored in one array and the time of its occurrence in a second. These 

two arrays constituted the interface between the model and the 

real-time software. 

3.4. Lateral Head Displacement Compensation Scheme. 

In section 3.3 .2.5, equation 3.11 was developed defining the received 

signals, f'(n) , in terms of the optimally reproduced signals, f(n). 

102 



Barbosa (Barbosa, 1990) developed expressions for the signals 

detected by M heads reading N tracks (N not necessarily equal to M). 

Barbosa expressed the relationship in terms of mappings between a 

'data space' and an 'observation space' (Barbosa, 1989) (compare with 

'optirnally reproduced' and 'received' signals), to produ~ a linear 

processor that removes the cross-talk from interfering . signals. A 

similar line of reasoning is applied to the compact-cassette system. 

Figure 3.29 restates the nomenclature developed in section 

3.3.2.5, whilst equation 3.17 is equation 3.11 rearranged and with 

zero width side-fields. 

Displacement, m 

1 
Head n I Headn -1 

f. Ll I .-I ---'-------,1 
I 

~ w 

Trackn 

Fig. 3.29. Nomenclature used to describe the Effects of 

LHD for Compact-Cassette System. 

f(n) = ~.f'(n)- ~:n-1 .f(n-1) 
~:n ~:n 

Equ. 3.17 

This states that the optimally reproduced signal from nth track is 

equal to a scaled amount of the received signal from the nth track 

minus a proportion of the optimaly reproduced signal from the 

(n-1 )th track. This is of little use as no signals are optimally 

reproduced when the head is displaced . In a practical tape system, a 

simplification may be made. In an N track tape system experiencing 

LHD either the 1st head or the Nth head (depending on the 

direction of displacement) will not experience interference from 

adjacent tracks. If the direction of displacement results in the 

nth head moving towards the (n-1)th track, then for the 1st 

103 



head, equation 3.17 reduces to, 

f(l) = .:!!._ .f'(l) 
al: 1 

Egu. 3.18 

As w is known and a1:l can be calculated, the optimally received 

signal f(1) can be reconstituted from the received signal f(1). This 

result can now be used in equation 3.17 to calculate f(2) . This 

process may be repeated across the width of the tape, effectively 

removing the effect of the LHD from all head signals. 

This scheme requires a knowledge of the track format 

dimensions and the LHD present (both magnitude and direction). The 

displacement should ideally be derived from the read signals, as this 

would remove the problem of the tracks having been written under the 

influence of LHD. If data were recorded at different data rates on 

different tracks, the ratio of replayed fundamental frequency 

magnitudes would indicate the LHD. Although a similar method of 

displacement measurement has been successfully used in the laboratory 

environment (Su, 1990), it would considerably increase the complexity 

of a commercial system. Note, these ideas would be very simple to 

investigate using the model. 

From equation 3.10 the magnitude of the replayed signal is 

linearly related to the width of track read, and Is therefore 

dependent on the LHD. This is only valid for LHD < (w - s) (i.e. 

displacements within the inter-track guard-band), as for greater 

displacements an adjacent track will interfere. However, as 

highlighted above, one of the peripheral heads will not be corrupted 

by an adjacent track. The problem is therefore reduced to calculating 

which peripheral track is not being corrupted by an adjacent track, 

and using the reduction in signal amplitude from this head to 

calculate the LHD. This technique benefits from narrow inter-track 

guard-bands as the corruption of signals from adjacent tracks would 

allow the direction to be calculated for small values of LHD. 

Reducing the guard-band widths increases areal packing density and is 

therefore desirable. 

From visual comparisons of waveforms from heads simply 

104 



attenuated by LHD, and waveforms from heads corrupted by an adjacent 

track, the signal content appears significantly different. The 

suggestion is therefore made that a suitable signal processing 

technique could be developed to differentiate between the two 

waveforms. 

If it is not possible to extract the necessary information 

regarding LHD from the standard head signals, the modified read head 

shown in figure 3.30 may be used to provide the information. 

~MR Element 

Fig. 3.30. Magneto-Resistive Differential Read Element. 

Figure 3.30 shows an MR Differential Element, although an 

equivalent inductive version is also possible. The signal v 1 +v2 
is the same as for a full width MR stripe. However, the relative 

magnitude of the signals v 1 and v2 could be used to determine the 

direction and magnitude of the LHD. 

The compensation scheme described above uses the signal from 

the nth head reading the (n-1)th track to estimate the signal 

from the (n-1) th head. Depending on the directions of the coil 

windings, there may be an inversion that is not apparent from the 

undisplaced read signals alone, see figure 3.31 (where a dot notation 

is used to indicate coil directions). 

As can be seen in figure 3.31 although a reversed coil 

direction results in a reversed magnetisation pattern, if the coil 

winding directions are consistent between record and replay, the 

replayed waveforms are phase correct. If the replay coil is reversed 

with respect to the record coil, then the signal will be inverted. 

105 



r---1 r-- Write Current 
__j L_J Waveform 

u\ 
:-:::::=---.ji;f~f=====-f~~f~E=""::>~ Recorded 
2~. ~ _---,....-_......---~ Magnetisation 

u. ~ 
J\. _ _f\_ _A _Replayed - --v- . ~ V Waveforms 

\ Inve rsion J 
Fig. 3.31. The relationship between read signal and 

recorded magnetisation. 

This must be taken into account in the compensation scheme or the 

scheme will not simply fail to work, it will degrade performance. 

To investigate these ideas in a practical system, components 

of the compact-cassette system and model were combined to produce the 

system illustrated in figure 3.1(c). A commercial digital waveform 

analyser was used to simultaneously digitise the signals from two of 

the compact-cassette's channels. These digitised signals were then 

transferred via an RS232 serial link to the IBM PC for storage on its 

hard disc. 

The data captured by the waveform analyser represents a 

sampled data stream , and was therefore incorporated into the model 

very easily. The only extra occam code that needed to be written 

was that which ensured the format of the data complied with 

occam' s (strict) floating point format. The compensation scheme 

was applied to these waveforms before conversion to TfL type 

waveforms by the GXO detectors. The signal processing software was 

the same as that used in the compact-cassette system and model. The 

106 



only modification necessary was a reduction in the sampling rate to 

50kHz to match that of the waveform analyser (sampling at its highest 

rate). This in turn necessitated a similar reduction in cut-off 

frequencies for the digital filters to ensure an adequate sampling 

rate was maintained (to avoid the effects of aliasing). 

3.5. Summary. 

This chapter has described the software used in 3 magnetic recording 

channels, written in occam. The first channel used software to 

generate data and encode it suitably for recording onto a 

compact-cassette. During replay software was used to decode the data, 

and to check for and classify errors before filing on the mM PC's 

disc. The second channel was formed by replacing the hardware 

components of the first system with software models. This produced a 

complete model of a multiple-track digital magnetic recorder. The 

third channel re-used components of the previous two and was used to 

investigate the performance of the proposed Lateral Head Displacement 

compensation scheme. 

A PRBS generator was used to generate the test data. It was 

programmable in terms of sequence length (between 7 and 32767 bits) 

and in terms of relationship between sequences (data staggered or 

un-staggered), and could generate up to 32 such sequences 

simultaneously for use in a multiple-track system. The 

characteristics of this data stream were matched to that of the 

recording channel by a Bi-Phase-L channel encoder. 

In the compact-cassette system this data was output at timed 

intervals via one of the transputers Links to the write amplifier 

for recording onto tape. When replayed, the data were read back into 

the transputer, and stored in an array together with the time 

they were read (to an accuracy of approximately 3.5~S). The data 

from these areas were separated and distributed for processing on a 

'track by track' basis. A Bi-Phase-L channel decoder was followed by 

an error checking and classification process. The error 

classification scheme devised provided more detailed information 

107 



regarding errors than the raw bit error count used by many 

Researchers. 

In the model, the Bi-Phase-L encoded PRBS data were channelled 

directly to the Linear Superposition process, as the write process 

was assumed to be perfect. Analytical expressions were derived that 

accurately described the shape of the isolated pulses produ_ced by the 

inductive and magneto-resistive heads. Based on measurements taken 

from the compact-cassette system, sources of electronic and medium 

noise, as well as wavefonn amplitude fluctuations (including 

drop-outs) were incorporated into the model. A general purpose GWN 

generator was developed for use by these error sources. By 

calculating the flux linkage between the displaced heads and the 

recorded tracks, the model also allowed Lateral Head Displacement to 

be simulated. Digital ftlters were used to model the frequency 

modifying components of the head amplifier and GXO detectors, whilst 

the digital components were described directly in occsm. 

Components of the model were used to investigate a LHD 

compensation scheme. The scheme devised was the inverse of that used 

to model LHD. From a knowledge of the dimensions of the track fonnat 

and LHD, the amount of cross-talk from an adjacent track was 

calculated. An estimate of the uncorrupted signal was produced by 

subtracting the correct amount of the relevant adjacent track signal. 

The software developed formed a complete model of the 

recording process - from data generation to error detection and 

classification. As a significant proportion of the code was common to 

all three system, a high level of consistency between them was 

assured. The modular style of programming used to design the 

occsm processes resulted in a very flexible model . 

108 



3.6. References for Chapter 3. 

ABBOTT, W.L., Cioffi, J.M., Thapar, H.K., Offtrack Interference and 

Equalisation in Magnetic Recording. IEEE Trans. on Magnetics, 

Vol. MAG-24, No. 6, November 1988. 

AGFA-GEV AERT, Recording with Compact-Cassettes, 1st Edition, 

Published by AGFA-GEV AERT, 1973. 

ATKIN, P., Performance Maximisation. INMOS Technical Note 17, 

72-TCH-017-00, March 1987. 

BAKER, W.R., A Dropout Model for a Digital Tape Recorder. IEEE Trans. 

on Magnetics, Vol. MAG-13, No. 5, September 1977. 

BARBOSA, L.C., Maximum Likelihood Sequence Estimators: A Geometric 

View. I.E.E.E. Trans. on Information Theory, Vol 35, No. 2, March 

1989. 

BARBOSA, L.C., Simultaneous Detection of Readback Signals from 

Interfering Magnetic Recording Tracks using Array Heads. IEEE 

Trans. on Magnetics, Vol. MAG-26, No. 5, September 1990. 

BURNS, A. , & Wellings, A.J., Occam's Priority Model and Deadline 

Scheduling. 7th Occam Users Group & Int. Workshop on Parallel 

Programming of Transputer based Machines, Grenoble, September 

1987. 

BURNS, A. , Programming in occam 2. Addison-Wesley Pub. Ltd., 1988 

CARLINI, D .U., & ViJlano, U. A Simple Algorithm for Clock 

Synchronisation in Transputer Networks. Software: Practice and 

Experience, John Wiley & Sons Ltd., Vol. 18(4), Apri11988. 

CONNOR, F.R., Noise. Edward Amold (Pub.) Ltd., London, 1982. 

109 



DOWSING, R.D., Simulating Hardware Structures in occam. Software & 

Microsystems, Vol. 4, No. 4, August 1985. 

DJAHANGUIR, A.H. & Geffroy, J.C. Use of occam for Validation of 

Distributed Discrete Event Driven Simulation. Proceeding of the 

10th occam User Group Technical Meeting, Enschede, Netherlands. 

Published by IOS, Amsterdam. 1989 

GOOD, B., Private Communication. Computing Dept., Polytechnic South 

West, 1989. 

GORDON, G., System Simulation. Prentice-Hall Inc., New Jersey, 1978. 

ICHIY AMA, Y., Analytic Expressions for the Side Fringe Field of 

Narrow Track Heads. IEEE Trans. on Magnetics, Vol. MAG-13, No. 5, 

January 1977. 

INMOS Ltd., Transputer Reference Manual. Prentice Hall International 

(UK) Ltd. , 1988 (a) . 

INMOS Ltd., Occam 2 Reference Manual. Prentice Hall International 

(UK) Ltd., 1988 (b) . 

JACKSON, T.J., Mapps, DJ., Ifeachor, E.C. & Donnelly, T. A Real-Time 

Transputer-Based System for a Digital Recording Data Channel.", 

Microprocessing and Microprogramming Vol. 25, pp 281-286, 1989. 

KNUTH, D. E., The Art of Computer Programming, Volume 3: 

Seminumerical Algorithms. Addison-Wesley Pub. Co., 2nd Edition, 

1981. 

LINDHOLM, D.A., Magnetic Fields of Finite Track Width Heads. IEEE 

Trans. on Magnetics, Vol. MAG-13, No. 5, September 1977. 

llO 



WZE, M.K., Middleton, B.K., Ryley, A, and Wright, C.D., A Comparison 

of Various Methods for Characterising the Head-Medium Interface 

in Digital Magnetic Recording. IEEE Trans. on Magnetics, Vol. 

MAG-26, No. 1, January 1990. 

MACWILLIAMS, F.J., and Sloane, J.A., Pseudo-Random Sequences and 

Arrays. Proc. IEEE., Vol. 64, No. 12, December 1976. 

MACKINTOSH. N.D. The choice of a Recording Code. I .E.R.E. Conf. Proc. 

No. 43, Southhampton 1979 (a). 

MACKINTOSH, N.D., A Superposition-Based Analysis of Pulse-Slimming 

Techniques for Digital Recording. IERE Conf. Proc. No. 43. 

Southampton 1979, (b). 

MALLINSON, J.C., & Steele, C.W. Theory of Linear Superposition in 

Tape Recording. IEEE Trans. on Magnetics, Vol. MAG-5, December 

1969. 

MALLINSON, J.C., The Foundations of Magnetic Recording. Academic 

Press, Inc., USA, 1987 (a). 

MALLINSON, J.C., Chapter 5, Magnetic Recording, Vol. I: Technology, 

Series Editors C. D. Mee, and E. D. Daniels, McGraw-Hill, Inc. 

USA, 1987 (b). 

MIDDLETON, B.K. and Wisely, P.L., Pulse Superposition and 

High-Density Recording. IEEE Trans. on Magnetics, Vol. MAG-14, 

No. 5, September 1978. 

MILLER, R.B., Minitab Handbook for Business and Economics. PWS-Kent 

Publishing Co., Boston, MA, 1988. 

MINITAB, MINITAB Reference Manual . MINITAB Inc., USA, 1989 

111 



NAG, The NAG Fortran Library Manual. The Numerical Algorithms Group, 

Oxford, UK, 1987. 

NEVISON, C. , Discrete Event Simulation using occam. Proceeding of the 

10th occam User Group Technical Meeting, Enschede, Netherlands, 

1989. Published by lOS, Amsterdam. 

POUNT AIN, D., A Tutorial Introduction to occam Programming. BSP 

Professional Books, London, 1987. 

SU, J.L., Ju, K., Lo, J., & Countryman, G. Side Fringing of Thin Film 

Heads with Pole Trimming. IEEE Trans. on Magnetics, Vol. MAG-16, 

No. 5, September 1990. 

SZCZECH, T .J., The use of Equations for the Field Components of a 

Thin-Film Head for Calculating Isolated Pulse Output. IEEE Trans. 

on Magnetics, Vol. MAG-16, No. 5, September 1980. 

TELLAGRAF, CA-TellaGrafUser's Guide. Computer Associates Int., Inc. , 

USA, 1987. 

TERREL, T.J., Introduction to Digital Filters. MacMillan Pub. Ltd., 

UK, 1980. 

V AN HERK, A. , Side Fringing Fields and Write and Read Crosstalk of 

Narrow Magnetic Recording Heads. IEEE Trans. on Magnetics, Vol. 

MAG-13, No. 4, July 1977. 

WELCH, P .H., Managing Hard Real-Time Demands on Transputers. 7th 

Occam Users Group & Int. Workshop on Parallel Programming of 

Transputer based Machines, Grenoble, September 1987. 

WOOD, R., Jitter VS Additive Noise in Magnetic Recording: Effects on 

Detection. IEEE Trans. on Magnetics, Vol. MAG-23, No. 5, 

September 1987. 

112 



4. Results and Discussions. 

4.1. Experimental Procedures and Operating Conditions. 

The results from the compact-cassette system presented m this 

chapter were gathered using the following operational procedures. 

• The surface of the recording head, pinch roller and capstan 

were cleaned with Iso-Propyl Alcohol and a cotton bud at regular 

intervals between replays and always before recording. 

• The head azimuth angle and lateral displacement were 

aligned using a commercial Test Tone Compact-Cassette. 

• Recordings were not made on the first 50cm of tape, as this 

lead-in portion is recognised as being prone to mechanical damage 

and debris. 

• TDK AD90 Compact-Cassettes were used. These are inexpensive 

IEC/Type I cassettes that use gamma-Ferric Oxide tape. 

Unless otherwise stated, the following system parameters were 

used m the acquisition and processmg of the data presented in this 

chapter. 

• Data was staggered by one code bit with respect to adjacent 

tracks. 

• Data was generated using Pseudo-Random Binary Sequences of 

length 7, at 5k bits per second per track. 

• Bi-Phase-L channel code was used with a recording current 

of ± 330J.IA. 

• The error classification scheme used a minimum 'good' 

sequence length of 5, and a maximum 'bad' sequence length of 7 

(see section 3.2.2.4). 

Several graphs presented m this chapter plot the error rate 

on a logarithmically scaled y axis. A value of zero cannot therefore 

be represented . On such graphs a "Zero Error Rate" level is 

indicated, corresponding to a rate of 1/total bits. Points plotted at 

113 



this rate correspond to an error rate of less than 1 in the total 

number of bits, but by an amount unknown (further testing would be 

required for a more accurate figure). 

4.2. Accuracy of the Isolated Pulse Models. 

The shape of the analytically generated isolated pulses used to model 

the output from the inductive and MR heads are shown in figures 4.1 

and 4.2. The 13 points used to specify the shape of the pulses (see 

section 3.3.2.2) are indicated by crosses. Also shown are typical 

pulses captured using an oscilloscope and plotted onto paper. 

The differences in shape between the analytical and measured 

pulses illustrates the variability between individual pulses, rather 

than the accuracy of the technique used to derive the equations that 

determine their shape. The analytical pulses can be seen to fit at 

the points specified: a result of the technique used to derive the 

analytical equations. A more accurate fit would require the 

specification of more points. However, the numeric technique used to 

derive the equation would require the use of a higher order equation 

to fit more points. This would increase the probability and severity 

of discontinuities (see section 3.3.2.2) . The use of thirteen data 

points proved to be a satisfactory compromise. 

The pulses from the MR head varied less than those from the 

inductive head. This was attributed to the MR head reading a track 

considerably wider (12 times) than the sensing element (having been 

written by the inductive head), and therefore not affected by dynamic 

LHD. 

If the success of the pulse fitting technique was based solely 

on how accurately the analytical pulses fitted the measured pulses at 

the specified points, the technique would be deemed 100% successful. 

In practice, there are two fundamental limitations: 

i) The technique requires a large amount of human intervention to 

produce reliable results. All of the equations produced by the 

technique used, contained at least one severe discontinuity. Only by 

114 



,....... 
"'0 

Q,) 
(I) ·-
0 
E .... 
0 z 

""-" 
Q,) 

"'0 
::l -·-
CL 
E 
<( 

1 

0·8 

0·6 

0·4 

0·2 
I 

1 

• Real 

0 Anal~ 

0~~~~~--~----~--~--~~~~~ 

0 0·2 0·4 0·6 0·8 1 1·2 1·4 1·6 

Time (mS) 

Fig. 4.1. Inductive Head Isolated Pulses. 

115 



........... 
"'0 
Q) 
(/) 

0 
E 
L. 
0 
z ......., 
Q) 

"'0 
::J -·-a. 
E 
<( 

1 

• Real 
0·8 

0 Anal'i!.!£_ 

1: 
0·6 

I 
0·4 I 

I 

0·2 

0~~~--~--~--~--~--~--~--~~~ 

0 1 2 3 4 5 6 

Time (mS) 
7 

Fig. 4.2. Magneto-Resistive Head Isolated Pulses. 

116 

8 9 



using selected sections from specific pulses were the above results 

obtained. 

ii) There is no theoretical basis to the equations produced. 

Therefore the pulses cannot be manipulated in any manner that can be 

related to the recording process. For example, if Lorentzian type 

equations had been used, it would have been possible to investigate 

(for example) the effect of write amplifier rise-time by changing the 

arctangent parameter. The technique therefore sacrifices 

extensibility for accuracy. 

As the analytically derived isolated pulses were accurate 

representations of the pulses to be simulated, when combined using 

LPS, the resultant waveforms were similarly accurate, see figure 4.3. 

4.3. The Effect of Write Current on Replay Waveform. 

The fringing field emanating from the write head gap must be greater 

than the coercivity of the magnetic medium in order to record 

information. The magnitude of this field is dependent on the write 

current. As the Inductive Head was designed for use in an analogue 

audio system, there was no information regarding DC write currents or 

the resulting field strengths. An investigation into the effect of 

write current on replay waveforms was therefore undertaken. Three 

different types of cassette were investigated: 

i) IEC/Type I, a TDK AD 90 (gamma-Ferric Oxide). 

ii) IEC/Type IT, a TDK SA 90 ('Pseudo-Chrome'). 

ill) IEC/Type IV, a TDK MA-X 90 (Metal particle). 

Each cassette was recorded with a range of write currents, 

from O. lmA to 2mA. From each of the replayed waveforms two 

measurements were taken: 

i) Signal Amplitude, (Peak-to-Peak). 

ii) Peak-Droop. This is a measure of loss of peak amplitude 

117 



Simulated Real 

Fig. 4 .3. Comparison of Real and Simulated 3125bps Waveforms. 

due to Inter-Symbol Interference (ISI), and is illustrated in figure 

4.4. 

Figure 4.5 illustrates how the Peak-to-Peak amplitude varies 

with write current for each of the three cassettes. A straightforward 

explanation can be derived by considering the tape's coercivities and 

concentrating on the two extremes of recording current. 

i) High Record Currents: The greater the coercivity of the 

tape, the greater the maximum possible recorded magnetic field , the 

greater the possible rate of change of sensed flux and therefore 

magnitude of the replayed signal. 

118 



Highest 

Lowest P ea k 

Fig. 4.4. Calculation of Peak-Droop. 

ii) Low Record Currents: The smaller the coercivity of the 

tape, the smaller in magnitude the fringing field needs to be to 

magnetise the medium, and therefore the smaller the recording 

current. 

Figure 4.6 illustrates how the Peak-Droop varies with 

recording current for each of the three cassettes. Large values of 

Droop indicate large amounts of ISI. The higher coercivity tapes 

therefore exhibit less ISI, suggesting a reduction in PW50. Assuming 

arctangent transitions, an explanation for this may be gained from 

equation 4.1 (derived in Appendix B): 

Egu. 4.1 

Although the coating thickness 6 and effective spacing d 

may be lower for the higher coercivity tapes (reducing PW50), a 

change in the arctangent parameter fx is the most likely cause. The 

relationship between the arctangent parameter and the magnetisation 

(stated in Appendix B) is defined by, 

EQu. 4.2 

119 



1·6 

.... 
/ 

1·4 / _., _., _., 
,.-

1·2 I 

~ I 
I 

Cl> 
0') 1 I --EJ 0 / +- !- / ~ ---~ 

/I .:::1.. 0·8 0 I I Cl> 
CL !/ I 
0 

+- 0·6 I I 
~ 
0 
Cl> I 

CL 
0·4 I I 

I/ • IEC/TYPE I, gamma-Ferric Oxide 

0 IEC/TYPE !h_Eseudo-Chrome_ . 0·2 

e IEC/TYPf_ IV.!_ Metal Particle_ _ 

0 
0 0·5 1 1·5 2 

Write Current (mA) 

Fig. 4.5. The Effect of Write Current on Peak-to-Peak Amplitude. 

120 



a. 
0 
0 
L 

0·7 

0·6 

0·5 

Cl 0·4 
.::J. 
0 
Q.) 

a_ 

0·3 

0·2 

-. ---r 

I 
I 

/-

I 

• IEC/TYPE I, gamma-Ferric Oxide 

D IEC/TYPE ~seudo-Chrome _ _ 

e IEC/TYP~ IV.!_ Metal Particle_ 
0·1~------~------~--------~------~ 

0 0·5 1 1·5 2 

Write Current (mA) 

Fig. 4.6. The Effect of Write Current on Peak Droop. 

121 



The higher magnetisation results in a reduced arctangent parameter, 

and is the most likely cause for the reduced PW50 and therefore lower 

I SI. 

Figures 4.5 and 4.6 illustrate the compromise between output 

amplitude and ISI of the replayed signal. As the replay c_hannel was 

not equalised, and peak-droop was determined to be the limiting 

constraint, a write current of 0.33mA was chosen, thereby reducing 

the peak-droop at the expense of signal amplitude (and therefore 

SNR) . 

4.4. Error Rate Promes. 

The following sections detail how various system parameters effected 

the recording channel's performance, in terms of error rates. 

4.4.1. The Effect of Data Rate on Error Rate. 

Figure 4. 7 illustrates the effect of data rate on the error rate, 

both for the compact-cassette channel and its simulation. Each data 

point plotted is the average taken over all 4 tracks. A figure of 

merit for the system may be calculated from the maximum data rate to 

error rate ratio. The compact-cassette system has a maximum value of, 

4500 = 6.7xlo10 
6.75xl68 

that compares favourably with a figure of 2x1010 for a similar 

compact-cassette system developed by Donnelly (Donnelly, 1989). 

The curves are composed of two distinct regions; where the 

error rate remains fairly constant, and where the error rate 

increases logarithmically. Errors in the first region were caused 

primarily by medium related problems or written errors. This was 

evident from the fact that the errors occurred at the same point 

during successive replays. The error rate remained fairly constant 

122 



1.0 

1E-1 

1E-2 

1E-3 

. 
C1) -0 

a:: 1E-4 
L. 
0 
L. 
L. 
w 

1E-5 

1E-6 

1E-7 

0 

• Real Data 

0 Simulated Data 

2000 4000 6000 8000 

Data Rate (bps per track) 

Fig. 4 . 7. The Effect of Data Rate on Error Rate. 

123 



between lkbps and 4.5kbps, contradicting theory: the error rate would 

be expected to rise linearly with the data rate as the defective area 

of magnetic tape affects a greater number of bits. One possible 

explanation was that the analogue electronics were optimised for 

operation at 5kbps, and this outweighed the above mechanism. 

From around 4500 bits per second, errors start to increase 

approximately logarithmically. Figure 4 .8 shows a typical set of 

waveforms from the simulation running at 6000 bits per second. Due to 

ISI, several peaks are significantly reduced in amplitude, some not 

crossing the 'zero line'. It was at the Polarity Discriminator 

comparator that these reduced amplitude peaks manifests themselves as 

errors. The same peaks are successfully converted into the gating 

-1·6 

1·6 

- 1·6 

Polarity Signal 
Analogue 
and Digital 

Gatlng Signal 
AnaloSJue 
and D1gital 

Digital Output 

Fig. 4.8. Sample Waveforms for a 6kbps Signal. 

124 



L_ 

signal as they are differentiated, restoring much of the lost 

amplitude, before input to the gating signal comparator, 

(differentiation can be used as a simple form of equalisation). 

In a noiseless system, the error rate curve past the knee of 

the characteristic would be a succession of steps. This is because 

first the worst-case bit pattern fails, followed by the next worst 

bit pattern, and so on. The combined effect of the noise sources 

tends to blur or smooth out these steps. These tests were performed 

with a PRBS of length 7. Without noise, once the critical ISI point 

for the worst case bit pattern had been exceeded, every one in 7 bits 

would be in error. The error rate would therefore increase from 

l.Oxlo-7 to 1.4x10-2 in one step. 

More useful error information would have been elicited had a 

longer test sequence been used. However long test sequences could not 

be clearly displayed on the oscilloscope used to monitor signal 

quality and consequently were not used. Rerunning the tests with 

longer PRBSs would be straightforward as the model was designed to 

generate and check sequences up to 32767 bits long. Note however, the 

longer the PRBS, the lower the probability of filling the reference 

PRBS register with an error-free sequence for synchronisation. 

Therefore short test sequences still need to be used when 

investigating high error rates. 

Referring again to figure 4. 7, the only significant deviation 

between the compact-cassette data and the simulated data was a shift 

of approximately 300bps (or 6% of 5kbps) . This suggests the simulated 

pulse was narrower than the actual pulse. The isolated pulses used to 

specify the shape of the reference pulse were captured from the frrst 

replay of the first recording made on new tape. It was not practical 

to use new tape for each test, and so the results presented here for 

the compact-cassette system were obtained from cassettes used many 

times. When isolated pulses from the most frequently used cassettes 

were measured, the pulse width was found to be up to 22% wider 

(0.246mS compared to 0.20lmS) . This broad range of pulse widths more 

than covers the deviation between the compact -cassette system and its 

model. One interpretation of this deviation is the model simulates 

the compact-cassette system using new cassettes, i.e. 'best-case' 

125 



conditions. 

Inspecting sections of tape recorded and replayed hundreds of 

times revealed creases along the length of such tapes. This would 

cause spacing loss and therefore a broadening of the detected 

transition. Examining the magnetic head revealed considerable wear, 

and was the most probable cause of these creases. (The head had by 

this time been in use for many thousands of hours.) 

The error rate curve is affected by nearly all the components 

of the model, and therefore figure 4.7 was one of the main metrics 

used to assess the accuracy of the simulation. Based on this premise, 

the basic model was judged to be an accurate representation of the 

compact-cassette system. 

It should be noted that when the model was simulating a 5kbps 

data stream, just 5 data bits were simulated per second. Because of 

this low simulation rate, the model had to be run continuously for 

weeks for the low error rate measurements to be made. Tests that 

resulted in error rates of lxlo-5 or less only detected tens of 

bits in error. This means that the very low error rates stated carry 
a very low confidence value. Some models allow very low error rates 

to be estimated from higher error rates simply from extrapolation 

(e.g. Katz et al., 1979). 

