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Abstract :

Strain-sensing elements, fabricated in standard communications-grade single mode
optical fibre, are increasingly being considered for application in structural health
monitoring. The reason for this is the numerous advantages demonstrated by these devices
compared with traditional indicators. This thesis describes work carried out on optical
sensors at the University of Plymouth. The aim of this work was to achieve an optical fibre
strain sensing system capable of measuring absolute strain with good resolution and having
wide dynamic range, without bulky optical equipment and not susceptible to misalignment
due to handling.

Earlier work was devoted to study on an intrinsic Fabry-Perot interferometric
sensor and an optical phase-shift detection technique. The sensing element investigated
relied on the end face of an optical fibre as one mirror and the second mirror being a layer
of Titanium Dioxide (TQO,). Although some results are included, it was soon realised that
this sensor had a number of problems, particularly with fabrication. As no simple solution
presented itself, consideration was given to a sensor that made use of the change in
reflectance of an intra-core fibre Bragg grating when the grating was subjected to strain.
The bulk of work described in this thesis is concerned with this type of sensing element.
The grating structure is inherently flexible and a number of structural formats were studied
and investigated. The first and simplest grating considered was two linearly chirped Bragg
gratings used in a Fabry-Perot configuration (a grating resonator). The sensor was tested
using the sensing detection system and although the fabrication problems were overcome
absolute strain measurement was unattainable.

To achieve this end, a theoretical study of a number of grating structures was
carried out using the T-matrix Formalism. Confidence in using this approach was gained
by comparing the spectral behaviour of a proposed grating with results, which were given
by another theoretical model for the same proposed grating. The outcome of this study was
that two structures in particular showed promise with regard to absolutism (the measure of
true strain) and linearity. Discussions held with the department of Applied Physics at Aston
University about fabrication resulted in one of the proposed designs being abandoned due
to difficulties of fabrication.

The second structure showed more promise and fabrication attempts were put in
hand. This grating is linearly-chirped with a Top-hat function and a sinusoidal perturbation
as a taper function of the refractive index modulation. Experiments were performed, data
were acquired and system performance for this sensor is presented. The thesis concludes
that using such a fibre Bragg grating as the sensing element of a strain sensing system
enables it to measure absolute strain without using bulky optical equipment. At present, the
resolution of strain is limited by the quality of the grating being fabricated (anomalies on
profile), this should improve once the fabrication technique is refined.
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l The fibre optical sensor.

1.1 The fibre optical sensor.

Fibre optics first gained prominence in the field of telecommunications. This was
dictated almost entirely by economics, changing from wires and coaxial cables to optical
fibres. The increasing cost and demand for high-data-rate or large-bandwidth-per-
transmission channels and the lack of available space in already congested conduits in
metropolitan areas are the reasons for the increase in the popularity of fibre optics.
Furthermore, fibre optical devices interface well with digital data-processing equipment, and
their technology is compatible with modern microelectronic technology.

This success is also due to low-loss fibres and to the ability to drastically reduce
group-velocity dispersion in such fibre so that extremely short optical pulses ( ~5x102 5 )
undergo mimimal spreading in propagation. Also the availability of laser sources as emission
devices for fibre optical lines. These fibre optical lines are based upon electric fields that are
confined and lossless by the process of total internal reflection from the dielectric interface
between the core and the cladding of the fibre optic. This requires that the index of
refraction of the core be greater than the cladding.

In the 1970’s several researchers [1,2,50,51] showed the potential of fibre optics in
the field of instrumentation, as sensors to monitor environmental changes. Interest in optical
fibre sensors began in eamest in the late 1970’s with the development of fibre optic
hyrophones by J. A Bucaro et al [1] and JH. Cole et al [2]. The main motivation for
researchers in maturing fibre optical sensor technology is the number of advantages they
have over conventional sensors / indicators. One of the main advantages is that they do not
generate electrical interference and therefore require no electrical isolation. These sensors
can be embedded into or becomes part of a structure, are inert and corrosion resistant.
These physical properties have led to a large number of applications in the structural health
of materials monitoring of the structure when exposed to various environments. The
physical make-up of an optical fibre sensor allows the sensor to be embedded into a
material, for example a composite material. The sensor now becomes an integral part of the
material. This technique allows real-time monitoring of fatigue in an aeroplane

superstructure [3] see Figure 1.






1.1.3 The physical attributes of fibre optical sensors.

The main advantages of an optical fibre sensor are as follows:

1 ) Light in weight.

2) Very small.

3 ) Immune to electromagnetic interference.

4) Inert and corrosion resistant ( Silica doped material ).

5) Safe and cannot initiate fires.

6 ) Very sensitive ( temperature, strain , pressure ,etc. ) .

7 ) Non - perturbing of structural properties.

8 ) Multifunctional capability.

9) Optical bus or network compatible.

10 } Amenable to multiplexing and signal processing with integrated optics.
11 ) Provide high spatial resolution.

12 ) Can make integrated ( strain ) measurements over large distances.

Progress in demonstrating these advantages has been substantial in the past few
years with a large number of different sensor types being developed. This large number of
individual devices is usually categonsed into amplitude or phase { interferometric ) sensor or
can be categorised into four basic types ( see section 1.2 ). In amplitude sensor the physical
perturbation interacts with the fibre or some device attached to the fibre to directly
modulate the intensity of the light in the fibre. The general advantages of intensity sensors,
are the simplicity of construction and the compatibility with multimode fibre technology.

The phase ( interferometric ) sensor offers greater sensitivity than the intensity
sensor and generally employs some kind of Mach-Zehnder arrangement, which uses phase
change induced in the radiation field as it propagates along the fibre optical sensor. A
suitable demodulator is employed to detect the original phase change of the sensor. Various
demodulation techniques can be utilised including frequency modulation discrimination,
stabilised homodyne, synthetic heterodyne, as well as several others ( see section 1.3 ).

Two fibre optic sensors showing most promise are based upon the intracore fibre
Bragg grating and the intrinsic fibre Fabry Perot. There are still a number of problems to be
overcome with these sensors before full commercialisation is possible. Further discussions

of these topics occur later in this thesis.



For the application of fibre optical sensors to measure strain of some structure, more
than one sensor is usually required. So one sensor becomes an array of sensors. This
produces its own problem, how to address individual sensor within the array of sensors?
Signals from individual sensors need to be separated and monitored without interference
from other sensors. This requires assigning each sensor a distinct address that can be used
to identify signals from individual sensors at the detector location; multiplexing.

The question of which multiplexing techniques are adopted can be dependent upon
the particular application of the sensing system and the environment in which it is
functioning. Also, other factors have to be considered such as cost, durability, size and
required system specification (strain resolution, range of measurements and dynamic range)
and is dependent upon the type of sensor being used in the array. This could be time
division multiplexing (T.D.M.), frequency division multiplexing (F.D.M.), coherence
multiplexing, and wavelength division multiplexing (W.D.M.) or it could be a combination.
Various multiplexing and encoding procedures are highlighted in section 1.3 which have
been adopted by various researchers.

The rest of this chapter discusses the various kinds of sensors and schemes that have
been developed as a sensing system / array at the present time and also the working
principles of the sensing element itself. The interferometric dielectric Fabry Perot strain
sensor and the proposed sensing scheme are explained more fully and experimental results
are shown in chapter 2. The subject of fibre Bragg grating (F.B.G.) is expanded in chapter
3, from the various kinds of gfatings available to how they can be fabricated and their
physical interpretation. Following on chapter 4 discusses the change from using a
interferometric dielectric Fabry Perot strain sensing element to a fibre Bragg grating
resonator as a strain sensing element. Experimental results of the sensing system using a
fibre Bragg grating resonator as a sensing element is given. Chapter 5 deals with the final
sensing element, the fibre Bragg grating strain sensor from a theoretical point of view and
also gives experimental verification of its behaviour. In chapter 6 a general discussion of the
work in the thesis is given with a conclusion. Also aspects of the sensing system are

addressed, such as comparisons to existing systems and robustness.



1.2 Classification of optical fibre sensors.

Fibre optic sensors can be classified intc four main basic categories. These are
intensiometric, interferometric, polarimetric and modalmetric sensors. The two fibre
sensors with the most promise at this time are based upon the intracore Bragg grating and

the intrinsic Fabry- Perot and most research is being conducted with these types of sensors.

1.2.1 The intensiometric sensor.

The intensiometric sensor depends upon a vanations of the radiant power
transmitted through the fibre; i.e. the presence or absence of light. The absence of light

would show a fracture has occurred.

1.2.2 The interferometric sensor.

This type of sensor relies on the detection of a phase change induced in the
radiation field as it propagates along the fibre optical sensor. The Michelson, Fabry - Perot
and the Bragg grating are examples of this type of sensor. The Bragg grating has shown the
greatest potential and has therefore been the subject of intense research and continues to be
so. The working principles of the intrinsic Fabry - Perot sensor and the intracore fibre
Bragg grating sensor are discussed in later sections of the report.

The differential Michelson (Figure 2 ) uses two closely spaced single mode optical
fibres, in which one optical fibre serves as a reference to the other fibre . The actual sensing
region is localised between the mirrored ends of the two optical fibres. As changes in the
relative length of the two arms occurs due to strain / compression or temperature, an
interference pattern is produced. Sinusoidal modulation of the light intensity occurs and is
incident upon the detector. In order to extract the intensity variation, the two sensing arms

need to be linked, this is achieved by means of a coupler.






1.2.5 The Fabry-Perot sensor.

A number of fibre-sensors have been investigated that make use of the change in the
resonant frequency of a Fabry-Perot optical cavity. The cavity is formed by two reflective
surfaces that are parallel to each other and both are orthogonal to the axis of the fibre core.
A change in the optical path length between the mirrors leads to a shift in the frequencies of
the cavity modes. In some ways the Fabry-Perot fibre cavity represents the simplest
interferometric sensor. The response function for a low finesse fibre Fabry-Perot sensor
with respect to longitudinal strain is practically identical to that of the Michelson sensor and
is therefore sinusoidal in nature. Consequently any signal recovery technique should address
the five problems associated with this type of response function with strain, these being
signal fading, interrupt immunity, sign ambiguity, nonlinearity and multi-valued response.

These sensors can be sub - divided into the intrinsic Fabry-Perot [14] and the
extrinsic Fabry-Perot [15,16]. The extrinsic sensor differs from the intrinsic counterpart in
that the cavity is formed in air instead of a glass waveguide. Extrinsic sensors are based
upon a mechanical [15], fusion or a combination fabrication process to produce the Fabry-
Perot cavity. These have been developed with varying degrees of success [ 15-24 ].

A Wang et al [21] used the extrinsic fibre Fabry-Perot sensor ( EFFPS ) in
conjunction with micro - lens to improve fringe contrast ( fringe counting ). These sensors
are used with a variety of multiplexing and modulation / demodulation schemes; Ph Nellen
et al [24] devised a system with the intrinsic fibre Fabry - Perot sensor ( IFFPS ) obtaining
measurements of static longitudinal strain with a resolution of a few micro - strain { 16.9 +
0.7 ) rad(ue)’ using a low coherence demodulation technique. Another example of an
approach was demonstrated by K.A. Murphy et al [17] using EFFPS and a quadrature
phase shift, quoting a strain sensitivity of ( 9.67 ) rad(ue)’ which is a similar strain
sensitivity stated by C.E. Lee et al [18]; (9.1 ) rad(ue)" using an IFFPS .

A particular probiem with these sensors is the high sensitivity to temperature,
pressure and acoustic waves. The problem arises when only one measurand is needed,
which parameter is causing the change in the measurand? These sensors are also sensitive to
shear strain because of the length of the sensor for reasonable strain resolution. The effect

of shear as been studied by researchers such as Sirkis et al [25-27] and K Kim et al [28].



There are more obvious possible problem that need to be addressed such as the question of

mirror degradation with time and also fabrication difficulties ( discussed in chapter 2 ).
1.2.6 The fibre Bragg grating ( F.B.G. ) sensor.

A major portion of the effort in this research programme has been devoted to this
sensor. For this reason, discussion of the device at this stage is limited to a few general
background comments. The Bragg-grating is an optical element developed for the
telecommunications industry and is having a very significant impact on the evolution of
these systems.

Inducing a periodic variation of the refractive index in the core of the step-index,
single mode optical fibre, forms Bragg-gratings. The grating behaves as a wavelength
sensitive reflector, the spectral bandwidth of which is in the form of a narrow spike, with a
centre wavelength that depends linearly on the product of the mean core refractive index
and the period of the vanation of the refractive index.

The general characteristics of these sensors are discussed in a later section in the
report. This type of sensor has generated a great deal of interest over the past few years.
There are two distinctive advantages. Firstly, automation of fabrication and secondly, the
detected signal is absolute, that is to say that the wavelength shift is directly proportional to
strain if temperature affects are calibrated out. F.B.G. are also sensitive to changes in
temperature ( thermal expansion and contraction ).

A variety of schemes have been proposed and demonstrated over several years.
These include numerous multiplexing schemes [6,27] and various demodulation techniques
[ 30-33] to achieve an effective sensor array. These include the edge - filter demodulation
method where a sharp edge of a filter is used to convert wavelength changes to amplitude
variations [34], interferometric based approaches [35,36], the use of frequency locked
grating pairs [37] and the laser sensor concept where the grating sensor determines the
lasing frequency [38].

A B. Ribeiro et al [42] used time and spatial multiplexing techniques for F.B.G.
sensors and an interferometric-wavelength shift detection method giving a reported static
strain resolution of ( 0.0041 ) rad(ue)”. This requires a reference F.B.G. sensor and sensing

F.B.G. sensor that is subjected to the measurand of interest. This sensing system suggests a



problem with robustness and general costs. A similar detection technique was reported by
Y.J. Rao et al [39] obtaining a phase to strain response of ( 0.168 ) rad(ue)’. The
robustness of the scheme would be questicnable away from the laboratory environment due
to the use of two scanning Michelson interferometers. T. Coroy et al [34) used an optical
spectrum analyser and filter detection system based upon a quantum well electroabsorption
filter with a resultant static strain resolution of ( + 8.04 ) pe. Other filter schemes have been
developed for example A.D. Kersey et al [40] (£ 3 ) pe. Other techniques that have been
investigated are the sensor - receiving grating pair. In this arrangement, the receiving sensor
tracks the sensor using a piezotranslator ( P.Z.T. ) to induce a mirror strain in the receiving
grating. The multiplexing system employed is time division multiplexing ( T.D.M. ),
obtaining a static resolution of ( 4.12 } pe  [41]. These are only a few of a large number of
papers published using fibre Bragg gratings as strain sensors . Of these systems reviewed a
majority of them require bulky optical equipment for signal recovery . Robustness and cost

must be questioned away from the laboratory.

1.2.7 The general parameters of fibre strain sensors.

The fibre optical sensors which seem to be showing the most promise at this
moment in time would seem to be the extrinsic and intrinsic fibre Fabry-Perot sensor (IFFPS
and EFFPS) and the fibre Bragg grating sensor ( F.B.G.). Both of these sensors have a
number of distinct advantages. Many of the schemes reviewed using the IFFPS and EFFPS
measure only apparent strain; do not measure absolute strain, but relative strain. To obtain
absolute strain measurement, coherent multiplexing has to be employed [24] but this
decreases the response time of the system. A F.B.G. sensor wavelength shift gives a direct
measurement of absolute strain but problems arise when trying to recover that information.
The use of an optical spectrum analyser is required which is bulky and costly.

In general the resolution of the IFFPS and EFFPS is better than the F.B.G. sensors
but again both these sensors are sensitive to temperature variations. The effects of

temperature can be calibrated out by using a control sensor.



1.3 Multiplexing Techniques.

The technique of multiplexing sensors is an important issue in many of the
proposed application areas for fibre optic sensors. For example industrial process control,
structural sensing and medical sensing ( prosthetics ), the use of multiplexing techniques
can be beneficial in regard of the number of system aspects including reduced component
costs, lower fibre count in telemetry cables , ease of the electrical / optical interface and
overall system immunity to electromagnetic interference. The development of efficient
multiplexing techniques can thus be expected to lead to general improvements in the
competitiveness of the fibre sensors compared with conventional technologies in a broad
range of applications. A large number of factors determine the suitability of a sensor-
networking scheme for a particular application. These include the format of the data or
information (i.e. analog or digital), the optical parameter onto which the sensor information
is encoded, for example intensity, phase, wavelength and modulation ( subcarrier )
frequency and the application requirements for electrical passivity of the sensors and
telemetry for reasons of safety.

There have been several multiplexing techniques ( networking scheme ) that have
been applied to this problem. These multiplexing techniques include;

Frequency - Division Multiplexing.

Time - Division Multiplexing.

Coherence Multiplexing.

Low Coherence Multiplexing.

Wavelength - Division Multiplexing.

The multiplexing technique used for a given sensor is usually dependent upon the
nature of the sensor itself. Some sensors have an intensity variation, which is a function of
change of phase with regard to some reference signal due to some external parameter.
Another example is vanation in the wavelength of the signal; resulting from some external
parameter changing. The number of sensors which can be multiplexed using a specific
multiplexing technique is dependent on several factors and a given architecture array.
These factors include power budget considerations, sampling criteria, bandwidth

requirements and crosstalk [7].
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The system is illuminated with light from a source with a very short coherence
length; hence no optical interference will be seen at the sensor. This optical signal is injected
into the receiving ( reference ) interferometer sensor, optical interference is only observed
when the difference in the optical path difference of sensor and reference sensor is less than
the coherence length of the illuminating source .

