
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

04 University of Plymouth Research Theses 01 Research Theses Main Collection

2001

NATURAL ALGORITHMS IN DIGITAL

FILTER DESIGN

PENBERTHY HARRIS, STEPHEN

http://hdl.handle.net/10026.1/2752

http://dx.doi.org/10.24382/4387

University of Plymouth

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.

NATURAL ALGORITHMS IN
DIGITAL FILTER DESIGN

by

STEPHEN PENBERTHY HARRIS, MA (Oxon)

A thesis submitted to the University of Plymouth
in partial fulfilment for the degree of

DOCTOR OF PHILOSOPHY

Department of Communication and Electronic Engineering

May 2001

90 0499701 X

11 I

REFERENCE ONLY

LIBRARY STORE

NATURAL ALGORITHMS IN DIGITAL FILTER DESIGN

Stephen Penberthy Harris

Digital filters are an important part of Digital Signal Processing (DSP), which plays

vital roles within the modern world, but their design is a complex task requiring a great

deal of specialised knowledge. An analysis of this design process is presented, which

identifies opportunities for the application of optimisation.

The Genetic Algorithm (GA) and Simulated Annealing are problem-independent

and increasingly popular optimisation techniques. They do not require detailed prior

knowledge of the nature of a problem, and are unaffected by a discontinuous search

space, unlike traditional methods such as calculus and hill-climbing.

Potential applications of these techniques to the filter design process are discussed,

and presented with practical results. Investigations into the design of Frequency Sam

pling (FS) Finite Impulse Response (FIR) filters using a hybrid GA/hill-climber proved

especially successful, improving on published results. An analysis of the search space

for FS filters provided useful information on the performance of the optimisation tech

nique.

The ability of the GA to trade off a filter's performance with respect to several de

sign criteria simultaneously, without intervention by the designer, is also investigated.

Methods of simplifying the design process by using this technique are presented, to

gether with an analysis of the difficulty of the non-linear FIR filter design problem from

a GA perspective. This gave an insight into the fundamental nature of the optimisation

problem, and also suggested future improvements.

The results gained from these investigations allowed the framework for a potential

'intelligent' filter design system to be proposed, in which embedded expert knowledge,

Artificial Intelligence techniques and traditional design methods work together. This

could deliver a single tool capable of designing a wide range of filters with minimal

human intervention, and of proposing solutions to incomplete problems. It could also

provide the basis for the development of tools for other areas of DSP system design.

ii

Contents

Abstract

Table of Contents

List of Figures

List of Tables

Acknowledgements

Author's declaration

1 Introduction
1.1 Digital filters
1.2 Natural Algorithms .
1.3 Publications
1.4 Aims and objectives

2 Basic Filter Design Theory
2.1 Stages in Filter Design
2.2 Finite Impulse Response Filters

2.2.1 Frequency Sampling FIR filters
2.2.2 Linear phase FIR filters
2.2.3 Recursive Frequency Sampling FIR Filters
2.2.4 Other FIR Design Techniques

2.2.4.1 Optimal Method
2.2.4.2 Window Method

2.3 Infinite Impulse Response Filters
2.3.1 IIR Filter Theory

2.3.1.1 Alternative structures
2.3.2 Design methods
2.3.3 Quantisation effects
2.3.4 Error Spectral Shaping
2.3.5 Coefficient pairing and ordering

2.4 The ROle of Optimisation in Filter Design
2.4.1 Specification
2.4.2 Coefficient Calculation
2.4.3 Structure Realisation
2.4.4 Analysis of Finite Wordlength Effects .

iii

ii

iii

vi

viii

X

xi

1
1
2
2
3

4
4
5
6
8
9

10
10
11
11
12
14
16
17
19
19
21
21
22
22
23

2.4.5 Implementation . 24

3 An Introduction to Genetic Algorithms and Other Natural Algo-
rithms 26
3.1 Background to the GA 26
3.2 Outline of a Standard Binary-Coded Algorithm 27

3.2.1 Encoding the problem 28
3.3 Initialisation . 29
3.4 Selection . . . 30
3.5 Reproduction 31
3.6 Crossover . . 31
3.7 Mutation. . . 33

3.7.1 Mutation and parameter encoding. 34
3.7.2 Other forms of mutation 35

3.8 The Fitness Function 36
3.8.1 Fitness Scaling 36

3.9 Advantages and Disadvantages of the GA . 37
3.10 Convergence Theory 38
3.11 Floating-point Chromosome GA . 39

3.11.1 Floating-point Crossover 40
3.11.2 Floating-point Mutation 43

3.12 Other GA techniques 44
3.13 Hybridisation 45
3.14 The Search Space . . 46
3.15 Simulated Annealing 47

3.15.1 Applications to Filter Design 48
3.16 Differential Evolution . 48
3.17 Evolutionary Strategy 49
3.18 Genetic Programming 49
3.19 Tabu Search 50

4 Optimising Frequency Sampling Filter Coefficients by Hybrid GA 52
4.1 Introduction . 52

4.1.1 Selection of FS filters for GA optimisation 52
4.2 Use of the GA for FS filter Design . . 53

4.2.1 The Fitness Function 54
4.3 Extensions to the Floating-Point GA 55
4.4 Simplex method hybrid hill-climber . 55
4.5 Extensions to the crossover selection scheme 57
4.6 Results for FS filters 60

4.6.1 The FIR Filter search space 66
4.6.2 Concurrent Optimisation of the Wordlength 69

4. 7 Conclusions 73

5 Iffi Coefficient Optimisation by GA and SA 75
5.1 Introduction . . 75
5.2 Use of the GA . 76
5.3 Results 78

iv

5.3.1 The IIR Filter Parameter Space
5.4 Discussion and Conclusions

6 Multi-criterion Optimisation
6.1 Introduction
6.2 Techniques

6.2.1 Weighted sum of fitnesses
6.2.2 The Pareto-optimal set . .
6.2.3 Vector-Evaluated GA . . .
6.2.4 Goldberg's fitness allocation method

6.3 Applications of MCO optimisation to filter design
6.4 GA difficulty measures and deception

6.4.1 Epistasis
6.4.2 Fitness-distance correlation

6.5 Alterations to the GA

80
81

84
84
84
85
86
88
89
92
93
93
95
96

7 An Analysis of the Suitability of GA-based Optimisation for Non-
linear Phase Fffi Filter Design 97
7.1 Introduction 97
7.2 Non-linear phase FIR filters 98

7.2.1 Effects of coefficient quantisation 100
7.3 Use of the GA 102

7.3.1 Design performance 103
7.4 Analysis of non-linear FIR filter design 106

7.4.1 The parameter space 106
7.5 Measures of GA-difficulty 108

7.5.1 Epistasis 110
7.5.2 Fitness-distance correlation 112

7.6 Results 114

8 An Extended Multi-objective GA for IIR Filter Design
8.1 Introduction
8.2 Chromosome design ..
8.3 The fitness function . .
8.4 Effects of quantisation

8.4.1 Coefficient quantisation .
8.4.2 Noise . .

8.5 Filter structure
8.6 Use of the GA .
8.7 Results ..
8.8 Discussion . . .

9 Conclusion and Future Work
9.1 Review

9.1.1 Digital Filter Design
9.1.2 Finite Impulse Response Filters
9.1.3 Infinite Impulse Response Filters
9.1.4 Optimisation techniques

V

118
118
119
121
123
124
125
125
127
127
140

142
143
143
143
145
148

9.2 Future Work
9.2.1 New areas in FIR Filters .
9.2.2 New areas in IIR Filters .
9.2.3 Further Natural Algorithm Techniques

9.2.3.1 Genetic Algorithms ..
9.2.3.2 Simulated Annealing .
9.2.3.3 Tabu Search
9.2.3.4 Genetic Programming

9.3 Intelligent Filter Design Tool .
9.4 Conclusion

A Thchniques
A.1 Increased calculation efficiency for recursive FIR filters
A.2 Simplex method hill-climber
A.3 Matlab initialisation script for MCO IIR design
A.4 Single-criterion Genetic Algorithm .
A.5 Multi-criterion Genetic Algorithm

B Publications

vi

148
148
150
151
151
152
152
153
153
156

165
165
166
168
171
176

178

List of Figures

2.1 Stages in the design of a digital filter. 5
2.2 Samples of the frequency response of a lowpass filter. . . . 7
2.3 Samples of the frequency response with transition samples. 8
2.4 Frequency sample positions for FS filters. 9
2.5 Second-order direct form 1 IIR filter section. 13
2.6 Second-order canonic (or 'direct form 2') IIR filter section. 13
2.7 Cascaded second-order canonic filter sections with signal scaling. . 15
2.8 Example of a lattice-structure IIR filter. 15
2.9 Canonic filter section with signal scaling and error spectral shaping. 20

3.1 Illustration of constant binary encoding. 29
3.2 Example Arithmetic crossover for a two-gene chromosome. 42
3.3 Example Whole Arithmetic crossover for a two-gene chromosome. 43

4.1 The allowed region of the search space
4.2 Dynamic crossover selection method.
4.3 Type I, Highpass FIR filter with four transition samples.
4.4 Type 11, Lowpass FIR filter with four transition samples.
4.5 Type I, Bandpass FIR filter with three transition samples.
4.6 Type II, Bandstop FIR filter with four transition samples.
4.7 Improvements in fitness with generation
4.8 Search space for a one transition sample FIR filter.
4.9 Search space for a two transition sample FIR filter.
4.10 Search space with additional constraints.
4.11 Improvements in constrained fitness with generation.
4.12 Quantised-coefficient FS filter response

54
58
62
62
63
63
65
67
67
68
69
72

5.1 Response comparison for SA, GA and BZT. 79
5.2 Search space slice for perturbed IIR filter. 82
5.3 Search space slice for random coefficient filter. 82

6.1 Example illustrating pareto-optimal and non-dominated sets. . 87
6.2 Example of VEGA NDS. 89
6.3 Example of NDS ranking calculations. 90
6.4 Example population distribution between niches. . 91

7.1 A desired response template. 101
7.2 Illustration of the effect of coefficient quantisation on the search space. 101
7.3 Loose-tolerance test template. 104
7.4 Comparison of linear and non-linear phase filters found by GA.. 105

vii

7.5 Slice through the 1,13,LS data set, with a best fitness of 11.3dB. 109
7.6 Slice through the 1,13,P data set, which has has a best fitness of 40.5dB. 109
7. 7 Slice through the 1,13,R data set, with a best fitness of 32.2dB. 109
7.8 Illustration of deception. . 110
7.9 Random filter fitness plot. 115
7.10 5% perturbed fitness plot. 115
7.11 1% perturbed fitness plot. 115

8.1 Coefficient stability triangle.
8.2 Quantised Cartesian pole-zero positions.
8.3 Quantised polar pole-zero positions. . . .
8.4 Chromosome structures.
8.5 Example of an early non-dominated set.
8.6 Best result for dp=0.5dB, ds=40dB target at 16 bits.
8.7 Best result for dp=0.75dB, ds=40dB target at 16 bits.
8.8 Best result for dp=l.OdB, ds=40dB target at 16 bits.
8.9 Best result for dp=l.OdB, ds=50dB target at 16 bits.
8.10 Best result for dp=l.OdB, ds=60dB target at 16 bits.
8.11 Best result for dp=l.OdB, ds=70dB target at 16 bits.
8.12 Best result for dp=l.OdB, ds=80dB target at 16 bits.
8.13 Best result for dp=l.OdB, ds=90dB target at 16 bits.
8.14 Best result for dp=l.OdB, ds=80dB target at 24 bits.

9.1 The potential structure of an intelligent filter design tool. .
9.2 FIR design example

A.1 Steps taken by a Simplex hill-climber ..

viii

120
122
122
126
128
129
130
131
132
133
134
135
136
137

154
155

167

List of Tables

2.1 Designable FIR filters.

3.1 A comparison between binary and Gray coding formats.

9

35

4.1 Results for recursive-form FS FIR filters designed by GA. . 60
4.2 Comparison of results for Type-I, N = 16 filter. 61
4.3 Comparison of results for Type-1, N = 33 filter. 61
4.4 Comparison of results for Type-I, N = 65 filter. 61
4.5 Comparison of results for Type-I, N = 125 filter. . 61
4.6 Comparison of results for Type-1, N = 128 filter. . 61
4. 7 Specifications for quantised and unquantised filters. 72
4.8 Transition samples for the filters described in the text and Table 4. 7. 72

7.1 Comparison of linear and non-linear phase FIR filters. 106
7.2 The Epistasis variance {a~), calculated for regions of the search space. . 111
7.3 FDC calculations for various regions of the search space. . . 113

8.1 Comparison of results for MCO optimisation of IIR filters. 129
8.2 Comparison of results for GA and BZT-designed IIR filters. 140

ix

Acknowledgements

I would like to thank my Director of Studies, Professor Emmanuel lfeachor for his

support and encouragement during this project. Thanks are also due especially to

Nick Outram and Rob Clark for providing invaluable suggestions and insights into the

intricacies of DSP.

A degree .. .is a first step down a ruinous highway. You don't want to waste it so you

go on to graduate work and doctoral research. You end up a thoroughgoing ignoramus

on everything in the world except for one subdivisional sliver of nothing.

Ralph Nimmo in 'The Dead Past' by Isaac Asimov

Ow geryow aga honan yw gasadow ha kemmysk a furneth ha gokkineth.

Taliesin

X

Author's Declaration

At no time during the registration for the degree of Doctor of Philosophy has the author
been registered for any other University award.

A programme of advanced study was undertaken, including an analysis of the role
of optimisation in digital filter design, and the application of Genetic Algorithms (GA)
and Simulated Annealing to a range of filter design problems. The difficulty of the
problem was analysed from a GA perspective, and a framework proposed for an 'intel
ligent' filter design tool.

Two relevant conferences were attended, papers being presented at both. A paper
of results and investigations was published in a relevant IEEE journal.

Publications:

• E.C. Ifeachor and S.P. Harris, 'A New Approach to Frequency Sampling Fil
ter Design', Proceedings lEE/IEEE Workshop on Natural Algorithms in Signal
Processing, 1993

• S.P. Harris and E.C. Ifeachor, 'Automating IIR Filter Design by Genetic Algo
rithm', Proceedings GALES/A International Conference, 1995

• S.P. Harris and E.C. Ifeachor, 'Automatic Design of Frequency Sampling Filters
by Hybrid Genetic Algorithm Techniques', IEEE 'lhmsactions on Signal Pro
cessing, volume 46(12), pp3304-3314, 1998

Conferences attended:

• 1993 lEE/IEEE Workshop on Natural Algorithms in Signal Processing

• 1995 GALESIA Internation Conference

Signed ... ~P.~
Dated ... I ~./!~.).7:-@)

xi

Chapter 1

Introduction

Digital Signal Processing (DSP) plays a crucial part in the modern world. Its use

in devices ranging from mobile phones and home entertainment systems to medical

equipment means that we are increasingly reliant on it in all walks of life. Digital

filters are an important part of DSP, but they have a major drawback in that it

requires a great deal of specialised knowledge to design them successfully, and this

is not always easily available. This investigation will examine potential applications of

so-called 'Natural' Algorithms, such as Genetic Algorithms and Simulated Annealing,

to optimisations within the digital filter design process.

1.1 Digital filters

Within DSP, digital filters have an important role as frequency selectors, with many

applications in the fields of audio, communications and biomedicine. Their ability to

boost, remove, or otherwise adjust information within a signal makes them a powerful

tool for system designers. Their flexibility allows a wide range of potential uses, from

removing mains frequency noise from sensitive biomedical data to controlling the signal

levels in audio mixing desks.

Although digital filters are extremely useful, they are generally not easy to design

and require a great deal of optimisation to produce a high-quality system. Their design

1

is traditionally broken down into a number of steps (see Chapter 2), each of which is

regarded as an independent optimisation task. The steps are repeated until a design

is found which performs satisfactorily. These steps are usually performed by different

methods, each of which requires a lot of specialised knowledge on behalf of the designer.

This iterative approach also means that it is difficult to control the trade-off between

the different performance measures, thereby making it harder to produce a filter with

the desired characteristics.

An attractive aim within DSP is the development of a single, wide-ranging tool,

which can be applied to a number of design problems. By encapsulating expert knowl

edge into a single tool, it would simplify the development of new digital systems.

1.2 Natural Algorithms

In recent years, 'Natural Algorithms' such as the Genetic Algorithm (GA) and Simu

lated Annealing (SA) have become increasingly popular techniques due to their applica

bility to a wide range of numeric and non-numeric optimisation problems [1]. The GA

is based on the principles of natural selection and survival of the fittest, and works on a

'population' of possible solutions to the problem. SA was inspired by metal annealing,

in which hot metal is cooled very slowly in order to allow it to find the lowest-energy

crystal structure, and generally works on few or only one possible solution.

The wide-ranging applicability of GA and SA to optimisation problems suggested

that they could be good techniques to use for the various aspects of digital filter design.

This investigation examines the potential which the two may have in the design of

digital filters, concentrating on the GA.

1.3 Publications

This work has resulted in the publication of three papers. The first, in the 1993

Proceedings of the lEE/IEEE Workshop on Natural Algorithms in Signal Processing,

2

introduced the design of Finite Impulse Response (FIR) filters by GA [2]. A second

paper, on the application of GAs and SA to Infinite Impulse Response (IIR) filters

was presented at the 1995 GALESIA conference [3]. The third paper, an extension

to the work presented in the first, was published in the IEEE Transactions on Signal

Processing in 1998 [4].

1.4 Aims and objectives

The aim of this work is to examine the role of optimisation within the filter design

process and to identify areas where the inherent search and optimisation capabilities

of Natural Algorithms could be used to advantage.

The specific objectives are to:

• undertake an analysis of the key optimisation tasks within the filter design process

• investigate the application of GA and SA techniques to these optimisation tasks

• undertake an analysis of the suitability of the chosen algorithms for their selected

design tasks

• specify a framework for an automated filter design tool

Following a brief introduction to filter design, and a more in-depth description of

the GA, its application to filter design will be discussed, together with the techniques

and analysis used to determine the suitability of the natural algorithms to digital filter

design.

3

Chapter 2

Basic Filter Design Theory

Digital filters are found in a wide variety of situations within digital systems, where

they can be used to alter the signal in specific ways, for example to reduce low or high

frequency noise, or to extract data in a specific frequency range. Their diverse uses

make them especially useful within the field of DSP.

There are two basic types of digital filter, Finite Impulse Response (FIR) and

Infinite Impulse Response (IIR). FIR filters have an impulse response of finite duration,

while IIR filters, which have a recursive structure, have one of infinite length. IIR

filters are more computationally efficient than FIR, requiring less storage space and

fewer calculations, but are also harder to design and are more susceptible to finite

wordlength effects. FIR filters have the added advantage that they can be made with

exactly linear phase, which reduces distortion in sensitive systems.

2.1 Stages in Filter Design

It has already been mentioned that the filter design process is generally broken down

into several steps, which are shown in Figure 2.1. These steps are usually performed

repeatedly until an acceptable solution has been found. This approach is limited in

that the performance of a good filter found during one step may be compromised during

another, so that a filter may be found which has a good magnitude response but poor

4

c Start

l
Respeclfy

Desired filter specification

l
Recalculate

Calculate filter coefficients

1
Restructure

Structure realisation

l
Finite wordlength analysis

I •
Implementation in software or hardware

1
c End)

Figure 2.1: Stages in the design of a digital filter.

phase response, or vice versa. Part of the investigation into the use of GAs for filter

design will cover the ability of the GA to perform multi-criterion optimisation, as this

could potentially be used to perform several design steps simultaneously and trade off

the performance measures automatically.

2.2 Finite Impulse Response Filters

Finite Impulse Response (FIR) filters are characterised by having a finite set of co

efficients, and an impulse response of finite duration. FIR filters can exist in either

recursive or non-recursive forms, the recursive form having the advantage that it can

be much more efficient in storage and calculation, particularly for narrow band filters.

FIR filters have the added advantage that they can be designed with exactly linear

phase. This causes the different frequency components of the signal to be delayed by

an amount proportional to their frequency, which reduces signal distortion. This is

5

particularly important in audio and biomedicine, where vital data may otherwise be

lost. If the linear phase constraint can be relaxed, then the order for some filters can

be reduced to as few as half of the coefficients needed for a fully linear-phase system.

This reduction is examined in more detail in Chapter 7.

The output of an FIR filter is given by:

N-1

y(n) = L h(k)x(n- k)
k=O

where N is the filter length, h(k) is the kth impulse response coefficient, x is a vector

of inputs, and y(n) is the nth output. This filter's transfer function, H(z) is given by:

N-1

H(z) = L h(k)z-"
k=O

FIR filters are simple to design and implement, but need a large number of coeffi

cients to achieve sharp cutoffs or high attenuations, so can be too slow to be used in

high-speed or real-time situations. They also require more storage for coefficients and

intermediate results than IIR, which means that their hardware implementations can

be more costly.

2.2.1 Frequency Sampling FIR filters

Frequency Sampling (FS) filters are among the simplest to design, requiring the opti

misation of just a few values, although this simplicity means that there is little control

over the resulting coefficients.

An FIR filter can be characterised uniquely by a set of samples of the frequency

response, generally taken at regular intervals, as in Figure 2.2. This set of samples

gives the filter coefficients themselves by taking its inverse Discrete Fourier Transform

(DFT). For nonrecursive FIR filters, the coefficient values are the same as the impulse

response samples, while for the recursive FS filter, the coefficients are the frequency

response samples. While taking a forward DFT of the coefficients will return the

original sample values, it does not indicate the response of the filter in the intervening

spaces.

6

1.0

"' ..,
~
~

~
t 0.5-

~
-:3
<;
e
~

0.0 .,. I

0.0 0.5 1.0
Normalised frequency

Figure 2.2: Samples of the frequency response of a lowpass filter.

To discover the filter's performance in the intervening space between the known,

fixed samples, the impulse response can be zero-padded to a reasonably high number of

points (512 or 1024 is generally sufficient), and a forward DFT taken, which produces

an interpolated response. This high-resolution response can then be examined to de

termine the filter performance. The number of points is generally chosen to be a power

of two so that a Fast Fourier Transform (FFT) can be used for increased calculation

speed.

For a 'brick wall' type of desired response, the interpolated response is very poor.

Since the sharp transition between bands does not allow any control over the degree

of ripple cancellation, it should be possible to improve the filter response by including

additional, variable samples to smooth off the transition between pass- and stop bands.

This is illustrated in Figure 2.3.

In order to produce a filter with the best possible performance in terms of passband

ripple and stopband attenuation, these tmnsition samples must be optimised. Rabiner,

Gold and McGonegal's seminal work in this area [5] resulted in the publication of

tables of transition sample values for a range of filter types, with varying orders and

bandwidths, which are still widely used today. This approach is limited by the need

to interpolate transition sample values to obtain unpublished filter coefficients, which

7

0.0 +--------e~--e,____------,--
0.0 0.5

Normalised frequency

l.O

Figure 2.3: Samples of the frequency response with transition samples.

results in sub-optimal filters. The range of published filters is also limited to those

with a maximum of four transition samples, for which only a few were included.

2.2.2 Linear phase FIR filters

It is often desirable for a digital filter to have linear phase, whereby the different

frequency components of the signal are delayed by an amount proportional to their

frequency. This reduces the level of distortion, which is especially important in audio (6,

7] and biomedical applications (8, 9], where the value of information may otherwise be

reduced.

Linear phase can be imposed on an FIR filter by constraining the impulse response

to be either symmetric or anti-symmetric, although this in turn restricts the types of

filter which can be designed.

There are four 'Types' of FIR filter, which are related through having slightly

different arrangements of sampling points, as shown in Figure 2.4. The first distinction

between them is that the filter order, N, can be either odd or even. The second

distinction is whether the first sample is taken at w = 0 or w = 1rjN. Rabiner, Gold

and McGonegal [5] refer to filters similar to the former as Type I, and the latter as

8

~----------

lmz lmz

~

.Rez)Ru
/

Type I, N even Typel,Nodd

lmz lmz

I ------~
Rez ~ Rez

\ /
Type 11, N even Type 11, N odd

Figure 2.4: Illustrations of the z-plane positions of the frequency samples for the four
types of Frequency Sampling filter.

Filter Type Possible filters

Type-1, N odd All filters

Type-1, N even Lowpass and bandpass

Type-II, N odd All filters

Type-II, N even Lowpass and bandpass

Table 2.1: Designable FIR filters.

'l'ype 11 filters.

Mathematical limitations [10] mean that different Types can only be used to design

certain frequency selective sorts of filters, as shown in Table 2.1.

2.2.3 Recursive Frequency Sampling Fffi Filters

It is possible to express the transfer function of any Frequency Sampling filters with

either a recursive or non-recursive expression (11, 12]. The non-recursive form, which

has already been described above, is less efficient relative to the recursive form for

narrow-band filters where most of the frequency samples are zero (i.e. in the stop band).

9

Since the recursive form's coefficients are the samples themselves, if a sample is zero its

effect need not be included and it therefore requires fewer calculations. It also allows

a greater degree of pre-calculation to take place, and unlike the interpolation of the

whole response with a DFT, just a portion of the response needs to be calculated each

time, thereby increasing the computational efficiency. The pre-calculation is presented

in Appendix A.l. The recursive form allows the radius of the poles and zeros to be

reduced to prevent pole instability in a fixed~precision environment.

In the implementation of the recursive FS filter optimised by GA, the GA could be

used to either optimise the radius simultaneously with the transition samples, or the

radius could be fixed, and the corresponding optimum transition samples found.

The speed increases afforded by the use of recursive form FIR filters in the GA

were significant enough for it to be adopted as the standard type of filter used in these

studies.

2.2.4 Other FIR Design Techniques

A wide variety of alternative FIR design techniques exists, such as Least Squares [13,

14], but the most popular are the Optimal and Window methods:

2.2.4.1 Optimal Method

The Optimal method seeks to find a filter with the minimum maximum ripple across

all pass- and stopbands. This filter will have an equiripple response, where all the mag

nitude response extrema have the same magnitude. As it is relatively straightforward

to produce the filter response from the frequencies of these extrema, the problem lies in

finding the location of the extrema in the frequency domain. This is generally achieved

by using a computer program implementing the Parks-McCiellan algorithm [15], which

uses the Remez exchange method to search for the extremal frequencies within the

equiripple response. Filters containing stopbands with different ripples can be designed

by altering their weightings. The technique is widely used, but can have problems when

10

designing multi-band filters with varying transition widths, as convergence to a suit

able solution is not guaranteed, and there may be local ripples within the transition

bands. Xu and Daley [16, 17] have shown their GA to be superior to linear program

ming and Optimal Method coefficient roundoff techniques when designing an Optimal

filter with quantised coefficients. Qiloglu and Unver [18] designed optimal filters with

finite-wordlength coefficients using Simulated Annealing.

2.2.4.2 Window Method

The Window method makes use of the fact that it is easy to define an ideal impulse

response for a desired brick-wall style filter response (11]. However, if this infinite

precision, infinite-length response is truncated and sampled usiug a finite number of

samples to produce flR filter coefficients, the corresponding filter's frequency response

will have an excessive amount of ripple. The Window method seeks to overcome this

by multiplying the ideal response by a Window function, which seeks to reduce the

effects of the truncation by gradually reducing the impulse response to zero within

the selected number of samples. A variety of functions have been proposed, such as

the Hamming and Kaiser, with different characteristics, but none give the designer

precise control over the band-edges and ripples of the filters they produce, which can

make them unsuitable for critical applications. Keane et al (19] have used Genetic

Programming (GP), a variation on the GA able to optimise expressions, to find an

impulse response function for a control system. Applying this method to filter design

could improve the quality of Window method filters by allowing the window function

itself to be optimised, rather than being constrained to the limited range of standard

functions.

2.3 Infinite Impulse Response Filters

IIR filters are distinguished from FIR by having an infinite duration impulse response.

They exist only in recursive forms, where the filter output is dependent not only on the

11

previous and current inputs, but also the previous outputs. They are generally designed

using second- and first-order sections, which are less susceptible to finite wordlength

effects than large single structures. These low-order sections can be joined in a number

of ways with different noise and finite wordlength characteristics.

Due to their recursive nature, IIR filters are able to have a much sharper cut-off

and a higher attenuation than FIR filters, for significantly fewer coefficients. They do

however have a major disadvantage in that they cannot be forced to have exactly linear

phase. With the correct design constraints, however, it may be possible to design filters

with a near-linear response over a limited region.

When used in a fixed precision environment, IIR filters are more susceptible to finite

wordlength effects, such as noise and instability, than FIR, although by varying the

structure these effects can be reduced. Their recursive nature and finite wordlength

sensitivity also means that IIR filters are less straightforward to design.

2.3.1 IIR Filter Theory

IIR filters, like FIR filters, have a finite set of coefficients, but they are no longer the

same as the impulse response, and are used in a different way to determine the filter's

performance.

The output of an IIR filter can be described by:

N M

y(n) = L akx(n- k)- L bky(n- k) (2.1)
k=O k=l

where ak and bk are the coefficients of the filter, x(n) and y(n) are its input and output

streams respectively, and N and M are the number of ak and bk filter coefficients, with

M~ N. It can be seen from this that the current output, y(n), is a function not only

of the current and previous inputs, x(n- k), but also the past outputs, which gives

the filters their recursive character.

The equivalent direct transfer function, H(z), is given by:

(2.2}

12

x(n) y(n)

Figure 2.5: Second-order direct form 1 IIR filter section.

"(n)

a,

Figure 2.6: Second-order canonic (or 'direct form 2') IIR filter section.

This form of the IIR filter could be designed and implemented directly, but it is ex

tremely sensitive to finite wordlength effects, even at filter orders as low as M = 4, so

it is not commonly used. In order to produce a more stable system, the filter is usually

broken down into first- and second-order sections, which are optimised simultaneously

in one of a variety of series and parallel topologies to produce the final filter. The two

main types of second-order sections are shown in Figures 2.5 and 2.6

The canonic (or direct form 2) section requires less storage than the direct form 1

section, but due to the existence of two adders, requires input scaling to prevent over

flows on the output. This can require considerable additional calculations when deter

mining the noise performance of the filter so can be less attractive at the design stage.

The direct form requires no such scaling, due to the cyclic overflow nature of two's

complement arithmetic, which can allow an intermediate overflow and still return the

correct output provided the overflow is reversed by a later calculation.

13

When factored into second-order sections, H(z) is given by:

N/2 + -1 + -2
H(z) = IT aok auz UakZ

k=l 1 + buz-l + b21;:z-2
(2.3)

The positions of the roots of the numerators and denominators give the positions of

the zeros and poles respectively. When the value of z approaches that of a zero,

the numerator approaches :r.ero, and therefore so does the output. Zeros therefore

generally define the location of the stopband. When z is close in value to a root of

the denominator, i.e. a pole, the denominator evaluates to a very small number, so the

division results in a large output. Poles therefore generally occur in the passband. In

pole-zero form, with complex conjugate pole-:r.ero pairs, H(z) is given by:

N/2 (z- r~&wo)(z- r~e-iwo)
H(z) =};! (z- r:eiwt>)(z- r:e-iwp) (2·4)

where r~ and rt are the radii of the kth zero and pole respectively, and W0 and Wp

are their angles. If the radius of a pole is too large this can result in an overflow,

so the pole radius has to be carefully controlled to be no greater than unity. In a

finite wordlength system, the radius has to be reduced further in order to prevent

perturbations caused by quantisation pushing poles close to or outside the unit circle,

with a shorter bit-length requiring a smaller radius. It is safe for zeros to occur at any

radius.

Within the canonic (or direct form 2) section shown in Figure 2.6, there are two

adders, one in a feedback path. Unlike the direct form 1 section, intermediate overflows

in the output of the first adder (shown as w(n)) can be passed on to the second, and

from there to the output, giving an overall incorrect result. To counter this, the input

signal must be scaled down to prevent overflows in w(n), and the signal entering the

second adder must be scaled up again to restore the output level to its correct value.

A filter made up of cascaded canonic sections is shown in Figure 2.7.

2.3.1.1 Alternative structures

Many other possible structures exist, a popular one being the lattice structure, which

has been used in speech processing [20]. An example two pole lattice structure is given

14

y(n)

Figure 2.7: Cascaded second-order canonic filter sections with signal scaling.

x(n)

in Figure 2.8.

-1
z

-1
z

Figure 2.8: Example of a lattice-structure IIR filter.

y(n)

The lattice structure has the attractive properties that the filter is guaranteed to

be stable if the magnitude of the K coefficients are all less than unity, and that it is

less affected by coefficient roundoff than the direct or cascade structures. Flockton

and White [21, 22] have successfully applied the GA to the problem of adaptive system

identification. This involves using the GA to optimise the quantised coefficients of a

lattice filter based on a continuous input, so that its output approaches the output of

an unknown system, in order to identify and model it. Sriranganathan et al [23] have

applied GAs to the optimisation of lattice filter coefficients limited to simple sums of

powers-of-two values for simpler implementation. Both of these approaches intrinsically

take account of coefficient quantisation, which is difficult to do using standard methods.

Chellapilla et al [24] have shown that the lattice structure has a much simpler search

space than the direct or cascaded structures, and is suitable for a gradient-descent

15

algorithm when using full-precision coefficients as it is unimodal. Etter et al (25] have,

however, applied the GA to a cascade-structured adaptive IIR filter with a multi-modal

search space, with promising results.

A special type of filter known as an all-pass filter [10] can be made from standard

second-order sections if the zero angle is the same angle as the pole angle, but the zero

radius is the pole radius reflected in the unit circle, i.e. for every pole at z = reiw there

is a zero at z = (1/r)&w. In this configuration, the magnitude response is constant,

but the phase response is not. Parallel connections of all-pass sub-filters (PCAS) with

other structures such as delays can produce frequency-specific filters, because the non

linear phase causes destructive interference for particular frequencies, giving the overall

effect of a frequency-selective filter. All-pass filters have the advantage that they are

less susceptible to finite wordlength effects than standard structures. Krukowski et

al (26] present a standard method for converting any IIR filter transfer function into

a sum of all-pass sections, which can be implemented efficiently in parallel for faster

processing. Lawson (27], and Krukowski and Kale [28] present different standard ap

proaches to producing frequency-specific PCAS-based filters with approximately linear

phase, thereby approximating the output of a linear-phase FIR filters with many fewer

coefficients, while Lu et a! [30] have used Simulated Annealing (SA) to design PCAS

filters with approximately linear phase. Lawson and Wicks [29] have used Simulated

Annealing (SA) to design (PCAS) filters with finite wordlengths, showing that, like

the GA, SA can intrinsically account for coefficient quantisation without having to

optimise it in a subsequent step.

2.3.2 Design methods

A number of design methods exist for the optimisation of IIR filter coefficients. For very

simple filters, experienced designers can place poles and zeros directly by inspection.

This approach is fast and simple, but does require a deal of familiarity with this type

of digital filter.

16

For more complex filters or for novice users, other techniques such as the impulse

invariant method and bilinear z-transform (BZT) work by converting analogue filters

into their digital equivalents.

Another design method, which does not involve the analogue domain at all, is the

Least Squares method [20], which can be used when a filter is needed which most

closely approximates a known impulse response. The output obtained by passing an

impulse through a desired filter cascaded with its inverse is used to generate a set of

linear equations which can be solved to give the set of coefficients which best match

the desired filter. Kobayashi and Imai [31] propose an alternative weighted LS method

for optimisation in the frequency domain, but the method is complex and is slow to

converge for equiripple filters.

The Least Squares approach has similarities with adaptive filtering, where filter

adapts its characteristics dynamically according to changes in the input signal. This

allows it to, for example, give better noise reduction [11] or for system identification.

Genetic Algorithms have been used for the latter by Flockton and White [21] and Etter

et al [25], while Chen et al [32] have used Simulated Annealing.

Linear Programming [10, 33] involves maximising a linear function subject to a

number of linear constraints. Its use in filter design requires the optimisation problem

to be reworked in such a way that the problem becomes linear, and may require sub

sequent adjustments to the desired response to make the problem solvable. Rabiner

et a! [34] used the technique to optimise a range of direct-form IIR filters with respect

to their magnitude-squared response, although the use of the direct form means the

filters are highly susceptible to coefficient changes, and makes sharp-cutoff and high

order filters difficult to design.

2.3.3 Quantisation effects

It has been seen that, due to their recursive nature, IIR filters are more sensitive to the

effects of quantisation. This can affect both the coefficient values, and the results of

17

arithmetic operations [35]. Standard methods of design do not take these into account,

and so when coefficients are quantised to the wordlength of the system, they perturb

the filter characteristics. The smaller the number of bits used to represent a coefficient,

the larger the perturbations will be on average, and so the more the filter response will

differ from the full-precision response. It is possible to optimise the coefficients after

quantising their full-precision values, but as the optimum set of quantised coefficients

can be very different to the set of quantised real-valued coefficients, a technique which

optimises the coefficients directly in a quantised form would be preferable.

While having quantised coefficients alters the filter response, if the system uses

quantised or fixed-precision arithmetic operations, then further distortions and noise

can be introduced into the signal as it passes through the filter, as the reduced precision

of the calculations moves the results away from their true values. The analysis of this

noise is also important in DSP as it can affect the suitability of a filter for a particular

application [36] ..

It is common practice to scale the filter coefficients to help minimise or prevent

overflow. For example, in 'L2 norm' scaling, which seeks to limit the power of the

signal [11], the scaling factors for second-order section i is given by:

where f(k) is the impulse response from the input to the internal node w; for section

i as shown in Figure 2.7.

For this quantised, scaled, sixth-order filter, the roundoff noise gain is given by:

where /;(k) is the impulse response between the first adder in section i and the

output [11]. The q2 factor (the square of the quantisation step size) was ignored in this

work as only filters with the same quantisation step size were compared together.

18

2.3.4 Error Spectral Shaping

The noise which occurs in a second order section can be reduced by Error Spectral

Shaping (ESS). This is a technique in which the quantisation error is fed back into the

filter in such a way that it reduces or even eliminates roundoff errors over regions of

the response.

There are many filter structures which can be used, one suitable canonic section

is given in Figure 2.9 (after (11]). In this structure, e1(n), the difference between the

pre- and post-quantisation value of y'(n), is passed through another set of coefficients

into the adders. It is possible to reduce the effects of the noise by careful selection of

these additional coefficients. In the figure, e2 (n) is the error caused by requantising

the ESS inputs into the left-hand adder, e3 (n) is the equivalent quantisation error for

the ESS inputs into the right-hand adder, and e4(n) is the quantisation error on the

output from the right-hand adder. ESS coefficients are usually chosen to be powers of

two or integers to minimise the noise contribution of the ESS filter itself.

Many modern DSP chips contain a double-precision accumulator, which can hold

high-accuracy numbers. This allows calculations to be performed within a second-order

section without adding round off noise at each multiplication, because the solution only

needs to be truncated to a lower accuracy when it is being written to memory. This

means that the filter implementation is inherently less noisy and more accurate. The

increasing wordlength of DSP chips means that some aspects of quantisation effects

are having less impact on filter performance.

2.3.5 Coefficient pairing and ordering

For full precision arithmetic, it does not matter which order the second-order sections

appear in, nor which of the numerators is paired with which denominator. Once

the system uses fixed precision, this is no longer the case, since each section affects

the signal in a different way and the noise from each section is passed through all

subsequent ones. This means that the order in which the signal passes through the

19

x(n)

1
~

Figure 2.9: Canonic filter section with signal scaling and error spectral shaping.

20

sections will affect the overall noise on the output. It also implies that since the noise

of a section depends on the coefficients within it, the pairing of the numerators and

denominators also affects the overall noise of a system. The pairing and ordering is

not a trivial problem, the total number of possible pole-zero pairs being given by:

which for N = 10 gives 14,400 possible filters. While this number of filters is easily

searched exhaustively by modern computers, changing the ordering and pairing of the

poles and zeros changes both the necessary scaling, and the noise characteristics of

the filter. Standard design techniques [37} perform the optimisation of the coefficients,

and pole-zero pairing and ordering in two independent steps, so any filters produced

can only be optimal in either sense. What is required is a multi-criterion optimisation

method, which allows the designer to specify the desired weightings of the importance

of the different design criteria such as frequency and phase response and roundoff noise

gain, and which then optimises the filter with respect to these combined criteria.

2.4 The Role of Optimisation in Filter Design

Within each filter design step, optimisation can be used to improve the final design.

These steps will now be examined for IIR filters made of cascaded second-order sections,

to determine the potential uses of optimisation and how natural algorithms could be

used to advantage.

2.4.1 Specification

The specification covers the desired characteristics of the filter, namely the phase and

magnitude responses, together with other behaviours which may be limited by the

desired implementation. For example, the DSP chip to be used may have limits on the

1/0 data rate, wordlength or highest available operating frequency.

There are several opportunities for optimisation here, covering the desired frequency

21

response, phase response, wordlength, delay etc., all of which will have a bearing on

the best way to implement the filter. Due to constraints which may be forced by the

chosen implementation, such as a fixed wordlength or sampling frequency, it may not

be possible to optimise the specification independently of the implementation, and the

two may need to be optimised together to find the best compromise.

The best means of optimisation here is probably fuzzy logic or an expert system,

which could use a database of available DSP processors to determine the best one to use

for a given specification, or, in reverse, could return the nearest possible specification

for a given DSP chip. This step is not especially suited for optimisation by the GA

and SA methods under investigation.

2.4.2 Coefficient Calculation

The calculation of the filter coefficients is perhaps the most important step in designing

digital filters, as the coefficients play the greatest part in determining the characteristics

of the filter. There are several methods of designing IIR filters (Section 2.3.2), which

often involve the complication of converting an analogue filter to its digital equivalent.

The GA could be used to by-pass this step, by working directly on the coefficients

or the pole-zero positions, in order to find the coefficients which best fit the desired

magnitude and frequency responses. A fitness function could be constructed which

drove the GA towards these responses, so that the designer need not know anything of

the actual operations involved.

Ways in which this can be accomplished will be covered in later chapters.

2.4.3 Structure Realisation

There is a great deal of potential for structural optimisation with IIR filters [38, 39].

