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Abstract 

The work presented in this thesis is part of a project in instruction based learning (IBL) for mobile 

robots were a robot is designed that can be instructed by its users through unconstrained natural 

language. The robot uses vision guidance to follow route instructions in a miniature town model. 

The aim of the work presented here was to detenn.ine the functional vocabulary of the robot in d1e 

form of "primitive procedures". In contrast to previous work in the field of instructable robots this 

was done following a "user-centred" approach were the main concern was to create primitive 

procedures that can be directly associated with natural language instructions. To achieve this, a corpus 

of human-to-human natural language instructions was collected and analysed. A set of primitive 

actions was found with which the collected corpus could be represented. These primitive actions were 

then implemented as robot-executable procedures. 

Natural language instructions are under-specified when destined to be executed by a robot. This is 

because instructors omit information tl1at they consider as "commonsense" and rely on the listener's 

sensory-motor capabilities to determine the details of the task execution. In this thesis the under-

specification problem is solved by determining the missing information, either during the learning of 

new routes or during their execution by the robot. During learning, the missing information is 

determined by imitating the commonsense approach human listeners take to achieve the same 

purpose. During execution, missing information, such as the location of road layout features 

mentioned in route instructions, is determined from the robot's view by using image template 

matching. The original contribution of this thesis, in both these methods, lies in the fact that they are 

driven by the natural language examples found in the corpus collected for the IDL project. 
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During the testing phase a high success rate of primitive calls, when these were considered individually, 

showed that the under-specification problem has overall been solved. A novel method for testing the 

primitive procedures, as part of complete route descriptions, is also proposed in this thesis. This was 

done by comparing the performance of human subjects when driving the robot, following route 

descriptions, with the performance of the robot when executing the same route descriptions. The 

results obtained from this comparison clearly indicated where errors occur from the time when a 

human speaker gives a route description to the time when the task is executed by a human listener or 

by the robot. 

Finally, a software speed controller is proposed in this thesis in order to control the wheel speeds of 

the robot used in this project. The controller employs PI (Proportional and Integral) and PID 

(Proportional, Integral and Differential) control and provides a good alternative to expensive hardware. 
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Nomenclature 

(d, e) 

(x,y) 

(x,,y) 

[C,. CJ 

[xtJ,f/J} 

Real world coordinates in metres with reference to the robot's location. 

Pixellocation in a digital image with reference to the top-left pixel in the image. 

Pixellocation of the robot's camera image centre. 

Chromaticity vector of a pixellocation in a digital image. 

Location (in pixels) and orientation (in radians) of the template during template 

matching. 

Aii Action performed by the robot which changes its state from Si to Si. 

C,
11

,an Mean chromaticity value of the road surface. 

e Speed error measured in encoder pulses per second. This is the difference 

between the desired speed (left-whee~ right-wheel or differential speed) actual 

speed of the robot. It is the input to the corresponding speed controlle.r. 

eds The differential wheel speed erro.r measured in encoder pulses per second. It is 

the input to the PID (Proportional Integral and Differential) controller. 

e1 The left wheel robot speed er.ror measured in encoder pulses per second. It is the 

input to the left PI (Proportional Integral) controller. 

e, The right wheel robot speed error measured in encoder pulses per second. It is 

the input to the right PI (Proportional Integral) controlle.r. 

h The distance between the robot's camera and the ground plane. 

I1 The input to the left robot motor in volts. 

I , The input to the right robot motor in volts. 
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k 1 Optical distortion coefficient. 

~ The proportional constant of the two PI (Proportional Integral) speed controllers 

of the robot. 

KP' The proportional constant of the PID (Proportional Integral and Differential) 

differential speed controller of the robot. 

m Value of a pixellocation in the road map image. 

M The road map image matrix. 

m' Value of the information mask of a pixellocation in the road map image. 

n Value of a pixellocation in the road edge image. 

N The road edge image matrix. 

n' Value of the information mask of a pixellocation in the road edge image. 

p Pixellocation in the overlapping area of the road edge image and the road edge 

map. 

Q1 Matching quality of the template on the road surface map image. 

Q11H;" Minimum acceptable matching quality signifying a successful match during the 

template matching. 

Q 2 Matching quality of new road edge information on the road edge map image. 

Qz,
11

;
11 

Minimum acceptable matching quality signifying a successful match of the road 

edge image on the road edge map. 

S; The state of the robot before the execution of an action. 

S. The state of the robot after the execution of an action. 
I 

s1 The robot's left wheel speed in encoder pulses per second. 

sir The robot's left wheel requested speed in encoder pulses per second. 
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s, The robot's right wheel speed in encoder pulses per second. 

s" The robot's right wheel requested speed in encoder pulses per second. 

t Value of a pixellocation in the template image. 

T The template image matrix. 

t ' Value of the information mask of a pixellocation in the template image. 

T"' The differential constant of the PID (Proportional Integral and Differential) 

differential speed controller of the robot. 

T; The integral constant of the two PI (Proportional Integral) speed controllers of 

the robot. 

T;' The integral constant of the PID (Proportional Integral and Differential) 

differential speed controller of the robot. 

T1 The sampling interval (in seconds) of the robot's speed controllers. 

V.11 The robot's battery terminal voltage in volts. 

L1Sa The actual differential speed of the robot. It is measured in encoder pulses per 

second. 

LlS, The requested differential speed of the robot. It is measured in encoder pulses 

per second. 

a Maximum vertical angle of view of the robot's camera in radians. 

fJ Maximum horizontal angle of view of the robot's camera in radians. 
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Abbreviations 

DM Dialogue Manager 

DRS Discourse Representation Structure 

HSI Hue, Saturation and Intensity 

ffiL Instruction Based Learning 

PI Proportional and Integral 

PID Proportional Integral and Differential 

PSL Procedure Specification Language 

RGB Red, Green and Blue 

RM Robot Manager 
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Chapter 1 

1 Introduction 

The work presented in this thesis is part of an EPSRC funded project1 in Instruction Based 

Learning (IBL) for mobile robots. The first section of this chapter gives a short introduction 

~of the IBL project in order to set the scene for the work presented here. Section 0 describes 

the main aim of this thesis followed by section 1.2, which explains the main challenges 

presented in achieving the aim. Section 1.3 presents the methodology followed in order to 

achieve the aim of the thesis and gives a brief summary of the original contributions to 

knowledge made by this work. Section 1.4 specifies how the author of this thesis contributed 

to the Instruction Based Learning group project. Finally, section 1.5 gives an overview of the 

work presented in this thesis. 

1.1 Instruction based learning for mobile robots 

The idea behind the IBL project is that future robots will need to adapt to the special needs of 

their users and to their environment. It is likely that programming by natural language will be a 

key method enabling computer language-nai:ve users to instruct their robots. The project 

attempts to investigate the issues involved in building a robotic system able to learn from 

1 Grants GR/M90023 and GR/l\-!90160. 
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verbal instructions. The proposed methodology is tested in the restricted domain of route 

instructions. 

For the purposes of the project a miniature model town and a robot with an onboard video 

camera were built (Figure 1-1). 

Figure 1-1: (a) Miniature model town and (b) robot used in the IBL project. 

The robot is able to navigate in the miniature town following natural language route 

descriptions given by a human user. As example of the interaction between the user and the 

robot, consider the following scenario: 

The robot is at the Museum and its user wants it to go to ''Boots". The user starts by 

asking the robot to go to ''Boots" by first calling it and then giving the instruction. 

The discourse between the user and the robot is as follows: 

User: "Robot" 
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Robot: "Yes" 

User: "Go to Boots." 

Robot: "How do I go there?" 

User: "Take the third turning to the left ... " 

Robot: "Next instruction please" 

User: " ... follow the road to the roundabout ... " 

Robot: "Next instruction please" 

User: " ... take the third exit off the roundabout ... " 

Robot: "Next instruction please" 

User: " ... take the fust right ... " 

Robot: "Next instruction please" 

User:" .. . Boots will be on your left after the road bend." 

At this point the robot starts to navigate in the miniature town in order to reach 

"Boots" following the route descriptions given by the user. The robot informs the 

user when it reaches the destination by saying: 

Robot: "OK, it's done". 

The architecture of the IBL system is comprised of several functional processing modules 

shown in Figure 1-2. 
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Figure 1-2: P rocessing modules of the IBL system. 

These are divided into two major units: the Dialogue Manager (DM) and the Robot Manager 

(RM). The Dialogue Manager is a bi-directional interface between the Robot Manager and the 

user, either converting speech input into a Discourse Representation Structure or DRS (this is 

a semantic speech representation explained in more detail in [Traum et. al., 1999]), or 

converting requests from the Robot Manager into dialogues with the user. Its detailed 

function is described in [Lauria et. al., 2001). 

The robot manager deals with the dialogue manager's output and also with the learning and 

execution of the commands from the user. Its function is to map the semantic representation 

produced by the dialogue manager into robot executable procedures in the knowledge p ooL 

This mapping is done using a meta-language called PSL (Procedure Specification Language), 
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which is described in jLauria et. al., 2002]. If the mapping from the semantic represemation of 

the user's instructions ro procedures in the knowledge pool of the system is successful, the 

corresponding procedures that would cause the robot ro do what the user asked are executed. 

On the other hand, if a requested action does not exist in the knowledge pool, the robot 

manager initiates a learning process ro learn it and then execute it. New procedures can only 

be composed from previously learned ones in the knowledge pool. This implies that an initial 

set of "primitive" procedures must exist in the knowledge pool before the robot starts 

learning for the very first time. 

The aim of this PhD thesis 

The aim of this PhD work was to determine and implement the primitive procedures of the 

robot used in the Instruction Based Learning project. 

The primitive procedures reflect those actions that users expect that the robot knows how to 

perform without any further explanation. As an example, consider the action "turn", which is 

one of the primitive procedures implemented in this project (see chapter 4). Users assume that 

the robot knows how to turn. However, a quite complex and precise set of sub-actions need 

to be executed in order to achieve a turn (image processing, robot wheel speed and distance 

control etc.). This thesis work was concerned with finding what actions users expect the robot 

to know when it begins its "life" and also with determining the underlying program code that 

would produce the desired (by the user) behaviour in each case. 
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1.2 Challenges 

An important aspect of the Instruction Based Learning system is that it is designed using a 

user-centred rather than a robot-centred approach. This means that it is able to cope with 

unconstrained spoken language instructions as a human would. This design target presented 

the challenge of creating a robotic system that can be used by humans without requiring prior 

training. A robot-centred approach on the other hand would be to build a robot and then train 

human users to use its special language in order to be able to communicate with it This latter 

approach would, of course, contradict the main idea of this project. 

Primitive procedures must, therefore, directly correspond to actions found in natural language. 

To result in the robot performing the requested (by the user) action, no more information 

should be required than that provided in natural language. 

Natural language instructions are underspecified when it comes to them having to be executed 

by a robot. For example consider the case when a user instructs the robot to "take the left 

turning". In this case there is no indication that the user means the "first" left turning. More 

importantly, there is no information as to where the left turning is or how a "left turning" 

looks like. These are vital bits of information, which are required by the robot in order to be 

able to successfully execute the above instruction. It is therefore essential for the validity of 

the Instruction Based Learning concept that it is possible to design primitive procedures that 

can cope with this under-specification in natural language. This issue is crucial to the 

development of the Instruction Based Learning system and it is of central importance to the 

development of the primitive procedures described in this thesis. 
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1.3 Methodology and original contributions 

To achieve the aim of this thesis, a corpus of human-to-human route instructions was initially 

collected and later analysed in order to determine what "built-in" knowledge and ability 

human speakers expect their listeners to possess for following route instructions. This user

centred approach used to determine the functional vocabulary of the robot constitutes the 

main contribution of this thesis. 

The corpus collected was transcribed and then analysed for its word and functional content. A 

method was developed for writing primitive procedures that are robust in coping with the 

under-specification problem of natural language route instructions. This method involves the 

determination of missing information in route instructions either during the time when the 

robot is being instructed by the user or during the time when the robot is executing the route 

instructions. To determine the missing information during instruction-time the corpus route 

instructions as well as the robot's environment to which these referred to were studied in 

order to determine what human instructors considered as "commonsense" and therefore 

omitted in their instructions. This information was then used as default in the primitive 

procedures when it was not explicitly given by the instructors. During the execution of route 

instructions the robot uses artificial vision in order to determine missing information such as 

the location of road layout features mentioned in route instructions. The method of template 

matching is used in order to detect the sought features by trying to match template images 

(representing the sought features) to the robot's view. The original contribution of this thesis 

with regard to this method lies in the fact that the design and use of the image templates was 
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purely influenced by the content of the collected corpus of route instructions. This was done 

in order to follow the user-centred design methodology. 

A method is proposed in order to evaluate the performance of the primitive procedures 

created when they are executed as part of complete route descriptions. This was done by 

inviring human subjects to drive the robot following route descriptions. The performance of 

the human subjects was then qualitatively compared to that of the robot's for each route 

description. The differences found allowed for important conclusions to be drawn and gave 

indications for the course of future work. 

In order to reliably control the speed of the robot used in this project an elaborate robot 

speed control system is proposed in this thesis. This is based two PI (Proportional and 

Integral) and one PID (Proportional, Integral and Differential) controllers in order to control 

the speed of each wheel and the differential speed of the robot. 

1.4 The author's contribution to the IBL project 

The following is an outline of the work contribution of the author of this thesis to the 

Instruction Based Learning project: 

• Miniature town design and implementation (see section 3.2). 

• Robot software and hardware integration. The existing robot hardware was integrated 

with a video camera, video transmitter (see section 3.3.1) and electronic circuits to 

enable easier battery charging while an external power supply was powering the robot. 
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Likewise, existing robot software was greatly changed to suit the robot performance 

requirements for this project. 'The most significant of these changes included the 

design and implementation of a software controller in order to control the speed of 

the robot in a reliable manner (see section 3.3.2). 

• Assistance in corpus collection. The author was involved in all aspects of the corpus 

collection such as the preparation for each route description according to the corpus 

collection protocol, the briefing of subjects prior to the beginning of the experiments 

and the recording of route descriptions. Also the author was involved in the corpus 

collection of dialogues by taking the place of the robot in the dialogues and producing 

the responses that the robot would. 

• Corpus lexical and functional analysis. The results of these analyses are presented in 

sections 4.2 and 4.3. The functional analysis was fundamental to the determination of 

the primitive procedures that needed to be implemented for the robot in this project. 

• Primitive procedure implementation. This is the main part of the work described in 

this thesis. 

• Assistance in collecting data for testing of the IBL system. The author of this thesis 

was involved in setting up the test environment for human subjects to drive the robot 

following route descriptions given to them. Also assistance was offered during the 

experiment in order to ensure adherence to the experimental protocol. 

• Testing of the primitive procedures. This was done by evaluating the performance of 

the primitive procedures developed in this project both on an individual basis and as 

part of complete route instructions. 
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Apart from the above, it is also important to note that the author rook part and contributed in 

all aspects of the Instruction Based Learning project during all the meetings and discussions 

with the other members of the project. 

1.5 Thesis overview 

This section gives a brief description of the contents of each chapter in this thesis. 

Chapter 2 presents a review of previous work related to this thesis. It mainly summarises work 

in the three areas related to this project. These are: 

1. The analysis of natural language, in the specific context of route descriptions, in order 

to determine the functional components of the task domain, 

2. Methods for road layout recognition for navigation. 

3. Robot localization and mapping. 

Chapter 3 describes the experimental environment setup used in this project. The setup 

includes the miniature model town, the robot and two PCs, which act as the "remote brain" of 

the robot. 

Chapter 4 explains how the corpus of natural language route instructions was collected and 

later analysed. The results from the word and functional analysis are also presented. The 

functional analysis revealed the primitive procedures that need to be created as part of the 

robot's "built-in" knowledge. The functional analysis also revealed the issues concerned with 
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implementing a natural language system. The work in this thesis focuses on one of these 

issues. This is the "under-specification" of natural language. In this chapter three methods are 

proposed to overcome this problem. 

Chapter·S explains how the program code in primitive procedures is organized and the 

reasons behind this organization. The chapter mainly describes the need of a "prediction 

function" associated with each procedure in the knowledge base of the robot. This function is 

used during the learning of new procedures in order to verify that the series of route 

instructions given by the user can be executed. The "prediction function" is used in order to 

identify errors either in the user's route description or in the processing of the route 

description by the system. 

Chapter 6 describes how image template matching is used for determining the location of 

landmarks mentioned in route descriptions. The same chapter explains how the robot creates 

a small map of its immediate locality, called "short-lived" map. This map is used for two 

purposes: 

1. To be able to determine the odometric errors of the robot and 

2. In order to be able to retain in memory visual information close to it, which go out of 

its view as it navigates. 

Chapter 7 describes how the primitive procedures developed in this project were evaluated. 
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Chapter 8 presents the original contributions of tbis work and gives suggestions for future 

i.vork on tbis project. 
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Chapter 2 

2 Literature review 

2.1 Natural language in robotics 

Programming human helper robots to perform even simplest of tasks is a time consuming and 

complex process. This is impossible to achieve for computer language naive user.. For such 

helper robots to be useful, a method of communication must be used between humans and 

robots that will not demand special technical and programming abilities from humans. This 

observation is made, among many texts, in [Crangle and Suppes, 1994] where it is stated that 

for efficient human-robot interaction the user should not have to become a programmer., or. 

rely on a programmer. Also the user should not need to learn specialized technical 

vocabularies to request an action from a robot. In [Hausser, 2001] the difficulty of using a 

computer language for most potential users is stressed. The three main reasons given are: (a) 

users are not familiar with the operations of the machine, (b) the expressions of the 

programming language are different from those of every day language and (c) the use of the 

programming language requires great precision. This last point is also mentioned in [Huffman 

and Laird, 1993], which says that computer language procedures must be specified in complete 

detail and that no steps may be omitted or. abstracted. 
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It is likely that natural language will be a key method for computer language na!ve users to 

program their robots in the future. In [Herzog, 199 5] it is stressed that natural language is a 

natural communication medium for humans and so systems, which are able to communicate 

in natural language meet human needs much better. In [Allen et. al., 1996] human subjects 

preferred to use the speech interface when given the choice between that and a keyboard 

interface in order to communicate with a natural language system. 

In the last few years there have been numerous attempts to create robots that conununicate 

with humans using natural language. In [Fong et. al., 2001] a robotic system is presented, 

which can engage into spoken dialogues with humans in order to request information that 

would assist it during navigational tasks. The robot initiates a dialogue with a human only 

when it is faced \vith a problem during navigation. The robot can produce a limited amount of 

messages (around 30) to its human user to which it expects simple answers such as 

"yes" /"no" or a numerical value. These messages are pre-defined by the creators of the robot 

by studying the possible problems that the robot could face during its navigational task. 

Furthermore, users are expected to have a certain amount of expertise regarding the robot and 

the environment in order to collaborate usefully with the robot. Here, the robot's navigational 

task is already progranuned by a robot expert and in effect, natural language dialogue is only 

used to make a selection between 2 or more alternatives of an already written program code. 

In [Spiliotopoulos et. al., 2001] a mobile robotic assistant for hospitals is described. The robot 

can be instructed (using natural language) to deliver a medicine or a message to a specific 

room or patient. Its users can also request database information such as the phone or room 

number of a patient. A simple state-based dialogue management technique is used. The robot 

leads the dialogue by asking specific questions for the user to answer. In this way the system is 
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made robust to speech recognition errors and also fast in its responses because it only needs 

to do simple language processing. However, the system restricts its user to a specific dialogue 

frame that can be uncomfortable for him. 

In the robotic systems described above the dialogue structure is predefined. The robots lead 

the dialogue and their users are expected to respond with specific information. Users are 

constrained by a limited choice of answers. While these systems are robust because it is easier 

to recognize the user's utterances, they are limited as far as dialogue flexibility. In [Alien et. al., 

1996] it is said that it is a fundamental requirement for natural spoken dialogue systems that 

the user should not be constrained in what can be said. Furthermore the above systems 

cannot learn new tasks. This means that they would be unable to adapt to the needs of 

individual users but rather, users have to understand how the robots work and how to use 

them. 

Systems that can learn new tasks are described, among other, in [Huffman and Laird, 1993], 

[A soh et. al., 2001], [Bischoff and Jain, 1999] and [forrance, 1994]. In [Huffrnan and Laird, 

1993] a virtual mobile robotic arm is instructed (using interactive natural language dialogue) to 

perform simple actions such as object displacement. The robotic agent can learn new actions 

composed of a sequence of known actions or sequences. The user is restricted to using simple 

imperative sentences such as: "Pick up the red block", "Move to the yellow table", "Move the 

arm above the red block" etc. In [Asoh et. al., 2001] an office robot is described. The robot 

communicates in natural language but understands five tasks (or task frames): database query, 

database update, person identification, navigation and person calling. Each task frame requires 

several necessary parameters (slots to be filled in the task frame) before it can be executed. 
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The dialogue manager of the system tries to identify these parameters from the user's 

utterance. A similar system is described in (Bischoff and Jain, 1999]. Here, the robot can 

understand several actions that are stored in the robots memory as prototypes with a single 

verb to describe the underlying action and several parameters (mandatory or not). An attempt 

is made to cover all possibilities of an action mentioned in natural language by creating more 

than one prototype for the action where each prototype has a different number and 

configuration of parameters. The system chooses the right word elements from the user's 

utterance in order to satisfy a prototype and then execute its associated action. In [Iorrance, 

1994] an indoors mobile robot is described, which follows typewritten instructions in natural 

language. The robot recognizes several types of instructions, some causing the robot to move 

and others are changing or interrogating its state. Although not explicidy mentioned, it seems 

that the system tries to match particular instruction templates on the user's text input and then 

uses the key words to modify its state variables. 

In the above cases the user is constrained in using a closed set of template natural language 

instructions. These template instructions were designed with none or very lirde investigation 

of the structure of unconstrained natural language in the context used. Rather, a robot-centred 

approach was used, i.e. the template instructions were tailored according to the specifications 

of the robotic system being used. As with computer language programming, this requirement 

means that a user must be trained in order to be able to use the system. 

An attempt for a user-centred approach was made in (Green and Severinson-Eklundh, 2001] 

where an indoor mobile robot, capable of natural language communication, is described. 

"Wizard of Oz" experiments were conducted during the project in order to investigate the 
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behaviour of subjects when speaking to the robot. The "Wizard of Oz" technique is described 

in [Dahlback et. al., 1993]. With this technique parts of an interactive system (that are not yet 

developed) are substituted by humans who try to mimic the behaviour of the future system. 

The purpose of this is to be able to study the responses of the users of the system. In [Green 

and Severinson-Eklundh, 2001] these experiments were not used to examine the structure and 

functional content of naturally spoken language. The tasks that the robot is able to perform 

were decided and implemented before the Wizard of Oz experiments. The experiments were 

used to determine the lexicon of the context, the states that the human-robot dialogue can 

take (question, answer, repair etc.) and the type of feedback a user requires from the robot but 

not what the user will need from such a robot and in what way he/she is likely to ask for it. 

This is therefore another example of a robot-centred approach in order to determine the 

functional vocabulary of the robot. Users of the robot would need to be trained on how to 

command the robot using a restricted set of commands that are predetermined by the robot's 

creators. 

In this thesis the functional vocabulary of the robot is determined using a user-centred 

approach. To achieve this, a corpus of route instructions was collected from prospective users 

of the robot. The corpus was then analysed in order to determine the nature of the 

instructions users give to the robot in the route description context. 
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2.2 Segmentation of natural language into functional 

components 

Previous work on natural language analysis has shown that human free speech can be 

segmented into "atomic" units for the purposes of simplifying the analysis of long utterances 

and therefore enable the better understanding of their structure. For example in [Schleidt and 

Kien, 1997] it is found that human speech can be segmented into small speech units lasting a 

few seconds each. Speech units are defined as the "meaningful blocks" or "semantic phrases" 

where the meaning of a string of sounds is clear to an observer. 

Based on the above findings, in order to determine the speech units in the route description 

context, the corpus collected for this project was manually segmented using task related 

criteria. Task oriented segmentation looks into the action described by the speech segments. It 

was expected that the speech module developed for the IBL (Instruction Based Learning) 

system would eventually produce the same result using syntactic and prosodic cues. A 

syntactic segmentation approach looks into the arrangement of words in order to establish 

granunatically sound sequences. A prosodic speech segmentation approach uses cues such as 

voice pitch, intonation, loudness, rhythm and stress in order to determine the limits of speech 

segments. 

Previous examples of task related segmentation in the context of route descriptions are found 

in [Denis, 1997] and [F raczak, 199 5]. In [Denis, 1997] a corpus of route descriptions was 

analysed in order to investigate how humans externalise their understanding of space. For this, 

it was necessary to segment the route descriptions given by the subjects into small segments 
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called "chunks". A chunk was defined as the speech unit that provides the smallest possible 

piece of information. In [Fraczak, 1995] a texr-to-image translator is described, which 

translates route descriptions into sketches. A corpus of route descriptions was segmented into 

sequences and connections. Sequences are speech units describing action or introducing a 

landmark and connections are single words connecting two sequences. No indication of the 

size of sequences is given but from the examples mentioned they seem to be the smallest 

possible units of meaningful speech. 

Following a similar approach as in the above mentioned work, in order to segment the 

collected route descriptions in this project a single criterion was used to define a speech 

segment: a speech segment is the smallest unit of speech that describes a single action. 

However, speech segments cannot be direcdy associated with primitive procedures, i.e. a 

primitive procedure cannot be written to represent each speech unit found in the corpus. This 

is because the actions described by speech units do not always specify a final state, which is 

essential for the robot in order to execute the action. As an example consider the utterance: 

"follow the road until you reach the post-office" 

Although "follow the road" describes one action, it cannot be executed by the robot because 

it contains no information as far as when to stop following the road. Because of this, more 

than one speech units need to be combined into "functional components". As described in 

section 4.3, in the example given above the whole utterance is considered as a functional 
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component in order to encompass the piece of information that gives the final state (i.e. to 

reach the post-office). 

2.3 Road layout recognition for navigation 

All primitive procedures in a route description scenario cause the robot to navigate on the 

road or confirm its position in relation to other landmarks. Therefore, the robot must be able 

to determine the road layout in order to navigate effectively and also be able to locate 

landmarks relative to the road. 

This section gives examples of past work done in order to recover the road layout from an 

image observed by a camera onboard a moving vehicle. Methods use road surface features 

and/ or road edge features to discriminate the road from the image. In [Waxman et. al., 1987) 

the components of a system used for visual land vehicle navigation are described. In this 

system the road is discriminated by its edges, which are approximated by pairs of parallel line 

segments. The line segments are found using edge detection and then selecting those pairs of 

lines that are parallel (in the real world) and which intersect at a vanishing point in the image. 

In [DeMenthon and Davis, 1990] a method is presented for reconstructing a 3D road model 

from a single image. As a first step, edge detection is performed on the image. The algorithm 

tries to find points lying on the edges of the road making reasonable hypotheses on the shape 

of the road, which add enough constrains to make the problem solvable. Such hypotheses are 

for example that the road is of uniform width, the road does not tilt sideways (zero-bank 

constraint) and that road edges are approximately parallel at opposite points. The aim is to 

calculate a possible centreline path along the road for a moving vehicle. In [Kaske et. al., 1997] 
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a vision-based method is suggested for finding the road edges in country roads where the 

edges are not very clear. This is done using statistical information from the image such as 

energy, homogeneity and contrasts that, when considered in combination, give distinctive 

results at the edges of the road. The location of the road edges, found in previous images that 

are taken as the robot moves are translated using the vehicle's motion vector to find the 

expected new positions. These are used with the results from the current image to eliminate 

false positives. In [Sayd et. al., 1998] a method is described to determine the location of a 

vehicle on a non-marked road. In order to extract the road surface from the image seen by a 

camera on the vehicle a small area in front of the vehicle (bottom of the image) is sampled. 

Assuming that the sample falls on the road surface, pi..'<els in the image are classified as road or 

non-road pi..'<els depending on how close their luminance is compared to the luminance of the 

pixels in the sample area. The vehicle location is then calculated by finding the road sides from 

the extracted road area assuming constant road width. In [Wilson and Dickson, 1999] an 

algorithm is suggested for tracking the boundaries of the road. The road boundaries are 

modelled as chains of line segments. The line segments are found incrementally starting from 

the bottom of the image (road close to vehicle) and moving towards the top (road far from 

the vehicle). The algorithm uses the endpoint of the previously found boundary segment 

(pivot point) as the start of the next segment. The slope of the new segment is determined by 

rotating a rectangular window with one of the smaller sides fastened at the pivot point and 

counting the number of edge pixels it encloses at each angle step. The angle that gives the 

maximum edge pixels is the slope of the next road boundary segment. The method suggested 

fails when the road boundary becomes discontinuous. The algorithm may also fail if the road 

surface where the initial search is done contains scars or other markings. In [Wang et. al., 

2000] the Catrnull-Rom spline algorithm is used to create curve models of the road edges. The 
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fitness of the models is then tested on the real image seen by the vehicle. The control points 

(of each road edge) used for the spline algorithm are selected from the edge-filtered image by 

first assuming that the road plane is flat and the road is of uniform width. A pair of points is 

taken to lie on opposite sides of the road if the tangents to the line segments they belong eo, 

meet at the same point (vanishing point) on the horizon. After the application of the spline 

algorithm the two curve models (one for each side of the road) are superimposed on the edge

filtered image to test their fitness. 

All of the methods mentioned above deal with the case of a straight or curved road extending 

in front of a vehicle. These methods are effective in cases where a vehicle needs to keep in the 

middle of a road lane when following a highway for example. However, they are unsuitable in 

more complex urban environments where the vehicle needs to turn at an intersection or at

junction, use a roundabout etc. Further, all methods require that both edges of the road are 

visible in the image (though not necessarily continuous in all cases) to be able to recover the 

road. 

Methods to recognize intersections on the road were proposed in Qochem at. al., 1996] and 

[Crisman and Thorpe, 1993]. In Qochem at. al., 1996] a neural network based vision system 

used for vehicle navigation is described. The neural network is first trained with images of 

straight road. During normal operation the image from the camera on board the vehicle is used 

to produce images that could have been seen by "virtual cameras" positioned at different 

locations in front of the vehicle. The neural network uses the "virtual images" as input and 

produces a confidence measure indicating the presence of a straight road segment in them. By 

knowing the location of the virtual camera in relation to the actual camera, the system can 
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calculate the position of a sttaight road segment when the virtual camera image produces a 

high confidence value. In order to model an intersection the system requires the knowledge of 

either the position of the intersection (where the road branches meet), to determine its precise 

layout, or the layout of the intersection (i.e. the angles of the branches), to find its position. In 

the case of the IBL system, such a-priori information is not available in route instructions. 

In [Crisman and Thorpe, 1993] dynamic model-building and matching are applied on a road 

surface likelihood image to determine the layout of the road. The road surface likelihood 

image is obtained by first clustering pixels of similar colour in the image (both on and off

road) and then using Bayesian estimation to classify the pixels in each cluster as road or non

road. The classification method uses information from the previous image analysis. The 

intersection detection method effectively finds intersections spurring from a sttaight road but 

would fail to find an intersection on a curved road or an exit from a roundabout for example. 

In the case of a robot following natural language route instructions, there is a need for a 

method that will efficiently use the information provided in the route instructions in order to 

successfully cause the robot to navigate on the road. Such a robot must have knowledge of the 

geometty of the road layout features mentioned in route instructions, be able to find them and 

also be able to use them as instructed. It is also important that the representation of road 

layout features that the robot will have in its memory is generic enough to represent all 

variations of a road layout feature that are classified under the same name in route 

instructions. 
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The well known method of image template matching is used in this thesis to locate landmarks 

mentioned in route instructions. The road layout features mentioned in route descriptions are 

represented by template images, which are generic enough to cover all variations of the road 

feature in the robot's environment. The location of a road feature is found by matching the 

associated template in the robot's visual filed. 

2.4 Localization and mapping 

The robot in this project needs to retain in memory visual information close to its immediate 

locality, which is "seen" by its camera but goes out of view as the robot follows the road. This 

information is retained by creating a local map (called "short-lived" map) of the robot's 

environment on which previously seen and current visual data coexist. In order to merge 

previous visual data with current a simplified method of image "mosaicing" is used. This 

method is described, among many, in [Unnikrishnan and Kelly, 2002a]. Image mosaicing for 

mapping is a method that uses a series of images taken, for example by a moving robot, which 

overlap such that each image contains a portion of the scene in common with both the image 

before and after it in the sequence. The aim is to create a map of the environment traversed by 

the robot by successfully linking the sequence of images. The great challenge presented to this 

task is loop closure in cyclic environments (see [Unnikrishnan and Kelly, 2002b] and 

[Gutmann and K.onolige, 1999]). Loop closure requires the successful link of the first and last 

of a sequence of images taken when the robot's trajectory closes a loop. This problem arises 

because every time one image is linked to the next in the sequence a matching error is 

introduced due to image noise. This error increases with the number of images in the 

sequence and therefore with the distance travelled by the robot. 
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In this project, a "short-lived" map is created as the robot moves. The map is called "short

lived" because it only displays visual information in the last 2 images (previous and current) 

captured by the robot. Previously recorded visual information is lost when it falls out of the 

boundaries of the map as the robot moves. The main reason for this is that the robot in this 

project does not need to build a complete map of its environment in order to use it for future 

navigation. As mentioned earlier in section 1.1, only the procedure corresponding to the route 

description followed by the robot is saved in memory and can be called later to achieve the 

same navigational task. Here, therefore, the error due to image linking is present only once in 

the "short-lived" map and it is small enough to be safely neglected. 

2.5 Discussion 

The main observation from studying previous work on of natural language instructed robots is 

that previous attempts to create such robots are limited in the sense that their users are 

constrained to a pre-determined functional vocabulary. This functional vocabulary is decided 

by the creators of the robots without considering how the potential robot users would instruct 

the robot naturally. Thus, users are limited to a constrained form of natural language, which 

they must learn in order to instruct the robots. This approach of determining the functional 

vocabulary of the robot is called "robot-centred" approach. 

In this project a purely "user-centred" approach is followed to determine the tasks that the 

robot is able to perform in the selected context. The idea is that the user should not require to 

learn how to use the robot and thus be restricted to using the robot's functional vocabulary, 
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bur he/she should be able to communicate with the robot in the same manner as with a 

human. 
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Chapter 3 

3 Experimental • envtronment setup and 

robot design 

3.1 The components of the Instruction Based Learning 

system 

For the purposes of the project an experimental environment was build that takes the space of 

a small room. The setup comprises mainly of a miniature town model, the robot and two host 

computers (Figure 3-1), which act as the "remote brain" for the robot. 
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Figure 3-1: The components of the IBL system. 

The advantage of using a robot with remote brain architecture is that it does not require huge 

on-board computing and hence can be small, fitting the dimensions of the environment (see 

[Inaba et. al., 2000]). A controlled laboratory environment was chosen to apply the proposed 

methodology of the project instead of the real world environment. Apart from financial and 

time constraints the main reason for this was to deliberately exclude much of the complexity 

the real world presents and focus on the main idea of the project, which is to study the nature 

of spoken route instructions in order to determine how they can be converted into robot

executable programs. 

The simple design of the miniature town model provided enough examples, in the collected 

corpus, to allow for reasonable conclusions that would apply to the more realistic robot 

environment. Users, during the corpus collection, reported that they felt comfortable with the 

setup and spoke as they would in a realistic environment. Route descriptions of course lacked 

the richness of landmark references or actions that would apply to the more complex real 
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world. Nevertheless the corpus collected was enough to enable the development of a 

methodology to determine the robot's primitive procedures using the user-centred approach. 

The contribution of the author of this thesis to the experimental environment setup of the 

IBL project included the following: 

1. The design and creation of the miniature model town environment. 

2. The integration of a video camera and video transmitter on an existing robot-football 

robot in order to be used in this project. 

3. The modification of the existing robot code in order to achieve better robot control. 

In the following sections of this chapter each of the above contributions is described in detail. 

3.2 The miniature town model 

The layout of the miniature town model was designed using Core!Draw graphic design 

software. The model is flat and its dimensions are 170cm x 120cm (Figure 3-2). 
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Figure 3-2: The miniature town model. 

The model town is a much simplified version of the real world for reasons explained earlier. 

Nevertheless, the road layout contains turnings at various angles, t-junctions, crossroads, dead 

ends, curves, y-splits, and a roundabout. The model also contains non road-layout landmarks 

like trees, a lake, a bridge, and buildings. Most of the buildings in the miniature town contain 

signs with names mosdy taken from the real world (like Dixons, Derrys, the post-office etc). 

This was done to help people giving route instructions to the robot to easily identify these 

landmarks. For simplicity, the same colour was used for all the buildings in the miniature 

town. 
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3.3 The robot 

The robot used in this project is a modified robot-football robo( (Figure 3-3). The main 

added components are a video camera and a video transmitter. 

Figure 3-3: (a) The robot used in the IBL project (80x80x160mm) and (b) The 

robot-football robot (80x80x80mm). 

2 Provided by Merlin Systems (http:/ / www.merlinsystemscorp.com). 
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3.3.1 Robot hardware 

Battery 
packs 

Gearbox 

Radio 
receiver 

Figure 3-4: The hardware components of the robot. 

Figure 3-4 shows the various hardware components of the IBL robot. 

Camera 

Video 
transmitter 

The robot has two independent motors driving each of its two wheels. The speed of the 

motors is geared down by a ratio of 16:1 using worm gears. Two optical encoder sensors are 

used to read the distance covered by each wheel of the robot To achieve a grater distance 

resolution the encoders are placed so as to measure the angular speed of the motor shafts 

rather than that of the robot wheel axes. In effect, the distance resolution of each wheel is 

1238 encoder pulses per metre traversed by the wheel. 
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A circuit board on which a microcontroller3 is a central processing unit controls all the 

functions on the robot. The main components on this circuit board apart from the 

microcontroller are a dual full-bridge driver', which powers the two motors, and an 869 MHz 

radio receiver5
, which receives navigation commands for the robot. 

The robot is powered by eight Ni-MH (Nickel-Metal Hydride) rechargeable batteries of 

700mAh (energy capacity) each. They are connected in series in order to create a cell of 9.6 

Volts and 700mAh energy capacity. 

Added to the robot-football robot, in order to use it in the IBL project, are a CCD colour TV 

camera6 (628 x 582 pixels) and a 2.4 GHz video transmitter'. A host computer acquires the 

images captured by the CCD camera on board the robot through a wireless video link and via a 

TV capture card. An example of such image is shown in Figure 3-5. 

3 :\tmd AT90S8515 

4 L298 

5 Radiometrix RX3 

6 Model MINI-C20A purchased at J\llthings Sales and Services (http:/ /www.allthings.com.au). 

7 Model TX-MOD3 purchased at All things Sales and Services (http:/ /www.allthings.com.au). 
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Figure 3-5: Example of the robot's view. 

From these images the necessary information is extracted in order to decide the next waypoint 

for the robot. The robot is then sent the appropriate navigation command via the radio 

channel in order to reach this waypoint 

3.3.2 Robot software 

The code that controls all functions of the robot is written in C computer language on a PC. It 

is then compiled, converted into machine language and finally downloaded into the 8K non

volatile flash memory of the microcontroller. The robot's microcontroller program works as 

follows: the host computer sends information to the robot in frames (or transmission strings) 

via radio link. Each frame contains (apart from synchronisation and error detection bits) the 

speed and distance to be covered by each of the two wheels. The robot controls the two 

wheels independendy to cover the requested distance while moving with the requested speed. 

In this way the robot can perform any manoeuvre, per received command, where the speed of 
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each wheel is constant during the manoeuvre. Examples of such manoeuvres are motions on 

straight lines and arcs and on-the-spot rotations. 

The robot program is interrupt driven. There are 4 types of interrupts that can occur: 

1. Left wheel optical encoder sensor interrupt. 

2. Right wheel optical encoder sensor interrupt. 

3. UART (Universal Asynchronous Receiver/Transmitter) interrupt. 

4. Interrupts from the two wheel speed controllers. 

Whenever either of the two optical sensor interrupts occurs the variable that contains the 

distance covered by the corresponding wheel is incremented. Both variables are set to 0 when 

a new command is received by the robot. This is done because every command instructs the 

robot to perform a new manoeuvre starting from a position relative to the one it is when it 

receives the command. The robot does not record odometric information for more than one 

manoeuvre. 

The UART interrupt occurs when a byte is received through the radio link. The interrupt 

service routine stores the byte in a string and checks if the string's length is equal to the 

expected command length. If not enough information is received to complete a command, the 

service routine does nothing, otherwise the received string is processed to extract speed and 

distance information for the two wheels. It then sets the appropriate rn.icrocontroller registers 

to cause the requested speed and resets the left and right distance variables to 0. 

60 



It must be noted here that the robot does not incorporate a radio transmitter in order to send 

data to the host computer. Ibis means that there is no way for the robot to signal the end of 

an execution of a motion command to the host computer. To overcome this limitation, the 

host computer calculates the execution time of every command sent to the robot thus 

predicting when the robot will have finished executing it and will be ready to receive the 

following command. The execution time of a robot command can be calculated from the 

speed and distance values sent to the robot. 

3.3.2.1 The PID controller used for robot speed control 

The control diagram in Figure 3-6 shows how the speed of each wheel of the robot is 

controlled in some robot football robots. 

---~~~ Left Motor H Gearbox Left Wheel 

I, ---~~~ Right Motor H Gearbox 
s, 

Right Wheel 

Figure 3-6: Open loop speed control of each of the robot's motors. Where hand I, are the 

left and right inputs to the motors in volts and s1 and s, are the left and right wheel speeds 

respectively. 

Ibis is an open loop control scheme for each individual wheel speed. A value corresponding 

to each motor voltage input is sent to the robot and it is applied to the respective motor until 

the requested distance is covered by the wheel attached to that motor through the gearbox. 
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There are two problems with the above method of control: 

1. Factors such as the state of the robot's battery and frictional forces will affect the 

speed of each motor at a constant voltage input. This means that the speed of each 

motor depends on external factors apart from the level of input voltage. 

2. Even if the two motors used for the robot are of the same model and manufacturer, 

small differences between them such as the resistance of their armature windings will 

result in a speed difference between the two motors when they are subjected to the 

same input voltage. 

The effects of both problems above are minimal when the motors are driven at their rated 

voltage. At this input the robot is capable of accelerating up to speeds of 1.5 metres per 

second but this is not desirable because of heavy wheel slipping that gives false readings of 

distance covered by the robot. Furthermore, the duration of slipping of each wheel may be 

different depending on its grip with the ground. This often causes the robot to manoeuvre in 

the wrong direction. In robot football the motors are driven at their rated voltage. Any errors 

produced due to speed differences between the two wheels and slipping are quickly corrected 

because the robot is sent navigation commands several times per second. 

For the purposes of the IBL project the robot is required to run at speeds not more than 

1 Ocm per second in order to avoid slipping. This low speed requirement means that the 

motors of the robot must be powered with less than 10% of their rated voltage. At this low 

input the load-speed characteristic of the motors is not linear and this causes unreliable 
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transient behaviour. For a successful manoeuvre of the robot, both wheels must complete 

their assigned distances but also they must maintain their assigned speeds reliably throughout 

the manoeuvre. This is not possible with the control system shown in Figure 3-6 at such low 

power input to each motor. 

A popular solution, in order to overcome the problems of open loop systems such as the one 

shown in Figure 3-6, is to use a PID (Proportional, Integral and Differential) controller 

algorithm. The algorithm takes as input an error e, which is the difference between the desired 

output value and the actual output value of a system and produces the input to the system. 

The objective of the controller is to match the output of the system with the desired output. 

The PID algorithm is composed of three terms: 

1. A term that is proportional to the error e. 

2. A term that is proportional to the integral (or the sum of the previous values) of the 

error. 

3. A term that is proportional to the rate of change of the error. 

Each of the three terms plays a different role in the controller. For example the differential 

term (number 3 above) suppresses sudden deparrures of the output from its desired value. It 

is not necessary to have all three terms present in the controller. A controller can only have 

the proportional and integral terms for example in which case it is called PI controller. For a 

detailed explanation of the PID controller as well as implementation guidelines for real-time 

systems see [Bennet, 1994]. 
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Two PI controllers are used to accurately control the speed of each wheel of the robot 

eliminating errors due to the robot's battery charge level and friction. The error inputs to each 

controller (e1 and e,) are the differences between the requested (or desired) speeds (sir and s") 

and the actual speeds (s1 and s,) of the left and right wheels respectively. The outputs of the 

controllers (I1 and I,) are the corresponding voltage inputs to the left and right motors. Figure 

3-7 shows the closed loop speed control diagram of each motor. 

SJ 

+~ eJ 

~ ~ Left Wheel 

•I SJr PI Left Motor Gearbox • 

s, 

+~ e, 
~ ~ Right Wheel 

•I s" PI Right Motor Gearbox ~ 

Figure 3-7: Closed loop speed control system with a PI controller for each motor. 

The input to each motor is calculated by its corresponding PI controller whenever a wheel 

speed controller interrupt occurs. Notice that the speed of each wheel at the time of the 

interrupt is required for the calculation and not the distance covered by the wheel, which is 

physically measured at the motor shaft of the wheel (see section 3.3.1). The speed of each 

wheel is determined by dividing the distance travelled since the last interrupt by the interrupt's 

interval time. The interval of this interrupt is time critical and therefore one of the 

microcontroller's timers is used to produce it. 
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For every robot manoeuvre there is a difference between the left and right wheel speed. This 

difference is 0 when the robot is following a straight line and grater or less than 0 when the 

robot is performing a curve. It is crucial that this difference is maintained throughout the 

manoeuvre if the robot is to reach it target location successfully. To guarantee this, a PID 

controller is added to the system shown in Figure 3-7. The complete speed controller of the 

robot is shown in Figure 3-8. 

s, 

left Wheel 
s,, left Motor 

+ 

+ 

+ Right Wheel 
Right Motor 

Figure 3-8: The complete robot speed control system. 

As Figure 3-8 shows, the error input (eJ to the PID controller is the difference between the 

requested speed difference LIS, and the actual speed difference M. between the two wheels. 
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The output of the PID controller contributes to the PI outputs to produce the motor inputs 

(I1 and I,) in such a way so as to maintain the requested speed difference throughout the 

robot's manoeuvre. 

To determine the parameters of the PI and PID controllers of the system, first the sampling 

interval T, of the wheel speed controllers interrupt was selected. There are two points to 

consider when selecting a discrete-time controller's sampling interval: 

1. It should not be too small. This is because digital computations have finite resolution 

limited to the length of the digital system's floating point number. As the sampling 

interval decreases, the change in the result of the controller's output between 

successive samples becomes less than the resolution of the system and thus 

information is lost (see [Leigh, 1992]). 

2. It should not be too big because loss of information will occur due to the sampling 

effect (see [Bennet, 1994]). Nyquist's sampling theorem states that the sampling 

interval should at least be twice as fast as the highest frequency of the fastest changing 

signal in the PID controller's calculation. However, in practice a much higher sampling 

rate (more than 10 times the maximum frequency) is used. 

Following the empirical rules suggested in [Bennet, 1994] the sampling interval for all three 

controllers was chosen to be 0.065536 seconds. This period is a multiple of the 

microcontroller's clock period and it is chosen among several possible preset periods given by 

the microcontroller's manufacturer. 
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The following set of equations show how the inputs to the left and right motors are calculated 

each time a wheel-speed controller interrupt occurs: 

(3-1) 

0 _ v•[ ( ) 1 ~ (k'vr r.·(e .. (n)-e .. (n-1))] 
"" - l\.p e .. n + - L.. e.. J' , + , 

Ti k=l T, 

e .. = f!.S,- tlS. 

where T, is the sampling interval of the control system is seconds. The variables e~(n) and e,(n) 

represent the values of left and right speed errors respectively at some time interval nT, where 

n is an integer. The variable e,u{n) is the error in the differential speed at the same time interval. 

Constants K, and T; are the proportional and integral constants of the PI controllers and K, ', 

T;' and T/ are the proportional, integral and differential constants of the PID controller. All 

speed values are in wheel-speed-encoder pulses per second. 

Note that the input ranges from 0 to 255 and corresponds to a voltage range from 0 to Vau 

Volts where V,..0 is the robot's battery terminal voltage. 

The PI and PID controller constants were found experimentally using a procedure similar to 

the one suggested in [Braunl, 2003]. This procedure, adapted for the control system presented 

in Figure 3-8, is as follows: 
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1. The desired operating speed of the robot was selected to be 10 cm/ sec. 

