
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

04 University of Plymouth Research Theses 01 Research Theses Main Collection

2001

NATURAL ALGORITHMS IN DIGITAL

FILTER DESIGN

PENBERTHY HARRIS, STEPHEN

http://hdl.handle.net/10026.1/2752

http://dx.doi.org/10.24382/4387

University of Plymouth

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.



NATURAL ALGORITHMS IN 
DIGITAL FILTER DESIGN 

by 

STEPHEN PENBERTHY HARRIS, MA (Oxon) 

A thesis submitted to the University of Plymouth 
in partial fulfilment for the degree of 

DOCTOR OF PHILOSOPHY 

Department of Communication and Electronic Engineering 

May 2001 



90 0499701 X 

11 I 

REFERENCE ONLY 

LIBRARY STORE 



NATURAL ALGORITHMS IN DIGITAL FILTER DESIGN 

Stephen Penberthy Harris 

Digital filters are an important part of Digital Signal Processing (DSP), which plays 

vital roles within the modern world, but their design is a complex task requiring a great 

deal of specialised knowledge. An analysis of this design process is presented, which 

identifies opportunities for the application of optimisation. 

The Genetic Algorithm (GA) and Simulated Annealing are problem-independent 

and increasingly popular optimisation techniques. They do not require detailed prior 

knowledge of the nature of a problem, and are unaffected by a discontinuous search 

space, unlike traditional methods such as calculus and hill-climbing. 

Potential applications of these techniques to the filter design process are discussed, 

and presented with practical results. Investigations into the design of Frequency Sam

pling (FS) Finite Impulse Response (FIR) filters using a hybrid GA/hill-climber proved 

especially successful, improving on published results. An analysis of the search space 

for FS filters provided useful information on the performance of the optimisation tech

nique. 

The ability of the GA to trade off a filter's performance with respect to several de

sign criteria simultaneously, without intervention by the designer, is also investigated. 

Methods of simplifying the design process by using this technique are presented, to

gether with an analysis of the difficulty of the non-linear FIR filter design problem from 

a GA perspective. This gave an insight into the fundamental nature of the optimisation 

problem, and also suggested future improvements. 

The results gained from these investigations allowed the framework for a potential 

'intelligent' filter design system to be proposed, in which embedded expert knowledge, 

Artificial Intelligence techniques and traditional design methods work together. This 

could deliver a single tool capable of designing a wide range of filters with minimal 

human intervention, and of proposing solutions to incomplete problems. It could also 

provide the basis for the development of tools for other areas of DSP system design. 
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Chapter 1 

Introduction 

Digital Signal Processing (DSP) plays a crucial part in the modern world. Its use 

in devices ranging from mobile phones and home entertainment systems to medical 

equipment means that we are increasingly reliant on it in all walks of life. Digital 

filters are an important part of DSP, but they have a major drawback in that it 

requires a great deal of specialised knowledge to design them successfully, and this 

is not always easily available. This investigation will examine potential applications of 

so-called 'Natural' Algorithms, such as Genetic Algorithms and Simulated Annealing, 

to optimisations within the digital filter design process. 

1.1 Digital filters 

Within DSP, digital filters have an important role as frequency selectors, with many 

applications in the fields of audio, communications and biomedicine. Their ability to 

boost, remove, or otherwise adjust information within a signal makes them a powerful 

tool for system designers. Their flexibility allows a wide range of potential uses, from 

removing mains frequency noise from sensitive biomedical data to controlling the signal 

levels in audio mixing desks. 

Although digital filters are extremely useful, they are generally not easy to design 

and require a great deal of optimisation to produce a high-quality system. Their design 
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is traditionally broken down into a number of steps (see Chapter 2), each of which is 

regarded as an independent optimisation task. The steps are repeated until a design 

is found which performs satisfactorily. These steps are usually performed by different 

methods, each of which requires a lot of specialised knowledge on behalf of the designer. 

This iterative approach also means that it is difficult to control the trade-off between 

the different performance measures, thereby making it harder to produce a filter with 

the desired characteristics. 

An attractive aim within DSP is the development of a single, wide-ranging tool, 

which can be applied to a number of design problems. By encapsulating expert knowl

edge into a single tool, it would simplify the development of new digital systems. 

1.2 Natural Algorithms 

In recent years, 'Natural Algorithms' such as the Genetic Algorithm (GA) and Simu

lated Annealing (SA) have become increasingly popular techniques due to their applica

bility to a wide range of numeric and non-numeric optimisation problems [1]. The GA 

is based on the principles of natural selection and survival of the fittest, and works on a 

'population' of possible solutions to the problem. SA was inspired by metal annealing, 

in which hot metal is cooled very slowly in order to allow it to find the lowest-energy 

crystal structure, and generally works on few or only one possible solution. 

The wide-ranging applicability of GA and SA to optimisation problems suggested 

that they could be good techniques to use for the various aspects of digital filter design. 

This investigation examines the potential which the two may have in the design of 

digital filters, concentrating on the GA. 

1.3 Publications 

This work has resulted in the publication of three papers. The first, in the 1993 

Proceedings of the lEE/IEEE Workshop on Natural Algorithms in Signal Processing, 
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introduced the design of Finite Impulse Response (FIR) filters by GA [2]. A second 

paper, on the application of GAs and SA to Infinite Impulse Response (IIR) filters 

was presented at the 1995 GALESIA conference [3]. The third paper, an extension 

to the work presented in the first, was published in the IEEE Transactions on Signal 

Processing in 1998 [4]. 

1.4 Aims and objectives 

The aim of this work is to examine the role of optimisation within the filter design 

process and to identify areas where the inherent search and optimisation capabilities 

of Natural Algorithms could be used to advantage. 

The specific objectives are to: 

• undertake an analysis of the key optimisation tasks within the filter design process 

• investigate the application of GA and SA techniques to these optimisation tasks 

• undertake an analysis of the suitability of the chosen algorithms for their selected 

design tasks 

• specify a framework for an automated filter design tool 

Following a brief introduction to filter design, and a more in-depth description of 

the GA, its application to filter design will be discussed, together with the techniques 

and analysis used to determine the suitability of the natural algorithms to digital filter 

design. 
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Chapter 2 

Basic Filter Design Theory 

Digital filters are found in a wide variety of situations within digital systems, where 

they can be used to alter the signal in specific ways, for example to reduce low or high 

frequency noise, or to extract data in a specific frequency range. Their diverse uses 

make them especially useful within the field of DSP. 

There are two basic types of digital filter, Finite Impulse Response (FIR) and 

Infinite Impulse Response (IIR). FIR filters have an impulse response of finite duration, 

while IIR filters, which have a recursive structure, have one of infinite length. IIR 

filters are more computationally efficient than FIR, requiring less storage space and 

fewer calculations, but are also harder to design and are more susceptible to finite 

wordlength effects. FIR filters have the added advantage that they can be made with 

exactly linear phase, which reduces distortion in sensitive systems. 

2.1 Stages in Filter Design 

It has already been mentioned that the filter design process is generally broken down 

into several steps, which are shown in Figure 2.1. These steps are usually performed 

repeatedly until an acceptable solution has been found. This approach is limited in 

that the performance of a good filter found during one step may be compromised during 

another, so that a filter may be found which has a good magnitude response but poor 
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Figure 2.1: Stages in the design of a digital filter. 

phase response, or vice versa. Part of the investigation into the use of GAs for filter 

design will cover the ability of the GA to perform multi-criterion optimisation, as this 

could potentially be used to perform several design steps simultaneously and trade off 

the performance measures automatically. 

2.2 Finite Impulse Response Filters 

Finite Impulse Response (FIR) filters are characterised by having a finite set of co

efficients, and an impulse response of finite duration. FIR filters can exist in either 

recursive or non-recursive forms, the recursive form having the advantage that it can 

be much more efficient in storage and calculation, particularly for narrow band filters. 

FIR filters have the added advantage that they can be designed with exactly linear 

phase. This causes the different frequency components of the signal to be delayed by 

an amount proportional to their frequency, which reduces signal distortion. This is 
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particularly important in audio and biomedicine, where vital data may otherwise be 

lost. If the linear phase constraint can be relaxed, then the order for some filters can 

be reduced to as few as half of the coefficients needed for a fully linear-phase system. 

This reduction is examined in more detail in Chapter 7. 

The output of an FIR filter is given by: 

N-1 

y(n) = L h(k)x(n- k) 
k=O 

where N is the filter length, h(k) is the kth impulse response coefficient, x is a vector 

of inputs, and y(n) is the nth output. This filter's transfer function, H(z) is given by: 

N-1 

H(z) = L h(k)z-" 
k=O 

FIR filters are simple to design and implement, but need a large number of coeffi

cients to achieve sharp cutoffs or high attenuations, so can be too slow to be used in 

high-speed or real-time situations. They also require more storage for coefficients and 

intermediate results than IIR, which means that their hardware implementations can 

be more costly. 

2.2.1 Frequency Sampling FIR filters 

Frequency Sampling (FS) filters are among the simplest to design, requiring the opti

misation of just a few values, although this simplicity means that there is little control 

over the resulting coefficients. 

An FIR filter can be characterised uniquely by a set of samples of the frequency 

response, generally taken at regular intervals, as in Figure 2.2. This set of samples 

gives the filter coefficients themselves by taking its inverse Discrete Fourier Transform 

(DFT). For nonrecursive FIR filters, the coefficient values are the same as the impulse 

response samples, while for the recursive FS filter, the coefficients are the frequency 

response samples. While taking a forward DFT of the coefficients will return the 

original sample values, it does not indicate the response of the filter in the intervening 

spaces. 
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Figure 2.2: Samples of the frequency response of a lowpass filter. 

To discover the filter's performance in the intervening space between the known, 

fixed samples, the impulse response can be zero-padded to a reasonably high number of 

points (512 or 1024 is generally sufficient), and a forward DFT taken, which produces 

an interpolated response. This high-resolution response can then be examined to de

termine the filter performance. The number of points is generally chosen to be a power 

of two so that a Fast Fourier Transform (FFT) can be used for increased calculation 

speed. 

For a 'brick wall' type of desired response, the interpolated response is very poor. 

Since the sharp transition between bands does not allow any control over the degree 

of ripple cancellation, it should be possible to improve the filter response by including 

additional, variable samples to smooth off the transition between pass- and stop bands. 

This is illustrated in Figure 2.3. 

In order to produce a filter with the best possible performance in terms of passband 

ripple and stopband attenuation, these tmnsition samples must be optimised. Rabiner, 

Gold and McGonegal's seminal work in this area [5] resulted in the publication of 

tables of transition sample values for a range of filter types, with varying orders and 

bandwidths, which are still widely used today. This approach is limited by the need 

to interpolate transition sample values to obtain unpublished filter coefficients, which 
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Figure 2.3: Samples of the frequency response with transition samples. 

results in sub-optimal filters. The range of published filters is also limited to those 

with a maximum of four transition samples, for which only a few were included. 

2.2.2 Linear phase FIR filters 

It is often desirable for a digital filter to have linear phase, whereby the different 

frequency components of the signal are delayed by an amount proportional to their 

frequency. This reduces the level of distortion, which is especially important in audio (6, 

7] and biomedical applications (8, 9], where the value of information may otherwise be 

reduced. 

Linear phase can be imposed on an FIR filter by constraining the impulse response 

to be either symmetric or anti-symmetric, although this in turn restricts the types of 

filter which can be designed. 

There are four 'Types' of FIR filter, which are related through having slightly 

different arrangements of sampling points, as shown in Figure 2.4. The first distinction 

between them is that the filter order, N, can be either odd or even. The second 

distinction is whether the first sample is taken at w = 0 or w = 1rjN. Rabiner, Gold 

and McGonegal [5] refer to filters similar to the former as Type I, and the latter as 
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Figure 2.4: Illustrations of the z-plane positions of the frequency samples for the four 
types of Frequency Sampling filter. 

Filter Type Possible filters 

Type-1, N odd All filters 

Type-1, N even Lowpass and bandpass 

Type-II, N odd All filters 

Type-II, N even Lowpass and bandpass 

Table 2.1: Designable FIR filters. 

'l'ype 11 filters. 

Mathematical limitations [10] mean that different Types can only be used to design 

certain frequency selective sorts of filters, as shown in Table 2.1. 

2.2.3 Recursive Frequency Sampling Fffi Filters 

It is possible to express the transfer function of any Frequency Sampling filters with 

either a recursive or non-recursive expression (11, 12]. The non-recursive form, which 

has already been described above, is less efficient relative to the recursive form for 

narrow-band filters where most of the frequency samples are zero (i.e. in the stop band). 
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Since the recursive form's coefficients are the samples themselves, if a sample is zero its 

effect need not be included and it therefore requires fewer calculations. It also allows 

a greater degree of pre-calculation to take place, and unlike the interpolation of the 

whole response with a DFT, just a portion of the response needs to be calculated each 

time, thereby increasing the computational efficiency. The pre-calculation is presented 

in Appendix A.l. The recursive form allows the radius of the poles and zeros to be 

reduced to prevent pole instability in a fixed~precision environment. 

In the implementation of the recursive FS filter optimised by GA, the GA could be 

used to either optimise the radius simultaneously with the transition samples, or the 

radius could be fixed, and the corresponding optimum transition samples found. 

The speed increases afforded by the use of recursive form FIR filters in the GA 

were significant enough for it to be adopted as the standard type of filter used in these 

studies. 

2.2.4 Other FIR Design Techniques 

A wide variety of alternative FIR design techniques exists, such as Least Squares [13, 

14], but the most popular are the Optimal and Window methods: 

2.2.4.1 Optimal Method 

The Optimal method seeks to find a filter with the minimum maximum ripple across 

all pass- and stopbands. This filter will have an equiripple response, where all the mag

nitude response extrema have the same magnitude. As it is relatively straightforward 

to produce the filter response from the frequencies of these extrema, the problem lies in 

finding the location of the extrema in the frequency domain. This is generally achieved 

by using a computer program implementing the Parks-McCiellan algorithm [15], which 

uses the Remez exchange method to search for the extremal frequencies within the 

equiripple response. Filters containing stopbands with different ripples can be designed 

by altering their weightings. The technique is widely used, but can have problems when 
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designing multi-band filters with varying transition widths, as convergence to a suit

able solution is not guaranteed, and there may be local ripples within the transition 

bands. Xu and Daley [16, 17] have shown their GA to be superior to linear program

ming and Optimal Method coefficient roundoff techniques when designing an Optimal 

filter with quantised coefficients. Qiloglu and Unver [18] designed optimal filters with 

finite-wordlength coefficients using Simulated Annealing. 

2.2.4.2 Window Method 

The Window method makes use of the fact that it is easy to define an ideal impulse 

response for a desired brick-wall style filter response (11]. However, if this infinite

precision, infinite-length response is truncated and sampled usiug a finite number of 

samples to produce flR filter coefficients, the corresponding filter's frequency response 

will have an excessive amount of ripple. The Window method seeks to overcome this 

by multiplying the ideal response by a Window function, which seeks to reduce the 

effects of the truncation by gradually reducing the impulse response to zero within 

the selected number of samples. A variety of functions have been proposed, such as 

the Hamming and Kaiser, with different characteristics, but none give the designer 

precise control over the band-edges and ripples of the filters they produce, which can 

make them unsuitable for critical applications. Keane et al (19] have used Genetic 

Programming (GP), a variation on the GA able to optimise expressions, to find an 

impulse response function for a control system. Applying this method to filter design 

could improve the quality of Window method filters by allowing the window function 

itself to be optimised, rather than being constrained to the limited range of standard 

functions. 