Not only is there a choice between the topology of second-order sections to use in the

filter, there could even be a mixture of topologies. It is also possible for the sections to

be positioned in a cascade or parallel structure, each with its own noise characteristics

22

and storage requirements.

The actual optimisations which could be performed here are dependent on which

parts of the design cannot be changed. If there is a fixed wordlength, for example, or

a limit on the amount of intermediate storage, then structural optimisation cannot be

performed independently of other optimisations, such as noise, as the structure and

wordlength affect the noise characteristics of the filter. However if some of these re

strictions can be lifted then the realisation structure could be included in the GA's

chromosome, and the various performance measures affected by the structure incorpo

rated into the fitness function, so that the GA can include their effects while optimising

the coefficients and structure. Some GA-based filter optimisations explicitly include

the structure of each filter section, such as the approach of Roberts and Wade [40],

which builds up a filter from a library of simple standard filter sections. Suckley [41]

has shown a similar GA-based approach to perform better than other, standard tech

niques. Uesaka and Kawamata [42] have used a Genetic Programming method to

design second-order filter structures with low coefficient sensitivity.

2.4.4 Analysis of Finite Wordlength Effects

As has been mentioned above, the effect of using a finite-precision implementation can

have a deleterious effect upon the signal passing through it. The level of optimisation

to be applied to the finite wordlength analysis is best determined on a per-problem

basis.

The simplest way to include some form of analysis is simply to optimise the co

efficients directly in a quantised form. This will result in a filter with a lower op

timum performance than the one with full-precision coefficients, but the coefficients

will automatically take into account the finite precision of the implementation. These

coefficients will, in general, perform better than quantised full-precision coefficients.

Schaffer and Eshelman [43] have shown the GA to be able to successfully optimise FIR

filters with coefficients limited to powers-of-two integers, which allow multiplies to be

23

replaced with quicker and more efficient shifts.

This level of optimisation does not take into account the finite wordlength effects

of the calculations within the system, which also affect the filter performance. To

add this analysis to the optimisation requires a much more detailed model of the

system, in which the truncated results of calculations are also included. The filter

which would be found by such an optimisation would have the best performance of

these filters as it would have taken into account the effects of using a fixed-precision

system intrinsically, during the optimisation process, and no additional subsequent

analysis would be necessary.

Since both the structure of each second-order section and its coefficients will affect

the overall noise of an IIR filter, noise optimisation cannot be carried out alone: there

must be some feedback so that the structure and coefficients can be altered in a way

which helps to reduce the noise. However, unlike the other finite wordlength analyses

above, reducing the noise will result in a worse magnitude response performance, and

vice versa, because there are only so many degrees of freedom which can be exploited

to improve the filter performance. This means that a multi-criterion optimisation

technique, such as those described in Chapter 6 would have to be used. A filter

designed in this way would be a compromise between good performance in each aspect

of the design, but the ability to produce such a filter without resorting to a number of

individual analytical steps would be to advantage.

2.4.5 Implementation

The best method of implementing the system, in either software or hardware, will

be determined by the specification of the system. Different DSP systems use different

word lengths, data rates etc., so are suitable for use in different situations. Even software

implementations will have restrictions according to the system they are written for,

which could have limited memory, speed or bit-lengths.

Dempster and Mcleod have proposed an analytical method for exploiting calculation

24

redundancies to implement previously-designed finite-wordlength FIR filters using the

minimum number of adders instead of full multiplications, thereby increasing speed

and simplifying the implementation [44]. Redmill et al [45, 46] have used GAs to

optimise filter coefficients with respect to both filter performance and number of adders

simultaneously.

As suggested above, a search for the best implementation for a given system could

be performed by an expert system or fuzzy logic, which would return a suitable imple

mentation method after examining a database for those which match the specifications

most closely.

It should be clear from the above analysis that there is a large amount of interde

pendence between all of the steps in designing a filter. This means that it impossible

to perform an optimisation with respect to the aspects covered by one section without

altering, and perhaps reducing, the performance in another aspect. To overcome this,

the only way to produce an overall 'optimum' filter is to perform the optimisation with

respect to all the possible design criteria simultaneously so that they can all be traded

off against each other at the same time.

The application of the Genetic Algorithm to a range of these optimisation tasks

will be covered in later chapters.

25

Chapter 3

An Introduction to Genetic

Algorithms and Other Natural

Algorithms

3.1 Background to the G A

The Genetic Algorithm (GA) is a search and optimisation technique [47, 48], which

was inspired by theories of natural selection and evolution by the survival of the fittest.

In nature, the survival of a species can be viewed as an optimisation task, where the

problem is one of adapting to the surrounding environment. Those species which are

well-adapted will survive to adulthood, and will then be able to pass their good genes

on to their own offspring. These offspring will contain various combinations of genes

from two successful parents, and should therefore describe some successful individuals

in turn. At each generation, the survival of the successful offspring will concentrate

'good' genes in the population, while offspring which are sickly or poorly-adapted to

the environment will either die before breeding or be unable to compete successfully

for a mate, so will not pass their genes on.

A process of millions of gene crossovers and a very small number of mutations,

combined with the elimination of poor individuals, causes a gradual evolution of the

26

population until it contains only individuals which are well-adapted to the environment

and have the best chances of survival. The success of this process in nature is obvious,

but it is perhaps less clear as to how this relates to a computer algorithm for engineering

design. This chapter will describe the operation and use of a Genetic Algorithm, and

discuss its advantages and disadvantages over conventional techniques.

3.2 Outline of a Standard Binary-Coded Algorithm

In nature, the population of seals, for example, consists of a number of individuals,

each of whose cells contains DNA (deoxyribonucleic acid). This DNA makes up the

genes that fully describe the seal. Each member of the population contains DNA

which differs slightly, resulting in differing sizes, colourings, strengths, acuity of sight

and smell etc. Elements of DNA from both parents are combined randomly in the

offspring, resulting in them having attributes of both. Those offspring with good,

new combinations of genes will be more likely to survive in turn and pass them on to

subsequent generations, while the poorer ones die out and are lost. This is in effect a

concentration of the information, contained in the DNA, about what makes a 'good'

seal.

The engineering design process contain many similarities to that of the problem of

evolution: there is the goal of a suitable solution or solutions; the characteristics of a

solution can be tuned by altering parameters; and there is a means of determining the

quality of the solution. In nature, good solutions are marked by an ability to survive

and reproduce, ensuring the continuation of the species, while a good engineering

solution fulfils the design specifications to within acceptable tolerances. The tunable

parameters in the natural systems are the genes in each individual's DNA, while in an

engineering context they are the parameters to the model which allowed the quality of

the system to be determined. This suggests that by encoding the design parameters of

an engineering problem in computer-storable simulated chromosomes and simulating

the natural selection and reproduction processes, the solutions they contain could be

27

evolved into good or optimal solutions.

The basic operation of a standard GA can be summarised as follows:

1. Produce an initial population of individuals, each containing a random solution

to the problem under investigation.

2. Determine the quality of each solution, known as their fitness.

3. Select members of the population according to their fitness.

4. Copy or reproduce the selected members of this parent population, with different

frequencies, to form the next child population.

5. Perform crossover and mutation on the members of this child population.

6. Return to 2 until the maximum number of generations has been reached, or the

best solution found so far is within acceptable tolerances.

These steps will now be examined in detail.

3.2.1 Encoding the problem

In order for the GA to perform successfully for a given design problem, the problem

must be encoded correctly. The GA does not, in general, optimise a problem model

directly, but rather by optimising parameters to it, which alter its performance. These

parameters must be stored in a suitable form according to their use and range, as either

binary, integer or floating point values. The use of a floating-point representation is

discussed in Section 3.11, but in a standard GA, the parameters are encoded into a

binary bit-string with a fixed format, i.e. the parameters always appear in the same

order, and each bit always has the same meaning, as illustrated in Figure 3.1. This

string, or chromosome, is decoded later on by the fitness function, which determines

how good a solution the chromosome represents, a measurement called its fitness. The

calculation and importance of the fitness is discussed more fully in Section 3.8.

28

• parameter 1 parameter 2 parameter 3 parameter 4

Figure 3.1: Illustration of the constant encoding of the binary chromosome of a stan
dard GA.

3.3 Initialisation

The initialisation of the population determines which areas of the solution space the

GA samples at the start of a run. If nothing is known about the locations of the good

regions of the space, then it is important to initialise the population to cover as much of

the space as possible, as evenly as possible, so the chromosomes are filled with random

bits. While it may be possible to initialise the population by spacing it evenly within

the space, this could mean that each model parameter would only have a few values

and bit patterns, and it would then take the GA some time to generate intermediate

values. Other methods, such as the Sobol sequence [33] could be used to initialise the

population using a quasi-random sequence. This would guarantee a maximally even

spread of points, regardless of the number generated, but in some applications may

only cover a limited number of values for each parameter. Initialising the population

at random helps to ensure that a wide range of parameter values are sampled, which

in turn subsequently helps the GA to search the space effectively.

If the problem has known constraints on parameter values, or the location of good

areas is known, then this information can be used to good effect during the initialisation

procedure by either biasing or limiting the values to their known good regions or allowed

ranges [49, 50]. This clearly speeds up the convergence of the GA to the good areas,

but is only of use if the problem is known or can be analysed.

The number of members stored in the population must be enough to maintain

diversity in the gene pool, while being small enough to ensure that storage and CPU

time limits are not exceeded. Values of 30-100 are most common for standard Genetic

Algorithms.

29

3.4 Selection

It is important that the selection method should keep the best solutions from each

generation, but it is perhaps less obvious that it should also retain a selection of the

poorer members in order to maintain gene diversity in the population. Without this,

the population will rapidly converge on whichever members of the initial populations

have the highest fitnesses, resulting in a poor final solution or very slow optimisation,

unless the initialisation has been fortunate enough to pick a point close to the optimum.

This is known as premature convergence, and the GA designer much take precautions

to prevent it while still allowing the GA to converge on the optimum solutions.

There are a variety of selection methods which can be used, the simplest being

weighted roulette wheel selection [48], which gives each member of the population a

probability of being selected which is proportional to its fitness. The roulette wheel

selection method has the problem that it is quite possible for good solutions within

the population to be missed during the selection process and lost while the poorest

solutions are retained.

While roulette wheel selection is very quick and simple to implement, a more use

ful method, and one which is widely used, is Stochastic Remainder Selection without

replacement (SRS), which has been shown [48] to be one of the best general selection

techniques. SRS ensures that the members with above-average fitness are always re

produced, with a number of copies proportional to the degree of excess fitness above

the average, while all the other members of the population also have a chance of being

selected to fill the remaining gaps in the population, which helps to maintain diversity.

SRS involves selecting the individuals to be reproduced in the following way:

1. Linearly scale all fitnesses to an average of one.

2. For each member whose scaled fitness is ~ 1, allocate a number of copies equal to

the integer part of the scaled fitness, and subtract that number from the scaled

fitness, leaving all the scaled fitnesses fractional.

30

If the new population now contains fewer members than the old, further selections

must be made to fill the remainder of the population:

3. Pick a random member and a random number in the range 0-1. If this number

is less than the remaining fractional scaled fitness of that member, then allocate

one copy to the new population, and set the scaled fitness to zero to prevent that

member being selected again.

4. Repeat 3 until the new population is the same size as the old.

Other selection strategies have been successful in other applications, but SRS was

selected for use in the single criterion GAs used in this work.

3.5 Reproduction

The selected members of the population are now copied or reproduced, to form a new

population. The selection method, as described above, will determine the number of

copies to make of each member of the population. The next population will usually

have the same number of members as the previous one.

3.6 Crossover

The result of selection is a group of individuals who have been selected either for

having a high fitness, or to fill any remaining spaces in the population and maintain

diversity. Selection means the average fitness of the new population is higher than the

old, but the maximum is unchanged as no new members have been created. Repeated

selections alone would therefore result in a population just containing copies of the

best chromosome from the initial population. In nature, new chromosomes are created

by sexual reproduction in which two parent chromosomes combine to give offspring

containing a mixture of characteristics from both.

31

In the binary GA, this is simulated most simply by randomly picking a pair of

'parents' and a crossing point along the chromosome, and swapping the bits after that

point between the two chromosomes, giving two offspring strings with some genes from

each parent. This has the result of combining the genes from two solutions which have

survived long enough to reproduce, to form two new, potentially even better solutions.

The next round of selections will determine which of these offspring are fit enough to

survive and pass their genes on in turn. The repeated action of crossover and selection

is the main driving force in the Genetic Algorithm, and results in the proliferation of

those genes which cause the chromosomes containing them to have a high fitness. By

repeatedly selecting and crossing high-fitness strings, the genes are gradually brought

together to form even better solutions. This is discussed more fully in Section 3.10.

Crossover is implemented by picking random pairs of (preferably different) individ

uals, and, with a fairly large probability (typically 0.6), choosing to swap a selection

of bits between the pairs. There are several standard schemes for swapping the bits:

1-point crossover: A random point is chosen along the chromosome, and all the bits

after that point are swapped between the two parents to form two offspring. For

example:

{ooooo 1 ooo} {ooooo111}
(3.1)

{11111 1111} {11111000}

This method has the disadvantage that points towards the ends of the strings are

crossed less frequently than those in the middle.

2-point crossover: Two random points are selected and the bits between them are

swapped. This is essentially the same as mapping the chromosome to a ring and

swapping the bits between two randomly-selected points, which helps to remove

the end effects and so causes the string to be optimised more evenly along its

length:

{oo 1 ooo 1 ooo} {oo111ooo}
(3.2)

{111111 1111} {11000111}

32

Multi-point crossover: Many crossing points are picked and the bits between them

alternately swapped and kept. This is still more even than 2-point, but it is

arguable if the gains are worth the extra computational time, and the disruption

to good chromosomes which have been built up is higher:

{oo 1 ooo 1 oo I o}

{11111111111}
-+

{00111001}
(3.3)

{11000110}

Uniform crossover: For maximum evenness, this technique chooses randomly whe

ther or not to swap each bit along the length of the string. This is very disruptive,

so compensation, possibly in the form of elitism (see Section 3.12) can be used

to prevent good solutions from being lost:

3.7 Mutation

{o I o I oo I o I o I o I o}

{11111111111111}
-+

{01001010}
(3.4)

{10110101}

The crossover/selection mechanism tends to concentrate the population in the high

fitness regions of the search space, which is the desired search action. However, it is

quite possible, especially with highly multi-modal surfaces or those with similar height

peaks, for the GA to converge to a sub-optimal peak. To help it to escape and continue

searching, mutation is used. Mutation causes a very small number of bits, typically

0.01-1% of the total number of bits in the population to be flipped at random. For

example:

{11.111111} -+ {11Q.11111} (3.5)

This changes the values of genes within the chromosome, and thereby pushes a few

members of the population into new, possibly remote areas of the parameter space,

allowing the GA to continue its search for higher fitness regions. While this occasionally

finds a better solution and so helps the GA, it is disruptive and is as, if not more likely

to move the chromosome to a poorer solution, so is only applied with a very low

probability.

33

3.7.1 Mutation and parameter encoding

While the standard binary encoding is simple to understand and decode, it has unde

sirable characteristics from the viewpoint of the GA which can make it unsuitable for

some applications such as numerical optimisation.

When a decimal number is represented using a binary encoding, the number of

bits which change between consecutive numbers is known as the Hamming distance,

and can vary widely from one bit to the full bit length of the number. For example,

to change from 0 to 1 only requires one bit to change, but 127 to 128 changes eight

different bits (01111111 to 10000000 for an eight-bit representation). This situation,

where adjacent gene values have a large Hamming distance between them, is known

as a Hamming cliff. If such a Hamming cliff lies between the current and optimum

values, then mutation will be unlikely to overcome it as it only changes a few bits per

generation.

There is an alternative binary encoding called Gray coding which overcomes this

difficulty by ensuring that consecutive numbers only differ by one bit. The difference

between the two encodings for the first 16 numbers is shown in Table 3.1. A binary

number can be easily converted to Gray coding by Exclusive-Oiling it with itself shifted

right one bit:

gray= bin A (bin~ 1)

To convert it back from Gray coding to binary, each bit is added to the one before it,

ignoring the carry:

(bino, bint, bin2, ...) = (grayo, grayo +gray~, grayo + grayt + gray2, .. .)

The major advantage of using Gray coding is that it is possible to move between

adjacent decimal values by flipping a single bit. This means mutation is always able to

'creep' from one value to the next by flipping a specific bit, although it is still possible

to move larger distances by flipping other bits.

34

I Decimal I Binary I Gray code I
0 0000 0000
1 0001 0001
2 0010 0011
3 0011 0010
4 0100 0110
5 0101 0111
6 0110 0101
7 0111 0100
8 1000 1100
9 1001 1101
10 1010 1111
11 1011 1110
12 1100 1010
13 1101 1011
14 1110 1001
15 1111 1000

Table 3.1: A comparison between the binary and Gray-coded forms of the first 16
numbers.

3.7.2 Other forms of mutation

It can be helpful for some applications to weight the probability of mutation along the

length of the string, perhaps to reduce the disruptiveness of sensitive regions of the

chromosome, or where the chromosome requires different forms of mutation at different

locations to maintain the validity of solutions. Altering the degree of disruptiveness

(Section 3.11.2), or dynamically changing the mutation probability as the run pro

gresses can also be beneficial. This could either be a simple reduction with time, or

more complex, such an increase if the GA fails to improve for a number of generations,

then a decrease once it begins to improve.

While it is difficult to predict what crossover and mutation rates are best for a given

problem, and indeed most optimum rates are determined through trial and error, if the

search space has relatively few peaks, then the weighting should generally be on the

crossover to ensure convergence, while for a hilly space, a higher mutation rate can be

useful to make the GA sample the space more widely and to allow it to escape from

local suboptimal peaks.

35

3.8 The Fitness Function

The fitness function takes the chromosome, extracts model parameters from it, passes

them to the model, and returns a value which is a performance or suitability measure

of that chromosome. The importance of choosing the correct fitness function cannot be

overstated. It is the only viewpoint the GA has of the space it is searching, and the only

performance measure of the solutions it has found. Not only does it therefore determine

what the GA is actually looking for, it also influences the speed of convergence and

how the selection mechanism performs. If the chosen fitness function makes the search

space appear very hilly, the GA is more likely to suffer from premature convergence,

whereas if it appears too flat, then the GA will not be driven towards the optimum

strongly enough, and will take a long time to converge.

3.8.1 Fitness Scaling

The values returned by the fitness function are usually a simple measure of the model's

performance, but may not be particularly suitable for direct use in the selection process.

For example, if fitnesses have a small range or a large offset, it reduces the relative

difference between individuals in the SRS algorithm and therefore also reduces selection

pressure. Alternatively, having too great a range can cause premature convergence

around any good members in the initial populations, so artificially scaling the fitnesses

to a suitable range can help the GA. The offset can be removed by translating the

fitnesses to a fixed lower bound, while the range can be adjusted by a power scaling to

increase or reduce it. If a ranking selection mechanism (e.g. tournament selection [51,

52]) is used, then the fitnesses' absolute values are irrelevant since only their relative

values are used to determine the fittest, so scaling is unnecessary.

36

3.9 Advantages and Disadvantages of the GA

A major disadvantage of conventional hill-climbing strategies is that they can become

trapped on sub-optimal peaks. Unless the search is started in the immediate neigh

bourhood of the optimum peak, it will not be able to find it. The GA is able to escape

from these sub-optimal peaks by the process of mutation, and by crossover between

dissimilar chromosomes.

Since the GA only uses point samples of the search space, it does not require any

gradient information. This means that it is possible to optimise complex models for

which analytical solutions are extremely difficult to obtain. The GA has a particular

strength in that it can be used for multi-criterion optimisation, automatically trading

off performances with respect to different criteria, a process which is described further

in Chapter 6.

Although the GA takes many fewer samples than a random or exhaustive search,

the fact that it still requires a great many function evaluations means that it will often

be much slower than standard analytical techniques where these exist.

The other main problem with the GA is that while it is statistically guaranteed

to find the optimum, in practice for more complex problems it will generally only

return a solution which approaches the optimum, except for simpler problems. If a

near-optimum solution is not good enough, then once the GA has converged, a hybrid

technique (such as a hill-climber) can be used to perform the final optimisation and

find the true optimum. This is discussed in Section 3.13. Alternatively, the GA could

be restarted using the previous best solution as a population seed. Ishibuchi and

Murata [53] went to the extreme of using a local search on every solution found by

GA.

37

3.10 Convergence Theory

While it should now be clear bow the GA works, it is perhaps not so obvious as to why

it works. There have been a number of attempts to describe and predict its behaviour,

the original being that of Holland's Building Block Hypothesis [47], although more

recent analyses [54, 55] suggest other mechanism can give more accurate predictions

of the GA's performance under some circumstances. His 'Schema Theory' predicted a

string's fitness by the bit templates or schemata (singular schema) it contains. The

templates are described by the ternary alphabet of {1,0,#}, where the'#' is a 'don't

care' symbol. For example, the schema {1##} would match any three-bit string with

the first bit set. A schema therefore describes a set of chromosomes with similarities

at a subset of the total number of bit positions.

Schema theory predicts that if a chromosome contains certain schemata it will have

a higher than average fitness, and a lower one if it contains others. During selection,

therefore, the higher-fitness schemata will tend to be propagated, while the poorer ones

will be lost, and by performing crossover these higher-fitness schemata can be brought

together to form even fitter individuals. Since crossover is very disruptive, it is found

that schemata whose fixed bits have a wide span are not propagated as well as shorter

ones. Under this scheme there are therefore some restrictions: the high-fitness schemata

should be short in order to reduce the risk of them being damaged during crossover,

and it must also be possible to predict to some degree the fitness of a chromosome

from just a small section of it. If this is not possible, then no short templates can exist

and the only good solutions will be either complete or nearly complete ones. Under

these conditions the GA does not perform well, so it is good practice to design a GA

around a chromosome in which related genes are adjacent, and there is no relationship

or interdependence between widely-separated genes.

Under schema theory, the GA implicitly processes many schemata in parallel as

each member of the population contains a large number of them. Since the G A is

trying to bring the high-fitness schemata together to form an optimum chromosome,

38

the population size should ideally be chosen so that after the random initialisation

it contains, on average, one copy of each schema, of which there exist a total of 38

for a chromosome of length B. Although there are more useful schemata in a larger

population, the minimum size increases slower than the chromosome length so a large

number of bits does not necessarily mean a punitive amount of storage or speed decrease

due to a huge population size. In general, the population size used is smaller than this

minimum size, but the GA is still able to perform satisfactorily.

As the cardinality of the alphabet used rises, so does the minimum population size

that is needed to contain, on average, at least one of each schema. For a floating point

GA, there are essentially an infinite number of possible schemata, so the GA should

require a vast population to even begin to work properly, as a normal population with a

binary gene will only contain a few of the possible schemata. Goldberg [56] speculates

that the GA builds up its own lower-cardinality 'virtual alphabet' from the features in

the search space, but the reality of this scheme is unproven.

Recently, doubt has been cast on the validity of the Building Block Hypothesis,

and a number of alternative approaches, e.g. using Markov chains [54, 55] , have been

proposed, although all have their faults, and the true nature of the GA's optimisation

processes remains unresolved.

3.11 Floating-point Chromosome GA

The emphasis so far has been on the original, and still most common, binary form of

the GA, but it is by no means the only chromosome encoding which has been used.

Other encodings, using integers [40] or real numbers [57, 58], have also proved suitable

for different applications. Some problems, such as numerical function optimisations

or scheduling are less suited to a binary representation, and can be more conveniently

encoded in higher-cardinality alphabets. This can allow each gene to represent a single

optimisation parameter directly, making it easier to write the fitness function, and

removing the need for decoding routines which add complexity and time to the fitness

39

calculations. Although Holland's schema theory predicts that a binary alphabet is the

best encoding for the GA, the successful use of other encodings has shown that this

prediction is uncertain and other processes may be occurring which allow the GA to

work successfully. The optimal encoding is therefore problem-specific.

In the optimisation of many real-world scientific and engineering problems, a real

coded chromosome is attractive due to the high accuracy of measurement which is

generally necessary, since it requires a very long binary string to obtain a high numerical

accuracy. By encoding such problems with floating-point numbers, they can be used

directly in the problem model which for complex problems requiring many function

evaluations can be a substantial time saving as no decoding is required.

Real-coded genes have further advantages in that they also avoid some binary

coding specific problems such as Hamming cliffs. Although Gray coding overcomes

this problem, it still requires many bits to achieve a high accuracy. For a floating-point

GA, mutation can perturb the gene about its existing value to different degrees and so

hill-climb towards the optimum. Another advantage is that the GA will converge faster

with a high-cardinality alphabet, which is helpful if the optimum is easily found, either

by the GA or an add-on hill-climber. It is still possible for the GA to be blocked (see

also deception in Section 6.4), which happens when the initial sampling of the search

space causes the GA to move towards regions which are blocked from hill-climbing

towards the optimum peak by either valleys or other, suboptimal peaks.

In order to use a real-coded chromosome it is necessary to adapt the GA to some

degree, as the binary crossover and mutation techniques mentioned above are not

suitable in their current form. The changes will now be examined in detail.

3.11.1 Floating-point Crossover

The floating-point GA adopted for this work was derived from that of Janikow and

Michalewicz [59], where the chromosome is regarded as a vector. This GA was specially

designed for numerical optimisation, and uses a vector-like chromosome of a string

40

of real numbers with a number of crossover methods. These utilise convex vector

combination of the chromosomes to generate new gene values and chromosomes. A

dynamic form of mutation is also used, which reduces the degree of disruption as the

run progresses to reduce the loss of good solutions once the population has converged.

Convex combination works as follows. First two parent chromosomes (vectors) are

selected, for example, a and b, where

a (3.6)

b {bt,IJ..!,~, ... ,b,..}

If a crossover point is selected at the third gene position, the offspring are given by:

c (3.7)

where p is a uniform random number in the range o-1. This results in two offspring,

mostly containing the characteristics of one parent, but with a degree of the other at

one gene position. This can be extended to cover more than one gene position to give

offspring with a greater mix of the properties of both parents. In all, five types of

crossover are used within the GA, and one picked at random for each crossover to be

performed:

Normal crossover: Strings are crossed the same way as in single-point binary, with

crossing points between genes, i.e. between a~;; and ak+l·

Multiple crossover: This is similar to multi-point binary crossover, with crossing

points selected as in the Normal crossover above.

Arithmetic crossover: This is the simple one-gene form of convex combination

shown in Equations 3.6 and 3.7.

Multiple Arithmetic crossover: Here several genes, selected at random, are crossed

as in Arithmetic crossover.

41

Gene one

Figure 3.2: Example Arithmetic crossover for a two-gene chromosome.

Whole Arithmetic crossover: This is a special case of Multiple Arithmetic cross-

over, where the entire string undergoes Arithmetic crossover.

It should be noted that neither Normal nor Multiple crossovers actually change gene

values, as they simply swap them unchanged between individuals. The three types of

Arithmetic crossover do introduce new gene values into the population.

An example of the effect of Arithmetic crossover for a two-gene string is given in

Figure 3.2, where gene two has been crossed. Figure 3.3 illustrates Whole Arithmetic

crossover for the same type of chromosome. It is clear from the positions of the child

chromosomes created in these figures (labelled c and d), that the action of both types

of crossover is to rotate the vectors around their average point, followed by a scaling

centred on this point. This closely mimics the effect that normal crossover has on

binary strings [60]. For three dimensional chromosomes (i.e. with three genes), the

effect is of a rotation and scaling around the central point of a cuboid.

42

~
~ 0.5

t::J

Gene one

Figure 3.3: Example Whole Arithmetic crossover for a two-gene chromosome.

3.11.2 Floating-point Mutation

The type of bit-flipping mutation used in the binary GA clearly has no analogous

equivalent for real genes. While it would be a simple matter to replace each gene with

a random number, this is very disruptive, and could easily destroy any good solutions

which have been found. A better alternative is to simply move the gene around its

current value, within any bounds which have been imposed, but this again has its

problems. The size of the movement must be big enough to allow the GA to search the

space effectively at the start of the run, without being so large that solutions are lost

after convergence. One solution to this, which was used here, is to start the run with

a reasonable size of perturbation so that the space is covered well, and then reduce

it progressively throughout the run so that solutions are not lost as the population

converges on the better regions of the space. It is possible to tune the rate of decrease

of the perturbation according to the problem in hand.

The method used here was to first produce a value dmpow which reduced exponen-

43

tially from 1 to 0 as the run progressed:

d (1
generatian) 5

mpow = -
maxGeneratians

It is possible to alter the rate at which the perturbation decreases by increasing or

decreasing the power term in this expression. This value was then used to generate a

randomly-distributed perturbation amount:

dmv = 1- (random(O, 1))dmpow
2

and this in turn was used to either increase or decrease the gene value within its limits

of Q-1:

{

oldValue + (1- oldValue) * dmv
newValue =

oldV alue - old Value * dmv

random(O, 1) < 0.5
(3.8)

otherwise

This had the effect of moving a gene's value a larger amount at the start of a run, but

rapidly reducing the range of the perturbation as the run progressed.

3.12 Other GA techniques

For some problems, such as fiowshop scheduling and routing which used list-based

chromosomes, the GA's performance can be improved by including another form of

gene manipulation known as inversion. Inversion takes a section of the chromosome

and reverses it, replacing it at the same position in the string. This can be very

disruptive to the building blocks in the chromosome, so is only applied with a low

probability, but can be instrumental in finding optimal solutions. It is however of little

use in numerical optimisation problems, where the meaning of a particular bit in the

chromosome is fixed.

The random nature of the GA has the disadvantage that it is possible for a good

solution to be lost if all copies of it are picked for crossover with inferior solutions. This

is especially true for new solutions whose fitness only improves slightly on the previous

best, where there may only be one or two copies in the population. In order to prevent

44

these solutions from being lost, a technique known as elitism can be used. Instead of

simply copying the newly-created population over the old one, they are both examined,

and one or more of the best solutions from the old population are copied over the worst

in the newly generated one, ensuring that the population always contains at least one

unaltered copy of the best solution found.

It has been shown that the GA implicitly processes many schemata in parallel, and

this can be extended by having several GAs running in parallel on the same problem,

either simulated on a single computer, or distributed over a network. At intervals,

copies of good solutions found by each GA are sent to the other GAs, which add them

to their own populations and continue processing. This has many advantages, more

solutions can be tried, a greater gene diversity can be maintained, each population

can converge to a different solution and still be aware of others by the input of new

solutions, and the effective population size can be much larger than is feasible for a

single GA.

3.13 Hybridisation

Although the GA is able to search large spaces very efficiently and escape from local

sub-optimal regions, its random nature means that it is not guaranteed to find an

optimum solution, even if it has converged to the high-fitness region containing it.

The GA can be helped to complete the optimisation process by the addition of a

hybrid search technique, such as a hill-climber. This can be used in a number of ways,

for example as a :final process to be called on once the GA has completed its run. This

approach assumes that the GA has converged on the locality of the optimum during

the run. Another approach, which was adopted for part of this work, is to call on the

local search if the GA has not made an improvement on the best :fitness it has found

for a number of generations in succession. This method is not reliant on the GA having

found the region of the optimum, and should merely provide a 'kick-start' to get the

GA working again by injecting a selection of good new genes into the population.

45

This hybrid approach to the GA has been successfully applied to many problems,

from optimising layouts to modelling metabolic systems [61, 62]. Hill-climbers that can

be used include the Simplex method for floating point genes, and bit-flipping for binary.

Krukowski and Kale [63] have shown bit-flipping optimisations to work successfully for

IIR filters.

The first bit-flipping hill-climber developed for use in the binary GA simply scanned

across the string, flipping each bit, and retaining a change if it increased the fitness.

This was repeated until no bit-flip caused an increase in fitness. It was realised that this

method always looked at each coefficient in turn, but as will be shown later, changing

one coefficient moves the position of the optimum for the others. This means that

the hill-climber finds the optimum value of the first gene with relation to the current

values of the other genes, and not the true optimum, and so on down the whole length

of the chromosome. Although applying the algorithm repeatedly might help, there is

no guarantee of finding any truly good solutions.

3.14 The Search Space

The search space is an important concept in GA theory. It relates the problem param

eters encoded in the chromosome with the complexity of the fitness function. By using

the fitness of a chromosome as a height, a contour map of the fitness function's output

can be drawn against the values of the genes within the corresponding chromosome.

The hilliness of this map, together with other analyses, such as whether it contains

discontinuities or other features, can be used to estimate the difficulty different tech

niques will have in solving the problem. Discontinuities and multiple peaks can cause

problems for hill-climbers and calculus methods, for example, while hill-climbers which

only optimise one parameter at a time will find it hard to move along angled features

in the fitness landscape.

The GA is generally able to work in hilly, discontinuous landscapes, but there are

other more subtle features which can cause it problems, such as a landscape where

46

it is only led towards the optimum by very small-scale structures, while the larger

scale features tend to lead away from the optimum. This particular effect is known as

deceptiveness, and is covered in more detail in Chapter 7.

3.15 Simulated Annealing

Hill-climbing is a well-known technique for finding optima in a search space, but which

solution it finds in a multi-modal space depends on where it is initialised. If its initial

point is not close to the optimum, depending on the nature of the space, it may never

find it at all. Using an analogy from thermodynamics, it is similar to quenching a

hot metal-the crystal structure formed under these conditions is the first low-energy

state that was found. Other, potentially lower-energy structures may exist, but it is

necessary to cool the metal slowly (or anneal it) to allow it time to search for the

lowest-energy state. There may even be substantial changes in structure as it cools,

reflecting a wide-ranging search for a stable, low-energy structure.

The technique of Simulated Annealing (SA) optimisation [33] attempts to model

this slowly-cooling approach instead of the rapidly-quenched style of the hill-climber.

SA usually works in a similar fashion to a hill-climber by looking around its current

position and always accepting moves to a better position. However, it differs in that

it also allows a proportion of moves to a worse position, which will allow it to escape

from its current optimum and search within another one. When metals are cooled, the

reduction in heat energy lowers its ability to make large structure changes, so it becomes

increasingly confined to its current position. This is reflected in the SA technique

by initially allowing many moves to worse positions, but progressively reducing this

probability as the number of iterations increases. This allows the SA to perform a

wide-ranging examination of the search space at first, but to increasingly concentrate

the search on any good areas it finds. The speed with which the range of the search

contracts is highly problem-dependent, and trial-and-error must be used to find a

sufficiently slow rate to allow an efficient search, while being fast enough for the result

47

to be generated within a useful time.

Depending on the implementation, SA may be statistically guaranteed to find the

optimum, but as this may not be probable within a suitable timescale, multiple runs

may be necessary. The SA could be restarted with the best point of the previous run,

or this point could perhaps be used to discourage the search from revisiting the same

optimum, thereby increasing the efficiency of the search.

The implementation of SA optimisation used in this work (33] was based on the

Simplex Method described in Sections 4.4 and A.2, and utilises a Simplex Method

hill-climber which has been modified to allow occasional moves to poorer solutions.

3.15.1 Applications to Filter Design

Simulated Annealing has been successfully applied to several aspects of filter design.

Pitas [64] presented a SA-based optimisation for the length of a median filter, which,

although it only had a small search space, indicates that SA is suitable for some filter

design tasks. Smith and Henderson [65] have applied SA to ordering the sections of

a cascade-realisation FIR filter, to optimise the roundoff noise. SA was found to be

able to find orderings close to the minimum possible, and to be usable in environments

where the search space was too large for an exhaustive search to be feasible. Chen

et a! [32] have used an SA-based technique to optimise adaptive IIR filters for system

identification, where hill-climbing techniques can fail due to the occurrence of local

maxima in the search space. PCAS filters with finite wordlengths have been designed

by Lawson and Wicks [29] using a binary SA.

3.16 Differential Evolution

Storn [66] made use of a crossover method similar to the Arithmetic Crossover above,

in his optimisation of IIR filters by Differential Evolution. This is a similar technique

to the GA, in which instead of selecting two members of the population to cross, the

coefficients of each member in turn are mixed with fixed proportions of those of the

48

best member and two other members of the population selected at random, to produce

a single offspring. The offspring is kept if it is a better solution than its parent.

The technique was successfully applied to the optimisation of a tenth-order IIR

filter cascaded with a fixed-coefficient FIR filter, where both the magnitude and group

delay responses were optimised by penalising the fitness function if a solution went

outside desired response templates.

3.17 Evolutionary Strategy

Evolutionary Strategy (ES) [1, 48] is very similar to a floating point GA, but gener

ally has no crossover, relying instead on just mutation and selection to perform the

optimisation. Franzen et al (67] compared the results of ES with Simulated Annealing

for designing FIR filters with quantised coefficients, and found both to have similar

performance, but neither performed much better than quantising the coefficients found

by standard techniques.

3.18 Genetic Programming

Genetic Programming (GP), made popular by Koza (68], is a means of optimising

mathematical functions to perform a particular task. Utilising tree representations of

the available operations (such as simple mathematical operators like *• /, + and - or

boolean operations like AND, NOT, OR) and the input parameters, crossover can be

represented by swapping 'branches' of the tree, and mutation by replacing an existing

operator with a different one. Computer programming languages such as LISP are

often used as their syntax is already in a suitable tree-like form.

Applications of GP to filter design have a rather different approach to those for GA

and SA in that it is not simply used for coefficient optimisation, but for functional and

structural optimisation. Keane et al (19] have used GP to optimise an impulse response

function which models an unknown system, and Rodrfguez-Vazquez et al (69] have

49

performed multi-objective system identification. while Uesaka and Kawamata [42] have

designed second-order filter structures with low coefficient sensitivity using automatic

GP techniques.

3.19 Tabu Search

Tabu Search is a sequential search technique introduced by Glover [70] in which

recently-visited solutions are made 'taboo' and cannot be revisited, thereby forcing

the search into new areas. Current solutions are transformed into a range of poten

tial new solutions, known as the neighbourhood. The transformation method must be

chosen so that the path between any two solutions can be followed by repeatedly ap

plying the transformation. The set of solutions within the neighbourhood is compared

with the tabu list of previously visited points, and forbidden solutions removed. The

next starting location is then picked from the remaining solutions, and its own neigh

bourhood examined. A variety of techniques have been proposed for picking the next

solution from the neighbourhood: an unvisited solution is always preferable, or if none

is available, a previously-visited solution can be selected according to how recently or

how often it has been visited [71].

Tabu Search has been used successfully by Traferro and Uncini for designing adap

tive filters with powers-of-two coefficients, which has a restricted search space [72]. For

filters with integer coefficients, and especially with full-precision coefficients, the num

ber of points in the tabu list will be extremely large as the number of solutions within

the search space is much higher-anN-bit integer can represent 2N values compared

to theN values of a powers-of-two representation of the same range. For a single 16-bit

integer range this gives a search space 216/16 = 4096 times larger. A 32-bit floating

point representation of a single number contains around 108 more points than the

powers-of-two representation, so the tabu list will also need to be orders of magnitude

larger. This may make the technique unsuitable for high-precision or high-order filter

optimisations due to storage and/or time constraints, as the time taken to compare the

50

solutions in the neighbourhood with those in the tabu list will rise linearly with the size

of the tabu list. Battiti and Tecchiolli (73] have proposed a potential solution to this

problem, by just using TS on a combinatorial representation to find promising regions,

with a local search performing final optimisation. The TS parameters are adjusted

dynamically in order for the search to be effective on a variety of problems.

Tabu search can also be used for multi-criterion optimisation, using an adaptation

proposed by Hansen (74], which enables it to return a range of solutions with different

performance tradeoffs, by weighting each Tabu Search within a population of solu

tions so that it tends to keep away from its neighbours, while moving towards better

solutions.

51

Chapter 4

Optimising Frequency Sampling

Filter Coefficients by Hybrid G A

4.1 Introduction

In this chapter, the first application of GAs to a filter design problem will be described.

A suitable optimisation problem will be selected, and the method of applying the GA

presented. Results are presented which lead to the publication of a paper covering this

work in the IEEE Transactions on Signal Processing [4].

4.1.1 Selection of FS filters for GA optimisation

In order to begin the investigations into the use of the GA, it was necessary to select

a filter type and optimisation problem to use as an initial vehicle. FIR filters were

chosen for their simplicity, using the Frequency Sampling design as a first step since

they only require the optimisation of a few numbers (the transition samples) to produce

a solution. It would also be possible to write a suitable fitness function to search for

optimal filters by optimising the extremal frequencies. Window method filters are less

suitable as they require the optimisation of mathematical functions, which is not easily

achieved by the methods under investigation. As floating-point GAs have been proved

successful in other areas, it appears to be a simple matter to list the transition samples

52

in a chromosome for the GA to optimise, and to produce a fitness function which

returns how close the frequency response is to a given desired response.

4.2 Use of the GA for FS filter Design

At this stage, both the problem, namely the optimisation of FS FIR filters, and a

solution, the GA, have been proposed. The combination of the two to form a useful

optimisation technique will now be examined. The following discussion covers the

optimisation of lowpass filters, but is applicable to all the standard frequency-selective

filter types.

When designing FS method filters, the values which need to be optimised are the

magnitudes of the transition samples. For a magnitude response with normalised units

rather than decibels, these samples have a range of Q-1 inclusive. These therefore need

to be encoded into a suitable chromosome for the GA to work with.

The first filter type selected was non-recursive filters using the OFT interpolation

method, and since the values to be optimised were floating-point and were used in a

full-precision calculation, a real-valued chromosome and GA were chosen. The chromo

some consisted simply of the transition sample values in order from pass- to stopband.

The GA used was derived from that of Janikow and Michalewicz [59] as described in

Chapter 3, but with some alterations and improvements which will be described later.