2. To determine the PI controller parameters only one of the two wheels was operated. 

The integral control of the PI controller of the wheel and the PID controller were 

turned off. ~was increased until oscillation in the speed of the wheel occurred. 

3. ~ was divided by 2. 

4. T; was decreased from a large number until oscillation occurred. 

5. T; was multiplied by 2. 

6. Both wheels were set to operate with PI control and the parameters derived thus far. 

7. ~'was increased until oscillation in the differential speed of the wheels occurred, i.e. 

the robot oscillating between the left and right directions while moving forward. 

8. ~'was divided by 2. 

9. Kd' was increased while observing the behaviour of the differential speed while 

changing the operating speed by approximately 5%. A value of X.,'was chosen to give 

a damped response. 

10. T;'was decreased from a large number until oscillation occurred. 

11. T;' was multiplied by 2. 

The following values were obtained with the above procedure and by doing minor 

adjustments to achieve optimum performance: 

~ = 0.15 

T;= 0.6 

~·= 0.05 
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T;'= 0.6 

T/= 0.5 

3.4 Programming platforms and developed software 

The Linux8 operating system was used to develop the primitive procedures. The primitive 

procedures are written in the Python9 programming language augmented by vision routines 

written in C. Python is an interpreted language that is well suited for this project since it is 

desired to create new program code from verbal instructions. Python generates programs in 

the form of scripts that can be executed immediately without an intermediate compilation 

step. 

Although the Python lmaging library (PIL) could be used to implement all image processing 

routines described in this thesis, it is very slow and for this reason all vision routines were 

written in C and compiled in order to be used as python functions. Details of how to extend 

the Python language with C language functions can be found in [Chun, 2001]. 

Primitive procedures cannot pass information between each other directly. This is because 

they are independent programs called in sequences. It is only when one primitive procedure 

finishes execution that another can be started. For this reason all data (including image files) is 

passed between the procedures by saving it to files. This does not slow the system because any 

data saved is quickly accessed while it is still in the PC's cache memory and so no time is lost 

8 "Redhat" variant, Version 7.3 

9 Python for Linux, Version 1.5.2 (http:/ /www.python.org) 
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to physically write/ read to and from the hard disk. This method of information exchange also 

provided a quick way to "tap" into the data being exchanged in order to monitor it during the 

development of the primitive procedures. An image monitor application was written, which 

displays image files. The application checks the time-of-last-modification of the monitored 

image file continuously and re-display's the image when its time stamp changes. This 

application was run for every image file whose progress needed to be monitored during test 

runs of the primitive procedures. A screenshot taken during a test-run of the system is shown 

in Figure 3-9. 

Figure 3-9: Screenshot taken during the development of the primitive procedures. The top

left window shows the "video server's" interface. The video server is an application, which 

continuously captures the image "seen" by the robot's camera and saves that into a file 

when requested by another application. The remaining image windows (apart from the 

command line window at the bottom) are "image monitor'' applications, each used to 

monitor the changes of an image file during execution time. 
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A video of a test-run, which shows how the development interface is run, is included in the 

CD accompanying this thesis (see Appendi.x C). 

3.5 Summary/ Contributions 

The main contribution of the work presented in this chapter is the development of a complex 

software control system that is used to control and coordinate the wheel speeds of the robot 

in this project. The control system, comprising of two PI controllers to control each wheel's 

speed and a PID controller to control the differential speed, presented a particular challenge in 

this project because of the extremely unreliable behaviour of the motors driving each wheel 

when these were run at a small fraction of their rated voltage. The control system 

implemented provided an alternative to using expensive high-specification motors 

incorporating gearboxes in order to produce the same speed reliability and odometric accuracy 

required for the purposes of this project. 

Similar (compared to the one presented in this chapter) control systems for differential-drive 

of non-holonomic robots are presented in Qones et. al., 1999] and more recently in [Braunl, 

2003]. In their work a proportional (P) controller was used to control the speed of each 

individual wheel and integral (I) controller was used to coordinate the differential speed of the 

two wheels. 

Also in this chapter a method was described for monitoring the execution of primitive 

procedures without the need to incorporate extra code in them in order to achieve this 
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pw:pose. This is done by "tapping" into (or monitoring) the data exchanged between the 

primitive procedures while they are executed. An interesting feature of this method is that by 

switching off all the data monitoring applications, the execution-speed performance of the 

primitive procedures can be quickly established. 
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Chapter 4 

4 Corpus based system design 

As discussed in section 2.1, previous attempts to implement a natural language interface to 

robots mainly used a robot-centred approach for determining the functional lexicon of the 

robot. The functional lexicon of the robot was created by predicting what a user in the context 

would to ask the robot and in what way. Users, therefore, had to be constrained to a certain 

extend when speaking, taking care to conform to the robot's particular syntax and to include 

all the necessary parameters of the action they requested. 

In this project, an effort was made not to constrain the user so that any user not previously 

trained to speak to the robot would be able to do so. In order to follow such a user-centred 

approach it was necessary to investigate how users speak when giving route instructions, what 

information they provide and what they omit as commonsense. The robot should be able to 

use the information given in the route descriptions and determine the information omitted in 

them, without discomforting its user with questions if it is to qualify as a useful human 

assistant. 

To determine the functional vocabulary of the route description context, a corpus of route 

descriptions was collected from 24 subjects. Details of the corpus collection procedure are 
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given in section 4.1. The collected route descriptions were recorded and later transcribed for 

analysis. The corpus was analysed for its word and functional content. The method and results 

of these analyses are presented in sections 4.2 and 4.3. 

The corpus of route descriptions collected in this project was split in two sets in order to 

enable development and later the evaluation of the primitive procedures (see chapter 7). For 

completeness, sections 4.2 and 4.3 present the results of the word and functional analyses of 

the complete corpus. 

Section 4.6 explains the various cases in the corpus where natural language route instructions 

are missing information that is vital for the robot in order to execute the requested task. The 

methods proposed in this thesis for determining the missing information are also described. 

The collected corpus of route instructions contributed in different ways to the main parts of 

the Instruction Based Learning system. Sections 4.7.1 and 4.7.2 explain how it contributed to 

the development of the natural language system design (dialogue manager) and the robot 

system design (robot manager) respectively. 

4.1 Corpus collection procedure 

To collect linguistic and functional data specific to route learning, 24 subjects were recorded as 

they gave route instructions to the robot in the miniature town environment. Subjects were 

divided into 3 groups of 8. The first two groups (A and B) were told that the robot was 

remote-controlled and that, at a later date, a human operator would use their instructions to 
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drive the robot to its destination. Subjects were told this so that they would speak as naturally 

as they would if they instructed a human. It was also specified that the human robot-operator 

would be located in another room, seeing only the image from the wireless on-board video 

camera. This was specified to induce the subjects into using spatial references accessible by the 

vision software. Subjects were also told to use previously defined routes whenever possible, 

instead of re-explaining them in detail. Each subject had 6 routes to describe among which 3 

were "short" and 3 were "long". Each long route included a short route. This was done to 

reveal the type of expressions used by the subjects in order to link taught procedures with 

primitive ones. Groups A and B received the same routes to describe, but with the sequence 

of "short" and "long" route inverted. This would reveal the difference between a fully detailed 

route, and a route with reference to a short route inserted. Again the question is one of how 

procedure insertion is handled by subjects (see Table 4-1 for examples of short and long route 

descriptions). 

The first two groups (A and B) used totally unconstrained speech, to provide a performance 

baseline. It is assumed that a robot that can understand these instructions as well as a human 

operator would represent the ideal standard. Each subject described 6 routes having the same 

starting point and six different destinations. Starting points were changed after every two 

subjects. A total of 96 route descriptions were collected from these two groups. 

A third group of 8 subjects (group C) had the same routes to describe as group A, but were 

forced into a simplified dialogue with an operator to produce shorter chunks of descriptions. 

It is known that it is very difficult for NL processing tools to correctly segment an 

uninterrupted stream of words into sentences. Therefore, corpus group C was thought to be 
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more representative of utterances in the eventual user-robot dialogue. Subjects in this group 

were rold that an operator next door was taking notes. A researcher pretended to do so and 

interrupted the subjects (using a microphone) when they used chunks that were too long. He 

acted as if he understood all the instructions and did not initiate repair dialogues. 

Table 4-1 shows an example of the same two "short" and "long" routes instructed by a 

subject in group A and a subject in group C. 

Group A (Monologues) 
Short 

User: 
"okay take your first right and continue down the street past Derry's 

(u11 GA EP) past Safeway and your parking lot the car park will be on your right" 
Long 

User: 
"okay once you pass the car park er take your first right and then again 

(u11 GA EH) take your first right and the hospital will be right in front of you" 
Grou_2C (Dialogues) 

Wizard: "could you tell me how to get to the car park please" 

User: 
"okay you'll take the first right from where you are now past Derry's 

Short 
then Safeway" 

(u4_GC_EP) Wizard: "Yes" 
"you'll pass another road on the left and the car park's on the right from 

User: there" 
Wizard: "thank you" 
Wizard: "could you tell me how to go to the hospital please" 
User: "okay you need to go back towards the car park" 
Wizard: "Yes" 
User: "past the car park take the first right" 

Long 
Wizard: "I'm sorry after I pass the car park" 
User: "you take the right after the car park" 

(u4_GC_EH) 
Wizard: ''Yes" 
User: "and then another right again" 
Wizard: ''Yes" 
User: "and you'll be moving towards the hospital on the end of that road" 
Wizard: ''thank you" 

Table 4-1: Examples of "short'' and ''long" route descnpnons. 

The table shows a short route from the Grand Hotel (E) to the Car Park (P) and a long route 

from Grand Hotel (E) to the Hospital (H) (see Figure 4-1) given under monologue condition 

(group A) and dialogue conditions (group C). The wizard is a human operator mimicking 

verbal feedback that could be given by the robot. 
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Figure 4-1: A top view of the miniature town model indicating the starting point E 

(common to both routes) and destinations P and H referred to in Table 4-L 

The sound file and transcribed version of each route description collected in this project can 

be found on the CD accompanying this thesis (see Appendix C). 

4.2 Word analysis 

To provide an initial estimate of the task vocabulary, the data from all three groups were 

merged. The number of distinct words was counted in the set of 144 instructions collected 

from the three groups. Morphology was not taken into account, i.e. "travels" and "travel" 

were counted as different words. The vocabulary of the users was found to contain 336 

different words, from a total of 6634 words in the combined corpus. The most frequent word 

was found 753 times and 96 words were used only once, i.e. by only one subject in a single 

route instruction (Table 4-2). 
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Most frequent Least frequent (found onlv once) 
Word Count 

the 753 
and 263 

access, actually, already, amount, angle, any, apologise, area, arrive, 
bears, been, beige, bends, black, blocks, both, branch, carrying, 

on 253 centre, certainly, currently, diagonally, doors, double, en, ends, 

you 233 entering, exits, far, feel, five, fork, forty-five, half, has, here, hope, 

to 212 
house, instruct, it'd, its, leave, leaving, lines, looks, make, means, 

moment, more, moving, now, only, or, order, outside, paper, park's, 
left 188 passing, please, post-offices, quadrangle, quarters, queens, reaching, 

right 178 recalling, robot, say, says, set, seventy, sharp, sixty, skyscraper, soon, 

go 168 starts, still, storey, taken, tesco, tesco's, thankyou, thing, think, thirty, 

take 137 
too, travel, travels, trip, turned, uh-huh, upon, went, what, while, 

wiggles, without 
a 132 

Table 4-2: Most frequent and least frequent user word m the corpus. The least frequent 

words were found only once in 96 route descriptions. 

A complete list of the words found in the corpus along with their occurrence is presented in 

Appendix D . 

To determine if the corpus collection had led to a complete sampling of the task vocabulary, 

the average number of distinct words was plotted as a function of the number of collected 

instructions. This is shown in Figure 4-2. 
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Average Unique Words Vs Route Descriptions 

400.0 

350.0 

300.0 

.. -g 250.0 
~ 
~ 
-¥200.0 
::;) 

& 
i 150.0 
<( 

100.0 

50.0 

0.0 

- All Corpus Descriptions 

~--------------------------------------------------~-GroupADescri~s 
Group B Descripeions 

0 20 40 60 80 100 120 140 

Route Descriptions 

Figure 4-2: Number of distinct words discovered in the corpus as the number of 

instruction samples increases. The long line is for all groups considered. The shorter lines 

are for groups A, B and C taken in isolation. Curves are obtained by averaging 50 random 

sets comprising an increasing number of sample route descriptions. 

Figure 4-2 shows that the number of distinct words is still rising at the end of the curve, 

160 

indicating that more new words would be found if more route instructions had been collected 

This behaviour is similar in other spoken language task domains. Some examples are found in 

[Zue, 1997] where corpora from different domains are collected and analysed for their lexical 

content This was done as part of discussing the issues involved in human-computer spoken 

language interfaces. In the same paper it is mentioned that new words will be encountered by 

the speech recognition system no matter how large the training corpus is. 

The slope of the curve representing all corpus descriptions in Figure 4-2 indicates that a new 

user might say on average one out-of-vocabulary word in each route description. To 
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determine what type of new word might be expected, each route instruction was compared to 

the corpus of all other instructions. The result is that the new words are all among the 96 least 

frequently used words listed in Table 4-2. 

The dialogue group (group C) tended to use less distinct words as shown in Figure 4-2. 

Therefore, future experiments may reveal an improved speech recognition performance in 

dialogue conditions. 

New words (i.e. words spoken by the user, which are unknown to the speech recognition 

system) may present a problem in that they will be either recognised wrongly or not 

recognised at all and thus present the danger of changing the meaning of what the user said. 

There are three possible scenarios when a user utters a new word: 

1. The word is a key word in the specification of the route description. In this case the 

robot will fail without being able to detect the problem. 

2. The word is not a key word. In this case its presence does not alter the specification of 

the route description and the robot never "sees" its effect in the route description. 

3. The word is misrecognised in such a way so that the meaning of the instruction 

appears wrong to the speech system. In this case the speech system can initiate a repair 

dialogue with the user in order to clarify what has been said or to bias the user to 

explain in a different way. 

Starting such a repair dialogue with the user can be a very complex process. At present a 

simple dialogue is initiated with the user when the recognition confidence of the speech 
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system falls below a certain limit. This dialogue usually involves the system replying either 

with: "Repeat that please.", in which case the user must repeat the instruction, or with "Did 

you mean ... ", in which case the user can only answer "yes" or "no". 

4.3 The primitive procedures in route instructions 

In order to find the primitive procedures the robot should have in its memory when it starts 

its life, the corpus of route instructions collected was first segmented into its "functional 

components". These functional components were then represented by primitive procedures 

written in computer language code. 

The methodology followed to segment the route descriptions into their functional 

components was based on the definition of the functional component. Two rules were 

followed: 

1. Functional components should describe a single action and 

2. They must have a defined initial and final state. 

The first rule makes sure that the most elementary actions that constitute a route description 

are considered to be its functional components. The second rule comes from implementation 

constraints. In the example utterance: 

"follow the road until you reach the post-office" 
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Although "follow the road" can be considered as one action there is no information in it to 

suggest when to stop following the road. In this case the whole example utterance is 

considered as a functional component in order to encompass the piece of information that 

gives the final state (i.e. reaching the post-office). 

Section 4.3.1 describes how the functional components extracted from the corpus are 

represented by robot procedures called "primitive procedures". Primitive procedures are 

computer language procedures that control the robot. A primitive is called for every functional 

component found in the route description and this causes the robot to execute the action(s) 

specified by the functional component. Primitive procedures accept key words from the 

functional components as parameters. 

4.3.1 The primitive procedures extracted from the corpus and 

their representation 

Functional components found in the corpus are organized into groups describing similar 

actions. For example the primitive procedures: "take the first left turn" and "take the second 

left turn" have little difference in their implementation in robot executable code. Similarly with 

"follow the road to the post-office" and "follow the road to the library". To avoid duplication 

of code, parameterised primitive procedures were written to represent groups of functional 

components found in the corpus rather than the individual components themselves. Different 

combinations of parameters are initialised in each primitive procedure call to represent each 

functional primitive found in the corpus. 
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The complete list of primitive procedures extracted from the collected corpus of route 

instmctions is presented in Table 4-3. The rightmost column indicates the number of 

occurrences of the associated functional group in the corpus. 

Primitive Procedure Occurrence 

1 
follow_ road (relation_1, ordinal _1, object_1 , relation_2, 

234 
object 2) 

2 
turn ( ordinal_1, relation_1, object_1, relation _2, 

192 
object 2) 

3 
location (object_1, relation_1, ordinal_1, obj ect_2= 'road' , 

161 
object 3, destination 1) 

4 exit roundabout (ordinal 1, relation 1, object 1) 36 
5 go (relation 1, object_1) 30 
6 go_until (object_1, relation_1, object_2) 9 
7 enter roundabout (direction 1, relation 1, object_1) 8 
8 cross (object_1, relation_1, object_2) 3 
9 rotate( relation 1, object 1) 2 
10 take road (relation 1, object 1) 2 
11 exit object (object 1) 1 
12 park (relation 1, object 1) 1 
13 bear (relation 1, object 1) 1 . . 

Table 4-3: Pruruttve procedures extracted from the collected corpus of route descnpbons . 

An explanation of each primitive is given in Appendix A along with detailed specifications of 

its parameters and the values they can take. 

Table 4-4 shows some examples of functional components taken from the corpus and the 

corresponding primitive procedure call that should be executed to produce the requested 

action. 
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Functional primitive Primitive procedure call 

"take the first left" 
turn (relation_l='left_of', 
object l='self') 

"take the second turning on your turn (ordinal_l='second' , 
left hand side" relation_ l='left _of', object_l='self') 

"keep walking past the lake on your 
follow_ road (relation_l= ' past', 
object_l='lake', relation _2= 'right_of', 

right hand side" 
object 2='self') 

"exit the roundabout at the third exit _ roundabout (ordinal_l='third ' ) 
exit" 

location (object_l='library', 
''the library is on your left" relation - l='left _of', object_2= ' self', 

destination 1=' library') 
.. 

Table 4-4: Examples of prlDlltlve procedures extracted from the corpus and their 

corresponding primitive procedure calls. 

See Table 4-6 for an explanation of parameter types and the values they can take in a primitive 

procedure. 

In the same manner all the corpus route descriptions were manually "translated" into their 

corresponding primitive procedure calls. 

Each transcribed route description file was associated to a file with primitive procedure calls 

corresponding to the functional components in the route description. An example of such 

translation is given in Table 4-5. 
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(a) 

(b) 

"from the roundabout take the first exit on the left continue straight over the crossroads 
continue over the bridge continue straight over the second crossroads the post office should 
be on your right" (u7 _GC_CX) 

exit _roundabout(ordinal_1= 1 first 1
) 

follow_road( relation_1= 1 over 1 
1 object_1= 1 crossroads 1

) 

follow_road (relation_1= 1 over 1 
1 object_1= 1 bridge 1

) 

follow_road (relation_1= 1 over 1 
I ordinal _1= 1 second 1 

I 

object_1= 1 crossroads 1
) 

location (object_1='post_office 1 
I relation _1= I right_of I 1 

object_2= 1 self 1 
I destination _1= 1 post_office 1

) 

. . 
Table 4-5: An example of a translanon of a route descrtpnon to its correspondmg pnnuove 

calls. Row (a) shows the transcribed version of the route description u7 _ GC_ CX. User 7 

explains the route from Boots (C) to the Post-office (X) (see Figure 4-3). Row (b) shows 

the corresponding manual translation of the description to its primitive procedure calls. 

All translation files of the corpus can be found on the CD accompanying this thesis (see 

Appendi'C C). 
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Figure 4-3: The description in Table 4-S(a) illustrated on the map of the miniature town. 

The dotted red line shows the route that the user implies to the robot and the solid red line 

is the route he/she explicitly describes. 

This translation had to be made manually during the development of the IBL system for two 

reasons: 

1. To enable the development and evaluation of the primitive procedures (see chapter 7). 

2. To provide a performance baseline for the evaluation of the Robot Manager. 

Although the translation of the corpus was done manually for all functional components in 

each route description, it was tried to the best possible extent to produce the translation that 

the final system would produce for the same route descriptions. This was achieved by 

continuously changing the translation of the corpus throughout the duration project based on 

feedback being received during the development of the dialogue manager and robot manager 

modules. Continuous reviewing of the translation of the corpus was being done until prior to 
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the evaluation of the system. The complete final translation of each route in the corpus can be 

found on the CD accompanying this thesis (see Appendix C). 

As with the task vocabulary, to determine if the corpus collection had led to a complete 

sampling of the primitive tasks in our route description context, the average number of 

primitive procedures was plotted as a function of the number of collected route descriptions. 

Figure 4-4 shows that the number of distinct procedures is increasing with the number of 

sampled route descriptions. In the beginning there is a steep rate of increase of new primitive 

procedures but as more route instructions are considered this rate decreases. It can be 

speculated, by looking at the curve representing all the corpus descriptions in Figure 4-4, that 

the functional vocabulary of the robot is not completely determined by the collected corpus. 

The slope of the curve at 144 route descriptions seems to suggest that on average one new 

procedure is likely to be discovered in every approximately 40 route descriptions. A similar 

observation was made in section 4.2 with the rate of increase of new words for the robot (see 

Figure 4-2). There, it was discovered that on average one new word would be discovered for 

each route description. The issue of new primitive procedures appearing during the lifetime of 

the robot is very crucial to the design of instruction based robots. This issue is discussed 

further in the conclusion of this thesis (see section 8.2). 
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number of instruction samples increases. The long line is for all groups considered. The 

shorter lines are for groups A, B and C taken in isolation. Curves are obtained by 

averaging 50 random sets comprising an increasing number of sample instructions. 
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Primitive procedures accept several types of parameters. These are listed and explained in 

Table 4-6 along with examples of values they can take in primitive procedure calls. 
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Primitive procedures accept several types of parameters. These are listed and explained in 

Table 4-6 along with examples of values they can take in primitive procedure calls. 
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Parameter 
Description Examples of possible values 

name 
'self', 'hospital' , 

Takes the names of objects used as 'house', 'junction', 

object landmarks in route descriptions. This 'lake', 'left_turning' , 
parameter can also take the value 'self' in 'bend', 'bridge' , 

cases when users indirectly refer to the robot. 'building', 'car _park' , 
'corner', 'derrys ' 

it describes the relation of a mentioned object 
'after ', 'at', 

relation to another object or the robot. Always 'between', 'by' ' accompanied by one or more 'object' ' in_front_of' , ' left_of' 
parameters. 

ordinal 
Specifies the order of one of many similar 'first', 'second', 

objects usually along the same road. 'third' 
Special case which is used because of system 

'boots', 'car _park ' , 
constraints (see section 4.4). Used only in the 

'grand_hotel' , 
destination "location" primitive to specify whether a 'hospital' , 'library', 

mentioned object is the destination of the 'museum' 
route description. 

Table 4-6: Parameter types and possible values they can take in primitive procedure calls. 

Parameter names end with a number in the primitive procedure headers to avoid confusing 

two or more parameters with the same name. The specific significance of each individual 

parameter for every primitive procedure is explained in Appendix A. 

It is important to note that, in order to follow a purely "user-centred" approach in 

determining the functional vocabulary of the IBL system, the 13 primitive procedures, the 

parameters they can accept and all the possible values each parameter can take are derived 

solely from the corpus of route instructions collected for this project. 
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4.4 The "go" primitive 

The "go" primitive is called when users refer to complete previously learned routes. Examples 

are: 

"go to the post office" (u12_GA_EG) 

"go to the roundabout" (u2_GC_MC) 

"go to the roundabout mentioned previously" (u13_GA_CE) 

"go to boots" (u19_GB_EC) 

When the system learns a new route, it saves all the procedures of the new route in a script file 

called "go_ <point A>_<point B> .py" where point A is the name of the starting landmark 

and point B is the name of the destination landmark. When the system encounters an 

instruction such as "go to the post office" in the beginning of a route description, say, from 

the library to the museum, it first searches the knowledge base to find a file called 

"go_library_post_office.py". If the file is found, information from it is used in the new file 

being created ("go_library_museum.py"). How and which pieces of information from 

previous knowledge is extracted and used is described later in sections 5.3 and 5.4. If, in the 

example given, "go_library_post_office.py'' is not found in the knowledge base then a new 

learning process is started to create it and then use it. 

4.5 The "go_until" primitive 

The primitive "go_until" refers to a previously learned route but only up to a certain point in 

that route. It is used either because the user intents to divert the robot onto another route or 
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because the destination is simply along the previous route but before that route's destination. 

Examples in the corpus were such reference is made are: 

"okay you ll need to pass the rrain station again as you did going to the post office and 

you ll see the university as you go onto the roundabout" (u4_GC_EW) 

"erm head as though you re going towards the post office so you go over the bridge 

but instead of carrying srraight on take a right" (u6_GC_Civ1) 

"okay from the crossroads continue on srraight ahead take the next right" 

(u7_GC_CM) 

"okay head towards the grand hotel but just before you get there the safeway is on 

your right hand side" (ulO_GA_MD) 

"recalling our previous destination was the grand hotel and we passed safeways en 

route just before derrys" (u23_GB_HD) 

"right if you go exactly the same way towards the queens pub as before erm as you go 

over the bridge as you go past the t junction the post office will be there on your 

right" (u6_GC_CX) 

This is a more complicated case than the "go" primitive because now the previously learned 

route must be partly used up to a landmark specified by the user. To add to the problem, this 
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landmark is not always apparent from the instructions in the previously learned file (e.g. "from 

the crossroads ... "). This is either because when the file was created, information about the 

landmark was not inserted by the system, because it was not deemed relevant to the route, or 

because the landmark was not mentioned by the user at all. 

Two methods for solving this problem were discussed during this project but were not 

implemented due to time constraints. These are presented as part of future work in Chapter 8. 

4.6 The under-specification of natural language and how 

it affects the functional specification of the primitive 

procedures 

Spoken route instructions can be very abstract often lacking information that is assumed by 

the instructor as commonsense. However, the missing information can sometimes be vital to 

the success of the robot in executing a route description. In most cases the human listener 

automatically infers the missing information. Alternatively he/ she can engage in a dialogue 

with the speaker in order to request a more explicit version of the instruction. For the 

Instruction Based Learning system, starting such a clarification dialogue with the user can be a 

very complex process. 

It is important therefore, for the system, to try to infer, to the extent possible, any implicit 

information in the user's instructions. Since the system is lacking the cognitive power and 

experience of the human listener the only way to determine how to resolve such cases, is to 
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study the corpus of route instructions collected during this project for those cases where users 

omit the same information and expect the same action from the robot. 

This section shows how the under-specification of natural language route instructions 

influenced the functional implementation of the primitive procedures. The sub-sections below 

present the three cases where missing information in route instructions, that would otherwise 

cause the robot to fail, is inferred by the system. 

4.6.1 The use of default parameter values 

Some parameters of primitive procedures can take default values when a call to these 

procedures does not initialize these parameters. An example of such an occurrence is when a 

user says: "take a left" actually meaning "take the first left turn". The action to "take" is first 

mapped here to the "turn" primitive by the robot manager (see [Lauria et. al., 2002]) and then 

the parameters "relation_ I" and "object_l" are initialised to "left_ of" and "self' to reflect the 

information of direction passed from the user. However, the specifications of the "turn" 

primitive procedure require at least the "ordinal_l" parameter to be initialised too. This 

parameter is given a default value "first" because in all cases of the corpus when the turn 

instruction was used without specifying the ordinal of the turning, the first turning was 

implied. The default values of parameters used in the primitive procedures are listed in each 

primitive's specification in Appendix A. 
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4.6.2 The reference to the destination landmark 

When humans describe a route they continuously refer to landmarks. It has been observed by 

studying the collected cmpus of route instructions that they always refer to the destination 

when that is reached in the description. This reference can be explicit or implicit. Examples of 

explicit references to the destination are: 

"safeways is the next building on your right hand side" (ul_GA_MD) 

"and on the right hand side opposite the lake is the car park" (uS_GC_EP) 

"and the museum will be on your right" (u13_GA_CM) 

However, references to the destination have no particular difference when compared with 

references to other landmarks. Some examples are: 

"you got pc world on your right" (u20_GB_EC) 

"you ve got a car park on your right'' (u20_GB_EG) 

"walk up few metres and then you see the huge tall building on your left" 

(u22_GB_CL) 

"there is a lake on the left hand side" (ul_GA_MY) 

The robot's actions are different when the destination is mentioned than when any other 

landmark is mentioned and therefore a different section of code should be executed for each 

case. In the first attempts to functionally analyse the corpus in order to determine the 

primitive procedures, two distinct primitive procedures called "destination" and "location" 
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where allocated to each case. "destination" was to be called when the landmark reference 

utterance mentioned the destination and "location" was expected to be called when the 

utterance mentioned any other landmark specific to the route description. This posed a 

problem to the robot manager's design because, as can be seen from the examples above, 

there is no indication, from the landmark reference or the utterance structure, of whether 

these refer to the destination or any other landmark. The only way to solve this problem was 

for the robot manager keep in memory the destination landmark throughout the route 

description. Remember that in the beginning of a discourse between the user and the robot 

the user asks the robot to "go to the <landmark>" in which case the destination is always 

explicit. This is when the robot manager stores the landmark's name in memory. After that, 

every time the user mentions a landmark, in his/her route description, this would be 

compared with the destination landmark and if they are the same, the actions for destination 

specification are called, othetwise the actions for location specification are called for 

execution. It was decided that this choice would be made at the primitive procedure level and 

eventually only one primitive procedure called "location" was used for this purpose (see Table 

4-3). This procedure has one parameter called "destination_ I" that is always initialized with 

the name of the destination landmark stored in the robot manager's state. Every time the 

"location" primitive is called the "location_ I" parameter, which indicates the landmark 

mentioned in the user's utterance, is compared with the "destination_1" parameter and 

depending on the result the appropriate course of action is taken. 

A further complication to this problem is that sometimes the final destination reference is not 

always explicit, i.e. the name of the destination is not mentioned. Examples of such references 

are: 
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"take the first left and continue round and you should see it" (u7_GC_CD) 

"take the first right and it should be on your left" (u8_GC_HL) 

At the present moment the dialogue manager cannot always resolve that "it" refers to the 

destination landmark that was mentioned early in the dialogue. When the system fails to 

attribute the reference to the destination it passes an unresolved reference error to the robot 

manager. In these cases the system fails to recognise that there is a mention to the destination. 

4.6.3 The multiple meanings of "go" 

A problem arises when the user says for example "go to the train station" when the train 

station is ahead of the robot on the same road. In this case the user actually means "follow the 

road to the train station". The robot manager, therefore, considers three possibilities when a 

"go to <landmark>" utterance is spoken by the user: 

1. The route to <landmark> was explained in a previous description and the 

associated file exists in the knowledge base. 

2. The route to <landmark> was not explained earlier by the user but the user 

mistakenly assumes the robot knows how to get there. In this case a new learning 

procedure must be started. 

3. <landmark> is ahead along the road. The "follow_road" primitive should be used 

instead of the "go" primitive. 
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To resolve the problem, the robot manager searches the knowledge base to find the previously 

learned route. The outcome distinguishes between possibility 1 (a previously learned route is 

found) and possibilities 2 and 3 (a previously learned route is not found). If a previously 

learned route is not found the proper course of action would be to start a clarification 

dialogue with the user to resolve the issue (whether the user meant 2 or 3 above). At the 

present moment engaging in a dialogue with the user to resolve sucb issues is part of future 

work and therefore it is not implemented. Rather, in such a case, the robot manager selects the 

most probable interpretation between cases 2 and 3 above. 

4. 7 The concept of corpus based designed system 

4.7.1 Contribution of the corpus to the natural language system 

design 

The collected corpus of route instructions contributed in two ways to the development of the 

dialogue manager: 

1. It determined the lexicon of the selected context and 

2. It provided the syntax that humans use when giving spoken route descriptions to a 

robot. 

The speech recognition system used in this project is speaker-independent, i.e. it can recognise 

any human voice without it being trained with that voice. One of the major factors affecting 

the success rate of speech recognition systems, which are speaker-independent, is the number 

of different words they can recognize. As this number increases, the speech recognition error 
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rate increases exponentially. To be effective to an acceptable level of recognition, a speech 

recognition system must have a lexicon of, at most, a few hundred words. To keep within the 

bounds of this limitation the speech system must be able to dynamically change the size and 

content of its lexicon based on the context or theme of the dialogue. In this project the 

context is that of route descriptions and so the lexicon of the dialogue manager was 

constrained only to those words found in such context. This set of words was directly derived 

from the collected corpus (see section 4.2). 

4. 7.2 Contribution of the corpus to the robot system design 

The collection of the route description corpus contributed in two ways to the development of 

the robot manager component of the IBL system: 

1. It indicated the type and structure of the primitive procedures that would need to be 

created for the robot and 

2. It indicated the objects that the robot should be able to recognise in the miniature 

model town. 

As mentioned earlier in this thesis, the primitive procedures are those procedures that the 

robot will need to have in its knowledge base when it begins its "life". These are the tasks that 

a user, in the route description context, will not explain in detail. Take for example the 

frequent occurrence of the instruction: "turn left". The users did not explain in their route 

instructions how to turn left but assumed that the human who would at some point drive the 

robot knew how to do it. The program, therefore, which causes the robot to perform a left 
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turn, had to be created before the robot started learning new routes. The "turn" procedure is 

one of the primitive procedures (see section 4.3). 

Humans continuously use landmarks in their route descriptions. Often these landmarks are 

used as essential parts of the route they are describing ("rum left after the post-office", "at the 

crossroads take a right", "the hospital will be in front of you" etc). Sometimes landmarks are 

also used as a reassurance that the robot is on the right track ("you will see a lake on your 

left", "you will pass by the library", "there will be some trees on your right" etc). The robot 

needs to be able to identify these landmarks when following route instructions using vision as 

its only sensing ability. Information as to how the crossroads or the library looks like, or how 

to search the visual field for such landmarks is assumed to be known by the robot and thus 

such ability should be pre-programmed into it. Also knowledge related to the nature of the 

landmarks themselves should exist in the robot's memory. For example the instruction: "pass 

the crossroad" would require the robot to do something quite different from the similar 

instruction: "pass the post-office". 

The landmarks found in the corpus included road layout features such as crossroads, turnings, 

t-junctions, the roundabout exits, signed or unsigned buildings, the bridge, the roundabout, 

the lake and trees. In this project only road layout features are identified by the robot. All 

other landmarks mentioned by the users are identified by placing a coloured strip next to them 

on ground plane (see sections 6.2 and 6.3). 
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4.8 Summary/ Contribution 

This chapter explained how the corpus collected was analyzed in order to determine the 

functional lexicon for the robot used in this project. The primitive procedures presented in 

Table 4-3 were derived solely from the corpus thus ensuring a purely "user-centred" approach 

to the design of the IBL system. It is unlikely for a roboticist to have intuitively determined 

these primitive procedures without studying how humans give route instructions. This is 

because, not only the primitive procedures would have to be determined, but also the different 

ways humans call each primitive action through natural language. The primitive structure 

should be made flexible enough to accommodate this. Consider for example the following 

three utterances: 

"at the roundabout, take the second exit" 

"enter the roundabout in a clockwise direction and take the second left turn" 

"turn left in the roundabout, take the second exit" 

All three user utterances are accepted and will result in exactly the same actions by the robot 

in the IBL system because users in the corpus have used utterances similar to these in order to 

instruct the robot to use the roundabout. This diversity among users could only be revealed by 

studying the corpus collected in this project. In the primitive procedures the different natural 

language forms of the same action are accommodated by the use of different procedure 

parameter combinations and/or values. The possible parameter combinations and values are 

determined by studying the corpus. 
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It is possible, after the development of the system, that new (i.e. unseen in the corpus) forms 

of primitive actions will appear in natural language instructions, which will not be covered by 

the possible parameter combinations and values determined in the corpus. This problem is 

similar to the one of altogether new primitive actions appearing after the completion of the 

system, which is mentioned below. 

The work described in this chapter revealed three problems that are important for. the future 

design of IBL robots. These are: 

1. The probability of new primitive functions arising in route instructions after the 

development of the system (see section 4.3.1). 

2. The cases when users make partial use of previously learned procedures while 

explaining new procedures (see section 4.5). 

3. The under-specification of natural language (see section 4.6). 

It has been shown in section 4.2 that the ffiL system will be faced with new words after its 

completion. This has been observed also in previous work on speech recognition systems 

such as for example in [Zue, 1997]. In this thesis we also show that in the same way, new 

primitive functions can appear after the completion of the system. 

This chapter also explained how users refer to a part of a previously explained route while 

explaining a new route. This reference is made implicitly by only mentioning a landmark at the 

point where the robot is supposed to stop following the previously explained route. 
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Determining the landmark referred to is not always apparent from the instructions in the 

previously learned procedure. This problem has never been documented previously. 

Cases 1 and 2 above are discussed further in chapter 8. 

This thesis focuses on the natural language under-specification problem. In this chapter three 

methods were proposed in order to determine missing information in natural language route 

instructions during the learning of new procedures (see Section 4.6). Section 6.2 explains how 

the well known method of image template matching is used in order to determine missing 

information during the execution of route instructions. 
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Chapter 5 

5 The functional structure of the primitive 

procedures 

In this chapter the functional organization of the code in primitive procedures and the reasons 

behind it are explained. Section 5.1 presents the generic flowchart followed by all primitive 

procedures found in the corpus. In Section 5.2 the need for lower level procedures is 

explained. These low-level procedures are called by the primitive procedures at the highest 

leveL In Section 5.3 it is explained how the structure of the primitive procedures enables 

linking of a series of procedures in order to form a new "learned" procedure. Finally Section 

5.4 describes the use of a "prediction function", which is created in all primitive and new 

procedure files and it is used for verification and error detection in the user's description 

during the "learning" stage. The prediction function predicts whether the primitive, when 

called during the execution of the route description, will execute without any inconsistencies 

due to wrong or missing parameters passed to it. 
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5.1 The structure of primitive procedures and how it 

reflects the structure of spoken instructions 

With the exception of one primitive extracted from the corpus, the structure of the primitive 

procedures reflects the human cognitive process when following a route instruction. This 

process incorporates a "search-and-act" loop that exits when a terminating condition is met. 

The terminating condition is always associated with finding a landmark (the target). As an 

example consider the route instruction: "take the second turning to the left". The target 

landmark is the second left turning. The search-and-act loop involves searching for the 

turning and moving along the road until it is found. When the second left turning is found the 

robot moves to where the roads meet and rotates left in order to face the new direction (target 

associated actions). 

The exception to the loop-structure described above is the primitive "rotate". This primitive 

was used only twice in the corpus (Table 4-3) and it simply causes the robot to rotate about 

itself 180 degrees. Therefore its execution is represented by a single pre-defined action. 

Figure 5-1 shows the flowchart followed by all primitive procedures. 
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Pre-defined action 

(a) 

Possible calls to 
other primitives 

Capture and process 
camera image 

Search for target 

N 

Move short distance 
on the road 

(b) 

y Possible target 
associated 
action(s) 

Figure 5-1: (a) Flowchart of"rotate" primitive procedure and (b) flowchart of all other 

primitive procedures extracted form the corpus. 

The remainder of this section explains in detail the flowchart illustrated in Figure 5-1 (b). 

In the beginning, the target is defined based on the combination and values of parameters 

passed to the primitive procedure. The search-and-act loop is then entered. This consist of 

capturing and processing an image from the camera on-board the robot, using the new visual 

105 



data to re-localize the robot in order to determine and account for the odometric error and 

then searching for the target landmark in the field of view. If the target landmark is not found 

the robot moves along the road for a short distance before re-starting the loop. If the sought 

landmark is found, a set of target associated actions are performed and execution is then 

passed to the next primitive procedure. A detailed description of each block of the flowchart 

in Figure 5-1 is given in Chapter 6. 

Primitive procedures can call other primitive procedures in the beginning of their body. At 

first glance, this may be thought to conflict with the definition "primitive" but this flexibility is 

only allowed to reduce the complexity of the system. Take for example the case when a user 

says: "after the library ti.u:n right" as part of a route description. This has to be considered as 

one functional component of the route description according to the definition of the 

functional component given in section 4.3. However, to execute the above instruction two 

primitive procedures are actually called that correspond to: "follow the road until the library" 

and "take the (first) right turn". The mapping to the two primitive procedures can be done in 

two ways: 

1. The robot manager can call the two primitive procedures individually. For example: 

follow_road(relation_l="after•, object_l="library•) 

turn(relation_l="right_of•, object_l="self") 
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2. 1be robot manager can call the "turn" primitive only with the necessary parameters so 

that this primitive would then call the "follow_road" primitive from within itself. For 

example: 

turn(relation_l="right_of", object_l="self", relation_2="after", 

obj ect_2=" library") 

It was decided that it was easier to follow the second approach in such cases because it was 

more difficult for the robot manager to determine from the Discourse Representation 

Structure (DRS) the implicit action to "follow the road until the library" in the example given 

above. 

The Python program code of all primitive procedures is included on the CD accompanying 

this thesis (see Appendix C). 

5.2 The use of low-level procedures 

It quickly became apparent during the implementation of the primitive procedures that these 

required to call low-level procedures from within their body. These were called "low-level" 

because they perform specific actions (more fundamental than that of the primitive 

procedure) and each can be used by more than one primitive procedure. These low-level 

procedures are not accessible directly by the human user (Figure 5-2), i.e. no functional speech 

segment of the route instructions could be directly mapped to them. 
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Primitive procedures (Accessible to user via natural language) 

Low-level procedures (Not accessible to user) 

Figure 5-2: Primitive procedures can be accessed by users via natural language whereas 

low-level procedures cannot. 

The low-level procedures needed to be created to avoid duplication of code in the 

implementation of the primitive procedures. 

Some examples of low-level procedures are shown in Table S-1: 

Captures an image from the camera on-board 
capture_image ( ) the robot and saves it to an image file to be 

used for future processing. 

optical_calibration () Corrects optical distortion on the captured 
camera image. 
Applies the inverse perspective mapping 

produce_world_prespective () transform to obtain the top view of the robot's 
view. The top view image is saved to an image 
file. 
Scans the robot's view in order to find object. 

found_object( object) Returns true or false. If true (object is found) the 
object's location is also returned. 
Causes the robot to move to a specified location 

move_to (x, y, 8) relative to its own and once there turn at a 
specific angle. 
Causes the robot to follow the road for a short 

short_move_on_ road () distance. This distance is short enough so that 
no visual information is lost. 

Table 5-1: Examples of low-level procedures. 
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5.3 The verification of new procedures during their 

creation 

As mentioned earlier, new procedures are learned by combining previously learned procedures 

(mosdy primitive procedures) from the knowledge base of the robot. When the user describes 

a new procedure as a sequence of actions, it is important for the robot to verify if this 

sequence is executable before it saves the sequence into memory. The approach used in this 

project is to associate each procedure with a triplet S;1\;Si with properties similar to 

productions in SOAR (see (Laird et. al., 1987]). The state S; is the pre-condition for action A;i· 

It defines what conditions must be satisfied by the robot's state for action A;i to be possible. 

The state Si is the final state, resulting from the action A;i applied to the robot's state. For a 

sequence of actions to be realisable, the final state of one action must be compatible with the 

pre-condition of the next one. To enable this verification, the robot must be able to "imagine" 

the consequence of an action. For that purpose, a "prediction" function is associated with 

each primitive action, and with each newly created procedure. This is described in more detail 

in the following section. Figure S-3 illustrates the use of the prediction function during 

verification of the consistency of the sequence of instructions from the user. 
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Figure 5-3: Illustration showing how the prediction function in primitive procedures is 

used. Row (a) shows a case were the state of the robot after executing procedure Pl is 

consistent with the next procedure to be executed P2. Row (b) shows the case where there 

is an inconsistency between the state the robot is left in after executing Pl and the 

expected state for the next procedure to be executed. For a more detailed explanation of 

the figure see text below. 

For each procedure there is a prediction function that transforms a state vector into its future 

value (Figure 5-3(a)). The function first determines if the input state satisfies the minimal 

criteria ("pre-condition") to enable the procedure to be executed. An action is executable only 

if selected elements of the state vector have required values. If this is the case, the next state is 

predicted and processed by the prediction function associated with the next procedure in the 

instruction. Each action modifies certain components of the state vector, and leaves the others 

unchanged. If the predicted state produced by one procedure does not allow the next 

procedure to be executed, an error handling process is initiated (Figure 5-3(b)). 
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Any inconsistencies detected may mean that the user has made a mistake in his/her 

description or the system misinterpreted what the user said. In this case a simple dialogue with 

the user is started to clarify the problem. 

5.4 The "prediction" and "action" functions of primitive 

procedures 

Every primitive procedure and newly created procedure is composed by a "prediction" and an 

"action" functions. Both these functions exist in the procedure's module file and take the 

same parameters with one exception: an extra parameter called "state" is passed only to the 

prediction function. This state is modified and returned by the prediction function. 

As explained in the section 5.3 the prediction function of a procedure is used to predict the 

future state of the robot, given its current state, when the procedure is executed. Also the 

prediction function can detect any inconsistencies between the state of the robot and the 

expected state, which is required for the successful execution of the procedure. During the 

learning of new procedures, when an instruction given by the user is mapped to a procedure 

in the knowledge pool of the system, the prediction function of that procedure is called with 

the current "virtual" state of the robot in order to check whether this state satisfies the pre

condition for the procedure to execute. If no inconsistencies arise, the new virtual state is 

returned by the prediction function and the procedure call is added to the new procedure file. 

This is repeated with the new instruction of the user until he/ she finishes his/her description. 

If there is an inconsistency, however, the prediction function returns an error message to the 

robot manager indicating the problem. In this case the system attempts to rectify the problem 
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in a simple way by responding to the user with: "I did not understand what you said" 

expecting the user to repeat. 

The prediction function of every primitive procedure makes three checks every time it is 

called: 

1. Parameter combination check. 

2. Parameter value check (for every parameter passed to the procedure). 

3. State check. 

The checks are made in the order presented above and if any inconsistency occurs along the 

way, the prediction function returns without checking for any further inconsistencies. Table 

5-2 shows the pseudo-code of the prediction function indicating the three checks. 
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predict ion (state, parameter_l, parameter_2, ... , parameter_n) 
( 

Ill Parameter combination check 11111111111111111111111111111111111 
if passed_parameters_list not in valid_parameter_combinations 
( 

return parameter_combination_error 

Ill Parameter value check 11111111111111111111111111111111111111111 
if parameter_l not in parameter_l_accepted_values 

return [parameter_value_error, parameter_l] 

if parameter_2 not in parameter_2_accepted_values 

return [parameter_value_error, parameter_2] 

if parameter_k not in parameter_k_accepted_values 
( 

return [parameter_value_error, parameter_k] 

Ill State check lllllllllllllllllllllllllllllll/1/ll/1/lll/lllll/1/ 

list_of_valid_states "' [state_l, state_2, ... , state_k] 

if state not in list_of_valid_states 
( 

return [state_error, state] 

return predicted_state 

Table 5-2: Pseudo-code of the prediction function in primitive procedure modules. 

The parameter combination check makes sure that the combination of parameters passed to 

the primitive is one of the allowed combinations (see Appendix A for the allowed parameter 
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combinations of each primitive procedure). Once the first check is passed, the second check 

makes sure that the value of every parameter passed to the procedure is among the allowed 

values for that parameter for the specific procedure (see Appendix A for the allowed 

parameter values of each primitive procedure). Finally, the state check verifies that the virtual 

state of the robot (predicted by the previous procedure) is among the valid states compatible 

with the action to follow. All primitive procedures have their own list of valid states. The state 

of the robot must be the same as one of the members in this list in order for the state check to 

be successful. For example, consider the case when a user says: "carry on to the end of the 

street" and then he/ she continues by saying: "follow the road to ... " In this case the state 

check will fail because the current state value in the virtual state variable will be 

"end_of_road" after the execution of: 

follow_road(relation_l="to", object_l="end_of_road") 

that corresponds to the first utterance of the user. This state value will not be among the valid 

states after the execution of the above "follow_road" primitive call since the robot at the end 

of the road (whether this is a dead-end or a t-junction) does not have a road ahead of it. 