The model was used to simulate the projected performance of 

the 18-track Magneto-Resistive head. The results are shown in figure 

4.9. What is immediately apparent was the reduction, of approximately 

an order of magnitude, in data rates. There are two main reasons for 

this poor performance: 

i) Incomplete fabrication. As stated in section 2.4.4 the MR head 

used was a partial fabrication of a more complex design. As a 

consequence, the pole pieces were not present. Although primarily 

used in the write process, they had a secondary function as magnetic 

Shields. Without the pole-pieces, the head was effectively an 

Un-Shielded MR (UMR) design. To a rough approximation (Jeffers et 

al . , 1984) the PW50 of an UMR element is equal to its height: 

401-'m in this design. This corresponds to a PW50 of 0.83mS 

(compared to a measured PW50 of 1.95mS) at a tape speed of 

4.75cms-1. 

126 



Q) -0 
0:: 
~ 

0 
~ 
~ 

La.J 

1.0 

1E-1 

1E-2 

1E-3 

1E-4 

1E-5 

1E-6 

Zero 
Error 
Rate 

300 400 500 600 

Data Rate (bps per track) 

Fig. 4.9. The Simulated MR Head, Data Rate Error Profile. 

127 

700 



ii) Fabrication problems. After the MR read elements and lead-outs 

had been fabricated, the substrate had a covering of glass bonded to 

it. The 'substrate plus glass' was then bonded between two ceramic 

cheeks to reduce wear. Problems aligning all these components 

resulted in the MR elements being slightly recessed. This results in 

a spacing-loss that widens the PW50, further degrading performance. 

Although the MR. results are disappointing in performance 

terms, the ease with which these results were obtained demonstrates 

the power and flexibility of the model as a development tool. 

4.4.2. Simulation of a Peak Detector. 

As stated in section 4.4.1, the Peak Polarity signal of the 

GXO detector fails (due to ISI) at lower data rates than the Gating 

signal . As the gating signal contains all the information needed to 

decode the data, the model was used to investigate the performance of 

the system using a Peak detector which does not use a Polarity 

signal. Using the differentiator and comparator elements of the GXO 

detector, a simple Peak detector was assembled , see figure 4.10. The 

data rate versus error rate profile obtained using the Peak detector 

is shown in figure 4.11 together with that for the simulated GXO 

detector system. 

i/ p -{Diffe rentiatorH Comparator)J--•- o/ p 

Fig. 4. 10. occam Process Diagram of Peak Detector. 

The modification to the detector involved removing three lines 

of code and changing an occam channel name. This modification was 

the software equivalent of removing 3 integrated circuits from the 

hardware GXO detector and changing a wire to route the signal past 

the now redundant circuitry. These results are m>t presented here to 

extol this 'trial and error' design methodology. They are presented 

128 



1.0 

1E-1 

• GXO Detector 

0 Peak Detector I 1E-2 ---

I 
1E-3 I 

Q) I - I 0 
a:: 
L 1E-4 
0 

I L 
L 
w 

1E-5 I 
I 

1E-6 I 
I 
~ Zero 

1E-7 <J Error 
Rate 

4000 5000 6000 7000 8000 
Data Rate (bps per track) 

Fig. 4.11. Comparison of Simulated Peak and -GXO Detector 

Performance. 

129 



to show the flexibility of the model and how well suited occam 

was to this style of modelling. 

Figure 4.11 shows the improved performance of the Peak 

detector compared to that of the GXO detector. At low error rates the 

capacity of the channel was increased by approximately 20%. Whereas 

it was peak-attenuation (caused by ISI) that produced erro~s when the 

GXO was used, it was the peak-shift that produced the errors when the 

Peak detector was used. As the data rate increases, the amount of 

peak-shift increases until the period between transitions is in error 

by more than half a code bit. This will cause the decoder to 

incorrectly decode the sequence. 

4.4.3. Variation of Error Rate Pronles between Replays. 

The error checking process can be used to record the position of 

errors on the tape. In order to investigate how the positional error 

rate profile varies the following tests were performed: 

i) Cassette AC Bulk erased. 

ii) Cassette recorded (with 5.5kbps Bi-Phase-L encoded PRBS). 

iii) Cassette replayed and rewound 4 times (storing the 

positional error rate profiles as Tests 1 to 4). 

iv) Steps i) , ii), and iii) repeated with the same cassette 

(storing the positional error rate profiles as Tests 5 to 8). 

The higher than normal data rate ensured a significant number 

of errors would be detected. Figure 4.12 shows all 8 error rate 

profiles. From a visual inspection the test profiles form into two 

groups: before and after the re-recording (i.e . between Test 4 and 

Test 5). To produce a more quantifiable interpretation, the 8 

profiles were cross-correlated with one another. The results are 

shown in Table 4.1. These figures confirm the visual observation that 

the positional error rate profiles are highly correlated between 

tests performed on the same recording, and poorly correlated between 

tests performed on different recordings. 

Figure 4.13 plots the correlation coefficients against the 

number of tests between correlations. The obvious inverse 

130 



(I] 
~ 

6 

0 

6 

0 

e 6 
~ w 
"'00 
Q) ·-'+-

·c;; 6 
(I] 

~0 
'+-

0 6 
~ 
Q) 

..00 
E 
:J 
Z6 

5 10 15 20 25 3 0 35 40 45 

Position on Tape (Minutes). 

Fig. 4.12. Error Distributions for Eight Successive Replays. 

131 



Test 1 2 3 4 5 6 7 

2 0.930 

3 0.819 0.905 

4 0.678 0.816 0.825 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

5 

6 

7 

8 

(/) 
-+-
(/) 

~ 
c 
Q) 
Q) 

~ 
-+-

Q) 
.0 
c 
0 ·--+-
0 
Q) 
L 
L 
0 
u 

0.145 0.105 -0.02 0.097 

0.148 0.102 0.005 0.116 0.959 

0.146 0.098 -0.01 0.094 0.920 0.906 

0.247 0.228 0.077 0.205 0.878 0.915 0.874 

Table 4. 1. Cross-Correlation Coefficients between 

Successive Replays. 

1 

- ~ - -0·9 - - - -· 
0·8 • 1 Corr 2,3,4 

0 2 Corr 3,L 

0·7 • ~Corr 6,7,~ 
0 6 Corr 72 L 

0·64-----------------~----------------~ 

1 2 3 

Number of Tests between Correlations 

Fig. 4 .13. The Degradation of Correlation Coefficients between 

Successive Replays. 

132 



proportionality strongly suggests a non-random process was causing 

the error rate profiles to vary. Examining the error rates for 

successive tests revealed a slight increase. One suggested cause for 

such a trend is loss of magnetic medium due to wear. 

These results discouraged further investigation into using a 

knowledge of the cassettes positional error profile . from one 

recording, to determine the error correction scheme applied during 

successive recordings (for example dedicating a higher number of bits 

to error correction for parts of the tape that had a poor error 

performance on the last recording). It does however suggest a 

write/read/write head arrangement may enhance performance: the data 

being verified immediately after being written. The following write 

head could then either re-write the data or append specially tailored 

error correction data to allow for correct decoding during subsequent 

replays. 

4.4.4. Head Azimuth Skew. 

Azimuth skew can cause errors in a multiple-track system in three 

ways: 

i) By causing misalignment of data with respect to adjacent 

tracks. 

ii) By attenuating the replay signal. 

iii) By causing peak-shift. 

Figure 4.14 shows the error rate profile caused by azimuth 

skew. The azimuth skew can be seen to have had little effect on the 

error rate until approximately 20 minutes of arc. In terms of 

misaligned data this corresponds to 1. 9 data bits of misalignment 

between the midpoints of tracks 1 and 4. In a parallel sampling 

system, data skew greater than 1/4 of a data bit would cause errors. 

This result verifies that treating each track separately removes the 

problem of data skew between tracks. 

In terms of signal attenuation, from equation 4.3 (see section 

3.3.2.3), 20 minutes of arc corresponds to an attenuation of 2.0dB at 

133 



1.0 

1E-1 

1E-2 

1E-3 

. 
Cl) -0 

a:: 
1E- 4 L.. 

0 
L.. 
L.. 
w 

1E- 5 

1E-6 

1E- 7 
Zero 

<a- Error 
Rote 

0 5 10 15 2 0 25 3 0 35 40 45 

Skew (minutes of arc) 

Fig. 4.14. The Effect of Azimuth Skew on Error Rate. 

134 



5kHz (assuming a track width of 0.598mm and tape speed of 

4.75cm.s-1). This amount of azimuth skew was considerably in excess 

of the 4.4 minutes of arc encountered under normal operating 

conditions (Donnelly, 1989). 

20.log10 
[
sin(kwe/2)] 

(kwe/2) 
· Egu. 4.3 

The impact of the resultant signal attenuation is largely 

dependant on packing density. At low packing densities, the 

peak-attenuation caused by ISI is less. This allows higher levels of 

~imuth skew to be introduced before the combined attenuation is 

sufficient to cause errors. One of the few benefits of reducing track 

widths is that azimuth skew attenuates the replayed signals less. A 

50/Jm wide read head (i.e. the width of the MR read element 

detailed in section 2.4.4) would suffer just O.OldB of attenuation 

reading a 5kHz signal when skewed by 20 minutes of arc. 

As azimuth skew modifies the phase as well as the frequency 

response of the channel, the location of peaks will be altered or 

shifted. In a peak-shift limited system this may cause errors. The 

compact-cassette system was peak-attenuation limited, therefore the 

effects of peak-shift caused by azimuth skew were insignificant. 

Thus: 

i) Systems can be designed to be unaffected by misalignment of 

data between tracks. 

ii) The effect of azimuth skew on the error rate may be offset 

by reducing the packing density. 

iii) The effect of azimuth skew reduces with track width. 

Azimuth skew therefore was not viewed as a severe limitation 

on the ultimate performance of digital magnetic recorders. 

4.4.5. The Effect of Lateral Head Displacement. 

Section 2.4.2 detailed the modifications made to the compact-cassette 

head mounting arrangements to allow the head to be displaced from its 

optimal position, whilst section 3.3.2.5 detailed how this 

135 



displacement was simulated. This section presents the results of the 

Lateral Head Displacement (LHD) investigation. (To demonstrate the 

level of detail the error classification scheme provides, the 

complete set of classified error results are presented for the 

compact -cassette system). 

Figures 4.15 to 4.22 show the effect of LHD on error rates (as 

categorised in section 3.2.2.4) for each track. Figures 4.15 and 4.16 

show the overall error rate, figures 4.17 to 4.20 the error rates for 

the individual burst error lengths for each track, and figures 4.21 

and 4.22 the loss of synchronisation. The direction of LHD introduced 

resulted in the nth track moving toward the (n-1)th track, with 

the 1st track moving towards the edge of the tape. Due to the 

compact-cassette track format, this results in tracks 2 and 4 reading 

similarly distorted signals, as do tracks 1 and 3 (for values of LHD 

less than the track separation) . The large increase in errors for 

track 2 at 0.2mm, with no corresponding increase in track 4 was 

attributed to a longitudinal crease observed running the length of 

the tape, and will not be considered further. 

What was immediately apparent from all 8 graphs were the rapid 

increases and decreases in error rate for small changes in 

displacement. For displacements up to a critical value there is 

little increase in error rate. Single-bit errors are the most common 

in this region. At a critical displacement, the error rate increases 

rapidly. As the head is displaced further, the nth head starts to 

be influenced more by the data of the (n-l)th track. A second 

critical displacement is reached and the error rate for the nth 

head decreases rapidly as it now starts to read and successfully 

decode the (n-1) th track. Figure 4. 23 shows a simplified 

representation of the LHD versus error rate profile, where the four 

critical displacements are indicated by mcl to mc4. 

A new figure of merit is proposed, one that specifies the 

percentage of displacements from which an acceptable level of 

performance may be achieved. It is important to note that the 

acceptable level of performance for a head may be achieved reading 

any track. For this and subsequent results the acceptable level of 

performance was an error rate of lxl0-5. The figures of merit can 

136 



1.0 

1E-01 

1E-02 

w 1E-03 
~ 
0:: 

0:: 
0 
0:: 
0:: 
w 1E-04 

1E-05 

lE-06 

Zero 
Error 
Rote 

Track 1 

Track 2 --

'I 

/I 

0 0·1 0·2 0·3 0·4 0·5 0·6 0·7 0·8 0·9 

DISPLACEMENT (mm) 

Fig. 4.15. The Effect of Lateral Head Displacement. 

on Error Rate (Tracks 1 & 2) . 

137 



1.0 

1E-01 

1E-02 

w.~ 1E-0.3 
~ 
a: 
0::: 
0 
a: 
a: 
w.~ 1E-04 

1E-05 

1E-06 

Zero 
Error 
Rate 

Track 3 

Track 4 

0 0·1 0·2 0·3 0·4 0·5 0·6 0·7 0·8 0·9 
DISPLACEMENT (mm) 

Fig. 4.16. The Effect of Lateral Head Displacement 

on Error Rate (Tracks 3 & 4). 

138 





. 
Cl) 
~ 

0 
~ 
~ 

1E+5 

1E+4 

w 1E+3 -Cl) 
~ 

:J 
CD -0 
Cl) 

CD 
0 

S 1E+2 
~ 

:J 
0 
0 
0 

1E+1 

• T2LEN1 

D T2LEN2 

e T2LEN3 

o T2LEN4 

6 T2LEN5 

X T2LEN6 

\1 T2LEN7 

0 ~~~~~~~~~~~~~~~~~ 
0 0·1 0·2 0·3 0·4 0·5 0·6 0·7 0·8 0·9 1 

Displacement (mm) 

Fig. 4.18. The Effect of Lateral Head Displacement 

on Error Burst Length of Track 2. 

140 



1E+5 

1E+4 

. 
UJ 
L. 
0 
L. 
L. 

w 1E+3 -UJ 
L. 
::J 
m -0 

UJ 
Q) 
0 
c: e 1E+2 
::J 
0 
0 

0 

1E+1 

• T3LEN1 

D T3LEN2 --
e T3LEN3 - - -

0 T3LEN4 

D. T3LEN5 

X T3LEN6 ------ -· 
"V T3LEN7 ---------- · 

1 1 
11 . 

o-----Y'---L...lu.,--~---.---'~.---r--~--r-............. ,...........~ 

0 0·1 0·2 0·3 0·4 0·5 0·6 0 ·7 0·8 0·9 1 

Displacement (mm) 

Fig. 4.19. The Effect of Lateral Head Displacement 

on Error Burst Length of Track 3. 

141 



. 
(I) 
L. 
0 
L. 
L. 

1E+5 

1E+4 

w 1E+3 -(I) 
L. 
~ 

CD -0 
(I) 
Cl) 
0 
c: e 1E+2 
~ 
0 
0 

0 

1E+1 

• T4LEN1 

D T4LEN2 

e T4LEN3 

0 T4LEN4 

D. T4LEN5 

X T4LEN6 

'l T4LEN7 

0 ~~~~~~~~~~~~~~~~-
0 0·1 0·2 0·3 0·4 0·5 0·6 0·7 0·8 0·9 1 

Displacement (mm) 

Fig. 4.20. The Effect of Lateral Head Displacement 

on Error Burst Length of Track 4. 

142 



1000000 

100000 

10000 

. 
u 
z 
>-
Vl 
1-
Vl 1000 
0 
...J 

Vl 
LaJ 
~ 
~ 
LL. 
0 100 
a: 
LaJ 
m 
~ 
:::::> 
z 

10 

r 
~ 

1\ I I 
I I (\I I 
I I Ill I I I • TRACK 1 I I I 

I I \ D TRACK 2 l --
I I I \ I I \ 

\ I \ v"'6 \I~' A ) 
\VI \}\!~V I W\ I 

~ ~ ~ h 

0 0·1 0·2 0·3 0·4 0·5 0·6 0·7 0·8 0·9 1 

DISPLACEMENT (mm) 

Fig. 4.21. The Effect of Lateral Head Displacement 

on Loss of Synchronisation (Tracks 1 & 2). 

143 



1000000 

100000 

u 
z 
>
If) 

10000 

:;; 1000 

g 
If) 
w 
:1 
~ 
lo. 
0 

~ 100 
CD 
:1 
;:) 
z 

0 0·1 0·2 0·3 0·4 0·5 0·6 0·7 0 ·8 0·9 1 

DISPLACEMENT (mm) 

Fig. 4.22. The Effect of Lateral Head Displacement 

on Loss of Synchronisation (Tracks 3 & 4). 

144 

L____ _____ ---- -



,--- , 
I \ 
I \ 
I \ 
I \ 

\ 
I \ . 

-------------_1-r -------------1\-- ~~c;~;fob;~aL;~:l 
1-----------L;I I I I 

- I I 
I I I 
I I I 

Displacement. 

Fig. 4.23. Simplified Error Rate Profiles for LHD. 

be calculated for the compact -cassette system from the four critical 

displacements, i.e., 

[ I -
mc2- mc1 l X 100 = 91.2% 
mc1 + mc2 

[ I -
mc4- mc3 l X 100 = 70.0% 
mc3 + mc4 

The two figures reflect the two different track separations of 

the compact-cassette system. These results show that the large 

guard-band between tracks 2 and 3 (designed to reduce cross-talk in 

the original compact-cassette specification) reduces the range of 

displacements over which an acceptable level of performance may be 

achieved. 

The three effective track separations may also be calculated 

from these four critical displacements. From figure 4.24 it can be 

seen that the ratio ~:n to ~:n- 1 at mc1 is the same as the 

ratio ~:n- 1 to ~:n at mc2 (a similar argument may be applied 

to mc3 and mc4). Therefore, using sn,n-1 to denote the 
separation between the nth and (n-1)th tracks, 

145 



/Headn / Headn- 1 

ffic 2 
I : 

an:n an:n - 1 

m c l 

1-E w »I 

I I 
Tr a ck n Track n - 1 

Fig. 4.24. Head and Track arrangements for two complementary 

critical displacements. 

~ 1 = s4 3 = mc1 + mc2 = 0.405 + 0.483 = 0.888mm 
' ' s3 2 = mc3 + mc4 = 0.457 + 0.847 = 1.304mm 
' 

These figures are compared in Table 4.2 with those for the 

compact-cassette standard, and those obtained directly from the 

recording head using a microscope and calibrated graticule. 

Compact -Cassette Calculated from Optical 

Standard mc1 to mc4 Measurement 

0.935 

1.290 

0.888 

1.304 

Table 4.2. Comparison of Track Separations. 

(Dimensions in mm) 

0.828 

1.235 

The effect of the interfering signal from the adjacent track 

can now be quantified. If f(n)= -f(n-1) then the amount of the nth 

track that the nth head effectively links with is reduced from 

Cln:n to <Cln:n-Cln:n-1). In the general case the Effective Read 

146 



Width of the nth head may be defrned by: 

ERWn = ~:n + fieln:n-1 Equ . 4.4 

where B is a function introduced to account for the 'mutual 

interference' between the two track signals. For tracks 2 and 4~ 

and 

and for tracks 1 and 3, 

and Cln:n-1 := 0 

(as the track separation 1s greater than the track width). Assuming 

the ERW is the same for all tracks, an estimate of the value of B for 

this set of tests can be made. For tracks 1 and 3 at mc3, w is less 

than the track separation, i.e. Cln:n-l = 0. Therefore, 

which may be rearranged as, 

B = (mcl - mc3) 

(w - mc2) 

Equ. 4.5 

Equ. 4.6 

The track width, w, may be determined experimentally. On a 

plot of signal amplitude versus displacement, the signal will 

decrease to zero in a displacement equal to the track width (see 

section 3.3.2.3). From figure 4.25 the track width is calculated to 

be 0.598mm. This gives a value of -0.56 for B, for this set of tests 

(i.e. these two interfering signals) . 

Beta is a complex function, and is not simply the correlation 

between the two signals. The correlation between the two signals 

does not take into account the signal processing applied to the 

signals to produce an error rate. Recall (from section 3.3.2.1) that 

there are worst-case combinations of transitions. A feature in the 

147 



,....... 
> 
E ........... 
Q) 

"'0 
:J -·-a. 
E 

<( 

0 
c 
0') ·-(/) 

(/) 

~ 
a:: 

300 

Track 1 

Track 3 200 ----------
Stra_lght_!.in~ ~stimate 

100 

" 0 

0·0 0·2 0·4 0·6 0·8 

Displacement (mm) 

Fig. 4.25. The Effect of Lateral Head Displacement 

on Signal Amplitude. 

signal of an adjacent track may have a considerable impact on the 

error rate if it interferes in such a worst-case region. To 

illustrate this, figure 4.26 plots values of mcl and mc2 against 

data skew between two interfering signals. 

When there is less than 0.3 data bits of skew between tracks, 

the error rate is always 'acceptable' (hence, the curves do not start 

at zero skew). As expected both curves show maxima at skews 

corresponding to integer multiples of the bit spacing i.e. when 

transitions for one track align with those of the interfering track. 

The model was used to produce the simulated LHD error proftle. 

Figure 4 .27 shows the results from this simu1ation (compare with 

figures 4. 15 and 4 .16) . As can be seen the overall error rate 

proftles of the two graphs are similar. There is however significant 

difference between the values for the first critical displacement, 

148 



E 
E ....._ -c: 
Cl) 

E 
Cl) 
0 
0 
Q. 
(I) ·-Q 

0 ·55 

/'\ /\ 
I \ j \ 

0·50 I \ \ \l \_\ I 
0·45 J 

• Mc1 
0·40 

0 Mc2 - - --

0 ·35 

0·30 

0·25 4---~-----....-------.-----r------. 

0 0·5 1 1·5 2 2·5 

Data Skew between Interfering Tracks (bits) 

Fig. 4.26. The Simulated Effect of Data Skew between Tracks 

on the Maximum Displacement for an Acceptable Error Rate. 

149 



. 
Cl) -0 

0:: 
L 
0 
L 
L 

L&J 

1.0 

1e-1 

1e-2 

1e-3 

1e-4 

Track 1 

Track 2 --
Track 3 - -
Track 4 

Zero 
Error 
Rote 

- I . 

0 0·1 0·2 0·3 0·4 0·5 0·6 0·7 0·8 0·9 

Displacement (mm) 

Fig. 4.27. The Simulated Effect of LHD on Error Rate. 

150 



mc1, see Table 4.3. 

mc1 

mc2 

mc3 

mc4 

Compact -Cassette Model Error 

System 

0.400 0.316 -21% 

0.483 0.510 +5.6% 

0.457 0.474 +3.7% 

0.847 0.806 -4.8% 

Table 4.3. Comparison of Critical Displacements between 

the Compact-Cassette System and the Model. 

(Dimensions in mm) 

No suitable explanation could be found for this discrepancy. 

However, using Ferro-fluid and an optical microscope, faint signs of 

recorded information in the guard-bands could be observed on some 

cassettes (not necessarily those used for the above set of tests). 

This may be due to incomplete erasure, or some other mechanism and 

would obviously affect any displacement experiments. 

The range of displacements from which an acceptable level of 

performance may be achieved was 76.5% and 74.1% (for the two track 

separations). These figures compare with 91.2% and 70% for the 

compact-cassette system. Whilst 74.1% compares well with 70%, the 

significant difference between 76.5% and 91.2% highlights the 

difference in the values of mcl for the two system. Further 

investigations would be required to identify the source of this 

discrepancy. 

The basic isolated pulse was changed to that for the MR head, 

and the model was used to simulate the displacement error profile for 

the MR head. Figure 4.28 shows the results of this simulation. A data 

rate of 515bps was used as this corresponds to the same rate as the 

compact-cassette system when normalised to the PW50. As the track 

separations are consistent, only one set of curves are produced. 

Extrapolating the curves to predict the critical displacements at an 

error rate of 1xlo-5, produces figures of, 

151 



. 
Q) -0 

0::: 
L.. 
0 
L.. 
L.. 

L&J 

1.0 

1e-1 

1e- 2 

1e-3 

Zero 
1e-4 Error 

Rate 

0·00 0·05 0·10 0·15 

Displacement (mm) 

Fig. 4.28. The Simulated Effect of LHD on Error Rates 

for the MR Head. 

152 

0·20 



mc1 = 0.091 

mc2 = 0.109 

From these figures, the range of displacements over which an 

acceptable level of performance may be achieved is 90.8% This 

compares with approximately 75% for the simulated compact-cassette 

system, and demonstrates the performance benefits of a write-wide, 

read-narrow design in the presence of LHD. 

4.4.6. Lateral Head Displacement and Azimuth Skew. 

From results previously presented, up to 20 minutes of arc of azimuth 

skew or 0.4mm of LHD may be introduced without a significant increase 

in error rate. However under normal operating circumstances both of 

these error causing sources may be present. Figures 4.29 and 4.30 

illustrate the effect of LHD on error rates in the presence of 13.3 

minutes of arc of azimuth skew. Thirteen minutes of arc was 

significant enough for its effect to be observed when combined with 

LHD, without directly causing errors. 

In comparison with figures 4.15 and 4.16 (with zero azimuth 

skew), the curves of figure 4.29 and 4.30 fluctuate considerably 

more. Table 4.4 compares the 4 critical displacements with those for 

zero azimuth skew. 

Zero Azimuth Skew Azjmuth Skew of 20 mins of arc 

mc1 0.400 0.323 

mc2 0.483 0.656 

mc3 0.457 0.360 

mc4 0.847 

Table 4.4. Critical Displacements, with and without Azimuth Skew. 

(Dimensions in mm) 

153 

-----· - - - - -



1.0 

1E-1 (' \ 

I \ \ 
• Track 1 I I I 

\ 1E-2 
0 Track 2 I v I --

1E-3 I I 
C1) I I -0 

a::: 
"" 1E -4 I I 
0 
'-
'-

LAJ 

1E-5 

1E-6 

Zero 
Error 
Rate 

I I 
I I 

I t"\ 
I ~ I 
\V ~ 

0 0·1 0·2 0·3 0·4 0·5 0·6 0·7 0·8 0·9 1 

Displacement (mm). 

Fig. 4.29. The Combined Effect of LHD and Azimuth Skew 

on Error Rates (Tracks 1 & 2) . 

154 



1.0 

1E-1 

1E-2 

1E-3 

Q,) -0 
a:: 
L 1E-4 
0 
L 
L 
w 

1E-5 

1E-6 

Zero 
Error 
Rote 

o Track 3 

• Track 4 

I Afv -
1 \J.r ' 

I I I \ I ·. : \/ 
I : I ~ : 

:\) \ .1 . 

~ I 
~: 

I 

I 

L __ • 

0 0·1 0·2 0·3 0·4 0·5 0·6 0·7 0·8 0·9 1 

Displacement (mm). 

Fig. 4.30. The Combined Effect of LHD and Azimuth Skew 

on Error Rates (Tracks 3 & 4). 

155 



As expected, the performance degradation caused by the azimuth 

skew results in the onset of errors (at mc1 and mc3) at smaller 

displacements than for zero azimuth skew. The range of displacements 

from which an acceptable performance may be achieved has been reduced 

from 91.2% to 66% . This degradation in performance is also . assumed to 

be responsible for head 3 being unable to read track 2 at the 

required level of performance for the calculation of mc4. The 

distinct difference between mc1 and mc3 again shows the effect of 

interference from an adjacent track. 

However, both mc1 and mc3 are approximately equal to or 

greater than the inter-track guard-band width, and mc2 is greater 

than the track width. This suggests no interference occurred between 

tracks: the onset of errors at the critical displacements simply 

being due to the attenuation of the (degraded by azimuth skew) 

signal, caused solely by the displacement. No explanation can be 

found for this anomaly . 

Also, at displacements of 0 .56mm for head 1 and head 3 and at 

0.42mm for head 2 and head 4 the error rate drops significantly. This 

suggests a non-linear mechanism in the interference process caused by 

LHD. No mechanism was found to explain this. However the excellent 
e 

agr)?1ent between the graphs for track 1 and track 3, and the graphs 

for track 2 and track 4 strong! y suggests the results were not 

spunous. 

4.5. LHD Compensation Scheme. 

This section presents the results for the LHD compensation scheme 

detailed in section 3.4. This scheme reconstructs the 'on-track' or 

optimal signal from the attenuated and corrupted signals of the 

displaced head . This requires a knowledge of the dimensions of the 

track format and the magnitude and direction of the LHD. The scheme 

uses the signal from the nth head to calculate the nth track 

component of the (n-1) th head signal. Due to inconsistencies 

between channels (e.g. in head efficiency, amplifier gain e.t.c.), 

the reconstructed signal will only be an estimate of the optimal 

156 



signal. 

To determine the accuracy of the estimate, both the estimate 

and the actual signals ideally need to be captured simultaneously. 

This cannot be done as it requires the nth head to be optimally 

reading the nth track, whilst simultaneously spanning (and reading) 

the nth and (n- l)th tracks: this is obviously .· physically 

impossible. Therefore, the optimal signal and the displaced signals 

from the compact-cassette system were captured on successive replays, 

and stored on the IBM PC's hard disc. 

Figure 4.31 plots the maximum value of the cross correlation 

coefficient between the captured optimal signal and the uncompensated 

and compensated displaced signals. The cross-correlation coefficients 

were derived using a commercial DSP package (ILS, 1987) to calculate 

the Cross-Covariances, which were then normalised. Up to a 

displacement of 0.25mm the correlation coefficients for both 

compensated and uncompensated signals had the same value and remained 

very similar up to 0.35mm. This was as expected as adjacent tracks 

will not interfere until approximately 0.325mm. The SNR will be 

reduced by 3dB at approximately 0.3mm (w/2), and this may account for 

the slight divergence. Past this point the uncompensated signal 

correlation coefficient falls rapidly due to the increased 

interference from the adjacent track. The compensated signal's 

correlation coefficient does not decrease, remaining greater than 

0.9 . The underlying principle of the compensation scheme - that of 

removing the effect of an interfering signal - was therefore judged 

to be valid. 