For a filter response to be acceptable, its magnitude response in the transition band

should decrease monotonically from pass- to stopband. To help the GA maintain this,

before each fitness calculation the transition samples are ordered so that they decrease

monotonically. This is necessary at each fitness calculation because of the disruptive

action of crossover and mutation, which can easily alter gene values and hence alter

the ordering of the transition sample values. The fitness function passes the re-ordered

chromosome back to the GA so that all of the chromosomes have the same transition

sample at the same gene position. This also means that the total number of solutions

which the GA has to search is reduced. For a filter with two transition samples, the

53

Figure 4.1: The shaded area is the disallowed region of the search space for a two
transition sample filter.

limitation that the second sample must be less than the first means that only half the

space is valid, as shown in Figure 4.1. In general, the proportion of the total space

which gives allowable filters is given by:

(4.1)

where Nt is the number of transition samples. For Nt = 4, p = 1/24 or only 4.2% of

the total space, dropping to just 0.83% when Nt = 5. Ordering the samples therefore

has the advantage of constraining the search to the region of the optimum, which is

increasingly attractive as the number of transition samples rises, although the corre

sponding increase in difficulty in finding the optimum means that the problem still gets

harder overall.

4.2.1 The Fitness Function

The performance measure adopted initially was that used by Rabiner, Gold and Mc

Gonegal [5] when producing their tables of transition sample values, namely the max

imisation of the minimum stop band attenuation. The fitness was simply defined as:

fitness= -20log10 (ds) (4.2)

54

where ds is the stopband ripple and fitness is the magnitude of the attenuation in

dBs.

4.3 Extensions to the Floating-Point GA

The specialised floating-point crossovers mentioned in Section 3.11 are not able to

produce offspring whose genes have values outside those of their parents. This means

that genes will always tend to move towards the centre of the search space after repeated

crossovers. This effect will be particularly damaging for those genes whose optimum

values lie towards the edges of the allowable range, namely 0-1. To counter this, the

crossover action was altered slightly to allow the genes to move apart on crossover as

well as together. If the chromosome in Equation 3.6 is crossed, instead of the results

shown in Equation 3.7, the new crossover produced:

c!
I {a1,aa,p.as + (1.1- p).ba, ... ,a.,} (4.3)

et; {bh iJ..l, p.ba + (1.1 - p).as, ... , bn}

where p is a uniform random number in the range Q-1. This extension made it easier

for the GA to find solutions which contained at least one transition sample with a very

high or low value. This becomes more of a problem as the number of transition samples

increases and the samples have to form a smooth transition from pass- to stopband.

4.4 Simplex method hybrid hill-climber

Early runs showed that the GA was only able to approach the optimum filter specifi

cation for filters with a few transition samples, and that for filters with four transition

samples or more, the best solution found by the GA became progressively poorer. To

help combat this, a hybrid hill-climbing search was added to the GA to perform the

final optimisation.

The local search technique which was adopted for the FS filter design GA was the

Simplex method hill-climber [33], described in Appendix A.2. This method was chosen

55

because it does not require gradient information, but, like the GA, it simply takes point

samples of the space. This means that it can be used to perform numerical optimi

sations of complex problems which are hard to analyse mathematically. Unlike many

other methods of hill-climbing it does not make use of any form of curve-fitting, such

as parabolic interpolation. To make use of parabolic interpolation, it must be known

beforehand that the space is at least a reasonable approximation to a parabola, which

implies some prior knowledge of the structure of the space, which is not necessarily

available. The Simplex method does not require any pre-knowledge of the structure of

the space, and can therefore be used on any problem without having to perform any

analysis of it to determine its suitability.

The Simplex method of hill-climbing uses a number of point samples equal to one

greater than the dimensionality of the space being searched (i.e. three points in 2-

D space etc.) These are initially set up at random around the best point found so

far by the GA, which is itself included in the set. These points now bound a solid

shape, which is analysed to determine the worst point and best face. A number of

attempts are then made to find an improved point in the space by performing a series

of geometric transformations on the worst point in the shape until it is improved or

cannot be improved. This process is repeated until either a fixed number of function

evaluations have taken place, or the relative difference in performance between the best

and worst points drops below a predefined level.

In practice it was found that once the Simplex local search had been used once,

it made such an improvement that the best solution then lay in a very small, highly

fit region, and crossover and mutation almost always moved the offspring to poorer

solutions. This often resulted in the GA being unable to perform satisfactorily once

the local search had been called on once, and the local search was then generally relied

on to perform the final optimisation.

56

4.5 Extensions to the crossover selection scheme

The five floating-point crossover types described in Chapter 3 fall into two categories:

those that simply exchange or swap genes between parents to produce the offspring,

and the three forms of Arithmetic crossover, which actually combine the parent chro

mosome's gene values in some way to produce offspring. The latter forms introduce

new gene values, while the former ones do not. In order to allow the GA to determine

which of the various types of crossover were of most use at each stage of the run, a

scheme was devised to dynamically adjust their selection probability according to their

performance as the run progressed. This replaced the original selection mechanism,

where the crossover type used was chosen using a uniform random scheme.

Under the new scheme, the initial selection probability of each type was set equal.

The total number of times each type of crossover was performed was then stored, along

with the number of times each produced at least one offspring with a higher fitness

than its parents'. The probability of each crossover type being selected was then given

by:
d.,

p, = 5
Er==t dr

(4.4)

where p., is the probability of choosing crossover type x, d, is the proportion of calls to

crossover method x that produced a fitness improvement over the parent chromosomes,

and the summation is over the five types of crossover. The sum of all five p., probabilities

equals one, and this allows the best crossover method to be selected dynamically during

the run by a roulette wheel selection. A scale is drawn up between zero and one, where

the gap between the divisions is proportional to each p,, as illustrated in Figure 4.2. A

random number is selected between zero and one, and depending on which division it

lands in, that crossover method is used. Here a random number of 0.4 selects crossover

method three. This method is similar to that of Davis [75], but does not include the

explicit hierarchical probability allocation for the crossover methods which produced

the parent chromosomes, and to those which produced their parents, and so on. The

approach used here was much simpler to implement but was found to react satisfactorily

57

0

Figure 4.2: Method used to dynamically select the crossover method to use.

to the changing crossover performances in this application.

When the number of transition samples (N,) is small (< "' 5), the Arithmetic

crossover types, which actually alter gene values, perform best early in the run. Later

in the run the other types (which simply exchange genes unchanged) and pure dynamic

mutation became dominant. This occurred because the GA is initialised with just a

subset of the total number of possible gene values. In order for the GA to perform

useful optimisations, it must use these relatively few values to generate a wide range

of others in between to allow it to search the space effectively, so the crossovers which

perform best initially will be those which introduce new genes into the population.

Once the population has converged to the region of the optimum, it mainly contains

genes which lie in the region of the optimum, so the crossover methods which only seek

to combine the existing gene values will increase in usefulness. After the population

has converged, crossovers which alter gene values, particularly those between dissimilar

parents, will often move the resulting chromosomes away from the region of the opti

mum, so their offspring will have a poorer performance than their parents, and their

selection probability will decrease.

58

Since mutation occurs at a much lower rate than crossover, if crossover and muta

tion both occurred on a single chromosome and the offspring improved on their parents'

fitnesses, then the credit for the improvement was given to the crossover. The muta

tion selection probability increased once the population had converged because of the

disruptive nature of the Arithmetic crossovers. Once the selection probability favoured

the non-Arithmetic forms of crossover, mutation became the main gene-altering action,

which was then able to apply small changes to the genes and so gradually improve their

fitnesses. The dynamic form of mutation, which reduced its disruptiveness as the run

progresses was used here, as it enabled very small changes to be applied after the

population bad converged, which were then not very disruptive.

When Nt is larger (> "'5), the GA found that all of the crossover types initially

have a similar performance, but the same crossovers and mutation take over later on as

became dominant for lower Nt. The gene values in the initial population are available

to more than one gene position due to the gene reordering which can occur. This

effect increases as Nt rises and the transition sample values get closer together. Since

the population therefore effectively contains more gene values than for smaller N11 the

simple action of swapping them will be more productive than before, and allows the

better initial performance of the non-Arithmetic gene-swapping forms of crossover.

These results have a parallel with the predicted action of the GA, where at the

initial stages of a run, the search should cover a wide range of gene values, while at the

end, once the search has converged to a good region of the search space, the emphasis

shifts to trying to bring good building blocks together to form a near-optimum solution.

The inclusion of this selection process allowed the Genetic Algorithm to make more

regular improvements in fitness, although it was still unable to find very good solutions

for filters with more than three or four transition samples as the optimum region was

so small that it was hard to hit it when performing crossover and mutation. As the

optimum was already being found, the best solution found overall did not improve

under this scheme, but more work was done by the GA for some filters.

59

Band edge Transition Attenuation Pass band

Filter type N sample no. samples (dB) ripple (dB)

Type-1, highpass 49 18 4 128.026 0.175

Type-11, lowpass 48 8 4 124.041 0.099

Type-1, bandpass 128 20,15 3 85.526 0.105

Type-11, bandstop 65 10,8 4 109.568 0.051

Table 4.1: Results for recursive-form FS FIR filters designed by GA. N is the number
of filter coefficients.

4.6 Results for FS filters

Some example filters designed by the hybrid GA-Simplex method are given below, in

Figures 4.3-4.6. Information about these filters is summarised in Table 4.1. The GA

was able to find filters with a performance which at least equalled those tabulated by

Rabiner et al [5]. The crossover probability was 0. 7 and the mutation probability was

0.01, the population size was 30, and the GA was run for 1,000 generations. This

relatively high mutation rate did not cause excessive damage to the solutions found

as the effects of the dynamic mutation method decreased rapidly as the number of

generations increases.

Further results are given in Tables 4.2-4.6, comparing results from the hybrid GA

with those of Rabiner et al [5] for a range of lowpass filters. As before, all runs

were for 1,000 generations, with mutation and crossover probabilities of 0.01 and 0.7

respectively, and a population size of 50.

The improvement of the maximum and average fitnesses with generation can be seen

in Figure 4.7 for a typical run to design a Type-11 highpass filter with N = 89, a narrow

stopband of three samples, and five transition samples. The run of 1000 generations

was completed in around four minutes, although a near-optimal solution was found

after about generation 400. The regularly-spaced peaks in the latter three-quarters of

the graph appear when the local search routine was called after the Genetic Algorithm

had failed to improve the best fitness for 20 generations. The Genetic Algorithm is

60

Source I Attenuation I TS 1 TS 2 TS 3 TS 4

Rabiner 127.367 0.71883166 0.25469056 0.03717696 0.00131836

GA 146.099 0.703932 0.233668 0.030297 0.000877

Table 4.2: Comparison of results for a Type-I, N = 16 filter, with a passband width of
1 sample and 4 transition samples.

I Source I Attenuation I TS 1 TS 2

Rabioer 67.131 0.59911696 0.0937500

GA 67.204 0.599416 0.109632

Table 4.3: Comparison of results for a Type-I, N = 33 filter, with a passband width of
3 samples and 2 transition samples.

I Source I Attenuation I TS 1 TS 2 TS 3

Rabiner 88.256 0.72436684 0.25203440 0.02576904

GA 89.591 0.723101 0.249866 0.025017

Table 4.4: Comparison of results for a Type-1, N = 65 filter, with a passband width of
8 samples and 3 transition samples.

I Source I Attenuation I TS 1 TS2 TS3

Rabiner 94.764 0.67475127 0.19093541 0.01556396

GA 94.994 0.664858 0.177726 0.012207

Table 4.5: Comparison of results for a Type-1, N = 125 filter, with a passband width
of 1 sample and 3 transition samples.

I Source I Attenuation I TS 1 TS2 TS 3 TS 4

Rabioer 108.297 0.82096794 0.40820066 .09324160 0.0606079

GA 111.829 0.81153 0.392362 0.085818 0.005236

Table 4.6: Comparison of results for a Type-1, N = 128 filter, with a passband width
of 16 samples and 4 transition samples.

61

0

-50

~
c
0 -WO

-~
c
1:l
<

- 150

-200
0

Normalised frequency
0.5

Figure 4.3: Type I, Highpass FIR filter with four transition samples.

0

-50

~
g
"i

-lOO
::>

!
-150

-200
0 Normalised frequency 0.5

Figure 4.4: Type II, Lowpass FIR filter with four transition samples.

62

0

-50

~
"' 0 - 100

·p
~
!3
t::
<

- 150

-200
0 Nonnalised frequency 0.5

Figure 4.5: Type I, Bandpass FIR filter with three transition samples.

0

-20

-40

~
-60

·i -80

§ -100
<

-120

-140

-160
0 Normalised frequency 0.5

Figure 4.6: Type II, Bandstop FIR filter with four transition samples.

63

able to find the area of the optimum fairly quickly, but has difficulty finding very high

fitness solutions within the very small area of the peak, as crossover is likely to throw

the offspring into comparatively very poor regions. The Genetic Algorithm is therefore

used alone for the first quarter of the run, after which the hill-climber is able to make

substantial improvements.

It has been found that this technique is generally very robust for filters with up

to six transition samples, taking an increasing length of time as the number of transi

tion samples rises. For filters with up to around four transition samples, the Genetic

Algorithm is able to find good solutions very quickly, without the intervention of the

local search. For five or six transition samples, the Genetic Algorithm performed a

useful amount of improvement, although not to a good performance, while the local

search was able to complete the optimisation. For more transition samples (up to ten

were used), the hybrid Genetic Algorithm was only able to perform a small amount of

optimisation, from which the local search was also unable to find the optimum within

a reasonable time. Improvements in the speed of personal computers may, however,

make the technique more viable.

The hybrid Genetic Algorithm has been able to produce results which range from

equalling the performance of those in the literature, to improving on them by up to

around 20dB minimum stopband attenuation, as tabulated on page 61. However, its

main strength lies in the fact that it can quickly produce untabulated filter coefficients,

which are much more useful and will have a better performance than those found

by interpolation of the published results. It is also able to design filters with more

transition samples, showing that the hybrid Genetic Algorithm is a suitable technique

to use for designing this type of Finite Impulse Response filter, although the GA alone

is of little value, and a straightforward hill-climber could be used alone with equally

good results.

64

160

140

-rg 120
c:
0
-~ 100
j
c::
Q)

~ 80 -1/}

$ 60
c:
u: 40

20

0~--------------~----------------~
0 500

Generation
1000

Figure 4.7: Improvement of the maximum (upper line) and average (lower line) fitnesses
with generation for a non-recursive Type-II filter.

65

4.6.1 The FIR Filter search space

In order to understC~.nd the problem more fully, and to enable a better understanding

of the GA's performance, data was collected from the search space that the GA was

searching. Since we are using a real-coded chromosome, the search space and parameter

space are actually the same for this problem. As has been shown, the actual proportion

of the total space that the G A is restricted to shrinks quickly as the number of transition

samples rises, although it was discovered that the search space becomes more difficult,

as the high-fitness region becomes proportionally smaller.

For a single transition sample, it can be seen (Figure 4.8) that the general shape

of the search space with the chosen fitness function is a concave peak, a characteristic

shape which was to recur in the structure of the higher-dimensional surfaces. In the

case of a two transition sample filter, the surface is given in Figure 4.9. The peak can

be seen to lie on a straight concave ridge, whose cross-section is also concave. The true

optimum point on the ridge can be seen to lie close to the edge of the search space, a

property which initially caused the floating-point GA some problems, as the original

crossover techniques tended to move offspring towards the centre of the space, and not

towards the edges, as shown previously in Figure 3.2.

When the three-dimensional case is examined, it can be seen that there is a high

fitness plane running through the permissible area, with a concave cross-section; within

this 2-D high fitness plane is a high fitness line, along which lies the optimum solution;

again, both have the same shape cross-section. The unimodal nature of this space

indicates that a pure hill-climber should be able to find the optimum. The hill-climber

used by Rabiner, Gold and McGonagal optimised each parameter in turn, holding the

others fixed, but the angle between the high-fitness ridge and the axes means that

many small steps parallel to each axis in turn will be required to reach the optimum.

Other similar techniques which rotate the axes to align them with the best direction to

climb in require the calculation of gradients which may be difficult or time consuming

for complex models. Curve fitting methods such as parabolic interpolation fail for this

66

Transition sample value

Figure 4.8: Search space for a one transition sample FIR filter.

Figure 4.9: Search space for a two transition sample FIR filter.

67

Figure 4.10: Search space for a two transition sample FIR filter with additional con
straints.

problem since the space becomes an increasingly poor approximation to a parabola as

the optimum is approached. The Simplex Method makes no such assumptions and can

move in any direction, so was able to work successfully in this type of space.

In order to constrain the GA still further, filters in which the interpolated response

did not change monotonically between the pass- and stopbands were also rejected. This

reduced the allowable region still further (Figure 4.10), but this did not help the GA at

all, as the optimum is now on the very edge of the allowable region. The action of the

standard form of floating-point crossover was to move points together, which makes

it difficult to find such points. The extended form of crossover used here was able to

move the offspring to regions outside those bounded by the parents, so it should have

been more able to find points on the edge of the allowable region. This is however

still not able to perform well, as the optimum lies so close to the edge of the allowable

region that it is hard for crossover to hit it and not go too far and into the disallowed

region. Figure 4.11 compares the increase in fitness with generation for typical runs of

constrained and unconstrained optimisations of an 68-coefficient, six transition sample

lowpass filter, showing that the constrained optimisation has a lower performance.

68

20

110

110

1-=edl

11 2t 81 4t 61 6t 71 6t 91

Galerallon number

Figure 4.11: Improvement of the maximum constrained and unconstrained attenuations
with generation, for a non-recursive Type-1 lowpass filter.

4.6.2 Concurrent Optimisation of the Wordlength

In order to integrate a further filter design step, the fitness function for optimising

recursive filters was extended to incorporate the finite wordlength effects of coeffi

cient quantisation by including an extra gene in the chromosome which determines the

wordlength at which the genes will be decoded. This allows the Genetic Algorithm

to search for the minimum wordlength necessary to achieve a given filter specification

simultaneously with its coefficients. Mixed-integer programming has proved successful

at optimising quantised coefficients [76], although separate runs are required for each

word length under investigation. Stu bberud and Leondes [77] have devised a Lagrange

multiplier-based method for designing Frequency Sampling filters which also accounts

for finite wordlength effects, but only approximates linear phase. Our approach allows

the Genetic Algorithm to search for the minimum wordlength and optimum coefficients

for linear-phase filters simultaneously, with no user intervention.

Since we are using a real-coded chromosome with genes in the range 0-1, the

wordlength gene must be decoded to give an integer wordlength, which is performed

by scaling it up to (}-24 and taking the nearest integer. The real-coded genes are then

69

quantised to this wordlength before being used to calculate the filter response and

then fitness. This simplifies the search by limiting the number of points the Genetic

Algorithm has to examine. It has the disadvantage that the Simplex hill-climber is less

effective, because the search space is now made up of a large number of flat regions.

This is due to the quantisation of the coefficients causing finite ranges of the floating

point gene values to be interpreted by the fitness function as having the same value,

so all coefficient values in this range will have the same effect on the filter response.

At the beginning of a search, the hill-climber is able to perform well because from a

large scale perspective the surface is smooth, however once the search contracts around

a good region, the small plateaux become increasingly apparent, and eventually the

search cannot gain any information about the direction of the optimum and so is un

able to reach it. The Genetic Algorithm is still able to perform successfully in such

a space (which resembles the de Jong Genetic Algorithm test function f3 [48]}, as it

only relies on point fitness samples and is unaffected by discontinuities or perfectly

flat areas. This implies that more reliance will be placed on the Genetic Algorithm to

perform a good optimisation since the Simplex will be less effective here.

When calculating the filter response, in order to maintain filter stability, the radius

was reduced to one less the quantisation interval:

(4.5)

where B is the wordlength. The fitness now has to take account of both the magnitude

response and the wordlength, with the emphasis on the former since this constraint

should be satisfied regardless of the wordlength. To this end, the following scheme was

devised.

Firstly, the normalised magnitude response is examined in both pass- and stopbands

to see if it fits within the desired limits. If it does to within 10-5 , which corresponds

to a deviation of only around 0.3dB from a desired attenuation of 70dB, then the basic

fitness is set to 105 , otherwise it is set to the reciprocal of the normalised deviation.

This gives a main fitness range of Q-105 , for the magnitude response, and is flat (at

70

105) for all filters fitting within the desired specification. By having all satisfactory

solutions return the same fitness it means that the Genetic Algorithm is free to return

a solution which only just fits the design specification, leaving it more freedom to

reduce the wordlength. To account for the wordlength, a further term is added to

this, consisting of 25 minus the wordlength. This overall fitness function therefore has

extra structure, especially within the optimum peak region, which allows the Genetic

Algorithm to search for the minimum wordlength. The overall fitness function can be

written:

{

(25- B)+ 1/emo.:J;
f(x) =

(25- B) + 1/10-5
(4.6)

where B is the wordlength, and emo.:J; is the maximum absolute error between the

normalised filter response and the desired response in the pass- and stopbands.

This approach places the major emphasis on the optimisation of the magnitude

response, and once this has been achieved, the effect of the wordlength dominates

(within the optimum fitness 'plateau'). Other weightings have been tried but these were

found to allow the Genetic Algorithm to perform efficiently, without the intervention

of the Simplex local search.

Results for a typical test run are given below in Table 4. 7, for a 49-th order, four

transition sample lowpass filter, with a bandwidth of 0.25. The Genetic Algorithm was

able to fit to the desired specifications with coefficients quantised to a wordlength of

only six bits. The full-precision fitness function (in which the Genetic Algorithm only

seeks to minimise the stopband ripple) was able to find a solution with much greater

stopband attenuation as the last transition sample was able to have a much smaller

non-zero value, as shown in Table 4.8. The full-precision fitness function used the same

radius as the 6-bit solution, and the frequency responses of the quantised filter is shown

in Figure 4.12. Advances in the speed of personal computers means that an exhaustive

search is now feasible even for a 4-transition sample, 16-bit filter, with a total search

space size of 4 · 216 = 262, 144 filters.

71

I Desired I Quantised I Full-precision I
Passband ripple (dB) 0.1 0.058 0.129

Stopband attenuation (dB) 77 82.96 117.26

Wordlength - 6 -
Radius - 0.984375 0.984375

Table 4.7: Desired and optimised specification for a quantised-coefficient and full
precision filter. The full-precision design uses a maximum-attenuation fitness function.

I Quantised I Full-precision I
0.875 0.785269

0.515625 0.348808

0.15625 0.065764

0.015625 0.003069

Table 4.8: Transition samples for the filters described in the text and Table 4.7.

0

.....
~

·i
~

-50

-100

Normalised frequency

Figure 4.12: Frequency response of a quantised coefficient FS filter designed by GA.

72

4. 7 Conclusions

It has been shown that the GA was able to discover reasonable solutions on its own for

filters with a low number of full-precision transition samples, but that for filters outside

this limited specification its performance was poor. The underlying problem is that the

GA requires a chromosome from which you can take a portion and use that to make

a prediction about the fitness of the whole chromosome. In this case, when there are

only a few transition samples, it easier to do this as the whole chromosome is small, but

when the number of transition samples rises, it becomes increasingly difficult, because

the filter response depends on the whole set of transition samples together, and it is not

possible to predict the filter response from just one or two adjacent transition sample

values.

The addition of a hybrid hill-climber produces excellent results because it is highly

suited to this kind of optimisation problem. Since there is only a single peak, the search

space is unimodal and running a hill-climber from any point in the search space will

always find the optimum. This finding, together with the massive speed increases in

personal computers means that it is no longer necessary to rely on the published tables

of Rabiner, Gold and McGonagall [5] to find FS filter coefficients, as the coefficients

of any Frequency Sampling filter with up to perhaps seven or eight coefficients can be

found in a few minutes. However, for the vast majority of applications, four or five

transition samples is adequate, so this restriction is not a problem, and the GA/Simplex

method is an ideal technique.

The results found by the GA alone for quantised-coefficient recursive filters were

reasonable due to the smaller search space, while the Simplex search was less efficient

due to the quantised nature of the search space. However, as the calculations used

to find the filter responses were full-precision, the coefficients cannot be assumed to

be optimal for a system where the calculations are quantised throughout, and a fuller

analysis would have to be added to the fitness function before the results were fully

representative of the optimisation of a fixed-precision filter. They do however show

73

~ "I - ~1--' ~ ;;. , :- -_ ;--r- 11 7 ,-~

I - '

I
I -

:that the GW appears:to l:>e s1,1itable for optirmsitig, the coefficients of this kind :oHilter.
=-·,

'7.4

Chapter 5

IIR Coefficient Optimisation by GA

and SA

5.1 Introduction

Having shown that the GA is able to optimise a limited range of quantised-coefficient

FIR filters, the next step taken was to select a further optimisation task, in order to

extend and expand the investigation into the capabilities of the GA with respect to

the design of digital filters.

It was decided to examine an IIR filter, as these have a more complex search space

and would provide a harder test of the GA's abilities to perform suitable optimisations.

The IIR not only provides the opportunity to optimise the coefficients of a different

type of filter, but also the finite wordlength effects, which have a far greater effect on

IIR filters than FIR.

The filter structure first selected for optimisation was cascaded second-order canonic

(or 'direct form 2') sections, as in Figure 2.6. First-order sections could be obtained by

setting a2 = 0 and b2 = 0, but these were not included explicitly as a separate section

type for simplicity.

75

5.2 Use of the GA

The original floating-point GA, that had been used to optimise the coefficients of the

FS FIR filters, was used to optimise the coefficients of HR filters made up of cascaded

second-order canonic sections as shown in Figure 2.6. By choosing this IIR filter

structure, with complex pole-zero pairs, the original floating point GA only needed to

optimise four numbers per section, namely the radius and positive angle of one pole

and one zero, as the complex conjugate pole and zero could be easily obtained from

these. The chromosome used genes in the range Q--1, which were scaled to the required

ranges, namely 0.5-1 for the radii, and !Hr for the angles.

The results from this approach were unsuccessful, due to the nature of the search

space. This only contains useful information which can guide the GA around the

optimum regions themselves, so a random initialisation and initial selection would

produce a population with no coherent good genes. It was also found that the high

fitness region around the optima only covers a small proportion of the total space, as the

fitness of a solution drops rapidly as a good solution is perturbed. This proportion also

decreases as the number of sections increases. This means that the initial population

of random points contains little coherent information about the good regions that the

GA should be exploring, so it cannot perform adequate optimisation. The inclusion of

the Simplex method hill-climber was successful in improving the best solution found if

the GA was very close to the optimum, but cannot be used on its own as the search

space has multiple peaks. The inclusion of on-the-fly quantisation of the coefficients

was unsuccessful in improving the GAs performance, and reduced the quality of the

best solution found as the Simplex search cannot be used with quantised values.

Since the GA was either very slow or unable to reach the region of the optimum, and

very fast methods of designing IIR filters, such as the BZT, are readily available [11], it

was decided to use a BZT design as a seed for the GA. Initially a single quantised BZT

design was used, but it was found that this solution immediately overran the population

as its fitness was far higher than any of the random solutions in the first population,

76

and the GA did not progress. The initialisation was therefore changed to seed the GA

with BZT solutions which had been perturbed by a random amount of up to 5%. This

led to a much better performance by the GA, even though the final coefficients were

often quite different to those it was seeded with. Arslan and Horrocks' [78] similar

approach to IIR optimisation also found that it was necessary to initialise the GA

with perturbed copies of quantised, full-precision coefficients. A GA-based method for

finding the best way of quantising full-precision lattice and direct form coefficients has

been developed by Aketa et al [79]. Although this does not extend the search to the

total coefficient optimisation investigated here, it does have the advantage of being

able to weight the performance deterioration to minimise its effects across a specified

region.

It was decided that a better approach might be the direct optimisation of quantised

coefficients, as the GA theory Chapter 3 predicted that a binary-coded GA should be

most efficient. To this end, a binary-coded GA was written with the same aims as the

first, real-coded one. The program was written to explicity accept even-order filters

only, although first order sections could be generated by setting a2 and b2 to zero.

This binary GA was used to optimise the four variable coefficients (two a and two

b, as a0 is always one when complex conjugate pole and zero pairs are assumed) of each

section by using a chromosome of length 4B N /2 where B is the word length (number of

bits) of each coefficient, and N is the order of the filter. The fitness function extracts

them from this chromosome in order to calculate the filter's response and so the fitness.

In order to add flexibility to the design process while retaining the ease-of-use approach

we are aiming for, the order of the filter could be specified in two ways: either the user

can specify the number of second-order sections to use, or the GA can use the order

suggested by the BZT, rounded up to an even number as we currently only use second

order sections. Using the order suggested by the BZT will in general enable the GA to

find a solution fitting the design specification, although if the tolerance is very tight,

the coefficient quantisation may push the filter into instability. This means that the

GA will be unable to find a suitable solution, so the user will have to increase either

77

the order or wordlength until a solution can be found.

The chosen fitness function was:

(5.1)

where tmu.z is the maximum error in the frequency response across the stop- and pass

bands, M is a sca.ling factor, and u!. is the roundoff noise gain of the filter. Both the

error and noise terms are limited to a value of w-6 , although the noise is never this

low in practice. The limiting of the frequency response error means that once a filter

has been found with a suitable response, the fitness function is simply dependent on

the noise factor. It was hoped that this would make it easier for the GA to find a

low-noise filter, but this was not found to be the case, as described below. Filters with

any section whose b coefficients lay outside the stability triangle of:

0 < lb2l < 1

lbii < 1 +~

were immediately discarded with low fitness.

5.3 Results

It was found that the GA only performs well and finds filters within a given specification

for very loose tolerance filters, i.e. filters with wide transition widths or low desired

attenuation. This poor performance is discussed further in Section 5.3.1, which looks

at the nature of the space that the GA is searching. The connection between the a and

b coefficients and the filter response is not straightforward, and there is a high degree

of nonlinearity. As the specification becomes tighter, the performance drops off as the

search space gets harder.

A second approach to the optimisation problem was used to test that the filters

were achievable, namely Simulated Annealing (SA) [64]. SA is a hill-climbing technique

which also allows occasional moves to a poorer solution, thereby permitting the search

78

Genetic Algorithm

Simulated Annealing - -

Unperturbed BZf

0

-20

,.....

~ -'10

8
"::1 -60

j
< -80

-lOO

-120
0 0.5

Normalised frequency

Figure 5.1: Comparison between the frequency response for fixed wordlength filters
designed by SA, GA, and BZT.

to escape from local minima. The degree by which the fitness can worsen decreases

over time, which allows SA to look widely over the space initially, but confines it more

closely to the peak or peaks it finds as time progresses. The implementation of SA that

was used is derived from the Simplex Method [33], and used quantised coefficients.

Figure 5.1 shows the filter responses for a fixed wordlength filter designed by SA,

GA, and the filter obtained by quantising the coefficients as found by the BZT. The

GA was run with a population size of 40, mutation and crossover probabilities of 0.005

and 0.6 respectively, for 3,000 generations. It can be seen that the BZT solution had

the highest attenuation, followed by the GA and then the SA, while the GA's passband

ripple of 0.27dB was larger than the BZT solution of 0.103dB. In fact, the SA solution

was only just within the requested tolerances of 50dB attenuation and 0.1dB passband

ripple, which gave it more freedom to reduce the roundoff noise gain, which was an

order of magnitude lower than for the other two methods.

Although the results are all similar, the better performance of the SA suggests that

79

there might be some problems with this GA approach: firstly, the fitness function may

not be suitable, or secondly, the GA may not be as suitable for this problem as SA.

In order to determine which is the case, a future investigation could alter the fitness

function to penalise filters whose responses lie far from the desired frequency response

in either direction, as this can reduce the performance of the filter in other respects.

To remove the dependency on the combined magnitude response/roundoff noise gain

fitness function, the use of an extended GA to produce a range of solutions with varying

tradeoffs between the two criteria will also be investigated (see Chapter 6).

The poorer performance of the GA is also influenced by the hard search space used

by the fitness function, which is derived from the minimax error from the desired filter

response. It has been found that the mean square error between the filter response and

the desired response is generaUy used as a measure of performance [21, 80], which is

an easier problem as there are more possible filters which give the same mean square

error, so finding one with the optimum value is more straightforward.

5.3.1 The IIR Filter Parameter Space

In order to determine why the GA performed poorly far from the optimum, the param

eter space was examined to determine its characteristics away from the optimum. The

search space for a cascade structure IIR filter is known to be generally multi-modal [32],

and Chellapilla et a)'s investigation [24] showed that higher-order cascaded filters have

more local minima, which will hamper the search.

The search space was examined at two points: the BZT solution with parameters

moved at random by up to 5%, and purely random genes. Since the IIR chromosomes

have many more genes than the Frequency Sampling FIR, it was decided to examine

only slices through the search space, by fixing all but two genes and producing a fitness

surface by varying the other two.

For the filter with 5% perturbed BZT coefficients (Figure 5.2), the surface has two

clear peaks, one narrow, the other wide and flat. The best, narrow peak has a much

80

lower fitness than for the quantised BZT solution.

When the gene values are completely randol!l (Figure 5.3), the peak fitness drops

dramatically, and the surface becomes highly multi-modal, but with little variation in

peak size. This means that far from the optimum, the GA has no useful information

to go on, so it wiJI be unable to function properly. A more serious problem is that

the highest peak for one pair of genes moves as other gene values are altered, e.g. by

crossover, so as the GA moves one gene towards its own optimum, the optimum value

for others can move. This makes it harder for the GA to operate, as its targets are

continuously changing as it runs, and it cannot build up a good set of genes as what

defines a 'good' gene is also continuously changing.

For the pole position genes the effects are less severe, although the peak fitness

reduces and extra peaks appear as the coefficients move away from their BZT-calculated

values.

It is clear from these surface plots why the GA needs seeding with a good solution,

such as that from the BZT, in order to reach a region of the search space with enough

large-scale structure to allow it to search effectively. In future work it might be more

effective to use the GA to optimise the filter structure, and use the BZT to generate the

corresponding filter coefficients, from which the frequency, phase, and noise responses

can be determined and used to calculate the fitness.

5.4 Discussion and Conclusions

As mentioned above, the randomly-initialised GA was not able to find suitable solutions

due to the nature of the search space. In a similar fashion to the FS FIR filters, for the

GA to be successful the chromosome representing the filter coefficients must be able

to be broken down into smaller parts which can be used individually to predict the

filter response. The chromosome used here, although it uses the pole-zero radii and

angles, which have a more direct correspondence to the response of their second-order

section than its a and b coefficients, still does not fulfil that criterion. This is due to

81

Frtri9Sll).25

0.2

0.15

0.1

0.05

0

50

Figure 5.2: An example slice through the search space for a sixth-order BZT solution
IIR filter, perturbed randomly by up to 5%.

FrtnM202
0.0201 lo '--¥<!1'.:'-!<,..

0.02 ""'""' ,
0.0199
0.0198
0.0197
0.0196
0.0195
0.0194
0.0193

50

Figure 5.3: An example slice through the search space for a sixth-order random coef
ficient IIR filter.

82

the nature of the digital filter itself, which is dependent on its entire set of coefficients,

taken together; it is not possible to predict a filter's overall response from a small subset

of its coefficients or pole-zero positions, so neither can its fitness be so predicted. This

leads to the GA being unable to determine if any part of a particular chromosome is

better than the corresponding section of any other chromosome, so it cannot determine

which of the randomly-selected initial population has suitable genes to carry on to the

next generation, and the results are poor.

When the initial population is seeded with a BZT solution, the GA has a few good

chromosomes, and hence genes, to work with, and it is able to make some progress,

but again, as it relies on being able to predict a filter's fitness from a section of its

chromosome, it is not able to work very efficiently. Although the GA was run until

no improvements had been found for several hundred generations, time limitations on

the maximum number of generations could have limited the GA's effectiveness, which

future increases in computing power could overcome.

SA does not need to be able to perform the same performance prediction and simply

looks at the performance of the chromosome as a whole. It is therefore able to perform

more effectively in this situation than the GA, and, as was shown in Figure 5.1, is able

to find a suitable solution which trades off the frequency and noise responses in the

best way-the frequency response only just fits within the desired response, leaving

more freedom for the noise to be reduced. As the performance with respect to each

criterion has to be traded off against the others, this is the best possible result.

The GA- and SA-based approaches have the advantage of flexibility over a BZT

approach, which requires that an analogue filter be found with the desired response,

which may not be possible. Using the GA or SA, only a near approximation needs to

be found by BZT, which can then be further optimised towards any desired response.

The initial results presented here suggest that, although the GA produced encour

aging results, SA is probably the better technique. Further investigations into the use

of SA techniques would be useful in determining its suitability over a wider range of

IIR filter designs.

83

Chapter 6

Multi-criterion Optimisation

6.1 Introduction

The GA and SA techniques which have been used up to now have been strictly single-

criterion optimisers. Although both the magnitude and noise responses were optimised

by a GA in the previous chapter, this was achieved by simply adding the two measures

together. The GA is, however, able to be extended in a way which could make it

especiaUy useful for filter design, by allowing it to optimise a soluti()n with respect to

several criteria simultaneously. As was seen previously, the filter design process involves

several interacting steps, each of which can affect the filter's performance with respect

to any of the others. It is possible to write the GA in such a way that it examines

more than one performance measure at once, and attempts to generate either one

compromise solution or a set of solutions with varying trade--offs, from which the user

can select one.

6.2 Techniques

A variety of methods of performing multi-criterion optimisation (MCO) wiU now be

examined, and their applicability to filter design analysed.

84

6.2.1 Weighted sum of fitnesses

This is the simplest form of MCO, and does not require any changes to be made to

the standard single-criterion form of the GA, as it takes place wholly within the fitness

function. Instead of the usual single performance measure, a number of them are taken

in order to determine the chromosome's performance with respect to each criterion. In

order to use these values in a single-criterion GA, they are then combined into a single

weighted sum:

Fitness= Wt.ft + W2-h + ... + WN.fN

where Wi is the weighting and /i is the fitness with respect to criterion i. This sin

gle value is then passed back to the GA, and used in the normal way to decide the

individual's fate.

This method has the great advantage of simplicity, but it is not guaranteed to

produce the desired solution without a great deal of user intervention. It is necessary

to perform an iterative optimisation of the weightings, by running the GA, examining

the solutions found, and then adjusting the weightings repeatedly until a suitable set

of weightings is found.

This method is feasible for a single-purpose GA, which is only optimising two cri

teria, but for more complex applications the rapidly increasing difficulty of finding the

correct weightings makes it increasingly unsuitable. This is especially true for a prob

lem where the range of fitness measures is not known or is unbounded. While it may

be possible to apply some additional meta-optimisation technique to the weightings

to find the best set, this would add a large amount of complexity to the optimisa,..

tion. It also has the disadvantage of only returning a single 'best' solution, with a

single performance trade-off, when a variety of solutions with differing trade-offs exist.

The following techniques are designed to search for this set of solutions, known as the

Pareto-optimal or Non-dominated sets (POS, NDS).

85

6.2.2 The Paret~optimal set

The weighted-sum approach described above finds a desired solution by the repeated

adjustment of the weights applied to each criterion, and so only returns a single solu

tion. Since, however, there are a range of solutions with different trade-offs, a better

approach might be to find the best set of solutions, and allow the user to pick the

most appropriate for their application. This not only removes the need for most of the

user intervention, but also automates the trade-off process, turning a complex iterative

process into a simple single-step one.

When using a model in which several performance measures are being optimised,

it will often be the case that these will not be independent, so a change to the chro

mosome which alters the performance with respect to one measure will also alter the

performance with respect to another. An example of this might be a filter in which

the order and stopband ripple are both being minimised. A low order filter is not able

to achieve such a low ripple as a longer one, so there is a conflict and it is not possible

to satisfy both conditions simultaneously. Within the search space, for many, if not

most of the solutions, both performance measures can be improved simultaneously, but

there is a subset for which improving one always worsens the other. This set of 'best'

solutions is known as the Pareto-optimal set (POS) [81].

The definition of the Pareto-optimal set is based on that of domination. A solution

is said to dominate another if it has a better fitness in at least one measure, and at

least the same fitness with respect to all the other measures. All solutions outside the

POS are dominated by at least one solution within it, while no member of the POS is

dominated by any other solution at all.

The concept of domination allows the mathematical specification of the POS, where

a vector of fitnesses is dominated by another if the second is partially less than the

first. A vector x of i fitnesses is partially less than vector y if:

(x <p y) {::} (V;)(x; ::;; y;) 1\ (3;)(x; < y;) (6.1)

i.e. for all i, x; ::;; y;, and for at least one i, X; < y;. While the POS is the optimum

86

First fitness

Figure 6.1: Example illustrating pareto-optimal and non-dominated sets.

set of solutions, the GA, by its random nature, is not guaranteed to find it. Within

the GA's population, the undominated solutions form the non-dominated set for that

generation.

An illustrative example is shown in Figure 6.1, for a two-criterion fitness function.

The continuous line shows the position of the POS, and limits how far down and left

the positions of the solutions found by the GA can go. The line is shown concave, but

could be any shape, e.g. linear, convex, or stepped. The crosses on the diagram show

the positions of solutions within the NDS found by the GA. Fitness functions for the

various criteria must return smaller values for better solutions, and selection techniques

developed which favour those solutions which lie closer to zero for each criterion.

Nicolson and Cheetham [82] have proposed a way of finding the POS by using

known, good solutions as a seed for a conventional optimisation technique, 'inching'

along the POS by changing the weighting of the different performance measures. This

approach is very limited and suffers because adjacent solutions on the POS can have

very different parameter values, making it very difficult for conventional searches to

move between them. GA-based approaches are much more flexible, and can optimise

87

such 'niches' of dissimilar solutions on the POS.

6.2.3 Vector-Evaluated GA

The Vector-Evaluated GA (VEGA) developed by Shaffer (83], is a simple technique for

searching for the POS. It is perhaps not a true multi-dimensional technique as only

one criterion is examined at once, but the resulting solutions can be combined to give

multi-dimensional results.

In VEGA, the population is split into as many sub-populations as there are fitness

measures, and each sub-population's fitness is calculated with respect to a single fitness

measure. The population is then recombined before selection and reproduction occur,

causing those members of the population which have a high fitness with respect to their

single fitness measure to be favoured. Under crossover, members which are highly-fit

are combined, potentially producing solutions which have an intermediate performance

with respect to a number of criteria, i.e. a trade-off has been performed. Throughout

the run, the population is examined and the non-dominated solutions are stored, but

these are not used to drive the search.