2.3 Infinite Impulse Response Filters 

IIR filters are distinguished from FIR by having an infinite duration impulse response. 

They exist only in recursive forms, where the filter output is dependent not only on the 
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previous and current inputs, but also the previous outputs. They are generally designed 

using second- and first-order sections, which are less susceptible to finite wordlength 

effects than large single structures. These low-order sections can be joined in a number 

of ways with different noise and finite wordlength characteristics. 

Due to their recursive nature, IIR filters are able to have a much sharper cut-off 

and a higher attenuation than FIR filters, for significantly fewer coefficients. They do 

however have a major disadvantage in that they cannot be forced to have exactly linear 

phase. With the correct design constraints, however, it may be possible to design filters 

with a near-linear response over a limited region. 

When used in a fixed precision environment, IIR filters are more susceptible to finite 

wordlength effects, such as noise and instability, than FIR, although by varying the 

structure these effects can be reduced. Their recursive nature and finite wordlength 

sensitivity also means that IIR filters are less straightforward to design. 

2.3.1 IIR Filter Theory 

IIR filters, like FIR filters, have a finite set of coefficients, but they are no longer the 

same as the impulse response, and are used in a different way to determine the filter's 

performance. 

The output of an IIR filter can be described by: 

N M 

y(n) = L akx(n- k)- L bky(n- k) (2.1) 
k=O k=l 

where ak and bk are the coefficients of the filter, x(n) and y(n) are its input and output 

streams respectively, and N and M are the number of ak and bk filter coefficients, with 

M~ N. It can be seen from this that the current output, y(n), is a function not only 

of the current and previous inputs, x(n- k), but also the past outputs, which gives 

the filters their recursive character. 

The equivalent direct transfer function, H(z), is given by: 

(2.2} 
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x(n) y(n) 

Figure 2.5: Second-order direct form 1 IIR filter section. 

"(n) 

a, 

Figure 2.6: Second-order canonic (or 'direct form 2') IIR filter section. 

This form of the IIR filter could be designed and implemented directly, but it is ex

tremely sensitive to finite wordlength effects, even at filter orders as low as M = 4, so 

it is not commonly used. In order to produce a more stable system, the filter is usually 

broken down into first- and second-order sections, which are optimised simultaneously 

in one of a variety of series and parallel topologies to produce the final filter. The two 

main types of second-order sections are shown in Figures 2.5 and 2.6 

The canonic (or direct form 2) section requires less storage than the direct form 1 

section, but due to the existence of two adders, requires input scaling to prevent over

flows on the output. This can require considerable additional calculations when deter

mining the noise performance of the filter so can be less attractive at the design stage. 

The direct form requires no such scaling, due to the cyclic overflow nature of two's 

complement arithmetic, which can allow an intermediate overflow and still return the 

correct output provided the overflow is reversed by a later calculation. 
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When factored into second-order sections, H(z) is given by: 

N/2 + -1 + -2 
H(z) = IT aok auz UakZ 

k=l 1 + buz-l + b21;:z-2 
(2.3) 

The positions of the roots of the numerators and denominators give the positions of 

the zeros and poles respectively. When the value of z approaches that of a zero, 

the numerator approaches :r.ero, and therefore so does the output. Zeros therefore 

generally define the location of the stopband. When z is close in value to a root of 

the denominator, i.e. a pole, the denominator evaluates to a very small number, so the 

division results in a large output. Poles therefore generally occur in the passband. In 

pole-zero form, with complex conjugate pole-:r.ero pairs, H(z) is given by: 

N/2 (z- r~&wo)(z- r~e-iwo) 
H(z) =};! (z- r:eiwt>)(z- r:e-iwp) (2·4) 

where r~ and rt are the radii of the kth zero and pole respectively, and W0 and Wp 

are their angles. If the radius of a pole is too large this can result in an overflow, 

so the pole radius has to be carefully controlled to be no greater than unity. In a 

finite wordlength system, the radius has to be reduced further in order to prevent 

perturbations caused by quantisation pushing poles close to or outside the unit circle, 

with a shorter bit-length requiring a smaller radius. It is safe for zeros to occur at any 

radius. 

Within the canonic (or direct form 2) section shown in Figure 2.6, there are two 

adders, one in a feedback path. Unlike the direct form 1 section, intermediate overflows 

in the output of the first adder (shown as w(n)) can be passed on to the second, and 

from there to the output, giving an overall incorrect result. To counter this, the input 

signal must be scaled down to prevent overflows in w(n), and the signal entering the 

second adder must be scaled up again to restore the output level to its correct value. 

A filter made up of cascaded canonic sections is shown in Figure 2.7. 

2.3.1.1 Alternative structures 

Many other possible structures exist, a popular one being the lattice structure, which 

has been used in speech processing [20]. An example two pole lattice structure is given 
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y(n) 

Figure 2.7: Cascaded second-order canonic filter sections with signal scaling. 

x(n) 

in Figure 2.8. 

-1 
z 

-1 
z 

Figure 2.8: Example of a lattice-structure IIR filter. 

y(n) 

The lattice structure has the attractive properties that the filter is guaranteed to 

be stable if the magnitude of the K coefficients are all less than unity, and that it is 

less affected by coefficient roundoff than the direct or cascade structures. Flockton 

and White [21, 22] have successfully applied the GA to the problem of adaptive system 

identification. This involves using the GA to optimise the quantised coefficients of a 

lattice filter based on a continuous input, so that its output approaches the output of 

an unknown system, in order to identify and model it. Sriranganathan et al [23] have 

applied GAs to the optimisation of lattice filter coefficients limited to simple sums of 

powers-of-two values for simpler implementation. Both of these approaches intrinsically 

take account of coefficient quantisation, which is difficult to do using standard methods. 

Chellapilla et al [24] have shown that the lattice structure has a much simpler search 

space than the direct or cascaded structures, and is suitable for a gradient-descent 
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algorithm when using full-precision coefficients as it is unimodal. Etter et al (25] have, 

however, applied the GA to a cascade-structured adaptive IIR filter with a multi-modal 

search space, with promising results. 

A special type of filter known as an all-pass filter [10] can be made from standard 

second-order sections if the zero angle is the same angle as the pole angle, but the zero 

radius is the pole radius reflected in the unit circle, i.e. for every pole at z = reiw there 

is a zero at z = (1/r)&w. In this configuration, the magnitude response is constant, 

but the phase response is not. Parallel connections of all-pass sub-filters (PCAS) with 

other structures such as delays can produce frequency-specific filters, because the non

linear phase causes destructive interference for particular frequencies, giving the overall 

effect of a frequency-selective filter. All-pass filters have the advantage that they are 

less susceptible to finite wordlength effects than standard structures. Krukowski et 

al (26] present a standard method for converting any IIR filter transfer function into 

a sum of all-pass sections, which can be implemented efficiently in parallel for faster 

processing. Lawson (27], and Krukowski and Kale [28] present different standard ap

proaches to producing frequency-specific PCAS-based filters with approximately linear 

phase, thereby approximating the output of a linear-phase FIR filters with many fewer 

coefficients, while Lu et a! [30] have used Simulated Annealing (SA) to design PCAS 

filters with approximately linear phase. Lawson and Wicks [29] have used Simulated 

Annealing (SA) to design (PCAS) filters with finite wordlengths, showing that, like 

the GA, SA can intrinsically account for coefficient quantisation without having to 

optimise it in a subsequent step. 

2.3.2 Design methods 

A number of design methods exist for the optimisation of IIR filter coefficients. For very 

simple filters, experienced designers can place poles and zeros directly by inspection. 

This approach is fast and simple, but does require a deal of familiarity with this type 

of digital filter. 
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For more complex filters or for novice users, other techniques such as the impulse 

invariant method and bilinear z-transform (BZT) work by converting analogue filters 

into their digital equivalents. 

Another design method, which does not involve the analogue domain at all, is the 

Least Squares method [20], which can be used when a filter is needed which most 

closely approximates a known impulse response. The output obtained by passing an 

impulse through a desired filter cascaded with its inverse is used to generate a set of 

linear equations which can be solved to give the set of coefficients which best match 

the desired filter. Kobayashi and Imai [31] propose an alternative weighted LS method 

for optimisation in the frequency domain, but the method is complex and is slow to 

converge for equiripple filters. 

The Least Squares approach has similarities with adaptive filtering, where filter 

adapts its characteristics dynamically according to changes in the input signal. This 

allows it to, for example, give better noise reduction [11] or for system identification. 

Genetic Algorithms have been used for the latter by Flockton and White [21] and Etter 

et al [25], while Chen et al [32] have used Simulated Annealing. 

Linear Programming [10, 33] involves maximising a linear function subject to a 

number of linear constraints. Its use in filter design requires the optimisation problem 

to be reworked in such a way that the problem becomes linear, and may require sub

sequent adjustments to the desired response to make the problem solvable. Rabiner 

et a! [34] used the technique to optimise a range of direct-form IIR filters with respect 

to their magnitude-squared response, although the use of the direct form means the 

filters are highly susceptible to coefficient changes, and makes sharp-cutoff and high 

order filters difficult to design. 

2.3.3 Quantisation effects 

It has been seen that, due to their recursive nature, IIR filters are more sensitive to the 

effects of quantisation. This can affect both the coefficient values, and the results of 
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arithmetic operations [35]. Standard methods of design do not take these into account, 

and so when coefficients are quantised to the wordlength of the system, they perturb 

the filter characteristics. The smaller the number of bits used to represent a coefficient, 

the larger the perturbations will be on average, and so the more the filter response will 

differ from the full-precision response. It is possible to optimise the coefficients after 

quantising their full-precision values, but as the optimum set of quantised coefficients 

can be very different to the set of quantised real-valued coefficients, a technique which 

optimises the coefficients directly in a quantised form would be preferable. 

While having quantised coefficients alters the filter response, if the system uses 

quantised or fixed-precision arithmetic operations, then further distortions and noise 

can be introduced into the signal as it passes through the filter, as the reduced precision 

of the calculations moves the results away from their true values. The analysis of this 

noise is also important in DSP as it can affect the suitability of a filter for a particular 

application [36] .. 

It is common practice to scale the filter coefficients to help minimise or prevent 

overflow. For example, in 'L2 norm' scaling, which seeks to limit the power of the 

signal [11], the scaling factors for second-order section i is given by: 

where f(k) is the impulse response from the input to the internal node w; for section 

i as shown in Figure 2.7. 

For this quantised, scaled, sixth-order filter, the roundoff noise gain is given by: 

where /;(k) is the impulse response between the first adder in section i and the 

output [11]. The q2 factor (the square of the quantisation step size) was ignored in this 

work as only filters with the same quantisation step size were compared together. 
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2.3.4 Error Spectral Shaping 

The noise which occurs in a second order section can be reduced by Error Spectral 

Shaping (ESS). This is a technique in which the quantisation error is fed back into the 

filter in such a way that it reduces or even eliminates roundoff errors over regions of 

the response. 

There are many filter structures which can be used, one suitable canonic section 

is given in Figure 2.9 (after (11]). In this structure, e1(n), the difference between the 

pre- and post-quantisation value of y'(n), is passed through another set of coefficients 

into the adders. It is possible to reduce the effects of the noise by careful selection of 

these additional coefficients. In the figure, e2 (n) is the error caused by requantising 

the ESS inputs into the left-hand adder, e3 (n) is the equivalent quantisation error for 

the ESS inputs into the right-hand adder, and e4(n) is the quantisation error on the 

output from the right-hand adder. ESS coefficients are usually chosen to be powers of 

two or integers to minimise the noise contribution of the ESS filter itself. 

Many modern DSP chips contain a double-precision accumulator, which can hold 

high-accuracy numbers. This allows calculations to be performed within a second-order 

section without adding round off noise at each multiplication, because the solution only 

needs to be truncated to a lower accuracy when it is being written to memory. This 

means that the filter implementation is inherently less noisy and more accurate. The 

increasing wordlength of DSP chips means that some aspects of quantisation effects 

are having less impact on filter performance. 

2.3.5 Coefficient pairing and ordering 

For full precision arithmetic, it does not matter which order the second-order sections 

appear in, nor which of the numerators is paired with which denominator. Once 

the system uses fixed precision, this is no longer the case, since each section affects 

the signal in a different way and the noise from each section is passed through all 

subsequent ones. This means that the order in which the signal passes through the 
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Figure 2.9: Canonic filter section with signal scaling and error spectral shaping. 
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sections will affect the overall noise on the output. It also implies that since the noise 

of a section depends on the coefficients within it, the pairing of the numerators and 

denominators also affects the overall noise of a system. The pairing and ordering is 

not a trivial problem, the total number of possible pole-zero pairs being given by: 

which for N = 10 gives 14,400 possible filters. While this number of filters is easily 

searched exhaustively by modern computers, changing the ordering and pairing of the 

poles and zeros changes both the necessary scaling, and the noise characteristics of 

the filter. Standard design techniques [37} perform the optimisation of the coefficients, 

and pole-zero pairing and ordering in two independent steps, so any filters produced 

can only be optimal in either sense. What is required is a multi-criterion optimisation 

method, which allows the designer to specify the desired weightings of the importance 

of the different design criteria such as frequency and phase response and roundoff noise 

gain, and which then optimises the filter with respect to these combined criteria. 

2.4 The Role of Optimisation in Filter Design 

Within each filter design step, optimisation can be used to improve the final design. 

These steps will now be examined for IIR filters made of cascaded second-order sections, 

to determine the potential uses of optimisation and how natural algorithms could be 

used to advantage. 

2.4.1 Specification 

The specification covers the desired characteristics of the filter, namely the phase and 

magnitude responses, together with other behaviours which may be limited by the 

desired implementation. For example, the DSP chip to be used may have limits on the 

1/0 data rate, wordlength or highest available operating frequency. 

There are several opportunities for optimisation here, covering the desired frequency 
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response, phase response, wordlength, delay etc., all of which will have a bearing on 

the best way to implement the filter. Due to constraints which may be forced by the 

chosen implementation, such as a fixed wordlength or sampling frequency, it may not 

be possible to optimise the specification independently of the implementation, and the 

two may need to be optimised together to find the best compromise. 

The best means of optimisation here is probably fuzzy logic or an expert system, 

which could use a database of available DSP processors to determine the best one to use 

for a given specification, or, in reverse, could return the nearest possible specification 

for a given DSP chip. This step is not especially suited for optimisation by the GA 

and SA methods under investigation. 

2.4.2 Coefficient Calculation 

The calculation of the filter coefficients is perhaps the most important step in designing 

digital filters, as the coefficients play the greatest part in determining the characteristics 

of the filter. There are several methods of designing IIR filters (Section 2.3.2), which 

often involve the complication of converting an analogue filter to its digital equivalent. 