For a typical low coherence source the intensity / amplitude profile gives an auto-
correlation function with a Gaussian or Lorentzian profile. This in turn gives an envelope
function for the visibility of interference signal, which decreases very rapidly. The rapid
reduction in fringe visibility is used to locate a reference point / feature for the two
interferometers working together. This is used to determine the optical path difference of
the sensor by scanning the optical path difference of reference interferometer to obtain the

reference point / feature [24].

1.3.6. Wavelength - Division multiplexing.

Sensor information is allocated to a particular optical wavelength. This multiplexing
technique is applicable to intensity, interferometric and in particular Bragg grating sensors
[47]. Theoretically this is the most efficient technique possible, as all the light from a source
could in principle be directed to a particular sensor element and then onto a corresponding
photodetector with minimal excess loss. The reason for the lack of practical demonstrations
to date of this technique is due to the limited availability of wavelength-selective couplers
( splitters and recombiners ) which are required to implement this technique, plus the
availability of sources. The source has to have a bandwidth of the order of approximately
100nm. This limits the number of sensors in the array because each sensor needs a finite
bandwidth to operate. At this moment in time there is extensive interest in this multiplexing
technique because of the intrinsic wavelength encoding of Bragg grating sensors or a hybrid
system using another multiplexing technique in conjunction with wavelength - division

technique [44] see Figure 7 .
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1.3.7.1b Path matched differential interferometry ( PMDI ).

This method uses matched unbalanced sensor and compensator ( receiver )
interferometers. This approach is not a demodulation technique as such, but it facilitates
demodulation by splitting the interferometer into two sections. One is referred to as the
sensor interferometer and the other a compensating interferometer. Demodulation of the
compensating interferometer output can be accomplished using several techniques. When
PMDI is used in a single sensor application, demodulation by active phase-tracking
homodyne detection is possible by feedback to a phase shifter in one of the compensator
arms. Generally, in a multiplexed system based on PMDI, active phase tracking may not be
feasible due to the diversity of phase signals detected. Other approaches are adopted such
as PGC to provide the in - phase and quadrature components of the interferometric signals
[48,111].

1.3.7.1c Differential delay heterodyning.

This approach uses an unbalanced sensor interferometer and a pulsed
frequency modulated laser source. Differential delay heterodyning is a phase-shift
detection technique for use with interferometric sensors which produce a phase modulated
heterodyne carrier output without recourse to the use of a frequency - shifting element in
either arm of the interferometer. Two puises are sequentially fed into the interferometer.
The temporal separation of these pulses is equal to the differential delay between the fibre
arms of the interferometer. The components of the first optical pulse, which passes through
the long arm of the interferometer will be coincident at the detector with the arrival of the
component of the second pulse, which passes through the short arm .If the optical
frequencies of the two pulses are offset, mixing between the two coincident pulses
produces a burst of heterodyne beat signals at the detector. Repetitive pulsing of the system
and time selective gating of the detector output produces a gated carrier and a continuous
wave carrier can be generated by filtering. This signal can then be fed to a FM

discriminator or phase-locked loop and integrated for phase demodulation [ 111 ].
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1.3.7.2 Demodulation techniques suitable for multiplexed Bragg grating based

Sensors.

Intra - core fibre Bragg grating sensors have attracted considerable interest over the
past few years because of their intrinsic nature and wavelength - encoded operation.
Generally fibre Bragg grating sensors are illuminated by a broadband light source, such as
an edge emitting LED, superluminescent diode or superfluorescent fibre source ( a section
of Erbium doped fibre, which 1s optical, pumped by a laser ). In the application of
monitoring longitudinal strain or / and temperature there is a shift in the wavelength which
is reflected by the Bragg grating sensor. This wavelength shift is proportional to the strain /
temperature change induced in the sensor. The gratings are assigned a wavelength range for
operation, which do not overlap. The Bragg wavelengths of the individual gratings can thus
be determined by illuminating the system with a broadband source and using an optical
spectrum analyser to analyse the returning signal. There are two problems with this
scheme. There is a practical limit to the number of sensors for a given broadband source,
and the conventional optical spectrum analyser is a costly piece of equipment. This reduces
the cost effectiveness of this scheme and there are questions over the robustness of systems
( breakage during handling of the sensing array ).

Several options for measuring the wavelength of the optical signal reflected from
the Bragg grating sensor exist. These include the use of a simple miniaturised
spectrometer, passive optical filtering, tracking using tuneable filter and interferometric
detection, where the fractional power transmitted are linear functions of the wavelength
over the wavelength range of interest. Other techniques are matched receiving - sensing
grating pairs, where the receiving grating tracks the Bragg wavelength shift of the sensing
grating. A similar scheme uses a Mach - Zehnder interferometer and an isolated reference
grating. Another option is a fibre laser cavity the lasing wavelength of which depends on
the Bragg gratings.

The optical characteristics of these filtering options are shown in Figure 8.
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1.3.7.4 The interferometric detection technique.

The interferometric detection technique is a filteing method with a transfer
function of the form {1 + cos[ ¥{A) + ¢(t)] } . The phase term is dependent upon the input
wavelength. In this case the interferometer output can be modulated via control of the
imbalance between the interferometer arms to allow the phase reading technique to be
implemented to determine the fibre Bragg grating wavelength.

Light from a broadband source is coupled by means of a feeder fibre to the F.B.G.
sensor. The wavelength component reflected back along the fibre towards the source is
tapped off and fed to an unbalanced Mach-Zehnder interferometer. The reflected light
becomes the source light into the interferometer and wavelength shifts induced in the
F.B.G. sensor resemble a wavelength ( optical frequency ) modulated source. The
unbalanced interferometer behaves as a spectral filter with a raised cosine transfer function.

The wavelength dependence on the interferometer output can be expressed as:
I(A) = A{1 + Kcos[ (1) + ()] }

where HL) = p(A) + A(h)
wA)=(2mmd )/ r

and ApA)=[(2mmd )/ N )AL= [(2nnd ) / L )-C-A

where C=[1/A][0Ade]

A 1s proportional to the input intensity and system losses.

K 1s the interference visibility.

d is the length imbalance between fibre arms.

n is the effective refractive index fibre core.

A is the wavelength of the returned light from the sensor.

¢ is the normalised strain-to-wavelength shift responsivity.

¢(t) represents an environmentally induced variation in d and »n. This is usually a
thermally induced phase drift . For a well shielded fibre interferometer ¢(t) is a slowly
varying random parameter.

The unbalanced interferometer acts as a discriminator to detect the wavelength

shifts in the effective source which is being generated by the strained sensor. A.D. Kersey
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1.4 Basic principles of a fibre optical strain sensor.

The fibre optical strain sensor was first proposed and demonstrated by Butter and
Hocker [50,51].

When light from a laser, having sufficient coherence length, is launched into two
single-mode fibres of approximately the same length, the light coming from the other two
ends can be made to interfere and produce a fringe pattern, when the optical path length of
one fibre 1s changed with respect to the optical path length of the other fibre, the fringes
will shift. The amount of fringe shift is proportional to the relative change in the optical
path length. By observing the motion of the fringes, the changes in the optical path length
can be determined. Introducing different strains in the two fibres causes a difference in the
optical path lengths of the fibres and the motion of the fringes. This effect is utilised to
produce a sensitive fibre optic strain sensor.

Calculation of the fringe shift due to longitudinal strain of a single fibre of length L
can be obtained as follows. Assuming
[ is the propagation constant of the fibre.

K, is the free space propagation constant.
n is the fibre’s core refractive index.
D is the core diameter of the fibre.
4 is Poisson’s ratio.
The phase of the light through the fibre is;
§=pL
If the fibre is strained by €, then the change in the phase is given by;
Ab=[-AL+AB- L
Considering the first term in the above expression represents the physical change of the
length of the fibre produced by the longitudinal strain &.
SO PAL = BeL
Considering the second term, where the changes in the phase is due to 44, can come about
by two effects. These mechanisms are the strain - optic effect whereby the strain changes
the refractive index of the fibre and the other is waveguide mode dispersion, an effect due

to changes in the fibre diameter AD ( AD = ueD ), produced by the longitudinal strain .
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So the change in the propagation constant AfS, which contributes to the change in
optical phase is dependent upon changes to the refractive index which is related to strain
this being the strain-optic effect; photoelastic effect and is symbolised by An. Also the
change in the diameter of the optical fibre affects the normalised propagation constant
which is a function of the diameter of the fibre, the diameter of the optical fibre is also a

function strain. This is given by the expression below:

_, 9B ap
LAB=L—— Am+L——AD

d, d
Consider the parts of the above equation; ap and —‘B AD.
dan dD

The propagation constant f = n.gis where n is the effective index of refraction and lies
between the core and the cladding values. This difference is of the order of a few percent so

the propagation constant can be approximated to 8=~ nxp

dp _E
Thus dn_x"“n

It as been shown by Sirkis, Butter and Hocker [25,50] that
ap _ v’ db
dD 4 ,BD3 dav
, db .
Where V and b are normalised parameters of the fibre and v is the slope of the b-V

dispersion curve at the point which describes the waveguide mode.
1.4.1 The strain - optic effect; An.

The strain - optic effect / photoelastic effect is an well-understood effect in which a
material couples mechanical strain to the optical index of refraction. This is described by a
change in the optical impermeability tensor, which is a function of the strain-optic tensor
and the strain tensor of the material. The original indices of the optical impermeability
tensor may be simplified by considering the symmetries of the tensor, which becomes a

change in the optical indicatrix [103]:
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1 6
A|:—2] = P 5.

j:

Where s; is the strain vector and p; ; is the strain - optic tensor.

It has been shown by Sirkis et al [25] and Kim et al [28] that for longitudinal strain

in the x direction, that as no shear strain ( s,, s5, s, = 0 ) along the fibre axis for a
homogeneous isotropic medium p;; has only two numerical values, which represents the

strain in the material designated by p,, and p,, . The change in optical indicatrix in the y
and z direction ( [ = 2, 3 ) elements is just

A[‘%} =&l- u)P, —pef)
2,3

n

So the change in the refractive index in the x direction due to longitudinal strain is

2 2

An =-2—1n3A|:;1—:| =__1n3[£(1 - H)B, - ,u.spn]

>

So the phase change per unit strain unit fibre length is:

3
AS 2 V db
—=f-pn [(l—y)P - uP ]+——.—
el 12 1], ﬂD2 dv
This expression can be simplified because the waveguide dispersion is negligible

compared to the first term in the above expression, which becomes
Ad 2

Butter and Hocker confirmed this expression and verified it against experimental results.
This work had been continued by Sirkis, Haslash and Kim [25-28,52] establishing a
fundamental strain-phase relationship. They showed that the axial component of the strain
in a surface-mounted optical fibre significantly affects the refractive index. They also
derived the same expression between phase and strain in a fibre as did Butter and Hocker

but including a birefringence effect; this expression being

25



L

5=py [ (1-ce, )12, )i

0

This becomes
L
5=ﬁOL+ﬂ0(l—c) J. £nds
0

where ¢, is the axial strain.
¢ is a constant that depends upon the Pockels coefficients, P,; and on the fibre Poisson

ratio.

2
"0
c=7[})12 '”(Pn *Pzz)}

In this expression there are two factors contributing to the phase change. Difference

in length of the fibre and change in the optical path length, S O(L + &) whered is the net

L

elongation of the strained fibre and a birefringence effect g 0¢ I £, ds.

0

The original Butter and Hocker relationship can be extracted from the above integral giving

AS = ,60(1 - c)?:n
where ?:n is the average strain in the fibre.

Optical fibre sensors are sensitive to temperature variations. Hocker [51] showed
that a change in temperature AT of the fibre changes the optical phase Ad of the light going

through it. The change in & results from two effects. These are changes in the physical
dimensions of the fibre due to thermal expansion or contraction and the temperature -

induced change in the index of refraction.

As 5= 2L
A
then —A5 —ﬁ[ﬁﬂ ﬂ)
IAT  A\LdT dT
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2.4 Signal processing for the Fibre Fabry Perot sensors.

The tracking of the first and second derivatives of the reflected intensity profile is
possible by using a phase generated carrier technique ( see section 1.3.7.1 ). This is
achieved by modulating the frequency of a distributed feedback ( D.F.B. ) laser that is used
as the optical source. This 1s achieved by modulating the injection current to the laser. In a
conventional Fabry Perot cavity diode laser there are two effects which brings this
modulation about. First, changes in the current result in small changes in the cavity
temperature, which leads to a modulation in the effective cavity length via temperature-
dependent refractive index and thermal expansion. Secondly, the carrier concentration in
the laser region increases with increased current, causing a mod:ification in the refractive
index, thus giving rise to a current-frequency conversion factor for diode lasers. In this
work a modulation frequency of approximately S5KHz is used and a current-frequency
factor of approximately 3GHz/mA which i1s given by the manufactures ( Nortel ) for the
D.F.B. laser LC111 - 18 series.

A D.FB. ( Distributed Feedback ) laser diode generates optical power into one
longitudinal mode. The laser-drive unit provides the necessary functions for optical power
and temperature stability. This ensures that there is no drift in the wavelength generated by
the laser.

The effect of this modulation is to convert the frequency modulation of the light to
an intensity modulation dependent upon the length of the sensor. Thus when the sensor
length increases by a half wavelength of the light used to illuminate the sensor. The sensor
passes through one complete cycle i.e. shifts through one fringe and one complete cardiod
is produced.

The signal generated from the F.F.P. sensor is recovered by a Germanium photo-
diode. A signal at the modulation frequency of the laser is extracted from the photo-
detector { the first harmonic ); this signal is proportional to the first derivative of the
intensity profile of the sensor. A second signal at twice the modulation frequency is also
extracted, this being the second harmonic which is proportional to the second derivative of
the intensity profile of the sensor. This is used to track positions across each fringe and
thus determines the change in optical phase from which the longitudinal strain subjected to

the F.F.P. sensor can be calculated.
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The analysis in appendix V derives the expressions for the harmonics these being:

1" Harmonic : KZF —%F2) sin(6) - F2J,(A8) sin(25)] - J1(A8)sin(w 1)
and

2" Harmonic : (—;— F?_ ZFJ - Jo(A8) cos(8) cos(2m 1)

for a value of F < 1, then the F* terms become less significant compared to the F terms

and thus becomes:

1* Harmonic : (2F)sin(8)- Jy(A8)sin(w )
and
2" Harmonic : (-2F)cos(8)- J5 (Ad)cos(2w )

Where . is the modulation frequency, dis the optical phase change
Aé is a phase shift, which is a quantity dependent upon current - frequency factor
of the D.F.B. laser and the change of length of the Fabry Perot sensor due to longitudinal

strain.

_ ZMAL-AI'&)

AS —
c &

oU . . . . .
where 5 the current - frequency factor and Ai is the induced change in the drive current

to the D.F.B. laser. The functions J1(Ad) and J>(AJ) are Bessel functions of the First kind of
order 1 and 2.
Thus under this condition of F < 1 the ratio of the two harmonics is a tan(8) function of the
optical phase change.

The signal extraction is performed by a lock-in-amplifier (L.1.A)), Jupiter
Microsystems LLA1130 with synchronous phase detection. Synchronisation of the L.I.A.’s
with the modulation frequency is achieved by means of a square wave signal generator

(Famell sine square oscillator LF1) which is synchronous with the modulation of the D .F.B.

laser.
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Phase control and optimisation of the signals to maximise the signal to noise ratio is
provide by the L.I.A's. Using an analogue to digital converier facilitates direct coupling to a
desk - top personal computer. The computer controls the L.1.A.s via a general-purpose
output / input board ( programs for controlling the L.I.A.s and data acquisition ).

The data obtained from the L.I.A_s at the first harmonic and second harmonic can be
used to generate a quadrature diagram; a cardiod figure, see Figure 17. This shows that at
every position on the cardiod the two *“ harmonics ” have a unique value, so it is possible to
interpolate between fringes. Using these data and the relationship on page 34 in section
(2.3.1) it is possible to extract the longitudinal strain subject to the sensor and this is

demonstrated in the next section.

Cardiod ; Quadrant figure

2nd derivative

06l 0 06

1st derivative

Figure (17) ; A Theoretical plot of a cardiod generated from the first and
second derivatives of the reflected intensity profile of the F.F.P.

sensor with a finesse of 1.0.
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2.6 Observations and Results of the F.F.P. sensor.

Figures 25 and 26 shows the quasi-linear relationship between longitudinal strain
applied to a F.F P. sensor and the change in the optical phase generated by the F.F.P. sensor
with regard to the synchronous detection system ( the lock in amplifiers ).

The reason for the quasi-linear relationship is because the signal generated by the
F.F.P. sensor does not respond sinusoidally to changes in longitudinal strain i.e. it is not a
true Fizeau response. This is due to the approximation used in the inverse tangent function
to obtain the phase information ( see section 2.3 ) and it is this that causes the ripple in the
graph.

