
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

04 University of Plymouth Research Theses 01 Research Theses Main Collection

2004

VISION-BASED URBAN NAVIGATION

PROCEDURES FOR VERBALLY

INSTRUCTED ROBOTS

KYRIACOU, THEOCHARIS

http://hdl.handle.net/10026.1/2778

http://dx.doi.org/10.24382/3721

University of Plymouth

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.

VISION-BASED URBAN NAVIGATION
PROCEDURESFORVERBALLYINSTRUCTED

ROBOTS

by

THEOCHMUS~COU

A thesis submitted to the University of Plymouth
in partial fulfilment for the degree of

DOCTOR OF PHILOSOPHY

School of Computing, Communications and Electronics
Faculty of Technology

May2004

2

Author: Theocharis K yriacou

Thesis title: Vision-Based Urban Navigation Procedures for Verbally Instructed Robots.

Abstract

The work presented in this thesis is part of a project in instruction based learning (IBL) for mobile

robots were a robot is designed that can be instructed by its users through unconstrained natural

language. The robot uses vision guidance to follow route instructions in a miniature town model.

The aim of the work presented here was to detenn.ine the functional vocabulary of the robot in d1e

form of "primitive procedures". In contrast to previous work in the field of instructable robots this

was done following a "user-centred" approach were the main concern was to create primitive

procedures that can be directly associated with natural language instructions. To achieve this, a corpus

of human-to-human natural language instructions was collected and analysed. A set of primitive

actions was found with which the collected corpus could be represented. These primitive actions were

then implemented as robot-executable procedures.

Natural language instructions are under-specified when destined to be executed by a robot. This is

because instructors omit information tl1at they consider as "commonsense" and rely on the listener's

sensory-motor capabilities to determine the details of the task execution. In this thesis the under-

specification problem is solved by determining the missing information, either during the learning of

new routes or during their execution by the robot. During learning, the missing information is

determined by imitating the commonsense approach human listeners take to achieve the same

purpose. During execution, missing information, such as the location of road layout features

mentioned in route instructions, is determined from the robot's view by using image template

matching. The original contribution of this thesis, in both these methods, lies in the fact that they are

driven by the natural language examples found in the corpus collected for the IDL project.

3

During the testing phase a high success rate of primitive calls, when these were considered individually,

showed that the under-specification problem has overall been solved. A novel method for testing the

primitive procedures, as part of complete route descriptions, is also proposed in this thesis. This was

done by comparing the performance of human subjects when driving the robot, following route

descriptions, with the performance of the robot when executing the same route descriptions. The

results obtained from this comparison clearly indicated where errors occur from the time when a

human speaker gives a route description to the time when the task is executed by a human listener or

by the robot.

Finally, a software speed controller is proposed in this thesis in order to control the wheel speeds of

the robot used in this project. The controller employs PI (Proportional and Integral) and PID

(Proportional, Integral and Differential) control and provides a good alternative to expensive hardware.

4

Contents

Abstract .. 3

Contents 5

Nomenclature .. 10

Abbreviations .. 13

List of Figures ... 14

List ofTables ... 19

Acknowledgements ... 22

Author's Declaration ... 23

Chapter 1 .. 26

1 Introduction 26

1.1 Instruction based learning for mobile robots 26

The aim of this PhD thesis ... 30

1.2 Challenges 31

1.3 Methodology and original contributions 32

1.4 The author's contribution to the IBL project 33

1.5 Thesis overview 35

Chapter 2 ... 38

2 Literature review ... 38

2.1 Natural language in robotics 38

2.2 Segmentation of natural language into functional components 43

5

2.3 Road layout recognition for navigation45

2.4 Localization and mapping 49

2.5 Discussion 50

Chapter 3 52

3 Experimental environment setup and robot design 52

3.1 The components of the Instruction Based Learning system 52

3.2 The miniature town model 54

3.3 The robot 56

3.3.1 Robot hardware 51

3.3.2 Robot software 59

3.3.2.1 The PID controller used for robot speed control.. 61

3.4 Programming platforms and developed software 69

3.5 Summary/ Contributions 71

Chapter 4 ... 7 3

4 Corpus based system design 73

4.1 Corpus collection procedure 7 4

4.2 Word analysis 77

4.3 The primitive procedures in route instructions 81

4.3.1 The primitive procedures extracted from the corpus and their representation82

4.4 The "go" primitive 90

4.5 The "go_until" primitive 90

4.6 The under-specification of natural language and how it affects the functional

specification of the primitive procedures 92

6

4.6.1 The use of default parameter values 93

4.6.2 The reference to the destination landmark 94

4.6.3 The multiple meanings of "go" 96

4.7 The concept of corpus based designed system 97

4.7.1 Contribution of the corpus to the natural language system design 97

4.7.2 Contribution of the corpus to the robot system design 98

4.8 Summary/ Contribution 100

Chapter 5 103

5 The functional structure of the primitive procedures 103

5.1 The structure of primitive procedures and how it reflects the structure of spoken

instructions 104

5.2 The use oflow-level procedures 1 07

5.3 The verification of new procedures during their creation 109

5.4 The "prediction" and "action" functions of primitive procedures 111

5.5 Summary / Discussion 115

Chapter 6 118

6 Vision for robot navigation 118

6.1 Capturing and pre-processing the robot camera image .. 120

6.2 Detection of road features using image template matching 127

6.2.1 Template matching 128

6.2.2 Road feature templates 129

6.2.3 The template matching procedure 131

6.2.4 How template matching is used in primitive procedures 137

7

603 The use of a short-lived map 140

6 0301 The matching of new road edge data on the "short-lived" map 0000 .. 146

604 Road surface detection o 0 o .. o 0 .. 0 00 oooo o o o .. 0 148

60401 Colour filtering using the chromaticity vector oo .. oo oo oo149

605 Road edge detection ooo oo ooooooooo oo oooo oo oooo ooooooooo oo oo oo oooooooo ooooo ooooooo oo ooo oooooooooooooooooo oo oooooooooooooo 154

606 The need for a state variable during robot navigation oo oo155

6 07 Detection of non road-layout objects 0156

608 Spatial references to landmarks .. 161

609 Summary/ Contributions 00 00 000000000000 0000 oooo oo oo o oooo 166

Chapter 7 ... 168

7 The evaluation of the primitive procedures 168

7.1 Results per route instruction o o o oo .. oooooo o171

7 0101 Human performance tests ... 0172

7 0102 Error descriptions 00 0 oo 0 0 0 .. oo 0 0 0 0 0 0 0 o 0 17 5

702 Results per primitive procedure call o181

7 03 Discussion .. oo 0 0 0 00 .. o 0 .. 0 0 0 0 0 0 0 0 0 0 0 o 183

Chapter 8 ... 188

8 Conclusions and future work 188

801 Conclusions 0 .. 0 0 0 0 0 0 .. 0 00 0 0 .. 0 .. 0 0 0 0 0 0 0 .. 0 0 0 0 0 .. o 188

802 Future work o 0 0 o o 0 .. oo .. 192

803 Final statement o o oo o .. o o .. ooooo o 197

Appendices 199

Appendix A .. 199

8

Appendix B .. 218

Appendix C .. 219

Appendix D ... 223

List of References/Bibliography .. 228

Copies of Publications .. 238

9

Nomenclature

(d, e)

(x,y)

(x,,y)

[C,. CJ

[xtJ,f/J}

Real world coordinates in metres with reference to the robot's location.

Pixellocation in a digital image with reference to the top-left pixel in the image.

Pixellocation of the robot's camera image centre.

Chromaticity vector of a pixellocation in a digital image.

Location (in pixels) and orientation (in radians) of the template during template

matching.

Aii Action performed by the robot which changes its state from Si to Si.

C,
11

,an Mean chromaticity value of the road surface.

e Speed error measured in encoder pulses per second. This is the difference

between the desired speed (left-whee~ right-wheel or differential speed) actual

speed of the robot. It is the input to the corresponding speed controlle.r.

eds The differential wheel speed erro.r measured in encoder pulses per second. It is

the input to the PID (Proportional Integral and Differential) controller.

e1 The left wheel robot speed er.ror measured in encoder pulses per second. It is the

input to the left PI (Proportional Integral) controller.

e, The right wheel robot speed error measured in encoder pulses per second. It is

the input to the right PI (Proportional Integral) controlle.r.

h The distance between the robot's camera and the ground plane.

I1 The input to the left robot motor in volts.

I , The input to the right robot motor in volts.

10

k 1 Optical distortion coefficient.

~ The proportional constant of the two PI (Proportional Integral) speed controllers

of the robot.

KP' The proportional constant of the PID (Proportional Integral and Differential)

differential speed controller of the robot.

m Value of a pixellocation in the road map image.

M The road map image matrix.

m' Value of the information mask of a pixellocation in the road map image.

n Value of a pixellocation in the road edge image.

N The road edge image matrix.

n' Value of the information mask of a pixellocation in the road edge image.

p Pixellocation in the overlapping area of the road edge image and the road edge

map.

Q1 Matching quality of the template on the road surface map image.

Q11H;" Minimum acceptable matching quality signifying a successful match during the

template matching.

Q 2 Matching quality of new road edge information on the road edge map image.

Qz,
11

;
11

Minimum acceptable matching quality signifying a successful match of the road

edge image on the road edge map.

S; The state of the robot before the execution of an action.

S. The state of the robot after the execution of an action.
I

s1 The robot's left wheel speed in encoder pulses per second.

sir The robot's left wheel requested speed in encoder pulses per second.

11

s, The robot's right wheel speed in encoder pulses per second.

s" The robot's right wheel requested speed in encoder pulses per second.

t Value of a pixellocation in the template image.

T The template image matrix.

t ' Value of the information mask of a pixellocation in the template image.

T"' The differential constant of the PID (Proportional Integral and Differential)

differential speed controller of the robot.

T; The integral constant of the two PI (Proportional Integral) speed controllers of

the robot.

T;' The integral constant of the PID (Proportional Integral and Differential)

differential speed controller of the robot.

T1 The sampling interval (in seconds) of the robot's speed controllers.

V.11 The robot's battery terminal voltage in volts.

L1Sa The actual differential speed of the robot. It is measured in encoder pulses per

second.

LlS, The requested differential speed of the robot. It is measured in encoder pulses

per second.

a Maximum vertical angle of view of the robot's camera in radians.

fJ Maximum horizontal angle of view of the robot's camera in radians.

12

Abbreviations

DM Dialogue Manager

DRS Discourse Representation Structure

HSI Hue, Saturation and Intensity

ffiL Instruction Based Learning

PI Proportional and Integral

PID Proportional Integral and Differential

PSL Procedure Specification Language

RGB Red, Green and Blue

RM Robot Manager

13

List of Figures

Figure 1-1: (a) Ivliniature model town and (b) robot used in the IBL project 27

Figure 1-2: Processing modules of the IBL system ... 29

Figure 3-1: The components of the IBL system .. 53

Figure 3-2: The miniature town model. ... 55

Figure 3-3: (a) The robot used in the IBL project (80x80x160mm) and (b) The robot-football

robot (80x80x80mm) .. 56

Figure 3-4: The hardware components of the robot. .. 57

Figure 3-5: Example of the robot's view ... 59

Figure 3-6: Open loop speed control of each of the robot's motors. Where I1 and I, are the left

and right inputs to the motors in volts and s1 and s, are the left and right wheel speeds

respectively .. 61

Figure 3-7: Closed loop speed control system with a PI controller for each motor 64

Figure 3-8: The complete robot speed control system .. 65

Figure 3-9: Screenshot taken during the development of the primitive procedures. The top-left

window shows the "video server's" interface. The video server is an application, which

continuously captures the image "seen" by the robot's camera and saves that into a file

when requested by another application. The remaining image windows (apart from the

command line window at the bottom) are "image monitor" applications, each used to

monitor the changes of an image file during execution time .. 70

Figure 4-1: A top view of the miniature town model indicating the starting point E (common

to both routes) and destinations P and H referred to in Table 4-1 77

14

Figure 4-2: Number of distinct words discovered in the corpus as the number of instruction

samples increases. The long line is for all groups considered. The shorter lines are for

groups A, B and C taken in isolation. Curves are obtained by averaging SO random sets

comprising an increasing number of sample route descriptions .. 79

Figure 4-3: The description in Table 4-S(a) illustrated on the map of the miniature town. The

dotted red line shows the route that the user implies to the robot and the solid red line is

the route he/ she explicirly describes ... 86

Figure 4-4: Number of distinct primitive procedures discovered in the corpus as the number

of instruction samples increases. The long line is for all groups considered. The shoner

lines are for groups A, B and C taken in isolation. Curves are obtained by averaging 50

random sets comprising an increasing number of sample instructions 88

Figure S-1: (a) Flowchart of "rotate" primitive procedure and (b) flowchart of all other

primitive procedures extracted form the corpus ... 1 OS

Figure S-2: Primitive procedures can be accessed by users via natural language whereas low-

level procedures cannot .. 108

Figure S-3: Illustration showing how the prediction function in primitive procedures is used.

Row (a) shows a case were the state of the robot after executing procedure P1 is

consistent with the next procedure to be executed P2. Row (b) shows the case where

there is an inconsistency between the state the robot is left in after executing P1 and the

expected state for the next procedure to be executed. For a more detailed explanation of

the figure see text below ... 110

Figure S-4: Procedural knowledge representation ... 11S

Figure 6-1: An example of a raw (unprocessed) robot camera image ... 118

Figure 6-2: (a) Raw camera image and (b) the same image after optical calibration 121

1S

Figure 6-3: Illustration showing how inverse perspective transformation is performed on the

robot's camera image. (a) Shows an example of an optically calibrated camera image, (b)

shows the result when inverse perspective mapping is applied to (a). Note the missing

information due to the sampling effect in (b). In (c) the missing information is

interpolated using neighbouring pi.xels containing information. (d) is the part of (c) used

by the primitive procedures for further processing .. 123

Figure 6-4: Diagram showing the correspondence of pixels on the image plane with pixels on

the ground (or road surface) plane .. 125

Figure 6-5: Template (d) ofTable 6-1 is used to represent a range of possible right turnings at

different angles to the main road ... 131

Figure 6-6: Illustration of one position of the template image on the road surface map while

searching for the best matching position ... 133

Figure 6-7: Illustration showing how the matching of the template is performed on the road

surface map in order to save computational time. This starts with coarse scanning (a) of

the pivot point (of the template) in the map (1 in every 4 pixels shown in grey colour).

For the second step an area 51 (shown magnified in (b)) is selected for a finer scan (1

pixel in 2) around the position that produced the best matching quality in the first scan.

Each side of 51 is equal to twice the scan step in (a). In the same way scan area 52 is

selected from (b). All pixels of 52 are scanned in order to give the best possible matching

position .. 136

Figure 6-8: The best matching position of the left turn template on the road surface map.

Note how the pivot point of the template indicates the next waypoint of the robot 137

Figure 6-9: Users u9 and u24 were asked to explain a route starting from the Hospital (H).

Their first instruction referred to the t-junction the robot would meet 138

16

Figure 6-10: Illustration showing the "dead angles" of the robot. .. 141

Figure 6-11: Vector diagram showing the robot's actual displacement vector "d', which is the

vector sum of the robot's intended displacement "c" and the odometric error "r'' 142

Figure 6-12: Series of figures showing how the "short-lived" map is appended with new visual

information and how, as a consequence, this localizes the robot. For an explanation of

how this is done see text below ... 144

Figure 6-13: Illustration of one position of the top view image on the map while searching for

the best matching position ... 146

Figure 6-14: (a) An example of a top view image and (b) its corresponding road filtered

version. White pi..'{els denote road areas and black pi..'{els denote non-road areas 148

Figure 6-15: Improvements in order to improve illumination constancy in the miniature model

town ... 150

Figure 6-16: Series of images illustrating how the road surface colour is boots trapped. For a

detailed explanation of how this is done see text below .. 153

Figure 6-17: The high-low-high intensity profile kernel (magnified by a factor of 10) that is

convolved with the top view image to discriininate the road edge lines 154

Figure 6-18: (a) An example of a top view image and (b) its corresponding road edge image .

.. 155

Figure 6-19: Examples of non road-layout objects mentioned in the corpus: (a) signed

building, (b) unsigned building, (c) the bridge, (d) trees .. 157

Figure 6-20: Examples of placing a coloured marker in front of objects to be able to locate

them ... 158

Figure 6-21: (a) An example of a camera image, (b) the corresponding top view image and (c)

the top view image filtered for the colour of the marker of the landmark sought 159

17

Figure 6-22: Illustration showing the location that the robot must reach to execute the

instruction: "follow the road to Safeway" in comparison with the actual location of the

"Safeway" building .. 160

Figure 6-23: Illustration showing how the road waypoint representing a reference to a

landmark is found .. 161

Figure 6-24: (a) Camera view and (b) the corresponding top view before the "university" when

the robot follows the instruction: "before reaching the university's main door take the

road to your right". Notice that when the "university's door" is visible, the "road to the

. h " . till "thin rh b ' . 165 ng t 1s s w1 e ro ot s vtew .. .

Figure 7-1: The diagram shows the occurrence of errors at different stages between the

speaker giving route descriptions and the execution of these descriptions by (a) a human

listener and (b) the robot. :f<s, KH and KR represent the knowledge of the human

speakers, the human listeners and the robot's respectively. The diagram shows the crucial

difference between cases (a) and (b): the ability of humans to do repair during the

execution of the route instructions. This accounts for the higher success rates of humans .

.. 186

Figure 8-1: A case when the user says "turn left" when he/ she actually means "take the first

exit off the roundabout" ... 194

18

List ofTables

Table 4-1: Examples of "short" and "long" route descriptions .. 76

Table 4-2: Most frequent and least frequent user word in the corpus. The least frequent words

were found only once in 96 route descriptions ... 78

Table 4-3: Primitive procedures extracted from the collected corpus of route descriptions 83

Table 4-4: Examples of primitive procedures extracted from the corpus and their

corresponding primitive procedure calls .. 84

Table 4-5: An example of a translation of a route description to its corresponding primitive

calls. Row (a) shows the transcribed version of the route description u7 _GC_CX. User 7

explains the route from Boots (C) to the Post-office (X) (see Figure 4-3). Row (b) shows

the corresponding manual translation of the description to its primitive procedure calls .

.. 85

Table 4-6: Parameter types and possible values they can take in primitive procedure calls 89

Table 5-1: Examples of low-level procedures .. 1 08

Table S-2: Pseudo-code of the prediction function in primitive procedure modules 113

Table 6-1: The templates used for the template matching method. Light grey colour indicates

road-like areas and the black colour represents non-road areas. The templates shown are

used to find: (a) straight road, (b) end of road, (c) left and (d) right turnings, (e)

crossroad, (f) left and (g) right bends, (h) t-junction, (i) roundabout entry, G) clockwise

and (k) anti-clockwise curved road in roundabout, ~) left and (m) right roundabout exits,

(n) left and (o) right 90-degree turns ... 130

Table 6-2: Pivot point (dot-centred circle) and direction vector (arrow) for some of the

templates ... 132

19

Table 6-3: Words in the corpus that indicate a relation between the robot and a landmark

along with an explanation of the robot's final location with respect to the landmark's

location .. 164

Table 7-1: Route description success results during the development and evaluation of the

primitive procedures. Note that the percentage values indicate the proportions of the

executed route descriptions and not the total route descriptions 172

Table 7-2: Route description success results for the evaluation set when executed by the robot

and by the human subjects ... 173

Table 7-3: Analysis of the 26 cases where the robot fails to reach its destination in the

evaluation phase and comparison with the performance of human subjects in the same

routes ... 174

Table 7-4: Route descriptions and illustrations of the two cases where the robot fails to

complete a route description in the evaluation set because of new primitive procedure

calls. Note that the solid red line indicates the road described by the user in each case and

the dashed red line indicates a route implied by the user .. 17 5

Table 7-5: Route descriptions and illustrations of the two cases where the robot fails to

complete a route description in the evaluation set because of primitive procedure failures .

.. 177

Table 7-6: Route descriptions and illustrations of two (out of five) cases where the robot fails

to complete a route description in the evaluation set because of ambiguities in the user's

description .. 1 7 8

Table 7-7: Route descriptions and illustrations of two (out of seventeen) cases where the robot

fails to complete a route description in the evaluation set because of mistakes in the

user's description ... 180

20

Table 7-8: Primitive call success results during the development and evaluation of the

primitive procedures. Note that the percentage values indicate the proportions of the

executed primitive calls and not the total primitive calls ... 181

Table 7-9: The robot fails to "see" the Boots (C) marker, at the end of the route, because

when it turns the marker falls outside its field of view .. 182

21

Acknowledgements

First of all, I would like to thank my supervisor Dr. Guido Bugmann for giving me the

opportunity to work on such an ambitious and challenging project. Mostly I would like to

thank him for his continuous support and guidance throughout the duration of my work. The

valuable things I learned from him will accompany me throughout my professional life.

There are no words to express my gratitude towards my parents Kyriacos and Despo to whom

I attribute only the best of who I am and will ever become. They taught me to respect and

appreciate myself and always have been by my side to support and guide me. I feel honoured

and privileged to be their son.

I would like to dedicate this thesis to my beloved wife and best friend Maria. Her continuous

love and care made this work possible. Also this thesis is dedicated to the little one growing

within her who, without knowing it, made possible for me to see the end of this work.

22

Author's Declaration

At no time during the registration for the degree of Doctor of Philosophy has the author been

registered for any other University award.

This study was supported by the Engineering and Physical Sciences Research Council

(EPSRC).

A programme of advanced study was undertaken, including one postgraduate course in

Computational Modelling.

Relevant scientific seminars and conferences were regularly attended at which work was often

presented; external institutions were visited for consultation purposes and several papers were

prepared for publication.

Publications:

• Lauria S., Bugrnann G., Kyriacou T., Bos]., Klein E., Personal Robot Training via

Natural-Language Instructions, IEEE Intelligent Systems, 16:3, 2001, pp. 38-45.

• Bugmann, G., Lauria, S., Kyriacou, T., Klein, E., Bos, J ., Coventry, K., Using Verbal

Instructions for Route Learning: Instruction Analysis, Proceedings ofTIMR 2001

(Towards Intelligent Mobile Robots), Manchester, 2001. Technical Report Series,

Department of Computer Science, Manchester University, ISSN 1361-6161. Report

number UMC-01-4-1.

23

• Lauria, S., Bugmann, G., Kyriacou, T., Klein, E., Instruction Based Learning: how

to instruct a personal robot to find HAL, Proceedings of the 9th European

Workshop on Learning Robots, EWLR-9, Prague, Czech Republic, September 2001,

pp. 15-24.

• Lauria, S., Bugmann, G., Kyriacou, T., Bos, J., Klein, E., Converting Natural

Language Route Instructions into Robot Executable Procedures, Proceedings of

the 2002 IEEE International Workshop on Robot and Human Interactive

Communication (R.OtvlAN '02), Berlin, Germany, 2002, pp. 223-228.

• Lauria, S., Bugmann, G., Kyriacou, T., Klein, E., Mobile Robot Programming

Using Natural Language, Robotics and Autonomous Systems, 38 (3-4), 2002, pp.

171-181 (ISSN 0921-8890).

• Kyriacou, T., Bugmann, G., Lauria, S., Vision-Based Urban Navigation

Procedures for Verbally Instructed Robots, Proceedings of the 2002 IEEE/RSJ

International Conference in Intelligent Robots and Systems (IROS 2002) EPFL,

Lausanne, Switzerland, October 2002, pp. 1326-1331.

• Robinson, P., Bugmann, G., Kyriacou, T., Culverhouse, P., Norman, M., MIROSOT:

A teaching and learning tool, Proceedings of the 2002 FIRA Robot World

Congress, edited by Korea Robot Soccer Association, 2002, pp. 309-314 (ISBN: 89-

86522-4 7 -0-93560).

• Kyriacou, T., Bugmann, G., Lauria, S., Vision-Based Urban Navigation

Procedures for Verbally Instructed Robots, Proceedings of TIMR 2003 (Towards

Intelligent Mobile Robots), Bristol, 2003.

24

Meetings and Conferences attended:

• European Robotics Research Network (EURON) Kick-off Meeting, Gran Canaria,

Spain, January 2001.

• Towards Intelligent Mobile Robots (TIMR 2001). Yd British Conference on

Autonomous Mobile Robotics and Autonomous Systems, Manchester, United

Kingdom, April 2002.

• International Conference on Intelligent Robots and Systems (IROS 2002), Lausanne,

Switzerland, September 2002.

• Towards Intelligent Mobile Robots (TIMR 2003). 4'h British Conference on (Mobile)

Robotics, Bristol, United Kingdom, August 2003.

Summer schools attended:

• EPSRC/BlvfV A Summer School in Computer Vision, Surrey, United Kingdom, June

2001.

• European Summer School on Mobile Robot Navigation (organized by the European

Robotics Research Network- EURON), Lausanne, Switzerland, September 2001.

Date l :-: .5. -:-. 20dj

25

Chapter 1

1 Introduction

The work presented in this thesis is part of an EPSRC funded project1 in Instruction Based

Learning (IBL) for mobile robots. The first section of this chapter gives a short introduction

~of the IBL project in order to set the scene for the work presented here. Section 0 describes

the main aim of this thesis followed by section 1.2, which explains the main challenges

presented in achieving the aim. Section 1.3 presents the methodology followed in order to

achieve the aim of the thesis and gives a brief summary of the original contributions to

knowledge made by this work. Section 1.4 specifies how the author of this thesis contributed

to the Instruction Based Learning group project. Finally, section 1.5 gives an overview of the

work presented in this thesis.

1.1 Instruction based learning for mobile robots

The idea behind the IBL project is that future robots will need to adapt to the special needs of

their users and to their environment. It is likely that programming by natural language will be a

key method enabling computer language-nai:ve users to instruct their robots. The project

attempts to investigate the issues involved in building a robotic system able to learn from

1 Grants GR/M90023 and GR/l\-!90160.

26

verbal instructions. The proposed methodology is tested in the restricted domain of route

instructions.

For the purposes of the project a miniature model town and a robot with an onboard video

camera were built (Figure 1-1).

Figure 1-1: (a) Miniature model town and (b) robot used in the IBL project.

The robot is able to navigate in the miniature town following natural language route

descriptions given by a human user. As example of the interaction between the user and the

robot, consider the following scenario:

The robot is at the Museum and its user wants it to go to ''Boots". The user starts by

asking the robot to go to ''Boots" by first calling it and then giving the instruction.

The discourse between the user and the robot is as follows:

User: "Robot"

27

Robot: "Yes"

User: "Go to Boots."

Robot: "How do I go there?"

User: "Take the third turning to the left ... "

Robot: "Next instruction please"

User: " ... follow the road to the roundabout ... "

Robot: "Next instruction please"

User: " ... take the third exit off the roundabout ... "

Robot: "Next instruction please"

User: " ... take the fust right ... "

Robot: "Next instruction please"

User:" .. . Boots will be on your left after the road bend."

At this point the robot starts to navigate in the miniature town in order to reach

"Boots" following the route descriptions given by the user. The robot informs the

user when it reaches the destination by saying:

Robot: "OK, it's done".

The architecture of the IBL system is comprised of several functional processing modules

shown in Figure 1-2.

28

,--,
I
I

Speech Synthesis 1
I
I

User
Speech recognition and

Semantic analysis

Dialogue Manager (OM)

I
I •--------------- ________________________ ___ _________ J

r-- ------------------------------------ -----------------------------------
Robot Manager (RM)

Procedure Extraction

I

Learning
Process

New
Procedure

·----------------- ---'
Robot

Figure 1-2: P rocessing modules of the IBL system.

These are divided into two major units: the Dialogue Manager (DM) and the Robot Manager

(RM). The Dialogue Manager is a bi-directional interface between the Robot Manager and the

user, either converting speech input into a Discourse Representation Structure or DRS (this is

a semantic speech representation explained in more detail in [Traum et. al., 1999]), or

converting requests from the Robot Manager into dialogues with the user. Its detailed

function is described in [Lauria et. al., 2001).

The robot manager deals with the dialogue manager's output and also with the learning and

execution of the commands from the user. Its function is to map the semantic representation

produced by the dialogue manager into robot executable procedures in the knowledge p ooL

This mapping is done using a meta-language called PSL (Procedure Specification Language),

29

which is described in jLauria et. al., 2002]. If the mapping from the semantic represemation of

the user's instructions ro procedures in the knowledge pool of the system is successful, the

corresponding procedures that would cause the robot ro do what the user asked are executed.

On the other hand, if a requested action does not exist in the knowledge pool, the robot

manager initiates a learning process ro learn it and then execute it. New procedures can only

be composed from previously learned ones in the knowledge pool. This implies that an initial

set of "primitive" procedures must exist in the knowledge pool before the robot starts

learning for the very first time.

The aim of this PhD thesis

The aim of this PhD work was to determine and implement the primitive procedures of the

robot used in the Instruction Based Learning project.

The primitive procedures reflect those actions that users expect that the robot knows how to

perform without any further explanation. As an example, consider the action "turn", which is

one of the primitive procedures implemented in this project (see chapter 4). Users assume that

the robot knows how to turn. However, a quite complex and precise set of sub-actions need

to be executed in order to achieve a turn (image processing, robot wheel speed and distance

control etc.). This thesis work was concerned with finding what actions users expect the robot

to know when it begins its "life" and also with determining the underlying program code that

would produce the desired (by the user) behaviour in each case.

30

1.2 Challenges

An important aspect of the Instruction Based Learning system is that it is designed using a

user-centred rather than a robot-centred approach. This means that it is able to cope with

unconstrained spoken language instructions as a human would. This design target presented

the challenge of creating a robotic system that can be used by humans without requiring prior

training. A robot-centred approach on the other hand would be to build a robot and then train

human users to use its special language in order to be able to communicate with it This latter

approach would, of course, contradict the main idea of this project.

Primitive procedures must, therefore, directly correspond to actions found in natural language.

To result in the robot performing the requested (by the user) action, no more information

should be required than that provided in natural language.

Natural language instructions are underspecified when it comes to them having to be executed

by a robot. For example consider the case when a user instructs the robot to "take the left

turning". In this case there is no indication that the user means the "first" left turning. More

importantly, there is no information as to where the left turning is or how a "left turning"

looks like. These are vital bits of information, which are required by the robot in order to be

able to successfully execute the above instruction. It is therefore essential for the validity of

the Instruction Based Learning concept that it is possible to design primitive procedures that

can cope with this under-specification in natural language. This issue is crucial to the

development of the Instruction Based Learning system and it is of central importance to the

development of the primitive procedures described in this thesis.

31

1.3 Methodology and original contributions

To achieve the aim of this thesis, a corpus of human-to-human route instructions was initially

collected and later analysed in order to determine what "built-in" knowledge and ability

human speakers expect their listeners to possess for following route instructions. This user

centred approach used to determine the functional vocabulary of the robot constitutes the

main contribution of this thesis.

The corpus collected was transcribed and then analysed for its word and functional content. A

method was developed for writing primitive procedures that are robust in coping with the

under-specification problem of natural language route instructions. This method involves the

determination of missing information in route instructions either during the time when the

robot is being instructed by the user or during the time when the robot is executing the route

instructions. To determine the missing information during instruction-time the corpus route

instructions as well as the robot's environment to which these referred to were studied in

order to determine what human instructors considered as "commonsense" and therefore

omitted in their instructions. This information was then used as default in the primitive

procedures when it was not explicitly given by the instructors. During the execution of route

instructions the robot uses artificial vision in order to determine missing information such as

the location of road layout features mentioned in route instructions. The method of template

matching is used in order to detect the sought features by trying to match template images

(representing the sought features) to the robot's view. The original contribution of this thesis

with regard to this method lies in the fact that the design and use of the image templates was

32

purely influenced by the content of the collected corpus of route instructions. This was done

in order to follow the user-centred design methodology.

A method is proposed in order to evaluate the performance of the primitive procedures

created when they are executed as part of complete route descriptions. This was done by

inviring human subjects to drive the robot following route descriptions. The performance of

the human subjects was then qualitatively compared to that of the robot's for each route

description. The differences found allowed for important conclusions to be drawn and gave

indications for the course of future work.

In order to reliably control the speed of the robot used in this project an elaborate robot

speed control system is proposed in this thesis. This is based two PI (Proportional and

Integral) and one PID (Proportional, Integral and Differential) controllers in order to control

the speed of each wheel and the differential speed of the robot.

1.4 The author's contribution to the IBL project

The following is an outline of the work contribution of the author of this thesis to the

Instruction Based Learning project:

• Miniature town design and implementation (see section 3.2).

• Robot software and hardware integration. The existing robot hardware was integrated

with a video camera, video transmitter (see section 3.3.1) and electronic circuits to

enable easier battery charging while an external power supply was powering the robot.

33

Likewise, existing robot software was greatly changed to suit the robot performance

requirements for this project. 'The most significant of these changes included the

design and implementation of a software controller in order to control the speed of

the robot in a reliable manner (see section 3.3.2).

• Assistance in corpus collection. The author was involved in all aspects of the corpus

collection such as the preparation for each route description according to the corpus

collection protocol, the briefing of subjects prior to the beginning of the experiments

and the recording of route descriptions. Also the author was involved in the corpus

collection of dialogues by taking the place of the robot in the dialogues and producing

the responses that the robot would.

• Corpus lexical and functional analysis. The results of these analyses are presented in

sections 4.2 and 4.3. The functional analysis was fundamental to the determination of

the primitive procedures that needed to be implemented for the robot in this project.

• Primitive procedure implementation. This is the main part of the work described in

this thesis.

• Assistance in collecting data for testing of the IBL system. The author of this thesis

was involved in setting up the test environment for human subjects to drive the robot

following route descriptions given to them. Also assistance was offered during the

experiment in order to ensure adherence to the experimental protocol.

• Testing of the primitive procedures. This was done by evaluating the performance of

the primitive procedures developed in this project both on an individual basis and as

part of complete route instructions.

34

Apart from the above, it is also important to note that the author rook part and contributed in

all aspects of the Instruction Based Learning project during all the meetings and discussions

with the other members of the project.

1.5 Thesis overview

This section gives a brief description of the contents of each chapter in this thesis.

Chapter 2 presents a review of previous work related to this thesis. It mainly summarises work

in the three areas related to this project. These are:

1. The analysis of natural language, in the specific context of route descriptions, in order

to determine the functional components of the task domain,

2. Methods for road layout recognition for navigation.

3. Robot localization and mapping.

Chapter 3 describes the experimental environment setup used in this project. The setup

includes the miniature model town, the robot and two PCs, which act as the "remote brain" of

the robot.

Chapter 4 explains how the corpus of natural language route instructions was collected and

later analysed. The results from the word and functional analysis are also presented. The

functional analysis revealed the primitive procedures that need to be created as part of the

robot's "built-in" knowledge. The functional analysis also revealed the issues concerned with

35

implementing a natural language system. The work in this thesis focuses on one of these

issues. This is the "under-specification" of natural language. In this chapter three methods are

proposed to overcome this problem.

Chapter·S explains how the program code in primitive procedures is organized and the

reasons behind this organization. The chapter mainly describes the need of a "prediction

function" associated with each procedure in the knowledge base of the robot. This function is

used during the learning of new procedures in order to verify that the series of route

instructions given by the user can be executed. The "prediction function" is used in order to

identify errors either in the user's route description or in the processing of the route

description by the system.

Chapter 6 describes how image template matching is used for determining the location of

landmarks mentioned in route descriptions. The same chapter explains how the robot creates

a small map of its immediate locality, called "short-lived" map. This map is used for two

purposes:

1. To be able to determine the odometric errors of the robot and

2. In order to be able to retain in memory visual information close to it, which go out of

its view as it navigates.

Chapter 7 describes how the primitive procedures developed in this project were evaluated.

36

Chapter 8 presents the original contributions of tbis work and gives suggestions for future

i.vork on tbis project.

37

Chapter 2

2 Literature review

2.1 Natural language in robotics

Programming human helper robots to perform even simplest of tasks is a time consuming and

complex process. This is impossible to achieve for computer language naive user.. For such

helper robots to be useful, a method of communication must be used between humans and

robots that will not demand special technical and programming abilities from humans. This

observation is made, among many texts, in [Crangle and Suppes, 1994] where it is stated that

for efficient human-robot interaction the user should not have to become a programmer., or.

rely on a programmer. Also the user should not need to learn specialized technical

vocabularies to request an action from a robot. In [Hausser, 2001] the difficulty of using a

computer language for most potential users is stressed. The three main reasons given are: (a)

users are not familiar with the operations of the machine, (b) the expressions of the

programming language are different from those of every day language and (c) the use of the

programming language requires great precision. This last point is also mentioned in [Huffman

and Laird, 1993], which says that computer language procedures must be specified in complete

detail and that no steps may be omitted or. abstracted.

38

It is likely that natural language will be a key method for computer language na!ve users to

program their robots in the future. In [Herzog, 199 5] it is stressed that natural language is a

natural communication medium for humans and so systems, which are able to communicate

in natural language meet human needs much better. In [Allen et. al., 1996] human subjects

preferred to use the speech interface when given the choice between that and a keyboard

interface in order to communicate with a natural language system.

In the last few years there have been numerous attempts to create robots that conununicate

with humans using natural language. In [Fong et. al., 2001] a robotic system is presented,

which can engage into spoken dialogues with humans in order to request information that

would assist it during navigational tasks. The robot initiates a dialogue with a human only

when it is faced \vith a problem during navigation. The robot can produce a limited amount of

messages (around 30) to its human user to which it expects simple answers such as

"yes" /"no" or a numerical value. These messages are pre-defined by the creators of the robot

by studying the possible problems that the robot could face during its navigational task.

Furthermore, users are expected to have a certain amount of expertise regarding the robot and

the environment in order to collaborate usefully with the robot. Here, the robot's navigational

task is already progranuned by a robot expert and in effect, natural language dialogue is only

used to make a selection between 2 or more alternatives of an already written program code.

In [Spiliotopoulos et. al., 2001] a mobile robotic assistant for hospitals is described. The robot

can be instructed (using natural language) to deliver a medicine or a message to a specific

room or patient. Its users can also request database information such as the phone or room

number of a patient. A simple state-based dialogue management technique is used. The robot

leads the dialogue by asking specific questions for the user to answer. In this way the system is

39

made robust to speech recognition errors and also fast in its responses because it only needs

to do simple language processing. However, the system restricts its user to a specific dialogue

frame that can be uncomfortable for him.

In the robotic systems described above the dialogue structure is predefined. The robots lead

the dialogue and their users are expected to respond with specific information. Users are

constrained by a limited choice of answers. While these systems are robust because it is easier

to recognize the user's utterances, they are limited as far as dialogue flexibility. In [Alien et. al.,

1996] it is said that it is a fundamental requirement for natural spoken dialogue systems that

the user should not be constrained in what can be said. Furthermore the above systems

cannot learn new tasks. This means that they would be unable to adapt to the needs of

individual users but rather, users have to understand how the robots work and how to use

them.

Systems that can learn new tasks are described, among other, in [Huffman and Laird, 1993],

[A soh et. al., 2001], [Bischoff and Jain, 1999] and [forrance, 1994]. In [Huffrnan and Laird,

1993] a virtual mobile robotic arm is instructed (using interactive natural language dialogue) to

perform simple actions such as object displacement. The robotic agent can learn new actions

composed of a sequence of known actions or sequences. The user is restricted to using simple

imperative sentences such as: "Pick up the red block", "Move to the yellow table", "Move the

arm above the red block" etc. In [Asoh et. al., 2001] an office robot is described. The robot

communicates in natural language but understands five tasks (or task frames): database query,

database update, person identification, navigation and person calling. Each task frame requires

several necessary parameters (slots to be filled in the task frame) before it can be executed.

40

The dialogue manager of the system tries to identify these parameters from the user's

utterance. A similar system is described in (Bischoff and Jain, 1999]. Here, the robot can

understand several actions that are stored in the robots memory as prototypes with a single

verb to describe the underlying action and several parameters (mandatory or not). An attempt

is made to cover all possibilities of an action mentioned in natural language by creating more

than one prototype for the action where each prototype has a different number and

configuration of parameters. The system chooses the right word elements from the user's

utterance in order to satisfy a prototype and then execute its associated action. In [Iorrance,

1994] an indoors mobile robot is described, which follows typewritten instructions in natural

language. The robot recognizes several types of instructions, some causing the robot to move

and others are changing or interrogating its state. Although not explicidy mentioned, it seems

that the system tries to match particular instruction templates on the user's text input and then

uses the key words to modify its state variables.

In the above cases the user is constrained in using a closed set of template natural language

instructions. These template instructions were designed with none or very lirde investigation

of the structure of unconstrained natural language in the context used. Rather, a robot-centred

approach was used, i.e. the template instructions were tailored according to the specifications

of the robotic system being used. As with computer language programming, this requirement

means that a user must be trained in order to be able to use the system.

An attempt for a user-centred approach was made in (Green and Severinson-Eklundh, 2001]

where an indoor mobile robot, capable of natural language communication, is described.

"Wizard of Oz" experiments were conducted during the project in order to investigate the

41

behaviour of subjects when speaking to the robot. The "Wizard of Oz" technique is described

in [Dahlback et. al., 1993]. With this technique parts of an interactive system (that are not yet

developed) are substituted by humans who try to mimic the behaviour of the future system.

The purpose of this is to be able to study the responses of the users of the system. In [Green

and Severinson-Eklundh, 2001] these experiments were not used to examine the structure and

functional content of naturally spoken language. The tasks that the robot is able to perform

were decided and implemented before the Wizard of Oz experiments. The experiments were

used to determine the lexicon of the context, the states that the human-robot dialogue can

take (question, answer, repair etc.) and the type of feedback a user requires from the robot but

not what the user will need from such a robot and in what way he/she is likely to ask for it.

This is therefore another example of a robot-centred approach in order to determine the

functional vocabulary of the robot. Users of the robot would need to be trained on how to

command the robot using a restricted set of commands that are predetermined by the robot's

creators.

In this thesis the functional vocabulary of the robot is determined using a user-centred

approach. To achieve this, a corpus of route instructions was collected from prospective users

of the robot. The corpus was then analysed in order to determine the nature of the

instructions users give to the robot in the route description context.

42

2.2 Segmentation of natural language into functional

components

Previous work on natural language analysis has shown that human free speech can be

segmented into "atomic" units for the purposes of simplifying the analysis of long utterances

and therefore enable the better understanding of their structure. For example in [Schleidt and

Kien, 1997] it is found that human speech can be segmented into small speech units lasting a

few seconds each. Speech units are defined as the "meaningful blocks" or "semantic phrases"

where the meaning of a string of sounds is clear to an observer.

Based on the above findings, in order to determine the speech units in the route description

context, the corpus collected for this project was manually segmented using task related

criteria. Task oriented segmentation looks into the action described by the speech segments. It

was expected that the speech module developed for the IBL (Instruction Based Learning)

system would eventually produce the same result using syntactic and prosodic cues. A

syntactic segmentation approach looks into the arrangement of words in order to establish

granunatically sound sequences. A prosodic speech segmentation approach uses cues such as

voice pitch, intonation, loudness, rhythm and stress in order to determine the limits of speech

segments.

Previous examples of task related segmentation in the context of route descriptions are found

in [Denis, 1997] and [F raczak, 199 5]. In [Denis, 1997] a corpus of route descriptions was

analysed in order to investigate how humans externalise their understanding of space. For this,

it was necessary to segment the route descriptions given by the subjects into small segments

43

called "chunks". A chunk was defined as the speech unit that provides the smallest possible

piece of information. In [Fraczak, 1995] a texr-to-image translator is described, which

translates route descriptions into sketches. A corpus of route descriptions was segmented into

sequences and connections. Sequences are speech units describing action or introducing a

landmark and connections are single words connecting two sequences. No indication of the

size of sequences is given but from the examples mentioned they seem to be the smallest

possible units of meaningful speech.

Following a similar approach as in the above mentioned work, in order to segment the

collected route descriptions in this project a single criterion was used to define a speech

segment: a speech segment is the smallest unit of speech that describes a single action.

However, speech segments cannot be direcdy associated with primitive procedures, i.e. a

primitive procedure cannot be written to represent each speech unit found in the corpus. This

is because the actions described by speech units do not always specify a final state, which is

essential for the robot in order to execute the action. As an example consider the utterance:

"follow the road until you reach the post-office"

Although "follow the road" describes one action, it cannot be executed by the robot because

it contains no information as far as when to stop following the road. Because of this, more

than one speech units need to be combined into "functional components". As described in

section 4.3, in the example given above the whole utterance is considered as a functional

44

component in order to encompass the piece of information that gives the final state (i.e. to

reach the post-office).

2.3 Road layout recognition for navigation

All primitive procedures in a route description scenario cause the robot to navigate on the

road or confirm its position in relation to other landmarks. Therefore, the robot must be able

to determine the road layout in order to navigate effectively and also be able to locate

landmarks relative to the road.

This section gives examples of past work done in order to recover the road layout from an

image observed by a camera onboard a moving vehicle. Methods use road surface features

and/ or road edge features to discriminate the road from the image. In [Waxman et. al., 1987)

the components of a system used for visual land vehicle navigation are described. In this

system the road is discriminated by its edges, which are approximated by pairs of parallel line

segments. The line segments are found using edge detection and then selecting those pairs of

lines that are parallel (in the real world) and which intersect at a vanishing point in the image.

In [DeMenthon and Davis, 1990] a method is presented for reconstructing a 3D road model

from a single image. As a first step, edge detection is performed on the image. The algorithm

tries to find points lying on the edges of the road making reasonable hypotheses on the shape

of the road, which add enough constrains to make the problem solvable. Such hypotheses are

for example that the road is of uniform width, the road does not tilt sideways (zero-bank

constraint) and that road edges are approximately parallel at opposite points. The aim is to

calculate a possible centreline path along the road for a moving vehicle. In [Kaske et. al., 1997]

45

a vision-based method is suggested for finding the road edges in country roads where the

edges are not very clear. This is done using statistical information from the image such as

energy, homogeneity and contrasts that, when considered in combination, give distinctive

results at the edges of the road. The location of the road edges, found in previous images that

are taken as the robot moves are translated using the vehicle's motion vector to find the

expected new positions. These are used with the results from the current image to eliminate

false positives. In [Sayd et. al., 1998] a method is described to determine the location of a

vehicle on a non-marked road. In order to extract the road surface from the image seen by a

camera on the vehicle a small area in front of the vehicle (bottom of the image) is sampled.

Assuming that the sample falls on the road surface, pi..'<els in the image are classified as road or

non-road pi..'<els depending on how close their luminance is compared to the luminance of the

pixels in the sample area. The vehicle location is then calculated by finding the road sides from

the extracted road area assuming constant road width. In [Wilson and Dickson, 1999] an

algorithm is suggested for tracking the boundaries of the road. The road boundaries are

modelled as chains of line segments. The line segments are found incrementally starting from

the bottom of the image (road close to vehicle) and moving towards the top (road far from

the vehicle). The algorithm uses the endpoint of the previously found boundary segment

(pivot point) as the start of the next segment. The slope of the new segment is determined by

rotating a rectangular window with one of the smaller sides fastened at the pivot point and

counting the number of edge pixels it encloses at each angle step. The angle that gives the

maximum edge pixels is the slope of the next road boundary segment. The method suggested

fails when the road boundary becomes discontinuous. The algorithm may also fail if the road

surface where the initial search is done contains scars or other markings. In [Wang et. al.,

2000] the Catrnull-Rom spline algorithm is used to create curve models of the road edges. The

46

fitness of the models is then tested on the real image seen by the vehicle. The control points

(of each road edge) used for the spline algorithm are selected from the edge-filtered image by

first assuming that the road plane is flat and the road is of uniform width. A pair of points is

taken to lie on opposite sides of the road if the tangents to the line segments they belong eo,

meet at the same point (vanishing point) on the horizon. After the application of the spline

algorithm the two curve models (one for each side of the road) are superimposed on the edge

filtered image to test their fitness.

All of the methods mentioned above deal with the case of a straight or curved road extending

in front of a vehicle. These methods are effective in cases where a vehicle needs to keep in the

middle of a road lane when following a highway for example. However, they are unsuitable in

more complex urban environments where the vehicle needs to turn at an intersection or at

junction, use a roundabout etc. Further, all methods require that both edges of the road are

visible in the image (though not necessarily continuous in all cases) to be able to recover the

road.

Methods to recognize intersections on the road were proposed in Qochem at. al., 1996] and

[Crisman and Thorpe, 1993]. In Qochem at. al., 1996] a neural network based vision system

used for vehicle navigation is described. The neural network is first trained with images of

straight road. During normal operation the image from the camera on board the vehicle is used

to produce images that could have been seen by "virtual cameras" positioned at different

locations in front of the vehicle. The neural network uses the "virtual images" as input and

produces a confidence measure indicating the presence of a straight road segment in them. By

knowing the location of the virtual camera in relation to the actual camera, the system can

47

calculate the position of a sttaight road segment when the virtual camera image produces a

high confidence value. In order to model an intersection the system requires the knowledge of

either the position of the intersection (where the road branches meet), to determine its precise

layout, or the layout of the intersection (i.e. the angles of the branches), to find its position. In

the case of the IBL system, such a-priori information is not available in route instructions.

In [Crisman and Thorpe, 1993] dynamic model-building and matching are applied on a road

surface likelihood image to determine the layout of the road. The road surface likelihood

image is obtained by first clustering pixels of similar colour in the image (both on and off

road) and then using Bayesian estimation to classify the pixels in each cluster as road or non

road. The classification method uses information from the previous image analysis. The

intersection detection method effectively finds intersections spurring from a sttaight road but

would fail to find an intersection on a curved road or an exit from a roundabout for example.

In the case of a robot following natural language route instructions, there is a need for a

method that will efficiently use the information provided in the route instructions in order to

successfully cause the robot to navigate on the road. Such a robot must have knowledge of the

geometty of the road layout features mentioned in route instructions, be able to find them and

also be able to use them as instructed. It is also important that the representation of road

layout features that the robot will have in its memory is generic enough to represent all

variations of a road layout feature that are classified under the same name in route

instructions.

48

The well known method of image template matching is used in this thesis to locate landmarks

mentioned in route instructions. The road layout features mentioned in route descriptions are

represented by template images, which are generic enough to cover all variations of the road

feature in the robot's environment. The location of a road feature is found by matching the

associated template in the robot's visual filed.

2.4 Localization and mapping

The robot in this project needs to retain in memory visual information close to its immediate

locality, which is "seen" by its camera but goes out of view as the robot follows the road. This

information is retained by creating a local map (called "short-lived" map) of the robot's

environment on which previously seen and current visual data coexist. In order to merge

previous visual data with current a simplified method of image "mosaicing" is used. This

method is described, among many, in [Unnikrishnan and Kelly, 2002a]. Image mosaicing for

mapping is a method that uses a series of images taken, for example by a moving robot, which

overlap such that each image contains a portion of the scene in common with both the image

before and after it in the sequence. The aim is to create a map of the environment traversed by

the robot by successfully linking the sequence of images. The great challenge presented to this

task is loop closure in cyclic environments (see [Unnikrishnan and Kelly, 2002b] and

[Gutmann and K.onolige, 1999]). Loop closure requires the successful link of the first and last

of a sequence of images taken when the robot's trajectory closes a loop. This problem arises

because every time one image is linked to the next in the sequence a matching error is

introduced due to image noise. This error increases with the number of images in the

sequence and therefore with the distance travelled by the robot.

49

In this project, a "short-lived" map is created as the robot moves. The map is called "short

lived" because it only displays visual information in the last 2 images (previous and current)

captured by the robot. Previously recorded visual information is lost when it falls out of the

boundaries of the map as the robot moves. The main reason for this is that the robot in this

project does not need to build a complete map of its environment in order to use it for future

navigation. As mentioned earlier in section 1.1, only the procedure corresponding to the route

description followed by the robot is saved in memory and can be called later to achieve the

same navigational task. Here, therefore, the error due to image linking is present only once in

the "short-lived" map and it is small enough to be safely neglected.

2.5 Discussion

The main observation from studying previous work on of natural language instructed robots is

that previous attempts to create such robots are limited in the sense that their users are

constrained to a pre-determined functional vocabulary. This functional vocabulary is decided

by the creators of the robots without considering how the potential robot users would instruct

the robot naturally. Thus, users are limited to a constrained form of natural language, which

they must learn in order to instruct the robots. This approach of determining the functional

vocabulary of the robot is called "robot-centred" approach.

In this project a purely "user-centred" approach is followed to determine the tasks that the

robot is able to perform in the selected context. The idea is that the user should not require to

learn how to use the robot and thus be restricted to using the robot's functional vocabulary,

50

bur he/she should be able to communicate with the robot in the same manner as with a

human.

51

Chapter 3

3 Experimental • envtronment setup and

robot design

3.1 The components of the Instruction Based Learning

system

For the purposes of the project an experimental environment was build that takes the space of

a small room. The setup comprises mainly of a miniature town model, the robot and two host

computers (Figure 3-1), which act as the "remote brain" for the robot.

52

Figure 3-1: The components of the IBL system.

The advantage of using a robot with remote brain architecture is that it does not require huge

on-board computing and hence can be small, fitting the dimensions of the environment (see

[Inaba et. al., 2000]). A controlled laboratory environment was chosen to apply the proposed

methodology of the project instead of the real world environment. Apart from financial and

time constraints the main reason for this was to deliberately exclude much of the complexity

the real world presents and focus on the main idea of the project, which is to study the nature

of spoken route instructions in order to determine how they can be converted into robot

executable programs.

The simple design of the miniature town model provided enough examples, in the collected

corpus, to allow for reasonable conclusions that would apply to the more realistic robot

environment. Users, during the corpus collection, reported that they felt comfortable with the

setup and spoke as they would in a realistic environment. Route descriptions of course lacked

the richness of landmark references or actions that would apply to the more complex real

53

world. Nevertheless the corpus collected was enough to enable the development of a

methodology to determine the robot's primitive procedures using the user-centred approach.

The contribution of the author of this thesis to the experimental environment setup of the

IBL project included the following:

1. The design and creation of the miniature model town environment.

2. The integration of a video camera and video transmitter on an existing robot-football

robot in order to be used in this project.

3. The modification of the existing robot code in order to achieve better robot control.

In the following sections of this chapter each of the above contributions is described in detail.

3.2 The miniature town model

The layout of the miniature town model was designed using Core!Draw graphic design

software. The model is flat and its dimensions are 170cm x 120cm (Figure 3-2).

54

Figure 3-2: The miniature town model.

The model town is a much simplified version of the real world for reasons explained earlier.

Nevertheless, the road layout contains turnings at various angles, t-junctions, crossroads, dead

ends, curves, y-splits, and a roundabout. The model also contains non road-layout landmarks

like trees, a lake, a bridge, and buildings. Most of the buildings in the miniature town contain

signs with names mosdy taken from the real world (like Dixons, Derrys, the post-office etc).

This was done to help people giving route instructions to the robot to easily identify these

landmarks. For simplicity, the same colour was used for all the buildings in the miniature

town.

55

3.3 The robot

The robot used in this project is a modified robot-football robo((Figure 3-3). The main

added components are a video camera and a video transmitter.

Figure 3-3: (a) The robot used in the IBL project (80x80x160mm) and (b) The

robot-football robot (80x80x80mm).

2 Provided by Merlin Systems (http:/ / www.merlinsystemscorp.com).

56

3.3.1 Robot hardware

Battery
packs

Gearbox

Radio
receiver

Figure 3-4: The hardware components of the robot.

Figure 3-4 shows the various hardware components of the IBL robot.

Camera

Video
transmitter

The robot has two independent motors driving each of its two wheels. The speed of the

motors is geared down by a ratio of 16:1 using worm gears. Two optical encoder sensors are

used to read the distance covered by each wheel of the robot To achieve a grater distance

resolution the encoders are placed so as to measure the angular speed of the motor shafts

rather than that of the robot wheel axes. In effect, the distance resolution of each wheel is

1238 encoder pulses per metre traversed by the wheel.