The GA could be used to by-pass this step, by working directly on the coefficients 

or the pole-zero positions, in order to find the coefficients which best fit the desired 

magnitude and frequency responses. A fitness function could be constructed which 

drove the GA towards these responses, so that the designer need not know anything of 

the actual operations involved. 

Ways in which this can be accomplished will be covered in later chapters. 

2.4.3 Structure Realisation 

There is a great deal of potential for structural optimisation with IIR filters [38, 39]. 

Not only is there a choice between the topology of second-order sections to use in the 

filter, there could even be a mixture of topologies. It is also possible for the sections to 

be positioned in a cascade or parallel structure, each with its own noise characteristics 
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and storage requirements. 

The actual optimisations which could be performed here are dependent on which 

parts of the design cannot be changed. If there is a fixed wordlength, for example, or 

a limit on the amount of intermediate storage, then structural optimisation cannot be 

performed independently of other optimisations, such as noise, as the structure and 

wordlength affect the noise characteristics of the filter. However if some of these re

strictions can be lifted then the realisation structure could be included in the GA's 

chromosome, and the various performance measures affected by the structure incorpo

rated into the fitness function, so that the GA can include their effects while optimising 

the coefficients and structure. Some GA-based filter optimisations explicitly include 

the structure of each filter section, such as the approach of Roberts and Wade [40], 

which builds up a filter from a library of simple standard filter sections. Suckley [41] 

has shown a similar GA-based approach to perform better than other, standard tech

niques. Uesaka and Kawamata [42] have used a Genetic Programming method to 

design second-order filter structures with low coefficient sensitivity. 

2.4.4 Analysis of Finite Wordlength Effects 

As has been mentioned above, the effect of using a finite-precision implementation can 

have a deleterious effect upon the signal passing through it. The level of optimisation 

to be applied to the finite wordlength analysis is best determined on a per-problem 

basis. 

The simplest way to include some form of analysis is simply to optimise the co

efficients directly in a quantised form. This will result in a filter with a lower op

timum performance than the one with full-precision coefficients, but the coefficients 

will automatically take into account the finite precision of the implementation. These 

coefficients will, in general, perform better than quantised full-precision coefficients. 

Schaffer and Eshelman [43] have shown the GA to be able to successfully optimise FIR 

filters with coefficients limited to powers-of-two integers, which allow multiplies to be 
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replaced with quicker and more efficient shifts. 

This level of optimisation does not take into account the finite wordlength effects 

of the calculations within the system, which also affect the filter performance. To 

add this analysis to the optimisation requires a much more detailed model of the 

system, in which the truncated results of calculations are also included. The filter 

which would be found by such an optimisation would have the best performance of 

these filters as it would have taken into account the effects of using a fixed-precision 

system intrinsically, during the optimisation process, and no additional subsequent 

analysis would be necessary. 

Since both the structure of each second-order section and its coefficients will affect 

the overall noise of an IIR filter, noise optimisation cannot be carried out alone: there 

must be some feedback so that the structure and coefficients can be altered in a way 

which helps to reduce the noise. However, unlike the other finite wordlength analyses 

above, reducing the noise will result in a worse magnitude response performance, and 

vice versa, because there are only so many degrees of freedom which can be exploited 

to improve the filter performance. This means that a multi-criterion optimisation 

technique, such as those described in Chapter 6 would have to be used. A filter 

designed in this way would be a compromise between good performance in each aspect 

of the design, but the ability to produce such a filter without resorting to a number of 

individual analytical steps would be to advantage. 

2.4.5 Implementation 

The best method of implementing the system, in either software or hardware, will 

be determined by the specification of the system. Different DSP systems use different 

word lengths, data rates etc., so are suitable for use in different situations. Even software 

implementations will have restrictions according to the system they are written for, 

which could have limited memory, speed or bit-lengths. 

Dempster and Mcleod have proposed an analytical method for exploiting calculation 
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redundancies to implement previously-designed finite-wordlength FIR filters using the 

minimum number of adders instead of full multiplications, thereby increasing speed 

and simplifying the implementation [44]. Redmill et al [45, 46] have used GAs to 

optimise filter coefficients with respect to both filter performance and number of adders 

simultaneously. 

As suggested above, a search for the best implementation for a given system could 

be performed by an expert system or fuzzy logic, which would return a suitable imple

mentation method after examining a database for those which match the specifications 

most closely. 

It should be clear from the above analysis that there is a large amount of interde

pendence between all of the steps in designing a filter. This means that it impossible 

to perform an optimisation with respect to the aspects covered by one section without 

altering, and perhaps reducing, the performance in another aspect. To overcome this, 

the only way to produce an overall 'optimum' filter is to perform the optimisation with 

respect to all the possible design criteria simultaneously so that they can all be traded 

off against each other at the same time. 

The application of the Genetic Algorithm to a range of these optimisation tasks 

will be covered in later chapters. 
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Chapter 3 

An Introduction to Genetic 

Algorithms and Other Natural 

Algorithms 

3.1 Background to the G A 

The Genetic Algorithm (GA) is a search and optimisation technique [47, 48], which 

was inspired by theories of natural selection and evolution by the survival of the fittest. 

In nature, the survival of a species can be viewed as an optimisation task, where the 

problem is one of adapting to the surrounding environment. Those species which are 

well-adapted will survive to adulthood, and will then be able to pass their good genes 

on to their own offspring. These offspring will contain various combinations of genes 

from two successful parents, and should therefore describe some successful individuals 

in turn. At each generation, the survival of the successful offspring will concentrate 

'good' genes in the population, while offspring which are sickly or poorly-adapted to 

the environment will either die before breeding or be unable to compete successfully 

for a mate, so will not pass their genes on. 

A process of millions of gene crossovers and a very small number of mutations, 

combined with the elimination of poor individuals, causes a gradual evolution of the 
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population until it contains only individuals which are well-adapted to the environment 

and have the best chances of survival. The success of this process in nature is obvious, 

but it is perhaps less clear as to how this relates to a computer algorithm for engineering 

design. This chapter will describe the operation and use of a Genetic Algorithm, and 

discuss its advantages and disadvantages over conventional techniques. 

3.2 Outline of a Standard Binary-Coded Algorithm 

In nature, the population of seals, for example, consists of a number of individuals, 

each of whose cells contains DNA (deoxyribonucleic acid). This DNA makes up the 

genes that fully describe the seal. Each member of the population contains DNA 

which differs slightly, resulting in differing sizes, colourings, strengths, acuity of sight 

and smell etc. Elements of DNA from both parents are combined randomly in the 

offspring, resulting in them having attributes of both. Those offspring with good, 

new combinations of genes will be more likely to survive in turn and pass them on to 

subsequent generations, while the poorer ones die out and are lost. This is in effect a 

concentration of the information, contained in the DNA, about what makes a 'good' 

seal. 

The engineering design process contain many similarities to that of the problem of 

evolution: there is the goal of a suitable solution or solutions; the characteristics of a 

solution can be tuned by altering parameters; and there is a means of determining the 

quality of the solution. In nature, good solutions are marked by an ability to survive 

and reproduce, ensuring the continuation of the species, while a good engineering 

solution fulfils the design specifications to within acceptable tolerances. The tunable 

parameters in the natural systems are the genes in each individual's DNA, while in an 

engineering context they are the parameters to the model which allowed the quality of 

the system to be determined. This suggests that by encoding the design parameters of 

an engineering problem in computer-storable simulated chromosomes and simulating 

the natural selection and reproduction processes, the solutions they contain could be 
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evolved into good or optimal solutions. 

The basic operation of a standard GA can be summarised as follows: 

1. Produce an initial population of individuals, each containing a random solution 

to the problem under investigation. 

2. Determine the quality of each solution, known as their fitness. 

3. Select members of the population according to their fitness. 

4. Copy or reproduce the selected members of this parent population, with different 

frequencies, to form the next child population. 

5. Perform crossover and mutation on the members of this child population. 

6. Return to 2 until the maximum number of generations has been reached, or the 

best solution found so far is within acceptable tolerances. 

These steps will now be examined in detail. 

3.2.1 Encoding the problem 

In order for the GA to perform successfully for a given design problem, the problem 

must be encoded correctly. The GA does not, in general, optimise a problem model 

directly, but rather by optimising parameters to it, which alter its performance. These 

parameters must be stored in a suitable form according to their use and range, as either 

binary, integer or floating point values. The use of a floating-point representation is 

discussed in Section 3.11, but in a standard GA, the parameters are encoded into a 

binary bit-string with a fixed format, i.e. the parameters always appear in the same 

order, and each bit always has the same meaning, as illustrated in Figure 3.1. This 

string, or chromosome, is decoded later on by the fitness function, which determines 

how good a solution the chromosome represents, a measurement called its fitness. The 

calculation and importance of the fitness is discussed more fully in Section 3.8. 
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• parameter 1 parameter 2 parameter 3 parameter 4 

Figure 3.1: Illustration of the constant encoding of the binary chromosome of a stan
dard GA. 

3.3 Initialisation 

The initialisation of the population determines which areas of the solution space the 

GA samples at the start of a run. If nothing is known about the locations of the good 

regions of the space, then it is important to initialise the population to cover as much of 

the space as possible, as evenly as possible, so the chromosomes are filled with random 

bits. While it may be possible to initialise the population by spacing it evenly within 

the space, this could mean that each model parameter would only have a few values 

and bit patterns, and it would then take the GA some time to generate intermediate 

values. Other methods, such as the Sobol sequence [33] could be used to initialise the 

population using a quasi-random sequence. This would guarantee a maximally even 

spread of points, regardless of the number generated, but in some applications may 

only cover a limited number of values for each parameter. Initialising the population 

at random helps to ensure that a wide range of parameter values are sampled, which 

in turn subsequently helps the GA to search the space effectively. 

If the problem has known constraints on parameter values, or the location of good 

areas is known, then this information can be used to good effect during the initialisation 

procedure by either biasing or limiting the values to their known good regions or allowed 

ranges [49, 50]. This clearly speeds up the convergence of the GA to the good areas, 

but is only of use if the problem is known or can be analysed. 

The number of members stored in the population must be enough to maintain 

diversity in the gene pool, while being small enough to ensure that storage and CPU 

time limits are not exceeded. Values of 30-100 are most common for standard Genetic 

Algorithms. 
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3.4 Selection 

It is important that the selection method should keep the best solutions from each 

generation, but it is perhaps less obvious that it should also retain a selection of the 

poorer members in order to maintain gene diversity in the population. Without this, 

the population will rapidly converge on whichever members of the initial populations 

have the highest fitnesses, resulting in a poor final solution or very slow optimisation, 

unless the initialisation has been fortunate enough to pick a point close to the optimum. 

This is known as premature convergence, and the GA designer much take precautions 

to prevent it while still allowing the GA to converge on the optimum solutions. 

There are a variety of selection methods which can be used, the simplest being 

weighted roulette wheel selection [48], which gives each member of the population a 

probability of being selected which is proportional to its fitness. The roulette wheel 

selection method has the problem that it is quite possible for good solutions within 

the population to be missed during the selection process and lost while the poorest 

solutions are retained. 

While roulette wheel selection is very quick and simple to implement, a more use

ful method, and one which is widely used, is Stochastic Remainder Selection without 

replacement (SRS), which has been shown [48] to be one of the best general selection 

techniques. SRS ensures that the members with above-average fitness are always re

produced, with a number of copies proportional to the degree of excess fitness above 

the average, while all the other members of the population also have a chance of being 

selected to fill the remaining gaps in the population, which helps to maintain diversity. 

SRS involves selecting the individuals to be reproduced in the following way: 

1. Linearly scale all fitnesses to an average of one. 

2. For each member whose scaled fitness is ~ 1, allocate a number of copies equal to 

the integer part of the scaled fitness, and subtract that number from the scaled 

fitness, leaving all the scaled fitnesses fractional. 
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If the new population now contains fewer members than the old, further selections 

must be made to fill the remainder of the population: 

3. Pick a random member and a random number in the range 0-1. If this number 

is less than the remaining fractional scaled fitness of that member, then allocate 

one copy to the new population, and set the scaled fitness to zero to prevent that 

member being selected again. 

4. Repeat 3 until the new population is the same size as the old. 

Other selection strategies have been successful in other applications, but SRS was 

selected for use in the single criterion GAs used in this work. 

3.5 Reproduction 

The selected members of the population are now copied or reproduced, to form a new 

population. The selection method, as described above, will determine the number of 

copies to make of each member of the population. The next population will usually 

have the same number of members as the previous one. 

3.6 Crossover 

The result of selection is a group of individuals who have been selected either for 

having a high fitness, or to fill any remaining spaces in the population and maintain 

diversity. Selection means the average fitness of the new population is higher than the 

old, but the maximum is unchanged as no new members have been created. Repeated 

selections alone would therefore result in a population just containing copies of the 

best chromosome from the initial population. In nature, new chromosomes are created 

by sexual reproduction in which two parent chromosomes combine to give offspring 

containing a mixture of characteristics from both. 
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In the binary GA, this is simulated most simply by randomly picking a pair of 

'parents' and a crossing point along the chromosome, and swapping the bits after that 

point between the two chromosomes, giving two offspring strings with some genes from 

each parent. This has the result of combining the genes from two solutions which have 

survived long enough to reproduce, to form two new, potentially even better solutions. 

The next round of selections will determine which of these offspring are fit enough to 

survive and pass their genes on in turn. The repeated action of crossover and selection 

is the main driving force in the Genetic Algorithm, and results in the proliferation of 

those genes which cause the chromosomes containing them to have a high fitness. By 

repeatedly selecting and crossing high-fitness strings, the genes are gradually brought 

together to form even better solutions. This is discussed more fully in Section 3.10. 

Crossover is implemented by picking random pairs of (preferably different) individ

uals, and, with a fairly large probability (typically 0.6), choosing to swap a selection 

of bits between the pairs. There are several standard schemes for swapping the bits: 

1-point crossover: A random point is chosen along the chromosome, and all the bits 

after that point are swapped between the two parents to form two offspring. For 

example: 

{ooooo 1 ooo} {ooooo111} 
(3.1) 

{11111 1111} {11111000} 

This method has the disadvantage that points towards the ends of the strings are 

crossed less frequently than those in the middle. 

2-point crossover: Two random points are selected and the bits between them are 

swapped. This is essentially the same as mapping the chromosome to a ring and 

swapping the bits between two randomly-selected points, which helps to remove 

the end effects and so causes the string to be optimised more evenly along its 

length: 

{oo 1 ooo 1 ooo} {oo111ooo} 
(3.2) 

{111111 1111} {11000111} 
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Multi-point crossover: Many crossing points are picked and the bits between them 

alternately swapped and kept. This is still more even than 2-point, but it is 

arguable if the gains are worth the extra computational time, and the disruption 

to good chromosomes which have been built up is higher: 

{oo 1 ooo 1 oo I o} 

{11111111111} 
-+ 

{00111001} 
(3.3) 

{11000110} 

Uniform crossover: For maximum evenness, this technique chooses randomly whe

ther or not to swap each bit along the length of the string. This is very disruptive, 

so compensation, possibly in the form of elitism (see Section 3.12) can be used 

to prevent good solutions from being lost: 

3.7 Mutation 

{o I o I oo I o I o I o I o} 

{11111111111111} 
-+ 

{01001010} 
(3.4) 

{10110101} 

The crossover/selection mechanism tends to concentrate the population in the high 

fitness regions of the search space, which is the desired search action. However, it is 

quite possible, especially with highly multi-modal surfaces or those with similar height 

peaks, for the GA to converge to a sub-optimal peak. To help it to escape and continue 

searching, mutation is used. Mutation causes a very small number of bits, typically 

0.01-1% of the total number of bits in the population to be flipped at random. For 

example: 

{11.111111} -+ {11Q.11111} (3.5) 

This changes the values of genes within the chromosome, and thereby pushes a few 

members of the population into new, possibly remote areas of the parameter space, 

allowing the GA to continue its search for higher fitness regions. While this occasionally 

finds a better solution and so helps the GA, it is disruptive and is as, if not more likely 

to move the chromosome to a poorer solution, so is only applied with a very low 

probability. 
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3.7.1 Mutation and parameter encoding 

While the standard binary encoding is simple to understand and decode, it has unde

sirable characteristics from the viewpoint of the GA which can make it unsuitable for 

some applications such as numerical optimisation. 