Assuming a linear relationship between the phase generated and the longitudinal
strain, the error derivation due to the approximation for a given response; Figure 26 is £ 0.5
ue. This is a typical value of deviation away from linearity for the length of the F.F.P. sensor
used. These error numbers are calculated from the residuals of the linear regression of the

processed data and taken as the root mean squares of the residuals, 1.e.

'z?: \/[,ue((S)i - {con-é‘i }]2

i=1

Error =
n

where

UE(S): s the experimental data for a given phase change for a given longitudinal strain.
con.&; 1s the longitudinal strain where con is the constant of proportionality and &; is the
experimental phase.

A comparison is also made against the Butter and Hocker model for longitudinal
strain in optical fibre and associated optical phase change [50]. According to Butter and
Hocker, neglecting minor terms ( section 1.4 ) the constant of proportionality for the
change in optical phase; § to longitudinal strain; ug is given by,

4 S

HE =
n2
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A small note concerning the Butter and Hocker original equation. These equations
assume that the optical path length through the sensor is 2zmL, the transmission change in
the optical path length. In this application the detection system looks at the reflected light
coming from the sensor, thus the optical path length is doubled hence 47nL; a round trip of
the F.F.P sensor.

Using the following values for the Pockel’s coefficient for fused silica P;, = 0.121
and P;; = 0.270 and a Poisson’s ratio of 0.17. Assuming a core refractive index » = 1.456
and the length of the F.F.P. sensor as 8.4 cm. A theoretical constant of proportionality was
calculated for a F.F.P. sensor with the stated specification, this being 0.733 rad(pe)".
Conducting a series of 28 individual experiments with a specific F.F.P. sensor with a
approximate length of 8.4 cm, an average constant of proportionality was found to be 0.728
rad(ue)” with an error of +0.289 rad(ue)’. The large variation in this constant can be
probably due to experimental error ( measurements ), fluctuations in the equipment used
and the effects of temperature variation ; the crudeness of the experiment [51].

The process was repeated and an average value obtained was 0.613 with an error of
+0.066 rad(ue)”, in case one 1% error between the theoretical and the experimental test rig
but with a large variation and in case two the error was 16%. The results seem to have
reasonable agreement with the theoretical results, the deviation between results maybe due

to the crudeness of the experimental test rig.

A number of problems were evident with the F.F.P. sensor. These are:
(1) Fabrication.

(II) Multiplexing.

(II) Measures apparent strain, i.e. changes in strain.

(IV) The length of the sensor.

(I) The problem with the fabrication of the F.F P. sensor is the fusion splicing of
the TiO, semi-reflective layer onto the feeder fibre. This usually results in the destruction of
the TiO; layer or a low rate of successful splicing; thus no sensor. The reflectivity of the
TiO; layer can vary due to splicing; depending how much of the TiO, layer evaporates in

joining the sensor to an optical line. This would change the cardiod’s shape ( the response
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of the sensor ), so optimising the system for each individual F.F.P. sensor would have to

take place. These problems above would cause major difficulties for automation production.

(II') The problem with multiplexing is that there is no simple satisfactory solution,
which has been devised yet for this type of sensor. The TiO, layer is an ideal mirror;
reflecting at all wavelengths, so time division multiplexing is the only feasible technique at

the present time which causes additional problems with sensor network architecture.

(IX) The F.F.P. sensor measures only apparent strain not absolute strain, that is to
say it measures changes in strain and does not know the origtnal strain / the intrinsic strain

of the structure when sensor was incorporated.

(IV) Another problem is the length of the F.F.P. sensor. In general all the sensors
investigated had lengths ranging from 6.5 cm to 9.6 cm. A problem with having relatively
long sensors is that there may be possibility of a shear strain subjected to the sensor and
thus rendering the sensor useless [25-29]. Decreasing the length of the sensor decreases the
strain resolution of the sensor and causes additional problems in fabrication.

Temperature sensitivity has been observed during experiments. This problem can be
overcome by using two identical FF.P. sensors; both having the same environmental
conditions but only one sensor subjected to the strain. Thus using a signal from the
nonstrained sensor as a reference signal ( phase variations due to changes in temperature )
for the strained sensor any resultant signal from this system would be due to changes in
longitudinal strain. This scheme was not pursued because of the above difficulties.

The F.F.P. sensor has good strain resolution compared to other systems that have
been investigated by various researchers {14-24] but taking the above problems into
account the F.F.P. sensor ( with a TiO, layer ) would not be a practical solution for a strain
sensing array network.

To overcome the fabrication problems it was decided to move away from using TiO,
layer as a semi - reflective layer and use fibre Bragg gratings as a semi - reflective layer
substituting for the TiO, layer and the endface. Fibre grating are “ written ” into the fibre
core using a U.V. side writing technique [54]. This process is a much more controllable and

repeatable for producing semi - reflective layer.
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Sensors. fabricated this way have been investigated both theoretically and
-experimentally. The results are considered!in sections: 3 'and 4 using: the prescribed'signal-
‘processing scheme.

‘With this type of sensor it mayibe possible to measure absolute iphase changes. This!
is investigated in section'S. Also:the problem of multiplexingmay be addressed; Fibre Bragg,
gratings thave wavelength-dependent reflectivity jprofiles; .a finite bandwidth of major

reflectivity.
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can be viewed essentially as an impedance mismatch effect. The above parameters are
derived from waveguide mode-coupling theory applied to gratings as reflectors [56,57];
contradirectional coupling ( see appendix I on analysis of grating using mode coupling

theory and the T - matrix formalism ).
3.3 Nonuniform fibre Bragg gratings.

The demand by the telecommunications industry for gratings to carry out various
functions has led to a number of nonuniform gratings. To produce a nonuniform grating a
number of changes to the refractive index variations can be introduced during or after
fabrication, these are chirping ( linear, quadratic, cubic) [59-61], tapering [62], apodisation
[63,64].

3.3.1 Aperiodic or chirped fibre Bragg gratings.

The reflection bandwidth of a uniform - period grating is narrow. Varying the
Bragg condition continuously along the grating's length can increase the reflection
bandwidth. When light at a given wavelength travels through the grating it will encounter
two types of region. If Irradiance wavelength lies outside the local reflection band gap, this
condition is where the optical field interacts weakly with the grating and the light
propagates through the grating without coupling to the reflected mode. If the Irradiance
wavelength lies within the local reflection band gap coupling occurs between this light and
the reflected mode. The Bragg condition is given by Az = 2n,4A by making the value of the
gratings period or effective refractive index a function of the length of the grating; A(z) and
ng (z) or both, it becomes possible for a range of wavelengths to satisfy the Bragg

condition at given points within the grating length .
2 (2) = mgpr (2)A(2)
Doing this widens the maximum peak of the Bragg grating reflection profile and also
decreases the maximum value of reflectivity if the grating length is constant. The variation

in the grating period or chirp can be for example, linear, quadratic or cubic. The fabrication

techniques of producing a chirped grating are discussed in section 3.4.
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3.6 Theoretical representation of fibre Bragg gratings.

3.6.1 Methods used to obtain an analytical expressions for Bragg gratings.

The analysis of gratings was first developed as a means to understand the
characteristics of the Distributed Feedback ( D.F.B. ) laser and the Distributed Bragg
reflection ( D.B.R. ) laser. The analysis was then used to optimise the parameters that
govern the behaviour of the D.F.B./D.B.R. lasers [77-79]. There have been several
techniques used to predict the behaviour of a given kind / type of grating.

The general starting point for these methods is the mode coupled equations ( see
appendix I ) .The mode coupled equations can be solved in some cases; these being a
grating with a uniform period and a given tapering ( envelope ) function for the change in
the perturbed refractive index ( see appendix IIT , IT ) [56,57]. Problems arise when a chirp
is introduced, a variation in period along the grating length.

Over the past several years there has been several techniques developed to solve the
coupled mode equations with a nonuniform period along the grating length (chirp ). One
approach to this problem is the development of a Riccati differential equation from the
coupled - wave theory ( see appendix II ), then using a fourth order Runge - Kutta method
to numerically evaluate the differential equation. H. Kogelnik [80,81] first used these
techniques.

In some cases researchers have obtained closed form expressions for the spectral
reflection profile of a chirped grating. An example of this is by JB. Shellan et al [82].
Shellan’s method is based upon a direct integration of the coupled mode equations using the

method of stationary phase. In this technique the coupling coefficient x(z) is evaluated at a
point K(Z B) and expanding the attenuation term; e~ % about z = z p - Since the phase is a

rapidly varying quantity except near z = zp . The point zp being the position where the
P B P B

Bragg condition is satisfied and mathematically is the point of stationary phase. The phase
term is expanded around the stationary phase point. For the lossless case, the coupling
coefficient is then expanded about the stationary phase point and integrated term by term. A

similar method had been adopted by C.S. Hong et al [83]. In Hong’s approach he combined

the coupled mode equations to obtain second order differential equations and




solved these equations. The solutions of these equations were parabolic cylinder functions
and using the asymptotic expansions of these functions found expression for reflectivity of a
given chirped grating. It was found that the expressions derived by Hong et al were in good
agreement with experimental data in the case where the Bragg condition applies but not
close to Bragg condition edges. Other examples of this technique can be found in the

literature; M. Matsuhara et al [84,85], T. Fukuzawa et al [86] B.Kim et al [87].

3.6.2 The perturbation approach to modelling a grating.

The perturbation technique is known also as the W.K.B. technique or phase -
integral approximation. In a nonuniform grating there are regions where the field will have a
strong interaction or a weak interaction. So the field in each propagating or evanescent
region is written as the product of the local oscillatory or exponentially varying field and a
slowly varying amplitude. The W.K.B. method is essentially a standard slowly varying
amplitude analysis supplemented by a procedure to match the fields across the turning
points between propagating and evanescent regions. This technique is used by L. Poladian
[88] considering three separate effects; barrier tunnelling through evanescent regions,
stmple propagation { weak interaction ) and end reflections from the grating itself. Again
this method was adopted by J.E. Sipe [89]. This technique is good for selective structures
and provides an accurate analytical approximation for the spectral reflective profile of a

given grating. Otherwise more approximations of the phase integral are required.

3.6.3 Rouard’s Method.

Another approach to solve this problem is using Rouard’s method [90,91]. Rouard’s
method is a recursive technique that is widely used in the thin-film design to extend the
derivation of the reflection coefficients for a single layer to the case of multilayer films. The
fundamental step in this technique is the replacement of a thin-film layer characterised by an
effective complex reflectivity by a single interface having the same properties. In this
approach the amplitude reflectivity of each period of the grating are found; instead of
solving coupled mode differential equations for the entire grating including any period

variation. There is only a need to solve the equations once to obtain
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3.6.4 Alternative methods to model Bragg gratings.

There are a number of methods available for finding solutions to the coupled mode
equations. A brief mention will be made of the other methods. G.H. Song et al [92,93] for
example, uses an inverse-scattering method known as Gel’fand - Levitan - Marchenko
inverse-scattering method. Using scattering data the shape and / or the characteristics of a
scatterer can be obtained. This method is similar to electronic filter design using s-
parameters. Yet another approach is the resonance mode expansions. This method is
basically derived from how waveguide modes in waveguide-mode theory behave. The
general solution for wave propagation down a linear waveguide can be expressed as a
superposition of its waveguide modes. So a nonuniform grating is considered as a
resonator, which resonates at several of these modes as opposed to a single mode for a
uniform grating, and the response is considered as a superposition of those resonant modes.
The quantity analogous to the propagation constant of a waveguide mode is the
characteristic or resonant frequency of the grating resonance mode. These resonant
frequencies relate to reflection and transmission bands of a grating, this method was

developed by L. Poladian [94].

3.6.5 T-Matrix Formalism of fibre Bragg gratings.

T - matrix formalism is a method derived from the work of D. Kermisch
[95,96] on the analysis of hologram gratings and was proposed by M. Yamada and K.
Sakuda [97,98] for detailed studies of D.F.B. lasers and then later used by S. Huang et al
[99] for fibre Bragg gratings. This technique has become a useful tool for characterising a
given profile of a nonuniform grating. In this approach the fibre grating is divided into
short segments which are assumed to be periodic. In each segment of the grating the
coupling coefficient, grating phase and deviation from the Bragg condition are constant
and independent of the position along that section of the grating length. These sections of
the grating are then characterised by a scattering matrix. The multiplying of each scattering
matrix in succession with the proper grating phase conditions at the interface between the
successive matrices obtains the complete grating response.
The scattering matrices are derived later in this report and this T - matrix formalism

approach is used to predict response of particular kinds of gratings.
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If the changes in A(z) are small then

thus

n

- O

The theoretical models used [80,85,90,99] have produced good agreement with
each other and has given confidence in the spectral reflection profiles predicted by the
various techniques. A number of types of Bragg grating structures have been used with the
various approaches to obtain the spectral responses, these include uniform period with a
uniform perturbation in refractive index, a linear chirped period and uniform perturbation
of An and uniform period with a taper function for the perturbation of An. Also chirped
period and uniform An gratings in a Fabry - Perot configuration. This has been confirmed

using some experimental gratings.

3.7.2 Spectral Reflective response of a fibre Bragg grating under

longitudinal strain.

This is achieved by incremented increases of the grating period and calculating the
reflection response of the grating at a specific wavelength. This is repeated for a range of
increased values of the grating penod .The incrementation of the period is of a few micro-

strains, so for a constant period A, becomes
A, —A (1+inc-10_6)
0 0

For a chirped grating this would become
Az) > [A +i-z}(l+inc-]0_6)
0 AO

The resultant behaviour of the gratings to this simulated longitudinal strain is to

shift the spectral reflection response to longer wavelengths. This is to be expected because

of the behaviour of a uniform grating [37,65]. An example of this is shown in Figure 39.







3.8 Simulations of Fibre Bragg grating.

The various techniques employed to solve these coupled-mode equations had been
constructed in software environments to try and improve accuracy and computational run-
time. These being Mathcad +6 for Rouard’s method, the T- matrix formalism for the
uniform Bragg grating ( Appendix IV ) and used Mathamatica 2.2 to obtain the solution for
a linearly chirped Bragg grating. The Runge - Kutta method was in FORTRAN 90 code,
using this method no or little physical interpretation could be made. Also the Runge - Kutta
method was the worst-case approximation method to be used, in computer run-time
compared to the other techniques, this because of the number of iterations required to
obtain a result comparable to the other methods used. Several Mathcad files were generated
for the above techniques ( see appendices IV ). It was found that using a Mathcad
environment was a serious drain on the computer resources and limited cases were used due
to the lengthy time taken to run the simulation. This was true for both models used in the
Mathcad +6 environment and the other package used, the reason for this was the limited
computational computer power available. Adapting the Mathcad +6 programs increased the
scope of the investigation but was restrictive, as the run-time required was of the order of a
few hours.

To decrease the running time and free the computer resources for the calculations, a
C program was developed using the T-matrix formalism ( see appendix VI for program
listing ). This allowed more complicated structures to be studied. For example, chirped,
tapered or apodisation gratings or a combinations of these features in one grating. In

addition the behaviour of different gratings in series can be addressed.

3.8.1 Flexibility of C program for the T-Matrix formalism.

The model developed can take into account the various types of gratings that
experimentalists can fabricate. For example a chirped period, tapering function of the
refractive index perturbation in a single grating. A resonator can be formed by two identical
gratings in series along a fibre length separated by some distance of normal fibre. Other
alternative arrangements of gratings can, and have been, considered. For example, a series

of gratings with a continuous or noncontinuous phase relation between each grating (
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3.8.3 Technique to predict how a Bragg grating under longitudinal strain

behaves using the signal processing technique.

The C program produces several output files. One is the response of the grating at a
single wavelength A to varying amounts of longitudinal strain. In the strain-monitoring
system, the D.F.B. laser is modulated at a frequency w, centred at A. So instead of

irradiance at A it becomes:
Alt)=2+ M(i(Drive, Modulation)) sin(wot)

Where AA is dependent upon the parameters of the drive circuit for the D.F.B. laser and the
magnitude of the input modulation signal to the drive circuit. Several approaches were
adopted depending upon the proposed structure under investigation. These methods are
outlined here but more detail of the approaches is given in appendix V.

The time vantation is taken into account in the C program for the more complicated
structures under consideration by replacing A by A(7) and generating an output file which

contains the response of a grating under longitudinal strain being irradiated by A(7). The
values of the irradiance in the output file are taken at given time intervals, determined by
the operator of the program ( Note :- changing the sampling rate is done at the code level ).
This file is used by a Mathcad +6 program ( see appendix V ) to obtain the magnitude of
the first, second and third harmonics of ®, present in the response of the grating. This was
found to be a drain on the computer resources and the run-time was very long for the
simulation. An alternative approach was adopted, using just the A and a Mathcad +6
program to obtain data when a sinusoidal perturbation of wavelength dependent upon time
is put upon the DC response of the grating. Finally extracting the magnitudes of the
harmonics from these data points is performed within this program ( see appendix V ).

For Bragg gratings in a Fabry - Perot configuration ( Bragg grating resonator } yet
another approach was used. The C program is run with a single wavelength A. The output
file contains the DC levels of the irradiance from the Bragg grating resonator. The Bragg
grating resonator response is modelled exactly like the fibre Fabry Perot response. Another
Mathcad +6 program is used to obtain the response of the system using the prescribed
signal process method, to see if the sensor and signal processing can produce meaningful

results ( see appendix V).
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Figure 78 also shows reduced linearity, which is to be expected because of the reflectivity
response profile according to longitudinal strain, which is more like a rectified sinewave.