57

A circuit board on which a microcontroller3 is a central processing unit controls all the

functions on the robot. The main components on this circuit board apart from the

microcontroller are a dual full-bridge driver', which powers the two motors, and an 869 MHz

radio receiver5
, which receives navigation commands for the robot.

The robot is powered by eight Ni-MH (Nickel-Metal Hydride) rechargeable batteries of

700mAh (energy capacity) each. They are connected in series in order to create a cell of 9.6

Volts and 700mAh energy capacity.

Added to the robot-football robot, in order to use it in the IBL project, are a CCD colour TV

camera6 (628 x 582 pixels) and a 2.4 GHz video transmitter'. A host computer acquires the

images captured by the CCD camera on board the robot through a wireless video link and via a

TV capture card. An example of such image is shown in Figure 3-5.

3 :\tmd AT90S8515

4 L298

5 Radiometrix RX3

6 Model MINI-C20A purchased at J\llthings Sales and Services (http:/ /www.allthings.com.au).

7 Model TX-MOD3 purchased at All things Sales and Services (http:/ /www.allthings.com.au).

58

Figure 3-5: Example of the robot's view.

From these images the necessary information is extracted in order to decide the next waypoint

for the robot. The robot is then sent the appropriate navigation command via the radio

channel in order to reach this waypoint

3.3.2 Robot software

The code that controls all functions of the robot is written in C computer language on a PC. It

is then compiled, converted into machine language and finally downloaded into the 8K non

volatile flash memory of the microcontroller. The robot's microcontroller program works as

follows: the host computer sends information to the robot in frames (or transmission strings)

via radio link. Each frame contains (apart from synchronisation and error detection bits) the

speed and distance to be covered by each of the two wheels. The robot controls the two

wheels independendy to cover the requested distance while moving with the requested speed.

In this way the robot can perform any manoeuvre, per received command, where the speed of

59

each wheel is constant during the manoeuvre. Examples of such manoeuvres are motions on

straight lines and arcs and on-the-spot rotations.

The robot program is interrupt driven. There are 4 types of interrupts that can occur:

1. Left wheel optical encoder sensor interrupt.

2. Right wheel optical encoder sensor interrupt.

3. UART (Universal Asynchronous Receiver/Transmitter) interrupt.

4. Interrupts from the two wheel speed controllers.

Whenever either of the two optical sensor interrupts occurs the variable that contains the

distance covered by the corresponding wheel is incremented. Both variables are set to 0 when

a new command is received by the robot. This is done because every command instructs the

robot to perform a new manoeuvre starting from a position relative to the one it is when it

receives the command. The robot does not record odometric information for more than one

manoeuvre.

The UART interrupt occurs when a byte is received through the radio link. The interrupt

service routine stores the byte in a string and checks if the string's length is equal to the

expected command length. If not enough information is received to complete a command, the

service routine does nothing, otherwise the received string is processed to extract speed and

distance information for the two wheels. It then sets the appropriate rn.icrocontroller registers

to cause the requested speed and resets the left and right distance variables to 0.

60

It must be noted here that the robot does not incorporate a radio transmitter in order to send

data to the host computer. Ibis means that there is no way for the robot to signal the end of

an execution of a motion command to the host computer. To overcome this limitation, the

host computer calculates the execution time of every command sent to the robot thus

predicting when the robot will have finished executing it and will be ready to receive the

following command. The execution time of a robot command can be calculated from the

speed and distance values sent to the robot.

3.3.2.1 The PID controller used for robot speed control

The control diagram in Figure 3-6 shows how the speed of each wheel of the robot is

controlled in some robot football robots.

---~~~ Left Motor H Gearbox Left Wheel

I, ---~~~ Right Motor H Gearbox
s,

Right Wheel

Figure 3-6: Open loop speed control of each of the robot's motors. Where hand I, are the

left and right inputs to the motors in volts and s1 and s, are the left and right wheel speeds

respectively.

Ibis is an open loop control scheme for each individual wheel speed. A value corresponding

to each motor voltage input is sent to the robot and it is applied to the respective motor until

the requested distance is covered by the wheel attached to that motor through the gearbox.

61

There are two problems with the above method of control:

1. Factors such as the state of the robot's battery and frictional forces will affect the

speed of each motor at a constant voltage input. This means that the speed of each

motor depends on external factors apart from the level of input voltage.

2. Even if the two motors used for the robot are of the same model and manufacturer,

small differences between them such as the resistance of their armature windings will

result in a speed difference between the two motors when they are subjected to the

same input voltage.

The effects of both problems above are minimal when the motors are driven at their rated

voltage. At this input the robot is capable of accelerating up to speeds of 1.5 metres per

second but this is not desirable because of heavy wheel slipping that gives false readings of

distance covered by the robot. Furthermore, the duration of slipping of each wheel may be

different depending on its grip with the ground. This often causes the robot to manoeuvre in

the wrong direction. In robot football the motors are driven at their rated voltage. Any errors

produced due to speed differences between the two wheels and slipping are quickly corrected

because the robot is sent navigation commands several times per second.

For the purposes of the IBL project the robot is required to run at speeds not more than

1 Ocm per second in order to avoid slipping. This low speed requirement means that the

motors of the robot must be powered with less than 10% of their rated voltage. At this low

input the load-speed characteristic of the motors is not linear and this causes unreliable

62

transient behaviour. For a successful manoeuvre of the robot, both wheels must complete

their assigned distances but also they must maintain their assigned speeds reliably throughout

the manoeuvre. This is not possible with the control system shown in Figure 3-6 at such low

power input to each motor.

A popular solution, in order to overcome the problems of open loop systems such as the one

shown in Figure 3-6, is to use a PID (Proportional, Integral and Differential) controller

algorithm. The algorithm takes as input an error e, which is the difference between the desired

output value and the actual output value of a system and produces the input to the system.

The objective of the controller is to match the output of the system with the desired output.

The PID algorithm is composed of three terms:

1. A term that is proportional to the error e.

2. A term that is proportional to the integral (or the sum of the previous values) of the

error.

3. A term that is proportional to the rate of change of the error.

Each of the three terms plays a different role in the controller. For example the differential

term (number 3 above) suppresses sudden deparrures of the output from its desired value. It

is not necessary to have all three terms present in the controller. A controller can only have

the proportional and integral terms for example in which case it is called PI controller. For a

detailed explanation of the PID controller as well as implementation guidelines for real-time

systems see [Bennet, 1994].

63

Two PI controllers are used to accurately control the speed of each wheel of the robot

eliminating errors due to the robot's battery charge level and friction. The error inputs to each

controller (e1 and e,) are the differences between the requested (or desired) speeds (sir and s")

and the actual speeds (s1 and s,) of the left and right wheels respectively. The outputs of the

controllers (I1 and I,) are the corresponding voltage inputs to the left and right motors. Figure

3-7 shows the closed loop speed control diagram of each motor.

SJ

+~ eJ

~ ~ Left Wheel

•I SJr PI Left Motor Gearbox •

s,

+~ e,
~ ~ Right Wheel

•I s" PI Right Motor Gearbox ~

Figure 3-7: Closed loop speed control system with a PI controller for each motor.

The input to each motor is calculated by its corresponding PI controller whenever a wheel

speed controller interrupt occurs. Notice that the speed of each wheel at the time of the

interrupt is required for the calculation and not the distance covered by the wheel, which is

physically measured at the motor shaft of the wheel (see section 3.3.1). The speed of each

wheel is determined by dividing the distance travelled since the last interrupt by the interrupt's

interval time. The interval of this interrupt is time critical and therefore one of the

microcontroller's timers is used to produce it.

64

For every robot manoeuvre there is a difference between the left and right wheel speed. This

difference is 0 when the robot is following a straight line and grater or less than 0 when the

robot is performing a curve. It is crucial that this difference is maintained throughout the

manoeuvre if the robot is to reach it target location successfully. To guarantee this, a PID

controller is added to the system shown in Figure 3-7. The complete speed controller of the

robot is shown in Figure 3-8.

s,

left Wheel
s,, left Motor

+

+

+ Right Wheel
Right Motor

Figure 3-8: The complete robot speed control system.

As Figure 3-8 shows, the error input (eJ to the PID controller is the difference between the

requested speed difference LIS, and the actual speed difference M. between the two wheels.

65

The output of the PID controller contributes to the PI outputs to produce the motor inputs

(I1 and I,) in such a way so as to maintain the requested speed difference throughout the

robot's manoeuvre.

To determine the parameters of the PI and PID controllers of the system, first the sampling

interval T, of the wheel speed controllers interrupt was selected. There are two points to

consider when selecting a discrete-time controller's sampling interval:

1. It should not be too small. This is because digital computations have finite resolution

limited to the length of the digital system's floating point number. As the sampling

interval decreases, the change in the result of the controller's output between

successive samples becomes less than the resolution of the system and thus

information is lost (see [Leigh, 1992]).

2. It should not be too big because loss of information will occur due to the sampling

effect (see [Bennet, 1994]). Nyquist's sampling theorem states that the sampling

interval should at least be twice as fast as the highest frequency of the fastest changing

signal in the PID controller's calculation. However, in practice a much higher sampling

rate (more than 10 times the maximum frequency) is used.

Following the empirical rules suggested in [Bennet, 1994] the sampling interval for all three

controllers was chosen to be 0.065536 seconds. This period is a multiple of the

microcontroller's clock period and it is chosen among several possible preset periods given by

the microcontroller's manufacturer.

66

The following set of equations show how the inputs to the left and right motors are calculated

each time a wheel-speed controller interrupt occurs:

(3-1)

0 _ v•[() 1 ~ (k'vr r.·(e .. (n)-e .. (n-1))]
"" - l\.p e .. n + - L.. e.. J' , + ,

Ti k=l T,

e .. = f!.S,- tlS.

where T, is the sampling interval of the control system is seconds. The variables e~(n) and e,(n)

represent the values of left and right speed errors respectively at some time interval nT, where

n is an integer. The variable e,u{n) is the error in the differential speed at the same time interval.

Constants K, and T; are the proportional and integral constants of the PI controllers and K, ',

T;' and T/ are the proportional, integral and differential constants of the PID controller. All

speed values are in wheel-speed-encoder pulses per second.

Note that the input ranges from 0 to 255 and corresponds to a voltage range from 0 to Vau

Volts where V,..0 is the robot's battery terminal voltage.

The PI and PID controller constants were found experimentally using a procedure similar to

the one suggested in [Braunl, 2003]. This procedure, adapted for the control system presented

in Figure 3-8, is as follows:

67

1. The desired operating speed of the robot was selected to be 10 cm/ sec.

2. To determine the PI controller parameters only one of the two wheels was operated.

The integral control of the PI controller of the wheel and the PID controller were

turned off. ~was increased until oscillation in the speed of the wheel occurred.

3. ~ was divided by 2.

4. T; was decreased from a large number until oscillation occurred.

5. T; was multiplied by 2.

6. Both wheels were set to operate with PI control and the parameters derived thus far.

7. ~'was increased until oscillation in the differential speed of the wheels occurred, i.e.

the robot oscillating between the left and right directions while moving forward.

8. ~'was divided by 2.

9. Kd' was increased while observing the behaviour of the differential speed while

changing the operating speed by approximately 5%. A value of X.,'was chosen to give

a damped response.

10. T;'was decreased from a large number until oscillation occurred.

11. T;' was multiplied by 2.

The following values were obtained with the above procedure and by doing minor

adjustments to achieve optimum performance:

~ = 0.15

T;= 0.6

~·= 0.05

68

T;'= 0.6

T/= 0.5

3.4 Programming platforms and developed software

The Linux8 operating system was used to develop the primitive procedures. The primitive

procedures are written in the Python9 programming language augmented by vision routines

written in C. Python is an interpreted language that is well suited for this project since it is

desired to create new program code from verbal instructions. Python generates programs in

the form of scripts that can be executed immediately without an intermediate compilation

step.

Although the Python lmaging library (PIL) could be used to implement all image processing

routines described in this thesis, it is very slow and for this reason all vision routines were

written in C and compiled in order to be used as python functions. Details of how to extend

the Python language with C language functions can be found in [Chun, 2001].

Primitive procedures cannot pass information between each other directly. This is because

they are independent programs called in sequences. It is only when one primitive procedure

finishes execution that another can be started. For this reason all data (including image files) is

passed between the procedures by saving it to files. This does not slow the system because any

data saved is quickly accessed while it is still in the PC's cache memory and so no time is lost

8 "Redhat" variant, Version 7.3

9 Python for Linux, Version 1.5.2 (http:/ /www.python.org)

69

to physically write/ read to and from the hard disk. This method of information exchange also

provided a quick way to "tap" into the data being exchanged in order to monitor it during the

development of the primitive procedures. An image monitor application was written, which

displays image files. The application checks the time-of-last-modification of the monitored

image file continuously and re-display's the image when its time stamp changes. This

application was run for every image file whose progress needed to be monitored during test

runs of the primitive procedures. A screenshot taken during a test-run of the system is shown

in Figure 3-9.

Figure 3-9: Screenshot taken during the development of the primitive procedures. The top

left window shows the "video server's" interface. The video server is an application, which

continuously captures the image "seen" by the robot's camera and saves that into a file

when requested by another application. The remaining image windows (apart from the

command line window at the bottom) are "image monitor'' applications, each used to

monitor the changes of an image file during execution time.

70

A video of a test-run, which shows how the development interface is run, is included in the

CD accompanying this thesis (see Appendi.x C).

3.5 Summary/ Contributions

The main contribution of the work presented in this chapter is the development of a complex

software control system that is used to control and coordinate the wheel speeds of the robot

in this project. The control system, comprising of two PI controllers to control each wheel's

speed and a PID controller to control the differential speed, presented a particular challenge in

this project because of the extremely unreliable behaviour of the motors driving each wheel

when these were run at a small fraction of their rated voltage. The control system

implemented provided an alternative to using expensive high-specification motors

incorporating gearboxes in order to produce the same speed reliability and odometric accuracy

required for the purposes of this project.

Similar (compared to the one presented in this chapter) control systems for differential-drive

of non-holonomic robots are presented in Qones et. al., 1999] and more recently in [Braunl,

2003]. In their work a proportional (P) controller was used to control the speed of each

individual wheel and integral (I) controller was used to coordinate the differential speed of the

two wheels.

Also in this chapter a method was described for monitoring the execution of primitive

procedures without the need to incorporate extra code in them in order to achieve this

71

pw:pose. This is done by "tapping" into (or monitoring) the data exchanged between the

primitive procedures while they are executed. An interesting feature of this method is that by

switching off all the data monitoring applications, the execution-speed performance of the

primitive procedures can be quickly established.

72

Chapter 4

4 Corpus based system design

As discussed in section 2.1, previous attempts to implement a natural language interface to

robots mainly used a robot-centred approach for determining the functional lexicon of the

robot. The functional lexicon of the robot was created by predicting what a user in the context

would to ask the robot and in what way. Users, therefore, had to be constrained to a certain

extend when speaking, taking care to conform to the robot's particular syntax and to include

all the necessary parameters of the action they requested.

In this project, an effort was made not to constrain the user so that any user not previously

trained to speak to the robot would be able to do so. In order to follow such a user-centred

approach it was necessary to investigate how users speak when giving route instructions, what

information they provide and what they omit as commonsense. The robot should be able to

use the information given in the route descriptions and determine the information omitted in

them, without discomforting its user with questions if it is to qualify as a useful human

assistant.

To determine the functional vocabulary of the route description context, a corpus of route

descriptions was collected from 24 subjects. Details of the corpus collection procedure are

73

given in section 4.1. The collected route descriptions were recorded and later transcribed for

analysis. The corpus was analysed for its word and functional content. The method and results

of these analyses are presented in sections 4.2 and 4.3.

The corpus of route descriptions collected in this project was split in two sets in order to

enable development and later the evaluation of the primitive procedures (see chapter 7). For

completeness, sections 4.2 and 4.3 present the results of the word and functional analyses of

the complete corpus.

Section 4.6 explains the various cases in the corpus where natural language route instructions

are missing information that is vital for the robot in order to execute the requested task. The

methods proposed in this thesis for determining the missing information are also described.

The collected corpus of route instructions contributed in different ways to the main parts of

the Instruction Based Learning system. Sections 4.7.1 and 4.7.2 explain how it contributed to

the development of the natural language system design (dialogue manager) and the robot

system design (robot manager) respectively.

4.1 Corpus collection procedure

To collect linguistic and functional data specific to route learning, 24 subjects were recorded as

they gave route instructions to the robot in the miniature town environment. Subjects were

divided into 3 groups of 8. The first two groups (A and B) were told that the robot was

remote-controlled and that, at a later date, a human operator would use their instructions to

74

drive the robot to its destination. Subjects were told this so that they would speak as naturally

as they would if they instructed a human. It was also specified that the human robot-operator

would be located in another room, seeing only the image from the wireless on-board video

camera. This was specified to induce the subjects into using spatial references accessible by the

vision software. Subjects were also told to use previously defined routes whenever possible,

instead of re-explaining them in detail. Each subject had 6 routes to describe among which 3

were "short" and 3 were "long". Each long route included a short route. This was done to

reveal the type of expressions used by the subjects in order to link taught procedures with

primitive ones. Groups A and B received the same routes to describe, but with the sequence

of "short" and "long" route inverted. This would reveal the difference between a fully detailed

route, and a route with reference to a short route inserted. Again the question is one of how

procedure insertion is handled by subjects (see Table 4-1 for examples of short and long route

descriptions).

The first two groups (A and B) used totally unconstrained speech, to provide a performance

baseline. It is assumed that a robot that can understand these instructions as well as a human

operator would represent the ideal standard. Each subject described 6 routes having the same

starting point and six different destinations. Starting points were changed after every two

subjects. A total of 96 route descriptions were collected from these two groups.

A third group of 8 subjects (group C) had the same routes to describe as group A, but were

forced into a simplified dialogue with an operator to produce shorter chunks of descriptions.

It is known that it is very difficult for NL processing tools to correctly segment an

uninterrupted stream of words into sentences. Therefore, corpus group C was thought to be

75

more representative of utterances in the eventual user-robot dialogue. Subjects in this group

were rold that an operator next door was taking notes. A researcher pretended to do so and

interrupted the subjects (using a microphone) when they used chunks that were too long. He

acted as if he understood all the instructions and did not initiate repair dialogues.

Table 4-1 shows an example of the same two "short" and "long" routes instructed by a

subject in group A and a subject in group C.

Group A (Monologues)
Short

User:
"okay take your first right and continue down the street past Derry's

(u11 GA EP) past Safeway and your parking lot the car park will be on your right"
Long

User:
"okay once you pass the car park er take your first right and then again

(u11 GA EH) take your first right and the hospital will be right in front of you"
Grou_2C (Dialogues)

Wizard: "could you tell me how to get to the car park please"

User:
"okay you'll take the first right from where you are now past Derry's

Short
then Safeway"

(u4_GC_EP) Wizard: "Yes"
"you'll pass another road on the left and the car park's on the right from

User: there"
Wizard: "thank you"
Wizard: "could you tell me how to go to the hospital please"
User: "okay you need to go back towards the car park"
Wizard: "Yes"
User: "past the car park take the first right"

Long
Wizard: "I'm sorry after I pass the car park"
User: "you take the right after the car park"

(u4_GC_EH)
Wizard: ''Yes"
User: "and then another right again"
Wizard: ''Yes"
User: "and you'll be moving towards the hospital on the end of that road"
Wizard: ''thank you"

Table 4-1: Examples of "short'' and ''long" route descnpnons.

The table shows a short route from the Grand Hotel (E) to the Car Park (P) and a long route

from Grand Hotel (E) to the Hospital (H) (see Figure 4-1) given under monologue condition

(group A) and dialogue conditions (group C). The wizard is a human operator mimicking

verbal feedback that could be given by the robot.
76

Figure 4-1: A top view of the miniature town model indicating the starting point E

(common to both routes) and destinations P and H referred to in Table 4-L

The sound file and transcribed version of each route description collected in this project can

be found on the CD accompanying this thesis (see Appendix C).

4.2 Word analysis

To provide an initial estimate of the task vocabulary, the data from all three groups were

merged. The number of distinct words was counted in the set of 144 instructions collected

from the three groups. Morphology was not taken into account, i.e. "travels" and "travel"

were counted as different words. The vocabulary of the users was found to contain 336

different words, from a total of 6634 words in the combined corpus. The most frequent word

was found 753 times and 96 words were used only once, i.e. by only one subject in a single

route instruction (Table 4-2).

77

Most frequent Least frequent (found onlv once)
Word Count

the 753
and 263

access, actually, already, amount, angle, any, apologise, area, arrive,
bears, been, beige, bends, black, blocks, both, branch, carrying,

on 253 centre, certainly, currently, diagonally, doors, double, en, ends,

you 233 entering, exits, far, feel, five, fork, forty-five, half, has, here, hope,

to 212
house, instruct, it'd, its, leave, leaving, lines, looks, make, means,

moment, more, moving, now, only, or, order, outside, paper, park's,
left 188 passing, please, post-offices, quadrangle, quarters, queens, reaching,

right 178 recalling, robot, say, says, set, seventy, sharp, sixty, skyscraper, soon,

go 168 starts, still, storey, taken, tesco, tesco's, thankyou, thing, think, thirty,

take 137
too, travel, travels, trip, turned, uh-huh, upon, went, what, while,

wiggles, without
a 132

Table 4-2: Most frequent and least frequent user word m the corpus. The least frequent

words were found only once in 96 route descriptions.

A complete list of the words found in the corpus along with their occurrence is presented in

Appendix D .

To determine if the corpus collection had led to a complete sampling of the task vocabulary,

the average number of distinct words was plotted as a function of the number of collected

instructions. This is shown in Figure 4-2.

78

Average Unique Words Vs Route Descriptions

400.0

350.0

300.0

.. -g 250.0
~
~
-¥200.0
::;)

&
i 150.0
<(

100.0

50.0

0.0

- All Corpus Descriptions

~--~-GroupADescri~s
Group B Descripeions

0 20 40 60 80 100 120 140

Route Descriptions

Figure 4-2: Number of distinct words discovered in the corpus as the number of

instruction samples increases. The long line is for all groups considered. The shorter lines

are for groups A, B and C taken in isolation. Curves are obtained by averaging 50 random

sets comprising an increasing number of sample route descriptions.

Figure 4-2 shows that the number of distinct words is still rising at the end of the curve,

160

indicating that more new words would be found if more route instructions had been collected

This behaviour is similar in other spoken language task domains. Some examples are found in

[Zue, 1997] where corpora from different domains are collected and analysed for their lexical

content This was done as part of discussing the issues involved in human-computer spoken

language interfaces. In the same paper it is mentioned that new words will be encountered by

the speech recognition system no matter how large the training corpus is.

The slope of the curve representing all corpus descriptions in Figure 4-2 indicates that a new

user might say on average one out-of-vocabulary word in each route description. To

79

determine what type of new word might be expected, each route instruction was compared to

the corpus of all other instructions. The result is that the new words are all among the 96 least

frequently used words listed in Table 4-2.

The dialogue group (group C) tended to use less distinct words as shown in Figure 4-2.

Therefore, future experiments may reveal an improved speech recognition performance in

dialogue conditions.

New words (i.e. words spoken by the user, which are unknown to the speech recognition

system) may present a problem in that they will be either recognised wrongly or not

recognised at all and thus present the danger of changing the meaning of what the user said.

There are three possible scenarios when a user utters a new word:

1. The word is a key word in the specification of the route description. In this case the

robot will fail without being able to detect the problem.

2. The word is not a key word. In this case its presence does not alter the specification of

the route description and the robot never "sees" its effect in the route description.

3. The word is misrecognised in such a way so that the meaning of the instruction

appears wrong to the speech system. In this case the speech system can initiate a repair

dialogue with the user in order to clarify what has been said or to bias the user to

explain in a different way.

Starting such a repair dialogue with the user can be a very complex process. At present a

simple dialogue is initiated with the user when the recognition confidence of the speech

80

system falls below a certain limit. This dialogue usually involves the system replying either

with: "Repeat that please.", in which case the user must repeat the instruction, or with "Did

you mean ... ", in which case the user can only answer "yes" or "no".

4.3 The primitive procedures in route instructions

In order to find the primitive procedures the robot should have in its memory when it starts

its life, the corpus of route instructions collected was first segmented into its "functional

components". These functional components were then represented by primitive procedures

written in computer language code.

The methodology followed to segment the route descriptions into their functional

components was based on the definition of the functional component. Two rules were

followed:

1. Functional components should describe a single action and

2. They must have a defined initial and final state.

The first rule makes sure that the most elementary actions that constitute a route description

are considered to be its functional components. The second rule comes from implementation

constraints. In the example utterance:

"follow the road until you reach the post-office"

81

Although "follow the road" can be considered as one action there is no information in it to

suggest when to stop following the road. In this case the whole example utterance is

considered as a functional component in order to encompass the piece of information that

gives the final state (i.e. reaching the post-office).

Section 4.3.1 describes how the functional components extracted from the corpus are

represented by robot procedures called "primitive procedures". Primitive procedures are

computer language procedures that control the robot. A primitive is called for every functional

component found in the route description and this causes the robot to execute the action(s)

specified by the functional component. Primitive procedures accept key words from the

functional components as parameters.

4.3.1 The primitive procedures extracted from the corpus and

their representation

Functional components found in the corpus are organized into groups describing similar

actions. For example the primitive procedures: "take the first left turn" and "take the second

left turn" have little difference in their implementation in robot executable code. Similarly with

"follow the road to the post-office" and "follow the road to the library". To avoid duplication

of code, parameterised primitive procedures were written to represent groups of functional

components found in the corpus rather than the individual components themselves. Different

combinations of parameters are initialised in each primitive procedure call to represent each

functional primitive found in the corpus.

82

The complete list of primitive procedures extracted from the collected corpus of route

instmctions is presented in Table 4-3. The rightmost column indicates the number of

occurrences of the associated functional group in the corpus.

Primitive Procedure Occurrence

1
follow_ road (relation_1, ordinal _1, object_1 , relation_2,

234
object 2)

2
turn (ordinal_1, relation_1, object_1, relation _2,

192
object 2)

3
location (object_1, relation_1, ordinal_1, obj ect_2= 'road' ,

161
object 3, destination 1)

4 exit roundabout (ordinal 1, relation 1, object 1) 36
5 go (relation 1, object_1) 30
6 go_until (object_1, relation_1, object_2) 9
7 enter roundabout (direction 1, relation 1, object_1) 8
8 cross (object_1, relation_1, object_2) 3
9 rotate(relation 1, object 1) 2
10 take road (relation 1, object 1) 2
11 exit object (object 1) 1
12 park (relation 1, object 1) 1
13 bear (relation 1, object 1) 1 . .

Table 4-3: Pruruttve procedures extracted from the collected corpus of route descnpbons .

An explanation of each primitive is given in Appendix A along with detailed specifications of

its parameters and the values they can take.

Table 4-4 shows some examples of functional components taken from the corpus and the

corresponding primitive procedure call that should be executed to produce the requested

action.

83

Functional primitive Primitive procedure call

"take the first left"
turn (relation_l='left_of',
object l='self')

"take the second turning on your turn (ordinal_l='second' ,
left hand side" relation_ l='left _of', object_l='self')

"keep walking past the lake on your
follow_ road (relation_l= ' past',
object_l='lake', relation _2= 'right_of',

right hand side"
object 2='self')

"exit the roundabout at the third exit _ roundabout (ordinal_l='third ')
exit"

location (object_l='library',
''the library is on your left" relation - l='left _of', object_2= ' self',

destination 1=' library')
..

Table 4-4: Examples of prlDlltlve procedures extracted from the corpus and their

corresponding primitive procedure calls.

See Table 4-6 for an explanation of parameter types and the values they can take in a primitive

procedure.

In the same manner all the corpus route descriptions were manually "translated" into their

corresponding primitive procedure calls.

Each transcribed route description file was associated to a file with primitive procedure calls

corresponding to the functional components in the route description. An example of such

translation is given in Table 4-5.

84

(a)

(b)

"from the roundabout take the first exit on the left continue straight over the crossroads
continue over the bridge continue straight over the second crossroads the post office should
be on your right" (u7 _GC_CX)

exit _roundabout(ordinal_1= 1 first 1
)

follow_road(relation_1= 1 over 1
1 object_1= 1 crossroads 1

)

follow_road (relation_1= 1 over 1
1 object_1= 1 bridge 1

)

follow_road (relation_1= 1 over 1
I ordinal _1= 1 second 1

I

object_1= 1 crossroads 1
)

location (object_1='post_office 1
I relation _1= I right_of I 1

object_2= 1 self 1
I destination _1= 1 post_office 1

)

. .
Table 4-5: An example of a translanon of a route descrtpnon to its correspondmg pnnuove

calls. Row (a) shows the transcribed version of the route description u7 _ GC_ CX. User 7

explains the route from Boots (C) to the Post-office (X) (see Figure 4-3). Row (b) shows

the corresponding manual translation of the description to its primitive procedure calls.

All translation files of the corpus can be found on the CD accompanying this thesis (see

Appendi'C C).

85

Figure 4-3: The description in Table 4-S(a) illustrated on the map of the miniature town.

The dotted red line shows the route that the user implies to the robot and the solid red line

is the route he/she explicitly describes.

This translation had to be made manually during the development of the IBL system for two

reasons:

1. To enable the development and evaluation of the primitive procedures (see chapter 7).

2. To provide a performance baseline for the evaluation of the Robot Manager.

Although the translation of the corpus was done manually for all functional components in

each route description, it was tried to the best possible extent to produce the translation that

the final system would produce for the same route descriptions. This was achieved by

continuously changing the translation of the corpus throughout the duration project based on

feedback being received during the development of the dialogue manager and robot manager

modules. Continuous reviewing of the translation of the corpus was being done until prior to

86

the evaluation of the system. The complete final translation of each route in the corpus can be

found on the CD accompanying this thesis (see Appendix C).

As with the task vocabulary, to determine if the corpus collection had led to a complete

sampling of the primitive tasks in our route description context, the average number of

primitive procedures was plotted as a function of the number of collected route descriptions.

Figure 4-4 shows that the number of distinct procedures is increasing with the number of

sampled route descriptions. In the beginning there is a steep rate of increase of new primitive

procedures but as more route instructions are considered this rate decreases. It can be

speculated, by looking at the curve representing all the corpus descriptions in Figure 4-4, that

the functional vocabulary of the robot is not completely determined by the collected corpus.

The slope of the curve at 144 route descriptions seems to suggest that on average one new

procedure is likely to be discovered in every approximately 40 route descriptions. A similar

observation was made in section 4.2 with the rate of increase of new words for the robot (see

Figure 4-2). There, it was discovered that on average one new word would be discovered for

each route description. The issue of new primitive procedures appearing during the lifetime of

the robot is very crucial to the design of instruction based robots. This issue is discussed

further in the conclusion of this thesis (see section 8.2).

87

Average Unique Primitive Procedures Vs Route Descriptions

14.0 ..,---------------------------------------,

e
" 10.0

J
f
E
E
;f
!
!Z
c:
;:)

&

i
4(

8.0

6.0

4.0

2.0

0.0
0 20 40 60 80 100

Route Descriptions

- AJi Corpus Descriptions

- Group A Descriptions

120

Group B Oescnptlons
Group C Descnptlons

140

Figure 4-4: Number of distinct primitive procedures discovered in the corpus as the

number of instruction samples increases. The long line is for all groups considered. The

shorter lines are for groups A, B and C taken in isolation. Curves are obtained by

averaging 50 random sets comprising an increasing number of sample instructions.

160

Primitive procedures accept several types of parameters. These are listed and explained in

Table 4-6 along with examples of values they can take in primitive procedure calls.

88

..
e!
" ..,
2! e a.
~

~
;f ..
" g
c
::l .,
"' I!
~
<

Average Unique Primitive Procedures Vs Route Descriptions

14.0

12.0

10.0

8.0

6.0

4.0

-All Corpus Descriptions
- Group A Descriptions

2.0 t-------------------------------1- Group BDescriptions
- Group C Descriptions

0.0
0 20 40 60 eo 100 120 140

Route Descriptions

Figure 4-4: Number of distinct primitive procedures discovered in the corpus as the

number of instruction samples increases. The long line is for all groups considered. The

shorter lines are for groups A, B and C taken in isolation. Curves are obtained by

averaging 50 random sets comprising an increasing number of sample instructions.

160

Primitive procedures accept several types of parameters. These are listed and explained in

Table 4-6 along with examples of values they can take in primitive procedure calls.

88

Parameter
Description Examples of possible values

name
'self', 'hospital' ,

Takes the names of objects used as 'house', 'junction',

object landmarks in route descriptions. This 'lake', 'left_turning' ,
parameter can also take the value 'self' in 'bend', 'bridge' ,

cases when users indirectly refer to the robot. 'building', 'car _park' ,
'corner', 'derrys '

it describes the relation of a mentioned object
'after ', 'at',

relation to another object or the robot. Always 'between', 'by' ' accompanied by one or more 'object' ' in_front_of' , ' left_of'
parameters.

ordinal
Specifies the order of one of many similar 'first', 'second',

objects usually along the same road. 'third'
Special case which is used because of system

'boots', 'car _park ' ,
constraints (see section 4.4). Used only in the

'grand_hotel' ,
destination "location" primitive to specify whether a 'hospital' , 'library',

mentioned object is the destination of the 'museum'
route description.

Table 4-6: Parameter types and possible values they can take in primitive procedure calls.

Parameter names end with a number in the primitive procedure headers to avoid confusing

two or more parameters with the same name. The specific significance of each individual

parameter for every primitive procedure is explained in Appendix A.

It is important to note that, in order to follow a purely "user-centred" approach in

determining the functional vocabulary of the IBL system, the 13 primitive procedures, the

parameters they can accept and all the possible values each parameter can take are derived

solely from the corpus of route instructions collected for this project.

89

4.4 The "go" primitive

The "go" primitive is called when users refer to complete previously learned routes. Examples

are:

"go to the post office" (u12_GA_EG)

"go to the roundabout" (u2_GC_MC)

"go to the roundabout mentioned previously" (u13_GA_CE)

"go to boots" (u19_GB_EC)

When the system learns a new route, it saves all the procedures of the new route in a script file

called "go_ <point A>_<point B> .py" where point A is the name of the starting landmark

and point B is the name of the destination landmark. When the system encounters an

instruction such as "go to the post office" in the beginning of a route description, say, from

the library to the museum, it first searches the knowledge base to find a file called

"go_library_post_office.py". If the file is found, information from it is used in the new file

being created ("go_library_museum.py"). How and which pieces of information from

previous knowledge is extracted and used is described later in sections 5.3 and 5.4. If, in the

example given, "go_library_post_office.py'' is not found in the knowledge base then a new

learning process is started to create it and then use it.

4.5 The "go_until" primitive

The primitive "go_until" refers to a previously learned route but only up to a certain point in

that route. It is used either because the user intents to divert the robot onto another route or

90

because the destination is simply along the previous route but before that route's destination.

Examples in the corpus were such reference is made are:

"okay you ll need to pass the rrain station again as you did going to the post office and

you ll see the university as you go onto the roundabout" (u4_GC_EW)

"erm head as though you re going towards the post office so you go over the bridge

but instead of carrying srraight on take a right" (u6_GC_Civ1)

"okay from the crossroads continue on srraight ahead take the next right"

(u7_GC_CM)

"okay head towards the grand hotel but just before you get there the safeway is on

your right hand side" (ulO_GA_MD)

"recalling our previous destination was the grand hotel and we passed safeways en

route just before derrys" (u23_GB_HD)

"right if you go exactly the same way towards the queens pub as before erm as you go

over the bridge as you go past the t junction the post office will be there on your

right" (u6_GC_CX)

This is a more complicated case than the "go" primitive because now the previously learned

route must be partly used up to a landmark specified by the user. To add to the problem, this

91

landmark is not always apparent from the instructions in the previously learned file (e.g. "from

the crossroads ... "). This is either because when the file was created, information about the

landmark was not inserted by the system, because it was not deemed relevant to the route, or

because the landmark was not mentioned by the user at all.

Two methods for solving this problem were discussed during this project but were not

implemented due to time constraints. These are presented as part of future work in Chapter 8.

4.6 The under-specification of natural language and how

it affects the functional specification of the primitive

procedures

Spoken route instructions can be very abstract often lacking information that is assumed by

the instructor as commonsense. However, the missing information can sometimes be vital to

the success of the robot in executing a route description. In most cases the human listener

automatically infers the missing information. Alternatively he/ she can engage in a dialogue

with the speaker in order to request a more explicit version of the instruction. For the

Instruction Based Learning system, starting such a clarification dialogue with the user can be a

very complex process.

It is important therefore, for the system, to try to infer, to the extent possible, any implicit

information in the user's instructions. Since the system is lacking the cognitive power and

experience of the human listener the only way to determine how to resolve such cases, is to

92

study the corpus of route instructions collected during this project for those cases where users

omit the same information and expect the same action from the robot.

This section shows how the under-specification of natural language route instructions

influenced the functional implementation of the primitive procedures. The sub-sections below

present the three cases where missing information in route instructions, that would otherwise

cause the robot to fail, is inferred by the system.

4.6.1 The use of default parameter values

Some parameters of primitive procedures can take default values when a call to these

procedures does not initialize these parameters. An example of such an occurrence is when a

user says: "take a left" actually meaning "take the first left turn". The action to "take" is first

mapped here to the "turn" primitive by the robot manager (see [Lauria et. al., 2002]) and then

the parameters "relation_ I" and "object_l" are initialised to "left_ of" and "self' to reflect the

information of direction passed from the user. However, the specifications of the "turn"

primitive procedure require at least the "ordinal_l" parameter to be initialised too. This

parameter is given a default value "first" because in all cases of the corpus when the turn

instruction was used without specifying the ordinal of the turning, the first turning was

implied. The default values of parameters used in the primitive procedures are listed in each

primitive's specification in Appendix A.

93

4.6.2 The reference to the destination landmark

When humans describe a route they continuously refer to landmarks. It has been observed by

studying the collected cmpus of route instructions that they always refer to the destination

when that is reached in the description. This reference can be explicit or implicit. Examples of

explicit references to the destination are:

"safeways is the next building on your right hand side" (ul_GA_MD)

"and on the right hand side opposite the lake is the car park" (uS_GC_EP)

"and the museum will be on your right" (u13_GA_CM)

However, references to the destination have no particular difference when compared with

references to other landmarks. Some examples are:

"you got pc world on your right" (u20_GB_EC)

"you ve got a car park on your right'' (u20_GB_EG)

"walk up few metres and then you see the huge tall building on your left"

(u22_GB_CL)

"there is a lake on the left hand side" (ul_GA_MY)

The robot's actions are different when the destination is mentioned than when any other

landmark is mentioned and therefore a different section of code should be executed for each

case. In the first attempts to functionally analyse the corpus in order to determine the

primitive procedures, two distinct primitive procedures called "destination" and "location"

94

where allocated to each case. "destination" was to be called when the landmark reference

utterance mentioned the destination and "location" was expected to be called when the

utterance mentioned any other landmark specific to the route description. This posed a

problem to the robot manager's design because, as can be seen from the examples above,

there is no indication, from the landmark reference or the utterance structure, of whether

these refer to the destination or any other landmark. The only way to solve this problem was

for the robot manager keep in memory the destination landmark throughout the route

description. Remember that in the beginning of a discourse between the user and the robot

the user asks the robot to "go to the <landmark>" in which case the destination is always

explicit. This is when the robot manager stores the landmark's name in memory. After that,

every time the user mentions a landmark, in his/her route description, this would be

compared with the destination landmark and if they are the same, the actions for destination

specification are called, othetwise the actions for location specification are called for

execution. It was decided that this choice would be made at the primitive procedure level and

eventually only one primitive procedure called "location" was used for this purpose (see Table

4-3). This procedure has one parameter called "destination_ I" that is always initialized with

the name of the destination landmark stored in the robot manager's state. Every time the

"location" primitive is called the "location_ I" parameter, which indicates the landmark

mentioned in the user's utterance, is compared with the "destination_1" parameter and

depending on the result the appropriate course of action is taken.

A further complication to this problem is that sometimes the final destination reference is not

always explicit, i.e. the name of the destination is not mentioned. Examples of such references

are:

95

"take the first left and continue round and you should see it" (u7_GC_CD)

"take the first right and it should be on your left" (u8_GC_HL)

At the present moment the dialogue manager cannot always resolve that "it" refers to the

destination landmark that was mentioned early in the dialogue. When the system fails to

attribute the reference to the destination it passes an unresolved reference error to the robot

manager. In these cases the system fails to recognise that there is a mention to the destination.

4.6.3 The multiple meanings of "go"

A problem arises when the user says for example "go to the train station" when the train

station is ahead of the robot on the same road. In this case the user actually means "follow the

road to the train station". The robot manager, therefore, considers three possibilities when a

"go to <landmark>" utterance is spoken by the user:

1. The route to <landmark> was explained in a previous description and the

associated file exists in the knowledge base.

2. The route to <landmark> was not explained earlier by the user but the user

mistakenly assumes the robot knows how to get there. In this case a new learning

procedure must be started.

3. <landmark> is ahead along the road. The "follow_road" primitive should be used

instead of the "go" primitive.

96

To resolve the problem, the robot manager searches the knowledge base to find the previously

learned route. The outcome distinguishes between possibility 1 (a previously learned route is

found) and possibilities 2 and 3 (a previously learned route is not found). If a previously

learned route is not found the proper course of action would be to start a clarification

dialogue with the user to resolve the issue (whether the user meant 2 or 3 above). At the

present moment engaging in a dialogue with the user to resolve sucb issues is part of future

work and therefore it is not implemented. Rather, in such a case, the robot manager selects the

most probable interpretation between cases 2 and 3 above.

4. 7 The concept of corpus based designed system

4.7.1 Contribution of the corpus to the natural language system

design

The collected corpus of route instructions contributed in two ways to the development of the

dialogue manager:

1. It determined the lexicon of the selected context and

2. It provided the syntax that humans use when giving spoken route descriptions to a

robot.

The speech recognition system used in this project is speaker-independent, i.e. it can recognise

any human voice without it being trained with that voice. One of the major factors affecting

the success rate of speech recognition systems, which are speaker-independent, is the number

of different words they can recognize. As this number increases, the speech recognition error

97

rate increases exponentially. To be effective to an acceptable level of recognition, a speech

recognition system must have a lexicon of, at most, a few hundred words. To keep within the

bounds of this limitation the speech system must be able to dynamically change the size and

content of its lexicon based on the context or theme of the dialogue. In this project the

context is that of route descriptions and so the lexicon of the dialogue manager was

constrained only to those words found in such context. This set of words was directly derived

from the collected corpus (see section 4.2).

4. 7.2 Contribution of the corpus to the robot system design

The collection of the route description corpus contributed in two ways to the development of

the robot manager component of the IBL system:

1. It indicated the type and structure of the primitive procedures that would need to be

created for the robot and

2. It indicated the objects that the robot should be able to recognise in the miniature

model town.

As mentioned earlier in this thesis, the primitive procedures are those procedures that the

robot will need to have in its knowledge base when it begins its "life". These are the tasks that

a user, in the route description context, will not explain in detail. Take for example the

frequent occurrence of the instruction: "turn left". The users did not explain in their route

instructions how to turn left but assumed that the human who would at some point drive the

robot knew how to do it. The program, therefore, which causes the robot to perform a left

98

turn, had to be created before the robot started learning new routes. The "turn" procedure is

one of the primitive procedures (see section 4.3).

Humans continuously use landmarks in their route descriptions. Often these landmarks are

used as essential parts of the route they are describing ("rum left after the post-office", "at the

crossroads take a right", "the hospital will be in front of you" etc). Sometimes landmarks are

also used as a reassurance that the robot is on the right track ("you will see a lake on your

left", "you will pass by the library", "there will be some trees on your right" etc). The robot

needs to be able to identify these landmarks when following route instructions using vision as

its only sensing ability. Information as to how the crossroads or the library looks like, or how

to search the visual field for such landmarks is assumed to be known by the robot and thus

such ability should be pre-programmed into it. Also knowledge related to the nature of the

landmarks themselves should exist in the robot's memory. For example the instruction: "pass

the crossroad" would require the robot to do something quite different from the similar

instruction: "pass the post-office".

The landmarks found in the corpus included road layout features such as crossroads, turnings,

t-junctions, the roundabout exits, signed or unsigned buildings, the bridge, the roundabout,

the lake and trees. In this project only road layout features are identified by the robot. All

other landmarks mentioned by the users are identified by placing a coloured strip next to them

on ground plane (see sections 6.2 and 6.3).

99

4.8 Summary/ Contribution

This chapter explained how the corpus collected was analyzed in order to determine the

functional lexicon for the robot used in this project. The primitive procedures presented in

Table 4-3 were derived solely from the corpus thus ensuring a purely "user-centred" approach

to the design of the IBL system. It is unlikely for a roboticist to have intuitively determined

these primitive procedures without studying how humans give route instructions. This is

because, not only the primitive procedures would have to be determined, but also the different

ways humans call each primitive action through natural language. The primitive structure

should be made flexible enough to accommodate this. Consider for example the following

three utterances:

"at the roundabout, take the second exit"

"enter the roundabout in a clockwise direction and take the second left turn"

"turn left in the roundabout, take the second exit"

All three user utterances are accepted and will result in exactly the same actions by the robot

in the IBL system because users in the corpus have used utterances similar to these in order to

instruct the robot to use the roundabout. This diversity among users could only be revealed by

studying the corpus collected in this project. In the primitive procedures the different natural

language forms of the same action are accommodated by the use of different procedure

parameter combinations and/or values. The possible parameter combinations and values are

determined by studying the corpus.

100

It is possible, after the development of the system, that new (i.e. unseen in the corpus) forms

of primitive actions will appear in natural language instructions, which will not be covered by

the possible parameter combinations and values determined in the corpus. This problem is

similar to the one of altogether new primitive actions appearing after the completion of the

system, which is mentioned below.

The work described in this chapter revealed three problems that are important for. the future

design of IBL robots. These are:

1. The probability of new primitive functions arising in route instructions after the

development of the system (see section 4.3.1).

2. The cases when users make partial use of previously learned procedures while

explaining new procedures (see section 4.5).

3. The under-specification of natural language (see section 4.6).

It has been shown in section 4.2 that the ffiL system will be faced with new words after its

completion. This has been observed also in previous work on speech recognition systems

such as for example in [Zue, 1997]. In this thesis we also show that in the same way, new

primitive functions can appear after the completion of the system.

This chapter also explained how users refer to a part of a previously explained route while

explaining a new route. This reference is made implicitly by only mentioning a landmark at the

point where the robot is supposed to stop following the previously explained route.

101

Determining the landmark referred to is not always apparent from the instructions in the

previously learned procedure. This problem has never been documented previously.

Cases 1 and 2 above are discussed further in chapter 8.

This thesis focuses on the natural language under-specification problem. In this chapter three

methods were proposed in order to determine missing information in natural language route

instructions during the learning of new procedures (see Section 4.6). Section 6.2 explains how

the well known method of image template matching is used in order to determine missing

information during the execution of route instructions.

102

Chapter 5

5 The functional structure of the primitive

procedures

In this chapter the functional organization of the code in primitive procedures and the reasons

behind it are explained. Section 5.1 presents the generic flowchart followed by all primitive

procedures found in the corpus. In Section 5.2 the need for lower level procedures is

explained. These low-level procedures are called by the primitive procedures at the highest

leveL In Section 5.3 it is explained how the structure of the primitive procedures enables

linking of a series of procedures in order to form a new "learned" procedure. Finally Section

5.4 describes the use of a "prediction function", which is created in all primitive and new

procedure files and it is used for verification and error detection in the user's description

during the "learning" stage. The prediction function predicts whether the primitive, when

called during the execution of the route description, will execute without any inconsistencies

due to wrong or missing parameters passed to it.

103

5.1 The structure of primitive procedures and how it

reflects the structure of spoken instructions

With the exception of one primitive extracted from the corpus, the structure of the primitive

procedures reflects the human cognitive process when following a route instruction. This

process incorporates a "search-and-act" loop that exits when a terminating condition is met.

The terminating condition is always associated with finding a landmark (the target). As an

example consider the route instruction: "take the second turning to the left". The target

landmark is the second left turning. The search-and-act loop involves searching for the

turning and moving along the road until it is found. When the second left turning is found the

robot moves to where the roads meet and rotates left in order to face the new direction (target

associated actions).

The exception to the loop-structure described above is the primitive "rotate". This primitive

was used only twice in the corpus (Table 4-3) and it simply causes the robot to rotate about

itself 180 degrees. Therefore its execution is represented by a single pre-defined action.

Figure 5-1 shows the flowchart followed by all primitive procedures.

104

Pre-defined action

(a)

Possible calls to
other primitives

Capture and process
camera image

Search for target

N

Move short distance
on the road

(b)

y Possible target
associated
action(s)

Figure 5-1: (a) Flowchart of"rotate" primitive procedure and (b) flowchart of all other

primitive procedures extracted form the corpus.

The remainder of this section explains in detail the flowchart illustrated in Figure 5-1 (b).

In the beginning, the target is defined based on the combination and values of parameters

passed to the primitive procedure. The search-and-act loop is then entered. This consist of

capturing and processing an image from the camera on-board the robot, using the new visual

105

data to re-localize the robot in order to determine and account for the odometric error and

then searching for the target landmark in the field of view. If the target landmark is not found

the robot moves along the road for a short distance before re-starting the loop. If the sought

landmark is found, a set of target associated actions are performed and execution is then

passed to the next primitive procedure. A detailed description of each block of the flowchart

in Figure 5-1 is given in Chapter 6.

Primitive procedures can call other primitive procedures in the beginning of their body. At

first glance, this may be thought to conflict with the definition "primitive" but this flexibility is

only allowed to reduce the complexity of the system. Take for example the case when a user

says: "after the library ti.u:n right" as part of a route description. This has to be considered as

one functional component of the route description according to the definition of the

functional component given in section 4.3. However, to execute the above instruction two

primitive procedures are actually called that correspond to: "follow the road until the library"

and "take the (first) right turn". The mapping to the two primitive procedures can be done in

two ways:

1. The robot manager can call the two primitive procedures individually. For example:

follow_road(relation_l="after•, object_l="library•)

turn(relation_l="right_of•, object_l="self")

106

2. 1be robot manager can call the "turn" primitive only with the necessary parameters so

that this primitive would then call the "follow_road" primitive from within itself. For

example:

turn(relation_l="right_of", object_l="self", relation_2="after",

obj ect_2=" library")

It was decided that it was easier to follow the second approach in such cases because it was

more difficult for the robot manager to determine from the Discourse Representation

Structure (DRS) the implicit action to "follow the road until the library" in the example given

above.

The Python program code of all primitive procedures is included on the CD accompanying

this thesis (see Appendix C).

5.2 The use of low-level procedures

It quickly became apparent during the implementation of the primitive procedures that these

required to call low-level procedures from within their body. These were called "low-level"

because they perform specific actions (more fundamental than that of the primitive

procedure) and each can be used by more than one primitive procedure. These low-level

procedures are not accessible directly by the human user (Figure 5-2), i.e. no functional speech

segment of the route instructions could be directly mapped to them.

107

Primitive procedures (Accessible to user via natural language)

Low-level procedures (Not accessible to user)

Figure 5-2: Primitive procedures can be accessed by users via natural language whereas

low-level procedures cannot.

The low-level procedures needed to be created to avoid duplication of code in the

implementation of the primitive procedures.

Some examples of low-level procedures are shown in Table S-1:

Captures an image from the camera on-board
capture_image () the robot and saves it to an image file to be

used for future processing.

optical_calibration () Corrects optical distortion on the captured
camera image.
Applies the inverse perspective mapping

produce_world_prespective () transform to obtain the top view of the robot's
view. The top view image is saved to an image
file.
Scans the robot's view in order to find object.

found_object(object) Returns true or false. If true (object is found) the
object's location is also returned.
Causes the robot to move to a specified location

move_to (x, y, 8) relative to its own and once there turn at a
specific angle.
Causes the robot to follow the road for a short

short_move_on_ road () distance. This distance is short enough so that
no visual information is lost.

Table 5-1: Examples of low-level procedures.

108

5.3 The verification of new procedures during their

creation

As mentioned earlier, new procedures are learned by combining previously learned procedures

(mosdy primitive procedures) from the knowledge base of the robot. When the user describes

a new procedure as a sequence of actions, it is important for the robot to verify if this

sequence is executable before it saves the sequence into memory. The approach used in this

project is to associate each procedure with a triplet S;1\;Si with properties similar to

productions in SOAR (see (Laird et. al., 1987]). The state S; is the pre-condition for action A;i·

It defines what conditions must be satisfied by the robot's state for action A;i to be possible.

The state Si is the final state, resulting from the action A;i applied to the robot's state. For a

sequence of actions to be realisable, the final state of one action must be compatible with the

pre-condition of the next one. To enable this verification, the robot must be able to "imagine"

the consequence of an action. For that purpose, a "prediction" function is associated with

each primitive action, and with each newly created procedure. This is described in more detail

in the following section. Figure S-3 illustrates the use of the prediction function during

verification of the consistency of the sequence of instructions from the user.

109

(a)

(b)

Initial
State
00
00
Wr-\
[]]l____.,!
m
[£]

Initial
State
00
00
@]
@]
[I]
m

Initial
State
00

Prediction
Function

P1

Predicted
State 1
[!]

Initial
State
00

Predicted
r-----. State 1

00

Pre-
condition Inconsistency

00 00
~ ffi]
~r---\@]r--\ Error

• '---1---./ ~ L_____f QJ L.__,l Handling

[K] f8l
~ m

Figure 5-3: Illustration showing how the prediction function in primitive procedures is

used. Row (a) shows a case were the state of the robot after executing procedure Pl is

consistent with the next procedure to be executed P2. Row (b) shows the case where there

is an inconsistency between the state the robot is left in after executing Pl and the

expected state for the next procedure to be executed. For a more detailed explanation of

the figure see text below.

For each procedure there is a prediction function that transforms a state vector into its future

value (Figure 5-3(a)). The function first determines if the input state satisfies the minimal

criteria ("pre-condition") to enable the procedure to be executed. An action is executable only

if selected elements of the state vector have required values. If this is the case, the next state is

predicted and processed by the prediction function associated with the next procedure in the

instruction. Each action modifies certain components of the state vector, and leaves the others

unchanged. If the predicted state produced by one procedure does not allow the next

procedure to be executed, an error handling process is initiated (Figure 5-3(b)).

110

Any inconsistencies detected may mean that the user has made a mistake in his/her

description or the system misinterpreted what the user said. In this case a simple dialogue with

the user is started to clarify the problem.

5.4 The "prediction" and "action" functions of primitive

procedures

Every primitive procedure and newly created procedure is composed by a "prediction" and an

"action" functions. Both these functions exist in the procedure's module file and take the

same parameters with one exception: an extra parameter called "state" is passed only to the

prediction function. This state is modified and returned by the prediction function.

As explained in the section 5.3 the prediction function of a procedure is used to predict the

future state of the robot, given its current state, when the procedure is executed. Also the

prediction function can detect any inconsistencies between the state of the robot and the

expected state, which is required for the successful execution of the procedure. During the

learning of new procedures, when an instruction given by the user is mapped to a procedure

in the knowledge pool of the system, the prediction function of that procedure is called with

the current "virtual" state of the robot in order to check whether this state satisfies the pre

condition for the procedure to execute. If no inconsistencies arise, the new virtual state is

returned by the prediction function and the procedure call is added to the new procedure file.

This is repeated with the new instruction of the user until he/ she finishes his/her description.