The action function in the procedure's module is the one containing the commands which, 

when executed, cause the robot to perform the action instructed by the user. The different 

operations that take place in the action function of the primitive procedures are explained in 

detail in chapter 6. 
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The prediction and action functions of a new (learned) procedure are composed from the 

prediction and action functions of its constituent procedures. This is shown diagrammatically 

in Figure S-4. 

Procedure XVZ 

Prediction 
Function 

Action 
Function 

(a) 

Previous Knowledge New Procedure 

(b) 

Figure S-4: Procedural knowledge representation. 

The contribution of the author of this thesis to the synthesis of new (learned) procedures in 

the IBL (instruction based learning) system was to create the prediction and action functions 

in each primitive procedure file in such a way so as to enable the straightforward copying of 

the program code into the new procedure files. 

5.5 Summary /Discussion 

In section 5.2 the requirement for low-level procedures in primitive procedures is described. 

These were created in order to achieve code efficiency and reusability. Apart from that 
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though, the appearance of such low-level procedures revealed a more important fact: it was 

the level of specialisation of the human users within the context that determined how 

fundamental, to the robot, primitive procedures are. For example, if all human subjects invited 

for the corpus collection were roboticists then the primitive procedures would probably refer 

to more fundamental tasks such as those listed in Table 5-1. 

The existence of tasks at different levels is mentioned in [Lueth et. al., 1994) where a dialogue 

interface for a robot performing mechanical assembly tasks is explained. The main difference 

with the work presented here is that in [Lueth et. al., 1994] all the tasks that the robot can 

perform are accessible to the user via the natural language interface. This is to allow a more 

elementary control of the robot. As with previous approaches described in section 2.1 the 

complete task vocabulary of the robot described is determined using a robot-centred 

approach. 

The use of a prediction function in primitive procedures (described in section 5.4) provides a 

mechanism for the robot to prevent failure in the execution of a route description before the 

execution starts and while it still has the attention of the user. Errors in the execution of a 

route description can occur because of four reasons: 

1. When the user makes a mistake in the route description. 

2. When the user is ambiguous. 

3. When the user does not provide enough information for the execution of an 

instruction. 

4. When the system wrongly recognizes what the user said. 
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It is important to realize that the prediction function will not always detect errors because of 

the above reasons. This is because the outcome of the above cases can sometimes result in a 

valid procedure call that will produce an action not intended by the user. 
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Chapter 6 

6 Vision for robot navigation 

The robot used in this project uses a camera as the only sensor of its environment. Images 

from the camera (see example in Figure 6-1) are sent by wireless video link to a PC, which 

processes them to extract information specific to the route description that the robot is 

following. 

Figure 6-l: An example of a raw (unprocessed) robot camera image. 

The robot camera image is used in three ways: 
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1. For robot localization. 

2. To establish the location and orientation of objects mentioned in route descriptions. 

3. To establish the location of the next waypoint that must be reached by the robot while 

it is moving towards its final destination. 

To achieve the above tasks several pre-processing operations are performed on the raw 

camera image first. These are described in section 6.1. 

Landmarks referred to in route descriptions are categorized in two groups for the purposes of 

this project: 

1. Road layout features (such as turnings, crossroads, t-junctions etc) and 

2. Non road-layout objects (such as trees, buildings, the bridge etc). 

Section 6.2 explains how road layout features are found in the robot's view using the well 

known method of image template matching. 

Although originally planned, the duration of this project did not allow for the development of 

image processing routines, which would recognize non road-layout objects mentioned in the 

natural language route descriptions. Section 6.7 explains how non road-layout landmarks 

mentioned in route descriptions are detected using a coloured marker placed next to them. 
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In order to be able to determine and account for the odometric error introduced every time 

the robot moves (localization) and also to keep in memory important visual information 

previously "seen" by the robot, which afterwards falls outside its field of view, a "short-lived" 

map of the environment is created as the robot moves. The "short-lived" map is described in 

section 6.3. 

In sections 6.4 and 6.5 it is explained how road surface and the road edge information are 

extracted from the robot's view. Road surface information is used in the template matching 

process and road edge information is used in the creation of the "short-lived" map. 

Finally section 6.8 describes how spatial references to landmarks are used for successful robot 

navigation. 

6.1 Capturing and . 
pre-processtng the robot camera 

tmage 

Two successive operations are performed on the raw camera image after it is captured by the 

robot: 

1. Optical calibration and 

2. Inverse perspective mapping. 
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Optical calibration is applied to the raw camera image to correct the distortion produced due 

to the optics of the camera lens. Figure 6-2 shows the same image before and after optical 

calibration. 

Figure 6-2: (a) Raw camera image and (b) the same image after optical calibration. 

The mathematical formula that provides the corrected location of a pixel after optical 

calibration is taken from [Faugeras, 1993]. It is reproduced here below: 

x' = xc + (x- xc )[1 + k1 [<x- xc) 2 + (y - y c) 2 ] 

y' =Ye+ (y- yJ[l +kJx-xJ2 +(y- Yc)2
] 

(6-1) 

Where (x,y) are the coordinates to be corrected, (x,.y) are the coordinates of the camera's 

image centre and k 1 is the optical distortion coefficient. The experimental method followed to 

obtain k 1 is similar to the one explained in [Koay, 2002]. In short, this is done by placing a 

calibration pattern (such as a mesh of known dimensions) at a known distance in front of the 

camera so that the camera's optical axis is perpendicular to the calibration pattern's plane. 

After determining the camera's image centre coordinates Xt~Yr (this is where no distortion 

occurs on the captured image), the value of the optical distortion coefficient k 1 is found by 
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trial-and-error. This is done by changing the value of k, until the corrected image displays the 

calibration pattern undistorted. For the images captured by the camera in this project k, was 

found to be 6.5E-6. 

Inverse perspective mapping is applied to the optically calibrated camera image to produce a 

top view (or "eagle's eye view") of the scene that the robot is facing. However, this is a 

pseudo-view because it can only show true geometrical information of objects existing only on 

one plane. For the purposes of this project, the road surface plane is chosen to be consistent 

with the true top view of the scene. All three-dimensional objects appear distorted in this view 

(Figure 6-3(b)). 
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(a) (b) 

(c) (d) 

Figure 6-3: Illustration showing how inverse perspective transformation is performed on 

the robot's camera image. (a) Shows an example of an optically calibrated camera image, 

(b) shows the result when inverse perspective mapping is applied to (a). Note the missing 

information due to the sampling effect in (b). In (c) the missing information is 

interpolated using neighbouring pixels containing information. (d) is the part of (c) used 

by the primitive procedures for further processing. 
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This distortion occurs because the inverse perspective transform takes as input a two-

dimensional image (the camera image). Therefore only one plane (out of the infinite possible) 

can be selected to be consistent with the real world. In this project the road plane is selected 

for this purpose. The following equations describe the inverse perspective mapping function: 

1i 
d = h · tan - - 0 + arctan 

2 

(Ye- y)·J2·(1-cos(a)) 

I ·cos(a) 
Jo 2 

x-xc .,j 2 2 (/3) e =--·2· h +d ·tan -
/.., 2 

(6-2) 

Where (d, e) are the world coordinates of a point represented by the camera image coordinates 

(x,y). Angle 0 is the tilt angle of the camera, (x,,yJ are the coordinates of the camera image 

centre, a and /3 are, respectively, the camera's vertical and horizontal maximum angles of view 

and h is the distance between the camera and the ground plane. 

Notice that the height and inclination of the robot camera are the two parameters that define 

which plane (in the real world) will be geomerrically consistent with the top view image after 

the transform is applied. 

Considering the road surface plane, notice that pixels in the lower part of the camera image 

correspond to visual information in the plane closer to the robot. Likewise, pixels at the top 

part of the camera image correspond to visual information further away from the robot 

(Figure 6-4). 
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Camera image 

Figure 6-4: Diagram showing the correspondence of pixels on the image plane with pixels 

on the ground (or road surface) plane. 

Because of the digital nature of the camera image, the inverse perspective mapping transform 

does not have information for areas of the world in-between pixels of the camera image. Due 

to this reason, discontinuities appear in the resulting top view image (see Figure 6-3(b)). 

Notice that these discontinuities are larger at the top of the image. This is because the 

corresponding world distance between two adjacent pixels in the camera image is larger at the 

top of the camera image than at the bottom. 

In order to improve the top view image, the discontinuous areas are interpolated using 

information from their most adjacent pixels that contain visual information. The result of this 

interpolation is shown in Figure 6-3(c). Figure 6-3(c) is likely to be a more "faithful" 

reproduction of the real world in areas closer to the robot rather than further away from it. 
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This is because the sampling at the bottom of the top-view image is less severe than at the top 

and therefore any interpolations at the bottom of the image are likely to be more accurate. 

Using the whole of Figure 6-3(c) would take a lot of computational time to perform future 

image processing. Furthermore, the robot does not require visual data as far as Figure 6-3(c) 

extends since ir will not be able to move that far in one go because of its accumulating 

odometric error. Therefore a smaller section of Figure 6-3(c) is used for the purposes of 

further image processing. This has dimensions 100x100 pixels and it is the lowest part of 

Figure 6-3(c). This is shown in Figure 6-3(d). The scale of this is 0.003330m/pixel. This means 

that the robot uses only visual information consistent with its plane of motion and its useful 

view extends as far as 0.333m away from its position. From this point onwards this image 

matrix will be referred to as the "top view image". 

The two pre-processing steps described above (i.e. optical calibration and inverse perspective 

transform) are always performed on every new image captured by the robot. In order to save 

computational time equations 6-1 and 6-2 are used to produce a "transformation lockup 

matrix". This matrix is of the same size as the top view image and contains in each element 

the coordinates of the pixel in the raw image that needs to be copied to the corresponding 

location in the top view image to achieve both pre-processing steps. 
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6.2 Detection of road features ustng image template 

matching 

In this section, the method for locating road layout features mentioned in route descriptions is 

described. Such features include left/ right turnings, t-junctions, roundabout entries/ exits, road 

ends, road bends and crossroads. 

In order for the robot to navigate successfully to its destination, it needs precise location 

information of any landmarks mentioned in the route description. In most cases the robot 

must move to the landmark's location and perform a manoeuvre. For example to "rum left at 

the crossroads" the robot needs to move to the centre of the crossroads and rotate left to face 

the new direction. 

In the example given above the precise location of the crossroads is not explicidy given by the 

user and therefore it has to be determined by the robot during the execution of the road 

instruction. To do this, the robot needs to first identify the road feature (the crossroads) and 

then select a point on the feature to navigate to (centre of the crossroads). Then it needs to 

perform the requested action (rotate left). 

To identify road layout features in this project a simple form of template matching is used. 

Section 6.2.1 explains briefly what is template matching and refers to previous research in this 

area. Section 6.2.2 presents the templates of the template matching method used in this thesis, 

section 6.2.3 explains the template matching procedure and section 6.2.4 describes how the 

127 



template matcl:llng method is used in the primitive procedures to achieve successful robot 

nav1ganon. 

6.2.1 Template matching 

Template matcl:llng is a method that falls under the broader scope of image matching or image 

registration. Image matching is a well researched filed spanning over the last forty years (see 

[Rosenfeld, 1969], [Niblack, 1986], Oain, 1989] and [Gonzales and Woods, 1992]). The aim of 

image matching techniques is to obtain a measure of similarity (or difference) between two 

images. One of the images (usually called the reference image) is geometrically transformed so 

that each point in it can be mapped to a point in the other image. This transformation can 

involve rotation, translation and scaling of the reference image. For each such transformation 

a similarity (or difference) value is calculated based on the properties of the overlapping 

regions in the two images. 

The method of calculation of the similarity (or difference) measure between the two images 

depends on several factors such as the area of application of the image matclllng operation, 

the available computing power, the required precision of the result, the available image 

information etc. 

A comprehensive review of image matclllng techniques and examples of the wide spectrum of 

applications where the different approaches are used can be found in [Brown, 1992] and 

[Aschwanden, 1992]. 
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Template matching is one variation of image matching. In template matching the reference 

image (or template image) is an image of an object of interest, which is sought in the main 

image. A sufficiently good match of the template in the main image reveals the presence (and 

location) of the object represented by the template in the main image (see [Rosenfeld and Kak, 

1982], [Pearson, 1991] and [Pratt, 1991 ]). 

In this thesis template matching is used to locate road layout features in the robot's view. The 

templates used in this method are pre-constructed images of road layout features. These are 

presented in the following section. 

6.2.2 Road feature templates 

The templates used in this thesis are binary images (indicating road and non-road regions) of 

local road surface features drawn at the same scale as the short-lived map. Fifteen templates 

are used by the primitive procedures. They are shown in Table 6-1. 
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(a) 

(f) 

(k) 

.. 
(b) 

(g) 

• • (I) 

(c) 

(m) 

... 
(d) 

(i) 

(n) 

• • 
• • (e) 

(o) 

Table 6-1: The templates used for the template matching method. Light grey colour 

indicates road-like areas and the black colour represents non-road areas. The templates 

shown are used to find: (a) straight road, (b) end of road, (c) left and (d) right turnings, (e) 

crossroad, (f) left and (g) right bends, (h) t-junction, (i) roundabout entry, (j) clockwise 

and (k) anti-clockwise curved road in roundabout, (l) left and (m) right roundabout exits, 

(n) left and (o) right 90-degree turns. 

In searching for a road layout feature mentioned in a route instruction the associated template 

image is matched against the road surface map of the top view. The road surface map is a 

binary image showing road and non-road regions in the front vicinity of the robot (Section 6.3 

explains how the road surface map is created). A good matching position of the template on 

the road surface map provides the location and orientation of the road feature, which are vital 

for the successful execution of the route instruction. 
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Note from Table 6-1 that some template shapes are more generic than others thus covering a 

range of possible road layout features described the same way in natural language route 

instructions. For example the right turning template (Table 6-1, image (d)) represents a range 

of right turnings from approximately 45 to 135 degrees to the direction of the road. This is 

illustrated in Figure 6-5 for three angles (45, 90 and 135 degrees to the main road). 

Figure 6-5: Template (d) of Table 6-1 is used to represent a range of possible right 

turnings at different angles to the main road. 

Where the thick black lines in the figure represent the edges of the road. 

The following section describes how the template images are used by the primitive procedures 

in order to locate the road layout features mentioned in route instructions. 

6.2.3 The template matching procedure 

Each template is associated with a pivot point and a "new direction" vector. These are shown 

for some templates in Table 6-2. 
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• 
• (a) (b) (c) (d) 

Table 6-2: Pivot point (dot-centred circle) and direction vector (arrow) for some of the 

templates. 

Translation and rotation of the template during the matching process is done with reference 

to its pivot point. The pivot point of the matching template is mapped into real-world 

coordinates and this becomes the next waypoint for the robot. The direction vector indicates 

to the robot the direction it must turn to, after reaching the template waypoint, in order to 

keep facing the road ahead. 

While searching for the best matching position, the road edge image is displaced and rotated 

(vector [xzJ,rfJ]) so that its pivot point scans the road surface map image. Figure 6-6 illustrates 

one position of the template on the map image during the matching process. The road layout 

feature sought in the example is the left turning. 
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Figure 6-6: Illustration of one position of the template image on the road surface map 

while searching for the best matching position. 

Note that only the outline (in red colour) of the associated template is shown for clarity. 

The matching process for each location and orientation (vector [xtJ,f/J]) of the template on the 

road surface map produces a matching quality Q1• Variable Q1 is made from the sum of two 

ratios: 

1. The score, which is the sum of the matching road and non-road pixels in the two 

images divided by the number of template pixels falling onto areas of the map where 

information in available and 

2. The confidence factor, which is the fraction of template area falling onto areas of the 

map with road surface information. 

Both, the score and confidence terms, are required to give an indication of how good a 

matching position is. The score gives an indication of how "well" one image matches on the 
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other and the confidence gives an indication of how much image area (compared to the total 

area of the template image) was considered to obtain the score. The bigger the area 

considered, the more believable is the score value. 

This is expressed formally by the following equation: 

l: XOR(mP,t P) l:NOR(m~,t~) 
Q ( rp) = peT(x,y,tp)r.M + peT(x,y,rp)r.M 

I x,y, "' I I "' ~NOR(mP,tP) ~tP (6-3) 
peT(x ,y,tp)nM peT 

m,m
1
,t,t 1 

E {0,1} 

Where pis a pixellocation in the overlapping area of the template and road surface map 

images. Variables m and tare values of pixels in the road surface map image M and template 

image Trespectively. Value 0 denotes no road, and value 1 denotes road. T(xtJ,t/J) is the 

template image translated by (x,y) and rotated by t/J. Variables m' and t'are the information 

masks of the map and template images where 0 denotes the presence of information (mask is 

off) and 1 denotes no information (mask is on). The binary functions XOR (exclusive or) and 

NOR (not or/inverse or) are used in equation 6-3 to avoid more complicated algebraic 

expressions. This has been possible here because the images operated upon and their 

information masks are binary. 

The best matching position and orientation of the template is the one whereQ1 is maximum. 

Equation 6-3 ensures that, for two configurations with equal score, the one with highest 

confidence is the winner. 
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This is essentially no different than computing the sum of the absolute (or square) of the 

differences between overlapping pixels in the two images and normalising over the 

overlapping area between the two images. The aim would then be to find a template position 

that would give a minimum rather than a maximum score. This method is described in 

[Rosenfeld, 1969]. 

Because template matching is a costly operation as far as computer processing time is 

concerned different methods exist to locate the best template matching position in a more 

efficient manner. In this thesis a simple "hill-climbing" method described in [Rosenfeld and 

Kak, 1982] is used to speed up the matching process. The method requires that the correlation 

between the template and the map image contains relatively smooth and broad maxima. In 

other words the matching quality between neighbouring template transformations in the 

(xJ',f/J) space should vary in a relatively gradual manner. In order to find the best matching 

position of the template, a crude search is performed initially using coarse steps of position 

and rotation of the template on the map. The search is then refined for a more accurate 

determination of the position and orientation of the best matching position. This is illustrated 

in Figure 6-7. 
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Figure 6-7: Illustration showing how the matching of the template is performed on the 

road surface map in order to save computational time. This starts with coarse scanning (a) 

of the pivot point (of the template) in the map (1 in every 4 pixels shown in grey colour). 

For the second step an area Sr (shown magnified in (b)) is selected for a finer scan (1 pixel 

in 2) around the position that produced the best matching quality in the first scan. Each 

side of 51 is equal to twice the scan step in (a). In the same way scan area 52 is selected 

from (b). All pixels of 52 are scanned in order to give the best possible matching position. 

Note that the saving in computational time for the example shown in Figure 6-7 is 88%. 

Every template is associated with a minimum quality Q,mill· If the template matching quality Q, 

is less than Q ,mill then it is assumed that a road feature associated with the template does not 

exist in the robot's view. In the case illustrated in Figure 6-6 the best matching position gives a 

matching quality above Q ,mi• indicating the presence of a left turning. The best position of the 

template is shown in Figure 6-8. 
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Figure 6-8: The best matching position of the left turn template on the road surface map. 

Note how the pivot point of the template indicates the next waypoint of the robot. 

6.2.4 How template matching is used in primitive procedures 

As described in section 5.1 the first task in the "action" function of every primitive procedure 

(except the primitive "rotate") is to define the target (Figure 5-1 (b)). This is always a landmark 

mentioned by the user which, when found by the robot, the primitive exit its "search-and-act'' 

loop and passes execution to the next primitive. This section explains how landmark searching 

is achieved for road layout features. 

In every iteration of the "search-and-act'' loop the robot searches for the target landmark in 

its view. If this is not found, the robot moves a short distance along the road and repeats the 

loop sequence again. If the target landmark is found the robot performs any possible target-

associated action(s) (see section 5.1) and the primitive procedure exits. The landmark to be 

sought in the "search-and-act'' loop and its associated actions are decided in the beginning of 

the primitive procedure from the parameters passed to the primitive. For example, when the 

user says: "turn left at the t-junction", the target is the t-junction. The search-and-act loop will 

exit if a successful matching position for the t-junction template (fable 6-1 (h)) is found. The 

target associated actions are to: 
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1. Move to the waypoint mapped to by the template's pivot point 

2. Turn to the new direction according to the template's direction. 

3. Rotate 90 degrees to the left. 

Different users in the corpus sometimes used the same words to refer to two different road 

layout landmarks. For example in the following corpus segments: 

"take a left turn at the junction" (u9_GC_HC) 

"take a left turn" (u9_GC_HD) 

"turn left'' (u24_GB_HD) 

users were actually instructing the robot to turn left at a t-junction (see Figure 6-9). Note that 

their instructions could have equally been valid for a left turning. 

Figure 6-9: Users u9 and u24 were asked to explain a route starting from the Hospital (H). 

Their first instruction referred to the t-junction the robot would meet. 
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For this reason, depending on the user's instruction and therefore the parameters passed to a 

primitive procedure, a landmark sought in the primitive may be represented by a set of 

possible templates instead of just one. In the examples given above it is not clear whether 

user's u9 and u24 refer to a turning or a t-junction and therefore the target in the "turn" 

primitive would involve finding a good matching position for either template (c) or template 

(n) of Table 6-1. Each template would have its own associated actions, which would be 

executed if the template succeeds. 

When, after searching its view, the robot does not find the landmark it is looking for, it 

follows the road it is on for a short distance before it searches again. Following the road is also 

a task that involves template matching. For this purpose, the robot uses one of three 

templates depending on its state, i.e. with reference to Table 6-1: if the robot is on a straight or 

slighdy curved road, template (a) is used, if the robot is in the roundabout in a clockwise 

direction, template 0) is used and if the robot is in the roundabout going round in the anti

clockwise direction, template (k) is used to follow the road. The template associated actions 

with these templates are simply to: 

1. Move to the waypoint mapped to from the template's pivot point. 

2. Turn to the new direction according to the template's direction vector. 

A video example showing the execution of the route instruction "take the second left" can be 

found on the CD accompanying this thesis (see Appendix C). The example illustrates how 
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template matching takes place in real-time and also how localization and mapping (described 

in the following section) occurs. 

6.3 The use of a short-lived map 

A short-lived map is a map of the immediate vicinity of the robot that is updated as the robot 

moves in its environment. The map records previously seen visual information that goes out 

of view as the robot moves. The dimensions of the map are 100 x 100 pi."<els (i.e. same size at 

the top view image). The robot's position on the map is always in the middle of the bottom 

edge and facing the top of the map (i.e. same as in the top view image). As the robot moves, 

the map is translated and rotated to maintain this frame of reference. In the process, elements 

of the map that reach its edge will disappear, thus the term "short-lived". 

Two versions of the short-lived map are used, the first shows areas of the road surface and the 

second shows the road edges. These versions are constructed using road surface and road 

edge information filtered out from the top view. Details of how the road surface and road 

edge images are obtained are given in section 6.4 and 6.5 respectively. 

The purpose of constructing a "short-lived" map is twofold: 

1. To be able to determine the odometric errors of the robot and 

2. To compensate for the "dead angles" of the robot. These are the areas close to the 

robot that fall outside its field of view due to the position and inclination of the 

camera (see Figure 6-10). 
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Figure 6-10: Illustration showing the "dead angles" of the robot. 

The line-shaded region in the figure indicates an area falling outside the field of view of the 

robot. Visual information in this area is important because it is close to the robot's position. In 

the example the right turning cannot be properly seen. 

Every time the robot moves, it needs to know its new location compared with the previous 

one. This is because it records and maintains in its memory the position and orientation of 

landmarks (with reference to its own position and orientation) found earlier and which may 

not be present in its view when it reaches its new location. The only way of knowing the 

position of these landmarks is by adding to their position vector (position of a landmark 

relative to the robot) the robot's motion vector (position of the robot's next waypoint relative 

to the robot's current position) each time the robot moves, a process otherwise described as 

"dead-reckoning,. The odometric error of the robot must also be taken into account for this 

calculation to be accurate. This error is the difference between the motion vector and the 

actual robot's displacement vector (see Figure 6-11). 
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Figure 6-11: Vector diagram showing the robot's actual displacement vector ":I', which is 

the vector sum of the robot's intended displacement "e'' and the odometric error "r'' . 

To be able to determine the odometric error the robot moves a short distance every time in 

order to maintain in its visual field information that will enable it to connect its new view with 

the previous one. A successful connection indicates the actual position of the robot (after 

motion has taken place) that is used to calculate the odometric error. 

The location (relative to the robot) of important landmarks is only maintained in memory for 

as long as a primitive procedure call is executed. The reason why the location of landmarks is 

memorized is only to avoid recognizing previously found landmarks of the same type and 

considering them as new. For example when the user instructs the robot to "take the second 

turning to the left", after the first left turning is found and although the robot moves a short 

distance along the road, the first turning can still be visible in the map. Unless its location is 

"remembered" there is a danger of recognizing it again, this time as the second left turning, 

which would cause the robot to perform the wrong action. After the execution of the "turn" 

primitive procedure in the example given above, there is no need to remember the locations 

of the two left turnings and therefore they are cleared from memory. 
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When appending new visual information to the map, only the road edge information is used. 

This is because the road edge is geometrically consistent between top view images (because it 

is on the road plane) but also because the road edge allows for better accuracy in the matching 

of new information on previous information on the map. The position where the new road 

edge view matches best on the previous road edge view is used to append new road surface 

information on the previously seen road surface data. The complete process of how this is 

done is illustrated in Figure 6-12 and described below. 
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Figure 6-12: Series of figures showing how the "short-lived" map is appended with new 

visual information and how, as a consequence, this localizes the robot. For an explanation 

of how this is done see text below. 

Figure 6-12 shows the state of the map before and after the robot moves (columns A and B 

respectively). For these two moments in time, row 1 shows the raw camera image seen by the 

robot, row 2 shows the corresponding top view, the road edge image and the road surface 

image of the top view, row 3 shows the state of the road edge map and row 4 shows the state 

of the road surface map. Each image in the figure is produced or manipulated in time in the 

order indicated by the small letter under the image. 
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Before the robot moves, image (a) is captured and from its top view (b) the road edge and 

road surface information is extracted (images (c) and (d) respectively). Assuming this is the 

first rime the robot is going to move, the map contains no information and therefore the road 

edge and surface information is simply pasted on the respective edge and surface map versions 

(images (e) and (f) respectively). After the robot moves a new camera image is caprured (g) 

and from it the top view is produced (h) from which the new road edge and surface 

information is extracted (images (i) and G) respectively). This time the map is translated by the 

motion vector sent to the robot so as to reflect the estimated new position of the robot. This 

produces image (k). The difference between this estimated position and the actual position of 

the robot is the error vector r (shown in Figure 6-11). The new road edge information (i) is 

then matched against the shifted road edge map (k). This matching process is explained in 

section 6.3.1. The position where the new road edge image (i) matches best on the road edge 

map (k) in the example of Figure 6-12 is shown in image (l). Note that the brightness of the 

two images is changed for clarity. The odometric error of the robot is equal to the 

displacement and rotation of image (i) in order to match on image (k). This error vector is 

then added to image (k) to produce the actual robot's position in the road edge map (image 

(m)). Finally, the road edge version of the map is translated and appended with the new road 

surface information so as to reflect the actual position of the robot (image G)) in the road 

surface map. 
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6.3.1 The matching of new road edge data on the "short-lived" 

map 

Matching of the road edge image on to the road edge map is done with reference to the 

robot's position on the top view image. As mentioned earlier this point falls outside of the 

field of view of the robot camera. For the purposes of the matching operation described in 

this section, this point will be called here the "pivot point'' of the road edge image. While 

searching for the best matching position, the road edge image is displaced and rotated (vector 

[xzJ,8!J so that its pivot point scans the map image in a search window (Figure 6-13). 

Rotation range of 
top view on map 

Pivot point of top view 
(robot's position in top view) 

Map image 

Top view 
image 

Search window 

Estimated 
position of robot 

(after motion) 

Robot's position 
on map 

Figure 6-13: Illustration of one position of the top view image on the map while searching 

for the best matching position. 

A matching quality 2 describes how the road edges of the two images overlap for each 

position of the road edge image on the road edge map. Q2 is made from the sum of two ratios: 
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1. The score, which is the matching road edge pixels in the intersecting area of the two 

images divided by the number of road edge pixels in the map image and 

2. The confidence factor, which is the fraction of the road edge image area falling onto 

areas of the map containing information. 

This is formally expressed by the following equation: 

(6-4) 

m,m',n,n' E {0,1} 

Where p is a pixellocation in the overlapping area of the two images. m and n are values of 

pixels in the road edge map image M and road edge image N respectively. Value 0 denotes no 

road edge, and value 1 denotes road edge. N(xJ, B) is the road edge image of the top view 

translated by (xJ) and rotated by (} m' and n' are the information masks of the map and road 

edge images where 0 denotes the presence of information (mask is off) and 1 denotes no 

information (mask is on). The best matching position and orientation of the road edge image 

is the one where Q2 is maximum. Equation 6-4 ensures that, for two configurations with equal 

score, the one with highest confidence has the best match quality. 

To save computation time and limit the risk of matching the new top view at the wrong 

location, the search is limited to a small window defined on the map around the expected 

position of the robot. The range of rotation of the top view for each match position is limited 
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to a small angle 8. The size of the search window and angle Bare set taking into consideration 

the maximum odometric error of the robot 

To avoid false matching of the road surface image on the road surface map in cases where 

road surface data do not overlap, either because of bad image quality or because the robot has 

previously rotated at a large angle and lost all previous information from it map, a matching 

quality thteshold.Qz...,.. is used to set a minimum accepted matching between the two images. If 

the matching quality Qz is less than then Qzmi• the new road edge image is appended on the 

road edge map at the robot's estimated position thus neglecting the odometric error. 

6.4 Road surface detection 

A pre-requisite of the template matching method (described in section 6.2) is a road filtered 

version of the top view image. This is simply a binary image showing only road and non-road 

information. An example of a top view image and its corresponding road filtered version is 

shown in Figure 6-14. 

(a) (b) 

Figure 6-14: (a) An example of a top view image and (b) its corresponding road filtered 

version. White pixels denote road areas and black pixels denote non-road areas. 
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To produce Figure 6-14(b) from Figure 6-14(a) a simple colour filtering technique is used. 

This is explained in the following section. 

6.4.1 Colour flltering using the chromaticity vector 

The colour of the road on the miniature model town is a uniform shade of grey. It does not 

however appear uniform or consistent in the camera image, and subsequendy in the top view 

image, because of several reasons. These are: 

1. Automatic white balance and aperture control of robot camera. 

2. Casting of shadows from other objects. 

3. Casting of colour shadows from objects and the robot. 

4. Changing colour and intensity of natural sun light entering through the windows of 

the lab during the day. 

5. Changing light conditions in the lab. 

The white balance and aperture control of robot camera are changed automatically by the 

camera's circuit depending on the composition of the image. White balance is the method 

used by the camera to calibrate the colour values of its output image. This is done using a 

reference colour from the image and interpolating to find the other values. The problem arises 

when the reference colour changes with the composition of the image. 

149 



Aperture control is used in order to maintain constant the average intensity of the image 

output by the camera. This again creates a problem because changes in the intensity of a pixel 

are reflected in its RGB values. 

The effects on the apparent road colour differences were decreased significantly by using two 

halogen light sources (300W each) diffused by the white ceiling of the lab on top of the 

miniature town model. Also, external sun light and lab lighting was blocked as much as 

possible using white sheet screens on the three sides of the model town (Figure 6-15). 

Figure 6-15: Improvements in order to improve illumination constancy in the miniature 

model town. 
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Simple chromaticity filtering was then be used to discriminate the colour of the road. 

Chromaticity is an intensity invariant description of colour. It is a two-dimensional vector [C, 

CJ derived from the RGB colour coordinates by the following equation: 

(6-5) 

The chromaticity (or normalized RGB) colour space was used instead of the HSI (Hue, 

Saturation, Intensity) space because of practical difficulties. Grey colour (i.e. R=G=B=X 

where X is in the range (0, 255]) is represented in the HSI space by H=O, 5=0 and I= X. This 

is confirmed by the following equations (taken from (Ballard and Brown, 1982]), which are 

used to convert a colour representation from the RGB space to the HSI space: 

H =cos-'( (R-G)+(R-B) l 
2~(R-GY +(R-BXG-B) 

S=l-
3 

(min(R,G,B)) 
R+G+B 

1 
I =-(R+G+B) 

3 

Although the colour of the road was grey, in practice, image noise and other reasons 

(6-6) 

mentioned at the beginning of this section, caused changes to the three channels of the RGB 

representation so that the relationship R=G=B (for the road colour) was broken in the image 

captured by the camera. It was therefore not possible to detect the existence of the road 
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colour using the criterion H=O, 5=0 and I= X as hue was grater than 0 when the relationship 

R=G=B was not true. 

Filtering to produce Figure 6-14(b) from Figure 6-14(a) is done by setting to white 

(RGB=[255, 255, 255]) all pixels on the top view image whose chromaticity falls within a 

range of values about a mean value Cm,_,. These are considered to be the road pixels. All other 

pi.xels are considered to be non-road pixels and are changed to black (RGB = [0, 0, 0]). C.,., is 

a value that is initially set to [1.0, 1.0] (chromaticity of grey) but continuously changed, each 

time a new road @tered image is produced, to the average chromaticity value of the road 

pi.xels found in the image, thus bootstrapping it to any changes to the apparent colour of the 

road. Figure 6-16 illustrates how bootstrapping takes place between two successive image 

captures. 
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Figure 6-16: Series of images illustrating how the road surface colour is bootstrapped. For 

a detailed explanation of how this is done see text below. 

Figure 6-16 shows the chromaticity distributions of two successive top view images In (Figure 

6-16(a)) and In+t (Figure 6-16(b)). With reference to Figure 6-16, images (b), (c) and (£), (g) 

show the chromaticity distributions ofln and In+t respectively. The cross in (c) indicates the 

average chromaticity C,,,a•(n·IJ of the road pixels found during the road surface filtering of top 

view image In-t (i.e. the one used before (a)). The square in the (c) indicates the chromaticity 

range of values, which are considered as road colour in In based on their proximity to C,a,(n·IJ" 

Likewise the cross in (f) indicates the average chromaticity value C,,a•(•J of the road pixels 

found in top view image In (i.e. the white coloured pixels in (d)). In the next top view image 

(In+1), the range of chromaticity values considered as road surface in the image is shown by the 

square in (g). These values are based on their proximity to C,,,a•(•J" 
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Notice that from one top view image to the next, the chromaticity region specifying the road 

colour in the top view image shifts, thus following changes in the apparent road colour. 

6.5 Road edge detection 

The road edge information is used to accurately append new visual information on "short-

lived" map (explained in section 6.3). 

Road edge information is extracted from the top view image using an illumination-invariant 

approach similar to the one suggested in [Broggi, 1995]. This approach discriminates the white 

lines (toad ma:rkings) along each side of the road by convolving a two-dimensional low-high

low intensity image (shown in Figure 6-17) with the top view image. 

Figute 6-17: The high-low-high intensity profile kernel (magnified by a factor oflO) that is 

convolved with the top view image to discriminate the road edge lines. 

The high intensity span of the image is equal to the width of the road markings in the top view 

image. The image in Figure 6-17 is convolved with the top view image at 8 different angles in 

the range from 0 to 180 degrees (i.e. every 22.5 degrees) in order to find the road edges at all 

orientations. A pixel in the top view image is considered to be a road-edge pixel if the 
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convolution with the kernel in Figure 6-17 is above a minimum value for at least 1 and at most 

2 angles of the kernel. These are called "positive convolution results". This ensures that only 

lines are detected in the top view image. An example of the resulting road edge image is 

shown in Figure 6-18. 

Figure 6-18: (a) An example of a top view image and (b) its corresponding road edge 

image. 

The combination of the convolution kernel angle step and minimum/ maximum positive 

convolution results was determined experimentally while trying to achieve minimum 

computational time Oess than lOOms) for producing the edge image and satisfactory detection 

of the road edges in order to be used in later processing (see section 6.3). 

6.6 The need for a state variable during robot navigation 

Because primitive procedures exist in separate module files they cannot directly pass 

information between each other when they are executed. This posed a problem in cases found 

in the corpus when, while executing a route description, the course of action of one primitive 

depended on the state at which the robot was left in by the previous primitive. For example, 

by "take the first exit on your left", users sometimes mean "take the first left exit off the 

roundabout" but they can also mean "take the first left exit off the road you are on". The two 
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meanings require different actions to be performed as the robot uses different templates to 

identify a roundabout exit and a road exit (or turning). Therefore, information as to whether 

the robot was instructed to enter a roundabout in a previous instruction is required to decide 

which course of action the "turn" primitive must take in the above example. 

To overcome this problem a file is used as a way of exchanging state information between 

primitive procedures. 1bis file is interrogated by state-dependent primitive procedures upon 

entry and modified by all primitive procedures upon exit to reflect the state the robot is left in 

after the execution of each primitive. 

6.7 Detection of non road-layout objects 

This section explains how the location of non road-layout objects is found. Examples of non 

road-layout objects in the miniature model town are buildings, trees, the bridge etc. (see 

examples in Figure 6-19). 
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Figure 6-19: Examples of non road-layout objects mentioned in the corpus: (a) signed 

building, (b) unsigned building, (c) the bridge, (d) trees. 

To enable testing of the primitive procedures, identification of such objects was simplified by 

placing a coloured strip of known dimensions (9 x 2 cm) next to them (Figure 6-20). 
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Figtue 6-20: Examples of placing a coloured market in front of objects to be able to locate 

them. 

When a user refers to a non road-layout landmark, the target in the primitive proceduxe is 

associated with finding the landmark's coloux strip instead of the landmark itself. The template 

matching method described in section 6.2.3 is used to locate the colouxed marker. The only 

template used in this case is a rectangle with the dimensions of the landmark's marker on the 

top view image. This template is matched against the top view image filtered for the coloux of 

the marker (Figure 6-21). 
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(a) (b) (c) 

Figure 6-21: (a) An example of a camera image, (b) the corresponding top view image and 

(c) the top view image filtered for the colour of the marker of the landmark sought. 

Recall in section 6.2.3 that in the case of road layout feature landmarks, the pivot point of the 

winner template is projected onto the real world to become a waypoint for the robot. In the 

case of non road-layout objects a different step needs to be taken, after finding the object's 

marker, in order to establish the waypoint of the robot. In this step a position on the road 

next to the landmark must be determined and used as a waypoint. This is because when users 

refer to non road-layout objects, as a navigational landmark in a route instruction, they are 

actually referring to their projected location on the road. This is a point in an area of road 

closest to the object as viewed by the robot when approaching the object. For example, in the 

utterance " follow the road to safeway" the location of "safeway" is different from the location 

that the robot must move to in order to execute the task correctly (Figure 6-22). 
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Figure 6-22: Illustration showing the location that the robot must reach to execute the 

instruction: ''follow the road to Safeway" in comparison with the actual location of the 

"Safeway" building. 

This is different from the case when a user says: "follow the road to the crossroad". 

To find the road point representing the reference to the landmark, the number of road pixels 

on the two long sides of the coloured marker is compared The side found to contain the most 

road pixels is taken to be the road side and the road waypoint representing the landmark is 

found on that side on a line normal to the long side of the marker and at a distance equal to 

half the road width (Figure 6-23). 

160 



Landmark 

Area A 

Road----
surface 

Coloured 
marker Distance equal to 

half the road's 
width 

Location on road 
representing the 

landmark 

Figure 6-23: Illustration showing how the road waypoint representing a reference to a 

landmark is found. 

The pixel regions considered on the two sides of the marker are square with side dimensions 

equal to the width of the road in the top view image. 

6.8 Spatial references to landmarks 

In almost all cases in the corpus, subjects used a robot-centred frame of reference when they 

mentioned other landmarks in their route descriptions. Two types of landmark references 

were met in the corpus: 

1. References implying an instruction to the robot to move in relation to a landmark. For 

example: "continue forwards until you come to a junction" (u9_GC_HL), and 
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2. References that were used to inform the robot of a landmark's location. For example: 

"you got pc world on your right" (u20_GB_EC). 

The second case above is further resolved in two cases: 

2a. The landmark mentioned is not the final destination. This type of reference is usually 

used to assure the robot that it is following the correct road and 

2b. The landmark mentioned is the final destination of the robot. 

In all cases, the robot needs to locate the landmark referenced by the user. Locating a 

landmark means establishing a road position, which will represent the landmark. This is 

achieved as described in sections 6.2 and 6.3 depending on the type of landmark (road layout 

fearure or non road-layout feature). 

In case 1, after locating the landmark, the robot needs to move in order to satisfy the relation 

between itself and the landmark. The robot's action to move is part of the target associated 

actions in the primitive procedure (see sections 5.1 and 6.2.4). In the example utterance: 

"continue forwards until you come to a junction", once the junction is found and its road 

location is established the robot moves to that location. 

In case 2a the user only informs the robot of a landmark it will meet along the road as a 

confirmation that the robot is on the right ttack. No action is taken by the robot once the 

landmark is found in this case. In fact, there is no problem in completely discarding such 

references as users always use them to refer to landmarks along the road that the robot is 
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following. An exception to such references is when the user refers to the destination landmark 

(case 2b). In this case the robot uses the reference to move to the destination landmark even 

though there is no explicit instruction from the user to do so. For example in the corpus route 

description u1_GA_.MD the destination is Safeway (D) and therefore the final utterance: 

"Safeways is the next building on your right hand side" is actually treated as the instruction: 

"follow the road to Safeways which is the next building on your right hand side". 

In Table 6-3 all the words in the corpus indicating a relation between the robot and a 

landmark are listed along with examples of their occurrence. An explanation of the action of 

the robot once the landmark is found is also given. Note that this action is only performed 

when the reference falls in categories 1 and 2b above. 
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Relational 
Example form the corpus Robot's action 

expression 
"across the bridge" The robot moves on the 

across 
"across the crossroads" landmark's road location. 

after 
"after you pass the university'' The robot moves on the 
'1ake a left hand turn after the post office" landmark's road location. 
'1escos a short way along that road" The robot moves on the 

along "you will find the hospital a short way along landmark's road location. 
that road" 

at 
"exit the roundabout at the third exif' The robot moves on the 
"you arrive at the car park" landmark's road location. 
"before reaching the university main door take the No action from the robot once 

before 
road to your righf' the landmark is found. 
"just before the post office on the left hand 
side turn letr' 

onto 
"across the crossroads onto a roundabour· The robot moves on the 
"go straight onto the roundabour· landmark's road location. 
"again turn left over the bridge" The robot moves on the 

over "come to another junction if you go straight over landmark's road location. 
that" 

past 
"past the university of Plymouth" The robot moves on the 
"past pc world" landmark's road location. 

to 
"come to a junction" The robot moves on the 
"follow on to the roundabout" landmark's road location. 

towards 
"you 11 need to go forward towards the The robot moves on the 
roundabout" landmark's road location. 

until 
"forwards er until you come to tescos" The robot moves on the 
"continue forwards until you come to a junction" landmark's road location. 

in front of 
"it should be right in front of you" The robot moves on the 
"in front of you is er a crossroads" landmark's road location. 

opposite 
'1he car park is directly opposite" The robot moves on the 

landmark's road location. 

left of 
"the post office is directly on your left hand side" The robot moves on the 
"and then you reach boots which is on your left" landmark's road location. 

right of 
"pass a park on your right" The robot moves on the 
"safeways should be on your riqht" landmark's road location. 

Table 6-3: Words m the corpus that mdicate a relanon between the robot and a landmark 

along with an explanation of the robot's final location with respect to the landmark's 

location. 

Note that when the user instructs the robot to move "after", "past'', "over" or "across" a 

landmark the robot actually stops on the landmark's road location and not past it as suggested. 

This is because there is no information as to how far past the landmark it should move before 

it stops. 
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In very few cases in the corpus the relation ''before" is used. One such example is in 

u16_GA_HC: ''before reaching the university main door take the road to your right". This is 

illustrated in Figure 6-24. 

(a) (b) 

Figure 6-24: (a) Camera view and (b) the corresponding top view before the ''university" 

when the robot follows the instruction: ''before reaching the university's main door take 

the road to your right''. Notice that when the ''university's door'' is visible, the "road to the 

right'' is still within the robot's view. 

The problem here is that the order in which the two landmarks (the "university's main door" 

and the "road to the right") are referenced in the route description is different to the order 

they will appear to the robot at it moves along the road. The robot needs to locate the further 

away landmark before it can start searching for the closer one. This is why, in this example for 

instance, as soon as the "university's main door" is found the robot does not move any 

further and starts searching for the "road to the right''. In all such cases found in the corpus 

the two landmarks mentioned were close enough to avoid the danger of passing one while 

searching for the other. 
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6. 9 Summary/ Contributions 

This chapter described how image template matching is used in the robot's primitive 

procedures in order to detect road layout features mentioned in route descriptions. The 

interesting feature of the method proposed here lies not in the image processing technique 

itself (as template matching is a well researched area) but in the fact that it is driven by the 

content of natural language instructions. The templates used in each search operation are 

derived from the natural language instruction given by the user. Furthermore, the method 

proposed here follows a user-centred approach in that the template images shown in Table 

6-1 were created solely by studying the collected corpus of route instructions and the 

environment that these referred to. 

A simplified method of "image mosaicing" is also described in this chapter in order to create a 

"short-lived" map of the robot's immediate locality. The odometric error of the robot can be 

determined as a result of appending new visual information on the map every time the robot 

moves to a new position .. The odometric error is used to re-localize the robot after dead 

reckoning is used to estimate its position and thus re-localize the position, with reference to 

the robot, of any significant landmarks stored in the robot's memory. Apart from re-localizing 

the robot the "short-lived" map is used to compensate for the "dead-angles" of the robot 

As mentioned in section 2.4 there is an error produced in the image-sequence mosaicing 

process due to image noise. This problem creates a particular challenge in cases were 

continuous incremental mapping of cyclic environments is required because it increases with 

the number of images in the sequence and therefore with the distance travelled by the robot. 
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The map created as the robot moves in this project only displays visual information in the last 

2 images captured by the robot. For this reason the error due to linking the two images is 

present only once in the map. As mentioned in [Unnikrishnan and K.elly, 2002a) the maximum 

value of this error is equal to the world distance represented by 1 pixel in the map image. In 

this project the maximum error is 3.33mm. This value is small when compared with the size of 

landmarks in the miniature town and can be safely neglected. 
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Chapter 7 

7 The evaluation of the primitive 

procedures 

The IBL system is comprised of several functional units. Errors can occur at different stages 

from the time the user speaks to the time the robot starts to follow the route instructions. 

These errors fall into four main categories: 

1. Speech recognition errors (caused by the Dialogue Manager). 

2. Grammatical and syntactical analysis errors (caused by the Dialogue Manager). 

3. Errors in the translation from the DRS (Discourse Representation Structure) to 

primitive procedures or previously learned procedures (caused by the Robot Manager). 

4. Errors during the execution of the route instructions (caused by the primitive 

procedures). 

This chapter is concerned with the last type of errors, in the list above, which are related to 

the work presented in this thesis. 
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To determine the performance of the individual components and eventually the complete IBL 

system when faced with new route instructions, the collected corpus was split in two equal 

sets. One to be used for the development of the system (development set) and the other for 

its evaluation (evaluation set). Appendix B lists the route descriptions in each of the two sets. 

In this chapter, the method for evaluating the primitive procedures is described. 

To develop and test the primitive procedures two steps were followed: 

1. Finalization of the specifications of the primitive procedures using the development 

set of the corpus. 

2. Testing of the performance of the primitive procedures with the evaluation set of the 

corpus without changing their specifications. 

As mentioned earlier in section 4.3.1, after the collection of the corpus and the initial 

specification of the primitive procedures, each route description collected was manually 

translated into its primitive procedure calls. An example of one such translation is given in 

Table 4-5. 

For the purpose of developing and evaluating the primitive procedures, it was assumed that 

for every route description the robot would have no prior knowledge, i.e. the robot's 

knowledge pool would only contain the primitive procedures. As mentioned in section 4.1, 

during the corpus collection procedure each subject gave six route descriptions and was 

encouraged to refer to previously explained routes if he/ she wanted. Any references to 

previously explained routes by the users were discarded during the development and 
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evaluation phases and the robot was placed at a point where the route description was explicit. 

An example of such a case is the route description in Table 4-S(a) and illustrated in Figure 4-3. 

Figure 4-3 shows that the user assumed that the robot knew the way to the roundabout 

because he/she explained this in an earlier route description. During the primitive procedure 

testing of route description u7 _GC_CX the robot was placed in front of the roundabout 

(where the solid red line begins in Figure 4-3) and the translation in Table 4-S(b) was executed. 