When a decimal number is represented using a binary encoding, the number of 

bits which change between consecutive numbers is known as the Hamming distance, 

and can vary widely from one bit to the full bit length of the number. For example, 

to change from 0 to 1 only requires one bit to change, but 127 to 128 changes eight 

different bits (01111111 to 10000000 for an eight-bit representation). This situation, 

where adjacent gene values have a large Hamming distance between them, is known 

as a Hamming cliff. If such a Hamming cliff lies between the current and optimum 

values, then mutation will be unlikely to overcome it as it only changes a few bits per 

generation. 

There is an alternative binary encoding called Gray coding which overcomes this 

difficulty by ensuring that consecutive numbers only differ by one bit. The difference 

between the two encodings for the first 16 numbers is shown in Table 3.1. A binary 

number can be easily converted to Gray coding by Exclusive-Oiling it with itself shifted 

right one bit: 

gray= bin A (bin~ 1) 

To convert it back from Gray coding to binary, each bit is added to the one before it, 

ignoring the carry: 

(bino, bint, bin2, ... ) = (grayo, grayo +gray~, grayo + grayt + gray2, .. . ) 

The major advantage of using Gray coding is that it is possible to move between 

adjacent decimal values by flipping a single bit. This means mutation is always able to 

'creep' from one value to the next by flipping a specific bit, although it is still possible 

to move larger distances by flipping other bits. 
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I Decimal I Binary I Gray code I 
0 0000 0000 
1 0001 0001 
2 0010 0011 
3 0011 0010 
4 0100 0110 
5 0101 0111 
6 0110 0101 
7 0111 0100 
8 1000 1100 
9 1001 1101 
10 1010 1111 
11 1011 1110 
12 1100 1010 
13 1101 1011 
14 1110 1001 
15 1111 1000 

Table 3.1: A comparison between the binary and Gray-coded forms of the first 16 
numbers. 

3.7.2 Other forms of mutation 

It can be helpful for some applications to weight the probability of mutation along the 

length of the string, perhaps to reduce the disruptiveness of sensitive regions of the 

chromosome, or where the chromosome requires different forms of mutation at different 

locations to maintain the validity of solutions. Altering the degree of disruptiveness 

(Section 3.11.2), or dynamically changing the mutation probability as the run pro

gresses can also be beneficial. This could either be a simple reduction with time, or 

more complex, such an increase if the GA fails to improve for a number of generations, 

then a decrease once it begins to improve. 

While it is difficult to predict what crossover and mutation rates are best for a given 

problem, and indeed most optimum rates are determined through trial and error, if the 

search space has relatively few peaks, then the weighting should generally be on the 

crossover to ensure convergence, while for a hilly space, a higher mutation rate can be 

useful to make the GA sample the space more widely and to allow it to escape from 

local suboptimal peaks. 
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3.8 The Fitness Function 

The fitness function takes the chromosome, extracts model parameters from it, passes 

them to the model, and returns a value which is a performance or suitability measure 

of that chromosome. The importance of choosing the correct fitness function cannot be 

overstated. It is the only viewpoint the GA has of the space it is searching, and the only 

performance measure of the solutions it has found. Not only does it therefore determine 

what the GA is actually looking for, it also influences the speed of convergence and 

how the selection mechanism performs. If the chosen fitness function makes the search 

space appear very hilly, the GA is more likely to suffer from premature convergence, 

whereas if it appears too flat, then the GA will not be driven towards the optimum 

strongly enough, and will take a long time to converge. 

3.8.1 Fitness Scaling 

The values returned by the fitness function are usually a simple measure of the model's 

performance, but may not be particularly suitable for direct use in the selection process. 

For example, if fitnesses have a small range or a large offset, it reduces the relative 

difference between individuals in the SRS algorithm and therefore also reduces selection 

pressure. Alternatively, having too great a range can cause premature convergence 

around any good members in the initial populations, so artificially scaling the fitnesses 

to a suitable range can help the GA. The offset can be removed by translating the 

fitnesses to a fixed lower bound, while the range can be adjusted by a power scaling to 

increase or reduce it. If a ranking selection mechanism (e.g. tournament selection [51, 

52]) is used, then the fitnesses' absolute values are irrelevant since only their relative 

values are used to determine the fittest, so scaling is unnecessary. 
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3.9 Advantages and Disadvantages of the GA 

A major disadvantage of conventional hill-climbing strategies is that they can become 

trapped on sub-optimal peaks. Unless the search is started in the immediate neigh

bourhood of the optimum peak, it will not be able to find it. The GA is able to escape 

from these sub-optimal peaks by the process of mutation, and by crossover between 

dissimilar chromosomes. 

Since the GA only uses point samples of the search space, it does not require any 

gradient information. This means that it is possible to optimise complex models for 

which analytical solutions are extremely difficult to obtain. The GA has a particular 

strength in that it can be used for multi-criterion optimisation, automatically trading 

off performances with respect to different criteria, a process which is described further 

in Chapter 6. 

Although the GA takes many fewer samples than a random or exhaustive search, 

the fact that it still requires a great many function evaluations means that it will often 

be much slower than standard analytical techniques where these exist. 

The other main problem with the GA is that while it is statistically guaranteed 

to find the optimum, in practice for more complex problems it will generally only 

return a solution which approaches the optimum, except for simpler problems. If a 

near-optimum solution is not good enough, then once the GA has converged, a hybrid 

technique (such as a hill-climber) can be used to perform the final optimisation and 

find the true optimum. This is discussed in Section 3.13. Alternatively, the GA could 

be restarted using the previous best solution as a population seed. Ishibuchi and 

Murata [53] went to the extreme of using a local search on every solution found by 

GA. 
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3.10 Convergence Theory 

While it should now be clear bow the GA works, it is perhaps not so obvious as to why 

it works. There have been a number of attempts to describe and predict its behaviour, 

the original being that of Holland's Building Block Hypothesis [47], although more 

recent analyses [54, 55] suggest other mechanism can give more accurate predictions 

of the GA's performance under some circumstances. His 'Schema Theory' predicted a 

string's fitness by the bit templates or schemata (singular schema) it contains. The 

templates are described by the ternary alphabet of {1,0,#}, where the'#' is a 'don't 

care' symbol. For example, the schema {1##} would match any three-bit string with 

the first bit set. A schema therefore describes a set of chromosomes with similarities 

at a subset of the total number of bit positions. 

Schema theory predicts that if a chromosome contains certain schemata it will have 

a higher than average fitness, and a lower one if it contains others. During selection, 

therefore, the higher-fitness schemata will tend to be propagated, while the poorer ones 

will be lost, and by performing crossover these higher-fitness schemata can be brought 

together to form even fitter individuals. Since crossover is very disruptive, it is found 

that schemata whose fixed bits have a wide span are not propagated as well as shorter 

ones. Under this scheme there are therefore some restrictions: the high-fitness schemata 

should be short in order to reduce the risk of them being damaged during crossover, 

and it must also be possible to predict to some degree the fitness of a chromosome 

from just a small section of it. If this is not possible, then no short templates can exist 

and the only good solutions will be either complete or nearly complete ones. Under 

these conditions the GA does not perform well, so it is good practice to design a GA 

around a chromosome in which related genes are adjacent, and there is no relationship 

or interdependence between widely-separated genes. 

Under schema theory, the GA implicitly processes many schemata in parallel as 

each member of the population contains a large number of them. Since the G A is 

trying to bring the high-fitness schemata together to form an optimum chromosome, 
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the population size should ideally be chosen so that after the random initialisation 

it contains, on average, one copy of each schema, of which there exist a total of 38 

for a chromosome of length B. Although there are more useful schemata in a larger 

population, the minimum size increases slower than the chromosome length so a large 

number of bits does not necessarily mean a punitive amount of storage or speed decrease 

due to a huge population size. In general, the population size used is smaller than this 

minimum size, but the GA is still able to perform satisfactorily. 

As the cardinality of the alphabet used rises, so does the minimum population size 

that is needed to contain, on average, at least one of each schema. For a floating point 

GA, there are essentially an infinite number of possible schemata, so the GA should 

require a vast population to even begin to work properly, as a normal population with a 

binary gene will only contain a few of the possible schemata. Goldberg [56] speculates 

that the GA builds up its own lower-cardinality 'virtual alphabet' from the features in 

the search space, but the reality of this scheme is unproven. 

Recently, doubt has been cast on the validity of the Building Block Hypothesis, 

and a number of alternative approaches, e.g. using Markov chains [54, 55] , have been 

proposed, although all have their faults, and the true nature of the GA's optimisation 

processes remains unresolved. 

3.11 Floating-point Chromosome GA 

The emphasis so far has been on the original, and still most common, binary form of 

the GA, but it is by no means the only chromosome encoding which has been used. 

Other encodings, using integers [40] or real numbers [57, 58], have also proved suitable 

for different applications. Some problems, such as numerical function optimisations 

or scheduling are less suited to a binary representation, and can be more conveniently 

encoded in higher-cardinality alphabets. This can allow each gene to represent a single 

optimisation parameter directly, making it easier to write the fitness function, and 

removing the need for decoding routines which add complexity and time to the fitness 
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calculations. Although Holland's schema theory predicts that a binary alphabet is the 

best encoding for the GA, the successful use of other encodings has shown that this 

prediction is uncertain and other processes may be occurring which allow the GA to 

work successfully. The optimal encoding is therefore problem-specific. 

In the optimisation of many real-world scientific and engineering problems, a real

coded chromosome is attractive due to the high accuracy of measurement which is 

generally necessary, since it requires a very long binary string to obtain a high numerical 

accuracy. By encoding such problems with floating-point numbers, they can be used 

directly in the problem model which for complex problems requiring many function 

evaluations can be a substantial time saving as no decoding is required. 

Real-coded genes have further advantages in that they also avoid some binary

coding specific problems such as Hamming cliffs. Although Gray coding overcomes 

this problem, it still requires many bits to achieve a high accuracy. For a floating-point 

GA, mutation can perturb the gene about its existing value to different degrees and so 

hill-climb towards the optimum. Another advantage is that the GA will converge faster 

with a high-cardinality alphabet, which is helpful if the optimum is easily found, either 

by the GA or an add-on hill-climber. It is still possible for the GA to be blocked (see 

also deception in Section 6.4), which happens when the initial sampling of the search 

space causes the GA to move towards regions which are blocked from hill-climbing 

towards the optimum peak by either valleys or other, suboptimal peaks. 

In order to use a real-coded chromosome it is necessary to adapt the GA to some 

degree, as the binary crossover and mutation techniques mentioned above are not 

suitable in their current form. The changes will now be examined in detail. 

3.11.1 Floating-point Crossover 

The floating-point GA adopted for this work was derived from that of Janikow and 

Michalewicz [59], where the chromosome is regarded as a vector. This GA was specially 

designed for numerical optimisation, and uses a vector-like chromosome of a string 
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of real numbers with a number of crossover methods. These utilise convex vector 

combination of the chromosomes to generate new gene values and chromosomes. A 

dynamic form of mutation is also used, which reduces the degree of disruption as the 

run progresses to reduce the loss of good solutions once the population has converged. 

Convex combination works as follows. First two parent chromosomes (vectors) are 

selected, for example, a and b, where 

a (3.6) 

b {bt,IJ..!,~, ... ,b,..} 

If a crossover point is selected at the third gene position, the offspring are given by: 

c (3.7) 

where p is a uniform random number in the range o-1. This results in two offspring, 

mostly containing the characteristics of one parent, but with a degree of the other at 

one gene position. This can be extended to cover more than one gene position to give 

offspring with a greater mix of the properties of both parents. In all, five types of 

crossover are used within the GA, and one picked at random for each crossover to be 

performed: 

Normal crossover: Strings are crossed the same way as in single-point binary, with 

crossing points between genes, i.e. between a~;; and ak+l· 

Multiple crossover: This is similar to multi-point binary crossover, with crossing 

points selected as in the Normal crossover above. 

Arithmetic crossover: This is the simple one-gene form of convex combination 

shown in Equations 3.6 and 3.7. 

Multiple Arithmetic crossover: Here several genes, selected at random, are crossed 

as in Arithmetic crossover. 
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Gene one 

Figure 3.2: Example Arithmetic crossover for a two-gene chromosome. 

Whole Arithmetic crossover: This is a special case of Multiple Arithmetic cross-

over, where the entire string undergoes Arithmetic crossover. 

It should be noted that neither Normal nor Multiple crossovers actually change gene 

values, as they simply swap them unchanged between individuals. The three types of 

Arithmetic crossover do introduce new gene values into the population. 

An example of the effect of Arithmetic crossover for a two-gene string is given in 

Figure 3.2, where gene two has been crossed. Figure 3.3 illustrates Whole Arithmetic 

crossover for the same type of chromosome. It is clear from the positions of the child 

chromosomes created in these figures (labelled c and d), that the action of both types 

of crossover is to rotate the vectors around their average point, followed by a scaling 

centred on this point. This closely mimics the effect that normal crossover has on 

binary strings [60]. For three dimensional chromosomes (i.e. with three genes), the 

effect is of a rotation and scaling around the central point of a cuboid. 
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Gene one 

Figure 3.3: Example Whole Arithmetic crossover for a two-gene chromosome. 

3.11.2 Floating-point Mutation 

The type of bit-flipping mutation used in the binary GA clearly has no analogous 

equivalent for real genes. While it would be a simple matter to replace each gene with 

a random number, this is very disruptive, and could easily destroy any good solutions 

which have been found. A better alternative is to simply move the gene around its 

current value, within any bounds which have been imposed, but this again has its 

problems. The size of the movement must be big enough to allow the GA to search the 

space effectively at the start of the run, without being so large that solutions are lost 

after convergence. One solution to this, which was used here, is to start the run with 

a reasonable size of perturbation so that the space is covered well, and then reduce 

it progressively throughout the run so that solutions are not lost as the population 

converges on the better regions of the space. It is possible to tune the rate of decrease 

of the perturbation according to the problem in hand. 