Figure 4.32 shows the effect of the compensation scheme on 

error rates when applied to the same captured waveforms. (Comparing 

figures 4.32 and 4.26 reinforces the fact that simple correlation 

measurements cannot be used directly to determine system 

performance) . Figure 4.32 demonstrates the potential of the scheme. 

When the magnitude and direction of the displacement was known, the 

effect of LHD on error rate was completely compensated for. It is 

important to note that figure 4.32 includes the worst case condition, 

where the nth head is half way between the nth and (n-l)th 

tracks. Figure 4.33 shows the pre and post compensation scheme 

157 



+-
+-c 
Q) ·-~ 

'+-
Q) 

0 
u 
c 
0 ·-+-
0 
Q) 
~ 
~ 

0 
u 

1 

0·9 

0·8 

0 

X 

0·7 

Uncompensated 

Compensated_ 

Half Track 
Separation 

0·6;------,------~----~----~--~~ 

0·0 0·1 0·2 0·3 0·4 

Displacement (mm) 

Fig. 4.31. The Efficacy of the Compensation Scheme on 

Interfering Track Signals. 

158 

0·5 



CV -0 
~ 

... 
0 ... ... w 

0·1 

0 ·01 

Zero 

O Uncompensated 

X Compensated_ 

Error C~G--oo---~~~~-*""-*""-~***"X 
Rate Half Track 

Separation 

0· 0 0 1+-----r----.------....------.---...L-----. 

0·0 0·1 0·2 0·3 0·4 0·5 
Displacement (mm) 

Fig. 4.32. The Effect of the Compensation Scheme on Error Rates. 

159 



0·5 

Head Output 

0·0 Track 1 
Prt et Post 
Compensation 

-0·5 
0 ·5 

Head Output 

0·0 Track 2 
Pre et Post 
Compensation 

-0·5 

Gatlng Signal 

0 Track 1 
Pre et Post 
Comparator 

-1 

Gatlng Signal 

0 Track 2 
Pre et Post 
Comparator 

- 1 
1·5 

Polarity Signal 

0 Track 1 
Pre et Post 
Comparator 

-1·5 
1·5 

PolarltJ Signal 

0 Track 
Pre et Post 
Comparator 

-1·5 

] 
Digi tal Output 
Track 1 

] 
Digital Output 
Track 2 

Fig. 4.33. Waveforms from the Model Compensating for LHD. 

160 



waveforms, together with the relevant GXO waveforms, whilst 

compensating for this worst-case LHD condition. Whilst the 

post-compensation signals show a large amount of noise, the GXO 

detector is able to successfully decode them. 

Unfortunately, the exact magnitude of the displacement would 

not normally be known. Figure 4.34 shows how the compensation scheme 

performs when only an estimate of the displacement is known. For the 
1RMS 1 curve, the displacements were calculated from the attenuation 

in theRMS value of the uncorrupted edge track signal, using: 

displacement = RMS - Offset 

Slope 

Equ. 4.7 

where Slope and Offset are taken from the straight line estimate in 

figure 4. 25. The two curves 1 Optimal + 10% ' and 1 Optimal -10% 1 show 

the error rate performance when the displacement used in the 

compensation scheme is +10% and -10% of the measured (assumed exact) 

value. 

Figure 4.34 illustrates that the attenuation in the RMS of the 

signal is a good estimate of the displacement. It performed better 

than ± 10% of the exact value. It is sufficiently accurate for the 

compensation scheme to considerably enhance the performance of the 

system. Assuming an error rate of 1x10-3 produces an acceptable 

level of performance, the displacement figure of merit was increased 

from 43 % to 100% when the exact displacement was known, and from 43 % 

to 92 % when the level of signal attenuation was used to estimate the 

displacement. Also note, system performance was never degraded. 

4.6. Limitation of the Amplitude Fluctuation Mechanism. 

The mechanism used to introduce amplitude fluctuations (described in 

section 3.3.2.3) was found to be flawed. The amplitude fluctuation 

process is applied to the isolated pulses before being combined using 

LPS. The resultant waveform has a different amplitude distribution to 

that applied, see Table 4.5. Column one contains the data rate of the 

161 



Q) -0 
0::: 
~ 

0 
~ 
~ w 

0 UncomEensated ,\j I X RMS -------
6 Qptimal_j-10% _ I .· I 

0 Optimal_-10% I 

I 
0·1 

I I I 

I I 

I 

f 
I 

I 
I I 

I 0·01 

I 

I 

Zero I 
Error -** 
Rate Half Track 

Separation 

0 ·001 

0·0 0·1 0·2 0·3 0·4 0·5 

Displacement (mm) 

Fig. 4.34. The Effect of Estimating the Displacement ·on 

Compensation Scheme Performance. 

162 



(1) (2) (3) (4) (5) 

Data Basic Actual Desired. Equivalent. 

Rate. Waveform. Resultant. Resultant. Applied. 

1000 0.0152 0.0332 0.0327 0.0295 

2000 0.0997 0.1053 0.1039 .0.0338 

3000 0.1552 0.1606 0.1579 0.0413 

4000 0.1933 0.1994 0.1955 0.0489 

5000 0.2532 0.2610 0.2548 0.0633 

6000 0.3350 0.3413 0.3363 0.0653 

Table 4.5. Standard Deviations of Simulated Waveforms. 

waveform. The second column contains the Standard Deviations (SDs) of 

the basic waveform, produced by the superposition of uniform height 

isolated pulses (i.e. zero deviation in amplitudes). The third column 

contains the SDs of the waveforms produced by the model, when the 

isolated pulse amplitudes had an SD of 0.029 (i.e. the value measured 

from the compact-cassette system, section 3.3.2.3). The fourth column 

contains the statistical addition of the SD of the basic waveform 

from column 2, plus an SD of 0.029. The fifth column is the 

statistically calculated value of SD that would need to be added to 

the basic waveform SD to produce the values in column 3. This fifth 

column would contain only the value 0.029 for a correctly implemented 

amplitude fluctuation mechanism, and therefore the figures in the 

column indicate the error in the implementation. 

Table 4.5 also shows that as the data rate increases the 

distribution of amplitude fluctuations does not remain constant. The 

amplitude fluctuation process therefore needs to be modified so that 

it is applied to the complete waveform, and not to individual 

isolated pulses. Doing so would also allow drop-outs to be modelled 

more accurately in terms of duration and severity (e.g. Baker, 1977). 

163 



4. 7. occam and the trsnsputtN. 

All of the results presented in this chapter were obtained (to a 

greater or lesser extent) using the software described in chapter 3. 

This alone is felt to vindicate the choice of tlie occsm 

programming language (and therefore the trsnsputer). for this 

project. This section highlights several key points and issues 

concerning the semantics of occsm, computational performance, and 

hardware and software architectures. 

The semantics of occsm greatly simplified many of the 

programming tasks. For example, once the Bi-Phase-L Channel Decoding 

process had been written, the code to run a number of them 

concurrently was simply, 

PAR track= 0 FOR number.of.tracks 
... Channel Decoder Process 

The following code extends the above and could have been used 

to download (or PLACE) a number of Decoder processes onto a network 

of trsnsputers, where they would run in parallel. 

PLACED PAR track = 0 FOR number.of.tracks 
PROCESSOR track T4 

Channel Decoder Process 

The significance of the lines of occsm above cannot be 

overstated. The first code fragment could be used to run 1 or 1000 or 

any integer number (known at compile time) of copies of the Decoder 

process concurrently on a single trsnsputer. The second code 

fragment could be used to distribute any number of Decoder processes 

over an array of trsnsputers (each of type T4). The key point is: 

the occsm for the Decoder process remains unchanged. 

As a trsnsputer array large enough to distribute the code 

over was not available, this facility could not be investigated. 

However, the code was written to take advantage of this facility had 

it become available. During simulation of the compact-cassette 

system, 35 processes run concurrently. This code could be· transferred 

to a network of 35 trsnsputers without a single modification to 

164 



the process's code. A '35 times' speed-up would not occur however as 

the processes are not balanced in terms of processing time i.e. the 

data rate through the network would be determined by the process with 

the longest processing time. Also, some simple message routing 

processes would need to be written as trsnsputers have a · maximum 

of 4 Links, and some of the processes need 8 channels. _the second 

generation of trsnsputers (the 1'9000 family (INMOS, 1991)) use 

automatic routing switches to avoid the need to use such extra 

processes. 

The semantics of the language facilitates (or even encourages) 

a natural one-to-one mapping between the components of the 

compact-cassette system and those of the model. Although occsm 

processes are not true 'objects' in the sense of an object oriented 

language (i.e. there is no inheritance mechanism or implicit 

encapsulation, once written they may be manipulated in an almost 

tangible manner. 

The benefits this brings were most clearly demonstrated by the 

modification made to the GXO detector to perform the function of a 

Peak detector (section 4.4.2). The analogy between the modifications 

made to the occsm code and the rewiring of the circuit was clear. 

The value or worth of the model is therefore increased as each 

process represents a basic building block that may be re-used 

elsewhere. 

From this one-to-one mapping the programme is naturally formed 

into a Data Driven, Data Flow style of architecture (Williams, 1990). 

The code for the model formed two such data flow structures, one for 

the data generation and encoding (see figure 3.3) and a second for 

the data decoding and analysis (see figure 3.5). The data flowed 

through the processes where it was transformed. The analogy between 

the electrical signals flowing through the electronic circuitry is 

clear. 

The performance of the data acquisition process was analysed 

in detail in section 3.2.2.1. A similar analysis was performed on the 

model's code. As a single Skbps data bit was represented by 100 

floating point values in the sampled data section of the model, the 

investigation concentrated on the nine concurrent processes that 

165 



constituted this section. Firstly, the overhead in tenns of CPU 

execution cycles associated with the Data Flow structure was 

calculated. The fonnat of, and channel protocol between these 

processes was standardised, and is shown in figure 4.35 along with 

the execution times. 

PROTOCOL INT.OR.FLOAT 
CASE 

SEQ 

int ; INT 
float ; REAL32 

WHILE running 9 
data.in? CASE 32 

int ; char 
IF 

char = terminate 
running := FALSE 

TRUE -- else, 
SKIP -- do nothing 

real ; data.to.be.transformed 26 
•.. process data 
data.out ! real ; transformed.data 63 

... pass on terminate.symbol 
Total130 

Fig. 4.35. Standardised occam process fonnat 

(Figures indicate execution times in CPU cycles). 

As no suitable floating point value was available to be used 

as a 'terminate' token, a Variant Channel Protocol (INMOS, 1988a) was 

used. This allowed an integer tenninate token to be passed down the 

same channel as the floating point sampled data. When a floating 

point number was input from the previous process, the relevant 

transfonnation was applied, and the new data output to the next 

process using the same channel protocol. When the terminate token was 

received, the main loop stopped running and the tenninate token was 

passed to the next process. This ensured each process terminated 

correctly. 

From figure 4.35, each sample passing through each process 

consumed 130 CPU cycles. As it takes approximately 20 CPU cycles to 

schedule a process, and each sample results in the process being 

166 



scheduled once, the total overhead per process incurred from the use 

of this Data Flow architecture was 150 CPU cycles per sample. 

Secondly, the disassembled occam was searched for time 

consuming operations. These were detennined to be the GWN generator 

and the use of floating point arithmetic. Table 4.6 shows the cost 

incurred (in CPU cycles) by the use of such operations for each 

process. 

Process. Overhead GWN Floating Point 

Arithmetic 

Read (Liner Superposition) 150 645 

Displacement 150 630 

Head Amplifier 150 1290 

GXO Differentiator 150 1490 

GXO Gain Block 150 1490 

GXO Gating Signal Comparator 150 5957 230 

GXO Polarity Signal 11 150 5957 230 

GXO Gated Output 150 

Data Acquisition 150 

Totals 1350 11914 6005 

Total 19269 CPU cycles 

Table 4.6. Execution Times for the Processes used in the Model 

(in CPU cycles). 

During simulation of a 5kbps waveform, each data bit took 

approximately 0.2 seconds to be processed. As each data bit 

c..vo.s represented by 100 samples, each sample took 2mS to be processed, 

and therefore consumed 3()()()() CPU cycles (for a 15MHz part). Table 4.6 

therefore accounts for the majority of the CPU's activity. (The total 

of 19269 cycles does not take into account the degradation in 

performance caused by slow external memory (see section 3.2.2.1.)). 

From Table 4.6 it can be seen that the use of GWN to model 

electronic noise consumed in excess of 60% of the CPU's resources. 

167 



Whilst a figure of nearly 6000 cycles to generate each noise sample 

seems high, most GWN algorithms use trigonometric functions that are 

also very time consuming (for example sin(x) consumes approximately 

3400 CPU cycles). 

The use of floating point arithmetic consumed approximately 

30% of the CPU's resources. This may be reduced by using a T800 

transputer as it has a dedicated floating point Co-processor 

(INMOS, 1988b). This reduces addition and subtraction from 

approximately 230 cycles to 7, and multiplication from approximately 

200 cycles to 11. As floating point arithmetic was also used by the 

GWN generator, considerable improvements would be expected. 

To verify this the model was transferred to a 17 .5MHz TSOO 

transputer. The time to simulate each data bit was reduced from 

0.2 seconds to 0.099 seconds. Compensating for the difference in 

clock rates, this represents a 88% performance improvement. 

In some programmes the communication overhead creates a 

performance bottle-neck. Referring back to figure 4.35, each process 

used 95 CPU cycles per sample (i.e. 32+63) inputting and outputing 

data. Communication therefore consumed less than 5% of the CPU's 

resources, and suggests little would be gained by improving the 

efficiency of the message passing (~or example by increasing the 

length of messages). 

4.8. Summary. 

This section summarises the results and discussions of the three 

systems investigated. 

Analytic expressions were developed to describe the shape of 

the isolated pulses from the inductive and magneto-resistive heads. 

Although there was excellent agreement between the shapes of the 

pulses produced by these equations and those from the heads, the 

technique used to derive these equations had two limitations: 

i) Due to the discontinuities in the waveforms, a large amount 

of human intervention was required to produce reliable results .. 

ii) With no theoretical basis, the equations derived could not 

168 



be manipulated in any manner that could be related to the recording 

process. 

The model could therefore be usefully extended by adapting a 

more conventional approach to pulse shape modelling, for example one 

of the methods investigated by Loze (Loze, 1990). 

The recording current level was adjusted to minimise the 

effects of intersymbol interference in the un-equalised channel of 

the compact-cassette system. A reduction in peak-droop by more than 

50% was achieved, albeit at the expense of signal amplitude and 

therefore SNR. Further performance improvements were observed when 

more advanced (and more expensive) recording medium tapes (e.g. metal 

particle) were used. 

The compact-cassette system achieved a total data rate of 

22kbps at an error rate of Ixlo-5. The simulated data rate results 

agreed closely with those from the compact-cassette system, the only 

notable deviation being a shift of approximately 300bps (or 6% of 

Skbps) in data rate. The improved error rate performance of the 

model was attributed to the use of new tapes during characterisation 

of the reference pulse. Simulation indicated that the error 

performance of · the compact-cassette system may be increased further 

by using a Peak detector. The data rate to error rate ratio maximum 

of 6.7xl010 compared favourably with a similar system (Donnelly, 

1989). The performance of the MR head in terms of data rates was very 

disappointing. This was attributed to the lack of magnetic shields 

(the pole-pieces), and increased spacing loss caused by poor 

fabrication. 

The correlation coefficient between the positional error 

profiles was found to be high (around 0.9) between replays, but low 

(around 0.1) between recordings. These fmdings discouraged an 

investigation into using a knowledge of a cassette's positional error 

profile from one recording to determine the error correction scheme 

applied during subsequent recordings. 

The strategy of processing the data from each track separately 

proved to be successful in eliminating errors caused by . misaligned 

data due to azimuth skew. The effect of azimuth skew in terms of its 

169 



signal attenuating property is dependant on the recorded packing 

density. At 5kbps, azimuth skew in excess of 20 minutes of arc needed 

to be introduced before the attenuation was sufficient to directly 

cause errors. This represents considerably more skew than the 4.4 

minutes of arc encountered under normal operating ··conditions 

(Donnelly, 1989). The investigation concluded that azimuth skew was 

not a severe limitation on the ultimate performance of the recording 

channel. 

In the compact-cassette format, the amount of Lateral Head 

Displacement (LHD) encountered under normal operating conditions does 

not significantly contribute to the error rate. Significant levels of 

LHD were deliberately introduced for investigative purposes. From the 

LHD error rate profile the critical displacements that mark the 

boundaries between acceptable and unacceptable performance were 

noted. From these figures, the track separations and mutual 

interference factor between interfering tracks were calculated. The 

mutual interference factor was found to be highly dependant on the 

relationship between the two interfering signals, and the 

relationship was found to be complex. 

A new figure of merit was proposed. It specifies the range of 

displacements from which an acceptable level of performance may be 

achieved, expressed as a percentage of the track separation. The 

compact-cassette system's LHD figures of merit were 91.2% and 70% for 

track separations of 0.888mm and 1.304mm respectively. From 

simulation, the proposed magneto-resistive head achieved an LHD 

figure of merit of 90.7%. 

The simulated LHD results were in general agreement with those 

from the compact-cassette system, but only to a ftrst approximation. 

The difference was highlighted by the LHD figure of merit, for which 

the model produced figures of 76.5% and 74.1% (compared to 91.2% and 

70%). 

Although unaffected by the data misalignment caused by azimuth 

skew, the signal attenuating . effects of azimuth skew degraded the 

performance of the compact-cassette system in the presence of LHD. 

The LHD figure of merit was reduced from 91.2% to 66% (the second 

figure of merit could not be calculated as head 3 never achieved an 

170 



acceptable level of performance reading track 2). 

The LIID compensation scheme was found to be successful in 

terms of estimating the on-track signal from the off-track signal. 

For all displacements investigated, the correlation coefficient 

between the on-track signal and the compensated off-track signal was 

maintained at a value greater than 0.9, including the_· worst-case 

displacement of half the track separation. The compensation scheme 

was sufficiently effective to allow the off-track signal to be 

decoded with no errors (again, including the worst-case 

displacement). The RMS value of the signal was found to be a good 

estimate of the magnitude of the LHD, performing better than ±10% of 

the exact displacement, and improving the LHD figure of merit from 

43% to 92%. 

The choice of occam and the transputer was vindicated 

by the results presented in this chapter. Solutions to inherently 

parallel problems were implemented in a very straightforward way, and 

efficiently executed by the transputer. 

171 



4.9. References for Chapter 4. 

BAKER, W.R., A Dropout Model for a Digital Tape Recorder. IEEE Trans. 

on Magnetics, Vol. MAG-13, No. 5, September 1977. 

DONNELLY, T. Real-Time Microprocessor Techniques for a Digital 

Multitrack Tape Recorder, Ph. D. Thesis, Polytechnic South West, 

1989. 

JEFFERS, F., & Karsh, H. Unshielded Magnetoresistive Heads in Very 

High-Density Recording. IEEE Trans. on Magnetics, Vol. MAG-20, 

No. 5, September 1984. 

ILS, Interactive Laboratory System, Signal Technology, Inc. , 

California, USA, 1987. 

INMOS Ltd., Occam 2 Reference Manual. Prentice Hall International 

(UK) Ltd., 1988 (a). 

INMOS Ltd., Transputer Reference Manual. Prentice Hall International 

(UK) Ltd., 1988 (b). 

INMOS Ltd., The T9000 Transputer: Product Overview. INMOS Ltd., 1991. 

KATZ, E.R., & Cambell, T.G. Effect of Bitshift Distribution on Error 

Rate in Magnetic Recording. IEEE Trans. on Magnetics, Vol. 

MAG-15, No. 3, May 1979. 

LOZE, M.K., Middleton, B.K., Ryley, A, and Wright, C.D., A Comparison 

of Various Methods for Characterising the Head-Medium Interface 

in Digital Magnetic Recording. IEEE Trans. on Magnetics, Vol. 

MAG-26, No. 1, January 1990. 

WILLIAMS, S.A. Programming Models for Parallel Syatems. John Wiley & 

Sons Ltd., England, 1990. 

172 



5. Review and Conclusions. 

The impetus behind the information storage industry is to 

increase the storage capacity of devices. In magnetic recording this 

means increasing the areal bit packing density. This may be achieved 

by reducing the space between, and width of, recorded tracks, and/or 

reducing the wavelength of the recorded information. Section 1.1.1 

detailed the advantages, in terms of SNR, of increasing the track 

density as opposed to reducing the wavelength of the recorded 

information. Techniques to deal with many of the problems exacerbated 

by the use of higher track densities have been developed. 

The problems of low SNRs and high error rates may be 

alleviated by the use of more sophisticated coding schemes. The 

higher levels of static inter-track cross-talk may be compensated for 

(at least partially) electronically. The maintenance of correct 

registration between the tape and head has been achieved by 

manufacturing components of the tape and tape transport mechanism to 

tighter tolerances. This approach results in increased manufacturing 

costs. With the advances being made in microprocessor technology, the 

cost of computation is falling, and is expected to carry on doing so. 

It is therefore extremely relevant to investigate how software 

techniques may be used to compensate for these mechanical 

deficiencies. 

This project has investigated the performance of a 

multiple-track digital magnetic tape system, concentrating on the 

problems that a tape transport mechanism manufactured to a low 

tolerance may be prone to. The following conclusions pertain to the 

performance of the compact-cassette system, the structure of the 

computer model developed and the impact of occam and the 

transputer on the investigation. 

The Compact-Cassette System. 

The successful integration of the transputer into the data 
' channel of the compact-cassette system was largely due to the 

173 



operation of the interface between the replay electronics and the 

transputer's Link. Not only did it provide a seamless join 

between the hardware and software, it reduced by a factor of 9.5 the 

number of read operations required, compared to using a software 

polling technique with the same timing resolution. 

The error classification scheme devised provided significantly 

more detailed information about the error rate profile than the raw 

bit error count used by many researchers. Its operation is not 

dependent on any specific data sequence, and only requires the 

specification of two parameters - the minimum good sequence length 

between bits in error, and the maximum bad sequence length. 

The investigation into the effects of mechanical deficiencies 

on performance concentrated on Azimuth Skew and Lateral Head 

Displacement (LHD), the problems of inconsistent tape speed having 

been addressed (Donnelly, 1989). Misalignment of data between tracks 

of more than 1/4 of a data bit causes errors in a parallel sampling 

tape recorder. By reversing the overall architecture from a 

sequentially processed, N-bit parallel data channel, to N serial data 

channels processed in parallel, the system was unaffected by such 

data misalignments. Levels of azimuth skew greatly in excess of those 

encountered during normal operating conditions needed to be 

introduced before the resultant attenuation in signal amplitude 

directly caused errors. For these two reasons, combined with the fact 

that attenuation due to azimuth skew reduces with track width, 

azimuth skew was not viewed as a severe limitation on performance. 

The impact of LHD on error rates increases as track widths and 

guard-bands decrease, and was therefore of prime interest. The 

compact-cassette's track dimensions are significantly larger than the 

magnitude of LHD encountered under normal operating conditions. 

Artificially high levels of LHD were therefore introduced to simulate 

the effects of LHD on very narrow track systems. 

A system designer's objective is to keep the error rate within 

the capabilities of the error correction scheme. There is therefore a 

maximum error rate, above which an acceptable level of performance 

may not be attained. As the head is displaced from its on-track 

position, the system's performance (in terms of error rate) decreases 

174 



until it becomes unacceptable. To date, the system designer has used 

this point of unacceptability to specify the maximum displacement 

that may be allowed. If this approach is maintained, then as track 

dimensions reduce, system performance will become even more dependent 

on the mechanical tolerances of the tape transport mechanism. The 

approach used for this investigation was to assume that significant 

levels of LHD will be present in future systems, and to develop 

schemes to cope with the resultant degradation in performance. If the 

head is displaced past the point of 'acceptability', it will 

eventually start to read the track recorded by an adjacent head. With 

this approach, the LHD error rate profile forms three distinct 

regions: 

i) Acceptable performance reading the correct track. 

ii) Unacceptable performance. 

iii) Acceptable performance reading an adjacent track. 

A new figure of merit was proposed, one that specifies the 

percentage of displacements from which an acceptable level of 

performance can be achieved. For the two track separations the 

compact-cassette system achieved figures of merit of 91% and 70%. If 

this figure could be increased to 100%, LHD would no longer be a 

constraint. Using conventional decoding techniques such a figure is 

not possible: when the head is equidistant between two tracks neither 

track will be decodable. 

A compensation scheme was devised to improve this figure. The 

scheme is effectively the inverse of the that used to introduce LHD 

in the model. From a knowledge of the track format dimensions, and 

an estimate of the LHD, the relative proportions of the signals from 

the two interfering tracks may be calculated. Starting with the 

signal from the head not corrupted by an adjacent track, the levels 

of interference may be calculated, and (at least partially) 

compensated for. Using this scheme, the correlation coefficient 

between the optimally replayed signal and the compensated signal from 

the displaced head remained greater than 0.9 (including the 

worst-case displacement of half the track separation). In terms of 

error rates, the cbmpensation scheme was found to be 100% effective 

175 



in compensating the two outermost tracks when the exact amount of LHD 

was known. The attenuation of signal amplitudes may be used to 

estimate the magnitude of the LHD. Using this estimate, the 

compensation scheme performed better than using ± 10% of the exact 

value of LHD. 

Although, as stated above, azimuth skew was not viewed as a 

severe limitation on performance, the introduction of 13.3 minutes of 

arc of azimuth skew had a considerable effect on the LHD error 

profile: the first LHD figure of merit was reduced from 91.2% to 66%, 

whilst the second was immeasurable. Although such high levels of 

azimuth skew would not normally be encountered under normal operating 

conditions, it is recognised that azimuth skew compounds the problem 

of LHD, and would place a greater demand on a LHD compensation 

scheme. 

The investigation established that the effects of azimuth skew 

need not impose a significant limitation on the performance of 

multiple-track digital magnetic recording systems. However, LHD was 

found to impose a severe limitation on the performance of 

multiple-track system that employ narrow and closely spaced tracks. 

The effects of LHD were quantified, and a compensation scheme devised 

to reduce its effect on system performance. This allows low-cost tape 

transport mechanisms to be used with narrower and more closely spaced 

tracks, thereby increasing the packing density. 

The Model. 

The model allows investigations into the performance of a 

multiple-track digital magnetic tape system to be carried-out in a 

strictly controlled environment. Although based on one specific 

recording system (the compact-cassette system), its modular structure 

greatly simplifies the task of adapting it to simulate different 

systems. 

The isolated pulses that form the basis of the linear 

superposition process where derived analytically: no knowledge of any 

magnetic recording parameter was required. The high level of accuracy 

176 



of the results facilitated by this technique was gained at the 

expense of flexibility: the pulses cannot be manipulated in any 

manner that can be related to the magnetic recording process. 

A one-to-one mapping between the physical elements of the 

compact-cassette system and the model was used whenever possible. For 

example, rather than simulate one track of the multiple-track system 

and assume consistency between tracks, all tracks were simulated 

concurrently. Therefore when the model was extended to allow lateral 

head displacement to be simulated, the interfering signals from 

adjacent tracks were already available. All that was required was an 

occam process to introduce the relevant amount of cross-talk. 

This one-to-one mapping also allowed the elements of the model 

to be manipulated in an almost tangible way. This was demonstrated by 

the way elements of the GXO detector were rearranged to form a Peak 

detector. A direct analogy was drawn between the editing operations 

involved in modifying the model's code, and the rewiring operations 

that would have been carried-out, had the modifications been made to 

the electronic circuit. 

As the whole of the recording system was included in the 

model, the effect of a parameter on performance was measured in terms 

of its effect on the error rate profile of the system. The error rate 

is the primary measure of a systems performance. Measurements based 

on other parameters, such as frequency response or SNR, are 

essentially intermediate indicators of performance. As the model has 

been validated against a real recording system, the signal to error 

rate conversion was known to be reliable and accurate. 

The ability to simulate the performance of a complete 

multiple-track digital magnetic tape system in such an explicit 

manner, and the ability to measure the performance directly in error 

rates makes the model innovative. 

The model was developed to provide a controlled environment in 

which investigations into the performance of multiple-track digital 

magnetic recorders may be carried-out. Its development also became a 

vehicle for a greater understanding of the recording channel. The 

inspiration for the LHD compensation scheme came whilst working on 

the process that introduces LHD in the model; one being the inverse 

177 



of the other. An advantage of the model's structure is that it may be 

modified easily, allowing novel ideas that aim to improve the 

performance of magnetic recording systems to be investigated. 

occam and the transputer. 

Parallelism occurs at many levels in a multiple-track digital 

magnetic recording system. The semantics of the occam programming 

language greatly simplified the design of the software written during 

this project. As occam does not require the real-world to be 

transformed into a sequential representation, the structure of the 

model was designed to follow that of the hardware. The model 

therefore naturally formed a Data Flow structure, with a near 

one-to-one mapping between the functional blocks of the hardware and 

the software. 

The parallel streams of data associated with the 

multiple-tracks was described directly, as were the parallel data 

streams internal to the GXO detector model. A natural hierarchy of 

processes within processes was developed. The overhead incurred by 

the use of such a structure was found to be low. The usefulness of 

occam would be considerably undermined if parallel constructs, 

such as this, incurred a heavy performance penalty. However, the 

transputer executes occam processes very efficiently avoiding 

this. The level of efficiency achieved allows occam to be used 

even in the performance-critical area of real-time processing. 

A significant benefit of using occam was that it greatly 

simplified the design of the code for both the compact-cassette 

system and the model. This was efficiently executed by the 

transputer. Many of the advantages that were gained from the use 

of Occam and the transputer m this project are equally 

applicable to other inherently parallel systems - not just limited to 

magnetic recording. Their use was a major contributory factor to the 

success of the techniques developed. 