If there is an inconsistency, however, the prediction function returns an error message to the

robot manager indicating the problem. In this case the system attempts to rectify the problem

111

in a simple way by responding to the user with: "I did not understand what you said"

expecting the user to repeat.

The prediction function of every primitive procedure makes three checks every time it is

called:

1. Parameter combination check.

2. Parameter value check (for every parameter passed to the procedure).

3. State check.

The checks are made in the order presented above and if any inconsistency occurs along the

way, the prediction function returns without checking for any further inconsistencies. Table

5-2 shows the pseudo-code of the prediction function indicating the three checks.

112

predict ion (state, parameter_l, parameter_2, ... , parameter_n)
(

Ill Parameter combination check 11111111111111111111111111111111111
if passed_parameters_list not in valid_parameter_combinations
(

return parameter_combination_error

Ill Parameter value check 111
if parameter_l not in parameter_l_accepted_values

return [parameter_value_error, parameter_l]

if parameter_2 not in parameter_2_accepted_values

return [parameter_value_error, parameter_2]

if parameter_k not in parameter_k_accepted_values
(

return [parameter_value_error, parameter_k]

Ill State check lllllllllllllllllllllllllllllll/1/ll/1/lll/lllll/1/

list_of_valid_states "' [state_l, state_2, ... , state_k]

if state not in list_of_valid_states
(

return [state_error, state]

return predicted_state

Table 5-2: Pseudo-code of the prediction function in primitive procedure modules.

The parameter combination check makes sure that the combination of parameters passed to

the primitive is one of the allowed combinations (see Appendix A for the allowed parameter

113

combinations of each primitive procedure). Once the first check is passed, the second check

makes sure that the value of every parameter passed to the procedure is among the allowed

values for that parameter for the specific procedure (see Appendix A for the allowed

parameter values of each primitive procedure). Finally, the state check verifies that the virtual

state of the robot (predicted by the previous procedure) is among the valid states compatible

with the action to follow. All primitive procedures have their own list of valid states. The state

of the robot must be the same as one of the members in this list in order for the state check to

be successful. For example, consider the case when a user says: "carry on to the end of the

street" and then he/ she continues by saying: "follow the road to ... " In this case the state

check will fail because the current state value in the virtual state variable will be

"end_of_road" after the execution of:

follow_road(relation_l="to", object_l="end_of_road")

that corresponds to the first utterance of the user. This state value will not be among the valid

states after the execution of the above "follow_road" primitive call since the robot at the end

of the road (whether this is a dead-end or a t-junction) does not have a road ahead of it.

The action function in the procedure's module is the one containing the commands which,

when executed, cause the robot to perform the action instructed by the user. The different

operations that take place in the action function of the primitive procedures are explained in

detail in chapter 6.

114

The prediction and action functions of a new (learned) procedure are composed from the

prediction and action functions of its constituent procedures. This is shown diagrammatically

in Figure S-4.

Procedure XVZ

Prediction
Function

Action
Function

(a)

Previous Knowledge New Procedure

(b)

Figure S-4: Procedural knowledge representation.

The contribution of the author of this thesis to the synthesis of new (learned) procedures in

the IBL (instruction based learning) system was to create the prediction and action functions

in each primitive procedure file in such a way so as to enable the straightforward copying of

the program code into the new procedure files.

5.5 Summary /Discussion

In section 5.2 the requirement for low-level procedures in primitive procedures is described.

These were created in order to achieve code efficiency and reusability. Apart from that

115

though, the appearance of such low-level procedures revealed a more important fact: it was

the level of specialisation of the human users within the context that determined how

fundamental, to the robot, primitive procedures are. For example, if all human subjects invited

for the corpus collection were roboticists then the primitive procedures would probably refer

to more fundamental tasks such as those listed in Table 5-1.

The existence of tasks at different levels is mentioned in [Lueth et. al., 1994) where a dialogue

interface for a robot performing mechanical assembly tasks is explained. The main difference

with the work presented here is that in [Lueth et. al., 1994] all the tasks that the robot can

perform are accessible to the user via the natural language interface. This is to allow a more

elementary control of the robot. As with previous approaches described in section 2.1 the

complete task vocabulary of the robot described is determined using a robot-centred

approach.

The use of a prediction function in primitive procedures (described in section 5.4) provides a

mechanism for the robot to prevent failure in the execution of a route description before the

execution starts and while it still has the attention of the user. Errors in the execution of a

route description can occur because of four reasons:

1. When the user makes a mistake in the route description.

2. When the user is ambiguous.

3. When the user does not provide enough information for the execution of an

instruction.

4. When the system wrongly recognizes what the user said.

116

It is important to realize that the prediction function will not always detect errors because of

the above reasons. This is because the outcome of the above cases can sometimes result in a

valid procedure call that will produce an action not intended by the user.

117

Chapter 6

6 Vision for robot navigation

The robot used in this project uses a camera as the only sensor of its environment. Images

from the camera (see example in Figure 6-1) are sent by wireless video link to a PC, which

processes them to extract information specific to the route description that the robot is

following.

Figure 6-l: An example of a raw (unprocessed) robot camera image.

The robot camera image is used in three ways:

118

1. For robot localization.

2. To establish the location and orientation of objects mentioned in route descriptions.

3. To establish the location of the next waypoint that must be reached by the robot while

it is moving towards its final destination.

To achieve the above tasks several pre-processing operations are performed on the raw

camera image first. These are described in section 6.1.

Landmarks referred to in route descriptions are categorized in two groups for the purposes of

this project:

1. Road layout features (such as turnings, crossroads, t-junctions etc) and

2. Non road-layout objects (such as trees, buildings, the bridge etc).

Section 6.2 explains how road layout features are found in the robot's view using the well

known method of image template matching.

Although originally planned, the duration of this project did not allow for the development of

image processing routines, which would recognize non road-layout objects mentioned in the

natural language route descriptions. Section 6.7 explains how non road-layout landmarks

mentioned in route descriptions are detected using a coloured marker placed next to them.

119

In order to be able to determine and account for the odometric error introduced every time

the robot moves (localization) and also to keep in memory important visual information

previously "seen" by the robot, which afterwards falls outside its field of view, a "short-lived"

map of the environment is created as the robot moves. The "short-lived" map is described in

section 6.3.

In sections 6.4 and 6.5 it is explained how road surface and the road edge information are

extracted from the robot's view. Road surface information is used in the template matching

process and road edge information is used in the creation of the "short-lived" map.

Finally section 6.8 describes how spatial references to landmarks are used for successful robot

navigation.

6.1 Capturing and .
pre-processtng the robot camera

tmage

Two successive operations are performed on the raw camera image after it is captured by the

robot:

1. Optical calibration and

2. Inverse perspective mapping.

120

Optical calibration is applied to the raw camera image to correct the distortion produced due

to the optics of the camera lens. Figure 6-2 shows the same image before and after optical

calibration.

Figure 6-2: (a) Raw camera image and (b) the same image after optical calibration.

The mathematical formula that provides the corrected location of a pixel after optical

calibration is taken from [Faugeras, 1993]. It is reproduced here below:

x' = xc + (x- xc)[1 + k1 [<x- xc) 2 + (y - y c) 2]

y' =Ye+ (y- yJ[l +kJx-xJ2 +(y- Yc)2
]

(6-1)

Where (x,y) are the coordinates to be corrected, (x,.y) are the coordinates of the camera's

image centre and k 1 is the optical distortion coefficient. The experimental method followed to

obtain k 1 is similar to the one explained in [Koay, 2002]. In short, this is done by placing a

calibration pattern (such as a mesh of known dimensions) at a known distance in front of the

camera so that the camera's optical axis is perpendicular to the calibration pattern's plane.

After determining the camera's image centre coordinates Xt~Yr (this is where no distortion

occurs on the captured image), the value of the optical distortion coefficient k 1 is found by

121

trial-and-error. This is done by changing the value of k, until the corrected image displays the

calibration pattern undistorted. For the images captured by the camera in this project k, was

found to be 6.5E-6.

Inverse perspective mapping is applied to the optically calibrated camera image to produce a

top view (or "eagle's eye view") of the scene that the robot is facing. However, this is a

pseudo-view because it can only show true geometrical information of objects existing only on

one plane. For the purposes of this project, the road surface plane is chosen to be consistent

with the true top view of the scene. All three-dimensional objects appear distorted in this view

(Figure 6-3(b)).

122

(a) (b)

(c) (d)

Figure 6-3: Illustration showing how inverse perspective transformation is performed on

the robot's camera image. (a) Shows an example of an optically calibrated camera image,

(b) shows the result when inverse perspective mapping is applied to (a). Note the missing

information due to the sampling effect in (b). In (c) the missing information is

interpolated using neighbouring pixels containing information. (d) is the part of (c) used

by the primitive procedures for further processing.

123

This distortion occurs because the inverse perspective transform takes as input a two-

dimensional image (the camera image). Therefore only one plane (out of the infinite possible)

can be selected to be consistent with the real world. In this project the road plane is selected

for this purpose. The following equations describe the inverse perspective mapping function:

1i
d = h · tan - - 0 + arctan

2

(Ye- y)·J2·(1-cos(a))

I ·cos(a)
Jo 2

x-xc .,j 2 2 (/3) e =--·2· h +d ·tan -
/.., 2

(6-2)

Where (d, e) are the world coordinates of a point represented by the camera image coordinates

(x,y). Angle 0 is the tilt angle of the camera, (x,,yJ are the coordinates of the camera image

centre, a and /3 are, respectively, the camera's vertical and horizontal maximum angles of view

and h is the distance between the camera and the ground plane.

Notice that the height and inclination of the robot camera are the two parameters that define

which plane (in the real world) will be geomerrically consistent with the top view image after

the transform is applied.

Considering the road surface plane, notice that pixels in the lower part of the camera image

correspond to visual information in the plane closer to the robot. Likewise, pixels at the top

part of the camera image correspond to visual information further away from the robot

(Figure 6-4).

124

Camera image

Figure 6-4: Diagram showing the correspondence of pixels on the image plane with pixels

on the ground (or road surface) plane.

Because of the digital nature of the camera image, the inverse perspective mapping transform

does not have information for areas of the world in-between pixels of the camera image. Due

to this reason, discontinuities appear in the resulting top view image (see Figure 6-3(b)).

Notice that these discontinuities are larger at the top of the image. This is because the

corresponding world distance between two adjacent pixels in the camera image is larger at the

top of the camera image than at the bottom.

In order to improve the top view image, the discontinuous areas are interpolated using

information from their most adjacent pixels that contain visual information. The result of this

interpolation is shown in Figure 6-3(c). Figure 6-3(c) is likely to be a more "faithful"

reproduction of the real world in areas closer to the robot rather than further away from it.

125

This is because the sampling at the bottom of the top-view image is less severe than at the top

and therefore any interpolations at the bottom of the image are likely to be more accurate.

Using the whole of Figure 6-3(c) would take a lot of computational time to perform future

image processing. Furthermore, the robot does not require visual data as far as Figure 6-3(c)

extends since ir will not be able to move that far in one go because of its accumulating

odometric error. Therefore a smaller section of Figure 6-3(c) is used for the purposes of

further image processing. This has dimensions 100x100 pixels and it is the lowest part of

Figure 6-3(c). This is shown in Figure 6-3(d). The scale of this is 0.003330m/pixel. This means

that the robot uses only visual information consistent with its plane of motion and its useful

view extends as far as 0.333m away from its position. From this point onwards this image

matrix will be referred to as the "top view image".

The two pre-processing steps described above (i.e. optical calibration and inverse perspective

transform) are always performed on every new image captured by the robot. In order to save

computational time equations 6-1 and 6-2 are used to produce a "transformation lockup

matrix". This matrix is of the same size as the top view image and contains in each element

the coordinates of the pixel in the raw image that needs to be copied to the corresponding

location in the top view image to achieve both pre-processing steps.

126

6.2 Detection of road features ustng image template

matching

In this section, the method for locating road layout features mentioned in route descriptions is

described. Such features include left/ right turnings, t-junctions, roundabout entries/ exits, road

ends, road bends and crossroads.

In order for the robot to navigate successfully to its destination, it needs precise location

information of any landmarks mentioned in the route description. In most cases the robot

must move to the landmark's location and perform a manoeuvre. For example to "rum left at

the crossroads" the robot needs to move to the centre of the crossroads and rotate left to face

the new direction.

In the example given above the precise location of the crossroads is not explicidy given by the

user and therefore it has to be determined by the robot during the execution of the road

instruction. To do this, the robot needs to first identify the road feature (the crossroads) and

then select a point on the feature to navigate to (centre of the crossroads). Then it needs to

perform the requested action (rotate left).

To identify road layout features in this project a simple form of template matching is used.

Section 6.2.1 explains briefly what is template matching and refers to previous research in this

area. Section 6.2.2 presents the templates of the template matching method used in this thesis,

section 6.2.3 explains the template matching procedure and section 6.2.4 describes how the

127

template matcl:llng method is used in the primitive procedures to achieve successful robot

nav1ganon.

6.2.1 Template matching

Template matcl:llng is a method that falls under the broader scope of image matching or image

registration. Image matching is a well researched filed spanning over the last forty years (see

[Rosenfeld, 1969], [Niblack, 1986], Oain, 1989] and [Gonzales and Woods, 1992]). The aim of

image matching techniques is to obtain a measure of similarity (or difference) between two

images. One of the images (usually called the reference image) is geometrically transformed so

that each point in it can be mapped to a point in the other image. This transformation can

involve rotation, translation and scaling of the reference image. For each such transformation

a similarity (or difference) value is calculated based on the properties of the overlapping

regions in the two images.

The method of calculation of the similarity (or difference) measure between the two images

depends on several factors such as the area of application of the image matclllng operation,

the available computing power, the required precision of the result, the available image

information etc.

A comprehensive review of image matclllng techniques and examples of the wide spectrum of

applications where the different approaches are used can be found in [Brown, 1992] and

[Aschwanden, 1992].

128

Template matching is one variation of image matching. In template matching the reference

image (or template image) is an image of an object of interest, which is sought in the main

image. A sufficiently good match of the template in the main image reveals the presence (and

location) of the object represented by the template in the main image (see [Rosenfeld and Kak,

1982], [Pearson, 1991] and [Pratt, 1991]).

In this thesis template matching is used to locate road layout features in the robot's view. The

templates used in this method are pre-constructed images of road layout features. These are

presented in the following section.

6.2.2 Road feature templates

The templates used in this thesis are binary images (indicating road and non-road regions) of

local road surface features drawn at the same scale as the short-lived map. Fifteen templates

are used by the primitive procedures. They are shown in Table 6-1.

129

(a)

(f)

(k)

..
(b)

(g)

• • (I)

(c)

(m)

...
(d)

(i)

(n)

• •
• • (e)

(o)

Table 6-1: The templates used for the template matching method. Light grey colour

indicates road-like areas and the black colour represents non-road areas. The templates

shown are used to find: (a) straight road, (b) end of road, (c) left and (d) right turnings, (e)

crossroad, (f) left and (g) right bends, (h) t-junction, (i) roundabout entry, (j) clockwise

and (k) anti-clockwise curved road in roundabout, (l) left and (m) right roundabout exits,

(n) left and (o) right 90-degree turns.

In searching for a road layout feature mentioned in a route instruction the associated template

image is matched against the road surface map of the top view. The road surface map is a

binary image showing road and non-road regions in the front vicinity of the robot (Section 6.3

explains how the road surface map is created). A good matching position of the template on

the road surface map provides the location and orientation of the road feature, which are vital

for the successful execution of the route instruction.

130

Note from Table 6-1 that some template shapes are more generic than others thus covering a

range of possible road layout features described the same way in natural language route

instructions. For example the right turning template (Table 6-1, image (d)) represents a range

of right turnings from approximately 45 to 135 degrees to the direction of the road. This is

illustrated in Figure 6-5 for three angles (45, 90 and 135 degrees to the main road).

Figure 6-5: Template (d) of Table 6-1 is used to represent a range of possible right

turnings at different angles to the main road.

Where the thick black lines in the figure represent the edges of the road.

The following section describes how the template images are used by the primitive procedures

in order to locate the road layout features mentioned in route instructions.

6.2.3 The template matching procedure

Each template is associated with a pivot point and a "new direction" vector. These are shown

for some templates in Table 6-2.

131

•
• (a) (b) (c) (d)

Table 6-2: Pivot point (dot-centred circle) and direction vector (arrow) for some of the

templates.

Translation and rotation of the template during the matching process is done with reference

to its pivot point. The pivot point of the matching template is mapped into real-world

coordinates and this becomes the next waypoint for the robot. The direction vector indicates

to the robot the direction it must turn to, after reaching the template waypoint, in order to

keep facing the road ahead.

While searching for the best matching position, the road edge image is displaced and rotated

(vector [xzJ,rfJ]) so that its pivot point scans the road surface map image. Figure 6-6 illustrates

one position of the template on the map image during the matching process. The road layout

feature sought in the example is the left turning.

132

Rotation range of
template on map

Road surface
map image

/

- Pivot point of template

Robot's position
on map

Figure 6-6: Illustration of one position of the template image on the road surface map

while searching for the best matching position.

Note that only the outline (in red colour) of the associated template is shown for clarity.

The matching process for each location and orientation (vector [xtJ,f/J]) of the template on the

road surface map produces a matching quality Q1• Variable Q1 is made from the sum of two

ratios:

1. The score, which is the sum of the matching road and non-road pixels in the two

images divided by the number of template pixels falling onto areas of the map where

information in available and

2. The confidence factor, which is the fraction of template area falling onto areas of the

map with road surface information.

Both, the score and confidence terms, are required to give an indication of how good a

matching position is. The score gives an indication of how "well" one image matches on the

133

other and the confidence gives an indication of how much image area (compared to the total

area of the template image) was considered to obtain the score. The bigger the area

considered, the more believable is the score value.

This is expressed formally by the following equation:

l: XOR(mP,t P) l:NOR(m~,t~)
Q (rp) = peT(x,y,tp)r.M + peT(x,y,rp)r.M

I x,y, "' I I "' ~NOR(mP,tP) ~tP (6-3)
peT(x ,y,tp)nM peT

m,m
1
,t,t 1

E {0,1}

Where pis a pixellocation in the overlapping area of the template and road surface map

images. Variables m and tare values of pixels in the road surface map image M and template

image Trespectively. Value 0 denotes no road, and value 1 denotes road. T(xtJ,t/J) is the

template image translated by (x,y) and rotated by t/J. Variables m' and t'are the information

masks of the map and template images where 0 denotes the presence of information (mask is

off) and 1 denotes no information (mask is on). The binary functions XOR (exclusive or) and

NOR (not or/inverse or) are used in equation 6-3 to avoid more complicated algebraic

expressions. This has been possible here because the images operated upon and their

information masks are binary.

The best matching position and orientation of the template is the one whereQ1 is maximum.

Equation 6-3 ensures that, for two configurations with equal score, the one with highest

confidence is the winner.

134

This is essentially no different than computing the sum of the absolute (or square) of the

differences between overlapping pixels in the two images and normalising over the

overlapping area between the two images. The aim would then be to find a template position

that would give a minimum rather than a maximum score. This method is described in

[Rosenfeld, 1969].

Because template matching is a costly operation as far as computer processing time is

concerned different methods exist to locate the best template matching position in a more

efficient manner. In this thesis a simple "hill-climbing" method described in [Rosenfeld and

Kak, 1982] is used to speed up the matching process. The method requires that the correlation

between the template and the map image contains relatively smooth and broad maxima. In

other words the matching quality between neighbouring template transformations in the

(xJ',f/J) space should vary in a relatively gradual manner. In order to find the best matching

position of the template, a crude search is performed initially using coarse steps of position

and rotation of the template on the map. The search is then refined for a more accurate

determination of the position and orientation of the best matching position. This is illustrated

in Figure 6-7.

135

Search
window

s

Position giving
the best matching

quality in (a)

(a)

Position giving the best
matching quality in (b)

(c)

Figure 6-7: Illustration showing how the matching of the template is performed on the

road surface map in order to save computational time. This starts with coarse scanning (a)

of the pivot point (of the template) in the map (1 in every 4 pixels shown in grey colour).

For the second step an area Sr (shown magnified in (b)) is selected for a finer scan (1 pixel

in 2) around the position that produced the best matching quality in the first scan. Each

side of 51 is equal to twice the scan step in (a). In the same way scan area 52 is selected

from (b). All pixels of 52 are scanned in order to give the best possible matching position.

Note that the saving in computational time for the example shown in Figure 6-7 is 88%.

Every template is associated with a minimum quality Q,mill· If the template matching quality Q,

is less than Q ,mill then it is assumed that a road feature associated with the template does not

exist in the robot's view. In the case illustrated in Figure 6-6 the best matching position gives a

matching quality above Q ,mi• indicating the presence of a left turning. The best position of the

template is shown in Figure 6-8.

136

Figure 6-8: The best matching position of the left turn template on the road surface map.

Note how the pivot point of the template indicates the next waypoint of the robot.

6.2.4 How template matching is used in primitive procedures

As described in section 5.1 the first task in the "action" function of every primitive procedure

(except the primitive "rotate") is to define the target (Figure 5-1 (b)). This is always a landmark

mentioned by the user which, when found by the robot, the primitive exit its "search-and-act''

loop and passes execution to the next primitive. This section explains how landmark searching

is achieved for road layout features.

In every iteration of the "search-and-act'' loop the robot searches for the target landmark in

its view. If this is not found, the robot moves a short distance along the road and repeats the

loop sequence again. If the target landmark is found the robot performs any possible target-

associated action(s) (see section 5.1) and the primitive procedure exits. The landmark to be

sought in the "search-and-act'' loop and its associated actions are decided in the beginning of

the primitive procedure from the parameters passed to the primitive. For example, when the

user says: "turn left at the t-junction", the target is the t-junction. The search-and-act loop will

exit if a successful matching position for the t-junction template (fable 6-1 (h)) is found. The

target associated actions are to:

137

1. Move to the waypoint mapped to by the template's pivot point

2. Turn to the new direction according to the template's direction.

3. Rotate 90 degrees to the left.

Different users in the corpus sometimes used the same words to refer to two different road

layout landmarks. For example in the following corpus segments:

"take a left turn at the junction" (u9_GC_HC)

"take a left turn" (u9_GC_HD)

"turn left'' (u24_GB_HD)

users were actually instructing the robot to turn left at a t-junction (see Figure 6-9). Note that

their instructions could have equally been valid for a left turning.

Figure 6-9: Users u9 and u24 were asked to explain a route starting from the Hospital (H).

Their first instruction referred to the t-junction the robot would meet.

138

For this reason, depending on the user's instruction and therefore the parameters passed to a

primitive procedure, a landmark sought in the primitive may be represented by a set of

possible templates instead of just one. In the examples given above it is not clear whether

user's u9 and u24 refer to a turning or a t-junction and therefore the target in the "turn"

primitive would involve finding a good matching position for either template (c) or template

(n) of Table 6-1. Each template would have its own associated actions, which would be

executed if the template succeeds.

When, after searching its view, the robot does not find the landmark it is looking for, it

follows the road it is on for a short distance before it searches again. Following the road is also

a task that involves template matching. For this purpose, the robot uses one of three

templates depending on its state, i.e. with reference to Table 6-1: if the robot is on a straight or

slighdy curved road, template (a) is used, if the robot is in the roundabout in a clockwise

direction, template 0) is used and if the robot is in the roundabout going round in the anti

clockwise direction, template (k) is used to follow the road. The template associated actions

with these templates are simply to:

1. Move to the waypoint mapped to from the template's pivot point.

2. Turn to the new direction according to the template's direction vector.

A video example showing the execution of the route instruction "take the second left" can be

found on the CD accompanying this thesis (see Appendix C). The example illustrates how

139

template matching takes place in real-time and also how localization and mapping (described

in the following section) occurs.

6.3 The use of a short-lived map

A short-lived map is a map of the immediate vicinity of the robot that is updated as the robot

moves in its environment. The map records previously seen visual information that goes out

of view as the robot moves. The dimensions of the map are 100 x 100 pi."<els (i.e. same size at

the top view image). The robot's position on the map is always in the middle of the bottom

edge and facing the top of the map (i.e. same as in the top view image). As the robot moves,

the map is translated and rotated to maintain this frame of reference. In the process, elements

of the map that reach its edge will disappear, thus the term "short-lived".

Two versions of the short-lived map are used, the first shows areas of the road surface and the

second shows the road edges. These versions are constructed using road surface and road

edge information filtered out from the top view. Details of how the road surface and road

edge images are obtained are given in section 6.4 and 6.5 respectively.

The purpose of constructing a "short-lived" map is twofold:

1. To be able to determine the odometric errors of the robot and

2. To compensate for the "dead angles" of the robot. These are the areas close to the

robot that fall outside its field of view due to the position and inclination of the

camera (see Figure 6-10).

140

Figure 6-10: Illustration showing the "dead angles" of the robot.

The line-shaded region in the figure indicates an area falling outside the field of view of the

robot. Visual information in this area is important because it is close to the robot's position. In

the example the right turning cannot be properly seen.

Every time the robot moves, it needs to know its new location compared with the previous

one. This is because it records and maintains in its memory the position and orientation of

landmarks (with reference to its own position and orientation) found earlier and which may

not be present in its view when it reaches its new location. The only way of knowing the

position of these landmarks is by adding to their position vector (position of a landmark

relative to the robot) the robot's motion vector (position of the robot's next waypoint relative

to the robot's current position) each time the robot moves, a process otherwise described as

"dead-reckoning,. The odometric error of the robot must also be taken into account for this

calculation to be accurate. This error is the difference between the motion vector and the

actual robot's displacement vector (see Figure 6-11).

141

Robot's position
before motion

Robot's position
after motion

Figure 6-11: Vector diagram showing the robot's actual displacement vector ":I', which is

the vector sum of the robot's intended displacement "e'' and the odometric error "r'' .

To be able to determine the odometric error the robot moves a short distance every time in

order to maintain in its visual field information that will enable it to connect its new view with

the previous one. A successful connection indicates the actual position of the robot (after

motion has taken place) that is used to calculate the odometric error.

The location (relative to the robot) of important landmarks is only maintained in memory for

as long as a primitive procedure call is executed. The reason why the location of landmarks is

memorized is only to avoid recognizing previously found landmarks of the same type and

considering them as new. For example when the user instructs the robot to "take the second

turning to the left", after the first left turning is found and although the robot moves a short

distance along the road, the first turning can still be visible in the map. Unless its location is

"remembered" there is a danger of recognizing it again, this time as the second left turning,

which would cause the robot to perform the wrong action. After the execution of the "turn"

primitive procedure in the example given above, there is no need to remember the locations

of the two left turnings and therefore they are cleared from memory.

142

When appending new visual information to the map, only the road edge information is used.

This is because the road edge is geometrically consistent between top view images (because it

is on the road plane) but also because the road edge allows for better accuracy in the matching

of new information on previous information on the map. The position where the new road

edge view matches best on the previous road edge view is used to append new road surface

information on the previously seen road surface data. The complete process of how this is

done is illustrated in Figure 6-12 and described below.

143

1

2

3

4

Figure 6-12: Series of figures showing how the "short-lived" map is appended with new

visual information and how, as a consequence, this localizes the robot. For an explanation

of how this is done see text below.

Figure 6-12 shows the state of the map before and after the robot moves (columns A and B

respectively). For these two moments in time, row 1 shows the raw camera image seen by the

robot, row 2 shows the corresponding top view, the road edge image and the road surface

image of the top view, row 3 shows the state of the road edge map and row 4 shows the state

of the road surface map. Each image in the figure is produced or manipulated in time in the

order indicated by the small letter under the image.

144

Before the robot moves, image (a) is captured and from its top view (b) the road edge and

road surface information is extracted (images (c) and (d) respectively). Assuming this is the

first rime the robot is going to move, the map contains no information and therefore the road

edge and surface information is simply pasted on the respective edge and surface map versions

(images (e) and (f) respectively). After the robot moves a new camera image is caprured (g)

and from it the top view is produced (h) from which the new road edge and surface

information is extracted (images (i) and G) respectively). This time the map is translated by the

motion vector sent to the robot so as to reflect the estimated new position of the robot. This

produces image (k). The difference between this estimated position and the actual position of

the robot is the error vector r (shown in Figure 6-11). The new road edge information (i) is

then matched against the shifted road edge map (k). This matching process is explained in

section 6.3.1. The position where the new road edge image (i) matches best on the road edge

map (k) in the example of Figure 6-12 is shown in image (l). Note that the brightness of the

two images is changed for clarity. The odometric error of the robot is equal to the

displacement and rotation of image (i) in order to match on image (k). This error vector is

then added to image (k) to produce the actual robot's position in the road edge map (image

(m)). Finally, the road edge version of the map is translated and appended with the new road

surface information so as to reflect the actual position of the robot (image G)) in the road

surface map.

145

6.3.1 The matching of new road edge data on the "short-lived"

map

Matching of the road edge image on to the road edge map is done with reference to the

robot's position on the top view image. As mentioned earlier this point falls outside of the

field of view of the robot camera. For the purposes of the matching operation described in

this section, this point will be called here the "pivot point'' of the road edge image. While

searching for the best matching position, the road edge image is displaced and rotated (vector

[xzJ,8!J so that its pivot point scans the map image in a search window (Figure 6-13).

Rotation range of
top view on map

Pivot point of top view
(robot's position in top view)

Map image

Top view
image

Search window

Estimated
position of robot

(after motion)

Robot's position
on map

Figure 6-13: Illustration of one position of the top view image on the map while searching

for the best matching position.

A matching quality 2 describes how the road edges of the two images overlap for each

position of the road edge image on the road edge map. Q2 is made from the sum of two ratios:

146

1. The score, which is the matching road edge pixels in the intersecting area of the two

images divided by the number of road edge pixels in the map image and

2. The confidence factor, which is the fraction of the road edge image area falling onto

areas of the map containing information.

This is formally expressed by the following equation:

(6-4)

m,m',n,n' E {0,1}

Where p is a pixellocation in the overlapping area of the two images. m and n are values of

pixels in the road edge map image M and road edge image N respectively. Value 0 denotes no

road edge, and value 1 denotes road edge. N(xJ, B) is the road edge image of the top view

translated by (xJ) and rotated by (} m' and n' are the information masks of the map and road

edge images where 0 denotes the presence of information (mask is off) and 1 denotes no

information (mask is on). The best matching position and orientation of the road edge image

is the one where Q2 is maximum. Equation 6-4 ensures that, for two configurations with equal

score, the one with highest confidence has the best match quality.

To save computation time and limit the risk of matching the new top view at the wrong

location, the search is limited to a small window defined on the map around the expected

position of the robot. The range of rotation of the top view for each match position is limited

147

to a small angle 8. The size of the search window and angle Bare set taking into consideration

the maximum odometric error of the robot

To avoid false matching of the road surface image on the road surface map in cases where

road surface data do not overlap, either because of bad image quality or because the robot has

previously rotated at a large angle and lost all previous information from it map, a matching

quality thteshold.Qz...,.. is used to set a minimum accepted matching between the two images. If

the matching quality Qz is less than then Qzmi• the new road edge image is appended on the

road edge map at the robot's estimated position thus neglecting the odometric error.

6.4 Road surface detection

A pre-requisite of the template matching method (described in section 6.2) is a road filtered

version of the top view image. This is simply a binary image showing only road and non-road

information. An example of a top view image and its corresponding road filtered version is

shown in Figure 6-14.

(a) (b)

Figure 6-14: (a) An example of a top view image and (b) its corresponding road filtered

version. White pixels denote road areas and black pixels denote non-road areas.

148

To produce Figure 6-14(b) from Figure 6-14(a) a simple colour filtering technique is used.

This is explained in the following section.

6.4.1 Colour flltering using the chromaticity vector

The colour of the road on the miniature model town is a uniform shade of grey. It does not

however appear uniform or consistent in the camera image, and subsequendy in the top view

image, because of several reasons. These are:

1. Automatic white balance and aperture control of robot camera.

2. Casting of shadows from other objects.

3. Casting of colour shadows from objects and the robot.

4. Changing colour and intensity of natural sun light entering through the windows of

the lab during the day.

5. Changing light conditions in the lab.

The white balance and aperture control of robot camera are changed automatically by the

camera's circuit depending on the composition of the image. White balance is the method

used by the camera to calibrate the colour values of its output image. This is done using a

reference colour from the image and interpolating to find the other values. The problem arises

when the reference colour changes with the composition of the image.

149

Aperture control is used in order to maintain constant the average intensity of the image

output by the camera. This again creates a problem because changes in the intensity of a pixel

are reflected in its RGB values.

The effects on the apparent road colour differences were decreased significantly by using two

halogen light sources (300W each) diffused by the white ceiling of the lab on top of the

miniature town model. Also, external sun light and lab lighting was blocked as much as

possible using white sheet screens on the three sides of the model town (Figure 6-15).

Figure 6-15: Improvements in order to improve illumination constancy in the miniature

model town.

150

Simple chromaticity filtering was then be used to discriminate the colour of the road.

Chromaticity is an intensity invariant description of colour. It is a two-dimensional vector [C,

CJ derived from the RGB colour coordinates by the following equation:

(6-5)

The chromaticity (or normalized RGB) colour space was used instead of the HSI (Hue,

Saturation, Intensity) space because of practical difficulties. Grey colour (i.e. R=G=B=X

where X is in the range (0, 255]) is represented in the HSI space by H=O, 5=0 and I= X. This

is confirmed by the following equations (taken from (Ballard and Brown, 1982]), which are

used to convert a colour representation from the RGB space to the HSI space:

H =cos-'((R-G)+(R-B) l
2~(R-GY +(R-BXG-B)

S=l-
3

(min(R,G,B))
R+G+B

1
I =-(R+G+B)

3

Although the colour of the road was grey, in practice, image noise and other reasons

(6-6)

mentioned at the beginning of this section, caused changes to the three channels of the RGB

representation so that the relationship R=G=B (for the road colour) was broken in the image

captured by the camera. It was therefore not possible to detect the existence of the road

151

colour using the criterion H=O, 5=0 and I= X as hue was grater than 0 when the relationship

R=G=B was not true.

Filtering to produce Figure 6-14(b) from Figure 6-14(a) is done by setting to white

(RGB=[255, 255, 255]) all pixels on the top view image whose chromaticity falls within a

range of values about a mean value Cm,_,. These are considered to be the road pixels. All other

pi.xels are considered to be non-road pixels and are changed to black (RGB = [0, 0, 0]). C.,., is

a value that is initially set to [1.0, 1.0] (chromaticity of grey) but continuously changed, each

time a new road @tered image is produced, to the average chromaticity value of the road

pi.xels found in the image, thus bootstrapping it to any changes to the apparent colour of the

road. Figure 6-16 illustrates how bootstrapping takes place between two successive image

captures.

152

0.1 1.0 10.0 0.1 1.0 10 . 0
c, c,

(a) (b) (c) (d)

10. 10 .

c. 1.

0 .

0.1 1.0 10 .0 0.1 1.0 10 . 0
c, c,

(e) (f) (g) (h)

Figure 6-16: Series of images illustrating how the road surface colour is bootstrapped. For

a detailed explanation of how this is done see text below.

Figure 6-16 shows the chromaticity distributions of two successive top view images In (Figure

6-16(a)) and In+t (Figure 6-16(b)). With reference to Figure 6-16, images (b), (c) and (£), (g)

show the chromaticity distributions ofln and In+t respectively. The cross in (c) indicates the

average chromaticity C,,,a•(n·IJ of the road pixels found during the road surface filtering of top

view image In-t (i.e. the one used before (a)). The square in the (c) indicates the chromaticity

range of values, which are considered as road colour in In based on their proximity to C,a,(n·IJ"

Likewise the cross in (f) indicates the average chromaticity value C,,a•(•J of the road pixels

found in top view image In (i.e. the white coloured pixels in (d)). In the next top view image

(In+1), the range of chromaticity values considered as road surface in the image is shown by the

square in (g). These values are based on their proximity to C,,,a•(•J"

153

Notice that from one top view image to the next, the chromaticity region specifying the road

colour in the top view image shifts, thus following changes in the apparent road colour.

6.5 Road edge detection

The road edge information is used to accurately append new visual information on "short-

lived" map (explained in section 6.3).

Road edge information is extracted from the top view image using an illumination-invariant

approach similar to the one suggested in [Broggi, 1995]. This approach discriminates the white

lines (toad ma:rkings) along each side of the road by convolving a two-dimensional low-high

low intensity image (shown in Figure 6-17) with the top view image.

Figute 6-17: The high-low-high intensity profile kernel (magnified by a factor oflO) that is

convolved with the top view image to discriminate the road edge lines.

The high intensity span of the image is equal to the width of the road markings in the top view

image. The image in Figure 6-17 is convolved with the top view image at 8 different angles in

the range from 0 to 180 degrees (i.e. every 22.5 degrees) in order to find the road edges at all

orientations. A pixel in the top view image is considered to be a road-edge pixel if the

154

convolution with the kernel in Figure 6-17 is above a minimum value for at least 1 and at most

2 angles of the kernel. These are called "positive convolution results". This ensures that only

lines are detected in the top view image. An example of the resulting road edge image is

shown in Figure 6-18.

Figure 6-18: (a) An example of a top view image and (b) its corresponding road edge

image.

The combination of the convolution kernel angle step and minimum/ maximum positive

convolution results was determined experimentally while trying to achieve minimum

computational time Oess than lOOms) for producing the edge image and satisfactory detection

of the road edges in order to be used in later processing (see section 6.3).

6.6 The need for a state variable during robot navigation

Because primitive procedures exist in separate module files they cannot directly pass

information between each other when they are executed. This posed a problem in cases found

in the corpus when, while executing a route description, the course of action of one primitive

depended on the state at which the robot was left in by the previous primitive. For example,

by "take the first exit on your left", users sometimes mean "take the first left exit off the

roundabout" but they can also mean "take the first left exit off the road you are on". The two

155

meanings require different actions to be performed as the robot uses different templates to

identify a roundabout exit and a road exit (or turning). Therefore, information as to whether

the robot was instructed to enter a roundabout in a previous instruction is required to decide

which course of action the "turn" primitive must take in the above example.

To overcome this problem a file is used as a way of exchanging state information between

primitive procedures. 1bis file is interrogated by state-dependent primitive procedures upon

entry and modified by all primitive procedures upon exit to reflect the state the robot is left in

after the execution of each primitive.

6.7 Detection of non road-layout objects

This section explains how the location of non road-layout objects is found. Examples of non

road-layout objects in the miniature model town are buildings, trees, the bridge etc. (see

examples in Figure 6-19).

156

Figure 6-19: Examples of non road-layout objects mentioned in the corpus: (a) signed

building, (b) unsigned building, (c) the bridge, (d) trees.

To enable testing of the primitive procedures, identification of such objects was simplified by

placing a coloured strip of known dimensions (9 x 2 cm) next to them (Figure 6-20).

157

Figtue 6-20: Examples of placing a coloured market in front of objects to be able to locate

them.

When a user refers to a non road-layout landmark, the target in the primitive proceduxe is

associated with finding the landmark's coloux strip instead of the landmark itself. The template

matching method described in section 6.2.3 is used to locate the colouxed marker. The only

template used in this case is a rectangle with the dimensions of the landmark's marker on the

top view image. This template is matched against the top view image filtered for the coloux of

the marker (Figure 6-21).

158

(a) (b) (c)

Figure 6-21: (a) An example of a camera image, (b) the corresponding top view image and

(c) the top view image filtered for the colour of the marker of the landmark sought.

Recall in section 6.2.3 that in the case of road layout feature landmarks, the pivot point of the

winner template is projected onto the real world to become a waypoint for the robot. In the

case of non road-layout objects a different step needs to be taken, after finding the object's

marker, in order to establish the waypoint of the robot. In this step a position on the road

next to the landmark must be determined and used as a waypoint. This is because when users

refer to non road-layout objects, as a navigational landmark in a route instruction, they are

actually referring to their projected location on the road. This is a point in an area of road

closest to the object as viewed by the robot when approaching the object. For example, in the

utterance " follow the road to safeway" the location of "safeway" is different from the location

that the robot must move to in order to execute the task correctly (Figure 6-22).

159

Figure 6-22: Illustration showing the location that the robot must reach to execute the

instruction: ''follow the road to Safeway" in comparison with the actual location of the

"Safeway" building.

This is different from the case when a user says: "follow the road to the crossroad".

To find the road point representing the reference to the landmark, the number of road pixels

on the two long sides of the coloured marker is compared The side found to contain the most

road pixels is taken to be the road side and the road waypoint representing the landmark is

found on that side on a line normal to the long side of the marker and at a distance equal to

half the road width (Figure 6-23).

160

Landmark

Area A

Road----
surface

Coloured
marker Distance equal to

half the road's
width

Location on road
representing the

landmark

Figure 6-23: Illustration showing how the road waypoint representing a reference to a

landmark is found.

The pixel regions considered on the two sides of the marker are square with side dimensions

equal to the width of the road in the top view image.

6.8 Spatial references to landmarks

In almost all cases in the corpus, subjects used a robot-centred frame of reference when they

mentioned other landmarks in their route descriptions. Two types of landmark references

were met in the corpus:

1. References implying an instruction to the robot to move in relation to a landmark. For

example: "continue forwards until you come to a junction" (u9_GC_HL), and

161

2. References that were used to inform the robot of a landmark's location. For example:

"you got pc world on your right" (u20_GB_EC).

The second case above is further resolved in two cases:

2a. The landmark mentioned is not the final destination. This type of reference is usually

used to assure the robot that it is following the correct road and

2b. The landmark mentioned is the final destination of the robot.

In all cases, the robot needs to locate the landmark referenced by the user. Locating a

landmark means establishing a road position, which will represent the landmark. This is

achieved as described in sections 6.2 and 6.3 depending on the type of landmark (road layout

fearure or non road-layout feature).

In case 1, after locating the landmark, the robot needs to move in order to satisfy the relation

between itself and the landmark. The robot's action to move is part of the target associated

actions in the primitive procedure (see sections 5.1 and 6.2.4). In the example utterance:

"continue forwards until you come to a junction", once the junction is found and its road

location is established the robot moves to that location.

In case 2a the user only informs the robot of a landmark it will meet along the road as a

confirmation that the robot is on the right ttack. No action is taken by the robot once the

landmark is found in this case. In fact, there is no problem in completely discarding such

references as users always use them to refer to landmarks along the road that the robot is

162

following. An exception to such references is when the user refers to the destination landmark

(case 2b). In this case the robot uses the reference to move to the destination landmark even

though there is no explicit instruction from the user to do so. For example in the corpus route

description u1_GA_.MD the destination is Safeway (D) and therefore the final utterance:

"Safeways is the next building on your right hand side" is actually treated as the instruction:

"follow the road to Safeways which is the next building on your right hand side".

In Table 6-3 all the words in the corpus indicating a relation between the robot and a

landmark are listed along with examples of their occurrence. An explanation of the action of

the robot once the landmark is found is also given. Note that this action is only performed

when the reference falls in categories 1 and 2b above.

163

Relational
Example form the corpus Robot's action

expression
"across the bridge" The robot moves on the

across
"across the crossroads" landmark's road location.

after
"after you pass the university'' The robot moves on the
'1ake a left hand turn after the post office" landmark's road location.
'1escos a short way along that road" The robot moves on the

along "you will find the hospital a short way along landmark's road location.
that road"

at
"exit the roundabout at the third exif' The robot moves on the
"you arrive at the car park" landmark's road location.
"before reaching the university main door take the No action from the robot once

before
road to your righf' the landmark is found.
"just before the post office on the left hand
side turn letr'

onto
"across the crossroads onto a roundabour· The robot moves on the
"go straight onto the roundabour· landmark's road location.
"again turn left over the bridge" The robot moves on the

over "come to another junction if you go straight over landmark's road location.
that"

past
"past the university of Plymouth" The robot moves on the
"past pc world" landmark's road location.

to
"come to a junction" The robot moves on the
"follow on to the roundabout" landmark's road location.

towards
"you 11 need to go forward towards the The robot moves on the
roundabout" landmark's road location.

until
"forwards er until you come to tescos" The robot moves on the
"continue forwards until you come to a junction" landmark's road location.

in front of
"it should be right in front of you" The robot moves on the
"in front of you is er a crossroads" landmark's road location.

opposite
'1he car park is directly opposite" The robot moves on the

landmark's road location.

left of
"the post office is directly on your left hand side" The robot moves on the
"and then you reach boots which is on your left" landmark's road location.

right of
"pass a park on your right" The robot moves on the
"safeways should be on your riqht" landmark's road location.

Table 6-3: Words m the corpus that mdicate a relanon between the robot and a landmark

along with an explanation of the robot's final location with respect to the landmark's

location.

Note that when the user instructs the robot to move "after", "past'', "over" or "across" a

landmark the robot actually stops on the landmark's road location and not past it as suggested.

This is because there is no information as to how far past the landmark it should move before

it stops.

164

In very few cases in the corpus the relation ''before" is used. One such example is in

u16_GA_HC: ''before reaching the university main door take the road to your right". This is

illustrated in Figure 6-24.

(a) (b)

Figure 6-24: (a) Camera view and (b) the corresponding top view before the ''university"

when the robot follows the instruction: ''before reaching the university's main door take

the road to your right''. Notice that when the ''university's door'' is visible, the "road to the

right'' is still within the robot's view.

The problem here is that the order in which the two landmarks (the "university's main door"

and the "road to the right") are referenced in the route description is different to the order

they will appear to the robot at it moves along the road. The robot needs to locate the further

away landmark before it can start searching for the closer one. This is why, in this example for

instance, as soon as the "university's main door" is found the robot does not move any

further and starts searching for the "road to the right''. In all such cases found in the corpus

the two landmarks mentioned were close enough to avoid the danger of passing one while

searching for the other.

165

6. 9 Summary/ Contributions

This chapter described how image template matching is used in the robot's primitive

procedures in order to detect road layout features mentioned in route descriptions. The

interesting feature of the method proposed here lies not in the image processing technique

itself (as template matching is a well researched area) but in the fact that it is driven by the

content of natural language instructions. The templates used in each search operation are

derived from the natural language instruction given by the user. Furthermore, the method

proposed here follows a user-centred approach in that the template images shown in Table

6-1 were created solely by studying the collected corpus of route instructions and the

environment that these referred to.

A simplified method of "image mosaicing" is also described in this chapter in order to create a

"short-lived" map of the robot's immediate locality. The odometric error of the robot can be

determined as a result of appending new visual information on the map every time the robot

moves to a new position .. The odometric error is used to re-localize the robot after dead

reckoning is used to estimate its position and thus re-localize the position, with reference to

the robot, of any significant landmarks stored in the robot's memory. Apart from re-localizing

the robot the "short-lived" map is used to compensate for the "dead-angles" of the robot

As mentioned in section 2.4 there is an error produced in the image-sequence mosaicing

process due to image noise. This problem creates a particular challenge in cases were

continuous incremental mapping of cyclic environments is required because it increases with

the number of images in the sequence and therefore with the distance travelled by the robot.

166

The map created as the robot moves in this project only displays visual information in the last

2 images captured by the robot. For this reason the error due to linking the two images is

present only once in the map. As mentioned in [Unnikrishnan and K.elly, 2002a) the maximum

value of this error is equal to the world distance represented by 1 pixel in the map image. In

this project the maximum error is 3.33mm. This value is small when compared with the size of

landmarks in the miniature town and can be safely neglected.

167

Chapter 7

7 The evaluation of the primitive

procedures

The IBL system is comprised of several functional units. Errors can occur at different stages

from the time the user speaks to the time the robot starts to follow the route instructions.

These errors fall into four main categories:

1. Speech recognition errors (caused by the Dialogue Manager).

2. Grammatical and syntactical analysis errors (caused by the Dialogue Manager).

3. Errors in the translation from the DRS (Discourse Representation Structure) to

primitive procedures or previously learned procedures (caused by the Robot Manager).

4. Errors during the execution of the route instructions (caused by the primitive

procedures).

This chapter is concerned with the last type of errors, in the list above, which are related to

the work presented in this thesis.

168

To determine the performance of the individual components and eventually the complete IBL

system when faced with new route instructions, the collected corpus was split in two equal

sets. One to be used for the development of the system (development set) and the other for

its evaluation (evaluation set). Appendix B lists the route descriptions in each of the two sets.

In this chapter, the method for evaluating the primitive procedures is described.

To develop and test the primitive procedures two steps were followed:

1. Finalization of the specifications of the primitive procedures using the development

set of the corpus.

2. Testing of the performance of the primitive procedures with the evaluation set of the

corpus without changing their specifications.

As mentioned earlier in section 4.3.1, after the collection of the corpus and the initial

specification of the primitive procedures, each route description collected was manually

translated into its primitive procedure calls. An example of one such translation is given in

Table 4-5.

For the purpose of developing and evaluating the primitive procedures, it was assumed that

for every route description the robot would have no prior knowledge, i.e. the robot's

knowledge pool would only contain the primitive procedures. As mentioned in section 4.1,

during the corpus collection procedure each subject gave six route descriptions and was

encouraged to refer to previously explained routes if he/ she wanted. Any references to

previously explained routes by the users were discarded during the development and

169

evaluation phases and the robot was placed at a point where the route description was explicit.

An example of such a case is the route description in Table 4-S(a) and illustrated in Figure 4-3.

Figure 4-3 shows that the user assumed that the robot knew the way to the roundabout

because he/she explained this in an earlier route description. During the primitive procedure

testing of route description u7 _GC_CX the robot was placed in front of the roundabout

(where the solid red line begins in Figure 4-3) and the translation in Table 4-S(b) was executed.

The aim during the development step of the primitive procedures was to execute each

manually translated route description in the development set until the robot performed

successfully in all cases. The success of the robot was considered as per primitive procedure

call and not per successful route (whether the robot did or didn't reach the destination)

although both results are presented here (sections 7.1 and 7 .2). This is because route

descriptions could be unsuccessful because of wrong or ambiguous route instructions given by

subjects. This is further discussed in section 7 .1.

For the testing phase each translated route description in the corpus evaluation set was

executed. During this phase no changes were made to the specifications of the primitive

procedures. Success results were recorded at route description level and at the primitive

procedure level. These are presented, along with a description of their significance in the

evaluation process, in sections 7.1 and 7.2 respectively.

Video sequences showing the robot executing two route descriptions (u13_GA_CL and

u19_GB_EG) in the evaluation set can be found on the CD accompanying this thesis (see

Appendix C).

170

7.1 Results per route instruction

A route description was considered to be successful if, after the execution of the associated

manual translation file, the robot reached its destination. During the development and testing

of the primitive procedures, the robot could fail to reach its destination because of one of rwo

reasons:

1. Either due to a primitive procedure failing or

2. Due to a wrong or ambiguous route description given by the subject.

During the development phase of the primitive procedures, route failures due to the primitive

procedures were cause for modifying the programs of the primitive procedures. However, any

failures due to wrong or ambiguous descriptions could not be corrected and were executed

until the point where the user's mistake or ambiguity occurred. During the evaluation phase

no modifications were made to the primitive procedures. Any route failures either due to the

primitive procedures or the descriptions of the users were simply recorded. The errors that

occurred during this phase are described in section 7 .1.2.

Table 7-1 presents the route success results for the development and evaluation sets when

each route was executed from the manual translation files.

171

Development set Evaluation set
Total route

72 72 descriptions
Executed route

70 71 descriptions
Successful 39 (55.7%) 45 (63.4%)

Unsuccessful 31 (44.3%) 26 (36.6%)
Table 7-1: Route descnption success results dunng the development and evaluation of the

primitive procedures. Note that the percentage values indicate the proportions of the

executed route descriptions and not the total route descriptions.

As it will be further discussed in this section and section 7.2, failures in route descriptions are

mostly due to the route descriptions being wrong or ambiguous and not because of primitive

procedures failing. For this reason the two figures (44.3% for the development set and 36.6%

for the evaluation set) in Table 7-1 should not be compared because the route descriptions in

each of the two sets were selected at random.

Two routes in the development set and one route in the evaluation set were not executed by

the robot because the corpus subjects in these cases referred to the destination as being along

a previously explained route. Following the same procedure for testing as with all route

descriptions, that would mean simply placing the robot at the destination without needing to

execute any primitive procedure call.

7 .1.1 Human performance tests

To find out how humans would perform in driving the robot while following the route

instructions in the evaluation set and thus to set a performance baseline for the system, 12

subjects were invited to drive the robot Each subject was allocated 6 route instructions at

172

random from the evaluation set. Subjects were allowed to listen to each route instruction as

many times as they wished and they were asked to take notes for each route description. They

were then asked to drive the robot to its destination for each of the six routes using only their

notes. They drove the robot using a keyboard while being seated in front of a PC by looking

only at the camera image of the robot. During the experiments subjects were asked to "think

aloud" both when listening to the route descriptions and later, when driving the robot. This

was done so that any doubts or inferences they were making could be recorded. A camcorder

was used to record all the experiments to allow for a more careful assessment of the results at

a later stage.

Table 7-2 presents the performance of the robot compared to that of the human subjects for

the routes in the evaluation set.

Robot Human subjects
Total route

72 72 descriptions
Executed route

71 72 descriptions
Successful 45 (63.4%) 60 (83.3%)

Unsuccessful 26 {36.6%) 12 (16.7%)
Table 7-2: Route descnption success results for the evaluanon set when executed by the

robot and by the human subjects.

Table 7-3 further categorizes the 26 cases where the robot fails in the development phase and

compares the corresponding performance of the human subjects in the same route

descriptions.

173

Reason for robot's failure to Number of robot failures In Corresponding failures
reach destination category of human subjects

New primitive procedure call 2 0
Failure of primitive procedure 2 1
Ambiguous route descriptions 5 1
Wrong route descriptions 17 8

Table 7-3: Analys1s of the 26 cases where the robot fails to reach Its destmanon m the

evaluation phase and comparison with the performance of human subjects in the same

routes.

As Table 7-3 shows, human subjects were more successful in driving the robot while

following the route descriptions in the evaluation set. The reason behind this is that humans

were able to make inferences and assumptions in order to clear ambiguities or correct

mistakes in route instructions given in the corpus. This happened, in some occasions, because

subjects were able to see the destination landmark before following all instructions in the

route description and thus they were able to clarify any ambiguities in the last route

instructions. In other cases, the layout of the road ahead would suggest what the instructor

possibly meant and this would enable the human driver to make corrections "on the fli' while

driving the robot, rather than stricdy following the written notes he/she took during listening

to the route instructions. Finally, if no visual clue was able to correct any ambiguous

instructions, subjects followed one (the most likely to be correct) of two or more possible

alternatives, which led to them successfully reaching the destination.

In the following section each category of failures by the robot (shown in each row of Table

7-3) is described in more detail. Route failure examples taken from each category are also

illustrated and explained.

174

7 .1.2 Error descriptions

In 2 cases in the development set users requested a new action (not previously requested in

the development set) from the robot. The route description given by the user and an

illustration of the route in each case are presented in Table 7-4.

a u5_GC_EH

"er when you arrive at the car park if you cross
the car park and turn right you turn right and you
will find the hospital a short way along that road

in front of you"

b u6_GC_CL

"okay erm go to the junction with the university
of plymouth opposite you the building and pc

world on your left get to the roundabout with the
tree in the middle take the first exit on the left

erm carry straight on you 11 go over a bridge erm
you 11 come to another junction if you go

straight over that you 11 have the post office on
your right if you take the first right after the post

office and bear round to the left as the road
travels round there you 11 and the queens pub

will be on your left"

Table 7-4: Route descriptions and illustrations of the two cases where the robot fails to

complete a route description in the evaluation set because of new primitive procedure

calls. Note that the solid red line indicates the road described by the user in each case and

the dashed red line indicates a route implied by the user.

In the first case (fable 7-4(a)) the user asked the robot to "cross the car park". In this case the

"cross" primitive procedure is called with its "object_!" parameter initialized to "car_park''.