The method used here was to first produce a value dmpow which reduced exponen-
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tially from 1 to 0 as the run progressed: 

d ( 1 
generatian ) 5 

mpow = -
maxGeneratians 

It is possible to alter the rate at which the perturbation decreases by increasing or 

decreasing the power term in this expression. This value was then used to generate a 

randomly-distributed perturbation amount: 

dmv = 1- (random(O, 1))dmpow 
2 

and this in turn was used to either increase or decrease the gene value within its limits 

of Q-1: 

{ 

oldValue + (1- oldValue) * dmv 
newValue = 

oldV alue - old Value * dmv 

random(O, 1) < 0.5 
(3.8) 

otherwise 

This had the effect of moving a gene's value a larger amount at the start of a run, but 

rapidly reducing the range of the perturbation as the run progressed. 

3.12 Other GA techniques 

For some problems, such as fiowshop scheduling and routing which used list-based 

chromosomes, the GA's performance can be improved by including another form of 

gene manipulation known as inversion. Inversion takes a section of the chromosome 

and reverses it, replacing it at the same position in the string. This can be very 

disruptive to the building blocks in the chromosome, so is only applied with a low 

probability, but can be instrumental in finding optimal solutions. It is however of little 

use in numerical optimisation problems, where the meaning of a particular bit in the 

chromosome is fixed. 

The random nature of the GA has the disadvantage that it is possible for a good 

solution to be lost if all copies of it are picked for crossover with inferior solutions. This 

is especially true for new solutions whose fitness only improves slightly on the previous 

best, where there may only be one or two copies in the population. In order to prevent 
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these solutions from being lost, a technique known as elitism can be used. Instead of 

simply copying the newly-created population over the old one, they are both examined, 

and one or more of the best solutions from the old population are copied over the worst 

in the newly generated one, ensuring that the population always contains at least one 

unaltered copy of the best solution found. 

It has been shown that the GA implicitly processes many schemata in parallel, and 

this can be extended by having several GAs running in parallel on the same problem, 

either simulated on a single computer, or distributed over a network. At intervals, 

copies of good solutions found by each GA are sent to the other GAs, which add them 

to their own populations and continue processing. This has many advantages, more 

solutions can be tried, a greater gene diversity can be maintained, each population 

can converge to a different solution and still be aware of others by the input of new 

solutions, and the effective population size can be much larger than is feasible for a 

single GA. 

3.13 Hybridisation 

Although the GA is able to search large spaces very efficiently and escape from local 

sub-optimal regions, its random nature means that it is not guaranteed to find an 

optimum solution, even if it has converged to the high-fitness region containing it. 

The GA can be helped to complete the optimisation process by the addition of a 

hybrid search technique, such as a hill-climber. This can be used in a number of ways, 

for example as a :final process to be called on once the GA has completed its run. This 

approach assumes that the GA has converged on the locality of the optimum during 

the run. Another approach, which was adopted for part of this work, is to call on the 

local search if the GA has not made an improvement on the best :fitness it has found 

for a number of generations in succession. This method is not reliant on the GA having 

found the region of the optimum, and should merely provide a 'kick-start' to get the 

GA working again by injecting a selection of good new genes into the population. 
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This hybrid approach to the GA has been successfully applied to many problems, 

from optimising layouts to modelling metabolic systems [61, 62]. Hill-climbers that can 

be used include the Simplex method for floating point genes, and bit-flipping for binary. 

Krukowski and Kale [63] have shown bit-flipping optimisations to work successfully for 

IIR filters. 

The first bit-flipping hill-climber developed for use in the binary GA simply scanned 

across the string, flipping each bit, and retaining a change if it increased the fitness. 

This was repeated until no bit-flip caused an increase in fitness. It was realised that this 

method always looked at each coefficient in turn, but as will be shown later, changing 

one coefficient moves the position of the optimum for the others. This means that 

the hill-climber finds the optimum value of the first gene with relation to the current 

values of the other genes, and not the true optimum, and so on down the whole length 

of the chromosome. Although applying the algorithm repeatedly might help, there is 

no guarantee of finding any truly good solutions. 

3.14 The Search Space 

The search space is an important concept in GA theory. It relates the problem param

eters encoded in the chromosome with the complexity of the fitness function. By using 

the fitness of a chromosome as a height, a contour map of the fitness function's output 

can be drawn against the values of the genes within the corresponding chromosome. 

The hilliness of this map, together with other analyses, such as whether it contains 

discontinuities or other features, can be used to estimate the difficulty different tech

niques will have in solving the problem. Discontinuities and multiple peaks can cause 

problems for hill-climbers and calculus methods, for example, while hill-climbers which 

only optimise one parameter at a time will find it hard to move along angled features 

in the fitness landscape. 

The GA is generally able to work in hilly, discontinuous landscapes, but there are 

other more subtle features which can cause it problems, such as a landscape where 
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it is only led towards the optimum by very small-scale structures, while the larger

scale features tend to lead away from the optimum. This particular effect is known as 

deceptiveness, and is covered in more detail in Chapter 7. 

3.15 Simulated Annealing 

Hill-climbing is a well-known technique for finding optima in a search space, but which 

solution it finds in a multi-modal space depends on where it is initialised. If its initial 

point is not close to the optimum, depending on the nature of the space, it may never 

find it at all. Using an analogy from thermodynamics, it is similar to quenching a 

hot metal-the crystal structure formed under these conditions is the first low-energy 

state that was found. Other, potentially lower-energy structures may exist, but it is 

necessary to cool the metal slowly (or anneal it) to allow it time to search for the 

lowest-energy state. There may even be substantial changes in structure as it cools, 

reflecting a wide-ranging search for a stable, low-energy structure. 

The technique of Simulated Annealing (SA) optimisation [33] attempts to model 

this slowly-cooling approach instead of the rapidly-quenched style of the hill-climber. 

SA usually works in a similar fashion to a hill-climber by looking around its current 

position and always accepting moves to a better position. However, it differs in that 

it also allows a proportion of moves to a worse position, which will allow it to escape 

from its current optimum and search within another one. When metals are cooled, the 

reduction in heat energy lowers its ability to make large structure changes, so it becomes 

increasingly confined to its current position. This is reflected in the SA technique 

by initially allowing many moves to worse positions, but progressively reducing this 

probability as the number of iterations increases. This allows the SA to perform a 

wide-ranging examination of the search space at first, but to increasingly concentrate 

the search on any good areas it finds. The speed with which the range of the search 

contracts is highly problem-dependent, and trial-and-error must be used to find a 

sufficiently slow rate to allow an efficient search, while being fast enough for the result 
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to be generated within a useful time. 

Depending on the implementation, SA may be statistically guaranteed to find the 

optimum, but as this may not be probable within a suitable timescale, multiple runs 

may be necessary. The SA could be restarted with the best point of the previous run, 

or this point could perhaps be used to discourage the search from revisiting the same 

optimum, thereby increasing the efficiency of the search. 

The implementation of SA optimisation used in this work (33] was based on the 

Simplex Method described in Sections 4.4 and A.2, and utilises a Simplex Method 

hill-climber which has been modified to allow occasional moves to poorer solutions. 

3.15.1 Applications to Filter Design 

Simulated Annealing has been successfully applied to several aspects of filter design. 

Pitas [64] presented a SA-based optimisation for the length of a median filter, which, 

although it only had a small search space, indicates that SA is suitable for some filter 

design tasks. Smith and Henderson [65] have applied SA to ordering the sections of 

a cascade-realisation FIR filter, to optimise the roundoff noise. SA was found to be 

able to find orderings close to the minimum possible, and to be usable in environments 

where the search space was too large for an exhaustive search to be feasible. Chen 

et a! [32] have used an SA-based technique to optimise adaptive IIR filters for system 

identification, where hill-climbing techniques can fail due to the occurrence of local 

maxima in the search space. PCAS filters with finite wordlengths have been designed 

by Lawson and Wicks [29] using a binary SA. 

3.16 Differential Evolution 

Storn [66] made use of a crossover method similar to the Arithmetic Crossover above, 

in his optimisation of IIR filters by Differential Evolution. This is a similar technique 

to the GA, in which instead of selecting two members of the population to cross, the 

coefficients of each member in turn are mixed with fixed proportions of those of the 
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best member and two other members of the population selected at random, to produce 

a single offspring. The offspring is kept if it is a better solution than its parent. 

The technique was successfully applied to the optimisation of a tenth-order IIR 

filter cascaded with a fixed-coefficient FIR filter, where both the magnitude and group 

delay responses were optimised by penalising the fitness function if a solution went 

outside desired response templates. 

3.17 Evolutionary Strategy 

Evolutionary Strategy (ES) [1, 48] is very similar to a floating point GA, but gener

ally has no crossover, relying instead on just mutation and selection to perform the 

optimisation. Franzen et al (67] compared the results of ES with Simulated Annealing 

for designing FIR filters with quantised coefficients, and found both to have similar 

performance, but neither performed much better than quantising the coefficients found 

by standard techniques. 

3.18 Genetic Programming 

Genetic Programming (GP), made popular by Koza (68], is a means of optimising 

mathematical functions to perform a particular task. Utilising tree representations of 

the available operations (such as simple mathematical operators like *• /, + and - or 

boolean operations like AND, NOT, OR) and the input parameters, crossover can be 

represented by swapping 'branches' of the tree, and mutation by replacing an existing 

operator with a different one. Computer programming languages such as LISP are 

often used as their syntax is already in a suitable tree-like form. 

Applications of GP to filter design have a rather different approach to those for GA 

and SA in that it is not simply used for coefficient optimisation, but for functional and 

structural optimisation. Keane et al (19] have used GP to optimise an impulse response 

function which models an unknown system, and Rodrfguez-Vazquez et al (69] have 
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performed multi-objective system identification. while Uesaka and Kawamata [42] have 

designed second-order filter structures with low coefficient sensitivity using automatic 

GP techniques. 

3.19 Tabu Search 

Tabu Search is a sequential search technique introduced by Glover [70] in which 

recently-visited solutions are made 'taboo' and cannot be revisited, thereby forcing 

the search into new areas. Current solutions are transformed into a range of poten

tial new solutions, known as the neighbourhood. The transformation method must be 

chosen so that the path between any two solutions can be followed by repeatedly ap

plying the transformation. The set of solutions within the neighbourhood is compared 

with the tabu list of previously visited points, and forbidden solutions removed. The 

next starting location is then picked from the remaining solutions, and its own neigh

bourhood examined. A variety of techniques have been proposed for picking the next 

solution from the neighbourhood: an unvisited solution is always preferable, or if none 

is available, a previously-visited solution can be selected according to how recently or 

how often it has been visited [71]. 

Tabu Search has been used successfully by Traferro and Uncini for designing adap

tive filters with powers-of-two coefficients, which has a restricted search space [72]. For 

filters with integer coefficients, and especially with full-precision coefficients, the num

ber of points in the tabu list will be extremely large as the number of solutions within 

the search space is much higher-anN-bit integer can represent 2N values compared 

to theN values of a powers-of-two representation of the same range. For a single 16-bit 

integer range this gives a search space 216/16 = 4096 times larger. A 32-bit floating

point representation of a single number contains around 108 more points than the 

powers-of-two representation, so the tabu list will also need to be orders of magnitude 

larger. This may make the technique unsuitable for high-precision or high-order filter 

optimisations due to storage and/or time constraints, as the time taken to compare the 
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solutions in the neighbourhood with those in the tabu list will rise linearly with the size 

of the tabu list. Battiti and Tecchiolli (73] have proposed a potential solution to this 

problem, by just using TS on a combinatorial representation to find promising regions, 

with a local search performing final optimisation. The TS parameters are adjusted 

dynamically in order for the search to be effective on a variety of problems. 

Tabu search can also be used for multi-criterion optimisation, using an adaptation 

proposed by Hansen (74], which enables it to return a range of solutions with different 

performance tradeoffs, by weighting each Tabu Search within a population of solu

tions so that it tends to keep away from its neighbours, while moving towards better 

solutions. 
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Chapter 4 

Optimising Frequency Sampling 

Filter Coefficients by Hybrid G A 

4.1 Introduction 

In this chapter, the first application of GAs to a filter design problem will be described. 

A suitable optimisation problem will be selected, and the method of applying the GA 

presented. Results are presented which lead to the publication of a paper covering this 

work in the IEEE Transactions on Signal Processing [4]. 

4.1.1 Selection of FS filters for GA optimisation 

In order to begin the investigations into the use of the GA, it was necessary to select 

a filter type and optimisation problem to use as an initial vehicle. FIR filters were 

chosen for their simplicity, using the Frequency Sampling design as a first step since 

they only require the optimisation of a few numbers (the transition samples) to produce 

a solution. It would also be possible to write a suitable fitness function to search for 

optimal filters by optimising the extremal frequencies. Window method filters are less 

suitable as they require the optimisation of mathematical functions, which is not easily 

achieved by the methods under investigation. As floating-point GAs have been proved 

successful in other areas, it appears to be a simple matter to list the transition samples 
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in a chromosome for the GA to optimise, and to produce a fitness function which 

returns how close the frequency response is to a given desired response. 

4.2 Use of the GA for FS filter Design 

At this stage, both the problem, namely the optimisation of FS FIR filters, and a 

solution, the GA, have been proposed. The combination of the two to form a useful 

optimisation technique will now be examined. The following discussion covers the 

optimisation of lowpass filters, but is applicable to all the standard frequency-selective 

filter types. 

When designing FS method filters, the values which need to be optimised are the 

magnitudes of the transition samples. For a magnitude response with normalised units 

rather than decibels, these samples have a range of Q-1 inclusive. These therefore need 

to be encoded into a suitable chromosome for the GA to work with. 

The first filter type selected was non-recursive filters using the OFT interpolation 

method, and since the values to be optimised were floating-point and were used in a 

full-precision calculation, a real-valued chromosome and GA were chosen. The chromo

some consisted simply of the transition sample values in order from pass- to stopband. 

The GA used was derived from that of Janikow and Michalewicz [59] as described in 

Chapter 3, but with some alterations and improvements which will be described later. 

For a filter response to be acceptable, its magnitude response in the transition band 

should decrease monotonically from pass- to stopband. To help the GA maintain this, 

before each fitness calculation the transition samples are ordered so that they decrease 

monotonically. This is necessary at each fitness calculation because of the disruptive 

action of crossover and mutation, which can easily alter gene values and hence alter 

the ordering of the transition sample values. The fitness function passes the re-ordered 

chromosome back to the GA so that all of the chromosomes have the same transition 

sample at the same gene position. This also means that the total number of solutions 

which the GA has to search is reduced. For a filter with two transition samples, the 
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Figure 4.1: The shaded area is the disallowed region of the search space for a two 
transition sample filter. 

limitation that the second sample must be less than the first means that only half the 

space is valid, as shown in Figure 4.1. In general, the proportion of the total space 

which gives allowable filters is given by: 

(4.1) 

where Nt is the number of transition samples. For Nt = 4, p = 1/24 or only 4.2% of 

the total space, dropping to just 0.83% when Nt = 5. Ordering the samples therefore 

has the advantage of constraining the search to the region of the optimum, which is 

increasingly attractive as the number of transition samples rises, although the corre

sponding increase in difficulty in finding the optimum means that the problem still gets 

harder overall. 