178 



5.1. Suggestions for Further Work. 

The isolated pulses used in the model developed were derived 

using purely numerical techniques. The usefulness of the model can be 

extended by using a pulse fitting technique that is based on the 

parameters of the magnetic recording process. This would allow the 

effect of such parameters on system performance to be included in 

further investigations. 

Because of the compact-cassette's track dimensions it was not 

possible to investigate the performance of the LHD compensation 

scheme when applied to more than two tracks. Due to the iterative 

nature of the scheme, its efficacy is expected to decrease as the 

number of tracks increase. This is because the signal from the nth 

track is estimated initially, and then, based on this estimate, an 

estimate of the signal from the (n + 1)th track is made. As each 

estimate is based on all previous estimates, successive estimates 

will decrease in accuracy. The effect of this on the performance of 

the scheme needs to be investigated. The model may be used to perform 

such an investigation. 

The performance of the transputer used during this 

investigation was insufficient to allow the data from the 

compact-cassette system to be processed in real-time. The performance 

of the next generation of transputers has been dramatically 

improved. Comparing the T414-15(1NMOS, 1988) used in this 

investigation with a T9000-50(1NMOS, 1991), instruction throughput 

has been increased 25 fold, whilst the floating point performance has 

been improved approximately 350 fold. The improvement in performance 

would speed-up simulations, and allow even more sophisticated schemes 

to be implemented. 

The envisaged data rates of HDTV recorders demands the use of 

a multiple (or parallel) track format. Further investigations will 

need to be made as current systems lack the necessary performance. 

Tools and techniques such as those developed in this project may be 

used in such studies. 

179 



'References for Chapter 5. 

1INNlQS .l.td,, 1'ransiJll~r 'Reference Manu~. Preritice Flail International 

~NK) Ltd:, .1988 (a). 

INMOS Ltd., TheT9000-'f.ransputer: ProduCt 0verview.,INMOS Ltd., 1991. 

180 



Appendix A: Published Paper. 

Presented at EUROMICRO '88. Supercomputers: Technology and 

Applications, Zurich, August 1988. Published in Microprocessing and 

Microprogramming 25, pp281-285, by North-Holland. 

AI 



North· Holland 
Microprocessing and Microprogramming 25 (1989) 281 -286 281 

A Real-Time Transputer-Based System for a Digital Recording 

Data Channel 

T.J. Jackson, D.J. Mapps, E.C. ffeachor and T. Donnelly 

Department of Electrical and Electronic Engineering , Plymouth Polytechnic, 
DraKe Circus, Plymouth , Devon , PL4 8AA, U.K. 

ABSTRACT: A number of techniques found useful when using a Transputer, 
programmed In occam , as the data processing element In the data channel of a 
fou r-tracK compact-cassette digital magnetic tape recorder are described . A 
simp le circuit has been designed which multlplexes the asynchronous data from 
.the four tracKs down a single LinK. The Transputer's ability to handle 
para I le I processes, and to accurately time events has been uti I I sed to so lve 
the problems caused by tape sKew. 

1 . INTRODUCTION. 

Through the use of higher I lnear b i t densities 
and a greate r number of tracKs, the areal bit 
density of magnetic digita l storage systems has 
Increased . Wider bandwidths and new coding 
schemes [1) have enabled data transfer rates to 
be Increased. Coding Is normally used to 
maximise the use of aval lable bandwidth and to 
enab le errors t o be corrected . Our long term 
aim Is to achieve further Improvements using 
microprocessors In the coding process . Figure 1 
shows the overal I system. 

IB~ PERSONAL COMPUTER 

RECORD/PLAYBACK 
HEAD 

I.IAGNETIC 
TAPE 

There are a number of Issues which must be 
addressed, such as I lmlted bandw idth and the 
corruption of data . The data channe l has a 
restr icted bandwidth, with zero response at 
zero frequency and a I lmlted high frequency 
response. Therefore, channel cod ing Is 
normally used to match the characteristics of 
the data stream to that of the recording 
channel. Pr imary causes of errors Inc lude 
tape/head separation and tape-sKew variation . 
Error correction coding [2] Introduces extra 
Information Into the data stream In such a way 
that the data lost or corrupted during these 
occasions can be detected and corrected . 

TRANSPUTER BOARD 

LINK 

IUS U14 
TRANSPUTER 

PLAYBACK 
SIGNAL 

CONDITIONING 

RECORD 
SIGNAL 

CONDITIONING 

INTERFACE BOARD 

Figure 1: Transputer-Based Dig i tal Record ing System. 

A2 



282 T.J. Jackson et al. I Transputer·Based System for a Digital Tape Recorder 

Many of the tasks Involved In the recovery of 
data from multip le track digital recording 
systems are Inherently paral lel In nature. 
Therefore, when these tasks are to be performed 
by a conventional microprocessor, the 
description of these tasks must be written In a 
sequential form . There Is often no efficient 
mapping from the natural para I lel description 
to the sequent ial one. Consequently, the final 
Implementation Is often Ineffic ient. This 
compounds the problem of I lmlted processing 
time Imposed by ' rea l-t ime ' processing. As a 
result , systems often require dedicated 
hardware to carry out the coding. However, 
recent advances In VLSI fabrication techniques 
and archltectures have raised the level of 
performance of some general purpose 
microprocessors, to the point where their use 
In the coding process may be real lstlcal ly 
Investigated . 

Three technIques wh I eh have proved usefu I In 
our Invest igation are now described . Fol lowlng 
a brief resume of the salient points of the 
Transputer Is a description of a circuit which 
enables up to eight asynchronous data channels 
to be multlplexed down a single Transputer 
Link . Two software techniques follow : the first 
solves the problem of tape-skew at the decoding 
process, whl 1st the second removes some of the 
time dependent aspects of processing the data 
stream In real-time . 

2. THE TRANSPUTER . 

The Transputer's [3] high Instruction 
throughput (10 MIPS for a 20 MHz IMS T414) and 
wide 1/0 bandwidth (40 Mblts per second) make 
lt wel I suited to the evaluation of complex 
algorithms at high data rates. Of more 
Importance to this appl lcatlon Is the ease with 
which para I lel systems can be described and 
efficiently evaluated In the Transputer 's 
native language , occam. Transputers can support 
two levels of concurrency : true concurrency 
using more than one Transputer In a network , 
and pseudo-concurrency by time-si Icing tasks 
within the Transputer . The main point Is that 
the Transputer has a hardware scheduler . This 
Is separate from the processing un i t and 
~ontro ls the time-si Icing of tasks . Th is has 
two benefits. The programmer does not have to 
write a task scheduler In software , and the 
processor Is rei leved of the extra processing 
Involved In executing this code . As there Is 
no syntactic diffe rence between a para I le I 
process being run truly concurrently or 
pseudo-concurrently, the occam programme can be 
wr i tten without spec i fying how many Transputers 
wl I I be used to execute the final version (this 
Is done at the Configuration s tage ) . 

A3 

3 . INTERFACING . 

The Transputer ' s primary method of 
communication Is a two wire, bi-directional 
ser ial Link . Transputers have one or more Link 
Interfaces which control the flow of data over 
the Link . Once In i tiated this Link transfer 
proceedes without further Intervention from the 
processor . If communlcat·lon Is with another 
Transputer , the Link connects to that 
Transputer's Link Interface . An adapter can be 
used to convert the Link to a more common 
format, enab l lng dev ices without Link 
Interfaces to be communicated with . An IMS 
C011 Link Adapter [4] was used, which, In mode 
1, conver ts the Link Into two handshaken byte
wide para I le I Interfaces. To enable Links to 
comply with occam ' s channe l communication 
protocol, the Input Interface has two 
handshaklng I lnes : Input Val Id (IVal) and Input 
Acknowledge ClAck). However, the data channel 
of a tape recorder Is asynchronous and does not 
mon i tor or generate the requ ired complementary 
signals . 

Three solutions to this problem were 
considered. The signals may be generated by 
the correspond ing handshaklng I lnes of the 
output Interface (QVal and QAck). This 
requires an output to be Issued with the Input 
command whenever data Is to be read . This does 
not require extra hardwa re , but Increases the 
processing time associated with Inputting data, 
and may hinder the use of the output ·Interface 
Itself. Software pol I lng must be used , and 
th is Is wasteful of the processor ' s resources, 
as we I I as violating occam·s channel 
communication protocol . Secondly , a Port which 
does not use handshaklng may be mapped Into the 
memory map of the transputer . Ports are non
standardised, need extra circuitry and require 
software pol I lng . 

The th ir d solution , the one chosen, was to 
bu l Id additional circuitry which monitors and 
genera t es the required handshaklng signals. 
Figure 2 shows the circuit and timing d iagram. 
When the magnitude comparator detect s new data 
lt takes IVal high . This disables the 
transparent latch stopp ing further new data 
appearing at the comparator. When the Link 
Adapter has read the data from the fl lp-flops 
lt takes lAck high. Th i s clocks the fl lp
flops, transferring the new data to the Input 
of the Interface for the next r ead, and making 
the P and Q Inputs of the comparator equal . 
The comparator takes IVal low to complete the 
cycle . If new data had arrived whilst the 
latch was disabled , lt would now In i t iate a new 
read cycle, else the circuit waits for new 
data . In this way up to 8 asynchronous data 
channe ls can be rei lab ly multlplexed down a 
si ng le Li nk. 



T.J. Jackson et al. I Transputer-Based System for a Digital Tape Recorder 283 

IVal 
{ 

I 8 
lAck 

' 
ENABLE V 8 

I " 
... CLOCK ' .. 

Din ~ ,...,.., Din Dout " 
INPUT 

" Dout 1--
' .. INTERFACE 

FROI.4 TAPE 8 
UNIT TRANSPARANT " 

EDGE LINK 

LATCHES ~ TR.IGGERED L..J.., 
- ADAPTER 

~ 
FLIP-FLOPS 

~ 
p p.;Q 1-- LlnkOut 

~ t.IAGNITUDE 
Link In 

COMPARATOR 
~ 

(a) Q TO 
TRANSP UTER 

(b) 

p _j 

Figure 2 : (a) Interface Circuit Diagram, and (b) Timing diagram. 

Two points are worth noting . First ly, the 
tim ing resolution between two non-coincident 
data transitions using this Interface Is 
dependent on the execution time of the process 
performing the Input Instruction. This process 
should be run at high priority , and (as with 
al I high priority processes) kept as short as 
possible . Secondly, the fl lp-flops Introduce a 
de lay of one bit period between the time the 
data Is detected by the comparator, and the 
time the data Is read by the Link Adapter . 

4 . DE- SKEWING FOR CHANNEL DECODING . 

The Initial task of the channel decoding 
process Is to detect transitions In the data 
stream, and from thi s decide at what po int the 
data should be sampled. If al I tracks are 
sampled at the same time, tape-skew needs to be 
taken Into account. Ideally, the tape should 
pass the head In a straight 1 lne . In practice , 
due mainly to Imperfectly silt edges, the tape 
weaves across the head, producing a constantly 
varying skew ang le, see Figure 3 . 

A4 

t.IAGNETI C TAPE FACE OF 
RECORD/PLAYBACK 

HEAD 

SKEW ANGLE 

Figure 3: Tape Skew . 



284 T.J. Jackson et al. I Transputer·Based System for a Digital Tape Recorder 

DATA SAMPLE 
(1 BIT PER TRACK) 

TI~E WHEN SAMPLE TAKEN 
(32 BITS WIDE) 

Figure ~ : Time Stamping Data . 

At low I lnear packing densities this Is not a 
significant problem as the amount of skew Is 
Insufficient to cause the sample point to drift 
Into the next bit eel I . However, as the I lnear 
packing density Increases. the magnitude of 
data-skew (measured In bits) between tracks 
Increases . At high recording frequencies tt 
has been shown [5] that tape-skew Is a 
significant cause of errors . 

This problem was addressed In software by 
having a separate channel deodlng process for 
each track, thus e xploiting the Transputer ' s 
para I lel processing capabl 1 lty . The channel 
coding algorithm used was Blphase-Level. Each 
track has I ts clock Information regenerated and 
sample points calculated Independently of the 
other tracks . This results In a skew 
Insensitive system which, as a result of the 
de-coding algorithm used [6], Is self 
synchronising and Insensitive to tape-speed 
var iations. 

5. TI~E STAMPING DATA . 

When a single Transputer Is running a number of 
processes In para I le I. although the logical 
result wl I 1 be the same as though each process 
were running at the same time, only one process 
Is being executed at any point In time. 
Therefore , If a number of parallel processes 
are timing external events, only one wl I I 
correct ly time the event. 

A5 

As mentioned In the previous section , the 
channel decoding processes use the time 
Interval between successive transitions In the 
calculation of the sample point time . As these 
processes (one for each track) are run In 
para I le I. they cannot rei lably record the time 
of the transitions. A solution Is to have a 
separate process, running at high priority, 
which samples al I tracks simultaneously and 
records the time the sample was taken. The 
Individual data bit for each of the tracks Is 
then output to the relevant decoding process 
along with the sample time. Each decoding 
process can then calculate the time Interval 
between successive transitions . 

The smallest data type which can be output from 
a process Is a byte . When the sampling process 
has a single data bit to output to a decoding 
process, it would be very Inefficient If 8 bits 
had to be output. A more efficient solution Is 
to combine the sample time data <a 32 bit 
Integer) and the data bit , see Figure ~. By 
replacing the least significant bit of the 
sample time data with the data bit, both pieces 
of Information can be efficiently sent to the 
decoding processes. albeit at the expense of a 
reduction In timing resolution . 

Time stamping data In this way rei leves some of 
the timing problems caused by processing In 
real-time, that Is. the data wl I I be correctly 
processed regardless of when this Is carried 
out . This allows simple data bUffers to be 
used to average out processing demands . lt 
also helps In the programme devel opment stage . 
lt Is much more difficult to debug a progr amme 

........ ____________ _ 



T.J. Jackson et al. I Transputer-Based System for a Digital Tape Recorder 285 

running In real-time . After the data has been 
time stamped, lt need no longer be processed In 
real-time. This allows the programme to be 
debugged In two part s, the maJority of which 
can be done off-1 lne, greatly slmpl lfylng the 
task . 

6. CONCLUSIONS . 

A simple method of multlplexlng up to eight 
asynchronous data channels down a single Link 
has been devised . This, together with the de
skewlng and time stamping techniques described, 
has enabled a Transputer to be successfully 
used as the processing element In the data 
channel of a compact-cassette digital magnetic 
tape recorder . 

ACKNOWLEDGEMENTS . 

The authors would I lke to thank the Science and 
Engineering Research Counc l I, and Thorn EM I 
Central Research Laboratories for their 
financial support. 

REFERENCES. 

[1] Do l, T.T . , Channel Codlngs for Dig i tal 
Recordings, In : J. Audio Eng. Soc., Vol . 
31, No. 4, pp.224-238. Aprl I 1983 . 

[2] Watklnson, J. , The Art of Digital Audio . 
Chapter 7. (Focal Press, 1988) . 

[3] IMS T414 Transputer Data Sheet . INUOS 
Limited. August 1987 . 

[4] IMS C011 Link Adapter Data Sheet. INUOS 
Lim ited . August 1987 . 

[5 ] Donnel ly, T., Wapps , D.J . and Wl lson , R. , 
Real-time Microprocessor Monitoring of Skew 
Angle In Compact Cassette Multltrack 
Wagnetlc Tape System, In: J. of 1 . E.R.E. 
Vol. 56 , No . 2, pp 49-52, February 1986 . 

[6] Donnelly , T., Mapps , D.J . and Wllson, R. , 
An lntel I lgent Microprocessor Interface for 
a Low-Cost Digi tal Magnetic Tape Recorder, 
In : Mlcroprocesslng and Wlcroprogrammlng 23 
(1988) pp333- 338 . 

IMS and occam are trade marks of the INUOS 
Group of Companies . 

A6 



Appendix B: Mathematics of Magnetic Recording Theory. 

This appendix is derived largely from the introduction given by 

Middleton (Middleton, 1987) , with additions from Mallinsons book 

(Mallinson, 1987). 

Figure Bl shows the pole-pieces of an inductive ~g type head 

travelling over a magnetised section of tape. If the components of 

the magnetisation are Mx and My, and the fields from the head 

have components Hx(x,y,z) and Hy<x,y,z) , then the components of 

the induced voltages can be shown to be: 

T 

/ Pole Pieces 

x' 

Velo ci t y v 

z ax1s in to paper 

Fig. B. l . Coordinate System and Symbols of the 

Reciprocity Theorem. 

+w/2 d+o + eo 

J J J 
dMx(x-X) Hx(x ,y,z) dx dy dz 

dX L -w/2 d - eo 

Equ. B.l 

+ w/2d+o + eo 

J J J 
dMy(x-X) Hy<x,y,z) dx dy dz 

dX {. 
-w/2 d -eo 

Equ. B.2 

Bl 



where JJo = permeability of free space. 

X= Vt 

V = Tape-to-head Velocity 

i = Current to produce above field 

d =Head-to-Medium spacing 

o = Media Thickness 

w = Track width (assumed equal to read track width) 

In most cases the width of the recorded track 1s so large 

compared to other dimensions that the field in the z direction may be 

assumed constant. This simplifies the above to: 

d+o +oo 

J 
J dMx(x-X) Hx(x,y) dx dy 

dX 1 
d -oo 

Equ. B.3 

d+o +oo 

J 
J dMa~-x) Hy<x,t dx dy 

d -eo 

Equ. B.4 

Expressions are now required for the magnetisation and head 

fields. From work by Karlqvist, for distances y > g/2, the head field 

components are: 

Egu. B.5 

Equ. B.6 

where Hg is the field (assumed constant) in the Gap of width g. 

If one assumes the magnetisation in the x direction varies 

sinusoidaly, i.e. 

B2 



where Mo = Maximum magnetisation 

k =wave number = 21r!>. 

>. = wavelength of the recorded signal 

then the reproduced signal is: 

e(X)= C1 Vw. ko . (e-kd). (l-e-ko). 
ko 

Spacing Thickness 

Loss Loss 

where C 1 = -J.IoMoJlgg 

i 

EQu. B.7 

sin(kg/2). cos(kX) 
(kg/2) 

Equ. B.8 
Gap Loss 

The three loss terms indicated are discussed in the main text. 

In digital recording the Williams-Comstock model is often 

used, where (considering only the x components) the magnetisation 

between recorded bits is assumed to vary according to: 

Equ. B.9 

where fx defmes the length of the transition , and is refered to 

as the arctangent parameter, see figure B.2. 

The reproduce signal now becomes: 

d+o 
ex(X) = c2. J (arctan 

0 

where C2 = -2J.Io VwMoJlg 

1fl 

((g/2)+X)+arctan ~ ) dy 
(fx +y) Vx+Yf 

Equ. B.lO 

B3 



2M 
Slope --0 

_ _ .L~ TTax 
/ 

/ ---=-:-;,--- -Mo 
/ 

Fig. B.2. Arctangent Magnetisation. 

- X 

This may be simplified further by assuming a 'near zero' gap head, 

thus: 

c3.1n [<fx+d+o)
2
+x

2 

(fx+d)2+x2 

where c3 = -JJ0 VwMoHgg 

1fi 

l 
Egu. B.ll 

Solving equation B.ll to find the Pulse Width at it's 50% 

height (PW50) gives: 

PW50 = 2j((fx +d)(fx +d + c5) Egu. B.l2 

Equations B.ll and B.12 may be reduced to even simpler forms by 

assuming near-zero magnetic media thickness: 

1 
1 + (x I (d + fx))2 

PW50 = 2(d + fx) 

Egu. B.13 

Egu. B.14 

Equation B.13 produces the so-called Lorentzian shape isolated pulse. 

B4 



References for Appendix B. 

MALLINSON, J.C., The Foundations of Magnetic Recording. Academic 

Press, Inc., USA, 1987. 

MIDDLETON, B.K. Magnetic Recording, Vol. 1: Technology; Chapter 5: 

Recording and Reproducing Process. Series Editors C. U. Mee, and 

E. D. Daniels, McGraw-Hill, Inc. USA, 1987. 



Appendix C: Programme for Calculating Isolated Pulse Waveform 

Coefficients. 

Written in FORTRAN-77 by Barry Good, Computing Dept, Polytechnic 

South West. 

PROGRAM CALCPUI.SE 

DOUBLE PRECISION A(9,9),B(9),C(9),X(9), Y(9),AA(9,9) 

DOUBLE PRECISION WKS1(9),WKS2(9),U 

C Data statements holding x,y coordinates of reference pulse 

DATA X/-5.47 ,-2.16,-1.34,-0.95 ,-0.67 ,-0.39,0.0,0.42,0. 75/ 

DATA Y/0.0,0.1,0.3,0.5,0. 7 ,0.9, 1.0, 1.00,1.000/ 

P(U)=( ((((B(5)*U + B(4))*U + B(3))*U + B(2))*U +B(1))/ 

I ((((B(9)*U + B(8))*U + B(7))*U + B(6))*U + 1.0DO) ) 

DO 1 1=1,9 

A(I,1)=1.0 

A(I,2)=X(I) 

A(I,3)=X(I)**2 

A(I,4)=X(I)**3 

A(I,5)=X(I)**4 

A(I,6) =-Y(I)*A(I,2) 

A(I, 7) =-Y(I)*A(I,3) 

A(I,8) =-Y(I)*A(I,4) 

A(I,9) =-Y(I)*A(I,5) 

1 C(I)=Y(I) 

IFAIL=O 

CALL F04ATF(A,9,C,9,B,AA,9,WKS1,WKS2,IFAIL) 

C Print coefficients to screen 

PRINT *, 1A(O) = ', B(l) 

PRINT *, 1A(l) = 1
, B(2) 

PRINT *,'A(2) = I, B(3) 

PRINT *,'A(3) = 1
, B(4) 

PRINT*,'A(4) = 1 ,B(5) 

PRINT *' 1B(O) = I' l.ODO 

Cl 



PRINT*, 1B(l) = I' B(6) 

PRINT*, 1B(2) = 1
, B(7) 

PRINT *' 1B(3) = I. B(8) 

PRINT*, 1B(4) = 1
, B(9) 

C Generate points on isolated pulse for plotting and verification 

DO 2 1=-545,75,1 

2 WRITE(*, lOOO)O.OlDO*I,P(O.OlDO*I) 

1000 FORMAT(1X,2Fl0.3) 

STOP 

END 

C2 



Appendix D: Polynomial Coefficients of Analytical Pulses. 

This appendix lists the coefficients of the following equation used 

to generate the isolated pulses for the computer model. 

f(t) =a[O] + a[1]t + a[2]t2 + a[3]~ + a[4]t4 

b[O] + b[1]t + b[2]t2 + b[3]t3 + b[4]t4 

Inductive Head. 

Left Hand Side Coefficients (-0.7mS to OmS). 

a[O] = 1.0 

a[1] = 1.686037684194£-02 

a[2] = 1.010845531056E-04 

a[3] = 1. 791685983396£-07 

a[4) = 9.465082048366£-11 

b[O] = 1.0 

b[1] = 1.663340065266£-02 

b[2] = 1.927853391487£-04 

b[3] = 9.873698980734£-07 

b[4] = 5.577926897161£-09 

Right Hand Side Coefficients (OmS to 0.8mS). 

a[O] = 1.0 

a[l) = 1.069159470110E-02 

a[2] = 7.919654258251£-06 

a[3] = -6.665960569085£-08 

a[4] = 4.802436072905£-11 

b[O] = 1.0 

b[l] = 1.047813788023E-02 

b[2] = 1.017671231541E-04 

b[3] = 1.612570906858£-07 

b[4] = 7.889232628934£-10 

01 



Magneto-Resistive Bead. 

Left Hand Side Coefficients (-4.67mS to OmS). 

a[O] = 1.0 

a[1] = 0.543152899120 

a[2] = 2.014308045450 

a[3] = 0. 767498500152 

a[4] = 7.519105275567E-02 

b[O] = 1.0 

b[1] = 0.538975094171 

b[2] = 2.28096305343 

b[3] = -0.178560580646 

b[4] = 0.872452758027 

Right Hand Side Coefficients (OmS to l.OmS). 

a[O] = 1.0 

a[1] = -1.62558035337 

a[2] = 0.875259954911 

a[3] = -0.267186288244 

a[4] = 3.260220221397E-02 

b[O] = 1.0 

b[1] = -1.58657485948 

b[2] = 1.05682774379 

b[3] = -0.202667007782 

b[4] = -0.237394845510 

02 



Right Hand Side Coefficients (l.OmS to 4.24mS). 

a[O] = 1.0 

a[l] = -1.76363990836 

a[2] = 0.746573193045 

a[3] = -0.207425786074 

a[4] = 2.749056807106E-02 

b[O] = 1.0 

b[1] = -1.71609518275 

b[2] = 0.952224069788 

b[3] = -0.216933245992 

b[4] = -0.413199507672 

D3 



~ -· (10 

~ -
63 
~ 

ti1 "'0 - (") 

se 
0 s-g 
(") 

el 
0.. 

V cc 

~- L vcc 15 5 ~ >1 16 
V cc YO 

15 
13 2A3 2Y3 """7--s ~ r-rr 
I! 2A2 r-- 2Y2 g-- 4 Gl !!.~ 4 
17 2Al ~ 2Y1 3 5 G2A 

~ 
Y2 f-7'" PAO 3 

G2B y 7 r.,- 74LS21 
8 2A4 ::::..,. 2Y4 12 3 PAl 2 , ... - 9 9 ____:.. 
6 1A4 IIIN IY4 14 2 c Y61i<>tc 

6 
PA2 I 

4 1A3 - ~ IY3 16 1 B 
" Crr-To , l PA3 40 ..... 

2 IA2 u ,.._ IY2 16 B A Y4~ PA4 39 
20 1Al 0 IY1 I - CND 

Y3r=f-
PA5 3B 

10 
vcc .___ IG '19 PA6 37 - GND 2G >---- I 6 PA7 

CS 

17 3 -
15 2A4 2Y4 ~ 6 .; 

u 
13 2A3 ,.- 2Y3 7 9 AI ~ 1B 

2A2 t! 2Y2 AO .. PBO 6 14 19 ~ 
6 1A3 ~..,. 1Y3 1-jz 

~ 
.s PB I 20 

1A4 ~ ~ IY4 rg 3 PB2 11 
- ~ 2Y1 8 Cl 2 1 

4 2AI ~ I .. PB3 22 ..... " 2 1A2 0 ,.._ IY2 16 T 
.c,., PB4 23 

20 !AI 0 IYI I 
1 1 

5 ·t"~ PB5 24 Vcc '---- IC I><D 

Re~ 

' p 

10 - GND 2G 

20 
V cc 

r--

10 "' DlR .. 
EN 2 GND ... 

-~ 
3 AI " B1 

C) 

4 A2 c;,., 82 ..... 
5 A3 /;:N 83 

6 A4 .. ~ 84 , ... 
7 AS "' ..... B5 

8 A6 .. B6 

9 A7 .... B7 u 
AB 0 BB '--

C Edge Conneclor 

~ 

1 
19 
18 
17 
16 
15 
14 
13 
12 
11 

IB M PC Interface 

RD PB6 36 0..)( 25 
WR v o.. PB7 

:O!i .. 
8 
6 .. ... 
"" 0 ... 

0.. 
-

10 
PC7 ll 
PC6 12 
PC5 13 
PC4 17 
PC3 16 
PC2 r-rs-

35 PCle=Jl 
Reset PCOII 

r--

Card 
~,f,B~I 5~ 5~ 90 

5~ 90 

-cl £ND~ Vcc 9 
6 G ;:! DIR 

6 A7 ·;; 87 
u 

4 A5 ~,., B5 

2 A3 t:~ B3 

3 AI ; ~ Bl 

5 A2 III~'- B2 

7 A4 Cl B4 

9 A6 .... B6 u 
AB 0 BB -

~ 
r--

9 GND ~ Vcc 

5 G : DrR 
A4 ·~ B4 7 

9 A6 ~ ~ 86 
AB /;: N BB 8 .. ~ 6 A7 87 , ... 

4 A5 "' ..... 85 

3 A3 3 83 
A2 B2 2 u 
AI 0 Bl '----

-cl ,....----

~ND ~ 0~c 9 
6 

---r A5 ·tj B5 
u 

---a A6 ~ 10 86 

----2 A7 /;: ~ B7 

3 AI .. ~ 81 
A2 ~ (!' 4 8 2 

5 A3 3 B3 
g M B4 u 

AB 0 BB -
V c ILQ74 

4 

3 t r 
5 

6 t r 
B 

7 t ( 

£r 12 
14 
18 
1B 
17 
15 
13 
ll 

tO-15 
13 
11 
12 
14 
18 
17 
IB 

:P-14 
13 
12 
1B 
17 
16 
15 
11 

14 

13 
11 

12 
10 

9 

!>----
!>----
!>----
!>----
!>----
!>----
!>----
!>----

!>----
!>----
!>----
!>----
!>----
!>----
!>----
!>----

!>----
!>----
!>----
!>----
!>----
!>----
!>----
!>----

!>----

!>----
!>----

!>----
!>----

~ 

.. .., 
0 c 
" 0 
"' 



Vcc 
"T1 .... 

(1Q 

~ 
N 

~ 
74HCT04 2N3904 2N3904 

::I. Data 
1N4148 (i) In 

> a 
'E. Head Coil Si 

~ (D 

80mH/ 500R '"1 

(') 
:::;· 
(") 2N390 4 2N3904 c:: -· ..... 

......... 1N4·148 0 
::s 
(D 

(') 
::r 
§ 
::s 
(D -.._, 

Write Amplifier (One Channel). 



+12v 

To 
~ ..... 

(J'Q 

ti1 1N4148 
(j.l 

en 
V in 0 ........ 