This profile gives a “ stepped * response after the data are processed ( see section 2.3 ).

4.7 Observations and results of the fibre Bragg grating resonator.

The results given in section 4.2 show that a relatively broadband fibre Bragg
grating can be used instead of a Ti0, layer as a semi-reflective layer. The same problems
exist with the grating mirrors increasing the reflectivity of the mirrors distorts the
sinusoidal behaviour of the optical phase change of the sensor, thus producing a quasi-
linear relationship. There is the problem of also measuring only apparent phase change.

The major advantage of the fibre Bragg grating over the TiO, layer is in fabrication
and repeatability. This was the major problem with the TiO, layer. The wavelength
selectivity of the fibre Bragg grating is a very useful property when considering
multiplexing. The additional pre-amplifier used between the Ga photodetector and the
lock-in-amplifiers (L.1.A.s) was removed when investigating the 10% reflectivity mirrors.

Following the same procedure as in section 2 but instead of using the Butter and
Hocker model the T-matrix formalism was used to derive the constant of proportionality
between change in optical phase and longitudinal strain. The photoelastic effect was also
taken into account in a similar way to Butter and Hocker. The T-matrix formalism was

used because of the grating sensitivity to longitudinal strain:
A theoretical value of 0.567 rad (pe)" was obtained for a grating resonator defined

by the following parameters that gives mirrors with 5% reflectance; An ~ 0.002, n_, =
1.45, a uniform An, chirp factor of F = 0.013 nm per change per period. A starting / initial
spatial period of A(0) = 510 nm and the number of periods in the grating equal to 1000. A
separation of 6 cm between the two identical gratings of 5% reflectance.

Assuming linearity between change in optical phase and longitudinal strain the

deviation away from linearity is +0.3pe per radian.
A theoretical value of 0.568 rad (ue)’ was obtained for a grating resonator defined

by the following parameters that gives mirrors with 10% reflectance; An ~0.003, n,,, =

1.45, a uniform An, chirp factor of F = 0.013 nm per change per period.
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A starting period of A(0) = 510 nm and the number of periods in the grating equal to 1000.
A separation of 6 cm between the two identical gratings of 10 % reflectance.
Assuming linearity between change in optical phase and longitudinal strain the

deviation away from linearity is +1ue per radian.
Using the Butter and Hocker model gives a value of 0.563 rad (us)’.

Comparing these theoretical results to the experimental results from the two
resonators shows good agreement. Experimentally for the single mirror R ~ 5% resonator

an average constant of proportionality between change in optical phase and longitudinal
strain was found to be 0.566 £ 0.033 rad (ue)', which is within 0.2% error of the expected

theoretical result with a standard deviation of 5%. Figure 79, shows some typical results
obtained from the single mirror R ~ 5% resonator. The deviation from linearity ( resolution
) was found to be + 0.426p¢.

Experimentally for the single mirror R~10% resonator an average constant of
proportionality between change in optical phase and longitudinal strain was found to be
0.587 + 0.099 rad (pe)"' with error percentage of 3.3% to the expected theoretical result
with a standard deviation percentage error of 17%. Figure 80 shows some typical results
from various runs with the 10% resonator. The deviation from linearity ( resolution ) was
found to be + 2.0 pe.

The modified grating resonators (14-3-3 and 14-3-4) go some way to having a finite
range for the longitudinal strain but a problem remains with the implementation of the
modified gratings and standardisation of fabrication of the gratings. Experimentally for
resonator (14-3-3) an average constant of proportionality between change in optical phase

and longitudinal strain was found to be 0.013 £ 0.0007 rad (ue)™" with a deviation away

from linearity of + 35 pe per radian. The predicted theoretical value for the constant of

proportionality between phase and longitudinal strain using the T-matrix formalism with
the model of the signal processing is 0.017 rad (ue)" with a deviation away from linearity

of t 16 pe per radian. The difference between the experimental and the theoretical value is
quite large but this is expected because of the profile distortion.
Experimentally for resonator (14-3-4) an average constant of proportionality

between change in optical phase and longitudinal strain was found to be 0.015 *+ 0.0002 rad

{pe)’ with a deviation away from linearity of + 12 pe per radian,
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5.3 Physical interpretation of the fibre Bragg gratings.

Inspection of the mode-coupled equations ( see appendix 1 ) of a Bragg grating
with a single linear chirp, a refractive index modulation depth that is a Top-Hat taper
function with a sinusoidal variation superimposed on it, shows that the phase term ¥(z) of
the mode coupled equations includes trigonometric expressions which can be expressed as
Bessel functions. In effect one can postulate that if the modulation index of the Bessel
function is small only a few harmonics are generated. The fundamental is being the
original variation of the modulation depth. The first and second harmonics being side
bands to the fundamental harmonic of An(z).

A linearly chirped fibre Bragg grating illuminated by a single wavelength source
will have a Bragg condition at one location along the grating’s length. The intensity of the
reflected light will be dependent upon local properties of the grating at the position where
the Bragg condition is satisfied giving rise to local interference. The local optical path
differences in that region and the Fresnel reflections at the interfaces will vary according to
the refractive index modulation, An(z). The variation of An(z) is a tophat with sinusoidal
variation superimposed on it, which results in the back-reflected intensity being some kind
of sinusoidal variation with wavelength.

This was investigated, using the mode coupled equations, by Fourier analysis of the
Y¥(z) in conjunction with x(z); the couplhing coefficient , which varies according to the
Taper function for An(z) . A reflection-band diagram was constructed to inspect the Bragg
condition along the fibre Bragg grating length to obtain more physical understanding as to
how the light would interact with the grating, a method used by L Poladian [88].

A grating with a combination of linear chirps with continuous phase information
can be considered as a resonator. If the grating combination is illuminated by a single
wavelength there will exist two locations along the grating length were the Bragg condition
is satisfied, which are separated by some length of the grating. At some given wavelength
there will be effectively two mirrors ( Bragg condition / resonance ) within the grating’s

length separated by some distance in the grating thus the fibre Fabry - Perot scenario.
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By altering the temperature control facility on the drive circuit, the wavelengths of
the D.F.B. laser A, and A; was adjusted so that A, = 1557.6nm (temperature control
voltage 4.31 V) and A, = 1557.0nm (temperature control voltage 4.17 V). Measurements of

the sensor’s response to longitudinal strain were carried out at these two wavelengths.

5.6 Observations and results of the sensing system using sensor a Bragg

grating that is linearly chirped and has a top-Hat taper function with a

sinusoidal variation in the refractive index modulation,

General inspection of the results obtained in the above section suggests that this type
of fibre Bragg grating can be used as a strain sensor with the prescribed signal processing
technique. The resolution of this type of sensor is dependent upon the envelope functions,
the “ period ” of the sinusoidal variation of the refractive index modulation. The main
problem with this grating sensor is the difficulty of fabrication. The general static reflective-
strain response of the gratings gives evidence of this. This is one more step closer to a
useful fibre optical strain sensor but for the “ inflexion plateau ” on the reflectivity - strain
profile of the processed data.

The sensitivity was such that the additional pre-amplifier between the photodetector
and the L.I.A.’s was not required and the gain of the amplifier was reduced.

The theoretical values for the constants of proportionality between the effective
wavelength shift across the sensor’s profile and longitudinal strain for regions A and B ( see
Figure 114 ) are calculated using the T-matrix formalism to obtain the static reflectivity
response to strain and then superimposing a sinusoidal variation on to the response and thus
then extracting the first and second harmonics from that information. The parameter
variation for the signal processing, such as effective current to wavelength conversion
factor, was optimised to produce the most linear response ( see appendix V, section Vh ).
The grating specification used in the T-matrix formalism was as follows is the refractive
index modulation strength An ~ 1.6x10~, chirp factor of 1.204x with a sinusoidal period for
the taper envelope function for the refractive index modulation 4.894mm. The total length

of the grating is ~ 12.24mm and the initial grating period A(z = 0) = 510nm.
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Using the above model and parameters and assuming a static sinusoidal reflective
response to longitudinal strain a linear relationship can be extracted and hence an inverse
tangent function of the ratio of first and second harmonics of the modulated wavelength
response from the effective wavelength shift across the sensor’s static strain-reflectivity
response to applied longitudinal strain. The deviation away from linearity in region A is +
6ue with a constant of proportionality = 8.060x10” pe™. In region B, a deviation away
from linearity is + 8ue with a constant of proportionality = 8.131x10° pe™. The actual
static reflection response for longitudinal strain for sensor TOMARI12 ( see appendix V,
section Vh ) gives in region A, a deviation away from linearity of + 21pe with a constant of
proportionality = 7.758x10” pe™ and in region B, a deviation away from linearity of + 20ue
with a constant of proportionality = 5.614x10° pe™.

For region A the average constant of proportionality between the effective
wavelength shift ( nm per nm ) and the longitudinal strain was found to be 7.009%10° +
0.315x10° pe”. This is an error percentage of 11% to the expected theoretical value
(using the actual static reflection response of sensor TOMARI12 ) with a standard deviation
percentage error of 11%. The deviation away from linearity was found to be =+ 20pue.
Figure 115 shows some typical processed data from several runs with the D.F B. laser at A,
equal to 1557.6nm, region A.

For region B the average constant of proportionality between the effective
wavelength shift ( nm per nm ) and the longitudinal strain was found to be 6.29x10” +
0.064x10® e, This is an error percentage of 10% to the expected theoretical value
( using the actual static reflection response of sensor TOMAR12 ) with a standard deviation
percentage error of 2%. The deviation away from linearity was found to be =+ 25pue.
Figure 116 shows some typical processed data from several runs with the D.F.B. laser at A,

equal to 1557.0nm, region B.
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If the wavelength is set at A, then both compression and tensile strain can be
measured with this sensor. This sensor would then generate unique values for a given
tensile strain or compression ( see section 5.2 ). Also, as the initial value of the wavelength
shift for the sensor is known, then over a finite range, the sensing element is capable of
measuring absolute strain when using the plateau to give a DC cut-off reflectance level.
Strain sensitivity is variable along with the measurable range, which would depend upon
application. Temperature effects were less noticeable using this sensor which is to be
expected because the rates of the gradient are small compared to the fibre Bragg grating
resonators, again this is dependent upon the spectral bandwidth of the grating’s profile, that

1s to say the spectral period of the profile itself.
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6  Conclusion.

6.1 General discussion.

The intention, at the start of this study, was to develop a strain gauge based on the
principle of operation of a simple Fabry-Perot interferometer. The Fabry-Perot, the strain
sensing element, was to be an intregal part of a short length of standard, single-mode, and
telecommunications optical fibre.

The reasoning behind this decision was two-fold. Firstly, the device would have a
good resolution of strain, and secondly, using low values of mirror reflectance, around 5%,
a Michelson type sinusoidal variation in irradiance with strain would exist. This sinusoidal
response was a crucial fact in the design strategy. This was because the signal processing
technique already developed would generate an output electrical signal from an inverse-
tangent function of the optical signal which is proportional to the strain ( see section 2.4,
2.5.1 and appendix V ).

A fibre Fabry-Perot device was made using a TiO, layer dielectric as a mirror
which demonstrated that the principles of the sensor were sound. It was found however to
suffer from a number of drawbacks. These are i) fabrication, ii) problems with
multiplexing such a sensor, ii) measuring only apparent strain, iv) the length of sensor to
obtain good resolution and associated shear strain.

It was decided that to overcome the major fabrication difficulties associated with
the TiO, F.F.P. sensor a move to fibre Bragg grating technology perhaps would provide a
solution to this particular problem. Using the reflective properties of a Bragg grating,
which has been written into the core of a single-mode optical fibre, could provide a
replacement for the TiO, mirror. In order to verify the suitability of this principle, an
experiment was conducted to investigate the properties and performance of a Fabry-Perot,
fibre Bragg grating resonator using this technology.

The gratings, used to substitute for the mirrors in a Fabry-Perot, were linearly
chirped Bragg gratings with a large but finite spectral bandwidth and with a constant
reflectance over that spectral range. The results from this study were encouraging and are

documented in Chapter 4. Again the other problems associated with the TiQ, F.F.P. still
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After some modelling of various structures of gratings by means of the T-matrix
formalism ( see section 3.6, 3.7, 3.8 and appendices IV ) two possibilities immerged which

gave the “ sinusoid ” spectral response and the required response to longitudinal strain .
One of the possibilities was discarded, after discussions with the fabricators; owing
to the practical difficulties of producing the grating structure. The second grating structure
was produced and is documented in chapter 5. The sensing system with this sensing element
was demonstrated and the results are documented in sections 5.5 and 5.6. The experimental
results where in relativity good agreement with the theoretical predictions, including the “
inflexion plateau ” in both sets of data. The reasoning for this inflexion plateau is not fully
understood but using the Butter and Hocker model [50,51] which is a simplified expression
for taking into account the strain-optic effect and neglecting the waveguide dispersion
effects due to strain, may be the source of the problem. In the experimental data the
inflexion plateau is more pronounced than in the theoretical data which suggests that a
second order effect may be coming into play. This phenomenon was not present in the
theoretical response to strain in the second possible structure. This suggests that the
response to strain of the sensor being used is related to the overall effect of the longitudinal

strain on the refractive index modulation taper envelope function.

6.2 General discussion of the performance of the new sensing element.

The resolution of this linearly chirped, Top-Hat taper function with a sinusoidal
variation in the refractive index modulation fibre Bragg grating sensor is less than the other
types of sensing elements but this is dependent upon the period of the refractive index
modulation taper envelope function ( see appendix Vg ), which also gives the effective
range of operation of the sensor .

One of two problems have to be resolved with this sensor.

1) Fabrication: According to the co-researchers at Aston University this is quite a
difficult sensor to produce but probably this problem will be overcome in time as the
fabrication technique is refined. Although a ~ 1.5 nm spectral bandwidth sensor as been
produced, there would seem to be some additional problems in producing narrower spectral
bandwidth sensors at the present time, again due to the adopted fabrication technique.

Looking at the reflection band diagram [88] of this type of linearly chirped and tapered
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Figure 120 shows a possible scheme of multiplexing that could be used with this
sensor. This scheme is dependent upon the fibre Fabry-Perot device; 1.e. wavelength
resolution. The free spectral range which is dependent on the finesse and thus the mirror
reflectivities. An Altemative to the fibre Fabry-Perot device would be an electronically
tuneable optical wavelength filter such has the one used in the M.A.S.T. joint project
which include British Aerospace Sowerby Research Centre [112]. Another suggestion is to
use a similar device such as the one used by T. Coroy et al [113] with an acousto-optic
tuneable filter. In this system the wavelengths of the sensors with no longitudinal strain is
at the minima of the reflectivity profile. As the sensor is subjected to compression or strain
the profile shifts and generates a cardiod. The illuminating light source is broadband; the
modulation of the light is achieved at the fibre Fabry-Perot device by a sinusoidal
perturbation on the controlling voltage of the P.Z.T. mounts of the F.F.P. device.

Time division multiplexing is possible using an architecture using several D.F.B.
lasers matched to each fibre Bragg grating sensors. These are suggestions for the
multiplexing problems to illustrate the possibilities that may be used with this type of

sensing element.

6.5 Robustness of the system.

It is hard to quantify the robustness of a sensing system but 1t is easier to compare
to another system. In the review of the literature [31- 45, 47-49] the majority of the sensing
systems were demonstrated in a laboratory environment, assuming the same laboratory
conditions for this project. In general a large percentage of demonstrated schemes using
fibre Bragg gratings have used an optical spectrum analyser or some kind of
interferometric filtering technique to extract the information meaning to extract the shift in
wavelength generally this requires some bulky optical equipment or some additional optics
to the fibre optical array. There are alignment probiems that have to be considered in a
commercial application when additional optics is included in the sensing system. This can
also add to the physical size and complexity of the sensing system.

The system demonstrated in this project does not use bulky optical equipment, all
optical components are fusion spliced into the fibre optical sensing array, giving an

advantage over many of the schemes suggested in the literature. There are no alignment
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problems with this scheme, this again is a distinct advantage for this scheme in a
commercial application; less sensitive to handling errors and the environmental changes.

Robustness is very much qualitative. The system presented in this report needs to
be compared to existing strain-sensing systems that are being used in specific applications
such as by D. Roberts and P Foote [112] or P Nellen et al [114]. The D . Roberts and P.
Foote sensing scheme uses an acousto-optic tuneable filter which reduces the bulky optical
equipment but employs a tree architecture for the sensing array, which increases the
possibility of damage due to handling whilst embedding the array.

P Nellen et al [114] uses a 0.5 m grating spectrometer equipped with a 1024
element CCD array for detecting a wavelength shift. Using simple line architecture, which
decreases the damage drawing handling and embedding, but the system contains bulky
optical equipment and also the increased risk of optical miss-alignment during the process

of setting-up the sensing system.

6.6 A comparison of specification to existing systems.

(@)  The resolution of P Nellen et al [114] sensing system is tlupe over a
operation strain range of ~ 2000 pe with an update rate of the sensing system of 10 Hz,
due to scanning of the 0.5 m grating spectrometer. The number of sensors in the channel /
array is seven.