4.2.1 The Fitness Function 

The performance measure adopted initially was that used by Rabiner, Gold and Mc

Gonegal [5] when producing their tables of transition sample values, namely the max

imisation of the minimum stop band attenuation. The fitness was simply defined as: 

fitness= -20log10 (ds) (4.2) 
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where ds is the stopband ripple and fitness is the magnitude of the attenuation in 

dBs. 

4.3 Extensions to the Floating-Point GA 

The specialised floating-point crossovers mentioned in Section 3.11 are not able to 

produce offspring whose genes have values outside those of their parents. This means 

that genes will always tend to move towards the centre of the search space after repeated 

crossovers. This effect will be particularly damaging for those genes whose optimum 

values lie towards the edges of the allowable range, namely 0-1. To counter this, the 

crossover action was altered slightly to allow the genes to move apart on crossover as 

well as together. If the chromosome in Equation 3.6 is crossed, instead of the results 

shown in Equation 3.7, the new crossover produced: 

c! 
I {a1,aa,p.as + (1.1- p).ba, ... ,a.,} (4.3) 

et; {bh iJ..l, p.ba + (1.1 - p).as, ... , bn} 

where p is a uniform random number in the range Q-1. This extension made it easier 

for the GA to find solutions which contained at least one transition sample with a very 

high or low value. This becomes more of a problem as the number of transition samples 

increases and the samples have to form a smooth transition from pass- to stopband. 

4.4 Simplex method hybrid hill-climber 

Early runs showed that the GA was only able to approach the optimum filter specifi

cation for filters with a few transition samples, and that for filters with four transition 

samples or more, the best solution found by the GA became progressively poorer. To 

help combat this, a hybrid hill-climbing search was added to the GA to perform the 

final optimisation. 

The local search technique which was adopted for the FS filter design GA was the 

Simplex method hill-climber [33], described in Appendix A.2. This method was chosen 
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because it does not require gradient information, but, like the GA, it simply takes point 

samples of the space. This means that it can be used to perform numerical optimi

sations of complex problems which are hard to analyse mathematically. Unlike many 

other methods of hill-climbing it does not make use of any form of curve-fitting, such 

as parabolic interpolation. To make use of parabolic interpolation, it must be known 

beforehand that the space is at least a reasonable approximation to a parabola, which 

implies some prior knowledge of the structure of the space, which is not necessarily 

available. The Simplex method does not require any pre-knowledge of the structure of 

the space, and can therefore be used on any problem without having to perform any 

analysis of it to determine its suitability. 

The Simplex method of hill-climbing uses a number of point samples equal to one 

greater than the dimensionality of the space being searched (i.e. three points in 2-

D space etc.) These are initially set up at random around the best point found so 

far by the GA, which is itself included in the set. These points now bound a solid 

shape, which is analysed to determine the worst point and best face. A number of 

attempts are then made to find an improved point in the space by performing a series 

of geometric transformations on the worst point in the shape until it is improved or 

cannot be improved. This process is repeated until either a fixed number of function 

evaluations have taken place, or the relative difference in performance between the best 

and worst points drops below a predefined level. 

In practice it was found that once the Simplex local search had been used once, 

it made such an improvement that the best solution then lay in a very small, highly

fit region, and crossover and mutation almost always moved the offspring to poorer 

solutions. This often resulted in the GA being unable to perform satisfactorily once 

the local search had been called on once, and the local search was then generally relied 

on to perform the final optimisation. 
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4.5 Extensions to the crossover selection scheme 

The five floating-point crossover types described in Chapter 3 fall into two categories: 

those that simply exchange or swap genes between parents to produce the offspring, 

and the three forms of Arithmetic crossover, which actually combine the parent chro

mosome's gene values in some way to produce offspring. The latter forms introduce 

new gene values, while the former ones do not. In order to allow the GA to determine 

which of the various types of crossover were of most use at each stage of the run, a 

scheme was devised to dynamically adjust their selection probability according to their 

performance as the run progressed. This replaced the original selection mechanism, 

where the crossover type used was chosen using a uniform random scheme. 

Under the new scheme, the initial selection probability of each type was set equal. 

The total number of times each type of crossover was performed was then stored, along 

with the number of times each produced at least one offspring with a higher fitness 

than its parents'. The probability of each crossover type being selected was then given 

by: 
d., 

p, = 5 
Er==t dr 

(4.4) 

where p., is the probability of choosing crossover type x, d, is the proportion of calls to 

crossover method x that produced a fitness improvement over the parent chromosomes, 

and the summation is over the five types of crossover. The sum of all five p., probabilities 

equals one, and this allows the best crossover method to be selected dynamically during 

the run by a roulette wheel selection. A scale is drawn up between zero and one, where 

the gap between the divisions is proportional to each p,, as illustrated in Figure 4.2. A 

random number is selected between zero and one, and depending on which division it 

lands in, that crossover method is used. Here a random number of 0.4 selects crossover 

method three. This method is similar to that of Davis [75], but does not include the 

explicit hierarchical probability allocation for the crossover methods which produced 

the parent chromosomes, and to those which produced their parents, and so on. The 

approach used here was much simpler to implement but was found to react satisfactorily 
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0 

Figure 4.2: Method used to dynamically select the crossover method to use. 

to the changing crossover performances in this application. 

When the number of transition samples (N,) is small ( < "' 5), the Arithmetic 

crossover types, which actually alter gene values, perform best early in the run. Later 

in the run the other types (which simply exchange genes unchanged) and pure dynamic 

mutation became dominant. This occurred because the GA is initialised with just a 

subset of the total number of possible gene values. In order for the GA to perform 

useful optimisations, it must use these relatively few values to generate a wide range 

of others in between to allow it to search the space effectively, so the crossovers which 

perform best initially will be those which introduce new genes into the population. 

Once the population has converged to the region of the optimum, it mainly contains 

genes which lie in the region of the optimum, so the crossover methods which only seek 

to combine the existing gene values will increase in usefulness. After the population 

has converged, crossovers which alter gene values, particularly those between dissimilar 

parents, will often move the resulting chromosomes away from the region of the opti

mum, so their offspring will have a poorer performance than their parents, and their 

selection probability will decrease. 
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Since mutation occurs at a much lower rate than crossover, if crossover and muta

tion both occurred on a single chromosome and the offspring improved on their parents' 

fitnesses, then the credit for the improvement was given to the crossover. The muta

tion selection probability increased once the population had converged because of the 

disruptive nature of the Arithmetic crossovers. Once the selection probability favoured 

the non-Arithmetic forms of crossover, mutation became the main gene-altering action, 

which was then able to apply small changes to the genes and so gradually improve their 

fitnesses. The dynamic form of mutation, which reduced its disruptiveness as the run 

progresses was used here, as it enabled very small changes to be applied after the 

population bad converged, which were then not very disruptive. 

When Nt is larger (> "'5), the GA found that all of the crossover types initially 

have a similar performance, but the same crossovers and mutation take over later on as 

became dominant for lower Nt. The gene values in the initial population are available 

to more than one gene position due to the gene reordering which can occur. This 

effect increases as Nt rises and the transition sample values get closer together. Since 

the population therefore effectively contains more gene values than for smaller N11 the 

simple action of swapping them will be more productive than before, and allows the 

better initial performance of the non-Arithmetic gene-swapping forms of crossover. 

These results have a parallel with the predicted action of the GA, where at the 

initial stages of a run, the search should cover a wide range of gene values, while at the 

end, once the search has converged to a good region of the search space, the emphasis 

shifts to trying to bring good building blocks together to form a near-optimum solution. 

The inclusion of this selection process allowed the Genetic Algorithm to make more 

regular improvements in fitness, although it was still unable to find very good solutions 

for filters with more than three or four transition samples as the optimum region was 

so small that it was hard to hit it when performing crossover and mutation. As the 

optimum was already being found, the best solution found overall did not improve 

under this scheme, but more work was done by the GA for some filters. 
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Band edge Transition Attenuation Pass band 

Filter type N sample no. samples (dB) ripple (dB) 

Type-1, highpass 49 18 4 128.026 0.175 

Type-11, lowpass 48 8 4 124.041 0.099 

Type-1, bandpass 128 20,15 3 85.526 0.105 

Type-11, bandstop 65 10,8 4 109.568 0.051 

Table 4.1: Results for recursive-form FS FIR filters designed by GA. N is the number 
of filter coefficients. 

4.6 Results for FS filters 

Some example filters designed by the hybrid GA-Simplex method are given below, in 

Figures 4.3-4.6. Information about these filters is summarised in Table 4.1. The GA 

was able to find filters with a performance which at least equalled those tabulated by 

Rabiner et al [5]. The crossover probability was 0. 7 and the mutation probability was 

0.01, the population size was 30, and the GA was run for 1,000 generations. This 

relatively high mutation rate did not cause excessive damage to the solutions found 

as the effects of the dynamic mutation method decreased rapidly as the number of 

generations increases. 

Further results are given in Tables 4.2-4.6, comparing results from the hybrid GA 

with those of Rabiner et al [5] for a range of lowpass filters. As before, all runs 

were for 1,000 generations, with mutation and crossover probabilities of 0.01 and 0.7 

respectively, and a population size of 50. 

The improvement of the maximum and average fitnesses with generation can be seen 

in Figure 4.7 for a typical run to design a Type-11 highpass filter with N = 89, a narrow 

stopband of three samples, and five transition samples. The run of 1000 generations 

was completed in around four minutes, although a near-optimal solution was found 

after about generation 400. The regularly-spaced peaks in the latter three-quarters of 

the graph appear when the local search routine was called after the Genetic Algorithm 

had failed to improve the best fitness for 20 generations. The Genetic Algorithm is 
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Source I Attenuation I TS 1 TS 2 TS 3 TS 4 

Rabiner 127.367 0.71883166 0.25469056 0.03717696 0.00131836 

GA 146.099 0.703932 0.233668 0.030297 0.000877 

Table 4.2: Comparison of results for a Type-I, N = 16 filter, with a passband width of 
1 sample and 4 transition samples. 

I Source I Attenuation I TS 1 TS 2 

Rabioer 67.131 0.59911696 0.0937500 

GA 67.204 0.599416 0.109632 

Table 4.3: Comparison of results for a Type-I, N = 33 filter, with a passband width of 
3 samples and 2 transition samples. 

I Source I Attenuation I TS 1 TS 2 TS 3 

Rabiner 88.256 0.72436684 0.25203440 0.02576904 

GA 89.591 0.723101 0.249866 0.025017 

Table 4.4: Comparison of results for a Type-1, N = 65 filter, with a passband width of 
8 samples and 3 transition samples. 

I Source I Attenuation I TS 1 TS2 TS3 

Rabiner 94.764 0.67475127 0.19093541 0.01556396 

GA 94.994 0.664858 0.177726 0.012207 

Table 4.5: Comparison of results for a Type-1, N = 125 filter, with a passband width 
of 1 sample and 3 transition samples. 

I Source I Attenuation I TS 1 TS2 TS 3 TS 4 

Rabioer 108.297 0.82096794 0.40820066 .09324160 0.0606079 

GA 111.829 0.81153 0.392362 0.085818 0.005236 

Table 4.6: Comparison of results for a Type-1, N = 128 filter, with a passband width 
of 16 samples and 4 transition samples. 
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Figure 4.3: Type I, Highpass FIR filter with four transition samples. 
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Figure 4.4: Type II, Lowpass FIR filter with four transition samples. 
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Figure 4.5: Type I, Bandpass FIR filter with three transition samples. 
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Figure 4.6: Type II, Bandstop FIR filter with four transition samples. 
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able to find the area of the optimum fairly quickly, but has difficulty finding very high 

fitness solutions within the very small area of the peak, as crossover is likely to throw 

the offspring into comparatively very poor regions. The Genetic Algorithm is therefore 

used alone for the first quarter of the run, after which the hill-climber is able to make 

substantial improvements. 

It has been found that this technique is generally very robust for filters with up 

to six transition samples, taking an increasing length of time as the number of transi

tion samples rises. For filters with up to around four transition samples, the Genetic 

Algorithm is able to find good solutions very quickly, without the intervention of the 

local search. For five or six transition samples, the Genetic Algorithm performed a 

useful amount of improvement, although not to a good performance, while the local 

search was able to complete the optimisation. For more transition samples (up to ten 

were used), the hybrid Genetic Algorithm was only able to perform a small amount of 

optimisation, from which the local search was also unable to find the optimum within 

a reasonable time. Improvements in the speed of personal computers may, however, 

make the technique more viable. 

The hybrid Genetic Algorithm has been able to produce results which range from 

equalling the performance of those in the literature, to improving on them by up to 

around 20dB minimum stopband attenuation, as tabulated on page 61. However, its 

main strength lies in the fact that it can quickly produce untabulated filter coefficients, 

which are much more useful and will have a better performance than those found 

by interpolation of the published results. It is also able to design filters with more 

transition samples, showing that the hybrid Genetic Algorithm is a suitable technique 

to use for designing this type of Finite Impulse Response filter, although the GA alone 

is of little value, and a straightforward hill-climber could be used alone with equally 

good results. 
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Figure 4.7: Improvement of the maximum (upper line) and average (lower line) fitnesses 
with generation for a non-recursive Type-II filter. 
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4.6.1 The FIR Filter search space 

In order to understC~.nd the problem more fully, and to enable a better understanding 

of the GA's performance, data was collected from the search space that the GA was 

searching. Since we are using a real-coded chromosome, the search space and parameter 

space are actually the same for this problem. As has been shown, the actual proportion 

of the total space that the G A is restricted to shrinks quickly as the number of transition 

samples rises, although it was discovered that the search space becomes more difficult, 

as the high-fitness region becomes proportionally smaller. 

For a single transition sample, it can be seen (Figure 4.8) that the general shape 

of the search space with the chosen fitness function is a concave peak, a characteristic 

shape which was to recur in the structure of the higher-dimensional surfaces. In the 

case of a two transition sample filter, the surface is given in Figure 4.9. The peak can 

be seen to lie on a straight concave ridge, whose cross-section is also concave. The true 

optimum point on the ridge can be seen to lie close to the edge of the search space, a 

property which initially caused the floating-point GA some problems, as the original 

crossover techniques tended to move offspring towards the centre of the space, and not 

towards the edges, as shown previously in Figure 3.2. 

When the three-dimensional case is examined, it can be seen that there is a high

fitness plane running through the permissible area, with a concave cross-section; within 

this 2-D high fitness plane is a high fitness line, along which lies the optimum solution; 

again, both have the same shape cross-section. The unimodal nature of this space 

indicates that a pure hill-climber should be able to find the optimum. The hill-climber 

used by Rabiner, Gold and McGonagal optimised each parameter in turn, holding the 

others fixed, but the angle between the high-fitness ridge and the axes means that 

many small steps parallel to each axis in turn will be required to reach the optimum. 

Other similar techniques which rotate the axes to align them with the best direction to 

climb in require the calculation of gradients which may be difficult or time consuming 

for complex models. Curve fitting methods such as parabolic interpolation fail for this 
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Figure 4.8: Search space for a one transition sample FIR filter. 

Figure 4.9: Search space for a two transition sample FIR filter. 
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Figure 4.10: Search space for a two transition sample FIR filter with additional con
straints. 

problem since the space becomes an increasingly poor approximation to a parabola as 

the optimum is approached. The Simplex Method makes no such assumptions and can 

move in any direction, so was able to work successfully in this type of space. 