Although VEGA is simple to implement, it is limited in the range of solutions it

produces, and the fitness functions have to be designed to return similar performance

measures for what might be disparate aspects of the design. Because the solutions are

selected by only a single fitness measure, it tends to find solutions which are clustered

near to the axes. These therefore perform well with respect to one criterion, but have

little trade-off of performance, unlike those solutions that lie between, which perform

reasonably under all measures. This is illustrated in Figure 6.2, where the members of

the NDS found by the VEGA GA can be seen to lie mainly close to the edges where

they can have a good performance with respect to one criterion.

88

First fitness

Figure 6.2: Example of a non-dominated set found by VEGA, illustrating the bunching
of solutions near the axes.

6.2.4 Goldberg's fitness allocation method

In order to find solutions with a wide range of trade-offs it is necessary to make use of

the all of the fitness measures simultaneously. A method described by Goldberg [48]

combines this information with the degree of dominance of each member to facilitate

a more wide-ranging search.

All of the members of the population have their fitnesses determined under each

performance measure, giving a 'fitness vector' which specifies a position in multi-

dimensional space. These positions are then examined to determine the NDS within the

current population. The members of this set are given a ranking of one, and are then

excluded from consideration for the next step, where the NDS of the remaining mem

bers of the population is found. These are ranked two, and then excluded themselves.

This repeats until all of the population has been ranked. Fitnesses are now allotted by

rank, the higher ranks receiving a higher fitness, as illustrated in Figure 6.3. Fonseca

and Fleming's analysis of multi-objective natural algorithms [84] has suggested that

Pareto-based fitness allocation strategies such as this were the most promising.

89

• a g
~
a
~

X X
X

X

X
X

X

X ~ X

' X X

~
FtrSt fillless

(a) First NDS - highest allocated fitness

X X X
X X

X
X X

X
X

X

First fillless

(c) Third NDS

~

81
B
t:
'g
§
"'

X X

X

X

X

X

X

first filJless

X

X
X

X

(b) Second NDS - lower allcated fitness

X X X
X X

X
X X

X

X
X

first fillless

(d) Last NDS -lowest allocated fitness

Figure 6.3: Example ranking calculation applied to non-dominated sets in the popula
tion.

90

First fitness

Figure 6.4: Example population distribution between niches.

The fitnesses that the members of the population now have can be used directly in a

selection process, but if the first few highly-fit solutions cause premature convergence,

by being the only members of the best NDS, then the efficiency of the search process

can be compromised. To help combat this, fitness sharing is used, whereby the fitness

of every member of the population is reduced by a crowding factor. This means that

the more members of the population are bunched together, the more their fitnesses will

be reduced. This has the effect of encouraging the GA to search in the less-densely

populated areas, and so the members of the NDS should be spread out more evenly

along the 'wavefront' of best solutions and so contain a wider range of solutions. If

the POS is 'stepped', as in Figure 6.4, then by encouraging the GA to cover a wider

area it becomes easier for the population to find each of the highly-fit regions, which

it might not otherwise do due to premature convergence to the first regions it finds.

Mahfoud (85] has found that Goldberg's fitness sharing method works well for a wide

variety of problems, but may have weaknesses when the search space has many local

optima with similar performances to the pareto optima.

The existence of such 'niches' can make a further adaptation of the GA useful. The

91

chromosomes which exist within each niche will generally be similar to each other, but

different to the chromosomes in the other niches. This implies that when crossover

occurs between chromosomes from different niches, the offspring will tend to be less

useful than the offspring of parents from the same niche. When the POS is smooth,

this technique is still useful since a chromosome which has a good performance with

respect to one criterion will probably be quite different to a chromosome with a good

performance with respect to another. These effects can be reduced by encouraging

crossover between similar pairs of chromosomes. This can be achieved by selecting the

first string for crossover, then altering the selection probability of the second according

to its relative Hamming distance to the first. This allows the GA to search the niches

more effectively for high-fitness solutions.

The benefits of including fitness sharing and crossover restrictions are extremely

problem-dependent, and are determined by the shape of the POS, and the variation of

the fitness with a change in chromosome with respect to each of the criteria. Similar

strategies have been proposed by Horn et al [87] and Srivinas and Deb [88].

6.3 Applications of MCO optimisation to filter de-

• sign

Standard approaches to MCO filter design generally involve a large amount of

constraint-based mathematical analysis. Selesnick's approach [89] requires the solv-

ing of a set of non-linear equations, and multiple runs are necessary to obtain a range

of solutions with different characteristics. In [27] Lawson designs PCAS filters with

approximately linear phase directly, by solving a set of linear equations.

Natural Algorithms have been applied to a variety of MCO filter optimisation prob

lems. Roberts et al [40] and Tang et al [90] use a GA to design FIR and IIR filters

respectively, by using a structured chromosome to represent both the filter structure

and coefficients. This allows both the frequency response performance and the fil-

92

ter complexity to be optimised simultaneously. Franzen et al [67] use Evolutionary

Strategies and Simulated Annealing, with a weighted sum of performance measures,

although this has the disadvantage mentioned above, that manual intervention and

repeated runs will be required to obtain a solution with the desired trade-off.

Storn [66] performed a basic form of MCO on IIR filters using Differential Evolution,

by giving each solution the poorer of two fitness measures, namely the degree by

which the solution violated templates for the frequency response and group delay. This

ensured that a filter had to fulfil both criteria to get an optimum fitness. Redmill and

Bull [45] have used an MCO GA to produce the pareto-optimal set for low-complexity

integer-coefficient FIR filters, thereby optimising both the filter performance and its

implementation complexity simultaneously.

6.4 GA difficulty measures and deception

It is often hard to predict whether or not the GA will be a suitable technique to use

without trying it in practice [91]. Horn and Goldberg's investigation [92] shows that

the number of suboptimal peaks alone does not give an indication of the difficulty of the

problem. To combat this, a number of measures have been developed which attempt

to give a qualitative, if not quantitative measure of the difficulty of the problem from

the perspective of the GA.

6.4.1 Epistasis

In Chapter 3 the schema theory was described, which attempts to explain the underly

ing mechanism which drives the GA. One of its main assumptions is that it is possible

to predict the fitness of a chromosome from just a short section of it. For many prob

lems this is not the case, and the GA is not able to perform well. The degree to which

the fitness of a schema is dependent on the values of the other undefined bits (shown

by a # in the schemata) is called the epistasis. The effect of epistasis is to remove the

linear relationship between the gene values and the overall string's fitness. The degree

93

of epistasis within a string can vary from 0 to 100%.

Davidor [93] has developed a qualitative measure of the epistasis, which is based

on the degree to which the actual fitness of strings vary from the fitnesses predicted

by their genes. A set of random chromosomes, as large as is possible within storage

and/or time constraints, is selected, and their fitnesses found. Each chromosome is

then examined, and the average fitness of the strings with bit zero set is found, then

the average fitness of those with bit zero clear. The corresponding values for each bit

position are also found.

The first of the chromosomes in the set is then examined, and the average fitnesses

are summed which correspond to the bit settings at each position. This value is then

divided by the string length to give a predicted fitness for the string. The other

random strings are also examined in this way, and their predicted fitnesses found. A

comparison is then made between the actual and predicted fitnesses, from which a

measure of epistasis can be made.

This method has a number of drawbacks, in that the measure of epistasis is quali

tative and problem-dependent. It also suffers from a substantial sampling error which

becomes increasingly large for small sample sizes. The latter is particularly true for

those problems which have a long chromosome, making it impossible to store all the

possibilities or to calculate their fitnesses in a reasonable time. However, it does allow

a qualitative comparison to be made between the epistasis of different representations

of the same problem.

An example of a zero-epistasis problem is that of maximising the numeric value of

the binary string. This problem has no gene interaction, because it is possible to say

that regardless of the setting of any other bit, if a bit is set then the fitness will always

be higher than if it is not. This means that a simple bitwise optimisation can be used to

find the optimum. A fully-epistatic problem, in which there is a 100% interdependence

of gene values, is a delta function where the fitness is 7.ero unless all the bits are set,

when the fitness is one. In this scenario, how a bit setting affects the fitness is totally

dependent on the setting of the other bits-if they are all one, then the setting of the

94

bit will determine the fitness; if they are not, then the setting has no effect at all.

For this type of problem, it is generally impossible to predict the chromosome's fitness

from a small portion of it, so the GA, and a bitwise optimisation will fail.

The GA is best suited to problems with a reasonable amount of epistasis-too low a

value, and the added complexity of the GA is unnecessary, and a simpler optimisation

technique is adequate; too high, and the schema theory breaks down and the problem

is unsuitable.

6.4.2 Fitness-distance correlation

There are some problems which have a low epistasis, but which the GA still finds

hard. Davidor's method above would predict these problems to be suitable for the

GA, implying that a better method of calculating the GA-difficulty of a problem is

needed.

Jones and Forrest (94] have proposed a different measure, the Fitness-distance cor

relation (FDC), which analyses the deceptiveness of the problem. A search space is

deceptive in GA terminology if the search space tends to lead the GA away from the

optimum, which can happen if the optimum is small and lies within an otherwise

low-fitness region.

The FDC is calculated by finding the degree of correlation between a string's fit

ness and the distance to a global optimum. For a simple unimodal space, there will

be a monotonic decrease in fitness with Hamming distance from the optimum, so the

correlation will be high. As the search space becomes more complex and hilly, there

is less useful information to tell the GA which direction the optimum lies in, so the

correlation will be lower, and the problem will be harder for the GA. For a deceptive

problem, where the fitness increases as the Hamming distance from the optimum in

creases, the FDC will indicate a correlation of opposite sign to the unimodal function,

meaning that the G A will be led away from the global optimum.

The signs of the FDC values are dependent on whether the GA is being used as a

95

maximisation or minimisation tool. When minimising a problem, the sign of the FDC

should be positive for a suitable problem, since the fitness should increase with distance,

and negative for a deceptive problem. When analysing a maximisation problem the

signs will be reversed.

The FDC is more reliable than the epistasis measure given above, but it does rely on

the user knowing the location of the global optima in the search space. In the absence

of this knowledge, the space around local optima can be analysed, but it cannot be

assumed that the results can be extrapolated to the global situation.

6.5 Alterations to the GA

In order to extend the GA as planned, to encompass the optimisation of more than

one design criterion simultaneously, the GA was extended to include MCO, in the

form proposed by Goldberg (Section 6.2.4). The interface was extended to allow the

display of non-dominated sets, with the the filters described within it. The limit of

640K of memory imposed by the DOS operating system meant that the number of

non-dominated individuals which could be stored within the NDS was restricted. This

reduced the effectiveness of the search considerably. To combat this, in the final phase

of the work described in Chapter 8, the Borland C++ 3.1 compiler was dropped in

favour of the GNU freeware DJGPP compiler for DOS. This compiler has Oat 32-bit

memory addressing, allowing the full memory of the computer to be used. This meant

that the maximum size of the NDS could be greatly increased, and increase the GA's

potential.

96

Chapter 7

An Analysis of the Suitability of

GA-based Optimisation for

Non-linear Phase FIR Filter Design

7.1 Introduction

In Chapter 4 the design of linear-phase FIR filters by GA was discussed. These filters'

linear phase makes them particularly useful in areas such as biomedicine and audio

where low phase distortion is of paramount importance. They do however suffer from

having a long delay of half the filter length, making them unsuitable for high-speed,

real-time applications. If the restriction on linear phase is relaxed outside the passband,

then a shorter filter could be designed with the same magnitude response but a lower

delay, as shown by Selesnick and Burrus [89], who used standard methods to produce a

reduced delay, but with the restriction of having a maximally-Hat magnitude response.

Some techniques requiring or generating minimum-phase filters exist, approximating

an FIR filter with a much shorter IIR filter [95), but this gives no control over the

linearity of the phase response.

It was now planned to investigate another area in the design of FIR filters by

extending the GA into a true MCO tool, and designing the filters under two criteria

97

simultaneously. This would not only simplify the design process by combining a number

of design steps, but also reduces the degree of user intervention by reducing the number

of iterations needed to produce a desired filter. A further analysis step, that of the effect

of coefficient roundoff on the filter's response was catered for by using a binary rather

than a real-coded chromosome. This approach meant that the coefficients always have

quantised values when they are decoded by the fitness function, so the filter's responses

intrinsically include the effects of their being represented with finite precision. The use

of an MCO GA meant that the designer could be presented with a range of non

dominated solutions from which the most suitable can be selected, rather than having

to undertake an iterative adjustment of weightings (Chapter 6) to obtain a suitable

solution.

7.2 Non-linear phase FIR filters

It is a necessary and sufficient condition for a filter to have a linear phase response

for its impulse response to be symmetric or antisymmetric, although this requirement

ties up a large number of degrees of freedom by constraining the coefficients. In order

for the filter to achieve a high stopband attenuation or a sharp cut-off, the filter must

have a large number of coefficients. Since the FIR filter's group delay is given by half

of the filter length, it means that the delay of high-attenuation or sharp cut-off filters

is also high. This makes them unsuitable for high-speed, real-time applications where

high-speed devices are unavailable, and also means that a filter must be very long in

order to achieve that same magnitude response as a filter with complete freedom in the

phase domain. Linear phase filters have the advantages that their symmetry means

that they only require half the coefficient storage of a non-linear filter, and they can

therefore be implemented more efficiently. Their constant group delay means that the

signal's components are delayed by an amount proportional to their frequencies, so it

is not distorted. This property is particularly important in audio, data transmission

and biomedicine, which are especially sensitive to distortion.

98

In order to reduce the length of the filter, and so also reduce the delay, the restriction

on linear phase can be removed. This can allow the design of a filter with the same

magnitude response, with as few as half the original number of coefficients for wide

pass band filters [11]. The class of filter, known as the minimum-phase, has the shortest

possible delay for a given magnitude response. Although these filters are suitable for

phase-insensitive applications, they cannot be used in other situations, so a compromise

must be reached between phase-linearity and filter length. One way to do this is to

force the phase response of a non-linear filter to be as close to linearity as possible in

the passband, where it is important that the signal should not be distorted. In the

stopband, the phase response can be left unrestricted, because the signal is attenuated,

so any distortions caused by nonlinearities are unimportant and can be discounted

provided the attenuation is high enough. As the linear-phase restriction has been

removed, the constraint on the coefficients being symmetric no longer applies and

they can describe a wider range of filters, and the filter length can be reduced while

maintaining the magnitude response.

In order to design such a filter, the simple optimisation approach used in Chapter 4

is no longer suitable, as there are two performance measures which need to be exam

ined: the performance of the magnitude response with respect to the desired response

template, and the phase response with respect to linearity over a chosen region of the

response. Since these have different ranges of unknown magnitudes, several iterations

would be required to find the correct weights to use in a weighted-sum fitness function

in a standard GA. A better approach is to use one of the multi-criterion optimisation

(MCO) approaches detailed in the previous chapter. These allow the GA to perform

the trade-off automatically without user intervention, producing a range of solutions

from which the most applicable may be selected.

A major objective of this work is the simplification of the filter design process, so

to this end a multi-objective Genetic Algorithm was developed to optimise the filter

coefficients with respect to both the filter's magnitude response and its phase response

in a region of the passband. To increase the number of filter design steps being under-

99

taken simultaneously, the Genetic Algorithm used a binary chromosome, containing a

concatenated list of the coefficient values, which therefore intrinsically accounted for

coefficient quantisation effects. Since the impulse response has the same values as the

filter coefficients, the quantised coefficient values decoded from the chromosome can

be used to find the responses by zero-padding them to a length of 1024, and taking the

FFT.

The fitness function with respect to the magnitude response was the maximum

error from a desired response template (such as that shown in Figure 7.1), while that

for the phase response was the sum of the squared differences between the response and

an LMS straight line fitted through the response, in a selected region covering most of

the passband, thereby giving a measure of its linearity.

7.2.1 Effects of coefficient quantisation

A further important factor which should be taken into consideration is that of coefficient

quantisation. In a practical application, the coefficients will be stored in a quantised

form, which means that they will only be able to take a certain number of values,

and that consequently there are only a finite number of possible filters for any given

order. Standard methods of FIR filter design rely on full-precision maths, e.g. the

hill-climber which requires a continuous surface to perform effectively with small-scale

movements, such as those that occur when the search has converged on a peak. When

the coefficients are stored in a quantised form, small ranges of their continuous values

are stored with the same quantised value. This results in small areas of the search

space, with dimensions of the quantisation interval, having the same parameter values,

and so the same fitnesses. This is illustrated simply in Figure 7.2.

When a hill-climbing search such as the Simplex method (described in Section 4.4)

is initialised, it looks and moves around the search space in large steps. Since it

only takes point samples, the stepped nature of the search space is masked and the

optimisation can proceed effectively to the higher-fitness regions of the space. When

100

0 ----------- -------------------

...
"
.~

-Bp

~ B, ------- ••.. L--------,
~
"

-~+----'L____. ,-, -
0.0 0.1 0.2 OJ 0.4 0.5

Figure 7.1: Desired response template used to calculate the fitness with respect to the
magnitude response.

'

~uantisation interval

Figure 7.2: Illustration of the effect of coefficient quantisation on the search space.

101

the Simplex begins to converge, however, it shrinks, and takes smaller and smaller

steps. This means that it only looks at the immediate vicinity of its current position,

and the fiat regions are increasingly apparent. The final optimisation by the Simplex

method relies on being able to take ever-smaller steps, which is not possible with a

quantised space, and the search also fails if two of the points in the Simplex occupy

the same position in space. This is very unlikely to happen in a full-precision system,

but is bound to eventually in a quantised system when the step size drops to the order

of the quantisation interval.

To overcome these difficulties, a bitwise form of hill-climbing must be used. The

method chosen was to flip each bit in the string in a random order, calculating the new

fitness each time. If flipping the bit improved the fitness with respect to at least one

criterion, then the change was kept, otherwise the original bit was restored. This was

applied to the members of the NDS in the current population only, once every 50 or

100 generations.

7.3 Use of the GA

An MCO GA was set up to optimise the quantised coefficients of non-linear FIR filters.

A binary approach was used so that the effects of coefficient quantisation on the filter

performance were accounted for intrinsically. The fitness function calculated two per

formance measures, firstly how much the magnitude response deviated from a desired

template, and secondly the mean-squared error from linearity of the phase response

over a specified region covering most of the passband. This approach was intended to

allow the GA to trade-off the performance of the quantised coefficient filters, and to

return a number of solutions to the designer, thereby performing the two optimisations

simultaneously while intrinsically taking account of coefficient quantisation. This com

bines a number of the traditional design steps into a single operation, while retaining

the freedom of the designer to select the most applicable design for their application.

102

7.3.1 Design performance

Initial runs were performed with randomly-initialised chromosomes, but proved unable

to find solutions which fitted the design templates satisfactorily, or even to within a

magnitude response error of 1Q-20dB, although the optimisation of the phase-linearity

was generally more successful. The magnitude response fitness function minimised the

maximum deviation from the supplied template; all solutions which fell fully within

the template boundaries were given the same fitness as all were taken to be equally

suitable.

Since reducing the minimax error is a hard problem, the fitness function was

changed to optimise the RMS error in the deviation of the magnitude response from the

template. Using the RMS error is more forgiving of outliers and 'rogue' points, and so

should result in an easier optimisation for the GA. This proved more successful in that

the GA was able to reduce the RMS error more than when using the minimax error,

although as it then resulted in a greater minimax error in the magnitude response, the

technique was still not satisfactory.

To determine if the problem is simply too difficult for the GA to solve from

randomly-initialised positions, solutions close to a known good solution were used to

'seed' the population. If the GA is able to perform the optimisation, it should then

be able to improve on those solutions. The first population was therefore filled with

perturbed copies of a Remez exchange solution, where a chosen percentage of the bits

in the good chromosome were flipped. The first trials added a single unperturbed copy

of the good solution to the population, but this caused premature convergence as the

seed was a much better solution than the randomly-chosen ones and therefore quickly

overran and dominated the population.

To combat this problem, the population was seeded entirely with perturbed copies

of the Remez exchange solution. This allowed the GA to perform more effectively, but it

was never able to find a solution even as good as the original quantised Remez exchange

design. It had been expected to improve on this design as the linear phase constraint

103

+2
0 ---------------------------------------
-2

------- ----'-------------:

-200 -------L----------------'

0.0
I

0.1
I

0.2
I

0.3

Normalised frequency

I

0.4
I

0.5

Figure 7.3: Loose-tolerance template used to test the non-linear FIR design technique.

had been relaxed without reducing the order, and by quantising the coefficients, they

are moved from their original positions and are no longer optimal.

Since the Genetic Algorithm had not performed well, a loose tolerance filter tem

plate as shown in Figure 7.3 was used as a test problem. The order (as determined

by Matlab) was set to 25, and the wordlength to eight. As the order was determined

for a linear phase filter, and the filter being designed was not linear phase over the

whole response, it was anticipated that the Genetic Algorithm should be able to find

an acceptable solution to this problem, as there were fewer constraints on the coeffi

cient values. However, even for this simple problem, the Genetic Algorithm was only

able to improve a little on the initial best fitnesses.

A typical best magnitude-response solution found by the GA is given in Figure 7.4

for a lowpass, N = 40, Type I filter with band edges at 0.1 and 0.175. The filter is

shown with the nearest equivalent Frequency Sampling FIR filter found by hybrid GA.

The non-linear phase GA was run with a population of 100, crossover and mutation

probabilities of 0.6 and 0.005 respectively, for 8,000 generations. The FS filter was

found in under 30 seconds, while the non-linear phase GA ran for almost two hours.

104

iD
:g.
c:
"(ij

-50

(!) -100

-150

Linear FS FIR

Non-linear phase FIR

-200 '-------L.---'----..I....-------l...-----'-
0 0.1 0.175 0.5

Normalised frequency

Figure 7.4: A typical non-linear phase FIR filter compared to the nearest equivalent
Frequency Sampling linear phase filter, both found by GA.

The filter shown had the best magnitude response, with a maximull! error from the

template of 32.569dB, and a sum-of-squares error from phase linearity between Q-0.09

of 0.0082. The filter with the worst magnitude response error (59.908dB) had a phase

response with a sum-of-squares error from linearity equal to zero to six decimal places.

The template was ±0.25dB over the passband, +0.25-200dB over the transition band,

and -60-200dB in the stopband. The filters' characteristics are compared in Table 7.1.

At this point, investigations were undertaken to determine why the Genetic Al

gorithm was not performing well, and to analyse the difficulty of the problem. The

analyses, which were performed for the filter design template in Figure 7.3, will now

be detailed.

105

Value I Linear phase FIR I Non-linear phase FIR I
Word length full-precision 16

Generations 1,000 8,000

Time <30 secs -2 hours

Best attenuation 66.567dB 27.431dB

~error in linearity 0 0.0082

Table 7.1: Comparison between a linear-phase FIR filter found by the technique de
scribed in Chapter 4 and the best magnitude response filter found by MCO GA.

7.4 Analysis of non-linear FIR filter design

7 .4.1 The parameter space

The parameter space and the search space are related but different ways of looking at

the problem space. The search space is the space as seen by the GA, which in this case

will be examined by altering chromosome bits and finding the fitness of each solution.

Although this gives the truest picture of what the GA 'sees', it is hard to visualise

or display. The parameter space, on the other hand, changes the viewpoint on the

problem by altering the model parameters directly, so they can take any values. This

makes it easier to plot slices through the space by fixing all but two parameters and

altering the others to give a 3-D search surface of the fitnesses. This surface is clearly

different to the search space, but can be made most similar to it by plotting it with

a number of divisions equal to the number of divisions in the binary-representation in

the chromosome.

It is possible to build up a picture of the nature of the parameter space by taking

a number of slices through the space by fixing all but selected pairs of parameters,

and varying those over their allowed range in a finite number of steps. By selecting

pairs which are held at different locations in the chromosome, the effects of short- and

long-range interactions can be discovered. The fitness function used was the magnitude

response error, as this was the fitness measure that the GA had had the most problem

with. A lower fitness value therefore means a better filter. A good solution was

106

required, so in the absence of one found by the GA, coefficients calculated by the

Remez exchange method were used to seed a bit-flipping local search algorithm, and

the solution this found was assumed to be a near-global optimum.

To draw each slice, all but two of the filter coefficients were fixed, and a surface

plotted from the fitnesses found by varying the others. For the 25th order filter, the

slices were produced by varying the following pairs of coefficients: 1 and 2; 1 and 13; 1

and 24; 12 and 13. The rest of the coefficients were fixed, firstly at the values found by

the local search optimisation; secondly at the local search values perturbed by 5% of

their value, and finally at random values. For simplicity these data sets will be referred

to as LS (local search), P (perturbed local search) and R (random), for example 1,24,P

and 12,13,R. It should be noted that the changes in the appearance of the parameter

space described below were similar for all the data sets. It should be noted that these

surfaces represent the maximum error in decibels between the filter and the design

template, so a smaller error means a better solution.

Figure 7.5 shows the 1,13,LS data slice. It shows that the parameter space consists

of smooth intermediate-error regions separated by narrow high-error ridges. The low

error region around the optimum (which lies in the depression at the front of the figure)

is clearly small compared to the total area of the slice. When this is extrapolated to

the full 26-dimensional volume, the proportion of the total volume with a similarly

high fitness will be extremely small. The other unperturbed local search slices have

a similar appearance but with different numbers and orientations of the ridges, which

are mostly straight like the 1,13,LS slice, while for the 1,24,LS slice, some of them were

curved. The optimum region in all the slices is very small, suggesting that perturbing

any coefficient will quickly lead to a large drop in fitness and therefore performance.

In Figure 7.6, the same slice is shown, but with the fixed coefficients perturbed

by 5% from their original, near-optimal values (the 1,13,P slice). The surface has

become more multi-modal, with a greater number of low-error regions than before.

The characteristic appearance of the slice is, however, the same. The small low-error

region around the local search solution has disappeared, leaving a comparatively poor

107

best solution. The position of this best remaining solution moves in all the slices

examined, sometimes considerably, so seeding the Genetic Algorithm with a perturbed

solution will not generally start it off in the region of the true optimum.

The same slice was also obtained for a filter with the fixed coefficients selected at

random. As can be seen in Figure 7.7, the space is very flat, with very poor filter

performances, and no indication as to the location of the original optimum solution.

This has the implication that a GA seeded at random will contain no useful information

as to the best regions to search in, so will be unable to proceed effectively.

7.5 Measures of GA-difficulty

As with all design techniques, the GA has its advantages and disadvantages which

make some problems easier and some harder for the technique to solve. For the GA,

although it has several advantages over 'standard' optimisation methods, its success is

highly dependent on the structure of the chromosome, the search space, and how they

interact, which in turn depends on both the problem itself and the way it is stated.

The deceptiveness of a problem in a GA-sense can have a number of causes, but

its effect is to tend to lead the GA away from the global optimum. This can occur if

highly fit, short building-blocks combine to give longer blocks with a lower fitness. If

this occurs, it means that although selection may pick those strings containing high

fitness building blocks, when crossover combines them they produce poorer offspring,

and one of the basic premises behind the GA breaks down. Other types of deception can

occur when the structure of the search space 'misdirects' the search. For example, ifthe

global optimum is small in area and is surrounded by the worst points in the space, then

in almost all areas of the space the direction towards the local optima will be different

to the direction of the global optimum. This is illustrated in Figure 7.8, where it can

be seen that apart from in the narrow shaded region, the direction towards the nearest

optimum leads away from the global one, and the problem is deceptive. If the deception

occurs in the search space, as in this example, then the search will be difficult for any

108

-1

1 1

Figure 7.5: Slice through the 1,13,LS data set, with a best fitness of 11.3dB.

140

120

100

80

60

40
-1

-1

1 1

Figure 7.6: Slice through the 1,13,P data set, which has has a best fitness of 40.5dB.

1 1

Figure 7.7: Slice through the 1,13,R data set, with a best fitness of 32.2dB.

109

' : Direction to nearest optimum

+-------:
'

Parameter value

Figure 7.8: Illustration of deception, where only points in the shaded area indicate the
location of the optimum.

technique which uses hill-climbing or gradient information or which performs a random

search, while the deception in the chromosome is clearly a GA-specific problem. The

level of chromosome-based deception can be reduced by changing to a higher-cardinality

alphabet, but this is not always possible or desirable, for example if the problem fits

naturally into a binary representation.

7.5.1 Epistasis

One of the causes of chromosome-based deception is a breakdown of the linear rela-

tionship between gene values and the fitness of the solution they represent. It should

be possible to predict the fitness of a chromosome from a short portion of it, but

this breaks down if solutions containing good genes combine to give a poorer solution.

When this occurs, it implies that there is a great degree of interaction between different

genes' values and the fitness of the chromosome as a whole. The degree to which the

fitness contributed by a particular gene is dependent on the values of the other genes

in the chromosome is called epistasis.

It was now proposed to investigate the epistasis of the non-linear FIR problem, using

110

Random 10% perturbed LS

a2
< 116.75 363.19

a2
V 132.25 112.26

a~ 17.73 631.57

a~ -a~ 114.52 -519.31

Table 7.2: The Epistasis variance (a~), calculated for regions of the search space.

the qualitative epistasis variance measure of Davidor [93]. These epistasis measure

ments were performed on two 5,000-point data sets, one of randomly-selected points,

and the other for the local search solution perturbed by a random amount of up to

10%. The results are tabulated in Table 7.2.

The fitness variance a~ is a measure of the spread of the sample fitnesses around

the average sample fitness, while the genic variance a~ is a measure of the spread of

the predicted fitnesses around the true fitness sample average. It can be seen that the

genic variance is very low for the random data, which can be explained by the relative

flatness of the parameter space as shown above in Figure 7.5. This flatness means that

regardless of the gene values, the fitness will not change greatly, so it can be predicted

with reasonable accuracy.

On the other hand, the genic variance of the predicted fitnesses is comparatively

high for the perturbed local search samples. As can be seen from the example parameter

space surface in Figure 7.6, the space is highly variable, and there is a far greater

correlation between both genes' values and the overall fitness of the solution. This

need for both genes to have the correct values to produce a high-fitness solution means

that there is a high degree of epistasis in the problem. Another important result

from these calculations is that the problem becomes more epistatic as the optimum is

approached, which implies that it also becomes harder for the Genetic Algorithm, due

to the effects described above.

In the context of the non-linear FIR filter design problem, this implies that to

111

obtain a good solution it is necessary for the coefficients to all have the correct values,

and that 'partial' good solutions do not exist in that it is impossible to say if half a

chromosome gives a good or bad solution, since the quality of solution is also dependent

on the values of the genes in the rest of the chromosome.

The impulse response of an FIR filter (which has the same values as the coefficients)

has to have a specific shape to make the filter operate in the desired way, and although

this has different characteristics in different types of filter, e.g. symmetry for a linear

phase, or with its peak amplitude early on for a minimum-phase filter, the underlying

appearance is similar, with well-defined ripples, whose amplitude rises and falls within

a smooth envelope. It is clear therefore that although there may be a large number of

sets of coefficients which give the same magnitude response, within each solution, the

value of each coefficient is highly dependent on the value of the others to produce the

desired response. Should mutation or crossover alter the value of a single coefficient in

a good solution, then all of the other coefficients need to change to preserve the quality

of the filter. This means that crossover of two good but dissimilar chromosomes will

lead to poor offspring. It is also clearly impossible to predict the response of a filter

from just a few coefficients, so there is a large non-linearity between gene values and

the corresponding fitnesses, and the problem is not suited to solution by the GA.

7.5.2 Fitness-distance correlation

A better measure of GA-difficulty is claimed to be the fitness-distance correlation (94].

The FDC examines the difficulty of the solution in terms of the variability of the

search space, and its degree of deceptiveness. The calculations were performed for

three data sets of 4,000 points, and averaged over ten runs. Two of the sets were made

by perturbing 1% and 5% of the bits in the assumed optimum solution used in the

epistasis calculations above, and one set contained randomly-generated points. The

results are shown in Table 7.3.

One random data set is shown in Figure 7.9, which plots the magnitude response

112

FDC

Random 0.0032

5% perturbed LS 0.3199

1% perturbed LS 0.6466

Table 7.3: FDC calculations for various regions of the search space.

error against the Hamming distance between each random solution and the optimum

one. The Hamming distances have been perturbed slightly to show the distribution

of points more clearly. The FDC for the random data set was almost exactly zero,

bearing out the distribution of points in the figure, which contains no clear correlation

between fitness and distance, and therefore usually no indication of the direction of the

optimum from a randomly-selected point.

When the same calculations were repeated for data sets taken around the assumed

optimum, obtained by perturbing an average of 5% and then just 1% of the bits in the

assumed optimum solution. In these regions, the FDC was calculated to be 0.32 and

0.65 respectively. A typical set with 5% perturbation is shown in Figure 7.10, which

clearly has more structure, in that the points are constrained in a narrower band.

This means that the search space closer to the optimum behaves in a more predictable

manner, so it should be easier for the GA to optimise the solution. However, the spread

of fitnesses is still large and the optimisation is unlikely to succeed.

For the 1% set, as shown in Figure 7.11, there is still more structure, and the

fitnesses are constrained to an even narrower region than before. For the solutions

with a Hamming distance of just one bit, there are clear bands indicating that only a

few different fitnesses can be generated. When the number of bits difference rises, more

values can be obtained, affecting more genes, so the number of possible fitnesses rises

and the bands overlap and can no longer be resolved. The range of possible fitnesses

still rises very quickly, showing that changing even a few bits can have a profound effect

on the quality of the solution. The poorer solutions will be caused by a perturbation

113

of the bits in the chromosome which represent the most significant bits of coefficient

values as these will cause the greatest perturbation in the solution. When changing one

of the least significant bits the change will be much smaller, and possibly insignificant.

This implies that changing even a few bits can (but is not certain to) lead to a dramatic

decrease in performance. The most dramatic example of this is the point indicated in

the figure, which has only two bits difference in its chromosome, but a magnitude

response error of over 130dB.

7.6 Results

The slices taken through the parameter space show that it is multi-modal and therefore

also unsuitable for hill-climbing methods, while the small size of the region around the

optimum means that a random search will take an excessive amount of time to find a

good filter. The GA, although appearing to be a suitable optimisation technique for

this type of space, was not found to be a suitable technique for directly optimising the

coefficients of non-linear FIR filters.

GA theory suggests that, for success, there should not be an excessive interdepen

dence between the gene values to disrupt the linear relationship between gene value

and fitness. The FDC calculations suggest that not only does the search space become

more suited to the GA as the optimum is approached, but it is only suitable around

these regions. This means that at the start of a run when the population contains

widely spaced points, it is unlikely to contain information about the location of the

optimum. As the optimum is approached, the FDC suggests that the space becomes

more ideal, although the epistasis increases as the fitness becomes ever more sensitive

to changes in coefficient values and the non-linearity of the gene-fitness correspondence

rises.

One cause of failure is the initialisation of the population, since it has been shown

that the space far from the optimum contains no useful information. Since non-linear

filters have non-symmetric impulse responses and hence coefficients, initialising them

114

110

100

Figure 7.9: Scatter plot of fitness against Hamming distance for a random set of non
linear FIR filter chromosomes.

120

20

. . .
:;i~;~;~-;~~ .

. ;;~id>~\i;; ':.

~ : ! I I I I ! I ' I I I I I i I ' : : '
~ ":. .

. '
OL_--~----~----~----~--~
0 10 15 20 25

HIJI1UJfln&Jiswnu

Figure 7.10: Scatter plot of fitness against Hamming distance for a 5% perturbation,
non-linear FIR filter data set.

14<1

120

~

I I I I ~ ~

- ' • '· .
;

10 12

llaJffming tlisrQII.u

Figure 7.11: Scatter plot of fitness against Hamming distance for a 1% perturbation,
non-linear FIR filter data set.

115

with linear-phase solutions, even perturbed solutions, may be far from ideal. Minimum

phase filters have the peak amplitude of their impulse responses early on, so initialising

the population with perturbed linear phase solutions which have been shifted or 'ro

tated' might be a better technique. The success of the GA with this problem is still not

guaranteed however, due to the high epistasis of the search space and its unsuitable

structure away from the optima.

The optimisation of the phase was more successful as the GA was able to move

from its initial perturbed linear-phase solutions back towards fully-linear phase filters

as the optimisation required is far simpler. The requirements for linear phase are that

the filters are symmetric or antisymmetric, but otherwise places no restrictions on the

coefficients' values. This means that there are many solutions with linear or near

linear phase, which are therefore easier to find, but to produce a filter with a desired

magnitude response requires that all of the coefficients have good values collectively,

so there are comparatively few good solutions in the phase domain.

It might be possible to reduce the degree of epistasis by re-stating the problem

so that the chromosome stores information about the filter coefficients in a different

way, or stores entirely different information which is can be used to adjust the filter's

responses. Methods for reducing epistasis such as the 'Expansive Coding' at ofBeasley

et a[[96) will not work in this case because it is not possible to break down the problem

into suitable sub-problems-all of the coefficients must be used at once to determine

the filter's fitness.

Since the completion of these investigations, Lu and Tzeng [97, 98) have successfully

used a GA to produce non-linear optimal filters. Their approach is to use a guided

crossover technique which biases poorer solutions towards better ones, and a fitness

function which uses a least-squared error measure, which is an easier problem than

the minimax one attempted here. They achieve an Optimal (equiripple) response in

both phase and magnitude responses, by using a dynamic weighting function, which

is updated to give a stronger weighting to those areas of the space which have the

greatest error. This allows the GA to concentrate its search on those areas which most

116

I.
, . ., ... -- ,'-''

need im_provement No attempt :Was made :to reproduce linear~phase ~filters:vv._itl:t. feWf:lr . ' .. - - - -

coefficients, but 1it .is· likely :that a modified version: of this tl;!chnique, .y(hi~h :igno-red

the: phase response in the •stopband1
, would be ; succes8@ a_t prod'uci[lg · 11Qwer-delat,

near~ linear optimal FIR filters'

Chapter 8

An Extended Multi-objective GA

for IIR Filter Design

8.1 Introduction

In Chapter 5, a GA was used to design an IIR filter using a chromosome which op

timised the filter coefficients directly. This was found to have a limited success, due

to strong coefficient interdependence making the problem less suitable for a GA-based

optimisation. In the light of the analysis presented in the previous chapter, it was

decided to repeat the investigation using a true MCO GA. This would optimise the

pole-zero positions instead of the a and b coefficients, as perturbing a pole or zero

slightly has a more predictable effect on the overall response than altering a coefficient.

A suitable GA could search for an NDS containing a range of solutions with different

performance tradeoffs, from which the most appropriate can be selected.

To enable the GA to cover more filter design steps, the fitness function can be

extended to examine how close the phase response is to linearity over a region of

interest within the pass band. The noise performance of the filter can also be calculated,

which will allow the GA to look for the best pole-zero pairing and ordering, while a

binary-coded chromosome can allow the effects of coefficient quantisation to be included

implicitly in these calculations. Lastly, additional bits could be included to specify the

118

type of filter section to use for each stage, which would give the GA more freedom to

pick lower-noise structures, or even to allow it to pick between a parallel or cascade

structure.

The intention is that it should ultimately be possible, under such a scheme, to design

filters with quantised coefficients, with the GA returning a range of non-dominated

solutions which trade-off the performance between magnitude and phase responses

and roundoff noise gain, while using the filter structure giving the best performance,

and with the best pole-zero pairing and ordering. It was planned to extend the fitness

function in stages to incorporate these optimisations.

8.2 Chromosome design

In the light of the inability of the GA to optimise the non-linear FIR filter coefficients, it

was clear that to successfully perform this multi-criterion optimisation, the chromosome

would have to be designed to have a lower epistasis. This in turn implies that the

problem would have to stated in such a way that a suitable chromosome would be

used.

The original IIR optimisations were performed on the coefficients of canonic sec

tions, cascaded to give an overall filter response. This approach suffers because the

coefficients are used in a polynomial expression, and these are very sensitive to changes

in coefficient values. It is also hard to predict changes in the response of each section

as each polynomial coefficient is changed, since small changes in the coefficients can

move a filter from being stable to unstable, or from having real to complex poles, as is

shown in the stability triangle in Figure 8.1. This clearly shows that if b2 is zero, then

a change in b1 from 0.99 to 1.01 would result in an unstable filter.

The GA used to optimise IIR filters in Chapter 5 was constructed in such a way that

the value of~ was constrained to lie in its valid range of -2-2, and that of~ to within

the range -1-1. Since it was still possible for the solution to lie outside the stability

triangle when both values were taken together, every solution had to be checked for

119

Figure 8.1: Triangle bounding the stable values of b1 and ~ for a second-order IIR
section. The shaded area contains complex-valued poles.

stability and moved back into the stable region if it lay outside it.

This approach is not ideal as it changes the information contained within the chro

mosome, and so will affect the data which the GA is accumulating within the popula

tion. Although the information is being moved to a valid solution, it also means that the

stability of every second-order section must be examined at every fitness calculation,

because of the damaging effects of crossover and mutation. A better approach would

be to use a representation which only returns valid solutions, and so never requires

checking as crossover and mutation cannot result in an unstable solution.

A suitable representation with these characteristics is to use the radius and angle

of each pole and zero. Assuming that the poles and zeros exist as complex conjugate

pairs, four values are required to describe each second-order section, namely the radius

and angle of the positive-angled pole and zero of each pair, although this was simplified

to three in this work by fixing the zero radius at unity. This representation contains

intuitively short building-blocks, describing the position of a single pole or zero. It is

also clear that since each pole and zero has a known effect on the response as a whole,

changing the values of a pole or zero's radius or angle changes the response in a more

predictable way, never producing an invalid solution.

While the GA still needs to find a complete good chromosome to produce a good

filter, as the response depends on all of the coefficients, moving a pole or zero slightly

120

has a more controlled effect on at least some aspects of the filter performance, such

as the magnitude response, than moving an a or b coefficient, so this representation

should be more suitable for the GA to optimise.