(b)  The scheme adopted by D. Roberts and P Foote [112] is a little bit unclear

in the available literature but the specification they are working to has a strain resolution of

+10ue, over an operational range of +3500 pe with five sensors per channel / total number

of sensor in the array is forty, with an update rate per sensor of 500 Hz.

Comparing theoretical predictions using the system investigated, in terms of strain
resolution and operational range. The theoretical results seem to give parity with system b
or better depending on the operational range of the sensor. Comparing experimental strain
resolution of the system investigated to system b’s resolution, system b is better by a factor
of two ( this has been discussed in section 6.1 and 6.2 ). Again comparing experimental
strain resolution of the system investigated to system a’s resolution, system a is better by a
magnitude but the range of measurement is approximately the same. Theoretical resolution

is still less than for system a but only by a factor 2.
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The update rate for the system under investigation is better by an order of 2
magnitudes than system a and approximately one order of magnitude better than system b.

In general this comparison does not seem favourable for the sensing system which
has been investigated but advantages are less bulky optics ( less miss-alignment problems )
and much cheaper ( simple electronics for the signal processing technique ). The main
problem is fabrication of the sensors themselves, quality, reducing noise ( increase in

resolution ) and the ability to produce other short operational ranges.

6.7 Concluding remarks.

The aim of the project was to produce a sensing element that would yield absolute
strain measurement over a useful range of strain values and also have the operational strain
resolution of a fibre Fabry-Perot sensor, without the fabrication / characterisation problems
of the F.F.P. sensor.

This was achieved in part. A sensor was fabricated that could measure absolute
longitudinal strain and overcome the fabrication problems encounted with the F.F.P. sensor
but the resolution was not as good as the F.F.P. sensor.

The questions of resolution and operational range of this sensing element are linked
and have been discussed in section 6.2 and 6.3 of this report. The longitudinal strain
resolution can be improved by using shorter spectral bandwidth sensing elements, which
also would decrease the operational range. The sensor design could be tailored to the

application for a given resolution or range required.
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permittivity .It is possible to express the transverse components of the perturbed fields in

terms of the unperturbed transverse field components , that is

E(x Yy, 20)= D a,(z )en, (x y)e =

and

H'(x, Y, 20) = 22, (2 )1, (xy)e ="

where the coefficients a_(z)) are constants and the summation is over all guided modes .

While the above superposition may be used to represent the perturbed field variation with x

and y at z = z, at some other different but arbitrary point z along the guide the perturbed

field varnation with x and y might be different . Therefore , the coefficients a, must in

general vary with z ‘Thus , for an arbitrary z , z must be replaced with a_(z) . It is possible
in some situation to solve for the coefficients a_(z) and obtain a complete description of the

perturbed fields .

Note that the longitudinal perturbed fields E', and H', are obtainable from the

transverse component using Maxwell's curl equations . That is ,
2E', = Y(iwe") (Ve x H',)
zH'; = 1/(-iope) (Vi x E't)

Where o is the frequency of the propagating field and p, has the usual meaning .
Substituting the expansions for E', and H'; in terms of the unperturbed transverse modes
and note that the unperturbed fields satisfy Maxwell’s curl equations for the unperturbed

geometry defined by €', thus

Iy s
E.=Ya,(2)=e¢,.e tanto
m E' -
and

H.=>a, (z)hie""‘““
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The perturbed dielectric constant €' is very close to & so that the ratio € / ¢’ can be
approximated by unity .Under these conditions , the field expansion simplifies to the

following approximate form :

E'(xy,2)=) a_(2)e,(x,y)e ="
and

H'(x,y,2)= ) a,(2)h (x,y)e ="

Using the Lorentz reciprocity theorem for the general class of cylindrical waveguides

Fa
H 2(5: x Hf +E; xH;’)ozdS‘=—ia;I (e-&)E'eE*dS
s

A

where E;‘ is the conjugate of the unperturbed transverse field .
E/ is the perturbed transverse field .

E' is the mode for the perturbed waveguide .
E* is the mode for the conjugate perturbed waveguide .

This is derived from Maxwell’s equations for unperturbed and perturbed
permittivity £'(X, y, ) :
VxE=-iguH , VxE'=-iouH’
and
VxH=iwcE , VxH =iwneE’ .
Integrating over the given structure of the dielectric waveguide and making use of the

3

Divergence theorem ; for a closed surface S enclosing a volume 7 and vector field F

jF-dS:jdivF-dr.
S

T

Gauss’s theorem : This states that the total electric field in a closed surface S is the

sum of all the localised E-fields within that closing surface ;
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These two expressions are commonly known as the mode coupled equations for a
Bragg Grating . They can be wnitten in the more familiar form by recognising that 2k,, -y
= & where & is the differential propagation constant associated with detuning from the
Bragg condition , so 2., —y= & in terms of Af where A= - B = 2nw/A — n/A and

C C
that the terms +i 70 = +iK so —22 is the coupling coefficient . The above coupled mode

equation can be rewritten has ,

and

By i o-12(0B)2
n

Ic_. Solution to the Mode Coupled Equations(Uniform Grating ).

Let AB=A, a, is the complex amplitude of the electric field of the forward mode in
the grating , so a,= B(z) . The function a., is the complex amplitude of the electric field of

the backward mode in the grating ; so a., = A(z) . The coupled mode equations become

ABE) _ _ixc* a(z)ei207
dz

and

UE) _ 1ixcB(z)e 1282
dz
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eil2 _dAd(zz) = +iKB(z)e_fAz and 1Az ? = —ik* A(z)e'?

which can be written as

%[emz A(z)] = iA(2)e™D? +ixB(z)e A2

and

:z[e""-“z B(z)] = ~iAB(2)e A2 _ixc* A(2)e'D2

Letting p(z) = oAz A(z) and q(2) = 1Az B(z)

then
P — iap(e) + i)
and
A — -ing(z) - ix” pi2)
Which can be written in matnx form |
dp@)]_[ 4 ix p(Z)]
dz| q(z) | -ik* -iA q(2)
thus

149



iA ix
[p(z')] e -ix* —iA [p(O)]
q(2) q(0)

The eigenvalues of the matrix are

A-IA —ix
i  A+iA

24a2 k=0

Hence
and

Eigenvectors , let A = 4,

SO
11 —iA -iK el
x =0
it Ay +in| ]

Thus e, = ix and f; = A;-i4 and by a similar process

for A, giving e, = ixand f; = A,-IA

thus

iA ix

A
, —ixt A _|G % e G
fl f2 lzz
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Thus

[pm]:[e] e, 1M o rl 2 “[p(o)]
a2 |f; S 0 Az H 5 q(0)

e

and

[el e "[pm]: S S ‘l[pw)]
N1 o Le2) 0 e’lzz 7 g(0)

which can be rewritten as
e e, -1 exp(—iﬁol)a(l) ~ 6’111 0o 19 & -1 p(0)
A A 0 il NS VA A I P

By setting z = I , the length of the grating , and using the fact that the electric fields of the
backward and forward modes in the grating can be expressed as a(z) = A(z)exp(ifz) and
b(z) = B(z)exp(—ifz) respectively where 3 is the wave propagation constant . Using these

facts and by some matrices manipulation the following is obtained.

A1 ig —if 1 A1
fzel1 11 ezefﬁ 01 [01(0)]= /5e fﬁo‘, e e 11 {a(l)}
Jie 2 ele'ﬂ0 50 fle_’ﬂo ele/12 5(0)

thus

[0(0)]_ fze 1 eye f2e

O Al iﬁol fe—iﬁol eelzl b(0)
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The T - matnx relates the left - side vector [a(O) b(O)] to the right - side vector

[a(O) b(O)] and is therefore well suited for analysis of a cascade of gratings . For example

, if a uniform grating as a total length of L , then using this method of analysis the single
grating of length L can be divided into small gratings where the sum of the lengths of the
small gratings equals the total length of the single grating .The small gratings lengths are

L,h,...,0,and L =1 +1,+ +I it can be verified analytically that

where [TL] denotes the T - matrix for the complete grating of length L ; []}

!

] denotes the

T - matrix for the ith small grating ( =1,2,3, ...,n) . This method is not limited by the
selection length of the grating chosen for this analysis . For example N, is an integer number
,s0 for a sub-grating /; = ;A , N; is the number of periods per sub-grating . This can be
chosen to be as short as only one pitch / period .

The mode coupling between the forward and the backward waves is a continuous
process taking place at all z - positions in the grating , and the coupling efficiency depends
on how synchronically the varying of An(z) matches the differential phase between the two
waves . If An(z) is sinusoidal , the coupling becomes efficient because the varying of An(z)
just synchronically matches the mode phase difference everywhere in the grating . If An(z) is
not sinusoidal , then finding a corresponding harmonic that would produce a net coupling
efficiency . Therefore the local coupling efficiency within one pitch / period is actually
determined by the internal An(z) function and independent on the condition outside of this

period / pitch .
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Appendix I1. The Runge-Kutta method for solving the coupled mode

equations .

The generalised coupled mode equations can be written as

aA(z)
dz

= —ikB(z)e—iW(z) and _d%z): +im4(z)e+iw(z)

where
2
w(z)= J.mdz -2p:
z

B is the propagation constant of the unperturbed guide . Assuming a linear chirp is defined
as

27 2r

A@) AQ) "

where A(0) is the period at the beginning of the grating and v is the chirp factor , then

w(z) = I(R%—zp]dz—zﬁnz[%— ]—;72 e

¥4

Ila , Derivation of the equations used in the Runge-Kutta Method .

Using the above definitions of the various parameters that define a linearly chirped

period variation in a Bragg grating the coupled mode equations become

a(z) -{2(p, - Az~ %]

. . 2
- B(z)e—'2& ez
dz

= —ixB(z)e
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and

) |28y~

- +HcA(z)e _ -H"KA(z)eHZ& eI

where &~-

The E-field of the backward and forward modes can be expressed in terms of a

reference propagation constants a(z) and b(z) of the grating

a(z) = A(z)e"'i& and b(z) = B(z)e—l&

Differentiating a(z) and b(z) with respect to z yields :

__(_ZL‘“;(Z),;:& +i&+I&A(Z)=dA;(z).e+’& +i5-a(z)
dz dz dz

and

db(z) dB
=

7,

—-ice r&—I&B() d£2) -ide —is. b()

Using the two equations above and the definitions of the modes , the coupled mode

equations become :

db . i 22 .
—d(ZZ) +i6 - b(z) = ilc/{(z)eHZ&-e iy -2 gidz

db(z) iy . 22

thus 74-1'5'[)(2):1'1@(2)8—17 z (H]
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and

. . 2 .
% —is-a(z)= —ixB(z)e_IZ& AL A L
2
thus daz) 5. a(z) = -isd(z)e™? (112

IIb . The implementation of the Runge-Kutta Method .

The equations II1 and 112 are translated into FORTRAN90 and are listed as the two
complex functions in the program FNF1 and FNF2 . The procedure of the 4th order
Runge-Kutta technique is to solve for these two equations . Letting a = ag. + igj, and b =
bre + ibin to separate the real and imagery parts of the solutions . Using the boundary
conditions a(z=0) = 1 and b( z=! ) = 0 and estimating b(z=0) = 0 as an initial value of
b(z=0).

The spectral range which is considered is determined by the value of the variable
lamdamin ; The minimum value for wavelength and lamdamax is the variable for the
maximum value of the wavelength . The reflectivity is obtained by the variable BS(3) ; B,
the resultant values for reflectivity are outputted to a file ; name tomdata.csv and contains
also the wavelength for a given reflectivity . The number of iterations for the Runge-Kutta
method is divided into 10,000 sections . The variables K1 , K2 , K3 and L1, L2, L3 are
the intermediate values along the grating length . The initial condition are given in the
variable values of BS(1) , BS(2) for the reflected wave and the incident wave condition

givenby A
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Ilc . Listing of the FORTRANY90 program for Runge-Kutta method

REAL*8 L.K,GAM,DELTA,H,Z,AA,CAPGAM,BETA,N,lamda,pi
real*& lamdamin,lamdamax
COMPLEX*16 A,B,BS,BE,K1,L1,K2,1.2,K3,L.3,K4,L4
COMPLEX f1.£2
INTEGER*4 NPTS,1,J,m,lamj
COMMON K,DELTA,GAM

DIMENSION BS(3),BE(3),AA(20000)
open{unit=24, file=temdata.csv' status='unknown")
pi=4d0*atan(1d0)

NPTS=10000

L=1.989d4

N=1.54D0

GAM=60d0

CAPGAM=492D-9

GAM=8d-9*pi/(CAPGAM**2*L)
print* 'gam=",gam

H=L/NPTS

m=100

print *,deha

lamdamin=1510d-9
lamdamax=1560d-9

do 200 Jamj=0,m
LAMDA=lamdamin+lamj®*({lamdamax-lamdamin)'m
K=pi*1.5d-3/lamda

BETA=2D0*pi*N/LAMDA
DELTA=PI/CAPGAM-BETA

BS(1)=(0D0,0D0)
BS(2)=(1D0,1D0)

DO 1201=1,3

A=(1D0,0D0)
B=BS(l)

DO 110 J=0,NPTS-1
Z=1*H
K1=H*f1(A,B,Z)

L1=H*f2(A,BZ)

K2=H*f1(A+K1/2,B+L1/2,Z+HP)
L2=H*f2(A+K1/2,B+L172,Z+H/2)
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K3=H*f1(A+K2/2,B+L2/2,2+H/2)
L3=H*R2(A+K2/2,B+L22,Z+H/2)

Kdé=H*f1{A+K3,B+L3,Z+H)
LA=H*f2(A+K3,B+L3 Z+H)

A=AHK1+2D0*K2+2D0*K3+K4)6D0
B=B+(L1+2D0*L2+2D0*L3+L4Y6D0
AA(J+1y=ABS(A)

c  print *,aa(j+1)

110 CONTINUE

BE(I)-B
IF(L.EQ.2) THEN
BS(3)=BS(1)-BE(1)*(BS(2)-BS(1))(BE(2)-BE(1))
END IF
120 CONTINUE
¢  PRINT*BE(3)
¢ PRINT®"
PRINT*,lamda,” ", ABS(BS(3)**2)
wrile{24,500) lamda,abs(bs(3)**2)
200 continue
c DO 130 J=1,NPTS
¢ PRINT*AA(J)
¢ 130 CONTINUE

500 format(eld.G, eld.6)

END
COMPLEX FUNCTION f1(A,BZ)

COMPLEX*16 A.B

REAL*S Z K. DELTA,GAM

COMMON K,DELTA,GAM

f1=(0D0,1D0)*DELTA*A<{0D0,1D0)*K*B*(DCOS(GAM*Z**2)
$  +{0DO,1DO)*DSIN(GAM*Z**2))

RETURN

END

COMPLEX FUNCTION f2(A,B,Z)

COMPLEX*16 A,B

REAL*8 Z K DELTA,GAM

COMMON K,DELTA,GAM

£2=-(0D0.1D0)*DELTA*B+(0DO0,1D0)Y* K*A*(DCOS(GAM*Z**2)
$ «(0D0,1D0)*DSIN(GAM*Z**2))

RETURN

END
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Appendix ITI . The Analytical solution to a linearly chirped Bragg grating

Using the two coupled mode equations in appendix II as the starting point .

da(z)
&

2
-i8-a(z) = ~ixd(z)e 'V °F

and

%+i5-b(z) = im(z)e_iy 22

These equations can be presented in a different way , this being :

2 a2 2
exp[ 1}/22 J%—ié‘-aexp[ ’722 ]:—ix-bexp(ﬂyzz J
. 2 . 2 . 2
exp(“yzz J%+i6.bexp[+ly2'z ]=+ix-aexp( lyzz ]

ITIa . Derivation of the two independent second order ordinary
differential equations .

and

Letting

2

U=a- exp[ 4 2 z ] . This being the incident light .

and

2

V=b- exp[ il 4 2 z J . This being the reflected light.
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The physical interpretation of U is that it presents how the complex amplitude of the
incident light behaves has it goes through the grating with a linear chirp of y . This is the
same for V which is the complex amplitude reflected light . Also remembering the @ and b

are also functions of z ; a(z) and 5(z) , this being :
a(z) = Az)e "% and b(z) = B(z)e '

where &=0-f , this being the phase miss-match between the Bragg condition and the
wavelength of the incident light upon the grating and it’s position within the grating .

Thus the coupled mode equations become :

L2
exp[ sz J%—iﬁ-U=—ir-V

and Result 1

.2
exp(ﬂyz'z J%HJ-V:H'K-U

Now from the definitions of U/ and V'

2
(—g-zj-=exp[ 1722 J%—ir-zU

and

hence
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+iy-2U

and

So that Result 1 reduces to
du
—+ily-z=-8)U =—-ix-V
—, Tilr-z-96)
and Result 2

%—i(y-z—é‘)V:Hx-U

Now
d2u dU dv
?+i(}"2—5)z+i7'U=—iK'E (a)
and
dy dv dU
dzz —i(}"Z—a)E‘—i}"V=+I—K'Z (b)

162



and substituting for % inR.H.S. of equation (a) and % in the R H.S. of equation (b)

from Result 2 .