~ ::s 
ti1 0 
(j.l ....... 

0. 

t1 VN46AF ::l. 
< 
~ 

(') 
t:;· 
0 c:: lOOk -· ~ 

lOOk lOuF 

- 12V 



'T1 ..... 
(1Q 

Read/ Write 
Solenoid 

I 

Screened I 
Pair - Pair 

I 
I 

Analogue 
Star-Point 

10k 

Read Head Amplifier (One Channel) 

To GXO 



"T1 ..... . 
(1Q 

~ Data 
Ul 

In 
Cl 
Pl 

[ 
n 
a 
V) 
en 

I 

~ 
~ 
n ..... 
1-1 n 
c ..... 
~ 

-. 
0 
::s 
("D 

n 
::r 
§ 
("D ....... ..._.. 

47k 

r------1 
710p 

33k 

+5} 1N4148 
9k15k6 

1N4148 

.--~...---:---7 4-=..;LS 7 4 
CLK 

Q 

Q 
Data 
Out 

Gated Cross-Over De tector Circuit (One Channel). 



5V 

'T.I ..... 
(1Q 

tT1 
0\ 

t""" s· 
;:.;" 

> 0. 
tT1 ~ 

'"0 
0\ ..... 

('1) ...., 
~ 
:::I ..... 
('1) 

~ 
() 
('1) 

tx:1 
0 
~ 
0. 

J 2o T2o T2o 
_J..... 

Vcc V cc V cc CapMinus 27 l (/) 

s~ 1D lQ 2 3 10 1Q 2 510 QO 24 (/) 

'0 1-. 
t _____± 5 4 5 6 Il Ql 23 aJ 2D 2Q 2D aJ 2Q ..... 
~ 7 

...., 
~(IJ"" 

...... 
!=: 6 7 3Q 6 7 12 Q2 22 ..... 

aJ- 3D aJ (IJ (") 3Q 3D on o.. r-- ...... 
a B ~-< wl'-- 9 B 40 on..S C"J 9 B 13 1-. 

Q3 21 s - 4D tO ..c (") 4Q .i:: ~ E- 4Q aJ 

~ _u. p.; (.)E- 12 13 12 9 14 
....., 

20 < 
5D Cll_,U 5Q 50 E-lu 5Q P.. --' Q4 I p..::C: ro--' 

c.J ___1.! 6D 
c:: ro ::r:: 

6Q 15 14 6D w~"" 6Q 15 10 15 -oo Q5 19 ~ 
<0....:1 "" on~ r-- <U !-'-- ..... 

E __11_ 
1-. 1:'-- 16 17 16 11 lB ~ 7D E- 7Q 7D '0 7Q 16 

(f) 
Q6 w ~:::s e __!_§. BD BQ 19 1B BD BQ 19 12 17 c:: ...... Q7 17 0 ...... 

~ 1 
o/ p o/ p Cont. ....:1 26 E-

,----=- cont.. QVal 
Clk QAck 25 I 

GND Enable A GND 
"" 10 ~ l 4 lAck 
...... 

"" >1 2 E-< 3 
IVal 

Link In 
LinkOut rl- s 

0 

V cc 1-. 
l't.. 

2 lP lQ 3 0 

4 5 E-< 
2P 2Q 

6 1-. 7 3P Q) 0 CO 3Q 
B 4P 

'0 .._, CO 9 Clock ,1Q_ ;:j ro eo 4Q 
11 :::::;;E-< 12 5P C::p..U 5Q 
13 ~a::r:: 6Q 14 5 MHZ 6P ro "" 15 :::Sor-- 16 

~0~{>-
7P u 7Q 

17 BP BQ 1B 

P=Q 19 

Enable GND 
QV I 7404 47nF 7404 7404 



10k 

"rJ -· +12V 
(10 

~ MR 
-.....) Element 
~ 0:: 
I» 

(10 0 
;::3 0 

5 C\2 

I 

~ 

~-
- 12V 

Ci> 10k NE5534 
o. 
< 
~ 

tn ~ 
-.....) g 

0. 

> NE5532 
3 

'"0 

5 LM7 14 ~ 
,......._ 
0 
;::3 BZX 5V1 ~ 

(j 

§ 
;::3 
g. ...._ 

Magneto-Resistive Read Amplifier. 



Appendix F: Inductive Head Specification. 

SPECIFICATIONS 

Impedance 1KHz lOO I' A 

P.B. sensitivity 315Hz 

10KHz/3l5Hz 
P.B. frequency response 

14KHz/315Hz 

Bias current 60KHz peak over· I dB 

Recording current 
1KHz -10dB below 
saturation level 

Rec. & P.B. sensitivity 1KHz 

Rec. & P.B. frequency rE>sponse 10KHz/ 1KHz 

1 - 2ch, 3 - 4ch 

Crosstalk (1KHz -30d8m) 2 - 3ch 

1 - 3ch, 2 - 4ch 

Diflerense o f channel azimuth 10KHz 

1000n•25% 

- 68.0dBm ±2.0dB 

+14.5±3.0dB 

+12.0dB±4.0dB 

3501'A±25% 

361'A±20% 

- 66.5dBm ±2.0dB 

- 14.0dB ±4.0dB 

40dB m in. 

55dB min. 

50dB m in. 

1dB max. 

HQ551 
Hard permalloy Head 
4-Track, 4-channel 

·-

Measuring tape 
For P .B. frequency response TEAC MTT-31 6 
For Rec. & P.B. BASF QP-12 

Fl 



Appendix G: occam Programme Listings. 

The following occam code was that used in the real-time 

compact-cassette system, it's simulation, and the anti-displacement 

scheme. Much of the software was common to all three systems. 

Duplicated sections of code have been removed for compactness. 

Although the resultant no longer constitutes an occam programme, 

all of the relevent code is present (if disjointed). 

The following process headings are highlighted in the text (in 

the following order), and indicate the start of significant process 

declarations. Also indicated are the systems the process was used in. 

Compact Model LHD Comp Code Heading 

Cassette Scheme 

J J J Pseudo Random Binary Sequence Generator. 

J J J Bi-Phase-L Channel Encoder. 

J Timed Output. 

J Read Process (Linear Superposition). 

J Lateral Head Displacement Simulation. 

J Head Amplifier Model. 

J J Gated Cross Over Detector. 

J J Band-pass filter as Differentiator. 

J J Band-pass filter as gain block 

J J Comparator model with Hysteresis. 

J J Gaussian White Noise Generator. 

J J D-Type Flip-Flop. 

J J Sampled-to-Event Interface. 

J J J Distribute Event Times and Data 

J J J Bi-Phase-L Channel Decoder. 

J J J PRBS Error Check and Classification. 

J J J Draw Graphs. 

J J J Prints Error Results onto Graph. 

J Anti-Displacement Compensation Scheme 

Gl 



{{( se genprbs 
{{{F genprbs 
{{{ Header 

- Pseudo Random Binary Sequence Generator. 

- Inputs Register Length and whether Data Staggered, 
generates PRBS accordingly. 

- If no key pressed and not end of cassette, output next in series. 
- If key pressed, check for early Termination. 
}}} 
PROC gen.prbs (VAL INT reg.lan, BOOL staggered, 

CHAN OF INT from.kb, 
CHAN OF ANY data.out) 

{({ PROC defs 
{ {{ se init.pointers 
{{ {F init.pointers 
{{ { Header 
- Initialise Pointers. 
- Internal to gen.prbs 
-- Sets up PRBS register pointers according to register length 
}}} 
PROC init.pointers IVAL INT reg.lan, INT fb1, fb2, next.fb) 

SEQ 
next.fb : = 0 
fb1 : = (next.fb PLUS reg .len) 
{{( set fb2 
CASE reg .len 

2 
fb2: = 1 

3 
fb2: = 2 

4 
fb2 := 3 

5 
fb2 := 3 

6 
fb2 : = 5 

7 
fb2 : = 6 

8 
fb2 : = 6 

9 
fb2 : = 5 

10 
fb2 : = 7 

11 
fb2 : = 9 

12 
fb2 := 11 

13 
fb2 : = 12 

14 
fb2 : = 13 

15 
fb2 : = 14 

}}} 

}} }F 
{{{ se move.pointers 
{{ {F move.pointers 
{ { { Header 
- Move Pointers. 
- Internal to gen.prbs 
- Increments pointers to PRBS (as for Circular Buffer) . 
}}} 
PROC move.pointers (INT ptr1 , ptr2, ptr3) 

SEQ 
ptr1 : = ( (ptr1 MINUS 1 l (IIOFJ 
ptr2 : = ( (ptr2 MINUS 1) f1 IOF) 
ptr3 : = ( (ptr3 MINUS 1 l fl IOFJ 

G2 



}))F 
})) 
})) 
{{ { decl's 
{{ { I USE stuff 
IUSE pseudort : 
IUSE userio : 
}}} 
VAL run.time IS (50 TIMES (60 TIMES lp.tps) I :- ie 50 minutes record time MAX 
BOOL running : 
I 16JINT s.reg : 
INTfb1, fb2, next .fb: 
INT start.time, char: 
TIMER clock : 
})) 
SEQ 

{{{ init 
clock 7 start. time 
running:= TRUE 
init .pointers (reg.len, fb 1, fb2, next.fbl 
{{ { fill s.reg 
IF - Fill PRBS register depending on whether data staggered or not 

staggered 
{{{ 
CASE reg.len 

2 
(s.reg FROM 1 FOR 2) :"" [IOD, lOB) 

3 
(s.reg FROM 1 FOR 3) : = (109, 103, 107) 

4 
[s.reg FROM 1 FOR 4) : = [101 , 103 , 107, #OF) 

5 
[s.reg FROM 1 FOR 5) : = (101 , 103, 107, #OF, #OF) 

}}} 
NOT staggered 

}}} 
}}} 

SEQ i = 0 FOR 1 6 
s.reg [i) : = #OF 

WHILE running 
PRI ALT 

from.kb 7 char 
{ { { process 
IF 

char < > stopchar 
SKIP 

TRUE -- Early Termination, Start shut down mechanism 
running : = FALSE 

}}} 
clock 7 AFTER (start.time PLUS run.time) 

running : = FALSE 
TRUE & SKIP 

{ { { clock PRBS 
SEQ 

s.reg[next.tb) : = s.reg[fb1 I > < s.reg(fb2) -- calculate new PRBS datum 
data.out ! s.reg(next.fb) - output new datum 
move.pointers (fb1 , fb2, next.fb) - clock PRBS 

}}} 
data.out I t erminate -- Last instruction, pass on terminate 

}}}F 
}}} 
{{ { se man.code 
{{{F man.code 
{ { { Header 

- Bi-Phase-L Channel Encoder. 

}}} 
PROC man.code (CHAN OF INT data.in, data.out) 
{{( decl 's 
#USE pseudort : 

G3 



INT data : 
BOOL running : 
)}} 
SEQ 

{ { { initialise 
running :"' TRUE 
}}} 
WHILE running 

SEQ 
deta.in 7 data 
IF 

data < > terminate 
{ { { process 
SEQ - channel code datum 

data.out I Wdata) (\#OF)- inverted 
data.out I (data fl #OF) 

}}} 
TRUE 

{{ { finish 
SEQ 

running :"' FALSE 
)}} 

data.out I terminate - Last instruction, pass on terminate 

}}}F 
}}} 
{{{ se timad.output 
{{{F timed.output 
{ { { Header 

-- Timed Output. 

-- Receives data from channel encoding process, outputs at timed interval 
-- according to data rate . Must be run at High Priority for accuracey. 
)}} 
PROC timed.output (VAL INT data.bps, 

CHAN OF INT data.in, 
CHAN OF ANY to.screan, 
CHAN OF BYTE data.out) 

{ {{ decl's 
#USE userio : 
#USE pseudort : 
VAL code.bit.time IS ((hp .tps/data.bps) > > 1) : 
TIMER clock : 
BOOL running : 
INT data, time : 
}}} 
SEQ 

{ { { initialise 
running :"' TRUE 
clock 7 time 
time :"' (time PLUS (code.bit.time TIMES 1 0) ) - allow time for rest of code 
}}} 
WHILE running 

SEQ 
data.in 7 data 
IF 

data < > terminate 
{{ { output data 
SEQ 

clock 7 AFTER time -- wait till time for next datum output 
data.out I BYTE data -- output data 
time :"' (time PLUS coda.bit.time) - calculate time of next datum output 

}}}F 
)}} 

}}} 
TRUE 

running : = FALSE 

{{{ decl's 
#USE usario : 
#USE mech : 

G4 



fUSE pseudon : 
BOOL data. valid, staggered : 
INT data.bps, reg.len, char : 
Ill 
SEO 

( (( Gat Valid data for this run 
data.velid : = FALSE 
WHILE CNOT dete.velld) 

SEQ 
((( get values for this run 
newline Cscreen) 
write.lull.atring Cscreen, "Input Data Freq Cbps) ") 
read.echo.char Ckeyboard, screen, char) 
read.echo.int Ckeyboard, screen, dete.bps, char) 
newline Cscreen) 
write.full.string Cscreen, "Input Register Length ") 
read.echo.cher Ckeyboard, screen, char) 
read.echc.int Ckeyboerd, screen, reg.len, char) 
newline Cscresn) 
write.lull.string Cscreen, "Staggered Csl or Unstaggerad Cui ") 
read.echo.char Ckeyboard, scraen, char) 
IF 

char = UNT 's') 
staggered : = TRUE 

TRUE 
staggered : = FALSE 

newline Cscreen) 
newlina Cscreen) 

)}) 
(( { print out confirmation 
write.full.string Cscreen, "Date Freq ") 
write.int Cscreen, deta.bps, 6) 
newline Cscreen) 
write.full.string Cacresn, "Register Length ") 
writa.int Cscrsen, reg.len, 4) 
newline Cscreen) 
IF 

staggered 
write.lull.string Cscreen, "Date Staggered. ") 

TRUE 
write.lull.string Cscreen, "Date NOT Staggered. ") 

newlina (screen) 
newline Cscreen) 
newlina Cscreen) 
write.full.atrlng Cacreen, • Is this correct 1 (y/n) ") 
read.echo.char (keyboard, screen, char) 
IF 

char = (INT 'y') 
data.valid : = TRUE 

TRUE 
SKIP 

))) 
newline Cscreen) 
newline Cscraen) 
newline Cscreenl 
Ill 
((( lnitialse 
mech.lnit (screen) - Send lntarupt to PC Initialising 8255 PIA 
mech.menu Cscreenl •• Send lnterupt to PC to Display Tape Transpon Manu 
newlina (screen) 
ast.clocks (0) - Zero transputer clock Cavoids timer 'roll-over') 
)}) 
{{ { text stuff 
write.full.strlng (screen, • Mechanism MUST BE IN WRITE MODE ") 
newline Cscreenl 
newline (screen) 
write.lull.string Cscraen, "Press Q to Quit, any other to continue •.. ") 
read.char (keyboard, char) 
newllne (screen) 
newline Cscreen) 
))) 

G5 



IF 
char < > liNT 'q'l 

( (( etert recording 
SEQ 

writa.full.string (screen, "Recording Date .......... "I 
CHAN OF ANY from.code, from.gen : 
CHAN OF BYTE to.link : 
PLACE to.link AT linkoutl : 

-MAIN PROGRAMME CONSTRUCT FOR WRITING. 

PRIPAR 
timed.output (dete.bps, from.code, screen, to.linkl 
PAR 

gen.prbs (reg.len, staggered, keyboard, from.gen) 
men.code lfrom.gen, from.code) 

mech.stop (screen) - When finished STOP tepa mechanism 
newline (screen) 

)}) 
TRUE 

SKIP 
write.full.string (screen, • All done. Press any key to return to TDS ... ") 
reed.cher (keyboard, char) 
newline (screen) 

Start of Simulation Code 

({( duel's 
({( IUSE stuH 
IUSE pseudort : 
IUSE userio : 
IUSE interf : 
IUSE userhdr : 
IUSE strings : 
#USE t4meth : 
HI 
CHAN OF INT from.parem.fold : 
VAL INT top.fold IS 1 : 
INT char, perem.fold.result, stert.time : 
TIMER clock : 
})) 
SEQ 

( ( ( start message 
clock 7 stert.time 
write.text.line (screen, • 
})) 
PAR 

({( programme. 
BOOL more.runs : 
SEQ 

more.runs : = TRUE 
WHILE more.runs 

PRI ALT 
keyboard 7 char 

({( 
IF 

char < > stopcher 
SKIP 

TRUE 
more.runs : = FALSE 

})) 
more.runs & SKIP 

(( ( run programme 
(({ local duel's "LOG" channel 
INT log.fcld.result, log.fold.num : 
CHAN OF ANY to .log : 
})) 
PAR 

((( run test 
({( duel's 
({( CHAN duel's 

Started .... ") 

({( PROTOCOL DEF -- Other Definitions of 'INT.OR.FLOAT' removed. 

G6 



PROTOCOLINT.OR.FLOAT 
CASE 

lnt; INT 
float ; REAL32 

})) 
{(( CHAN decl's 
[num.tracks)CHAN OF INT from.prbs, from.disp, from.raad : 
[num.tracksJI2)CHAN OF ANY from.haadamp : 
[num.tracks)CHAN OF INT from.gxo : 
CHAN OF INT stop.prbs : 
})) 
})) 
( ({ define maximun values for memory allocation 
VAL REAL32 T IS (one I Is) : 

VALINT max.block.size IS 300000: 
VALINT max.data.rate IS 10000 : 
VAL INT min.data.rate IS 1000 : 
VALINT range IS liNT ROUND ((max.nag + max.pos) I nl : 
VALINT max.pulss.sep IS liNT ROUND 

((one I (two • (REAL32 ROUND min.data.rata))) IT)) : 
VALINT max.prbs.rag.len IS 3 : 
VALINT max.prbs.saq.len IS 7 : 
VALINT max.snepshot.len IS 500 : 
VALINT max.his.len IS lmax.prbs.seq.len PLUS 1 l : 
VALINT msx.raf.size IS 8 : 

})) 
({ ( memory allocation 
[num.tracks)[max.snapshot.len)REAL32 pre.hesdamp, post.haadsmp : 
[num.tracksllmax.snapshot.lanJREAL32 gata.ana, pol.ana : 
[num.tracks)[msx.snapshot.len)BYTE gate.dig, pol.dig, gxo.dig : 
[num.tracks)[ranga PLUS 1)REAL32 basic.pulse : 
[max.block.size)BYTE data : 
[max.block.slze)INT times : 
[num.trscks)[max.his.len)INT burst.his : 
[num.tracks)INT count, class.good, class.bad : 
[num.tracks)INT good.bits, bad.bits, lost.synch : 
[num.tracks)REAL32 track.rate, skew.bits : 
[num.tracksJINT skew.samples : 
REAL32 rate : 
[100)BYTE comment.text : 
[max.rel.size)BYTE rel.date.text: 
REAL32 gate. threshold, pol.threshold, pol.noise.pp, gate.noisa.pp : 
REAL32 bounco.pp, displacement, write. width, read.width, side.write.width : 
INT comment.len, raf .date.len, dete.rate, sim.data.rato : 
INT char, lold.num, result, max.bad, min.good : 
INT block.size, prbs.reg.len, his.len : 
INT waveform.name.len : 
[abs.id.size)BYTE waveform.filename : 
BOOL staggered : 
))) 
))) 
(({ PROC decl's 
( ({ se get.perameters 
(({F get.paramaters 
{{ ( PROC gst.paramsters I PARAMETER LIST I 
PROC get.parameters (CHAN OF INT data .in, CHAN OF ANY echo.out, 

IIBYTE waveform.filename, INT waveform.name.len, 
INT data.rate, 

Ill 
(({ decl's 

REAL32 read. width, write. width, side. write. width, 
REAL32 gate.threshold, pol.threshold, displacement, 
IIREAL32 skaw.blts, BOOL staggered, 
INT max.bad, min.good, prbs.rsg.len, INT block.size, 
[)BYTE comment. text, INT comment.len, BOOL more.runs) 

#USE pseudon : 
#USE strings : 
#USE userio: 
I40IBYTE text : 

G7 



INT ohar, taxt.len : 
)}} 
SEQ 

(( ( get waveform filename 
read.echo.text.line (data.in, echo.out, waveform.name.len, 

wavelorm.filename, char) 
waveform.nama.len := (waveform.name.len MINUS 11- remove •c 
)}} 
((( get data freq 
read.echo.char (data.in, echo.out, oharl 
read.echo.int (date.in, echo.out, data.rate, oharl 
read.eoho.text.line (data.in, echo.out, taxt.len, text, char) 
)}} 
((( get read width 
read.echo.char (data.in, echo.out, char) 
raad.echo.real32 ldata.in, echo.out, raad.width, char) 
read.echo.text.line (data.ln, echo.out, text.len, text, char) 
))) 
(( ( get write width 
read.echo.cher (data.in, echo.out, char) 
read.echo.reel32 (data.in, echo.out, write. width, char) 
read.echo.text.line (dete.in, echo.out, text.len, text, char) 
))) 
(( ( get side write width 
read.echo.cher (date.in, echo.out, char) 
read.echo.real32 (data.in, echo.out, side.write.width, char) 
read.echo.text.line (deta.in, echo.out, text.len, text, char) 
))) 
(( { get gate comp thrash 
reed.echo.char (data.in, echo.out, char) 
read.echo.real32 (deta.in, echo.out, gate.threshold, char) 
read.echo.text.llne (deta.ln, echo.out, text.len, text, char) 
}}} 
{( ( get xover comp thresh 
read.echo.cher (data.in, echo.out, char) 
reed.echo.reai32 (data.in, echo.out, pol.threshold, char) 
reed.echo.text.line ldete.in, echo.out, text.len, text, char) 
}}} 
((( get track disp 
read.echo.char (data .in, echo.out, char) 
read.echo.real32 (data.in, echo.out, displacemont, char) 
read.echo.text.line (deta.in, echo.out, text.len, text, char) 
}}} 
(({ get skew 
read.echo.cher (data.in, echo.out, char) 
SEQ track = 0 FOR num.tracks 

read.echo.raal32 (data.in, echo.out, skew.bitsltrack), char) 
read.echo.text.line ldata.in, echo.out, text.len, text, char) 
}}} 
(( { get un/steggered 
read.echo.text.lina (data.in, echo.out, text.len, text, char) 
text.len : = ltext.len MINUS 11 - remove • c 
VAL ])BYTE stagger .state IS "staggered 
IF 

(( { staggered 

.. 
eqstr ()text FROM 0 FOR text.lan), )stagger.stete FROM 0 FOR text.lenll 
Ill 

staggered : = TRUE 
TRUE 

staggered : = FALSE 
}}} 
((( get max bad 
read.echo.char (data.in, echo.out, char) 
read.echo.int (deta.in, echo.out, max.bad, char) 
read.echo.text.line (data.in, echo.out, text.len, text, oherl 
}}} 
(( { get min good 
reed.echo.char (data.in, acho.out, char) 
read.echo.int (data.ln, echo.out, min.good, char) 
read.echo.text.line (deta.in, echo.out, text.len, text, char) 
}}} 
((( get rag len 

GB 



read.echo.cher (data.ln, echo.out, char) 
read.echo.int (data.in, echo.out, prbs.reg.len, char) 
raad.echo.text.line (data.ln, echo.out, text.len, text, char) 
})) 
(({ gat block size 
raad.acho.char (data.in, echo.out, char) 
raad.acho.int (date.in, acho.out, block.siza, char) 
read.echo.taxt.lina (data.in, echo.out, taxt.lan, text, char) 
)}} 
{ (( get comment 
read.echo.text.line (data.in, echo.out, commont.len, comment.text, char) 
Ill 
(( { get terminate or not 
read.echo.taxt.line (data.in, echo.out, text.len, text, char) 
text.len : = (text.lan MINUS 1)- remove •c 
VAL ()BYTE last.test IS "last test 
IF 

{(( last run 

.. 

eqstr ((text FROM 0 FOR taxt.lenl, Uast.tast FROM 0 FOR taxt.lenll 
Ill 

mora.runs : = FALSE 
TRUE 

SKIP 
)}} 

IJ)F 
Ill 
(({ se print.vals 
(({F print.vals 
PROe print.vals IVAL REAL32 T, 

VAL INT pulse.sep, enapshot.lan, sim.data.rate, 
eHAN OF ANY data.outl 

IIUSE usario : 
SEQ 

{ { { print pulsa.sap 
writa.full.string (data.out, "Pulse Spacing ") 
wrlte.int (data.out, pulsa.sep, 0) 
newlina (data.out) 
Ill 
{{ { print T 
write.full.string (data.out, "T "l 
write.real32 (data.out, T, 0, 0) 
newline (deta.out) 
)}} 
{{{ print snapshot.len 
write.full.string (data.out, "snepshot.len ") 
write.int (data.out, snapshot.len, 0) 
newline (data.out) 
Ill 
(( { print sim.data.rate 
write. full.string (data.out, "sim.data.rate") 
write.int (data.out, sim.data.rate, 0) 
newline (data.out) 
Ill 

IJ)F 
Ill 
(({ se calc.rates 
(({F celc.ratas 
PROe calc.ratas (VAL IJINT clase.good, class.bed, lost.synch, 

VAL INT max.bad, block.size, 
()REAL32 track.rate, 
REAL32 rate) 

#USE pseudort : 
VAL REAL32 min.error.rate IS (one I IREAL32 ROUND block.size)) : 
VAL INT num.tracks IS (SIZE class.good) : 
SEQ 

{{ { celc rate for each track 
SEQ track = 0 FOR num.tracks 

VAL INT total.bits IS (lcless.good[trackl PLUS class.bad[trackll PLUS 
llost.synoh[trackl TIMES (mex.bad PLUS 1))) : 

IF 

G9 



total.bits > 0 

})) 

({{ 
VAL REAL32 error.rate IS UREAL32 ROUND (total.bits · 

clasa.good[trackJ)) I (REAL32 ROUND total.bits)) : 
IF 

error .rate > min.error .rate 
track.rate[treck) : = error.rete 

TRUE 
treck.rete[treck) : = mln.error.rete 

}}} 
TRUE 

treck.rete[track) : = one 

{( { calc overall rate 
rate : = zero 
SEQ track = 0 FOR num.tracks 

rate : = (rate + track.rate[track)) 
rate : = (rate I (REAL32 ROUND num.tracks)) 
}}} 

)))F 
))) 
{( { se print.totals 
({{F print. totals 
PROC print.totals (VAL [)INT count. lost.synch, class.good, class.bad, 

VAL [)INT good.bits, bad.bits, (JI)INT burst.his, 
VAL INT hia.lan, VAL [)REAL32 track.rate, VAL REAL32 rate, 
CHAN OF ANY data.out) 

IUSE userio : 
VAL INT num.tracks IS (SIZE count) : 
SEQ 

SEQ track = 0 FOR num.tracka 
SEQ 

({{ track 
write.full.atring (data.out, "Track ") 
write.int (data. out, (track PLUS 1 ), 0) 
newline (data.out) 
})) 
((( count and lost synch 
write.full.atring (data.out, "Count ") 
write.int (data.out, count[track), 0) 
write.full.string (data.out, • Lost Synch ") 
write.int (data.out, lost.synch(track), 01 
newline (data.out) 
Ill 
( (( class good and class bad 
write.full.string (data.out, "Class Good ") 
write.int (data.out, class.good(track), 0) 
write.full.string (data.out, • Class Bad ") 
write.int (data.out, olasa.bad(track), 0) 
newline (data.out) 
Ill 
{( { good bits and bad bits 
write.full.string (data.out, "Good Bits "I 
write.int (data.out, good.bits(track), 01 
write.full.string (data.out, • Bad Bits "I 
write.int (data.out, bad.bits(track(, 01 
newline (data.outl 
Ill 
((( burst history 
write.full.string (data.out, "Burst History "I 
SEQ b.hia = 1 FOR lhis.len MINUS 1 I 

SEQ 
write.int (data.out, burst.his(track)lb.his), 41 
write.full.string (data.out, • "I 

newline (data.oul) 
Ill 
((( track rate 
write.full.string (data.out, "Track Rate "I 
write.real32 (data.oul, track.rate(track), 1, 5) 
newline (data.outl 
Ill 

GlO 



{{ ( overall rete 
write.full.string (data.out, "Overall Rate ") 
write.real32 (data.out, rate, 0, 51 
newline (data.outl 
}}) 

}})F 
}}) 
{{( se prlnt.elapsed.tima 
(((F print.elapsad.time 
PROC print.alapsad.tima (CHAN OF ANY data.out, VAL INT start.tima) 

fUSE usario : 
fUSE pseudort : 
INT elapsed, tima.now, minutes, seconds : 
TIMER clock : 
SEQ 

clock ? tima.now 
elapsed : = ((tima.now MINUS start.tims) llp.tps) 
minutes : = (elapsed I 60) 
seoonds : = (elapsed REM 60) 
write.full.string (data.out, "Elapsed Iima "I 
write.int (data.out, minutes, 01 
write.full.string (data.out, • mins ") 
writa.int (date.out, seconds, 0) 
write.full.string (date.out, • secs. "I 

}}}F 
}}} 
}}) 
SEQ 

{{ ( get next sat of parameters from fold 
((( massage 
print.elapsed.time (to.log, start.time) 
write.text.line (to.log, • Read parameters ... ") 
}}) 
get.parameters (from.param.fold, to.log, 

waveform.filename, waveform.name.len, 
data.rata, read.width, writa.width, sido.writa.width, 
gsta.thrashold, pol.thrashold, displacement, skaw.bits, 
staggered, max.bad, min.good, prbs.reg.lan, block.siza, 
camment.text, comment.len, more.runs) 

{{( massage 
print.alapsad.tima (to.log, start.tima) 
writa.taxt.lina (to.log, " Parameters read") 
}}) 
}}) 
{{( sat VAL's for this run 
VAL REAL32 gata.stan.dav IS 0.00186(REAL32) : 
VAL REAL32 pol.stan.dav IS 0.00041(REAL32): 
VAL REAL32 pulsa.sap.tiS (one I (two • IREAL32 ROUND data.ratalU : 
VAL INT pulsa.ssp IS liNT ROUND (pulsa.sep.tl TH : 

VAL INT his.lsn IS (max.bad PLUS 1) : 
VAL INT prbs.seq.lsn IS INT ROUND 

. ((POWER (two, (REAL32 ROUND prbs.rag.lanlU - one) : 
VAL INT complsta.snapshot.lsn IS liNT ROUND ((REAL32 ROUND prbs.saq.lan) • 

((2.51REAL32H • IREAL32 ROUND pulsa.sapllU : 
VAL INT snapshot.stap.size IS 11 PLUS liNT TRUNC ((REAL32 ROUND 

complete.snspshot.len) I (REAL32 ROUND max.snapshot.lenHH : 
VAL INT snepshot.len IS (complete.snapshot.len I snapshot.stsp.size) : 
VAL INT settle.time IS 12 TIMES range) : 
))) 
SEQ 

{{ ( print vel's out 
sim.data.rate : = liNT ROUND Iona I (two • HREAL32 ROUND pulsa.sep) • THH 
print.vals IT. pulse.sep, snapshot.len, sim.data.rate, to.logl 
}}) 
{{( convert 'skaw.bits' to 'skew.samples' 
VAL REAL32 bits.2.samples IS IT • IREAL32 ROUND slm.data.rateH: 
SEQ track = 0 FOR num.tracks 

skew.samples[trackl : = liNT ROUND lskew.bits[track) I bits.2.samplesH 
}}} 

Gll 



(({F fill data and time arrays 
{({ message 
print.elapsed.tima (to.log, stan.time) 
write.taxt.line (to.log, " Filling array with data .... ") 
)}) 
({{ PROC decl's 

··Code for gen.prbs and manch.ancoda ramovad. 
-- Rafer to Appandix XXX for thsir daclaration. 