The aim during the development step of the primitive procedures was to execute each 

manually translated route description in the development set until the robot performed 

successfully in all cases. The success of the robot was considered as per primitive procedure 

call and not per successful route (whether the robot did or didn't reach the destination) 

although both results are presented here (sections 7.1 and 7 .2). This is because route 

descriptions could be unsuccessful because of wrong or ambiguous route instructions given by 

subjects. This is further discussed in section 7 .1. 

For the testing phase each translated route description in the corpus evaluation set was 

executed. During this phase no changes were made to the specifications of the primitive 

procedures. Success results were recorded at route description level and at the primitive 

procedure level. These are presented, along with a description of their significance in the 

evaluation process, in sections 7.1 and 7.2 respectively. 

Video sequences showing the robot executing two route descriptions (u13_GA_CL and 

u19_GB_EG) in the evaluation set can be found on the CD accompanying this thesis (see 

Appendix C). 
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7.1 Results per route instruction 

A route description was considered to be successful if, after the execution of the associated 

manual translation file, the robot reached its destination. During the development and testing 

of the primitive procedures, the robot could fail to reach its destination because of one of rwo 

reasons: 

1. Either due to a primitive procedure failing or 

2. Due to a wrong or ambiguous route description given by the subject. 

During the development phase of the primitive procedures, route failures due to the primitive 

procedures were cause for modifying the programs of the primitive procedures. However, any 

failures due to wrong or ambiguous descriptions could not be corrected and were executed 

until the point where the user's mistake or ambiguity occurred. During the evaluation phase 

no modifications were made to the primitive procedures. Any route failures either due to the 

primitive procedures or the descriptions of the users were simply recorded. The errors that 

occurred during this phase are described in section 7 .1.2. 

Table 7-1 presents the route success results for the development and evaluation sets when 

each route was executed from the manual translation files. 
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Development set Evaluation set 
Total route 

72 72 descriptions 
Executed route 

70 71 descriptions 
Successful 39 (55.7%) 45 (63.4%) 

Unsuccessful 31 (44.3%) 26 (36.6%) 
Table 7-1: Route descnption success results dunng the development and evaluation of the 

primitive procedures. Note that the percentage values indicate the proportions of the 

executed route descriptions and not the total route descriptions. 

As it will be further discussed in this section and section 7.2, failures in route descriptions are 

mostly due to the route descriptions being wrong or ambiguous and not because of primitive 

procedures failing. For this reason the two figures (44.3% for the development set and 36.6% 

for the evaluation set) in Table 7-1 should not be compared because the route descriptions in 

each of the two sets were selected at random. 

Two routes in the development set and one route in the evaluation set were not executed by 

the robot because the corpus subjects in these cases referred to the destination as being along 

a previously explained route. Following the same procedure for testing as with all route 

descriptions, that would mean simply placing the robot at the destination without needing to 

execute any primitive procedure call. 

7 .1.1 Human performance tests 

To find out how humans would perform in driving the robot while following the route 

instructions in the evaluation set and thus to set a performance baseline for the system, 12 

subjects were invited to drive the robot Each subject was allocated 6 route instructions at 

172 



random from the evaluation set. Subjects were allowed to listen to each route instruction as 

many times as they wished and they were asked to take notes for each route description. They 

were then asked to drive the robot to its destination for each of the six routes using only their 

notes. They drove the robot using a keyboard while being seated in front of a PC by looking 

only at the camera image of the robot. During the experiments subjects were asked to "think 

aloud" both when listening to the route descriptions and later, when driving the robot. This 

was done so that any doubts or inferences they were making could be recorded. A camcorder 

was used to record all the experiments to allow for a more careful assessment of the results at 

a later stage. 

Table 7-2 presents the performance of the robot compared to that of the human subjects for 

the routes in the evaluation set. 

Robot Human subjects 
Total route 

72 72 descriptions 
Executed route 

71 72 descriptions 
Successful 45 (63.4%) 60 (83.3%) 

Unsuccessful 26 {36.6%) 12 (16.7%) 
Table 7-2: Route descnption success results for the evaluanon set when executed by the 

robot and by the human subjects. 

Table 7-3 further categorizes the 26 cases where the robot fails in the development phase and 

compares the corresponding performance of the human subjects in the same route 

descriptions. 
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Reason for robot's failure to Number of robot failures In Corresponding failures 
reach destination category of human subjects 

New primitive procedure call 2 0 
Failure of primitive procedure 2 1 
Ambiguous route descriptions 5 1 
Wrong route descriptions 17 8 

Table 7-3: Analys1s of the 26 cases where the robot fails to reach Its destmanon m the 

evaluation phase and comparison with the performance of human subjects in the same 

routes. 

As Table 7-3 shows, human subjects were more successful in driving the robot while 

following the route descriptions in the evaluation set. The reason behind this is that humans 

were able to make inferences and assumptions in order to clear ambiguities or correct 

mistakes in route instructions given in the corpus. This happened, in some occasions, because 

subjects were able to see the destination landmark before following all instructions in the 

route description and thus they were able to clarify any ambiguities in the last route 

instructions. In other cases, the layout of the road ahead would suggest what the instructor 

possibly meant and this would enable the human driver to make corrections "on the fli' while 

driving the robot, rather than stricdy following the written notes he/she took during listening 

to the route instructions. Finally, if no visual clue was able to correct any ambiguous 

instructions, subjects followed one (the most likely to be correct) of two or more possible 

alternatives, which led to them successfully reaching the destination. 

In the following section each category of failures by the robot (shown in each row of Table 

7-3) is described in more detail. Route failure examples taken from each category are also 

illustrated and explained. 
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7 .1.2 Error descriptions 

In 2 cases in the development set users requested a new action (not previously requested in 

the development set) from the robot. The route description given by the user and an 

illustration of the route in each case are presented in Table 7-4. 

a u5_GC_EH 

"er when you arrive at the car park if you cross 
the car park and turn right you turn right and you 
will find the hospital a short way along that road 

in front of you" 

b u6_GC_CL 

"okay erm go to the junction with the university 
of plymouth opposite you the building and pc 

world on your left get to the roundabout with the 
tree in the middle take the first exit on the left 

erm carry straight on you 11 go over a bridge erm 
you 11 come to another junction if you go 

straight over that you 11 have the post office on 
your right if you take the first right after the post 

office and bear round to the left as the road 
travels round there you 11 and the queens pub 

will be on your left" 

Table 7-4: Route descriptions and illustrations of the two cases where the robot fails to 

complete a route description in the evaluation set because of new primitive procedure 

calls. Note that the solid red line indicates the road described by the user in each case and 

the dashed red line indicates a route implied by the user. 

In the first case (fable 7-4(a)) the user asked the robot to "cross the car park". In this case the 

"cross" primitive procedure is called with its "object_!" parameter initialized to "car_park''. 
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Because this value is not among the allowed values "object_1" can take in the specific 

primitive, the procedure rerurns a "parameter value error" when called. 

In the second case (Table 7-4(b)), the user asked the robot to "bear round to the left" at they-

junction. In this case no primitive procedure exists to accommodate this action because it is 

first met in the evaluation set. 

Finding new or unmet primitive procedures in the evaluation set was expected after the 

functional analysis of the corpus (described in section 4.3.1 ). The graph of Figure 4-4 shows 

that on average two new primitive procedures appear between 72 descriptions (size of 

development set) and 144 descriptions. 

In two occasions the robot fails to reach its destination because of primitive failure (Table 

7-3). In the first case (illustrated in Table 7-S(a)) the subject asks the robot in succession to 

pass two landmarks, which are opposite each other: "go past derrys and the grand hotel". The 

"follow_road" primitive procedure, which is called twice, fails to find the "grand hotel" 

because once it is at "derrys" the "grand hotel" is not in the visual field of the robot as seen by 

the illustration in Table 7 -S(a). 
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a u19_GB_EH 

"okay you want to go to the hospital and to get 
there you want to do the first right 

down the road from where you are to go past 
derry s and the grand hotel and then you want 

to work your way round the bendy road there all 
the way to the end past the car park on your 

right until you get to a t junction again and then 
this time you want to turn right and then carry 

down on down the road and the first on the right 
er you come to another junction and the first on 
the right you want to er turn into and then go all 
the way down that road past the car park again 

from the other side and then you should see 
right at the end the hospital big grey building" 

b u24_GB_HL 

"move forward to the white dotted line turn left 
turn first exit right turn first exit right stop by 

queens pub left end" 

Table 7-5: Route descriptions and illustrations of the two cases where the robot fails to 

complete a route description in the evaluation set because of primitive procedure failures. 

The second case of primitive failure is presented in Table 7-S(b). In this case a wrong 

matching of the left turn template (shown in the illustration of Table 7-S(b)) causes the robot 

to follow the wrong road after the left turn. 

In 5 route descriptions of the corpus users gave ambiguous instructions that caused the robot 

to fail to reach its destination (fable 7-4). It has to be noted here that the term "ambiguous" is 

subjective to the method of translation of the route descriptions concerned. Remember that 
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this translation was done manually for each route description while trying, to the best possible 

extent, to imitate the translation that the final system (dialogue manager and robot manager) 

would produce for the same route descriptions. Further discussion on this matter can be 

found in section 7 .3. 

Two such cases are presented in Table 7-6 for route descriptions u7_GC_CX and 

u24_GB_HW. 

a u7_GC_CX 

"from the roundabout take the first exit on the 
left continue straight over the crossroads 

continue over the bridge erm continue straight 
over the second crossroads the post office 

should be on your right" 

b u24_GB_HW 

"move forward to white dotted line turn left take 
er move forward to crossroads turn left move 
forward to roundabout go clockwise two sixty 

degrees two sixty degrees exit er by turning left 
move forward to first building on left stop" 

Table 7-6: Route descriptions and illustrations of two (out of five) cases where the robot 

fails to complete a route description in the evaluation set because of ambiguities in the 

user's description. 

In case (a) of Table 7-6, by the "second crossroads" the user actually means the one right after 

the first crossroads he/ she mentions. However, the second reference to crossroads is 
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translated to a primitive call without any consideration to any previous mention of crossroads 

and thus it is assumed that the user refers to a third crossroads after the "exit on the left". 

In Table 7-6(b) the instruction after the robot reaches the crossroads is to "turn left". 

Although the user meant "turn left (at the crossroads)" this is treated as "turn left (after the 

crossroads)" because "move forward to crossroads" and "turn left" qualify as two 

independent functional segments. During execution the robot passes the crossroads and then 

starts looking for a left turning. 

Finally the robot fails to reach the destination in 17 occasions because of wrong route 

descriptions (Table 7-4). These are cases where the user was clearly mistaken in at least one of 

his/her instructions while explaining the route to the destination. Two such examples are 

presented in Table 7-7. 

179 



a u6_GC_CX 

"right if you go exactly the same way towards 
the queens pub as before erm as you go over 

the bridge as you go past the t junction the post 
office will be there on your right" 

b u9_GC_HL 

"the queens pub erm if you er go forwards er 
continue forwards until you come to a junction 

er then er take a sort of right turn by dixons erm 
carry on up there and then take a right that 
should take you to the queens pub okay" 

Table 7-7: Route descriptions and illustrations of two (out of seventeen) cases where the 

robot fails to complete a route description in the evaluation set because of mistakes in the 

user's description. 

In Table 7-7(a) the user mentions at-junction after the bridge when he/ she probably meant a 

crossroad. 

In Table 7-7 (b) when the user mentions the "junction" this is taken to be the right turn and 

not the t-junction, which was probably implied. This is because the word "junction" was used 

in the corpus to mean t-junctions, turnings or crossroads and thus the robot was programmed 

to recognize any of the three when looking for a "junction". The robot in this case fails when 

it turns into the first right turning but it would also have failed even if the robot turned right at 

the t-junction since the user instructed a turn in the wrong direction. 
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7.2 Results per primitive procedure call 

The results presented in 7.1 are more important in the evaluation process of the complete IBL 

system since they provide the success rate of the primitive procedwes as they appear in route 

descriptions. 

This section shows how successful was the robot in the development and evaluation sets in 

the execution of the individual primitive calls of each route description. These results were 

more useful in the development and evaluation of the primitive procedwes at an atomic level, 

i.e. given the right initial conditions (robot state and correct primitive call initialisation) 

whether the primitive procedwe would execute correcdy. These results do not take into 

account the human error and therefore primitive procedwe calls, which occw at or after a 

user's error or ambiguity in the route description, were not executed. Table 7-8 presents these 

results for the development and evaluation sets. 

Development set Evaluation set 
Total primitive calls 336 344 

Executed primitive calls 227 218 
Successful 224 (98.7%) 214 (98.2%) 

Unsuccessful 3 (1.3%) 2 (0.9%) 
New primitive procedures or 

primitive parameter - 2 (0.9%) 
combinations .. Table 7-8: PrtmJnve call success results dunng tbe development and evaluanon of tbe 

primitive procedures. Note that tbe percentage values indicate tbe proportions of tbe 

executed primitive calls and not tbe total primitive calls. 

Dwing the development phase of the primitive procedwes out of the 336 primitive calls in 

the development set translation files, 227 were executed. These primitive calls were 

continuously executed (as part of their route descriptions) while the primitive procedwes were 
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being changed to achieve the best possible performance. At the end of the development 

phase, 3 primitive calls were still unsuccessful because of the same reason: the inability of the 

robot to detect an object located just after a curve because of the position and inclination of 

the robot camera. One such example is illustrated in Table 7-9. 

"go to the roundabout take the third exit then take the first right and boots is on the 
left hand side" (u2_GC_MC) 

Table 7-9: The robot fails to "see" the Boots (C) marker, at the end of the route, because 

when it turns the marker falls outside its field of view. 

This occurs because, as mentioned previously in section 6.3, areas close to the front of the 

robot fall outside its field of view. This visual information can be estimated if it has been 

recorded previously (see section 6.3). However, in the above case the marker of the 

destination could not be seen when the robot took the right turn (after the roundabout) 

because it was hidden by the Boots building. When the robot got close to Boots the marker 

was already out of its filed of view. 
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During the evaluation phase out of a total of 344 primitive calls in the associated translation 

files 218 were actually evaluated. Out of these 214 performed successfully. The 4 cases were 

primitive calls failed are explained in section 7.1 and illustrated in Table 7-4 and Table 7-5. 

7.3 Discussion 

In 7% (5 out of 71) of route descriptions in the evaluation set the robot failed because one or 

more of the instructions in these route descriptions were classed as "ambiguous". As 

mentioned in section 7 .1.2 this characterization is based on the criteria on which the 

translation from natural language route descriptions into primitive procedure calls was made. 

The translation was done by hand and in doing so the performance of the dialogue manager 

and robot manager in dealing with such ambiguous cases in the corpus was considered. One 

such route description (mentioned in section 7 .1.2) is u 7 _GC_ CX: 

"from the roundabout take the first exit on the left continue straight over the 

crossroads continue over the bridge erm continue straight over the second crossroads 

the post office should be on your right" (u7 _GC_C:X). 

The ambiguity arises when the user refers to a "second crossroads" when actually it is the first 

crossroads from where the robot will be when executing the instruction: "continue straight 

over the second crossroads". The user refers to this ordering to stress that there are two 

crossroads in succession along the road. The system fails to recognise this because each 

instruction in the route description is treated independendy from what was said prior to it. 

183 



Humans do not find situations like this ambiguous because they can resolve such references 

by comparing them to what was said earlier in the route description. Similar behaviour can be 

simulated by the robot by analysing the route description given by the user before executing it 

in order to detect and resolve such references. Alternatively the system can ask the user what 

he/ she meant by asking him a question in the form of: "Did you mean ... or ... ?". 

A more detailed observation of Table 7-4 shows that the human robot-drivers were more able 

to correct ambiguities rather than mistakes in the descriptions of the instructors in the corpus. 

Also in the cases where a new primitive procedure or the wrong execution of a primitive 

causes the robot to fail the human subjects succeed. Note that in one case where the robot 

fails due to a wrong execution of a primitive procedure the human subject fails (by 

coincidence) because he/she omitted to record on paper important information when he/she 

was listening to the route description. 

Human subjects failed to reach the destination in 12 route descriptions (Table 7-3) but only 10 

of those (Table 7-4) are the same as the routes in which the robot failed. This means that in 

two cases human subjects failed when the robot succeeded. In both these cases tbe human 

robot-driver failed because of wrongly following the instructions in tbe route description. 

The evaluation of primitive procedures on an individual primitive procedure call basis (section 

7 .2) shows that the code developed for the primitive procedures is successful in almost all 

cases. Less than 1% of primitive calls failed because tbe user requested a primitive action, 

which was not known by the system. This was expected since tbe graph in Figure 4-4 

predicted that the system will be faced by approximately one new primitive in every 35 route 
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descriptions (slope of curve representing the complete corpus at 72 route descriptions). The 

issue of new primitive procedures arising after the system is completed is discussed in Chapter .. 

8. 

Table 7-8 shows that less than 2% of primitive procedures fail because the robot tries to find 

landmarks already past its field of view. The possibility of using a pan/tilt camera or 

simultaneous searching for more than one landmark at any one time while the robot follows 

the road, are two methods that could solve this problem. 

Figure 7-1 summarizes the observations made in this chapter. 
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Corpus 
(Human speakers) 

Human 
listeners 

es=23.9% 
(a) 

Instructions 

Robot 

Execution 

Repair 

eR2=2.8% 

Result 
eHiolal 16.7% 

Result 
eAiotal = 36.6% 

Figure 7-1: The diagram shows the occurrence of errors at different stages between the 

speaker giving route descriptions and the execution of these descriptions by (a) a huma.n 

listener and (b) the robot. Ks, KH and KR represent the knowledge of the human speakers, 

the human listeners and the robot's respectively. The diagram shows the crucial difference 

between cases (a) and (b): the ability of humans to do repair during the execution of the 

route instructions. This accounts for the higher success rates of humans. 

The figure shows that human speakers give instructions, they can make mistakes. In this 

project, users in the evaluation set of the corpus were wrong in 23.9% of the route 

descriptions. When humans listen to these instructions, they, also make mistakes in recording 

or memorizing the instructions. This is shown by eH1 in Figure 7-1. In a similar way the robot 

listener makes mistakes. In the robot's case (assuming perfect speech recognition and analysis) 

these are due to not recognizing new primitive procedures in the speaker's instructions and 

due to ambiguities in the instructions. In this project 9.9% of the evaluation set descriptions 

failed because of these errors. During execution of the route descriptions human listeners can 
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realize and repair mistakes of the speakers and of their own "on the fly". Even though they 

can make mistakes (em) in following the correct road sometimes their success owing to the 

ability to repair far exceeds that of the robot, which lacks this ability. 

Therefore, the robot can increase the chances of succeeding in the execution of a route 

description if it uses repair during execution time. Repair and the ability of the robot to initiate 

dialogue with its users during the learning of new routes in order to resolve possible mistakes 

or ambiguities in the route descriptions are discussed as part of future work in Chapter 8. 
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Chapter 8 

8 Conclusions and future work 

8.1 Conclusions 

This PhD thesis presented the work done as part of a project in Instruction Based Learning 

for mobile robots. The aim of this work was to determine and implement the primitive 

procedures that a natural language instructed robot following route descriptions would require 

to have in its knowledge pool. 

The main contribution of this thesis to knowledge lies in the "user-centred" approach taken 

for determining the functional vocabulary of the robot. The aim was to create a robot that 

could be instructed by its human users without them needing to be previously trained on how 

to do so. Previous work in the field of instructable robots required the users of the robots to 

learn precise lexical and functional vocabularies with which to instruct the robots. These 

vocabularies were predetermined by the creators of the robots thus following a "robot

centred" approach. Although such approaches have succeeded in creating a faster and simpler 

communication method between users and robots, in comparison with formal programming 

methods, they nevertheless still constrained the users to a great level of formality and 

precision. Furthermore, the amount of training that the users would require prior to using the 
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robot would increase in proportion to the amount and complexity of the tasks that the robot 

would be required to perform. This of course would defy the purpose of creating a narural 

language instructed robot to be used by computer language naive users. 

The aim of the Instruction Based Learning project was to create a robot that would be able to 

accept instructions from its users as a human would. Such a robot would need to be able to 

deal with the imprecision of the spoken narurallanguage medium. Furthermore, such a robot 

would need to be able to accept variations in spoken instructions that would result in similar 

actions thus being able to deal with the versatility of natural language. 

In order to determine the narure of spoken natural language route instructions following a 

"user-centred" approach a corpus of route instructions was collected in the beginning of the · 

project from 24 different human subjects. The subjects were asked to give route instructions 

to the robot as they would to a fellow human ensuring, in this way, that the instructors would 

produce unconstrained natural language utterances. The implementation of the Instruction 

Based Learning system was solely based on the results of the analysis of the corpus collected. 

The srudy of the corpus natural language instructions exposed three main problems that are 

important for the design of Instruction Based Learning robots. These are: 

1. The under-specification of natural language, which is a known problem. 

2. The probability of new primitive functions arising in route instructions after the 

development of the system. This is known for words but it has been seen here to 

appear for primitive functions. 
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3. The cases when users make partial use of previously learned procedures when 

explaining new procedures. This problem has never been documented previously. 

This thesis focused on the natural language under-specification problem. Cases 2 and 3 above 

are discussed in section 8.2 as part of future work. 

Two methods are proposed in this thesis for determining the missing information in natural 

language route instructions. This information is vital for the robot in order to be able to 

execute the route instructions successfully. The methods proposed can determine the missing 

information during the learning of new procedures and during their execution. 

During learning time the missing information is determined by imitating the commonsense 

approach of human listeners in order to achieve the same purpose. What human instructors 

consider as commonsense and therefore omit in their spoken route instructions is determined 

by studying examples of such occurrences in the corpus collected in this project. Necessary 

parameters in primitive procedures are then allowed to take default values whenever these 

values are not explicitly provided in the natural language instructions. 

During the execution of primitive procedures missing information, such as the precise 

location and orientation of landmarks mentioned in the route instructions, is determined using 

the method of image template matching. In this thesis the method focuses on the 

determination of the location of road-layout features, which are mentioned in route 

instructions. The significant contribution in this method lies in the fact that it is driven by the 
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natural language instructions both in the design of the templates used and in their selection 

during the execution of a primitive procedure. 

The primitive procedures developed during the work presented in this thesis were evaluated 

both on an individual primitive procedure call basis and also as part of route instructions. The 

evaluation of individual primitive procedure calls showed very good results (more than 98% 

success). This shows that the natural language under-specification problem can be solved with 

the methods proposed in this thesis. 

A novel method was followed in order to test the primitive procedures as part of complete 

route descriptions. During this method, human subjects were invited to drive the robot 

following route descriptions while being provided with the same visual information as the 

robot. Their performance was later analysed and compared with the robot's performance after 

executing the same route descriptions. This evaluation method allowed a direct comparison 

between the human listener and the robot as far as the execution of route descriptions. The 

results of this comparison provided an important difference between the humans and the 

robot in this context: humans can repair errors (made by the instructor or themselves) during 

the execution of route descriptions by using past experience and reasoning. This is an 

important issue that will need to be taken into consideration in the future in order to improve 

the performance of the current system. Some ideas on possible future work on this matter are 

presented in the following section. 

A software controller is proposed in this thesis in order to reliably and accurately control the 

wheel speeds of the robot used in this project. The controller described comprises of one PI 
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(Proportional and Integral) speed controller for each wheel of the robot and a PID 

(Proportional, Integral and Differential) controller to control the differential speed of borh 

wheels during each robot manoeuvre. The design and implementation of this software control 

scheme provided an alternative to an expensive and more time-consuming hardware solution 

in order to achieve the same purpose. 

8.2 Future work 

During the evaluation of the primitive procedures, when the success of route descriptions was 

considered, results showed that the robot managed to successfully navigate to its destination 

in 63.4% of the cases. Less than 3% of these failures are due to primitive procedures failing. 

The remaining failures were due to the following reasons: 

1. Errors in route descriptions. 

2. Ambiguities in route descriptions. 

3. Failures due to the users requesting primitive actions, which did not exist in the 

robot's knowledge base (see point 2 in previous section). 

In order to improve the performance of the robot, future work in instruction based learning 

needs to be focused on the ability of the robot to start a dialogue with the user during the 

learning of a new procedure in order to resolve ambiguities or mistakes in the user's 

instructions. Initiating a dialogue with the user is a complex task because a question to the user 

needs to be formulated properly by the system in order to address the problem and at the 

same time the system should be able to handle the response from the user. 

192 



A mistake in a user's instruction can only be detected by the robot if it causes an error in the 

primitive call or if the instruction cannot be executed because of an incompatibility between 

the previous or the next instruction. In these cases the error will be detected by the prediction 

function of the primitive procedure corresponding to the action suggested by the user. A 

possible solution could be to formulate questions for each possible error that the prediction 

function can return in order to prompt the user to rectify his/her mistake. 

Ambiguities in the user's instructions can be detected by studying the corpus for cases of 

similar instructions with multiple meanings. In such cases the user can be given a choice 

between the different meanings in the form of a question. Two examples of ambiguous 

instructions met in this project are: 

1. When users order landmarks in succession to previously mentioned landmarks of the 

same type for example: "go to the crossroads, ... , at the second crossroads ... " when it 

is ambiguous whether the last crossroads is the second or the third from the beginning 

of the example and 

2. When users say, for example: "go to the post-office" when it is ambiguous whether 

the post-office is on the road ahead or whether they assume that the robot knows the 

route to the post-office. 

Both cases can be resolved by giving a choice to the user in the form of a question: "Did you 

;l" mean ... or ..... 
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In Chapter 7 it was concluded that the human ability to repair mistakes and ambiguities in 

route descriptions, while executing them, accounted for the difference in execution success 

between humans and the robot. The ability to repair can be incorporated in primitive 

procedures in some cases such as for example when the layout of the road is used as a clue to 

indicate what the instructor meant in ambiguous situations. An example of such a case is when 

the user says: "turn left" when he/ she actually means "take the first exit off the roundabout" 

in the part of a route illustrated in Figure 8-1. 

Figure 8-1: A case when the user says "turn left" when he/she actually means "take the 

first exit off the roundabout". 

In such a case a low matching quality of the left turning template (fable 6-1(c)) or the straight 

road template (fable 6-1 (a)) at the entrance of the roundabout could make the robot check 

whether the user meant "left at the roundabout'' by matching the roundabout-entry template 

(fable 6-1(i)). If the roundabout-entry template is successful the "turn" primitive call can be 

changed to an "exit_roundabout'' primitive call. 
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It was found in Chapter 4 that the robot's task vocabulary can never be complete in practice. 

New primitive procedures are likely to appear in the user's route instructions after the 

completion of the system regardless of the size of the corpus used to develop the system. 

When a user instructs a new primitive action there are two possibilities for the speech 

recognition system: 

1. The system will misrecognize the command for another action. 

2. The system will reject the command because of low speech recognition confidence. 

In the first case, it is not possible for the system to realize that an error has taken place and 

this will most likely result in the execution of the wrong action by the robot. In the second 

case the system can ask the user a question such as: "did you mean ... or is this a new action?" 

an answer to which can cause the system start learning the new action. However, this only 

solves half the problem of the new primitive procedures because in order to describe a 

primitive action the user will need to refer to low-level robot procedures that are not 

accessible to him via natural language (see section 5.2). Therefore, the problem of new 

procedures appearing after the IBL system is completed is a challenging one to which a 

solution is still being discussed. 

Also in Chapter 4 it was found that some users referred partially to previously learned routes 

when explaining new routes. One such example is: 
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"okay you ll need to pass the train station again as you did going to the post office and 

you ll see the university as you go onto the roundabout" (u4_GC_EW) 

Were the previously explained route was from the Grand Hotel to the post-office and the new 

route, being explained, is from the Grand Hotel to the university. Two possible solutions to 

the partial re-use of previously learned routes were discussed during this project. These are: 

1. To solve the problem during the learning of the new route by requesting an explicit 

route description from the user for the part of the route he/ she is referring to. In the 

example above the system could respond to the user by saying: "Please explain the 

route to the roundabout." 

2. To solve the problem during execution time by starting the execution of the previously 

learned route and at the same time searching for the landmark mentioned by the user 

where the diversion/termination is to occur (i.e. using concurrent processing). When 

the diversion/termination point is found, execution of the recalled route should be 

terminated. In the example given above the system will start executing the known 

route from the Grand Hotel to the post-office while concurrendy searching for the 

roundabout. When the roundabout is found execution of the known route is 

terminated. 

The first solution suggested solves the problem at the expense of the user since he/ she would 

have to re-explain part of a previously described route. Implementation of the second solution 

is transparent to the user but may require significant changes in the structure of the primitive 

procedures in order to be able to achieve the concurrency described above. 
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8.3 Final statement 

One of the most important aspects in the creation of human helper robots, which will be 

useful in environments other than just the industrial floor and which can be used by people 

not necessarily possessing any programming or engineering knowledge, is their ability to 

communicate with humans. This issue is as important as the functionality of the robot since a 

robot that can do a complex task is not useful if its user cannot instruct it to do so! 

Humans prefer the medium of spoken natural language more than any other (writing, 

signalling etc) in order to convey information to their fellow humans. This is because speech is 

more efficient, fast and requires less effort. It is therefore likely that in the future humans will 

instruct their robots using spoken natural language. 

When it comes to a robot, understanding spoken natural language is complex task. This is 

because spoken natural language has no formal structure and it appears to be incomplete and 

ambiguous. A human speaker assumes that the human listener will be able to resolve this 

complexity using "commonsense". Furthermore, the listener is expected to be able to engage 

in a dialogue with the speaker in order to resolve any remaining ambiguities. These are issues 

that need to be addressed in the case of a robot listener. 

In this thesis a "user-centred" method is proposed for creating the primitive procedures of a 

robot following route descriptions. It has been shown how the under-specification problem of 

natural language route instructions can be solved. 
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It is hoped that the work presented here can provide a start towards solving the grater 

problem of unconstrained natural language dialogue between humans and their helper robots. 
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Appendices 

Appendix A 

In this appendix the specifications of each primitive procedure are presented in separate 

pages. 
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Primitive procedure: 

cross 

Description: 

Instructs the robot to cross the road to an object (usually the car park) ahead or to just cross 

to the opposite road at a crossroads for example. 

Parameters: 

Parameter Description Possible values 
Default 

name value 
object 1 The object to cross. 'car _park ' , 'road ' None 

relation 1 Preposition. None, 'to ' None 

object_2 
The object to cross the 

None, 'car_park' None 
road to. 

Parameter combinations: 

Combination ' Example 
ob ject 1 "cross the road" 

object 1 , r e lati on 1, object 2 "across the road to the parkinQ lof' 
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Primitive procedure: 

enter_roundabout 

D escription : 

Instructs the robot to enter the roundabout in a specific direction. 

Param eters: 

Parameter name Description Possible values 
Default 
value 

direction_1 Direction in which to None, 'clockwise' None 
follow the roundabout. 
Direction to turn to right 

None, 'left_of', 
relation_1 after entering the 'right_ of' 

None 
roundabout. 

object_1 
Object to which 

None, 'self' None 
relation 1 refers to. 

Parameter combinations: 

Combination Example 
"start going around the roundabouf' 

direction_1 
"go over the roundabout" 

relation 1, object 1 "turn right at the roundabouf' 
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Primitive procedure: 

exit_ object 

Description: 

Instructs the robot to exit from a place. Usually used for exiting the car park. 

Parameters: 

Parameter name Description Possible values 
Default 
value 

object 1 Object to exit from. 'car_park' None 

Parameter combinations: 

Combination Example 
"if you're in the parking space go out 

object_l <hesitation>erm<lhesitation> basically straight 
on into the following road" 
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Primitive procedure: 

exit_roundabout 

Description: 

Instructs the robot to take an exit off the roundabout. If the robot has not entered the 

roundabout then it follows the road until it meets the roundabout, enters it turning left 

(clockwise around the roundabout) and takes the designated exit. 

Parameters: 

Parameter name Description Possible values 
Default 
value 

ordi n a l 1 Order of exit to take. 
None, 'first ', 'second' , 

None - ' t h ird' 

relation_ l Preposition associated None , 'at I 1 I left_of I 1 

None 
with ob ject 1. 'pa s t' , 'right_of' 

Object with reference to None , I self I 1 

obj e ct_l which the roundabout 'tr a i n_s tation', None 
exit is specified. 'univers ity' 

Parameter combinations: 

Combination Example 
object_1, r e lation_1 ''take the exit with a train station on your righf' 

objec t 1, ordinal 1, r e lat i on 1 ''take the second first after the university'' 
''take the third exif' 

o r dinal_1 ''take your first exit on the right at the 
roundabout" 

"take the second left off the roundabouf' 
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Primitive procedure: 

follow _road 

Description: 

Instructs the robot to move forward on the road until a specified location. 

Parameters: 

Parameter name Description Possible values 
Default 
value 

None, 'across', 'after' , 

Preposition associated 
'along', 'around', 'at', 

relation_l 
with obj ec t_l. 

'in_middl e _of', 'onto', ' to' 
'over ' , 'past ' , 'to', 

'towards' , 'until' 

ordinal_l Order of obj ect_l None, 'first', 'second', 
'first' 

along the road. 'third' 
'bend ' , ' bridge', 

'broken_line' , 'building' , 
'car _park', ' corner', 

'crossroads' , 'derrys', 
'dixons', 'dotted_ line', 
'end_of _road ', ' exit', 

Object with reference to 
'grand_hotel ' , 'house ', 

which the location the ' junction' , 'lake ' , 

object_l robot should stop 
' mus eum', 'pc_world', 

None 'pizza_hut', 'pond', 
(following the road) is 'post_office', 

specified. ' queens_pub ' , 
'right_ turning ' , 

' roundabout ' , 'safeway', 
't_junction', 'tesco', 

'train_station', 'tree', 
'turning', ' univers i ty', 

'water' 
None , 'after', 'at', 'by ' ' 

relation 2 
Preposition associated 'in _front_of' , 'left _of' , 

None - with obj ec t_2. 'opposite' , 'right_ of' , 
'to' 

Object with reference to None , ' bridge ', 

object_ 2 which the location of 
' post_ office ' , 

None 
obj ect_l is specified. 

' roundab out ' , ' safeway ' , 
'self ' 
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Parameter combinations: 

Combination Example 
"go straight down that road and to the next 

junction" 

object_l, ordinal _ 1, relation_ l "come to a junction" 

"go over the bridge" 

"just past pizza hut'' 
object_l, object_2, ordinal_l, "walk straight ahead past the post-office which 

relation_l, relation_2 is on your right-hand side" 
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Primitive procedure: 

location 

Description: 

Specifies the location of an object. If the object is the destination the robot moves to it 

otherwise the robot stops as soon as it locates the object. 
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Parameters: 

Parameter name 

object_l 

relation_l 

ordinal 1 

object_2 

destination_l 

Description 

Object whose location 
is described by this 

primitive. 

Preposition associated 
with obj ec t_2 

Order of object_2 
along the road. 

Object with reference 
to which the location of 

object_ l is 
specified. 

The destination of the 
route description of 

which this primitive is 
part. 

Possible values 

'boots', 'bridge', 
'building', ' car_park', 
'crossroads', 'derrys', 

'grand_hotel' , 
'hospital', 'junction', 

'lake' , 'library', 
'museum', 'pc_world', 
'pizza_hut', 'pond', 

'post_office', 
'queens_pub', 'safeway', 

'safeways', 'tesco', 
'tree', 'univers ity' 

None, 'across', 'after', 
'along', 'at', 'before', 
'end_of', 'in_front_of', 
'left_of', 'on', 'onto', 

'opposite', 'past', 
'right of' 

None, 'first', 'second' 

None, 'bend', 'bridge', 
'building', 'car_park', 

'corner' , 'derrys', 
'end_of_road', 'exit', 

'left_ turning' , 
'right_turning', 'road', 
'roundabout', 'safeway', 

'self', 'street', 
't_junction' , 'tesco' , 

' train_station', 
'turning ' , 'universi ty' 

'boots', 'car_park', 
'grand_hotel' , 

'hospital', ' library', 
'museum', 'post_office', 
'queens_pub', 'safeway', 

'safeways', 'tesco', 
'university' 
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Default 
value 

None 

'along' 

None 

'road' 

None 



Parameter combinations: 

Combination Example 
"boots is on your left'' 

"safeway is on your right-hand side" 

''the hospital will be right in front of you" 

object_l, relation_l, object_2, "boots is on the left-hand side of the street'' 

destination_l 
''the hospital is at the end of the street'' 

''the post-office is just across the street'' 

"pc world is on the corner" 

"the university is opposite the train station" 
object_l, relation_l, ordinal_l, "the museum is after two further turnings on the 

object 2, destination 1 riQht and it is on the riQht-hand side" 
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Primitive procedure: 

bear 

Description: 

Instructs the robot to take one of the two directions at a y-junction. 

Parameters: 

Parameter name Description Possible values Default 
value 

relation_1 Direction to take at the y- ' left_of' None 
junction. 

object_1 
Object to which 

'self' None 
relation 1 refers to. 

Parameter combinations: 

Combination Exam le 
relation 1, object 1 "bear round to the left" 

209 



Primitive procedure: 

park 

Description: 

Instructs the robot to park either on/ by a specific location. 

Parameters: 

Parameter name Description Possible values 
Default 
value 

Preposition specifying 
relation_l the position to park with 'in_centre_of' None 

reference to object 1. 

object_ l Object associated with 
'quadrangle' None 

relation_l. 

Parameter combinations: 

-- Combination Example 
"park in the center of the 

relation_l, object_l <hesitation>er<lhesitation> quadrangle that's in 
front of you" 
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Primitive procedure: 

rotate 

Description: 

Instructs the robot to rotate about itself. 

Parameters: 

Parameter name Description Possible values 
Default 
value 

Preposition specifying the 
relation_l extent of rotation with 'around' None 

reference to object 1. 

object_l Object associated with 
None, 'self' 'self' 

relation 1. 

Parameter combinations: 

Combination Example 
"you need to turn round" 

relation_l, object_l 
"assuming you turned round" 
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Primitive procedure: 

take_road 

Description: 

Instructs the robot to take a road in view. Usually used when the robot is at an intersection 

and needs to get on an opposite road. 

Parameters: 

Parameter name Description Possible values 
Default 
value 

Preposition specifying the 
r e lation_1 road to take in relation to 1 opposite 1 

, 
1 right_of 1 None 

object 1. 

object_1 
Object associated with 

'self ' None 
relation 1. 

Parameter combinations: 

Combination 
relation 1, object 1 
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Primitive procedure: 

turn 

Description: 

Instructs the robot to take a turn from the current road. 

Parameters: 

Parameter name Description Possible values Default 
value 

ordinal 1 
Order of the turning to None, 'first', 'second' , 

'first' - take along the road. 'third' 
Preposition specifying 

relation_l 
the direction of the 'left_of', 'right_of' None 

turning in relation to 
object 1. 

object_ l 
Object associated with 

'self' None 
relation 1. 

Preposition specifying None, 'after', 'around', 
relation 2 

the position of the 
'at', 'before', 'by', None - turning in relation to 

object 2. 
'into', 'past' 

None , ' bridge', 
'car _park' , 'crossroads', 

'derrys', ' dixons', 

object_2 
Object associated with 'junction', 'pc_world' , 

None 
relation_2. 'post_office', 

'roundabout', 
't_junction', 
'university' 
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Parameter combinations: 

Combination Example 
"you take a left'' 

"turn right'' 
ordinal _1, relation_l, object_l 

''take the first right" 

''take your first right" 
''take a sort of right turn by dixons" 

''take a left-hand turn after the post-office" 

''take a left turn at the junction" 

''turn left at the post-office" 

ordinal_l, relation_l, object_l, 
"take a right at the crossroads" relation_2, object_2 

''take the second right after you reach the post-
office" 

"at the university take the first right'' 

"carry along until you find the car park and turn 
right into it'' 
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Primitive procedure: 

go_until 

Description: 

Instructs the robot to use part of a previously explained route. 

Parameters: 

Parameter name Description Possible values 
Default 
value 

Final destination of 
'grand_hot el' 1 'museum' 1 

object_l 
known route. 

'post_office' 1 ' s afeway' I None 
'university' 

Preposition specifying 
'at I 1 'before', 'over' 1 relation_l the diversion point in None 

relation to object 2. 
'past' 

'bridge ' I 'derrys' I 

object_2 Object associated with 'gra nd_hotel' 1 

None 
relation - 1. 'train_station', 

'university' 
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Parameter combinations: 

Combination Example 
"okay you 11 need to pass the train station again 
as you did going to the post office and you 11 see 
the university as you go onto the roundabouf' 

"erm head as though you re going towards the 
post office so you go over the bridge but instead 
of carrying straight on take a righf' 

"okay from the crossroads continue on straight 
ahead take the next righf' 

object_l, relation_l, object_2 "okay head towards the grand hotel but just 
before you get there the safeway is on your right 
hand side" 

"recalling our previous destination was the 
grand hotel and we passed safeways en route 
just before derrys" 

"right if you go exactly the same way towards 
the queens pub as before erm as you go over 
the bridge as you go past the t junction the post 
office will be there on your right" 
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Primitive procedure: 

go 

Description: 

Instructs the robot to execute a previously explained route. 

Parameters: 

Parameter 
Description Possible values 

Default 
name value 

'bridge', 'car _park' , 
'grand_hotel' , 

object_l Destination of previously ' post_office', 
None 

explained route. ' queens_pub ' , 
' roundabout ' , ' safeway' , 

'tesco', 'university' 

Parameter combinations: 

Combination ' !,. Example 
"go to the post office" 

object_ l 
"go to the roundabout'' 

"go to the roundabout mentioned previously'' 
"go to boots" 
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Appendix B 

This appendix lists the route descriptions in the development set and the evaluation set. 

Development set route descriptions 

u1_GA_MD 
u1 _GA_MW 
u1 _GA_MY 
u2_GC_MC 
u2_GC_MW 
u2_GC_MY 
u2_GC_MZ 
u3_GC_ME 
u3_GC_MY 
u4_GC_EP 
u4_GC_EW 
uS_GC_EG 

uS_GC_EPbis 
uS_GC_EW 
u5_GC_EX 

u6_GC_CM 
u6_GC_CP 
u?_GC_CD 
u?_GC_CE 
u?_GC_CL 
u?_GC_CM 
u?_GC_CP 
u8_GC_HD 
u8_GC_HL 
u9_GC_HW 
u10_GA_MD 
u10_GA_ME 
u11_GA_EH 
u12_GA_EG 
u12_GA_EH 

Evaluation set route descriptions 

u1 _GA_MC u6_GC_CD 
u1 _GA_ME u6_GC_CE 
u1 _GA_MZ u6_GC_CL 
u2_GC_MD u6_GC_CX 
u2_GC_ME u7_GC_CX 
u3_GC_MC u8_GC_HC 
u3_GC_MD u8_GC_HE 
u3_GC_MW u8_GC_HG 
u3_GC_MZ u8_GC_HW 
u4_GC_EC u9_GC_HC 
u4_GC_EG u9_GC_HD 
u4_GC_EH u9_GC_HE 
u4_GC_EX u9_GC_HG 
u5_GC_EC u9_GC_HL 
u5_GC_EH u10_GA_MC 

u12_GA_EP 
u12_GA_EW 
u13_GA_CD 
u13_GA_CE 
u13_GA_CL 
u13_GA_CM 
u14_GA_CD 
u14_GA_CE 
u14_GA_CL 
u1 4_GA_CM 
u14_GA_CP 
u15_GA_HD 
u15_GA_HE 
u15_GA_HG 
u16_GA_HG 

u10_GA_MW 
u10_GA_MY 
u10_GA_MZ 
u11 _GA_EC 
u11 _GA_EG 
u11_GA_EP 
u11 _GA_EW 
u11_GA_EX 
u12_GA_EC 
u12_GA_EX 
u13_GA_CP 
u13_GA_CX 
u14_GA_CX 
u15_GA_HC 
u15_GA_HL 
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u16_GA_HW 
u17_GB_MY 
u17_GB_ME 
u18_GB_MC 
u18_GB_MD 
u18_GB_ME 
u18_GB_MW 
u18_GB_MY 
u19_GB_EC 
u19_GB_EG 
u19_GB_EP 
u20_GB_EC 
u20_GB_EG 
u20_GB_EH 
u20_GB_EP 

u15_GA_HW 
u16_GA_HC 
u16_GA_HD 

u16_GA_HEbis 
u16_GA_HL 
u17_GB_MC 
u17_GB_MD 
u17_GB_MW 
u17_GB_MZ 
u18_GB_MZ 
u19_GB_EH 
u19_GB_EW 
u19_GB_EX 
u20_GB_EX 
u21 _GB_CE 

u20_GB_EW 
u21 _GB_CD 
u21 _GB_CM 
u21_GB_CP 
u21 _GB_CX 
u22_GB_CD 
u22_GB_CE 
u22_GB_CL 
u23_GB_HC 
u23_GB_HD 
u23_GB_HG 
u24_GB_HC 

u21 _GB_CL 
u22_GB_CM 
u22_GB_CP 
u22_GB_CX 
u23_GB_HE 
u23_GB_HL 
u23_GB_HW 
u24_GB_HD 
u24_GB_HE 
u24_GB_HG 
u24_GB_HL 
u24_GB_HW 



Appendix C 

This appendix presents the contents of the CD accompanying this thesis. 

Note that each corpus route description file is given a name which contains the subject's 

number, the subject's group (see section 4.1) and the starting location and destination in the 

miniature model town. For example: 

u4_GC_EH 

refers to the route description of subject 4 who is in group C. The subject was asked to 

describe the route from the Grand Hotel (designated with the letter E) to the Hospital 

(designated with the letter H). The designations of each landmark in the miniature model town 

are illustrated in the map image file "miniature_model_town_map.jpg" which can be found on 

the CD accompanying this thesis. 

The following paragraphs explain the contents of each file/ directory in the accompanying CD. 

D irectory "corpus_sound_recordings": 

Contains the sound files of the route descriptions collected during the corpus. The file format 

of all sound files is "wav". 

File "corpus_ transcriptions. txt'': 

A single file containing all transcriptions of the corpus. The format of the file is DOS "txt". 

219 



Directory "corpus_translations": 

Contains the manual translation files of the corpus route descriptions (sets of initialized 

primitive procedure calls corresponding to each route description in the corpus). The format 

of the files is "py" (python source files). They can be viewed in a UNIX-based text editor or 

MS Windows Word. 

Directory ''video_examples": 

Contains 4 "mpg" (MPEG) video files: 

• "take_the_second_left_1.mpg": Shows the robot executing the route instruction: 

"take the second left". 

• "take_the_second_left_2.mpg'': Shows the computer screen when executing the 

same route instruction as above. 

• "u13_GA_CL.mpg'': Shows the execution of the corpus route description with the 

same name. 

• "u19_GB_EG.mpg": Shows the execution of the corpus route description with the 

same name. 

Note 1: The video files showing the robot navigating in the miniature model town had several 

5-second intervals removed from them while the robot was stationary. This time delay was 

deliberately inserted, after the robot executes a motion command, in order to allow the camera 

image to settle. The upset in the video image while the robot moves occurs because of the 

large current drawn by the robot motors. 
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Note 2: The video sequences shown by " template_matching_2.mpg" and 

"template_matching_2.mpg" were recorded are different times so the actual position of the 

robot at any moment does not necessarily correspond in the two runs. 

File "miniature_model_town_map. jpg": 

Annotated map image of the miniature model town. The file format is JPEG. 

Directory "code": 

The explicit program code developed during the work described in this thesis. The directory 

contains among other files the primitive procedure modules. A brief explanation of the main 

files is given below: 

• "bear.py", "cross.py'', "enter_roundabout.py", "exit_object.py'', 

"exit_roundabout. py'', "follow _road.py'', "location. py", "park. py'', "rotate.py", 

"take_road.py", "tum.py'': Primitive procedure modules (python source files). 

• "*.pyc": Python byte-compiled files. 

• ''various.py": Contains flags and values used throughout the primitive procedures. 

• "average_chromaticity_data": Stores the chromaticity vector of the road surface 

colour. 

• "calculate_transform_data.py'': Produces the "transformation look-up matrix" (see 

section 6.1). 

• "capture.py'': Saves the robot camera image into a file. 

• "capture_and_process.py'': Same as "capture.py" but in addition it executes the pre

processing and road edge/road surface filtering steps (see sections 6.1, 6.4 and 6.5). 
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• "*.c" and "*.h": C source and header files containing the image processing routines. 