To specify the pole and zero, their positions could be specified by either Cartesian

(real and imaginary) or polar (radius and angle) coordinates. If the chromosome used

to store the values uses a binary alphabet to intrinsically account for coefficient quan

tisation effects, then not only will changing gene values affect the response in different

ways, but a different set of possible positions can be represented. This is illustrated in

Figures 8.2 and 8.3, for the two representations at the same resolution. It can be seen

that although the points specified by using the Cartesian coordinate system are spread

more evenly over the unit circle, there will be some points which lie outside the unit cir

cle and which therefore specify illegal positions for poles and must be checked for. The

Cartesian approach also has the disadvantage that there are relatively few available

positions close to or on the unit circle. This means that the zeros, which are generally

found on the unit circle, can only lie close to their optimum positions, while for the ra

dius/angle representation, the fuH radius is available, albeit at fixed angular positions.

Other representations and topologies will of course have other distributions (99, 39].

The proportion of the Cartesian positions which lie outside the unit circle is of the

order of 1-71" /4 = 0.215, the exact value being dependent on the quantisation interval.

This means that around one-fifth of the positions the chromosome can represent are

ilJegal and cannot be used, so the full range of solutions described by the chromosome

cannot be exploited, unlike the polar chromosome, where every position it can describe

is valid. Since this also means that no checking on the validity of the solution needs to

be performed at all, the polar description chromosome was adopted.

8.3 The fitness function

As has been discussed before, the fitness function is the only view the GA has on

the search space it is investigating. The fitness function was initially constructed to

121

Figure 8.2: The possible pole-zero positions for a second-order section with quantised
real and imaginary positions.

" - ~

Figure 8.3: The possible pole-zero positions for a second-order section with quantised
radii and angles.

122

return two performance measures, namely the error between the filter's magnitude

response and a desired response template, and also the error from linearity of a region

of the phase response. The latter was determined by fitting a straight line through

the phase response in the specified region (covering most of the passband), and finding

the mean-squared error between this line and the actual response. For simplicity, the

chromosome described a filter of cascaded second-order sections, and was initialised,

not with a perturbed BZT solution, but with randomly-selected poles in the passband

region and zeroes in the stopband. Directing the initialisation in this way meant that

the solutions in the first population contained a wide range of pole positions which

were in the appropriate regions of the search space, ensuring that the population is

diverse enough to ensure efficient searching.

A Matlab script (Appendix A.3) was developed to generate the initialisation files for

the GA from a desired filter specification, and to display the response for a traditionally

designed filter of the same specifications, with full-precision coefficients. The response

of the filter was determined in the fitness function by passing an impulse through the

filter, followed by 1023 zeros, to produce the impulse response. An FFT was then taken

of this to give the complex frequency response, from which the magnitude and phase

responses were then extracted. The script generated a 512-point template file from the

requested pass- and stopband widths, ripple and attenuation, which the GA read in

and used to determine the filter's fitness with respect to the frequency response.

8.4 Effects of quantisation

When designing digital filters with standard methods, full-precision maths is used to

produce filters with full-precision coefficients, internal calculations and storage. In

practice, however, all digital systems employ a finite wordlength for both data storage

and calculations. This has the effect of limiting the maximum attenuation of the

filter, and also introduces noise into the filtered signal. The effects of both of these

factors need to be considered when designing a practical system, but in 'traditional'

123

design methods they are investigated one at a time, after a full-precision filter has been

designed.

While these quantisation effects may not matter for loose tolerance filters, when the

constraints become tighter, they become significant, and may make it impossible for a

solution to be optimal with respect to both criteria simultaneously. This would lead to

a system which is sub-optimal with respect to at least one design criterion-the final

filter can either have a good magnitude response, or a good noise response, but not

both. A major aim of this section was to integrate finite wordlength effects analysis

into the design process so that all of the criteria can be traded against each other by

the GA, allowing it to produce a selection of quantised coefficient filters, with a range

of tradeoffs, in a single design step.

8.4.1 Coefficient quantisation

The effect of quantising the coefficients is generally to alter them from their optimum

full-precision values to sub-optimal values. There exists an optimum set of coefficients

for each wordlength with respect to each design criterion, but this will usually not be

the same as the full-precision set, so quantising the full-precision results will not give

as good a filter as the optimum for that wordlength. Since shorter wordlengths can

only represent a smaller number of values, they will cause a greater perturbation of

the full-precision values, while for longer wordlengths of 16 bits or more the quantised

filter might still be of sufficiently high performance to be used directly. Generally,

however, since the optimum finite-precision filter is different to the quantised optimum

full-precision filter, some additional form of optimisation will be necessary to raise the

performance of the quantised full-precision solution. For some filters, the two sets

of values will be very similar, so little further optimisation is required, while others,

particularly IIR filters, are more sensitive to changes in wordlength, and may have very

different coefficients.

124

8.4.2 Noise

A further complication is introduced when using a finite wordlength system in that

the results of calculations are also quantised (see Section 2.3.3). This has the effect

of introducing noise into the system as the values returned from calculations are not

their true values, which can in turn affect further calculations. FIR filters are relatively

unaffected by this, having a noise factor which is purely dependent on the wordlength

of the system, while IIR filters' recursive nature means that the effects of quantisation

noise are much greater and can lead to lower stability, or even instability.

Many modern DSP chips have long wordlength accumulators, so calculations only

have to be quantised down to the system wordlength when intermediate results need

to be saved back to memory, which reduces quantisation's deleterious effects on the

filter response. This model was used in the fitness function to approximate the effects

of having a finite wordlength system, by quantising the results of calculations when

they were being stored.

8.5 Filter structure

A further aspect of IIR filter design, and the final one which was examined, is that of

finding the best filter structure for the desired filter characteristics. IIR filters can be

designed with a structure other than the cascade used in the previous optimisations

(Chapter 5). Since the different structures and second-order sections have different

noise characteristics, there will be a different optimum structure depending on the

pairing and ordering of the coefficients, and a different optimum pairing and ordering

depending on the filter structure. Under the standard design methodology, determin

ing which of these structures is the best is another separate optimisation step, whose

results may indicate the need to iterate back one or more stages and repeat previous

optimisations or even completely re-design the filter to improve on its performance

with respect to one or more of the design criteria. This approach makes the design

process complex and requires the repeated sequential examination of the filter's per-

125

t---- Section 1 -----+----- Section 2 ----+---

~~
zero radius pole radius zero radius pole radius zero radius

zero angle pole angle zero angle pole angle

(a)

t---- Section 1 ----+---- Section 2 ----t-------H

zero radius pole radius zero radius pole radius
zero angle pole angle zero angle pole angle

canonic/direct form canonic/direct form
cascade/parallel

(b)

Figure 8.4: The structure of the chromosomes used to optimise (a) the coefficients and
(b) the coefficients and structure of IIR filters.

formance with respect to different design criteria. It should be possible, by extending

the chromosome to include bits which determine the structure of the filter, to allow the

GA to search for those structures which give the best filter performances with respect

to each of the design criteria. The inclusion of this ability will permit the GA to use

whichever structure gives the best performance, and to search for this best structure

simultaneously with the coefficients. Although the structure is not examined explicitly

within the fitness function, its inclusion in the calculations means that the GA will

also automatically search for the structure which gives the best performance for each

set of coefficients.

The binary chromosome, which initially contained a simple list of the radii and

angles of the poles and zeros of each second-order section as shown in Figure 8.4a, was

extended to include bits to control if each section had a canonic or direct form, and

also one bit to determine the structure of the whole filter, specifying whether it had

a parallel or cascade structure, as shown in Figure 8.4b. This was later simplified by

removing the zero radius and setting it to unity within the fitness function.

This type of structured chromosome allows the same chromosome to describe a

number of different filters, all of which are valid. The control bits simply tell the

126

fitness function how to decode the information in the chromosome. Storing the data in

the chromosome this way means that all of the filters described by the chromosome are

valid. Tang et al [90] have shown structured chromosomes to be suitable for optimising

IIR filter structures and coefficients simultaneously by GA. If the chromosome shown

in Figure 8.4b was used to optimise a filter of S second-order sections, there would be

a total of 2.S! + 1 possible filter structures, comprising 2.S! cascaded structures and

one parallel one. When the cascade/parallel bit is set, telling the fitness function to

use a parallel structure, then the bits which determine whether each section has the

canonic or direct form are ignored, and the pole and zero positional information would

be used to calculate the equivalent parallel filter coefficients.

8.6 Use of the GA

The GA used for this optimisation was the same as was used for the non-linear FIR op

timisations, using an MCO approach to search for the POS of non-dominated solutions.

The binary chromosome used initially contained a list of the positions of the poles and

zeros of second-order sections, which were taken to exist as complex conjugate pairs.

The fitness functions used were simply the maximum error between the magnitude

response of the filter and a given desired response template, and the mean squared

error between the phase response and a best-fit straight line over a specified region of

the passband.

8.7 Results

The GA was initially run with fitness functions designed to optimise and trade off

the magnitude response performance against the linearity of the phase response over a

given region of the passband. Initial results showed that the solutions within the GA's

NDS were strongly biased towards solutions with near-linear phase in the passband,

rather than with a good magnitude response. The range of fitnesses returned by the

127

Figure 8.5: Example of an early non-dominated set.

two functions differed by an order of magnitude, so an attempt was made to equalise

the two by scaling them to an approximately equal range. This had the effect of

slowing, but not halting, the discovery of individuals with good phase response, but

did not force the search to find solutions with good magnitude responses. It was found

that giving the GA the ability to change the type of each second-order section made

little or no difference to the quality of the solutions found.

Mter many unsuccessful trials, the investigation was moved to the optimisation of

a filter's noise and magnitude response together, and to exclude the phase response. To

simplify the noise calculations, the structure was fixed to use only the canonic second

order section. At this stage error spectral shaping (Section 2.3.4) was also added, but

had no noticeable effect on the solutions found.

A selection of results from these optimisations are shown in Figures 8.6- 8.14, and

summarised in Table 8.1. In the captions for these figures dp refers to the passband

ripple and ds to the stopband attenuation, both in decibels (dB). Figure 8.5 is a

typical example of the first three non-dominated sets in a population early in a run .

The 'wavefront' can clearly be seen, along which performance trade-off is occurring.

All of the results are shown after a run of 1,000 generations for a lowpass filter

with band edges at 0.1 and 0.2, and all but the last are for a 16-bit wordlength It was

found that if a suitable solution with low magnitude response error has not been found

128

9

-29
,.....--~---,······································-··················-··-·----··

,_ ~~~;n~{h?~{rs : 4
~~~~~~~al. : ~4 
~~ounde~: . 999939 

;.69 _ .......................................... -...... ll~;,i::~·~·4;t:: 
~~:9r--: .............................................................................. =·=== .. ··· ~~1!!. a~!!JM!la~!l~· .!&~. 6!!!!~~s!!!e!!!~~~!E!!!~ 
... : . 
;-129: ...................................................................................................................... . 
:;_149! .................................................... _ .................................. _._, ...................... . 
w ' 
'L169L 
l i 
-189[-·--· 
-2-'-........ -.......... .__ _____ ...__ _____ _ 

9 . 999 9.998 9 .195 9 . 293 B . 39~ 9 . 488 
UQ ,. .. ,...,\ l ;. 1:11 .~ ! 1\-C.H:t;~f ~ tH~ ~J 

P~ ~a~ Inro 

Genetic AlgorithM for 
Digital F Iter Design 

1>!1 S teye Harris 
Ver:;:ion 5 ... 99 

8th March "'991 
H For help on keys 

Gene~ation,993: 
l'fo. 1n HDS . 

~~~ .. r~t~~ : 999: 

C.neratlon 1 9BB :
l'fo • 1 n Hl)S :

Point : 31~/311

Gfl S tatus

3:1.~/5liHI

Figure 8.6: Best result for a fourth-order filter with target dp= 0.5dB, ds=40dB, 16 bit
wordlength.

Target Target Actual Round off

Wordlength Order passband ripple attenuation max. error noise gain

16 4 0.5 40 1.227 4.629

16 4 0.75 40 0 6.052

16 4 1 40 0 5.795

16 4 1 50 1.456 3.963

16 6 1 60 0 8.753

16 6 1 70 0 10.598

16 6 1 80 4.560 11.703

16 6 1 90 4.182 35.755

24 6 1 80 0.678 16.476

Table 8.1: Comparison of a variety of best-magnitude response results found by the
multi-criterion GA. The last two columns show the actual error from t he target tem
plate and the roundoff noise gain .

129

9

- 29

f£ 49

;_69

; ____________ _

····-···········-··-----·----···-··-··=-1

~
~~~ ot co•£Cs: 4 

1 
o~cl ength: 16 
r~cti~nal wl: 14 

Fitn&ns ~unction statu~ 

"~~~m~~~:~~3~~~
98

~1~::9939 ,I 
:';.. Qg i· - ----- -·- • ,..g, . 4se 
0 i . Mag, • 2se ~ 
; - ut9;·-···· - ..... ···········-····- ········-··--- ~~~~~~~~~!!!!!!!~~~~ 

~129;-····················· ······················-·········································································-· 
:...149,······················ ···············································-·-···--···········-··-·-·--···-······· 

p.,o r-a,.. tnfo 

+- I 

;~~: :~~~~~::: ............ : ..... :.:: ....... _ .. :~ ................ ::.::::::::::::::~:::=:::~~:~:~:=~:~:~:= I 
- z 99L-·-·-·-·-······ · 

9.999 lil.lil98 lil . 195 9.293 9.391 9.488 

Genetio Alfo .. ithM tor 
Digital Fi te .. Design 

hw St""" Ha.r.,is 
V•rsion 5.._9Cil 

8th Ma.rch .,981. 

H Co~ help on keys 

~~ .. r~t~~~:277 : 

~~~ .. r~ti.E2 :aas: 
~~-r~t~E~ : 292:

Point: 235/235

Gf) S tatus

239/59Cil

23?/59Cil

235/5Cil9

Figure 8.7: Best result for a fourth-order filter with target dp= 0.75dB, ds= 40dB, 16
bit wordlength.

130

i~t[; ~~~~~:;::;;=.
N :

:: 1.211 i····················- ·································--·-············--·····························

~1.49 i························ ···-·············· ··· ····· ~-
:~ :

~~ 16 9 r-----~-----··-······- ···-----·-··----·~-... --............ ~------·-4· --·---~~-----·--··-·· ··· · _________ ____________ _
- 1.89(- --

- 299'·-··········-·····-'---------------
9 . 999 9 . 998 9.195 9 . 293 9 .39 1 9 . 488

W'.l .f'.~).i+l.;.~; ~.~ i:<'P<t~\.:t>n(':~j

I .

Genetic Alfo~ithM Co~
Diwital Ft te~ Design

bg Steu .. Ha<'X'is
Ue~:s.ion 5 . lillil

8th MaJ>ch 2QU1

H Cor help on keys

1.81./599

:1.89/598

1.89/5911

Ro.setting HDS Cile ...
TiM,. taken: 9 : 91:5:1.
TiMe left : a:. aa:.!i TiMe per gen.: lil 99...,

~~:~tr~:""~~a~~~:.
c 2 . 493346 31..518867 :1.78.9999
£ 5.794589 9.999999 178.99999

Figure 8.8: Best result for a fourth-order filter with target dp= l.OdB, ds=40dB, 16 bit
wordlength.

131

......................

(}4&

: :: 1::: :: :: ::::::::~:: : : :: : :: : ::: :::::::::~:: .. ·· ... ::::::: :::
:> :
:_'-1.99!····················· ·· .. .

h as!-·-······-··-- ·- ········ -·-········ ······-·-·-···-·-·-···-··-········ ·····
~1.41i!··········· ············ · ····· · ··· ············ · ·······················
~t. 169f••••••••••••••••••••• •••••-•••••-•n•••••••• ~·--••••u•-•••'•''"''''''''"'''-•--•••••••••••••-••••••••••••••••
- 1.89f-···· ·--· ········-··--·· ··-

-a.r~aiii···---a·:-g'-=9:-:8,---:0:-.-:1.:-:9:-':S,---:9:-.-:2:-:9:-:3:---0::-.-:3:-:9:-:1.:---o=--. 4::-:8a

notion status

Genetic AJsorithM Cor
Digital Fllter ~sign

by Steve Hai'Fi s

U•x-sion 5.1it&
8th Maz>oh Za81.

H Col<' help on keys

Figure 8.9: Best result for a fourth-order filter with target dp= l.OdB, ds=50dB, 16 bit
wordlength.

132

AM litude ResPOnse or Bes t Filte~

9

- 29 ·····-··············· ··- -

t:: !... .. =.::= .. :: '\------------

...
-r
~

f 89 :--················· ··········-···········
;_'-1.99 !·····················

t~:: t~:::::::::~:::::: =:::::~:==···=.:~:::: .. .
;> :

~~169 [·-·-···-·······-·· -----··-························-······-···-····-··································

- 1.89[··-··

- 298;··--····---···--..L.----------------
9.009 9.998 9.195 9.293 9 .391 9 . 408

I :~
! ~

I ~ l
<c ..
~
·<
>'
~

'1:

" . 99 2 . "" 4 . "" 6 • 09 8 . 91it
RnHq,!·) 0: f rt-<• i <;t? Y'·~ 1 .,

Fitness runction status
29.1.91Mag,5.&B9se

~1.7~ Maw,5. Q~9se .7 ,..._g,:S.II 9 se

~·~M::~~~i~"r==·
l
:;'tl:::; :5 :: , 1~ M&IJ, , 5 Sf!
.9 M.ag, • SI!'
.91 M&SJ,8.:i9HSIP
.88 ..ag,8.:fS3s~

C•netic Alfo~ithM ro~
Digital Fl ter D•sign

by Stev• Harris

o~~~~~~h52=1.
H £or help on keys

48/51i19

Cenera~ion 1.8&8/5g&g:
Resett1ng HDS Cile ...

Figure 8.10: Best result for a sixth-order filter with target dp= l.OdB, ds= 60dB, 16 bit
word length.

133

Fitness ranatlon status
,----...,----,·----------------·-···········

NUMbe~ o£ co•f£s: 6
- 29 · · F'~~~U::::!r= wH 14 t:: ~~ _: : : - - - - -- - ~~ .. ~~:!gge~~ ~. :~:5,.9 "e9939

~89 !".................. l?ei~~.Hi . ~9ilse

;.- 1.lillili---------------------· ... '-11111;;~;;;;;;;~
[ue!----- _......................... ·-·---- - .. ~
"""148;
.:> :

~"-:t69 f-- --·----.. ..
- :18lil r-- _________

-a eeL----·------'------------ -----·
9.999 9.998 9 . :195 9 . 293 9 . 391. 9 . 488

Genetic AlgorithM for
Digital Filte~ D•s• gn

bll Steve Ha~~is
Ue~sion 5 99

8 tJl M<ll"Oh flli91
H to~ help on keys

~~~er~tl&~:a : 1115 -'SiiKI 

Point : :11i151'11i15 

'~t~{ation size: ~!a 
C~ossover P~ob: .7 
Mutation Pl"ob: .lillil5 
f!~!ts:~arch: ~ff 
Resetting NDS Eile . . . 
t 5~683399 34.974178 178.9999 
t 1~.59776:1 lil.lil9lillil9lil 178.1i19G9 

Figure 8.11: Best result for a sixth-order filter with target dp=l.OdB, ds= 70dB, 16 bit 
word length. 

134 



Q 

- 29 

~89 

······················ .................. . 

· ············-··~···· .............. . 

::; ' 
;_'- 11i18 !·····-·········· .... . .......... ······· ....... . 
h z9l ·········-·-· ----·----···---·· 
~140!······················································ .............................................................. . 

~!..169r··-··-·······--·-·· ···-··--··---·······-············-·-·······················----····- .. ----·····-

-~sor--
-290°·---------L---------------

9 . 980 0.098 0 . 195 0 . 293 0.391 0.488 

4j 

o.oo 2 . 99 4.09 6.1111 a.ou 19.90 

gu"bir 0~ cor~~.: 6 ord y n gth: 6 
rac anal wl : ~4 

P•rturb· 5.1i18 
HaKRounded: ~.999939 

~~~6~gMag,~.·~~s• 
a9~6a9"agi • •• 4. ;,6 Mag, • s•

gr~tt!Y ~lft~~tt:sf;~
by Stev• Harri s

Version 5.011
8th March 20111

H Cor h•lP on keys

~'?"f~t~~~:o : 2781'51119

Point: 2781'278

Gll S tatus

P9pulation siz•:
Btts :
Crossov•r prob:
Mutation prob:
ElitisM:
Local s•aroh:

51i1
148
0.7
9.91i15

~H
R•s•tting HDS Cil• ·· ·
~ 5.963949 29 . 648739 178 . 991i111 c 1~ . 792513 4 . 559934 178.9898

Figure 8.12: Best result for a sixth-order fil ter with target dp=l.OdB, ds=80dB, 16 bit
word length.

135

~.;

•::

9

- 29

~49

;.69 :---·················· -·············

;::"r:::~::::::::::::::· :::::::::~::~: .::~. ·::~:::: ··::··=::::::~:~:::::: ··::::::···:~:~:::=::::::::~:::::~~
:!.-12ol
g.1. 49 ~--·-················· ················ ··· ··-··············-······················-
::- :

~-1.69 }-···· · ··············· -······································-··········· ... ···-····-···········-····--··················

- 1.89["- ·-- ··--··- -. ·· - ·· ··--

- 299 '----·-·······-:'-· ::-::---::--:-::--::----c::-:::-::-::----::---::--=-:---=-~
9 . 999 111.098 0.1.95 9.293 0 .391. 9.488

t
r:

t
~
1
-;
~
l::

9 . 09 8 . 99 16 . 99 24.1i19 32 . 99
Ruu.n-:!of .f fHJisi? ~n~i;):

H~Mbfr ot coetts: 6
Word ength: 16
Fractional wl: 14
Perturb: S.lie
MaxRounded: 1.999939

ESS I"· i8·ft BMag.a.154se
~.Hi M::~~!i=~~~:

gr:tt~Y flf~t~tt:sf:~
by Steve Harris

a~t"R~Jt5a81t
H tor help on keys

Cene:ra t_i__11n. Ci1:
Ho. ln KDS.

Point: 2291'229

£n::t..tton size: n~
~r_ ossover prob: lil.
Mutation prob: "£ 5 ElitisM: o
Local sea~ch: o
Resetting HDS tile .•.
t 5. 1 54184 49 . 99&999 178.991i19
~ 35 . 754541. 4.182113 178 . 8999

Figure 8.13: Best result for a sixth-order filter with target dp=l.OdB, ds= 90dB, 16 bit
wordlength.

136

--~----=ijiJ=i=ii =ii~=-=••=~=•=iii=i=iii=; ====ii=m=i=iii=m=---------

I I , ,
I

~~:::t·:::::·············- ······································-·--·-·····-·--·························-
-299L -....J'---- - -----------

! 9.0911 9.998 0.195 9.293 Cil.391 9.488
~ N<.l .l:'M~t;. 5;f};,.\ t X"'C.)~'h)n~u

k~J~.~~~ '"

iss on.
7.7~5Mag,5.~94se 7 , 7 5Mag,5. 9458
.&? ...ag116. ?6s•

Genetic AJgorith" for
Digital Falter Desagn

by Steue Harris

Ver!'.i on 5 .r.. 09
8th ,.aro.h "Yiit1

H Cor help on keys

Generation Cil:
Ho . in HDS: 211/599

Point: 21.1/21:1.

C~f~tation s ize : ~!
Crossoue~ p~ob: 9.~
~ttf!:~ prob: :;?95
Local search: o££
Resetting HDS Cile .• .

9 . 90 4 . 9Q 8 . 99 12.9Cil 16.99 c 5.293933 17.764871 178.9999
l "'BH!><(,> t' f ,-,c.j 'H! }!'< t 'l £ 16 , 475686 9, 6 77597 178 . 9999
L. ... w ... ~ ,. ,, ,, ... , w.-.-. '"''"'"""'-'"""'""""""'"'"""""""""""""""""""""""""-""""

Figure 8.14: Best result for a sixth-order filter with target dp= l.OdB, ds=80dB, 24 bit
word length.

137

after 1,000 generations, then one was not usually found even after 5,000 generations.

The solution with the best magnitude response is shown in the upper left box, with

the ~DS over all points examined so far in the lower left. The GAs were run with a

population size of 100, a crossover probability of 0.6, and a mutation probability of

0.01. Different mutation probabilities were tried from 0.001 to 0.05 with little variation

in performance.

The first results, in Figure 8.6, are for a filter with a desired dp of 0.5d.B and a ds

of 40dB. These show that the GA was able to find a solution close to the template,

but with a magnitude response error 1.227dB outside the template. The shape of the

~DS shows that the GA was able to find many solutions, but none of them came close

to the template. There is also a sharp rise in the magnitude response error when the

noise starts to fall. In this case, the GA has not been able to find a range of suitable

solutions, as was hoped.

The results in Figure 8.7 are for a similar filter, but with a desired dp of 0.75dB.

In this case the GA was able to find one solution which fit the magnitude response

template, and one other close to it, with a slightly lower noise, but the response error

then rose sharply as the noise decreased. The 'stepped' nature of the NDS in this case

indicates that the search space has different characteristics to the previous search.

In Figure 8.8, the passband tolerance has been widened again to a dp of 1dB.

Again, a suitable solution was found , but with a slightly lower noise than for a dp of

0. 75. This was to be expected, as the looser frequency response tolerance releases more

degrees of freedom for noise reduction. In this case, only one good solution was found,

the second-best with respect to the magnitude response being noticeably outside the

template.

As the passband tolerance has been widened there have been progressively fewer

solutions in the NDS. This is due to the changing nature of the search space, but the

exact reasons are unclear.

The next set of results illustrate the change in performance as the stopband toler

ance is tightened. Figure 8.9 shows the best result for a desired template with a dp of

138

1dB and a ds of 50dB. It is clear that in this case the best solution is unacceptable,

lying almost 1.5dB outside the template, although the noise figure is low. It is unclear

if this poor result is because the magnitude response template is unattainable at this

wordlength, or whether low-noise solutions are easier to find, which drove the GA away

from good magnitude response solutions.

\Vhen the desired attenuation was increased to 60dB for the next run, the Matlab

initialisation script predicted that a sixth-order filter was necessary, so the order was

increased for the remaining runs. This longer filter could achieve higher-attenuation

filters than 60dB, so the search space contains a variety of solutions at 60dB. This

more favourable situation meant that the GA was able to find an acceptable solu tion

here, and also in the next run at ads of 70dB, shown in Figure 8.11.

In Figure 8.12 however, with a desired attenuation ds of 80dB, the best solution

was 4.5dB outside the desired template, either because the search space was too hard

for the GA as the optimum region was too small, or because the filter specification was

unattainable. When the attenuation was increased further to 90dB, as in Figure 8.13,

the best fi lter is actually slightly closer to the desired template than in the 80dB case.

However, this has been achieved at the expense of a much higher roundoff noise gain.

The fact that the GA was able to equal the accuracy of the 80dB search with a 90dB

template implies that a much better solution is possible with an 80dB template, and

that there may actually be an exact one with respect to the magnitude response.

The 80dB template optimisation was repeated with a wordlength of 24 bits, as

shown in Figure 8.14. As can be seen, the best solution was only 0.678dB outside

the template, as compared with 4.56dB for the 16-bit solution. This improvement is

probably due in part to to the existence of more solutions with at least 80dB attenuation

in this search space, but the very different spacing of the zeros shows that the solutions

come from widely separated regions of the parameter space. It seems probable that

there is a 16-bit solution similar to the 24-bit one, but the GA had simply not found

it.

A comparison of a selection of the filters in Table 8.1 with those obtained by quan-

139

Order Word length Desired GA error Quantised

attenuation (dB) (dB) BZT error (dB)

16 50 1.456 1.07238

16 80 4.560 1.2439

Table 8.2: Comparison of magnitude domain results found by GA and by quantising
the BZT coefficients for an elliptic filter designed in Matlab.

tising the coefficients of elliptic filters found through standard techniques using Matlab,

is given in Table 8.2, where it can be seen that the GA solutions are only a couple

of dB worse than the quantised-coefficient BZT filters. However, using such a BZT

solution has the disadvantage that the phase response is uncontrolled and non-linear,

and the degradation of the noise performance caused by quantising its coefficients is

also uncontrolled.

Due to the limited success of t he GA with this cascade filter design, it was decided

not to attempt the design of a parallel-structured filter, as the indirect relationship

between the pole-zero positions and the parallel filter coefficients implied that it would

be a much harder problem for the GA to optimise.

8. 8 Discussion

The results have shown that the GA is only able to find a good solution with respect

to the magnitude response when the desired template has loose tolerances. When the

passband ripple is reduced, or the stopband attenuation increased, the performance

drops dramatically, and often the GA does not find an acceptable solutions, at least

for the magnitude response.

The performance of the GA with respect to the magnitude response suggests that

it is a harder problem to solve than reducing the noise or finding a partially near-linear

phase response, at least from a GA perspective. Despite the fact that the filter is made

up of short second-order sections, each of which is a distinct unit, the filter as a whole

still needs to have the right characteristics for it to have a good response. This means

140

that the GA has to find entire good solutions in one go, rather than optimising a part at

a time. The fact that all the coefficients work together means that altering one moves

the optimum for all the others, so it is not possible to predkt the fitness from just one

coefficient, or even one second-order section. This makes it very hard for the GA to

build up good genes. However, the fact that seeding the GA with a perturbed BZT

solution allows the GA to come close to the performance of the quantised-coefficient

BZT filter, while also providing some control over the noise or phase characteristics,

means that the technique shows some promise. It is probable that future improvements

to the GA technique could allow it to equal or exceed the quality of the quantised BZT

performance in the frequency domain.

The better performance with respect to the phase and noise characteristics suggests

that there is a more straightforward relationship between them and the filter coeffi

cients. It also therefore appears that it is ea.sier to predict the overall phase or noise

performance from a single second-order section, than to predict the overall frequency

response. A future analysis of how changes in chromosomes and pole-zero positions

affect the noise, phase and magnitude responses could be used to guide future devel

opment of a GA-based optimisation, in order to increase the performance with respect

to the magnitude response, which is perhaps the most important aspect of the filter

design. It also seems likely that an alternative, more efficient method of allowing the

poles and zeros to be reordered and paired would increase the ability of the GA to find

more efficient structures.

The successful optimisation of a parallel structure filter would also require addi

tional analysis, and perhaps a different approach to that for a cascade filter, because

of the different relationship between the pole-zero positions, the parallel section coef

ficients, and the filter response.

141

Chapter 9

Conclusion and FUture Work

This project has set out to investigate aspects of the use of optimisation within the

digital filter design process. The design process has been analysed, and opportunities

identified within it where the current methods could be improved by the application

of alternative techniques. A number of these situations were selected, and coded in a

method suitable for optimisation by Genetic Algorithms and Simulated Annealing. A

variety of GA techniques were involved, culminating in the implementation of a multi

objective GA, capable of investigating the performance of digital filters with respect

to a number of different measures simultaneously, and of trading off these against

each other to produce a range of solutions which are potentially useful in a variety of

situations.

The GA was found to have varying levels of success in optimising a range of filter

types, from some where it did not work well, to others such as the hybrid Frequency

Sampling designer, which produced excellent results. Its varying performance gave

insights into the applicability of GA-based optimisations in the digital filter design

process, and into how these could be altered in future to improve their performance.

142

9.1 Review

9.1.1 Digital Filter Design

The digital fi lter design process is an iterative, multi-step process in which the per

formances of different aspects of the design are examined, and the filter altered to

improve them. This process can require many iterations to obtain a suitable system,

and the way the process is divided into stages means that it is very difficult to trade off

the performance of, say, the frequency response against the roundoff noise gain. The

whole process was analysed, and stages identified which could potentially benefit from

GA-based optimisations. These results were used to select filter design tasks to use to

further the investigation.

9.1.2 Finite Impulse Response Filters

Initial investigations into the design of Fffi filters involved the optimisation of Fre

quency Sampling fil ters by adjusting their transition sample values. A floating-point

GA proved able to find good solutions for filters with up to around four t ransition sam

ples. When filters with a wider transition band were used, the performance dropped

noticeably, and a hybrid Simplex-method hill-climber was added to the GA to com

plete the optimisation. This technique proved able to produce solu tions which equal

or better those in the published tables of Rabiner et al [5]. The tables are limited in

their scope, requiring the transition sample values to be interpolated for untabulated

filters, whereas the hybrid GA technique can be also be applied to any such unlisted

filter, producing a more accurate result.

The fitness function was extended to optimise the transition sample values of finite

wordlength fi lters, and to simultaneously search for the minimum wordlength necessary

to achieve a desired attenuation. Using ' t raditional' methods of filter design, such an

optimisation would require a great deal of additional mathematical analysis [76, 77],

but the non-problem specific nature of the GA meant that it was possible to perform

143

this optimisation using the same GA as before, with just a small change to the fitness

function. This was altered so that the floating-point coefficients were quantised to a

specified wordlength before use, and the GA was then found to be able to produce

high-quality solutions without the hybrid hill-climbing algorithm.

The search space for a quantised-coefficient filter contains many fewer points than a

32- or 64-bit floating point implementation, but will be discontinuous because changing

the wordlength will perturb the coefficient values and cause a step change in the filter

performance. The means that a hill-climber cannot optimise the word length simultane

ously with the coefficient values, but the GA is generally unaffected by discontinuities

in the search space, and is able to operate effectively on this problem.

This work resulted in two papers, the first of which was published in the Proceed

ings of the 1993 IEE/IEEE Workshop on Natural Algorithms in Signal Processing, and

introduced the design of Finite Impulse Response (FIR) filters by GA [2). A second pa

per, extending the work presented in the first, was published in the IEEE Transactions

on Signal Processing in 1998 [4).

A subsequent investigation into the potential use of a Multi-criterion GA for op

timising quantised-coefficient non-linear phase FIR filters proved unsuccessful. Re

moving the linearity constraint allows a filter to have the same magnitude response

with fewer coefficients, and the GA attempted to find such a solution, with as linear

a phase as possible over a specific region of the passband. An investigation into the

GA-difficulty of the problem revealed that the selected representation was not suitable

for the GA. This was because it was not possible to predict the filter performance

from a subset of the chromosome, and the only good solution was a complete solution.

Genetic Algorithms only examine point samples of the search space, so the analysis of

the difficulty of the problem also only required point data to be collected, by storing a

large set of random chromosomes and their corresponding fitnesses. This charaderistic

of the GA means that a single implementation of the difficulty calculations can be used

for a wide range of problems, simply by swapping the fitness function which is used to

calculate the performance of each chromosome.

144

Although the use of a binary, finite-precision chromosome meant that each coeffi

cient could have fewer values, there were many more coefficients and each coefficient's

effect on the fitness was harder to predict. These characteristics make the problem

difficult for a standard GA to optimise. Recent work by Lu and Tzeng (97, 98] has

successfully used a GA to produce non-linear FIR filters, by utilising a guided crossover

technique which allows their GA to perform more effectively in this unfavourable search

space.

9.1.3 Infinite Impulse Response Filters

The initial attempt to optimise the pole and zero locations of an IIR filter using the

same floating-point GA as for the Frequency Sampling filter investigations was unsuc

cessful because random coefficient initialisation was used and there is a lack of useful

structure in the search space far from the optimum. However, this illustrates an ad

vantage of the GA, in that the same implementation can be used for a wide variety of

problems by simply changing the fitness function. As it was desired to optimise the a

and b coefficients directly in a quantised form, a binary GA was implemented which

included a weighted-sum fitness function, intended to reduce the noise once a solution

had been found which fitted the desired magnitude response. The results from initial

experiments using random chromosome initialisation were not encouraging, so the GA

was seeded with a known good solution found using the BZT method. This produced

better results, although the unperturbed quantised BZT solution itself was of compa

rable performance to the best GA solution. Another technique, Simulated Annealing,

was also applied to the same problem, and was found to perform a better trade-off

between the two performance measures, as detailed on page 79, where it was able to

find a solution which was only just within the desired magnitude response template,

giving it more freedom to improve the noise response.

An analysis of the search space for this problem revealed that it only had a structure

suitable for the GA close to a good solution, so it could not be expected to find the

145

optimum solution from a random chromosome initialisation. The SA was less affected

by the nature of the space, and was able to perform better, but still required seeding

with a BZT solution. It was, however, able to find a solution which traded off the

performances with respect to noise and frequency response more effectively than the

GA.

Like GAs, the SA technique is able to operate effectively in a discontinuous, con

strained search space, and does not require a mathematical analysis of the problem,

just a suitable implementation of it. SA does not work by building up a good solution

from building blocks, so is able to work successfully with some problems which are

GA-hard; conversely, there are problems where the GA can make use of high-fitness

building blocks to outperform the more random search of SA. However, due to the

non-problem specific nature of both techniques, the same fitness function can be used,

as they both only take the same point samples of the search space.

The second approach was to use a true multi-criterion optimisation (MCO) GA to

optimise the filter with respect to the magnitude response plus either phase response

or roundoff noise gain, with the aim of providing a range of solutions with different

tradeoffs, from which the most applicable could be selected by the designer. This GA

was also unable to find a solution from a totally random initialisation, so it was seeded

with poles and zeros, randomly positioned within the pass- and stopbands respectively.

The fitness functions adopted differed from those used previously for IIR filters, in that

the performances were measured separately, instead of being combined in a weighted

sum. The GA proved able to find solutions with a near-linear phase in the passband,

but the set of solutions did not produce a wide range with acceptable magnitude

responses, and, although it regularly failed to find even a single solution which exactly

fit the desired response template, the maximum deviation from this template was often

just a few dB, whih may be acceptable if it occurs in the stopband.

The same GA was used with a different fitness function, with the aim of trading

off the magnitude response with the noise gain, but although solutions were found

with acceptable magnitude responses, it was again discovered that the GA did not

146

find a range of acceptable filters, and that as the tolerances (passband ripple and/or

stopband attenuation) became stricter, fewer and sometimes no filters were found with

acceptable frequency responses. This appears to be because it is possible to break

down the noise problem into simpler parts, and if one section has a low noise, then the

whole filter will generally have a lower noise. However, all but one section could have

an optimal frequency response, but if the last does not, the performance of the filter as

a whole will be poor. This means that only a filter with a suitable magnitude response

in every stage will have a good performance. This inability to break down the problem

with respect to the magnitude response makes the problem hard for the GA.

The ease with which the GA could be changed from optimising the frequency re

sponse to optimising the noise illustrates a major advantage of the technique. As the

GA is problem-independent and only takes point samples of the search space, no math

ematical analysis or manipulation of the problem need be undertaken, which can be

complex, especially in fixed-precision environments. This means that the same MCO

technique and implementation can be used to perform several trade-off optimisations,

simply by changing the fitness functions used, which in turn are based on the same

implementation of the filter. In other words, once the problem has been implemented,

the same GA can be used to optimise its performance with respect to a range of dif

ferent criteria by selecting which measures are returned by the fitness functions. This

feature of the GA makes it a suitable technique for optimisations in the domain of filter

design where a wide range of disparate performance measures can be used, including

magnitude and phase responses, noise performance, wordlength, filter order, and even

implementation costs such as chip area and complexity. It would be extremely com

plicated to design a technique to trade off magnitude response and implementation

complexity using 'traditional' methods, but this can be performed with an MCO GA

by encoding the problem in a suitable chromosome and implementing the necessary

fitness functions [45].

147

9.1.4 Optimisation techniques

A variety of optimisation techniques were employed in this project, but centred mainly

on the GA. Two types of GA were used at different times, the first using a floating-point

chromosome, which was coupled with a hybrid Simplex-method hill-climber. This was

successful at optimising Frequency Sampling filters. The second type was an MCO

binary-chromosome GA, which was used on a wider range of problems but proved not

to be universally successful. While it could often find solutions with good noise or phase

performances, it was generally less successful in optimising the magnitude response.

The GA has shown itself to be a widely-applicable technique which can be easily

adapted to a range of problems, ranging from magnitude and phase optimisations

to noise analyses and implementation cost reductions. It has the great advantage

over traditional techniques that it can be used where direct mathematical techniques

are very difficult to perform, such as the direct optimisation of quantised IIR filter

coefficients with their pairing and ordering, and phase or noise responses, in a single

step, as in Chapter 8. Once a filter has been implemented it is possible to perform

a range of optimisations from the same code, simply by changing the performance

measures returned by the fitness function.

A Simulated Annealing method based on the Simplex hill-climber was also used for

one IIR-based optimisation, and was found to perform better than the GA, probably

because it was less affected by the structure of the search space, as it does not rely on

the same short, high fitness building blocks.

9.2 Future Work

9.2.1 New areas in FIR Filters

The existing work has covered a relatively small range of filter types, and many remain

unexplored, some of which could prove to be better suited to a GA-based optimisation.

The results of the analyses which have been undertaken here can offer guidance to the

148

selection of areas of future investigation, and show that a careful initial examination of

the design problem and the nature of the search space will prove advantageous when

deciding on how best to describe and code the problem in order to make it suitable for

optimisation by GA. In particular, it should be possible to make a prediction as to the

performance of a filter from just a portion of the chromosome, as the GA 's performance

is especially poor when there is no structure in the search space to guide it towards

optimum solutions.

The successful finite wordlength, linear-phase Frequency Sampling (FS) FIR opti

misations could be extended to include a full implementation of a finite wordlength

filter. This would allow the coefficient optimisation to take product roundoff into effect,

without requiring any changes to the GA.

One area of FIR filter design which appears promising is that of optimal filters, in

which the optimisation task consists of searching for the extremal frequencies. Since the

performance of an optimal filter only degrades slowly as extrema are moved from their

optimal positions, it ought to prove a suitable subject for a future GA investigation,

using a chromosome containing a list of the extremal frequencies. Optimal filters have

the advantage that the extremal frequencies can be estimated very quickly to give an

approximate solution which could be used to seed the GA and allow it to start in

the general location of the optimum. The fast speed of the optimal design process

(McClellan et al (15] reported that, even in 1973, their Remez exchange-based method

only took a few seconds) makes a GA approach unlikely to be worthwhile for standard

designs. However, it may be useful in situations where the standard technique is

not guaranteed to converge, such as with designing multi-band filters with varying

transition widths, when there may be local ripples within the transition bands.