{{{ se read 
({ {F rood 
(({ Haader 

-Read Process. Main Super-Position Process. 

- Reads digital data, outputs analogua data rapresanting raplay signal. 
- Pulse Separation definas data rata in tarms of samples betwaan Pulsas. 
- Skew Is amount of Data Skaw. 
)}) 
PROC road ICHAN OF INT data.in, IJREAL32 pulse, VAL INT pulsa.sep, 

VAL INT skaw, CHAN OF INT.OR.FLOAT data.out) 
{{{ se mao.pulse 
{({F mac.pulse 
({( Header 
- Function calculates pulse shape chosan by Mackintosh. 
- Internal to road process. Returns one REAL32. 
}}) 
REAL32 FUNCTION moc.pulse (VAL REAL32 x) 

IUSE pseudon : 
VAL REAL32 squared IS (x ' x) : 
VALOF 

SEQ 
SKIP 

RESULT (one/lone + (squared + (squared • squared)))) 

)))F 
Ill 
{{ 1 se gen.gauss 
{{ (F gen.gauss 
{{( Header 
-- Generates Gaussian Noise. 
-- Raceives Standard Daviation, Arithmetic Mean and last numbar in saquence. 
}}) 
PROC gsn.gauss (INT32 saed, 

VAL REAL32 stan.dev, mean, 
REAL32 norm.num) 

IUSE t4math : 
IUSE pseudon : 
VAL INT k IS 12 : -numbar of random numbers summed to produce Normal Dlst 
VAL REAL32 twelva IS 12.0IREAL32) : 
VAL REAL32 shih IS ((REAL32 ROUND k) I two) : 
- VAL REAL32 divisor IS SORT ((REAL32 ROUND k) I twelve) :- whsn k < > 12 
SEQ 

norm.num : = zero 
SEQ j = 0 FORk 

REAL32 temp : 
SEQ 

temp, seed : = RAN (seed) 
norm.num : = norm.num + temp 

norrn.num : = (((norrn.num · shih) • stsn.dev) + mean) 
-- norm.num : = ((((norrn.num • shih) I divisor) • stan.dev) + mean) 

)))F 
)}) 
({( se build.ind.pulse 
(({F build.ind.pulse 
({( Header 
-- Construct Inductive Head Isolated Pulse. 
-- Internal to road process. 
-- Receives data array that is filled with REAL32 data. 
}}) 

G12 



fUSE psaudort : 
PROC build.ind.pulsa ([IREAL32 datal 

({{ PROC's 
({ {F nag.laft.pulsa 
{({ Header 
- Function oalculates Value of curve at x, Left Side of Pulse. 
- Internal to build.lnd.pulse 
}}) 
REAL32 FUNCTION nag.left.pulse (VAL REAL32 xl 

VAL INT order IS 4 : - Order of Equations used 
{{{ VAL a.coef's 
VAL IIREAL64 a.coaff IS I 1.01REAL641. 

1.686037684194E·02(REALB4), 
1.010845531 056E-041REAL641, 
1.791 B8598339BE-07(REAL64), 
9.465082048366E-11(REAL641 I : 

Ill 
{{{ VAL b.coef'e 
VAL ()REAL64 b.coelf IS I LO(REAL64), 

1.663340065266E-02(REAL641, 
1.927853391487E-04(REAL64), 
9.873698980734E-07(REAL64), 
5.577926897161E-091REAL6411: 

}}) 
VAL REAL64 microsecond IS 1 .OE-61REAL641 : 
VAL REAL64 x64 IS IIREAL64 ROUND xl/ microsecond): 
REAL64 numer, denom, x.powar : 
VALOF 

SEQ 
x.power : = x64 
numar : = a.coeffiOI 
denom : = b.coeffiOI 
SEQ i = 1 FOR order - main loop 

SEQ 
numer : = numer + (a.coelf(il • x.power) 
denom : = denom + (b.ooelflil • x.powarl 
x.power : = x.power • x64 

RESULT IREAL32 ROUND (numar I danomll 

)))F 
{ ({F nag.right.pulse 
{{{ Header 
-- Function calculates Value of curve at x, Right Side of Pulse. 
-- Internal to build.ind.pulse 
Ill 
REAL32 FUNCTION nag.right.pulse IVAL REAL32 x) 

VAL INT order IS 4 : 
{{{ VAL a.coel'e 
VAL IIREAL64 a.coeff IS 11.01REAL641, 

1.069159470110E-02(REAL641, 
7.919654258251 E-06(REAL64), 

-6.665960569085E-08(REAL64), 
4.802436072905E-11 IREAL64) I : 

Ill 
{{{ VAL b.coef's 
VAL ()REAL64 b.coeff IS I 1.0(REAL641, 

1.047813788023E-021REAL64), 
1.017671231541 E-04(REAL64), 
1.612570906858E-071REAL641. 
7.BB9232628934E-101REAL64II: 

Ill 
VAL REAL64 microsecond IS 1.0E-6(REAL64J : 
VAL REAL64 x64 IS ((REAL64 ROUND x) I microsecond): 
REAL64 numer, denom, x.power : 
VALOF 

SEQ 
x.power : = x64 
numer : = a.coelfiOI 
denom : = b.coeff(OI 
SEQ i = 1 FOR order 

SEO 
numer : = numer + (a.coeff(il • x.powerl 

G13 



danom : = danom + (b.coafflil • x.powar) 
x.power : = x.powar • x64 

RESULT (REAL32 ROUND (numar I danom)) 

}))F 
})) 
{({ dacl's 
VAL INT sarias.lan IS (SIZE data) : 
VAL INT pulsa.lan IS (sarles.lan 11) : 
VAL REAL32 haad.amp.gain IS 357.0(REAL32):- Used to correctly scale pulaa 
VAL REAL32 max.ampiiS (0.625(REAL32) I haad.emp.gain) :- Used to scala pulse 
VAL REAL32 scala IS 0.9507(REAL32) :- ensures filtered pulse correct height 
VAL REAL32 range IS (mex.pos + mex.nag) : 
VAL REAL32 semple.width IS (range I IREAL32 ROUND (pulsa.lan MINUS 1 ))) : 
))) . 
sea 

({ { build negative half 
sea i = 0 FOR ((INT ROUND (mex.neg lsemple.width)) PLUS 1) 

VAL REAL32 xIS (((REAL32 ROUND i) ' sample.width)- max.neg) : 
datalil : = ((nag.lsft.pulse(x) I ecsla) • max.ampl) 

))) 
{{{ build right half 
SEa i = UNT ROUND (max.nag I sampla.width)) FOR 

((INT ROUND (mex.pos I sample. width)) PLUS 1) 
VAL REAL32 xIS (((REAL32 ROUND (i PLUS 1 )) ' sampla.wldth)- max.neg): 
datalil : = ((nag.right.pulse(x) I scale) • max.ampl) 

})) 

)))F 
Ill 
{{{ se build.mr.pulse 
{{ (F build.mr.pulse 
{({ Header 
- Build Magneto-Resistive Pulse. 
-· Internal to build.mr.pulse. 
- In three sections, one for Left, two for Right Hand Side. 
Ill 
#USE pseudon : 
PROC build.mr.pulse ((IREAL32 data) 

((( PRDC's 
({{F nag.left.pulse 
((( Header 
- Calculate value of Left hand side of pulse. 
·· Internal to build.mr.pulse. 
Ill 
REAL32 FUNCTION neg.left.pulse (VAL REAL32 x) 

VAL INT order IS 4 : -- Order of Equation 
{{( VAL a.coel's 
VAL IIREAL64 a.coeff IS I 1.0(REAL64), 

0.543152899120(REAL64), 
2.014308045450(REAL64), 
0.787498500152(REAL64), 
7.519105275567E·021REAL64) I: 

Ill 
{({ VAL b.coel's 
VAL IIREAL84 b.coeff IS I 1.0(REAL64), 

0.538975094171 (REAL64), 
2.280963053431REAL64), 

-0.1785605806461REAL64), 
0.872452758027(REAL64)J : 

Ill 
VAL REAL64 scale IS 10000.01REAL64) : 
-- x is passed in microseconds, scale convene to mili and 
-- accounts for 10 times scaling 
VAL REAL64 x64 IS ((REAL64 ROUND x) ' scale): 
REAL64 numer, denom, x.power : 
VALOF 

sea 
x.power : = x64 
numer : = a.coeii(O] 
denom : = b.coeff(O] 
sea i = 1 FOR order 

G14 



SEQ 
numer : = numer + (a.coaH(i] • x.power) 
denom : = denom + (b.coetflil • x.power) 
x.powor : = x.power • x64 

RESULT (REAL32 ROUND (numer I denom)) 

})}F 
(((F nag.right1.pulse 
(({ Header 
- Calculata value of first pan of Right side of pulse. 
-Internal to build.mr.pulse. 
})} 
REAL32 FUNCTION nag.rlght1.pulse (VAL REAL32 xl 

VAL INT order IS 4 :- Order of Equation 
((( VAL a.coel's 
VAL IJREAL64 a.coefiiS I 1.0(REAL64), 

-1.62558035337(REAL64), 
0.875259954811 (REAL64), 

-0.267186288244(REAL64), 
3.260220221397E.02(REAL84l I : 

})} 
((( VAL b.ooel's 
VAL IJREAL64 b.coefiiS I 1.0(REAL64), 

-1.58657485948(REAL64), 
1.05682774379(REAL64), 

.0.202667007782(REAL64), 

.0.2373948455101REAL64l I : 
})} 
VAL REAL64 scale IS 10000.0(REAL641 : 
- x is passed in microseconds, scale converts to mili and 
- accounts for 10 times scaling 
VAL REAL64 x64 IS IIREAL64 ROUND xl ' scale): 
REAL64 numer, denom, x.power : 
VALOF 
sea 

x.power : = x84 
numer : = a.coefiiOI 
denom : = b.coetfiOI 
SEQ i = 1 FOR order 

SEQ 
numer : = numer + (e.coefllil • x.power) 
denom : = denom + (b.coefllil • x.powerl 
x.power : = x.power • x64 

RESULT CREAL32 ROUND (numer I denomll 

}))F 
(( (F neg.right2.pulse 
((( Header 
- Calculate value of second pen of Right side of pulse. 
- Internal to build.mr.pulse. 
))) 
REAL32 FUNCTION nag.right2.pulse (VAL REAL32 xl 

VAL INT order IS 4 : - Order of Equation 
((( VAL a.coel's 
VAL IJREAL64 a.coetf IS I 1.0(REAL64), 

}}} 
((( VAL b.coel's 

-1. 76363990836(REAL64), 
0. 7465731930451REAL64), 

.0.2074257860741REAL64), 
2.749056807106E-02(REAL64l I: 

VAL IIREAL64 b.ooefiiS I 1.0(REAL64), 
·1.71609518275CREAL641, 
0.95222406978SIREAL641. 

-0.2169332459921REAL64), 
·0.4131995076721REAL641 I : 

})) 
VAL REAL64 scale IS 10000.01REAL641: 
-- x is passed in microseconds, scale converts to mili and 
-accounts for 10 times scaling 
VAL REAL64 x64 IS IIREAL64 ROUND xl ' scale): 
REAL64 numer, denom, x.power : 

Gl5 



VALOF 
SEQ 

x.powar :; x64 
numer :; a.coeff(O( 
de nom :; b.coeff(O) 
SEQ I ; 1 FOR order 

SEQ 
numer :; numer + (a.coeff(i) • x.powerl 
denom :; de nom + (b.coeff(i) • x.power) 
x.power :; x.power • x64 

RESULT IREAL32 ROUND (numer I denomll 

}}IF 
}}) 
{{{ decl's 
VAL max.neg IS 466.0E-06(REAL321 :--This, and next, constant specify the 
VAL mex.pos IS 424.0E-OB(REAL32) :-range of of the pulse 
VAL disjoint IS 100.0E-06(REAL321 :-specifies where two parts of RHS join 
VAL INT series.len IS (SIZE data) : 
VAL INT pulee.len IS (series.len I 1 I : 
VAL REAL32 head.amp.gain IS 357.0(REAL321: --For scaling 
VAL REAL32 mex.ampiiS (0.625(REAL3211 head.amp.gain) :-For scaling 
VAL REAL32 range IS (max.pos + max.negl : 
VAL REAL32 sample. width IS 2.0E-OBIREAL32) : 
VAL REAL32 scale IS 0.9507(REAL321 :--ensures filtered pulse correct height 
}}) 
SEQ 

{ {{ build negative half 
SEQ i ; 0 FOR ((INT ROUND (max.neg I sample.widthll PLUS 11 

VAL REAL32 xIS (((REAL32 ROUND 11 ' sample. width)- max.nagl : 
datelil :; ((nag.left.pulse(xl I scale) • max.ampil 

)}} 
{{{ build right half 
SEQ i ; liNT ROUND (max.neg lsample.widthll FOR 

((INT ROUND (disjoint I sample.widthll PLUS 11 
VAL REAL32 xIS (((REAL32 ROUND i) • sample. width)- max.neg): 
datalil :; ((nag.right1 .pulsa(xll acalel • max.ampl) 

SEQ i ; liNT ROUND ((max.neg + disjoint) laample.widthll FOR 
((INT ROUND ((max.pos- disjoint) I sample.widthll PLUS 11 

VAL REAL32 xIS (((REAL32 ROUND il ' sample. width) - max.neg): 
dete(i) :; ((neg.right2.pulse(x) I scale) • max.ampil 

}}) 
{{ { zero rest of data array 
SEQ i ; liNT ROUND (range I sample.widthll FOR 

((SIZE data)- liNT ROUND (range I sample.widthlll 
data(i) :; O.O(REAL321 

}}) 

}}IF 
))} 
{{{ decl's 
#USE pseudort : 
#USE t4math : 
{{{ VAL's 
VAL INT north IS 1 : 
VAL INT south IS 0 : 
VAL INT mask IS #07FFFFF:- Gives probability of 1 in 2-23, 1 in BE+6 

- Used to calculete when to introduce Drop-Out 
VAL REAL32 half IS 0.5(REAL321 : 
VAL REAL32 T IS (one I fsl : 
VAL REAL32 range IS (max.neg + max.pos) : 
VAL REAL32 stan.dev IS 0.02901REAL321 : -- Stan Dev of Amplitude Fluctuations 
VAL REAL32 mean IS one : 
)}) 
(3 TIMES liNT ROUND (range I TJ))REAL32 out.array : - should be big enough for all instances 
INT32 ran.seed : 
INT time, dummy, char : 
TIMER clock : 
REAL32 etten, step.size, new.val : 
INT data, in.ptr.to.end, out.ptr.to.end, old.dir: 
INT out.ptr, in.ptr : -- Differnce between IN and OUT is amount of Data Skew. 
BOOL running : 

G16 



}}} 
SEQ 

{({ init 
{( { check out array is big enough 
IF 

(SIZE out.arrayl < 12 TIMES (SIZE pulsell 
STOP - for debug 

TRUE 
SKIP 

}}} 
build.ind.pulse (pulse) 
{ {( zero out.array 
SEQ i = 0 FOR (SIZE out.arrayl 

out.arraylil : = zero 
)}) 
{ {( initialise random number stuff 
clock 1 dummy 
ran.sead : = UNT32 dummy) 
)}) 
out.ptr := 0 
in.ptr : = (out.ptr + skew) 
old.dir : = north 
running : = TRUE 
}}} 
WHILE running 

SEQ 
data.in 1 data - get digital Datum 
IF 

(data = 11 OR (data = 0) 
{({F process data 
INT trans.dir IS data : 
SEQ 

in.ptr.to.end : = ((SIZE out.arreyl MINUS in.ptrl- How fer to end of array 
out.ptr.to.end : = ((SIZE out.erreyl MINUS out.ptrl --as above 
{ {( add pulse if transition 
IF 

trens.dir < > old.dir 
{ {( transition, add pulse 
SEQ 

{( { celc amount of attenuation 
SEQ 

gen.gauss 'ran.seed, stan.dev, mean, atten) 
clock 1 time 
{( { drop-out code 
IF 

(time 11 mask) = IIINT ran.seedl 11 meskl 
atten : = 0.11REAL321 - drop-out, -20dB 

TRUE 
SKIP 

))} 
)}) 
IF 

trans.dir = north 
{( { add positive pulse 
- in two section: takes into acount problems in adding array to 
--non-aligned circular buffer. Amplitude fluctuation applied here. 
IF 

in.ptr.to.end > = (SIZE pulse) 
SEQ i = in.ptr FOR (SIZE pulse) 

out.array(il : = out.errey(i) + (etten • pulee(i MINUS in.ptr)l 
TRUE 

SEQ 

} } } 
TRUE 

SEQ i = in.ptr FOR in.ptr.to.end 
out.erraylil : = out.errey(l) + letten • pulseli MINUS in.ptrll 

SEQ i = 0 FOR USIZE pulse) MINUS in.ptr.to.endl 
out.erraylil : = out.array(i) + (anon • pulselli PLUS in.ptr.to.endlll 

{( { add negative pulse 
- in two section: takes into ecount problems in adding array to 
-non-aligned circular buffer. Amplitude fluctuation applied here lattenl. 
IF 

G17 



in.ptr.to.end > = (SIZE pulse) 
sea i = in.ptr FOR (SIZE pulse) 

out.array(i) : = out.arraylil • (alien • pulss(l MINUS ln.ptr)) 
TRUE 

})) 

SEa 
SEa i = in.ptr FOR in.ptr.to.snd 

out.array(ll : = out.array(i) • (alien • pulsa(l MINUS in.ptr)) 
SEa i = 0 FOR ((SIZE pulse) MINUS in.ptr.to.end) 

out.array(i) : = out.array(i) • (alien • pulse((i PLUS ln.ptr.to.end)J) 

old.dir : = trsns.dir 
)}) 

TRUE 
( {{ no transition, add nothing 
SKIP 
})) 

)}} 
(( ( output part of out.array 
- Ouputs section of array complete from super-position. 
- In two part to take into account circular buffer. 
- After data output, zero section of array. 
IF 

out.ptr.to.end > = pulse.sep 
SEa I = out.ptr FOR pulss.sep 

SEa 
data.out I float ; out.errey(i) 
out.array(i) : = zero 

TRUE 

)}) 

sea 
SEa i = out.ptr FOR out.ptr.to.end 

SEa 
data.out I float ; out.array(i) 
out.array(i) : = zero 

SEa i = 0 FOR (pulse.sep MINUS out.ptr.to.end) 
SEa 

data.out I float ; out.array(i) 
out.array(i) : = zero 

{{ { adjust pointers -- implements circular buffer. 
in.ptr : = (in.ptr PLUS pulse.sepl REM (SIZE out.srravl 
out.ptr : = (out.ptr PLUS pulse.sep) REM (SIZE out.array) 

Ill 
)})F 

data = terminate 
running : = FALSE 

TRUE 
((( pass it on 
data.out I int ; data 
})) 

(( ( pass on 'terminate' 
data.out ( int ; terminate - last instruction in process. 
)}) 

}))F 
})) 
{({ se displace 
{{ (F displace 
{(( Header 

-Lateral Head Displacement Simulation. 

- Mixes signal according to Displacement, Writs, Rsad tracks widths and 
- Side Field contribution. 
Ill 
#USE pseudort : 
PROC displace ((num.tracks)CHAN OF INT.OR.FLOAT data.in, 

VAL REAL32 write, reed, s.w.w, 
VAL REAL32 disp, 
(num.trecks)CHAN OF INT.OR.FLOAT data.out, 
CHAN OF ANY to.screen) 

{({ decl's 
IUSE t4math : 

Gl8 



IUSE userio : 
(( ( VAL 's for Track dimensions, MEASURED dimensions 
VAL REAL32 safety IS ((write - read) /two) : 
VAL IIREAL32 track.sap IS (0.82BIREAL32), 1.2351REAL32), 

0.828(REAL32), 5.000(REAL32)) : 
- traok.sep(3) for accuracy should be infinity 
VAL ()REAL32 guerd.band IS f(treck.sep(O) - write), 

(treck.sep(l I- write), 
(track.sap(2) - write), 
(track.sap(3) - write)) : 

)}) 
(num.tracks PLUS 1JREAL32 data : 
(num.tracks]REAL32 a, b : 
[num.traoks]INT char : 
INT count, num.terminated : 
BOOL running : 
)}) 
SEQ 

((( init 
(( ( calc proportions of each track 
SEQ track = 0 FOR num.tracks 

SEQ 
(I( celc a[ track] 
IF 

disp < safety 
a[ track) : = reed 

disp < (safety + reed) 
a( track] : = l(safety + read) - disp) 

TRUE 
a[treck] : = zero 

Ill 
((I calc b(track) 
VAL REAL32 start IS (safety + guerd.bandltrackll : 
IF 

disp < start 
b) track) : = zero 

disp < (start + read) 
b[track) : = (disp - start) 

disp < (start + write) 
b) track) : = read 

disp < llstert + read) + write) 
b) track) : = lllstart + read) + write) - disp) 

TRUE 

}}} 
IF 

b) track) : = zero 

s.w.w >zero 
SEQ 

((( 
((( calc a.side 
IF 

disp < safety 
a.side : = zero 

disp < (safety + s.w.w) 
VAL REAL32 olap IS (disp- safety) : 
a.sida : = (olep- llolep • olep) I (two • s.w.w))) 

disp < (safety + read) 
a.sida : = (s.w.w /two) 

disp < llsefety + reed) + s.w.wl 
VAL REAL32 olep IS (((safety + s.w.wl + reed)- disp) : 
a.side : = l(olap • olap) I (two • s. w. w)) 

TRUE 
a.sida : = zero 

}}} 
((I calc b.side 1 
VAL REAL32 start IS (safety + guard.band[track)) : 
IF 

disp < (start- s.w.w) 
b.sida1 : = zero 

disp < start 
VAL REAL32 olap IS ((disp + s.w.w)- start): 

Gl9 



Ill 

b.sidel : = ((olep • olapl I Ctwo • s.w.wll 
disp < CCstart + raadl- s.w.wl 

b.sidal : = Cs.w.w I twol 
disp < !start + read) 

VAL REAL32 olsp IS ((start + readl - displ : 
b.sldal : = Colap- ((olsp • olapl I Ctwo • s.w.wlll 

TRUE 
b.sidal : = zero 

})) 
I {{ calc b.side2 
VAL REAL32 start IS ((safety + guard.band(trackll + write) : 
IF 

disp < start 
b.sids2 : = zero 

disp < !start + s.w.wl 
VAL REAL32 olap IS Cdisp- start) : 
b.side2 : = Colap - ((olep • olapl I Ctwo • s. w. will 

disp < Cstart + raadl 
b.side2 : = Cs. w. w ltwol 

disp < ((start + read) + s.w.wl 
VAL REAL32 olap IS CCCstart + read) + s.w.w)- disp) : 
b.side2 : = ((olap • olap) I Ctwo • s.w.wll 

TRUE 
b.side2 : = zero 

})) 
{{I coleot, noramslise, and put into array for later filing 
a (track] : = Ca.main + a.side) 
bltrack] : = ((b.main + b.sidel I + b.side21 
})) 
Ill 

TRUE 
SKIP 

a( track] : = la( track] I rsadl 
bltrack] : = Cbltrack]l raadl 

SEQ track = 0 FOR num.tracks 
SEa 

char( track) : = 0 
sum( track] : = zero 
sum.sqrs(track) : = zero 
min(track] : = zero 
maxltrack] : = zero 

count:= 0 
data(num.trecks) : = zero .. ie dete(4) 
num.termineted : = 0 
running : = TRUE 
})) 
WHILE running 

SEQ 
I {{ get date, need to gst ell data from all tracks In one go. 
PAR track = 0 FOR num.tracks 

data.ln(track] ? CASE 

Ill 

int ; char(track] 
SKIP 

ftoat ; data(track] 
SKIP 

( ({ check for 'terminated' 
SEQ track = 0 FOR num.trecks 

IF 

Ill 
IF 

char( track] = 0- initial value 
SKIP 

cher(track] = terminate 
num.terminated : = (num.terminated PLUS 1) 

TRUE 
SEQ 

dete.outltrack) I int ; char(track) 
char( track) : = 0 - back to Initial value again 

num.termineted = 0 

G20 



{{ { process data 
SEO 

{{ { mix signals 
SEO track = 0 FOR num.tracks 

SEO 
data[ track[ : = ((data[ track[ • &[track]) + (data[track PLUS 1 I • b[track))) 

)}) 
{{I output signals 
PAR track = 0 FOR num.tracks 

data.out[track) I float ; data[track) 
)}) 

))) 
TRUE 

{ {{ sink rest of data until all terminated 
•• absorbs race-conditions. 
SEO 

WHILE num.terminated < > num.tracks 
ALT track = 0 FOR num.tracks 

data.inltrackl 1 CASE 
int ; char[ track) 
Ill 
IF 

charltrackl = terminate 
num.terminated : = (num.tarminated PLUS 11 

TRUE 
SKIP 

))) 
float ; data[track[ 

SKIP 
running : = FALSE 

))) 
{{{ pass on 'terminate' 
PAR track = 0 FOR num.tracks 

data.out[track) I int ; terminate 
))) 

)))F 
))) 
Ill se heedamp 
{{IF headamp 
{{{ Header 

-Head Amplifier Model. 

- Digital Filter. Snapshots atore waveforms (altar suparpostion has 
- settled down), with decimation lector snapshot.step.size 
))) 
PROC headamp CCHAN OF INT.OR.FLOAT data.in, 

[JREAL32 pre.snapshot, post. snapshot, 
VAL INT settle.tima, snapshot.stap.size, 
[2)CHAN OF INT.OR.FLOAT data.out) 

Ill dacl's 
{{{ #USE's 
#USE psaudort : 
#USE t4math : 
))) 
VAL and IS ((SIZE pra.snapshol) MINUS 1 l : 
VAL REAL32 analog.mult IS 10000.0CREAL321: 
VAL REAL32 T IS (one /Is) : 
VAL REAL32 gain IS 357 .OIREAL32) : •• Gain of Headamp 
{{{ cut-ofllreq, un-warpad, pre-warped 
VAL REAL32 lcdl IS 99.47(REAL32l : ··in Hz 
VAL REAL32 lcdu IS 15.92E + 3(REAL32l : ··in Hz 
VAL REAL32 wcdl IS ((two • pi) • lcdl) : .. in Rad/s, un-warped 
VAL REAL32 wcdu IS ((two • pi) • lcdu) : -in Rad/s, un-warpad 
VAL REAL32 wcaiiS ((two I Tl • TAN((wcdl • Tl/ two)) : •• pra-warped 
VAL REAL32 wcau IS ((two I Tl 'TANUwcdu ' Tl/ twoll:- pro-warped 
))) 
Ill filter coefficients 
VAL REAL32 a IS (weal ' wcau) : 
VAL REAL32 b IS (wcau • weal) : 
VAL REAL32 c IS (two I Tl : 

G21 



VAL REAL32 d IS (a + (c • (b + cm : 
VAL REAL32 e IS ((b • c) I d) : 
VAL REAL32 f IS ((two • (a- le • cm I dl : 
VAL REAL32 g IS ((a + (c • (c- bill I d) : 
))) 
REAL32 xn, xn.minus.l, xn.minus.2, yn, yn.minus.l, yn.minus.2 : 
INT count, ptr, char, snap.oount: 
BOOL settling, capturing, running : 
))) 
SEQ 

{({ init 
ptr, count, snap.count : = 0, 0, 0 
xn.minus.l, yn.minus.l : = zero, zero 
xn.minus.2, yn.minus.2 : = zero, zero 
settling : = TRUE 
capturing : = FALSE 
running : = TRUE 
)}) 
WHILE running 

data.in 1 CASE 
int ; char 

( {{ process char 
IF 

char = terminate 
running : = FALSE 

TRUE 
{({ peas it on 
PAR 

data.out[O) I int ; char 
data.out[1 I ! int ; char 

)}} 
))) 

float ; xn 
({( 
SEQ 

yn : = (((s • (xn - xn.minus.2)) - (f • yn.minus.1)) - (g • yn.minus.2)) 
( {{ output two copiss (for the two data streams of GXOJ 
VAL output IS (yn • gain) : 
SEQ 

PAR 

))) 

data.out[O) I float ; output 
data.out)1) I float; output 

I (( snap section of ths number stream 
IF 

settling 
Ill 
SEQ 

count : = count PLUS 1 
IF 

))) 

aattle.time > count 
SKIP 

TRUE 
SEO 

settling : = FALSE 
capturing : = TRUE 

capturing 
Ill 
SEQ 

snap.count : = (snep.count PLUS 1) 
IF 

snap.count = snapshot.stsp.size 
SEQ 

pre.snapshotlptr) : = xn 
post.snapshot[ptr) : = vn 
{{I increment ptr 
IF 

ptr < > and 
ptr : = ptr PLUS 1 

TRUE 
capturing : = FALSE 

G22 



)}) 
snsp.count : = 0 

TRUE 

}}} 
TRUE 

SKIP 

SKIP 
))) 
({{ update xn.minus, yn.minus stuff 
xn.minus.2 : = xn.minus.1 
xn.minus.1 : = xn 
yn.mlnus.2 : = yn.minus.1 
yn.minus.1 : = vn 
))) 

))) 
{{( pass on 'terminate' (two copies for two data streams if GXOI 
PAR 

data.out[O) I int ; terminate 
dste.out)l)lint; terminate 

}}} 

)))F 
))) 
({{ se gatad.cross 
( {{F gated.cross 
((( Header 

- Gated Cross Over Detector. 