175

Because this value is not among the allowed values "object_1" can take in the specific

primitive, the procedure rerurns a "parameter value error" when called.

In the second case (Table 7-4(b)), the user asked the robot to "bear round to the left" at they-

junction. In this case no primitive procedure exists to accommodate this action because it is

first met in the evaluation set.

Finding new or unmet primitive procedures in the evaluation set was expected after the

functional analysis of the corpus (described in section 4.3.1). The graph of Figure 4-4 shows

that on average two new primitive procedures appear between 72 descriptions (size of

development set) and 144 descriptions.

In two occasions the robot fails to reach its destination because of primitive failure (Table

7-3). In the first case (illustrated in Table 7-S(a)) the subject asks the robot in succession to

pass two landmarks, which are opposite each other: "go past derrys and the grand hotel". The

"follow_road" primitive procedure, which is called twice, fails to find the "grand hotel"

because once it is at "derrys" the "grand hotel" is not in the visual field of the robot as seen by

the illustration in Table 7 -S(a).

176

a u19_GB_EH

"okay you want to go to the hospital and to get
there you want to do the first right

down the road from where you are to go past
derry s and the grand hotel and then you want

to work your way round the bendy road there all
the way to the end past the car park on your

right until you get to a t junction again and then
this time you want to turn right and then carry

down on down the road and the first on the right
er you come to another junction and the first on
the right you want to er turn into and then go all
the way down that road past the car park again

from the other side and then you should see
right at the end the hospital big grey building"

b u24_GB_HL

"move forward to the white dotted line turn left
turn first exit right turn first exit right stop by

queens pub left end"

Table 7-5: Route descriptions and illustrations of the two cases where the robot fails to

complete a route description in the evaluation set because of primitive procedure failures.

The second case of primitive failure is presented in Table 7-S(b). In this case a wrong

matching of the left turn template (shown in the illustration of Table 7-S(b)) causes the robot

to follow the wrong road after the left turn.

In 5 route descriptions of the corpus users gave ambiguous instructions that caused the robot

to fail to reach its destination (fable 7-4). It has to be noted here that the term "ambiguous" is

subjective to the method of translation of the route descriptions concerned. Remember that

177

this translation was done manually for each route description while trying, to the best possible

extent, to imitate the translation that the final system (dialogue manager and robot manager)

would produce for the same route descriptions. Further discussion on this matter can be

found in section 7 .3.

Two such cases are presented in Table 7-6 for route descriptions u7_GC_CX and

u24_GB_HW.

a u7_GC_CX

"from the roundabout take the first exit on the
left continue straight over the crossroads

continue over the bridge erm continue straight
over the second crossroads the post office

should be on your right"

b u24_GB_HW

"move forward to white dotted line turn left take
er move forward to crossroads turn left move
forward to roundabout go clockwise two sixty

degrees two sixty degrees exit er by turning left
move forward to first building on left stop"

Table 7-6: Route descriptions and illustrations of two (out of five) cases where the robot

fails to complete a route description in the evaluation set because of ambiguities in the

user's description.

In case (a) of Table 7-6, by the "second crossroads" the user actually means the one right after

the first crossroads he/ she mentions. However, the second reference to crossroads is

178

translated to a primitive call without any consideration to any previous mention of crossroads

and thus it is assumed that the user refers to a third crossroads after the "exit on the left".

In Table 7-6(b) the instruction after the robot reaches the crossroads is to "turn left".

Although the user meant "turn left (at the crossroads)" this is treated as "turn left (after the

crossroads)" because "move forward to crossroads" and "turn left" qualify as two

independent functional segments. During execution the robot passes the crossroads and then

starts looking for a left turning.

Finally the robot fails to reach the destination in 17 occasions because of wrong route

descriptions (Table 7-4). These are cases where the user was clearly mistaken in at least one of

his/her instructions while explaining the route to the destination. Two such examples are

presented in Table 7-7.

179

a u6_GC_CX

"right if you go exactly the same way towards
the queens pub as before erm as you go over

the bridge as you go past the t junction the post
office will be there on your right"

b u9_GC_HL

"the queens pub erm if you er go forwards er
continue forwards until you come to a junction

er then er take a sort of right turn by dixons erm
carry on up there and then take a right that
should take you to the queens pub okay"

Table 7-7: Route descriptions and illustrations of two (out of seventeen) cases where the

robot fails to complete a route description in the evaluation set because of mistakes in the

user's description.

In Table 7-7(a) the user mentions at-junction after the bridge when he/ she probably meant a

crossroad.

In Table 7-7 (b) when the user mentions the "junction" this is taken to be the right turn and

not the t-junction, which was probably implied. This is because the word "junction" was used

in the corpus to mean t-junctions, turnings or crossroads and thus the robot was programmed

to recognize any of the three when looking for a "junction". The robot in this case fails when

it turns into the first right turning but it would also have failed even if the robot turned right at

the t-junction since the user instructed a turn in the wrong direction.

180

7.2 Results per primitive procedure call

The results presented in 7.1 are more important in the evaluation process of the complete IBL

system since they provide the success rate of the primitive procedwes as they appear in route

descriptions.

This section shows how successful was the robot in the development and evaluation sets in

the execution of the individual primitive calls of each route description. These results were

more useful in the development and evaluation of the primitive procedwes at an atomic level,

i.e. given the right initial conditions (robot state and correct primitive call initialisation)

whether the primitive procedwe would execute correcdy. These results do not take into

account the human error and therefore primitive procedwe calls, which occw at or after a

user's error or ambiguity in the route description, were not executed. Table 7-8 presents these

results for the development and evaluation sets.

Development set Evaluation set
Total primitive calls 336 344

Executed primitive calls 227 218
Successful 224 (98.7%) 214 (98.2%)

Unsuccessful 3 (1.3%) 2 (0.9%)
New primitive procedures or

primitive parameter - 2 (0.9%)
combinations .. Table 7-8: PrtmJnve call success results dunng tbe development and evaluanon of tbe

primitive procedures. Note that tbe percentage values indicate tbe proportions of tbe

executed primitive calls and not tbe total primitive calls.

Dwing the development phase of the primitive procedwes out of the 336 primitive calls in

the development set translation files, 227 were executed. These primitive calls were

continuously executed (as part of their route descriptions) while the primitive procedwes were

181

being changed to achieve the best possible performance. At the end of the development

phase, 3 primitive calls were still unsuccessful because of the same reason: the inability of the

robot to detect an object located just after a curve because of the position and inclination of

the robot camera. One such example is illustrated in Table 7-9.

"go to the roundabout take the third exit then take the first right and boots is on the
left hand side" (u2_GC_MC)

Table 7-9: The robot fails to "see" the Boots (C) marker, at the end of the route, because

when it turns the marker falls outside its field of view.

This occurs because, as mentioned previously in section 6.3, areas close to the front of the

robot fall outside its field of view. This visual information can be estimated if it has been

recorded previously (see section 6.3). However, in the above case the marker of the

destination could not be seen when the robot took the right turn (after the roundabout)

because it was hidden by the Boots building. When the robot got close to Boots the marker

was already out of its filed of view.

182

During the evaluation phase out of a total of 344 primitive calls in the associated translation

files 218 were actually evaluated. Out of these 214 performed successfully. The 4 cases were

primitive calls failed are explained in section 7.1 and illustrated in Table 7-4 and Table 7-5.

7.3 Discussion

In 7% (5 out of 71) of route descriptions in the evaluation set the robot failed because one or

more of the instructions in these route descriptions were classed as "ambiguous". As

mentioned in section 7 .1.2 this characterization is based on the criteria on which the

translation from natural language route descriptions into primitive procedure calls was made.

The translation was done by hand and in doing so the performance of the dialogue manager

and robot manager in dealing with such ambiguous cases in the corpus was considered. One

such route description (mentioned in section 7 .1.2) is u 7 _GC_ CX:

"from the roundabout take the first exit on the left continue straight over the

crossroads continue over the bridge erm continue straight over the second crossroads

the post office should be on your right" (u7 _GC_C:X).

The ambiguity arises when the user refers to a "second crossroads" when actually it is the first

crossroads from where the robot will be when executing the instruction: "continue straight

over the second crossroads". The user refers to this ordering to stress that there are two

crossroads in succession along the road. The system fails to recognise this because each

instruction in the route description is treated independendy from what was said prior to it.

183

Humans do not find situations like this ambiguous because they can resolve such references

by comparing them to what was said earlier in the route description. Similar behaviour can be

simulated by the robot by analysing the route description given by the user before executing it

in order to detect and resolve such references. Alternatively the system can ask the user what

he/ she meant by asking him a question in the form of: "Did you mean ... or ... ?".

A more detailed observation of Table 7-4 shows that the human robot-drivers were more able

to correct ambiguities rather than mistakes in the descriptions of the instructors in the corpus.

Also in the cases where a new primitive procedure or the wrong execution of a primitive

causes the robot to fail the human subjects succeed. Note that in one case where the robot

fails due to a wrong execution of a primitive procedure the human subject fails (by

coincidence) because he/she omitted to record on paper important information when he/she

was listening to the route description.

Human subjects failed to reach the destination in 12 route descriptions (Table 7-3) but only 10

of those (Table 7-4) are the same as the routes in which the robot failed. This means that in

two cases human subjects failed when the robot succeeded. In both these cases tbe human

robot-driver failed because of wrongly following the instructions in tbe route description.

The evaluation of primitive procedures on an individual primitive procedure call basis (section

7 .2) shows that the code developed for the primitive procedures is successful in almost all

cases. Less than 1% of primitive calls failed because tbe user requested a primitive action,

which was not known by the system. This was expected since tbe graph in Figure 4-4

predicted that the system will be faced by approximately one new primitive in every 35 route

184

descriptions (slope of curve representing the complete corpus at 72 route descriptions). The

issue of new primitive procedures arising after the system is completed is discussed in Chapter ..

8.

Table 7-8 shows that less than 2% of primitive procedures fail because the robot tries to find

landmarks already past its field of view. The possibility of using a pan/tilt camera or

simultaneous searching for more than one landmark at any one time while the robot follows

the road, are two methods that could solve this problem.

Figure 7-1 summarizes the observations made in this chapter.

185

Corpus
(Human speakers)

Human
listeners

es=23.9%
(a)

Instructions

Robot

Execution

Repair

eR2=2.8%

Result
eHiolal 16.7%

Result
eAiotal = 36.6%

Figure 7-1: The diagram shows the occurrence of errors at different stages between the

speaker giving route descriptions and the execution of these descriptions by (a) a huma.n

listener and (b) the robot. Ks, KH and KR represent the knowledge of the human speakers,

the human listeners and the robot's respectively. The diagram shows the crucial difference

between cases (a) and (b): the ability of humans to do repair during the execution of the

route instructions. This accounts for the higher success rates of humans.

The figure shows that human speakers give instructions, they can make mistakes. In this

project, users in the evaluation set of the corpus were wrong in 23.9% of the route

descriptions. When humans listen to these instructions, they, also make mistakes in recording

or memorizing the instructions. This is shown by eH1 in Figure 7-1. In a similar way the robot

listener makes mistakes. In the robot's case (assuming perfect speech recognition and analysis)

these are due to not recognizing new primitive procedures in the speaker's instructions and

due to ambiguities in the instructions. In this project 9.9% of the evaluation set descriptions

failed because of these errors. During execution of the route descriptions human listeners can

186

realize and repair mistakes of the speakers and of their own "on the fly". Even though they

can make mistakes (em) in following the correct road sometimes their success owing to the

ability to repair far exceeds that of the robot, which lacks this ability.

Therefore, the robot can increase the chances of succeeding in the execution of a route

description if it uses repair during execution time. Repair and the ability of the robot to initiate

dialogue with its users during the learning of new routes in order to resolve possible mistakes

or ambiguities in the route descriptions are discussed as part of future work in Chapter 8.

187

Chapter 8

8 Conclusions and future work

8.1 Conclusions

This PhD thesis presented the work done as part of a project in Instruction Based Learning

for mobile robots. The aim of this work was to determine and implement the primitive

procedures that a natural language instructed robot following route descriptions would require

to have in its knowledge pool.

The main contribution of this thesis to knowledge lies in the "user-centred" approach taken

for determining the functional vocabulary of the robot. The aim was to create a robot that

could be instructed by its human users without them needing to be previously trained on how

to do so. Previous work in the field of instructable robots required the users of the robots to

learn precise lexical and functional vocabularies with which to instruct the robots. These

vocabularies were predetermined by the creators of the robots thus following a "robot

centred" approach. Although such approaches have succeeded in creating a faster and simpler

communication method between users and robots, in comparison with formal programming

methods, they nevertheless still constrained the users to a great level of formality and

precision. Furthermore, the amount of training that the users would require prior to using the

188

robot would increase in proportion to the amount and complexity of the tasks that the robot

would be required to perform. This of course would defy the purpose of creating a narural

language instructed robot to be used by computer language naive users.

The aim of the Instruction Based Learning project was to create a robot that would be able to

accept instructions from its users as a human would. Such a robot would need to be able to

deal with the imprecision of the spoken narurallanguage medium. Furthermore, such a robot

would need to be able to accept variations in spoken instructions that would result in similar

actions thus being able to deal with the versatility of natural language.

In order to determine the narure of spoken natural language route instructions following a

"user-centred" approach a corpus of route instructions was collected in the beginning of the ·

project from 24 different human subjects. The subjects were asked to give route instructions

to the robot as they would to a fellow human ensuring, in this way, that the instructors would

produce unconstrained natural language utterances. The implementation of the Instruction

Based Learning system was solely based on the results of the analysis of the corpus collected.

The srudy of the corpus natural language instructions exposed three main problems that are

important for the design of Instruction Based Learning robots. These are:

1. The under-specification of natural language, which is a known problem.

2. The probability of new primitive functions arising in route instructions after the

development of the system. This is known for words but it has been seen here to

appear for primitive functions.

189

3. The cases when users make partial use of previously learned procedures when

explaining new procedures. This problem has never been documented previously.

This thesis focused on the natural language under-specification problem. Cases 2 and 3 above

are discussed in section 8.2 as part of future work.

Two methods are proposed in this thesis for determining the missing information in natural

language route instructions. This information is vital for the robot in order to be able to

execute the route instructions successfully. The methods proposed can determine the missing

information during the learning of new procedures and during their execution.

During learning time the missing information is determined by imitating the commonsense

approach of human listeners in order to achieve the same purpose. What human instructors

consider as commonsense and therefore omit in their spoken route instructions is determined

by studying examples of such occurrences in the corpus collected in this project. Necessary

parameters in primitive procedures are then allowed to take default values whenever these

values are not explicitly provided in the natural language instructions.

During the execution of primitive procedures missing information, such as the precise

location and orientation of landmarks mentioned in the route instructions, is determined using

the method of image template matching. In this thesis the method focuses on the

determination of the location of road-layout features, which are mentioned in route

instructions. The significant contribution in this method lies in the fact that it is driven by the

190

natural language instructions both in the design of the templates used and in their selection

during the execution of a primitive procedure.

The primitive procedures developed during the work presented in this thesis were evaluated

both on an individual primitive procedure call basis and also as part of route instructions. The

evaluation of individual primitive procedure calls showed very good results (more than 98%

success). This shows that the natural language under-specification problem can be solved with

the methods proposed in this thesis.

A novel method was followed in order to test the primitive procedures as part of complete

route descriptions. During this method, human subjects were invited to drive the robot

following route descriptions while being provided with the same visual information as the

robot. Their performance was later analysed and compared with the robot's performance after

executing the same route descriptions. This evaluation method allowed a direct comparison

between the human listener and the robot as far as the execution of route descriptions. The

results of this comparison provided an important difference between the humans and the

robot in this context: humans can repair errors (made by the instructor or themselves) during

the execution of route descriptions by using past experience and reasoning. This is an

important issue that will need to be taken into consideration in the future in order to improve

the performance of the current system. Some ideas on possible future work on this matter are

presented in the following section.

A software controller is proposed in this thesis in order to reliably and accurately control the

wheel speeds of the robot used in this project. The controller described comprises of one PI

191

(Proportional and Integral) speed controller for each wheel of the robot and a PID

(Proportional, Integral and Differential) controller to control the differential speed of borh

wheels during each robot manoeuvre. The design and implementation of this software control

scheme provided an alternative to an expensive and more time-consuming hardware solution

in order to achieve the same purpose.

8.2 Future work

During the evaluation of the primitive procedures, when the success of route descriptions was

considered, results showed that the robot managed to successfully navigate to its destination

in 63.4% of the cases. Less than 3% of these failures are due to primitive procedures failing.

The remaining failures were due to the following reasons:

1. Errors in route descriptions.

2. Ambiguities in route descriptions.

3. Failures due to the users requesting primitive actions, which did not exist in the

robot's knowledge base (see point 2 in previous section).

In order to improve the performance of the robot, future work in instruction based learning

needs to be focused on the ability of the robot to start a dialogue with the user during the

learning of a new procedure in order to resolve ambiguities or mistakes in the user's

instructions. Initiating a dialogue with the user is a complex task because a question to the user

needs to be formulated properly by the system in order to address the problem and at the

same time the system should be able to handle the response from the user.

192

A mistake in a user's instruction can only be detected by the robot if it causes an error in the

primitive call or if the instruction cannot be executed because of an incompatibility between

the previous or the next instruction. In these cases the error will be detected by the prediction

function of the primitive procedure corresponding to the action suggested by the user. A

possible solution could be to formulate questions for each possible error that the prediction

function can return in order to prompt the user to rectify his/her mistake.

Ambiguities in the user's instructions can be detected by studying the corpus for cases of

similar instructions with multiple meanings. In such cases the user can be given a choice

between the different meanings in the form of a question. Two examples of ambiguous

instructions met in this project are:

1. When users order landmarks in succession to previously mentioned landmarks of the

same type for example: "go to the crossroads, ... , at the second crossroads ... " when it

is ambiguous whether the last crossroads is the second or the third from the beginning

of the example and

2. When users say, for example: "go to the post-office" when it is ambiguous whether

the post-office is on the road ahead or whether they assume that the robot knows the

route to the post-office.

Both cases can be resolved by giving a choice to the user in the form of a question: "Did you

;l" mean ... or

193

In Chapter 7 it was concluded that the human ability to repair mistakes and ambiguities in

route descriptions, while executing them, accounted for the difference in execution success

between humans and the robot. The ability to repair can be incorporated in primitive

procedures in some cases such as for example when the layout of the road is used as a clue to

indicate what the instructor meant in ambiguous situations. An example of such a case is when

the user says: "turn left" when he/ she actually means "take the first exit off the roundabout"

in the part of a route illustrated in Figure 8-1.

Figure 8-1: A case when the user says "turn left" when he/she actually means "take the

first exit off the roundabout".

In such a case a low matching quality of the left turning template (fable 6-1(c)) or the straight

road template (fable 6-1 (a)) at the entrance of the roundabout could make the robot check

whether the user meant "left at the roundabout'' by matching the roundabout-entry template

(fable 6-1(i)). If the roundabout-entry template is successful the "turn" primitive call can be

changed to an "exit_roundabout'' primitive call.

194

It was found in Chapter 4 that the robot's task vocabulary can never be complete in practice.

New primitive procedures are likely to appear in the user's route instructions after the

completion of the system regardless of the size of the corpus used to develop the system.

When a user instructs a new primitive action there are two possibilities for the speech

recognition system:

1. The system will misrecognize the command for another action.

2. The system will reject the command because of low speech recognition confidence.

In the first case, it is not possible for the system to realize that an error has taken place and

this will most likely result in the execution of the wrong action by the robot. In the second

case the system can ask the user a question such as: "did you mean ... or is this a new action?"

an answer to which can cause the system start learning the new action. However, this only

solves half the problem of the new primitive procedures because in order to describe a

primitive action the user will need to refer to low-level robot procedures that are not

accessible to him via natural language (see section 5.2). Therefore, the problem of new

procedures appearing after the IBL system is completed is a challenging one to which a

solution is still being discussed.

Also in Chapter 4 it was found that some users referred partially to previously learned routes

when explaining new routes. One such example is:

195

"okay you ll need to pass the train station again as you did going to the post office and

you ll see the university as you go onto the roundabout" (u4_GC_EW)

Were the previously explained route was from the Grand Hotel to the post-office and the new

route, being explained, is from the Grand Hotel to the university. Two possible solutions to

the partial re-use of previously learned routes were discussed during this project. These are:

1. To solve the problem during the learning of the new route by requesting an explicit

route description from the user for the part of the route he/ she is referring to. In the

example above the system could respond to the user by saying: "Please explain the

route to the roundabout."

2. To solve the problem during execution time by starting the execution of the previously

learned route and at the same time searching for the landmark mentioned by the user

where the diversion/termination is to occur (i.e. using concurrent processing). When

the diversion/termination point is found, execution of the recalled route should be

terminated. In the example given above the system will start executing the known

route from the Grand Hotel to the post-office while concurrendy searching for the

roundabout. When the roundabout is found execution of the known route is

terminated.

The first solution suggested solves the problem at the expense of the user since he/ she would

have to re-explain part of a previously described route. Implementation of the second solution

is transparent to the user but may require significant changes in the structure of the primitive

procedures in order to be able to achieve the concurrency described above.

196

8.3 Final statement

One of the most important aspects in the creation of human helper robots, which will be

useful in environments other than just the industrial floor and which can be used by people

not necessarily possessing any programming or engineering knowledge, is their ability to

communicate with humans. This issue is as important as the functionality of the robot since a

robot that can do a complex task is not useful if its user cannot instruct it to do so!

Humans prefer the medium of spoken natural language more than any other (writing,

signalling etc) in order to convey information to their fellow humans. This is because speech is

more efficient, fast and requires less effort. It is therefore likely that in the future humans will

instruct their robots using spoken natural language.

When it comes to a robot, understanding spoken natural language is complex task. This is

because spoken natural language has no formal structure and it appears to be incomplete and

ambiguous. A human speaker assumes that the human listener will be able to resolve this

complexity using "commonsense". Furthermore, the listener is expected to be able to engage

in a dialogue with the speaker in order to resolve any remaining ambiguities. These are issues

that need to be addressed in the case of a robot listener.

In this thesis a "user-centred" method is proposed for creating the primitive procedures of a

robot following route descriptions. It has been shown how the under-specification problem of

natural language route instructions can be solved.

197

It is hoped that the work presented here can provide a start towards solving the grater

problem of unconstrained natural language dialogue between humans and their helper robots.

198

Appendices

Appendix A

In this appendix the specifications of each primitive procedure are presented in separate

pages.

199

Primitive procedure:

cross

Description:

Instructs the robot to cross the road to an object (usually the car park) ahead or to just cross

to the opposite road at a crossroads for example.

Parameters:

Parameter Description Possible values
Default

name value
object 1 The object to cross. 'car _park ' , 'road ' None

relation 1 Preposition. None, 'to ' None

object_2
The object to cross the

None, 'car_park' None
road to.

Parameter combinations:

Combination ' Example
ob ject 1 "cross the road"

object 1 , r e lati on 1, object 2 "across the road to the parkinQ lof'

200

Primitive procedure:

enter_roundabout

D escription :

Instructs the robot to enter the roundabout in a specific direction.

Param eters:

Parameter name Description Possible values
Default
value

direction_1 Direction in which to None, 'clockwise' None
follow the roundabout.
Direction to turn to right

None, 'left_of',
relation_1 after entering the 'right_ of'

None
roundabout.

object_1
Object to which

None, 'self' None
relation 1 refers to.

Parameter combinations:

Combination Example
"start going around the roundabouf'

direction_1
"go over the roundabout"

relation 1, object 1 "turn right at the roundabouf'

201

Primitive procedure:

exit_ object

Description:

Instructs the robot to exit from a place. Usually used for exiting the car park.

Parameters:

Parameter name Description Possible values
Default
value

object 1 Object to exit from. 'car_park' None

Parameter combinations:

Combination Example
"if you're in the parking space go out

object_l <hesitation>erm<lhesitation> basically straight
on into the following road"

202

Primitive procedure:

exit_roundabout

Description:

Instructs the robot to take an exit off the roundabout. If the robot has not entered the

roundabout then it follows the road until it meets the roundabout, enters it turning left

(clockwise around the roundabout) and takes the designated exit.

Parameters:

Parameter name Description Possible values
Default
value

ordi n a l 1 Order of exit to take.
None, 'first ', 'second' ,

None - ' t h ird'

relation_ l Preposition associated None , 'at I 1 I left_of I 1

None
with ob ject 1. 'pa s t' , 'right_of'

Object with reference to None , I self I 1

obj e ct_l which the roundabout 'tr a i n_s tation', None
exit is specified. 'univers ity'

Parameter combinations:

Combination Example
object_1, r e lation_1 ''take the exit with a train station on your righf'

objec t 1, ordinal 1, r e lat i on 1 ''take the second first after the university''
''take the third exif'

o r dinal_1 ''take your first exit on the right at the
roundabout"

"take the second left off the roundabouf'

203

Primitive procedure:

follow _road

Description:

Instructs the robot to move forward on the road until a specified location.

Parameters:

Parameter name Description Possible values
Default
value

None, 'across', 'after' ,

Preposition associated
'along', 'around', 'at',

relation_l
with obj ec t_l.

'in_middl e _of', 'onto', ' to'
'over ' , 'past ' , 'to',

'towards' , 'until'

ordinal_l Order of obj ect_l None, 'first', 'second',
'first'

along the road. 'third'
'bend ' , ' bridge',

'broken_line' , 'building' ,
'car _park', ' corner',

'crossroads' , 'derrys',
'dixons', 'dotted_ line',
'end_of _road ', ' exit',

Object with reference to
'grand_hotel ' , 'house ',

which the location the ' junction' , 'lake ' ,

object_l robot should stop
' mus eum', 'pc_world',

None 'pizza_hut', 'pond',
(following the road) is 'post_office',

specified. ' queens_pub ' ,
'right_ turning ' ,

' roundabout ' , 'safeway',
't_junction', 'tesco',

'train_station', 'tree',
'turning', ' univers i ty',

'water'
None , 'after', 'at', 'by ' '

relation 2
Preposition associated 'in _front_of' , 'left _of' ,

None - with obj ec t_2. 'opposite' , 'right_ of' ,
'to'

Object with reference to None , ' bridge ',

object_ 2 which the location of
' post_ office ' ,

None
obj ect_l is specified.

' roundab out ' , ' safeway ' ,
'self '

204

Parameter combinations:

Combination Example
"go straight down that road and to the next

junction"

object_l, ordinal _ 1, relation_ l "come to a junction"

"go over the bridge"

"just past pizza hut''
object_l, object_2, ordinal_l, "walk straight ahead past the post-office which

relation_l, relation_2 is on your right-hand side"

205

Primitive procedure:

location

Description:

Specifies the location of an object. If the object is the destination the robot moves to it

otherwise the robot stops as soon as it locates the object.

206

Parameters:

Parameter name

object_l

relation_l

ordinal 1

object_2

destination_l

Description

Object whose location
is described by this

primitive.

Preposition associated
with obj ec t_2

Order of object_2
along the road.

Object with reference
to which the location of

object_ l is
specified.

The destination of the
route description of

which this primitive is
part.

Possible values

'boots', 'bridge',
'building', ' car_park',
'crossroads', 'derrys',

'grand_hotel' ,
'hospital', 'junction',

'lake' , 'library',
'museum', 'pc_world',
'pizza_hut', 'pond',

'post_office',
'queens_pub', 'safeway',

'safeways', 'tesco',
'tree', 'univers ity'

None, 'across', 'after',
'along', 'at', 'before',
'end_of', 'in_front_of',
'left_of', 'on', 'onto',

'opposite', 'past',
'right of'

None, 'first', 'second'

None, 'bend', 'bridge',
'building', 'car_park',

'corner' , 'derrys',
'end_of_road', 'exit',

'left_ turning' ,
'right_turning', 'road',
'roundabout', 'safeway',

'self', 'street',
't_junction' , 'tesco' ,

' train_station',
'turning ' , 'universi ty'

'boots', 'car_park',
'grand_hotel' ,

'hospital', ' library',
'museum', 'post_office',
'queens_pub', 'safeway',

'safeways', 'tesco',
'university'

207

Default
value

None

'along'

None

'road'

None

Parameter combinations:

Combination Example
"boots is on your left''

"safeway is on your right-hand side"

''the hospital will be right in front of you"

object_l, relation_l, object_2, "boots is on the left-hand side of the street''

destination_l
''the hospital is at the end of the street''

''the post-office is just across the street''

"pc world is on the corner"

"the university is opposite the train station"
object_l, relation_l, ordinal_l, "the museum is after two further turnings on the

object 2, destination 1 riQht and it is on the riQht-hand side"

208

Primitive procedure:

bear

Description:

Instructs the robot to take one of the two directions at a y-junction.

Parameters:

Parameter name Description Possible values Default
value

relation_1 Direction to take at the y- ' left_of' None
junction.

object_1
Object to which

'self' None
relation 1 refers to.

Parameter combinations:

Combination Exam le
relation 1, object 1 "bear round to the left"

209

Primitive procedure:

park

Description:

Instructs the robot to park either on/ by a specific location.

Parameters:

Parameter name Description Possible values
Default
value

Preposition specifying
relation_l the position to park with 'in_centre_of' None

reference to object 1.

object_ l Object associated with
'quadrangle' None

relation_l.

Parameter combinations:

-- Combination Example
"park in the center of the

relation_l, object_l <hesitation>er<lhesitation> quadrangle that's in
front of you"

210

Primitive procedure:

rotate

Description:

Instructs the robot to rotate about itself.

Parameters:

Parameter name Description Possible values
Default
value

Preposition specifying the
relation_l extent of rotation with 'around' None

reference to object 1.

object_l Object associated with
None, 'self' 'self'

relation 1.

Parameter combinations:

Combination Example
"you need to turn round"

relation_l, object_l
"assuming you turned round"

211

Primitive procedure:

take_road

Description:

Instructs the robot to take a road in view. Usually used when the robot is at an intersection

and needs to get on an opposite road.

Parameters:

Parameter name Description Possible values
Default
value

Preposition specifying the
r e lation_1 road to take in relation to 1 opposite 1

,
1 right_of 1 None

object 1.

object_1
Object associated with

'self ' None
relation 1.

Parameter combinations:

Combination
relation 1, object 1

212

Primitive procedure:

turn

Description:

Instructs the robot to take a turn from the current road.

Parameters:

Parameter name Description Possible values Default
value

ordinal 1
Order of the turning to None, 'first', 'second' ,

'first' - take along the road. 'third'
Preposition specifying

relation_l
the direction of the 'left_of', 'right_of' None

turning in relation to
object 1.

object_ l
Object associated with

'self' None
relation 1.

Preposition specifying None, 'after', 'around',
relation 2

the position of the
'at', 'before', 'by', None - turning in relation to

object 2.
'into', 'past'

None , ' bridge',
'car _park' , 'crossroads',

'derrys', ' dixons',

object_2
Object associated with 'junction', 'pc_world' ,

None
relation_2. 'post_office',

'roundabout',
't_junction',
'university'

213

Parameter combinations:

Combination Example
"you take a left''

"turn right''
ordinal _1, relation_l, object_l

''take the first right"

''take your first right"
''take a sort of right turn by dixons"

''take a left-hand turn after the post-office"

''take a left turn at the junction"

''turn left at the post-office"

ordinal_l, relation_l, object_l,
"take a right at the crossroads" relation_2, object_2

''take the second right after you reach the post-
office"

"at the university take the first right''

"carry along until you find the car park and turn
right into it''

214

Primitive procedure:

go_until

Description:

Instructs the robot to use part of a previously explained route.

Parameters:

Parameter name Description Possible values
Default
value

Final destination of
'grand_hot el' 1 'museum' 1

object_l
known route.

'post_office' 1 ' s afeway' I None
'university'

Preposition specifying
'at I 1 'before', 'over' 1 relation_l the diversion point in None

relation to object 2.
'past'

'bridge ' I 'derrys' I

object_2 Object associated with 'gra nd_hotel' 1

None
relation - 1. 'train_station',

'university'

215

Parameter combinations:

Combination Example
"okay you 11 need to pass the train station again
as you did going to the post office and you 11 see
the university as you go onto the roundabouf'

"erm head as though you re going towards the
post office so you go over the bridge but instead
of carrying straight on take a righf'

"okay from the crossroads continue on straight
ahead take the next righf'

object_l, relation_l, object_2 "okay head towards the grand hotel but just
before you get there the safeway is on your right
hand side"

"recalling our previous destination was the
grand hotel and we passed safeways en route
just before derrys"

"right if you go exactly the same way towards
the queens pub as before erm as you go over
the bridge as you go past the t junction the post
office will be there on your right"

216

Primitive procedure:

go

Description:

Instructs the robot to execute a previously explained route.

Parameters:

Parameter
Description Possible values

Default
name value

'bridge', 'car _park' ,
'grand_hotel' ,

object_l Destination of previously ' post_office',
None

explained route. ' queens_pub ' ,
' roundabout ' , ' safeway' ,

'tesco', 'university'

Parameter combinations:

Combination ' !,. Example
"go to the post office"

object_ l
"go to the roundabout''

"go to the roundabout mentioned previously''
"go to boots"

217

Appendix B

This appendix lists the route descriptions in the development set and the evaluation set.

Development set route descriptions

u1_GA_MD
u1 _GA_MW
u1 _GA_MY
u2_GC_MC
u2_GC_MW
u2_GC_MY
u2_GC_MZ
u3_GC_ME
u3_GC_MY
u4_GC_EP
u4_GC_EW
uS_GC_EG

uS_GC_EPbis
uS_GC_EW
u5_GC_EX

u6_GC_CM
u6_GC_CP
u?_GC_CD
u?_GC_CE
u?_GC_CL
u?_GC_CM
u?_GC_CP
u8_GC_HD
u8_GC_HL
u9_GC_HW
u10_GA_MD
u10_GA_ME
u11_GA_EH
u12_GA_EG
u12_GA_EH

Evaluation set route descriptions

u1 _GA_MC u6_GC_CD
u1 _GA_ME u6_GC_CE
u1 _GA_MZ u6_GC_CL
u2_GC_MD u6_GC_CX
u2_GC_ME u7_GC_CX
u3_GC_MC u8_GC_HC
u3_GC_MD u8_GC_HE
u3_GC_MW u8_GC_HG
u3_GC_MZ u8_GC_HW
u4_GC_EC u9_GC_HC
u4_GC_EG u9_GC_HD
u4_GC_EH u9_GC_HE
u4_GC_EX u9_GC_HG
u5_GC_EC u9_GC_HL
u5_GC_EH u10_GA_MC

u12_GA_EP
u12_GA_EW
u13_GA_CD
u13_GA_CE
u13_GA_CL
u13_GA_CM
u14_GA_CD
u14_GA_CE
u14_GA_CL
u1 4_GA_CM
u14_GA_CP
u15_GA_HD
u15_GA_HE
u15_GA_HG
u16_GA_HG

u10_GA_MW
u10_GA_MY
u10_GA_MZ
u11 _GA_EC
u11 _GA_EG
u11_GA_EP
u11 _GA_EW
u11_GA_EX
u12_GA_EC
u12_GA_EX
u13_GA_CP
u13_GA_CX
u14_GA_CX
u15_GA_HC
u15_GA_HL

218

u16_GA_HW
u17_GB_MY
u17_GB_ME
u18_GB_MC
u18_GB_MD
u18_GB_ME
u18_GB_MW
u18_GB_MY
u19_GB_EC
u19_GB_EG
u19_GB_EP
u20_GB_EC
u20_GB_EG
u20_GB_EH
u20_GB_EP

u15_GA_HW
u16_GA_HC
u16_GA_HD

u16_GA_HEbis
u16_GA_HL
u17_GB_MC
u17_GB_MD
u17_GB_MW
u17_GB_MZ
u18_GB_MZ
u19_GB_EH
u19_GB_EW
u19_GB_EX
u20_GB_EX
u21 _GB_CE

u20_GB_EW
u21 _GB_CD
u21 _GB_CM
u21_GB_CP
u21 _GB_CX
u22_GB_CD
u22_GB_CE
u22_GB_CL
u23_GB_HC
u23_GB_HD
u23_GB_HG
u24_GB_HC

u21 _GB_CL
u22_GB_CM
u22_GB_CP
u22_GB_CX
u23_GB_HE
u23_GB_HL
u23_GB_HW
u24_GB_HD
u24_GB_HE
u24_GB_HG
u24_GB_HL
u24_GB_HW

Appendix C

This appendix presents the contents of the CD accompanying this thesis.

Note that each corpus route description file is given a name which contains the subject's

number, the subject's group (see section 4.1) and the starting location and destination in the

miniature model town. For example:

u4_GC_EH

refers to the route description of subject 4 who is in group C. The subject was asked to

describe the route from the Grand Hotel (designated with the letter E) to the Hospital

(designated with the letter H). The designations of each landmark in the miniature model town

are illustrated in the map image file "miniature_model_town_map.jpg" which can be found on

the CD accompanying this thesis.

The following paragraphs explain the contents of each file/ directory in the accompanying CD.

D irectory "corpus_sound_recordings":

Contains the sound files of the route descriptions collected during the corpus. The file format

of all sound files is "wav".

File "corpus_ transcriptions. txt'':

A single file containing all transcriptions of the corpus. The format of the file is DOS "txt".

219

Directory "corpus_translations":

Contains the manual translation files of the corpus route descriptions (sets of initialized

primitive procedure calls corresponding to each route description in the corpus). The format

of the files is "py" (python source files). They can be viewed in a UNIX-based text editor or

MS Windows Word.

Directory ''video_examples":

Contains 4 "mpg" (MPEG) video files:

• "take_the_second_left_1.mpg": Shows the robot executing the route instruction:

"take the second left".

• "take_the_second_left_2.mpg'': Shows the computer screen when executing the

same route instruction as above.

• "u13_GA_CL.mpg'': Shows the execution of the corpus route description with the

same name.

• "u19_GB_EG.mpg": Shows the execution of the corpus route description with the

same name.

Note 1: The video files showing the robot navigating in the miniature model town had several

5-second intervals removed from them while the robot was stationary. This time delay was

deliberately inserted, after the robot executes a motion command, in order to allow the camera

image to settle. The upset in the video image while the robot moves occurs because of the

large current drawn by the robot motors.

220

Note 2: The video sequences shown by " template_matching_2.mpg" and

"template_matching_2.mpg" were recorded are different times so the actual position of the

robot at any moment does not necessarily correspond in the two runs.

File "miniature_model_town_map. jpg":

Annotated map image of the miniature model town. The file format is JPEG.

Directory "code":

The explicit program code developed during the work described in this thesis. The directory

contains among other files the primitive procedure modules. A brief explanation of the main

files is given below:

• "bear.py", "cross.py'', "enter_roundabout.py", "exit_object.py'',

"exit_roundabout. py'', "follow _road.py'', "location. py", "park. py'', "rotate.py",

"take_road.py", "tum.py'': Primitive procedure modules (python source files).

• "*.pyc": Python byte-compiled files.

• ''various.py": Contains flags and values used throughout the primitive procedures.

• "average_chromaticity_data": Stores the chromaticity vector of the road surface

colour.

• "calculate_transform_data.py'': Produces the "transformation look-up matrix" (see

section 6.1).

• "capture.py'': Saves the robot camera image into a file.

• "capture_and_process.py'': Same as "capture.py" but in addition it executes the pre

processing and road edge/road surface filtering steps (see sections 6.1, 6.4 and 6.5).

221

• "*.c" and "*.h": C source and header files containing the image processing routines.

• "*.o": Object files resulting from the compilation of the C sources.

• "make_ wrappers": Executable. Compiles all C sources with "python_wrappers.c" to

produce "cfunctionsmodule.so" which is a python extension module. By importing

this module in python scripts the C functions can be run as python functions.

• ''video_server.py": When run, it continuously captures and displays the robot's

camera image. Any request to save a camera image to file is made to this process.

• "robot_server.py": Manages communication of motion commands to the robot. Any

request to move the robot is made to this application.

• "simulation_server.py": Runs a simple simulation in order to test the primitive

procedures. The appropriate flag must be set in "various.py" so that primitive

procedures direct video capture and navigation commands to this server instead of the

video and robot servers.

222

Appendix D

The table below shows all the words found in the corpus collected for the IBL project. The

words are presented in alphabetical order along with their occurrence in the corpus.

223

a 132 bear 2 clockwise 5

able 3 bears 1 come 46

about 4 been 1 continue 45

access 1 before 15 corner 11

across 18 beginning 2 cross 2

actually 1 beige 1 crossing 2

after 14 bend 18 crossroads 35

again 27 bending 4 currently 1

ahead 9 bends 1 degrees 7

all 14 bendy 3 derry's 17

almost 3 between 2 destination 11

along 14 big 2 diagonally 1

already 1 bit 12 did 2

amount 1 black 1 direction 7

an 4 blocks 1 directly 5

and 263 boots 17 discussed 2

angle 1 both 1 dixons 11

another 10 bottom 2 do 7

any 1 branch 1 door 3

apologise 1 bridge 48 doors 1

are 6 building 28 dotted 6

area 1 buildings 3 double 1

around 10 but 8 doubling 2

arrive 1 by 7 down 54

as 23 can 2 en 1

assuming 2 car 22 end 37

at 42 carry 25 ends 1

back 9 carrying 1 entering 1

basically 4 center 1 er 84

be 38 certainly 1 erm 71

224

exactly 2 head 5 library 6

exit 42 here 1 like 4

exits 1 hit 14 line 7

facing 2 hope 1 lines 1

far 1 hospital 13 little 12

feel 1 hotel 27 looks 1

few 5 house 1 lot 3

find 16 hundred 2 main 12

first 72 hut 8 make 1

five 1 i 6 means 1

follow 13 if 26 meet 3

following 4 immediate 6 mentioned 3

for 6 immediately 6 middle 4

fork 1 in 36 moment 1

forty-five 1 instead 4 more 1

forward 44 instruct 1 move 13

forwards 73 into 3 moving 1

from 35 is 85 museum 6

front 13 it 21 need 6

further 3 it'd 1 next 10

get 19 its 1 ninety 3

go 168 it's 15 now 1

going 68 junction 32 of 84

gone 3 just 28 off 11

got 18 keep 59 oh 2

grand 26 lake 6 ok 3

grey 4 leave 1 okay 62

half 1 leaving 1 on 253

has 1 left 188 once 5

have 7 left-hand 31 one 6

225

only 1 quarters 1 slight 4

onto 3 queens 1 slightly 21

opposite 13 queen's 14 small 2

or 1 reach 13 so 19

order 1 reaching 1 some 3

other 6 recall 3 soon 1

our 3 recalling 1 sorry 6

out 2 right 178 sort 5

outside 1 right-hand 26 space 2

over 40 road 109 start 5

paper 1 roads 2 starts 1

park 26 robot 1 station 10

parking 7 round 29 still 1

park's 1 roundabout 81 stop 17

pass 17 route 6 storey 1

passed 3 safeway 19 straight 61

passing 1 safeways 16 street 14

past 60 same 2 sure 4

pc 14 say 1 take 137

pizza 8 says 1 taken 1

place 2 second 41 taking 2

please 1 see 17 tesco 1

plymouth 13 set 1 tescos 11

pond 4 seventy 1 tesco's 1

post-office 57 sharp 1 thankyou 1

post- 1 short 2 that 48
offices

previous 4 should 24 th~t's 6

previously 4 side 58 the 753

pub 16 sixty 1 then 97

quadrangle 1 skyscraper 1 there 32

226

there'll 2 up 9 your 127

there's 2 upon 1 you're 20

thing 1 very 2 yourself 3

think 1 walk 15 you've 11

third 20 walking 5 yuh 2

thirty 1 want 19 yup 2

this 12 was 2

though 2 water 2

three 4 way 18

till 5 we 7

time 6 well 2

t-junction 13 went 1

to 212 were 2

too 1 what 1

towards 12 when 14

train 10 where 10

travel 1 which 16

travels 1 while 1

tree 3 white 7

trees 6 wiggles 1

trip 1 will 44

turn 109 with 12

turned 1 without 1

turning 28 work 2

turnings 2 world 14

two 6 yards 3

uh-huh 1 yeah 7

um 10 yes 6

university 39 you 233

until 53 you'll 40

227

List of References/Bibliography

Alien, J. F., iv1iller, B. W., Ringger, E . K., Sikorski, T., Robust Understanding in a

Dialogue System, Proceedings of the 34th Annual Meeting of the Association of

Computational Linguistics (A CC), June 1996, pp. 62-70.

Aschwanden, P., Guggenbuhl, W., Experimental Results from a Comparative Study

on Correlation-Type Registration Algorithms, Proceedings of the 2"d

International Workshop on Robust Computer Vision, Wichmann, Karlsruhe,

1992, pp. 268-289.

Asoh, H., Vlassis, N., Motomura, Y., Asano, F., Hara, I., Hayamizu, S., Itou, K., Kurita,

T., Matsui, T., Bunschoten, R., Krose, B., Jijo-2: An Office Robot That

Communicates and Learns, IEEE Intelligent Systems, Volume 16, No. 5,

September/October 2001, pp. 46-55.

Badler, N . I. , Bindiganavale, R. , Allbeck,]., Schuler, W., Zhao, L., Lee, S. J., Shin, H.,

Palmer, M., Parameterized Action Representation and Natural Language

Instructions for Dynamic Behaviour Modification of Embodied Agents,

AAAI Spring Symposium 2000, Stanford, California, 2000, pp. 6-10.

Ballard, D.H., Brown, C.M., Computer Vision, Prentice-Hall, 1982.

Barnard, K., Computational Colour Constancy: Taking Theory into Practice, MSc

Thesis, School of Computing Science, Simon Fraser University, August 1995.

Batavia, P ., Singh, S., Obstacle Detection Using Adaptive Color Segmentation and

Color Stereo Homography, Proceedings of the IEEE International Conference

on Robotics and Automation, IEEE, May 2001, pp. 126-131.

Bennet, S., Real-Time Computer Control: An Introduction, second edition, Prentice

Hall, 1994.

Bertozzi, M., Broggi, A., GOLD: A Parallel Real-Time Stereo Vision System for

Generic Obstacle and Lane Detection, IEEE Transactions on Image

Processing, Volume 7, No. 1,January 1998, pp. 62-81.

228

Bischoff, R., Graefe, V, Machine Vision for Intelligent Robots, IAPR Workshop on

Machine Vision Applications, Makuhari/Tokyo, November 1998, pp. 167-176.

Bischoff, R., Jain, T., Natural Communication and Interaction with Humanoid

Robots, Proceedings of the Second International Symposium on Humanoid

Robots, Tokyo, October 1999, pp. 121-128.

Braunl, T., Embedded Robotics: Mobile Robot D esign and Applications with

Embedded Systems, Springer, 2003.

Broggi, A., Berte, S., Vision-Based Road Detection in Autonomous Systems: A

Real-Time Expectation-Driven Approach, Journal of Artificial Intelligence

Research 3, 1995, pp. 325-348.

Broggi, A., Robust Real-Time Lane and Road Detection in Critical Shadow

Conditions, Proceedings of the IEEE International Symposium on Computer

Vision, Coral Gables, Florida, November 1995, pp. 353-358.

Br0ndsted, T., Dalsgaard, P., Larsen, L. B., Manthey, M., Me Kevitt, P., Moeslund, T. B.,

Olesen, K. G., CHAMELEON: a general platform for performing

intellimedia, The Eight International Workshop on the Cognitive Science of

Natural Language Processing, Galway, Ireland, August, 1999, pp. 110-122.

Brown, L.G., A Survey of Image Registration Techniques, ACM Computing Surveys,

24(4), D ecember 1992, pp. 325-376.

Bruckner B. K., Rofer, T., Carmesin, H. 0 ., Mi.iller, R , A Taxonomy of Spatial

Knowledge for Navigation and its Application to the Bremen Autonomous

Wheelchair, Freksa, C., Habel, C., Wender, K.F. (Eds.), Spatial Cognition I - An

interdisciplinary approach to representing and processing spatial knowledge,

Springer, Berlin, 1998, pp. 373-397.

Cen, M., Image Processing for Outdoor Path Layout Analysis, MSc Thesis, School

of Computing, University of Plymouth, United Kingdom, September 2000.

Chang, P., Krumm,J., Object Recognition with Colour Co-occurrence Histogram s,

IEEE Conference on Computer Vision and Pattern Recognition, Fort Collins,

229

CO, June 1999, pp. 2498-2504.

Chun, W.J., Core Python Programming, Prentice Hall, 2001.

Crangle, C. E., Suppes, P., Language and Learning for Robots, Stanford University,

Stanford: CSLI Press, 1994.

Crangle, C., Conversational Interfaces to Robots, Robotica, Volume 15, 1997, pp.

117-127.

Crisman,J. D ., Th01-pe, C. E., UNSCARF, A Colour Vision System for the Detection

ofUnstructured Roads, Proceedings of the 1991 IEEE International

Conference on Robotics and Automation, Sacramenta, California, April1991,

pp. 2496-2501.

Crisman, J.D., Thorpe, C.E., SCARF: A Color Vision System that Tracks Roads and

Intersections, IEEE Transactions on Robotics and Automation, Volume 1,

Issue 1, February 1993, pp. 49-58.

Dahlback, N., Jonsson, A., Ahrenberg, L., Wizard of Oz studies -why and how,

Knowledge-Based Systems, Volume 6, Number 4, 1993, pp.258-266.

Deans, M. C., Hebert, M., Invariant filtering for simultaneous localization and

mapping, IEEE International Conference on Robotics and Automation, Vol. 2,

2000, pp. 1042-47.

DeMenthon, D., A Zero-Bank Algorithm for Inverse Perspective of a Road from a

Single Image, Proceedings of the IEEE International Conference Robotics and

Automation, Raleigh, NC, April1987, pp.1444-1449.

DeMenthon, D., Davis, L. S., Reconstruction of a Road by Local Image Matches

and Global 3D Optimization, Proceedings of the IEEE International

Conference on Robotics and Automation, 1990, pp. 1337-1342.

Denis, M., The description of routes: A cognitive approach to the production of

spatial discourse, CPC, 16:4, 1997, pp.409-458.

Faugeras, 0., Three-Dimensional Computer Vision: A Geometric Viewpoint, MIT

Press, 1993.

230

Fong, T., Thorpe, C., Baur, C., Collaboration, Dialogue and Human-Robot

Interaction, 1 om International Symposium of Robotics Research, Springer

Verlag, Lorne, Victoria, Australia, November 2001.

Fraczak, L., From route descriptions to sketches: a model for a text-to-image

translator, 33rd Annual Meeting of the Association for Computational

Linguistics (ACL-95), Student Session, IYIIT, Cambridge, USA, 1995, pp. 299-

301.

Fua, P., Brechbuhler, C., Imposing Hard Constraints on Soft Snakes, European

Conference on Computer Vision (ECV 1996), Cambridge, England, April 1996,

pp. 495-506.

Gapp, K P., Object Localization: Selection of Optimal Reference Objects,

Conference On Spatial Information Theory (COSH), 1995, pp. 519-536

Gonzales, R.C., Woods, R.E., Digital Image Processing, Addison-Wesley, 1992.

Graefe, V., Bischoff, R., Vision-Guided Intelligent Robots, International Conference

on Mechatronics and Machine Vision in Practice, Nanjing, September 1998, pp.

21-26.

Green, A., C-Roids: Life-like Characters for Situated Natural Language User

Interfaces, Proceedings of 10th IEEE International Workshop on Robot and

Human Interactive Communication, ROMAN2001, Bordeaux/Paris, France,

September 2000. pp. 140-145.

Green, A., Hiittenrauch, H., Norman, M., Oestreicher, L., Eklundh, K. S., User

Centered Design for Intelligent Service Robots, Proceedings of 9th IEEE

International Workshop on Robot and Human Interactive Communication,

ROMAN20000saka,Japan, September 2000, pp. 161-166.

Green, A., Severinson-Eklundh, K, Task-oriented Dialogue for CERO: a User

centered Approach, In Proceedings of Ro-Man'01 (1Oth IEEE International

Workshop on Robot and Human Communication), Bordeaux, Paris, September

2001, pp. 146-151.

Gutmann, J. S., Konolige, K, Incremental Mapping of Large Cyclic Environments,

231

Proceedings of Computational Intelligence in Robotics and Automation (CIRA),

1999, pp. 318-325.

Hausser, R., Foundations of Computational Linguistics: Human-Computer

Communication in Natural Language, 2nd Edition, Berlin, Springer, 2001.

Herzog, G., From Visual Input to Verbal Output in the Visual Translator, Technical

Report 124, Universitat des Saarlandes, VITRA,July 1995.

Herzog, G., Wazinski, P., VIsual TRAnslator: Linking Perceptions and Natural

Language Descriptions, Artificial Intelligence Review, 8(2), 1994, pp. 175-187.

Hu, Z., Uchimura, K., Action-Based Road Horizontal Shape Recognition, SBA

Contole & Automacao, Volume 10, No. 2, 1999, pp. 83-88.

Huffman, S. B., Laird,]. E., Learning procedures from interactive natural language

instructions, Machine Learning: Proceedings of the Tenth International

Conference, P. Utgoff, editor, June 1993, pp 143-150.

Huffman, S., Instructable autonomous agents, PhD Dissertation, University of

Michigan, 1994.

Inaba M., K.agami S., Kanehiro F., Hoshino Y., Inoue H., A platform for robotics

research based on the remote-brained robot approach, International Journal

of Robotics Research, 19:10, 2000, pp. 933-954.

Jain, A.K., Fundamentals of Digital Image Processing, Prentice-Hall, 1989.

Jochem, T. M., Pomerleau, D. A., Thorpe, C. E., Vision Based Intersection

Navigation, Proceedings of the 1996 IEEE Symposium on Intelligent Vehicles,

September 1996, pp. 391-396.

Jochem, T., Pomerleau, D., Thorpe, C., Vision-Based Neural Network Road and

Intersection Detection and Traversal, IEEE Conference on Intelligent Robots

and Systems (IROS '95), Vol. 3, August, 1995, pp. 344-349.

Jones,J., Flynn, A., Seiger, B., Mobile robots-From Inspiration to Implementation,

2nd Edition, AK. Peters, Wellesley MA, 1999.

Kalinke, T., Tzomakas, C., von Seelen, W., A Texture based Object Detection and an

232

Adaptive Model-based Classification, Proceedings of the IEEE Intelligent

Vehicles Symposium' 98, Stuttgart, Germany, October 1998, pp. 341-346.

Kalman, R., A New Approach to Linear Filtering and Prediction Problems,

Transactions of the ASME- Journal of Basic Engineering, Vol. 82, Series D, pp.

35-45.

Kaske, A., Wolf, D ., Husson, R., Lane Boundary Detection Using Statistical

Criteria, Proceedings of International Conference on Quality by Artificial Vision,

QCAV'97, Le Creusot, France, 1997, pp. 28-30.

Koay, K. L., Intelligent Vision-Based Navigation System, PhD Thesis, University of

Plymouth, November 2002.

Laird J.E., Newell A. and Rosenbloom P.S., Soar: An architecture for general

Intelligence, Artificial Intelligence, 33:1,1987, pp.1-64.

Lauria S., Bugmann G., Kyriacou T., Bos]., Klein E., Personal Robot Training via

Natural-Language Instructions, IEEE Intelligent Systems, 16:3, 2001, pp. 38-

45.

Lauria, S., Bugmann, G., Kyriacou, T., Bos,]., Klein, E., Converting Natural

Language Route Instructions into Robot Executable Procedures,

Proceedings of the 2002 IEEE International Workshop on Robot and Human

Interactive Communication (ROMAN '02), Berlin, Germany, 2002, pp. 223-228.

Leigh,J.R., Applied Digital Control, second edition, Prentice Hall, Englewood Cliffs,

NJ, 1992.