• "*.o": Object files resulting from the compilation of the C sources. 

• "make_ wrappers": Executable. Compiles all C sources with "python_wrappers.c" to 

produce "cfunctionsmodule.so" which is a python extension module. By importing 

this module in python scripts the C functions can be run as python functions. 

• ''video_server.py": When run, it continuously captures and displays the robot's 

camera image. Any request to save a camera image to file is made to this process. 

• "robot_server.py": Manages communication of motion commands to the robot. Any 

request to move the robot is made to this application. 

• "simulation_server.py": Runs a simple simulation in order to test the primitive 

procedures. The appropriate flag must be set in "various.py" so that primitive 

procedures direct video capture and navigation commands to this server instead of the 

video and robot servers. 

222 



Appendix D 

The table below shows all the words found in the corpus collected for the IBL project. The 

words are presented in alphabetical order along with their occurrence in the corpus. 
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a 132 bear 2 clockwise 5 

able 3 bears 1 come 46 

about 4 been 1 continue 45 

access 1 before 15 corner 11 

across 18 beginning 2 cross 2 

actually 1 beige 1 crossing 2 

after 14 bend 18 crossroads 35 

again 27 bending 4 currently 1 

ahead 9 bends 1 degrees 7 

all 14 bendy 3 derry's 17 

almost 3 between 2 destination 11 

along 14 big 2 diagonally 1 

already 1 bit 12 did 2 

amount 1 black 1 direction 7 

an 4 blocks 1 directly 5 

and 263 boots 17 discussed 2 

angle 1 both 1 dixons 11 

another 10 bottom 2 do 7 

any 1 branch 1 door 3 

apologise 1 bridge 48 doors 1 

are 6 building 28 dotted 6 

area 1 buildings 3 double 1 

around 10 but 8 doubling 2 

arrive 1 by 7 down 54 

as 23 can 2 en 1 

assuming 2 car 22 end 37 

at 42 carry 25 ends 1 

back 9 carrying 1 entering 1 

basically 4 center 1 er 84 

be 38 certainly 1 erm 71 
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exactly 2 head 5 library 6 

exit 42 here 1 like 4 

exits 1 hit 14 line 7 

facing 2 hope 1 lines 1 

far 1 hospital 13 little 12 

feel 1 hotel 27 looks 1 

few 5 house 1 lot 3 

find 16 hundred 2 main 12 

first 72 hut 8 make 1 

five 1 i 6 means 1 

follow 13 if 26 meet 3 

following 4 immediate 6 mentioned 3 

for 6 immediately 6 middle 4 

fork 1 in 36 moment 1 

forty-five 1 instead 4 more 1 

forward 44 instruct 1 move 13 

forwards 73 into 3 moving 1 

from 35 is 85 museum 6 

front 13 it 21 need 6 

further 3 it'd 1 next 10 

get 19 its 1 ninety 3 

go 168 it's 15 now 1 

going 68 junction 32 of 84 

gone 3 just 28 off 11 

got 18 keep 59 oh 2 

grand 26 lake 6 ok 3 

grey 4 leave 1 okay 62 

half 1 leaving 1 on 253 

has 1 left 188 once 5 

have 7 left-hand 31 one 6 
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only 1 quarters 1 slight 4 

onto 3 queens 1 slightly 21 

opposite 13 queen's 14 small 2 

or 1 reach 13 so 19 

order 1 reaching 1 some 3 

other 6 recall 3 soon 1 

our 3 recalling 1 sorry 6 

out 2 right 178 sort 5 

outside 1 right-hand 26 space 2 

over 40 road 109 start 5 

paper 1 roads 2 starts 1 

park 26 robot 1 station 10 

parking 7 round 29 still 1 

park's 1 roundabout 81 stop 17 

pass 17 route 6 storey 1 

passed 3 safeway 19 straight 61 

passing 1 safeways 16 street 14 

past 60 same 2 sure 4 

pc 14 say 1 take 137 

pizza 8 says 1 taken 1 

place 2 second 41 taking 2 

please 1 see 17 tesco 1 

plymouth 13 set 1 tescos 11 

pond 4 seventy 1 tesco's 1 

post-office 57 sharp 1 thankyou 1 

post- 1 short 2 that 48 
offices 

previous 4 should 24 th~t's 6 

previously 4 side 58 the 753 

pub 16 sixty 1 then 97 

quadrangle 1 skyscraper 1 there 32 
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there'll 2 up 9 your 127 

there's 2 upon 1 you're 20 

thing 1 very 2 yourself 3 

think 1 walk 15 you've 11 

third 20 walking 5 yuh 2 

thirty 1 want 19 yup 2 

this 12 was 2 

though 2 water 2 

three 4 way 18 

till 5 we 7 

time 6 well 2 

t-junction 13 went 1 

to 212 were 2 

too 1 what 1 

towards 12 when 14 

train 10 where 10 

travel 1 which 16 

travels 1 while 1 

tree 3 white 7 

trees 6 wiggles 1 

trip 1 will 44 

turn 109 with 12 

turned 1 without 1 

turning 28 work 2 

turnings 2 world 14 

two 6 yards 3 

uh-huh 1 yeah 7 

um 10 yes 6 

university 39 you 233 

until 53 you'll 40 
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Abstract 
Future domestic robots will need to adapt to the special needs of their users and to their environment. 
Programming by natural language will be a key method enabling computer language-na"ive users to 
instruct their robots. Its main advantages over other learning methods are speed of acquisition and 
ability to build high level symbolic rules into the robot. This paper describes the design of a practical 
system that uses unconstrained speech to teach a vision-based robot how to navigate in a miniature 
town. The robot knows a set of primitive navigation procedures that the user can refer to when giving 
route instructions. A particularity of this project is that the primitive procedures are determined by 
analysing a corpus of route instructions. It is found that functions primitives natural to the user, such 
as "turn left after the church" are very complex procedures for the robot, involving visual scene 
analysis and local route planning. Thus, to enable natural user-robot interaction, a high-level of 
intelligence needs to be built into "primitive" robot procedures. Another fmding is that the set of 
primitive procedures is likely not to be closed. Thus, on time to time, a user is likely to refer to a 
procedure that is not pre-programmed in the robot. How best to handle this is currently investigated. 
In general, the use of Instruction-Based Learning (IDL) imposes a number of constraints on the design 
of robotics systems and knowledge representation. These issues are developed in the paper and 
proposed solutions described. 

1. Introduction 

Intelligent robots must be capable of action in reasonably complicated domains with some degree of 
autonomy. This requires adaptivity to a dynamic environment, ability to plan and also speed in the 
execution. In the case of helper robots, or domestic robots, the ability to adapt to the special needs of 
their users is crucial. As most users are computer-language-na"ive, they cannot personalise their robot 
using standard programming methods. Indirect methods, such as learning by reinforcement or 
learning by imitation, are also not appropriate for acquiring user-specific knowledge. For instance, 
learning by imitation does not enable the acquisition of rules such as "IF-THEN". Learning by 
reinforcement is a lengthy process that is best used for refining low-level motor controls, but becomes 
impractical for complex tasks. Further, both methods do not readily generate knowledge 
representations that the user can interrogate. An alternative method, learning from verbal instructions 
is explored in this paper. 

Instruction-based learning (IDL) has several potential advantages. Natural language can 
express rules and sequence of commands in a very concise way. Natural language uses symbols and 
syntactic rules and is well suited to interact with robot knowledge represented at the symbolic level. It 

1 To whom correspondence should be addressed. 
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has been shown that learning in robots is much more effective if it operates at the symboUc level 
(Cangelosi and Harnad, 2001). This is to be contrasted with the much slower learning at the level of 
direct sensory-motor associations. 

Previous work on verbal communication with robots has mainly focused on issuing 
commands, i.e. activating pre-programmed procedures using a limited vocabulary (e.g. IJCAI'95 
office navigation contest). Only a few research groups have considered learning, i.e. the stable and 
reusable acquisition of new procedural knowledge. An inspiring project was Instructo-SOAR 
(Huffman & Laird, 1995). This system used textual input into a simulation of a manipulator with a 
discrete state and action space. Another investigation (Crangle and Suppes, 1994) used voice input to 
teach displacements within a room and mathematical operations, but with no reusability. In (Torrance, 
1995), textual input was used to build a graph representation of spatial knowledge. This system was 
brittle due to place recognition from odometric data and use of IR sensors for reactive motion control. 
Knowledge acquisition was concurrent with navigation, not prior to it. The present work aims at 
using unconstrained language in a real-world robotic application. More recent projects with related 
scope are CARL (Seabra Lopes and Teixeira, 2000) and HERMES (Bischoff and Jain, 1999). 

The use of IBL has system-wide repercussions on the design of a robot control system. (i) The 
robot must be able to convert utterances in natural language into internal symbols that the robot 
understands. By understanding we mean here that there is a correspondence between symbols and 
actions or real-world objects. Thus primitive functions associated with symbols must be provided. (ii) 
The robot must be able to distinguish a command to be executed immediately from an instruction to 
be memorized. This requires context resolution at the natural language processing level. (iii) The 
robot must be able to verify that the instruction can be converted into an executable procedure. This 
requires an internal representation of consequences of actions. (iv) In the case of translation errors at 
any level of user-robot communication process, the robot must be able to inform the user and engage 
in a repair dialogue. This requires sophisticated dialogue management. (v) Finally the robot must be 
able to execute a command while listening to the user, and must cope with interruptions and 
inappropriate answers to its requests. This requires a carefully designed system architecture. 

This paper describes initial steps and considerations towards a practical realisation of an IBL 
system. The experimental environment is that of a miniature town in which a robot provided with 
video camera executes route instructions. The robot has a set of pre-programmed sensory-motor 
action primitives, such as "turn left" of "follow the road". The task of the user is to teach the robot 
new routes by combining action primitives using unconstrained speech. That task should reveal all the 
constraints described above, and enable testing of the developed methodology. 

Section 2 clarifies bow symbol-level description and low-level sensory motor action 
procedures are integrated. The proposed representation of procedural knowledge is also described. In 
section 3, natural language processing is described. In section 4, the system architecture is described. 

One of the problems to consider is the selection of action primitives. This is done here by 
analyzing recorded route instructions, and establishing a list of actions that are natural to users. 
Section 5 describes this process and presents the result of this investigation. One of them is that the 
list of primitives may not be a closed one. The implications of that and other findings is discussed in 
section 6, along with the question of how the proposed system compares to other approaches. 

2. IBL model 

2.1 Symbolic learning 

In IBL, verbal instructions given by the user are converted into new internal program code that 
represents new procedures. Such procedures become part of a pool of procedures that can then be 
reused to learn more and more complex procedures. Hence, the robot becomes able to execute 
increasingly complex tasks. 
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This process starts with a predefmed initial knowledge. This "innate" knowledge consist of 
primitive sensory-motor procedures with names, such "turn left", "follow the road" (the choice of 
these primitives is explained in section 2.3 and 5). The names constitute the "symbols", and the pieces 
of computer program that controls the execution of corresponding procedures are called "actions" 
(Figure lA). As each symbol is associated with an action, it is said to be "grounded". 

When a user explains a new procedure to the robot, say a route from A to B that involves a 
number of primitive actions, the IBL system creates a new name for the procedure, and writes a new 
piece of program code that executes that procedure, and links the code with the name (see section 2.2 
for details). The code refers to primitives actions by name. It does not duplicate the low-level code 
defming theses primitives. For that reason, the new program can be seen as a combination of symbols 
rather than a combination of actions (figure lB). As all new procedures are constructed from 
grounded primitives, they become grounded by inheritance and are thus "understandable" by the 
system when referred to in natural language. 

When explaining a new procedure, the user can also refer to old procedures previously 
defined by himself. In that way the complexity of the robot's symbolic knowledge increases (fig. 1 C). 

Symbolic 

~ 
Symbolic Symbolic 

Level Level Level 

' ' ' ' ' ' ' ' . ! i . . Innate Innate Innate . ! 
. 

! : : : l . Links ! ! Links ! ! ! Links ! ! ! : . I . . . . . I . I 

I I I I I I I I I I I I : : . : : : iiiiii iiiiii . 
Action Action i'i'i'i'i'i' Action 
Level Level Level 

A B c 

Figure 1. Symbolic learning. (A) is a schematic representation of the initial system, comprising 
symbols associated with pre-programmed (innate) primitive action procedures. In (B) the user has 
defined a new procedure (open circle) as a combination of symbols. The new symbol is grounded 
because it is a construct of grounded symbols. In (C), the user has defined a new procedure that 
combines a procedure previously defmed by himself with primitive action procedures. 

2.2 Knowledge representation 

The internal representation needs to support three functions: (i) formal modeling of NL route 
descriptions; (ii) internal route planning for determining whether a given route description is 
sufficiently specified; and (iii) the generation of procedures for navigation at execution time. These 
three functions require different representations that will be described in turn. 

(i) The utterances of the user are represented using the discourse representation structure 
(DRS) (section 3). This is then translated into symbols representing procedures or is used to initiate 
internal functions such as execution of a command or learning of a series of commands (section 4). 

(ii) When the user describes a route as a sequence of actions, it is important for the robot to 
verify if this sequence is executable. The approach proposed here associate each procedure with a 
triplet SAiiSi with properties similar to productions in SOAR (Laird et al, 1987). The state Si is the 
pre-condition for action Aii. It defmes which components of the input state vector need to have 
specific values for the action Aii to be possible. The state Si is the fmal state, resulting from the action 
Aii applied to the input state. For a sequence of actions to be realisable, the final state of one action 
must be compatible with the pre-condition of the next one. To enable this verification, the robot must 
be able to "imagine" the consequence of an action. For that purpose, a PREDICTION function is 
associated with each primitive action, and with each newly created procedure. Figure 2 illustrates the 
use of the prediction function during verification of the consistency of the sequence of instructions 
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from the user. It should be noted that this process also helps detecting some of the errors in natural 
language processing. 
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Figure 2. Route instruction verification. (A) For each procedure there is a prediction function 
that transforms a state vector into its future value. The function first determines if the input state 
satisfied the minimal criteria ("pre-condition") to enable the procedure to be executed. An action 
is executable only if selected elements of the state vector have required values. If this is the case, 
the next state is predicted and processed by the prediction function associated with the next 
procedure in the instruction. Each action modifies certain components of the state vector, and 
leaves the others unchanged. (B) If the predicted state produced by one procedure does not allow 
the next procedure to be executed, an error handling process is initiated. (Note: the "initial state" 
in the text corresponds to the "current state" in the figure) . 

(ii i) When a robot executes a command, it executes a piece of program code that contains the 
sequence of primitive procedures to be executed. Thus, a key part of IBL is the generation of a 
program code. This is enabled by the use of a scripting language (section 4). This program is called 
the ACTION function. Both ACTION and PREDICTION functions are physically located in the same 
file that contains all information specific to a procedure. This is schematised in figure 3. 
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Figure 3. Procedural lrnowledge representation. (A) A procedure file contains an ACfiON 
function that causes the physical displacement of the robot, and a PREDICTION function that 
calculates the future state of the robot resulting from the action. The ACTION is used during 
execution of a command, and the PREDICTION is used for consistency checking during the 
learning process. (B) An instruction by the user results in a "New Procedure" file being written. In 
this ftle, the actions components of the requested primitive procedures are combined (in the form 
of function calls) to create the new ACTION function, and the prediction components are 
combined to create the new PREDICTION function. This includes an additional procedure-specific 
pre-condition. 

2.3 Sensory-Motor primitives 

Sensory-motor primitives are defmed as actions that users usually refer to in unconstrained speech. 
These are not low-level robot control actions, and often involve complex processing and planning. A 
task such as "approach that building at the end of the street" is a typical action that users ask the robot 
to do at the end of a route instruction, when the goal is in sight (section 5). It is a complex action 
involving visual detection of a building and of its entrance, its localisation in relation to the street, and 
planning of a route along the street. All this is easy for a human, but in many ways stretches the limits 
of robot "intelligence". 

The use of relatively high-level primitives allows to accept underspecified natural-language 
commands as executables procedures, and thus simplifies the mapping from natural language 
expressions to robot procedures. It also gives the robot some autonomy in the execution of commands, 
as the execution details depend on the local conditions. 

3. Natural Language Processing 

3.1 The Dialogue Move Engine 

The ongoing dialogue between user and robot is represented by a discourse representation structure 
(DRS) proposed by Discourse Representation Theory (Kamp & Reyle 1993). New utterances yield 
DRSs (see section 3.2 below), which update the DRS of the dialogue, following the recent 
information state approach to dialogue processing (Traum et al. 1999). Context-sensitive expressions 
(such as pronouns and presupposition triggers) are resolved with respect to this DRS. Finally, 
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utterances of the robot are realized by generating prosodically annotated strings from DRSs and 
feeding these to a synthesizer. 

Using semantic representations for modeling the dialogue is motivated by the need to perform 
inferences in order to let the robot make "intelligent" responses. Inferences are required to resolve 
ambiguities present in the user's input (being of scopal, referential, or lexical nature), to detect the 
speech act associated to an utterance (e.g., did the user answer a question or has a new issue been 
raised?), to plan the next utterance or action, and to generate naturally sounding utterances (e.g., by 
distinguishing old from new information within an utterance). Inference are actually carried out using 
off-the-shelf theorem provers, by translating DRSs to first-order logic (cf. Blackburn et al. 1999). 

3.2 Speech Recognition 

Speech recognition and semantic construction are integrated into one component. The basic idea is to 
use off-the-shelf speech recognition, and to use a grammar that is linguistically motivated and domain 
independent. The grammar not only consists of rules that determine the syntactic structure of 
utterances, but also features semantic rules that specify how semantic representations (underspecified 
DRSs) are built in a compositional way. 

The current prototype implementation uses Nuance2 tools for speech recognition. The initial 
grammar is a unification-based phrase structure grammar, which is compiled into GSL, the Grammar 
Specification Language supported by Nuance's technology. This compilation involves removing left
recursive rules within the grammar, as well as replacing features and their possible values for 
syntactic category symbols, as GSL neither support left-recursive rules nor a feature-value system. 
As a consequence, the language models for the speech recognition are huge, but still feasible for small 
lexicons (a few hundred words in the case of ffiL) . 

The semantic operations are compiled-out in GSL as well , and each word in the lexicon is 
associated with a semantic representation. As a result, the output of the speech recognizer is directly a 
semantic representation, in our case an underspecified DRS, and another step of processing (such as 
parsing and semantic construction) is not required. Hence, by compiling our linguistic grammar into 
GSL, we short-cut the parsing and semantic construction process into a single component. 

4. System Architecture 

The architecture is comprised of several functional processing modules (figure 4). These are divided 
into two major units: the Dialogue Manager (DM) and the Robot Manager (RM). 

The DM and the RM are designed as two different processes based on asynchronous 
communication protocols. These processes run concurrently on different processors. In this way, the 
system can handle, at the same time, both the dialogue aspects of an incoming request from the user 
(i.e. speech recognition and semantic analysis, or detection of a "stop" command) and the execution of 
a previous user request (i.e. check if the request is in the system knowledge domain, and execute 
vision-based navigation procedures). 

2 http://www.nuance.com 
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Figure 4. IBL system's architecture (see text for description). 

Two aspects are essential with this concurrent-processes approach. Firstly, to define an 
appropriate protocol between the two processes. Secondly, to define an appropriate architecture for 
theRM and DM allowing the two processes to both communicate with each other while performing 
other tasks. At present a communication protocol based on sockets and context-tagged messages is 
evaluated. 

Moreover, the system must also dynamically adapt itself to new user requests or to new 
internal changes, by being able to temporarily suspend or permanently interrupt some previous 
activity. For example the user may want to prevent the robot crashing against a wall and must 
therefore be able to stop the robot while it is driving towards the wall. Hence, the importance of a 
concurrent approach where the system constantly listens to the user while performing other tasks. 
Further, the system must be able adjust task parameters if necessary. 

The Dialogue Manager is a bi-directional interface between the Robot Manager and the user, 
either converting speech input into a semantic representation, or converting requests from the Robot 
Manager into dialogues with the user. Its components are run as different processes communicating 
with each other via a blackboard architecture. 

The RM must be able to concurrently listen to messages from to the DM and process them, 
and send requests to the DM. For this reason a multi-threads approach has been used. The 
communication interface is a process that launches a message-evaluation thread "Execution Process" 
(fig. 4) and then resumes listening to the DM. The execution process then starts an appropriate thread 
for executing a command, or places a tagged message on a message board if the message is part of a 
dialogue in a specific thread, e.g. learning a route. 

The Robot Manager is written using the scripting language Python3 and C. An important feature 
of scripting languages is their ability to write their own code. For instance, a route instruction given 
by the user will be saved by the Robot Manager as a Python script that then becomes part of the 
procedure set available to the robot for execution or for future learning. 

3 http://www.python.org 
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5. Corpus Collection and Data Analysis 

To evaluate the potential and limitations of IDL, a real-world instructions task is used, that is simple 
enough to be realisable, and generic enough to warrant conclusions that hold also for other task 
domains. A simple route scenario has been selected, using real speech input and a robot using vision 
to execute the instructed route (see 5.1 below for more details). The ftrst task in the project is to define 
the innate actions and symbols in the route instruction domain. For this reason, a corpus of route 
descriptions has been collected from students and staff at the University of Plymouth. In section 5.2 
and 5.3 corpus collection and data analysis are presented. 

5.1 Experimental Environment. 

The environment is a miniature town covering an area of size 170cm x 120cm (figure 5). The robot is 
a modified RobotFootball robot4 with a 8cm x 8cm base (figure 6A). The robot carries a CCD colour 
TV camera5 (628 (H) x 582 (V) pixels) and a TV VHF transmitter. Images are processed by a PC that 
acquires them via with a TV capture card6 (an example of such image is shown in figure 6B). The PC 
then sends motion commands by FM radio to the robot. During corpus collection, the PC is also used 
to record instructions given by subjects. 

The advantage of a miniature environment is the ability to build a complex route structure in the 
limited space of a laboratory. The design is as realistic as possible, to enable subjects to use 
expressions natural for the outdoor real-size environment. Buildings have signs taken from real life to 
indicate given shops or utilities such as the post-office. However, the environment lacks some 
elements such as traffic lights that may normally be used in route instructions. Hence the collected 
corpus is LikeLy to be more restricted than for outdoor route instructions. 

The advantage of using a robot with a remote-brain architecture (Inaba et al., 2000) is that the 
robot does not require huge on-board computing and hence can be small, fitting the dimensions of the 
environment. 

Figure 5. Miniature town in which a robot will navigate according to route instructions given by 
users. Letters indicate the destinations and origins of various routes used in the experiment. 

4 Provided by Merlin Systems (http://www.merlinsystemscorp.com/) 
5 Provided by Allthings Sales and Services (http://www.allthings.corn.au/) 
6 TV Card: Hauppage WinTV GO 
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Figure 6. A. Miniature robot (base 8cm x 8cm). B. View from the on-board colour camera. 

5.2 Collection of a corpus of route instructions 

To collect linguistic and functional data specific to route learning, 24 subjects were recorded as they 
gave route instructions to the robot in the environment. Subjects were divided into three groups of 8. 
The first two groups (A and B) used totally unconstrained speech, to provide a performance baseline. 
It is assumed that a robot that can understand these instructions as well as a human operator would 
represent the ideal standard. Subjects from group C were induced in producing shorter utterances by a 
remote operator "taking notes". Subjects in groups A and B were told that the robot was remote
controlled and that, at a later date, a human operator would use their instructions to drive the robot to 
its destination. It was specified that the human operator would be located in another room, seeing only 
the image from the wireless on-board video camera. This induced subjects to use a camera-centred 
point of view relevant for robot procedure primitives. Subjects were also told to reuse previously 
defmed routes whenever possible, instead of re-explaining them in detail. Each subject had 6 routes to 
describe among which 3 where "short" and 3 where "long". The long routes included a short one, so 
that users could refer to the short one when describing the long one, instead of re-describing all 
segments of the short one (figure le). This was to reveal the type of expressions used by users to link 
taught procedures with primitive ones. Each subject described 6 routes having the same starting point 
and six different destinations. Starting points were changed after every two subjects. A total of 144 
route descriptions were collected. For more details about collection and analysis of the corpus see 
(Bugmann et al. 2001). 

5.3 Corpus Analysis: The functional vocabulary 

The aim of the corpus analysis is to twofold. First, to defme the vocabulary used by the users in this 
application, in order to tune the speech recognition system for an optimal performance in the task. 
Secondly, to establish a list of primitive procedures that users refer to in their instructions. The aim is 
to pre-program these procedures so that a direct translation from the natural language to grounded 
symbols can take place. In principle, if the robot does not know a procedure, the user could teach it. 
However, this is a process that we wish to avoid at this stage of the project, as discussed in section 6. 
Hereafter, we report on the functional analysis of the corpus (Groups A and C merged. Group B not 
included at this point in time). The reader interested in the task vocabulary can refer to (Bugmann et 
al., 2001). 

The functional vocabulary is a list of primitive navigation procedures found in route 
descriptions. The initial annotation of instructions in terms or procedures, as reported here, is 
somehow subjective, and influenced by two considerations. (i) The defmed primitives will eventually 
be produced as C-Programs. It was hoped that only a few generic procedures would have to be 
written. Therefore, the corpus has been transcribed into rather general procedures characterised by 
several parameters (table 1). (ii) An important issue is knowledge representation. According to the 
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SAS representation discussed in section 2, the executability of primitives can only be evaluated if 
their initial and final states are defined. Subjects however rarely specified explicitly the starting point 
of an action and sometimes did not define the final state in the same utterance. Nevertheless, it was 
assumed that the system would be able to infer the missing information from the context. Therefore, 
procedures without initial or final state were considered to be complete, and were annotated as such. 
The specifications of primitive procedures is likely to evolve during the project. 

This analysis methodology differs slightly from the one in (Denis, 1997). In our analysis, 
there are no statements describing landmarks, as these are made part of procedures specifications, and 
consequently there are also no actions without reference to landmarks. Even when a subject specified 
a non-terminated action, such as "keep going", it was classified as "MOVE FORWARD UNTIL" , 
assuming that a termination point would be inferred from the next specified action. The List of actions 
found in the route descriptions of groups A and C is given in table 1. 

1 

2 
3 

4 
5 
6 
7 

8 
9 
10 
11 
12 

Count Primitive Procedures 
178 MOVE FORWARD UNTIL [(past )over )across) <landmark>] I 

[(half_way_of I end_of) street] I [after <number><landmark> [left I right]] I 
[road bendl 

118 TAKE THE [<number>l turn [(left I right)] I [(before I after I at) <landmark>] 
94 <landmark> IS LOCATED [left I right )ahead] I [(at I next_to I left_of I 

right_of I in_front_of I past I behind I on I opposite I near) < landmark>] I 
[(half_way_of 1 end_of I beginning_of J across) street] I [between 
<landmark> and <landmark>] I [on <number> turninQ Ueft I riQht)J 

49 GO (before I after I to) <landmark> 
32 GO ROUND ROUNDABOUT [left I right] I [(after I before I at) <landmark>] 
27 TAKE THE <number> EXIT [(before I after I at) <landmark>] 
9 FOLLOW KNOWN ROUTE TO <landmark> UNTIL (before I after J at) 

<landmark> 
3 STATIONARY TURN [left I right I around] I [at I from <landmark>] 
1 TAKE THE ROAD in front 
1 PARK AT <location> 
l CROSS ROAD 
1 EXIT [car _park I park] 

Table 1. Primitive navigation procedures found in the route descriptions collected from groups A 
and C. Procedure 3 is used by most subjects to indicate the last leg of a route, when the goal is in 
sight. 
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Figure 5. Average number of unique procedures as a function of the number of collected route 
instructions The curve is obtained by averaging over 96 sets comprising a random selection of n 
route descriptions. The number n is shown on the x-axis of the graph. The slope of the curve 
indicates that, on average, one new function will be added to the functional lexicon for every 25 
additional route instructions collected. 

Figure 5 shows that the number of distinct procedures is increasing with the number of sampled 
instructions, but at a rate much smaller than the number of distinct words reported in (Bugmann et al. , 
2001 ). Here we discover on average one new procedure for every 25 route instructions, while with 
words, we discovered in average one new word for each instruction. New procedures typically are the 
least frequent in table 3. 

6. Practical Implications 

Teaching a route to a robot using natural language is an application of a more general instruction
based learning methodology. The corpus-based approach described here aims at providing users with 
the possibility of using unconstrained speech, whilst creating an efficient natural language processing 
system using a restricted lexicon. It is found that the functional vocabulary is small, containing only 
12 primitives (although that number may vary with the annotation method). From a roboticist's point 
of view, route navigation could probably be achieved with a smaller number of primitives. However, 
when accepting spontaneous speech, a wider variety of functions must be expected. 

An important fmding is that the functional vocabulary is not closed. Hence, at some point in 
the robot's life, the user will have to teach it new primitives (e.g. "cross the road") or reformulate its 
instructions. To enable learning, the robot must posses a larger set of primitives, which correspond to 
lower level robot actions. For instance, the user may wish to refer to a number of wheel turns in its 
instruction. An example of such instructions is found in (Seabra Lopes, 2000). With our approach, this 
would require the collection of a new corpus to determine the necessary additional primitive 
procedures. Another solution may lie in an appropriate dialogue management to suggest a 
reformulation of the instruction. It is expected that with the corpus-based method used here, the 
frequency of such "repair dialogues" will be minimised. An open question is the detection of new 
functions in the user's utterance, as the lexicon may not contain the required vocabulary. 

The approach to robot control described may be seen as an attempt to integrate the good 
properties of Behaviour-based control (Brooks, 1991) and classical AI. Behaviour-based control is an 
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effective method for designing low-level primitives that can cope with real-world uncertainties, and 
AI has developed effective tools for symbol manipulation and reasoning. However, the system differs 
in several ways from both methods. Here, the corpus defines what symbols and primitives to use. 
Consequently, some of the primitives are rather complex functions, involving representations of the 
environment and planning. These are not always compatible with the representation-less philosophy 
of behaviour-based systems. On the AI side, the system does not use the full range of reasoning 
capabilities offered by systems such as SOAR There are no other aims in symbolic processing than 
verifying the consistency of instructions, and the construction of new procedure specifications. In 
particular, planning at the symbolic level is not needed at this stage of the project. Instead, planning is 
perfom1ed by the user, and the plan is communicated to the robot using natural language. This limits 
the autonomy of the robot, but also improves the safety of its use, as unpredictable behaviour is 
limited. 

Other hybrid architectures integrating Behaviour-based systems and AI have been 
investigated as possible solutions to the symbol-grounding problem (Malcom 1995, MacDorman 
1999, Tani 1996, Toshihiro et al.l999). This problem is one of maintaining the coherence between 
representations used to reflect upon actions and events, and the stream of sensory information 
produced by a dynamic environment (Harnad, 1990). This problem can be avoided if the reasoning 
process itself depends in some way on its relation to the world, or, in other words, if the development 
of the internal categories and their transformations depends on external interactions. It has been 
proposed that truly sentient robots should have learning abilities such that dynamically changing 
external events and results of own action are allowed to constrain abstract reasoning. 

The system developed by (Malcom, 1995) operated in a relatively well-ordered and 
predictable world in which complex tasks had to be achieved. But since the symbol system could only 
operate under internal syntactic constraints the grounding problem was not really addressed. In the 
system suggested by (MacDorman, 1996; Tani, 1996) the development of the internal categories and 
their transformations depended on external interactions. However, there was no human interaction and 
the grounding could not be modified by a non-experienced user. Whereas in (Matsui et al. 1999), the 
system could learn new actions through natural language dialogues but only while the robot was 
performing them (i.e. it could only learn a new route from A to B while it was actually moving from 
A to B and dialoguing with the user). 

In the mL system described here, learning operates purely at the symbolic level, hence it can 
be done prior to performance. The ability to predict future states enables to engage in a verification 
dialogue before execution errors occur. If environmental conditions change such that an instruction is 
not valid anymore, this can be detected from the mismatch between the expected result and the actual 
one. Learning however is not autonomous. The system requires interaction with a human user to learn 
new symbols and their meaning. This simplifies the design of the robot due to the transfer of part of 
the cognitive load to the user. Future experiment will reveal if this approach results in effective and 
socially acceptable helper robots. 
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Abstract 
Future domestic robots will need to adapt to the special needs of their users and to their environment. It is likely 
that programming by natural language will be a key method enabling computer language-naiVe users to instruct 
their robots. Th.is paper describes initial steps and considerations towards the design of Instruction-Based 
Learning (IBL) systems. The proposed methodology is to be tested in the restricted domain of route instructions 
with real speech input and a real mobile robot using vision for navigation. Users will use unconstrained speech 
within a restricted domain-specific lexicon determined by analysing a corpus of route instructions. This will 
maximise speech recognHion performance. The robot will possess an appropriate set of primitive procedures 
that correspond to procedures found in route instructions. Based on 96 route instructions, it is found that the task 
vocabulary contains approximately 270 words, but is not closed. It increases at an average rate of one new word 
for every new route instruction. However, there are large inter-individual differences and 58% of instructions 
contain no out-of-vocabulary words. The functional vocabulary is found to include 12 different procedures, and 
is also not closed. It increases at an average rate of one new procedure for every 25 instructions. 

1. Introduction 

Future domestic robots will be required to perform tasks that manufacturers cannot pre-program. For instance, 
making tea to the taste of the user, or fetching a book in a specified room. Such task require knowledge about 
the layout of the home of the user and on his/her preferences. Other tasks will need to be performed at a given 
time of the day or if certain conditions are met. In this paper we concentrate on navigation tasks, for instance the 
ones performed by an autonomous wheelchair carrying his/her user to a desired destination. The problem 
addressed is here the one of how a user, with no programming skills, could interact with the robot to modify its 
internal program. 

The question of how robots could learn from their users has been investigated so far along two main 
routes, learning by imitation [Billard et al., 1998] and learning by reinforcement [e.g. Perez-Uribe and 
Hirsbrunner, 2000]. However, both methods have limited scope. For instance, learning by imitation does not 
enable the acquisition of rules such as "IF -THEN". Learning by reinforcement is a lengthy process that is best 
used for refining low-level motor control, but becomes impractical for complex tasks. Both methods do not 
readily generate knowledge representations that the user can interrogate. This paper focuses on another form of 
learning, by verbal instruction, that has proven its effectiveness in human learning [Bloom, 1984], but has 
received relatively little attention in robotics. 

Previous work on verbal communication with robots has mainly focused on issuing commands, i.e. 
activating pre-programmed procedures using a limited vocabulary (e.g. IJCAI'95 office navigation contest). 
Only a few research groups have considered learning, i.e. the stable and reusable acquisition of new procedural 
knowledge. [Huffman & Laird, 1995] used textual input into a simulation of a manipulator with a discrete state 
and action space. [Crangle and Suppes, 1994] used voice input to teach displacements within a room and 

· Proc. TIMR 01- Towards Intelligent Mobile Robots, Manchester 2001. 
Technical Report Series, Department of Computer Science, Manchester University, ISSN 1361 - 6161. 
Report number UMC-01-4-1. Http://www.cs.man.ac.uk/csonly/cstechrep/titlesOl.html 



mathematical operations, but with no reusability. In [Torrance, 1995], textual input was used to build a graph 
representation of spatial knowledge. This system was brittle due to place recognition from odometric data and 
use of IR sensors for reactive motion control. Knowledge acquisition was concurrent with navigation, not prior 
to it. 

Key criteria for the design of practical instruction-based learning (IBL) systems are seen here as: 1. 
Handling of natural speech, with its variations, underspecifications and errors in speech recognition; 2. 
Handling real world continuous state spaces with uncertainty and noise; 3. Incremental learning, with new 
instructions reusing previously taught procedures; 4. User-friendly and effective dialogue management by the 
robot. 

Satisfying these criteria imposes numerous inter-linked constraints on the system architecture, the robot 
control design and the natural language processing component of an ffiL system. In order to explore these 
effects, a simple route learning task has been selected, using real speech input and a robot using vision to 
execute the instructed route. The interaction scenario and the architecture of the proposed ffiL system are 
outlined in section 2. Speech recognition, natural language understanding and dialogue management are 
described in section 3. The miniature experimental environment and the robot are described in section 4. As a 
first step toward designing a system that can handle unconstrained speech we have co!Jected a corpus of data on 
unconstrained instructions given by users. The corpus collection procedure and the analysis of the data are 
described in section 5. Analysis is done along two lines, i) specifying the lexicon, grammar rules, dialogue 
acts and ontology (really ???)and ii) determining a list of primitives navigation procedures referred to in the 
instructions. The implications of the findings are discussed in section 6. 

2. I BL concept: Interaction Scenario and Architecture. 

2.1 Concept 

The aim of the ffiL project is to develop a system that converts verbal instructions into internal program code. 
Procedures learnt from the user become part of a pool of procedures that can be reused to learn more and more 
complex procedures. Hence, the robot becomes able to execute increasingly complex tasks. 

To evaluate the potential and limitations of ffiL, a real-world instructions task should be used, that is 
simple enough to be realisable, and generic enough to warrant conclusions that hold also for other task domains. 
To be generic, the task should require the learning of the three fundamental components of computer programs: 
Sequence, Selection and Repetition. These components are found in route instructions. First, a route is a 
sequence of route-segments. Secondly, although decisions are rarely part of route instructions (e.g. "if the road 
is blocked take this other one"), they are implicit in the execution of all segments. For instance, "take the first 
left" is to be translated in programming terms into "IF you are not at the intersection yet, THEN keep moving 
towards it. ELSE: do the left turn". Thirdly, explicit repetitions do occur in route instructions ("turn left 2 
times"), and are also implicit in all segments which, as in the example above, requires a repetition of procedures 
("keep moving until .. . "). 

In terms of user-robot interaction, a typical learning process would start with the user asking the robot 
to perform a given task. If the robot lacked information about the task, it would ask for clarification or may ask 
the user to explain the task step by step. The ensuing dialogue constitutes the core of "instruction-based 
learning". 

Due to the nature of the users, a requirement of the project is the use of unconstrained speech. In terms 
of vocabulary, this means that the user is allowed to use the words that are natura! to him. However, using a 
restricted lexicon improves the performance of a speech recogniser. It is planned here to use a restricted lexicon 
that matches the one naturally used by users, so at to allow unconstrained speech. In terms of navigation 
procedures, the user is allowed to construct route using functional primitives that are natural to him. It is 
planned to provide the robot with pre-programmed counterparts to these primitives, to enable a seamless 
conversion of verbal route instructions into programs. Corpus analysis along these lines is described in section 
5. Another dimension of unconstrained speech is dialogue management. The user should be free to initiate or 
terminate dialogue moves at will. For instance, the user should be able at any time to interrupt a process in the 
robot, by issuing the command "stop", or leave a learning dialogue to issue a new command. This requires a 
flexible dialogue management but also a purpose-designed system architecture. 

2.2 System Architecture 

The architecture is comprised of several functional processing modules (figure 1). These are divided into two 
major units: the Dialogue Manager (DM) and the Robot Manager (RM). 



The DM and theRM are designed as two different processes based on asynchronous communication 
protocols. These processes run concurrently on different processors. In this way, the system can handle, at the 
same time, both the dialogue aspects of an incoming request from the user (i.e. speech recognition and semantic 
analysis, or detection of a "stop" command) and the execution of a previous user request (i.e. check if the 
request is in the system knowledge domain, and execute vision-based navigation procedures). 
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Figure 1. IBL systems architecture. 

Two aspects are essential with this concurrent-processes approach. Firstly, to define an appropriate 
protocol between the two processes. Secondl y, to define an appropriate architecture for theRM and DM 
allowing the two processes to both communicate with each other while performing other tasks. At present a 
communication protocol based on sockets and context-tagged messages is evaluated. 

Moreover, the system must also dynamically adapt itself to new user requests or to new internal 
changes, by being able to temporarily suspend or permanently interrupt some previous activity. For example the 
user may want to prevent the robot crashing against a wall and must therefore be able to stop the robot while the 
robot is driving towards the wall. Hence, the importance of a concurrent approach where the systems constantly 
listens to the user while performing other tasks and at the same time be able to adjust the task if necessary. 

The Dialogue Manager is a bi-directional interface between the Robot Manager and the user, 
either converting speech input into a semantic representation, or converting requests from the Robot Manager 
into dialogues with the user. Its components are run as different processes communicating with each other via a 
blackboard architecture. 

TheRM must concurrently listen/send requests frornlto the DM and try to execute them. For this 
reason a multi-threads approach has been used. The communication interface is a process that only launches a 
message evaluation thread "Execution Process" and resumes listening to the DM. The execution process then 
starts an appropriate thread for executing a command, or places a tagged message on a message board if it is a 
part of a dialogue in a specific thread, e.g. learning a route. The characteristic of this approach is that all 
processes in the RM are sharing common memory stack so that threads can be started and paused, depending on 
the user's input. 

The Robot Manager is written using the scripting language Python1 and C. An important feature of scripting 
languages is their ability to write their own code. For instance, a route instruction given by the user will be 
saved by the Robot Manager as a Python script that then becomes part of the procedure set available to the robot 
for execution of for future learning. 

1 http://www.python.org 



3 Natural Language processing and dialogue management. 

3.1 The Dialogue Move Engine 

The ongoing dialogue between user and robot is represented by a discourse representation structure (DRS) 
proposed by Discourse Representation Theory (Kamp & Reyle 1993). New utterances yield DRSs (see section 
3.2 below), which update the DRS of the dialogue, following the recent information state approach to dialogue 
processing (Traum et al. 1999). Context-sensitive expressions (such as pronouns and presupposition triggers) are 
resolved with respect to this DRS. Finally, utterances of the robot are realized by generating prosodically 
annotated strings from DRSs and feeding these to a synthesizer. 

Using semantic representations for modeling the dialogue is motivated by the need to perform 
inferences in order to let the robot make "intelligent" responses. Inferences are required to resol ve ambiguities 
present in the user's input (being of scopal, referential, or lexical nature), to detect the speech act associated to 
an utterance (e.g., did the user answer a question or has a new issue been raised?), to plan the next utterance or 
action, and to generate naturally sounding utterances (e.g., by distinguishing old from new information within an 
utterance). Inference are actually carried out using off-the-shelf theorem provers, by translating DRSs to first
order logic (cf. Blackburn et al. 1999). 

3.2. Speech Recognition 

Speech recognition and semantic construction are integrated into one component. The basic idea is to use off
the-shelf speech recognition, and to use a grammar that is linguistically motivated and domain independent. The 
grammar not only consists of rules that determine the syntactic structure of utterances, but also features semantic 
rules that specify how semantic representations (underspecified DRSs) are built in a compositional way. 

The current prototype implementation uses Nuance2 tools for speech recognition. The initial grammar 
is a unification-based phrase structure grammar, which is compiled into GSL, the Grammar Specification 
Language supported by Nuance's technology. This compilation involves removing left-recursive rules within 
the grammar, as well as replacing features and their possible values for syntactic category symbols, as GSL 
neither support left-recursive rules nor a feature-value system. As a consequence, the language models for the 
speech recognition are huge, but still feasible for small lexicons (a few hundred words in the case of IBL). 

The semantic operations are compiled-out in GSL as well, and each word in the lexicon is associated 
with a semantic representation. As a result, the output of the speech recognizer is directly a semantic 
representation, in our case an underspecified DRS, and another step of processing (such as parsing and semantic 
construction) is not required. Hence, by compiling our linguistic grammar into GSL, we short-cut the parsing 
and semantic construction process into a single component. 

4 Experimental Environment and task. 

The environment is a miniature town covering an area of size 170cm x 120cm (figure 2). The robot is a 
modified RobotFootbaU robof with a 8cm x 8cm base (figure 3A). The robot carries a CCD colour TV camera4 

(628 (H) x 582 (V) pixels) and a TV VHF transmitter. Images are to be processed by a PC that acquires them 
via with a TV capture cards (an example of such image is shown in figure 3B). The PC will then sends motion 
commands by FM radio to the robot. During corpus collection, the PC is also used to record instructions given 
by subjects. 

The advantage of a miniature environment is the ability to build a complex route structure in the limited 
space of a laboratory. The design is as realistic as possible, to enable subjects to use natural expressions for the 
outdoor real-size environment. Buildings have signs taken from real life to indicate given shops or utilities such 
as the post-office. However, the environment lacks some elements such as traffic lights that may normally be 
used in route instructions . Hence the collected corpus is likely to be more restricted than for outdoor route 
instructions. 

The advantage of using a robot with a remote-brain architecture [Inaba et al., 2000] is that the robot does 
not require huge on-board computing and hence can be small , fitting the dimensions of the environment. 

2 http://www.nuance.com 
3 Provided by Merlin Systems (http://www.merlinsystemscorp.com/) 
4 Provided by Allthings Sales and Services (http://www.allthings.com.aul) 
5 TV Card: Hauppage WinTV GO 



Figure 2. Miniature town in which a robot will navigate according to route instructions given by users. 

B) 
( 

Figure 3. A. Miniature robot (base 8cm x 8cm). B. View from the on-board camera. 

S Corpus collection and data analysis 

5.1 Data collection 

To collect linguistic and functional data specific to route learning, 24 subjects were recorded as they gave route 
instructions to the robot in the environment. Subjects were divided into three groups of 8. The first two groups 
(A and B) were told that the robot was remote-controlled and that, at a later date, a human operator would use 
their instructions to drive the robot to its destination. It was specified that the human operator would be located 
in another room, seeing only the image from the wireless on-board video camera. This was specified to induce 
the subject into using spatial references accessible by the future vision software. Subjects were also told to reuse 
previously defined routes whenever possible, instead of re-explaining them in detail. Each subject had 6 routes 
to describe among which 3 where "short" and 3 where "long". The long routes included a short one, so that 
users could refer to the short one when describing the long one, instead of re-describing all segments of the short 
one. This was to reveal the type of expressions used by users to link taught procedures with primitive ones. 
Groups A and B received the same routes to describe, but with the sequence of "short" and "long" route 
inverted. This would reveal the difference between a fully detailed route, and a route with reference to a short 
route inserted. Again the question is the one of how procedure insertion is handled by subjects. 

The first two groups (A and B) used totally unconstrained speech, to provide a performance baseline. It 
is assumed that a robot that can understand these instructions as well as a human operator would represent the 
ideal standard. Each subject described 6 routes having the same starting point and six different destinations. 
Starting points were changed after every two subjects. A total of 96 route descriptions were collected. 
A third group of 8 subjects (C) bad the same routes to describe as group A, but were forced into a simplified 
dialogue with an operator to produce shorter chunks of descriptions. Its is known that its is very difficult for NL 



processing tools to correctly segment an uninterrupted stream of words into sentences. Therefore, corpus C may 
be more representative of utterances in the eventual user-robot dialogue. Subjects in this group were told that the 
operator next door was taking notes. A researcher pretended to do so and interrupted the subjects (using a 
microphone) when they used chunks that were too long. He acted as if he understood all the instructions and did 
not initiate repair dialogues. The analysis performed so far covers group A and group C. Table 1 shows an 
example of the same two "short" and "long " routes instructed by a subject in group A and a subject in group C. 
The instructions were transcribed in XML using the Transcriber6 software. 

Monologue 
Short User: okay take your first right and continue down the street past Derry's past Safeway and 

your parking lot the car park will be on vour rioht 
Long User: okay once you pass the car park er take your first right and then again take your first right 

and the hospital will be right in front of you 
Dialogue 

Short Wizard: could you tell me how to get to the car park please 

Long 

User: okay you'll take the first right from where you are now past Derry's then Safeway 
Wizard: yes 
User: you'll pass another road on the left and the car park's on the right from there 
Wizard: thank you 
Wizard: could you tell me how to go to the hospital please 
User: okay you need to go back towards the car park 
Wizard: yes 
User: past the car park take the first right 
Wizard: i'm sorry after i pass the car park 
User: you take the right after the car park 
Wizard: yes 
User: and then another right again 
Wizard: yes 
User: and you'll be moving towards the hospital on the end of that road 
Wizard: thank YOU 

Table 1: Example of instructions for a short route from E toP and a long route from E to H (see figure 2) 
given under monologue condition (group A) and dialogue condition (group C). The wizard is a human 
operator mimicking verbal feedback that could be given by the robot. 