—‘ZTUH'(}'-Z-—&)%CZ]-HT-U: —ik(+ixc-U +i(y -z—8)-V)
and

dv dv

;z—z—q‘(y-z—a)z-fyv:+nc-(-ix-V—i(y-z—5)-U)
ie.

‘Zgj +f(y-z—5)%—i(x2 ~iy)-U = -ix(+i(y -2~ 6)-¥)
and Result 3

d%v & e
2 —1(;#2—5);—1(1:2 +17)-V:+tx-(—1(y-z—6')-U)

Substituting for -ix¥” and +ixU from Result 2 in to Result 3

Hence
d2U 2 2
—+[(7-z—5) -K +iy]U:0 (B1
dz2

and
dv 2 2
—+[(y-z-5) -x —iy]V:O (B2
d22
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Considering equation involving U

. - o
making a substitution z — — =

X
y 2y

dU dU dx dU
thus 22 -8V & _ o au
B dx V2

2
a%u d(dU) d(dU)dx d( dU)
d Y _ S\ 2L Ny 2.
. B2 d\d) d\d&) @ &V &
o dZU_27_d2U
dz? dx?

Equation B1 becomes

2 .2 .
thus —+[x——K—+L}U=0 (B3

and similar for the equation involving ¥
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Equation B2 becomes

sz [xz rc2 i
thus

— 4| —-—-—F =01 (B4

HTb . Parabolic Cylinder Function and it’s relationship to Confluent

Hypergeometric Functions .

The ordinary differential equation of the form

2
d—y+(ax2 +bx+c)y= 0
e

can be expressed has

and

Where y is a Parabolic Cylinder function [111] with real solutions for

¥(a,x) , y(a,-x)
y(-a,ix) , y(-a,-ix)
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Equation B5 transforms into equation B6 with a being replaced by -ia and x being replaced

1
bxex(—ij.
Y P47T

Thus the solutions to equation B3 are :

y,=e 4 M(la+—1—,l,—l—x2J
1 27 4’22
and
1 2
-——Xx
crd T (1as2 2 1)
=x-€ Ml—a+—-,—,—x
2 27732,
Also replacing a by -ia and x by x exp(%in)
i
Note that x2 =x2 e 2 =ix2 the solutions become
P2
—e * m(Zarll i)
73 29722
and
in 2
—_— —_X .
~ 4 4 -i 33 2)
=x-e e M(—a +—,—,—~X
Y4 29T

~
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M( a,b,z ) is a confluent hypergeometric function [111] ; a Kummer’s function
which can be expressed as :
2
az (a)zz . (a)nz"

Mab,z2)=1+2 S . SR,
(@,bz) =143+ @),21 @)

where (a)n =a(a+1)fa+2)...(a+n-1),(a), =1

Also the confluent hypergeometric function has an integral representation :

M(a,b,z)= f@—fg’))?(a—)- Eez’ T B L

thus giving y, has :

and similar expression for y, , y; and ys .
Using the Kummer’s function to solve the equations B3 and B4 the result is two

equations of the form :

2

—ilz
2 =U()

U=al-y +bl-y, ; where a(z)-e
and
Y.2

+H=z
V=cly,+dl-y, ; where b(z)-e 2 =V()
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Ilc . Using the boundary conditions atz=0 and z = L , plus the

derivatives at those points to obtain the constants of integration .

al,bl,cl and d1 are arbitrary constant of integration which can be determined by
using the boundary conditions ( note 4 unknowns , 4 boundary conditions ; 4 equations ) .
Remembering that a(0) =1 and 5(L) =0 :
Therefore a(0)=1—> U(0)=1 and b(L)=0—>¥(L)=0

Soatz=0

7z b1, 1= 2
ecomes l=al. y (0)+01.-y,(0)=>al = —+—
1 2 yl(o)
and
Vbecomes 0=cl-y,(L)+dly,(L)=>dl=—cl- 73 (Z)
3 4 y4(L)
Using the first order denvatives
£+i(7-z—5)U=—ix-V (B7
dz
and
iV——i(y-z—E)V:HK-U (B8
dz
Putting z = L into equation B7
al -yi(L) +h1-y) (L)+i(y-L- 5)[a1 yl(L) +bly, (L)] =0 B9

168



Putting z = 0 into equation B8
cl-y5(0)+d1-y, (0) +i6-[e 3(0)+d1-y,(0)| =ix B10
Substituting al from First boundary condition into equation B9 , so B9 becomes

1-b1-y,(0)

) |
W]-yi(L)+b1-y'2(1L)+1(;f L -J)HW]-J,I(L) +b1-y2(L)] =
So therefore

i(y - L= 8)y,(L)+ y;(L)

bl= (B11
¥, (0)- yi(L)+ily - L~ 5)[y1 (L)y,(0)-,(0)y, (L)] -¥5(L)-,(0)
thus al is also defined .
_1-b1 ¥,(0)
al= W (B12

Substituting d1 from the first boundary condition into equation B10 .

cl-y'3(0)+[—cl-ij—8]-y4( 0)+id- [cl y3(0)+{—cl 3% ;} y4(0)]=nc

Thus

ix

(B13
50200340 3850 205.7,0)

4

cl=
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and again 41 is defined because

y3(L)

dl =-cl-
¥4(L)

(B14

ITId_, The implementation of the Mathematica Program .

The solutions of y, , y2 , »; and y, and equations B11 to B14 give the complete
solution to a single linearly chirped grating with a chirp factor of y and a coupling
coefficient of x.

The various parameters in the equations B11 to B14 are calculated in the program in

the notation of -

»(0)=yl10 , y'1(0)=dyl0

to

y4(0) = yd40 , y'4(0) = dy40
and

»n(L)=ylL , y'i(L) = dylL
to

Yo(L)=y4L , y'«(L) = dy4L

Thus the reflectivity of the proposed grating is given by taking the modulus squared

of the reflected complex amplitude and evaluating it at the beginning of the grating ; z=0.

2

iz—z2

2 e 7 2
= b(2) roftec e e 2 =[e1 y5(0) +1-3,(0)

‘b(o)reﬂecﬁon

z=0
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( e ) Listing of the MATHEMATICA 2.2 program.

ClearAll{a,b,c,d,cl,x,]Jamda,gamma L delta k,z,y1L,y2L,dylL.dy2L,y10,y20,dy10,dy20,u,v]

ow=0penWrite["tommath.csv"];

stzn,ll;

npts=100; -This is for the number of points in the spectral Bandwidth . -
Array[g,npts];

x=Sqrt[2 gamma]*(z-delta/gamma); - Defined from the above appendix . -

cl=k"2/(2 gamma)-I/2;
¢2=k”2/(2 gamma)+1/2;

-The parameters y1,y2,y3 and y4 are the numerical values of the Kummer’s function .

y1=Exp[-x*2 I/4] HypergeometriclF1{-cl I/2+1/4,1/2,x"2 1/2];
y2=x Exp[l Pi/4] Exp[-x"2 I/4] HypergeometriclF1[-cl I/2+3/4,3/2 x"2 112],
y3=Exp{-x~2 I/4] HypergeometriclF1[c2 /2+1/4,1/2,x"2 I/2];
y4=x Expl[l Pi/4] Exp[-x"2 I/4] Hypergeometric1F1[-c2 1/2+3/4,3/2,x"2 L/2];

dyl=D[yl,{z,1}];
dy2=D[y2,{z,1}];
dy3=D[y3,{z,1}];
dy4=Dly4,{z,1}];
d2yl=Dfy1,{z,2}};
d2y2=D[y2,{z,2}],
d2y3=D[y3,{z2}];
d2yd4=D[y4,{z,2}],

Dol

z=0;

lamda=N[1510%¥10~-9+50*10"-9 jipts],; - Defines the spectral bandwidth . -
k=Pi*1.5*10~-3/lamda, - This is the coupling coefficient . -
capgamma=492*107-9, - capgamma 18 the intial period of the Bragg grating . -
L=1.989*10"4; -L ; the total length of the grating . -
gamma=8*10"-9*Pi/(capgamman2*L); = -gamma ; the linear chirp factor . -
beta=2.0*Pi*1,5415/lamda; - beta ; the propagation constant of the fibre . -
delta=Pi/capgamma-beta; detla ; the differential propagation constant . -
z=L;

y1L=N[y1,20];

y2L=N{y2,20];

y3L=N[y3,20];

yaL=N[y4,20];

dy1L=N{dy1,20];
dy2L=N[dy2,20};
dy3L=N[dy3,20];
dy4L=N[dy4,20];

z=0;

y10=N[y1,20};
y20=N[y2,20};
y30=N[v3,20];
y40=N[v4,20];
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dy10=N{[dy1,20];
dy20=N{[dy2,20};
dy30=N[dy3,20];
dy40=N([dy4,20];

denom=y20 dy1L-y10 dy2L+I(L gamma-delta)(y20 y1L-y10 y2L);
b=(dylL+I(L gamma-delta)y1L)/denom;
a=(1-b y20)/y10;

c=I k/(dy30-y3L dy40/y4L+delia I(y30-y3L y40/y4L)),
d=- y3L/y4L,;

=0,

u=N[a yl + by2,20],

v=N[c y3 + d y4,20];

=L,

u=N[a yl + b y2,20];

v=N[c y3 + d y4,20];

N[a,20];

N[b,20];

N[c,20];

Nf[d,20];

Nic y30+d y40,20];

exactr=N[(Abs[c y30+d y40])"2,10];
N([y10,20];

N([y20,20];

N[b,20];

zb=N[delta/gammal];

alpha=0;
12=N[1-Exp[-Pi k"2/gammal]];
r3=N[k~2 Pi Exp[-2 alpha zb)/gamma];

N[-<1 1/2+1/4];

N[x"2 1I12];

z=L12;

Nfa dyl +b dy2+1(gamma z-delta)(a y1+b y2)];
N[-Tk (cy3+d y4)];

N[c dy3+d dy4-I(gamma z-delta)(c y3+d y4)];
N[I k (ayl+b y2)};

glil=N[(Abs[c y30 +d y40])*2];

WriteString[ow,FortranForm[lamda),st, FortranForm[g[j]]];
Write[ow];

Print[lamda," ", g[j]],{j,0,npts}]

t=Table[g[j].{j.0,npts}];

Close["tommath.csv"];
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(IVa) Results ( spectral response ) for a uniform Bragg grating
using Rouard's Method , T-Matrix formalism and the Derived
Analytical expression .

( Note Mathcad +6 program name TECH1.mcd )

Rouard's Method

The Parameters below are as follows :
I : The of layers in the Bragg grating
1:=40
F: This is the chirp factor, the rate of change of the
period per period of the grating :
F:=
-0.0210°
n0 : The perturbed index of refraction due to photobleaching :
n0 =154
nl : The unperturbed index of refraction :
nl =15
( Note that the values of the refractive index are high but this is only a demonstration of the
technique , to obtain theoretical consistence , with increasing nl , n2 the spectral response
shifts up in wavelength )
j and 1 are two counters for increase of wavelength and number
labelling for the periods in the grating :
1:=0..1
j:=0.10
A_mode : The initial period of the grating (nm) :
A_mode "= 50010
7‘-j : The wavelengths used in this model (nm):

A, :=(1510+ 0.5j)- 10°°

d; : The period variation along the grating length (nm) :
di = A_mode + F-

dl+l .

Is part of the number count of the periods in the grating
AB; j : The phase mismatch between the grating

and the illuminating radiation's wavelength

Per wavelength and period

2-1:-[(“1 — nO) + nO}
Ap. .= 2

i A\
]

Kj: Coupling coefficient per wavelength :
= w-(nl - n0)

! A
i

Sij: The s parameter defines the photonic band

_r
d,

gap where wavelength is reflected :
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sl )
rj+1,j : Represents the reflection coefficient

for each period in the grating :
s (s, 4 )
si.j-cosh (Si,j'di-:—]) -1 -Aﬁi.j-s'mh (Si,j'diﬂ)
g j - The additional phase information obtained as the light

travels through each period per wavelength :

-1 -4-x-n0-d.
£ . =exp -

L) A
J

ii : Is a count from the back end of the grating which used
to calculate the net / effective reflection coefficient has it
goes through the grating :

ii=LI- 1.

p1,j - Is the effective interface with a reflection coefficient :

At the I layer of the grating at all wavelengths

-1t P

Gy~

A .
l + rl_ le r]vj sl’j

pii-1,j : Calculates the effective reflection coefficient

at the beginning of the grating
Gi- 1, Bij G,

Pi-1,j " et

||—l,j.p

i,j i,

Reﬂect_ROUj : The reflectivity of the grating at the wavelengths :
Reflect ROU, := py j-aj

A Graph of the purposed grating's Reflectivity Vs wavelength using Rouard' s method :

0.8 T ] | |

Reﬂccl_ROljl 0.4 —

o2 —
0 1 P | —
151010 0 15210 © 153010 15410 8 15510 © 15610 §
5
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T-Matrix Formalism technique
z:=0..40
Al :=A_mode +F-

These parameters have the same meaning
has in the Rouard's Method :

ABL = 2n-(0+ n0) T
bz A Al
«l = n-(nl - n0)
j A
J
oy () 0,
A z and B; 7 are

functions derived from
the T-matrix formalism
for each layer in the
grating and at a given
wavelength.

( see appendix 1)

with the variables

C and D are the

conjugates .
. Ap lj'z-smh (SIJ',Z'M;) +i-sl; -cosh (SIj'z-Mz)-exp G Al
1z i-sl, A_mode

kl.sinh (sl A1) Al

B = 122 expli - z
J:2 il A_mode

The generation of the conjugate elements :

Ci=

D:=A

The Net effect of the each period in the grating can be represented by a scattering matrix

A. B
"* 121 and resultant scattering matrix for all the grating is given by Resultant M; , a

C.. D,
summation .
0
A. B
e 1.z J!z
Resultant M := ]_l (c. 5 )
Jvz ."Z

z=400
The net reflectivity of the scattering matrix of the
grating is given by Reflectivity_T;
( see appendix 1)

(Resultant M) 2

Reﬂectivity_'l’j = 0.1

(Resultant_M j)o,o
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A Graph of the purposed grating's Reflectivity Vs wavelength using T-matrix formalism
method :

0.8 T T T T

06— -

0.2~ =

o | | "

l.."!l‘l(l_6 1.52°10 1.53'10“6 1.54*10 1.55*10 1.56°10

o™

Derived Analytical Expression
The expression is :

|c2-sinh(s-L)2

R=

2
s2.cosh(s-L)? + (%k) -sinh(s-L)?

koj is coupling coefficient at a given wavelength A, :

2-x-n0
kg =

Oj lj
d is the resonant frequency of the grating :

] 2n
8=

A_mode

Akj : The phase mismatch between the grating

and the illuminating radiation's wavelength
Per wavelength and period :
Ak =2k - B
J .
J

s2j : The s parameter defines the photonic band
gap where wavelength is reflected :

. [Ak
o [Ih)- (3
L is the total length of the grating :
L =I-A_mode
Rj is the analytical expression obtained from the
mode-coupled equations ,when solving for
a uniform Bragg grating .