Lippmann, R. P., Speech Recognition by Machines and Humans, Speech

Communication 22, 1997, pp.1 -15.

Lopes, S. L., Teixeira, A., Human-Robot Interaction through Spoken Language

Dialogue, Proceedings of the 2000 IEEE/RSJ International Conference on

Intelligent Robots and Systems, 2000, pp. 528-534.

Lueth, T. C., Laengle, T., Herzog, G., Stopp, E ., Rembold, U., KANTRA: Human

Machine Interaction for Intelligent Robots Using Natural Language, 3rd

233

IEEE Int. Workshop on Robot and Human Communication, RO-l\11AN'94,

Nagoya,Japan, 1994, pp. 106-111.

Maass, W, From visual perception to multimodal communication: Incremental

route descriptions, AI Review Journal, 8(2-3), 1994, pp. 159-174.

Maass, W., Baus, J., Paul, J. Visual grounding of route descriptions in dynamic

environments, Proceedings of the AAAI Fall Symposium on Computational

Models for Integrating Language and Vision, MIT Press, Cambridge, 1995a.

Maass, W., How spatial information connects visual perception and natural

language generation in dynamic environments: Towards a computational

model, Spatial Information Theory: A Theoretical Basis for G IS. Proc. of the

Int. Conference COSIT'95, Semmering, Austria, 1995b, pp. 223-240.

Marchant, J. A., Onyango, C. M., Shadow-invariant classification for scenes

illuminated by daylight, Journal of the Optical Society of America A (JOSA A),

Vol. 17, Issue 11, November 2000, pp. 1952-1961.

Niblack, W., An Introduction to Digital Image Processing, Prentice/ Hall

International, 1986.

Nicolescu, M. N., Mataric, M.]., Learning and Interacting in Human-Robot

Domains, IEEE Transactions on Systems, Man and Cybernetics -Part A:

Systems and Humans, Volume 31, No. 5, September 2001, pp. 419-430.

Onillon, V., Bugmann, G., Simpson, A., Nurse, P., Artificial vision for rnicromouse,

Research Report NRG-95-05, School of Computing, University of Plymouth,

Plymouth, United Kingdom, 1995.

Pearson, D., Image Processing, McGraw-Hill, 1991.

Pratt, W.K., Digital Image Processing, John Wiley and Sons, 1991.

Ringger, E. K ., A Robust Loose Coupling for Speech Recognition and Natural

Language Understanding, Technical Report 592, The University of Rochester,

Computer Science Department, Rochester, New York, September 1995.

Rosenfeld, A., Picture Processing by Computer, Academic Press, 1969.

234

Rosenfeld, A., Kak, A.C., Digital Picture Processing, Vol. I and II, Academic Press,

Orlando, FL, 1982.

Ross, R. J., Kelly, R., Social Robotics: The Need for Audio & Language Interaction,

Technical Report, Department of Computer Science, University College Dublin,

Ireland.

Sayd, P., Chapuis, R., Aufrere, R., Chausse, F., A Dynamic Vision Algorithm to

Recover the 3D Shape of a Non-Structured Road, Proceedings of the 1998

IEEE International Conference on Intelligent Vehicles, 1998, pp. 80-86.

Schleidt, M., Kien, J., Segmentation in Behaviour and what it can tell us about

Brain Function, Human Nature, Volume 8, No. 1, 1997, pp. 77-1 11.

Smith, S. M., ALTRUISM: Interpretation of three-dimensional information for

autonomous vehicle control, Engineering Applications of Artificial

Intelligence, 8(3), 1995, pp. 271-280.

Snaith, M., Lee, D., Probert, P., A Low-Cost System Using Sparse Vision for

Navigation in the Urban Environment, Image and Vision Computing,

Volume 16, 1998, pp. 225-233.

Spyropoulos, C., Image Processing for Robot Navigation in Urban Environment,

MSc Thesis, School of Computing, University of Plymouth, United Kingdom,

September 1999.

Spiliotopoulos, D ., Androutsopoulos, I, Spyropoulos, C. D ., Human-Robot

Interaction Based on Spoken Natural Lnaguage Dialogue, European

Workshop on Service and Humanoid Robots (servicerob 2001), Santorini,

Greece, 2001 .

Stopp, E., Gapp, K P., Herzog, G., Laengle, T., Lueth, T. C., Utilizing Spatial

Relations for Natural Language Access to an Autonomous Mobile Robot,

KI-94: Advances in Artificial Intelligence, Springer, Berlin, Heidelberg, 1994, pp.

39-50.

Takeuchi, Y., Hebert, M., Finding Images of Landmarks in Video Sequences,

Proceedings of the IEEE Conference on Computer Vision and Pattern

235

Recognition (CVPR '98), June 1998.

Taylor, H . A., Tversky, B., Perspective in Spatial Descriptions,Jow:llill of Memory

and Language, 35, 1996, pp. 371-391.

Theobalt, C., Bos, J., Chaprnan, T., Romero, .A. E., Fraser, M., Hayes, G ., Klein, E ., Oka,

T., Reeve, R, Talking to Godot: Dialogue with a mobile robot, Proceedings

of 2002 IEEE/RSJ International Conference on Intelligent Robots and System,

2002, pp. 1338-1343.

Thorpe, C., Hebert, M., Kanade, T., Shafer, S., Vision and navigation for the

Carnegie-Mellon Navlab, IEEE Transactions on Pattern Analysis and Machine

Intelligence, 1 0(3), 1988, pp. 362-3 73.

Torrance, M. C., Natural Communication with Robots, MSc Thesis, Department of

Electrical Engineering and Computer Science, Massachusetts Institute of

Technology, February, 1994.

Traum, D., Bos, J., Cooper, R., Larsson, S., Lewin, I., Matheson, C., Poesio, M., A model

of dialogue moves and information state revision, Trindi Report 02.1, 1999.

Turk, M. A., Morgenthaler, D. G., Gremban, K. D., Marta, M., VITS: A Vision System

for Autonomous Land Vehicle navigation, IEEE Transactions on Pattern

Analysis and Machine Intelligence, Volume 10, No. 3, May 1988, pp. 342-361.

Unnikrishnan, R., Kelly, A., A Constrained Optimization Approach to Globally

Consistent Mapping, Proceedings of the 2002 IEEE/RSJ International

Conference on Intelligent Robots and Systems, EPFL, Lausanne, Switzerland,

October 2002b, pp. 564-569.

Unnikrishnan, R., Kelly, A., Mosaicing Large Cyclic Environments for Visual

Navigation in Autonomous Vehicles, Proceedings of the IEEE Conference

on Robotics and Automation (ICRA), May 2002a, pp. 4299-4306.

Wang, Y., Shen, D. D., Teoh, E. K., Lane Detection Using Catrnull-ROM Spline,

Proceeding o f IEEE International Conference on Intelligent Vehicles, IV'98,

Germany, October 1998, pp. 51-57.

236

Wang, Y., Shen, D., Teoh, E. K., Lane Detection Using Spline Model, Pattern

Recognition Letters, 21 (8),July 2000, pp. 677-689.

Wang, Y., Teoh, E. K., Lane Detection Using B-Snake, Proceedings of the IEEE

International Conference on Intelligence, Information and Systems, Hayatt

Regency, Bethesda, November, 1999, pp. 438-443.

Waxman, A. M., Lemoigne, J.]., Davis, L. S., Srinivasan, B., Kushner, T. R., Liang, E.,

Siddalingaiah, T., A Visual Navigation System for Autonomous Land

Vehicles, IEEE Journal of Robotics and Automation, Volume 3, Issue 2, April

1987, pp. 124-141.

Wilson, M. B., Dickson, S., Poppet: A Robust Boundary Detection and Tracking

Algorithm, BMVC99 (British Machine Vision Conference 1999), pp. 352-361.

Worrall, A. D ., Ferryman, J. M., Sullivan, G. D., Baker, K. D ., Pose and Structure

Recovery using Active Models, Proceedings of the British Machine Vision

Conference (BMVC), Birmingham, United Kingdom, 1995, pp. 137-146.

Yang,]., Ozawa, S., Recovery of 3-D Road Plane Based on 2-D Perspective Image

Analysis and Processing, IEICE Trans. Fundamentals, Volume E79-A, No. 8,

August 1996, pp. 1188-1193.

Zue, V., Conversational interfaces: Advances and challenges, In Proceedings of

Eurospeech, Rhodes, Greece, 1997, pp. 9-14.

237

Copies of Publications

238

Submitted to IEEE -Intelligent System & their Applications. Special Issue on: Semi-Sentient Robot: Routes to
Integrated Intelligence.

Personal Robot Training via Natural-Language Instructions.

Stanislao Lauria, Guido Bugmann 1, Theocharis Kyriacou, Johan Bos*, Ewan Klein*

Centre for Neural and Adaptive Systems, School of Computing, University of Plymouth
Drake Circus, Plymouth PL4 8AA, United Kingdom.

*Institute for Communicating and Collaborative Systems, Division of Informatics, University of Edinburgh, 2
Buccleuch Place, Edinburgh EH8 9LW, Scotland, United Kingdom.

http://www.tech.plym.ac.uk/soc/staff/guidbugm/ibllindex.htrnJ

19/3/2001

Abstract
Future domestic robots will need to adapt to the special needs of their users and to their environment.
Programming by natural language will be a key method enabling computer language-na"ive users to
instruct their robots. Its main advantages over other learning methods are speed of acquisition and
ability to build high level symbolic rules into the robot. This paper describes the design of a practical
system that uses unconstrained speech to teach a vision-based robot how to navigate in a miniature
town. The robot knows a set of primitive navigation procedures that the user can refer to when giving
route instructions. A particularity of this project is that the primitive procedures are determined by
analysing a corpus of route instructions. It is found that functions primitives natural to the user, such
as "turn left after the church" are very complex procedures for the robot, involving visual scene
analysis and local route planning. Thus, to enable natural user-robot interaction, a high-level of
intelligence needs to be built into "primitive" robot procedures. Another fmding is that the set of
primitive procedures is likely not to be closed. Thus, on time to time, a user is likely to refer to a
procedure that is not pre-programmed in the robot. How best to handle this is currently investigated.
In general, the use of Instruction-Based Learning (IDL) imposes a number of constraints on the design
of robotics systems and knowledge representation. These issues are developed in the paper and
proposed solutions described.

1. Introduction

Intelligent robots must be capable of action in reasonably complicated domains with some degree of
autonomy. This requires adaptivity to a dynamic environment, ability to plan and also speed in the
execution. In the case of helper robots, or domestic robots, the ability to adapt to the special needs of
their users is crucial. As most users are computer-language-na"ive, they cannot personalise their robot
using standard programming methods. Indirect methods, such as learning by reinforcement or
learning by imitation, are also not appropriate for acquiring user-specific knowledge. For instance,
learning by imitation does not enable the acquisition of rules such as "IF-THEN". Learning by
reinforcement is a lengthy process that is best used for refining low-level motor controls, but becomes
impractical for complex tasks. Further, both methods do not readily generate knowledge
representations that the user can interrogate. An alternative method, learning from verbal instructions
is explored in this paper.

Instruction-based learning (IDL) has several potential advantages. Natural language can
express rules and sequence of commands in a very concise way. Natural language uses symbols and
syntactic rules and is well suited to interact with robot knowledge represented at the symbolic level. It

1 To whom correspondence should be addressed.

Submitted to IEEE -Intelligent System & their Applications. Special Issue on: Semi-Sentient Robot: Routes to
Integrated Intelligence.

has been shown that learning in robots is much more effective if it operates at the symboUc level
(Cangelosi and Harnad, 2001). This is to be contrasted with the much slower learning at the level of
direct sensory-motor associations.

Previous work on verbal communication with robots has mainly focused on issuing
commands, i.e. activating pre-programmed procedures using a limited vocabulary (e.g. IJCAI'95
office navigation contest). Only a few research groups have considered learning, i.e. the stable and
reusable acquisition of new procedural knowledge. An inspiring project was Instructo-SOAR
(Huffman & Laird, 1995). This system used textual input into a simulation of a manipulator with a
discrete state and action space. Another investigation (Crangle and Suppes, 1994) used voice input to
teach displacements within a room and mathematical operations, but with no reusability. In (Torrance,
1995), textual input was used to build a graph representation of spatial knowledge. This system was
brittle due to place recognition from odometric data and use of IR sensors for reactive motion control.
Knowledge acquisition was concurrent with navigation, not prior to it. The present work aims at
using unconstrained language in a real-world robotic application. More recent projects with related
scope are CARL (Seabra Lopes and Teixeira, 2000) and HERMES (Bischoff and Jain, 1999).

The use of IBL has system-wide repercussions on the design of a robot control system. (i) The
robot must be able to convert utterances in natural language into internal symbols that the robot
understands. By understanding we mean here that there is a correspondence between symbols and
actions or real-world objects. Thus primitive functions associated with symbols must be provided. (ii)
The robot must be able to distinguish a command to be executed immediately from an instruction to
be memorized. This requires context resolution at the natural language processing level. (iii) The
robot must be able to verify that the instruction can be converted into an executable procedure. This
requires an internal representation of consequences of actions. (iv) In the case of translation errors at
any level of user-robot communication process, the robot must be able to inform the user and engage
in a repair dialogue. This requires sophisticated dialogue management. (v) Finally the robot must be
able to execute a command while listening to the user, and must cope with interruptions and
inappropriate answers to its requests. This requires a carefully designed system architecture.

This paper describes initial steps and considerations towards a practical realisation of an IBL
system. The experimental environment is that of a miniature town in which a robot provided with
video camera executes route instructions. The robot has a set of pre-programmed sensory-motor
action primitives, such as "turn left" of "follow the road". The task of the user is to teach the robot
new routes by combining action primitives using unconstrained speech. That task should reveal all the
constraints described above, and enable testing of the developed methodology.

Section 2 clarifies bow symbol-level description and low-level sensory motor action
procedures are integrated. The proposed representation of procedural knowledge is also described. In
section 3, natural language processing is described. In section 4, the system architecture is described.

One of the problems to consider is the selection of action primitives. This is done here by
analyzing recorded route instructions, and establishing a list of actions that are natural to users.
Section 5 describes this process and presents the result of this investigation. One of them is that the
list of primitives may not be a closed one. The implications of that and other findings is discussed in
section 6, along with the question of how the proposed system compares to other approaches.

2. IBL model

2.1 Symbolic learning

In IBL, verbal instructions given by the user are converted into new internal program code that
represents new procedures. Such procedures become part of a pool of procedures that can then be
reused to learn more and more complex procedures. Hence, the robot becomes able to execute
increasingly complex tasks.

Submitted to IEEE -Intelligent System & their Applications. Special Issue on: Semi-Sentient Robot: Routes to
Integrated Intelligence.

This process starts with a predefmed initial knowledge. This "innate" knowledge consist of
primitive sensory-motor procedures with names, such "turn left", "follow the road" (the choice of
these primitives is explained in section 2.3 and 5). The names constitute the "symbols", and the pieces
of computer program that controls the execution of corresponding procedures are called "actions"
(Figure lA). As each symbol is associated with an action, it is said to be "grounded".

When a user explains a new procedure to the robot, say a route from A to B that involves a
number of primitive actions, the IBL system creates a new name for the procedure, and writes a new
piece of program code that executes that procedure, and links the code with the name (see section 2.2
for details). The code refers to primitives actions by name. It does not duplicate the low-level code
defming theses primitives. For that reason, the new program can be seen as a combination of symbols
rather than a combination of actions (figure lB). As all new procedures are constructed from
grounded primitives, they become grounded by inheritance and are thus "understandable" by the
system when referred to in natural language.

When explaining a new procedure, the user can also refer to old procedures previously
defined by himself. In that way the complexity of the robot's symbolic knowledge increases (fig. 1 C).

Symbolic

~
Symbolic Symbolic

Level Level Level

' ' ' ' ' ' ' ' . ! i . . Innate Innate Innate . !
.

! : : : l . Links ! ! Links ! ! ! Links ! ! ! : . I I . I

I I I I I I I I I I I I : : . : : : iiiiii iiiiii .
Action Action i'i'i'i'i'i' Action
Level Level Level

A B c

Figure 1. Symbolic learning. (A) is a schematic representation of the initial system, comprising
symbols associated with pre-programmed (innate) primitive action procedures. In (B) the user has
defined a new procedure (open circle) as a combination of symbols. The new symbol is grounded
because it is a construct of grounded symbols. In (C), the user has defined a new procedure that
combines a procedure previously defmed by himself with primitive action procedures.

2.2 Knowledge representation

The internal representation needs to support three functions: (i) formal modeling of NL route
descriptions; (ii) internal route planning for determining whether a given route description is
sufficiently specified; and (iii) the generation of procedures for navigation at execution time. These
three functions require different representations that will be described in turn.

(i) The utterances of the user are represented using the discourse representation structure
(DRS) (section 3). This is then translated into symbols representing procedures or is used to initiate
internal functions such as execution of a command or learning of a series of commands (section 4).

(ii) When the user describes a route as a sequence of actions, it is important for the robot to
verify if this sequence is executable. The approach proposed here associate each procedure with a
triplet SAiiSi with properties similar to productions in SOAR (Laird et al, 1987). The state Si is the
pre-condition for action Aii. It defmes which components of the input state vector need to have
specific values for the action Aii to be possible. The state Si is the fmal state, resulting from the action
Aii applied to the input state. For a sequence of actions to be realisable, the final state of one action
must be compatible with the pre-condition of the next one. To enable this verification, the robot must
be able to "imagine" the consequence of an action. For that purpose, a PREDICTION function is
associated with each primitive action, and with each newly created procedure. Figure 2 illustrates the
use of the prediction function during verification of the consistency of the sequence of instructions

Submitted to IEEE -Intelligent System & their Applications. Special Issue on: Semi-Sentient Robot: Routes to
Integrated Intelligence.

from the user. It should be noted that this process also helps detecting some of the errors in natural
language processing.

Initial Initial Predicted Predicted
State State State 1 State 2
[KJ m m . K
[ID ffil
~C) Prediction ~
[]] Function . J QJ P1 rn
[I]

Initial
State
[KJ
[ID
~
[]]
rn
[I]

rn m
[I] [I]

A

Initial Pre-
State condition Inconsistency

m [K] [K]
~ ffil

Prediction ~d@]d Error Function . J ~ QJ Handling
P1 w 00 [g)

[I] ~ [I]
B

Figure 2. Route instruction verification. (A) For each procedure there is a prediction function
that transforms a state vector into its future value. The function first determines if the input state
satisfied the minimal criteria ("pre-condition") to enable the procedure to be executed. An action
is executable only if selected elements of the state vector have required values. If this is the case,
the next state is predicted and processed by the prediction function associated with the next
procedure in the instruction. Each action modifies certain components of the state vector, and
leaves the others unchanged. (B) If the predicted state produced by one procedure does not allow
the next procedure to be executed, an error handling process is initiated. (Note: the "initial state"
in the text corresponds to the "current state" in the figure) .

(ii i) When a robot executes a command, it executes a piece of program code that contains the
sequence of primitive procedures to be executed. Thus, a key part of IBL is the generation of a
program code. This is enabled by the use of a scripting language (section 4). This program is called
the ACTION function. Both ACTION and PREDICTION functions are physically located in the same
file that contains all information specific to a procedure. This is schematised in figure 3.

Submitted to IEEE -Intelligent System & their Applications. Special Issue on: Semi-Sentient Robot: Routes to
Integrated Intelligence.

Procedure XVZ

Prediction
Function

Action
Function

A

Previous Knowledge New Procedure

B

Figure 3. Procedural lrnowledge representation. (A) A procedure file contains an ACfiON
function that causes the physical displacement of the robot, and a PREDICTION function that
calculates the future state of the robot resulting from the action. The ACTION is used during
execution of a command, and the PREDICTION is used for consistency checking during the
learning process. (B) An instruction by the user results in a "New Procedure" file being written. In
this ftle, the actions components of the requested primitive procedures are combined (in the form
of function calls) to create the new ACTION function, and the prediction components are
combined to create the new PREDICTION function. This includes an additional procedure-specific
pre-condition.

2.3 Sensory-Motor primitives

Sensory-motor primitives are defmed as actions that users usually refer to in unconstrained speech.
These are not low-level robot control actions, and often involve complex processing and planning. A
task such as "approach that building at the end of the street" is a typical action that users ask the robot
to do at the end of a route instruction, when the goal is in sight (section 5). It is a complex action
involving visual detection of a building and of its entrance, its localisation in relation to the street, and
planning of a route along the street. All this is easy for a human, but in many ways stretches the limits
of robot "intelligence".

The use of relatively high-level primitives allows to accept underspecified natural-language
commands as executables procedures, and thus simplifies the mapping from natural language
expressions to robot procedures. It also gives the robot some autonomy in the execution of commands,
as the execution details depend on the local conditions.

3. Natural Language Processing

3.1 The Dialogue Move Engine

The ongoing dialogue between user and robot is represented by a discourse representation structure
(DRS) proposed by Discourse Representation Theory (Kamp & Reyle 1993). New utterances yield
DRSs (see section 3.2 below), which update the DRS of the dialogue, following the recent
information state approach to dialogue processing (Traum et al. 1999). Context-sensitive expressions
(such as pronouns and presupposition triggers) are resolved with respect to this DRS. Finally,

Submitted to IEEE -InteUigent System & their Applications. Special Issue on: Semi-Sentient Robot: Routes to
Integrated Intelligence.

utterances of the robot are realized by generating prosodically annotated strings from DRSs and
feeding these to a synthesizer.

Using semantic representations for modeling the dialogue is motivated by the need to perform
inferences in order to let the robot make "intelligent" responses. Inferences are required to resolve
ambiguities present in the user's input (being of scopal, referential, or lexical nature), to detect the
speech act associated to an utterance (e.g., did the user answer a question or has a new issue been
raised?), to plan the next utterance or action, and to generate naturally sounding utterances (e.g., by
distinguishing old from new information within an utterance). Inference are actually carried out using
off-the-shelf theorem provers, by translating DRSs to first-order logic (cf. Blackburn et al. 1999).

3.2 Speech Recognition

Speech recognition and semantic construction are integrated into one component. The basic idea is to
use off-the-shelf speech recognition, and to use a grammar that is linguistically motivated and domain
independent. The grammar not only consists of rules that determine the syntactic structure of
utterances, but also features semantic rules that specify how semantic representations (underspecified
DRSs) are built in a compositional way.

The current prototype implementation uses Nuance2 tools for speech recognition. The initial
grammar is a unification-based phrase structure grammar, which is compiled into GSL, the Grammar
Specification Language supported by Nuance's technology. This compilation involves removing left
recursive rules within the grammar, as well as replacing features and their possible values for
syntactic category symbols, as GSL neither support left-recursive rules nor a feature-value system.
As a consequence, the language models for the speech recognition are huge, but still feasible for small
lexicons (a few hundred words in the case of ffiL) .

The semantic operations are compiled-out in GSL as well , and each word in the lexicon is
associated with a semantic representation. As a result, the output of the speech recognizer is directly a
semantic representation, in our case an underspecified DRS, and another step of processing (such as
parsing and semantic construction) is not required. Hence, by compiling our linguistic grammar into
GSL, we short-cut the parsing and semantic construction process into a single component.

4. System Architecture

The architecture is comprised of several functional processing modules (figure 4). These are divided
into two major units: the Dialogue Manager (DM) and the Robot Manager (RM).

The DM and the RM are designed as two different processes based on asynchronous
communication protocols. These processes run concurrently on different processors. In this way, the
system can handle, at the same time, both the dialogue aspects of an incoming request from the user
(i.e. speech recognition and semantic analysis, or detection of a "stop" command) and the execution of
a previous user request (i.e. check if the request is in the system knowledge domain, and execute
vision-based navigation procedures).

2 http://www.nuance.com

Submitted to IEEE -Intelligent System & their Applications. Special Issue on: Semi-Sentient Robot: Routes to
Integrated Intelligence.

USER
~ Speech I ,, DialogJ!!! Mana....aer

Recogniser I Utterance J.-
.!.

Generator Generation
& I DIALOGUE MOVE I synthesis

ENGINE (DME)

~ ... •
I Communication Interface I c2

~-
.. _ !jo ~ I it~ ... - ;• 1--

I Communication Interface I >m cnc
~ mQ m

Execution Process

Process Launcher

+ ~ ~ H Robot I.J' ··-

m X Procedure I"" ,. m 0
;tl n "0 z c:

~ROBOT

....
m

R.Dbot Manas:er - '---- '---

Figure 4. IBL system's architecture (see text for description).

Two aspects are essential with this concurrent-processes approach. Firstly, to define an
appropriate protocol between the two processes. Secondly, to define an appropriate architecture for
theRM and DM allowing the two processes to both communicate with each other while performing
other tasks. At present a communication protocol based on sockets and context-tagged messages is
evaluated.

Moreover, the system must also dynamically adapt itself to new user requests or to new
internal changes, by being able to temporarily suspend or permanently interrupt some previous
activity. For example the user may want to prevent the robot crashing against a wall and must
therefore be able to stop the robot while it is driving towards the wall. Hence, the importance of a
concurrent approach where the system constantly listens to the user while performing other tasks.
Further, the system must be able adjust task parameters if necessary.

The Dialogue Manager is a bi-directional interface between the Robot Manager and the user,
either converting speech input into a semantic representation, or converting requests from the Robot
Manager into dialogues with the user. Its components are run as different processes communicating
with each other via a blackboard architecture.

The RM must be able to concurrently listen to messages from to the DM and process them,
and send requests to the DM. For this reason a multi-threads approach has been used. The
communication interface is a process that launches a message-evaluation thread "Execution Process"
(fig. 4) and then resumes listening to the DM. The execution process then starts an appropriate thread
for executing a command, or places a tagged message on a message board if the message is part of a
dialogue in a specific thread, e.g. learning a route.

The Robot Manager is written using the scripting language Python3 and C. An important feature
of scripting languages is their ability to write their own code. For instance, a route instruction given
by the user will be saved by the Robot Manager as a Python script that then becomes part of the
procedure set available to the robot for execution or for future learning.

3 http://www.python.org

Submitted to IEEE -Intelligent System & their Applications. Special Issue on: Semi-Sentient Robot: Routes to
Integrated Intelligence.

5. Corpus Collection and Data Analysis

To evaluate the potential and limitations of IDL, a real-world instructions task is used, that is simple
enough to be realisable, and generic enough to warrant conclusions that hold also for other task
domains. A simple route scenario has been selected, using real speech input and a robot using vision
to execute the instructed route (see 5.1 below for more details). The ftrst task in the project is to define
the innate actions and symbols in the route instruction domain. For this reason, a corpus of route
descriptions has been collected from students and staff at the University of Plymouth. In section 5.2
and 5.3 corpus collection and data analysis are presented.

5.1 Experimental Environment.

The environment is a miniature town covering an area of size 170cm x 120cm (figure 5). The robot is
a modified RobotFootball robot4 with a 8cm x 8cm base (figure 6A). The robot carries a CCD colour
TV camera5 (628 (H) x 582 (V) pixels) and a TV VHF transmitter. Images are processed by a PC that
acquires them via with a TV capture card6 (an example of such image is shown in figure 6B). The PC
then sends motion commands by FM radio to the robot. During corpus collection, the PC is also used
to record instructions given by subjects.

The advantage of a miniature environment is the ability to build a complex route structure in the
limited space of a laboratory. The design is as realistic as possible, to enable subjects to use
expressions natural for the outdoor real-size environment. Buildings have signs taken from real life to
indicate given shops or utilities such as the post-office. However, the environment lacks some
elements such as traffic lights that may normally be used in route instructions. Hence the collected
corpus is LikeLy to be more restricted than for outdoor route instructions.

The advantage of using a robot with a remote-brain architecture (Inaba et al., 2000) is that the
robot does not require huge on-board computing and hence can be small, fitting the dimensions of the
environment.

Figure 5. Miniature town in which a robot will navigate according to route instructions given by
users. Letters indicate the destinations and origins of various routes used in the experiment.

4 Provided by Merlin Systems (http://www.merlinsystemscorp.com/)
5 Provided by Allthings Sales and Services (http://www.allthings.corn.au/)
6 TV Card: Hauppage WinTV GO

Submitted to IEEE - Intelligent System & their Applications. Special Issue on: Semi-Sentient Robot: Routes to
Integrated Intelligence.

A) B)

Figure 6. A. Miniature robot (base 8cm x 8cm). B. View from the on-board colour camera.

5.2 Collection of a corpus of route instructions

To collect linguistic and functional data specific to route learning, 24 subjects were recorded as they
gave route instructions to the robot in the environment. Subjects were divided into three groups of 8.
The first two groups (A and B) used totally unconstrained speech, to provide a performance baseline.
It is assumed that a robot that can understand these instructions as well as a human operator would
represent the ideal standard. Subjects from group C were induced in producing shorter utterances by a
remote operator "taking notes". Subjects in groups A and B were told that the robot was remote
controlled and that, at a later date, a human operator would use their instructions to drive the robot to
its destination. It was specified that the human operator would be located in another room, seeing only
the image from the wireless on-board video camera. This induced subjects to use a camera-centred
point of view relevant for robot procedure primitives. Subjects were also told to reuse previously
defmed routes whenever possible, instead of re-explaining them in detail. Each subject had 6 routes to
describe among which 3 where "short" and 3 where "long". The long routes included a short one, so
that users could refer to the short one when describing the long one, instead of re-describing all
segments of the short one (figure le). This was to reveal the type of expressions used by users to link
taught procedures with primitive ones. Each subject described 6 routes having the same starting point
and six different destinations. Starting points were changed after every two subjects. A total of 144
route descriptions were collected. For more details about collection and analysis of the corpus see
(Bugmann et al. 2001).

5.3 Corpus Analysis: The functional vocabulary

The aim of the corpus analysis is to twofold. First, to defme the vocabulary used by the users in this
application, in order to tune the speech recognition system for an optimal performance in the task.
Secondly, to establish a list of primitive procedures that users refer to in their instructions. The aim is
to pre-program these procedures so that a direct translation from the natural language to grounded
symbols can take place. In principle, if the robot does not know a procedure, the user could teach it.
However, this is a process that we wish to avoid at this stage of the project, as discussed in section 6.
Hereafter, we report on the functional analysis of the corpus (Groups A and C merged. Group B not
included at this point in time). The reader interested in the task vocabulary can refer to (Bugmann et
al., 2001).

The functional vocabulary is a list of primitive navigation procedures found in route
descriptions. The initial annotation of instructions in terms or procedures, as reported here, is
somehow subjective, and influenced by two considerations. (i) The defmed primitives will eventually
be produced as C-Programs. It was hoped that only a few generic procedures would have to be
written. Therefore, the corpus has been transcribed into rather general procedures characterised by
several parameters (table 1). (ii) An important issue is knowledge representation. According to the

Submitted to IEEE - Intelligent System & their Applications. Special Issue on: Semi-Sentient Robot: Routes to
Integrated Intelligence.

SAS representation discussed in section 2, the executability of primitives can only be evaluated if
their initial and final states are defined. Subjects however rarely specified explicitly the starting point
of an action and sometimes did not define the final state in the same utterance. Nevertheless, it was
assumed that the system would be able to infer the missing information from the context. Therefore,
procedures without initial or final state were considered to be complete, and were annotated as such.
The specifications of primitive procedures is likely to evolve during the project.

This analysis methodology differs slightly from the one in (Denis, 1997). In our analysis,
there are no statements describing landmarks, as these are made part of procedures specifications, and
consequently there are also no actions without reference to landmarks. Even when a subject specified
a non-terminated action, such as "keep going", it was classified as "MOVE FORWARD UNTIL" ,
assuming that a termination point would be inferred from the next specified action. The List of actions
found in the route descriptions of groups A and C is given in table 1.

1

2
3

4
5
6
7

8
9
10
11
12

Count Primitive Procedures
178 MOVE FORWARD UNTIL [(past)over)across) <landmark>] I

[(half_way_of I end_of) street] I [after <number><landmark> [left I right]] I
[road bendl

118 TAKE THE [<number>l turn [(left I right)] I [(before I after I at) <landmark>]
94 <landmark> IS LOCATED [left I right)ahead] I [(at I next_to I left_of I

right_of I in_front_of I past I behind I on I opposite I near) < landmark>] I
[(half_way_of 1 end_of I beginning_of J across) street] I [between
<landmark> and <landmark>] I [on <number> turninQ Ueft I riQht)J

49 GO (before I after I to) <landmark>
32 GO ROUND ROUNDABOUT [left I right] I [(after I before I at) <landmark>]
27 TAKE THE <number> EXIT [(before I after I at) <landmark>]
9 FOLLOW KNOWN ROUTE TO <landmark> UNTIL (before I after J at)

<landmark>
3 STATIONARY TURN [left I right I around] I [at I from <landmark>]
1 TAKE THE ROAD in front
1 PARK AT <location>
l CROSS ROAD
1 EXIT [car _park I park]

Table 1. Primitive navigation procedures found in the route descriptions collected from groups A
and C. Procedure 3 is used by most subjects to indicate the last leg of a route, when the goal is in
sight.

Submitted to IEEE - Intelligent System & their Applications. Special Issue on: Semi-Sentient Robot: Routes to
Integrated Intelligence.

14

12

~ 10
0 ·=
" c
ti: 8
" " r:r ·;:
:l 6
::,
E
u < 4

2

0

r
I

0 10

~
~~

- orouos A and C

20 30 40 50 60 70 80 90 100

Route Descriptions

Figure 5. Average number of unique procedures as a function of the number of collected route
instructions The curve is obtained by averaging over 96 sets comprising a random selection of n
route descriptions. The number n is shown on the x-axis of the graph. The slope of the curve
indicates that, on average, one new function will be added to the functional lexicon for every 25
additional route instructions collected.

Figure 5 shows that the number of distinct procedures is increasing with the number of sampled
instructions, but at a rate much smaller than the number of distinct words reported in (Bugmann et al. ,
2001). Here we discover on average one new procedure for every 25 route instructions, while with
words, we discovered in average one new word for each instruction. New procedures typically are the
least frequent in table 3.

6. Practical Implications

Teaching a route to a robot using natural language is an application of a more general instruction
based learning methodology. The corpus-based approach described here aims at providing users with
the possibility of using unconstrained speech, whilst creating an efficient natural language processing
system using a restricted lexicon. It is found that the functional vocabulary is small, containing only
12 primitives (although that number may vary with the annotation method). From a roboticist's point
of view, route navigation could probably be achieved with a smaller number of primitives. However,
when accepting spontaneous speech, a wider variety of functions must be expected.

An important fmding is that the functional vocabulary is not closed. Hence, at some point in
the robot's life, the user will have to teach it new primitives (e.g. "cross the road") or reformulate its
instructions. To enable learning, the robot must posses a larger set of primitives, which correspond to
lower level robot actions. For instance, the user may wish to refer to a number of wheel turns in its
instruction. An example of such instructions is found in (Seabra Lopes, 2000). With our approach, this
would require the collection of a new corpus to determine the necessary additional primitive
procedures. Another solution may lie in an appropriate dialogue management to suggest a
reformulation of the instruction. It is expected that with the corpus-based method used here, the
frequency of such "repair dialogues" will be minimised. An open question is the detection of new
functions in the user's utterance, as the lexicon may not contain the required vocabulary.

The approach to robot control described may be seen as an attempt to integrate the good
properties of Behaviour-based control (Brooks, 1991) and classical AI. Behaviour-based control is an

Submitted to IEEE - [ntelligent System & their Applications. Special Issue on: Semi-Sentient Robot: Routes to
[ntegrated Intelligence.

effective method for designing low-level primitives that can cope with real-world uncertainties, and
AI has developed effective tools for symbol manipulation and reasoning. However, the system differs
in several ways from both methods. Here, the corpus defines what symbols and primitives to use.
Consequently, some of the primitives are rather complex functions, involving representations of the
environment and planning. These are not always compatible with the representation-less philosophy
of behaviour-based systems. On the AI side, the system does not use the full range of reasoning
capabilities offered by systems such as SOAR There are no other aims in symbolic processing than
verifying the consistency of instructions, and the construction of new procedure specifications. In
particular, planning at the symbolic level is not needed at this stage of the project. Instead, planning is
perfom1ed by the user, and the plan is communicated to the robot using natural language. This limits
the autonomy of the robot, but also improves the safety of its use, as unpredictable behaviour is
limited.

Other hybrid architectures integrating Behaviour-based systems and AI have been
investigated as possible solutions to the symbol-grounding problem (Malcom 1995, MacDorman
1999, Tani 1996, Toshihiro et al.l999). This problem is one of maintaining the coherence between
representations used to reflect upon actions and events, and the stream of sensory information
produced by a dynamic environment (Harnad, 1990). This problem can be avoided if the reasoning
process itself depends in some way on its relation to the world, or, in other words, if the development
of the internal categories and their transformations depends on external interactions. It has been
proposed that truly sentient robots should have learning abilities such that dynamically changing
external events and results of own action are allowed to constrain abstract reasoning.

The system developed by (Malcom, 1995) operated in a relatively well-ordered and
predictable world in which complex tasks had to be achieved. But since the symbol system could only
operate under internal syntactic constraints the grounding problem was not really addressed. In the
system suggested by (MacDorman, 1996; Tani, 1996) the development of the internal categories and
their transformations depended on external interactions. However, there was no human interaction and
the grounding could not be modified by a non-experienced user. Whereas in (Matsui et al. 1999), the
system could learn new actions through natural language dialogues but only while the robot was
performing them (i.e. it could only learn a new route from A to B while it was actually moving from
A to B and dialoguing with the user).

In the mL system described here, learning operates purely at the symbolic level, hence it can
be done prior to performance. The ability to predict future states enables to engage in a verification
dialogue before execution errors occur. If environmental conditions change such that an instruction is
not valid anymore, this can be detected from the mismatch between the expected result and the actual
one. Learning however is not autonomous. The system requires interaction with a human user to learn
new symbols and their meaning. This simplifies the design of the robot due to the transfer of part of
the cognitive load to the user. Future experiment will reveal if this approach results in effective and
socially acceptable helper robots.

Acknowledgement: This work is supported by EPSRC grants GRIM90023 and GRJM90160. The
authors are grateful to Angelo Cangelosi and Kenny Coventry for enlightening discussions.

References:

Blackburn P., Bos J. , Kohlhase M. and de Nivelle H. (1999). Inference and Computational Semantics.
In: Third International Workshop on Computational Semantics (IWCS-3), Tilburg, The
Netherlands.

Bischoff, R. Jain T. (1999). Natural Communication and Interaction with Humanoid Robots. Second
International Symposium on Humanoid Robots. Tokyo, Japan, October 1999, pp. 121-128.

Brooks, R. A. (1991) Intelligence without representation, Artificial Intelligence, 47, 139-159

Submitted to IEEE -Intelligent System & their Applications. Special Issue on: Semi-Sentient Robot: Routes to
Integrated Intelligence.

Bugmann G., Lauria S., Kyriacou T., Klein E. , Bos J. and Coventry K. (2001) "Using Verbal
Instruction for Route Learning", Proc. of 3rd British Conference on Autonomous Mobile
Robots ande Autonomous Systems: Towards Intelligent Mobile Robots (TIMR'2001),
Manchester, 5 April.

Cangelosi A., Harnad S. (2001) The adaptive advantage of symbolic theft over sensorimotor toil:
Grounding language in perceptual categories. Evolution Communication. (in press)

Crangle C. and Suppes P. (1994) Language and Learning for Robots, CSLI Lecture notes No. 41,
Centre for the Study of Language and Communication, Stanford, CA.

Denis M. (1997) "The description of routes: A cognitive approach to the production of spatial
discourse", CPC, 16:4, pp.409-458.

Hamad, S. (1990) The Symbol Grounding Problem. Physica D 42: 335-346.
Huffman S.B. and Laird J.E. (1995) "Flexibly Instructable Agents", Journal of Artificial Intelligence

Research, 3, pp. 271-324.
Inaba M., Kagarni S., Kanehiro F., Hoshino Y., Inoue H. (2000) "A platform for robotics research

based on the remote-brained robot approach", International Journal of Robotics Research,
19:10, pp. 933-954.

Kamp H. and Reyle U.(1993): From Discourse to Logic. Kluwer.
Laird J.E., Newell A. and Rosenbloom P.S. (1987) "Soar: An architecture for general Intelligence"

Artificial Intelligence, 33:1, pp. l-64.
Malcom C. M . (1995), The SOMASS system: a hybrid symbolic and behavioured-based system to

plan and execute assemblies by robot. In J. Halla.m. et al. (Eds), Hybrid problems and Hybrid
solutions pp 157-168. Oxford: !SO-press.

MacDorman, K. F. (1999). Grounding symbols through sensorimotor integration. Journal of the
Robotics Society of Japan, 17(1), 20-24.

Seabra Lopes, L. and A.J.S. Teixeira (2000) Human-Robot Interaction through Spoken Language
Dialogue, Proceedings IEEEIRSJ International Conf. on Intelligent Robots and Systems, Japan.

Tani J. (1996) Model based learning for mobile robot navigation from the dynamical system
perspective 1996 IEEE Trans. Sys. Man Cybernetics, Part B, 26:3, pp 421-436

Traum, D., J. Bos, R. Cooper, S. Larsson, I.Lewin, C. Matheson and M. Poesio (1999): A model of
dialogue moves and information state revision. Trindi Report 02.1 . Available from
http://www.ling.gu.se/research/projects/trindi

Using Verbal Instructions for Route Learning: Instruction Analysis.

Guido Bugmann, Stanislao Lauria, Theocharis Kyriacou, Ewan Klein*, Johan Bos*, Kenny
Coventry+

Centre for Neural and Adaptive Systems, School of Computing, University of Plymouth
+oepartment of Psychology, University of Plymouth,
Drake Circus, Plymouth PIA 8AA, United Kingdom

*Institute for Communicating and Collaborative Systems, Division of Informatics, University
of Edinburgh, 2 Buccleuch Place, Edinburgh EH8 9LW, Scotland, United Kingdom

http://www.tech.plym.ac.uk/soc/staff/guidbugm/ibl/index.html

5/4/2001"

Abstract
Future domestic robots will need to adapt to the special needs of their users and to their environment. It is likely
that programming by natural language will be a key method enabling computer language-naiVe users to instruct
their robots. Th.is paper describes initial steps and considerations towards the design of Instruction-Based
Learning (IBL) systems. The proposed methodology is to be tested in the restricted domain of route instructions
with real speech input and a real mobile robot using vision for navigation. Users will use unconstrained speech
within a restricted domain-specific lexicon determined by analysing a corpus of route instructions. This will
maximise speech recognHion performance. The robot will possess an appropriate set of primitive procedures
that correspond to procedures found in route instructions. Based on 96 route instructions, it is found that the task
vocabulary contains approximately 270 words, but is not closed. It increases at an average rate of one new word
for every new route instruction. However, there are large inter-individual differences and 58% of instructions
contain no out-of-vocabulary words. The functional vocabulary is found to include 12 different procedures, and
is also not closed. It increases at an average rate of one new procedure for every 25 instructions.

1. Introduction

Future domestic robots will be required to perform tasks that manufacturers cannot pre-program. For instance,
making tea to the taste of the user, or fetching a book in a specified room. Such task require knowledge about
the layout of the home of the user and on his/her preferences. Other tasks will need to be performed at a given
time of the day or if certain conditions are met. In this paper we concentrate on navigation tasks, for instance the
ones performed by an autonomous wheelchair carrying his/her user to a desired destination. The problem
addressed is here the one of how a user, with no programming skills, could interact with the robot to modify its
internal program.

The question of how robots could learn from their users has been investigated so far along two main
routes, learning by imitation [Billard et al., 1998] and learning by reinforcement [e.g. Perez-Uribe and
Hirsbrunner, 2000]. However, both methods have limited scope. For instance, learning by imitation does not
enable the acquisition of rules such as "IF -THEN". Learning by reinforcement is a lengthy process that is best
used for refining low-level motor control, but becomes impractical for complex tasks. Both methods do not
readily generate knowledge representations that the user can interrogate. This paper focuses on another form of
learning, by verbal instruction, that has proven its effectiveness in human learning [Bloom, 1984], but has
received relatively little attention in robotics.

Previous work on verbal communication with robots has mainly focused on issuing commands, i.e.
activating pre-programmed procedures using a limited vocabulary (e.g. IJCAI'95 office navigation contest).
Only a few research groups have considered learning, i.e. the stable and reusable acquisition of new procedural
knowledge. [Huffman & Laird, 1995] used textual input into a simulation of a manipulator with a discrete state
and action space. [Crangle and Suppes, 1994] used voice input to teach displacements within a room and

· Proc. TIMR 01- Towards Intelligent Mobile Robots, Manchester 2001.
Technical Report Series, Department of Computer Science, Manchester University, ISSN 1361 - 6161.
Report number UMC-01-4-1. Http://www.cs.man.ac.uk/csonly/cstechrep/titlesOl.html

mathematical operations, but with no reusability. In [Torrance, 1995], textual input was used to build a graph
representation of spatial knowledge. This system was brittle due to place recognition from odometric data and
use of IR sensors for reactive motion control. Knowledge acquisition was concurrent with navigation, not prior
to it.

Key criteria for the design of practical instruction-based learning (IBL) systems are seen here as: 1.
Handling of natural speech, with its variations, underspecifications and errors in speech recognition; 2.
Handling real world continuous state spaces with uncertainty and noise; 3. Incremental learning, with new
instructions reusing previously taught procedures; 4. User-friendly and effective dialogue management by the
robot.

Satisfying these criteria imposes numerous inter-linked constraints on the system architecture, the robot
control design and the natural language processing component of an ffiL system. In order to explore these
effects, a simple route learning task has been selected, using real speech input and a robot using vision to
execute the instructed route. The interaction scenario and the architecture of the proposed ffiL system are
outlined in section 2. Speech recognition, natural language understanding and dialogue management are
described in section 3. The miniature experimental environment and the robot are described in section 4. As a
first step toward designing a system that can handle unconstrained speech we have co!Jected a corpus of data on
unconstrained instructions given by users. The corpus collection procedure and the analysis of the data are
described in section 5. Analysis is done along two lines, i) specifying the lexicon, grammar rules, dialogue
acts and ontology (really ???)and ii) determining a list of primitives navigation procedures referred to in the
instructions. The implications of the findings are discussed in section 6.

2. I BL concept: Interaction Scenario and Architecture.

2.1 Concept

The aim of the ffiL project is to develop a system that converts verbal instructions into internal program code.
Procedures learnt from the user become part of a pool of procedures that can be reused to learn more and more
complex procedures. Hence, the robot becomes able to execute increasingly complex tasks.

To evaluate the potential and limitations of ffiL, a real-world instructions task should be used, that is
simple enough to be realisable, and generic enough to warrant conclusions that hold also for other task domains.
To be generic, the task should require the learning of the three fundamental components of computer programs:
Sequence, Selection and Repetition. These components are found in route instructions. First, a route is a
sequence of route-segments. Secondly, although decisions are rarely part of route instructions (e.g. "if the road
is blocked take this other one"), they are implicit in the execution of all segments. For instance, "take the first
left" is to be translated in programming terms into "IF you are not at the intersection yet, THEN keep moving
towards it. ELSE: do the left turn". Thirdly, explicit repetitions do occur in route instructions ("turn left 2
times"), and are also implicit in all segments which, as in the example above, requires a repetition of procedures
("keep moving until .. . ").

In terms of user-robot interaction, a typical learning process would start with the user asking the robot
to perform a given task. If the robot lacked information about the task, it would ask for clarification or may ask
the user to explain the task step by step. The ensuing dialogue constitutes the core of "instruction-based
learning".

Due to the nature of the users, a requirement of the project is the use of unconstrained speech. In terms
of vocabulary, this means that the user is allowed to use the words that are natura! to him. However, using a
restricted lexicon improves the performance of a speech recogniser. It is planned here to use a restricted lexicon
that matches the one naturally used by users, so at to allow unconstrained speech. In terms of navigation
procedures, the user is allowed to construct route using functional primitives that are natural to him. It is
planned to provide the robot with pre-programmed counterparts to these primitives, to enable a seamless
conversion of verbal route instructions into programs. Corpus analysis along these lines is described in section
5. Another dimension of unconstrained speech is dialogue management. The user should be free to initiate or
terminate dialogue moves at will. For instance, the user should be able at any time to interrupt a process in the
robot, by issuing the command "stop", or leave a learning dialogue to issue a new command. This requires a
flexible dialogue management but also a purpose-designed system architecture.

2.2 System Architecture

The architecture is comprised of several functional processing modules (figure 1). These are divided into two
major units: the Dialogue Manager (DM) and the Robot Manager (RM).

The DM and theRM are designed as two different processes based on asynchronous communication
protocols. These processes run concurrently on different processors. In this way, the system can handle, at the
same time, both the dialogue aspects of an incoming request from the user (i.e. speech recognition and semantic
analysis, or detection of a "stop" command) and the execution of a previous user request (i.e. check if the
request is in the system knowledge domain, and execute vision-based navigation procedures).

<
u SER

...J Speech I 11 Dialo~ Manrurer

Oii"'J Recognisor I Utterance I.--
.l

Generator G eneratlon
& I DIALOGUE MOVE I Synthesis

ENGINE (DME)

~ ~ ..
I Communicati on Interface I c2 -- '~ - ~~ -I - ;• ~m -
I Communication Interface I >c

CI)Q

~ mm
Execution Process

Procass Launcher

+ ~ + .-.j Robot I ~
rn il!i Procedure I"' ~ ,. 0

ROBOT

~ n
c:: "0

....
rn

Robot Manaaer - '----- -

Figure 1. IBL systems architecture.

Two aspects are essential with this concurrent-processes approach. Firstly, to define an appropriate
protocol between the two processes. Secondl y, to define an appropriate architecture for theRM and DM
allowing the two processes to both communicate with each other while performing other tasks. At present a
communication protocol based on sockets and context-tagged messages is evaluated.

Moreover, the system must also dynamically adapt itself to new user requests or to new internal
changes, by being able to temporarily suspend or permanently interrupt some previous activity. For example the
user may want to prevent the robot crashing against a wall and must therefore be able to stop the robot while the
robot is driving towards the wall. Hence, the importance of a concurrent approach where the systems constantly
listens to the user while performing other tasks and at the same time be able to adjust the task if necessary.

The Dialogue Manager is a bi-directional interface between the Robot Manager and the user,
either converting speech input into a semantic representation, or converting requests from the Robot Manager
into dialogues with the user. Its components are run as different processes communicating with each other via a
blackboard architecture.

TheRM must concurrently listen/send requests frornlto the DM and try to execute them. For this
reason a multi-threads approach has been used. The communication interface is a process that only launches a
message evaluation thread "Execution Process" and resumes listening to the DM. The execution process then
starts an appropriate thread for executing a command, or places a tagged message on a message board if it is a
part of a dialogue in a specific thread, e.g. learning a route. The characteristic of this approach is that all
processes in the RM are sharing common memory stack so that threads can be started and paused, depending on
the user's input.

The Robot Manager is written using the scripting language Python1 and C. An important feature of scripting
languages is their ability to write their own code. For instance, a route instruction given by the user will be
saved by the Robot Manager as a Python script that then becomes part of the procedure set available to the robot
for execution of for future learning.

1 http://www.python.org

3 Natural Language processing and dialogue management.

3.1 The Dialogue Move Engine

The ongoing dialogue between user and robot is represented by a discourse representation structure (DRS)
proposed by Discourse Representation Theory (Kamp & Reyle 1993). New utterances yield DRSs (see section
3.2 below), which update the DRS of the dialogue, following the recent information state approach to dialogue
processing (Traum et al. 1999). Context-sensitive expressions (such as pronouns and presupposition triggers) are
resolved with respect to this DRS. Finally, utterances of the robot are realized by generating prosodically
annotated strings from DRSs and feeding these to a synthesizer.

Using semantic representations for modeling the dialogue is motivated by the need to perform
inferences in order to let the robot make "intelligent" responses. Inferences are required to resol ve ambiguities
present in the user's input (being of scopal, referential, or lexical nature), to detect the speech act associated to
an utterance (e.g., did the user answer a question or has a new issue been raised?), to plan the next utterance or
action, and to generate naturally sounding utterances (e.g., by distinguishing old from new information within an
utterance). Inference are actually carried out using off-the-shelf theorem provers, by translating DRSs to first
order logic (cf. Blackburn et al. 1999).

3.2. Speech Recognition

Speech recognition and semantic construction are integrated into one component. The basic idea is to use off
the-shelf speech recognition, and to use a grammar that is linguistically motivated and domain independent. The
grammar not only consists of rules that determine the syntactic structure of utterances, but also features semantic
rules that specify how semantic representations (underspecified DRSs) are built in a compositional way.

The current prototype implementation uses Nuance2 tools for speech recognition. The initial grammar
is a unification-based phrase structure grammar, which is compiled into GSL, the Grammar Specification
Language supported by Nuance's technology. This compilation involves removing left-recursive rules within
the grammar, as well as replacing features and their possible values for syntactic category symbols, as GSL
neither support left-recursive rules nor a feature-value system. As a consequence, the language models for the
speech recognition are huge, but still feasible for small lexicons (a few hundred words in the case of IBL).

The semantic operations are compiled-out in GSL as well, and each word in the lexicon is associated
with a semantic representation. As a result, the output of the speech recognizer is directly a semantic
representation, in our case an underspecified DRS, and another step of processing (such as parsing and semantic
construction) is not required. Hence, by compiling our linguistic grammar into GSL, we short-cut the parsing
and semantic construction process into a single component.

4 Experimental Environment and task.

The environment is a miniature town covering an area of size 170cm x 120cm (figure 2). The robot is a
modified RobotFootbaU robof with a 8cm x 8cm base (figure 3A). The robot carries a CCD colour TV camera4

(628 (H) x 582 (V) pixels) and a TV VHF transmitter. Images are to be processed by a PC that acquires them
via with a TV capture cards (an example of such image is shown in figure 3B). The PC will then sends motion
commands by FM radio to the robot. During corpus collection, the PC is also used to record instructions given
by subjects.

The advantage of a miniature environment is the ability to build a complex route structure in the limited
space of a laboratory. The design is as realistic as possible, to enable subjects to use natural expressions for the
outdoor real-size environment. Buildings have signs taken from real life to indicate given shops or utilities such
as the post-office. However, the environment lacks some elements such as traffic lights that may normally be
used in route instructions . Hence the collected corpus is likely to be more restricted than for outdoor route
instructions.

The advantage of using a robot with a remote-brain architecture [Inaba et al., 2000] is that the robot does
not require huge on-board computing and hence can be small , fitting the dimensions of the environment.

2 http://www.nuance.com
3 Provided by Merlin Systems (http://www.merlinsystemscorp.com/)
4 Provided by Allthings Sales and Services (http://www.allthings.com.aul)
5 TV Card: Hauppage WinTV GO

Figure 2. Miniature town in which a robot will navigate according to route instructions given by users.

B)
(

Figure 3. A. Miniature robot (base 8cm x 8cm). B. View from the on-board camera.

S Corpus collection and data analysis

5.1 Data collection

To collect linguistic and functional data specific to route learning, 24 subjects were recorded as they gave route
instructions to the robot in the environment. Subjects were divided into three groups of 8. The first two groups
(A and B) were told that the robot was remote-controlled and that, at a later date, a human operator would use
their instructions to drive the robot to its destination. It was specified that the human operator would be located
in another room, seeing only the image from the wireless on-board video camera. This was specified to induce
the subject into using spatial references accessible by the future vision software. Subjects were also told to reuse
previously defined routes whenever possible, instead of re-explaining them in detail. Each subject had 6 routes
to describe among which 3 where "short" and 3 where "long". The long routes included a short one, so that
users could refer to the short one when describing the long one, instead of re-describing all segments of the short
one. This was to reveal the type of expressions used by users to link taught procedures with primitive ones.
Groups A and B received the same routes to describe, but with the sequence of "short" and "long" route
inverted. This would reveal the difference between a fully detailed route, and a route with reference to a short
route inserted. Again the question is the one of how procedure insertion is handled by subjects.