5.2 Analysis of the Task Vocabulary 

To provide an initial estimate of the task vocabulary, the data from group A and C were merged. The number of 
distinct words was counted in the set of 96 instructions given. Morphology was not taken into account, i.e. 
"travels" and "travel" were counted as different words. The vocabulary of the users was found to contain 269 
different words, from a total of 4020 word in the combined corpus A and C. The most frequent words were 
found up to 491 times and 67 words were used only once (table 2), i.e. only one subject used a particular word 
in a single route instruction. 

To determine if the corpus collection had led to a complete sampling of the task vocabulary, the 
average number of distinct words was plotted as a function of the number of collected instructions. Figure 4 
shows that the number of distinct words is still rising at the end of the curve, indicating that more new words 
would be found if more route instructions were collected. This behaviour is similar in other task domains [Zue, 
1997]. The slope of the curve in figure 4 indicates that a new user might say on average one out-of-vocabulary 
word in each instruction. 

To determine what type of new word might be expected, each route instruction was compared to the 
corpus of aH other instructions. The result is that the new words are all among the 69 least frequently used 
words. Table 2 shows that these are not necessarily "unusual" words. The question of how the understanding of 
an instruction might be affected by the absence of such words from the vocabulary will be investigated further. 

The dialogue group tended to use less distinct words (figure 3) and tended to produce less "out-of
vocabulary" words (table 3). Therefore, future experiments may reveal an improved speech recognition 
performance in dialogue conditions. 

6 http://www.ldc.upenn.edu/mirrorffranscriber/ 



Most Frequent Least frequent 
Word Count Order, here, doors, onto, robot, 

The 491 well, center, moving, moment, 
thank you, lot, park's, actually, its, 

And 166 carrying, able, tesco, sharp, 

On 162 turned, leave, arrive, branch, 

You 125 
taking, while, crossing, hundred, 
taken, double, bears, area, ninety, 

To 123 instruct, turnings, feel, apologize, 

Take 117 
thirty, or, place, amount, leaving, 
time, blocks, diagonally, there's, 

Left 114 say, currently, what, reaching, 

Right 108 travels, some, bear, bends, says, 
means, quadrangle, exits, like, 

Go 97 forty-five, set, now, half, five, very, 

Your 92 only, uh-huh, certainly, tesco's, 
I paper, quarters, soon, move 

Table 2: Most frequent and least frequent user word in the corpus. The least frequent words were found 
only once in 96 route descriptions. 
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Figure 4. Number of distinct words discovered in the corpus as the number of instruction samples 
increases. The long line is for group A and C pooled. The shorter lines are for groups A and C taken in 
isolation. Curves are obtained by averaging over 48 random sets comprising an increasing number of 
sample instructions. The slope of the long curve indicates that, on average, one new word is added to the 
vocabulary for every additional route instruction collected. 

Another way to look at the problem of out-of-vocabulary words, is to determine how many instructions 
actually contain new words. The result is that 58% of instructions had no new words (60% of those in group A, 
and 56% of those in group C) implying that more than half of the instructions would be recognised perfectly by 
a speech recognition system based on the current vocabulary. Among the remaining 42% of instructions, 65% 
had only one new word and 35% had between 2 and 6 new words. 

Subject: 2 3 4 5 6 7 8 9 1 10 11 12 13 14 15 16 
Group: d d d d d d d d m m m m m m m m 
Nb. New 2 3 10 5 5 0 0 2 2 3 3 1 1 19 10 3 
words 

Table 3: Number of new words used by each subject in their 6 route instructions. The group of the subjects is 
indicated by m = monologue (A) or d = dialogue (C). 



There was also a significant inter-subject variability (table 3). Some subjects used less than two new words in 
their 6 descriptions, while others were blessed with a particularly rich vocabulary and produced several new 
words in each one of their instruction. This is not necessarily a blessing when it comes to interacting with a 
robot. However, some of the "new" words counted here were morphological variations of known words, and a 
speech recognizer would have recognized them. In general, not more than one sentence per instruction contains 
a truly out-of-vocabulary word. Hence, it is expected that situations where repair is needed will not be 
unbearably frequent, but they are likely to affect most users. 

5.3 Analysis of the Functional Vocabulary. 

The functional vocabulary is a list of primitive navigation procedures found in descriptions. The initial 
annotation of instructions in terms or procedures, as reported here, is somehow subjective, and influenced by 
two considerations. 1. The defined primitives will eventually be produced as C-Programs. It was hoped that only 
a few generic procedures would have to be written. Therefore, the corpus has been transcribed into rather 
general procedures characterised by several parameters (table 4). 2 . An important issue is knowledge 
representation. A route is to be represented as a graph, constituted of a continuous chain of primitives. For that 
purpose, all primitives must be consistent with a standard "S;A;iSi" representation (Initial state Sit final state Si 
and Unking action A;j)· For a route description to be accepted as complete and executable, the initial state of 
each procedure must correspond to the final state of the previous one. 

Subjects however rarely specified explicitly the starting point and it was assumed that the system would 
need to be able to infer the starting point from previous action specifications. Therefore, procedures without 
starting points were considered complete, and were annotated as such. The specifications of primitive 
procedures is likely to evolve during the project. 

This methodology differs from the one used in [Denis, 1997]. Denis converted each instruction into a 
propositional format. For instance "You will arrive at a wooden bridge that you must cross" is converted into: 

1. ARRIVE AT(YOU, BRIDGE); 2. WOODEN(BRIDGE); 3. CROSS(YOU, BRIDGE) 
Statements in this format were grouped into four classes: "prescribing action" (e.g. "turn left"), "prescribing 
actions with reference to a landmark" (e.g. number 3 above), "introducing landmarks" (e.g. "there is a tree to 
your left"), "describing landmarks" (e.g. number 2 above) and "Commentaries" (e.g. "the route will take about 5 
min."). 

In our analysis, there are no statements describing landmarks, as these are included in the termination 
points and there are no actions without reference to landmarks, as robot procedures need a defined termination 
point. Even when a subject specified a non-terminated action, such as "keep going", it was classified as "MOVE 
FORWARD UNTil..", assuming that a termination point would be inferred from the next specified action. The 
list of actions found in the descriptions of groups A and C is given in table 4. 

Count Primitive Procedures 

1 178 MOVE FORWARD UNTIL [(past jover jacross) <landmark>] I [(half_way_of I end_of) 
street 11 [ after <number><landmark> [ieft I right]] I [road bend] 

2 118 TAKE THE [<number>] turn [(left I right)] I [(before I after I at) <landmark>] 

3 94 <landmark> IS LOCATED [left I right jahead]l [(at I next_to jleft_of I right_of I in_front_of I 
past I behind I on I opposite I near)< landmark >]I [(half_way_of I end_of I beginning_of I 
across}streetll [between <landmark> and <landmark>] I [on <number> turnino (left I riqht)l 

4 49 GO (before I after I to) <landmark> 

5 32 GO ROUND ROUNDABOUT [left 1 right] I [(after I before I at) <landmark>] 

6 27 TAKE THE <number> EXIT [(before 1 after 1 at) <landmark>] 

7 9 FOLLOW KNOWN ROUTE TO <landmark> UNTIL (before I after I at) <landmark> 

8 3 STATIONARY TURN [left I right I around] I [at I from <landmark>] 

9 1 TAKE THE ROAD in_ front 

10 1 PARK AT <location> 

11 1 CROSS ROAD 

12 1 EXIT [car_park 1 park] 

Table 4. Primitive navigation procedures found in the route descriptions collected from groups A and C. 
Procedure 3 is used by most subjects to indicate the last leg of the route, when the goal is in sight. 
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Figure 5. Average number of unique procedures as a function of the number of collected route instructions 
(Curves calculated as in figure 4.) . 

Figure 5 shows that the number of distinct procedures is increasing with the number of sampled instructions, but 
at a rate much smaller than the number of distinct words seen in the previous section. Here we discover on 
average one new procedure for every 25 route instructions, while with words, we discovered in average one new 
word for each instruction (figure 4). New procedures typically are the least frequent in table 4. 

6 Discussion 

Teaching a route to a robot using natural language is only one application of a more general instruction-based 
learnmg methodology. The approach described here aims at providing users with the possibility of using 
unconstrained speech, whilst creating an efficient natural language processing system using a restricted lexicon. 
The preliminary analysis of the lexicon shows however that out-of vocabulary errors are to be expected. This is 
a well known problem in the domain of speech recognition, but it is a rather new observations on the functional 
side. From a roboticist's point of view, route navigation can be achieved with a rather small number of 
primitives. However, in spontaneous speech, a wider variety of functions must be expected. 

We are attempting to give the user the freedom to reply or not to reply to a query, to control when 
given dialogues are to take place and to interrupt the robot at will. This created interesting constraints on the 
design of the system's architecture. In particular it calls for a solution using multi-threads with shared memory. 
Experiments will reveal how effective this solution is. 

The results in section 5.2 indicate that when working with a limited vocabulary, it is unavoidable that 
unknown words are going to be used by users. This is the price to pay for having a reasonably robust speaker 
independent recogniser. In current speech recognition systems, such words would either be ignored or replaced 
with the most likely word in the lexicon. Limited research has gone into speech recognisers that would signal 
that some sound is likely to be a new word and learn the new word [Zue, 1997; Asadi et al, 1991]. When 
working with large vocabularies, out-of-vocabulary words are less likely to occur, but word recognition errors 
then occur due to the larger search space. Thus in any case, error spotting and repair mechanisms need to be 
built into an IBL system. 

Word recognition errors can be revealed in the DM when they cause ungrammatical sentences. TheRM 
can also detect word errors when they lead to unknown tasks being requested. The last stage of error spotting is 
to ask the user to confum a task just before execution. Overall, error spotting and repair is not a simple problem, 
and experiments will be needed to understand how best to approach it. 

The functional vocabulary is rather small. It includes navigation procedures and cognitive7 procedures. 
An important finding is that the functional vocabulary is not closed. Hence, at some point in the robot's life, the 

7 "cognitive" denotes here actions that manipulate knowledge as opposed to actions that move the robot. 



user will have to teach it new primitives (e.g. "cross the road"). Future work will have to determine what 
additional set of primitives are needed by the robot to understand instructions explaining how to "cross the 
road". Another issue is the identification of new functions, as the lexicon may not contain the required words. 

7 Conclusion 

The project described in this paper is aimed at exploring IBL for a limited class of functions: routes descriptions. 
Hence steps were taken to pre-program all other functions necessary for constructing route descriptions. A 
corpus of instructions was analysed to determine the list of words that the speech recognition system should 
recognise. Similarly a list of primitive procedure was established to ensure that the robot would be able to 
execute the navigation procedures forming the instructions. However, the initial results presented here show that 
neither the lexicon nor primitive procedures are likely to form closed sets. Ideally, and IBL system should 
therefore also be capable of acquiring new words, and users should be given the possibility to teach new 
primitive procedures. Unfortunately, the former is beyond the capabilities of current speech recognition systems. 
As for learning new primitives procedures, this would require a new set of more primitive procedures to be 
combined via user instructions. Whether it will be possible to explore this during the project is unclear. To allow 
IBL to operate despite these limitations, it is likely that a crucial role will be played by dialogue management. 
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Abstract 
Future domestic robots will need to adapt to the 

special needs of their users and to their 
environment. Programming by natural language 
will be a key method enabling computer language
naive users to instruct their robots. Its main 
advantages over other learning methods are speed 
of acquisition and ability to build high level 
symbolic rules into the robot. This paper describes 
the design of a practical system that uses 
unconstrained speech to teach a vision-based robot 
how to navigate in a miniature town. The robot 
knows a set of primitive navigation procedures that 
the user can refer to when giving route instructions. 

Since the user is likely to refer to a procedure 
that is not pre-programmed in the robot, the system 
must be able to learn it. This paper investigates 
how to make the learning process possible. ln 
particular, a method is proposed to fasten the 
choice of an initial set of primitives to the natural 
human speech chunking. Moreover, the use of 
Instruction-Based Learning (IBL) imposes a 
number of constraints on the design of robotics 
systems and knowledge representation. These 
issues are developed in the paper and proposed 
solutions described. 

1. Introduction 

Intelligent robots must be capable of action in 
reasonably complicated domains with some degree 
of autonomy. This requires adaptivity to a dynamic 
environment, ability to plan and also speed in the 
execution. In the case of helper robots, or domestic 
robots, the ability to adapt to the special needs of 
their users is crucial. The problem addressed here is 
the one of how a user could instruct the robot to 
perform tasks which manufacturers cannot 

1 To whom correspondence should be addressed. 

completely program in advance. In this case the 
system will not work at all if it cannot learn. 

Such learning requires interaction and 
collaboration between the user and the robot. But, 
as most users are computer-language-naiVe, they 
cannot personalise their robot using standard 
programming methods. Indirect methods, such as 
learning by reinforcement or learning by imitation, 
are also not appropriate for acquiring user-specific 
knowledge. For instance, learning by reinforcement 
is a lengthy process that is best used for refining 
low-level motor controls, but becomes impractical 
for complex tasks. Further, both methods do not 
readily generate knowledge representations that the 
user can interrogate. 

Instruction-Based Learning (IBL), which uses 
unconstrained speech, has several potential 
advantages. Natural language can express rules and 
sequences of commands in a very concise way. 
Natural language uses symbols and syntactic rules 
and is well suited to interact with robot knowledge 
represented at the symbolic level. It has been 
shown that learning in robots is much more 
effective if it operates at the symbolic level 
(Cangelosi and Harnad, 200 I). This is to be 
contrasted with the much slower learning at the 
level of direct sensory-motor associations. 

Chunking, sequencing and repair are the aspects, 
related to natural language interactions, shaping the 
design of IBL systems discussed here. Chunking is 
a principle that applies to the communication of 
information. Chunking is meant here as the human 
characteristic to divide, during explanations, tasks 
into sub-tasks, so that all information should be 
presented in small ' basic' units of actions. As 
shown in (Miller 1956), chunJdng is done 
spontaneously by humans and consequently the 
system must be on the same 'wavelength' as the 
user in order to be successful. This means 
establishing for the robot the appropriate 
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Analysis 

Speech 
recognition 

Goto(" end_ of_ street") 

Repair 

i 

i 

i 
Until found(end_of_street) 

follow_the_road() i 
Table 1. From speech to action. The various steps involved in the transformation of a user command into the 
corresponding action are shown here. 

prerequisites for the conversion of cognition, 
carried in chunks, into the form of procedures. In a 
robot involved with navigation tasks, a 
fundamental prerequisite is that the system must 
possess a set of pre-programmed procedures related 
to the very basic chunks used in route instruction 
situations. Moreover, since in the learning process 
the user does not express his requirement with a 
single chunk, the system must be able to sequence 
the chunks correctly. For example, in a sequence of 
instructions given by the user, the final state of an 
action may not correspond to the expected state for 
the next action. In this case, the system would not 
be able to perform its task due to the missing 
chunk. For this reason, it is necessary to define a 
proper internal knowledge representation allowing 
the system to detect the missing information. ln this 
way, the system would be able to make predictions 
about future events so that the problem can be 
solved while the system is still interacting with the 
user. 

Finally, the system not only has to pay attention 
to user knowledge and dialogue goals, but it also 
has to adapt its dialogue behaviour to current 
limitations of the user's cognitive processing 
capabilities. Assistance is then expected from the 
system, so that the interaction may naturally flow 
over the course of several dialogue turns. 
Moreover, a dialogue manager should take care of 
identifying, and recovering from, speech 
recognition and understanding errors. 

This paper describes initial steps and 
considerations towards a practical realisation of an 
ffiL system. The experimental environment is that 
of a miniature town in which a robot provided with 
video camera executes route instructions. The robot 
has a set of pre-programmed sensory-motor action 
primitives, such as "turn left" or "follow the road". 
The task of the user is to teach the robot new routes 

by combining action primitives. That task should 
reveal all the constraints described above, and 
enable testing of the developed methodology. 

In the next section the IBL architecture 
implications due to chunking, sequencing and 
repair are discussed and how the rest of this paper 
is organized is also specified. 

2. The big picture: from verbal utterance to 
robot action 

With IBL, the system must convert verbal 
instructions given by the user into procedures 
containing internal program code controlling the 
robot sensors/actuators. It is during the learning 
process that such procedures are created and 
become part of a pool of procedures that can then 
be reused to learn more and more complex 
procedures. In this way the robot becomes able to 
execute increasingly complex tasks based on a set 
of pre-programmed primitives. 

The closer the correspondence between 
primitives and chunks expressing the very basic 
actions (such as "turn left") is, the less difficult the 
learning is, since, in this way, the interaction 
between the user and system is kept to the 
minimum. For this reason, it is necessary to select 
these primitives that corresponds as closely as 
possible to the action expressed in the chunks. 

Then, there is the problem of handling the 
chunks. In table 1, an example is given showing the 
various steps necessary to transform a user chunk 
into a robot action. First, the robot must be able to 
perform some speech recognition tasks in order to 
convert speech into text. After that, some syntactic 
parsing and semantic analysis is carried out. Then 
at the functional mapping level, the system must be 
able to transform the user utterance into internal 
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Figure 1. Symbolic learning. (A} is a schematic representation of the initial system, comprising symbols associated with pre
programmed (innate) primitive action procedures. In (B) the user has defined a new procedure (open circle) as a 
combination of symbols. The new symbol is grounded because it is a construct of grounded symbols. In (C), the user has 
defined a new procedure that combines a procedure previously defined by himself with primitive action procedures. 

symbols that the robot can understand. By 
understanding we mean here that there is a 
correspondence between symbols and actions or 
real-world objects. In this way, the appropriate 
procedure can be called to act on the 
sensors/motors accordingly to the user intentions. 

This multi-step approach has system-wide 
repercussions on the design of a robot control 
system. For example, the robot must be able to 
distinguish a command to be executed immediately 
from an instruction to be memorized. Trus requires 
context resolution at the natural language 
processing level. Moreover, the robot must be able 
to verify that the instruction can be converted into 
an executable procedure. It requires an internal 
representation of consequences of actions and the 
ability to verify the correct action sequencing. The 
robot must also be able to execute a command 
while listening to the user, and must cope with 
interruptions and inappropriate answers to its 
requests. This requires carefully designed system 
architecture. Some of the aspects discussed here are 
presented in more detail in the next sections. In 
particular, section 3 clarifies how symbol-level 
description and low-level sensory motor action 
procedures are integrated. The proposed 
representation of procedural knowledge is also 
described. In section 4 the system architecture is 
described. 

The problems of considering the appropriate 
selection of action primitives is described in section 
5 by analyzing recorded route instructions, and 
establishing a list of actions that are natural to 
users. The results of this investigation are also 
discussed. One of them is that the list of primitives 
may not be a closed one. The implications of that 
and other findings is discussed in section 6, along 
with the question of how the proposed system 
compares to other approaches. The conclusion 
follows in section 7. 

3.mLmodel 

3.1 Symbolic learning 
The learning process is based on predefined 

initial knowledge. This "innate" knowledge 
consists of primitive sensori-motor procedures with 
names, such as "turn left", "follow the road" (the 
choice of these primitives is explained in sections 
3.3 and 5). The name is what we call here a 
"symbol", and the piece of computer program that 
controls the execution of the corresponding 
procedure is called the "action" (Figure lA). As 
each symbol is associated with an action, it is said 
to be "grounded". 

When a user explains a new procedure to the 
robot, say a route from A to B that involves a 
number of primitive actions, the IBL system, on the 
one hand, creates a new name for the procedure, 
and, on the other hand, writes a new piece of 
program code that executes that procedure and 
links the code with the name (see section 3.2 for 
details). The code refers to primitive actions by 
name. It does not duplicate the low-level code 
defining these primitives. For that reason, the new 
program can be seen as a combination of symbols 
rather than a combination of actions (figure I B). As 
all new procedures are constructed from grounded 
pnm1t1ves, they become also grounded by 
inheritance and are " understandable" by the system 
when referred to in natural language. 

When explaining a new procedure, the user can 
also refer to old procedures previously defined by 
himself. In that way the complexity of the robot's 
symbolic knowledge increases (fig. I C). 

3.2 Knowledge representation 
The internal representation needs to support three 

functions: (i) formal modeling of NL route 
descriptions; (ii) internal route planning for 
determining whether a given route description is 
sufficiently specified; and (iii) the generation of 
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Figure 2. Route instruction verification. (A) For each procedure there is a prediction function that transforms a state vector 
into its foture value. The function first determines if the input state satisfied the minimal criteria (''pre-condition") to enable 
the procedure to be executed. An action is executable only if selected elements of the state vector have required values. If 
this is the case, the next state is predicted and processed by the prediction jUnction associated with the next procedure in the 
instruction. Each action modifies certain components of the state vector, and leaves the other unchanged. (B) If the 
predicted state produced by one procedure does not allow the next procedure to be executed, an error handling process is 
initiated. (Note: the "initial state" in the text corresponds to the "current state" in the figure). 

procedures for navigation at execution time. These 
three functions require different representations 
that will be described in turn. 

(i) The utterances of the user are represented 
using the discourse representation structure (DRS) 
(Bugmann200 I). This is then translated into 
symbols representing procedures or is used to 
initiate internal functions such as execution of a 
command or learning of a series of commands 
(section 4). 

(ii) When the user describes a route as a 
sequence of actions, it is important for the robot to 
verify if this sequence is executable. The approach 
proposed here associate each procedure with a 
triplet SiAijSj with properties similar to 
productions in SOAR (Laird et al, 1987). The state 
Si is the initial state in which the action Aij can 
take place. It is the pre-condition for action Aij. 
The state Sj is the final state, resulting of the action 
of Aij applied to the initial state (figure 2 clarifies 
the difference between "initial state" and "pre
condition"). For a sequence of actions to be 
realisable, the final state of one action must be 
compatible with the pre-condition of the next one. 
To enable this verification, the robot must be able 
to "imagine" the consequence of an action. For that 
purpose, a PREDICTION function is associated 
with each primitive action, and with each newly 
created procedure. Figure 2 illustrates the use of the 
prediction function during verification of the 

consistency of the sequence of instructions from 
the user. It should be noted that this process also 
helps detecting some of the errors in natural 
language processing. 

(iii) When a robot executes a command, it 
executes a piece of program code that contains the 
sequence of primitive procedures to be executed. 
Thus, a key part of IBL is the generation of a 
program code. This is enabled by the use of a 
scripting language (section 4). This program is 
called the ACTION function. Both ACTION and 
PREDICTION functions are physically located in 
the same file that contains all information specific 
to a procedure. This is schematised in figure 3. 

3.3 Sensory-Motor primitives 
Sensory-motor primitives are defined as actions 

that users usually refer to in unconstrained speech 
(chunking). These are not low-level robot control 
actions, and often involve complex processing and 
planning. A task such as "approach that building at 
the end of the street" is a typical action that users 
ask the robot to do at the end of a route instruction, 
when the goal is in sight (section 5). It is a complex 
action involving visual detection of a building and 
of its entrance, its localisation in relation to the 
street, and planning of a route along the street. All 
this is easy for a human, but in many ways 
stretches the limits of robot "intelligence". 
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Figure 3. Procedural knowledge representation. (A) A procedure file contains an ACTION function that causes the 
physical displacement of the robot, and a PREDICTION function that calculates the future state of the robot resulting from 
the action. The ACTION is used during execution of a command, and the PREDICTION is used for consistency checking 
during the learning process. (B) An instruction by the user results in a "New Procedure" file being written. In this file, the 
actions components of the requested primitive procedures are combined (in the form of fimction calls) to create the new 
ACTION function, and the prediction components are combined to create the new PREDICTION function. This includes an 
additional procedure-specific pre-condition. 

We see here that, by setting the boundaries 
between the symbolic level and the action level to 
be the same as the one found in natural language, 
the symbolic level processing has been simplified, 
but at the cost of an increased complexity of "low
level" procedures. These give the robot some 
autonomy in the execution of commands, as the 
execution details depend on the local conditions. 

4. System Architecture 

The architecture is comprised of several 
functional processing modules (figure 4). These are 
divided into two major units: the Dialogue 
Manager (DM) and the Robot Manager {RM). 

The DM and the RM are designed as two 
different processes based on asynchronous 
communication protocols. These processes run 
concurrently on different processors. In this way, 
the system can handle, at the same time, both the 
dialogue aspects of an incoming request from the 
user (i.e. speech recognition and semantic analysis, 
or detection of a "stop" command) and the 
execution of a previous user request (i.e. check if 
the request is in the system knowledge domain, and 
execute vision-based navigation procedures). 

Two aspects are essential with this concurrent
processes approach. Firstly, to define an 
appropriate communication protocol between the 
two processes. Secondly, to define an appropriate 

architecture for the RM and DM allowing the two 
processes to both communicate with each other 
while performing other tasks. At present a 
communication protocol based on sockets and 
context-tagged messages is evaluated. 

Moreover, the system must also dynamically 
adapt itself to new user requests or to new internal 
changes, by being able to temporarily suspend or 
permanently interrupt some previous activity. For 
example the user may want to prevent the robot 
crashing against a wall and must therefore be able 
to stop the robot while the robot is driving towards 
the wall. Hence, the importance of a concurrent 
approach where the system constantly listens to the 
user while performing other tasks and at the same 
time being able to adjust the task if necessary. 

The Dialogue Manager is a bi-directional 
interface between the Robot Manager and the user, 
either converting speech input into a semantic 
representation, or converting requests from the 
Robot Manager into dialogues with the user. Its 
components are run as different processes 
communicating with each other via a blackboard 
architecture. The RM must concurrently listen/send 
requests from/to the DM and try to execute them. 
For this reason a multi-threads approach has been 
used. Its communication interface is a process that 
only launches a message evaluation thread 
''Execution Process" and resumes listening to the 
DM. The execution process then starts an 
appropriate thread for executing a command, or 
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Figure 4. IBL system's archztecture (see te:xtfor descnptzon). 

places a tagged message on a message board if it is 
a part of a dialogue in a specific thread, e.g. 
learning a route. The characteristic of this approach 
is that all processes in the RM are sharing a 
common memory stack so that threads can be 
started and paused, depending on the user 's input. 
At the moment, the Execution Process component 
is implemented with the Process Launcher 
controlling only the Learning and Execution 
modules since the Stop component is in an early 
stage of development. The Robot Manager is 
written using the scripting Python2 language and C. 
An important feature of scripting languages is their 
abil ity to write their own code. For instance, a route 
instruction given by the user will be saved by the 
Robot Manager as a Python script that then 
becomes part of the procedure set available to the 
robot for execution or for future learning. 

5. Corpus Collection and Data Analysis 

To evaluate the potential and limitations of rBL, 
a real-world instructions task is used, that is simple 
enough to be realisable, and generic enough to 
warrant conclusions that hold also for other task 
domains. A simple route scenario has been 
selected, using real speech input and a robot using 
vision to execute the instructed route (see 5.1 
below for more details). The first task in the project 
is to define the innate actions and symbols in the 
route instruction domain. For this reason, a corpus 

2 http://www.python.org 

of route descriptions has been collected from 
students and staff at the University of Plymouth. In 
section 5.2 and 5.3 corpus collection and data 
analysis are presented. 

5.1 Experimental Environment 
The environment is a miniature town covering an 

area of size 170cm x l20cm (figure 5). The robot 
is a modified RobotFootball roboe with an Bern x 
Bern base (figure 6A). The robot carries a CCD 
colour TV camera4 (62B (H) x 5B2 (V) pixels) and 
a TV VHF transmitter. Images are processed by a 
PC that acquires them via with a TV capture card5 

(an example of such image is shown in figure 6B). 
The PC then sends motion commands by FM radio 
to the robot. During corpus collection, the PC is 
also used to record instructions given by subjects. 

The advantage of a miniature environment is the 
ability to build a complex route structure in the 
limited space of a laboratory. The design is as 
realistic as possible, to enable subj ects to use 
expressions natural for the outdoor real-size 
environment. Buildings have signs taken from real 
life to indicate given shops or utilities such as the 
post-office. However, the environment lacks some 
elements such as traffic lights that may normally be 
used in route instructions. Hence the collected 
corpus is likely to be more restricted than for 
outdoor route instructions. The advantage of using 

3 Provided by Merlin Systems 
(http://www.merlinsystemscorp.com/) 
4 Provided by Allthings Sales and Services 
(http://www.allthings.eom.au/) 
5 TV Card: Hauppage WinTV GO 
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Figure 5. Miniature town in 
according to route instructions given by users. Lel/ers 
indicate the destinations and origins of various routes 
used in the experiment. 

a robot with a remote-brain architecture (lnaba et 
al., 2000) is that the robot does not require huge 
on-board computing and hence can be small, fitting 
the dimensions of the environment. 

5.2 Collection of a corpus of route instructions 
To collect linguistic and functional data specific 

to route learning, 24 subjects were recorded as they 
gave route instructions to the robot in the 
environment. Subjects were divided into three 
groups of 8. The first two groups (A and B) used 
totally unconstrained speech, to provide a 
performance baseline. It is assumed that a robot 
that can understand these instructions as well as a 
human operator would represent the ideal standard. 
Subjects from group C were induced in producing 
shorter utterances by a remote operator "taking 
notes". 

The other two groups (A and B) were told that 
the robot was remote-controlled and that, at a later 
date, a human operator would use their instructions 

that the human operator would be located in 
another room, seeing only the image from the 
wireless on-board video camera. This induced 
subjects to use a camera-centred point of view 
relevant for robot procedure primitives. Subjects 
were also told to reuse previously defined routes 
whenever possible, instead of re-explaining them in 
detail. Each subject had 6 routes to describe among 
which 3 were "short'' and 3 were "long". The long 
routes included a short one, so that users could 
refer to the short one when describing the long one, 
instead of re-describing all segments of the short 
one. This was to reveal the type of expressions 
used by users to link taught procedures with 
primitive ones. Each subject described 6 routes 
having the same starting point and six different 
destinations. Starting points were changed after 
every two subjects. A total of 144 route 
descriptions were collected. For more details about 
collection and analysis of the corpus see (Bugmann 
et al. 2001). 

5.3 Corpus Analysis: The functional vocabulary 
The aim of the corpus analysis is to twofold. 

First, to define the vocabulary used by the users in 
this application, in order to tune the speech 
recognition system for an optimal performance in 
the task. Secondly, to establish a list of primitive 
procedures that users refer to in their instructions. 
The aim is to pre-program these procedures so that 
a direct translation from the natural language to 
grounded symbols can take place. In principle, if 
the robot does not know a procedure, the user could 
teach it. However, this is a process that we wish to 
avoid at this stage of the project, as discussed in 
section 6. Hereafter, we report on the functional 
analysis of the corpus. The reader interested in the 
task vocabulary can refer to (Bugmann et al., 
2001 ). The functional vocabulary is a list of 
primitive navigation procedures found in route 

B) 

Figure 6 A. Miniature robot (base Bern x Bern). B. View from the on-board colour camera. 

to drive the robot to its destination. It was specified descriptions. 
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Count Primitive Procedures 
l 308 MOVE FORWARD UNTIL [(past lover !across) <landmark>] 1 [(half_way_of 1 

end of) street ] I [ after <number><landmark> [left I right]] I [road bend] 
2 183 TAKE THE [<number>] turn [(left I right)] I [(before I after I at) <landmark>] 
3 147 <landmark> IS LOCATED [left 1 right !ahead] I [(at I next_to lleft_of I right_of I 

in_front_of I past I behind I on I opposite I near) < landmark >] I [(half_way_of I 

end_of 1 beginning_of 1 across) street] 1 [between <landmark> and <landmark>] I 

[on <number> turning (ieft 1 right)] 
4 62 GO (before I after I to) <landmark> 
5 49 GO ROUND ROUNDABOUT [left I right] I [(after I before I at) <landmark>] 
6 42 TAKE THE <number> EXIT [(before I after 1 at) <landmark>] 
7 12 FOLLOW KNOWN ROUTE TO <landmark> UNTIL (before I after 1 at) 

<landmark> 
8 4 TAKE ROADBEND (left I right} 
9 4 STATIONARY TURN [left_! right 1 around] I [at I from <landmark>] 
10 2 CROSS ROAD 
11 2 TAKE THE ROAD in front 
12 2 GO ROUND <landmark> TO [front I back I left side I right side] 
13 I PARK AT <location> 
14 I EXIT [car _park I park] 

Table 2. Primitive navigation procedures found in the route descriptions collected from groups A and C. Procedure 3 is 
used by most subjects la indicate the last leg of a route, when the goal is in sight. 

The initial annotation of instructions in terms or 
procedures, as reported here, is somehow 
subjective, and influenced by two considerations. 
(i) The defined primitives will eventually be 
produced as C and Python Programs. It was hoped 
that only a few generic procedures would have to 
be written. Therefore, the corpus has been 
transcribed into rather general procedures 
characterised by several parameters (table 2). (ii) 
An important issue is knowledge representation. 
According to the SAS representation discussed in 
section 3.2, the executability of primitives can only 
be evaluated if their initial and final states are 
defined. Subjects however rarely specified 
explicitly the starting point of an action and 
sometimes did not define the final state in the same 
utterance. Nevertheless, it was assumed that the 
system would be able to infer the missing 
information from the context. Therefore, 
procedures without initial or final state were 
considered to be complete, and were annotated as 
such. The specifications of primitive procedures are 
likely to evolve during the project. 

This analysis methodology differs slightly from 
the one in (Denis, 1997). ln our analysis, there are 
no statements describing landmarks, as these are 
made part of procedures specifications, and 
consequently there are also no actions without 
reference to landmarks. Even when a subject 
specified a non-terminated action, such as "keep 
going", it was classified as "MOVE FORWARD 
UNTIT...", assuming that a termination point would 

be inferred from the next specified action. The list 
of actions found in the route descriptions of groups 
A and C is given in table 2. Figure 7 shows that the 
number of distinct procedures is increasing with the 
number of sampled instructions, but at a rate much 
smaller than the number of distinct words reported 
in (Bugmann et al., 2001). Here we discover on 
average one new procedure for every 38 route 
instructions, while with words, we discovered in 
average one new word for each instruction. New 
procedures typically are the least frequent in table 
2. 

6. Discussions 

Teaching a route to a robot using natural 
language is an application of a more general 
instruction-based learning methodology. The 
corpus-based approach described here aims at 
providing users with the possibility of using 
unconstrained speech, whilst creating an efficient 
natural language processing system using a 
restricted lexicon. It is found that the functional 
vocabulary is small, containing only 12 primitives 
{although that number may vary with the 
annotation method). From a roboticist's point of 
view, route navigation could probably be achieved 
with a smaller number of primitives. However, 
when accepting spontaneous speech, a wider 
variety of functions must be expected. 

An important finding is that the functional 
vocabulary is not closed. Hence, at some point in 
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Figure 7. Average number of unique procedures as a function of the number of collected route instructions The curve 
is obtained by averaging 50 sets comprising a random selection of n route descriptions. The number n is shown on the 
x-axis of the graph. The slope of the curve indicates that, on average, one new function will be added to the functional 
lexicon for every 38 additional route instructions collected. 

the robot's life, the user will have to teach it new 
primitives (e.g. "cross the road") or reformulate its 
instructions. To enable learning, the robot must 
posses a larger set of primitives, which correspond 
to lower level robot actions. For instance, the user 
may wish to refer to a number of wheel turns in its 
instruction. Examples of such instructions are 
found in (FLAKEY)and (Seabra Lopes, 2000). With 
our approach, this would require the collection of a 
new corpus to determine the necessary additional 
primitive procedures. Another solution may lie in 
an appropriate dialogue management to suggest a 
reformulation of the instruction. It is expected that 
with the corpus-based method used here, the 
frequency of such "repair dialogues" will be 
minimised. An open question is the detection of 
new functions in the user's utterance, as the lexicon 
may not contain the required vocabulary. 

The approach to robot control described may be 
seen as an attempt to integrate the good properties 
of Behaviour-based control and classical Al. 
Behaviour-based control is an effective method for 
designing low-level primitives that can cope with 
real-world uncertainties, and A1 has developed 
effective tools for symbol manipulation and 
reasoning (for a more detailed discussion about 
hybrid systems see for example Malcom (1995)). 
However, the system differs in several ways from 
both methods. Here, the corpus defines what 
symbols and primitives to use. Consequently, some 
of the primitives are rather complex functions, 
involving representations of the environment and 
pla!ll1ing. These are not always compatible with the 
representation-less philosophy of behaviour-based 

systems. On the AI side, the system does not use 
the full range of reasoning capabilities offered by 
systems such as SOAR. There are no other aims in 
symbolic processing than verifying the consistency 
of instructions, and the construction of new 
procedure specifications . 

Other previous work on verbal communication 
with robots has mainly focused on issuing 
commands, i.e. activating pre-programmed 
procedures using a limited vocabulary (e.g. 
IJCA1 '95 office navigation contest). Only a few 
research groups have considered learning, i.e. the 
stable and reusable acquisition of new procedural 
knowledge. (Huffman & Laird, 1995) used textual 
input into a simulation of a manipulator with a 
discrete state and action space. (Crangle and 
Suppes, 1994) used voice input to teach 
displacements within a room and mathematical 
operations, but with no reusability. In {Torrance, 
1995), textual input was used to build a graph 
representation of spatial knowledge. This system 
was brittle due to place recognition from odometric 
data and use of IR sensors for reactive motion 
control. Knowledge acquisition was concurrent 
with navigation, not prior to it. Whereas in (Matsui 
et al. 1999), the system could learn new actions 
through natural language dialogues but only while 
the robot was performing them (i .e. it could only 
learn a new route from A to B while it was actually 
moving from A to B and dialoguing with the user). 

In the IBL system described here, learning 
operates purely at the symbolic level; hence it can 
be done prior to performance. The ability to predict 
future states enables to engage in a verification 
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dialogue before execution errors occur. If 
environmental conditions change such that an 
instruction is not valid anymore, this can be 
detected from the mismatch between the expected 
result and the actual one. Learning however is not 
autonomous. The system requires interaction with a 
human user to learn new symbols and their 
meaning. This simplifies the design of the robot 
due to the transfer of part of the cognitive load to 
the user. Future experiment wiiJ reveal if this 
approach results in effective and socially 
acceptable helper robots. 

7. Conclusions 

The project described in this paper is aimed at 
exploring IBL for route descriptions. It has been 
discussed how the design of the IBL system is 
adapted to natural human behaviour. Indeed, both 
the vocabulary matches to the unconstrained user 
language and the functional primitives built into the 
robot are determined from actions natural to the 
users. This defines an architecture open to 
spontaneous user interventions, unexpected replies 
and errors. Nevertheless, user-friendliness is not a 
prior specification, but a consequence of practical 
constraints. Indeed, robots without learning will not 
achieve specific tasks (such as finding HAL) and a 
system without adapted vocabulary causes too 
many errors. Similarly, explaining tasks is beyond 
the cognitive capabilities of users without high 
level primitives and, like with HAL, a robot that 
listens only when it decide to do so would be out of 
control. So far, the speech recognition part is in an 
early stage of development while the DRS part is 
operational for a limited number of examples, and 
that work is in progress to improve the coverage of 
corpus. However, it is found that the functional 
vocabulary is small, containing only 12 primitives 
(although that number may vary with the 
annotation method). The full transformation from 
NL utterances into procedures has been tested with 
dummy primitives (i.e. preprogrammed robot 
displacements). Programs for the proper sensory
motor primitives are currently under development. 
This will then allow further testing of the IBL 
concept. 

However the initial results presented here show 
that neither the lexicon nor primitive procedures 
are likely to form closed sets. Ideally, IBL system 
should therefore also be capable of acquiring new 
words, and users should be given the possibility to 
teach new primitive 'innate ' procedures. 
Unfortunately, the former is beyond the capabilities 
of current speech recognition systems. As for 
learning new primitives procedures, this would 
require a new set of more primitive procedures to 

be combined via user instructions. Whether it will 
be possible to explore this during the project is 
unclear. To allow IBL to operate despite these 
limitations, it is likely that dialogue management 
will play a crucial role. 
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Abstract 
Humans explaining a task to a robot use chunks of 

actions tlwt are often wmplex procedures for robots. 
An instructable robot needs to be able to map such 
chunks to existing pre-progmmmed pr-imitives. We in
vestigate an m·chitectur·e for spoken d·ialogue systems 
able to extr·act executable robot pmcedures from user 
instructions. A suitable r·epresentation of the dialogue 
is introduced, then a Pr·ocedure Specification Language 
(PSL) is described that allows to extmct fmm the se
mantic r·epr·esentation of the dialogue the mbot exe
cutable pr·ocedur·es and their parameter·s 

1 Introduction 
This paper presents an semantically based ap

proach for human-robot dialogue understanding, as 
part of a project than envisages "Instruction-Based 
Learning" (IBL) [5], where robots acquire user-specific 
skills based on verbal instructions given by the user. 
In particular, we will focus on mapping the human lan
guage commands to for the robot executable instruc
tions, using an intermediate semantic representation. 

Our IBL system operates according to the follow
ing scenario. A user engages in a dialogue with the 
robot, where spoken instructions are mapped to se
mantic representations, natural language ambiguities 
are resolved, and the functional parameters are ex
tracted from that representation [9]. The robot, hav
ing a database with previously learned tasks at its 
disposal, will now either perform the given instruction 
(if it knows how to do it) , or if the task is unknown, 
ask the user to explain how to perform the task. The 
user then explains the task step by step. At the end of 
this learning process, the robot will have built a new 
procedure that becomes part of its knowledge base. 

The requirements of natural language understand
ing induce the internal model of a route as a sequence 

J. Bos E. Klein 
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Buccleuch Place, Edinburgh EH8 9LW 
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of high-level task specifications (primitives). Hence 
it is necessary to provide the robot with a set of 
pre-programmed primitives corresponding to action 
chunks referred to by users. For more details about 
these aspects see [7]. 

A typical example in our scenario is the following 
(example u8_GCJID extracted from the IBL corpus): 

Instructor: Go to the post office! 
Robot: How do I get to the post office? 
Instructor: Er head to the end of the street. 
Turn left . Take the first left. Er go right down 
the road past the first right and it's the next 
building on your right. 

One of the issues in the project is the mapping from 
action chunks used in natural language to actions ex
ecutable by the robot for both of the possible situa
tions: either the system already knows how to perform 
a request, or it has to learn how to perform it . The 
first case corresponds to a successful mapping from the 
semantic analysis of the request to a sequence of ex
ecutable robot actions. The second case corresponds 
to the creation of a sequence of executable robot ac
tions for the unknown request through a user-robot 
dialogue. 

P revious approaches to interpreting natural lan
guage instructions for mobile robots assume a applica
tion specific semantic representation [4]. However, we 
argue that there is a need for a domain-independent 
intermediate representation. This representation cap
tures the meaning of the dialogue between user and 
robot and is used to resolve ambiguities inherent in 
natural language (for instance the reference of the 
pronoun it the example above). In addition, we use 
an application specific mapping from the intermediate 
representation to obtain robot executable scripts. Us
ing this extra layer results in an overall system that 



is much easier to adapt the robot to new scenarios or 
tasks. 

The paper is structured as follows. First we intro
duce the intermediate semantic representations known 
as Discourse Representation Structures (Section 2). In 
Section 3 we presents the Procedure Specification Lan
guage (PSL) used for the interpretation of the DRS. 
Section 4 illustrate the conversion of basic program 
components found in verbal instructions into robot
executable procedures. In Section 5 ongoing work 
covering the reuse of previously explained routes is 
discussed. 

2 Understanding Natural Language 
Instructions 

We will use Discourse Representation Structures 
(DRSs) to represent the meaning of the dialogue be
tween user and system. There are three reasons that 
motivate this choice of formalism. First and foremost , 
DRT is a well understood framework and covers a wide 
variety of linguistic phenomena [6, 11]. These phenom
ena include context-sensitive expressions such as pro
nouns and presuppositions. To our knowledge, there is 
no other semantic formalism that comes close to the 
empirical coverage of DRT. Second, there now exist 
computational implementations that provide means 
to extend existing linguistic grammars with DRS
construction tools, and there are efficient algorithms 
available that implement Van der Sandt's presupposi
tion projection algorithm for DRT [2]. Third, there is 
a direct link between DRT and first-order logic-there 
is a translation from DRSs to formulas of first-order 
logic that behaves linear on the size of the input [1]. 
2.1 Representing Instructions 

DRT was initially designed to deal with texts, so we 
will use an extension of standard DRT that enables us 
to cope with instructions such as given in the example 
above. This extension introduces actions and modal 
operators into the DRS-language. 

Let us first define the syntax of the DRS language. 
Basic DRSs have two components: a set of discourse 
r-eferents, and a set of conditions upon those referents. 
Discourse referents stand for objects mentioned in the 
course of the dialogue. Conditions constrain the inter
pretation of these discourse referents. More formally, 
DRSs and merge of DRSs are defined in the usual way: 

Syntax of DRSs: 

1. If { x 1, ... , xn} is a set of discourse ref
erents , and b1 , ... , 'Ym} is a set of 
DRS-conditions, then the ordered pair 
({xt , . . . ,xn}, bt, .. . • 'Ym}) is a DRS; 

2. If B1 and B2 are DRSs, then so is (B1 
E9 B2). 

Following Lascarides [8], we extend the DRS lan
guage with action terms. Atomic action terms are 
identified by the a-operator. Complex action-terms 
are composed out of other action terms by either ; 
(sequence) or I (free choice). 

Syntax of DRS-action-terms: 

1. If B is a DRS, then oB is a DRS-action
term; 

2. If A1 and A2 are DRS-action-terms, 
then so are (A1 ;A2) and (A1 I A2). 

The DRS-condition subsume those of standard 
DRT. Further we have the modal operators D and 
0 (clauses 3 and 6), hybrid DRS-conditions formed 
by discourse referents and DRSs (clause 5), and the 
command operator (clause 7). 

Syntax of DRS-conditions: 

1. If R is a relation symbol for an n
place predicate and x 1 ... Xn are dis
course referents then R(x1 , ... ,xn) is a 
DRS-condition; 

2. If x1 and x2 are discourse referents, then 
x1 = x2 is a DRS-condition; 

3. If B is a DRS, then ....,B, DB, OB are 
DRS-conditions; 

4. If B1 and B2 are DRSs, then B1 V B2, 
B1 => B2 are DRS-conditions; 

5. If xis a discourse referent and B a DRS, 
then x:B is a DRS-condition; 

6. If A is a DRS-action-term, and B a 
DRS, then [A]B and (A)B are DRS
conditions; 

7. If A is a DRS-action-term then !A is a 
D RS-condi tion. 

One of the theoretical motivations behind the inter
nal structure of DRSs is the analysis of pronouns and 
other anaphoric expressions. Pronouns are interpreted 
in DRT by binding a previously introduced accessible 
discourse referent. Accessibility is governed by the 
way DRSs are nested into each other, and hence nar
rows down the choice of an antecedent in the process 
of pronoun resolution. 



2.2 Example Representations 
We will now illustrate the formal syntax definition 

by giving some examples that show how instructions 
can be modelled. We will use the more convenient box 
notation for DRSs in the examples that follow. Recall 
that we use the 6-operator to form action-DRSs from 
DRSs and the ! operator to express that an action is 
commanded. So, the directive Go to the post office! 
translates to the following DRS: 

xy 

robot(x) 
postoffice(y) 

e 

!6 go( e) 
to(e,y) 
agent(e,x) 

This DRS states that the plan in the actual world 
contains the action for the robot to go to the post of
fice. Semantically, actions relate two possible worlds: 
the world (or state) in which the action is issued, and 
the world in which the effects of the action hold. Be
cause actions thernselve can be of complex nature, we 
will use an additional world that describes what con
stitutes the action. This enables us to reason about 
possible outcomes of actions (not only for the purpose 
of planning, but also to verify that the resulting states 
are desired) and to check the preconditions of actions. 