In order to constrain the GA still further, filters in which the interpolated response 

did not change monotonically between the pass- and stopbands were also rejected. This 

reduced the allowable region still further (Figure 4.10), but this did not help the GA at 

all, as the optimum is now on the very edge of the allowable region. The action of the 

standard form of floating-point crossover was to move points together, which makes 

it difficult to find such points. The extended form of crossover used here was able to 

move the offspring to regions outside those bounded by the parents, so it should have 

been more able to find points on the edge of the allowable region. This is however 

still not able to perform well, as the optimum lies so close to the edge of the allowable 

region that it is hard for crossover to hit it and not go too far and into the disallowed 

region. Figure 4.11 compares the increase in fitness with generation for typical runs of 

constrained and unconstrained optimisations of an 68-coefficient, six transition sample 

lowpass filter, showing that the constrained optimisation has a lower performance. 
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Figure 4.11: Improvement of the maximum constrained and unconstrained attenuations 
with generation, for a non-recursive Type-1 lowpass filter. 

4.6.2 Concurrent Optimisation of the Wordlength 

In order to integrate a further filter design step, the fitness function for optimising 

recursive filters was extended to incorporate the finite wordlength effects of coeffi

cient quantisation by including an extra gene in the chromosome which determines the 

wordlength at which the genes will be decoded. This allows the Genetic Algorithm 

to search for the minimum wordlength necessary to achieve a given filter specification 

simultaneously with its coefficients. Mixed-integer programming has proved successful 

at optimising quantised coefficients [76], although separate runs are required for each 

word length under investigation. Stu bberud and Leondes [77] have devised a Lagrange 

multiplier-based method for designing Frequency Sampling filters which also accounts 

for finite wordlength effects, but only approximates linear phase. Our approach allows 

the Genetic Algorithm to search for the minimum wordlength and optimum coefficients 

for linear-phase filters simultaneously, with no user intervention. 

Since we are using a real-coded chromosome with genes in the range 0-1, the 

wordlength gene must be decoded to give an integer wordlength, which is performed 

by scaling it up to (}-24 and taking the nearest integer. The real-coded genes are then 

69 



quantised to this wordlength before being used to calculate the filter response and 

then fitness. This simplifies the search by limiting the number of points the Genetic 

Algorithm has to examine. It has the disadvantage that the Simplex hill-climber is less 

effective, because the search space is now made up of a large number of flat regions. 

This is due to the quantisation of the coefficients causing finite ranges of the floating

point gene values to be interpreted by the fitness function as having the same value, 

so all coefficient values in this range will have the same effect on the filter response. 

At the beginning of a search, the hill-climber is able to perform well because from a 

large scale perspective the surface is smooth, however once the search contracts around 

a good region, the small plateaux become increasingly apparent, and eventually the 

search cannot gain any information about the direction of the optimum and so is un

able to reach it. The Genetic Algorithm is still able to perform successfully in such 

a space (which resembles the de Jong Genetic Algorithm test function f3 [48]}, as it 

only relies on point fitness samples and is unaffected by discontinuities or perfectly 

flat areas. This implies that more reliance will be placed on the Genetic Algorithm to 

perform a good optimisation since the Simplex will be less effective here. 

When calculating the filter response, in order to maintain filter stability, the radius 

was reduced to one less the quantisation interval: 

(4.5) 

where B is the wordlength. The fitness now has to take account of both the magnitude 

response and the wordlength, with the emphasis on the former since this constraint 

should be satisfied regardless of the wordlength. To this end, the following scheme was 

devised. 

Firstly, the normalised magnitude response is examined in both pass- and stopbands 

to see if it fits within the desired limits. If it does to within 10-5 , which corresponds 

to a deviation of only around 0.3dB from a desired attenuation of 70dB, then the basic 

fitness is set to 105 , otherwise it is set to the reciprocal of the normalised deviation. 

This gives a main fitness range of Q-105 , for the magnitude response, and is flat (at 
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105 ) for all filters fitting within the desired specification. By having all satisfactory 

solutions return the same fitness it means that the Genetic Algorithm is free to return 

a solution which only just fits the design specification, leaving it more freedom to 

reduce the wordlength. To account for the wordlength, a further term is added to 

this, consisting of 25 minus the wordlength. This overall fitness function therefore has 

extra structure, especially within the optimum peak region, which allows the Genetic 

Algorithm to search for the minimum wordlength. The overall fitness function can be 

written: 

{ 

(25- B)+ 1/emo.:J; 
f(x) = 

(25- B) + 1/10-5 
(4.6) 

where B is the wordlength, and emo.:J; is the maximum absolute error between the 

normalised filter response and the desired response in the pass- and stopbands. 

This approach places the major emphasis on the optimisation of the magnitude 

response, and once this has been achieved, the effect of the wordlength dominates 

(within the optimum fitness 'plateau'). Other weightings have been tried but these were 

found to allow the Genetic Algorithm to perform efficiently, without the intervention 

of the Simplex local search. 

Results for a typical test run are given below in Table 4. 7, for a 49-th order, four 

transition sample lowpass filter, with a bandwidth of 0.25. The Genetic Algorithm was 

able to fit to the desired specifications with coefficients quantised to a wordlength of 

only six bits. The full-precision fitness function (in which the Genetic Algorithm only 

seeks to minimise the stopband ripple) was able to find a solution with much greater 

stopband attenuation as the last transition sample was able to have a much smaller 

non-zero value, as shown in Table 4.8. The full-precision fitness function used the same 

radius as the 6-bit solution, and the frequency responses of the quantised filter is shown 

in Figure 4.12. Advances in the speed of personal computers means that an exhaustive 

search is now feasible even for a 4-transition sample, 16-bit filter, with a total search 

space size of 4 · 216 = 262, 144 filters. 
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I Desired I Quantised I Full-precision I 
Passband ripple (dB) 0.1 0.058 0.129 

Stopband attenuation (dB) 77 82.96 117.26 

Wordlength - 6 -
Radius - 0.984375 0.984375 

Table 4.7: Desired and optimised specification for a quantised-coefficient and full
precision filter. The full-precision design uses a maximum-attenuation fitness function. 

I Quantised I Full-precision I 
0.875 0.785269 

0.515625 0.348808 

0.15625 0.065764 

0.015625 0.003069 

Table 4.8: Transition samples for the filters described in the text and Table 4.7. 
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Figure 4.12: Frequency response of a quantised coefficient FS filter designed by GA. 
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4. 7 Conclusions 

It has been shown that the GA was able to discover reasonable solutions on its own for 

filters with a low number of full-precision transition samples, but that for filters outside 

this limited specification its performance was poor. The underlying problem is that the 

GA requires a chromosome from which you can take a portion and use that to make 

a prediction about the fitness of the whole chromosome. In this case, when there are 

only a few transition samples, it easier to do this as the whole chromosome is small, but 

when the number of transition samples rises, it becomes increasingly difficult, because 

the filter response depends on the whole set of transition samples together, and it is not 

possible to predict the filter response from just one or two adjacent transition sample 

values. 

The addition of a hybrid hill-climber produces excellent results because it is highly 

suited to this kind of optimisation problem. Since there is only a single peak, the search 

space is unimodal and running a hill-climber from any point in the search space will 

always find the optimum. This finding, together with the massive speed increases in 

personal computers means that it is no longer necessary to rely on the published tables 

of Rabiner, Gold and McGonagall [5] to find FS filter coefficients, as the coefficients 

of any Frequency Sampling filter with up to perhaps seven or eight coefficients can be 

found in a few minutes. However, for the vast majority of applications, four or five 

transition samples is adequate, so this restriction is not a problem, and the GA/Simplex 

method is an ideal technique. 

The results found by the GA alone for quantised-coefficient recursive filters were 

reasonable due to the smaller search space, while the Simplex search was less efficient 

due to the quantised nature of the search space. However, as the calculations used 

to find the filter responses were full-precision, the coefficients cannot be assumed to 

be optimal for a system where the calculations are quantised throughout, and a fuller 

analysis would have to be added to the fitness function before the results were fully 

representative of the optimisation of a fixed-precision filter. They do however show 
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Chapter 5 

IIR Coefficient Optimisation by GA 

and SA 

5.1 Introduction 

Having shown that the GA is able to optimise a limited range of quantised-coefficient 

FIR filters, the next step taken was to select a further optimisation task, in order to 

extend and expand the investigation into the capabilities of the GA with respect to 

the design of digital filters. 

It was decided to examine an IIR filter, as these have a more complex search space 

and would provide a harder test of the GA's abilities to perform suitable optimisations. 

The IIR not only provides the opportunity to optimise the coefficients of a different 

type of filter, but also the finite wordlength effects, which have a far greater effect on 

IIR filters than FIR. 

The filter structure first selected for optimisation was cascaded second-order canonic 

(or 'direct form 2') sections, as in Figure 2.6. First-order sections could be obtained by 

setting a2 = 0 and b2 = 0, but these were not included explicitly as a separate section 

type for simplicity. 
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5.2 Use of the GA 

The original floating-point GA, that had been used to optimise the coefficients of the 

FS FIR filters, was used to optimise the coefficients of HR filters made up of cascaded 

second-order canonic sections as shown in Figure 2.6. By choosing this IIR filter 

structure, with complex pole-zero pairs, the original floating point GA only needed to 

optimise four numbers per section, namely the radius and positive angle of one pole 

and one zero, as the complex conjugate pole and zero could be easily obtained from 

these. The chromosome used genes in the range Q--1, which were scaled to the required 

ranges, namely 0.5-1 for the radii, and !Hr for the angles. 

The results from this approach were unsuccessful, due to the nature of the search 

space. This only contains useful information which can guide the GA around the 

optimum regions themselves, so a random initialisation and initial selection would 

produce a population with no coherent good genes. It was also found that the high 

fitness region around the optima only covers a small proportion of the total space, as the 

fitness of a solution drops rapidly as a good solution is perturbed. This proportion also 

decreases as the number of sections increases. This means that the initial population 

of random points contains little coherent information about the good regions that the 

GA should be exploring, so it cannot perform adequate optimisation. The inclusion of 

the Simplex method hill-climber was successful in improving the best solution found if 

the GA was very close to the optimum, but cannot be used on its own as the search 

space has multiple peaks. The inclusion of on-the-fly quantisation of the coefficients 

was unsuccessful in improving the GAs performance, and reduced the quality of the 

best solution found as the Simplex search cannot be used with quantised values. 

Since the GA was either very slow or unable to reach the region of the optimum, and 

very fast methods of designing IIR filters, such as the BZT, are readily available [11], it 

was decided to use a BZT design as a seed for the GA. Initially a single quantised BZT 

design was used, but it was found that this solution immediately overran the population 

as its fitness was far higher than any of the random solutions in the first population, 
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and the GA did not progress. The initialisation was therefore changed to seed the GA 

with BZT solutions which had been perturbed by a random amount of up to 5%. This 

led to a much better performance by the GA, even though the final coefficients were 

often quite different to those it was seeded with. Arslan and Horrocks' [78] similar 

approach to IIR optimisation also found that it was necessary to initialise the GA 

with perturbed copies of quantised, full-precision coefficients. A GA-based method for 

finding the best way of quantising full-precision lattice and direct form coefficients has 

been developed by Aketa et al [79]. Although this does not extend the search to the 

total coefficient optimisation investigated here, it does have the advantage of being 

able to weight the performance deterioration to minimise its effects across a specified 

region. 

It was decided that a better approach might be the direct optimisation of quantised 

coefficients, as the GA theory Chapter 3 predicted that a binary-coded GA should be 

most efficient. To this end, a binary-coded GA was written with the same aims as the 

first, real-coded one. The program was written to explicity accept even-order filters 

only, although first order sections could be generated by setting a2 and b2 to zero. 

This binary GA was used to optimise the four variable coefficients (two a and two 

b, as a0 is always one when complex conjugate pole and zero pairs are assumed) of each 

section by using a chromosome of length 4B N /2 where B is the word length (number of 

bits) of each coefficient, and N is the order of the filter. The fitness function extracts 

them from this chromosome in order to calculate the filter's response and so the fitness. 

In order to add flexibility to the design process while retaining the ease-of-use approach 

we are aiming for, the order of the filter could be specified in two ways: either the user 

can specify the number of second-order sections to use, or the GA can use the order 

suggested by the BZT, rounded up to an even number as we currently only use second

order sections. Using the order suggested by the BZT will in general enable the GA to 

find a solution fitting the design specification, although if the tolerance is very tight, 

the coefficient quantisation may push the filter into instability. This means that the 

GA will be unable to find a suitable solution, so the user will have to increase either 
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the order or wordlength until a solution can be found. 

The chosen fitness function was: 

(5.1) 

where tmu.z is the maximum error in the frequency response across the stop- and pass

bands, M is a sca.ling factor, and u!. is the roundoff noise gain of the filter. Both the 

error and noise terms are limited to a value of w-6 , although the noise is never this 

low in practice. The limiting of the frequency response error means that once a filter 

has been found with a suitable response, the fitness function is simply dependent on 

the noise factor. It was hoped that this would make it easier for the GA to find a 

low-noise filter, but this was not found to be the case, as described below. Filters with 

any section whose b coefficients lay outside the stability triangle of: 

0 < lb2l < 1 

lbii < 1 +~ 

were immediately discarded with low fitness. 

5.3 Results 

It was found that the GA only performs well and finds filters within a given specification 

for very loose tolerance filters, i.e. filters with wide transition widths or low desired 

attenuation. This poor performance is discussed further in Section 5.3.1, which looks 

at the nature of the space that the GA is searching. The connection between the a and 

b coefficients and the filter response is not straightforward, and there is a high degree 

of nonlinearity. As the specification becomes tighter, the performance drops off as the 

search space gets harder. 

A second approach to the optimisation problem was used to test that the filters 

were achievable, namely Simulated Annealing (SA) [64]. SA is a hill-climbing technique 

which also allows occasional moves to a poorer solution, thereby permitting the search 
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Figure 5.1: Comparison between the frequency response for fixed wordlength filters 
designed by SA, GA, and BZT. 

to escape from local minima. The degree by which the fitness can worsen decreases 

over time, which allows SA to look widely over the space initially, but confines it more 

closely to the peak or peaks it finds as time progresses. The implementation of SA that 

was used is derived from the Simplex Method [33], and used quantised coefficients. 

Figure 5.1 shows the filter responses for a fixed wordlength filter designed by SA, 

GA, and the filter obtained by quantising the coefficients as found by the BZT. The 

GA was run with a population size of 40, mutation and crossover probabilities of 0.005 

and 0.6 respectively, for 3,000 generations. It can be seen that the BZT solution had 

the highest attenuation, followed by the GA and then the SA, while the GA's passband 

ripple of 0.27dB was larger than the BZT solution of 0.103dB. In fact, the SA solution 

was only just within the requested tolerances of 50dB attenuation and 0.1dB passband 

ripple, which gave it more freedom to reduce the roundoff noise gain, which was an 

order of magnitude lower than for the other two methods. 

Although the results are all similar, the better performance of the SA suggests that 
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there might be some problems with this GA approach: firstly, the fitness function may 

not be suitable, or secondly, the GA may not be as suitable for this problem as SA. 