The first two groups (A and B) used totally unconstrained speech, to provide a performance baseline. It
is assumed that a robot that can understand these instructions as well as a human operator would represent the
ideal standard. Each subject described 6 routes having the same starting point and six different destinations.
Starting points were changed after every two subjects. A total of 96 route descriptions were collected.
A third group of 8 subjects (C) bad the same routes to describe as group A, but were forced into a simplified
dialogue with an operator to produce shorter chunks of descriptions. Its is known that its is very difficult for NL

processing tools to correctly segment an uninterrupted stream of words into sentences. Therefore, corpus C may
be more representative of utterances in the eventual user-robot dialogue. Subjects in this group were told that the
operator next door was taking notes. A researcher pretended to do so and interrupted the subjects (using a
microphone) when they used chunks that were too long. He acted as if he understood all the instructions and did
not initiate repair dialogues. The analysis performed so far covers group A and group C. Table 1 shows an
example of the same two "short" and "long " routes instructed by a subject in group A and a subject in group C.
The instructions were transcribed in XML using the Transcriber6 software.

Monologue
Short User: okay take your first right and continue down the street past Derry's past Safeway and

your parking lot the car park will be on vour rioht
Long User: okay once you pass the car park er take your first right and then again take your first right

and the hospital will be right in front of you
Dialogue

Short Wizard: could you tell me how to get to the car park please

Long

User: okay you'll take the first right from where you are now past Derry's then Safeway
Wizard: yes
User: you'll pass another road on the left and the car park's on the right from there
Wizard: thank you
Wizard: could you tell me how to go to the hospital please
User: okay you need to go back towards the car park
Wizard: yes
User: past the car park take the first right
Wizard: i'm sorry after i pass the car park
User: you take the right after the car park
Wizard: yes
User: and then another right again
Wizard: yes
User: and you'll be moving towards the hospital on the end of that road
Wizard: thank YOU

Table 1: Example of instructions for a short route from E toP and a long route from E to H (see figure 2)
given under monologue condition (group A) and dialogue condition (group C). The wizard is a human
operator mimicking verbal feedback that could be given by the robot.

5.2 Analysis of the Task Vocabulary

To provide an initial estimate of the task vocabulary, the data from group A and C were merged. The number of
distinct words was counted in the set of 96 instructions given. Morphology was not taken into account, i.e.
"travels" and "travel" were counted as different words. The vocabulary of the users was found to contain 269
different words, from a total of 4020 word in the combined corpus A and C. The most frequent words were
found up to 491 times and 67 words were used only once (table 2), i.e. only one subject used a particular word
in a single route instruction.

To determine if the corpus collection had led to a complete sampling of the task vocabulary, the
average number of distinct words was plotted as a function of the number of collected instructions. Figure 4
shows that the number of distinct words is still rising at the end of the curve, indicating that more new words
would be found if more route instructions were collected. This behaviour is similar in other task domains [Zue,
1997]. The slope of the curve in figure 4 indicates that a new user might say on average one out-of-vocabulary
word in each instruction.

To determine what type of new word might be expected, each route instruction was compared to the
corpus of aH other instructions. The result is that the new words are all among the 69 least frequently used
words. Table 2 shows that these are not necessarily "unusual" words. The question of how the understanding of
an instruction might be affected by the absence of such words from the vocabulary will be investigated further.

The dialogue group tended to use less distinct words (figure 3) and tended to produce less "out-of
vocabulary" words (table 3). Therefore, future experiments may reveal an improved speech recognition
performance in dialogue conditions.

6 http://www.ldc.upenn.edu/mirrorffranscriber/

Most Frequent Least frequent
Word Count Order, here, doors, onto, robot,

The 491 well, center, moving, moment,
thank you, lot, park's, actually, its,

And 166 carrying, able, tesco, sharp,

On 162 turned, leave, arrive, branch,

You 125
taking, while, crossing, hundred,
taken, double, bears, area, ninety,

To 123 instruct, turnings, feel, apologize,

Take 117
thirty, or, place, amount, leaving,
time, blocks, diagonally, there's,

Left 114 say, currently, what, reaching,

Right 108 travels, some, bear, bends, says,
means, quadrangle, exits, like,

Go 97 forty-five, set, now, half, five, very,

Your 92 only, uh-huh, certainly, tesco's,
I paper, quarters, soon, move

Table 2: Most frequent and least frequent user word in the corpus. The least frequent words were found
only once in 96 route descriptions.

300

2SO

~
6
~

200

..,
"' er ·a lSO

;:J

~
--Groups A and C

e .,
>

lOO • • •Group A (monologues)

< --Group C (dialogues)

so

0 10 20 30 40 so 60 10 80 90 l OO

Route Descriptions

Figure 4. Number of distinct words discovered in the corpus as the number of instruction samples
increases. The long line is for group A and C pooled. The shorter lines are for groups A and C taken in
isolation. Curves are obtained by averaging over 48 random sets comprising an increasing number of
sample instructions. The slope of the long curve indicates that, on average, one new word is added to the
vocabulary for every additional route instruction collected.

Another way to look at the problem of out-of-vocabulary words, is to determine how many instructions
actually contain new words. The result is that 58% of instructions had no new words (60% of those in group A,
and 56% of those in group C) implying that more than half of the instructions would be recognised perfectly by
a speech recognition system based on the current vocabulary. Among the remaining 42% of instructions, 65%
had only one new word and 35% had between 2 and 6 new words.

Subject: 2 3 4 5 6 7 8 9 1 10 11 12 13 14 15 16
Group: d d d d d d d d m m m m m m m m
Nb. New 2 3 10 5 5 0 0 2 2 3 3 1 1 19 10 3
words

Table 3: Number of new words used by each subject in their 6 route instructions. The group of the subjects is
indicated by m = monologue (A) or d = dialogue (C).

There was also a significant inter-subject variability (table 3). Some subjects used less than two new words in
their 6 descriptions, while others were blessed with a particularly rich vocabulary and produced several new
words in each one of their instruction. This is not necessarily a blessing when it comes to interacting with a
robot. However, some of the "new" words counted here were morphological variations of known words, and a
speech recognizer would have recognized them. In general, not more than one sentence per instruction contains
a truly out-of-vocabulary word. Hence, it is expected that situations where repair is needed will not be
unbearably frequent, but they are likely to affect most users.

5.3 Analysis of the Functional Vocabulary.

The functional vocabulary is a list of primitive navigation procedures found in descriptions. The initial
annotation of instructions in terms or procedures, as reported here, is somehow subjective, and influenced by
two considerations. 1. The defined primitives will eventually be produced as C-Programs. It was hoped that only
a few generic procedures would have to be written. Therefore, the corpus has been transcribed into rather
general procedures characterised by several parameters (table 4). 2 . An important issue is knowledge
representation. A route is to be represented as a graph, constituted of a continuous chain of primitives. For that
purpose, all primitives must be consistent with a standard "S;A;iSi" representation (Initial state Sit final state Si
and Unking action A;j)· For a route description to be accepted as complete and executable, the initial state of
each procedure must correspond to the final state of the previous one.

Subjects however rarely specified explicitly the starting point and it was assumed that the system would
need to be able to infer the starting point from previous action specifications. Therefore, procedures without
starting points were considered complete, and were annotated as such. The specifications of primitive
procedures is likely to evolve during the project.

This methodology differs from the one used in [Denis, 1997]. Denis converted each instruction into a
propositional format. For instance "You will arrive at a wooden bridge that you must cross" is converted into:

1. ARRIVE AT(YOU, BRIDGE); 2. WOODEN(BRIDGE); 3. CROSS(YOU, BRIDGE)
Statements in this format were grouped into four classes: "prescribing action" (e.g. "turn left"), "prescribing
actions with reference to a landmark" (e.g. number 3 above), "introducing landmarks" (e.g. "there is a tree to
your left"), "describing landmarks" (e.g. number 2 above) and "Commentaries" (e.g. "the route will take about 5
min.").

In our analysis, there are no statements describing landmarks, as these are included in the termination
points and there are no actions without reference to landmarks, as robot procedures need a defined termination
point. Even when a subject specified a non-terminated action, such as "keep going", it was classified as "MOVE
FORWARD UNTil..", assuming that a termination point would be inferred from the next specified action. The
list of actions found in the descriptions of groups A and C is given in table 4.

Count Primitive Procedures

1 178 MOVE FORWARD UNTIL [(past jover jacross) <landmark>] I [(half_way_of I end_of)
street 11 [after <number><landmark> [ieft I right]] I [road bend]

2 118 TAKE THE [<number>] turn [(left I right)] I [(before I after I at) <landmark>]

3 94 <landmark> IS LOCATED [left I right jahead]l [(at I next_to jleft_of I right_of I in_front_of I
past I behind I on I opposite I near)< landmark >]I [(half_way_of I end_of I beginning_of I
across}streetll [between <landmark> and <landmark>] I [on <number> turnino (left I riqht)l

4 49 GO (before I after I to) <landmark>

5 32 GO ROUND ROUNDABOUT [left 1 right] I [(after I before I at) <landmark>]

6 27 TAKE THE <number> EXIT [(before 1 after 1 at) <landmark>]

7 9 FOLLOW KNOWN ROUTE TO <landmark> UNTIL (before I after I at) <landmark>

8 3 STATIONARY TURN [left I right I around] I [at I from <landmark>]

9 1 TAKE THE ROAD in_ front

10 1 PARK AT <location>

11 1 CROSS ROAD

12 1 EXIT [car_park 1 park]

Table 4. Primitive navigation procedures found in the route descriptions collected from groups A and C.
Procedure 3 is used by most subjects to indicate the last leg of the route, when the goal is in sight.

14.--

--Groups A Wld C

t-:fk=----------------------------------1- • 'Group A (monologues) f---
- Group C (d.ialogues)

0~----r----,----~----~----~----r----,----~----~--~

0 10 20 30 40 50 60 70 8 0 90 100

Route Descriptions

Figure 5. Average number of unique procedures as a function of the number of collected route instructions
(Curves calculated as in figure 4.) .

Figure 5 shows that the number of distinct procedures is increasing with the number of sampled instructions, but
at a rate much smaller than the number of distinct words seen in the previous section. Here we discover on
average one new procedure for every 25 route instructions, while with words, we discovered in average one new
word for each instruction (figure 4). New procedures typically are the least frequent in table 4.

6 Discussion

Teaching a route to a robot using natural language is only one application of a more general instruction-based
learnmg methodology. The approach described here aims at providing users with the possibility of using
unconstrained speech, whilst creating an efficient natural language processing system using a restricted lexicon.
The preliminary analysis of the lexicon shows however that out-of vocabulary errors are to be expected. This is
a well known problem in the domain of speech recognition, but it is a rather new observations on the functional
side. From a roboticist's point of view, route navigation can be achieved with a rather small number of
primitives. However, in spontaneous speech, a wider variety of functions must be expected.

We are attempting to give the user the freedom to reply or not to reply to a query, to control when
given dialogues are to take place and to interrupt the robot at will. This created interesting constraints on the
design of the system's architecture. In particular it calls for a solution using multi-threads with shared memory.
Experiments will reveal how effective this solution is.

The results in section 5.2 indicate that when working with a limited vocabulary, it is unavoidable that
unknown words are going to be used by users. This is the price to pay for having a reasonably robust speaker
independent recogniser. In current speech recognition systems, such words would either be ignored or replaced
with the most likely word in the lexicon. Limited research has gone into speech recognisers that would signal
that some sound is likely to be a new word and learn the new word [Zue, 1997; Asadi et al, 1991]. When
working with large vocabularies, out-of-vocabulary words are less likely to occur, but word recognition errors
then occur due to the larger search space. Thus in any case, error spotting and repair mechanisms need to be
built into an IBL system.

Word recognition errors can be revealed in the DM when they cause ungrammatical sentences. TheRM
can also detect word errors when they lead to unknown tasks being requested. The last stage of error spotting is
to ask the user to confum a task just before execution. Overall, error spotting and repair is not a simple problem,
and experiments will be needed to understand how best to approach it.

The functional vocabulary is rather small. It includes navigation procedures and cognitive7 procedures.
An important finding is that the functional vocabulary is not closed. Hence, at some point in the robot's life, the

7 "cognitive" denotes here actions that manipulate knowledge as opposed to actions that move the robot.

user will have to teach it new primitives (e.g. "cross the road"). Future work will have to determine what
additional set of primitives are needed by the robot to understand instructions explaining how to "cross the
road". Another issue is the identification of new functions, as the lexicon may not contain the required words.

7 Conclusion

The project described in this paper is aimed at exploring IBL for a limited class of functions: routes descriptions.
Hence steps were taken to pre-program all other functions necessary for constructing route descriptions. A
corpus of instructions was analysed to determine the list of words that the speech recognition system should
recognise. Similarly a list of primitive procedure was established to ensure that the robot would be able to
execute the navigation procedures forming the instructions. However, the initial results presented here show that
neither the lexicon nor primitive procedures are likely to form closed sets. Ideally, and IBL system should
therefore also be capable of acquiring new words, and users should be given the possibility to teach new
primitive procedures. Unfortunately, the former is beyond the capabilities of current speech recognition systems.
As for learning new primitives procedures, this would require a new set of more primitive procedures to be
combined via user instructions. Whether it will be possible to explore this during the project is unclear. To allow
IBL to operate despite these limitations, it is likely that a crucial role will be played by dialogue management.

Acknowledgement: This work is supported by EPSRC grants GRJM90023 and GRJM90160.

References:
Asadi A., Schwartz R. and Makhoul J. (1991) "Automatic modelling for adding new words to a large

vocabulary continuous speech recognition system", Proc. ICASSP, pp. 305-308.
Billard A., Dautenham K. and Hayes G. (1998) "Experiments on human-robot communication with Robota, an

imitative learning and communication doll robot", Contribution to Workshop "Socially Situated
Intelligence" at SAB98 conference, Zurich, Technical Report of Centre for Policy Modelling, Manchester
Metropolitan University, CPM-98-38. (http://www.cpm.mmu.ac.uk:80/cpmrep38.html)

Blackburn P., Bos J., Kohlhase M. and de Nivelle H. (1999). Inference and Computational Semantics. In: Third
International Workshop on Computational Semantics (IWCS-3), Tilburg, The Netherlands.

Bloom B.S. (1984) "The 2 sigma problem: The search for methods of group instruction as effective as one-to
one tutoring", Education Researcher, 13:6, pp. 4-16.

Crangle C. and Suppes P. (1994) Language and Learning for Robots, CSLI Lecture notes No. 41, Centre for the
Study of Language and Communication, Stanford, CA.

Denis M. (1997) "The description of routes: A cognitive approach to the production of spatial discourse" , CPC,
16:4, pp.409-458.

Huffman S.B. and Laird J.E. (1995) "Flexibly instructable agents", Journal of Artificial Intelligence Research, 3,
pp.271-324.

Inaba M., Kagami S., Kanehiro F., Hoshino Y., Inoue H. (2000) "A platform for robotics research based on the
remote-brained robot approach", International Journal of Robotics Research, 19:10, pp. 933-954.
Kamp H. and Reyle U.(l993): From Discourse to Logic. Kluwer.
Perez-Uribe A. and Hirsbrunner B., "Learning and Foraging in Robot-bees", SAB2000 Proceedings

Supplement Book, Meyer, Berthoz, Floreano, Roitblat and Wilson (Eds), Published by International
Society for Adaptive Bebavior, Honolulu (to appear). http://www-iiuf.unifr.ch/-aperezu/robot-bees/ also
http://www-iiuf.unifr.ch/-aperezu/robotreinfo.html

PYTHON: http://www.python.org
Torrance M.C. (1994) Natural Communication with Robots, MSc Thesis submitted to MIT Department of

Electrical Engineering and Computer Science, January 28, 1994.
Traum, D. , J. Bos, R. Cooper, S. Larsson, l.Lewin, C. Matheson and M. Poesio (1999): A model of dialogue

moves and information state revision. Trindi Report D2.1. Available from
http://www.ling.gu.se/research/projects/trindi
Young S.J. (2000) "Probabilistic Methods in Spoken Dialogue Systems", Phil. Trans. Royal Society A, 358:

1769, pp. 1389-1401 (http://citeseer.nj.nec.com/38639l.htrnl)
Zue, V. (1997) "Conversational interfaces: Advances and challenges", In Proc. Eurospeech, pages 9-14,

Rhodes, Greece. (http://citeseer.nj.nec.com/78849.html).

9th European Workshop on Learning Robots, EWLR-9, Sept 8'h-9th 2001, Prague, Czech Republic 15

Instruction Based Learning: how to instruct a personal robot to find HAL.

Stanislao Lauria, Guido Bugmann1
, Theocharis Kyriacou, Ewan Klein*

Centre for Neural and Adaptive Systems, School of Computing, University of Plymouth
Drake Circus, Plymouth PL4 8AA, United Kingdom.

*Institute for Communicating and Collaborative Systems, Division oflnformatics, University ofEdinburgh, 2
Buccleuch Place, Edinburgh EH8 9L W, Scotland, United Kingdom.

http://www.tech.plym.ac.uk/soc/staff/guidbugm/ibl/index.html

Abstract
Future domestic robots will need to adapt to the

special needs of their users and to their
environment. Programming by natural language
will be a key method enabling computer language
naive users to instruct their robots. Its main
advantages over other learning methods are speed
of acquisition and ability to build high level
symbolic rules into the robot. This paper describes
the design of a practical system that uses
unconstrained speech to teach a vision-based robot
how to navigate in a miniature town. The robot
knows a set of primitive navigation procedures that
the user can refer to when giving route instructions.

Since the user is likely to refer to a procedure
that is not pre-programmed in the robot, the system
must be able to learn it. This paper investigates
how to make the learning process possible. ln
particular, a method is proposed to fasten the
choice of an initial set of primitives to the natural
human speech chunking. Moreover, the use of
Instruction-Based Learning (IBL) imposes a
number of constraints on the design of robotics
systems and knowledge representation. These
issues are developed in the paper and proposed
solutions described.

1. Introduction

Intelligent robots must be capable of action in
reasonably complicated domains with some degree
of autonomy. This requires adaptivity to a dynamic
environment, ability to plan and also speed in the
execution. In the case of helper robots, or domestic
robots, the ability to adapt to the special needs of
their users is crucial. The problem addressed here is
the one of how a user could instruct the robot to
perform tasks which manufacturers cannot

1 To whom correspondence should be addressed.

completely program in advance. In this case the
system will not work at all if it cannot learn.

Such learning requires interaction and
collaboration between the user and the robot. But,
as most users are computer-language-naiVe, they
cannot personalise their robot using standard
programming methods. Indirect methods, such as
learning by reinforcement or learning by imitation,
are also not appropriate for acquiring user-specific
knowledge. For instance, learning by reinforcement
is a lengthy process that is best used for refining
low-level motor controls, but becomes impractical
for complex tasks. Further, both methods do not
readily generate knowledge representations that the
user can interrogate.

Instruction-Based Learning (IBL), which uses
unconstrained speech, has several potential
advantages. Natural language can express rules and
sequences of commands in a very concise way.
Natural language uses symbols and syntactic rules
and is well suited to interact with robot knowledge
represented at the symbolic level. It has been
shown that learning in robots is much more
effective if it operates at the symbolic level
(Cangelosi and Harnad, 200 I). This is to be
contrasted with the much slower learning at the
level of direct sensory-motor associations.

Chunking, sequencing and repair are the aspects,
related to natural language interactions, shaping the
design of IBL systems discussed here. Chunking is
a principle that applies to the communication of
information. Chunking is meant here as the human
characteristic to divide, during explanations, tasks
into sub-tasks, so that all information should be
presented in small ' basic' units of actions. As
shown in (Miller 1956), chunJdng is done
spontaneously by humans and consequently the
system must be on the same 'wavelength' as the
user in order to be successful. This means
establishing for the robot the appropriate

9th European Workshop on Learning Robots, EWLR-9, Sept ffh_rJh 2001, Prague, Czech Republic 16

Analysis

Speech
recognition

Goto(" end_ of_ street")

Repair

i

i

i
Until found(end_of_street)

follow_the_road() i
Table 1. From speech to action. The various steps involved in the transformation of a user command into the
corresponding action are shown here.

prerequisites for the conversion of cognition,
carried in chunks, into the form of procedures. In a
robot involved with navigation tasks, a
fundamental prerequisite is that the system must
possess a set of pre-programmed procedures related
to the very basic chunks used in route instruction
situations. Moreover, since in the learning process
the user does not express his requirement with a
single chunk, the system must be able to sequence
the chunks correctly. For example, in a sequence of
instructions given by the user, the final state of an
action may not correspond to the expected state for
the next action. In this case, the system would not
be able to perform its task due to the missing
chunk. For this reason, it is necessary to define a
proper internal knowledge representation allowing
the system to detect the missing information. ln this
way, the system would be able to make predictions
about future events so that the problem can be
solved while the system is still interacting with the
user.

Finally, the system not only has to pay attention
to user knowledge and dialogue goals, but it also
has to adapt its dialogue behaviour to current
limitations of the user's cognitive processing
capabilities. Assistance is then expected from the
system, so that the interaction may naturally flow
over the course of several dialogue turns.
Moreover, a dialogue manager should take care of
identifying, and recovering from, speech
recognition and understanding errors.

This paper describes initial steps and
considerations towards a practical realisation of an
ffiL system. The experimental environment is that
of a miniature town in which a robot provided with
video camera executes route instructions. The robot
has a set of pre-programmed sensory-motor action
primitives, such as "turn left" or "follow the road".
The task of the user is to teach the robot new routes

by combining action primitives. That task should
reveal all the constraints described above, and
enable testing of the developed methodology.

In the next section the IBL architecture
implications due to chunking, sequencing and
repair are discussed and how the rest of this paper
is organized is also specified.

2. The big picture: from verbal utterance to
robot action

With IBL, the system must convert verbal
instructions given by the user into procedures
containing internal program code controlling the
robot sensors/actuators. It is during the learning
process that such procedures are created and
become part of a pool of procedures that can then
be reused to learn more and more complex
procedures. In this way the robot becomes able to
execute increasingly complex tasks based on a set
of pre-programmed primitives.

The closer the correspondence between
primitives and chunks expressing the very basic
actions (such as "turn left") is, the less difficult the
learning is, since, in this way, the interaction
between the user and system is kept to the
minimum. For this reason, it is necessary to select
these primitives that corresponds as closely as
possible to the action expressed in the chunks.

Then, there is the problem of handling the
chunks. In table 1, an example is given showing the
various steps necessary to transform a user chunk
into a robot action. First, the robot must be able to
perform some speech recognition tasks in order to
convert speech into text. After that, some syntactic
parsing and semantic analysis is carried out. Then
at the functional mapping level, the system must be
able to transform the user utterance into internal

9th European Workshop on Learning Robots, EWLR-9, Sept 81h-9th 2001, Prague, Czech Republic 17

Sylllllllllc

~
Symbolic Symballl:

IJVII IJVBI llvll

' ' ' ' ' ' ' ' . .
11111111 . mnata lllnatl .
l.mkl : :

~kl lllkl i i . . .
'iiiiii Actllla 'ii'i'iii Actkll 'i'i'i'ii'i Actkll

IJVII IJVal lJVII
A B c

Figure 1. Symbolic learning. (A} is a schematic representation of the initial system, comprising symbols associated with pre
programmed (innate) primitive action procedures. In (B) the user has defined a new procedure (open circle) as a
combination of symbols. The new symbol is grounded because it is a construct of grounded symbols. In (C), the user has
defined a new procedure that combines a procedure previously defined by himself with primitive action procedures.

symbols that the robot can understand. By
understanding we mean here that there is a
correspondence between symbols and actions or
real-world objects. In this way, the appropriate
procedure can be called to act on the
sensors/motors accordingly to the user intentions.

This multi-step approach has system-wide
repercussions on the design of a robot control
system. For example, the robot must be able to
distinguish a command to be executed immediately
from an instruction to be memorized. Trus requires
context resolution at the natural language
processing level. Moreover, the robot must be able
to verify that the instruction can be converted into
an executable procedure. It requires an internal
representation of consequences of actions and the
ability to verify the correct action sequencing. The
robot must also be able to execute a command
while listening to the user, and must cope with
interruptions and inappropriate answers to its
requests. This requires carefully designed system
architecture. Some of the aspects discussed here are
presented in more detail in the next sections. In
particular, section 3 clarifies how symbol-level
description and low-level sensory motor action
procedures are integrated. The proposed
representation of procedural knowledge is also
described. In section 4 the system architecture is
described.

The problems of considering the appropriate
selection of action primitives is described in section
5 by analyzing recorded route instructions, and
establishing a list of actions that are natural to
users. The results of this investigation are also
discussed. One of them is that the list of primitives
may not be a closed one. The implications of that
and other findings is discussed in section 6, along
with the question of how the proposed system
compares to other approaches. The conclusion
follows in section 7.

3.mLmodel

3.1 Symbolic learning
The learning process is based on predefined

initial knowledge. This "innate" knowledge
consists of primitive sensori-motor procedures with
names, such as "turn left", "follow the road" (the
choice of these primitives is explained in sections
3.3 and 5). The name is what we call here a
"symbol", and the piece of computer program that
controls the execution of the corresponding
procedure is called the "action" (Figure lA). As
each symbol is associated with an action, it is said
to be "grounded".

When a user explains a new procedure to the
robot, say a route from A to B that involves a
number of primitive actions, the IBL system, on the
one hand, creates a new name for the procedure,
and, on the other hand, writes a new piece of
program code that executes that procedure and
links the code with the name (see section 3.2 for
details). The code refers to primitive actions by
name. It does not duplicate the low-level code
defining these primitives. For that reason, the new
program can be seen as a combination of symbols
rather than a combination of actions (figure I B). As
all new procedures are constructed from grounded
pnm1t1ves, they become also grounded by
inheritance and are " understandable" by the system
when referred to in natural language.

When explaining a new procedure, the user can
also refer to old procedures previously defined by
himself. In that way the complexity of the robot's
symbolic knowledge increases (fig. I C).

3.2 Knowledge representation
The internal representation needs to support three

functions: (i) formal modeling of NL route
descriptions; (ii) internal route planning for
determining whether a given route description is
sufficiently specified; and (iii) the generation of

9th European Workshop on Learning Robots, EWLR-9, Sept 8'h-9th 2001, Prague, Czech Republic 18

BIOII Cllmat Prlllllltlll arr•t PI'IIIIDtlll
ltata ltltll ltltll Stall f ltltl f

m m m :IIJ
[!] [[]
we=:) [[]
[I] []
[] L
[] []

A

IDitllll CIIT•t Prlllllltlll Prl-
ltltl ltltll Statal - lll:lllllltllll:y

m m m ~ m
[!] [!] [81
we=:)
[I]

)~c=:)mc=:) Emir
[I] []] 11111 ..

[] ~ []
[] ~ []

B
Figure 2. Route instruction verification. (A) For each procedure there is a prediction function that transforms a state vector
into its foture value. The function first determines if the input state satisfied the minimal criteria (''pre-condition") to enable
the procedure to be executed. An action is executable only if selected elements of the state vector have required values. If
this is the case, the next state is predicted and processed by the prediction jUnction associated with the next procedure in the
instruction. Each action modifies certain components of the state vector, and leaves the other unchanged. (B) If the
predicted state produced by one procedure does not allow the next procedure to be executed, an error handling process is
initiated. (Note: the "initial state" in the text corresponds to the "current state" in the figure).

procedures for navigation at execution time. These
three functions require different representations
that will be described in turn.

(i) The utterances of the user are represented
using the discourse representation structure (DRS)
(Bugmann200 I). This is then translated into
symbols representing procedures or is used to
initiate internal functions such as execution of a
command or learning of a series of commands
(section 4).

(ii) When the user describes a route as a
sequence of actions, it is important for the robot to
verify if this sequence is executable. The approach
proposed here associate each procedure with a
triplet SiAijSj with properties similar to
productions in SOAR (Laird et al, 1987). The state
Si is the initial state in which the action Aij can
take place. It is the pre-condition for action Aij.
The state Sj is the final state, resulting of the action
of Aij applied to the initial state (figure 2 clarifies
the difference between "initial state" and "pre
condition"). For a sequence of actions to be
realisable, the final state of one action must be
compatible with the pre-condition of the next one.
To enable this verification, the robot must be able
to "imagine" the consequence of an action. For that
purpose, a PREDICTION function is associated
with each primitive action, and with each newly
created procedure. Figure 2 illustrates the use of the
prediction function during verification of the

consistency of the sequence of instructions from
the user. It should be noted that this process also
helps detecting some of the errors in natural
language processing.

(iii) When a robot executes a command, it
executes a piece of program code that contains the
sequence of primitive procedures to be executed.
Thus, a key part of IBL is the generation of a
program code. This is enabled by the use of a
scripting language (section 4). This program is
called the ACTION function. Both ACTION and
PREDICTION functions are physically located in
the same file that contains all information specific
to a procedure. This is schematised in figure 3.

3.3 Sensory-Motor primitives
Sensory-motor primitives are defined as actions

that users usually refer to in unconstrained speech
(chunking). These are not low-level robot control
actions, and often involve complex processing and
planning. A task such as "approach that building at
the end of the street" is a typical action that users
ask the robot to do at the end of a route instruction,
when the goal is in sight (section 5). It is a complex
action involving visual detection of a building and
of its entrance, its localisation in relation to the
street, and planning of a route along the street. All
this is easy for a human, but in many ways
stretches the limits of robot "intelligence".

9th European Workshop on Learning Robots, EWLR-9, Sept 8'h-9'h 2001, Prague, Czech Republic 19

PravlliUalaiWIIII!II Naw Procadrra

Procldll'l XY1

A
B

Figure 3. Procedural knowledge representation. (A) A procedure file contains an ACTION function that causes the
physical displacement of the robot, and a PREDICTION function that calculates the future state of the robot resulting from
the action. The ACTION is used during execution of a command, and the PREDICTION is used for consistency checking
during the learning process. (B) An instruction by the user results in a "New Procedure" file being written. In this file, the
actions components of the requested primitive procedures are combined (in the form of fimction calls) to create the new
ACTION function, and the prediction components are combined to create the new PREDICTION function. This includes an
additional procedure-specific pre-condition.

We see here that, by setting the boundaries
between the symbolic level and the action level to
be the same as the one found in natural language,
the symbolic level processing has been simplified,
but at the cost of an increased complexity of "low
level" procedures. These give the robot some
autonomy in the execution of commands, as the
execution details depend on the local conditions.

4. System Architecture

The architecture is comprised of several
functional processing modules (figure 4). These are
divided into two major units: the Dialogue
Manager (DM) and the Robot Manager {RM).

The DM and the RM are designed as two
different processes based on asynchronous
communication protocols. These processes run
concurrently on different processors. In this way,
the system can handle, at the same time, both the
dialogue aspects of an incoming request from the
user (i.e. speech recognition and semantic analysis,
or detection of a "stop" command) and the
execution of a previous user request (i.e. check if
the request is in the system knowledge domain, and
execute vision-based navigation procedures).

Two aspects are essential with this concurrent
processes approach. Firstly, to define an
appropriate communication protocol between the
two processes. Secondly, to define an appropriate

architecture for the RM and DM allowing the two
processes to both communicate with each other
while performing other tasks. At present a
communication protocol based on sockets and
context-tagged messages is evaluated.

Moreover, the system must also dynamically
adapt itself to new user requests or to new internal
changes, by being able to temporarily suspend or
permanently interrupt some previous activity. For
example the user may want to prevent the robot
crashing against a wall and must therefore be able
to stop the robot while the robot is driving towards
the wall. Hence, the importance of a concurrent
approach where the system constantly listens to the
user while performing other tasks and at the same
time being able to adjust the task if necessary.

The Dialogue Manager is a bi-directional
interface between the Robot Manager and the user,
either converting speech input into a semantic
representation, or converting requests from the
Robot Manager into dialogues with the user. Its
components are run as different processes
communicating with each other via a blackboard
architecture. The RM must concurrently listen/send
requests from/to the DM and try to execute them.
For this reason a multi-threads approach has been
used. Its communication interface is a process that
only launches a message evaluation thread
''Execution Process" and resumes listening to the
DM. The execution process then starts an
appropriate thread for executing a command, or

9th European Workshop on Learning Robots, EWLR-9, Sept 8th_9th 2001, Prague, Czech Republic 20

USER~~==~----T---~~~~
1...J Speech I Jl Dialogue MaJillgl!l'

"""'"""' I ,.~.1 Recogniser I Utterance I
J, Generlrtor ~ Gene~atlon

I DIALOGUE MOVE

1

r------t>IL.::sy:.:n:.::th.::e.::sl.::s...J
ENGINE (DME) * ~"'-------. .. 1

c" >z I Communiclrtion Interface J
~-------~- -~-------~ I

I Communl:.~on ;:.:rface I

* Execution Process

Process Lllllncher

-.~ it m >c
Cl) G)
mm

~ r!, r-t- H Robot I~ ' ROBOT
m i\!i Procedure I" , ,. 0
:c n 'C z c:::

m
Robot Manager '--- '--- '---

Figure 4. IBL system's archztecture (see te:xtfor descnptzon).

places a tagged message on a message board if it is
a part of a dialogue in a specific thread, e.g.
learning a route. The characteristic of this approach
is that all processes in the RM are sharing a
common memory stack so that threads can be
started and paused, depending on the user 's input.
At the moment, the Execution Process component
is implemented with the Process Launcher
controlling only the Learning and Execution
modules since the Stop component is in an early
stage of development. The Robot Manager is
written using the scripting Python2 language and C.
An important feature of scripting languages is their
abil ity to write their own code. For instance, a route
instruction given by the user will be saved by the
Robot Manager as a Python script that then
becomes part of the procedure set available to the
robot for execution or for future learning.

5. Corpus Collection and Data Analysis

To evaluate the potential and limitations of rBL,
a real-world instructions task is used, that is simple
enough to be realisable, and generic enough to
warrant conclusions that hold also for other task
domains. A simple route scenario has been
selected, using real speech input and a robot using
vision to execute the instructed route (see 5.1
below for more details). The first task in the project
is to define the innate actions and symbols in the
route instruction domain. For this reason, a corpus

2 http://www.python.org

of route descriptions has been collected from
students and staff at the University of Plymouth. In
section 5.2 and 5.3 corpus collection and data
analysis are presented.

5.1 Experimental Environment
The environment is a miniature town covering an

area of size 170cm x l20cm (figure 5). The robot
is a modified RobotFootball roboe with an Bern x
Bern base (figure 6A). The robot carries a CCD
colour TV camera4 (62B (H) x 5B2 (V) pixels) and
a TV VHF transmitter. Images are processed by a
PC that acquires them via with a TV capture card5

(an example of such image is shown in figure 6B).
The PC then sends motion commands by FM radio
to the robot. During corpus collection, the PC is
also used to record instructions given by subjects.

The advantage of a miniature environment is the
ability to build a complex route structure in the
limited space of a laboratory. The design is as
realistic as possible, to enable subj ects to use
expressions natural for the outdoor real-size
environment. Buildings have signs taken from real
life to indicate given shops or utilities such as the
post-office. However, the environment lacks some
elements such as traffic lights that may normally be
used in route instructions. Hence the collected
corpus is likely to be more restricted than for
outdoor route instructions. The advantage of using

3 Provided by Merlin Systems
(http://www.merlinsystemscorp.com/)
4 Provided by Allthings Sales and Services
(http://www.allthings.eom.au/)
5 TV Card: Hauppage WinTV GO

9th Europ ean Workshop on Learning Robots, EWLR-9, Sept t!h-9th 2001, Prague, Czech Republic 21

Figure 5. Miniature town in
according to route instructions given by users. Lel/ers
indicate the destinations and origins of various routes
used in the experiment.

a robot with a remote-brain architecture (lnaba et
al., 2000) is that the robot does not require huge
on-board computing and hence can be small, fitting
the dimensions of the environment.

5.2 Collection of a corpus of route instructions
To collect linguistic and functional data specific

to route learning, 24 subjects were recorded as they
gave route instructions to the robot in the
environment. Subjects were divided into three
groups of 8. The first two groups (A and B) used
totally unconstrained speech, to provide a
performance baseline. It is assumed that a robot
that can understand these instructions as well as a
human operator would represent the ideal standard.
Subjects from group C were induced in producing
shorter utterances by a remote operator "taking
notes".

The other two groups (A and B) were told that
the robot was remote-controlled and that, at a later
date, a human operator would use their instructions

that the human operator would be located in
another room, seeing only the image from the
wireless on-board video camera. This induced
subjects to use a camera-centred point of view
relevant for robot procedure primitives. Subjects
were also told to reuse previously defined routes
whenever possible, instead of re-explaining them in
detail. Each subject had 6 routes to describe among
which 3 were "short'' and 3 were "long". The long
routes included a short one, so that users could
refer to the short one when describing the long one,
instead of re-describing all segments of the short
one. This was to reveal the type of expressions
used by users to link taught procedures with
primitive ones. Each subject described 6 routes
having the same starting point and six different
destinations. Starting points were changed after
every two subjects. A total of 144 route
descriptions were collected. For more details about
collection and analysis of the corpus see (Bugmann
et al. 2001).

5.3 Corpus Analysis: The functional vocabulary
The aim of the corpus analysis is to twofold.

First, to define the vocabulary used by the users in
this application, in order to tune the speech
recognition system for an optimal performance in
the task. Secondly, to establish a list of primitive
procedures that users refer to in their instructions.
The aim is to pre-program these procedures so that
a direct translation from the natural language to
grounded symbols can take place. In principle, if
the robot does not know a procedure, the user could
teach it. However, this is a process that we wish to
avoid at this stage of the project, as discussed in
section 6. Hereafter, we report on the functional
analysis of the corpus. The reader interested in the
task vocabulary can refer to (Bugmann et al.,
2001). The functional vocabulary is a list of
primitive navigation procedures found in route

B)

Figure 6 A. Miniature robot (base Bern x Bern). B. View from the on-board colour camera.

to drive the robot to its destination. It was specified descriptions.

9th European Workshop on Learning Robots, EWLR-9, Sept 8'h-9th 2001, Prague, Czech Republic 22

Count Primitive Procedures
l 308 MOVE FORWARD UNTIL [(past lover !across) <landmark>] 1 [(half_way_of 1

end of) street] I [after <number><landmark> [left I right]] I [road bend]
2 183 TAKE THE [<number>] turn [(left I right)] I [(before I after I at) <landmark>]
3 147 <landmark> IS LOCATED [left 1 right !ahead] I [(at I next_to lleft_of I right_of I

in_front_of I past I behind I on I opposite I near) < landmark >] I [(half_way_of I

end_of 1 beginning_of 1 across) street] 1 [between <landmark> and <landmark>] I

[on <number> turning (ieft 1 right)]
4 62 GO (before I after I to) <landmark>
5 49 GO ROUND ROUNDABOUT [left I right] I [(after I before I at) <landmark>]
6 42 TAKE THE <number> EXIT [(before I after 1 at) <landmark>]
7 12 FOLLOW KNOWN ROUTE TO <landmark> UNTIL (before I after 1 at)

<landmark>
8 4 TAKE ROADBEND (left I right}
9 4 STATIONARY TURN [left_! right 1 around] I [at I from <landmark>]
10 2 CROSS ROAD
11 2 TAKE THE ROAD in front
12 2 GO ROUND <landmark> TO [front I back I left side I right side]
13 I PARK AT <location>
14 I EXIT [car _park I park]

Table 2. Primitive navigation procedures found in the route descriptions collected from groups A and C. Procedure 3 is
used by most subjects la indicate the last leg of a route, when the goal is in sight.

The initial annotation of instructions in terms or
procedures, as reported here, is somehow
subjective, and influenced by two considerations.
(i) The defined primitives will eventually be
produced as C and Python Programs. It was hoped
that only a few generic procedures would have to
be written. Therefore, the corpus has been
transcribed into rather general procedures
characterised by several parameters (table 2). (ii)
An important issue is knowledge representation.
According to the SAS representation discussed in
section 3.2, the executability of primitives can only
be evaluated if their initial and final states are
defined. Subjects however rarely specified
explicitly the starting point of an action and
sometimes did not define the final state in the same
utterance. Nevertheless, it was assumed that the
system would be able to infer the missing
information from the context. Therefore,
procedures without initial or final state were
considered to be complete, and were annotated as
such. The specifications of primitive procedures are
likely to evolve during the project.

This analysis methodology differs slightly from
the one in (Denis, 1997). ln our analysis, there are
no statements describing landmarks, as these are
made part of procedures specifications, and
consequently there are also no actions without
reference to landmarks. Even when a subject
specified a non-terminated action, such as "keep
going", it was classified as "MOVE FORWARD
UNTIT...", assuming that a termination point would

be inferred from the next specified action. The list
of actions found in the route descriptions of groups
A and C is given in table 2. Figure 7 shows that the
number of distinct procedures is increasing with the
number of sampled instructions, but at a rate much
smaller than the number of distinct words reported
in (Bugmann et al., 2001). Here we discover on
average one new procedure for every 38 route
instructions, while with words, we discovered in
average one new word for each instruction. New
procedures typically are the least frequent in table
2.

6. Discussions

Teaching a route to a robot using natural
language is an application of a more general
instruction-based learning methodology. The
corpus-based approach described here aims at
providing users with the possibility of using
unconstrained speech, whilst creating an efficient
natural language processing system using a
restricted lexicon. It is found that the functional
vocabulary is small, containing only 12 primitives
{although that number may vary with the
annotation method). From a roboticist's point of
view, route navigation could probably be achieved
with a smaller number of primitives. However,
when accepting spontaneous speech, a wider
variety of functions must be expected.

An important finding is that the functional
vocabulary is not closed. Hence, at some point in

9th European Workshop on Learning Robots, EWLR-9, Sept 8'h-9rh 2001, Prague, Czech Republic 23

16

14

-~
~

~
I

If
2

0

0 20 4 0 60 80 100 120 140

Route Descriptions

Figure 7. Average number of unique procedures as a function of the number of collected route instructions The curve
is obtained by averaging 50 sets comprising a random selection of n route descriptions. The number n is shown on the
x-axis of the graph. The slope of the curve indicates that, on average, one new function will be added to the functional
lexicon for every 38 additional route instructions collected.

the robot's life, the user will have to teach it new
primitives (e.g. "cross the road") or reformulate its
instructions. To enable learning, the robot must
posses a larger set of primitives, which correspond
to lower level robot actions. For instance, the user
may wish to refer to a number of wheel turns in its
instruction. Examples of such instructions are
found in (FLAKEY)and (Seabra Lopes, 2000). With
our approach, this would require the collection of a
new corpus to determine the necessary additional
primitive procedures. Another solution may lie in
an appropriate dialogue management to suggest a
reformulation of the instruction. It is expected that
with the corpus-based method used here, the
frequency of such "repair dialogues" will be
minimised. An open question is the detection of
new functions in the user's utterance, as the lexicon
may not contain the required vocabulary.

The approach to robot control described may be
seen as an attempt to integrate the good properties
of Behaviour-based control and classical Al.
Behaviour-based control is an effective method for
designing low-level primitives that can cope with
real-world uncertainties, and A1 has developed
effective tools for symbol manipulation and
reasoning (for a more detailed discussion about
hybrid systems see for example Malcom (1995)).
However, the system differs in several ways from
both methods. Here, the corpus defines what
symbols and primitives to use. Consequently, some
of the primitives are rather complex functions,
involving representations of the environment and
pla!ll1ing. These are not always compatible with the
representation-less philosophy of behaviour-based

systems. On the AI side, the system does not use
the full range of reasoning capabilities offered by
systems such as SOAR. There are no other aims in
symbolic processing than verifying the consistency
of instructions, and the construction of new
procedure specifications .

Other previous work on verbal communication
with robots has mainly focused on issuing
commands, i.e. activating pre-programmed
procedures using a limited vocabulary (e.g.
IJCA1 '95 office navigation contest). Only a few
research groups have considered learning, i.e. the
stable and reusable acquisition of new procedural
knowledge. (Huffman & Laird, 1995) used textual
input into a simulation of a manipulator with a
discrete state and action space. (Crangle and
Suppes, 1994) used voice input to teach
displacements within a room and mathematical
operations, but with no reusability. In {Torrance,
1995), textual input was used to build a graph
representation of spatial knowledge. This system
was brittle due to place recognition from odometric
data and use of IR sensors for reactive motion
control. Knowledge acquisition was concurrent
with navigation, not prior to it. Whereas in (Matsui
et al. 1999), the system could learn new actions
through natural language dialogues but only while
the robot was performing them (i .e. it could only
learn a new route from A to B while it was actually
moving from A to B and dialoguing with the user).

In the IBL system described here, learning
operates purely at the symbolic level; hence it can
be done prior to performance. The ability to predict
future states enables to engage in a verification

9th European Workshop on Learning Robots, EWLR-9, Sept 8'11-9'" 2001, Prague, Czech Republic 24

dialogue before execution errors occur. If
environmental conditions change such that an
instruction is not valid anymore, this can be
detected from the mismatch between the expected
result and the actual one. Learning however is not
autonomous. The system requires interaction with a
human user to learn new symbols and their
meaning. This simplifies the design of the robot
due to the transfer of part of the cognitive load to
the user. Future experiment wiiJ reveal if this
approach results in effective and socially
acceptable helper robots.

7. Conclusions

The project described in this paper is aimed at
exploring IBL for route descriptions. It has been
discussed how the design of the IBL system is
adapted to natural human behaviour. Indeed, both
the vocabulary matches to the unconstrained user
language and the functional primitives built into the
robot are determined from actions natural to the
users. This defines an architecture open to
spontaneous user interventions, unexpected replies
and errors. Nevertheless, user-friendliness is not a
prior specification, but a consequence of practical
constraints. Indeed, robots without learning will not
achieve specific tasks (such as finding HAL) and a
system without adapted vocabulary causes too
many errors. Similarly, explaining tasks is beyond
the cognitive capabilities of users without high
level primitives and, like with HAL, a robot that
listens only when it decide to do so would be out of
control. So far, the speech recognition part is in an
early stage of development while the DRS part is
operational for a limited number of examples, and
that work is in progress to improve the coverage of
corpus. However, it is found that the functional
vocabulary is small, containing only 12 primitives
(although that number may vary with the
annotation method). The full transformation from
NL utterances into procedures has been tested with
dummy primitives (i.e. preprogrammed robot
displacements). Programs for the proper sensory
motor primitives are currently under development.
This will then allow further testing of the IBL
concept.

However the initial results presented here show
that neither the lexicon nor primitive procedures
are likely to form closed sets. Ideally, IBL system
should therefore also be capable of acquiring new
words, and users should be given the possibility to
teach new primitive 'innate ' procedures.
Unfortunately, the former is beyond the capabilities
of current speech recognition systems. As for
learning new primitives procedures, this would
require a new set of more primitive procedures to

be combined via user instructions. Whether it will
be possible to explore this during the project is
unclear. To allow IBL to operate despite these
limitations, it is likely that dialogue management
will play a crucial role.

Acknowledgement: This work is supported by
EPSRC grants GR!M90023 and GR!M90160. The
authors are grateful to A. Cangelosi and K.
Coventry for enlightening discussions .

References:
Bugmann G., Lauria S., Kyriacou T., K.lein E., Bos J.

and Coventry K. (2001) "Using Verbal Instruction
for Route Learning", Proc. of 3rd British Conf. on
Auton. Mobile Robots and Autonom. Systems:
Towards Intelligent Mobile Robots (TIMR'2001),
Manchester, 5 April.

Cangelosi A., Harnad S. (200 I) The adaptive advantage
of symbolic theft over sensorimotor toil: Grounding
language in perceptual categories. Evolution
Communication. (in press)

Crangle C. and Suppes P. (1994) Language and
Learning for Robots, CSLI Lecture notes No. 41 ,
Centre for the Study of Language and
Communication, Stanford, CA.

Den.is M. (1997) "The description of routes: A cognitive
approach to the production of spatial discourse",
CPC, 16:4, pp.409-458.

FLAKEY:
www.ai.sri.com/people/flakey/integration.html

Huffman S.B. and Laird J.E. (1995) "Flexibly
lnstructable Agents", Journal of Artificial
Intelligence Research, 3, pp. 271-324.

Inaba M., Kagami S., Kanehiro F., Hoshino Y., lnoue
H. (2000) "A platform for robotics research based
on the remote-brained robot approach",
International Journal of Robotics Research, 19:10,
pp. 933-954.

Laird J.E., Newell A. and Rosenbloom P.S. (1987)
"Soar: An architecture for general Intelligence"
Artificial Intelligence, 33: I, pp. l-64.

Malcom C. M. (1995), The SOMASS system: a hybrid
symbolic and behavioured-based system to plan and
execute assemblies by robot. In J . Hallam, et al.
(Eds), Hybrid problems and Hybrid solutions pp
157-168. Oxford: !SO-press.

Matsui T., Asoh H., Fry J.,et al..(1999) Integrated
Natural Spoken Dialogue System of Jijo-2 Mobile
Robot for Office Services,
http://citeseer.nj.nec.com/matsui99integrated.html

Miller G. (1956)' The Magical Number Seven, Plus or
Minus Two: Some Limits on Our Capacity
Processing Information'. The Psycho!. Review, v.
63, p. 81-97

Seabra Lopes, L. and A.J.S . Teixeira (2000) Human
Robot Interaction through Spoken Language
Dialogue, Proceedings IEEE/RSJ International
Conf. on Intelligent Robots and Systems, Japan.

Torrance M.C. (1994) Natural Communication with
Robots, MSc Thesis submitted to MIT Dept of
Electrical Engin. and Comp. Science

Converting Natural Language Route Instructions into Robot
Executable Procedures

S. Lauria T. Kyriacou G. Bugrnann
Robotic Intelligence Laboratory

School of Computing
University of Plymouth

Drake Circus, Plymouth PL4 8AA
United Kingdom

Abstract
Humans explaining a task to a robot use chunks of

actions tlwt are often wmplex procedures for robots.
An instructable robot needs to be able to map such
chunks to existing pre-progmmmed pr-imitives. We in
vestigate an m·chitectur·e for spoken d·ialogue systems
able to extr·act executable robot pmcedures from user
instructions. A suitable r·epresentation of the dialogue
is introduced, then a Pr·ocedure Specification Language
(PSL) is described that allows to extmct fmm the se
mantic r·epr·esentation of the dialogue the mbot exe
cutable pr·ocedur·es and their parameter·s

1 Introduction
This paper presents an semantically based ap

proach for human-robot dialogue understanding, as
part of a project than envisages "Instruction-Based
Learning" (IBL) [5], where robots acquire user-specific
skills based on verbal instructions given by the user.
In particular, we will focus on mapping the human lan
guage commands to for the robot executable instruc
tions, using an intermediate semantic representation.

Our IBL system operates according to the follow
ing scenario. A user engages in a dialogue with the
robot, where spoken instructions are mapped to se
mantic representations, natural language ambiguities
are resolved, and the functional parameters are ex
tracted from that representation [9]. The robot, hav
ing a database with previously learned tasks at its
disposal, will now either perform the given instruction
(if it knows how to do it) , or if the task is unknown,
ask the user to explain how to perform the task. The
user then explains the task step by step. At the end of
this learning process, the robot will have built a new
procedure that becomes part of its knowledge base.

The requirements of natural language understand
ing induce the internal model of a route as a sequence

J. Bos E. Klein
ICCS

Division of Informatics
University of Edinburgh

Buccleuch Place, Edinburgh EH8 9LW
Scotland, United Kingdom.

of high-level task specifications (primitives). Hence
it is necessary to provide the robot with a set of
pre-programmed primitives corresponding to action
chunks referred to by users. For more details about
these aspects see [7].

A typical example in our scenario is the following
(example u8_GCJID extracted from the IBL corpus):

Instructor: Go to the post office!
Robot: How do I get to the post office?
Instructor: Er head to the end of the street.
Turn left . Take the first left. Er go right down
the road past the first right and it's the next
building on your right.

One of the issues in the project is the mapping from
action chunks used in natural language to actions ex
ecutable by the robot for both of the possible situa
tions: either the system already knows how to perform
a request, or it has to learn how to perform it . The
first case corresponds to a successful mapping from the
semantic analysis of the request to a sequence of ex
ecutable robot actions. The second case corresponds
to the creation of a sequence of executable robot ac
tions for the unknown request through a user-robot
dialogue.

P revious approaches to interpreting natural lan
guage instructions for mobile robots assume a applica
tion specific semantic representation [4]. However, we
argue that there is a need for a domain-independent
intermediate representation. This representation cap
tures the meaning of the dialogue between user and
robot and is used to resolve ambiguities inherent in
natural language (for instance the reference of the
pronoun it the example above). In addition, we use
an application specific mapping from the intermediate
representation to obtain robot executable scripts. Us
ing this extra layer results in an overall system that

is much easier to adapt the robot to new scenarios or
tasks.

The paper is structured as follows. First we intro
duce the intermediate semantic representations known
as Discourse Representation Structures (Section 2). In
Section 3 we presents the Procedure Specification Lan
guage (PSL) used for the interpretation of the DRS.
Section 4 illustrate the conversion of basic program
components found in verbal instructions into robot
executable procedures. In Section 5 ongoing work
covering the reuse of previously explained routes is
discussed.

2 Understanding Natural Language
Instructions

We will use Discourse Representation Structures
(DRSs) to represent the meaning of the dialogue be
tween user and system. There are three reasons that
motivate this choice of formalism. First and foremost ,
DRT is a well understood framework and covers a wide
variety of linguistic phenomena [6, 11]. These phenom
ena include context-sensitive expressions such as pro
nouns and presuppositions. To our knowledge, there is
no other semantic formalism that comes close to the
empirical coverage of DRT. Second, there now exist
computational implementations that provide means
to extend existing linguistic grammars with DRS
construction tools, and there are efficient algorithms
available that implement Van der Sandt's presupposi
tion projection algorithm for DRT [2]. Third, there is
a direct link between DRT and first-order logic-there
is a translation from DRSs to formulas of first-order
logic that behaves linear on the size of the input [1].
2.1 Representing Instructions

DRT was initially designed to deal with texts, so we
will use an extension of standard DRT that enables us
to cope with instructions such as given in the example
above. This extension introduces actions and modal
operators into the DRS-language.

Let us first define the syntax of the DRS language.
Basic DRSs have two components: a set of discourse
r-eferents, and a set of conditions upon those referents.
Discourse referents stand for objects mentioned in the
course of the dialogue. Conditions constrain the inter
pretation of these discourse referents. More formally,
DRSs and merge of DRSs are defined in the usual way:

Syntax of DRSs:

1. If { x 1, ... , xn} is a set of discourse ref
erents , and b1 , ... , 'Ym} is a set of
DRS-conditions, then the ordered pair
({xt , . . . ,xn}, bt, .. . • 'Ym}) is a DRS;

2. If B1 and B2 are DRSs, then so is (B1
E9 B2).

Following Lascarides [8], we extend the DRS lan
guage with action terms. Atomic action terms are
identified by the a-operator. Complex action-terms
are composed out of other action terms by either ;
(sequence) or I (free choice).

Syntax of DRS-action-terms:

1. If B is a DRS, then oB is a DRS-action
term;

2. If A1 and A2 are DRS-action-terms,
then so are (A1 ;A2) and (A1 I A2).

The DRS-condition subsume those of standard
DRT. Further we have the modal operators D and
0 (clauses 3 and 6), hybrid DRS-conditions formed
by discourse referents and DRSs (clause 5), and the
command operator (clause 7).