2
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()" sinh (s2;L’

R =
J 2

s2.)%cosh (s2.-L 2+ A—ki .sinh {52 -L)?
(52;)"cosh (2, 3 ;

A Graph of the purposed grating's Reflectivity Vs wavelength using the analytical
expression
for a uniform grating :

08 T T T T

| o | Pn

6 6 1.55°10 ° 1.5_6'10_6

0
1.51‘](}_6 1.52*10 6 1.53*10 1.54°10

A
J

The graph below shows the theoretical results for three techniques for uniform grating , the
analytical expression , the T-matrix formalism and Rouard's method , which produce the
same spectral response .
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Reﬂeclivity_'[:i 04 -
Reﬂect_ROL}
0.2 -
— e | LN e~
0 —6 —6 -6 —6 —6 ~6
1.51*10 1.52°10 1.53*10 1.54°10 1.55°10 1.56°10

-

177




































































































































































































































V1) The C program that linearisies that the optical phase change .
This is achieved by looking for the of +n/2 from the inverse tangent of the
ratio of 2nd harmonic to the 1st harmonic ( first dervative to second dervative ) .
At this point an additional « is added or sudtracted to maintian continuity . This
is acheived by obtaining the sign of the gradient of the points ( data of the inverse

ratio) this is obtianed from the values of the harmonics .
#include <stdio.h>
#include <stdlib.h>
#include <conio.h>
#include <math.h>
#include <dos.h>

#define pi 3.1415927

float *Dala;
float *teta;

int n = 0; #Stores number of data points

float factor; # represents the value by which y is divided
float factorl;

float x;

intadd=0;

int i;

char filename2[14] filename[14];

iHilename for values file

vMilename?2 for mathcad uses

FILE *data_ofp,*data_ifp;

FALLAL LA AL LAl Al LI il Al ddddd il il il ittt adllsisds)

jeavsersnasrsnrane s shennes eTTyTTTyyeTevy
* The setting up of the user interface , V.D.U. screen v
void border(int startx,int starty, int endx, int endy)
{
register int i;
gotoxy(1,1);
for(i=0 ; i<= endx-startx ; i++) putch('+");
gotoxy(l,endy-starty);
for(i=1 ; i<=endx-startx ; i++) putch('+");
for(i=2 ; i<=endy-starty ; i++) {
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gotoxy(1,i);

putch('+);
gotoxy(endx-startx+1,i);
putch(*+";
} /fend for
}
PPN PPy
” Asking for the input data file to be used , which contians the values »
” of the harmonics . o

void initialization()
{
int i; //For loop counts
intc;
clrser();
window(1,1,80,25);
border(1,1,80,25);
#Enter filename - open and exit on fail
gotoxy(10,5);
printf("Please, enter the name of the data file: "),
scanf("%s" filename),
if( ( data_ifp = fopen(filename,"r")) == NULL ){
fprintf(stderr,"\n\n\t\{File open failure - BYE !!l\n");
sleep(2),
exit(0);
} Hend if
#Count number of data points in file - store in n
while(!feof(data_ifp)){
fscanf(data_ifp,"%*s"),
n+;
} /lend while
n--;
#Allocate enough memory for the number of points - exit on failure
if( (Data = (float*)malloc(n*sizeof(float))) == NULL){
fprind(stderr,"Memory allocation failure - Bye 111",
exit(0);
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#Allocate enough memory for the number of points - exit on failure
if( (teta = (float*)malloc((n/2)*sizeof{float))) == NULL){
fprintf(stderr,"Memory allocation failure - Bye !1!1");
exit(0);
}
#Go to start of file and read in all the floats to Data array
rewind(data_ifp);
for(i=0;i<n;i++)
fscanf(data_ifp,"%f{",&Datali]);
fclose(data_ifp);
gotoxy(10,6);
printf("Enter the value of the y division factor : ");
scanf("%f",&factor);
gotoxy(10,7);
printf{"Enter the value you want to compare: ");
scanf("%f" &factorl};
window(1,10,38,16);
border{1,10,38,16);
gotoxy(4,2),
printf("Enter the name of the file\n");
gotoxy(4,3),
printf("where you want to put the results");
goloxy(4,4);
printf("(to use with Mathcad). " ),
scanf("%s",filename2);
if( ( data_ofp = fopen(filename2,"w")) == NULL ){
fprintf(stderr,"\n\n\t\tFile open failure - BYE !!1\n");
sleep(2);
exit(0);
} fHendif
}

J L e L e e Ll

void create_teta()
{
int j;

for(j=0;j<n/2;j+)
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if(Data[2*j+1]==0 && Data[2*j] <0) x=-99999,

if(Data[2*j+1] == 0 && Data[2%j] > 0) x=99999,

if{Data[2*j+1] 1= 0) x=factor*Data[2*j]/(7*Data[2*j+1]);

ifiDataj2*j+1] == 0 && Data[2*j] ==0) x=1;

teta[j] = atan(x);

/********t**************************#***#*********************#********/
void write_to file( int add , inti)
{
fprintf(data_ofp," %4 2f (%4 2f %4 .4f %4 .4f \n",
Data[2*i],Data[2*i+1],teta[i],teta[i] +add*pi),

/***************t***t#**************************?************************/

void check_gradient(int j}
{

int gradient ;

float delta ;
if ( teta[j] < te1afj-1] ) gradient =0 ;
else gradient =1,
delta = (teta[j}-teta[j-1]) ;
if (fabs(delta)>pi*factor] && gradient==1) add--;
if (fabs(delta)>pi*factor] && gradient==0) add++;
write_to_file(add j);

}
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ARt P L S S L e RS L e e e T P e e e e e A P L L
TR RRERR R SRR RE R Main Procedure: #¥ SR ERRERERIRREK
[ I e e e s s s e T e E e A e L ey e P T e Y
main():
{
initialization();
create_teta():.
for(:i' =01 </2 ;ii+){
check_gradient(i);
3
window(1,18,80,25);,
border(1,18,80,25);
gotoxy(20,2);
printf(" You can check the results in'files");
gotoxy(20,3);
printf(" %s " filename2);
gotoxy(30,6);
printf("BYE-BYE .. /1i1");
sleep(2);
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VI) A code listing of the C program for the T-Matrix formalism .

Fid
*
id
/'
Fid
/*
fad
g

I‘

Fid

This program performs the T-matrix Formalism which presents  */
a Bragg grating in an optical fibre . The results from this */
program are stored in output files . There is two distinct */
sets of results ; these are Reflectivity of the overall */
Bragg Gratings Vs Wavelength , the second Reflectivity of */
the overall Bragg Gratings at a given wavelenght Vs longitudinal ¢/
strain. This is for nonuniform distribution of a grting period */
length and refractive index modulation depth . */
T.DP. Allsop 16/6/97 */
Include ANSI C standard libraries */

#include <stdio.h>
f#include <string.h>
#include <stdlib.h>
#include <math.h>

/* Include local header info */
struct  pair
{
double real, imag ;
s

typedef struct pair Complex ;

struct  twobytwo

{

s

Complex oneone, onetwo, twoone, twotwo ;

typedef struct twobytwo CMat ;

void InputGlobals(void) ;
Complex Conj(Complex) ;

Complex CAdd(Complex, Complex) ;
Complex CMul(Complex, Complex) ;
CMat CMatAdd(CMat, CMat) ;
CMat CMatMul(CMat, CMat) ;
double Flec(CMat) ;

double Mou(long int) ;

/t

Global defines */

#define PI 3.1415%

/t

Global variables */
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FILE
FILE
FILE
FILE
FILE

*ofpl ;
*ofp2 ;
*ofp3;
*ofpd ;
*ofp5 ;

int Wave_str;

/* file pointer to single grating save file
/* file pointer to ffp configuration save file
/* File pointer to result save file

/* Flie pointer to sist18 save file

/* Flie pointer to fpstb18 save file

/* The choice of code for Wavelength or strain response

double n0; /* original refractive index

double nll; /* perturbed refractive index
double F; /* chirp factor (nano-units)

double lamG; /* initial lambda value (nano-units)
double laminc ; /* lambda increment step

long intj ; /* number of lambda iterations
double Lambda; /* grating period

double D; /* grating separation

longintz; /* number of teeth in grating
double epsinc /* strain increment

long int epsmax ; /* number of strain iterations
int choice ;
double Para ;

int subM

/* type of grating wanted ( Gaussian or Uniform )
/* For gassian spread
/* SubM is the sub - division of a single period

long int eps;

long int v.x1;

long int centre, i,

int k.

double Toml, totalL1, nl, total 1, Tom2, totallL2, total _2 ;
double lamj, Lamlam, G1flec, FFPflec ;
double 11,12, t3, 14, t7, 18, templ, temp2 ;
double indx, vals, zala ;

double deltn, deltnl, t88, t89, temp3, temp4 ;
double Kappa, Beta, $1_2, S1_1, effect ;
double stra_org, stra_pert ;

double v,p_l12,p_11;

Complex A, B, dis ;

Complex T5, T6 ;

Complexcl, c0;

CMat M, newM, Sep;

/* Main program starts here */

void main1(;

void main2(};

void

main()

/* mainl produces the results of a given */
/* structure of a Bragg grating whichis %/
/* subjected to longitudinal strain . */

/*  main2 produces the results for ¥/
I* varaition of wavelength. *
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}
void main2(void)

/‘
/t
/‘
I‘t
/#
/‘

{

double n00 ;

InputGlobals(} ;
cl.real = 1.0 ; cl.imag = c0.real = c0.imag = 0.0 ;

deltn =(n11-n0) ;

if (choice == 1)

{

totalL1 =00

for(x] =0; x1 <=z ; +x1)
{

Tom1 = Mou(x1) ;
totalL] = totalL1 + Toml! ;
}

if (Wave str==1)

{

mainl(}; /* For Wavelength */
}

else

{

main2() ; /* For Strain %/

}

Both the pitch length change and the average
refractive index change caused by strain is taken
into account.

main2() generates output file of a theoretical
curve of Reflectivity Vs micro-strains subjected to

grating.

long int centre, third, quarter ;

centre = (z-1L)/2L ; /* These three values help to define */
third = ((3L*z)-3L)/4L. ; /* the structure of the chirps in the */

¥
*/
*/
*/
*/
*/

quarter = (z-5L)/4L;  /* the Bragg grating. */
" This outer loop is the strain iterations .The variable  */
lid tl is for the elongation of a single pitch/period of the  */
* grating , each increment is specified in micro - strains. */
for (eps=0 ; eps<=epsmax ; +teps)
{
tl = 1.0 + epsinc * ((double)eps) ;
M. oneone = M.twotwo = ¢l ; /* Starting values for ¥/
M.onetwo = M.twoone = c0 ; /* 2by2 matrices used to */
total_1 =totallL1 ; /* calcuiate reflecuvity  */
lotal 2 =totall2 ;
" This loop represents a single period in the grating the */
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" parameter used for the single period is y. This is used */

/* to calculate the true value of the period by Mou(). */
” Input parameter z 1s the total number of periods in  */
f* the grating , in affect the length .y is incremented */
Al downwards because the interest is in the charactenstics */
* of the reflection spectrum of the grating i.e. what light */
/¢ is reflected at z = 0 ; the front face of the grating . */
for =z, y>=1;~y)
{
t2=Mouy); Brings back the value of  */
" period at that positionin ~ */
” grating in nanometers . */

printf(Mr¥elduSeldvold”, 1,eps,y) ;

/l.t."ttttti.“t‘i‘“t“‘ttttttl‘*“““‘t‘#ttti‘t“t‘tt‘.‘lt‘ttti.tt‘.ti/

v=0.17; /* Poisson's ratio for a germainsilicate fibre... */
p_12=0.252; /* Photoelastic constants ¥/
p_l1=0112;

I‘titt‘.ittttl“ititt.#‘tt““#iitl‘iltt‘tttttt‘ttttittttttttt‘#ttt‘lt‘t‘t[

Ik The inner loop is sub - one - period ; this is to */
" accomadate the sinusoidal variation of the modulation s/
A of the refractive index over a single period of the */
IAd grating.Each period sub divided into subM segments. */

for(k = subM ; k>= 1] ; k)
{

/l‘li‘tl.tt‘tttt.‘.“tttt‘..t“#itttti.‘t‘.itt.ttt‘tittt‘tii..l.lit.tti.l.tt't#“!!'#/

fid Current Bragg gratings in general have a Gaussian */
/* distribution in the modulation depth of the pertubated */
" refractive index . This is due to the methods used to */
” fabricate the gratings , principlably due 1o the Gaussian */
” profile of the laser's Irradaince used to generate the */
” gratings. */
T This section gives the option of having a single */
IAd Gaussian distribution in the effective or "average” */
IAd refractive index over all the grating ,this is achieved */
IAd by giving the variable " choice " the value 3 .The second v/
/” option is Gaussian distributions for each section of the */
IAd grating choice = 1 . The other option is a uniform value *
A the of choice = 2. */
/* The vanable "Para” determines the width of the */
fad Gaussian shape . */
if( choice = 1)

{
if ((y <= 2) && (y >= (third+1L)))

{
189 = ((double)y) - 1.0 + (2.0*((dcuble)k)-1.0)/(2.0*((double)subMj}-1.0)
188 = ((double)third)+ {(double) 2) /8.0 ;
zala = ( ((double) 2)/8.0)*2.0;
18 = (t89 - 188)/ zala ;
nl = (nl1-n0)*exp(-1.0*Para*t8*18) + n0 ,
” n00 = (n0)*exp(-1.0*Para*t8*t8) , */
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n00 =n0,

. Gaussian distribution 1 for grating, 1 */
1 minuinum at z and (third+1) , peaking at */
" thrid+(z/8) . */
H

else if((y <= third) && (y >= (quarter+IL)))
{

t89 = ((double)y) - 1.0 + (2.0*((double)k)-1.0)/(2.0*((double)subM)-1.0) ;

188 = ((double)centre) ;

zala = ((double)centre) ;

18 = (t89 - 188)/ zala ;

nl = (nl1-n0)*exp(-1.0*Para*t8*(8) + n0 ;

" n00 = (n0)*exp(-1.0*Para*t8*t8) ; */
n00=n0;

r* Gaussian distribution 2 for grating 2 *f
" minuinum at third and (quarter+1), */
/* peaking at centre . */
}

else if ((y <= quarter) && (y >=0L))

{

t89 = ((double)y) - 1.0 + {2.0*((double)k)-1.0)/(2.0*((double)subM)-1.0) ;

t88 = ((double) z)/8.0 ;

zala = ((double) 2)*2.0/8.0

t8 = (189 - 188)/ zala ;

nl = (nl1-n0)*exp(-1.0*Para*18*t8) + n0 ;

fAd n00 = (n0)*exp(-1.0*Para*t8*18) ; */
n00=nl;

'
/* Gaussian distribution 3 for grating 3 */
" minuinum at (quarter) and (0), */
" peaking at (z/8) . */
}

else if{ choice ==3)

{
t89 = ((double)y) - 1.0 + (2.0*((double)k)-1.0)/(2.0*((double)subM)-1.0) ;

else

(88 = ((double)z)/2.0 ;

zala = ((double)z) ;

18 = (t89 - (88)/ zala ;

nl = (nl1-n0)*exp(-1.0*Para*t8*t8) + n0 ;

” n00 = (n0)*exp(-1.0*Para*tB*i8) ; */
n00 =n0,

}

/* This is for a single Gaussian distribution */
* that is centred ; peaking aty =centre.  */
nl=nll;

n00 =n0;

* Unifrom value for the refractive index.  */
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/“.‘ti#i‘-‘#-““'!"“‘“l‘t“..“.‘0“.“.."“.tt‘.'lltttt!'l“!..'!“‘.'i.t'/

/* This section takes into account of the sinusoidal »/
/* variation of the modulation of each period and the ~ */
/* effect of longitudinal strain on the refractive index  */
/* optic strain effect ( Hocker and Butter model of a */

/* optical fibre under strain ) . *
/* In this program it is assumed that distribution of *
/* longitudinal strain along the fibre is uniform or */
/* constant . */
/* vals is the average value between the (n) and (n-1) */
/* sub sections of a single period. */

stra_org = n00 - 0.5*n00*n00*n00*(p_12 -v*(p_11+p_12)) * epsinc * ((double)eps) ;
stra_pert = nl - 0.5*n1*n1*n1*(p_12 -v*(p_l14p_12)) * epsinc * ((double)eps) ;
vals = (2.0*((double)k)-1.0) * PI ;
indx = cos( vals / ((double)subM) } ;
effect = ( stra_pert - stra_org )*indx + stra_org ;

/.t‘t'.tttt.t..'tt.tttltl'#ﬂ'tlU!l#‘l'.‘.’.tﬁi...itt.tt#t‘t&'.!!l""!'!'.t#‘*#'#tﬁ##'tt/

* Kappa is the coupling constant between the forward and
/* backward travelling modes which exist in the grating.

/* Beta is the differential propagation constant associated

/* with detuning from the Bragg condition for a given

/* single period of the grating . Also the strain has to be

/* taken into account because of the elongation of the penod
/* itself ; which affects the Bragg condition in that peried

/* where orginal length of the period is given by Mou().

Kappa = (Pl * (stra_pert - stra_org) * indx) / lamQ ;
Beta = ( effect*PI*2.0/ lam0 ) - (PI/ (@2 * t1));

*
*
*/
*/
*/
*/
*
¢

/ii“.*.tt.*t-..t#ttit...#'.'it'lti.‘t##'l."tI*Ullttttt*t.# CREEE RSN R AR R AR R TN g t.t/

/"
/i
/*
I
/»
"
/*
”"
/.
l.
M
I.
/‘
,‘t

The coupled - mode equations for a uniform grating
can yield a closed analytical function solution for
the backward and forward modes in the grating.Consquently
the close form solutions for the grating can be expressed
by means of the scattering matrix and from this a one can
obtian a transfer - matnix expression for the grating ;the
T- matrix . This method can be used for a single period of
grating or a sub - section of one period in the grating
by using this method one can vary the period along the fibre
length and produce a T - matrix for each section. Thus the
total spectral reflectivity of the complete grating is
calculated by multipling all the 2by2 matrices together
where each malrix represents sub - section , then a period
and thus the grating .