The lack of success with the non-linear FIR filter design showed that the method

of implementing the search was not ideal. While the current system was run for 8,000

generations, and improvements stopped well before the end of the run, further in

vestigations into the existing technique with extended run lengths could improve its

performance. A different approach to crossover may prove beneficial, such as that

149

of Cotta and Troya [100), which picks the best of all the potential offspring, or Lu

and Tzeng [97), which guides poorer solutions towards better ones. A fuller analysis of

the relationship between coefficients and the magnitude and phase responses could also

give a better indication of how to structure the chromosome to reduce the long-distance

effects which are currently observed and which limit the effectiveness of the search.

An alternative approach could make use of the fact that, unlike linear phase

FIR filters, where the maximum magnitude in the impulse response is in the mid

dle, minimum-phase filters have the maximum magnitude earlier on. A Genetic

Programming-based approach could search for a function which generates not only

the shape of an impulse response, but also where its peak occurs. This would allow the

system to automatically generate asymmetric impulse responses, which is difficult with

the GA approach used in this project, as it is unlikely that crossover between two sets

of coefficients with different peak amplitude locations will produce a correctly-formed,

suitable impulse response.

9.2.2 New areas in IIR Filters

It has been found that the GA finds optimising the magnitude response of an IIR filter

especially difficult, because it has to find whole good solutions, and cannot break the

problem down. A method of simplifying the search space could be to use only integer or

powers-of-two coefficients. This should improve the performance by vastly decreasing

the size of the search space. As with the FIR, although fitness improvements stopped

well before the end of each run, further analyses of the current system's performance

may show even longer runs to be advantageous in some cases.

A second aspect of the IIR optimisation which could be made more efficient is that

of the pairing and ordering of the coefficients. Although the second GA used here

could theoretically have improved the filter's noise performance, in practise its ability

to do so was limited because changing the order of any of the coefficients without

changing their values was exceedingly unlikely. A better approach would be to have a

150

chromosome which kept the coefficients in a fixed location, but which also contained

information on the order in which they should be used. In this way, simply by changing

the fitness function, the same GA would be able to optimise both the coefficients and

the order in which they are used, in one operation. A consequence of this approach

should be the increased effectiveness of structural optimisation, which could allow the

selection of the structure of the filter (parallel or cascade) and also the topology of

each second-order section in a cascade structure. This should allow the GA to find the

best structure, the best coefficients, and the best order to use them in, to give the best

performance.

9.2.3 Further Natural Algorithm Techniques

While this project has concentrated on the application of GA and SA methods to

filter design, it has become clear that they are not necessarily ideal techniques for

all situations. Further investigations could improve the efficiency of the existing GA

and SA applications and widen the applicability of Natural techniques by including

additional methods. Ways in which this could be approached are given below.

9.2.3.1 Genetic Algorithms

It was found that chromosome initialisation was very important for most of the GA

applications in this project, due to the lack of structure in the search space far from

the optimum. Further investigations into the best initialisation method to use for each

problem could improve the GA performance by giving it a wider set of high-fitness

chromosomes to work with, as the method used here of seeding the population with

perturbed copies of a single good solution will direct the initial search towards a single

good area instead of allowing it to pick good areas from all of the search space.

While the GA is a widely-applicable technique, its best performance is often ob

tained by tuning the operators to each specific problem. For example, as discussed

above, the pairing and ordering optimisation for IIR filters is inefficient with the gen-

151

eral methods used. A better performance would be obtained by either changing the

chromosome to include coefficient ordering information, or by adding an additional op

erator to run alongside the existing crossover and mutation. This operator would move

whole poles and zeros at random within the chromosome, thereby allowing the GA

to sample a wide range of pairings and orderings, and making the noise optimisations

far more effective. Other improvements could be made by tuning the crossover and

mutation operators to specific problems, either manually, by including problem-specific

knowledge, or automatically, as in the Frequency Sampling optimisations described in

Chapter 4.

9.2.3.2 Simulated Annealing

Although the changes proposed above to the GA-based optimisation should improve

its performance, the existing results for the SA showed that it could outperform the

GA under some situations. If the problem under investigation is not especially suited

to the GA then it might be advantageous to adopt an SA optimisation instead. Future

investigations would have to determine this on a per-investigation basis, as it will not

always be possible to determine beforehand which will perform better.

SA does have the disadvantage that it is a single-criterion optimisation method, so

it is not so suitable for producing a range of solutions to an MCO problem as the GA.

In some circumstances, however, it might be possible to design a suitable weighted

sum fitness function to produce a single filter with a desired trade-off between two

performance measures.

9.2.3.3 Tabu Search

Tabu search is an efficient optimisation method for combinatorial problems, but is less

suitable for precision coefficient optimisation. It may however be possible to combine

the Tabu search with a GA or SA to produce a hybrid technique which can perform

both effectively. For example, within the fitness function of a GA or SA being used

to optimise filter coefficients, a Tabu search could look for the best filter structure to

152

use with each set of coefficients, thereby producing a more wide-ranging and flexible

technique, which requires less user intervention than traditional design methods.

Alternatively, a Tabu search could use a low-precision version of the fitness function

to look for high-fitness regions of the search space. This information could then be used

to seed a higher-precision search using GA, SA or even a hill-climber.

9.2.3.4 Genetic Programming

Genetic Programming (GP) is used for different optimisation problems than those in

vestigated in this project, in that it searches for expressions which perform particular

functions, rather than for numeric values which fit into fixed models. A filter design

method which seems ideal for a GP approach is the Window method. Standard tech

niques use a limited range of functions, each of which have different characteristics and

different limitations. A GP-based optimisation could produce whole new families of

window functions, each tailored to specific problems, or even a different function for

every problem. An advantage of the GP approach is that it would not have a human

designer's preconceptions about what a window function should be, and would simply

look for the function with the best performance. This makes it theoretically possible

that a GP optimisation of any filter could find a solution whose performance equals or

betters that of any standard, general-purpose window function.

9.3 Intelligent Filter Design Tool

In the light of the results found so far, and the analysis of the filter design process,

it is now possible to outline a potential intelligent automatic filter design tool. It is

clear that no single optimisation technique is suitable for all aspects of digital filter

design, and that to fully automate the process will require a range of methods, working

together, and complementing each other's capabilities.

A possible structure for such a tool is illustrated in Figure 9.1. The system is

controlled by an Expert System (ES), and would contain an extensive library of tech-

153

Intelligent filter design tool

Analysis Library
Mathematical analysis

AI analysis

Design methods

GA
SA

BZT
Hill-climber

Optimal

AI and related
techniques

Fuzzy Logic
Expert System

Data store

DSP chips
Previous designs

Previous performance

Figure 9.1: illustration of the potential structure of an intelligent filter design tool.

niques, plus a database of its previous decisions and their associated performances. It

examines the available data, and runs analyses to determine which filter structures and

design methods are appropriate for that problem. The selected optimisations are then

performed, and the results examined to determine if they are acceptable. If they are,

it presents them to the user, but if they are not, it retraces its steps and uses another

method or alters variable parameters and tries again. In this way, it will be able to

rapidly try a variety of ways of achieving the desired specifications, or if these are not

attainable with the given constraints, it will produce the nearest filter and possibly

suggest changes to the design to improve its performance. The results found for each

technique can be stored to give additional guidance to the system when it is deciding

the best technique to use in future.

As an example, suppose a designer wants a linear-phase, lowpass FIR filter, with a

Nyquist frequency of 10kHz, O.ldB passband ripple, and 80dB stopband attenuation,

and band edges at 3kHz and 6kHz. The system might work as in Figure 9.2. Having

entered the known information, the tool determines that the wordlength, target system,

154

Start

I Enter fixed specifications I
·····-······--·--- ----------------------------········------------·

Determine unknowns - wordlength, technique

Select techniques and target system Reanalyse at new wordlength
using FL, ES, Database Queries

N

+ y Can wordlength be increased
for the current target?

Optimal method
FS hill-climber

Try in turn: Binary GA
Binary SA

Non-linear FIR

N

Analysis - are filter characteristics acceptable?
N

Maximum wordlength reached?

y y

Implement best solution

.... ····•·············· ·····---·

End

Figure 9_2: Illustration of the potential use of the intelligent design tool, to design an
FIR filter as described in the text

155

and design method are variables, and therefore uses an expert system to search its

database to determine which methods are suitable for the problem, and grades them

by their predicted usefulness, perhaps using a fuzzy logic analysis. In this case, it

might perhaps select to t ry an Optimal method, FS hill-climber, a binary GA, SA, and

as a last resort, try a non-linear FIR which may be acceptable if the response in the

passband is close enough to linearity. As the wordlength is unspecified, the shortest

possible wordlength is predicted and used for initial tests. This will be increased if no

solution can be found .

The system tries the methods in turn, then analyses the results to determine which

is the best result and if it is acceptable. If it is not, the wordlength is increased, and

the methods run again. If, however, the maximum wordlength for the selected system

has been reached, then the investigation into the best system to use has to be run again

at the new, longer wordlength. Eventually, the system will produce the best possible

solution, either within the design constraints or closest to them.

Future investigations into an intelligent design system of this sort cou ld result in

an extremely useful tool for digital filter designers, which is able to make use of a wide

range of techniques, and to gain experience as it performs designs in order to increase

its effectiveness in future. The concepts could also be expanded to produce tools for

other areas of DSP design.

9.4 Conclusion

This project has investigated the digital filter design process, and has undertaken a

range of optimisations using Genetic Algorithm and Simulated Annealing techniques.

It has resulted in a number of GA-based optimisation tools, which have also provided

insights into the nature of the search space, and therefore which filter optimisations will

be suitable for the GA. An analysis of the filter design process has produced a frame

work for a wide-ranging, intelligent, adaptive design tool, which could automatically

perform a range of optimisations in order to produce the best possible results.

156

Bibliography

[1] T. Back, U. Hammel, and H.-P. Schwefel. 'Evolutionary Computation: Com
ments on the History and Current State'. IEEE Trans. on Evolutionary Compu
tation, 1(1):3- 17, April1997.

[2] E.C. Ifeachor and S.P. Harris. 'A New Approach to Frequency Sampling Filter
Design '. Procs. IEE/IEEE Workshop on Natural Algorithms in Signal Processing,
1993.

[3] S.P. Harris and E.C. Ifeachor. 'Automating IIR Filter Design by Genetic Algo
rithm'. Procs. GALESIA International Conference, 1995.

[4] S.P. Harris and E.C. Ifeachor. 'Automatic Design of Frequency Sampling Fil
ters by Hybrid Genetic Algorithm Techniques'. IEEE Transactions on Signal
Processing, 46(12):3304- 3314, 1998.

(5] L.R. Rabiner, B. Gold, and C.A. McGonegal. 'An Approach to the Approxi
mation Problem for Nonrecursive Digital Filters'. IEEE Trans. Audio. Electroa
coust., AU-18:83-106, June 1970.

[6] P.H. Kraght. 'A Linear Phase Digital Equalizer with Cubic-Spline Frequency
Response'. Journal of the Audio Engineering Society, 40(5), May 1992.

[7] Y. Lian and Y.C. Lim. 'Linear Phase Digital Audio Tone Control Using
Multiplication-Free FIR Filter'. Journal of the Audio Engineering Society, 41 (10) ,
1993.

[8] N.J . Outram. Intelligent Pattern Analysis of the Foetal Electrocardiogram. PhD
thesis, University of Plymouth, 1997.

[9] J.A. Van Alste and T.S. Schilder. 'Removal of Baseline Wander and Powerline
Interference from the ECG by an Efficient FIR Filter with a reduced Number of
Taps'. Journal IEEE Trans. on Biomedical Engineering, 32(12}:1052- 1060, 1985.

[10] L.R. Rabiner and B. Gold. Theory and Application of Digital Signal Processing.
Prentice-Hall, 1975.

[11] E.C. Ifeachor and B.W. Jervis. Digital Signal Processing: A Practical Approach.
Addison-Wesley, 1993.

[12] L.R. Rabiner and R.W. Schafer. 'Recursive and Nonrecursive Realizations of
Digital Filters Designed by Frequency Sampling Techniques'. IEEE Transactions
on Audio and Electroacoustics, AU-19(3):20Q-207, September 1971.

157

[13] R.P. Ramachandran and S. Sunder. 'A Unified and Efficient Least-Squares Design
of Linear-phase NonRecursive Filters'. Elsevier Signal Processing, 36:41- 53, 1994.

[14] S.-C. Pei and J.-J. Shyu. 'Design of Arbitrary FIR Log Filters by Weighted
Least Squares Technique'. IEEE Trans. on Signal Processing, 42(9) :2495-2499,
September 1994.

[15] J.H. McClellan, T.W. Parks, and L.R. Rabiner. 'A Computer Program for De
signing Optimum FIR Linear Phase Digital Filters'. IEEE Transactions on Audio
and Electroacoustics, AU-21 (December):506-526, 1973.

[16] D.J. Xu and M.L. Daley. 'Design of Finite Word Length FIR Digital Filter Using
a Parallel Genetic Algorithm'. Proc. IEEE Southeastern, 2:834- 837, 1992.

[17] D.J. Xu and M.L. Daley. 'Design of Optimal Digital Filter Using a Parallel
Genetic Algorithm'. Proc. IEEE Trans. on Circuits and Systems If, 42(10):673-
675, October 1995.

[18] T. Qiloglu and Z. Unver. 'A New Approach to Discrete Coefficient FIR Fil
ter Design by Simulated Annealing'. Procs. IEEE International Conference on
Acoustics, Speech and Signal Processing, 3:C101- C104, 1993.

(19] M.A. Keane, J.R. Koza, and J.P. Rice. 'Finding an Impulse Response Func
tion Using Genetic Programming'. Proc. 1993 American Control Conference,
III:2345- 2350, 1993.

[20] J.G. Proakis and D.G. Manolakis. Digital Signal Processing: Principles, Algo
rithms and Applications, 2nd Ed. Macmillan Publishing Company, 1992.

[21] S.J. Flockton and M.S. White. 'Pole-zero System Identification Using Genetic
Algorithms'. Procs. Fifth International Conference on Genetic Algorithms, pages
531- 535, July 1993.

[22] M.S. White and S.J. Flock ton. 'Genetic Algorithms for Digital Signal Processing'.
Lecture Notes in Computer Science, vol. 865:291- 303, 1994.

[23] S. Sriranganathan, D.R. Bull, and D.W. Redmill. 'The Design of Low Complexity
Two-Channel Lattice-Structure Perfect-Recombination Filter Banks Using Ge
netic Algorithms'. Procs. 1997 IEEE Int. Symp. on Circuits and Systems, pages
2393- 2396, June 1997.

(24] K. Chellapilla, D.B. Fogel, and S.S. Rao. 'Gaining Insight into Evolutionary
Programming Through Landscape Visualization: An Investigation into IIR Fil
tering'. In P.J. Angeline, R.G. Reynolds, J.R. McDonnell, and R. Eberhart,
editors, Evolutionary Programming VI, pages 407- 417, Berlin, 1997. Springer.

(25] D.M. Etter, M.J. Hicks, and K.H. Cho. 'Recursive Adaptive Filter Design using
an Adaptive Genetic Algorithm'. Int. Conf. on Acoustics, Speech and Signal
Processing, 2:635-638, 1982.

158

[26] A. Krukowski, I. Kale, and G. D. Cain. 'Decomposition ofiiR Transfer Functions
into Parallel Arbitrary-Order IIR Subfilters'. Procs. NORSIG '96, pages 175-178,
1996.

[27] S.S. Lawson. 'Direct Approach to Design of PCAS Filters with Combined
Gain and Phase Specification'. lEE Procs.- Vision, Image and Signal Process
ing, 141(3):161- 167, June 1994.

[28] A. Krukowski and I. Kale. Almost Linear-Phase Polyphase IIR Lowpass / High
pass Filter Approach'. Procs. 5th International Symposium on Signal Processing
and its Applications {ISSPA99}, August 1999.

[29] S.S. Lawson and A. Wicks. 'Design of Efficient Digital Filters Satisfying Atbitrary
Loss and Delay Specifications'. lEE Procs.-G Circuits, Devices and Systems,
139(5):611-620, October 1992.

[30] C.K. Lu, M.S. Anderson, and S. Summerfield. 'Approximately Linear-Phase
Design of Allpass-Based QMF Banks'. lEE Colloquium Digest, 16th Saraga Col
loquium on Digital and Analogue Filters, 238:11/1-11/6, 1996.

[31] T. Kobayashi and S. Imai. 'Design of IIR Digital Filters with Arbitrary Log
Magnitude Function by WLS Techniques'. IEEE Trans. on Acoustics, Speech
and Signal Processing, 38(2):247- 252, 1990.

[32] S. Chen, R. Istepanian, and B.L. Luk. 'Digital IIR Filter Design Using Adaptive
Simulated Annealing'. Digital Signal Processing, 11(3) :241- 251, July 2001.

[33] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical
Recipes in C {2nd Ed.). Cambridge University Press, 1992.

[34] L.R. Rabiner, N.Y. Graham, and H.D. Helms. 'Linear Programming Design
of IIR Digital Filters with Arbitrary Magnitude Function '. IEEE Trans. on
Acoustics, Speech and Signal Processing, ASSP-22:117-123, April1974.

[35] Ping Wah Wong. 'Quantisation Noise, Fixed-Point Multiplicative Roundoff
Noise, and Dithering'. IEEE Trans. on Acoustics, Speech and Signal Process
ing, 38(2):286-300, February 1990.

[36] R.J. Clark, E.C. Ifeachor, and G.M. Rogers. 'The Study of Arithmetic and
Wordlength Requirements for Digital Audio Filtering Hardware'. Procs. 99th
AES Convention, New York, October 1995.

[37] B. Liu and A. Peled. 'Heuristic Optimisation of the Cascade Realisation of
Fixed-Point Digital Filters'. IEEE Transactions on Acoustics, Speech and Signal
Processing, ASSP-23{5):464- 473, 1975.

[38] J. Dattorro. 'The Implementation of Recursive Digital Filters for High-Fidelity
Audio'. Journal of the Audio Engineering Society, 36(11):851- 878, 1988.

[39] R. Wilson. 'Filter Topologies' . Journal of the Audio Engineering Society,
41(9) :667-678, 1993.

159

[40] A. Roberts and G. Wade. 'A Structured GA for FIR Filter Design'. lEE and
IEEE Workshop on Natural Algorithms in Signal Processing, November 1993.

[41] D. Suckley. 'Genetic Algorithm in the Design of FIR Filters'. IEEE Proceedings
a, 138:234-238, April 1991.

[42] K. Uesaka and M. Kawamata. 'Synthesis of Low-Sensitivity Second-Order Dig
ital Filters Using Genetic Programming with Automatically Defined Functions'.
Procs. IEEE ISCAS 2000 Voll: Emerging Technologies for the 21st Century,
1:359-362, 2000.

[43] J.D. Schaffer and L.J. Eshelman. 'Designing Multiplierless Digital Filters using
Genetic Algorithms'. Procs. Fifth International Conference on Genetic Algo
rithms, pages 439-444, July 1993.

[44] A.G. Dempster and M.D. Macleod. 'Use of Minimum-Adder Multiplier Blocks
in FIR Digital Filters'. IEEE 'ltans. on Circuits and Systems If: Analog and
Digital Signal Processing, 42(9):569=-577, September 1995.

[45] D. W. Red mill and D.R. Bull. 'Automated Design of Low Complexity FIR filters'.
Procs. 1998 Int. Symp. on Circuits and Systems, pages D429-D432, 1998.

[46] D.W. Redmill, D.R. Bull, and E. Dagless. 'Genetic Synthesis of Reduced Com
plexity Filters and Filter Banks Using Primitive Operator Directed Graphs'. lEE
Procs.: Circuits, Devices and Systems, 147(5):303-310, October 2000.

[47] J.H. Holland. Adaptation in Natural and Artificial Systems. Ann Arbor, Univer
sity of Michigan Press, 1975.

[48] D.E. Goldberg. Genetic Algorithms in Search, Optimisation and Machine Learn
ing. Addison Wesley, 1989.

[49] Z. Michalewicz and C.Z. Janikow. 'Handling Constraints in Genetic Algorithms'.
Procs. Fourth Int. Conf. on Genetic Algorithms, pages 151-157, 1991.

[50] P. Clitherow and G. Fisher. 'Knowledge Based Assistance of Genetic Search
in Large Design Spaces'. Procs. 2nd Int. Conf. on Industrial and Engineering
Applications of Artificial Intelligence and Expert Systems, pages 729-734, 1989.

[51] D. Goldberg and K. Deb. 'A Comparative Analysis of Selection Schemes used in
Genetic Algorithms'. Foundations of Genetic Algorithms, pages 69-93, 1991.

[52] R. Roy and I.C. Parmee. 'Adaptive Restricted Tournament Selection for the
Identification of Multiple Sub-Optima in a Multi-Modal Function'. Procs. AISB
Workshop on Evolutionary Computation, April1996.

[53] H. Ishibuchi and T. Murata. 'Multi-Objective Genetic Local Search Algorithm'.
Procs. 1996 IEEE Int. Conf. on Evolutionary Computation, pages 119-124, 1996.

[54] J. Suzuki. 'A Markov Chain Analysis on Simple Genetic Algorithms'. IEEE
'ltansactions on Systems, Man and Cybernetics, 25(4):655--659, 1995.

160

[55] J. Horn. 'Finite Markov Chain Analysis of Genetic Algorithms with Niching'.
Proceedings of the Fifth International Conference on Genetic Algorithms, pages
110-117, 1993.

[56] D.E. Goldberg. 'Real Coded Genetic Algorithms, Virtual Alphabets and Block
ing'. Complex Systems, 5:139--167, 1991.

(57] H.M. Cartwright and S.P. Harris. 'Analysis of the Distribution of Airborne Pollu
tion Using Genetic Algorithms'. Atmospheric Environment, 27A (12):1783-1791,
1993.

[58] P. Cong and T. Li. 'Numerical Genetic Algorithm Part 1: Theory, Algorithm
and Simulated Experiments'. Analytica Chimica Acta, 293:191-203, 1994.

(59] C.Z. Janikow and Z. Michalewicz. 'A Specialised Genetic Algorithm for Numer
ical Optimisation Problems'. Second Int. IEEE Conf. on Tools for A.!. Proc.,
pages 798-804, 1990.

(60] R. Harris. 'An Alternative Description of the Action of Crossover'. Adaptive
Control in Engineering Design and Control '94, Proc., 1994.

(61] T. Dexter, E.D. Goodman, and W.F. Punch. 'The Genetic Algorithm and Lo
cal Optimizer Hybrid Approach for the Advanced Layout Problem'. GARAGe
Technical Report, Michigan State University, Feb 97.

(62] J. Yen, J.C. Liao, D. Randolph, and B. Lee. 'A Hybrid Approach to Modeling
Metabolic Systems Using Genetic Algorithms and the Simplex Method'. Pro
ceedings of the 11th IEEE Conference on Artificial Intelligence for Applications
(CAIA95), pages 277-285, 1995.

(63] A. Krukowski and I. Kale. 'Two Approaches for Fixed-Point Filter Design, Bit
Flipping Algorithm and Constrained Downhill Simplex Method'. Procs. 5th In
ternational Symposium on Signal Processing and its Applications {ISSPA99),
1999.

(64] I. Pitas. 'Optimisation and Adaptation of Discrete-Valued Digital Filter Param
eters by Simulated Annealing'. IEEE Tmns. on Signal Processing, 42:86Q-866,
April1994.

[65] L.M. Smith and M.E. Henderson. 'Roundoff Noise Reduction in Cascade Re
alizations of FIR Digital Filters'. IEEE Transactions on Signal Processing,
48(4):1196-1200, 2000.

[66] R. Storn. 'Differential Evolution Design of an IIR Filter'. Procs. of the 1996
IEEE Int. Conf on Evolutionary Computation, pages 268-273, 1996.

[67] 0. Franzen, H. Blume, and H. Schroder. 'FIR-Filter Design with Spatial and
Frequency Design Constraints using Evolution Strategies'. Elsevier Signal Pro
cessing, 68(3):295--306, August 1998.

[68] J.R. Koza. 'Genetic Programming as a Means For Programming Computers by
Natural Selection'. Statistics and Computing, 4:87-112, 1994.

161

(69] K. Rodrfguez-Vazquez, C.M. Fonseca, and P.J. Fleming. 'Multiobjective Genetic
Programming : A Nonlinear System Identification Application'. Late Breaking
Papers at the Genetic Programming 1997 Conference, pages 207-212, July 1997.

(70] F. Glover. 'Tabu Search- Part I'. ORSA Journal on Computing, 1(3):190-206,
1989.

[71] F. Glover. 'Tabu Search and Finite Convergence'. Accepted for publication in:
Discrete Applied Mathematics: Special Edition on Foundations of Heuristics in
Combinatorial Optimisation.

[72] S. Traferro and A. Uncini. 'Power-of-two Adaptive Filters Using Tabu Search'.
IEEE Irans. on Circuits and Systems II: Analogue and Digital Signal Processing,
47(6):566-569, June 2000.

[73] R. Battiti and G. Tecchiolli. 'The Continuous Reactive Tabu Search: Blend
ing Combinatorial Optimization and Stochastic Search for Global Optimization'.
Annals of Operations Research- Metaheuristics in Combinatorial Optimization,
63:153-188, 1996.

[74] M.P. Hansen. 'Tabu Search for Multiobjective Optimization: MOTS'. Procs.
MCDM 1997, January 1997.

[75] L. Davis. 'Adapting Operator Probabilities in Genetic Algorithms'. Proceedings
of the Third International Conference on Genetic Algorithms, pages 61-69, 1989.

(76] V.B. Lawrence and A.C. Salazar. 'Finite Precision Design of Linear-Phase FIR
Filters'. The Bell System Technical Journal, 59(9):1575-1598, 1980.

[77] P.A. Stubberud and C.T. Leondes. 'A Frequency Sampling Filter Design Method
which Accounts for Finite Wordlength Effects'. IEEE 'lrans. on Signal Process
ing, 42:189-193, January 1994.

[78] T. Arslan and D.H. Horrocks. 'A Genetic Algorithm for the Design of Finite Word
Length Arbitrary REsponse Cascaded IIR Digital Filters'. Procs. GALES/A
International Conference, pages 276-281, 1995.

[79] Y. Aketa, M. Haseyama, H. Kitajima, and N. Nagai. 'A Method for Quantising
Coefficients of a Filter with Genetic Algorithm'. Electronics and Communications
in Japan Pt Ill-Fundamental Electronic Science, 79(4):1-10, 1996.

[80] T. Gorne and M. Schneider. 'Design of Digital Filters with Evolutionary Algo
rithms'. Artificial Neural Nets and Genetic Algorithms, Albrecht, Reeves and
Steele Eds.:368-374, November 1993.

[81] C.M. Fonseca and P.J. Fleming. 'Genetic Algorithms for Multiobjective Opti
misation: Formulation, Discussion and Generalisation'. Procs. 5th Int. Conf. on
Genetic Algorithms, pages 416-423, 1993.

[82] L.J. Nicolson and B.M.G. Cheetham. 'An Investigation into the Multiple Crite
rion Optimisation Approach to IIR Digital Filter Design'. Colloquium on Digital
and Analogue Filters and Filtering Systems, pages 4/1-4/6, 1992.

162

[83] J.D. Schaffer. 'Multiple Objective Optimisation with Vector Evaluated Genetic
Algorithms'. International Conference on Genetic Algorithms 1985, Proc., pages
93-100, 1985.

[84] C. Fonseca and P. Fleming. 'A Review of Current Multi-objective Optimisation
Methods'. Evolutionary Computation, 3(1):1-16, 1995.

[85] S.W. Mahfoud. 'A Comparison of Parallel and Sequential Niching Methods'.
Procs. Sixth Int. Con! on Genetic Algorithms, pages 136--143, 1995.

[86] D. Beasley, D.R. Bull, and R.R. Martin. 'A Sequential Niche Technique for
Multimodal Function Optimisation'. Evolutionary Computation, 1(2):101-125,
1993.

[87] J. Horn, N. Nafpliotis, and D.E. Goldberg. 'A Niched Pareto Genetic Algorithm
for Multiobjective Optimisation'. Procs. First IEEE Conf. on Evolutionary Com
putation, 1:82-87, 1994.

[88] N. Srinivas and K. Deb. Multiobjective optimization using nondominated sorting
in genetic algorithms. Evolutionary Computation, 2{3):221-248, 1995.

[89] I. Selesnick and C. Burrus. 'Maximally Flat Low-pass FIR Filters with Reduced
Delay'. IEEE 'lhLns. on Circuits and Systems II, 45(1):53-68, 1998.

[90] K.S. Tang, K.F. Man, S. Kwong, and Z.F. Liu. 'Design and Optimisation of
IIR Filter Structure Using Hierarchical Genetic Algorithms'. IEEE 1rans. on
Industrial Electronics, 45(3):481-487, June 1998.

[91] K. Deb. Multi-objective genetic algorithms: Problem difficulties and construction
of test problems. Evolutionary Computation, 7(3):205--230, 1999.

[92] J. Horn and D.E. Goldberg. 'Genetic Algorithm Difficulty and the Modality of
Fitness Landscapes'. Foundations of Genetic Algorithms 3, pages 243-269, 1995.

[93] Y. Davidor. 'Epistasis Variance: A Viewpoint on GA-Hardness'. Foundations of
Genetic Algorithms, pages 23-35, 1990.

[94] T. Jones and S. Forrest. 'Fitness Distance Correlation as a Measure of Problem
Difficulty for Genetic Algorithms'. ICGA 6, 1995.

[95] I. Kale, G.D. Cain, and R.C.S. Morling. 'Minimum-Phase Filter Design from
Linear-Phase Startpoint via Balanced Model Truncation'. Electronics Letters,
31{20):1728-1729, September 1995.

[96] D. Beasley, D.R. Bull, and R.R. Martin. 'Reducing Epistasis in Combinatorial
Problems by Expansive Coding'. Procs. Fifth Int. Conf. on Genetic Algorithms,
pages 40D-407, 1993.

[97] H-C. Lu and S-T. Tzeng. 'Complex Genetic Algorithm Approach for Design
ing Equiripple Complex FIR Digital Filters with Weighting Functions'. Signal
Processing, 80:197-204, 2000.

163

(98] S-T. Tzeng and H-C. Lu. 'Design of Arbitrary FIR Log Filters by Genetic Algo
rithm Approach'. Signal Processing, 80:497-505, 2000.

[99] U. Zolzer. 'Roundoff Error Analysis of Digital Filters'. Journal of the Audio
Engineering Society, 42(4):232-244, 1994.

(100] C. Cotta and J.M. Troya. 'Tackling Epistatic Problems Using Dynastically Op
timal Recombination'. Computational Intelligence: Theory and Applications,
International Conference, pages 197-205, 1999.

164

Appendix A

Techniques

A.l Increased calculation efficiency for recursive

FIR filters

When generating the response of a recursive Frequency Sampling (FS) filter, it is

possible to increase the computational efficiency by pre-calculating the fixed part of

the response, namely the passband, as only the effects of the transition samples will vary

from filter to filter, depending on the values contained within the GA's chromosome.

The transfer function for a recursive filter can be given by [11]

1 - z-N N-1 H(k)
H (z) = N L -l---e--:-:i2:-'-1fk:-':JN=z-_-:-1

k=O

This can be split into a comb filter which has N zeros spaced equally around the unit

circle:

H () 1- z-N
cZ N (A.1)

and a sum of single all-pole filters, whose poles are coincident with the zeros of the

comb filter:
N-1 H(k)

H (z) = "" _--,-,--'-,..:--__,..
P ~ 1 _ ei21fk/N z-1

k=O
(A.2)

The effects of the comb filter Hc(z) are clearly constant for a given z, so can be pre

calculated. Similarly, the coefficients in H(k) have no effect on Hp(z) in the stopband,

where they are always zero, so these samples need not be included. H(k) is also

165

constant in the passband where the samples are always unity, so the effects of these

coefficients on H,(z) can be precalculated and stored. This leaves only the effects of

the few, variable transition samples to be calculated each time, and this can be made

more efficient by precalculating the denominator 1 - e:i21rk/N z- 1 as this is constant for

each k. Finally, only the response in the stopband needs to be determined as the fitness

only depends on the stopband attenuation. These precalculations and optimisations

produced a noticeable reduction in the GA run times.

A.2 Simplex method hill-climber

The Simplex Method of hill-climbing involves manipulating an N + !-vertex solid in

N-dimensional space in order to search for improved solutions [33]. The simplest

method of hill-climbing is to optimise each coefficient in turn, but this is inefficient

when negotiating narrow valleys in the search space, as the search is required to zig

zag as it can only make a small step at a time along each axis. Although it is possible

to use gradient information to rotate the axis so that they lie along the valley, and

the search can be more efficient, this requires additional calculations and a regular

realignment of the axes.

The Simplex method does not require any such analyses, and only takes point

samples of the space, but has the usual hill-climber's limitation of only finding the

optimum it is started nearest to. An initial set of N + 1 vertices is selected at random,

and their fitnesses determined. The worst point in the shape is now moved relative

to the best face in the shape in order to search for a better solution, as shown in

Figure A.l.

The different moves listed in Figure A.l are tried in turn: first a reflection, and if

this produces an improvement, the reflection is extended in the same direction to see if

there is any further benefit. If the first reflection did not improve the worst point, then

a contraction of this point towards the best face is tried. If all of these fail, then all of

the worst points contract towards the best one. The termination criterion is that the

relative fitnesses of all points within the Simplex lie within a selected tolerance band,

166

(a)

(b) (c)

~
,, I

,

Figure A.l: Steps taken by a Simplex method hill-climber while looking for a better
solution, after Numerical Recipes in C (33]. (a) is the Simplex at the start; the best
face and worst vertex are marked. Possible outcomes are (b) a reflection through the
best face, (c) a reflection and extension, {d) a contraction towards the best face, or
(e) a contraction towards the best point.

167

which must be determined by experiment. In this work, a relative range of 0.001 was

used.

A.3 Matlab initialisation script for MCO IIR de-

• sign

This is the initialisation script used within Matlab to predict the necessary filter order

to achieve a given target response. It was used to generate pole-zero positions to

initialise the multi-criterion GA used to optimise IIR filters in Chapter 8.

The parameter N was either set to the desired order, or to zero to use the order pre

dicted by Matlab. Wp and Ws are the normalised pass- and stopband edge frequencies,

and Rp and Rs are the desired maximum passband ripple and minimum stopband atten

uation, both in dB. name is the basename for the datafiles. wl is the desired wordlength.

Wlinphlo and Wlinphhi are the normalised edges of a desired linear phase region. lohi

is a text string, set to either low or high to specify low- or highpass. fwl specifies how

many of the wl bits are used to specify fractional numbers.

function lhpiir(N,Wp,Ws,Rp,Rs,name,wl,Wlinphlo,Wlinphhi,lohi,fwl)

sprintf('function lhpiir(N,Wp,Ws,Rp,Rs,''name'' ,wl,
Wlinphlo,Wlinphhi,''type'',fwl)\n');

sprintf('This uses Nyquist frequency=0.5!\n');
sprintf('Set N=O to use the predicted order.\n');

if strcmp(lohi,'high')
high=!;
Wslow=O;
Wshigh=Wp;
Wplow=Ws;
Wphigh=0.5;

elseif strcmp(lohi,'low')
high=O;
Wplow=O;
Wphigh=Wp;
Wslow=Ws;
Wshigh=0.5;

else

Setup variables according to low- or highpass

168

['Incorrect parameter: ' lohi]
return;

end

Wp=Wp•2;
Ws=Ws•2;

Convert bandedges to F8 = 1 for Matlab

[n,Wn]=ellipord(Wp,Ws,Rp,Rs)

if N>O
n=N;

end

if n-floor(n/2)•2 -= 0
n=n+1;
sprintf('n odd- increased to %i\n',n)

end

Predict the order needed

Use a specified order if given

Make order even if necessary

if high==! Get filter pole-zero positions
Wn = Ws;
[z p k] = ellip(n,Rp,Rs,Wn,'high');

else
Wn = Wp;
[z p k] = ellip(n,Rp,Rs,Wn);

end

figure(!);
zplane(z,p); Display pole-zero locations in polar plot

fop=fopen([name '.pz'],'w'); Save pole-zero locations to initialise GA

for s=1 :2 :n
absz((s+1)/2)=abs(z(s));
argz((s+1)/2)=angle(z(s));
absp((s+1)/2)=abs(p(s));
argp((s+1)/2)=angle(p(s));
fprintf(fop,'absz= Y.g\n',absz((s+l)/2));
fprintf(fop,'argz= Y.g\n',argz((s+l)/2));
fprintf(fop,'absp= Y.g\n',absp((s+l)/2));
fprintf(fop,'argp= Y.g\n',argp((s+l)/2));

end
fclose(fop);

absz
argz
absp
argp

169

Print pole-zero radii and angles

if high==!
[b a]= ellip(n,Rp,Rs,Wn,'high');

else
[b a]= ellip(n,Rp,Rs,Wn);

end

[h w] = freqz(b,a,128);

figure(2);
subplot(2,1,1);
plot(w/(2*pi), 20•log(abs(h)));
subplot(2,1,2);
plot(w/(2•pi), angle(h));

Y. save the target .tgt file

fop=fopen([name '.tgt'], 'w');

if high==!
temp = Ws; Ws = Wp; Wp = temp;

Get filter a and b coefficients

Get frequency response

Display magnitude response

Display phase response

If highpass . ..

for s=O:Ws•512
fprintf(fop,'-200

end

Save the response template for the stopband . ..
Y.g\n' ,-Rs);

for s=Ws•512+1:Wp•512
fprintf(fop,'-200 0\n');

end

for s=Wp•512+1:512
fprintf(fop,'%g 0\n',-Rp);

end

temp = Ws; Ws = Wp; Wp = temp;
else

... tmnsition band . ..

... and passband

... else if lowpass . . .
for s=O:Wp•512

fprintf(fop,'%g 0\n',-Rp);
end

Save the response template for the passband . . .

for s=Wp•512+1:Ws•512
fprintf(fop,'-200 0\n');

end

for s=Ws•612+1:512
fprintf(fop,'-200 %g\n',-Rs);

end

170

... tmnsition band . ..

... and stopband

end

fclose(fop);

Y. now save the . ini file Save the GA initialisation file
fop=fopen([name '.ini'],'w');
fprintf(fop,'# Ini file created automatically by Matlab\n');

fprintf(fop,['# lhpiir(Y,i,Y.g,Y.g,Y.g,Y.g,''' name ''',Y.i,Y.g,Y,g,
''' lohi ''',%g)\n\n'],N,Wp/2,Ws/2,Rp,Rs,wl,Wlinphlo,Wlinphhi,fwl);

fprintf(fop,'nstages:\t\tY.i\n',n/2);
fprintf(fop,['templatefile:\t\t' name '.tgt\n']);
fprintf(fop,['datafileroot:\t\t' name '\n']);
fprintf(fop,'wordlength:\t\tY.i\n',wl);
fprintf(fop,'fractional_bits:\t\tY.i\n',fwl);
fprintf(fop,'perturbpc:\t\t5\n');
fprintf(fop,'passband:\t\tY.g Y.g Y.g Y.g\n',Wplow,Wphigh,-1,-1);
fprintf(fop,'stopband:\t\tY.g Y.g Y.g Y.g\n',Wslow,Wshigh,-1,-1);
fprintf(fop,'linearphaseregion:\tY.g Y.g Y.g Y.g\n',Wlinphlo,Wlinphhi,

fprintf(fop,'maxmagerror:\t40\n');
fclose(fop);

-1,-1);

Y. now save the 'last.m' file
fop=fopen('last.m','w');

Save a Matlab script to recreate this data

fprintf(fop,['lhpiir(Y,i,Y,g,Y.g,%g,Y.g, 111 name 11 ',%i,Y.g,Y.g,
111 lohi 111 ,%g)\n\n 1],N,Wp/2,Ws/2,Rp,Rs,wl,Wlinphlo,Wlinphhi,fwl);

fclose(fop);

return;

This function was used to create datafiles containing pole-zero positions of full

precision filters. These were then used to initialise the GA, by mutating each bit by

an amount proportional to perturbpc.

A.4 Single-criterion Genetic Algorithm

This C++-style pseudocode shows the important parts of the GA used to design Fre

quency Sampling (FS) FIR filters.

171

void GA::Generate() The main loop
{

}

HandleKeyPresses(); Pause, Save data, Quit

generation++; Increment generation counter

MakeNewPopulation(); Generate a child population . ..