))) 
{{ ( PROe gated.cross (Parameter Listl 
PROe gated.cross ((2)eHAN OF INT.OR.FLOAT data.in, 

IIREAL32 gate.sna, pol.ena, 

))) 

IIBYTE gate.dig, pol.dig, gxo.dig, 
VAL REAL32 gate.stan.dev, pol.stan.dev, 
VAL REAL32 gate.threshold, pol.threshold, 
VAL INT senle.time, snepshot.step.size, 
eH AN OF INT data.outl 

{{ { eH AN decl's 
eHAN OF INT.OR.FLOAT from.gate.bandpass, from.pol.bandpass: 
eHAN OF INT from.gate, from.pol : 
))) 
((( PROe decl's 
{(( se bandpass.gate 
({{F bandpass.gata 
({{ Header 

-Band-pass filter as Differentiator. 

- Filter coetf's calc at compile time. 
- Internal to GXO 
))) 
PROe bandpass.gate (eHAN OF INT.OR.FLOAT dats.in, 

IIREAL32 snapshot, 
VAL INT senle.time, snapshot.step.size, 
eHAN OF INT.OR.FLOAT data.outl 

{(( decl's 
#USE psaudon : 
#USE t4math : 
VAL end IS ((SIZE snapshotl MINUS 11 : 
VAL REAL32 analog.multiS 10000.0(REAL321: 
VAL REAL32 T IS (one I Is) : 
VAL REAL32 gain IS 14.21REAL32): ··actual gain of circuit 
{{ { frequencies, un-warped, pre-warped 
VAL REAL32 fcdl IS 10.0E + 3(REAL32) : --in Hz 
VAL REAL32 fcdu IS 50.0E + 3(REAL32) : -in Hz 
VAL REAL32 wcdiiS ((two • pi) • fcdll : --in Radls, un-warped 
VAL REAL32 wcdu IS ((two • pi) • fcdul : -in Radls. un-warped 
VAL REAL32 wcaiiS ((two I Tl • TAN((wcdl • Tll twoH:- pre-warped 
VAL REAL32 wcau IS ((two I Tl • TAN((wcdu • T) I twoH : - pre·werped 
))) 

023 



((I filter coefficients 
VAL REAL32 a IS lwcel • wcaul : 
VAL REAL32 b IS (wcau- woall : 
VAL REAL32 c IS (two IT)·: 
VAL REAL32 d IS la + le • lb + c))) : 
VAL REAL32 e IS llb • cl I d) : 
VAL REAL32 liS ((two • (a- le • o)))/ d) : 
VAL REAL32 g IS (la + (c • (c- b)))/ d) : 
}}) 
REAL32 xn, xn.minus.1, xn.minus.2, yn, yn.minus.1, yn.minus.2, output : 
INT count, ptr, char, snap.count: 
BOOL senllng, capturing, running : 

Ill 
SEQ 

((( init 
ptr, count, snap.count : = 0, 0, 0 
xn.minus.t, yn.minus.t : c:: zero, zero 
xn.minus.2, yn.mlnus.2 : = zero, zero 
sanling : = TRUE 
capturing : = FALSE 
running : = TRUE 

))) 
WHILE running 

data.in 7 CASE 
int; char 

((I process eh er 
IF 

char = terminate 
running : = FALSE 

TRUE 
data.out I int ; char - pass it on 

Ill 
float; xn 

I{( 
SEQ 

yn : = Ills • (xn - xn.minus.2)) - (I • yn.minus.1)) - (g • yn.minus.2)) 
output : = (yn • gain) 
data.out I float ; output 
I {( snap section of the number stream 
IF 

senling 
HI 
SEQ 

count : = count PLUS 1 
IF 

))) 

settle.time > count 
SKIP 

TRUE 
SEQ 

senllng : = FALSE 
capturing : = TRUE 

capturing 
Ill 
SEQ 

snap.ccunt : = (snap.count PLUS 1) 
IF 

snsp.count = snapshot.step.size 
SEQ 

snepshot(ptr] : = output 
{(I Increment ptr 
IF 

ptr < > and 
ptr : = ptr PLUS 1 

TRUE 
capturing : = FALSE 

))) 
snap.count : = 0 

TRUE 
SKIP 

G24 



Ill 
TRUE 

SKIP 
Ill 
{( { update history 
xn.minus.2 : = xn.minus.1 
xn.minus.t : = xn 
yn.minus.2 : = yn.minus.1 
yn.minus. 1 : = yn 
})} 

})} 
{({ pass on 'terminate' 
dete.out I lnt ; terminate 
Ill 

)))F 
}}} 
{{ { se bandpass.pol 
{{{F bandpass.pol 
{{{ Header 

- Band-pass filter as gain block. 

•• Filter cootf's cslc at compile time. 
•• Internal to GXO 
Ill 
PROC bsndpsss.pol ICHAN OF INT.OR.FLOAT dsts.in, IIREAL32 snapshot, 

VAL INT oottle.time, snspshot.stop.sizo, 
CHAN OF INT.OR.FLOAT doto.out) 

{{{ docl's 
fUSE pooudort : 
#USE t4math : 
VAL end IS ((SIZE snapshot) MINUS 1) : 
VAL REAL32 analog.mult IS 10000.0(REAL32): 
VAL REAL32 T IS Iona I Is) : 
VAL REAL32 gain IS 3.6(REAL32):- actual gain of circuit 3/10190 
{( { frequencies, un·warpod, pro· warped 
VAL REAL32 fcdiiS 102.6(REAL32) : ··in Hz 
VAL REAL32 fcdu IS 6.792E +3(REAL32) : .. in Hz 
VAL REAL32 wcdl IS ((two • pi) • fcdl) : - in Radls, un·warped 
VAL REAL32 wcdu IS ((two • pi) • fcdu) : ··in Rsdls, un-wsrped 
VAL REAL32 wcaiiS ((two IT) • TAN((wcdl • T) I two)):- prs-wsrpsd 
VAL REAL32 wcau IS ((two IT) • TANUwcdu • T) I two)):- prs-warped 
}}} 
{ { { filter coefficients 
VAL REAL32 a IS (weal ' wcau) : 
VAL REAL32 b IS (wcau • weal) : 
VAL REAL32 c IS (two I T) : 
VAL REAL32 d IS (a + (c • lb + c))) : 
VAL REAL32 e IS ((b ' c) I d) : 
VAL REAL32 f IS ((two • (a· (c ' c))) I d) : 
VAL REAL32 g IS ((a + (c ' lc ·b))) I d) : 

Ill 
REAL32 xn, xn.minus.1, xn.minus.2, yn, yn.minus.1, yn.minus.2, output : 
INT count, ptr, char, snap.count : 
BOOL aettling, capturing, running : 
Ill 
SEO 

{{{ init 
ptr, count, snap.count : = 0, 0, 0 
xn.mlnus.l, yn.minus.t : = zero, zero 
xn.minus.2, yn.minus.2 : = zero, zero 
settling : = TRUE 
capturing : = FALSE 
running : = TRUE 
})) 
WHILE running 

dsta.in 1 CASE 
int ; char 

{{ { process char 
IF 

char = terminate 

G25 



Nnning : = FALSE 
TRUE 

data.out I int ; char 
)}} 

float ; xn 
({{ 
SEQ 

yn : = (((a • (xn- xn.minus.2)) - If • yn.minus.1)) - (g • yn.minus.2)) 
output : = (yn • gain) 
data.out I float ; output 
({ ( snap section of the number stream 
IF 

settling 
{({ 
SEQ 

count : = count PLUS 1 
IF 

settle.time > count 
SKIP 

TRUE 
SEQ 

)}} 

settling : = FALSE 
capturing : = TRUE 

capturing 
({{ 
SEQ 

snap.count : = (snap.count PLUS 1) 
IF 

snap.count = snapshot.step.size 
SEQ 

snapshotfptrJ : = output 
( ({ increment ptr 
IF 

ptr < > end 
ptr : = ptr PLUS 1 

TRUE 
capturing : = FALSE 

Ill 
snap.count : = 0 

TRUE 

Ill 
TRUE 

SKIP 

SKIP 
}}} 
({ ( update history 
xn.minua.2 : == xn.minus.1 
xn.minus.1 : = xn 
yn.minus.2 : = yn.minus.1 
yn.minus.1 : = yn 
)}} 

))} 
({( pass on 'terminate' 
data.out I int ; terminate 
}}} 

}}}F 
}}} 
((( se comp 
({(F comp 
( (( Header 

-- Comparator model with Hysteresis. 

- Thresholding value input at run time. 
- Internal to GXO. 
- Stores snapshot of waveforms after 'settle.time's samples 
·- has passed, decimating by snapshot.atep.size 
}}} 
PROC comp ICHAN OF INT.OR.FLOAT data.in, 

VAL REAL32 stan.dev, threshold, 

G26 



VAL INT senle.tims, snapshot.step.size, 
(]BYTE snapehot, 
CHAN OF INT data.out) 

(({ se gen.gauss 
(({F gen.gauss 
(({ Header 

-Generate Gaussian noise (with zero mean). 

•• Internal to Comparator. 
))) 
PROC gen.gausa UNT32 saad, 

VAL REAL32 stan.dav, 
REAL32 norm.numl 

#USE t4math : 
#USE pssudort : 
VAL INT k IS 12 : -number of random numbars summed to produce Normal Dist 
VAL REAL32 twelve IS 12.0(REAL321 : 
VAL REAL32 shift IS HREAL32 ROUND kl/ two) : 
- VAL REAL32 divisor IS SORT ((REAL32 ROUND kl/ twelve) :- when k < > 12 
SEQ 

norm.num : = O.O(REAL321 
SEQ j = 0 FORk 

REAL32 temp : 
SEQ 

temp, seed : = RAN (seed) 
norm.num : = norm.num + temp 

norm.num : = ((norm.num · shift) • stan.devl 
- norm.num : = (((norm.num- shift)/ divisor) • etan.dsvl 

}}}F 
}}} 
{( { duel's 
#USE psaudort : 
VAL REAL32 pos.thresh IS (zero + threshold) : 
VAL REAL32 neg.thresh IS (zero- threshold) : 
VAL INT pos IS 1 : 
VAL INT nag IS 0: 
VAL end IS ((SIZE snapshot) MINUS 11 : 
VAL REAL32 moan IS O.O(REAL321 : 
INT32 ran.seed : 
REAL32 noise, number : 
INT dummy, count, ptr, char, output, snap.count : 
BOOL settling. capturing, running : 
TIMER clock : 
}}} 
SEQ 

{{{ init 
{( ( Initialise random number stuff 
clock ? dummy 
ran.seod : = UNT32 dummy) 
}}} 
ptr, count, snap.count : = 0, 0, 0 
output : = pos 
senling : = TRUE 
capturing : = FALSE 
running : = TRUE 
})} 
WHILE running 

data.in ? CASE 
int ; char 

{{{ 
IF 

char = terminate 
running : = FALSE 

TRUE 
data.out I char - pass it on 

})} 
float ; number 

{({ 
SEQ 

{{{ add noise 

G27 



gen.gauss (ran.seed, etan.dev, noise) 
number : = (number + noise) 
))) 
(( ( calc new output 
IF 

output = pos 
IF 

neg.thresh > number 
output : = nag 

TRUE 
SKIP 

TRUE 

))) 

IF 
number > pos.thresh 

output : = pos 
TRUE 

SKIP 

data.out I output 
(( ( copy aeotion of number stream 
IF 

senling 
((( 
SEQ 

count : = count PLUS 1 
IF 

))) 

settle.timo > count 
SKIP 

TRUE 
SEQ 

settling : = FALSE 
capturing : = TRUE 

capturing 
((( 
SEQ 

snep.count : = (snap.count PLUS 1 I 
IF 

snap.count = snapshot.step.siza 
SEQ 

snapshot(ptr) : = (BYTE output) 
( (( increment ptr 
IF 

ptr < > end 
ptr : = ptr PLUS 1 

TRUE 
capturing : = FALSE 

))) 
anap.count : = 0 

TRUE 
SKIP 

))) 
TRUE 

SKIP 
})} 

})} 
(( { pass on 'terminate' 
data.out I terminate 
))} 

))}F 
))) 
(( { se gate.out 
({{F gata.out 
({{ Header 

- D-T)l!e Flip-Flop Model. 

•• lntarnalto GXO. 
- Inputs Gating signal and Polarity signal, outputs polarity 
-· when gating changes. 
Ill 

G28 



PROC gate.out ICHAN OF INT trom.gate, from.pol, 
()BYTE snapshot, 
VAL INT settle.time, snapshot.step.size, 
CHAN OF INT deta.out) 

{(( decl's 
IUSE pseudort : 
VAL end IS ((SIZE snapshot) MINUS 1) : 
INT count, ptr, snap.count : 
INT polarity, gate, lest.gate, output : 
BOOL settling, capturing, running : 
}}} 
SEQ 

(( ( initialise 
ptr, count, snap.count: = 0, 0, 0 
output , last.gate : = 0, 0 
settling : = TRUE 
capturing : = FALSE 
running : = TRUE 
}}} 
WHILE running 

SEQ 
(( ( gat both parts of data 
PAR 

from.pol 1 polarity 
trom.gate 1 gate 

}}} 
IF 

(gate = 0) OR (gate = 1 I 
{(( process 
SEQ 

IF 
gate = last.gate 

SKIP 
TRUE 

SEQ 
output : = polarity 
last.gate : = gate 

data.out I output 
(( ( snap section of ths number stream 
IF 

settling 
{(( 
SEQ 

count : = count PLUS 1 
IF 

settle.time > count 
SKIP 

TRUE 
SEQ 

}}} 

settling : = FALSE 
capturing : = TRUE 

capturing 
{(( 
SEQ 

snap.count : = (snap.count PLUS 1) 
IF 

snap.count = snapshot.step.size 
SEO 

snapshot(ptrl : = (BYTE output) 
(( ( incrament ptr 
IF 

ptr < > end 
ptr : = ptr PLUS 1 

TRUE 
capturing : = FALSE 

Ill 
snap.count : = 0 

TRUE 

}}} 
TRUE 

SKIP 

G29 



SKIP 
})} 

}}) 
gals = tsrminats 

running : = FALSE 
TRUE 

({{ pass it on 
data.out I gate 
})} 

( ({ pass on terminate 
data.out I terminate 
})} 

}}}F 
))} 

-The following PARallel forms the 

Gated Cross-Over Detector Model. 

))} 
PAR 

({{ bandpass dldt v 
bandpass.gata (data.ln(O), gata.ana, sattle.time, 

snapshot.step.size, from.geta.bandpass) 
))} 
({{ v bandpass tilt 
bandpass.pol (data.in(1), pol.ana, sellle.time, 

snapshot.step.size, from.pol.bandpass) 
}}) 
({ { compsrator v 
camp (from.gete.bandpess, gete.stan.dev, gate.threshold, eettle.time, 

snapshot.step.size, gate.dig, from.gate) 
))} 
( ({ v comparator 
camp (from.pol.bandpass, pol.stan.dev, pol.threshold, 

settle.time, snapshot.step.size, pol.dig, from.pol) 
))} 
( ({ >- gate out polarity .. < 
gate.out (from.gate, from.pol, gxo.dig, sellle.time, 

snepshot.step.size, data.out) 
))} 

))}F 
))} 
( ({ se sampled .2 .event 
({(F sampled.2.event 
({{ Header 

-Sampled-to-Event Interface. 

- Inputs data in Sampled Data stream, monitors for Events, 
- convens to event date stream, stores in Data and Time arrays. 
- Can initiate termination sequence (via stop.prbs) when arrays full. 
- All sections are robust to receiving odd numbers of samples from diHerenl 
- channels. Termination only when terminate signal received from all tracks. 
))} 
PROC sampled.2.event (IJCHAN OF INT deta.in, 

()BYTE data, 
I liNT times, 
CHAN OF INT stop.prbs, 
CHAN OF ANY to.screen) 

({{ decl's 
#USE pseudon : 
#USE userio : 
VAL INT end.of.array IS ((SIZE data) MINUS 1): 
VAL REAL32 T IS Cone Ifs) : 
VAL REAL32 T.hp.tps IS UREAL32 ROUND hp.tps) ' Tl :-simulates High Priority timing Resolution 
VAL REAL32 range IS (max.neg + max.pos) : 
VAL INT samples.to.throw.away IS (2 TIMES UNT ROUND (range I nil : 

- This is twice minimum for safety 
REAL32 time : 

G30 



(num.tracks)INT char : 
INT num.terminated, ptr : 
INT input, last.input : 
BOOL capturing, freewheeling : 
}}} 
sea 

(({ init 
time : = zero 
last.input : ~ 0 
num.terminated : ~ 0 
ptr :~ 0 
capturing : ~ TRUE 
freewheeling : = TRUE 
(({ throw away first block of samples. 
INT count: 
BOOL throwing.away : 
sea 

throwlng.away : = TRUE 
count:= 0 
WHILE throwing.away 
sea 

}}} 
}}} 

(( { gat all track data in parallel 
PAR track ~ 0 FOR num.tracks 

data.in(track( 7 char(track) 
}}} 
(( { check track data one by one 
input:~ 0 
SEa track = 0 FOR num.tracks 

VAL char.track IS char(track): 
IF 

lchar.track = 01 OR lchar.track = 1) 
sea 

input : = linput 1/lchar.track < < track)) 
(( { check number of SBmples thrown away 
count : = count PLUS 1 
IF 

count = samples.to.throw.away 
sea 

throwing.awsy : = FALSE 
last.input : = linput fl #OF) -- ready for first valid 

TRUE 
SKIP 

}}} 
char .track = terminate 

{{{ oheck how many terminated 
sea 

throwing.away : = FALSE 
capturing : = FALSE 
num.terminatad : = lnum.termlnated PLUS 1) 
IF 

num.terminated ~ num.tracks 
freewheeling : = FALSE 

TRUE 

}}} 
TRUE 

SKIP 

{(( pass to scresn IF track(O( 
IF 

}}} 

track = 0 
writa.char lto.scraan, IBYTE char(O))) 

TRUE 
SKIP 

}}} 

(( { put data into array, then when full ... 
WHILE capturing 

sea 
time : = ltima + T.hp.tps) ·-keep time-base up to date 
{{{ build input word 
PAR track = 0 FOR num.tracks - must get all in parallel 

G31 



data.in(track) 7 char(track) 
input:= 0 
SEa track = 0 FOR num.tracks -- combine in to one word 

VAL INT ohar.track IS char(track) : 
IF 

(char.track = 0) OR (char.track = 1) 
input:= (input V (char.track < < track)) 

char.track = terminate 
({ ( check how many terminated 
sea 

capturing : = FALSE 
num.termineted : = (num.terminated PLUS 1) 
IF 

num.terminated = num.tracks 
freewheeling : = FALSE 

TRUE 
SKIP 

))) 
TRUE 

({( pass to screen IF track(OJ 
IF 

track = 0 
write.ohar (to.scraen, (BYTE char(OJ)) 

TRUE 
SKIP 

))) 
input : = (input 1\ #OF) 

Ill 
IF 

(input < > last.input) AND capturing 
(( ( put time and data into array 
sea 

) ) ) 

data(ptr( : = (BYTE last.input) - lastinput because of one bit buffer in hardware. 
last.input : = input - ready for next transition test 
times(ptrl : = UNT ROUND time) 
( (( update ptr 
IF 

ptr < > end.of .array 
ptr : = ptr PLUS 1 

TRUE 
capturing : = FALSE 

})} 
))) 

TRUE 
SKIP 

{ { { clean termination 
IF 

freewheeling 
((( throw away data AND output 'terminate' 
PAR 

stop.prbs I terminate 
((( throw away rest of data 
WHILE freewheeling 

AL T track = 0 FOR num.tracks 
data.in!trackl 7 char(trackl 

Ill 
))) 

TRUE 

IF 
char(track) < > terminate 

SKIP- throw it away 
TRUE 

( (( check how many terminated 
sea 

num.terminated : = (num.terminated PLUS 1) 
IF 

))) 

num.terminated = num.tracks 
freewheeling : = FALSE 

TRUE 
SKIP 

G32 



SKIP 
Ill 

)}}F 
Ill 

(({ 

-The following PARallel construct models 

the replay process. 

PAR 
manch.codad.prbs (keyboard, stop.prbs, prbs.reg.len, staggered, from.prbs) 
PAR track = 0 FOR num.tracks 

read (from.prbs(track), basic.pulse(track), 
pulse.sep, skew.samples(track), from.read(track)) 

displace (from.raad, write. width, read.width, side.write.width, 
diaplacemant, from.disp, to.log) 

PAR track = 0 FOR num.tracks 
PAR 

headamp (from.disp(track), 
(pre.headamp(track) FROM 0 FOR (SIZE pre.headamp(track))), 

(post.headamp(track) FROM 0 FOR (SIZE post.headamp(track))), 
settle.time, snapshot.step.siza, from.haadamp(track)) 

gatad.cross (from.headamp(track(, 
(gate.ana(track) FROM 0 FOR snapshot.len), 

(pol.ane(track) FROM 0 FOR snapshot.len), 
(gate.dig(track) FROM 0 FOR snapshot.len), 

(pol.dlg(track) FROM 0 FOR snapshot.len), 
(gxo.dig(track) FROM 0 FOR snapshot.len), 

gate.stsn.dev, pol.atan.dev, 
gate.threshold, pol.threshold, 

settle.time, snapshot.atep.aize, 
from.gxo(track)) 

samplad.2.event (from.gxo, (data FROM 0 FOR block.size), 
(times FROM 0 FOR block.aize(, stop.prbs, to.log) 

Ill 
}}} 

})}F 
((( check date 
((( message 
print.elapsed.time lto.log, stert.time) 
write.text.llne lto.log, • Checking data .... ") 
))} 
(({ PROC decl's 
({{ se distib 
({{F dlstib 
({{ Header 

- Distribute Event Times and Data, 

- held In arrays to relevant track. 
- Initiates terrnintaion sequence when arrays ara empty. 
Ill 
fUSE pseudort : 
PROC distrib (((INT terray, 

()BYTE darray, 
(num.tracks(CHAN OF INT data.oul) 

((( Decl's 
VAL first.valid IS 9 :- Let model settle down. 
VAL start IS (first. valid PLUS 1 l : 
INT old.data, track.mask : 
))) 
SEQ 

({ ( Initialise 
old.data : = INT (darray(first.valid)) 
Ill 
SEC sample = start FOR (ISIZE tarray) MINUS start) 

VAL new.data IS INT (darray(sample)) : 
SEC 

track.mask : = #01 
SEQ track = 0 FOR num.tracks 

G33 



SEQ 
IF - this should be redundant, there should always ba a diHerence 

I Cnew.data fl track.maskl < > lold.data fl track.maskl I 
( (( output data to relavanl channel 
deta.oul(track) I ltarray(sampla MINUS 1 I < < 11 V 

((new .data fl track.mask) > > track) 
))) 

TRUE 
SKIP 

track.mask : = traok.mask < < 1 - adjust bit mask for next track 
old.data : = naw .data 

(( ( send 'terminate' to all channels now arrays empty 
SEQ track = 0 FOR num.tracks 

data.out[trackl I terminate 
))) 

)))F 
))) 
((( se decode 
(((F decode 
((( Header 

.. Bi-Phase-L Channel Decoder. 

- Usad simulated data rata to calculate sample points. 
))) 
PROC man.dac lVAL INT sim.data.rate, 

CHAN OF INT data .in, data.out) 
((( dacl's 
IUSE psaudon : 
VAL deta.bit.tima IS (hp.tps /sim.data.ratel : -captured at High Priority 
VAL sample.pariod IS data.bit.tima : 
VAL coda.period IS (data.bit.lima > > 11:- ia half 
VAL margin IS Ccoda.pariod > > 1 I : 
VAL max.drop.oul IS 100 : - is number code bits, used for memory allocation 
INT 11, t2, t3, p1.1an, p2.1an, sampla.time : 
INT data, track.data : 
INT p 1 .units : 
BOOL running, initialising : 
))) 
SEQ 

(({ Initialise 
running : = TRUE 
initialising : = TRUE 
((( get t1 
data.in 7 data 
IF 

data < > terminate 
t1 :=(data>> 11 

TRUE 

))) 

SEO 
running : = FALSE 
initialising : = FALSE 

WHILE initialising 
((( look for interval of 2 
SEO 

data.in 7 data 
IF 

data < > terminate 
({( look for period '2' 
SEO 

12 :=(data>> 11 
p1.1en := (12 MINUS t11 
IF 

((( 1.75 < p1.1en < 2.25 .. Widow only half normal during synchronisation 
lllp1.1en MINUS (margin > > 1 I I < sample.periodl AND 

((p1.1en PLUS (margin > > 11 I > sample.periodl I 
))) 

(( ( found pariod 2 long 
SEO 

G34 



)}) 
)}) 

Initialising : = FALSE 
sampla.tima : = (t2 PLUS sample.poriodl 
p1.units : = 2 

)}) 
TRUE 

t1 : = t2 
)}) 

TRUE 
SEQ 

running : = FALSE 
initialising : = FALSE 

WHILE running 
SEQ 

data.in 1 data 
IF 

data < > terminate 
{{ { process data 
SEQ 

t3 : = (data > > 1) - separate data from time 
track.data : = (data 111011 - separate time from data 
p2.1on : = (t3 MINUS t21 
IF 

IF p2.unita = 0 FOR max.drop.out- calcs p2 in terms of data period 
( (coda.pariod TIMES p2.unitsl PLUS marginl > = p2.1on 

SEQ 
{{{ process p2.units 
IF 

{{{ 1:2 or 2:2 
(p2.units = 21 
)}) 

{{{ 
SEQ 

data.out I track.data 
{{{ rocalc period 
SKIP 
)}} 
oample.time : = (t3 PLUS sample.periodl 

))} 
{{ { 2:1 
Hp 1.units = 21 AND (p2.units = 111 
Ill 

{{{ 
SEQ 

{{ { racalc period 
SKIP 
)}} 
aample.time : = (t3 PLUS (sampla.pariod > > 111 

)}) 
{{{ 1:1 
((p1.units = 11 AND (p2.units = 111 
)}) 

{{{ 
SEQ 

{{{ recalc period 
SKIP 
)}) 
IF 

)}) 

{ {{ past sample point 
(t3 PLUS marginl > sampla.tima 
)}} 

{{{ 
SEQ 

data.out I track.data 
sampla.tima : = (t3 PLUS aamplo.poriodl 

Ill 
TRUE - also, another transition will occur 

SKIP - before sample point 

TRUE -· zero or 2 < p2.units < max drop out 
{{ { freewheel for corrupted data 

035 



WHILE (t3 PLUS margin) > sample.time 
SEa 

))} 
))) 

data.out I track.data 
samplo.timo : = (samplo.timo PLUS sample.period) 

p 1 .units : = p2.units 
TRUE - p2 > max.drop.out units long 

SKIP 
t2 : = t3 

))} 
TRUE 

{( { shutdown 
running : = FALSE 
))} 

{( { pass on 'terminate' 
deta.out I terminate 
))) 

))}F 
))} 
{{{ se prbs.check 
{{{F prbs.chock 
{{{ Header 

- PRBS Error Check and Classification. 