Syntax of DRS-conditions:

1. If R is a relation symbol for an n
place predicate and x 1 ... Xn are dis
course referents then R(x1 , ... ,xn) is a
DRS-condition;

2. If x1 and x2 are discourse referents, then
x1 = x2 is a DRS-condition;

3. If B is a DRS, then,B, DB, OB are
DRS-conditions;

4. If B1 and B2 are DRSs, then B1 V B2,
B1 => B2 are DRS-conditions;

5. If xis a discourse referent and B a DRS,
then x:B is a DRS-condition;

6. If A is a DRS-action-term, and B a
DRS, then [A]B and (A)B are DRS
conditions;

7. If A is a DRS-action-term then !A is a
D RS-condi tion.

One of the theoretical motivations behind the inter
nal structure of DRSs is the analysis of pronouns and
other anaphoric expressions. Pronouns are interpreted
in DRT by binding a previously introduced accessible
discourse referent. Accessibility is governed by the
way DRSs are nested into each other, and hence nar
rows down the choice of an antecedent in the process
of pronoun resolution.

2.2 Example Representations
We will now illustrate the formal syntax definition

by giving some examples that show how instructions
can be modelled. We will use the more convenient box
notation for DRSs in the examples that follow. Recall
that we use the 6-operator to form action-DRSs from
DRSs and the ! operator to express that an action is
commanded. So, the directive Go to the post office!
translates to the following DRS:

xy

robot(x)
postoffice(y)

e

!6 go(e)
to(e,y)
agent(e,x)

This DRS states that the plan in the actual world
contains the action for the robot to go to the post of
fice. Semantically, actions relate two possible worlds:
the world (or state) in which the action is issued, and
the world in which the effects of the action hold. Be
cause actions thernselve can be of complex nature, we
will use an additional world that describes what con
stitutes the action. This enables us to reason about
possible outcomes of actions (not only for the purpose
of planning, but also to verify that the resulting states
are desired) and to check the preconditions of actions.

2.3 Interpretating Instructions
One way to interpret DRSs is to translate them to

ordinary first-order logic. This is the approach that
Bos & Oka follow [3], and they use classical first-order
theorem provers and model builders to automate in
ference. The translation they use is based on the rela
tional translation for modal logic to first-order fornm
las and essentially similar to the standard translation
from DRT to first-order logic [6], extended with rules
to deal with the modal operators and DRS-action
terms. The example DRS above would get the fol
lowing translation in first-order logic:

3w 3x 3y (possible_world(w) 1\ robot(w,x) 1\

postoffice(w,y) 1\ 3v 3a (action(w,a,v) 1\ 3e
(go(a,e) 1\ to(a,e,x) 1\ agent(a,e,y))))

Note that the translation increases the arity of all
predicates symbols with one, where the additional ar
gument position denotes a possible world. A mirninal
first-order model satisfying this formula (and further

background knowledge in the form of meaning postu
lates describing the pre-conditions and effects of ac
tions) could contain the following information:

o~{dl,d2,d3,d4,d5,d6,d7,d8}

F(possible_vorld)={d1,d2,d3}
F(robo~)={(d1,d4),(d2,d4),(d3,d4)}

F(postoffice)={ (d1,d5),(d2 ,d5) , (d3,d5)}
F(ection)={(d1,d2,d3)}
F(go_from_~o)={(d2 , d4,d6,d5)}

F(at_loc)={(dl,d4 ,d6),(d3,d4,d5)}

Bos & Oka [3) actually emply automated model
builders to generate models of these kind, and use
these to extract actions for the dialogue manager .
Since models are essentially flat structures without re
cursion, they are easy to process. For instance, all
quantification and boolean structures are explicit in
models. This makes models ideal to function as a
database-lookup table to find out whether there are
actions to be performed by the system.

However, the state-of-the-art in automated model
building is not in a stage yet where it leads itself easily
to integration in efficient implementations. Although
the model building methods performs well for exam
ples up to a few utterances, in general the instruc
tions in the IDL corpus are much larger than that and
sometimes reach ten to twenty utterances in a learning
dialogue. Therefore we use an alternative rule-based
method to extract executable primitives from DRSs.
This technique is much more efficient and will be pre
sented in the next section.

3 Procedure Specification Language
The internal representation of a route is a sequence

of high-level task specifications (primitives). For this
reason a production-rule based approach has been
used to interpret the DRS as a sequence of procedure
names.

The Procedure Specification Language (PSL) pro
vides a common interchange language to describe re
sources. A list of robot executable procedures are ex
tracted from the DRS and saved as a new procedure
-the result of Instruction Based Learning-. The PSL
provides the skeletal syntax used to compose the pro
cedure names and the required parameters.

The PSL terms are either special characters or reg
ular string literals, where string literals are made of
sequences of characters excluding the special charac
ters. The complete set of special characters that can
not appear as part of a string literal is:

&. # $ - >

These characters can only be used for the special
syntactic forms described in the above RSL syntax
overview

The core syntax of the PSL synta..x is the rule a->b.
Rules associate the condition a on the left of the spe
cial syntax -> with the string on the right of -> cor
responding to the robot procedure. For example, the
rule

event(X)&go(X)&to(X, z)&$landmark(Z)- >
go(prep ='to', landmark= $landmark(Z)) (1)

will generates the procedure

go(prep='to',landmark='postoffice')

from the DRS in Section 2.2.
In each PSL rule, the condition is a conjunction of

terms separated using the special syntax&, where each
term can be a one or two place predicate symbol, a
variable predicate, a variable action. In (1) event (X)
is an example of a one place predicate while to (X,Z)
is a two place predicate. The upper case symbol in
parenthesis (i.e X for event (X)) is the variable associ
ated with the predicate. In the example in Fig 1, only
the event, go, to predicates with the same value for X
can be considered to satisfy the condition for rule (1).

A variable predicate is indicated as the special sym
bol $ followed by a string litteral. A variable predicate
indicates a class of possible predicates. In the rule ex
ample (1), $landmark(Z) specifies that the predicate
must be of landmark type.

A list containing all the predicate belonging to each
class defined must be included with the PSL. The syn
tax to specify a class and all the members belonging
to it is:

class ...name : predicate.J.I predicate.21 I .. .

where class...name is the string litteral indicating
the class and predicate_! I predicate.2 is the list
of terms predicate_l ,predicate.2 belonging to the
class separated by the special symbol I .

An action predicate is indicated as the special sym
bol # followed by a predicate pointing to an action.
For example, an action predicate can indicate an ac
tion to be executed while executing another action (for
example sure from the hospital er go forwards until you
come to dixons extracted from u9_GC....HW in the ffiL
corpus)

The end of both a rule and a class list is indicated by
the the special syntax %. The list of the defined class
is preceded by the string #parameters#, while the list
of the rules is preceded by the string #rules#.

The PSL rule based approach facilitates the inter
pretation of a user command into a call to a proce
dure with the correct parameter associated to it. The

introduction of parametrised primitives allows it to
generalise the use of the procedure. For instance, the
procedure designed for tum left after the tree should
also work if the value tree for the parameter landmark
is replaced by the value church. It is also possible to
pass different combinations of parameters to the prim
itive procedure.

While, as explained in more detail in [9], the choice
of the initial set of primitives is corpus based (that is it
has been driven by the way users express themselves) ,
both the parameter combinations and the interpreta
tion of predicates into a parameter value is mainly
robot driven as explained in more detail in [7].

The PSL rule syntax allows to establish the desired
mapping between the predicates from the DRS rep
resentation and their interpretation into the correct
value for the correct parameter. For example the user
utterances: turn right and take a right should produce
the same precedure call despite being represented as
two different types of events in the DRS (i.e. as a turn
and a take action rispectively). Table 1 shows two pos
sible rules allowing to obtain the same procedure call
for both utterances.

event(X)&turn(X)&in(X,Z)&$direction(Z) - >
turn($direction(Z))

event(X)&take(X)&$direction(Z)->
turn($direction(Z))

Table 1: PSL rules. Example of two rules mapping
different symbolic representation of an action into the
same procedure.

Not all the information present in the DRS is used
in detecting the condition components of the rule. One
aspects still not yet fully implemented is the use of
negation in the condition part of the rule. This would
allow the designer to exclude undesired combination
of predicates to be mapped into a rule.

4 Basic Program Components
A requirement in Instruction Based Learning is that

components such as conditionals, loops, sequences
found in instructions are correctly converted into
robot executable procedures. Utterances containing
conditional expressions have not been found in this
corpus. Here, instructions consist mainly of sequences
and loops.

4.1 Sequences
Since the order of the actions in the utterance is

preserved by the DRS, extracting a properly ordered
sequence of primitives and building the corresponding

procedure code is straight forward. For instance, the
pseudocode for the user explanation (example extract
from u22_GB_CD in the IBL corpus):

Instructor: er you have to take right and then
again the first right

is shown in Table 2.

def action():

take(direction='right')
take(direction='right',ordinal='first')

Table 2: Sequential Instructions. Pseudocode for the
sequence of procedures obtained from a sequence of
user actions

4.2 Loops

References to loops where an action has to be ex
ecuted a fixed number of times are not found in the
corpus. However, while-loops and do-until-loops are
frequently found. These can either be explicit or im
plicit.

Implicit while-loops are found in actions such as
in the example extracted from u22_GB_CD in the IBL
corpus:

Instructor: er you have to take right

This action implicity requires from the robot
to search for the landmark righUuming while
following the road. Such implicit loops are
handled inside pre-programmed procedures (e.g.
take(direction='right',ordinal='first'). See
[7] for more details.

However, an action can be explicitly described as
loop by the user in utterances such the one from
u2Q_GB....EP extracted from the IBL corpus:

Instructor: .. keep turning right until you ve got
the grand hotel on your left ..

With the PSL it is possible to define a suitable rule
which allows to introduce the loop explicitly on the
right hand side of it. For example, the rule in Ta
ble 3 will produce the pseudocode in table 4 for the
utterance from u20_GB....EP. As a result, everytime the
program in Table 4 is called the loop will be executed.

event(X)&turn(X)&in(X,Z)&$direction(Z)
&until(X,C)&#proposition(C) - >
while !(#proposition(C)):

turn(direction=$direction(Z))

Table 3: Loop.Example of a rule extracting an explicit
while-loop.

def action() :

while ! (near (landmark=' grand..hotel') :
turn(direction= 'right')

Table 4: Loop.
u20_GB...EP .

Pseudocode for the utterance

5 Reusing Previously Learnt Proce
dures

One of the key features of IBL is the reuse of pre
viously explained procedure as part of explanations
of new more complex procedure. In the corpus of
route instructions, this takes the form of previously
explained routes being reused in later route explana
tions. Three possible ways of reusing previous routes
can be found in the corpus. In the first case, the user
explicitly refers to the use of the whole of a previously
explained route followed by a series of actions. The
following axample is extracted from u12_GA...EG in the
IBL corpus:

Instructor : go to the post office at the post
office turn left take a right at the crossroads
tescos is on the left hand side of the street

In the second case, the user still explicitly refers to
a previously explained route. However, this time the
route has to be used only partially since at a given
point (e.g. a landmark) a diversion is introduced by
the user. The following example u6_GC_CM is extracted
from the IBL corpus:

Instructor: right erm head as though you re
going towards the post office so you go over
the bridge but instead of carrying straight on
take a right carry on down that road until it
bears round to the right slightly and at the end
of the road the museum is there

In the third case, the user does not explicitly refers
to a previously explained route, but only refers to a
landmark used in it. Thus that route has to be in
ferred. The following u13_GA_CL example is extracted
from the IBL corpus:

Instructor: go to the bridge mentioned previ
ously continue over the crossroads immediately
after the bridge and follow the road to its end
on your right you 11 find the queens pub

In all these cases the system must be able to cor
rectly link previously learnt sequences of actions with
new instructions. As explained in more detail in [10],
during the execution of a sequence of actions, the final
state of the robot after an action must be compatible
with the initial state of the next action. As a con
sequence, the recalled procedure has to be tailo1·ed so
that the next procedure can be successfully executed.

For example in the utterance ul2_GA-EG, the first
action recalls the procedure to go to the post office,
which ends with the robot facing the entrance of the
post office, but this is not a suitable initial state for
the next action (i.e turn left). So for the robot to
succeed, the procedure go_postoff ice 0 should not
be executed entirely. However, to determine which
elements of a previously learnt sequence must be kept
is not an easy problem.

A solution to this problem could be the
rule in Table 5. In this case the procedure
go_postoffice 0 is executed until the condition
near(landmark='postoffice') is verified, where
near(landmark= 'postoffice') is a vision based pro
cedure that check whether the robot is near the post
office.

event(X)&go(X)&to(X,Y)&postoffice(Y)->
while !(near(landmark='postoffice'):

go_postoffice ()

Table 5: Linking Sequences. The procedure
go_postoff ice 0 is executed until the robot is near
the post office.

Then, the part of the procedure go_postoffice()
which drives the robot into a position facing the post
office, will not be executed. Note that this implies a
concurrent execution of the two procedures.

Future work will cover the resolution of the prob
lem above also for more complex cases such as the
ul3_GA_CL example and will evaluate the efficacy of
the various components presenteded in this paper in
converting Natural Language instructions into robot
procedures.

Acknowledgments
This work is supported by EPSRC grants

GR/M90023 and and GR/M90160.

References
[1] Patrick Blackburn, Johan Bos, Michael Kohlhase,

and Hans de Nivelle. Inference and Compu
tational Semantics. In Harry Bunt, Reinhard
Muskens, and Elias Thijsse, editors, Computing
Meaning, volume 2, pages 11-28. Kluwer, 2001.

[2] Johan Bos. Implementing the binding and ac
commodation theory for anaphora resolution and
presupposition projection. Computational Lin
guistics, to appear.

[3] Johan Bos and Tetsushi Oka. An Inference-based
Approach to Dialogue System Design. In Pro
ceedings of Coling 2002, 2002.

[4] C. Crangle and P. Suppes. Language and Learn
ing for Robots. CSLI Lecture Notes 41. Chicago
University Press, Stanford, 1994.

[5] http: I /www. tech . plym . ac. uk/ soc/ staff
/guidbugm/ibl/index.html.

[6] Hans Karnp and Uwe Reyle. Prom Discourse to
Logic; An Introduction to Modeltheoretic Seman
tics of Natu1·al Language, Formal Logic and DRT.
Kluwer, Dordrecht, 1993.

[7] Theocharis Kyriacou, Guide Bugmann, and
Stanislao Lauria. Personal Robot Training via
Natural-Language Instructions. In Proceedings of
IROS 2002, 2002. to appear.

[8] Alex Lascarides. Imperatives in Dialogue. In Pro
ceedings of the 5th International Workshop on
Formal Semantics and Pragmatics of Dialogue
(BI-DIALOG), pages 1- 16, Bielefeld, Germany,
2001.

[9] Stanislao Lauria, Guido Bugmann, Theocharis
Kyriacou, Johan Bos, and Ewan Klein. Train
ing Personal Robots Using Natural Language In
struction. IEEE Intelligent Systems, pages 38-45,
September/October 2001.

[10] Stanislao Lauria, Guide Bugmann, Theocharis
Kyriacou, and Ewan Klein. Mobile Robot Pro
gramming Using Natural Language. Robotics and
Autonomous Systems, pages 171-181, 2002.

[11] Rob A. Van der Sandt. Presupposition Projection
as Anaphora Resolution. Journal of Semantics,
9:333-377, 1992.

?reprint of Robotics and Autonomous Systems, 38 (3-.f}: 171-181 (2002)

Mobile Robot Programming Using Natural Language.

Stanislao Lauria, Guido Bugmann1
, Theocharis Kyriacou, Ewan Klein•

Centre for Neural and Adaptive Systems, School of Computing, University of Plymouth
Drake Circus, Plymouth PL4 8AA, United Kingdom.

• rnstitute for Communicating and Collaborative Systems, Division oflnformatics, University of Edinburgh, 2
Buccleuch Place, Edinburgh EH8 9LW, Scotland, United Kingdom.

http://w.vw.tech.plvm.ac.uk/soc/staff/guidbugm/ ibl/ index.html

KEYWORDS: Natural Language, Human-robot dialogue, mobile robots learning, corpus collection, route
description.

Abstract
How will naive users program domestic robots? This paper describes the design of a practical system that uses
natural language to teach a vision-based robot how to navigate in a miniature town. To enable unconstrained
speech the robot is provided with a set of primitive procedures derived from a corpus of route instructions.
When the user refers to a route that is not known to the robot, the system will learn it by combining primitives as
instructed by the user. This paper describes the components of the Instruction Based Learning architecture and
discusses issues of knowledge representation, the selection of primitives and the conversion of natural language
into robot-understandable procedures.

1 lntroduction

Lntelligent robots must be capable of action in reasonably complicated domains with some degree of autonomy.
This requires adaptivity to a dynamic environment, ability to plan and also speed of execution. In the case of
helper robots, or domestic robots, the ability to adapt to the special needs of their users is crucial. The problem
addressed here is one of how a user could instruct the robot to perform tasks which manufacturers cannot
completely program in advance. In such case the system would not work at all if it cannot learn.
Such learning requires interaction and collaboration between the user and the robot. But, as most users are
cornputer-language-na"t"ve, they cannot personalise their robot using standard programming methods. Indirect
methods, such as learning by reinforcement or learning by imitation, are also not appropriate for acquiring user
specific knowledge. For instance, learning by reinforcement is a lengthy process that is best used for refrning
low-level motor controls, but becomes impractical for complex tasks. Further, both methods do not readily
generate knowledge representations that the user can interrogate.
Instruction-Based Learning (IBL), which uses unconstrained speech, has several potential advantages. Natural
language can express rules and sequences of commands in a very concise way. Natural language uses symbols
and syntactic rules and is well suited to interact with robot knowledge represented at the symbolic level. It has
been shown that learning in robots is much more effective if it operates at the symbolic level [2]. This is to be
contrasted with the much slower learning at the level of direct sensory-motor associations.
Chunking, sequencing and repair are the aspects, related to natural language interactions, shaping the design of
IBL systems discussed here. Chunking is a principle that applies to the communication of information.
Chunking is meant here as the human characteristic to divide, during explanations, tasks into sub-tasks so that
all information should be presented in small 'basic' units of actions. As shown in [12], chunking is done
spontaneously by humans and we expect that conversions from natural language instruction to robot program
will be facilitated if the robot knows a set of primitive procedures corresponding to the action-chunks natural to
the user.
Regarding repair, natural language explanations are notoriously underspecified, and the robot must be able to
verify the consistency of the acquired program. For example, in a sequence of instructions given by the user, the
final state of an action may not correspond to the expected state for the next action. In this case, the system

1 To whom correspondence should be addressed.

Preprint of Robotics and Autonomous Systems, 38 (3-4): 171-181 (2002)

would not be able to perform its task due to a missing chunk. For this reason, it is necessary to define a proper
internal knowledge representation allowing the system to detect the missing information. In this way, the system
would be able to make predictions about future events so that the problem can be solved while the system is still
interacting with the user.
The system not only has to pay attention to user knowledge and dialogue goals, but it also has to adapt its
dialogue behaviour to current limitations of the user's cognitive processing capabilities. Assistance is then
expected from the system, so that the interaction may naturally flow over the course of several dialogue turns.
Finally, a dialogue manager should take care of identifying, and recovering from, speech recognition and
understanding errors.
This paper describes initial steps and considerations towards a practical realisation of an ffiL system. The
experimental environment is that of a miniature town in which a robot provided with video camera executes
route instructions. The robot has a set of pre-programmed sensory-motor action primitives, such as "turn left" or
"follow the road". The task of the user is to teach the robot new routes by combining action primitives. That
task should reveal all the constraints described above, and enable testing of the developed methodology.
The closer the correspondence between primitives and chunks expressing the very bas ic actions (such as "turn
left") is, the less difficult the learning is, since, in this way, the number of repair dialogue between the user and
system is kept to the minimum. For this reason, it is necessary to select these primitives that corresponds as
closely as possible to the action expressed in the chunks (see section 4).
A complete 1BL requires several steps to transform a spoken chunk into a robot action (Table 1). First, the
system must be able to convert speech into text. After that, some syntactic parsing and semantic analysis is
carried out. Then at the functional mapping level, the system must be able to transform the user utterance into
internal symbols that the robot can understand. By understanding we mean here that there is a correspondence
between symbols and actions or real-world objects. In this way, the appropriate procedure can be called to act
on the sensors and motors according to the user intentions.

Analysis

Speech
recognition

Semantic
Anal sis
Functional
Ma in
Robot program

GO TO THE END OF

Goto("end_of_street")

Until found(end_of_street)
follow the road

THE STREET

Repair

i
i
i
i

Table 1. From speech to action. The various steps involved in the transformation of a user command into the corresponding
action are shown here.

Section 2 clarifies how symbol-level description and low-level sensory motor action procedures are integrated.
The proposed representation of procedural knowledge is also described. In section 3 the system architecture is
described.
The problems of considering the appropriate selection of action primitives is described in section 4 by analyzing
recorded route instructions, and establishing a list of actions that are natural to users. The results of this

2

Preprint of Robotics and Autonomous Systems, 38 (3-4): 171-181 (2002)

investigation are also discussed. These implications and other findings are discussed in section 5, along with the
question of how the proposed system compares to other approaches. The conclusion follows in section 6.

2 The IBL model

2.1 Symbolic learning
The learning process is based on predefined initial knowledge. This "innate" knowledge consists of primitive
sensori-motor procedures with names, such as "turn left", "follow the road" (the choice of these primitives is
explained in sections 2.3 and 4). The name is what we call here a "symbol", and the piece of computer program
that controls the execution of the corresponding procedure is called the "action" (Figure lA). As each symbol is
associated with an action, it is said to be "grounded".

SylllbDIID If'.\ SylllbDIID SylllbollD
LIVBI LIVII IJVBI

' ' ' ' ' ' ' ' ' ' lallatl ! luatl 111Ut1
lllks

i
lllks lllka

' ' '
ittiii Acta iiiiii Acta iiiiii Act laD

LIVII LIVII LIVII

A B c

Figure 1. Symbolic learning. (A) is a schematic representation of the initial system, comprising symbols associated with pre
programmed (innate) primitive action procedures. In (B) the user has defined a new procedure {open circle) as a
combination of symbols. The new symbol is grounded because it is a construct of grounded symbols. In (C), the user has
defined a new procedure that combines a procedure previously defined by himself with primitive action procedures.

When a user explains a new procedure to the robot, say a route from A to B that involves a number of primitive
actions, the ffiL system, on the one hand, creates a new name for the procedure, and, on the other hand, writes a
new piece of program code that executes that procedure and links the code with the name (see section 2.2 for
details). The code refers to primitive actions by name. It does not duplicate the low-level code defining these
primitives. For that reason, the new program can be seen as a combination of symbols rather than a combination
of actions (figure lB). As all new procedures are constructed from grounded primitives, they become also
grounded by inheritance and are "understandable" by the system when referred to in natural language.
When explaining a new procedure, the user can also refer to old procedures previously defined by himself. In
that way the complexity of the robot's symbolic knowledge increases (fig. 1 C) .

2.2 Knowledge representation
The internal representation needs to support three functions: (i) formal modeling ofNL route descriptions; (ii)
internal route planning for determining whether a given route description is sufficiently specified; and (iii) the
generation of procedures for navigation at execution time. These three functions require different
representations that will be described in turn.

3

11111111
Stata
[!]
[I]
Wr-\
[!Jl___/
[]
ITJ

blltJal
Still

m
[!]
Wr-\
[Ill___/
[]
ITJ

Preprint of Robotics and Autonomous Systems, 38 (3-4) : 171-181 (2002)

Qlrrllt
Stltal

m
Pradltloa
Functhll

PI

121'1111
Statal

m

Prlli:tllll
Statal

m

llconslstucy

m

A

8

Figure 2. Route instruction verification. (A) For each procedure there is a prediction function that transforms a state
vector into its future value. The function first determines if the input state satisfied the minimal criteria ("pre-condition") to
enable the procedure to be executed. An action is executable only if selected elements of the state vector have required
values. If this is the case, the next state is predicted and processed by the prediction function associated with the next
procedure in the instn1ction. Each action modifies certain components of the state vector, and leaves the other unchanged.
(B) If the predicted state produced by one procedure does not allow the next procedure to be executed, an error handling
process is initiated. (Note: the "initial state " in the text corresponds to the "current state" in the figure) .

(i) The utterances of the user are represented using the Discourse Representation Structure (DRS) [9] . This is
then translated into symbols representing procedures or is used to initiate internal functions such as execution of
a command or learning of a series of commands (section 3).
(ii) When the user describes a route as a sequence of actions, it is important for the robot to verify if this
sequence is executable. The approach proposed here associate each procedure with a triplet SiAijSj with
properties similar to productions in SOAR [8]. The state Si is the initial state in which the action Aij can take
place. It is the pre-condition for action Aij. The state Sj is the final state, resulting of the action of Aij applied to
the initial state (figure 2 clarifies the difference between "initial state" and "pre-condition"). For a sequence of
actions to be realisable, the final state of one action must be compatible with the pre-condition of the next one.
To enable this verification, the robot must be able to "imagine" the consequence of an action. For that purpose, a
PREDICTION function is associated with each primitive action, and with each newly created procedure. Figure
2 illustrates the use of the prediction function during verification of the consistency of the sequence of
instructions from the user. 1t should be noted that this process also helps detecting some of the errors in natural
language processing.

4

Preprint of Robotics and Autonomous Systems, 38 (3-4): 171-181 (2002)

PriVillllD8Wiedgl NawProcadln

Pr11:1dllrl XYl

A B

Figure 3. Procedural knowledge representation. (A) A procedure file contains an ACTION function that causes the physical
displacement of the robot, and a PREDICTION function that calculates the future state of the robot resulting from the action.
The ACTION is used during execution of a command, and the PREDICTION is used for consistency checking during the
learning process. (B) An instruction by the user results in a "New Procedure" file being written. In this file, the actions
components of the requested primitive procedures are combined (in the form of function calls) to create the new ACTION
function, and the prediction components are combined to create the new PREDICTION function. This includes an additional
procedure-specific pre-condition.

(iii) When a robot executes a command, it executes a piece of program code that contains the sequence of
primitive procedures to be executed. Thus, a key part of ffiL is the generation of a program code. This is
enabled by the use of a scripting language (section 3). This program is called the ACTION function. Both
ACTION and PREDICTION functions are physically located in the same file that contains all information
specific to a procedure. This is schematised in figure 3.

2.3 Sensory-Motor primitives
Sensory-motor primitives are defined as action-chunks that users usually refer to in unconstrained speech.
These could be low-level procedures referring, for example, to robot wheel turns, distance vectors etc. or they
can be high-level procedures like for example "turn left after the church" or ''take the second exit off the
roundabout". In natural language route instructions, low-level specification of actions generally does not
appear. Instead, higher-level procedures are mentioned which will have to be pre-programmed and thus become
the sensory-motor primitives in this context.
In this project we have defined primitives as procedures which take parameters. For example the action "take
the second right after the post-office", maps to the primitive turn with parameters second, right, after and post
office. It is then a matter of correctly mapping user utterances to the right primitives and passing the right
parameters to them.

3 System Architecture

The architecture is comprised of several functional processing modules (figure 4). These are divided into two
major units: the Dialogue Manager (DM) and the Robot Manager (RM).

5

Preprint of Robotics and Autonomous Systems, 38 (3-4) : 171-181 (2002}

.. .. DIALOGUE MANAGER

User) Speech Recognition , , & Synthesis

..................

ROBOT MANAGER
... ...

Process Procedure
Manager Execution K

Module , , Robot

Figure 4. 1BL system 's architecture (see lex/for description).

The Dialogue Manager is a bi-directional interface between the Robot Manager and the user, either converting
speech input into a DRS semantic representation [16], or converting requests from the Robot Manager into
dialogues with the user. Its components are described in [9].
TheRM deals with the DM's output and also with the learning and execution of the commands from the user.
As shown in figure 4 the RM includes two modules: the Process Manager (PM) and the Procedure Execution
Module (PEM). The PEM is responsible for carrying out the commands by the user. [t executes procedures
called by the Process Manager module.
The PM transforms the semantic representation produced by the DM into the internal language of the robot that
includes learning and execution functions. Mapping symbols from the DRS onto the corresponding entities in
the internal representation allows converting user requests into robot procedures with the right parameters.
When successful, the PM starts the appropriate process either to execute the requested task by a call to the PEM
or alternatively to build a new user-defined procedure explained by the user. When such mapping is not
successful the RM must inform the DM, which starts a clarification dialogue with the user. Such mapping
process is supported by a new specification language that expresses the relations between the symbols used in
the DRS and the corresponding primitives. Thus to introduce new primitives, it is sufficient for the designer of
an IBL systemto change the grammar of the specification language without having to recompile any of theRM
modules.
The Robot Manager is written using the Python2 scripting language. C language extensions to Python are also
used in case where speed is a constraint (for example in vision routines). An important feature of scripting
languages such as Python is their ability to write their own code. For instance, a route instruction given by the
user will be saved by the Robot Manager as a Python script that then becomes part of the procedure set available
to the robot for execution or future learning.
[t is important that the RM must listen to the DM and try to process its output but at the same time it should be
able to send messages to the DM. The DM and theRM are designed as two different processes based on
asynchronous communication protocols. These processes run concurrently on different processors. In this way,
the system can handle, at the same time, both the dialogue aspects of an incoming request from the user (i.e.
speech recognition and semantic analysis) and the execution of a previous user request (i.e. check if the request
is in the system knowledge domain, and execute vision-based navigation procedures).
Two aspects are essential with this concurrent-processes approach. The first is to define an appropriate
communication protocol between the two processes. The second is to define an appropriate architecture for the
RM and DM allowing the two processes to both communicate with each other while performing other tasks. At
present the use of context-tagged messages within a communication based on the Open Agent Architecture
(OAA) [13] is evaluated.
Moreover, the system must also dynamically adapt itself to new user requests or to new internal changes, by
being able to temporarily suspend or permanently interrupt some previous activity. For example the user may
want to prevent the robot crashing against a wall and must therefore be able to stop the robot while the robot is

2 http://www.python.org

6

Preprint of Robotics and Autonomous Systems, 38 (3-4) : 171-181 (2002)

driving towards the wall. Hence, the importance of a concurrent approach where the system constantly listens to
the user while performing other tasks and at the same time is able to adjust the task if necessary.

4 Corpus Collection and Data Analysis

To evaluate the potential and limitations ofiBL, a real-world instructions task is used, that is simple enough to
be realisable, and generic enough to warrant conclusions that hold also for other task domains. A simple route
scenario has been selected, using real speech input and a robot using vision to execute the instructed route (see
4.1 below for more details). The first task in the project is to define the innate actions and symbols in the route
instruction domain. For this reason, a corpus of route descriptions has been collected from students and staff at
the University of Plymouth. In section 4.2 and 4.3 corpus collection and data analysis are presented.

Figure 5. Miniature town in which a robot will navigate according to route instructions given by users. Letters indicate the
destinations and origins of various routes used in the experiment.

4.1 Experimental Environment
The environment is a miniature town covering an area of size l70cm x 120cm (figure 5). The robot is a
modified RobotFootball robor with an &cm x &cm base (figure 6A). The robot carries a CCD colour TV
camera4 (628 (H) x 582 (V) pixels) and a TV VHF transmitter. Images are processed by a PC that acquires them
via with a TV capture card5 (an example of such image is shown in figure 6B). The PC then sends motion
commands by FM radio to the robot. During corpus collection, the PC is also used to record instructions given
by subjects.

3 Provided by Merlin Systems (http://www.merliosystemscorp.com/)
4 Provided by Allthings Sales and Services (http ://www.allthiogs.eom.au/)
5

TV Card: Hauppage Win TV GO

7

?reprint of Robotics and Autonomous Systems, 38 (3-4): 171-181(2002)

A B

Figure 6 A. Miniature robot (base Bern x Bern). B. View from the on-board colour camera

The advantage of a miniature environment is the ability to build a complex route structure in the limited space of
a laboratory. The design is as realistic as possible, to enable subjects to use expressions natural for the outdoor
real-size environment. Buildings have signs taken from real life to indicate given shops or utilities such as the
post-office. However, the environment lacks some elements such as traffic lights that may normally be used in
route instructions. Hence the collected corpus is likely to be more restricted than for outdoor route instructions.
The advantage of using a robot with a remote-brain architecture [7] is that the robot does not require huge on
board computing and hence can be small, fitting the dimensions of the environment.

4.2 Collection of a corpus of route instructions
To collect linguistic and functional data specific to route learning, 24 subjects were recorded as they gave route
instructions for the robot in the environment. Subjects were divided into three groups of 8. The first two groups
(A and B) used free flow speech, to provide a performance baseline. It was assumed that a robot that can
understand these instructions as well as a human operator would represent the ideal standard. Subjects from
group C were induced in producing shorter utterances by a remote operator taking notes.
The groups A and B were told that the robot was remote-controlled and that, at a later date, a human operator
would use their instructions to drive the robot to its destination. It was specified that the human operator would
be located in another room, seeing only the image from the wireless on-board video camera. This induced
subjects to use a camera-centred point of view relevant for robot procedure primitives and to use expressions
proper for human communication. Subjects were also told to reuse previously defined routes whenever possible,
instead of re-explaining them in detail. Each subject had 6 routes to describe among which 3 were "short" and 3
were "long". The long routes included a short one, so that users could refer to the short one when describing the
long one, instead of re-describing all segments of the short one. This was to reveal the type of expressions used
by users to link taught procedures with primitive ones. Each subject described 6 routes having the same starting
point and six different destinations. Starting points were changed after every two subjects. A total of 144 route
descriptions were collected. For more details about collection and analysis of the corpus see [I]

4.3 Corpus Analysis: The functional vocabulary
The aim of the corpus analysis is to twofold. First, to define the vocabulary used by the users in this application,
in order to tune the speech recognition system for an optimal performance in the task. Secondly, to establish a
list of primitive procedures that users refer to in their instructions. The aim is to pre-program these procedures
so that a direct translation from the natural language to grounded symbols can take place. In principle, if the
robot does not know a primitive procedure, the user could teach it. Hereafter, we report on the functional
analysis of the corpus. The reader interested in the task vocabulary can refer to [1]. The functional vocabulary is
a list of primitive navigation procedures found in route descriptions.
The initial annotation of instructions in terms or procedures, as reported here, is somehow subjective, and
influenced by two considerations. (i) The defined primitives will eventually be produced as C and Python
Programs. It was hoped that only a few generic procedures would have to be written. Therefore, the corpus has
been transcribed into rather general procedures characterised by several parameters (table 2). (ii) An important
issue is knowledge representation. According to the SAS representation discussed in section 2.2, the

8

Preprint of Robotics and Autonomous Systems, 38 (3-4) : 171-181 (2002)

executability of primitives can only be evaluated if their initial and final states are defined. Subjects however
rarely specified explicitly the starting point of an action and sometimes did not define the final state in the same
utterance. Nevertheless, it was assumed that the system would be able to infer the missing information from the
context. Therefore, procedures without initial or final state were considered to be complete, and were annotated
as such. The specifications of primitive procedures are likely to evolve during the project.

Count Primitive Procedures
I 308 MOVE FORWARD UNTIL [(past lover !across) <landmark>] I [(half_way_of I

end of) street 11 [after <number><landmark> [left I right]] I [road bend]
2 183 TAKE THE [<number>] turn [(left I right)] I [(before I after I at) <landmark>]
3 147 <landmark> IS LOCATED (left I right !ahead] I [(at I next_to lleft_of I right_of I

in_front_of 1 past 1 behind I on I opposite I near) <landmark>] 1 [(half_way_of I
end_of I beginning_of I across) street] I [between <landmark> and <landmark>] I
[on <number> turninQ (left_l riQht)]

4 62 GO (beforeL after 1 toj <landmark>
5 49 GO ROUND ROUNDABOUT [left I riQhtll [(after 1 before I at) <landmark>]
6 42 TAKE THE <number> EXIT [(before l after 1 at) <landmark>}
7 12 FOLLOW KNOWN ROUTE TO <landmark> UNTIL (before I after I at)

<landmark>
8 4 TAKE ROADBEND (left I right)
9 4 STATIONARY TURN [left I riQht I around] I [at I from <landmark>]
10 2 CROSS ROAD
11 2 TAKE THE ROAD in front
12 2 GO ROUND <landmark> TO [front I back I left side I right side]
13 I PARK AT <location>
14 I EXIT [car _park 1 park]

Table 2. Primitive navigation procedures found in the route descriptions collected from groups A and C. Procedure 3 is
used by most subjects to indicate the last leg of a route, when the goal is in sight.

This analysis methodology differs slightly from the one in [4]. In our analysis, there are no statements
describing landmarks, as these are made part of procedures specifications, and consequently there are also no
actions without reference to landmarks. Even when a subject specified a non-terminated action, such as "keep
going", it was classified as "MOVE FORWARD UNTIL", assuming that a termination point would be inferred
from the next specified action. The list of actions found in the route descriptions of groups A and C is given in
table 2. It has been shown in [9] that the number of distinct procedures is increasing with the number of
sampled instructions, but at a rate much smaller than the number of distinct words. Here we discover on average
one new procedure for every 38 route instructions, while with words, we discovered in average one new word
for each instruction. New procedures typically are the least frequent in table 2.

5 Discussions

Teaching a route to a robot using natural language is an application of a more general instruction-based learning
methodology. The corpus-based approach described here aims at providing users with the possibility of using
unconstrained speech, whilst creating an efficient natural language processing system using a restricted lexicon.
As mentioned in section 2.3 , primitives are quite complex procedures. Section 4.3 describes how the primitives
where extracted from a corpus recorded by a group of people, mostly students, from various fields of study.
They spoke freely to the robot using human-like expressions and therefore the primitives extracted from what
they said reflect the amount of"knowledge" naive users would expect the robot to have. The level of complexity
of the primitives therefore depends, not only on the nature of the natural language application but also on its
users and their expectations ofthe robot. If the subjects of our corpus were robot engineers, for example, and
were told that the robot does not know how to move or turn prior to their route instructions they may have
produced a different corpus from which different primitives would have been extracted.

An important finding in [9] was that functional vocabulary is not closed. Hence, at some point in a robot's life,
the user may have to teach it new primitives. For that purpose, the robot would need to posses an additional set

9

?reprint of Robotics and Autonomous Systems, 38 (3-4) : 171-181 (2002)

of low level primitives, which correspond to lower level robot actions. Examples of such primitive learning are
found in [5] and [14] . With our approach, this would require the collection of a new corpus to determine the
necessary additional primitive procedures. Another solution could lie in an appropriate dialogue management to
suggest a reformulation of the instruction. It is expected that with the corpus-based method used here, the
frequency of such "repair dialogues" will be minimised. An open question is the detection of new functions in
the user's utterance, as the lexicon may not contain the required vocabulary.
The approach to robot control described may be seen as an attempt to integrate the good properties of
Behaviour-based control and classical Al. Behaviour-based control is an effective method for designing low
level primitives that can cope with real-world uncertainties, and AI has developed effective tools for symbol
manipulation and reasoning (for a more detailed discussion about hybrid systems see for example (10]).
However, the system differs in several ways from both methods. Here, the corpus defines what symbols and
primitives to use. Consequently, some of the primitives are rather complex functions, involving representations
of the environment and planning. These primitives are not always compatible with the representation-less
philosophy of behaviour-based systems. On the AI side, the system does not use the full range of reasoning
capabilities offered by systems such as SOAR. There are no other aims in symbolic processing than verifying
the consistency of instructions, and the construction of new procedure specifications.
Other previous work on verbal communication with robots has mainly focused on issuing commands, i.e.
activating pre-programmed procedures using a limited vocabulary. Only a few research groups have considered
learning, i.e. the stable and reusable acquisition of new procedural knowledge. [6] used textual input into a
simulation of a manipulator with a discrete state and action space. [3] used voice input to teach displacements
within a room and mathematical operations, but with no reusability. In [15] textual input was used to build a
graph representation of spatial knowledge. This system was brittle due to place recognition from odometric data
and use ofiR sensors for reactive motion control. Knowledge acquisition was concurrent with navigation, not
prior to it. Whereas in [11], the system could learn new actions through natural language dialogues but only
while the robot was performing them (i.e. it could only learn a new route from A to B while it was actually
moving from A to B and dialoguing with the user).
ln the ffiL system described here, learning operates purely at the symbolic level ; hence it can be done prior to
performance. The ability to predict future states enables to engage in a verification dialogue before execution
errors occur. If environmental conditions change such that an instruction is not valid anymore, this can be
detected from the mismatch between the expected result and the actual one. Learning however is not
autonomous. The system requires interaction with a human user to learn new symbols and their meaning. This
simplifies the design of the robot due to the transfer of part of the cognitive load to the user. Future experiment
will reveal if this approach results in effective and socially acceptable helper robots.
The design of an IBL system requires, as expected, specialists in NL processing and speech recognition, as well
as specialists in artificial vision and robot control. Here we found that significant work was also required in
extracting from the semantic representation of the user's utterance the corresponding robot-executable
procedures. It is hoped that this process will be simplified in the future by using the new specification language
currently developed as part of the project.

6 Conclusions

[n this paper, it was noted that domestic robots, which cannot learn from their users will be oflimited use. The
lnstruction-Based Learning method (IBL) has been presented in the special case of route instructions.
A key task in an IBL system is the translation from Natural Language (NL) instructions to robot-understandable
procedures. The corpus-based approach has been proposed here to optimise such translation. It defines a task
domain specific lexicon and set of primitives. This results in the implementation of a constrained language and
limited task capabilities. However, it is expected that within a given task domain this will maximise the use of
spontaneous speech and NL conversion efficiency. Only 14 primitives have been, but these are complex robotics
procedures, involving visual search and planning. We believe that this is required to ensure efficient
communication with a naive user. But the set probably is not closed. In other words, users at some time are
likely to refer to primitives for which there is not preprogrammed counterpart in the robot's repertoire. [t is likely
that the dialogue management will play a key role in handling such situations.

Acknowledgement: This work is supported by EPSRC grants GRJM90023 and GRJM90160. The authors are
grateful to A. Cangelosi and K. Coventry for enlightening discussions.

10

?reprint of Robotics and Autonomous Systems, 38 (3-4): 171-181 (2002)

References:
[\] Bugmann G., Lauria S., Kyriacou T., Klein E., Bos J. and Coventry K. (2001) "Using Verbal Instruction for
Route Learning", Proc. of3rd British Conf. on Auton. Mobile Robots and Autonom. Systems: Towards
Intelligent Mobile Robots (TIMR'200\), Manchester, 5 April.

[2] Cangelosi A., Harnad S. (200 1) The adaptive advantage of symbolic theft over sensorimotor toil: Grounding
language in perceptual categories. Evolution Communication. (in press)

[3] Crangle C. and Suppes P. (1994) Language and Learning for Robots, CSLI Lecture notes No. 41 , Centre for
the Study of Language and Communication, Stanford, CA.

[4] Denis M. (1997) "The description of routes: A cognitive approach to the production of spatial discourse",
CPC, I 6:4, pp.409-458.

[5] FLAKEY: www.ai.sri.com/people/flakey/integration.html

[6]Huffman S.B. and Laird J.E. (I 995) "Flexibly lnstructable Agents", Journal of Artificial Intelligence
Research, 3, pp. 271 -324.

[7] Inaba M. , Kagami S., Kanehiro F., Hoshino Y., Inoue H. (2000) "A platform for robotics research based on
the remote-brained robot approach", International Journal ofRobotics Research, 19:10, pp. 933-954.

[8] Laird J.E., Newell A. and Rosenbloom P.S. (I 987) "Soar: An architecture for general Intelligence" Artificial
Intelligence, 33:1, pp.l-64.

[9] Lauria S., Bugmann G., Kyriacou T., Bos J., Klein E. (2001) "Personal Robot Training via Natural
Language Instructions" , IEEE Intelligent Systems, I 6:3, pp. 38-45.

[10] Malcom C. M. (1995), The SOMASS system: a hybrid symbolic and behavioured-based system to plan and
execute assemblies by robot. In J. Hallam, et al. (Eds), Hybrid problems and Hybrid solutions pp 157-168.
Oxford: ISO-press.

[I I] Matsui T., Asoh H., Fry J.,et al..(1999) Integrated Natural Spoken Dialogue System of Jijo-2 Mobile Robot
for Office Services, http://citeseer.nj .nec.com/matsui99integrated.html

[12] Miller G. (1956)'The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity
Processing Information'. The Psycho!. Review, v. 63, p. 81-97

[13] Open Agent Architecture http://www.ai.sri.com/-oaa/

[14] Seabra Lopes, L. and A.J.S. Teixeira (2000) Human-Robot Interaction through Spoken Language Dialogue,
Proceedings IEEE/RSJ International Conf. on Intelligent Robots and Systems, Japan.

[15] Torrance M.C. (1994) Natural Communication with Robots, MSc Thesis submitted to MIT Dept of
Electrical Engin. and Comp. Science.

[16] Traum, D., J. Bos, R. Cooper, S. Larsson, I.Lewin, C. Matheson and M.Poesio (1999) A model of dialogue
moves and information state revision. Trindi Report 02.1 . www.ling.gu.se/projekt/trindi/publications.html

11

?reprint of Robotics and Autonomous Systems, 38 (3-4): 17 1-181(2002)

Stanislao Lauria is currently a research fellow at the University of Plymouth. He
received a Laurea in Physics from the Universita' di Napoli and a PhD degree in
Cybernetics from the University of Reading. He has been research fellow at the
University of Reading. His research interests are in the area ofNeural Networks,
Artificial Intelligence and robot vehicles. He can be contacted at
stasha@soc.plym.ac.uk

Guido Bugmann is a senior research fellow in the University of Plymouth's School
of Computing, where he develops vision-based navigation systems for robots and
investigates biological planning and spatial memory. He previously worked at the
Swiss Federal Institute of Technology in Lausanne, NEC's Fundamental Research
Laboratories in Japan and King's College London. He has three patents and more
than 90 publications. Bugmann studied physics at the University of Geneva and
received his PhD in physics at the Swiss Federal Institute of Technology in
Lausanne. He is a member of the Swiss Physical Society, the Neuroscience Society,
and the British Machine Vision Association. Contact him at the Centre for Neural
and Adaptive Systems, School of Computing, University of Plymouth, Drake

· PL4 UK: .ac.uk.
Theocharis Kyriacou is currently studying for a Ph.D. in Instruction Based Learning
for Mobile Robots in the School of Computing of the University ofPlymouth. He
earned his B.Eng. (Honours) degree in Electronic Engineering Systems from the
University of Sheffield in 2000.

Ewan Klein is a reader in the Division oflnformatics at the University of Edinburgh
and director of Natural Language Research at Edify Corporation. His research
interests include computational approaches to phonology, syntax, and semantics;
multimodal interfaces; natural language specification ofhardware design; and
dialogue with intelligent systems. He received a BS in social and political science
and a PhD in formal semantics from the University of Cambridge and an MS in
general linguistics from Reading University

12

Vision-Based Urban Navigation Procedures for Verbally Instructed Robots

Theocharis Kyriacou, Guido Bugmann, Stanislao Lauria

Robotic Intelligence Laboratory, School of Computing, University of Plymouth, Plymouth, United Kingdom,
http: /lwww. tee h. plvm. a c. uklsoclstaffl g uidbug m/robolab/robolab. html

Abstract

Humans who explain a task to a robot, or to another
human, use chunks of actions that are often complex
procedures for robots. An instructable robot needs to be
able to map such chunks to existing pre-programmed
primitives. We investigate the nature of these chunks in
an urban visual navigation context and describe the
implementation of one of the primitives: "take the n'h
turn right/left". This implementation requires the use of
a "short-lived" internal map updated as the robot moves
along. The recognition and localisation of intersections
is done using task-guided template matching. This
approach takes advantage of the content of human
instructions to save computation time and improve
robustness.

1. Introduction.

This work is part of a project on "Instruction-Based
Learning" (IBL) where robots acquire user-specific
skills based on verbal instructions given by the user.
One of the issues in the project is the mapping from
action chunks used in natural language to actions
executable by the robot. The approach used here is to
provide a set of pre-programmed primitives
corresponding to action chunks referred to by user~ .

This facilitates the mapping from the semantic analys1s
of the spoken input to a sequence of executable robot
actions.
In an earlier part of this project, subjects were invited to
speak to a small robot in a miniature town (Figure 1)
and to explain to it how to navigate between two
landmarks. The instructions were recorded, transcribed
and analysed to identify chunks of actions [1]. These
chunks were grouped into about 15 "primitive"
procedures that are listed and discussed in section 2.
In implementing such primitives, one can take
advantage of the content of verbal instructions to
minimize computational time and improve robustness,
for instance by limiting visual search to those features
mentioned in the instructions. The example of the
navigation primitive "take the nth left turn" is detailed in
section 3. This primitive requires counting of landmarks
and imposes the use of a "short-lived" internal map of
the environment. Detection of road features, such as

intersections and turnings, is implemented by matching
feature templates in the internal map.
The requirements of natural language understanding
induce the internal representation of a route as a
sequence of high-level task specifications (primitives).
This is in principle very robust against environmental
variations, provided that the primitives handle these
appropriately.

Figure 1: The miniature town (a) and robot with an 8x8
cm base (b). The marked path on the town image refers
to the route followed by the robot in the example given

in section 3.5 (where each arrowhead denotes a
way point).

2. Action chunks in verbal instructions
and corresponding primitives.

A corpus of route descriptions was collected from 24
subjects in the miniature town environment. Each
subject was asked to give 6 route descriptions from a
starting location (different for each subject) to a
different destination each time. Subjects were instructed
to assume the robot's point of view during their
instructions. This seems to have worked since no
description used a survey view.
A total of 144 route descriptions were analysed for their
functional components (action chunks). These are the
smallest possible units of information that compose
each route instruction. Analysis was done by hand and
all action chunks where then categorised into groups.
The functional analysis revealed 15 functional groups
(table 1). A similar approach for chunking of route
descriptions was used by [2] and [3].

Table 1: Functional primitives extracted from the corpus.

Primitive Descript ion
1 go (description_l, landmark_l, preposition_l, Instructs the robot to follow a

description_2, landmark_2) known route (with known starting
point and destination).

2 1ocation_is (description_l, landmark_l, Specifies a location .
direction_l, preposition_l, description_2,
landmark_2, description_3, landmark_3,
ordinal 1)

3 destination_ is (description_l, landmark_l , Indicates the destination
direction_!,

'
preposition_!, description_2, landmark .

landmark_2, description_ 3 , landmark_3,
ordinal 1)

4 go_until (description_l, landmark _ 1, Follow known route to a landmark
preposition_l, description_2, landmark_2) until a specified location i n the

route.
5 exit_roundabout (ordinal_l, preposition_!, Take a specified exit from a

description 1, landmark 1) roundabout.
6 turn (ordinal_l, direction_!, preposition_!, Take a specified turn off a road .

description 1' landmark 1)
7 fo11ow_road_until (preposition_l, description_!, Move forward until a certain

landmark 1) locat ion .
8 rotate (direction 1, extend 1, around 1) Rotate to a certain extend.
9 exit_from (description_l, landmark_l) Exit from a place, usually used

for the car park.
10 cross_to (description_l, landmark _1) Instructs the robot to cross the

road to a landmark.
11 enter_roundabout (direction_l) Enter the roundabout in a specific

direction.
12 park (preposition_ l , description_!, landmark_l) Park on, or close, to a certain

13 take_road (preposition_l, description_!,
landmark 1)

14 goto_side (preposition_l, description_l,
landmark 1)

15 fork (direction_l)

The number of functional groups found is subjective as
it depends on the annotation method. Here, the
annotation was done with two objectives in mind: 1.
Produce parameterised primitives that generalize the
description found in the corpus. For instance, the
procedure designed for "turn left after the tree" should
also work if "tree" is replaced by "Church". 2. An
important issue is knowledge representation. Route
following is a continuous chain of actions. When, as in
this case, a route is represented as a sequence of
primitives, the initial state of the robot in each primitive
must be consistent with the final state in the previous
primitive. Therefore, all actions referred to by subjects
were assumed to have an initial and a final state.
Subjects however rarely specified explicitly the starting
point of an action and sometimes did not define the final
state in the same utterance. It was assumed that the IBL
system would be able to retrieve missing information
from the context. For instance, when a subject specified
a non-terminated action, such as "keep going", it was
classified as "follow the road until", assuming that a
termination point would be inferred from the next
specified action.
Not all functional primitives in table 1 are purely
navigation tasks . For example "go" consists mainly of
retrieving from memory the list of primitives

landmark.
Take a road in view.

Go round a landmark to one of its
sides.
Follow a one of t he two branches
of a fork (Y split).

corresponding to a given route, and "location is"
specifies spatial relations between landmarks. In
contrast, "destination is" is found at the end of a route
description to indicate the location of the goal. The
robot needs then to find its way to that location.

3. Implementation example: The primitive
"turn()".

3.1. The parameter combinations for the "turn"
primitive.

Four different combinations of parameters can be
passed to the "turn" primitive procedure (table 2).
The program implementing the primitive executes a
different sequence of operations depending on the
combination of parameters passed. For each of the four
parameter combinations a dedicated sub-routine is
called in the primitive procedure. The next section
shows the pseudo-code for the second case in the table
above.

3.2. Pseudo-code for the case "take the nth turn
left/right".

In the first step of the pseudo-code in table 3, the
templates selected for this case represent straight or

Table 2: Different combinations of parameters of the "turn " primitive procedure. The examples indicate some of the
values that the parameters can take.

Parameter combination
turn (di rec t ion_l)

turn (ordina l 1. direct i on 1)

turn (di r ection_l , prepos ition_l,
landmark 1)
turn (ordinal_l , direction _1.
preposition_l, description_l , landmark _1)

curved road segments and intersections of various
angles (section 3.4).

Table 3: Pseudo-code for case "take the n1
h tum

Left/right". The resulting sequence ofdisplacements is
illustrated in section 3.5 for n (ordinal_}) = 2 and

direction_] =Left.

Define set of road fearures (templates- see section 3.4) to look for.
Loop:
(

l

Capture and process road image.
Update internal map & localize robot (see section 3.3).
Find best matching template in the map.
Execute procedure (e.g . robot motion) associated with

the winning template.