GetFitnesses(); ... and get their fitnesses

SelectNextPopulation(); Select the next population

After a quarter of the run, if no improvement for 20 generations . ..
if ((generation > maxGenerations I 4) &&

(noimprovementCount >= 20))
{

LocalSearch 0 ; ... call the Simplex local search

If it found a better fitness, reset the "no improvement" counter
if (bestFitnessimproved)

noimprovementCount = 0;
}

if (bestFitnessimproved)
noimprovementCount = 0;

else
noimprovementCount++;

CopyNewPopulationToOld();

if (TerminationConditionsMet() 11 generation== maxGenerations)
{

}

SaveDataO;
Quit();

void GA::MakeNewPopulation()
{

count=O;

Use stochastic remainder selection to pick individuals to
reproduce, the selected ones are listed in chosenfi

Selection according to integer part of scaled fitness

172

for (int m=O; m<popsize; m++)
{

}

while (scaledFi tness [m] >= 1 . 0)
{

}

chosen[++count] = m;
scaledFitness[m] -= 1.0;

Selection according to fractional part of scaled fitness

while (count < popsize-1)
{

}

do
{

m= randomlnt(O,popsize-1);
if (scaledFitness [m] > 0.0)
{

if (randomFloat(0,1) < scaledFitness[m])
{

}
}

chosen[++count] = m;
fitscaled[m] = 0.0;

Reproduce pairs of strings selected at random from those held in chosenO

use = randomint(O,numleft-1);
old1 = chosen[use];
chosen[use] = chosen[numleft--];
use = rndi(numleft);
old2 = chosen[use];
chosen[use] = chosen[numleft--];

crosstype = SelectCrossoverType();

switch (crosstype)
{

Pick two strin,qs at random

Select crossover type by efficiency

case 0:
case 1:

NoXover 0 ; break; Simply copy the old strings without crossover
xover () ; break;

case 2: multixover(); break;
case 3: arithxover(); break;
case 4: multiarithxover(); break;
case 5: wholearithxover(); break;

}

173

}

Mutate();

GetNewFitnesses();
UpdataCrossoverEfficiency();

Mutate the genes in the two new chromosomes

Get the fitnesses of the two new chromosomes
Update the crossover efficiency information

} while (newPopulationincomplete());

Now the five types of crossover

void GA: :xover() Single-point crossover
{

}

crossAt = randomint(O,genes-1);

CopyOldToNew(O,CrossAt);
CrossOldToNew(CrossAt+1,genes-1);

void GA::multixover()
{

}

direction = 1;

for (g=O; g<genes; g++)
{

}

if (direction == 1)
CopyOldToNew(g);

else
CrossOldToNew(g);

if (randomint(O,genes-1) < genes I 2.)
direction = 1 - direction;

void GA::arithxover()
{

crossAt = randomint(0, genes-1);

CopyOldToNew(O,genes-1);

ArithmeticCrossover(crossAt);
}

174

Multi-point crossover

Give an average of 2-pt xover

Single Arithmetic crossover

void GA::multiarithxover() Multiple Arithmetic crossover
{

}

for (g=O; g<genes; g++)
{

}

if (randomFloat(0,1) < 0.5)
ArithmeticCrossover(g);

else
CopyOldToNev(g);

void GA::wholearithxover() Whole Arithmetic crossover
{

ArithmeticCrossover(0, genes-1);
}

Jilunction used to return a fitness
double GA::LovpassFitness(double •genes)
{

}

BubbleSort(genes); Sort transition samples so they decrease monotonically

Scaling factor to convert sample numbers to interpolated sample numbers
interpolatedSamples = 512;
scale = samples I interpolatedSamples;

Scan over the interpolated stopband samples
for (v = stopbandEdgeSample * scale; v<interpolatedSamples; v++)
{

}

The effects of the passband samples are precalculated as in Appendix A.l
H = precalculatedH[w];

Add the effects of the transition band samples - the factors are also precalculated
for (k=O; k<NTransitionBandSamples; k++)

H += genes[k] * precalculatedMultipliers[w][k];

output[v] myabs(H);

deltas= GetMaximum(output[w]); Find the maximum ripple

deltas= -20.0 * log10(deltas); Convert the ripple to decibels

return temp;

175

A.5 Multi-criterion Genetic Algorithm

This C++-style pseudo code shows the important parts of the MCO GA used to design

IIR filters.

void GA::Generate() The main loop
{

while (generation++ < maxGeneration)
{

}

GAProcessKey();

GAMakeNewPopulation();

GAGetFitnesses();

if ((generation t 127) c= 127)
BitFlipLocalSearch();

Handle keyboard input

Generate a new population

Calculate their fitnesses

Occasionally call a local search

Select those in the old and new non-dominated sets, plus other poorer solutions
GASelectNextPop();

GANewToOld () ; Copy the new population over the old

}

void GA::GAMakeNewPopulation() Generate the next population
{

}

Pick individuals by tournament selection on their shared jitnesses
SelectForReproduction();

while (PopulationNotFilled())
{

}

if (randomFloat(0,1) < crossoverProbability)
CrossOldToNew();

else
CopyOldToNew();

MutateNewPopulation(mutationProbability);

176

Perform crossover

No crossover

void GA::GAGetFitnesses() Calculate the fitnesses
{

}

for (m=O; m<popsize; m++)
{

OneFitness(m); Get the fitness of member m
}

DetermineDomination(); Find the NDS of the new members

Allocate fitness by NDS level and share by crowding to disperse search
AllocateSharedFitness();

void Fitness::OneFitness() Determine the fitness of one chromosome
{

}

DecodeChromosome();

SetupFilterO;
GetFrequencyResponse();

GetMagnitudeFitness();

Extract radius, angle and topology information

Set up the filter with the extracted coefficients . ..
... and get its response

How well does the frequency response fit the target?

How close to linearity is the phase response in the specified region?
GetPhaseFitness();
GetNoiseFitnessO; What level is the roundoff noise gain?

These fitnesses can then be used in any combination to determine the non

dominated sets, from which the fitnesses are allocated and the next population selected.

177

.Append.iix lB

.Puiblicatio:ns·

118

,_ ... , -~

A NEW APPROACH TO-FREQUENCY SAMPLING FILTER
DESIGN USING GENETIC ALGORITHMS

E C lfeachor and S P Harris
Department of Electronic, Communication and Electrical Engineering,

University of Plymouth,
Drake Circus, PLYMOUTH, PIA SAA, England.

Abstract
The JlUIPOSC of this paper is to present a novel approach to designing frequency
sampling filters using Genetic Algorithms (GAs). In this method, an approximation to
the desired continuous frequency response is obtained by optimising a small number of
frequency samples. Existing methods employing linear programming techniques have
computation times that increase exponentially wilb lbe number of samples to be
optimised, and the published design tables do not adequately cover many filter designs.
Our melbod overcomes these disadvantages, offers considerable flexibility, and yields
results that are as good as or in some cases superior to published ones. Optimisation of
lbe transition samples was achieved using a GA designed specifically for numerical
problems requiring a high precisio!J. A local search method was used in conjunction
wilb lbe GA for fine tuning. Many aspects of filter design involve optimisation, and
could easily be incorporated into lbe GA, lbereby allowing it to provide a simple yet
powetful 'universal' method for digital filter design, removing lbe difficulty of
understanding the myriads of numerical optimisation techniques that are used in digital
filter design.

Introduction

Central to digital filter design is the problem of finding a practical response that approximates a desired
or ideal frequency response as closely as possible. The desired response may be magnitude, phase or both
magnitude and phase. The frequency sampling method is an efficient way of finding the response of FIR
(finite impulse response) filters to approximate an arbilraly frequency response. An attraction of lbe
frequency sampling approach is that it allows a recursive implementation of FIR filters (1,2] which are
computationally efficient, especially for filters wilb narrow passband Furlber, lbe melbod is
particularly weU suited to lbe design of non standard filters where analytical expressions are not
available.

In the frequency sampling method, samples of the desired frequency response arc normally taken at
equally spaced frequencies and from these an approximation to lbe desired continuous frequency
response is obtained. To minimize lbe error between lbe desired and the computed responses a small
number of the frequency samples are adjusted by an optimiution procedure. Rabiner et al (3] describe
an optimization technique, based on linear programming, for finding optimum frequency samples for
standard frequency selective filters (e.g. lowpass and bandpass filters). Unfortunately, the computation
time increases exponentially as lbe number of frequency samples to be optimized increases.

Tables of optimum values of lbe transition band frequency samples are available in lbe literature [3) and
are widely used. If designer wants a filter not tabulated approximate values of the transition band
frequency samples may be obtained by linear interpolation, but this is not always possible especially if
lbe design involves a large number of transition band samples. Furlber, the information in lbe tables is
not in a form filter designers are familiar wilb - e.g. bandedge frequencies and passband ripples are not
given. The lack of a general purpose computer program for finding optimum frequency samples has
restricted lbc use and eroded the value of lbe frequency sampling method.

5/l

Institution of Electncal Enginoers_

pui.Jiished by the lEE. Savoy Place. London wc2n OOL. UK

' I
I
I

I
i
I
I

I·

il

i.
i

!

The purpose of this paper, is la present a novel approach ID designing frequency sampling fillers using
Genetic Algorilhms (GAs). GAs arc basically search and optimization techniques based on lhe
principles of natural selection and genetics [4,5) requiring liule knowledge of lhe problem area. This
makes lhem weU suited ID many engineering problems such as digilal filler design, where optimization
is required. Our melhod overcomes lhe disadvanlages referred la above, offers considerable llexibilily,
and yields resuliS lhal are as good as and in some cases superior la published ones.

Optimum values of lhe lrnnsition band frequency samples arc normally of high precision, aboul 7 la 8
decimal places. In this work we used a specialized GA (6) which has been shown to be beller suited la
numerical optimization problems requiring high precision lhao standard GAs. The parameters arc
represented as floating numbers. To ensure lhal optimum values of the lrnnsition band frequency
samples are obtained, the specialised GA is first used to find a good solution close to the optimum. A
local search method is then used for fine lUlling. For most filter design tasks, the solution found by the
GA will be good enough, being close to the optimum solution.

Our algorithm runs on a 486 mM PC (or compatible) and shows dynamically, via a graphics display,
how the frequency response is changing as lhe GA searches the solution space. The software wiU be
dernonsttaled al the workshop.

2. Frequency sampling metbod

In the basic frequency sampling method, samples of the desired frequency response are taken al regular
intervals as illustrated in figure lb for a Iowpass filler. In this case, N samples of the ideal frequency
response arc taken al intervals of

k9l, 1, 2, ... , N-1 (I)

where F, is the sampling frequency for the filter. Given the values of the N frequency samples, H(k), of
the ideal frequency response, the FIR filler coefficients, h(n), arc then obtained using the inverse discrete
Fourier transform (IDFI'):

N-1
h(n) = ~ :E H(k)ef{2n1Nlnk, n=O,l, ... ,N-1

boO
(2)

For linear phase fillers with positive symmetrical impulse response, equation 2 can be wrillen in a
simpler form [2).

.,

5/2

~I I I •
0 (a) Fs

g \ I ~

(
" t

(b) N

,---._ /""-. e:
:~ rl. ~

0) t ·cc> Fs

Figure 1: Concepts of frequency sampling. (a) The ideal response;
(b) the sampled response; (c) the inlei]IO!aled (actual) frequency response.

After computing the impulse response, b(n), the corresponding continuous frequency response may be
obtained by fim zero-padding b(n) and then laking its OFf. The continuous frequency response will be
exactly tbe same as tbe desired response at tbe sampling instants, but between the sampling instants it
may differ quite significantly, see figure le for example.

The frequency response of fillers designed by the basic frequency sampling melbod will in general be
poor, caused by the abrupt change in the values of the frequency samples from I (in the passband) to 0
in tbe stopband. To minimize the deviation of the response from tbe ideal response in the pass and
stopbaod, we introduce frequency samples in tbe transition band as illustrated in Figure 2 for a simple
lowpass filter with three transition band samples. The improvement in tbe pass and stopbamls is
achieved at the expense of increased transition width.

I

0.9

0.81--~
0.7

-0.6
g 0.5 t-----1{ :r
-OA

0.3 1------Q
02
0.1

0~+-~~~-0~~~----+-~

2 3 ~ 5 0 7 8 9 10 11 12 13 I~ 15 k

Figure 2: Frequency sampling with transition band frequency samples.

5/3

The values of the transition band frequency samples are not known in advance and must be found by
optimization. A useful optimization criterion is to fmd the set of frequency samples, T,, T,, ... , T 11 ,

!hat minimises the maximum ripple in the stopband.

where

min[max IHo(/) -H(f)l J
{fin the stopband}

Ho(/)
H(f)

J
idearfrequency response

actual frequency response

(3)

We discuss in the next section how the GA is used to optimize the transition band samples. In the GA
approach, the number of transition band samples does not have a major impact on the computational
lime, since in GA the search for a solution ocaus in parallel. At the present we limit the number of
transition band samples to 10.

3. Genetic AJgorithm for optimizing transition band frequency samples

Optimization of the transition band samples was achieved using a specialized GA, which is weU suited
to numerical optimization problems which require high precision. As in standard GAs, we start with an
initial population of possible solutions (i.e sets of frequency samples) generated at random. By applying
the GA operators of reproduction, crossover and mutation at each generation of the algorithm. The
initial population evolves towards the optimum set of frequency samples.

In our GA, a floating point representation is used to represent the frequency samples. For a filter with M
transition band samples, each possible solution is represented as:

(4)

where the transition band samples, T "' T ~···· T .,,, are each represented as a double precision floating
point number in the range 0 to 1.

The performance or fitness of each individual (i.e. each possible solution) is based on the maximum
difference, Bi, between the desired and actual frequency response:

Bi = max IHo(f) -H,(f)l
{fin the stopband}

The fitness value for the ith individual is the inverse of the maximum difference.

(5)

As in most GA applications a substantial pan of the optimization time is spent on computing the fitness
values for the individuals. In our application, we estimate that about 80% is spent in evaluating the
fitness function, mostly in computing the IDFTs and DFTs computations. Thus there is an incentive to
seek ways to improve computational efficiency. Since for each generation only M frequency samples (in
the transition band) will change, a large part of the IDFT can be precomputed and saved. Additional
savings are made by using an algorithm which packs N real poiniS into N12 complex poiniS, so halving
the length of the FFT.

We have used forms of the GA operators designed specifically for floating-point optimisation problems.
A dynamic mutation operator is used which moves the point under study by a random amount The
average distance that each point is moved is decreased as the number of generations increases, to prevent
the GA from being thrown away from a fitness maximum once it has converged. The crossover operator

5/4

' I

l

used was chosen randomly for each crossover from the following five crossover methods, with each
being selected with equal probability. Ordinruy crossover consists of a !-point crossover, simply
swapping blocks of numbers between chromosomes, and multiple crossover is similar but with a random
number of crossing points. Arithmetic crossover consists of replacing the genes at the same location
within two chromosomes by linear sums of the two original gene values. E.g. for vectors x and y, to
arithmetically cross over the ~/gene:

x' = r.x,. + (1-r).y,
y' = (1-r).X,. + r.y,

where r is a random number between zero and one; if r-0.5, the resulting values are the average of the
parent genes. Multiple arithmetic crossover is similar, but with a random number of genes being
crossed, and whole arithmetic crossover affects the entire two chromosomes. It should be noted that the
fillil two types of crossover do not actually create any new values, but simply move them between strings,
whereas the lasl three variations actually alter the values of the genes, and so are closer to the actions of
standan:l binary crossover. Inversion is not used because the genes are ordered before use, so it would
not have any effect.

Stocbastic remainder selection without replacement [5) is used to select members for reproduction, a
technique that ensures that the best individuals are always chosen, while some poorer members are also
picked to help maintain diversity and prevent premature convergence. Since there is only one maximum
in the search space [3), there is no danger of the GA being trapped at a sulH!plimal fitness peak, so
elitism can safely be used to retain the best ·so.lntions found.

The genetic algorithm for optimizing the transition band samples are summarised below:

(I) From the user specifications determine the number of frequency samples in the pass
and stop bands, and the number of transition bands samples.

(2) initialize the GA.

(3) compute the fitness value for each individual in the population and note the best
individuals found so far.

(4) if the best individual is better than the best so far update the display of the response

(5) obtain the next generntion: reproduction, crossover and mutation

(6) repeal steps 3 to 5 until the stopping condition is satisfied.

(7) save values of impulse response coefficients, frequency response, and values of the
trnnsition band samples for the best solution.

4 Results

We will illustrate the use of the algorithm by the following two design problems:

Problem 1:
Find the optimum transition band frequency samples and the corresponding filter coefficients for a
lowpass filter meeting the following specifications:

passband edge frequency, f,
stopband edge frequency, f,
number of filler coefficients, N

0.143 (normalized)
0.245 (normalized)
49

5/5

j

\

From the specifications, tlle number of frequency samples, N = 49. The sample numbers corresponding
to the pass band and stop band edge frequencies are 6 and 12 respectively. The number of transition
band samples, M= 5. Thus tlle frequency samples for the ideal frequency response arc given by:

IH(k)l I , k=O, 1, ... 6
Tl
T,
T,
T,
T,
0

k=7
k=8
k=9
k=IO
k=ll
k=12, ,13 • ... 24

" The values of T 1 to T, are unspecified. The results of the optimization by GA are summarized in figure
3. The impulse response coefficients are put in the familiar form by circular rotation.

-c
.&.

m ..so
"C

:::;: -100
s
~ -150

-~~-+--+--+--+--+--~~--~~~

0
(a)

0.4

0.3
0.2
0.1

0
-0.1

1 5 9 13 17 21 25 29 33 37 41 45

(b)

n

49

Figure 3: (a) The interpolated frequency response; (b) the filter coefficients.
passband ripple: 0.046dB; stopband attenuation: l39.64dB;
passband width: 0 .15; 5 transition samples; 49 filter coefficients.
Transition sample values: 0.855456, 0.485507, 0.148961, 0.019693, 0 .000644.

5/6

Problem 2:
Find the optimum transition band frequency samples and tlte corresponding filler coefficients for a
bandpass filter meeting t11e following specifications:

stopband edge frequency, f,
passband widtl1

0.183 (nomtalized)
0.061 (normalized)
49 number of filter coefficients, N

From the specifications, ilie number of frequency samples, N = 49. The sample number corresponding
to tlte stop band edge frequency is 9, and the pass band is 3 samples wide. The number of transition
band samples, M= 5. The results of the optimization by GA are summarized in figure 4.

I

\

-c
.r:.

0

--40 IIJ
"C --l. -00
8
J: -120

-l&l ~--1---f---t---+----+--t--+--i--+----; f

0.20

0.10

0.00

-{).10

-{).20
1

0 05
(0)

5 9 13 17 21 25 29 33 37 41 45 49

(b)

Figure 4: (a) Tite interpolated frequency response; (b) t11e fi.ller coefficients.
passband ripple: 0.097dB; stopband attenuation: 89.08dB;
stopband width: 0.183; passband width: 0.061; 3 transition samples;
49 filter coefficients.
Transition sample values: 0.708873, 0.230358,0.021169.

5/7

'.

l
i

1
l

I
. l
j
i
i
' i
'

5 Discussions and conclusions

At the present, our algorithm can be used to design all four types of type-I Fffi filters. Subsequently it
will be developed to cope with non standard filters. We believe UUtt this is relatively easy and should be
completed well before the workshop.

We find the new technique described in this paper to be flexible and efficienL WiU1 the wide availabili ty
of PCs, we feel it should be possible to make U1e software, when it is fully developed, widely available to
designers.

Many aspects of filter design, such as coefficient calculation and finite wordlength analysis, involve
optimization. This makes digital filter design ameMble to genetic algorithm solution. An attraction of
GAs is that they require very little knowledge of the problem area. This may remove the difficulty of
understanding the myriads of numerical optimization techniques UUlt are used in filter design.

In the last four years, we have investigated the use of GA in filter design as part of our research in
intelligent signal processing. Our work and that of others [7,8] indicates that GA could provide a simple,
and yet powerful'universal' method for digital filter design.

6 References

[I] Rabiner L R and Schafer R W, "Recursive and nonrecursive realizations of digital filters
designed by frequency sampling technique." IEEE Trans. Audio Electroacoustic, Vol. 19, No3, Sept.
197 1, pp200-207.

[2] lfcachor E C and Jervis B W, "Digital signal processing: A practical approach."
Addison-Wesley, Wokingham, UK, 1993.

[3 J Rabiner L R. Gold B, and McGonegal C A. "An approach to the approximation problem for
nonrecursive digital filters." IEEE Trans Audio Electroacoustlcs, Au-18, June 1970, ppSJ-106.

(4) Holland J, "Adaptation in natural and artificial systems." Ann Arbor. University of Michigan
Press, 1975 .

[5) Goldberg DE, "Genetic algorithms in search, optimization, and machine learning." Addison
Wesley, 1989.

[6) Janikow C Z and Michalewicz Z, "A special genetic algorithm for nurnericaJ optimization
problems. • Proc. Second lnt. IEEE Conf on Tools for Al. Washington, Nov 1990, 798-804

[7) Suckley D, "Genetic algorithm in the design of FIR filters." lEE proc., Vol 138, No 2, 1991,
pp234-238.

l8J Xu D J and Daley M L, "Design of finite word length FIR Digital fil ter using a parallel genetic
algorithm." IEEE conference, 1992, pp834-837.

5/8

Automat ing II R FilLer
Design

by Genetic Algorithm

Stephe n P. Harris a nd
Emmanuel . I feachor

University of Ply mouth ,

UK

e-ma il s teve@uk .ac. plym.cis

Abstract

T he design of d igital I IR filters is a multi
s tage process, involving the optimisation of
coeffic ient values , coefficient wordlengths,
s tructure and section ordering. T hese are
t raditionally regarded as separate opera
lions, and , as s uch, can in general only pro
duce filters which are op timal in certain as
pects, bu l not optimal overall. By exploi t
ing the mul tiple criterion optimisation abil i
ties of the Genetic Algorithm, we s how that
it IS possible to perform several of th ese
steps s imultaneously. This a llows the de
s igner to specify the relative impor tance of
each area of the design, fo r example, the
fr equency response or roundoff no ise effects,
thereby permitting the design of fillers from
a few initial specifications withou t requiring
detailed knowledge of the individual design
5teps

1 Introduction

The Genetic Algorithm {G A) (I , 2] i~ a rel
atively new search and optimisation tech
tllque, which takes its inspiration from evo
lu tion a nd natural selection . The GA
is not onl y capa ble of searchi ng multi
dime nsional a nd m ulti-modal s paces, unlike
hi ll-climbing, but is also able to optimise
complex, d iscontinuous funct.ions which are
difficult to analyse mathematica lly. This

271

makes it particularly s u1 table for opllllll~lng
romplex multi objective functions.

To design a useful , practical !illPr tl IS

necessary to perform f'l've ra l design ~tl'p~
in order to e nsure that the fille r has tht>
desired pe rfo rmance in te rms of freque nc~
and/or phase response, a nd has acceptabl t>
noise characteristics due to quanlisation ef
fects . This mu lti-crite rion problem is pa rtic
ula rly s uita ble fo r optimisation by the GA
[3, 4] . Wt> havt> develo ped a <>A-based Fi ll
Frequency Sampling fi lt er design package [5 ,
6}, which was shown to be capable of opll
mising full -precision coeffi c ient filte rs . Thts
work is now being extended to cover t he de
sign a ffi xed-point IIR filte rs with qua ntised
coefficients.

An !Ill filter can be d escribed by the fol
lowing recursive expressi on :

N M

y(n) = I: Ok:t(n - k) - I: bky(n - k)
k:O k : l

where Dk and b~: are the coefficients of
the filter , :r:(n) a nd y(n) a re its input a nd
output, and Nand M are the number of o~:
and bk fi lte r coefficients, with M > N . This
has a n equivalent transfer fun ction of:

'\'N -k

H()
_ L-k-O DkZ

z - M k
I + Lk= l b~:z-

An importa nt task fo r the designer is
to find values of ak and bk which produce
the desired response . T he re are many ap
proaches to this [7], producing filters wi th
di fferent characteristics.

A common way of realis ing IIR fi lters is
to cascade severa l second-order sections to
gether (Figure 1), l he output. from the first.
feeding the input of the next. This type of
filte r has a transfer func tion of:

N/2 - 1 -2
H(z) =IT (lok + a,k z + « 2kZ.

k = l I + b,kz - 1 + b2kz- 2

or , in pole-zero fo rm , assuming complex
conjugate pole-zero pairs:

N/2 · ·

IT
(z - r·0 e1w•)(z- r 0 e-Jw•)

H(z) = . .)
k =l (z- r·peJw•)(z- r·rr- J"'•

where r·0 and r·p are the radii of the pok
a nd zero respec tively, and w 0 and wP are
th eir angles. Thi s can be represented in the
shorter form .

GeneiiC Algorithms in Engineering Systems: Innovations and Applications
12· 14 September 1995. Conference Publication No. 414 , 11:) lEE. 1995

272

l"igure 1: Cascaded second-order section l!R filter. The s, scal ing factors a re to he lp minlllliSt'

or prevent overnows.

Nf2

H(z) = IT Nk(z)
Dk(z)

k=i

Once suitable f. Ite r coefficients have been
obta ined , finite word length (FWL) analysis
must be performed in order to determine
how the filter will cha nge when it is imple
mented in a real-world FWL system. When
the filter coeffi cients ak a nd h a re qua n
tised , this can have undesirable effects on
the filter 's behaviour, for example a cha nge
in the frequency response and alte rations
111 the pole-zero positions which in the ex
treme case can lead to ins tability. R.oundoff
noise is a lso introduced by multiplications
performed during the actual filtering.

Noise analysis shows that t he o rdering
and pairing of the Nks a nd Dks also become
a factor in the overall fil ter performance
when the coefficients are qua ntised . De
termining the best pairing and ordering of
the Nk and Dk polynomia ls rapid ly becomes
non-trivial as the filter order increases, as
the number of possible filters tPN is given
by:

which for a tenth-order filte r g ives 14400
possibili ties.

It is common pract ice to scale the filter
coefficients to help minimise o r prevent over
now. !"or example, in L2 norm scaling, the
scaling factor for second-o rder section i is
given by

where h;(k) is t he impulse response fro111
th e input to the internal node w; for secti on
i as shown in Figure I .

For the quantised, scaled filter, 1 he
roundoff noise gai n is given by:

where /;(k) is the i111puhw re;;ponse bc!
tween the first adder in ser t10 11 i and the
output (7] .

The ordering and pairing of the Nk 'sand
Dk 's affect th e ovPrall roundoff no ise for thr
fi lter, so t hey must a lso be optimisrd . In
standard design meth l•cls, thr optimisatio n
of the fi ltPr coeffi c ients a nd the minimising
of t hP rou ndoff noise are two indepPndent
steps, so a ny filter so designed will be op
timal in either On(' o r o th er sense. What
is needed is a design tech nique which al
lows several steps of filt r r design requiring
optimisation to be performed in parallel ,
whereby we s ho uld ht> able to opti 111i~r holh
the filter coefficien ts a nd the roundoff no i!'r
s imultaneously, trad 111 g on<' n iT agai usl I hr
other as nec!'ssary .

2 Th GAs

As a firsl step, we d rvelop<'d a hy
brid fl oattng- point GA after J an ikow a nd
M ichalewtcz [8], whtch opttmtsed thr pole
zero posittous for IIR fil ters mad(' up from
second-order sections The G A o pera ted
with genes in the range 0- 1, transla ted lo
a range of 0.5- 1.0 for th e radi i, and 0 1r fo r
the a ngles. By using second-order sections
which are made up from conjugate poles a nd
zeros, the G A needed only to op timise th e
positive a ngle one of th e pair, so a total of
four numbers were need ed to full y d escribe
each stage.

The stopping criterion was the discovery
of a filter within a given maximum passband
ripple and minimum stopband attenu a tion.
lt has been found that the high-fitness a rea
of the search s pace around the optimum so
lution for m any filters of this type is ex
tremely small , and becomes smaller as th e
number of sections rises. While the G A can
find the general region of the best solution ,
it is usually unable to reach the actual opti
mum, so we have used a hybrid optimiser in
the form of a Simplex method hill-climber.
This has been found to be effective when
used in conjunction with the GA when an
optimal solution is required . The Simplex
search on its own , however , is not s uitable,
as there are a number of peaks in the search
space, so un less it is started adjacent to the
o ptimum peak, it will never find it.

273

It was found that the G A was slow to
reach the optimum solution, so si nce very
fast methods of filter design such as the BZT
a nd impulse- invariant method are avai lable,
it was decided to use a BZT d esign to ini
tialise the GA . One m ember of the popu
la tion was initialised direct ly with t he BZT
solution , while the remainder of the popu
lation were filled with randomly p erturbed
values of the pole and zero positions, chosen
at random . This allows the GA to search
for better solutions with differently o rdered
second-order sections, initially in the region
of the solution found by the BZT. The GA
also uses the filter o rder recommended by
the BZT to ensure that a viable solution can
be found.

The GA was then extended to optimise
the coefficients in their quantised form. The
fitness function was adapted to convert the
chromosomes to their quantised values be
fo re calculating the filter's response and fit
ness . In this form , the GA was able to move
closer to t he optimum solution , as the search
space now on ly co nta ins a limited number

of pomts . Ho"<''<'r . thr !-,t tnpl.-\ ,,.M.-h l"· r
formed more p0Ni) a~ the ~eilr < h :;l'·•r• '"
no longn a SlllOOt h surfan', hut 1 ~ uwdP
up from small rrgtoll ~ wt th 11111fc>nn fiLII•'":;
Oncr thr sunpkx ltrs fully wtlhllt a Utllfortll
regio 11 it can not prorred wtth ll~ ::-ea rch so
its convergence propertirs a rr tnuch P•'Orl'r
whr n designing a <]Uit lltt:wd fill l'r V\-'tth lo\\
precis ion fil ters this is not ' ' problr m , a~ ti n·
G A is able to perform the o ptimi~ation , but
a t higher a precision of, for exa m ple, 16 hits.
the solution is poorer , as the C A reli es 011
the hybrid simplex for th<' final opt inusa
tion .

This G A was found to perfo rm poor I)
and to be ex tremely s low to reach 1.he op
timum so lution , so a binar~ -roclrd (;.-\ wa;:
also d eveloped in o rder to compa rr lh<' p<'r
forrnance of the two approaches [!J] .

The binary G A uses geMs cont aunng
Gray-coded versions of two's com pleme11L
fixed precision numbers, wh ich are t.he Ok

and h coeffi cients. The overall word iPng th
and the number of fractional bits are speci
fied by the user .This approach fon.:rs the C: i\
to work with quantised numbers, thereby r<'
moving one set of calculations from the fit
ness function. The seeding of the first r<lll

dom population was cha nged to remc>\'t~ the
unperturbed BZT solution , as it was found
that fo r tight tolerance filter:. the C: A rarely
looked anywhere else as the high fitnes~ re
gions are rela ti vely small.

To prevent un stable filters from being
designed , any filtN whosr b, a nd b~ coef
ficients fell oulsid r the stabi lity tri <111gl" of:

lb2l <
lbtl < I + b2

are immediately reLurnrd with a low fi t
ness.

The operatio 11 of th r (;;\ was ext t'ndrd
lo include the roundo!T no tsr in thr fitness
fun ction . By doing so. thr (;A also includ<'s
the ordering of the second ord er sect ions as
an intrinsic pa rt of the opti 111isation. in or
der to produrr a filt er with as low a roundoff
noise as possible

A multi-objecti vr fit ne."" fun ction wa.~
chosen to allow th <' ust'r to spc•·ify thr rela
tive importa nce of th E' frequr ncy respons1•
and roundoff noise of t.h<' filler to be de
signed . This a llows the (;A to search fo r
fi lters ranging from thosr w1th optima l rr
ponses to those having optin1al noisr cha r
acteristics. The phasP r<'sponsr was 110t in
cluded , a lth ough it will h(' exan1ined at a
future datr .

-10.00

-20.00

iD -30.00
~
c
0
~ -40.00
:J
c
Gl
~
<(-50.00

-60.00

-70.00

-80.00

274

Figu re 2 : Lowpass filter designed by CA

T he chosen fitness func t ion was :

F
. I I
z!ness = -- + --?

fmo.r W.uor

where fm 0 ., is the maximum deviation
from t he required frequency responce in the
pass- and s topbands in dB, and W is a
weighting value. The weighting value was
varied to a lter the trade-off be tween fo rc ing
the CA to a good frequency response a nd
trying lo find a filler with a low roundoff
noise ga in .

3 R esults a nd discussion

To lest the CA, we compared its results t o
those fou nd by the BZT a nd quantised to
the sam e word length When asked lo fiud an
eighth -orde r lowpass filter with no rmalised
bandedge frequencit-s of 0 35 a nd 0.4 , a
\\'Ord lcngth of 16 11ith 1:1 fra.r. tio nal bits,
maximum pass banJ rip pl t> o f 0 25d8 and
minimum s topba nd attenu ation o f 45dU, a
CA w1th a weighting value o f W = 100
found thr filter s ho\\'n 111 F'1g nre '1.. . Th <'
•;ha raclNI$1 ICS of I he (; ,\ fil l N II I'E' l'O IIl pMed
,,.1th t hus<' for llu· quant is<'d ll ZT sol ut ion in
l ltr · filhl!• l>!· ln\1'

A t eut h-onler bandpass filter with band
edges of 0 .13, 0. 17, 0 .25 , 0 .29, with a
wordlell~th of 2·1 including 20 fractional
bits, a;1d ripple to le rances o f 0 .2d8 and
50dB in the pass- and s topbands was found,
with the fo llowing resul ts, by a GA with
w = 1000:

The solutions found by directly quantis
rug the BZT solutiou st-em to fall 111to two
categon es: those with a good frequeucy re
sponse and high ro undo ff no ise gain, and
those \\'ith a low roundoff noise gain but
poor frequency rt-sponse. This s uggests that
the sol utions fo und by the BZT lie in a small
high-fitu ess regio n \\'ithin all othe rwise poor
a ren of th t- search space, wh er<' s im ply quan
t.isi ng thr filtt- r coeOi c ir ut s is enough to turn
t.hc fi lt r r int o a n uns uitahl t-, low-fitnrss so
lutro n

T hl",l' resul t» show th a t t he In bnd (;A 1.<

a \lahl t• >- tra tt-gy fo r quantrsed rfR filt rr ciC'
sign .1 lt houg h for vt> ry low t.o lc rann• filtl' l ~
(" ~ 11'11 h n ;<rro ,,· t.ra nsitio n hand 111dt h,;)

thr BZT solu t io n is so good tha~ 11 :-hou ld
bP Inc luded in the seC'di ng of the (;As Ini
tial population It also d e m onstral.rs t ha l
the CA is able to 1mprove l11f' ro undo!T noise
gain or a BZT fi lte r from that obtained whPn
the coeffi cients are si mply quantiserL

The advan tage o f the com bi ned
BZT/GA approach is that. the GA can be
take n rapid ly to good possibiP regions o f
Lhe search space, and exp lo re these arPas
fo r the best q ua nt ised solutions more suc
cessfully than either ca n a lo ne. It has also
reduced t he num ber of stages o f d esign by
integra ting coefficient ca lculation , sect ion
orde ring , a nd no ise analysis into a si ngle
para llel operatio n , t he re by allowing design
ers to prod uce a complete 11 R filLe r from a
fe w in itial specifi cations, wi LilC'ut needing to
understand the m any differe n t mtermediatr
stages. T he addi tion of extra genes to con
t rol t he structure used by eac h second ord er
section could a lso a llow an improvement. in
t he roundoff noise gain .

Wordlength o ptim isatio n is currently
o n ly p ossible by p erforming several G A runs
wi t h diffe rent wordlengtbs and co mparing
res ults. However, the fu ture inclusion of
genes in the chro m osome to control the
word lengt h s hould a llow the production of
the fi lter wi th mi ni mu m wordlength t ha t
gives the desired response. Put ure work
wi ll examine d ifferent approaches to m ulti
objective fitness fu nctio ns as t he number of
target fi lter specificati ons inc reases.

4 R efer en ces

I . J .H. Ho ll a nd , Adnptotron 111 Natuml
and A rl ificral Systems, Ann Arbor ,
University o f Michig an Press. 197:>.

275

·•

I. DE. (; o ldbNg , (,"end " .tllyonllrm 111
.'icrwch, Opi11111Sntron , nnd Mnclunc
Lcon nng, Add1son \o\'es ley 1989

~ T . l ;o rne and M. Schne1der , /J es1gn of
Drgrtal Frller·s watlr Euolutaonary Al
goritiiii!S, in " Arti fic ial Ne ural Nets
and C euet ic Algori thms" , Alhrecht ,
Reeves and Steele, ed s .

4 L J Nico lsou a nd 8 M .G C heetharn ,
An /n ueslagalron anlo th e Multaple Cn
ten on Optamisation Approach to /1 R
Filter Desagn , Co ll oq u ium on Digi
tal and Analogue P ilte rs and Piltering
Systt>ms, 1992, pp 4/ 1-4/6

5 8 .C [feacho r a nd S . P. !la rris, A New
Approach to Fr·equency Sa mplrng Fal
te r· Desagn, Procs . 18E/ 18EE Work
shop o n Natural Algorithms in Signal
Processi ng, 1993.

6. S.P. !larris a nd 8.C. lfeachor , Auto
malac Design of Frequency Sampling
Filters by G'e ne ltc Algor·ithm Tech
niques, Under revie ll' by t he I 8EE.

7. E.C. lfeacho r and Barrie W . .Jervis,
Digital S ignal Pr-ocessing: A Practical
Appr-oncla, Addison Wesley, I 993.

8. C.Z. Janikow and Z. Michalewicz, A
Specialised Gen e tic Algori thm for Nu
merical Optrrn rsatiora Problems, 2nd
Interna t ional IEEE Confe rence on
Tools for A.!. Proceedi ngs, 1990, pp
798- 804 .

9. D.E . (;o ldbrrg, Real- coded C:enetac
Algor-ithms, \li r·tual Alphabets, and
Blocking, Complex Systems, Vo lume
5, 1991 , pp 139- 167.

IEEE TRANSAcnONS ON SIGNAL PROCESSING. VOL 46, NO 12, DECEMBER 1998

Automatic Design of Frequency Sampling Filters
by Hybrid Genetic Algorithm Techniques

S tephen P. Harris and Emmanuel C. Ifeacbor

Abstract- A new method or designing recursive and nonrecur
sive frequency sampling filters is presented. We investigate the
use or a hybrid real-i:oded genetic algorithm (GA) for opt:imising
transition sample values to give the maximum stopband atten·
uation. A modification allows the coefficient wordJengtb to be
optimized concurrently, thereby reducing the overall number or
design steps and simplil)ing the design process. The technique
is able to consistently optimize filters with up to sill transition
samples. Designing digital filters is a complu process involving
optimization at several discrete design steps. The techniques
presented here could form the basis for integrating several of the
optimizations. Investigations Into increasing this integration by
using a binary-coded GA to optimize nonlinear phase, quantized
coefficient FIR filters are introduced, with an analysis of the
difficulty of the problem from a GA perspective.

I. iNTRODUCTION

THE DESIGN of digital filters, as with most engineering
tasks, is a multistage, iterativ,.. process. The key stages are

filter specification, coefficient calculation, structure realization,
finite wordlength analysis, and implementation. Each stage
involves optimization, but current practice is to perform this
separately for each stage in an iterative fashion until an
acceptable solution is found. However, since the effects of
each stage are interrelated, optimization at only one stage leads
to a design that, although optimal for that design stage, will
generally be suboptimal for others. An attractive goal is to
perform the optimization for several stages simultaneously in
order to seek out the filter design with the best overall tradeoff
across the design criteria.

The frequency sampling (FS) method has attracted a consid·
erable amount of attention as a fil ter design method [l]- [14).
When used to design standard frequency-selective fi lters, a low
number of regularly spaced samples are chosen, with fixed val
ues in the passband and stopband and a few variable samples
in the transition band, which are optimized to maximize the
filter performance according to its desired use.

The FS method has the advantages that more efficient recur
sive versions of standard narrowband nonrecursive filters can
easily be found and that fil ters with an arbitrary response can
also be designed. The key task in the FS method is to find the
values of the transition band frequency samples that produce
a filter with the desired continuous response, for example, one
with the maximum possible stopband attenuation. While tables
of transition sample values for a limited selection of filters

Manuscript received March 25 1997; revised March 4. 1998. The associare
editor coordinating lhe review of !his paper and approving it for publ ication
was Dr. lost C. Principe.

The authors are with the School of Electronic Communication and Elecuical
Engineering. University of Plymoutla, Plymouth, U.K.

Publisher Item Identifier S 1053-587X(98)08701 -7.

have been published, the interpolation required to produce
an untabulated filter will result in a suboptimal solution.
Designing fi lters with quantized coeffic ients adds a (urther
level of complexity as the coefficients are often quite different
to those found by simply truncating or rounding the full
precision coefficients found by standard techniques.

In many real-time applications where a linear-phase re
sponse is required, such as audio and biomedicine, FIR fi lters
may be unsuitable, due to their unacceptably long delay
of half the filter length. However, if the phase response is
unconstrained, then a reduction in order of up to 50% can
be made for some filters, with no loss of quality in the fi lter
response. A compromise solution is to only optimize the phase
with respect to its linearity in the pass band, where the signal is
most important. This releases degrees of freedom to improve
the performance in the magnitude response and should allow
a fi lter to be produced with the same magnitude response and
near-linear phase in the passband but with a lower order and,
therefore, a shorter delay.

In recent years, natural algorithms such as the genetic
algorithm (GA) [5]. [6] and simulated anneal ing (SA) have
become popular optimization tools for performing searches
of hilly, multidimensional surfaces where traditional methods
such as hill c limbing cannot perfom1 well. TI1ese features can
be utilized in digital filter design to perform various opti·
rniz.ations [7]-[10], whereas Darwinian optimization, which
includes elements of both GA and SA methodology, has also
proved successful [11]. The GA is capable of performing
multicriterion optimization (MCO) in ways that automatically
perform perfom1ance tradeoffs between design specifications.

In this paper. we introduce a fundamental investigation into
the feasibil ity of using GA's to simplify the digital fi lter design
process. Investigations into the use of the GA for optimizing
frequency-sampling FIR filter coefficients for both recursive
and nonrecursive representations are detailed, a long with the
floating-point hybrid GA that was developed to tackle the
problem. This GA uses a family of related crossovers, and
a new technique is described that dynamically biases their
selection according to their success in improving the fitness.
A modification allows the GA to optimize the wordlength of
recursive fi lters simultaneously with their coefficients with no
user intervention. An analysis of the nature of the search space
was undertaken in order to explain and improve the GA's
performance.

In order to increase the number of design steps being
undertaken simultaneously. a binary GA was developed that
optimized quantized coefficients directly while trading-off
magnitude and phase response performances against each

1053-587XI98SIO.OO @ 1998 rEEE

HARRIS AND IFEACHOR: AlJTOMATIC DESIGN OF FREQUENCY SAMPLING ALTERS 3305

u

...
...

u

...
~· ~·

(a) (b)

"" ...
... ... - -

! - ! ..
I

....