2.3 Interpretating Instructions 
One way to interpret DRSs is to translate them to 

ordinary first-order logic. This is the approach that 
Bos & Oka follow [3], and they use classical first-order 
theorem provers and model builders to automate in
ference. The translation they use is based on the rela
tional translation for modal logic to first-order fornm
las and essentially similar to the standard translation 
from DRT to first-order logic [6], extended with rules 
to deal with the modal operators and DRS-action
terms. The example DRS above would get the fol
lowing translation in first-order logic: 

3w 3x 3y (possible_world(w) 1\ robot(w,x) 1\ 

postoffice(w,y) 1\ 3v 3a (action(w,a,v) 1\ 3e 
(go(a,e) 1\ to(a,e,x) 1\ agent(a,e,y)))) 

Note that the translation increases the arity of all 
predicates symbols with one, where the additional ar
gument position denotes a possible world. A mirninal 
first-order model satisfying this formula (and further 

background knowledge in the form of meaning postu
lates describing the pre-conditions and effects of ac
tions) could contain the following information: 

o~{dl,d2,d3,d4,d5,d6,d7,d8} 

F(possible_vorld)={d1,d2,d3} 
F(robo~)={(d1,d4),(d2,d4),(d3,d4)} 

F(postoffice)={ (d1,d5),(d2 ,d5) , (d3,d5)} 
F(ection)={(d1,d2,d3)} 
F(go_from_~o)={(d2 , d4,d6,d5)} 

F(at_loc)={(dl,d4 ,d6),(d3,d4,d5)} 

Bos & Oka [3) actually emply automated model 
builders to generate models of these kind, and use 
these to extract actions for the dialogue manager . 
Since models are essentially flat structures without re
cursion, they are easy to process. For instance, all 
quantification and boolean structures are explicit in 
models. This makes models ideal to function as a 
database-lookup table to find out whether there are 
actions to be performed by the system. 

However, the state-of-the-art in automated model 
building is not in a stage yet where it leads itself easily 
to integration in efficient implementations. Although 
the model building methods performs well for exam
ples up to a few utterances, in general the instruc
tions in the IDL corpus are much larger than that and 
sometimes reach ten to twenty utterances in a learning 
dialogue. Therefore we use an alternative rule-based 
method to extract executable primitives from DRSs. 
This technique is much more efficient and will be pre
sented in the next section. 

3 Procedure Specification Language 
The internal representation of a route is a sequence 

of high-level task specifications (primitives). For this 
reason a production-rule based approach has been 
used to interpret the DRS as a sequence of procedure 
names. 

The Procedure Specification Language (PSL) pro
vides a common interchange language to describe re
sources. A list of robot executable procedures are ex
tracted from the DRS and saved as a new procedure 
-the result of Instruction Based Learning-. The PSL 
provides the skeletal syntax used to compose the pro
cedure names and the required parameters. 

The PSL terms are either special characters or reg
ular string literals, where string literals are made of 
sequences of characters excluding the special charac
ters. The complete set of special characters that can
not appear as part of a string literal is: 

&. # $ - > 

These characters can only be used for the special 
syntactic forms described in the above RSL syntax 
overview 



The core syntax of the PSL synta..x is the rule a->b. 
Rules associate the condition a on the left of the spe
cial syntax -> with the string on the right of -> cor
responding to the robot procedure. For example, the 
rule 

event(X)&go(X)&to(X, z)&$landmark(Z)- > 
go(prep ='to', landmark= $landmark(Z)) (1) 

will generates the procedure 

go(prep='to',landmark='postoffice') 

from the DRS in Section 2.2. 
In each PSL rule, the condition is a conjunction of 

terms separated using the special syntax&, where each 
term can be a one or two place predicate symbol, a 
variable predicate, a variable action. In (1) event (X) 
is an example of a one place predicate while to (X,Z) 
is a two place predicate. The upper case symbol in 
parenthesis (i.e X for event (X)) is the variable associ
ated with the predicate. In the example in Fig 1, only 
the event, go, to predicates with the same value for X 
can be considered to satisfy the condition for rule (1). 

A variable predicate is indicated as the special sym
bol $ followed by a string litteral. A variable predicate 
indicates a class of possible predicates. In the rule ex
ample (1), $landmark(Z) specifies that the predicate 
must be of landmark type. 

A list containing all the predicate belonging to each 
class defined must be included with the PSL. The syn
tax to specify a class and all the members belonging 
to it is: 

class ...name : predicate.J.I predicate.21 .. . . I .. . 

where class...name is the string litteral indicating 
the class and predicate_! I predicate.2 is the list 
of terms predicate_l ,predicate.2 belonging to the 
class separated by the special symbol I . 

An action predicate is indicated as the special sym
bol # followed by a predicate pointing to an action. 
For example, an action predicate can indicate an ac
tion to be executed while executing another action (for 
example sure from the hospital er go forwards until you 
come to dixons extracted from u9_GC....HW in the ffiL 
corpus) 

The end of both a rule and a class list is indicated by 
the the special syntax %. The list of the defined class 
is preceded by the string #parameters#, while the list 
of the rules is preceded by the string #rules#. 

The PSL rule based approach facilitates the inter
pretation of a user command into a call to a proce
dure with the correct parameter associated to it. The 

introduction of parametrised primitives allows it to 
generalise the use of the procedure. For instance, the 
procedure designed for tum left after the tree should 
also work if the value tree for the parameter landmark 
is replaced by the value church. It is also possible to 
pass different combinations of parameters to the prim
itive procedure. 

While, as explained in more detail in [9], the choice 
of the initial set of primitives is corpus based (that is it 
has been driven by the way users express themselves) , 
both the parameter combinations and the interpreta
tion of predicates into a parameter value is mainly 
robot driven as explained in more detail in [7]. 

The PSL rule syntax allows to establish the desired 
mapping between the predicates from the DRS rep
resentation and their interpretation into the correct 
value for the correct parameter. For example the user 
utterances: turn right and take a right should produce 
the same precedure call despite being represented as 
two different types of events in the DRS (i.e. as a turn 
and a take action rispectively). Table 1 shows two pos
sible rules allowing to obtain the same procedure call 
for both utterances. 

event(X)&turn(X)&in(X,Z)&$direction(Z) - > 
turn($direction(Z)) 

event(X)&take(X)&$direction(Z)-> 
turn($direction(Z)) 

Table 1: PSL rules. Example of two rules mapping 
different symbolic representation of an action into the 
same procedure. 

Not all the information present in the DRS is used 
in detecting the condition components of the rule. One 
aspects still not yet fully implemented is the use of 
negation in the condition part of the rule. This would 
allow the designer to exclude undesired combination 
of predicates to be mapped into a rule. 

4 Basic Program Components 
A requirement in Instruction Based Learning is that 

components such as conditionals, loops, sequences 
found in instructions are correctly converted into 
robot executable procedures. Utterances containing 
conditional expressions have not been found in this 
corpus. Here, instructions consist mainly of sequences 
and loops. 

4.1 Sequences 
Since the order of the actions in the utterance is 

preserved by the DRS, extracting a properly ordered 
sequence of primitives and building the corresponding 



procedure code is straight forward. For instance, the 
pseudocode for the user explanation (example extract 
from u22_GB_CD in the IBL corpus): 

Instructor: er you have to take right and then 
again the first right 

is shown in Table 2. 

def action(): 

take(direction='right') 
take(direction='right',ordinal='first') 

Table 2: Sequential Instructions. Pseudocode for the 
sequence of procedures obtained from a sequence of 
user actions 

4.2 Loops 

References to loops where an action has to be ex
ecuted a fixed number of times are not found in the 
corpus. However, while-loops and do-until-loops are 
frequently found. These can either be explicit or im
plicit. 

Implicit while-loops are found in actions such as 
in the example extracted from u22_GB_CD in the IBL 
corpus: 

Instructor: er you have to take right 

This action implicity requires from the robot 
to search for the landmark righUuming while 
following the road. Such implicit loops are 
handled inside pre-programmed procedures (e.g. 
take(direction='right',ordinal='first'). See 
[7] for more details. 

However, an action can be explicitly described as 
loop by the user in utterances such the one from 
u2Q_GB....EP extracted from the IBL corpus: 

Instructor: .. keep turning right until you ve got 
the grand hotel on your left .. 

With the PSL it is possible to define a suitable rule 
which allows to introduce the loop explicitly on the 
right hand side of it. For example, the rule in Ta
ble 3 will produce the pseudocode in table 4 for the 
utterance from u20_GB....EP. As a result, everytime the 
program in Table 4 is called the loop will be executed. 

event(X)&turn(X)&in(X,Z)&$direction(Z) 
&until(X,C)&#proposition(C) - > 
while !(#proposition(C)): 

turn(direction=$direction(Z)) 

Table 3: Loop.Example of a rule extracting an explicit 
while-loop. 

def action() : 

while ! (near (landmark=' grand..hotel') : 
turn(direction= 'right') 

Table 4: Loop. 
u20_GB...EP . 

Pseudocode for the utterance 

5 Reusing Previously Learnt Proce
dures 

One of the key features of IBL is the reuse of pre
viously explained procedure as part of explanations 
of new more complex procedure. In the corpus of 
route instructions, this takes the form of previously 
explained routes being reused in later route explana
tions. Three possible ways of reusing previous routes 
can be found in the corpus. In the first case, the user 
explicitly refers to the use of the whole of a previously 
explained route followed by a series of actions. The 
following axample is extracted from u12_GA...EG in the 
IBL corpus: 

Instructor : go to the post office at the post 
office turn left take a right at the crossroads 
tescos is on the left hand side of the street 

In the second case, the user still explicitly refers to 
a previously explained route. However, this time the 
route has to be used only partially since at a given 
point (e.g. a landmark) a diversion is introduced by 
the user. The following example u6_GC_CM is extracted 
from the IBL corpus: 

Instructor: right erm head as though you re 
going towards the post office so you go over 
the bridge but instead of carrying straight on 
take a right carry on down that road until it 
bears round to the right slightly and at the end 
of the road the museum is there 

In the third case, the user does not explicitly refers 
to a previously explained route, but only refers to a 
landmark used in it. Thus that route has to be in
ferred. The following u13_GA_CL example is extracted 
from the IBL corpus: 



Instructor: go to the bridge mentioned previ
ously continue over the crossroads immediately 
after the bridge and follow the road to its end 
on your right you 11 find the queens pub 

In all these cases the system must be able to cor
rectly link previously learnt sequences of actions with 
new instructions. As explained in more detail in [10], 
during the execution of a sequence of actions, the final 
state of the robot after an action must be compatible 
with the initial state of the next action. As a con
sequence, the recalled procedure has to be tailo1·ed so 
that the next procedure can be successfully executed. 

For example in the utterance ul2_GA-EG, the first 
action recalls the procedure to go to the post office, 
which ends with the robot facing the entrance of the 
post office, but this is not a suitable initial state for 
the next action (i.e turn left). So for the robot to 
succeed, the procedure go_postoff ice 0 should not 
be executed entirely. However, to determine which 
elements of a previously learnt sequence must be kept 
is not an easy problem. 

A solution to this problem could be the 
rule in Table 5. In this case the procedure 
go_postoffice 0 is executed until the condition 
near(landmark='postoffice') is verified, where 
near(landmark= 'postoffice') is a vision based pro
cedure that check whether the robot is near the post 
office. 

event(X)&go(X)&to(X,Y)&postoffice(Y)-> 
while !(near(landmark='postoffice' ): 

go_postoffice () 

Table 5: Linking Sequences. The procedure 
go_postoff ice 0 is executed until the robot is near 
the post office. 

Then, the part of the procedure go_postoffice() 
which drives the robot into a position facing the post 
office, will not be executed. Note that this implies a 
concurrent execution of the two procedures. 

Future work will cover the resolution of the prob
lem above also for more complex cases such as the 
ul3_GA_CL example and will evaluate the efficacy of 
the various components presenteded in this paper in 
converting Natural Language instructions into robot 
procedures. 
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Abstract 
How will naive users program domestic robots? This paper describes the design of a practical system that uses 
natural language to teach a vision-based robot how to navigate in a miniature town. To enable unconstrained 
speech the robot is provided with a set of primitive procedures derived from a corpus of route instructions. 
When the user refers to a route that is not known to the robot, the system will learn it by combining primitives as 
instructed by the user. This paper describes the components of the Instruction Based Learning architecture and 
discusses issues of knowledge representation, the selection of primitives and the conversion of natural language 
into robot-understandable procedures. 

1 lntroduction 

Lntelligent robots must be capable of action in reasonably complicated domains with some degree of autonomy. 
This requires adaptivity to a dynamic environment, ability to plan and also speed of execution. In the case of 
helper robots, or domestic robots, the ability to adapt to the special needs of their users is crucial. The problem 
addressed here is one of how a user could instruct the robot to perform tasks which manufacturers cannot 
completely program in advance. In such case the system would not work at all if it cannot learn. 
Such learning requires interaction and collaboration between the user and the robot. But, as most users are 
cornputer-language-na"t"ve, they cannot personalise their robot using standard programming methods. Indirect 
methods, such as learning by reinforcement or learning by imitation, are also not appropriate for acquiring user
specific knowledge. For instance, learning by reinforcement is a lengthy process that is best used for refrning 
low-level motor controls, but becomes impractical for complex tasks. Further, both methods do not readily 
generate knowledge representations that the user can interrogate. 
Instruction-Based Learning (IBL), which uses unconstrained speech, has several potential advantages. Natural 
language can express rules and sequences of commands in a very concise way. Natural language uses symbols 
and syntactic rules and is well suited to interact with robot knowledge represented at the symbolic level. It has 
been shown that learning in robots is much more effective if it operates at the symbolic level [2]. This is to be 
contrasted with the much slower learning at the level of direct sensory-motor associations. 
Chunking, sequencing and repair are the aspects, related to natural language interactions, shaping the design of 
IBL systems discussed here. Chunking is a principle that applies to the communication of information. 
Chunking is meant here as the human characteristic to divide, during explanations, tasks into sub-tasks so that 
all information should be presented in small 'basic' units of actions. As shown in [ 12], chunking is done 
spontaneously by humans and we expect that conversions from natural language instruction to robot program 
will be facilitated if the robot knows a set of primitive procedures corresponding to the action-chunks natural to 
the user. 
Regarding repair, natural language explanations are notoriously underspecified, and the robot must be able to 
verify the consistency of the acquired program. For example, in a sequence of instructions given by the user, the 
final state of an action may not correspond to the expected state for the next action. In this case, the system 

1 To whom correspondence should be addressed. 
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would not be able to perform its task due to a missing chunk. For this reason, it is necessary to define a proper 
internal knowledge representation allowing the system to detect the missing information. In this way, the system 
would be able to make predictions about future events so that the problem can be solved while the system is still 
interacting with the user. 
The system not only has to pay attention to user knowledge and dialogue goals, but it also has to adapt its 
dialogue behaviour to current limitations of the user's cognitive processing capabilities. Assistance is then 
expected from the system, so that the interaction may naturally flow over the course of several dialogue turns. 
Finally, a dialogue manager should take care of identifying, and recovering from, speech recognition and 
understanding errors. 
This paper describes initial steps and considerations towards a practical realisation of an ffiL system. The 
experimental environment is that of a miniature town in which a robot provided with video camera executes 
route instructions. The robot has a set of pre-programmed sensory-motor action primitives, such as "turn left" or 
"follow the road". The task of the user is to teach the robot new routes by combining action primitives. That 
task should reveal all the constraints described above, and enable testing of the developed methodology. 
The closer the correspondence between primitives and chunks expressing the very bas ic actions (such as "turn 
left") is, the less difficult the learning is, since, in this way, the number of repair dialogue between the user and 
system is kept to the minimum. For this reason, it is necessary to select these primitives that corresponds as 
closely as possible to the action expressed in the chunks (see section 4). 
A complete 1BL requires several steps to transform a spoken chunk into a robot action (Table 1 ). First, the 
system must be able to convert speech into text. After that, some syntactic parsing and semantic analysis is 
carried out. Then at the functional mapping level, the system must be able to transform the user utterance into 
internal symbols that the robot can understand. By understanding we mean here that there is a correspondence 
between symbols and actions or real-world objects. In this way, the appropriate procedure can be called to act 
on the sensors and motors according to the user intentions. 

Analysis 

Speech 
recognition 

Semantic 
Anal sis 
Functional 
Ma in 
Robot program 

GO TO THE END OF 

Goto("end_of_street") 

Until found(end_of_street) 
follow the road 

THE STREET 

Repair 

i 
i 
i 
i 

Table 1. From speech to action. The various steps involved in the transformation of a user command into the corresponding 
action are shown here. 

Section 2 clarifies how symbol-level description and low-level sensory motor action procedures are integrated. 
The proposed representation of procedural knowledge is also described. In section 3 the system architecture is 
described. 
The problems of considering the appropriate selection of action primitives is described in section 4 by analyzing 
recorded route instructions, and establishing a list of actions that are natural to users. The results of this 
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investigation are also discussed. These implications and other findings are discussed in section 5, along with the 
question of how the proposed system compares to other approaches. The conclusion follows in section 6. 

2 The IBL model 

2.1 Symbolic learning 
The learning process is based on predefined initial knowledge. This "innate" knowledge consists of primitive 
sensori-motor procedures with names, such as "turn left", "follow the road" (the choice of these primitives is 
explained in sections 2.3 and 4). The name is what we call here a "symbol", and the piece of computer program 
that controls the execution of the corresponding procedure is called the "action" (Figure lA). As each symbol is 
associated with an action, it is said to be "grounded". 

SylllbDIID If'.\ SylllbDIID SylllbollD 
LIVBI LIVII IJVBI 

' ' ' ' ' ' ' ' ' ' lallatl ! luatl 111Ut1 
lllks 

i 
lllks lllka 

' ' ' 
ittiii Acta iiiiii Acta iiiiii Act laD 

LIVII LIVII LIVII 

A B c 

Figure 1. Symbolic learning. (A) is a schematic representation of the initial system, comprising symbols associated with pre
programmed (innate) primitive action procedures. In (B) the user has defined a new procedure {open circle) as a 
combination of symbols. The new symbol is grounded because it is a construct of grounded symbols. In (C), the user has 
defined a new procedure that combines a procedure previously defined by himself with primitive action procedures. 

When a user explains a new procedure to the robot, say a route from A to B that involves a number of primitive 
actions, the ffiL system, on the one hand, creates a new name for the procedure, and, on the other hand, writes a 
new piece of program code that executes that procedure and links the code with the name (see section 2.2 for 
details). The code refers to primitive actions by name. It does not duplicate the low-level code defining these 
primitives. For that reason, the new program can be seen as a combination of symbols rather than a combination 
of actions (figure lB). As all new procedures are constructed from grounded primitives, they become also 
grounded by inheritance and are "understandable" by the system when referred to in natural language. 
When explaining a new procedure, the user can also refer to old procedures previously defined by himself. In 
that way the complexity of the robot's symbolic knowledge increases (fig. 1 C) . 

2.2 Knowledge representation 
The internal representation needs to support three functions: (i) formal modeling ofNL route descriptions; (ii) 
internal route planning for determining whether a given route description is sufficiently specified; and (iii) the 
generation of procedures for navigation at execution time. These three functions require different 
representations that will be described in turn. 
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Figure 2. Route instruction verification. (A) For each procedure there is a prediction function that transforms a state 
vector into its future value. The function first determines if the input state satisfied the minimal criteria ("pre-condition") to 
enable the procedure to be executed. An action is executable only if selected elements of the state vector have required 
values. If this is the case, the next state is predicted and processed by the prediction function associated with the next 
procedure in the instn1ction. Each action modifies certain components of the state vector, and leaves the other unchanged. 
(B) If the predicted state produced by one procedure does not allow the next procedure to be executed, an error handling 
process is initiated. (Note: the "initial state " in the text corresponds to the "current state" in the figure) . 

(i) The utterances of the user are represented using the Discourse Representation Structure (DRS) [9] . This is 
then translated into symbols representing procedures or is used to initiate internal functions such as execution of 
a command or learning of a series of commands (section 3). 
(ii) When the user describes a route as a sequence of actions, it is important for the robot to verify if this 
sequence is executable. The approach proposed here associate each procedure with a triplet SiAijSj with 
properties similar to productions in SOAR [8]. The state Si is the initial state in which the action Aij can take 
place. It is the pre-condition for action Aij. The state Sj is the final state, resulting of the action of Aij applied to 
the initial state (figure 2 clarifies the difference between "initial state" and "pre-condition"). For a sequence of 
actions to be realisable, the final state of one action must be compatible with the pre-condition of the next one. 
To enable this verification, the robot must be able to "imagine" the consequence of an action. For that purpose, a 
PREDICTION function is associated with each primitive action, and with each newly created procedure. Figure 
2 illustrates the use of the prediction function during verification of the consistency of the sequence of 
instructions from the user. 1t should be noted that this process also helps detecting some of the errors in natural 
language processing. 
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Figure 3. Procedural knowledge representation. (A) A procedure file contains an ACTION function that causes the physical 
displacement of the robot, and a PREDICTION function that calculates the future state of the robot resulting from the action. 
The ACTION is used during execution of a command, and the PREDICTION is used for consistency checking during the 
learning process. (B) An instruction by the user results in a "New Procedure" file being written. In this file, the actions 
components of the requested primitive procedures are combined (in the form of function calls) to create the new ACTION 
function, and the prediction components are combined to create the new PREDICTION function. This includes an additional 
procedure-specific pre-condition. 

(iii) When a robot executes a command, it executes a piece of program code that contains the sequence of 
primitive procedures to be executed. Thus, a key part of ffiL is the generation of a program code. This is 
enabled by the use of a scripting language (section 3). This program is called the ACTION function. Both 
ACTION and PREDICTION functions are physically located in the same file that contains all information 
specific to a procedure. This is schematised in figure 3. 

2.3 Sensory-Motor primitives 
Sensory-motor primitives are defined as action-chunks that users usually refer to in unconstrained speech. 
These could be low-level procedures referring, for example, to robot wheel turns, distance vectors etc. or they 
can be high-level procedures like for example "turn left after the church" or ''take the second exit off the 
roundabout". In natural language route instructions, low-level specification of actions generally does not 
appear. Instead, higher-level procedures are mentioned which will have to be pre-programmed and thus become 
the sensory-motor primitives in this context. 
In this project we have defined primitives as procedures which take parameters. For example the action "take 
the second right after the post-office", maps to the primitive turn with parameters second, right, after and post
office. It is then a matter of correctly mapping user utterances to the right primitives and passing the right 
parameters to them. 

3 System Architecture 

The architecture is comprised of several functional processing modules (figure 4 ). These are divided into two 
major units: the Dialogue Manager (DM) and the Robot Manager (RM). 
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Figure 4. 1BL system 's architecture (see lex/for description). 

The Dialogue Manager is a bi-directional interface between the Robot Manager and the user, either converting 
speech input into a DRS semantic representation [ 16], or converting requests from the Robot Manager into 
dialogues with the user. Its components are described in [9]. 
TheRM deals with the DM's output and also with the learning and execution of the commands from the user. 
As shown in figure 4 the RM includes two modules: the Process Manager (PM) and the Procedure Execution 
Module (PEM). The PEM is responsible for carrying out the commands by the user. [t executes procedures 
called by the Process Manager module. 
The PM transforms the semantic representation produced by the DM into the internal language of the robot that 
includes learning and execution functions. Mapping symbols from the DRS onto the corresponding entities in 
the internal representation allows converting user requests into robot procedures with the right parameters. 
When successful, the PM starts the appropriate process either to execute the requested task by a call to the PEM 
or alternatively to build a new user-defined procedure explained by the user. When such mapping is not 
successful the RM must inform the DM, which starts a clarification dialogue with the user. Such mapping 
process is supported by a new specification language that expresses the relations between the symbols used in 
the DRS and the corresponding primitives. Thus to introduce new primitives, it is sufficient for the designer of 
an IBL systemto change the grammar of the specification language without having to recompile any of theRM 
modules. 
The Robot Manager is written using the Python2 scripting language. C language extensions to Python are also 
used in case where speed is a constraint (for example in vision routines). An important feature of scripting 
languages such as Python is their ability to write their own code. For instance, a route instruction given by the 
user will be saved by the Robot Manager as a Python script that then becomes part of the procedure set available 
to the robot for execution or future learning. 
[t is important that the RM must listen to the DM and try to process its output but at the same time it should be 
able to send messages to the DM. The DM and theRM are designed as two different processes based on 
asynchronous communication protocols. These processes run concurrently on different processors. In this way, 
the system can handle, at the same time, both the dialogue aspects of an incoming request from the user (i.e. 
speech recognition and semantic analysis) and the execution of a previous user request (i.e. check if the request 
is in the system knowledge domain, and execute vision-based navigation procedures). 
Two aspects are essential with this concurrent-processes approach. The first is to define an appropriate 
communication protocol between the two processes. The second is to define an appropriate architecture for the 
RM and DM allowing the two processes to both communicate with each other while performing other tasks. At 
present the use of context-tagged messages within a communication based on the Open Agent Architecture 
(OAA) [13] is evaluated. 
Moreover, the system must also dynamically adapt itself to new user requests or to new internal changes, by 
being able to temporarily suspend or permanently interrupt some previous activity. For example the user may 
want to prevent the robot crashing against a wall and must therefore be able to stop the robot while the robot is 

2 http://www.python.org 
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driving towards the wall. Hence, the importance of a concurrent approach where the system constantly listens to 
the user while performing other tasks and at the same time is able to adjust the task if necessary. 

4 Corpus Collection and Data Analysis 

To evaluate the potential and limitations ofiBL, a real-world instructions task is used, that is simple enough to 
be realisable, and generic enough to warrant conclusions that hold also for other task domains. A simple route 
scenario has been selected, using real speech input and a robot using vision to execute the instructed route (see 
4.1 below for more details). The first task in the project is to define the innate actions and symbols in the route 
instruction domain. For this reason, a corpus of route descriptions has been collected from students and staff at 
the University of Plymouth. In section 4.2 and 4.3 corpus collection and data analysis are presented. 

Figure 5. Miniature town in which a robot will navigate according to route instructions given by users. Letters indicate the 
destinations and origins of various routes used in the experiment. 

4.1 Experimental Environment 
The environment is a miniature town covering an area of size l70cm x 120cm (figure 5). The robot is a 
modified RobotFootball robor with an &cm x &cm base (figure 6A). The robot carries a CCD colour TV 
camera4 (628 (H) x 582 (V) pixels) and a TV VHF transmitter. Images are processed by a PC that acquires them 
via with a TV capture card5 (an example of such image is shown in figure 6B). The PC then sends motion 
commands by FM radio to the robot. During corpus collection, the PC is also used to record instructions given 
by subjects. 

3 Provided by Merlin Systems (http://www.merliosystemscorp.com/) 
4 Provided by Allthings Sales and Services (http ://www.allthiogs.eom.au/) 
5 

TV Card: Hauppage Win TV GO 
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A B 

Figure 6 A. Miniature robot (base Bern x Bern). B. View from the on-board colour camera 

The advantage of a miniature environment is the ability to build a complex route structure in the limited space of 
a laboratory. The design is as realistic as possible, to enable subjects to use expressions natural for the outdoor 
real-size environment. Buildings have signs taken from real life to indicate given shops or utilities such as the 
post-office. However, the environment lacks some elements such as traffic lights that may normally be used in 
route instructions. Hence the collected corpus is likely to be more restricted than for outdoor route instructions. 
The advantage of using a robot with a remote-brain architecture [7] is that the robot does not require huge on
board computing and hence can be small, fitting the dimensions of the environment. 

4.2 Collection of a corpus of route instructions 
To collect linguistic and functional data specific to route learning, 24 subjects were recorded as they gave route 
instructions for the robot in the environment. Subjects were divided into three groups of 8. The first two groups 
(A and B) used free flow speech, to provide a performance baseline. It was assumed that a robot that can 
understand these instructions as well as a human operator would represent the ideal standard. Subjects from 
group C were induced in producing shorter utterances by a remote operator taking notes. 
The groups A and B were told that the robot was remote-controlled and that, at a later date, a human operator 
would use their instructions to drive the robot to its destination. It was specified that the human operator would 
be located in another room, seeing only the image from the wireless on-board video camera. This induced 
subjects to use a camera-centred point of view relevant for robot procedure primitives and to use expressions 
proper for human communication. Subjects were also told to reuse previously defined routes whenever possible, 
instead of re-explaining them in detail. Each subject had 6 routes to describe among which 3 were "short" and 3 
were "long". The long routes included a short one, so that users could refer to the short one when describing the 
long one, instead of re-describing all segments of the short one. This was to reveal the type of expressions used 
by users to link taught procedures with primitive ones. Each subject described 6 routes having the same starting 
point and six different destinations. Starting points were changed after every two subjects. A total of 144 route 
descriptions were collected. For more details about collection and analysis of the corpus see [I] 

4.3 Corpus Analysis: The functional vocabulary 
The aim of the corpus analysis is to twofold. First, to define the vocabulary used by the users in this application, 
in order to tune the speech recognition system for an optimal performance in the task. Secondly, to establish a 
list of primitive procedures that users refer to in their instructions. The aim is to pre-program these procedures 
so that a direct translation from the natural language to grounded symbols can take place. In principle, if the 
robot does not know a primitive procedure, the user could teach it. Hereafter, we report on the functional 
analysis of the corpus. The reader interested in the task vocabulary can refer to [1]. The functional vocabulary is 
a list of primitive navigation procedures found in route descriptions. 
The initial annotation of instructions in terms or procedures, as reported here, is somehow subjective, and 
influenced by two considerations. (i) The defined primitives will eventually be produced as C and Python 
Programs. It was hoped that only a few generic procedures would have to be written. Therefore, the corpus has 
been transcribed into rather general procedures characterised by several parameters (table 2). (ii) An important 
issue is knowledge representation. According to the SAS representation discussed in section 2.2, the 
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executability of primitives can only be evaluated if their initial and final states are defined. Subjects however 
rarely specified explicitly the starting point of an action and sometimes did not define the final state in the same 
utterance. Nevertheless, it was assumed that the system would be able to infer the missing information from the 
context. Therefore, procedures without initial or final state were considered to be complete, and were annotated 
as such. The specifications of primitive procedures are likely to evolve during the project. 

Count Primitive Procedures 
I 308 MOVE FORWARD UNTIL [(past lover !across) <landmark>] I [(half_way_of I 

end of) street 11 [ after <number><landmark> [left I right]] I [road bend] 
2 183 TAKE THE [<number>] turn [(left I right)] I [(before I after I at) <landmark>] 
3 147 <landmark> IS LOCATED (left I right !ahead] I [(at I next_to lleft_of I right_of I 

in_front_of 1 past 1 behind I on I opposite I near) <landmark>] 1 [(half_way_of I 
end_of I beginning_of I across) street] I [between <landmark> and <landmark>] I 
[on <number> turninQ (left_l riQht)] 

4 62 GO (beforeL after 1 toj <landmark> 
5 49 GO ROUND ROUNDABOUT [left I riQhtll [(after 1 before I at) <landmark>] 
6 42 TAKE THE <number> EXIT [(before l after 1 at) <landmark>} 
7 12 FOLLOW KNOWN ROUTE TO <landmark> UNTIL (before I after I at) 

<landmark> 
8 4 TAKE ROADBEND (left I right) 
9 4 STATIONARY TURN [left I riQht I around] I [at I from <landmark>] 
10 2 CROSS ROAD 
11 2 TAKE THE ROAD in front 
12 2 GO ROUND <landmark> TO [front I back I left side I right side] 
13 I PARK AT <location> 
14 I EXIT [car _park 1 park] 

Table 2. Primitive navigation procedures found in the route descriptions collected from groups A and C. Procedure 3 is 
used by most subjects to indicate the last leg of a route, when the goal is in sight. 

This analysis methodology differs slightly from the one in [ 4]. In our analysis, there are no statements 
describing landmarks, as these are made part of procedures specifications, and consequently there are also no 
actions without reference to landmarks. Even when a subject specified a non-terminated action, such as "keep 
going", it was classified as "MOVE FORWARD UNTIL", assuming that a termination point would be inferred 
from the next specified action. The list of actions found in the route descriptions of groups A and C is given in 
table 2. It has been shown in [9] that the number of distinct procedures is increasing with the number of 
sampled instructions, but at a rate much smaller than the number of distinct words. Here we discover on average 
one new procedure for every 38 route instructions, while with words, we discovered in average one new word 
for each instruction. New procedures typically are the least frequent in table 2. 

5 Discussions 

Teaching a route to a robot using natural language is an application of a more general instruction-based learning 
methodology. The corpus-based approach described here aims at providing users with the possibility of using 
unconstrained speech, whilst creating an efficient natural language processing system using a restricted lexicon. 
As mentioned in section 2.3 , primitives are quite complex procedures. Section 4.3 describes how the primitives 
where extracted from a corpus recorded by a group of people, mostly students, from various fields of study. 
They spoke freely to the robot using human-like expressions and therefore the primitives extracted from what 
they said reflect the amount of"knowledge" naive users would expect the robot to have. The level of complexity 
of the primitives therefore depends, not only on the nature of the natural language application but also on its 
users and their expectations ofthe robot. If the subjects of our corpus were robot engineers, for example, and 
were told that the robot does not know how to move or turn prior to their route instructions they may have 
produced a different corpus from which different primitives would have been extracted. 

An important finding in [9] was that functional vocabulary is not closed. Hence, at some point in a robot's life, 
the user may have to teach it new primitives. For that purpose, the robot would need to posses an additional set 
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of low level primitives, which correspond to lower level robot actions. Examples of such primitive learning are 
found in [5] and [14] . With our approach, this would require the collection of a new corpus to determine the 
necessary additional primitive procedures. Another solution could lie in an appropriate dialogue management to 
suggest a reformulation of the instruction. It is expected that with the corpus-based method used here, the 
frequency of such "repair dialogues" will be minimised. An open question is the detection of new functions in 
the user's utterance, as the lexicon may not contain the required vocabulary. 
The approach to robot control described may be seen as an attempt to integrate the good properties of 
Behaviour-based control and classical Al. Behaviour-based control is an effective method for designing low
level primitives that can cope with real-world uncertainties, and AI has developed effective tools for symbol 
manipulation and reasoning (for a more detailed discussion about hybrid systems see for example (10]). 
However, the system differs in several ways from both methods. Here, the corpus defines what symbols and 
primitives to use. Consequently, some of the primitives are rather complex functions, involving representations 
of the environment and planning. These primitives are not always compatible with the representation-less 
philosophy of behaviour-based systems. On the AI side, the system does not use the full range of reasoning 
capabilities offered by systems such as SOAR. There are no other aims in symbolic processing than verifying 
the consistency of instructions, and the construction of new procedure specifications. 
Other previous work on verbal communication with robots has mainly focused on issuing commands, i.e. 
activating pre-programmed procedures using a limited vocabulary. Only a few research groups have considered 
learning, i.e. the stable and reusable acquisition of new procedural knowledge. [6] used textual input into a 
simulation of a manipulator with a discrete state and action space. [3] used voice input to teach displacements 
within a room and mathematical operations, but with no reusability. In [15] textual input was used to build a 
graph representation of spatial knowledge. This system was brittle due to place recognition from odometric data 
and use ofiR sensors for reactive motion control. Knowledge acquisition was concurrent with navigation, not 
prior to it. Whereas in [11], the system could learn new actions through natural language dialogues but only 
while the robot was performing them (i.e. it could only learn a new route from A to B while it was actually 
moving from A to B and dialoguing with the user). 
ln the ffiL system described here, learning operates purely at the symbolic level ; hence it can be done prior to 
performance. The ability to predict future states enables to engage in a verification dialogue before execution 
errors occur. If environmental conditions change such that an instruction is not valid anymore, this can be 
detected from the mismatch between the expected result and the actual one. Learning however is not 
autonomous. The system requires interaction with a human user to learn new symbols and their meaning. This 
simplifies the design of the robot due to the transfer of part of the cognitive load to the user. Future experiment 
will reveal if this approach results in effective and socially acceptable helper robots. 
The design of an IBL system requires, as expected, specialists in NL processing and speech recognition, as well 
as specialists in artificial vision and robot control. Here we found that significant work was also required in 
extracting from the semantic representation of the user's utterance the corresponding robot-executable 
procedures. It is hoped that this process will be simplified in the future by using the new specification language 
currently developed as part of the project. 

6 Conclusions 

[n this paper, it was noted that domestic robots, which cannot learn from their users will be oflimited use. The 
lnstruction-Based Learning method (IBL) has been presented in the special case of route instructions. 
A key task in an IBL system is the translation from Natural Language (NL) instructions to robot-understandable 
procedures. The corpus-based approach has been proposed here to optimise such translation. It defines a task 
domain specific lexicon and set of primitives. This results in the implementation of a constrained language and 
limited task capabilities. However, it is expected that within a given task domain this will maximise the use of 
spontaneous speech and NL conversion efficiency. Only 14 primitives have been, but these are complex robotics 
procedures, involving visual search and planning. We believe that this is required to ensure efficient 
communication with a naive user. But the set probably is not closed. In other words, users at some time are 
likely to refer to primitives for which there is not preprogrammed counterpart in the robot's repertoire. [t is likely 
that the dialogue management will play a key role in handling such situations. 
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Abstract 

Humans who explain a task to a robot, or to another 
human, use chunks of actions that are often complex 
procedures for robots. An instructable robot needs to be 
able to map such chunks to existing pre-programmed 
primitives. We investigate the nature of these chunks in 
an urban visual navigation context and describe the 
implementation of one of the primitives: "take the n'h 
turn right/left". This implementation requires the use of 
a "short-lived" internal map updated as the robot moves 
along. The recognition and localisation of intersections 
is done using task-guided template matching. This 
approach takes advantage of the content of human 
instructions to save computation time and improve 
robustness. 

1. Introduction. 

This work is part of a project on "Instruction-Based 
Learning" (IBL) where robots acquire user-specific 
skills based on verbal instructions given by the user. 
One of the issues in the project is the mapping from 
action chunks used in natural language to actions 
executable by the robot. The approach used here is to 
provide a set of pre-programmed primitives 
corresponding to action chunks referred to by user~ . 

This facilitates the mapping from the semantic analys1s 
of the spoken input to a sequence of executable robot 
actions. 
In an earlier part of this project, subjects were invited to 
speak to a small robot in a miniature town (Figure 1) 
and to explain to it how to navigate between two 
landmarks. The instructions were recorded, transcribed 
and analysed to identify chunks of actions [1]. These 
chunks were grouped into about 15 "primitive" 
procedures that are listed and discussed in section 2. 
In implementing such primitives, one can take 
advantage of the content of verbal instructions to 
minimize computational time and improve robustness, 
for instance by limiting visual search to those features 
mentioned in the instructions. The example of the 
navigation primitive "take the nth left turn" is detailed in 
section 3. This primitive requires counting of landmarks 
and imposes the use of a "short-lived" internal map of 
the environment. Detection of road features, such as 

intersections and turnings, is implemented by matching 
feature templates in the internal map. 
The requirements of natural language understanding 
induce the internal representation of a route as a 
sequence of high-level task specifications (primitives). 
This is in principle very robust against environmental 
variations, provided that the primitives handle these 
appropriately. 

Figure 1: The miniature town (a) and robot with an 8x8 
cm base (b). The marked path on the town image refers 
to the route followed by the robot in the example given 

in section 3.5 (where each arrowhead denotes a 
way point). 

2. Action chunks in verbal instructions 
and corresponding primitives. 

A corpus of route descriptions was collected from 24 
subjects in the miniature town environment. Each 
subject was asked to give 6 route descriptions from a 
starting location (different for each subject) to a 
different destination each time. Subjects were instructed 
to assume the robot's point of view during their 
instructions. This seems to have worked since no 
description used a survey view. 
A total of 144 route descriptions were analysed for their 
functional components (action chunks). These are the 
smallest possible units of information that compose 
each route instruction. Analysis was done by hand and 
all action chunks where then categorised into groups. 
The functional analysis revealed 15 functional groups 
(table 1). A similar approach for chunking of route 
descriptions was used by [2] and [3]. 



Table 1: Functional primitives extracted from the corpus. 

Primitive Descript ion 
1 go (description_l, landmark_l, preposition_l, Instructs the robot to follow a 

description_2, landmark_2) known route (with known starting 
point and destination). 

2 1ocation_is (description_l, landmark_l, Specifies a location . 
direction_l, preposition_l, description_2, 
landmark_2, description_3, landmark_3, 
ordinal 1) 

3 destination_ is (description_l, landmark_l , Indicates the destination 
direction_!, 

' 
preposition_!, description_2, landmark . 

landmark_2, description_ 3 , landmark_3, 
ordinal 1) 

4 go_until (description_l, landmark _ 1, Follow known route to a landmark 
preposition_l, description_2, landmark_2) until a specified location i n the 

route. 
5 exit_roundabout (ordinal_l, preposition_!, Take a specified exit from a 

description 1, landmark 1) roundabout. 
6 turn (ordinal_l, direction_!, preposition_!, Take a specified turn off a road . 

description 1' landmark 1) 
7 fo11ow_road_until (preposition_l, description_!, Move forward until a certain 

landmark 1) locat ion . 
8 rotate (direction 1, extend 1, around 1) Rotate to a certain extend. 
9 exit_from (description_l, landmark_l) Exit from a place, usually used 

for the car park. 
10 cross_to (description_l, landmark _1) Instructs the robot to cross the 

road to a landmark. 
11 enter_roundabout (direction_l) Enter the roundabout in a specific 

direction. 
12 park (preposition_ l , description_!, landmark_l) Park on, or close, to a certain 

13 take_road (preposition_l, description_!, 
landmark 1) 

14 goto_side (preposition_l, description_l, 
landmark 1) 

15 fork (direction_l) 

The number of functional groups found is subjective as 
it depends on the annotation method. Here, the 
annotation was done with two objectives in mind: 1. 
Produce parameterised primitives that generalize the 
description found in the corpus. For instance, the 
procedure designed for "turn left after the tree" should 
also work if "tree" is replaced by "Church". 2. An 
important issue is knowledge representation. Route 
following is a continuous chain of actions. When, as in 
this case, a route is represented as a sequence of 
primitives, the initial state of the robot in each primitive 
must be consistent with the final state in the previous 
primitive. Therefore, all actions referred to by subjects 
were assumed to have an initial and a final state. 
Subjects however rarely specified explicitly the starting 
point of an action and sometimes did not define the final 
state in the same utterance. It was assumed that the IBL 
system would be able to retrieve missing information 
from the context. For instance, when a subject specified 
a non-terminated action, such as "keep going", it was 
classified as "follow the road until", assuming that a 
termination point would be inferred from the next 
specified action. 
Not all functional primitives in table 1 are purely 
navigation tasks . For example "go" consists mainly of 
retrieving from memory the list of primitives 

landmark. 
Take a road in view. 

Go round a landmark to one of its 
sides. 
Follow a one of t he two branches 
of a fork (Y split). 

corresponding to a given route, and "location is" 
specifies spatial relations between landmarks. In 
contrast, "destination is" is found at the end of a route 
description to indicate the location of the goal. The 
robot needs then to find its way to that location. 

3. Implementation example: The primitive 
"turn( )". 

3.1. The parameter combinations for the "turn" 
primitive. 

Four different combinations of parameters can be 
passed to the "turn" primitive procedure (table 2). 
The program implementing the primitive executes a 
different sequence of operations depending on the 
combination of parameters passed. For each of the four
parameter combinations a dedicated sub-routine is 
called in the primitive procedure. The next section 
shows the pseudo-code for the second case in the table 
above. 

3.2. Pseudo-code for the case "take the nth turn 
left/right". 

In the first step of the pseudo-code in table 3, the 
templates selected for this case represent straight or 



Table 2: Different combinations of parameters of the "turn " primitive procedure. The examples indicate some of the 
values that the parameters can take. 

Parameter combination 
turn (di rec t ion_l) 

turn (ordina l 1. direct i on 1) 

turn (di r ection_l , prepos ition_l, 
landmark 1) 
turn ( ordinal_l , direction _1. 
preposition_l, description_l , landmark _1) 

curved road segments and intersections of various 
angles (section 3.4). 

Table 3: Pseudo-code for case "take the n1
h tum 

Left/right". The resulting sequence ofdisplacements is 
illustrated in section 3.5 for n (ordinal_}) = 2 and 

direction_] =Left. 

Define set of road fearures (templates- see section 3.4) to look for. 
Loop: 
( 

l 

Capture and process road image. 
Update internal map & localize robot (see section 3.3). 
Find best matching template in the map. 
Execute procedure (e.g . robot motion) associated with 

the winning template. 

Templates are mapped to road-like areas in the top view 
projection of the image captured by the camera. The 
template with the best match will determine the action 
to be performed next. For example the templates for 
straight or curved road will cause the robot to move 
further along the road. The intersection templates can 
have one of two actions associated with them: 1. either 
cause the robot to move to the centre of the intersection 
and rotate in the direction of turn or 2. just move ahead 
along the road. The first action is associated with the 
intersection templates when approaching the nu. 
intersection. In this case the robot takes the turn and the 
loop is exited so that execution is passed to the primitive 
associated with the next chunk in the route description. 
The second action is associated with the intersection 
templates until (but excluding) the nu. intersection. In 
these cases the robot carries on fo llowing the road. In 
this procedure, the robot must keep track, not only of 
the number of intersections passed but also of their 
location. When an intersection is identified, its location 
is compared against a record of previously found 
intersections and if a relatively close match is not found, 
it is considered to be a new intersection. 
Intersection locations are recorded in the egocentric 
reference frame of the robot. Each time the robot moves 
these are updated to reflect their new relation to the 
robot. To perform this updating, the robot must know by 
how much it has moved since the last image was taken. 
In our purely vision-based system, this is done by 
tracking the displacements of landmarks in the image, 
using a "short-lived" feature map, as described in 

Example 

"Take a right turn• 
"Turn l e f t • 
"Take the second left turn• 
"Turn left after the post-office • 

"Take the s econd t urning after Tesco •s• 
"Turn l e ft at the library• 
\'Turn right a f t er the tall blue building• 

section 3.3 

3.3. Short-lived map 

A short-lived map serves several purposes during the 
robot's navigation. It is used to compensate for the dead 
angles of the robot by recording visual information, to 
keep track of landmark locations (like the intersections 
in the example of the previous section), and for 
resolving spatial relationships between a landmark and 
the road (e.g. to defme a road area "after" a building). 
The map is constructed progressively as the robot 
moves using road surface and road edge information 
filtered out from the top view of the scene (this is 
illustrated in figure 3). This view is produced by 
applying a perspective transform to the camera image. 
Road surface information is extracted from the top view 
image using chromaticity information. Chromaticity is 
an intensity-invariant two-dimensional vector describing 
colour. The two components of the vector are the ratios 
of red to blue and green to blue components of the RGB 
vector. A road surface likelihood image is constructed 
by assigning a value to each pixel location in the 
original image, which is proportional to the Euclidian 
distance between its chromaticity vector and a reference 
chromaticity vector. The reference vector is obtained by 
calculating the average chromaticity of a sample of road 
area in the fust image along the route. To increase 
computation speed, a threshold is applied on the road 
surface likelihood image resulting in a binary image 
with either road-like or non road-like areas. 
For road edge extraction, an illumination-invariant 
approach similar to the one suggested in [4] is used to 
discriminate the white lines (road markings) along each 
side of the road. This is done by effectively convolving 
a two-dimensional low-high-low intensity mask with the 
original image with the high intensity span of the mask 
being at least equal to the width of the road markings in 
the top view image. Again, the resulting image is 
thresholded to obtain a binary image. Column B of 
figure 3 shows examples of road edge and road-like 
surface images. 
After the execution of each motion command, the map 
view is translated according to the expected motion 
vector of the robot, so reflecting its new expected pose 
in the environment. The difference between the 
expected and actual location of the robot is due to 



motion errors. These are corrected by finding the best 
matching pose of the new top view in the map, then by 
translating the map again to reflect the actual position of 
the robot. The matching process uses only the road edge 
image rather than the road surface image because edges 
are robust features of the image and allow a more 
precise matching. To save computational time and limit 
the risk of matching the new view at the wrong location, 
not all the map is searched but only a limited area 
defined around the expected position of the robot in the 
map. To further improve speed, a crude search is 
performed initially using coarse steps of position and 
orientation. The search is then refined for a more 
accurate determination of the position and orientation 
(match vector). The resulting match vector is used to 
paste the road surface image of the top view on the map 
and to translate the map. The map is termed "short
lived" because it is only maintained for a limited area 
around the robot's position (e.g. the size of images in 
columns C and D of figure 3). These steps are illustrated 
in section 3.5. The road surface likelihood map is built 
for the purposes of template matching which is 
described in the following section. 

3.4. Road-feature templates 

Templates are binary images of local road features 
drawn at the same scale as the short-lived map of road
like areas (Figure 2). 

(a) (b) (c) (d) (e) 

(f) (g) (h) (i) (j) 

Figure 2: Examples of templates for: road following 
(a,b,c,i,j),for intersection detection (d,eJ,g,h). The light 
grey areas indicate road-like areas and the darker grey 

areas represent non-road areas. 