- Regenerates PRBS, comperes with incoming data, classifies errors. 
))} 
PROC prbs.check (VAL INT reg.len, max.bad, min.good, 

CHAN OF INT data.in, 
INT count, class.good, class.bad, 
INT good.bits, bad.bits, lost.synch, 
IIINT burst.his) 

{( { PROC defs 
·· init.pointers, move.pointers declaration removed. 
-· Same as in gen.prbs. 
)}} 

{({ decl's 
#USE pseudort : 
#USE userio: 
VAL his.len IS (max.bad PLUS 11 :-History Length 
(16)1NT s.reg : - Shift Register 
BOOL running, in.synch, not.in.error : 
INT fb1, fb2, next.fb :-Register Pointers 
INT data, new .prbs.blt : 
INT ass.good.bits, ass.bad.bits : - lntermadiane/ASSummed Results 
INT recover .Ion, burst .Ion : 
Ill 
sea 

{{{ initilise process 
class.good, class.bad : = 0, 0 
good.bits, bad.bits : = 0, 0 
SEa i = 0 FOR his.len 

burst.his(i) : = 0 
lost.svnch, count : = 0, 0 
running:= TRUE 
))) 
WHILE running 
sea 

{{{ initialise this stream 
init.pointers (reg.len, fb1, lb2, next.fb) 
ass.good.bits, ass.bad.bits : = 0, 0 
recovor.lan, burst.lon : = 0, 0 
{{{ fill s.rog with incoming data, whilst monitoring for Termination 
{{{ docl's 
INT index: 
BOOL filling : 
)}} 
SEa 

{{{ init 
index:= 0 

G36 



filling : = TRUE 
)}} 
WHILE filling 

SEQ 

Ill 
)}) 

data.in ? data 
IF 

data < > terminate 
((( put into fib reg 
SEQ 

s.rag[(reg.len MINUS 1) MINUS index) : = data 
{( ( increment index 
Index : = (index PLUS 11 
IF 

index = reg.len 
SEQ 

filling : = FALSE 
ln.aynch : = TRUE 
not.in.error : = TRUE 

TRUE 
SKIP 

)}} 
})} 

TRUE 
( ({ end loops 
SEQ 

filling : = FALSE 
running : = FALSE 
in.synch : = FALSE 

Ill 

WHILE in.synoh 
SEQ 

data.in ? data 
IF 

data < > terminate 
{( ( process data 
SEQ 

count : = count PLUS 1 
( ({ clock PRBS 
sea 

move.pointers (fb1, fb2, next.fbl 
new.prbs.bit : = s.rag[lbl) "> < s.reg!fb2) -- EXCLUSIVE OR 
s.reg!next.fb) : = new.prbs.bit 

)}) 
IF 

not.in.orror 
((( 
IF 

{{( new bit OK 
(naw.prbs.bit = datal 
Ill 

((( 
SEQ 

class.good : = lclaas.good PLUS 11 
good.bits : = (good.bits PLUS 11 

)}) 
TRUE 

{{( 
SEQ 

not.in.error : = FALSE 
asa.good.bits, recover.len: = 0, 0 
aaa.bad.bits, burst.len : = 1, 1 

Ill 
)}} 

TRUE - ie in.error 
((( 
SEQ 

IF 
((( new data OK 
(new .prbs.bit = data) 
Ill 

G37 



)})F 
Ill 
Ill 

})) 
TRUE 

{(( 
SEQ 

recover.len := (recover.len PLUS 1) 
IF 

}}) 

recover .I en = min.good 
{{{ burst finished, record errors 
SEQ 

burst.len : = (burst.len MINUS lmin.good MINUS 1)) 
burst.his(burst.lenl : = (burst.his(burst.len) PLUS 1 l 
class.good : = (cless.good PLUS recover.len) 
class.bad : = (class.bad PLUS burst.lenl 
good.bits : = (good.bits PLUS (ass.good.bits PLUS 1)) 
bad.bits : = (bad.bits PLUS ass.bad.bitsl 
not.in.error : = TRUE 

}}) 
TRUE 

SEQ 
ass.good.bits : = (ass.good.bits PLUS 1) 
burst .I an : = (burst.len PLUS 1 l 

TRUE - now data wrong 

}}) 

{(( 
SEQ 

burst.len : = (burst.len PLUS 1 l 
IF 

Ill 

burst.lsn > ma>e.bad 
SEQ 

in.aynch : = FALSE 
lost.synch : = (lost.synch PLUS 1) 

TRUE 
SEQ 

ess.bsd.bits : = Cass.bad.bits PLUS 1 l 
recover .I en : = 0 

{{ { end loops 
SEQ 

running : = FALSE 
in.synch : = FALSE 

Ill 

CHAN OF INT from. tee : 
[num.tracks)CHAN OF INT from.distrib, from.decods : 

-The following PARallel Construct implements 

the Decodes and Error Checking. 

PAR 
distrib Utimas FROM 0 FOR block.siza), (data FROM 0 FOR block.size), 

from.distribl 
PAR track = 1 FOR 3 

PAR 
man.dec lsim.data.rate, from.distrib(track), from.decode(trackll 
prbs.check (prbs.reg.len, max.bad, min.good, 

from.decode(treck), 
countltreck), cless.goodltreck), class.bed(track), 
good.bitsltrack), bad.bits(track), 
lost.synch(track), burst.his(track)) 

man.dec (sim.data.rate, from.distrib(O), from.decode(OJI 
prbs.ohack lprbs.rag.len, ma>e.bad, min.good, from.decode(O), 

count(O), class.good(O), class.bad(O), 
good.bits(O), bad.bits(O), 
lost.synch(O), burst.his(O)) 

Ill 
{{ { calculate rates 
calc.rates (class.good, class.bad, lost.synch, 

038 



max.bad, block.aize, track.rate, rete) 
Ill 
({( print totals 
print.totala (count, lost.aynch, class.good, claas.bad, good.bita, bad.bita, 

burst.his, his.len, track.rate, rate, to.log) 
Ill 
({ { file waveforms arraya 
VAL IIBYTE dont.file.str IS "do not file waveforms 
IF 

({{ dont want waveforms filed .... 

.. 
eqstr llwaveform.filename FROM 0 FOR waveform.name.len), 

(dont.file.atr FROM 0 FOR waveform.neme.len() 
Ill 

({{ 
write.text.line lto.log, "Waveforms NOT filed.") 
Ill 

TRUE 
({ { file waveforms 
({{ local decl's 
eHAN OF ANY to. waveforms : 
INT aubplot.num, meag.num, waveform.fller.reeult : 
REAL32 xorig, yorig : 
))) 
{({ PROC decl'a 
({( se draw .graphs 
{{{F drew.graphs 
{{{ Header 

- Dtaw Graphs. 

-Takes snapshot data in arrays, output in TellaGraf form. 
- Starting at XOrigin, YOrigin. Each graph has unique SUBPLOT number. 
Ill . 
PROC draw.graphs IIIIIREAL32 pre.headamp, poat.headamp, 

IIIIREAL32 gate.ana, pol.ana, 
IIIIBYTE pol.dig, gate.dig, gxo.dig, 
VAL INT anepshot.len, 
REAL32 xorig, yorig, 
INT subplot .nu m, 
CHAN OF ANY deta.outl 

({( VAL's 
VAL INT num.tracks IS (SIZE pol.op) : 
VAL REAL32 ylen IS 2.5(REAL32) : -- V axis length 
VAL REAL32 xlen IS 18.01REAL321 :- x axis length 
Ill 
{ ({ se plot analogue wave 
{{{F plot analogue wave 
({{ Header 
··Wraps floating point numbers for TellaGraf PLOT. 
-Internal to Draw.Graphs 
))) 
PROC plot.a.wave (VAL IIREAL32 analogue, 

VAL REAL32 xorig, yorig, xlen, ylen, 
INT aubplot.num, 
eHAN OF ANY data.out) 

({{ se write.noat.arrey 
({{F write.float.array 
({( Header 
•• Outputs 'per .line' floating point numbers per line 
-- Internal to plot.analogue 
}}} 
PROC write.float.array IVAL IIREAL32 array, 

VAL INT per.line, 

({( decl's 
#USE ueerio : 
})) 

CHAN OF ANY data,out) 

SEQ i = 0 FOR ((SIZE array) I per.linel 
SEQ 

SEQ j = 0 FOR per .line 
VAL INT index IS 11i • per .line) PLUS j) : 

G39 



SEQ 
wrlta.raal32 (data.out, arravfindax], 0, 41 
writa.full.string (data.out, • "I 

)}IF 
)}} 

nawlina (data.outl 

IUSE usorio : 
({( VAL's 
VAL INT floats.per .line IS 6 : 
VAL INT analog.multiS INT 10000: 
VAL INT analog.y IS ((3 TIMES analog.mult) I 21 :- ie plus 50% 
)}} 
SEQ 

{{{ continue 
writo.full.string (data.out, "CONTINUE ") 
wrlta.int (data.out, subplot.num, 0) 
writa.taxt.lino (data.out, •. ") 
subplot.num : = (subplot.num PLUS 1) 
)}} 
writa.taxt.lino ldata.out, "GENERATE A PLOT.") 
write.taxt.lina (data.out, "SEQUENCE DATA.") 
writa.toxt.line ldata.out, • •• ANALOGUE • "") 
write.float.array (analogue, floats.per.lino, data.outl 
writa.text.lina (data.out, "END OF DATA."I 
{{{ x axis 
write.full.string (data.out, "X AXIS ORIGIN "l 
write.raal32 (data.out, xorig, 0, 0 ) 
wrlte.full.string (data.out, •, LENGTH ") 
write.reel32 (data.out, xlon, 0, 0) 
write.taxt.line (data.out, •, OFF.") 
Ill 
{{{ yaxis 
writo.full.string ldata.out, •y AXIS ORIGIN "I 
write.real32 ldata.out, yorig, 0, 0) 
writo.full.string (data.out, ", LENGTH "I 
write.rea132 (data.out, ylon, 0, 0) 
writo.full.string (data. out, •, MIN ") 
write.int ldata.out, (0 MINUS analog.y), 0) 
writa.full.string (data.out, •, STEP "I 
write.int (data.out, enalog.y, 01 
write.full.string (dete.out, •, MAX ") 
write.int ldeta.out, (0 PLUS enelog.y), 0) 
writa.text.line (dete.out, •. ") 
)}} 
(({ subplot 
writo.full.string ldeta.out, "SUBPLOT ") 
write.int (data.out, subplot.num, 0) 
write. text .lino (dete.out, •. "I 
))) 

)}IF 
Ill 
({ { se plot digital wave 
{({F plot digital wave 
{{{ Header 
-Internal to Draw.Graphs. 
- Takes Integer array, output with text for TeaiGraf. 
)}} 
PROC plot.d.wave (VAL ()BYTE digital, 

VAL REAL32 xorig, yorig, xlon, ylan, 
INT subplot.num, 
CHAN OF ANY dete.outl 

({ ( se writa.int.array 
(((F writa.int.array 
((( Header 
.. Internal to plot.digital . 
.. Outputs Integer array, 'par .line' INTo par line. 
Ill 
PROC writa.int.array (VAL ()BYTE array, 

VAL INT par .lino, 

G40 



CHAN OF ANY data.out) 
{({ decl's 
#USE userio: 
Ill 
SEQ i = 0 FOR ((SIZE array) I per .line) 

SEQ 
SEQ j = 0 FOR per.line 

VAL INT index IS ((i ' per .line) PLUS j) : 
SEQ 

write.int (data.out, liNT arrayllndax)), 2) 
write.full.string (data.out, • ") 

)))F 
Ill 

nawline (data.oul) 

#USE userio : 
VAL INT ints.per .line IS 20 : 
SEQ 

{{{ subplot 
write.full.string (data.out, "CONTINUE ") 
write.int (data.out, subplot.num, 0) 
write.text.line (doto.out, •. ") 
subplot.num : = (subplot.num PLUS 1) 
Ill 
write.taxt.line (data.out, "GENERATE A PLOT.") 
write.text.line (data.out, "SEQUENCE DATA.") 
writa.text.line (data.out, """DIGITAL""") 
write.int.array (digital, ints.per.line, data.out) 
writa.taxt.line (data.out, "END OF DATA.") 
{{{ x axis 
write.full.string (data.out, "X AXIS ORIGIN ") 
write.real32 (data.out, xorig, 0, 0 ) 
write.full.etring (data.out, •, LENGTH") 
writa.real32 (data.out, xlan, 0, 0) 
write.text.line (data.out, ",ANNOTATION OFF, EXISTENCE OFF.") 
})) 
{ {( yaxis 
write.full.string (data.out, •y AXIS ORIGIN ") 
write.raal32 (data.out, yorig, 0, 0) 
write.full.string (data.out, •, LENGTH ") 
writa.raal32 (data.out, ylen, 0, 0) 
write.full.string (data. out, •, MIN ") 
write.raal32 (data.out, -2.0(REAL32), 0, 0) 
write.full.string (data.out, •, STEP ") 
write.real32 (data.out, 1 .O(REAL32), 0, 0) 
write.full.string (data.out, •, MAX ") 
write.raal32 (data.out, 2.0(REAL32), 0, 0) 
write.taxt.line (data.out, ", EXISTENCE OFF, OFF.") 
Ill 
{{( subplot 
write.full.string (deta.out, "SUBPLOT ") 
write.int (data.out, subplot.num, 0) 
write.text.line (data.out, •. ") 
Ill 

IIIF 
Ill 
sea 

SEQ track = 0 FOR num.tracks 
{( { output gate signals 
SEQ 

plot.a.wave ((gate.ana(track) FROM 0 FOR snspshot.lan), 
xorig, yorig, xlen, ylan, subplot.num, data.out) 

plot.d.wave ((gate.dig(track) FROM 0 FOR snapshot.len), 
xorig, yorig, xlan, ylen, subplot.num, data.out) 

yorig : = (yorig - ylen) 
}}) 

SEQ track = 0 FOR num.tracks 
{( { output polarity signals 
SEQ 

plot.a. wave ((pol.ana(track) FROM 0 FOR snapshot.len), 
xorig, yorig, xlen, ylan, subplot.num, data.out) 

G41 



plot.d.wave ([pol.dig(track) FROM 0 FOR snapshot.len(, 
xorig, yorig, xlen, ylen, uubplot.num, data.outl 

yorig : ~ (yorig · ylenl 
Ill 

SEQ track ~ 0 FOR num.trecks 
{( { output gxo out 
SEQ 

plot.d.wave ([gxo.dig(track( FROM 0 FOR snapuhot.len), 
xorig, yorig, xlen, ylan, aubplot.num, data.oul) 

yorig : = (yorig - 1.6(REAL32ll 

IIIF 
Ill 

Ill 

{( { se draw base 
{{{F draw base 
{{{ Header 

-Prints Error Results onto Graph. 

Ill 
{( { PROe header 
PROe draw.base (VAL INT num.tracks, INT subplot.num, mesg.num, 

VAL INT pulse.sep, 
VAL REAL32 gate.threshold, pol.threuhold, 
VAL REAL32 gate.noise.pp, pol.noiue.pp, diuplacement, 
VAL BOOL staggered, 
VAL INT sim.data.rate, max.bad, min.good, 
VAL ((BYTE comment.text, 
VAL INT oomment.len, VAL ((REAL32 track.rete, 
VAL REAL32 rata, eHAN OF ANY data.outl 

))) 
#USE uaario: 
{{{ PROe decl's 
{({ se text.new.line 
{({F text.new.lins 
{{{ Header 
-· Internal to drew .base 
))) 
PROe text.new.line (REAL32 ycordl 

SEQ 
ycord : ~ ycord - 0.5(REAL32l 

)))F 
Ill 
{{{ se text.new.column 
{{{F text.new.column 
{{{ Header 
-· Internal to draw .base 
Ill 
PROe text.new.column (REAL32 xcord. ycord) 

SEQ 
xcord : ~ xcord + 4.5(REAL321 
ycord : ~ 2.5(REAL32l 

)))F 
))) 
{{{ se writa.masg.int 
{{{F writa.mesg.int 
{{ { Header 
-- Write Message with Integer. 
--Internal to draw.bese. Increment Message number. 
))) 
PROe write.mesg.int liNT mesg.num, 

VAL ((BYTE string, 
VAL INT value, 

IIUSE ussrio : 
SEO 

VAL REAL32 xcord, ycord, 
eHAN OF ANY data.outl 

write.full.string (dete.out, "MSG ") 
write.int (data.out, mesg.num, 0) 

G42 



write.full.string (deta.out, • •"") 
write.full.etring (data.out, string) 
IF 

value < > (-1) - allows for no number being printed 
write.int (data.out, value, 0) 

TRUE 
SKIP 

write.full.string ldata.out, • ••, X=") 
writa.real32 (data.out, xcord, 0, 0) 
write.full.string (data.out, •, Y = ") 
write.reel32 (data.out, ycord, 0, 0) 
write.text.lina (data.out, ". ") 
mesg.num : = (mesg.num PLUS 1 l 

)))F 
))) 
{{{ se writa.mssg.float 
{{{F write.mesg.lloat 
{{{ Header 
- Write Massage with Roating point number 
- Internal to draw .base. Increment Message number. 
))) 
PROC write.mesg.float (INT mesg.num, VAL ()BYTE string, VAL REAL32 value, 

VAL REAL32 xcord, ycord, CHAN OF ANY dete.out) 
#USE userio : 
SEQ 

write.full.string (data.out, "MSG ") 
write.int (data.out, mesg.num, 0) 
write.full.string (deta.out, • • "") 
write.full.string (data.out, string) 
write.reel32 (data.out, value, 1, 5) 
writa.full.string (data.out, • • ·, X=") 
writa.real32 (data.out, xcord, 0, 0) 
write.full.string (date.out, •, Y = ") 
write.raal32 (data.out, ycord, 0, 0) 
writa.taxt.llna (deta.out, •. ") 
mesg.num : = (mesg.num PLUS 1) 

)))F 
))) 
{ {{ se write track id 
{{{F write track id 
{{ { Header 
- Annotate Graphs according to Track Number. 
- Internal to draw .base 
}}) 
PROC write.track.id (INT mesg.num, VAL INT track, 

VAL REAL32 xorig, yorig, 
CHAN OF ANY data.out) 

#USE userio: 
SEQ 

write.full.string (data.out, "MSG ") 
write.int (data.out, mesg.num, 0) 
writa.full.string (data.out, • ""T"l 
write.int ldata.out, (track PLUS 1 ), 0) 
write.full.string (data.out, • ••, X=") 
write.real32 (data.out, xorig, 0, 0) 
write.full.string (data.out, •, Y = ") 
write.real32 (data.out, yorig, 0, 0) 
write.text.lina (data.out, •. ") 
mesg.num : = (mesg.num PLUS 1) 

)))F 
))) 
))) 
REAL32 xtext, ytext : 
SEQ 

{{ { continue 
write.lull.string (deta.out, "CONTINUE ") 
write.int (data.out, subplot.num, 0) 
writa.text.line (data.out, ".") 
subplot.num : = (subplot.num PLUS 1) 

G43 



)}) 
write.text.line (data.out, "GENERATE A PLOT.") 
I {( write general data 
xtext, ytaxt : = 2.0CREAL32), 2.5CREAL32) 
{(I first column 
write.mesg.int Cmesg.num, "SIM DATA RATE", sim.data.rate, xtext, ytext, deta.out) 
text.new.line (ytext) 
write.meeg.floet Cmeeg.num, "GATE THRESH •, gate.threehold, xtext, ytext, data.oul) 
text.new.line (ytext) 
write.mesg.float Cmesg.num, "POL THRESH •, pol.threshold, xtext; ytext, deta.out) 
text.new .lino (ytaxt) 
writa.mesg.float Cmasg.num, "GATE NOISE PP", gate.noise.pp, xtext, ytext, data.out) 
text.new .lino (ytext) 
writa.masg.float (mesg.num, "POL NOISE PP •, pol.noise.pp, xtext, ytaxt, data.oul) 
text.new .line (ytext) 
Ill 
{( ( second column 
write.mesg.float Cmasg.num, "TRACK DISP •, displacement, xtext, ytaxt, data.oul) 
text.nsw .column Cxtaxt, ytaxt) 
{(I staggered 
IF 

staggered 
write.masg.int Cmasg.num, "DATA STAGGERED", ·1, xtext, ytoxt, data.out) 

TRUE 
writo.mesg.int Cmasg.num, "DATA NOT STAGGERED", -1, xtext, ytext, deta.outJ 

Ill 
taxt.naw.lina (ytaxt) 
write.mesg.int (mesg.num, "MAX BAD •, max.bad, xtaxt, ytaxt, data.oul) 
text.new.line Cytaxt) 
write.mesg.int (mesg.num, "MIN GOOD •, mln.good, xtext, ytext, data.out) 
text.new.line (ytaxtl 
Ill comment 
IF 

(comment.len MINUS 1) > 0 
write.mesg.int Cmesg.num, (commsnt.text FROM 0 FOR Ccomment.len MINUS 1 )J, 

·1, xtext, ytext, deta.out) 
TRUE 

writs.masg.int Cmaag.num, •.•, ·1, xtaxt, ytext, data.oul) 
))) 
text.new.column Cxtext, ytaxt) 
Ill 
((( third column 
SEQ track = 0 FOR num.tracks 

SEQ 
write.full.string Cdata.out, "MSG "I 
write.int Cdata.out, masg.num, 0) 
write.full.string Cdata.out, • •"RATE T"J 
writa.int Cdata.out, (track PLUS 1 ), 01 
write.full.string Cdata.out, • "I 
writa.real32 (data.out, track.rate(track), 1, 5) 
write.full.string Cdata.out, • • •, X= "I 
write.real32 Cdata.out, xtext, 0, 01 
write.full.string Cdata.out, •, Y ="I 
write.real32 Cdata.out, ytaxt, 0, 0) 
write.taxt.line Cdata.out, • .") 
mesg.num : = (mesg.num PLUS 1) 
text.new.lina (ytaxt) 

writa.mesg.float Cmesg.num, "OVERALL RATE ", rate, xtext, ytext, data.out) 
text.naw.column (xtext, ytext) 
Ill 
Ill 
((( writs track id's 
>ctext, ytaxt: = 19.5CREAL32), 28.5(REAL32) 
SEQ track = 0 FOR num.tracks 
I ( ( output gate anotation 
SEQ 

writa.track.id Cmaag.num, track, xtext, ytaxt, data.out) 
ytext : = (ytext · 2.5CREAL32)J 

Ill 
SEQ track = 0 FOR num.tracks 
I I I output polarity anotation 
SEQ 

G44 



write.track.id (masg.num, track, xtext, ytext, data.cut) 
ytext : = (ytext- 2.5(REAL321l 

}}) 
ytext : = (ytext + 1.0(REAL321l 
SEQ track = 0 FOR num.tracks 

(( ( output gxo out 
SEQ 

write.track.id (mesg.num, track, xtext, ytext, data.out) 
ytext : = (ytext - 1.5(REAL321l 

}}) 
}}) 
({( subplot 
write.full.string (data.out, "SUBPLOT ") 
write.int (data.out, subplot.num, 0) 
write.text.line (data.out, •. ") 
))} 

))}F 
}}) 
PAR 

Ill 

({( gen text 
SEQ 

({ ( init 
xorig : = 2.0(REAL32) 
yorig : = 26.5(REAL32) 
subplot.num : = 1 
mesg.num : = 1 
(( ( send massage to log 
wiite.full.string (to.log, "Waveforms filed in ") 
writa.text.lina (to.log, (wavaform.filanama FROM 0 FOR wavaform.nsme.lan() 
HI 
HI 
(( ( generate text 
SEQ 

write.text.line (to. waveforms, "ERROR REPORTING LEVEL 2.") 
write.taxt.line (to.waveforms, "PAGE LAYOUT HRV.") 
write.text.line (to.waveforms, "GENERATE A PLOT.") 
(( ( subplot 
write.full.string (to. waveforms, "SUBPLOT") 
write.int (to. waveforms, subplot.num, 0) 
write.text.lina (to.waveforms, ".") 
))} 
(( ( draw graphs 
draw.graphs (pre.haadamp, post.headamp, gate.ana, pol.ana, 

gete.dig, pol.dig, gxo.dig, snapshot.lan, 
xorig, yorig, subplot.num, to. waveforms) 

Ill 
((( draw .base 
draw.base (num.tracks, subplot.num, mesg.num, pulse.sep, 

gate.threshold, pol.threshold, 

Ill 

gate.noisa.pp, pol.noise.pp, diaplacemant, 
staggered, 
sim.data.rate, max.bad, min.good, 
comment.toxt, comment.len, 
track.rata, rate, to.waveforms) 

writa.endstream (to. waveforms) 
Ill 

Ill 
((( file text 
scrstream.to.server (to.waveforms, from.filer, to.filer, waveform.nama.len, 

wavaform.filaname, waveform.filer.result) 
Ill 

))} 

((( massage 
print.elapsed.tima (to.log, stan.tima) 
write.text.line (lo.log, • FINISHED ! ") 
Ill 

write.endstream (to.log) 
Ill 
((( send text to "LOG", copied to screen 

G45 



CHAN OF ANY to.log.fold : 
PAR 

SEQ 
scrstresm.fsn.out (to.log, to.log.fold, screen) 
write.endstream (to.log.fold) 

scrstream.to.file (to.log.fold, from.user.filer[1), to.user.filer[1), 
"log•, log.fold.num, log.fold.rssult) 

})} 
llJ 

{{{ clean up 
ksystreem.sink (from.peram.fold) 
})} 

))} 
{{ { using parameters read from fold 
keystresm.from.file (from.ussr .filsr[O), to.usar .filar[O), from.psrsm.fold, 

top.fold, psram.fold.rssult) 
))} 

{{ { clean finish 
writs.full.string (screen, "Press any key .... "I 
resd.char (keyboard, char) 
))} 

- End of Simulation Code. 

{{{ se sntidisp 
{{{F antidisp 
{{{ Header 

-- Displacement Compensation Scheme. 

-· Usas track width, separation and displscemant. 
-- Record pro- and post-compensation waveforms (in snapshot) 
))) 
#USE pseudort : 
VAL num.trscks IS 2 : 
PROC antidisp ([num.trecks)CHAN OF INT.OR.FLOAT data.in, 

VAL REAL32 w, TS, disp, 
[num.tracks)[)REAL32 pre.snapshot, post.snapshot, 
V AL INT settle. time, snspshot.step .size, 
[num.tracks)[9000)REAL32 uncomp.signal, comp.signal, 
tnum.trscks)CHAN OF INT.OR.FLOAT dsts.out) 

{{{ decl's 
#USE t4math : 
VAL INT Trsck1 IS 0: 
VAL INT Track2 IS 1 : 
VAL end IS ((SIZE pre.snapshot[O)) MINUS 11 : 
VAL track2.gain IS 1.21REAL32) : 
lnum.trecks)REAL32 data : 
lnum.tracks)INT char: 
REAL32 on. track, next. track, coeff1, coaff2, adj.deta.Track 1, adj.dsta.Track2 : 
INT ptr, out.ptr, count, snap.count, num.terminated : 
BOOL settling, capturing, running : 
))) 
SEQ 

{ {{ init 
{{{ calc coeff's 
on.track : = (w • displ 
next.track : = ((w + disp) - TSI 
IF 

next.track < zero 
next.track : = zero 

TRUE 
SKIP 

coeff1 : = (w I on.track) 
coa112 : = (next.track I on.track) 
))) 
SEQ track = 0 FOR num.tracks 

char[ track) : = 0 
count:= 0 
ptr, out.ptr : = 0, 0 

G46 



anap.count : = 0 
num.terminated : = 0 
settling : = TRUE 
capturing : = FALSE 
running : = TRUE 
})) 
WHILE running 

SEQ 
(({ got data 
PAR track = 0 FOR num.tracka 

date.ln(trackl 1 CASE 

})) 

int ; char(trackl 
SKIP 

float ; data(trackl 
SKIP 

({{ check for 'terminated' 
SEQ track = 0 FOR num.uacks 

IF 

})) 
IF 

char(trackl = 0 - initial value 
SKIP 

char(track) = terminate 
num.terminated: = (num.terminated PLUS 1) 

TRUE 
SEQ 

data.oul(track) I int ; char(track) 
char(trackl : = 0 - back to initial value again 

nu m. terminated = 0 
{{ ( process data 
SEQ 

{{I do· mix signals 
data(Track21 : = (data(Track21 • track2.gainl 
( {( record input date 
unccmp.signei(Treck 1)(out.ptr) : = data(Track 1 I 
uncomp.signa11Track2)(out.ptr) : = deta(Track21 
})) 
adj.data.Track1 := (coeff1 • data(Track1)) 
adj.data.Track2 : = (coeff1 • (data(Track21 + (coaff2 • data(Track 1 )))) 
(I I record compensated data 
comp.aignai(Track 1)(out.ptrl : = adj.data.Track 1 
comp.elgnai(Track2)(out.ptrl : = adj.data.Track2 
out.ptr : = (out.ptr PLUS 1) 
))) 
))) 
(({ output signals 
PAR 

daia.out(Track 1 I I float ; adj.data.Track 1 
data.out(Track21 I float ; adj.data.Track2 

})) 
I {( snap section of the number stream 
IF 

sonling 
{({ 
SEQ 

count : = count PLUS 1 
IF 

))) 

sottlo.timo > count 
SKIP 

TRUE 
SEQ 

sonling : = FALSE 
capturing : = TRUE 

capturing 
{({ 
SEQ 

snop.count : = (snap.count PLUS 1) 
IF 

snap.count = snapshot.stop.sizo 
SEQ 

G47 



pre.snspshot[Track 1 J[ptr) : = data(Track 1) 
post.anapshot(Traok 1 J[ptr) : = sdj.data.Track1 
pre.snapshot(Track2J[ptr) : = data(Track2) 
post.snapshot(Track2J[ptr) : = sdj.data.Track2 
({( increment ptr 
IF 

ptr < > end 
ptr : = ptr PLUS 1 

TRUE 
capturing : = FALSE 

})} 
snap.count : = 0 

TRUE 
SKIP 

})} 
TRUE 

SKIP 
}}) 

})) 
TRUE 

(( ( sink rest of date until all terminated 
SEQ 

WHILE num.terminatsd < > num.tracks 
AL T track = 0 FOR num.tracks 

data.in(track) 7 CASE 
int ; char(track) 

(({ 
IF 

char(track) = terminate 
num.terminated : = (num.tsrminated PLUS 11 

TRUE 
SKIP 

Ill 
float ; data( track) 

SKIP 
running : = FALSE 

Ill 
{{ ( pass on "terminate" 
PAR track = 0 FOR num.tracks 

data.out(track)l int ; terminate 
}}) 

}}IF 
Ill 

G48 