....
< f

....
-no

-uo
. , -

~ 00
Fig. I. Stages in the design of a frequency sampling filter.

other. This was undenaken with the aim of presenting the de
signer with a range of fi llers with different characteristics from
which the most appropriate may be chosen. This approach
proved to have a very poor performance, and our subsequent
investigations into the search space and GA difficulty of the
problem are introduced briefly.

ll. B ASIC THEORY OF lliE FREQUENCY SAMPLING FrLTER

An FIR filler can be uniquely represented by a set of
frequency samples taken at regular intervals, as shown in
Fig. l (a), where they have been set to unity in the desired
passband and to zero in the stopband. From this, the filler
coefficients (and impulse response) can be found by taldng
an inverse OFf. The continuous frequency response can be
approximated by zero padding the impulse response to a length
of 1024 or more to obtain reasonable accuracy and taking a
forward OFf (usually an FFf). This interpolated response can
then be analyzed to detennine its performance with respect to
the problem under investigation. For a "brick-wall" filter such
as this, the interpolated response has a large degree of ripple,
resulting in a filter with poor attenuation, as shown in Fig. l(c).
It is possible to improve the performance of a "brick-wall"
fi lter obtained in this way by including some variable samples
to smooth the transition between passband and stopband, as
in Fig. l(b). The value of these transition samples can be
optim.ized in order to give the minimum ripple in the passband '
and/or stopband; see Fig. l (d). Once the transition samples
have been optirnized, an inverse OFf of all the samples can
be used to give the filter coefficients.

lt is possible to express the transfer function of any FS
filter in either a recursive or nonrecursive form. The sel
of stopband attenuations over all possible transition sample
values has a unique maximum for both nonrecursive and
recursive filters [I], which means that a gradient descent
algorithm will always be able to find the optimum solution,
although this might not occur within a useful timescale for
highly dimensional problems. A certain amount of off-line
precalculation can be employed to improve the computational
efficiency for nonrecursive filters, but this design method is
inefficient for narrow-stopband filters, where only a small
portion of the interpolated frequency response is needed to
discover the attenuation. A recursive representation of the FIR
filters allows a greater degree of precalculation and a more
efficient implementation in most cases, although increases
in computing power reduce the absolute speed differences
between the two methods.

For variable-wordlength recursive filters, where both the
transition samples and wordlength are being optim.ized, the
search also has to cover a range of possible wordlengths. ln
this case, there is no longer a simple, smooth surface; therefore,
pure hill-climbing methods can no longer be reli~ on to find
the optimum. However, due to the coefficient quantization, the
number of points in the search space is vastly reduced, and the
search becomes more straightforward for the GA.

A. Recursive FS Filter Design

lt is possible to calculate the interpolated frequency response
of a recursive form FS filler directly by use of the z transform, ..

3306 IEEE TRANSACilONS ON SIGNAL PROCESSING. VOL 46. NO 12. DECEMBER 1998

which permits much of the calculation to be performed oftline.
It is also possible to calculate the response for just a limited
region of interest, such as the stopband. For an FIR filter with
radius r, the recursive f01m transfer function can be wri tten as

I - .,.N z - N N- 1 H (k)
H(z)- """' 0 < r:::; I (I) - N ~ 1 _ eJhk/ N.,.z-1

k=O

where the factor outside the summation is a comb filter with N
zeros spaced uniformly around a circle of radius ,. , cascaded
with N single pole filters, represented by the summation
term. These poles are all coincident with U1e comb filter's
zeros at the points where Zk = r ei21fk/N with fully accurate
arithmetic. In practice, when limited precision arithmetic is
used, it is necessary for the radius to be less ilian one to prevent
possible instability, with systems implemented with fewer bits
requiring a smaller radius due to the larger perturbation caused
by quantization. For a Linear-phase FIR filter, H(z) may be
expressed by (2) [12], shown at the bottom of the page, where
a = (N - 1)/2, and M = (N/2) - 1 for N odd and
M = (N - l)/2 for N even. In our implementation, UJe
radius r was eiUJer fixed by the designer or by the wordlength
of the fi lter under investigation.

If r is exactly one, (3) can be used to avoid numerical
overflow problems and allow a greater degree of precalculation
as

·w -Jw(N-1) [IH(O)I sin("'f) ~1
IH(k)l

H (e1) = e , ---y;;-- --:----(!!!) + ~ ---y;;--
sm 2 k=1

x [sin(N(I- }})) sin(N(I +?f))]] · (3)
. ("' trk) + . ("' "k) sm 2 - N s1n 2 + N

The GA uses the expression between the outermost set of
brackets to calculate the magnitude response for full-precision
filters.

Depending on whether the first sample is taken at w = 0
or w = 1rjN, ilie filter is described as Type I or Type Il.
Since N can be odd or even, we therefore have four possible
sample arrangements for a frequency sampling filter. With
linear-phase constraints, FS filters are resuicted to certain
frequency-selective filters, depending on wheUJer N is odd or
even, which can be illustrated by UJe Case 2 type of impulse
response, where we can express the magnitude response for
N odd by [13)

H' (,;")" (~·I·>=(+-D)) (4)

where a(O) = h((N- 1)/2), a (n) = 2h((N- 1)/2- n).
This equation is always zero valued at w = 11', regardless of
the actual filter coefficients since cos(11'(n - 1/ 2}) is always

Filter TYJle

Type·!, N odd

T}'Jle-1, N even
Type-If. N odd

Type-11, N even

TABLE I
DESIGNABL£ FIR FILTUS

lR Case Possible Filters

Case I All filters

Case 2 Only lowpass and bandpass

Case I All fi lters

Case 2 Only lowpass and bandpass

zero for integer n. This means lhal it is impossible to use
a symmetric, N -even impulse response for any type of filter
that is nonzero at w = 1r, such as highpass and bandstop. The
available filter types are shown in Table I.

Ill. THE GENETIC ALGORITHM

The GA, as developed by Holland [5], [6], has in recent
years become a popular and powerful search technique. It
is based on ideas borrowed from the theories of natural
selection-the "survival of the fi ttest." In nature, evolution can
be viewed as a search process where the optimum DNA must
be found in order to maximize a species' chances of surviving
long enough to reproduce, U1ereby propagating the species.
This occurs through a process of DNA crossover during sexual
reproduction and the loss of unfit offspring due to predation
or poor adaptation to the surroundings.

The GA uses a similar process to perform the search for
the optimum solution of a problem represented by an artificial
computer model. The paranJeters that tune UJe performance
of this model are represented within the GA as a number
of chromosomes, most commonly in a binary representation,
although a real-coded chromosome may be more appropriate
for some problems. These chromosomes make up the GA's
population , which contains all the information that the GA
has found about the good regions of the search space. They
are generally initialized at random in order to ensure that the
search space is sampled widely and evenly.

In order to determine which of the members of the pop
ulation contain solutions iliat are good enough to continue
to the next generation, the "fitness" of each must be found.
This is performed by UJe fitness function, which decodes
UJe binary chromosomes into their model parameters and
calculates the corresponding performance. The better solutions
are selected according to fitness to undergo reproduction into
UJe next generation, whereas the poorer solutions are lost. This
selection increases the average fitness of the population but
does not introduce any new solutions. In order to disuibute
information about the good solutions that have been selected,
the new population undergoes crossover, which, in a similar
way to the natural process, involves the sw~pping of sections
of the chromosome between randomly selected pairs. If there
are just a few good solutions within a population, it is possible
for them to overrun UJe population and cause premature

H z = 1 -rNz-N[[~IH(k)l(2cos(27rka/N)-2rcos(211'k(1+a)/N)z- 1)] + ~~~;;_ 1] () N ~ 1 - 2rcos(211'k/N)z-1 + r2z-2
k=J

(2)

liARRIS AND IFEACiiOR AlTT'OMATIC DESIGN OF FREQUENCY SAMPUNO FlLTERS 3307

convergence, thereby allowing the GA to become "stuck" in
a suboptimal solution. To combat this, mutation is used to
allow the GA to escape to new regions of the space. Mutation
s imply involves the flipping of a few bits within the population
at random with a low probability, as it can obviously be very
disruptive.

The GA has the advantages that it can escape from subop
timal peaks even after it has converged, through the action
of mutation, so that it can be used in highly multimodal
situatiorts, unlike traditional hill-climbing techniques. It can
also be written in a way that makes it suitable for multicriterion
optimization: a feature that is planned to be utilized in future
design areas. Unlike many other design techniques, it does
not require any mathematical analysis; therefore, it can be
used for complex problems where such an analysis would be
extremely difficult and time consuming. The GA is also able
to work successfully with discontinuous search spaces, such
as those produced when using quantized model parameters,
since only point samples are taken. This feature is utilized
in the optimization of finite wordlength filters described in
Section VI-A. It has the disadvantage that it is not guaranteed
to find the optimum solution for any given problem; therefore,
a secondary, hybrid optimization method is often used in
~njunction with the GA in order to improve the final solution.

While a binary-coded model is most common, it may
be advantageous to use real coding instead if the problem
naturally involves the optimization of real numbers or if there
is a large time overhead in converting the binary values to their
corresponding real numbers. The GA used in the optimization
of FS filters utilized a real coding, with floating-point crossover
and mutation techniques based on those of a GA designed for
numerical optimization [14).

IV. THE SHAPE OF THE SEARCH SPACE

In order to obtain a better understanding of the function that
the GA is optimizing, contour maps of the search space for
a two-transition sample lowpass filter were drawn by varying
the transition samples at eight-bit resolution (i.e., 256 by 256
points) and finding the fitness of each solution. A typical
surface for a lowpass filter is shown in Fig. 2. The restriction
that the second transition sample (T2) must be smaller than the
first (T1) means that half of the possible area is forbidden-the
thick line marks the edge of this region, which lies in the upper
left half of the figure . The jagged appearance is due to the
limited resolution-in reality, all edges are smooth, and there
is a unique peak. For fixed radius filters, the surface always
has a unique maximum regardless of the number of transition
samples. When N or the width of the passband is changed,
both the maximum artenuation and optimum transition sample
values change, along with the position of the peak and the
orientation of the ridge it lies on; however, the similarity
between all of the spaces means that the same optimization
technique can be used for designing any type of filter, reducing
the learning time.

Fig. 2 does not, however, give a full picture of the nature
of the search space. If a lowpass respons e is to be con
sidered valid, it must decrease monotonically between the

... u ..
Fig. 2. Search space for a Type-llowpass filter with N = 48 and a passband
width = 0.166. T1 and T2 are the first and second lnlnsition samples.
respectively.

last passband sample of unity and the first stopband sample
of zero, which means that the derivative of the magni tude
response in the transition band must always be negative. If the
response decreases monotonically, so must the samples it is
fitted through; therefore, each transition sample must be greater
than the next. In general, from all possible sets of transition
samples, the proportion in which each transition sample is
greater than the next PN, is given by

1
PN, = -Nl

t ·
(5)

where N1 is the number of trartsition samples. This shows that
the valid proportion rapidly becomes very small-by Nt = 5,
PN, is below 0.01. The fitness function automatically orders
the coefficients so that the GA is constrained to solutions
that are always valid with respect to the transition samples.
Unfortunately, this does not ensure that the interpolated re
sponse also decreases monotonically: a further constraint that
is often broken in filters with similar adjacent trartsition sample
values. To ensure that this additional, stricter condition is also
met, a hard boundary can be added to the fitness function
by making it return a very low fitness for any filters that
do not meet it. This will ensure that any such solutions
being examined by the GA will be lost during selection and,
therefore, should help to restrict the search to tl1e region of
the search space containing truly valid solutions. This region
is shown in Fig. 3. This region is clearly smal ler than before;
therefore, the valid proportion will shri nk even more rapidly
as the number of transition samples dimensionality rises. To
obtain a large attenuation, the transition sample closest to
the stopband T2 must be small so that the peak lies close
to the lower edge of the contour map, but if it drops too
far, the continuous response rises again before reaching the
stopband, giving an unacceptable filter. These two competing
factors force the optimum solution to lie close to or on the
edge of the constraint boundary so that when the GA is close
to th<:. optimutl! solution, it will also be in a region where

3308 IEEE TRANSACTlONS ON SIGNAL PROCESSING. VOL. 46. NO. 12. DECEMBER 1998

Fig. 3. Boundary of the constrained search space giving allowable solutions
for the same lowpass filter; T, and T2 an: the fi rst and second uansition
samples. respectively.

110

...
r------·····-

., ~--,J

..

..
2'1) 1 C1 U 11 11 11 tl

GitMr..., ber

Fig. 4. Increase of fi tness with generation for constrained and unconstrained
optimization of an FIR filter.

crossover and mutation will often give a disallowed result.
Fitness functions that constrained the search to this smaller
region were tried, but for low numbers of transition samples,
they did not noticeably alter the efficiency of the search.
For filters with around five or more transition samples, this
constrained search produced a poorer result, as illustrated in
Fig. 4 for an Nt = 6, N = 68, Type-1 lowpass filter, which
compares the improvement of fitness with generation averaged
over five runs. The poorer performance is due to an increasing
proportion of the high-fitness region around the peak being
outside the constraint boundary, which means that a small
change in position can change a solution from being very
good to being invalid. This in turn implies that crossover
and mutation become increasingly ineffective, and the GA
becomes less able to improve the fil ter as the optimum is
approached. Since the use of the hard constraint boundary did
not improve the performance, it was not used in the final GA.

11 has been found that the search space for a recursive filter
is very similar to that of a nonrecursive one, particularly when

the fi lter has a radius close to one. If the radius is reduced, then
the narrow ridge widens, and the maximum attenuation fall s.
Since the radius used is dependent on the wordlength, a shoner
word length means that a smaller radius must be used to prevent
instabili ty, although this reduces the maximum attenuation that
can be attained. When the GA is being used to optimize both
the coefficients and the wordlength, this means that there are
conflicting facrors that need to be traded against each other;
the coefficients need to give a high enough attenuation for the
filter to be acceptable, whereas the wordlength needs to be as
low as possible in order to make the filter implementation as
efficient as possible. The fitness function used to attain this is
discussed in Section VI-A.

V . USING TifE GA FOR FS FILTER D ESIGN

11 should now be clear that to perform FS filter design, the
GA is used to optimize the values of the transi tion samples
between the pass band and stopband. The chromosome used by
the GA is a string of N1 real-valued genes, where N1 is the
number of samples in the transition band. For recursive filters,
the wordlength can also be included in the chromosome. All
gene values are constrained to lie in the range 0-1 so that
they can be used directly as normalized transition frequency
samples to calculate the fitness.
· The floating-point GA used to optimize the filter coefficients
and radii was based on that of Janikow and Michalewicz
[14], where a number of vector convex combinations were
used to perform floating-point crossover, although with a
number of adaptations. The first two types of crossover simply
exchange transition sample values without changing them,
swapping either one or severa] of the them between the
parent chromosomes. These do not, however, generate any
new gene values, which is catered for by the remaining
three types. These produce offspring by taking pairs of parent
chromosomes, copying them, and replacing one, several, or all
of the transition samples within them as

c = R · a + (1 - R) · b

d = {1 - R) · a+ R · b

(6)

(7}

where a and b are the parent gene values, c and d are the
child gene values, and R is a random number between 0-1.
It should be noted that the offspring's genes can never lie
outside the region bounded by the values of the parent genes;
therefore, by applying crossover, the transition sample values
are always moved closer by some degree. 11 has already been
shown that tl1e optimum solution lies close to the lower bound
of values for the later transition samples so that the crossover
was changed to

c = R · a + {1.1 - R) · b

d = (1.1 - R) · a+ R · b

(8)

(9)

in order to enable crossover to move chromosomes apart
sometimes and help it find solutions at the edges of the
parameter space.

The fitness function used is simply the stopband attenuation,
in decibels, which gave a better performance that the normal
ized stopband ripple. Since the latter is general ly small, there

HARJUS AND IFEACHOR: AlTfOMATIC DESIGN OF FREQUENCY SAAIPUNG FILleRS 3309

is little to drive tl1e GA toward the better solutions; therefore,
by converting to a logarithmic scale, we increase the emphasis
on high attenuation. After performing trial runs. the mutation
probability was set to 0.005 and the crossover probability to
0.7, with a population size of 30.

A simplex method [15] local hill-climbing routine is then
used to complete the optimization begun by the GA. The
simplex method was chosen because it does not require
gradient infomJation and does not involve any form of curve
fitting such as parabolic intef1X>lation, as this implies some
knowledge of the structure of the parameter space, which is
not necessarily available. Like the GA, it only takes point
samples and does not require a detailed mathematical analysis
of the problem. This extra optimization routine was only called
after one quarter of the total number of generations had passed
and if the GA had been unable to improve the best fitness for
20 consecutive generations.

A. Adaptive Selection of Crossover Method

In an attempt to improve the effectiveness of crossover,
rather than selecting the crossover method purely at random, a
novel dynamic selection method was implemented, where the
probability of selecting a particular method is dependent on its
current performance. The probability of selection is given by

d,.,
Pz = - 5--

L I=Odt
(10)

where d" is the proportion of calls to crossover method x that
caused an fitness improvement over the parent chromosomes,
Pz is the probability of choosing crossover type x , and the
summation is over the five types of crossover plus I = 0 for
just mutation. TI1is metllod allows lhe best crossover metl1od
to be selected dynamically during lhe run by its perfom1ance.

When lhe number of transition samples is small (<~5}.
lhe crossover types tllat actually alter gene values perform
best early in the run, whereas later on, those tllat simply
exchange genes and pure mutation become dominant. This
is because once the population has converged to the region of
the optimum, changing gene values by crossover is likely to
move the solutions to a much poorer solution so just swapping
existing values will be more useful.

For larger Nt (>-5), all types initially have a similar
performance, but the same crossovers and mutation take over
later on. Their initial performance is better than tllat for the
shon chromosomes since tllere are more gene values in tile
population, which are available to several gene positions due
to the reordering t11at occurs in the fitness function. Exchanging
tllem will therefore be more productive than before. The
inclusion of tllis selection process allowed tile GA to make
more regular improvements in fitness so tllat it needed to rely
less on the simplex local search, altllough as tile optimum was
already being found, tile best solution found overall did not
improve.

B. improving the Computational Efficiency

AJtllougb lhe GA itself is very efficient and fast, it requires
many fitness calculations so tllat t11e efficiency of tile imple-

mentation of the problem model is of paran10unt importance.
For all but the simplest of problems, t11e GA will spend most
of its time calculating fitnesses so that some effort was put
into optimizing tile fitness calculations.

The nonrecursive metllod consists of an inverse OFf fol
lowed by an FFf to produce the interpolated response. This
has a total operation count of

2 N;
Acrn = N + 2 log2 (N,) (11)

Aca = N (N - I)+ N,log2 (N;) (12)

where

Acm number of complex multiplies;
Aca number of complex additions;
N filter order;
N; number of points in tile interpolated spectrum.

Since the coefficients in tile passband and stopband will have
the same effect on the inverse OFf part of tile calculation, their
effect can be precalculated. ln addition, utilizing tile symmetry
of tile impulse response reduces the contribution of tile OFf
to the sum to NtN in botll cases. The FFT' is read-only and
can be packed into a shoner FFf of lengtll N;/2. resulting in
new operation counts of

(13)

(14)

Assuming tl1at witll a OSP or matlls eo-processor botll oper
ations take tile same time, tile total operation count can be
given by:

The recursive filter response was calculated by using (3)
to produce a frequency response containing 512 points over
t11e interval w = 0- 1r, which was then examined to determine
tile stopband attenuation. This meant that only a fixed set of
w values are used, and tlle sine terms could be precalculated.
TI1e contribution of tile passband samples to tile final response
can also be precalculated, leaving just tile effect of the N1

transition sample values to be determined at each fitness
calculation. Further savings can be made by simply calculating
tile response in tile stopband as tllis is tile only region of the
response used to determine tile fitness. Taking all of these
factors into account, we get the expression for tile recursive
total operation· count Ar of

(16)

where N. is the number of stopband samples in tlie range Q..-r. .

Altllough tllese optimizations have improved tile absolute
computational efficiency of both calculations, tlleir operation
counts show that the recursive implementation is still much
more efficient than the nonrecursive one for low numbers of
transition samples. Since there are usually fewer than ten such
samples in practice, tile recursive filter GA will be faster tllan
the nonrecursi ve.

1310 I.EEE TRANSACilONS ON SIGNAL PROCESSING. VOL. 46. NO. 12. DECEMBER 1998

i
.li
j
l;

" i
!
I
c
"' ~

160

120

100

eo

60

40

20

1 56 111 lA 221 :!76 S31 11&6 .. 1 4t6 551 606 Al 716 771 l2t NI 136 891

Gonorotlon

Fig. 5. Improvement of the maximum and average fimesses with generation

11 should be noted that these results are somewhat conjec
tural as compiler optimizations and different memory access
counts will resull in the relative speeds diverging from these
predictions. The operations counts are, however, sufficiently
divergent that the recursive implementation is certain to be
faster on average for up to ten transition samples; therefore, it
was adopted as the standard method.

VI. REsULTS FOR FS FILTERS

The improvement of maximum and average fitness with
generation can be seen in Fig. 5 for a typical run to design
a Type-II highpass filter with N = 89, a narrow stopband of
three samples, and five transition samples. The run of 1000
generations was completed in around 4 min on a 486 DX2-66
PC, although a near-optimal solution was found after about
generation 400. The regularly spaced vertical peaks in the
latter pan of the graph show where the local search routine
was called after the GA failed to improve the best fitness for
20 generations. The GA is able to find the general area of
the peak fairly quickly, but finds it difficull to find very high
fitness solutions within the very small area of the peak, as
crossover is likely to throw the offspring into comparatively
very poor regions. The GA is therefore used alone for the first
quarter of the run, after which the hill climber is able to make
substantial improvements.

The technique was tested against tabulated resulls from (IJ
and was found to equal or improve on them in every case,
whereas in [3], resulls for untabulated filters are given. Fig. 6
shows a Type-1 filler with N = 128, NP = 20, N 1 = 3, and
N, = 15, which was designed by our hybrid GA simplex
method. The attenuation is 85.5 dB, and the passband ripple
was 0 . to dB. The impulse response for this filler is shown
in Fig. 7. A Type-II bandstop filler is shown in Fig. 8, which
has N = 99, and passband and stopband widths of 13 and 11
samples, respectively. This filler has an attenuation of 111 .4
dB and a passband ripple of 0.075 dB.

I! has been found that this technique is generally very robust
for filters with up to six transition samples, taking an increasing

·20

...

·1<00

·1&0

·1110

.zoo lillllllllllllllllll-----.!lll.ll.U..U.U..U.U..U.UJ..LL

Fig. 6. Frequency response for a bandpass filter designed with GA-Simplex
(see text for details).

"' ...

.,.

u

·11

... ...
·1ft

·IU

·Ut

-Ut

Fig. 7. Impulse response for the filler in Fig. 6.

.,.-- - ----. f

Fig . 8. Frequency response of a bandstop filter designed using GA simplex.

length of time as the number of transition samples rises. For
filters with up to around four transition samples, the GA is
able to find near-<Jptimal solutions very quickly before the
intervention of the local search. For five or six transition
samples, the GA performed a useful amount of improvement
although not to near-<Jptimal performance, whereas the local
search was able to complete the optimization. For more
transition samples (up to ten were used), the hybrid GA was
only able to perform a small amount of optimization, from
which the local search was also unable to find the optimum
within a reasonable time (e.g., I hr on a 486 PC).

Although the hybrid GA has been able to produce results
that improve slightly on those in tl1e literature [I], its main
strength lies in the fact that it can quickly produce untabulated

HAJUUS AND IFEACHOR: AUTOMATIC DESIGN OF FREQUENCY SAMPLING FILTERS 33 11

filter coefficients, which are much more useful than those
found by interpolation. It is also able to design filters with
more transition samples, showing that the hybrid GA is a
suitable technique to use for designing this type of FIR
filter. The successful application of the GA to this problem
leads us to consider how its use could be extended to more
complex design tasks in order to perform severa l design steps
simultaneously and thereby simplify the design process.

A. Concurrent Optimization of tile Wordlength

In order to integrate a further fil ter design step, the fitness
function for opt:irnizing recursive filters was extended to incor
porate the finite wordlength effects of coefficient quantization
by including an extra gene in the chromosome that determines
the wordlength at which the genes will be decoded. This allows
the GA to search for the minimum wordlength necessary to
achieve a given filter specification simultaneously with its co
efficients. Mixed-integer programming has proved successful
at optimizing quantised coefficients [16}, although separate
runs are required for each wordlength under investigation.
Our approach allows the GA to search for the minimum
wordlength and optimum coefficients simultaneously, with no
user intervention.

Since we are using a real-coded chromosome with genes in
the range 0-1 . the wordlength gene must be decoded to give
an integer wordlength, which is performed by scaling it up
to 0-24 and taking the nearest integer. The real-coded genes
are then quantized to this wordlength before being used to
calculate the filter response and then fitness . This simplifies
the search by limiting the number of points the GA has to
examine. It has the disadvantage that the simplex hill cl imber
is less effective because the search space is now made up
of a large number of flat regions, such as those shown at
8-bit resolution in Fig. 2. This is due to the quantization of
the coefficients causing finite ranges of the floating-point gene
values to be interpreted aJ! having the same value by the fitness
function; therefore, they wi11 have the same effect on the filter
response. At the beginning of a search, the hill climber is able
to perform well because from a large-scale perspective, the
surface is smooth; however, once the search contracts around
a good region, the small plateau become increasingly apparent,
and eventually, the search cannot gain any information about
the direction of the optimum and is unable to reach it. The
GA is still able to pe.rform successfully in such a space (which
resembles the de Jong GA test function f3 [6)) as it only relies
on point fitness samples and is unaffected by discontinuities
or perfectly flat areas. This implies that more reliance will be
placed on the GA to perform a good optimization since the
simplex wi ll be less effective here.
· When calculating the filter response, in order to maintain fil

ter stability, the radius was reduced to one less the quantization
interval

(17)

where B is the wordlength. The fitness now has to take
account of both the magnitude response and the wordlength
with emphasis on the former since this constraint should

TABLED
DESIRED AND OProazm SPECiflCAJ10N FOR A QuA1mSID-CO£fFtOEIIT

AND Fuu.-I'REasiON Flun. THE Fuu.·PRBas!ON
DESIGN UsES A MAXlMUM-Ane<umON FmiESS FUHcnON

Desired Quantiud Full-Precision

Passband ripple (dB) 0.1 0.058 O. t29

Stopband Altenualion (dB) 77 82.96 117.26

Wordtenglh 6

Radius 0.984375 0.9843745

be satisfied regardless of the wordlength. To this end, the
following scheme was devised.

First, the normalized magnitude response is examined in
both the passband and stopband to see if it fits within the
desired limits. If it does to within HP, which corresponds to a
deviation of only around 0.3 dB from a desired attenuation of
70 dB, then the basic fitness is set to lOS ; otherwise, it is set to
the reciprocal of the normalized deviation. Th!§ gives a main
fitness range of 0-1 as for the magnitude response and is flat
(at IIP) for all filters fitting within the desired specification.
By having all satisfactory solutions return the same fitness,
it means that the GA is free to return a solution that onl y
just fits the design specification, leaving it more freedom
to reduce the wordlength. To account for the wordlength,
a further term is added to this, consisting of 25 minus the
wordlength. This overall fitness function therefore has extra
structure, especially within the optimum peak region, which
allows the GA to search for the minimum wordlength. The
overall fitness function can be written as

J() _ { (25- B)+ 1/emax emax > 10-s (J8)
X - (25 - B) + 1/10-S emax ~ 10- 5

where B is the wordlength, and emox is the maximum absolute
error between the normalized filter response and the desired
response in the passband and stopband.

This approach places the major emphasis on the opti
mization of the magnitude response, and once this has been
achieved, the effect of the wordlength dominates (within the
optimum fitness "plateau"). Other weightings have been tried,
but these were found to allow the GA to perform efficiently
without the intervention of the simplex local search.

Results for a typical test run are given below in Table ll
for a 49th order, four transition sample lowpass filter with
a bandwidth of 0.25. The GA was able to fit to the desired
specifications with coefficients quantized to a wordlength of
only six bits. The full-precision fitness function (in wh.ich the
GA only seeks to minimize tl1e stopband ripple) was able to
find a solution with much greater stopband attenuation as the
last transition sample was able to have a much smaller nonzero
value, as shown in Table ill. The full-precision fitness function
used the same radius as the 6-bit solution, and the fTequency
responses of both of these filters are shown overlaid in Fig. 9.

Vll . QUANTIZED-COEFFICIENT,

NONUNEAR-PHASE FIR FILTERS

A major objective of this work has been the simplification of
the filter design process; therefore, our next goal was to extend ..

3312 IEEE lRANSAcnONS ON SIGNAL PROCESSING. VOL 46. NO. 12, DECEMBER 1998

TABLE Ul
TRANSffiON SAM~L£5 FOR THE fiLTERS D ESCRJBEO IN TilE TExT AND TABLE fi

Quamized Full-Precision

0.875 0.785269

0.5 15625 0.348808

0. 15625 0.065764

0.015625 0.003069

20

0 ·····-·-··------·-·-- -···

· 100

· 120

Fig. 9. Optimized 6-bit quantiz.ed-coetlicienl snd fuU-precision coefficient
recursive fillers found by GA.

the GA to include a further simultaneous optimization. Since
the linear-phase FS FIR filter had been optimized satisfactorily
by the GA, a more difficult FIR fi.her design area was selected:
that of nonJinear filters with quantized coefficients. This al
lowed both the phase and magnitude responses and the effect
of coefficient quantization to be optimized at the same time.

Although FS filters are simple to design and can be forced
to have exactly linear phase, they are not suitable for all
applications, as they require a high order to produce a sharp
cutoff in the frequency response and, therefore, a lot of storage
for the coefficients. They also have a delay of N / 2, which
for high-speed real-time applications may be unacceptable .
However, if there are no res trictions at all on the phase,
then the filter length can be reduced by as much as half.
For many systems, however, such as those found in audio
and biomedicine, there may be strict requirements for linear
phase to avoid signal distortion. A compromise solution can
be reached by designing a nonlinear filter but, in addition,
optimizing the deviation from linearity in the passband to be as
small as possible. This means that tl1e filter can be shorter than
the linear-phase system but will be longer than the absolute
minimum of the completely nonlinear one. Optimizing the
phase adds another objective, which means that the simple
GA used before is no longer suitable.

The standard GA only uses a single fitness measure, which
is satisfactory for simple problems whe re on ly one or two
criteria need to be optimized, but to do this requires some
degree of trial-and-error to get satisfactory weightings for the
various criteria. Although we have been able to optimize both
wordlength ~d magnitude response this way, Ihis approach

is not a generally applicable technique and requires too much
user intervention. To this end, a new GA is required that has
been adapted to perform multicriterion optimization (MCO).
In MCO [6), [I 7), an improvement in one criterion will often
lead to a loss of performance with respect to another. This
means that it will generally be impossible to produce a solution
that performs perfectly in all respects. There is, however,
a "wavefront" of best possible solutions, with a range of
possible tradeoffs. This set, which contains those solutions
for which it is not possible to improve the performance of
all criteria simultaneously, is known as the pareto-optimd/ or
nondominated set (NDS). None of the members of this set can
be said to be "belter" than any o ther because although one
might outperform another with respect to one criterion, it will
always have a poorer performance in at least one other. All
other solutions are dominated by at least one member of this
set, where x is said to dominate y if x is partially less than
y , which is defined as

(x < py) ~ (V;)(!~:; :::; y;) 1\ (3;)(x; < y;) (19)

i.e .. for all i, x; :::; y;, and for at least one i, x , < y;. None of
the members of the NOS dominates another.

To perform MCO, a multiobjective GA was developed to
perform the much harder optimization of a nonlinear filter' s
coefficients wiU1 respect to both the filter's magnitude response
and its phase response in a region of the pass band and to return
the NOS of solutions found. To increase the number of fil ter
design steps being undertaken simultaneously, the GA used
a binary chromosome containing a concatenated list of the
coefficient values, which therefore intrinsically accounted for
coefficient quantization effects by searching directly for the
optimum quantized coefficients. The aim of searching for the
NOS is to offer designers a range of solutions with different
tradeoffs between the various design criteria, enabling them to
select the best filter for their specific problem.

The fitness function for the magnitude response was the
maximum error from a desired response template and, for the
phase response, was the x2 error between the response and
a least mean squared (LMS) straight line fitted through the
response in a selected region covering most of the pass band.

A. Performance of the Nonlinear-Piwse FIR GA

Initial runs were performed with randomly initialized chro
mosomes and proved unable to find solutions that fitted the
magnitude response design templates even to within 10-20
dB, although the optimization of the phase linearity was
generally more successful. It was also found that seeding the
GA witl1 perturbed copies of a known good Remez exchange
solution [12) either caused premature convergence for a low
perturbation, or the search failed for a higher one.

Since the GA was not perfomling well, an analysis of the
difficulty of tl1e search from a GA perspective was under
taken. The preliminary analysis of the problem was to take
"slices" through the parameter space with a fitness function
of just the magnitude response error; therefore, in this case,
a lower fitness value means a better filter. To find a local
near-optimum solution, coefficients calculated by the Remez

llARRIS AND IFEACHOR: AliTOMATIC DESIGN OF FREQUENCY SAMPUNG ALTERS 3313

exchange method were used to seed a bit-flipping local search
algorithm. Examination of these slices indicated that the
parameter space becomes increasingly smooth away from the
optimum and that the position of the optimum moves, even
tually bearing no relation to its "best" position. This implies
that far from the optimum, the GA has no useful information
about where that optimum lies; therefore, the optimum cannot
move toward it. It also means that as crossover and mutation
alter coefficient values, the position of the optimum values of
the other coefficients also move so that the information the
GA contains about where the good regions are is useless as
their position changes with each operation.

The GA is also hindered by the high epistasis of this
problem, which is the degree to which the genes are dependent
on each other's values to produce a high fitness solution. For
a filter, the coefficients must provide an impulse response that
has a well-formed shape. This, in turn, means that the only
high-fitness chromosomes are complete, optimal solutions.
Even if the GA can find two highly fit solutions, crossover
between them will general ly generate very poor solutions as
the partial solutions will not produce a good impulse response
when taken together. This means that the GA is unable to
proceed effectively unless the entire population is very similar
and has already converged around a good solution. Other
difficulty measures also show th'lt the problem becomes easier
for the GA to solve as an optimum is approa·ched, but the
epistasis is the dominant fac tor and prevents the GA from
even finding an optimum.

The pha~e optimization is more successful as there are a
number 0 1 fixed, high-fitness solutions where the coefficients
are near-symmetric, which gives a response close to linear.
These solutions exist regardless of quantization or the coeffi·
cient values so that the GA is able to find them more easily.

VIU. DISCUSSION AND CONCLUSION

In this paper, a number of approaches to the optimization
of FIR filters with both quantized and unquantized coefficients
has been presented, with the aim of simplifying the filter design
process by integrating a number of design optimizations into
a single parallel one. This approach should make it easier to
tradeoff the performance measures of the filter with respect to
its various design criteria against each other in a controlled
way.

The hybrid GA has been found to be a suitable technique for
optirnizing the unquantized coefficients of FS method fi lters
with up to six transition samples. The simplex local search
algorithm is generally required for more tJ1an four samples
to perform the final optimization, due to the small area of the
optimum peak and the disruptive nature of crossover and muta
tion. A GA has been developed with the capability of choosing
the best crossover method to use dynamically during a run.

For recursive FIR filters, the GA has been extended to
perform the minimization of the wordlengtJ1 concurrently
by optimizing the coefficients, thereby combining two fi l!er
design steps into a single process. The fitness function places
most emphasis on the magnitude response to help ensure that
the desired performance is reached, whereas the word.length is

most important within the set of suitable filten;. This design
problem has a search space that is unsuitable for standard hill
climbing optimization methods, and the GA is able to perform
the optimization unaided by the hybrid simplex search.

To increase the number of design steps that were being
undertaken simultaneously by the GA, a binary multiobjective
GA was also developed to search for pareto-optimal sets, con
taining a number of solutions with varying tradeoffs between
design criteria. This GA was tested on the design of nonlinear
FIR filters, with a specified region of the passband where near
linearity was desired, with the aim of giving a useful reduction
in the filter 's delay. This approach proved unsuccessful, and a
detailed analysis of the problem was undertaken. The difficulty
of the problem was analyzed from a GA perspective and
showed that this design problem is not suitable for the GA
in its current representation. This work ·will be detailed fully
in a future paper.

Future work to examine the representation of the problem
in the chromosome and the initialization may prove fruitful in
enabling the GA to perform successfully, as may alternative
hybrid techniques such as SA.

REFERENCES

[I] L. R. Rabiner, B. Gold, and C. A. McGonegal, ~An appro3<'h to the
approximation problem for oonrecursive digital filters," IEEE Traru.
Audio. El~ctroacoust. , vol. AU-t8, pp. 83-106, June 1970.

[2] P. A. Lynn, "Frequency sampting fillers with inleger multipliers,"
Introduction to Digital Filttring, R. E. Bogner and A. G. Const.antinides,
Eds. London, U.K. Academic, 1975.

[3] E. C. lfeacbor and S. P. Harris, "A new approach 10 fTequency sampling
filter design," in Proc. lEE/IEEE nvrk.shop Narural Algorithms Signal
Process., 1993.

[4) P. A. Slubberud and C. T. Leoodes, "A frequency sampling filler design
method which accoums for finite wordleng1h effecls," IEEE Traru.
Signal Processing, vol. 42, pp. 189-193, Jan. 1994.

[5] J. H. Holland, Adaptation in Na1ural tllld Artificial Systems. Ann
Arbor. MI: Univ. Michigan Press, 1975.

(6) D. E. Goldberg, Generic Algorithms in Sea~rh, Optimization tllld Ma·
chine Learning. Reading, MA: Addison-Wesley. 1989.

(7] S. P. Harris and E. C. JJeachor, "Automating IIR filler design by genetic
algorithm," in Procs. GALES/A lnt. Conf , 1995.

[8] I. Piras. ~timization and adaptation of discrete-valued digital filler
parameters by simulaled annealing," IEEE Traru. Signal Processing,
vol. 42, pp. 860--866, Apr. 1994.

[91 T. <;:ilollu and z. Onver, "A new approach lo discrele coeflicienl FIR
filter design by simulaled annealing," in Proc. IEEE lnt. Conf. Acoust.,
Spttch Signal Process., 1993, vol. 3, pp. CIOI-CI04.

[10) 0 . V. Patiakin, B. S. Zhang, 0 . D. Cain, and J. R. Leigh, "An adaptive
filler using darwinian algorithm for syslem identification and conlrOI,"
in Proc. IEEE lnt. Conf SysL, Man Cybem. , t993, vol. 4 , pp. 627-631.

[11] G. Neri, G. D. Cain, T. Salmon, and A. Yardim, "A microprocessor·
based digital fliclcermeler," IEEE Trans. lnstnun. M~as. , vol. 40, pp.
1008-1014, June 1991.

[12] E. C. lfeachor and B. W. Jervis, Digital Signal Proassing: A Practical
Approach Reading, MA: Addison-Wesley, 1993.

[13] L. R. Rabiner and B. Gold, TMory and ApplicaJion of Digital Signal
Processing. Englewood Cliffs, NJ: Prentice-Hall, 1975.

[14] C. Z. Janikow and Z. Michalewicz, "A specialised genetic algorithm
for numerical optimization problems," in Proc. S~cond lnt. IEEE Conf
Tools Anif. lnte/1., 1990, pp. 79S-804.

[15] W. H. Press, S. A. Teukolslcy, W. T. Venerting, and B. P. Aannery,
Numtrical Recipes in C, 2nd ed. Cambridge. U.K.: Cambridge Univ.
Press. 1992.

[161 V. B. Lawrence and A. C. Salaz.ar, "Finile precision design of linear
phase FIR fillers ," B~/1 Syst. T~ch. J., vol. 59. no. 9. pp. 1575-1598,
1980.

[17] C. Fonseca and P. Aeming, "A review of current multi-objective
optimization methods," Evol. Comput .. vol. 3. no. I, pp. 1- 16. 1995.

r 3314
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL 46. NO. 12. DECEMBER 1998

Stepbe.n P. Harris received the B.A. degree with
bonors in chenmtry in 1992 from Oxford Univer
sity. Oxford, U.K. He is currently working toward
the Pb.D. degree from tbe University of Plymouth,
Plymouth, U.K.

His research interest is in !he application of
genetic algorithms to digital filler design. His final
year project at Oxford concerned the use of genetic
algorithms in poUution measurement and resulted in
a number of publications.

Emmanud C. Ueacbor received the B.Sc. (Hons.)
degree in communication engineering from Ply
mouth University (formerly Plymouth Polytechnic),
Plymouth, U.K., in 1980. the M.Sc. degree in com
munication engineering and !he DIC degree from
Imperial College, London, U.K., in 1981, and !he
Ph.D . degree in medical electronics from Plymouth
University in 1985.

He did his industrial training with GEC Telecom
munications Lld., Coventry, U.K., in 1978 and 1979.
He served as a Research Assistant in !he Department

of Communication Engineering, Plymouth University, and became a l...ccnuer
in 1985. He is currently the Wandel and Goltcrmann Professor of Intelligent
Electronics Systems and Head of !he School of Elecrronic Communication and
Electrical Engineering at Plymouth University. His major research interests
include digital signal processing and intelligent ·systems with applications
in biomedicine, audioengineering, and telecommunicatons. He has poblisbed
over 80 technical papers, coauthored lhe textbook Digital SigntJI Process
ing-A Prru:rico.l Approach (Reading, MA: Addison-Wesley, 1993), and has
edited lhree books.

Dr. lfeacbor received the lEE Dr. V. K. Zworylcin Prentium for his work
on fetal ECG artalysis and currently serves on !he lEE Professional Group on
Biomedical Engineering.

This copy of the thesis has been supplied on condition that anyone who consults it is
understood to recognise that its copyright rests with its author and that no quotation
from the thesis and no information derived from it may be published without the
author's prior consent.