Templates are mapped to road-like areas in the top view
projection of the image captured by the camera. The
template with the best match will determine the action
to be performed next. For example the templates for
straight or curved road will cause the robot to move
further along the road. The intersection templates can
have one of two actions associated with them: 1. either
cause the robot to move to the centre of the intersection
and rotate in the direction of turn or 2. just move ahead
along the road. The first action is associated with the
intersection templates when approaching the nu.
intersection. In this case the robot takes the turn and the
loop is exited so that execution is passed to the primitive
associated with the next chunk in the route description.
The second action is associated with the intersection
templates until (but excluding) the nu. intersection. In
these cases the robot carries on fo llowing the road. In
this procedure, the robot must keep track, not only of
the number of intersections passed but also of their
location. When an intersection is identified, its location
is compared against a record of previously found
intersections and if a relatively close match is not found,
it is considered to be a new intersection.
Intersection locations are recorded in the egocentric
reference frame of the robot. Each time the robot moves
these are updated to reflect their new relation to the
robot. To perform this updating, the robot must know by
how much it has moved since the last image was taken.
In our purely vision-based system, this is done by
tracking the displacements of landmarks in the image,
using a "short-lived" feature map, as described in

Example

"Take a right turn•
"Turn l e f t •
"Take the second left turn•
"Turn left after the post-office •

"Take the s econd t urning after Tesco •s•
"Turn l e ft at the library•
\'Turn right a f t er the tall blue building•

section 3.3

3.3. Short-lived map

A short-lived map serves several purposes during the
robot's navigation. It is used to compensate for the dead
angles of the robot by recording visual information, to
keep track of landmark locations (like the intersections
in the example of the previous section), and for
resolving spatial relationships between a landmark and
the road (e.g. to defme a road area "after" a building).
The map is constructed progressively as the robot
moves using road surface and road edge information
filtered out from the top view of the scene (this is
illustrated in figure 3). This view is produced by
applying a perspective transform to the camera image.
Road surface information is extracted from the top view
image using chromaticity information. Chromaticity is
an intensity-invariant two-dimensional vector describing
colour. The two components of the vector are the ratios
of red to blue and green to blue components of the RGB
vector. A road surface likelihood image is constructed
by assigning a value to each pixel location in the
original image, which is proportional to the Euclidian
distance between its chromaticity vector and a reference
chromaticity vector. The reference vector is obtained by
calculating the average chromaticity of a sample of road
area in the fust image along the route. To increase
computation speed, a threshold is applied on the road
surface likelihood image resulting in a binary image
with either road-like or non road-like areas.
For road edge extraction, an illumination-invariant
approach similar to the one suggested in [4] is used to
discriminate the white lines (road markings) along each
side of the road. This is done by effectively convolving
a two-dimensional low-high-low intensity mask with the
original image with the high intensity span of the mask
being at least equal to the width of the road markings in
the top view image. Again, the resulting image is
thresholded to obtain a binary image. Column B of
figure 3 shows examples of road edge and road-like
surface images.
After the execution of each motion command, the map
view is translated according to the expected motion
vector of the robot, so reflecting its new expected pose
in the environment. The difference between the
expected and actual location of the robot is due to

motion errors. These are corrected by finding the best
matching pose of the new top view in the map, then by
translating the map again to reflect the actual position of
the robot. The matching process uses only the road edge
image rather than the road surface image because edges
are robust features of the image and allow a more
precise matching. To save computational time and limit
the risk of matching the new view at the wrong location,
not all the map is searched but only a limited area
defined around the expected position of the robot in the
map. To further improve speed, a crude search is
performed initially using coarse steps of position and
orientation. The search is then refined for a more
accurate determination of the position and orientation
(match vector). The resulting match vector is used to
paste the road surface image of the top view on the map
and to translate the map. The map is termed "short
lived" because it is only maintained for a limited area
around the robot's position (e.g. the size of images in
columns C and D of figure 3). These steps are illustrated
in section 3.5. The road surface likelihood map is built
for the purposes of template matching which is
described in the following section.

3.4. Road-feature templates

Templates are binary images of local road features
drawn at the same scale as the short-lived map of road
like areas (Figure 2).

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 2: Examples of templates for: road following
(a,b,c,i,j),for intersection detection (d,eJ,g,h). The light
grey areas indicate road-like areas and the darker grey

areas represent non-road areas.

For each road navigation task a subset of the available
templates (corresponding to the task) is selected. For
example, in the case of the action chunk: "take the
second turn right" (illustrated in the following section)
templates a, b and e are selected, for following the road
and for detecting the intersection. The selected
templates are continuously matched against the road
surface map for each new image captured.
The matching process for each location and orientation
of the template on the map produces a match quality
measure made of the sum of two ratios: 1. the score,
which is the sum of the matching road and non-road

pixels in the two images divided by the number of
template pixels falling onto areas of the map where
information is available from previous images and 2. the
confidence factor, which is the fraction of the template
area falling onto areas of the map with information. The
best match of the template is the one where the sum of
these two components is maximum. When the best
vectors of all candidate templates are found, the
"winner" template is selected as the one whose vector is
associated with the best match. As with the map
building, not all of the map is searched for the best
match of the templates and the search is initially coarse,
then refined. The position and orientation of the
winning template defines the next motion command
sent to the robot.

3.5. Example

Figure 3 shows the successive states of the short-lived
maps and images processing results as the robot
executes the instruction chunk: "take the second turning
to the right" . The path followed by the robot is marked
on figure la. Each arrowhead indicates the points where
the robot finishes an action and captures a new image to
determine the next action. In step l there is no
information on the edge map and so the edge and
surface top views are simply pasted (in the egocentric
reference frame) on the edge and surface maps
respectively. In successive steps, this initial map is
progressively shifted backwards and eventually rotated.
Column D of figure 3 shows the best matching template
in each step. Step 5 shows the resulting map after the
rotation of the robot at the second right turn.

4. Concluding comments

Two aspects of natural language instructions influence
the method proposed here for navigation in our urban
model environment: Their division into action chunks
and their under specified nature.
Each chunk can be considered as a search-and-act loop
which exits when a condition is met. Primitives were
written to reflect this. Like chunks, primitives loop until
a condition is met. They have an initial state and a final
state and only when their final state is reached,
execution passes to the next primitive. The initial state
of the next primitive must be consistent with the final
state of the previous primitive to ensure consistency of
execution.
In natural language, task specification is very abstract.
For example in: "take the second turn right", the
absolute locations of the intersections, their orientations
or shapes are not given. These pieces of information
must be retrieved in-situ by the robot to successfully
complete the task. This is achieved here by the use of
local road-feature templates that enable to recover
orientation and shape information. Robustness is

achieved on one hand by defining very general
template shapes and on the other hand by limiting
visual search to those salient features selected by the

instructor.
To localize road features, the use of road surface
information is deemed more robust than edge

l \
D

-, r

D

Figure 3: Step-by-step illustration of the execution of "take the second turning to the right". The execution is
completed in five steps with the corresponding images at each step shown in the rows of the figure. Column A shows
the camera view, column B shows the road edge and road surface images of the top view. In column C the road edge

map is displayed and in column D the road surface map is shown. The best match position and orientation of the
winning template for the step is also shown superimposed on the road surface map. Note also the indication of the

position of the robot (black outline) in all the top view and map images.

information. A template has a good chance to match
correctly even if road areas are partially missing, e.g.
due to occlusion. For instance, in figure 3, image ID,
the "right turn" template matches at the correct location
although the trees prevent full recovery of the road in
the filtered image.
Most of the methods suggested in the past to recover the
road layout from road images deal with the case of a
straight or curved road extending in front of a vehicle,
but without any turns, intersections, splits, roundabouts
etc. [5], [6], [7], [8], [9] and [10]. These methods
require that both sides of the road are visible (though
not necessarily continuous) in the image to be able to
recover the road. These methods are effective in cases
where a vehicle needs to stay in the middle of a road
lane when following a highway for example, but they
are unsuitable in more complex urban environment.
Methods to recognize intersections on the road were
proposed by [11] and [12]. In [11] a previously trained
neural network is used to distinguish the road. The
method lacks precision because of the neural network
approach used and fails to accurately determine the
location and orientation of the road. Furthermore, the
method suggested for modelling a road intersection
required the knowledge of either the position of the
intersection, to determine its precise layout, or the
layout, to find its position. A priori information for an
intersection is also available in our case, through the
natural language, but this is not absolute as far as the
intersection's location or complete as far as its layout.
In [12] dynamic model building and matching are
applied on a road surface likelihood image to determine
the layout of the road. This method effectively finds
intersections spurring from a straight road but would fail
to find an intersection on a curve or an exit from a
roundabout for example. Furthermore, the suggested
method attempts to reconstruct the whole intersection. A
strength of our method is that only the necessary road
features (for the completion of the task in hand) are
sought in the map, thus saving computational time and
improving on system robustness.
Other landmarks (buildings, trees, lake, bridge etc.) of
our model town are mentioned in the corpus and will
need to be located to enable following the instructions.
Ongoing work is addressing the problem of landmark
recognition, the resolution of spatial relations between
landmarks, and those between landmarks and the robot
as sometimes mentioned in the corpus. The solutions to
these problems are not expected to modify the
navigation methodology described here but will rather
merge with it.
In a real urban environment the template-based method
should still work. The main issue is the segmentation of
the scene into navigable and non-navigable areas.
Finally, an interesting property of such a system is that
it has all the perceptual components required to robustly
learn a route from experience (e.g. by following a
human guide) in terms of reportable action chunks

rather than in terms of odometric measurements.
Applications of this work include intelligent helper
robots such as autonomous wheelchairs for
indoor/outdoor applications.

Acknowledgements: This work is supported by EPSRC
grants GR!M90023.

5. References

[I] Lauria S., Bugmann G., Kyriacou T., Bos J., Klein E.,
Personal Robot Training via Natural-Language
Instructions, IEEE Intelligent Systems, 16:3, 200 I , pp.
38-45.

[2] Fraczak, L., From route descriptions to sketches: a
model for a text-to-image translator, ACL-95 Student
Session, MIT, Cambridge, USA, 1995.

[3] Denis, M., The description of routes: A cognitive
approach to the production of spatial discourse, CPC,
16:4, 1997, pp.409-458.

[4] Broggi, A., Robust Real-Time Lane and Road
Detection in Critical Shadow Conditions, Proc. of the
IEEE International Symposium on Computer Vision,
Coral Gables, Florida, November 1995, pages 353-358.

[5] Waxman, A. M., Lemoigne, J. J., Davis, L. S.,
Srinivasan, B., Kushner, T. R., Liang, E., Siddalingaiah,
T., A Visual Navigation System for Autonomous
Land Vehicles, IEEE Journal of Robotics and
Automation, Volume 3, Issue 2, April 1987, pp. 124-
141.

[6] DeMenthon, D., Davis, L. S., Reconstruction of a Road
by Local Image Matches and Global 3D
Optimization, Proc. of the IEEE International
Conference on Robotics and Automation, 1990, pp.
1337-1342.

[7] Kaske, A., Wolf, D., Husson, R., Lane Boundary
Detection Using Statistical Criteria, Proc. of
International Conference on Quality by Artificial Vision,
QCAV'97, Le Creusot, France, 1997, pp. 28-30.

[8] Sayd, P., Chapuis, R., Aufrere, R., Chausse, F., A
Dynamic Vision Algorithm to Recover the 3D Shape
of a Non-Structured Road, Proc. of the 1998 IEEE
International Conference on Intelligent Vehicles, 1998,
pp. 80-86.

[9] Wilson, M. B., Dickson, S., Poppet: A Robust
Boundary Detection and Tracking Algorithm,
BMVC99 (British Machine Vision Conference 1999),
pp. 352-361.

[10] Wang, Y., Shen, D., Teoh, E. K., Lane Detection Using
Spline Model, Pattern Recognition Letters, 21 (8), July
2000, pp. 677-689.

[ll] Jochem, T. M. , Pomerleau, D. A., Thorpe, C. E., Vision
Based Intersection Navigation, Proc. of the 1996 IEEE
Symposium on Intelligent Vehicles, September 1996, pp.
391-396.

[12] Crisman, J.D., Thorpe, C.E., SCARF: A Color Vision
System that Tracks Roads and Intersections, IEEE
Transactions on Robotics and Automation, Volume I,
Issue 1, February 1993, pp. 49-58.

MIROSOT as a Teachilng & Learning Tool

P. Robinson, G. Bugmann*, T. Kyriacou*, P. Culverhouse & M. Norman

Department of Communication & Electronic Engineering,
University of Plymouth, Drake Circus, Plymouth

Devon PL4 8AA, England
(Tel: 044 (0) l752 232572; Fax: 044 (0) 1752 232583; E-mail: probinson@plymouth.ac.uk)

*School of Computing, University of Plymouth, Drake Circus, Plymouth,
Devon, PL4 8AA, England

(Tel: 044 (0) 1752 232566; Fax: 044 (0) 1752 232780; E-mail : gbugmann@plymouth.ac.uk)

Abstract: This paper shows Mirosot league robot football successfully employed as an effective teaching and learning
tool on a multidisciplinary, undergraduate engineering programme. An overview of robot football development at
Plymouth is presented Low cost Mirosot technology, designed in undergraduate project laboratories is described The
evolution of robot construction techniques, from Lego bricks through bent sheet metal boxes to a flexible, robust,
inexpensive modular structure, is discussed. An off-the-shelf de motor/gearbox/shaft encoder unit, controlled from an
Atmel AT90f8515 RJSC processor and designedfor lvfirosotuse is shown to have a wide range of mobile robots
applications. One example of both high-level and low-level Mirosot control software is presented Difficulties
experienced developing the technology in an undergraduate student environment are discussed. Student feedback is
reported to be excellent.

Keywords: Mirosot, robot football, multidisciplinary, education

1. Introduction

The last decade has seen major changes in the engineering
industry. Internet technologies, mobile communications
and intelligent automation and robotics have all
contributed to this change. Often undergraduate
engineering programmes have failed to respond to changed
circumstances. In the UK many prospective 18-year-old
undergraduate students believe engineering courses are
boring, stifle creativity and suppress originality. As a result
relatively few able students wish to study engineering. lt
was against this background that the first undergraduate
course in the UK in Robotics & Automated Systems (RAS)
was developed at the University ofPlymouth [I]. The aim
of the course is to produce system integrators comfortable
working across the boundaries of traditional engineering
disciplines. It also aims to allow student flair, originality
and imagination to blossom [2]. Robots, in their many
guises, are excellent examples of integrated engineering
systems. Robot football provides a focus for many
disparate engineering disciplines, which together
constitute the modern information society, and is one of a
number of enabling technologies empowering RAS
students in their own learning development. An added
bonus is that Mirosot builds on the popularity of
contemporary BBC TV programmes such as Robot Wars
[3) and Techno Games [4].

The Mirosot project at the University of Plymouth came
about as a result of a meeting in early 1997 at the rEE
(Institution of Electrical Engineers), London. Dr Jeff
Johnson of the Open University (OU) addressed the
Robotics Committee of the lEE requesting help in the
development of robot football in the UK. The author was
the committee member tasked with investigating the
request and reporting back to the committee. Later that

year Or Johnson decided to build a Mirosot team and take
it to the 1997 Mirosot championships in Taejon, Korea.
This team was built very rapidly using Lego motors and
bricks for the body and a transputer based GM8104
graphics board as the frame grabber. Experience gained
during the 1997 competition encouraged Dr Johnson and
the author to co-operate in developing a joint
OU/University of Plymouth team to represent England at
the 1998 Mirosot World Championships in Paris. Professor
Kim, from KAJST (Korean Advanced Institute of Science
& Technology) provided further encouragement when he
visited England in late 1997. During his visit a
demonstration Mirosot competition was held at the OU,
using Korean robots, and televised by the BBC.

In the six months leading up to the 1998 competition much
development work was completed. Four final year
Plymouth RAS undergraduate students worked on various
aspects of the system design. A bent sheet aluminium
chassis replaced the Lego bricks. Inexpensive de motors
incorporating gearboxes and optical encoders were bolted
to the chassis. On-board electronics remained substantially
unchanged and the vision system interface again used the
GM81 04 transputer board. It was apparent that the
students had enjoyed the challenge of robot football and a
decision was made to integrate robot football fully into the
undergraduate RAS curriculum.

Critical assessments of the team performance in Paris led
to a redesign of all parts of the system. Again RAS students
completed much of the work. The transputer board was
replace by a Matrox Meteor II interface card, new robot
bodies allowing in-situ removal of side panels were build
and, most importantly, the on-board electronics were
redesigned and constructed with the help of Merlin
Systems Corporation, a company closely associated with

the University of Plymouth. The new, surface mount,
electronics board is based upon the Atmel A T90f 8515
RISC processor with 8K of flash RAM memory. Thjs new
board provided improved functionality with reduced size.
Fig. I shows a much used control board. Extra inputs for
sensors are provided and the ability to transmit as well as
receive UHF radio signals is included. Essentially this
remains the board in use today.

At any one time there are many active versions of the
various elements of the system. One student will be
working on the communications problems whereas another
may be testing PID algorithms on the robot. Several
versions of software will be in development
simultaneous ly. Often this creates project management
difficulties for supervising academic and technical staff.
Keeping track of the many system sub elements
progressing in parallel can be difficult. Therefore a
standard system is maintained and only upgraded by
responsible staff. The most recent standard Plymouth
Mirosot system is commercially available from Merlin
Systems Corporation Ltd [5]. Many Merlin systems have
been supplied to universities both in the UK and abroad.

Fig. I -The Atmel control board

UK universities working with Mirosot robot football
technology include Plymouth, Wales, the OU, Salford,
Queens, Strathclyde and Essex. Or Hu's research group at
the University of Essex have developed their own Mirosot
team and are actively researching in the field of
multi-agent systems [6]. Meanwhile Or Johnson at the OU
is looking at, among other things, complexity inherent
in-group and swarm behaviour [7].

Attempts to broaden the appeal of Mirosot robot football
by the creation of a UK Mirosot league based in
universities have been unsuccessful due to a lack of
sponsorship. Both industrial and government sponsorship
is being sought but so far without success. However, robot
football remains popular with the media and regular
request are made to stage competitions for both TV and
technology exhibitions. In June 2001 the Plymouth team
demonstrated Mirosot robots for a week at Earl's Court,
London as part of the BBC Tomorrow's World Live

Exhibition. Many hundreds of school children had the
opportunity to directly control robot footballers, via a PC
keyboard, playing against autonomous players. They
found it difficult to believe that no one was controlling the
opposition, especially as they inevitably lost the match.
All the children interviewed were captivated by this
app lication of technology and, as a result, many left the
exhibition seriously considering a career in engineering.

2. Mechanical Structure

Mirosot mechanical construction techniques at Plymouth
have evolved through about seven generations. As stated
above the initial 1997 design used standard Lego bricks
and motors. Tills was followed by a variety of bent metal
bodies working on the lotus flower principle. Basic design

Fig. 2 Mechanical parts showing the base, pillars and
motor/gearbox units

specifications included low cost, simplicity ofbuild, i.e. no
special machining required, ruggedness, good access and
internal space for eight standard AA batteries. Access

proved to be a problem with the bent metal bodies. The
present modular structure, Fig. 2, meets all the
specifications to an acceptable degree and may be easily
constructed by an undergraduate student without the need
for special tools or skills.

Four extruded aluminum metal posts, cut from commonly
available 2-meter lengths, screwed to an aluminum base
plate constitute the basic robot skeleton. The control board,
Fig. I , is screwed to the other end of the posts to provide
the top of the cube. Each side of the cube is made from
sheet aluminum with cut outs for the wheel and ball
apertures as required. The sides simply slot into the
appropriate groves of the mounting posts. Rigidity,
robustness and ease of construction are combined with
good accessibility to the batteries and internal parts.

High specification, small de motors suitable for powering a
Mirosot robot tend to be expensive. Use of the Swallow
matched motor/gearbox/shaft encoder units, at a unit price
of about $45, has provided a cost effective alternative [8].
At maximum efficiency, i.e. 6400 rpm, 6V and 0.57 A, each
4 .5-l2V de Mabuchi RC-280SA-20120 motor supplies a
torque of 29 gm.cm. Good acceleration with speeds in
excess of one meter/second is therefore possible. One
drawback is that these motors tend to be electrically very
noisy, especially when running at high speed. This may
cause problems with false interrupts to the on-board micro
processor.

FigJ The robot skeleton

An assembled robot, minus its side panels is shown in
FigJ. The on/off switch is placed at the front above the
baJI capture aperture. Behind the motors there is sufficient
room for 2*4 AA rechargeable battery packs. A simple
nylon, half spherical skid is screwed to base at the front
and back to provide stability. Because of the small wheel
diameter, 0-ring tyres and simple skids there is little
frictional torque helping to guide the robot in a
straight-line path. There is a natural tendency therefore for
the robot the veer from a straight-line path.

The control board is mounted upside down and Velcro is
used to fix the team shirt colours to the top. The RX
module is plugged into the bottom of the board and may be
easily changed from 418 MHz to 433 MHz as required.
During matches there is a tendency for the RX module to
be dislodged. Care must be taken to ensure that it is
securely fixed .

3. System Software

The system software is written in C++, using where
appropriate MFC facilities . This effectively means that the
GUT (graphical user interface) & frame grabber are
operated using MFC libraries. Figure l shows the overall
software structure. At the centre is the match object
through which all other objects are linked.

Global Slrllegy

MFC
Robot

Application

Home
playen

2,3,4 & s

Opposition
Play en
2,3,4 & 5

Fig. 4 System software structure

All the players and the ball are derived from a base class
called GameObject. GameObject provides a range of
services including default draw functions, automatic
history recording and simple linear prediction. Any object
within the system can have an arbitrary set of property
variables (called a property set) which can be manipulated
at runtime. The strategy property associated with each
player can be used to point to a DLL which implements the
strategy interface e.g. there is a goalkeeper DLL that
determines the behaviour of the goalie, another DLL that is
specific to a striker etc.

The global strategy allows property swaps so that a player
strategy can be plugged in dynamically at run time, e.g. a
goalkeeper can be changed to a striker as required. These
properties may include player position, location restrictions,
zoning and individual strategies. Model variables are
common to all players. Dynamic modeling remains at best
a good approximation. Inherent non-linearities such as
friction inevitably lead to some uncertainty in model
parameters. Notwithstanding these limitations a simplified
model may be built around three global variables, namely;
the dominant time constants, (maximum acceleration and
deceleration) and maximum velocity.

4. Object Locations and Recognition

There has been much experimentation with the shape, size
and colour of shirts. Presently the player's shirts are
divided into equal sized quadrants. One quadrant is used for
the team colour whereas the colour of the diagonally
opposite quadrant identifies the player. The vision
software searches a grabbed frame image for ' blobs ' , i.e.
objects of interest, namely the players and the ball. ln order
to avoid identifying transient objects as blobs each blob
must pass a fitness text. In practice if an object meets a
min/max, x/y pixel size and is a non-pitch colour then it is a
blob. After being identified as a blob the programme then
attempts to link closely associated blobs.

Direction of Scan

Team colour

Fig. 5 Object location

The stored image is scanned until the first interesting pixel
is found, Fig. 5. An interesting pixel is one with a hue value
above the black pitch threshold intensity. Separation
between RGB values is also tested. Once an interesting
pixel is located the right hand scan is continued until a pitch
pixel is found. The distance from the discovered interesting
pixel to the next pitch pixel is bisected and a new scan
started from the centre of the measured length and
orthogonal to it. The new scan continues until another
interesting pixel, i.e. one of a different colour, is detected.
This procedure is repeated three times and a fitness test
applied to see if a blob has been located. Orthogonal
scanning provides both the approximate dimensions and
centre point of the coloured object. As each scan progresses
average values for R,G & B values are calculated. The
result is used to calculate a hue value which when
compared to a look-up table, identifies the specific colour.
Four outcomes are possible., namely;

I . it is an opposing player.
2. It is a home team colour
3. It is a specific home team player.
4 . It is the ball.

After storing the location and colour of this object the scan
continues on its original path until all valid blobs have been
located.

Linking blobs is the next stage. Blobs in close proximity,
and identified as either home team colours or player
identity, are assumed to be linked, i.e. they are part of the
same robot shirt. This allows both the position and

orientation of the individual player to be determjned.
Problems can arise if two or more home players are nex1 to
each other. In the worst case scenario the orientation of a
player may be in error by 180 degrees. During matches this
effect can sometimes be observed but is usually
self-correcting insofar as the confusion is eliminated
immediately the robots separate.

5. The Robot Control System

Many robot control systems have been designed and tested .
One such system is shown in Fig.6. where wheel two
control is a mirror image of wheel one control. This
particular robot control system responds to four basic
commands, namely the required movement distance and
speed for each wheel, i.e. D I, SI and D2, S2. Usually there
is no need to control the distance moved during a Mirosot
game. However distance traveled is an interesting test of
the low-level robot controller efficiency. In practice the
basic unit of measurement is a single pulse from the shaft
encoder situated between the motor and gearbox (GIB).
Resolution calculated from 8 holes per encoder disk, 16:1
gear ratio and a 32mm diameter wheel is approximately
0.785 mm, i.e. more than adequate for requirements of
MlROSOT competition.

Fig.6 Robot control system block diagram

Each robot control system is subject to a variety of bench
mark tests . These may consist of straight line/fixed
distance movements, circles, squares and figures of eight.
Because of inherent nonlinear problems achieving accurate
control has proved to be difficult, especially in the case of a
stand alone robot commanded to travel in a straight line for
a fixed distance. Fixed distance movement requires four
input commands, i.e. Dl, SI and D2, S2. For straight line
movement D 1 and S 1 are equal to D2 and S2 respectively.
Before the motor speed command can be activated it must
pass through a normally-on switch controlled by the
distance travelled circuit. Distance travelled is measured
by summing the relevant wheel shaft encoder pulses and
comparing the result with the input demand. When the two
are equal the normally-on input speed switch is turned off
thereby deactivating the motor. Providing the demand

distance has not been achieved SI is compared to the
actual motor speed and resulting error processed by a
convential PID controller.

Various techniques were used for setting the Pill constants,
including the classical Zieglar Nichols method. In practice
empirical methods were found to provide the best results.
Accurate, fast response, low speed control was found to
be particularly difficult due to the relatively high amount
of stiction in the motor gearbox drive unit. Speed demand
is provided by a value in the range 0-255. During initial
system testing there was found to be a dead band in the
range 0-30, i.e. the minimum reliable speed was 8
cm/second. Attempts to cure this by increasing the integral
speed of the PID controller led to typical limit cycle,
oscillatory type of behaviour being superimposed on the
behaviour of interest. A fixed value off-set, switched on by
the presence of a speed input command and added to the
input speed signal, Fig. 6, solved this problem.

Further practical difficulties result from the different
charatersitics of the motor/gearbox combinations. If
identical signals are applied at both inputs it is invariably
discovered that one wheel will accelerate at a different rate
to the other thereby causing the robot to veer from the
demanded straight line and move in an arc. A third PID
controller, common to both wheels, helps overcome this
problem. An error signal, generated from the difference
between the demanded input speeds S 1 and S2, is
compared to an error signal based upon the actual
difference between the wheels speeds. The two error
signals are compared and the result processed by the third
PID controller, the output of which is added, with
appropriate polarity, to both motor drive signals. This
causes the characteristics of the two motors to be drawn
into line, resulting in straight line travel being achieved.
The third controller also helps compensate for wheel spin
due to skidding. When wheel spin occurs signals are also
added, as appropriate, to Dl and/or 02 in order to ensure a
correction is made to the sum of distance travelled
measurements . Other practical problems encountered
include noise spikes during high speed operation. This
noise is interpreted as valid feedback resulting in a lower
operational speed than would be expected.

6. The Student Experience

Final year undergraduate individual projects are scheduled
for one day a week over a six month period. At the end of
this time a comprehensive individual project report is
submitted and each students attends two oral examinations
(vivas). Every project is allocated a budget of about $75
although this may be increased with the permission ofthe
academic supervisor. It is clear that a student working
alone would be unable to develop a complete Mirosot
robot football system, both the complexity and cost are
prohibitive. However over the last five years a great deal
of development has been completed on a wide range of
robot football technology. The individual student, looking
to complete a robot football project, is able to build on this
substancial body of work. In effect robot football is the
focus for a very wide range of student project activities.

This is illustrated in Fig. 7. Some of the robot football
links are obvious, such as wheeled robots, vision systems,
UHF radio and control. However other links are not so
clear. If, for example, a student is interested in say object
oriented programming then robot football provides a ready
application platform. On the other hand if AI (artificial
intelligence) is the topic of interest then the multi-agent
strategy and behaviour aspect of robot football provides an
excellent application. Individual robots may be
constructed quickly and cheaply using the standard fortmat
thereby freeing students to concentrate on their research
area of interest. Alternatively components of the
technology, e.g. the control card, may be used in a different
application.

Over 50 final year engineering students have completed
undergraduate projects linked to robot football activities
[9] . Enthusiasm is such that many first and second year
students work with the robot football group in addition to
their scheduled programmes. Spin-off activities have
proved to be benificial to both staff and students. A second
year digital system design module, ELEC212B, is based
upon the Mirosot robot described above. Students study
the mechnical and electronic design aspects of the robot .
They then programme the robot in C, via the serial port
of a PC, to perform a series of specified manouvres.
Students benefit from hands-on experience and
immediately see the effect of their programmes in the real,
i.e. laboratory, world. Another module delivered to final
year robotics students, CONT312A, concentrates on the
mathematical analysis and modelling of mobile robots.
Again the Mirosot robot is central to this work.

Vision
systems

Software

DSP

Actuation

Wheeled
Robots

Al

Fig. 7 Robot football technology

UHF
Radio

Walking
robots

Trips to national and international competitions are very
popular. Undergraduate students have taken part in
Mirosot competitions in Manchester, London, Paris,
Germany and Dubai. These visits constitute a well-earned
reward for their hard work within the robot football group.
An added benefit is that the students return full of
enthusiam and knowledge gained from discussions with
other competitors.

From a staff perspective robot football complements many
well established research interests in areas such as mobile
robots, vision systems and control. Undergraduate project
students working on various aspects of robot football
technology may gain first hand experience of research
problems by working closely with established academic
staff. This can be an excellent method of recruiting the
next generation of researchers. The student is able to gain
experience in an area of interest while the academic staff
member has the opportunity to assess the student's
suitablity as a full-time post-graduate researcher following
an MPhil or PhD programme.

Up to date there have been no full-time, post-graduate
researchers working on the Plymouth Mirosot system.
From year to year academic and technical staff have
provided continuity as one student cohort graduates and
the next arrives. Because of severe demands elsewhere
these staff can only devote a small part of their time to the
project. Opportunities for advancing Mirosot technology
to the best international standards have therefore been
very limited. It is hoped in the near future to obtain funding
to appoint full-time, post-graduate researchers to the team.
If successful rapid progress can be expected in some of the
more interesting areas such as team strategy and
co-operative behaviour.

7. Condusion

An inexpensive, robust Mirosot robot has been designed
specifically for undergraduate project work. Mechanical
construction requires no special tools or skills and is within
the capability of all students on the Robotics & Automated
Systems programme.

Robot football has proved to be an excellent teaching and
learning tool. Two modules, one at the second year level
another at the third year level, use the designed robot and
its underpinning technology as the focus for study and
experimentation. Large numbers of final year
undergraduate students have chosen individual projects
associated with robot football. Student feedback is
overwhelminghJy positive.

It was shown that many young people are facinated with
the idea of autonomous, intelligent robot teams playing
football. This helps dispel the boring image of engineeing
and encourages more young people to study technological
subjects at university.

References

[I] Robinson, P. "A New Robotics Degree- The Plymouth
Experience" Proceedings of the lEE Colloquium on
Robotics in Education, pp. 1-8, 1995.
[2] Robinson, P. "Robotics Education and Training: A
Strategy for Development" Industrial Robot Journal,
Vol.23, No.2, PP~ 4-1 2, April 1996
[3) http://www.robotwars.co.uk
[4) http://www.bbc.co.uklscience/ robots
[5) http//www.merlinsystemscorp.com

[6] B.Li, E. Smith, H. Hu and L. Spacek, " A Real-Time
Visual Tracking System in Robot Soccer Domain",
Proceedings ofEUREL Robotics 2000,
Salford, April 2000
[7] Johnson. J.H. & Sugisaka, M. "Complexity Science for
the Design of Swarm Robot Control Systems"
IECON-2000, IEEE lnt. Conf. on Industrial Electronics,
Control and Instrumentation, pp. 695-700,
Nagoya, Japan, 22-28 October 2000
[8] http://www.swallow.co.uk
[9] http://www.tech.plym.co.uklrobofoot

Vision-Based Urban Navigation Procedures for Verbally Instructed
Robots

Theocharis Kyriacou, Guido Bugmann, Stanislao Lauria
Centre for Neural and Adaptive Systems, School of Computing, University of Plymouth

Drake Circus, Plymouth PL4 8AA, United Kingdom

http://www.tech.plymac.uk/soc/staff/guidbugrnlibl/index.htrnl

Abstract

When humans explain a task to be executed by
a robot they decompose it into chunks of actions.
These form a chain of search-and-act sensory-motor
loops that exit when a condition is met. In this paper
we investigate the nature of these chunks in an urban
visual navigation context, and propose a method for
implementing the corresponding robot primitives such
as "take the n111 turn right/left". These primitives make
use of a "short-lived" internal map updated as the
robot moves along. The recognition and localisation
of intersections is done in the map using task-guided
template matching. This approach takes advantage of
the content of human instructions to save computation
time and improve robustness.

1. Introduction.

This work is part of a project on "Instruction
Based Learning" (ffiL) where robots acquire user
specific skills based on verbal instructions given by
the user. One of the issues in the project is the
mapping from action chunks used in natural language
to actions executable by the robot. The approach used
here is to provide a set of pre-programmed primitives
corresponding to action chunks referred to by users.

This facilitates the mapping from the semantic
analysis of the spoken input to a sequence of
executable robot actions.

In an earlier part of this project, subjects were
invited to speak to a small robot in a miniature town
(Figure 1) and to explain to it how to navigate
between two landmarks. The instructions were
recorded, transcribed and analysed to identify chunks
of actions (Lauria et al., 2001). These chunks were
grouped into about 15 "primitive" procedures that are
listed and discussed in section 2.

To successfully implement the primitives, the
robot needs to manipulate spatial knowledge and keep
track of its own position. This is achieved by using a
"short-lived" internal map of the environment (section
3). Another requirement, the detection of road
features such as intersections and turnings is
implemented by matching local road feature templates
on the internal map (section 4).

In implementing such primitives, one can take
advantage of the content of verbal instructions to
minimize computational time and improve robustness,
for instance by limiting visual search to those features
mentioned in the instructions. As an example, the
execution of the navigation primitive "take the n111

left/right turn" is described in section 5.
The requirements of natural language

(b)

Fi~e 1: (a) The miniature town. The marked pa~ on the town image refers to the route followed by the robot in the example given in
sectJon 5 (where each arrowhead denotes a waypomt). (b) The robot with an 8x8 cm base. The robot's wireless colour video camera
sends images to a PC for processing and the PC sends motion commands by radio to the robot

understanding induce the internal representation of a
route as a sequence of high-level task specifications
(primitives). This is in principle very robust against
environmental variations, provided that the primitives
can handle these appropriately. In this paper we focus
on the detection of visual features of the road layout
in a way that should be robust enough to allow
traversal of complete routes.

2. Action chunks in verbal instructions
and corresponding primitives.

A corpus of route descriptions was collected
from 24 subjects in the miniature town environment.
Each subject was asked to give 6 route descriptions
from a starting location (different for each subject) to
a different destination each time. A total of 144 route
descriptions were analysed for their functional
components (action chunks). The functional analysis
revealed 15 functional groups (table 1).

Primitive
1 go (description_l , landmark_l,

preposition_!, description_2,
landmark 2)

This number is subjective as it depends on the
annotation method. Here, the annotation was done
with two objectives in mind: 1. Produce
parameterised prnrutiVes that generalize the
description found in the corpus. For instance, the
procedure designed for "turn left after the tree" should
also work if "tree" is replaced by "Church". 2. An
important issue is knowledge representation. Route
following is a continuous chain of actions. When, as
in this case, a route is represented as a sequence of
primitives, the initial state of the robot in each
primitive must be consistent with the final state in the
previous primitive. Therefore, all actions referred to
by subjects were assumed to have an initial and a final
state. Subjects however rarely specified explicitly the
starting point of an action and sometimes did not
define the fi nal state in the same utterance. It was
assumed that the IBL system would be able to retrieve
missing information from the context. For instance,
when a subject specified a non-terminated action,

Description
Instructs the robot to follow a
known route (with known starting
point and destination) .

2 location_is (description_l, landmark _1, Specifies a location.
direction_l, preposition_!,
description_2, landmark_2,
description 3, landmark 3, ordinal 1)

3 destination_is (description_ l, Indicates the destination
landmark_l, direction _1, . landmark.
preposi t ion_l, description_2,
landmark_2, description_3, landmark_3 ,
ordinal 1)

4 go_until (description_l, landmark_l, Follow known route to a landmark
preposition_!, description_2, until a specified location in the
landmark 2) route.

5 exit_roundabout (ordinal_l, Take a specified exit from a
preposition_!, description_!, roundabout.
landmark 1)

6 turn (ordinal_l, direction_l, Take a specified turn off a road.
preposition_!, description_!,
landmark 1)

7 fo1low_road_unti1 (preposition_l, Move forward until a certain
description 1 , landmark 1) location.

8 rotate (direction 1, extend 1 , around 1) Rotate to a certain extend .
9 exit _ from (description_l, landmark_l) Exit from a place, usually used

for the car park.
10 cross_to (description_l, landmark_l) Instructs the robot to cross the

road to a landmark.
ll enter_roundabout (direction_1) Enter the roundabout in a

specific direction.
12 park (preposi tion_l, description_!, Park on, or close, to a certain

landmark 1) landmark.
13 take_road(preposition_l, description_!, Take a road in view.

landmark 1)
14 goto_side(preposition_l, description_!, Go round a landmark to one of its

landmark 1) sides.
15 fork (direction_l) Follow a one of the two branches

of a fork (Y split) .

Table 1: Functional primitives extracted from the corpus.

such as "keep going", it was classified as "follow the
road until", assuming that a termination point would
be inferred from the next specified action.

Not all functional primitives in table I are
purely navigation tasks. For example "go" consists
mainly of retrieving from memory the list of
primitives corresponding to a given route, and
"location is" specifies spatial relations between
landmarks. In contrast, "destination is" is found at the
end of a route description to indicate the location of
the goal. The robot needs then to find its way to that
location.

Different combinations of parameters can be
initialised for each of the primitives. Not all possible
combinations may be valid though. For each of the
valid parameter combinations a dedicated sub-routine
is called in the primitive procedure. Table 2 shows the
four different combinations of parameters that can be
passed to the "turn" primitive procedure. Section 5
describes how the sub-routine for the second case in
the table is implemented.

In most primitive procedures the robot needs
to navigate to a visually identified target location on
the road. For example, in the "turn" primitive,
regardless of the combination of parameters passed,
the robot eventually needs to identify a specific turn,
move to it and rotate to face the new direction. Our
method to discriminate components of the road layout
and navigate to them is described in the following
sections.

3. Short-Lived
localization

maps and self-

A short-lived map is a map of the immediate
vicinity of the robot that is updated as the robot
moves in its environment. The map records
previously seen visual information which go out of
view as the robot moves. The robot's position is
always centred on the map and facing towards the top
of the map. As the robot moves the map is translated
and rotated to maintain this frame of reference. In the

Parameter combination
turn (direction_l)

turn (ordinal 1, direction 1)
turn(direction_l, preposition_!,
landmark 1)
turn (ordinal_l, direction_!,
preposition_!, description_!,
landmark 1 l

process, elements of the map that reach its edge will
disappear. Thus the term "short-lived".

The purpose of constructing such a map is to
compensate for the dead angles of the robot (areas in
the immediate locality of the robot which fall outside
the visual field), to keep track of landmark locations
and road layout features such as intersections and for
resolving spatial relationships between a landmark
and the road (e.g. to define a road area "after" a
building).

Two versions of the short-lived map are used
in this paper, the first represents the position of the
road surface and the second represents the position of
road edges. These maps are constructed using road
surface and road edge information filtered out from
the top view of the scene. This view is produced by
applying a perspective transform to the camera image.
This transform assumes a flat ground plane. Figures
2b and 2f show the top views of 2a and 2e
respectively. This section describes how the road edge
map is used to align new visual information with the
ones existing in the map. The use of the road surface
map for the detection of road features is described in
section 4.

Road edge information is extracted from the
top view image using an illumination-invariant
approach similar to the one suggested in (Broggi,
1995). This approach discriminates the white lines
(road markings) along each side of the road by
effectively convolving a two-dimensional low-high
low intensity mask with the original image. The high
intensity span of the mask is equal to the width of the
road markings in the top view image. To increase
computation speed in later stages, a threshold is
applied on the road edge image resulting in a binary
image with either road-edge or non road-edge pixels.
Figures 2c and 2g are examples of thresholded road
edge images of the top views in figures 2b and 2f
respectively.

The top view of the scene is aligned with the
map using the following steps. After the completion
of each motion command, the map is translated

Example
"Take a r ight turn•
"Turn left•
"Take the second left turn•
"Turn left after the post- office"

"Take the second turning after Tesco•s•
"Turn left at the library•
"Turn right after the tall blue bui l d i ng•

Table 2: Different combinations of parameters of the "turn" primitive procedure. Tb.e examples indicate some of the
values that the parameters can take.

3 0 0 - 0

Figure 2: Camera view (row I), top view (row 2) and road edge map (row 3) prior to robot motion (a to d) and after robot motion, showing
expected position (h), best match o f new top view on map (new view shown darker) and (i) and acrual position (j) after translating map.

according to the motion command sent to the robot,
so reflecting its new expected pose in the environment
(figure 2h). Any difference between the expected and
actual location of the robot in the map results from
possible motion errors. These are corrected by using a
newly captured image and by finding where the road
edge image of the new top view best fits on the map.
The map is then translated again to reflect the actual
position of the robot.

The robot's position with regards to the top
view image is a point outside the field of view called
here "the pivot point" (figure 3). While searching for
the best match, the top view image is displaced and
rotated (vector [x,y, rp)) so that its pivot point scans the
map image.

The match quality Q1 describes how the edges
of the two images overlap. Q1 is made of the sum of
two ratios: 1. the score, which is the matching road

edge pixels in the intersecting area of the two images
divided by the number of road edge pixels in the map
image and 2. the confidence factor, which is the
fraction of the top view area falling onto areas of the
map containing information. This is formally
described by Equation 1, where pis a pixellocation in
the overlapping area of the two images. m and n are
values of pixels in the road edge map image M and
road edge image of the top view N respectively. Value
0 denotes no road edge, and value 1 denotes road
edge. N(x,y, rp) is the road edge image of the top view
translated by (x,y) and rotated by rp. m' and n' are the
information masks of the map and road edge images
where 0 denotes the presence of information (mask is
off) and 1 denotes no information (mask is on). a and
b are weighting constants whkh bias the relative
importance of respectively the score and the
confidence of the match. At the moment we are using

IAND(mP, nP) INOR(m~,n~)
Q (m)= peN(x ,y.f{J)IIM +b peN(x,y,f{J)r.M

1 X, y, 't' Q ""' ""'
~mP ~nP (Equation 1)

peN(x,y,f{J)r.M peN

m,m',n,n' E {0,1}

Pivot point of top view
(robot's position in top view)

Top view
~-----------r-- irn~e

on map

~-----+---- Search window

Map image

Figure 3: Illustration of one match position of the top view image on the map.

a=l and b=l. The best matching position and
orientation of the road edge image of the top view is
the one where Q1 is maximum. Equation 1 ensures
that, for two configurations with equal score, the one
with highest confidence has the best match quality.

To save computation time and limit the risk of
matching the new top view at the wrong location, the
search is limited to a small window defined on the
map around the expected position of the robot. The
range of rotation of the top view for each match
position is limited to a small angle 8. The size of the
search window and angle 8reflect the precision of the
motion of the robot. To further improve speed, a
crude search is performed initially using coarse steps
of position and rotation of the top view on the map.
The search is then refined for a more accurate
determination of the position and orientation (match
vector). An example of matching a new top view on
the map after the robot's motion is illustrated in figure
2.

The matching process uses only the road edge
image rather than the road surface image because
edges are robust features of the image and allow a
more precise matching. The resulting match vector is
used to paste the road surface image of the top view
on the map and to translate both versions of the map.

Road surface information is extracted from the
top view image using chromaticity information.
Chromaticity is an intensity-invariant two
dimensional vector describing colour. The two
components of the vector are the ratios of red to blue
and green to blue components of the RGB vector. A
road surface likelihood image is constructed by
assigning a value to each pixellocation in the original
image, which is proportional to the Euclidian distance
between its chromaticity vector and a reference

chromaticity vector. The reference vector is obtained
by calculating the average chromaticity of a sample of
road area in the first image along the route. As with
the road edge version of the map, a threshold is
applied on the road surface likelihood image resulting
in a binary image with either road-like or non road
like areas. Examples of the road surface images of
the top view and map are shown in Columns B and D
(respectively) of figure 6.

The road surface version of the map is used to
locate local features of the road layout using
templates. This is described in the following section.

4. Road-feature templates

Templates are binary images of local road
surface features drawn at the same scale as the short
lived map. Some examples are shown in Figure 4.

For each road navigation task a specific subset
of the available templates is selected with its
associated action. For example, in the case of the task:
"take the second turn right" (illustrated in the
following section) templates a, c and g are selected,
for following the road and for detecting the right turn.
The selected templates are continuously matched
against the road surface version of the map for each
new scene captured and the robot navigation sequence
associated with the "winner" template is executed. In
this way template matching is interleaved with short
motion sequences.

Like in map building, the matching process for
each location and orientation (vector [x,y, (J]) of the
template on the map produces a match quality
measure Q2• Here the score term of Q2 is the sum of
the matching road and non-road pixels in the two
images divided by the number of template pixels

Figure 4: Exa.mples of templates for: road fo llowing (a,b,c, d, e), for intersection detection (f,g,h, i, j , k, 1). The light grey areas
indicate road-like areas and the darker grey areas represent non-road areas.

falling onto areas of the map where information is
available and the confidence factor, like the map
building, is the fraction of the template area falling
onto areas of the map with information. This is
formally described by Equation 2, where p is a pixel
location in the overlapping area of the two images. m
and t are values of pixels in the road surface map
image M and template image T respectively. Value 0
denotes no road, and value 1 denotes road. T(x,y, f/J) is
the template image translated by (x,y) and rotated by

f/J. m' and t' are the information masks of the map
and template images where 0 denotes the presence of
information (mask is off) and 1 denotes no
information (mask is on). a and b are weighting
constants which bias the relative importance of
respectively the score and the confidence of the
match. We are using a=l and b=l. The best matching
position and orientation of the template is the one
where Q2 is maximum. Equation 2 (like equation 1)
ensures that, for two configurations with equal score,

the one with highest confidence is the winner.
Each template is associated with a pivot point.

This is denoted by a dot-centred circle in figure 5 for
some of the templates.

Translation and rotation of the template during
the matching process is done with reference to this
point. The pivot point of the winner template becomes
a waypoint for the robot. Each template has a set of
associated "search centres" (denoted by the numbered
crosses in figure 5) which will define the template
search window in the next image captured. The search
window is defined around one of these centres
(projected onto the map after the match) depending on
the action associated with the winner template. If for
example the action is to turn left at the crossroad,
search centre 1 of the crossroad template (figure 5d)
will be used to define the search window of the next
template. As with map building, the search for the
best match vector is initially coarse and then refined
(section 3).

LXOR(mP,tP) LNOR(m~,t~)
Q (X, rp) =a peT (x,y,rp)nM + b peT (x,y,rp)nM

2 y, LNOR(m~, t~) LtP (Equation 2)
peT (x ,y, rp)nM peT

m,m',t,t' E {0,1}

2 2

(a) (c) (d)

Figure 5: Pi vot point and search centres for the crossroad template.

Define set of road features to look for.
Loop:
I

Capture and process road image.
Update internal map & localize robot.
Find best matching template in tbe map.
Execute procedure (e.g. robot motion) associated witb the winning template.

Table 3: Pseudo-code for case "take the n111 turn leftlrighL". The resulting sequence of displacemems is illustrated in section 3.5
for n (ordinal_ I)= 2 and direction_l=left.

5. Example: "take the nth

left/right".
turn

In this section the instance of the "turn"
primitive is described when the ordinal and direction
parameters are passed to it (second case in table 2).
Table 3 shows the pseudo-code of the sub-routine of
the primitive that is called in this case.

In the first step of the pseudo-code in table 3,
the templates selected for this case represent straight
or curved road segments and intersections of various
angles. In the loop, the selected templates are matched
on the road surface map. The template with the best
match in each iteration of the loop will determine the
action to be performed next. For example, the
templates for straight or curved road will cause the
robot to move further along the road. The intersection
templates can have one of two actions associated with
them: 1. either to cause the robot to move to the
centre of the intersection and rotate in the direction of
the turn or 2. just move ahead along the road (head in
the centre of the intersection but without rotation at
the end). The fust action is associated with the
intersection templates when approaching the nth
intersection. In this case the robot makes the turn and
the loop is exited so that execution is passed to the
primitive associated with the next chunk in the route
instruction. The second action is associated with the
intersection templates until (but excluding) the nth
intersection. In these cases the robot carries on
following the road.

In this procedure, the robot must keep track,
not only of the number of intersections passed but
also of their locations. When an intersection is
identified, its location is compared against a record of
previously found intersections and if a relatively close
match is not found, it is considered to be a new
intersection.

Intersection locations are recorded in the
egocentric reference frame of the robot. Each time the
robot moves these are updated to reflect their new
position relative to the robot. To perform this
updating, the robot must know by how much it has

moved since the last image was taken. In our purely
vision-based system, this is done by tracking the
displacements of landmarks in the image, using the
short-lived feature map described in section 3.

Figure 6 shows the successive states of the
short-lived maps and images processing results as the
robot executes the road navigation task: "take the
second turning to the right". The path followed by the
robot is marked in figure la, where each arrowhead
indicates the points where the robot finishes an action
and captures a new image to determine the next
action. In step 1 there is no information on the road
edge map and so the road edge and road surface top
views are simply pasted (in the egocentric reference
frame) on the road edge and road surface maps
respectively. In successive steps, this initial map is
progressively shifted backwards and eventually
rotated. Column D of figure 6 shows the best
matching template in each step. Step 5 shows the
resulting map after the rotation of the robot at the
second right turn.

6. Concluding comments

Two aspects of natural language instructions
influence the method proposed here for navigation in
our urban model environment: Their division into
action chunks and their under-specified nature.

Each chunk can be considered as a search-and
act loop which exits when a terminating condition is
met. Primitives were written to reflect this. Primitives
are like Lego bricks that the user can combine in any
sequence through his verbal instructions. It is
therefore important that the terminating condition of
each primitive is an initial condition that other
primitives can handle. This issue is investigated
further in this project.

In natural language, task specification is very
abstract. For example in: "take the second turn right",
the absolute locations of the intersections, their
orientations or shapes are not given. These pieces of
information must be retrieved in-situ by the robot to
successfully complete the task. This is achieved here
by the use of local road-feature templates that enable

l \
D

1 r

D

Figure 6: Step-by-step illustration of the execution of "take the second turning to the right". The execution is completed in five steps
with the corresponding images at each step shown in the rows of the figure. Column A shows the camera view, column B shows the
road edge and road surface images of the top view. In column C the road edge map is displayed and in column D the road surface map is
shown. The best match position and orientation of the winning template for the step is also shown superimposed on the road surface
map. Note also the indication of the position of the robot (black outline) in all the top view and map images.

to recover orientation and shape information.
Robustness is achieved on the one hand by defining
very general template shapes and on the other hand by
limiting visual search to those salient features selected
by the instructor.

To localize road features, the use of road
surface information is deemed more robust than edge
information. A template has a good chance to match
correctly even if road areas are partially missing, e.g.
due to occlusion. For instance, in figure 6 (column D,
row 1) the "right turn" template matches at the correct
location although the trees prevent full recovery of the
road in the filtered image.

Most of the methods suggested in the past to
recover the road layout from road images deal with
the case of a straight or curved road extending in front
of a vehicle, but without any turns, intersections,
splits, roundabouts etc. (Waxman et al., 1987),
(DeMenthon and Davis, 1990), (Kaske et al., 1997),
(Sayd et al., 1998), (Wilson et al., 1999) and (Wang et
al., 2000). These methods require that both sides of
the road are visible (though not necessarily
continuous) in the image to be able to recover the
road. These methods are effective in cases where a
vehicle needs to stay in the middle of a road lane
when following a highway for example, but they are
unsuitable in more complex urban environment.

Methods to recognize intersections on the road
were proposed by (Jochem et al., 1996) and (Crisman
and Thorpe, 1993). In (Jochem et al., 1996) a
previously trained neural network is used to
distinguish the road. The method lacks precision
because of the neural network approach used and
therefore fails to accurately determine the location
and orientation of the road. Furthermore, the method
suggested for modelling a road intersection required
the knowledge of either the position of the
intersection, to determine its precise layout, or the
layout, to find its position. Some a-priori information
on the intersection is also available in our case,
through the natural language instruction.

In (Crisman and Thorpe, 1993) dynamic model
building and matching are applied on a road surface
likelihood image to determine the layout of the road.
This method effectively finds intersections spurring
from a straight road but would fail to find an
intersection on a curve or an exit from a roundabout
for example. Furthermore, the suggested method
attempts to reconstruct the whole intersection. A
strength of our method is that only the necessary road
features (for the completion of the task in hand) are
sought in the map, thus saving computational time
and improving on system robustness.

Although the template matching method is
applied here in a simplified model of the world, the
same navigation principle could be applied for
instructable vehicles navigating in the real world. The
simplicity of the robot's environment in this project
helps to set aside the problems of extracting road/non
road information from complex real-world scenes and
focuses on determining the road layout once this
information is found. Other information, absent in our
model but present in the real world could give clues
which could contribute towards a statistical measure
suggesting the road layout ahead of the instructable
vehicle. Such clues could be for example the direction
of motion of other road vehicles, the alignment of
buildings, road signs etc.

Other landmarks (buildings, trees, lake, bridge
etc.) of our model town are mentioned in the corpus
and will need to be located to enable following the
instructions. Ongoing work is addressing the problem
of landmark recognition, the resolution of spatial
relations between landmarks, and those between
landmarks and the robot as sometimes mentioned in
the corpus. The solutions to these problems are not
expected to modify the navigation methodology
described here but will rather merge with it.

Finally, an interesting property of such a
system is that it has all the perceptual components
required to robustly learn a route from experience
(e.g. by following a human guide) in terms of
reportable action chunks rather than in terms of
odometric measurements.

Acknowledgements: This work is supported
by EPSRC grant GR/M90023.

References

Lauria S., Bugmann G., Kyriacou T. , Bos J. , Klein E.,
Personal Robot Training via Natural-Language
Instructions, IEEE Intelligent Systems, 16:3, 2001 ,
pp. 38-45.

Broggi, A., Robust Real-Time Lane and Road
Detection in Critical Shadow Conditions,
Proceedings of the IEEE International Symposium
on Computer Vision, Coral Gables, Florida,
November 1995, pages 353-358.

Waxman, A. M., Lemoigne, J. J., Davis, L. S.,
Srinivasan, B., Kushner, T. R., Liang, E.,
Siddalingaiah, T., A Visual Navigation System for
Autonomous Land Vehicles, IEEE Journal of
Robotics and Automation, Volume 3, Issue 2,
Aprill987, pp. 124-141.

DeMenthon, D., Davis, L. S., Reconstruction of a

Road by Local Image Matches and Global 3D
Optimization, Proceedings of the IEEE
International Conference on Robotics and
Automation, 1990, pp. 1337-1342.

Kaske, A., Wolf, D., Husson, R., Lane Boundary
Detection Using Statistical Criteria, Proceedings
of International Conference on Quality by
Artificial Vision, QCAV'97, Le Creusot, France,
1997, pp. 28-30.

Sayd, P., Chapuis, R., Aufrere, R., Chausse, F., A
Dynamic Vision Algorithm to Recover the 3D
Shape of a Non-Structured Road, Proceedings of
the 1998 IEEE International Conference on
Intelligent Vehicles, 1998, pp. 80-86.

Wi1son, M. B., Dickson, S., Poppet: A Robust
Boundary Detection and Tracking Algorithm,
BMVC99 (British Machine Vision Conference
1999), pp. 352-361.

Wang, Y. , Shen, D., Teoh, E. K., Lane Detection
Using Spline Model, Pattern Recognition Letters,
21(8), July 2000, pp. 677-689.

Jocbem, T. M., Pomerleau, D. A. , Thorpe, C. E.,
Vision Based Intersection Navigation,
Proceedings of the 1996 IEEE Symposium on
Intelligent Vehicles, September 1996, pp. 391-
396.

Crisman, J.D., Thorpe, C.E., SCARF: A Color Vision
System that Tracks Roads and Intersections, IEEE
Transactions on Robotics and Automation,
Volume 1, Issue 1, February 1993, pp. 49-58.

Copyright © by Theocharis Kyriacou 2004
This copy of the thesis has been supplied on condition that anyone who consults it is
understood to recognise that its copyright rests with its author and that no quotation from the
thesis and no information derived from it may be published without the author's prior
consent.

1