*
*
*/
*/
*
*/
*/
*/
*
*
*
*/
*/
*/

/t.t"lll."t!.ttttt‘.tittti‘tittiit“ti‘tliiiiiittii‘ttttt‘it‘tttlttiittt*l*!t“#'.“‘/

/‘
Fid
T
/O
It
/#
Al
A
/‘

This series of iffelse statments represent the three condition
that each section/ sub-section of a period can experience.
These condtions relate to the phase - matching ; Bragg wavelength
and the strength of the coupling constant.Outside of the phase -
matched range there is a sinusoidal response in spectral reflectivity
. Under the condition of being phase matched there is a cosh/sinh
variation which leads to the main features of the spectral reflecuvity
grating and the thrid condition is for continuity . Produces the
elements for the the T - matrices .

if (( Kappa*Kappa ) < (Beta)*(Beta) )
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{

S1_2 = sqr( (Beta)*(Beta) - (Kappa*Kappa)) ;

t3 =( PI * t1 )/((double)subM} ;

t4 =(S1_2 *12 *tl )/ {(double)subM) ;
T5.real = cos(t3) ; T5.imag = -1.0*sin(t3) ;
T6.real = cos(t4) ;

T6.imag = (-1.0 * Beta*sin(14) )/S1_2
A =CMul(T5, T6) ;

T5.imag = 1.0*sin(t3) ; * No Matching Condition*/

T6.real =0.0;

T6.imag = (-1.0*Kappa*sin(td) )/ S1_2 ;
}

else if (( Kappa*Kappa ) > (Beta)*(Beta) )
{

S1_1 = sqri{ (Kappa*Kappa ) - (Beta)*(Beta)) ;

t3 =(PI * t1 )/ ((double)subM) ;

t4 =(S1_1*1t2 *t]1)/ ((double)subM) ;
T5.real = cos(t3) ; T5.imag =-1.0*sin(13) ;
T6.real = cosh(td) ;

Té.imag = (-1.0*Beta*sinh(t4) /S1_1
A = CMuI(T5, T6) ;

TS.imag = 1.0*sin(t3) ; /* Matching Condition */
Té.real=0.0 ;

T6.imag = ( -1.0*Kappa*sinh(14) )/S1_1 ;

}

else

{
S1_1 = sqrt( (Kappa*Kappa ) - (Beta)*(Beta));

t3 = (PI * 11 )/ ((double)subM) ;
t4=(S1_1*t2 *tl )/ ((double)subM);
T5.real = cos(t3) ; T5.imag = -1.0*sin{t3) ;
T6.real=10;

Té.imag = ( -1.0*Beta*12*t1)/ ({(double)subM) ;

A =CMul(T5, T6) ,

T5.imag = 1.0*sin(t3) ; /* Continuity Conditlion */

T6.real =0.0 ;

T6.imag = (-1.0*Kappa*12*t1 )/ ((double)subM) ;

}

Ii“i.#‘..‘lii.‘ti!..‘00*3“'...I!#."‘.O"!t""!U!!#!#'l.“.“'t‘i‘ttt‘i-tititil

/.
f‘
/.
/‘
/i
"

This is the multiplication of the 2by2 matrices taking
n matrix elements and multiplying this by the (n-1)
matrix . This continues though all of the grating
taking all vaniations of period length (chirp) and the
frensel reflections and also the change in the effective
refractive index.

B = CMul(T5, T6) ;
newM.onecne = A |
newM.onetwo =B ;
newM.twoone = Conj(B) ;
newM.twotwo = Conj(A) ;
M = CMatMul(M, newM) ,

” fprintf(ofp3, "%15.12If ", 12), %/

,.‘!‘#.tltt#‘#'!'l.'*'#*#'t.i‘#"!#'!"!l"'#t""!!'l'!t'lt‘!!'tttt“t‘tttit/
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fad This section is looking at the spectral reflectivity of a */

fAd Bragg Grating resonator i.e. two identitical gratings */

Al seperated by some phyiscal distance in the fibre . The main */

/* calculation is that of the change of phase over the distance  */

A this being the parameter t7 .The result is then stored to file. */
Glflec =Flec(M) ;

fprintf{ofp4, "%If ", Glflec);
t7=(2"*PI* stra_org * D) * tl) /lam0 ;
dis.real = cos(t7) ; dis.imag = sin(t7) ;
Sep.oneone = dis ;

Sep.twotwo = Conj(dis) ;

Sep.onetwo = Sep.twoone = ¢0 ;

newM = CMatMul(CMatMul(M,Sep), M) ;
FFPflec = Flec(newM) ;

fprintf(ofps, "%If ", FFPflec) ;

fprintf{ofpd, "\n") ;
fprintf{ofp3, "\n") ;
}
fclose(ofp4) ;
fclose(ofpd) ;

}

void mainl(void)

/*  main2 produces the results for */

/* wvanation of wavelenght ; the total */
/* spectral reflectivity of a given grating */
/* structure ( chriped )/ vanation of */
/* refractive index . */
{
long int centre, third, quarter ;
centre = (z-1L)/2L ;
third = ((3L*z)-3L)/4L ;
quarter = (z-5LY4L ;
fAd Mainl() and main2() the nearly the same, the structure */
" is different this dealing with the response the grating %/
* when irradiated by light with various wavelenghts. */

/.0-t.itl.t‘t#‘i“tt‘t.ltt‘it‘t"#ttii#‘.ilt'."'O"ll‘l"#l“‘!‘l"#"t't""‘#!t‘/

” The outer loop is dealing variations in wavelength . This %/
/” incremented by the parameter i with intial value of lam0  */
r* in nanometers and increment size is given by laminc . The */
* spectral reflectivity response of the tolal Bragg grating */
" is stored to file . */

/“t‘ltitl.‘ttt#ttt!."F'O"‘l"‘.t".ltt‘t‘t"‘.lt“.lt‘*‘tt““#t“ttt/

I*“t‘tittiit‘tt‘.tit*.ttt‘tttt“‘t‘itttt.it#iittittit.‘it‘tt‘titttitttt/

for(i=0 ; i<=j ; ++1)
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{
" pinti™r%eld" iy, */

lamj = lam0 + laminc * {(double)i) ;

for (eps=0 ; eps<=epsmax ; ++eps)

{

tl = 1.0 + epsinc * ((double)eps) ;

M.onecne = M.twotwo =c¢l ;

M.onetwo = M.twoone =¢0 ;

total_1 =totalll;

for(y=z;y>=1,-y)
{
12 = Mou(y) ;
printf("\r%aldu%ld\eld”,ieps,y) |

for(k =subM ; k>=1; k)

{

if(choice == 1)

{

if ((y <= z) && (y >= (third+1L)))
{

189 = ((double)y) - 1.0 + (2.0*((double)k)-1.0)/(2.0*{(double)subM)-1.0} ;
188 = (((double)third)+ {(double) z/8L)) ;
zala = ((double) z/8L)*2.0 ;
18 = (189 - 18B)/ zala ;
deltnl = (n11-n0)*exp(-1.0*Para*18+*18) ;
}
else if((y <= third) && (y >= (quarter+1L)))
{
189 = ((double)y) - 1.0 + (2.0*{(double)k)-1.0)/(2.0*((double)subM)-1.0) ;
t88 = ((double)centre) ;
zala = ((double)centre) ;
18 = (t89 - 188)/ zala ;
deltn]l = (nl 1-n0)*exp(-1.0*Para*18*8) ;
}
else i{(y <= quarter) && (y >=0L))
{
t89 = ((double)y) - 1.0 + (2.0*((double)k)- 1.0)/(2.0*((double)subM)-1.0) ;
188 = ((double) z/8L ) ;
zala = ((double) z /8L )*2.0 ;
18 = (189 - 188)/ zala ;
delm] = (nl1-nQ)*exp(-1.0*Para*18*8) ;
H
}
else if( choice ==13)
{
89 = ((double)y) - 1.0 + (2.0*((double)k)-1.0)/(2.0*((double)subM)-1.0)
t88 = ((double)z)/2.0 ,
zala = ((double)2) ;
t8 = (189 - 188)/ zala ;
deltnl = (nl1-n0)*exp(-1.0*Para*18*18) ;
}
else deltn] = deltn

/i.‘t‘tti.tl“‘tttttt‘ttt“‘*itt-.‘tt‘ii“‘#t“ttt‘t'il'!l!'t‘,
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/* In this case main1() has no sirain variation */
/* 50 the parameters " effect " ," Kappa " as no */
/* dependancy on " t1 " and " eps " variables. */

vals = (2.0*((double)k)-1.0) * PI ;

indx = cos( vals / ({double)subM) ) ;
effect = deltn ® indx +n0;

Kappa = (PI* (deltnl ) * indx) /lamj ;

/ti‘i‘ttit.iliiiiitttti.ttittiitttitt.tt#t.t.“‘t.tt“tt“*t#‘/

Beta = ( effect*PI*2.0 /lam) ) - (PI/ (12 * t1));
if ((Kappa*Kappa ) < (Beta)*(Beta) )

{

$1_2 = sqri( (Beta)*(Beta) - (Kappa*Kappa }) ;
t3 =( PI * t1 )/((double)subM) ;

t4 =(S1_2 * 2 * ] )/ ((double)subMj} ;

T5.real = cos(t3) ; TS.imag = -1.0*sin(13) ;
T6.real = cos(td) ;

T6.imag = (-1.0 * Beta®*sin(t4) )/S1_2 ;

A =CMul(T5,T6) ;

T3.imag = 1.0*sin(13) ,

T6.real =0.0;

T6.imag = ( -1.0*Kappa*sin(t4) )/ S1_2 ;

H
else if (( Kappa*Kappa ) > (Beta)*(Beta) )

{

S1_1 = sqrt( (Kappa*Kappa ) - (Beta)*(Beta)) ;
13 =(PI * t] )/ ((double)subM) ;

t4 =(S1_1*1t2*1tl )/ ((double)subM) ;

T5.real = cos(t3) ; T3.imag =-1.0*sin(t3) ;
T6.real = cosh(t4) ;

Té.imag = (-1.0*Beta*sinh(14) )/S1_1 ;

A =CMul(T5, T6) ;

T5.imag = 1.0*sin(t3) ;

T6.real = 0.0 ;

T6.imag = ( -1.0*Kappa®sinh(14) )/S1_1
H

else

{

S1_1 =sqrt( (Kappa*Kappa ) - (Beta)*(Beta)) ;
t3 = (PI *t1 )/ ((double)subM) ;

t4=(S1_1*2 *tl )/ ((double)subM) ;

T5.real = cos(t3) ; T5.imag = -1.0*sin(t3} ;
Té.real = 1.0

T6.imag = ( -1.0*Beta*t2*t1)/ ((double)subM) ,

A = CMul(T5,T6) ;

T5.1mag = 1.0*sin(t3) ;

Té.real = 0.0 ;
T6.imag = (-1.0*Kappa*t2*t1)/ ((double)subM) ;
}

B = CMul(T5, T6) ;
newM.oneone = A ;
newM.onetwo=B;
newM.twoone = Conj(B) ;
newM.twotwo = Conj(A) ;
M = CMatMul(M, newM) ;

* fprintf(ofp3, "%15.12If ", 2) ; ¥/
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'

fprintf(ofp3, "n") ;

Glflec = Flec(M) ;

fprintf(ofpl, "%lf ", G1flec) ,
t7=((2.0*PI*n0* D) *tl)/lam,;
dis.real = cos(t7) ; dis.imag = sin(t7) ;
Sep.onecne = dis ;

Sep.twotwo = Conj(dis) ;

Sep.onetwo = Sep.twoone = ¢0 ;
newM = CMatMul(CMatMul(M,Sep), M} ;
FFPflec = Flec(newM) ;

fprintf(ofp2, "%If ", FFPflec)

}
fprintf{ofpl, "\n") ;
fprintfofp2, "n") ;

}
felose(ofpl) ;
felose(ofp2)

” fclose(ofp3) ; */

}

I“"""“l‘tt!"'!“‘tl"'“.'!"""#""l*."#"t'..tt#""tt!l!##"/

I.t‘*tttit‘ttl‘#ttt‘!ttt‘.t‘tttttt‘t.ﬁi*ilttitt‘tt‘lt“‘t"ttitiiitttttt/

/* Input global parameters from the keyboard */

void InputGlobals{void)
{

printf("Enter (1) for wavelenght or (2) for strain response : ") ;
scanf("%d", &Wave_sir) ;

printf("\n\nEnter original refractive index : ") ;
scanf("%If", &n0) ;

printf("Enter perturbed refractive index : ™) ;
scanf{"%lf", &nll);

printf("Enter (1) for Gaussian , {2) for uniform perturbation : ) ;
prntf("or (3) Gaussians perturbations for each gratings ")
scanf("%d", &choice) ;

if{choice == 1){

printf("Enter parameter for divergance of Gaussian beam : ") ;
scanf("%If" ,&Para) ;

}

printf("Enter chirp factor (nano-units) : ") ;
scanf("%lf", &F) ;

F=F*1.0e9,;

iffWave str==1)
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{

printf("Enter initial lambda value (nanc-units) : *) ;
scanf("%lf", &lam0) ;

lam0 = lam0 * 1.0e-9 ;

printf("Enter lambda step increment (nano-units) : ) ;
scanf("%lf", &laminc) ;
laminc = laminc * 1.0e-9 ;

printf("Enter number of lambda iterations : ") ;
scanf("%ld", &j) ,
}
else
{
printf("Enter lambda value (nano-units) : "},
scanf{"%If", &lam0) ;
lam0 = lam0Q * 1.0e-9 ;
}
printf("Enter grating Period (nano-units) : ") ;
scanf("%lIf", &Lambda) ;
Lambda = Lambda * 1.0e-9 ;

printf("Enter grating separation : ") ;
scanf("%lf", &D) ;

printf("Enter number of teeth in grating : ") ;
scanf{"%ld", &z) ;

printf{"Enter the number of sub-division per Period : ) ;
scanf("%d", &subM) ;

printf("Enter strain increment (micros) : ") ;
scanf("%lf", &epsinc) ;
epsinc = epsinc * 1.0e-6 ;

printf("Enter number of strain iterations : ") ;
scanf("%ld", &epsmax) ;

iftWave str==1)
{
if ((ofp] = fopen("single.c”,"w")) == NULL)
{
printf("nCan't open file single\n") ,
exit(l) ;

t

if ((ofp2 = fopen("ffpcon.c”,"w™)) == NULL)
{
prntf("\nCan't open file ffpcon\n™) ;
exit(1) ;
y

if ((ofp3 = fopen("result.c”,"w")) == NULL)
{

printf("\nCan't open file ffpcon'\n”) ;
exit(1};

else
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{
if {(ofp4 = fopen("sistb18.c","w™)) = NULL}

{
printf("\nCan't open file single\n”) ;
exit(l) ;
}
if ((ofp5 = fopen(*fpstb18.c","w")) == NULL)
{
printf™nCan't open file fipconin") ;
exii() ;
}
}

/* Find the complex conjugate */

Complex Conj(Complex A)

{

}

Complex C;
C.real = A.real ;

C.imag =-1.0* A.imag ;
return(C) ;

/* Add two complex variables */

Complex CAdd(Complex A, Complex B)

{

Complex C;

C.real = A.real + B.real ;
C.imag = A.imag + B.imag ;
retumn(C) ;

/* Multiply two complex vanables */

Complex CMul(Cemplex A, Complex B)

{

Complex C:

C.real = A.real * B.real - A.imag * B.imag ;
C.imag = A.real * B.imag + A.imag * B.real ;
return(C} ;

/* Add two complex matrices of size 2x2 */

CMat

{

CMatAdd(CMat A, CMat B)

CMat C,
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C.oneone = CAdd(A.oneone, B.oneone) ;
C.onetwo = CAdd(A.onetwo, B.onetwo) ,
C.twoone = CAdd(A .twoone, B.twoone) ;
C.twotwo = CAdd(A twotwo, B.twotwo)
retum(C) ;

/* Multiply two complex matrices of size 2x2 */

CMat CMatMul(CMat A, CMat B)

{
CMat C;
C.oneone = CAdd(CMul(A .oneone, B.oneone), CMul(A.onetwo, B.twoone)) ;
C.onetwo = CAdd(CMul(A oneone, B.onetwo), CMul(A.onetwo, B.twotwo)) ;
C.twoone = CAdd(CMul(A.twoone, B.oneone), CMul(A.twotwo, B.twoone)) ;
C.twotwo = CAdd(CMul(A.twoone, B.onetwo), CMul({A.twotwo, B.twotwo)) ;
retun{C) ;

}

/* Calculate flec function of a complex matnx */

double Flec(CMat M)

{

Complex T1,T2,T3;

double X,

T1 = CMul(M.twoone, Conj(M.oneone)) ;

T2 = CMul(M.oneone, Conj(M.oneone)) ;

T3 = CMul(Ti, Cony(T1)) ;

x =T3.real / (T2.real * T2 real) ;

return(x) ;
}
,‘#""'t!“'!.‘t"!‘l""!"‘l‘i‘#“*“.!#“""""tttt'-tttttii“$/
lid Centre , third , quarter are parameters that define the  */
fid structure of the gratings, that is to say the pattren of */
fad chirps for the periods of the perturbed indices .The */
” magnetude of the chirp is governed by the inpul variable */
” " F ", in this case it is a combination of three linear */
/* chirps , but can be quadratic or cubic . The reason is that */
" hese types of chirps can be fabricated . */

/* Calculate grating size */

double Mou(long int y)
{

long int centre ,third , quarter ;

double result;

result=0.0;

centre = (z-1L)/2L ;

third = ((3L*2)-3L)4L

quarter = (z-5L)4L
/‘i‘*“"“.t!l‘l"'*"."‘.'t'*‘l#'.‘U'U".'.-'t“‘.‘../

if ((y <= z) && (y >= (third+1L)))

result = Lambda + F * ((double) (y-third-1L)) ;

" Chirp One */
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else.if ((y <= third) && (y >= (centre))):
result = Lambda +F'* ((double) (y-centre)) ;

else if((y, <= centre-1L) && (y >=(quarter¥1L))):
result = Lambda +-1:0*F** ((double) (ceriuresy));,
" “Chirp Two .y

7‘}!’}!‘*!ifi!?!’ttitt"tt“#t“‘##t"“.lt‘*#.‘ttttttttf

elséif ((y <=iquartér) && (y>=0L))
result =Lambda * -1:0*F.*((double) (quarter-y)) ;

” Chip Three %/

IRy e T P T P e e e e Ty T L Y]

return (result) ;-
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