For each road navigation task a subset of the available 
templates (corresponding to the task) is selected. For 
example, in the case of the action chunk: "take the 
second turn right" (illustrated in the following section) 
templates a, b and e are selected, for following the road 
and for detecting the intersection. The selected 
templates are continuously matched against the road 
surface map for each new image captured. 
The matching process for each location and orientation 
of the template on the map produces a match quality 
measure made of the sum of two ratios: 1. the score, 
which is the sum of the matching road and non-road 

pixels in the two images divided by the number of 
template pixels falling onto areas of the map where 
information is available from previous images and 2. the 
confidence factor, which is the fraction of the template 
area falling onto areas of the map with information. The 
best match of the template is the one where the sum of 
these two components is maximum. When the best 
vectors of all candidate templates are found, the 
"winner" template is selected as the one whose vector is 
associated with the best match. As with the map 
building, not all of the map is searched for the best 
match of the templates and the search is initially coarse, 
then refined. The position and orientation of the 
winning template defines the next motion command 
sent to the robot. 

3.5. Example 

Figure 3 shows the successive states of the short-lived 
maps and images processing results as the robot 
executes the instruction chunk: "take the second turning 
to the right" . The path followed by the robot is marked 
on figure la. Each arrowhead indicates the points where 
the robot finishes an action and captures a new image to 
determine the next action. In step l there is no 
information on the edge map and so the edge and 
surface top views are simply pasted (in the egocentric 
reference frame) on the edge and surface maps 
respectively. In successive steps, this initial map is 
progressively shifted backwards and eventually rotated. 
Column D of figure 3 shows the best matching template 
in each step. Step 5 shows the resulting map after the 
rotation of the robot at the second right turn. 

4. Concluding comments 

Two aspects of natural language instructions influence 
the method proposed here for navigation in our urban 
model environment: Their division into action chunks 
and their under specified nature. 
Each chunk can be considered as a search-and-act loop 
which exits when a condition is met. Primitives were 
written to reflect this. Like chunks, primitives loop until 
a condition is met. They have an initial state and a final 
state and only when their final state is reached, 
execution passes to the next primitive. The initial state 
of the next primitive must be consistent with the final 
state of the previous primitive to ensure consistency of 
execution. 
In natural language, task specification is very abstract. 
For example in: "take the second turn right", the 
absolute locations of the intersections, their orientations 
or shapes are not given. These pieces of information 
must be retrieved in-situ by the robot to successfully 
complete the task. This is achieved here by the use of 
local road-feature templates that enable to recover 
orientation and shape information. Robustness is 



achieved on one hand by defining very general 
template shapes and on the other hand by limiting 
visual search to those salient features selected by the 

instructor. 
To localize road features, the use of road surface 
information is deemed more robust than edge 

l \ 
D 

-, r 

D 

Figure 3: Step-by-step illustration of the execution of "take the second turning to the right". The execution is 
completed in five steps with the corresponding images at each step shown in the rows of the figure. Column A shows 
the camera view, column B shows the road edge and road surface images of the top view. In column C the road edge 

map is displayed and in column D the road surface map is shown. The best match position and orientation of the 
winning template for the step is also shown superimposed on the road surface map. Note also the indication of the 

position of the robot (black outline) in all the top view and map images. 



information. A template has a good chance to match 
correctly even if road areas are partially missing, e.g. 
due to occlusion. For instance, in figure 3, image ID, 
the "right turn" template matches at the correct location 
although the trees prevent full recovery of the road in 
the filtered image. 
Most of the methods suggested in the past to recover the 
road layout from road images deal with the case of a 
straight or curved road extending in front of a vehicle, 
but without any turns, intersections, splits, roundabouts 
etc. [5], [6], [7], [8], [9] and [10]. These methods 
require that both sides of the road are visible (though 
not necessarily continuous) in the image to be able to 
recover the road. These methods are effective in cases 
where a vehicle needs to stay in the middle of a road 
lane when following a highway for example, but they 
are unsuitable in more complex urban environment. 
Methods to recognize intersections on the road were 
proposed by [11] and [12]. In [11] a previously trained 
neural network is used to distinguish the road. The 
method lacks precision because of the neural network 
approach used and fails to accurately determine the 
location and orientation of the road. Furthermore, the 
method suggested for modelling a road intersection 
required the knowledge of either the position of the 
intersection, to determine its precise layout, or the 
layout, to find its position. A priori information for an 
intersection is also available in our case, through the 
natural language, but this is not absolute as far as the 
intersection's location or complete as far as its layout. 
In [12] dynamic model building and matching are 
applied on a road surface likelihood image to determine 
the layout of the road. This method effectively finds 
intersections spurring from a straight road but would fail 
to find an intersection on a curve or an exit from a 
roundabout for example. Furthermore, the suggested 
method attempts to reconstruct the whole intersection. A 
strength of our method is that only the necessary road 
features (for the completion of the task in hand) are 
sought in the map, thus saving computational time and 
improving on system robustness. 
Other landmarks (buildings, trees, lake, bridge etc.) of 
our model town are mentioned in the corpus and will 
need to be located to enable following the instructions. 
Ongoing work is addressing the problem of landmark 
recognition, the resolution of spatial relations between 
landmarks, and those between landmarks and the robot 
as sometimes mentioned in the corpus. The solutions to 
these problems are not expected to modify the 
navigation methodology described here but will rather 
merge with it. 
In a real urban environment the template-based method 
should still work. The main issue is the segmentation of 
the scene into navigable and non-navigable areas. 
Finally, an interesting property of such a system is that 
it has all the perceptual components required to robustly 
learn a route from experience (e.g. by following a 
human guide) in terms of reportable action chunks 

rather than in terms of odometric measurements. 
Applications of this work include intelligent helper 
robots such as autonomous wheelchairs for 
indoor/outdoor applications. 
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Abstract: This paper shows Mirosot league robot football successfully employed as an effective teaching and learning 
tool on a multidisciplinary, undergraduate engineering programme. An overview of robot football development at 
Plymouth is presented Low cost Mirosot technology, designed in undergraduate project laboratories is described The 
evolution of robot construction techniques, from Lego bricks through bent sheet metal boxes to a flexible, robust, 
inexpensive modular structure, is discussed. An off-the-shelf de motor/gearbox/shaft encoder unit, controlled from an 
Atmel AT90f8515 RJSC processor and designedfor lvfirosotuse is shown to have a wide range of mobile robots 
applications. One example of both high-level and low-level Mirosot control software is presented Difficulties 
experienced developing the technology in an undergraduate student environment are discussed. Student feedback is 
reported to be excellent. 

Keywords: Mirosot, robot football, multidisciplinary, education 

1. Introduction 

The last decade has seen major changes in the engineering 
industry. Internet technologies, mobile communications 
and intelligent automation and robotics have all 
contributed to this change. Often undergraduate 
engineering programmes have failed to respond to changed 
circumstances. In the UK many prospective 18-year-old 
undergraduate students believe engineering courses are 
boring, stifle creativity and suppress originality. As a result 
relatively few able students wish to study engineering. lt 
was against this background that the first undergraduate 
course in the UK in Robotics & Automated Systems (RAS) 
was developed at the University ofPlymouth [I]. The aim 
of the course is to produce system integrators comfortable 
working across the boundaries of traditional engineering 
disciplines. It also aims to allow student flair, originality 
and imagination to blossom [2]. Robots, in their many 
guises, are excellent examples of integrated engineering 
systems. Robot football provides a focus for many 
disparate engineering disciplines, which together 
constitute the modern information society, and is one of a 
number of enabling technologies empowering RAS 
students in their own learning development. An added 
bonus is that Mirosot builds on the popularity of 
contemporary BBC TV programmes such as Robot Wars 
[3) and Techno Games [4]. 

The Mirosot project at the University of Plymouth came 
about as a result of a meeting in early 1997 at the rEE 
(Institution of Electrical Engineers), London. Dr Jeff 
Johnson of the Open University (OU) addressed the 
Robotics Committee of the lEE requesting help in the 
development of robot football in the UK. The author was 
the committee member tasked with investigating the 
request and reporting back to the committee. Later that 

year Or Johnson decided to build a Mirosot team and take 
it to the 1997 Mirosot championships in Taejon, Korea. 
This team was built very rapidly using Lego motors and 
bricks for the body and a transputer based GM8104 
graphics board as the frame grabber. Experience gained 
during the 1997 competition encouraged Dr Johnson and 
the author to co-operate in developing a joint 
OU/University of Plymouth team to represent England at 
the 1998 Mirosot World Championships in Paris. Professor 
Kim, from KAJST (Korean Advanced Institute of Science 
& Technology) provided further encouragement when he 
visited England in late 1997. During his visit a 
demonstration Mirosot competition was held at the OU, 
using Korean robots, and televised by the BBC. 

In the six months leading up to the 1998 competition much 
development work was completed. Four final year 
Plymouth RAS undergraduate students worked on various 
aspects of the system design. A bent sheet aluminium 
chassis replaced the Lego bricks. Inexpensive de motors 
incorporating gearboxes and optical encoders were bolted 
to the chassis. On-board electronics remained substantially 
unchanged and the vision system interface again used the 
GM81 04 transputer board. It was apparent that the 
students had enjoyed the challenge of robot football and a 
decision was made to integrate robot football fully into the 
undergraduate RAS curriculum. 

Critical assessments of the team performance in Paris led 
to a redesign of all parts of the system. Again RAS students 
completed much of the work. The transputer board was 
replace by a Matrox Meteor II interface card, new robot 
bodies allowing in-situ removal of side panels were build 
and, most importantly, the on-board electronics were 
redesigned and constructed with the help of Merlin 
Systems Corporation, a company closely associated with 



the University of Plymouth. The new, surface mount, 
electronics board is based upon the Atmel A T90f 8515 
RISC processor with 8K of flash RAM memory. Thjs new 
board provided improved functionality with reduced size. 
Fig. I shows a much used control board. Extra inputs for 
sensors are provided and the ability to transmit as well as 
receive UHF radio signals is included. Essentially this 
remains the board in use today. 

At any one time there are many active versions of the 
various elements of the system. One student will be 
working on the communications problems whereas another 
may be testing PID algorithms on the robot. Several 
versions of software will be in development 
simultaneous ly. Often this creates project management 
difficulties for supervising academic and technical staff. 
Keeping track of the many system sub elements 
progressing in parallel can be difficult. Therefore a 
standard system is maintained and only upgraded by 
responsible staff. The most recent standard Plymouth 
Mirosot system is commercially available from Merlin 
Systems Corporation Ltd [5]. Many Merlin systems have 
been supplied to universities both in the UK and abroad. 

Fig. I -The Atmel control board 

UK universities working with Mirosot robot football 
technology include Plymouth, Wales, the OU, Salford, 
Queens, Strathclyde and Essex. Or Hu's research group at 
the University of Essex have developed their own Mirosot 
team and are actively researching in the field of 
multi-agent systems [6]. Meanwhile Or Johnson at the OU 
is looking at, among other things, complexity inherent 
in-group and swarm behaviour [7]. 

Attempts to broaden the appeal of Mirosot robot football 
by the creation of a UK Mirosot league based in 
universities have been unsuccessful due to a lack of 
sponsorship. Both industrial and government sponsorship 
is being sought but so far without success. However, robot 
football remains popular with the media and regular 
request are made to stage competitions for both TV and 
technology exhibitions. In June 2001 the Plymouth team 
demonstrated Mirosot robots for a week at Earl's Court, 
London as part of the BBC Tomorrow's World Live 

Exhibition. Many hundreds of school children had the 
opportunity to directly control robot footballers, via a PC 
keyboard, playing against autonomous players. They 
found it difficult to believe that no one was controlling the 
opposition, especially as they inevitably lost the match. 
All the children interviewed were captivated by this 
app lication of technology and, as a result, many left the 
exhibition seriously considering a career in engineering. 

2. Mechanical Structure 

Mirosot mechanical construction techniques at Plymouth 
have evolved through about seven generations. As stated 
above the initial 1997 design used standard Lego bricks 
and motors. Tills was followed by a variety of bent metal 
bodies working on the lotus flower principle. Basic design 

Fig. 2 Mechanical parts showing the base, pillars and 
motor/gearbox units 

specifications included low cost, simplicity ofbuild, i.e. no 
special machining required, ruggedness, good access and 
internal space for eight standard AA batteries. Access 



proved to be a problem with the bent metal bodies. The 
present modular structure, Fig. 2, meets all the 
specifications to an acceptable degree and may be easily 
constructed by an undergraduate student without the need 
for special tools or skills. 

Four extruded aluminum metal posts, cut from commonly 
available 2-meter lengths, screwed to an aluminum base 
plate constitute the basic robot skeleton. The control board, 
Fig. I , is screwed to the other end of the posts to provide 
the top of the cube. Each side of the cube is made from 
sheet aluminum with cut outs for the wheel and ball 
apertures as required. The sides simply slot into the 
appropriate groves of the mounting posts. Rigidity, 
robustness and ease of construction are combined with 
good accessibility to the batteries and internal parts. 

High specification, small de motors suitable for powering a 
Mirosot robot tend to be expensive. Use of the Swallow 
matched motor/gearbox/shaft encoder units, at a unit price 
of about $45, has provided a cost effective alternative [8]. 
At maximum efficiency, i.e. 6400 rpm, 6V and 0.57 A, each 
4 .5-l2V de Mabuchi RC-280SA-20120 motor supplies a 
torque of 29 gm.cm. Good acceleration with speeds in 
excess of one meter/second is therefore possible. One 
drawback is that these motors tend to be electrically very 
noisy, especially when running at high speed. This may 
cause problems with false interrupts to the on-board micro
processor. 

FigJ The robot skeleton 

An assembled robot, minus its side panels is shown in 
FigJ. The on/off switch is placed at the front above the 
baJI capture aperture. Behind the motors there is sufficient 
room for 2*4 AA rechargeable battery packs. A simple 
nylon, half spherical skid is screwed to base at the front 
and back to provide stability. Because of the small wheel 
diameter, 0-ring tyres and simple skids there is little 
frictional torque helping to guide the robot in a 
straight-line path. There is a natural tendency therefore for 
the robot the veer from a straight-line path. 

The control board is mounted upside down and Velcro is 
used to fix the team shirt colours to the top. The RX 
module is plugged into the bottom of the board and may be 
easily changed from 418 MHz to 433 MHz as required. 
During matches there is a tendency for the RX module to 
be dislodged. Care must be taken to ensure that it is 
securely fixed . 

3. System Software 

The system software is written in C++, using where 
appropriate MFC facilities . This effectively means that the 
GUT (graphical user interface) & frame grabber are 
operated using MFC libraries. Figure l shows the overall 
software structure. At the centre is the match object 
through which all other objects are linked. 
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Fig. 4 System software structure 

All the players and the ball are derived from a base class 
called GameObject. GameObject provides a range of 
services including default draw functions, automatic 
history recording and simple linear prediction. Any object 
within the system can have an arbitrary set of property 
variables (called a property set) which can be manipulated 
at runtime. The strategy property associated with each 
player can be used to point to a DLL which implements the 
strategy interface e.g. there is a goalkeeper DLL that 
determines the behaviour of the goalie, another DLL that is 
specific to a striker etc. 

The global strategy allows property swaps so that a player 
strategy can be plugged in dynamically at run time, e.g. a 
goalkeeper can be changed to a striker as required. These 
properties may include player position, location restrictions, 
zoning and individual strategies. Model variables are 
common to all players. Dynamic modeling remains at best 
a good approximation. Inherent non-linearities such as 
friction inevitably lead to some uncertainty in model 
parameters. Notwithstanding these limitations a simplified 
model may be built around three global variables, namely; 
the dominant time constants, (maximum acceleration and 
deceleration) and maximum velocity. 



4. Object Locations and Recognition 

There has been much experimentation with the shape, size 
and colour of shirts. Presently the player's shirts are 
divided into equal sized quadrants. One quadrant is used for 
the team colour whereas the colour of the diagonally 
opposite quadrant identifies the player. The vision 
software searches a grabbed frame image for ' blobs ' , i.e. 
objects of interest, namely the players and the ball. ln order 
to avoid identifying transient objects as blobs each blob 
must pass a fitness text. In practice if an object meets a 
min/max, x/y pixel size and is a non-pitch colour then it is a 
blob. After being identified as a blob the programme then 
attempts to link closely associated blobs. 

Direction of Scan 

Team colour 

Fig. 5 Object location 

The stored image is scanned until the first interesting pixel 
is found, Fig. 5. An interesting pixel is one with a hue value 
above the black pitch threshold intensity. Separation 
between RGB values is also tested. Once an interesting 
pixel is located the right hand scan is continued until a pitch 
pixel is found. The distance from the discovered interesting 
pixel to the next pitch pixel is bisected and a new scan 
started from the centre of the measured length and 
orthogonal to it. The new scan continues until another 
interesting pixel, i.e. one of a different colour, is detected. 
This procedure is repeated three times and a fitness test 
applied to see if a blob has been located. Orthogonal 
scanning provides both the approximate dimensions and 
centre point of the coloured object. As each scan progresses 
average values for R,G & B values are calculated. The 
result is used to calculate a hue value which when 
compared to a look-up table, identifies the specific colour. 
Four outcomes are possible., namely; 

I . it is an opposing player. 
2. It is a home team colour 
3. It is a specific home team player. 
4 . It is the ball. 

After storing the location and colour of this object the scan 
continues on its original path until all valid blobs have been 
located. 

Linking blobs is the next stage. Blobs in close proximity, 
and identified as either home team colours or player 
identity, are assumed to be linked, i.e. they are part of the 
same robot shirt. This allows both the position and 

orientation of the individual player to be determjned. 
Problems can arise if two or more home players are nex1 to 
each other. In the worst case scenario the orientation of a 
player may be in error by 180 degrees. During matches this 
effect can sometimes be observed but is usually 
self-correcting insofar as the confusion is eliminated 
immediately the robots separate. 

5. The Robot Control System 

Many robot control systems have been designed and tested . 
One such system is shown in Fig.6. where wheel two 
control is a mirror image of wheel one control. This 
particular robot control system responds to four basic 
commands, namely the required movement distance and 
speed for each wheel, i.e. D I, SI and D2, S2. Usually there 
is no need to control the distance moved during a Mirosot 
game. However distance traveled is an interesting test of 
the low-level robot controller efficiency. In practice the 
basic unit of measurement is a single pulse from the shaft 
encoder situated between the motor and gearbox (GIB). 
Resolution calculated from 8 holes per encoder disk, 16:1 
gear ratio and a 32mm diameter wheel is approximately 
0.785 mm, i.e. more than adequate for requirements of 
MlROSOT competition. 

Fig.6 Robot control system block diagram 

Each robot control system is subject to a variety of bench 
mark tests . These may consist of straight line/fixed 
distance movements, circles, squares and figures of eight. 
Because of inherent nonlinear problems achieving accurate 
control has proved to be difficult, especially in the case of a 
stand alone robot commanded to travel in a straight line for 
a fixed distance. Fixed distance movement requires four 
input commands, i.e. Dl, SI and D2, S2. For straight line 
movement D 1 and S 1 are equal to D2 and S2 respectively. 
Before the motor speed command can be activated it must 
pass through a normally-on switch controlled by the 
distance travelled circuit. Distance travelled is measured 
by summing the relevant wheel shaft encoder pulses and 
comparing the result with the input demand. When the two 
are equal the normally-on input speed switch is turned off 
thereby deactivating the motor. Providing the demand 



distance has not been achieved SI is compared to the 
actual motor speed and resulting error processed by a 
convential PID controller. 

Various techniques were used for setting the Pill constants, 
including the classical Zieglar Nichols method. In practice 
empirical methods were found to provide the best results. 
Accurate, fast response, low speed control was found to 
be particularly difficult due to the relatively high amount 
of stiction in the motor gearbox drive unit. Speed demand 
is provided by a value in the range 0-255. During initial 
system testing there was found to be a dead band in the 
range 0-30, i.e. the minimum reliable speed was 8 
cm/second. Attempts to cure this by increasing the integral 
speed of the PID controller led to typical limit cycle, 
oscillatory type of behaviour being superimposed on the 
behaviour of interest. A fixed value off-set, switched on by 
the presence of a speed input command and added to the 
input speed signal, Fig. 6, solved this problem. 

Further practical difficulties result from the different 
charatersitics of the motor/gearbox combinations. If 
identical signals are applied at both inputs it is invariably 
discovered that one wheel will accelerate at a different rate 
to the other thereby causing the robot to veer from the 
demanded straight line and move in an arc. A third PID 
controller, common to both wheels, helps overcome this 
problem. An error signal, generated from the difference 
between the demanded input speeds S 1 and S2, is 
compared to an error signal based upon the actual 
difference between the wheels speeds. The two error 
signals are compared and the result processed by the third 
PID controller, the output of which is added, with 
appropriate polarity, to both motor drive signals. This 
causes the characteristics of the two motors to be drawn 
into line, resulting in straight line travel being achieved. 
The third controller also helps compensate for wheel spin 
due to skidding. When wheel spin occurs signals are also 
added, as appropriate, to Dl and/or 02 in order to ensure a 
correction is made to the sum of distance travelled 
measurements . Other practical problems encountered 
include noise spikes during high speed operation. This 
noise is interpreted as valid feedback resulting in a lower 
operational speed than would be expected. 

6. The Student Experience 

Final year undergraduate individual projects are scheduled 
for one day a week over a six month period. At the end of 
this time a comprehensive individual project report is 
submitted and each students attends two oral examinations 
(vivas). Every project is allocated a budget of about $75 
although this may be increased with the permission ofthe 
academic supervisor. It is clear that a student working 
alone would be unable to develop a complete Mirosot 
robot football system, both the complexity and cost are 
prohibitive. However over the last five years a great deal 
of development has been completed on a wide range of 
robot football technology. The individual student, looking 
to complete a robot football project, is able to build on this 
substancial body of work. In effect robot football is the 
focus for a very wide range of student project activities. 

This is illustrated in Fig. 7. Some of the robot football 
links are obvious, such as wheeled robots, vision systems, 
UHF radio and control. However other links are not so 
clear. If, for example, a student is interested in say object 
oriented programming then robot football provides a ready 
application platform. On the other hand if AI (artificial 
intelligence) is the topic of interest then the multi-agent 
strategy and behaviour aspect of robot football provides an 
excellent application. Individual robots may be 
constructed quickly and cheaply using the standard fortmat 
thereby freeing students to concentrate on their research 
area of interest. Alternatively components of the 
technology, e.g. the control card, may be used in a different 
application. 

Over 50 final year engineering students have completed 
undergraduate projects linked to robot football activities 
[9] . Enthusiasm is such that many first and second year 
students work with the robot football group in addition to 
their scheduled programmes. Spin-off activities have 
proved to be benificial to both staff and students. A second 
year digital system design module, ELEC212B, is based 
upon the Mirosot robot described above. Students study 
the mechnical and electronic design aspects of the robot . 
They then programme the robot in C, via the serial port 
of a PC, to perform a series of specified manouvres. 
Students benefit from hands-on experience and 
immediately see the effect of their programmes in the real, 
i.e. laboratory, world. Another module delivered to final 
year robotics students, CONT312A, concentrates on the 
mathematical analysis and modelling of mobile robots. 
Again the Mirosot robot is central to this work. 
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Fig. 7 Robot football technology 
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Trips to national and international competitions are very 
popular. Undergraduate students have taken part in 
Mirosot competitions in Manchester, London, Paris, 
Germany and Dubai. These visits constitute a well-earned 
reward for their hard work within the robot football group. 
An added benefit is that the students return full of 
enthusiam and knowledge gained from discussions with 
other competitors. 



From a staff perspective robot football complements many 
well established research interests in areas such as mobile 
robots, vision systems and control. Undergraduate project 
students working on various aspects of robot football 
technology may gain first hand experience of research 
problems by working closely with established academic 
staff. This can be an excellent method of recruiting the 
next generation of researchers. The student is able to gain 
experience in an area of interest while the academic staff 
member has the opportunity to assess the student's 
suitablity as a full-time post-graduate researcher following 
an MPhil or PhD programme. 

Up to date there have been no full-time, post-graduate 
researchers working on the Plymouth Mirosot system. 
From year to year academic and technical staff have 
provided continuity as one student cohort graduates and 
the next arrives. Because of severe demands elsewhere 
these staff can only devote a small part of their time to the 
project. Opportunities for advancing Mirosot technology 
to the best international standards have therefore been 
very limited. It is hoped in the near future to obtain funding 
to appoint full-time, post-graduate researchers to the team. 
If successful rapid progress can be expected in some of the 
more interesting areas such as team strategy and 
co-operative behaviour. 

7. Condusion 

An inexpensive, robust Mirosot robot has been designed 
specifically for undergraduate project work. Mechanical 
construction requires no special tools or skills and is within 
the capability of all students on the Robotics & Automated 
Systems programme. 

Robot football has proved to be an excellent teaching and 
learning tool. Two modules, one at the second year level 
another at the third year level, use the designed robot and 
its underpinning technology as the focus for study and 
experimentation. Large numbers of final year 
undergraduate students have chosen individual projects 
associated with robot football. Student feedback is 
overwhelminghJy positive. 

It was shown that many young people are facinated with 
the idea of autonomous, intelligent robot teams playing 
football. This helps dispel the boring image of engineeing 
and encourages more young people to study technological 
subjects at university. 
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Abstract 

When humans explain a task to be executed by 
a robot they decompose it into chunks of actions. 
These form a chain of search-and-act sensory-motor 
loops that exit when a condition is met. In this paper 
we investigate the nature of these chunks in an urban 
visual navigation context, and propose a method for 
implementing the corresponding robot primitives such 
as "take the n111 turn right/left". These primitives make 
use of a "short-lived" internal map updated as the 
robot moves along. The recognition and localisation 
of intersections is done in the map using task-guided 
template matching. This approach takes advantage of 
the content of human instructions to save computation 
time and improve robustness. 

1. Introduction. 

This work is part of a project on "Instruction
Based Learning" (ffiL) where robots acquire user
specific skills based on verbal instructions given by 
the user. One of the issues in the project is the 
mapping from action chunks used in natural language 
to actions executable by the robot. The approach used 
here is to provide a set of pre-programmed primitives 
corresponding to action chunks referred to by users. 

This facilitates the mapping from the semantic 
analysis of the spoken input to a sequence of 
executable robot actions. 

In an earlier part of this project, subjects were 
invited to speak to a small robot in a miniature town 
(Figure 1) and to explain to it how to navigate 
between two landmarks. The instructions were 
recorded, transcribed and analysed to identify chunks 
of actions (Lauria et al., 2001). These chunks were 
grouped into about 15 "primitive" procedures that are 
listed and discussed in section 2. 

To successfully implement the primitives, the 
robot needs to manipulate spatial knowledge and keep 
track of its own position. This is achieved by using a 
"short-lived" internal map of the environment (section 
3). Another requirement, the detection of road 
features such as intersections and turnings is 
implemented by matching local road feature templates 
on the internal map (section 4). 

In implementing such primitives, one can take 
advantage of the content of verbal instructions to 
minimize computational time and improve robustness, 
for instance by limiting visual search to those features 
mentioned in the instructions. As an example, the 
execution of the navigation primitive "take the n111 

left/right turn" is described in section 5. 
The requirements of natural language 

(b) 

Fi~e 1: (a) The miniature town. The marked pa~ on the town image refers to the route followed by the robot in the example given in 
sectJon 5 (where each arrowhead denotes a waypomt). (b) The robot with an 8x8 cm base. The robot's wireless colour video camera 
sends images to a PC for processing and the PC sends motion commands by radio to the robot 



understanding induce the internal representation of a 
route as a sequence of high-level task specifications 
(primitives). This is in principle very robust against 
environmental variations, provided that the primitives 
can handle these appropriately. In this paper we focus 
on the detection of visual features of the road layout 
in a way that should be robust enough to allow 
traversal of complete routes. 

2. Action chunks in verbal instructions 
and corresponding primitives. 

A corpus of route descriptions was collected 
from 24 subjects in the miniature town environment. 
Each subject was asked to give 6 route descriptions 
from a starting location (different for each subject) to 
a different destination each time. A total of 144 route 
descriptions were analysed for their functional 
components (action chunks). The functional analysis 
revealed 15 functional groups (table 1). 

Primitive 
1 go (description_l , landmark_l, 

preposition_!, description_2, 
landmark 2) 

This number is subjective as it depends on the 
annotation method. Here, the annotation was done 
with two objectives in mind: 1. Produce 
parameterised prnrutiVes that generalize the 
description found in the corpus. For instance, the 
procedure designed for "turn left after the tree" should 
also work if "tree" is replaced by "Church". 2. An 
important issue is knowledge representation. Route 
following is a continuous chain of actions. When, as 
in this case, a route is represented as a sequence of 
primitives, the initial state of the robot in each 
primitive must be consistent with the final state in the 
previous primitive. Therefore, all actions referred to 
by subjects were assumed to have an initial and a final 
state. Subjects however rarely specified explicitly the 
starting point of an action and sometimes did not 
define the fi nal state in the same utterance. It was 
assumed that the IBL system would be able to retrieve 
missing information from the context. For instance, 
when a subject specified a non-terminated action, 

Description 
Instructs the robot to follow a 
known route (with known starting 
point and destination) . 

2 location_is (description_l, landmark _1, Specifies a location. 
direction_l, preposition_!, 
description_2, landmark_2, 
description 3, landmark 3, ordinal 1) 

3 destination_is (description_ l, Indicates the destination 
landmark_l, direction _1, . landmark. 
preposi t ion_l, description_2, 
landmark_2, description_3, landmark_3 , 
ordinal 1) 

4 go_until (description_l, landmark_l, Follow known route to a landmark 
preposition_!, description_2, until a specified location in the 
landmark 2) route. 

5 exit_roundabout (ordinal_l, Take a specified exit from a 
preposition_!, description_!, roundabout. 
landmark 1) 

6 turn ( ordinal_l, direction_l, Take a specified turn off a road. 
preposition_!, description_!, 
landmark 1) 

7 fo1low_road_unti1 (preposition_l, Move forward until a certain 
description 1 , landmark 1) location. 

8 rotate (direction 1, extend 1 , around 1) Rotate to a certain extend . 
9 exit _ from (description_l, landmark_l) Exit from a place, usually used 

for the car park. 
10 cross_to (description_l, landmark_l) Instructs the robot to cross the 

road to a landmark. 
ll enter_roundabout (direction_1) Enter the roundabout in a 

specific direction. 
12 park (preposi tion_l, description_!, Park on, or close, to a certain 

landmark 1) landmark. 
13 take_road(preposition_l, description_!, Take a road in view. 

landmark 1) 
14 goto_side(preposition_l, description_!, Go round a landmark to one of its 

landmark 1) sides. 
15 fork (direction_l) Follow a one of the two branches 

of a fork (Y split) . 

Table 1: Functional primitives extracted from the corpus. 



such as "keep going", it was classified as "follow the 
road until", assuming that a termination point would 
be inferred from the next specified action. 

Not all functional primitives in table I are 
purely navigation tasks. For example "go" consists 
mainly of retrieving from memory the list of 
primitives corresponding to a given route, and 
"location is" specifies spatial relations between 
landmarks. In contrast, "destination is" is found at the 
end of a route description to indicate the location of 
the goal. The robot needs then to find its way to that 
location. 

Different combinations of parameters can be 
initialised for each of the primitives. Not all possible 
combinations may be valid though. For each of the 
valid parameter combinations a dedicated sub-routine 
is called in the primitive procedure. Table 2 shows the 
four different combinations of parameters that can be 
passed to the "turn" primitive procedure. Section 5 
describes how the sub-routine for the second case in 
the table is implemented. 

In most primitive procedures the robot needs 
to navigate to a visually identified target location on 
the road. For example, in the "turn" primitive, 
regardless of the combination of parameters passed, 
the robot eventually needs to identify a specific turn, 
move to it and rotate to face the new direction. Our 
method to discriminate components of the road layout 
and navigate to them is described in the following 
sections. 

3. Short-Lived 
localization 

maps and self-

A short-lived map is a map of the immediate 
vicinity of the robot that is updated as the robot 
moves in its environment. The map records 
previously seen visual information which go out of 
view as the robot moves. The robot's position is 
always centred on the map and facing towards the top 
of the map. As the robot moves the map is translated 
and rotated to maintain this frame of reference. In the 

Parameter combination 
turn (direction_l) 

turn (ordinal 1, direction 1) 
turn(direction_l, preposition_!, 
landmark 1) 
turn (ordinal_l, direction_!, 
preposition_!, description_!, 
landmark 1 l 

process, elements of the map that reach its edge will 
disappear. Thus the term "short-lived". 

The purpose of constructing such a map is to 
compensate for the dead angles of the robot (areas in 
the immediate locality of the robot which fall outside 
the visual field), to keep track of landmark locations 
and road layout features such as intersections and for 
resolving spatial relationships between a landmark 
and the road (e.g. to define a road area "after" a 
building). 

Two versions of the short-lived map are used 
in this paper, the first represents the position of the 
road surface and the second represents the position of 
road edges. These maps are constructed using road 
surface and road edge information filtered out from 
the top view of the scene. This view is produced by 
applying a perspective transform to the camera image. 
This transform assumes a flat ground plane. Figures 
2b and 2f show the top views of 2a and 2e 
respectively. This section describes how the road edge 
map is used to align new visual information with the 
ones existing in the map. The use of the road surface 
map for the detection of road features is described in 
section 4. 

Road edge information is extracted from the 
top view image using an illumination-invariant 
approach similar to the one suggested in (Broggi, 
1995). This approach discriminates the white lines 
(road markings) along each side of the road by 
effectively convolving a two-dimensional low-high
low intensity mask with the original image. The high 
intensity span of the mask is equal to the width of the 
road markings in the top view image. To increase 
computation speed in later stages, a threshold is 
applied on the road edge image resulting in a binary 
image with either road-edge or non road-edge pixels. 
Figures 2c and 2g are examples of thresholded road 
edge images of the top views in figures 2b and 2f 
respectively. 

The top view of the scene is aligned with the 
map using the following steps. After the completion 
of each motion command, the map is translated 

Example 
"Take a r ight turn• 
"Turn left• 
"Take the second left turn• 
"Turn left after the post- office" 

"Take the second turning after Tesco•s• 
"Turn left at the library• 
"Turn right after the tall blue bui l d i ng• 

Table 2: Different combinations of parameters of the "turn" primitive procedure. Tb.e examples indicate some of the 
values that the parameters can take. 
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Figure 2: Camera view (row I), top view (row 2) and road edge map (row 3) prior to robot motion (a to d) and after robot motion, showing 
expected position (h), best match o f new top view on map (new view shown darker) and (i) and acrual position (j) after translating map. 

according to the motion command sent to the robot, 
so reflecting its new expected pose in the environment 
(figure 2h). Any difference between the expected and 
actual location of the robot in the map results from 
possible motion errors. These are corrected by using a 
newly captured image and by finding where the road 
edge image of the new top view best fits on the map. 
The map is then translated again to reflect the actual 
position of the robot. 

The robot's position with regards to the top 
view image is a point outside the field of view called 
here "the pivot point" (figure 3). While searching for 
the best match, the top view image is displaced and 
rotated (vector [x,y, rp)) so that its pivot point scans the 
map image. 

The match quality Q1 describes how the edges 
of the two images overlap. Q1 is made of the sum of 
two ratios: 1. the score, which is the matching road 

edge pixels in the intersecting area of the two images 
divided by the number of road edge pixels in the map 
image and 2. the confidence factor, which is the 
fraction of the top view area falling onto areas of the 
map containing information. This is formally 
described by Equation 1, where pis a pixellocation in 
the overlapping area of the two images. m and n are 
values of pixels in the road edge map image M and 
road edge image of the top view N respectively. Value 
0 denotes no road edge, and value 1 denotes road 
edge. N(x,y, rp) is the road edge image of the top view 
translated by (x,y) and rotated by rp. m' and n' are the 
information masks of the map and road edge images 
where 0 denotes the presence of information (mask is 
off) and 1 denotes no information (mask is on). a and 
b are weighting constants whkh bias the relative 
importance of respectively the score and the 
confidence of the match. At the moment we are using 

IAND(mP, nP) INOR(m~,n~) 
Q ( m)= peN(x ,y.f{J)IIM +b peN(x,y,f{J)r.M 

1 X, y, 't' Q ""' ""' 
~mP ~nP (Equation 1) 

peN(x,y,f{J)r.M peN 

m,m',n,n' E {0,1} 



Pivot point of top view 
(robot's position in top view) 

Top view 
~-----------r-- irn~e 

on map 

~-----+---- Search window 

Map image 

Figure 3: Illustration of one match position of the top view image on the map. 

a=l and b=l. The best matching position and 
orientation of the road edge image of the top view is 
the one where Q1 is maximum. Equation 1 ensures 
that, for two configurations with equal score, the one 
with highest confidence has the best match quality. 

To save computation time and limit the risk of 
matching the new top view at the wrong location, the 
search is limited to a small window defined on the 
map around the expected position of the robot. The 
range of rotation of the top view for each match 
position is limited to a small angle 8. The size of the 
search window and angle 8reflect the precision of the 
motion of the robot. To further improve speed, a 
crude search is performed initially using coarse steps 
of position and rotation of the top view on the map. 
The search is then refined for a more accurate 
determination of the position and orientation (match 
vector). An example of matching a new top view on 
the map after the robot's motion is illustrated in figure 
2. 

The matching process uses only the road edge 
image rather than the road surface image because 
edges are robust features of the image and allow a 
more precise matching. The resulting match vector is 
used to paste the road surface image of the top view 
on the map and to translate both versions of the map. 

Road surface information is extracted from the 
top view image using chromaticity information. 
Chromaticity is an intensity-invariant two
dimensional vector describing colour. The two 
components of the vector are the ratios of red to blue 
and green to blue components of the RGB vector. A 
road surface likelihood image is constructed by 
assigning a value to each pixellocation in the original 
image, which is proportional to the Euclidian distance 
between its chromaticity vector and a reference 

chromaticity vector. The reference vector is obtained 
by calculating the average chromaticity of a sample of 
road area in the first image along the route. As with 
the road edge version of the map, a threshold is 
applied on the road surface likelihood image resulting 
in a binary image with either road-like or non road
like areas. Examples of the road surface images of 
the top view and map are shown in Columns B and D 
(respectively) of figure 6. 

The road surface version of the map is used to 
locate local features of the road layout using 
templates. This is described in the following section. 

4. Road-feature templates 

Templates are binary images of local road 
surface features drawn at the same scale as the short
lived map. Some examples are shown in Figure 4. 

For each road navigation task a specific subset 
of the available templates is selected with its 
associated action. For example, in the case of the task: 
"take the second turn right" (illustrated in the 
following section) templates a, c and g are selected, 
for following the road and for detecting the right turn. 
The selected templates are continuously matched 
against the road surface version of the map for each 
new scene captured and the robot navigation sequence 
associated with the "winner" template is executed. In 
this way template matching is interleaved with short 
motion sequences. 

Like in map building, the matching process for 
each location and orientation (vector [ x,y, (J]) of the 
template on the map produces a match quality 
measure Q2• Here the score term of Q2 is the sum of 
the matching road and non-road pixels in the two 
images divided by the number of template pixels 



Figure 4: Exa.mples of templates for: road fo llowing (a,b,c, d, e), for intersection detection (f,g,h, i, j , k, 1). The light grey areas 
indicate road-like areas and the darker grey areas represent non-road areas. 

falling onto areas of the map where information is 
available and the confidence factor, like the map 
building, is the fraction of the template area falling 
onto areas of the map with information. This is 
formally described by Equation 2, where p is a pixel 
location in the overlapping area of the two images. m 
and t are values of pixels in the road surface map 
image M and template image T respectively. Value 0 
denotes no road, and value 1 denotes road. T(x,y, f/J) is 
the template image translated by (x,y) and rotated by 

f/J. m' and t' are the information masks of the map 
and template images where 0 denotes the presence of 
information (mask is off) and 1 denotes no 
information (mask is on). a and b are weighting 
constants which bias the relative importance of 
respectively the score and the confidence of the 
match. We are using a=l and b=l. The best matching 
position and orientation of the template is the one 
where Q2 is maximum. Equation 2 (like equation 1) 
ensures that, for two configurations with equal score, 

the one with highest confidence is the winner. 
Each template is associated with a pivot point. 

This is denoted by a dot-centred circle in figure 5 for 
some of the templates. 

Translation and rotation of the template during 
the matching process is done with reference to this 
point. The pivot point of the winner template becomes 
a waypoint for the robot. Each template has a set of 
associated "search centres" (denoted by the numbered 
crosses in figure 5) which will define the template 
search window in the next image captured. The search 
window is defined around one of these centres 
(projected onto the map after the match) depending on 
the action associated with the winner template. If for 
example the action is to turn left at the crossroad, 
search centre 1 of the crossroad template (figure 5d) 
will be used to define the search window of the next 
template. As with map building, the search for the 
best match vector is initially coarse and then refined 
(section 3). 

LXOR(mP,tP) LNOR(m~,t~) 
Q (X, rp) =a peT (x,y,rp)nM + b peT (x,y,rp)nM 

2 y, LNOR(m~, t~) LtP (Equation 2) 
peT ( x ,y, rp)nM peT 

m,m',t,t' E {0,1} 

2 2 

(a) (c) (d) 

Figure 5: Pi vot point and search centres for the crossroad template. 



Define set of road features to look for. 
Loop: 
I 

Capture and process road image. 
Update internal map & localize robot. 
Find best matching template in tbe map. 
Execute procedure (e.g. robot motion) associated witb the winning template. 

Table 3: Pseudo-code for case "take the n111 turn leftlrighL". The resulting sequence of displacemems is illustrated in section 3.5 
for n (ordinal_ I)= 2 and direction_l=left. 

5. Example: "take the nth 

left/right". 
turn 

In this section the instance of the "turn" 
primitive is described when the ordinal and direction 
parameters are passed to it (second case in table 2). 
Table 3 shows the pseudo-code of the sub-routine of 
the primitive that is called in this case. 

In the first step of the pseudo-code in table 3, 
the templates selected for this case represent straight 
or curved road segments and intersections of various 
angles. In the loop, the selected templates are matched 
on the road surface map. The template with the best 
match in each iteration of the loop will determine the 
action to be performed next. For example, the 
templates for straight or curved road will cause the 
robot to move further along the road. The intersection 
templates can have one of two actions associated with 
them: 1. either to cause the robot to move to the 
centre of the intersection and rotate in the direction of 
the turn or 2. just move ahead along the road (head in 
the centre of the intersection but without rotation at 
the end). The fust action is associated with the 
intersection templates when approaching the nth 
intersection. In this case the robot makes the turn and 
the loop is exited so that execution is passed to the 
primitive associated with the next chunk in the route 
instruction. The second action is associated with the 
intersection templates until (but excluding) the nth 
intersection. In these cases the robot carries on 
following the road. 

In this procedure, the robot must keep track, 
not only of the number of intersections passed but 
also of their locations. When an intersection is 
identified, its location is compared against a record of 
previously found intersections and if a relatively close 
match is not found, it is considered to be a new 
intersection. 

Intersection locations are recorded in the 
egocentric reference frame of the robot. Each time the 
robot moves these are updated to reflect their new 
position relative to the robot. To perform this 
updating, the robot must know by how much it has 

moved since the last image was taken. In our purely 
vision-based system, this is done by tracking the 
displacements of landmarks in the image, using the 
short-lived feature map described in section 3. 

Figure 6 shows the successive states of the 
short-lived maps and images processing results as the 
robot executes the road navigation task: "take the 
second turning to the right". The path followed by the 
robot is marked in figure la, where each arrowhead 
indicates the points where the robot finishes an action 
and captures a new image to determine the next 
action. In step 1 there is no information on the road 
edge map and so the road edge and road surface top 
views are simply pasted (in the egocentric reference 
frame) on the road edge and road surface maps 
respectively. In successive steps, this initial map is 
progressively shifted backwards and eventually 
rotated. Column D of figure 6 shows the best 
matching template in each step. Step 5 shows the 
resulting map after the rotation of the robot at the 
second right turn. 

6. Concluding comments 

Two aspects of natural language instructions 
influence the method proposed here for navigation in 
our urban model environment: Their division into 
action chunks and their under-specified nature. 

Each chunk can be considered as a search-and
act loop which exits when a terminating condition is 
met. Primitives were written to reflect this. Primitives 
are like Lego bricks that the user can combine in any 
sequence through his verbal instructions. It is 
therefore important that the terminating condition of 
each primitive is an initial condition that other 
primitives can handle. This issue is investigated 
further in this project. 

In natural language, task specification is very 
abstract. For example in: "take the second turn right", 
the absolute locations of the intersections, their 
orientations or shapes are not given. These pieces of 
information must be retrieved in-situ by the robot to 
successfully complete the task. This is achieved here 
by the use of local road-feature templates that enable 
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Figure 6: Step-by-step illustration of the execution of "take the second turning to the right". The execution is completed in five steps 
with the corresponding images at each step shown in the rows of the figure. Column A shows the camera view, column B shows the 
road edge and road surface images of the top view. In column C the road edge map is displayed and in column D the road surface map is 
shown. The best match position and orientation of the winning template for the step is also shown superimposed on the road surface 
map. Note also the indication of the position of the robot (black outline) in all the top view and map images. 



to recover orientation and shape information. 
Robustness is achieved on the one hand by defining 
very general template shapes and on the other hand by 
limiting visual search to those salient features selected 
by the instructor. 

To localize road features, the use of road 
surface information is deemed more robust than edge 
information. A template has a good chance to match 
correctly even if road areas are partially missing, e.g. 
due to occlusion. For instance, in figure 6 (column D, 
row 1) the "right turn" template matches at the correct 
location although the trees prevent full recovery of the 
road in the filtered image. 

Most of the methods suggested in the past to 
recover the road layout from road images deal with 
the case of a straight or curved road extending in front 
of a vehicle, but without any turns, intersections, 
splits, roundabouts etc. (Waxman et al., 1987), 
(DeMenthon and Davis, 1990), (Kaske et al., 1997), 
(Sayd et al., 1998), (Wilson et al., 1999) and (Wang et 
al., 2000). These methods require that both sides of 
the road are visible (though not necessarily 
continuous) in the image to be able to recover the 
road. These methods are effective in cases where a 
vehicle needs to stay in the middle of a road lane 
when following a highway for example, but they are 
unsuitable in more complex urban environment. 

Methods to recognize intersections on the road 
were proposed by (Jochem et al., 1996) and (Crisman 
and Thorpe, 1993). In (Jochem et al., 1996) a 
previously trained neural network is used to 
distinguish the road. The method lacks precision 
because of the neural network approach used and 
therefore fails to accurately determine the location 
and orientation of the road. Furthermore, the method 
suggested for modelling a road intersection required 
the knowledge of either the position of the 
intersection, to determine its precise layout, or the 
layout, to find its position. Some a-priori information 
on the intersection is also available in our case, 
through the natural language instruction. 

In (Crisman and Thorpe, 1993) dynamic model 
building and matching are applied on a road surface 
likelihood image to determine the layout of the road. 
This method effectively finds intersections spurring 
from a straight road but would fail to find an 
intersection on a curve or an exit from a roundabout 
for example. Furthermore, the suggested method 
attempts to reconstruct the whole intersection. A 
strength of our method is that only the necessary road 
features (for the completion of the task in hand) are 
sought in the map, thus saving computational time 
and improving on system robustness. 

Although the template matching method is 
applied here in a simplified model of the world, the 
same navigation principle could be applied for 
instructable vehicles navigating in the real world. The 
simplicity of the robot's environment in this project 
helps to set aside the problems of extracting road/non
road information from complex real-world scenes and 
focuses on determining the road layout once this 
information is found. Other information, absent in our 
model but present in the real world could give clues 
which could contribute towards a statistical measure 
suggesting the road layout ahead of the instructable 
vehicle. Such clues could be for example the direction 
of motion of other road vehicles, the alignment of 
buildings, road signs etc. 

Other landmarks (buildings, trees, lake, bridge 
etc.) of our model town are mentioned in the corpus 
and will need to be located to enable following the 
instructions. Ongoing work is addressing the problem 
of landmark recognition, the resolution of spatial 
relations between landmarks, and those between 
landmarks and the robot as sometimes mentioned in 
the corpus. The solutions to these problems are not 
expected to modify the navigation methodology 
described here but will rather merge with it. 

Finally, an interesting property of such a 
system is that it has all the perceptual components 
required to robustly learn a route from experience 
(e.g. by following a human guide) in terms of 
reportable action chunks rather than in terms of 
odometric measurements. 
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