In order to determine which is the case, a future investigation could alter the fitness 

function to penalise filters whose responses lie far from the desired frequency response 

in either direction, as this can reduce the performance of the filter in other respects. 

To remove the dependency on the combined magnitude response/roundoff noise gain 

fitness function, the use of an extended GA to produce a range of solutions with varying 

tradeoffs between the two criteria will also be investigated (see Chapter 6). 

The poorer performance of the GA is also influenced by the hard search space used 

by the fitness function, which is derived from the minimax error from the desired filter 

response. It has been found that the mean square error between the filter response and 

the desired response is generaUy used as a measure of performance [21, 80], which is 

an easier problem as there are more possible filters which give the same mean square 

error, so finding one with the optimum value is more straightforward. 

5.3.1 The IIR Filter Parameter Space 

In order to determine why the GA performed poorly far from the optimum, the param

eter space was examined to determine its characteristics away from the optimum. The 

search space for a cascade structure IIR filter is known to be generally multi-modal [32], 

and Chellapilla et a)'s investigation [24] showed that higher-order cascaded filters have 

more local minima, which will hamper the search. 

The search space was examined at two points: the BZT solution with parameters 

moved at random by up to 5%, and purely random genes. Since the IIR chromosomes 

have many more genes than the Frequency Sampling FIR, it was decided to examine 

only slices through the search space, by fixing all but two genes and producing a fitness 

surface by varying the other two. 

For the filter with 5% perturbed BZT coefficients (Figure 5.2), the surface has two 

clear peaks, one narrow, the other wide and flat. The best, narrow peak has a much 
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lower fitness than for the quantised BZT solution. 

When the gene values are completely randol!l (Figure 5.3), the peak fitness drops 

dramatically, and the surface becomes highly multi-modal, but with little variation in 

peak size. This means that far from the optimum, the GA has no useful information 

to go on, so it wiJI be unable to function properly. A more serious problem is that 

the highest peak for one pair of genes moves as other gene values are altered, e.g. by 

crossover, so as the GA moves one gene towards its own optimum, the optimum value 

for others can move. This makes it harder for the GA to operate, as its targets are 

continuously changing as it runs, and it cannot build up a good set of genes as what 

defines a 'good' gene is also continuously changing. 

For the pole position genes the effects are less severe, although the peak fitness 

reduces and extra peaks appear as the coefficients move away from their BZT-calculated 

values. 

It is clear from these surface plots why the GA needs seeding with a good solution, 

such as that from the BZT, in order to reach a region of the search space with enough 

large-scale structure to allow it to search effectively. In future work it might be more 

effective to use the GA to optimise the filter structure, and use the BZT to generate the 

corresponding filter coefficients, from which the frequency, phase, and noise responses 

can be determined and used to calculate the fitness. 

5.4 Discussion and Conclusions 

As mentioned above, the randomly-initialised GA was not able to find suitable solutions 

due to the nature of the search space. In a similar fashion to the FS FIR filters, for the 

GA to be successful the chromosome representing the filter coefficients must be able 

to be broken down into smaller parts which can be used individually to predict the 

filter response. The chromosome used here, although it uses the pole-zero radii and 

angles, which have a more direct correspondence to the response of their second-order 

section than its a and b coefficients, still does not fulfil that criterion. This is due to 
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Figure 5.3: An example slice through the search space for a sixth-order random coef
ficient IIR filter. 
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the nature of the digital filter itself, which is dependent on its entire set of coefficients, 

taken together; it is not possible to predict a filter's overall response from a small subset 

of its coefficients or pole-zero positions, so neither can its fitness be so predicted. This 

leads to the GA being unable to determine if any part of a particular chromosome is 

better than the corresponding section of any other chromosome, so it cannot determine 

which of the randomly-selected initial population has suitable genes to carry on to the 

next generation, and the results are poor. 

When the initial population is seeded with a BZT solution, the GA has a few good 

chromosomes, and hence genes, to work with, and it is able to make some progress, 

but again, as it relies on being able to predict a filter's fitness from a section of its 

chromosome, it is not able to work very efficiently. Although the GA was run until 

no improvements had been found for several hundred generations, time limitations on 

the maximum number of generations could have limited the GA's effectiveness, which 

future increases in computing power could overcome. 

SA does not need to be able to perform the same performance prediction and simply 

looks at the performance of the chromosome as a whole. It is therefore able to perform 

more effectively in this situation than the GA, and, as was shown in Figure 5.1, is able 

to find a suitable solution which trades off the frequency and noise responses in the 

best way-the frequency response only just fits within the desired response, leaving 

more freedom for the noise to be reduced. As the performance with respect to each 

criterion has to be traded off against the others, this is the best possible result. 

The GA- and SA-based approaches have the advantage of flexibility over a BZT 

approach, which requires that an analogue filter be found with the desired response, 

which may not be possible. Using the GA or SA, only a near approximation needs to 

be found by BZT, which can then be further optimised towards any desired response. 

The initial results presented here suggest that, although the GA produced encour

aging results, SA is probably the better technique. Further investigations into the use 

of SA techniques would be useful in determining its suitability over a wider range of 

IIR filter designs. 
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Chapter 6 

Multi-criterion Optimisation 

6.1 Introduction 

The GA and SA techniques which have been used up to now have been strictly single-

criterion optimisers. Although both the magnitude and noise responses were optimised 

by a GA in the previous chapter, this was achieved by simply adding the two measures 

together. The GA is, however, able to be extended in a way which could make it 

especiaUy useful for filter design, by allowing it to optimise a soluti()n with respect to 

several criteria simultaneously. As was seen previously, the filter design process involves 

several interacting steps, each of which can affect the filter's performance with respect 

to any of the others. It is possible to write the GA in such a way that it examines 

more than one performance measure at once, and attempts to generate either one 

compromise solution or a set of solutions with varying trade--offs, from which the user 

can select one. 

6.2 Techniques 

A variety of methods of performing multi-criterion optimisation (MCO) wiU now be 

examined, and their applicability to filter design analysed. 
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6.2.1 Weighted sum of fitnesses 

This is the simplest form of MCO, and does not require any changes to be made to 

the standard single-criterion form of the GA, as it takes place wholly within the fitness 

function. Instead of the usual single performance measure, a number of them are taken 

in order to determine the chromosome's performance with respect to each criterion. In 

order to use these values in a single-criterion GA, they are then combined into a single 

weighted sum: 

Fitness= Wt.ft + W2-h + ... + WN.fN 

where Wi is the weighting and /i is the fitness with respect to criterion i. This sin

gle value is then passed back to the GA, and used in the normal way to decide the 

individual's fate. 

This method has the great advantage of simplicity, but it is not guaranteed to 

produce the desired solution without a great deal of user intervention. It is necessary 

to perform an iterative optimisation of the weightings, by running the GA, examining 

the solutions found, and then adjusting the weightings repeatedly until a suitable set 

of weightings is found. 

This method is feasible for a single-purpose GA, which is only optimising two cri

teria, but for more complex applications the rapidly increasing difficulty of finding the 

correct weightings makes it increasingly unsuitable. This is especially true for a prob

lem where the range of fitness measures is not known or is unbounded. While it may 

be possible to apply some additional meta-optimisation technique to the weightings 

to find the best set, this would add a large amount of complexity to the optimisa,.. 

tion. It also has the disadvantage of only returning a single 'best' solution, with a 

single performance trade-off, when a variety of solutions with differing trade-offs exist. 

The following techniques are designed to search for this set of solutions, known as the 

Pareto-optimal or Non-dominated sets (POS, NDS). 
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6.2.2 The Paret~optimal set 

The weighted-sum approach described above finds a desired solution by the repeated 

adjustment of the weights applied to each criterion, and so only returns a single solu

tion. Since, however, there are a range of solutions with different trade-offs, a better 

approach might be to find the best set of solutions, and allow the user to pick the 

most appropriate for their application. This not only removes the need for most of the 

user intervention, but also automates the trade-off process, turning a complex iterative 

process into a simple single-step one. 

When using a model in which several performance measures are being optimised, 

it will often be the case that these will not be independent, so a change to the chro

mosome which alters the performance with respect to one measure will also alter the 

performance with respect to another. An example of this might be a filter in which 

the order and stopband ripple are both being minimised. A low order filter is not able 

to achieve such a low ripple as a longer one, so there is a conflict and it is not possible 

to satisfy both conditions simultaneously. Within the search space, for many, if not 

most of the solutions, both performance measures can be improved simultaneously, but 

there is a subset for which improving one always worsens the other. This set of 'best' 

solutions is known as the Pareto-optimal set (POS) [81]. 

The definition of the Pareto-optimal set is based on that of domination. A solution 

is said to dominate another if it has a better fitness in at least one measure, and at 

least the same fitness with respect to all the other measures. All solutions outside the 

POS are dominated by at least one solution within it, while no member of the POS is 

dominated by any other solution at all. 

The concept of domination allows the mathematical specification of the POS, where 

a vector of fitnesses is dominated by another if the second is partially less than the 

first. A vector x of i fitnesses is partially less than vector y if: 

(x <p y) {::} (V;)(x; ::;; y;) 1\ (3;)(x; < y;) (6.1) 

i.e. for all i, x; ::;; y;, and for at least one i, X; < y;. While the POS is the optimum 
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First fitness 

Figure 6.1: Example illustrating pareto-optimal and non-dominated sets. 

set of solutions, the GA, by its random nature, is not guaranteed to find it. Within 

the GA's population, the undominated solutions form the non-dominated set for that 

generation. 

An illustrative example is shown in Figure 6.1, for a two-criterion fitness function. 

The continuous line shows the position of the POS, and limits how far down and left 

the positions of the solutions found by the GA can go. The line is shown concave, but 

could be any shape, e.g. linear, convex, or stepped. The crosses on the diagram show 

the positions of solutions within the NDS found by the GA. Fitness functions for the 

various criteria must return smaller values for better solutions, and selection techniques 

developed which favour those solutions which lie closer to zero for each criterion. 

Nicolson and Cheetham [82] have proposed a way of finding the POS by using 

known, good solutions as a seed for a conventional optimisation technique, 'inching' 

along the POS by changing the weighting of the different performance measures. This 

approach is very limited and suffers because adjacent solutions on the POS can have 

very different parameter values, making it very difficult for conventional searches to 

move between them. GA-based approaches are much more flexible, and can optimise 
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such 'niches' of dissimilar solutions on the POS. 

6.2.3 Vector-Evaluated GA 

The Vector-Evaluated GA (VEGA) developed by Shaffer (83], is a simple technique for 

searching for the POS. It is perhaps not a true multi-dimensional technique as only 

one criterion is examined at once, but the resulting solutions can be combined to give 

multi-dimensional results. 

In VEGA, the population is split into as many sub-populations as there are fitness 

measures, and each sub-population's fitness is calculated with respect to a single fitness 

measure. The population is then recombined before selection and reproduction occur, 

causing those members of the population which have a high fitness with respect to their 

single fitness measure to be favoured. Under crossover, members which are highly-fit 

are combined, potentially producing solutions which have an intermediate performance 

with respect to a number of criteria, i.e. a trade-off has been performed. Throughout 

the run, the population is examined and the non-dominated solutions are stored, but 

these are not used to drive the search. 

Although VEGA is simple to implement, it is limited in the range of solutions it 

produces, and the fitness functions have to be designed to return similar performance 

measures for what might be disparate aspects of the design. Because the solutions are 

selected by only a single fitness measure, it tends to find solutions which are clustered 

near to the axes. These therefore perform well with respect to one criterion, but have 

little trade-off of performance, unlike those solutions that lie between, which perform 

reasonably under all measures. This is illustrated in Figure 6.2, where the members of 

the NDS found by the VEGA GA can be seen to lie mainly close to the edges where 

they can have a good performance with respect to one criterion. 
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First fitness 

Figure 6.2: Example of a non-dominated set found by VEGA, illustrating the bunching 
of solutions near the axes. 

6.2.4 Goldberg's fitness allocation method 

In order to find solutions with a wide range of trade-offs it is necessary to make use of 

the all of the fitness measures simultaneously. A method described by Goldberg [48] 

combines this information with the degree of dominance of each member to facilitate 

a more wide-ranging search. 

All of the members of the population have their fitnesses determined under each 

performance measure, giving a 'fitness vector' which specifies a position in multi-

dimensional space. These positions are then examined to determine the NDS within the 

current population. The members of this set are given a ranking of one, and are then 

excluded from consideration for the next step, where the NDS of the remaining mem

bers of the population is found. These are ranked two, and then excluded themselves. 

This repeats until all of the population has been ranked. Fitnesses are now allotted by 

rank, the higher ranks receiving a higher fitness, as illustrated in Figure 6.3. Fonseca 

and Fleming's analysis of multi-objective natural algorithms [84] has suggested that 

Pareto-based fitness allocation strategies such as this were the most promising. 
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Figure 6.3: Example ranking calculation applied to non-dominated sets in the popula
tion. 
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First fitness 

Figure 6.4: Example population distribution between niches. 

The fitnesses that the members of the population now have can be used directly in a 

selection process, but if the first few highly-fit solutions cause premature convergence, 

by being the only members of the best NDS, then the efficiency of the search process 

can be compromised. To help combat this, fitness sharing is used, whereby the fitness 

of every member of the population is reduced by a crowding factor. This means that 

the more members of the population are bunched together, the more their fitnesses will 

be reduced. This has the effect of encouraging the GA to search in the less-densely 

populated areas, and so the members of the NDS should be spread out more evenly 

along the 'wavefront' of best solutions and so contain a wider range of solutions. If 

the POS is 'stepped', as in Figure 6.4, then by encouraging the GA to cover a wider 

area it becomes easier for the population to find each of the highly-fit regions, which 

it might not otherwise do due to premature convergence to the first regions it finds. 

Mahfoud (85] has found that Goldberg's fitness sharing method works well for a wide 

variety of problems, but may have weaknesses when the search space has many local 

optima with similar performances to the pareto optima. 

The existence of such 'niches' can make a further adaptation of the GA useful. The 
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chromosomes which exist within each niche will generally be similar to each other, but 

different to the chromosomes in the other niches. This implies that when crossover 

occurs between chromosomes from different niches, the offspring will tend to be less 

useful than the offspring of parents from the same niche. When the POS is smooth, 

this technique is still useful since a chromosome which has a good performance with 

respect to one criterion will probably be quite different to a chromosome with a good 

performance with respect to another. These effects can be reduced by encouraging 

crossover between similar pairs of chromosomes. This can be achieved by selecting the 

first string for crossover, then altering the selection probability of the second according 

to its relative Hamming distance to the first. This allows the GA to search the niches 

more effectively for high-fitness solutions. 

The benefits of including fitness sharing and crossover restrictions are extremely 

problem-dependent, and are determined by the shape of the POS, and the variation of 

the fitness with a change in chromosome with respect to each of the criteria. Similar 

strategies have been proposed by Horn et al [87] and Srivinas and Deb [88]. 

6.3 Applications of MCO optimisation to filter de-

• sign 

Standard approaches to MCO filter design generally involve a large amount of 

constraint-based mathematical analysis. Selesnick's approach [89] requires the solv-

ing of a set of non-linear equations, and multiple runs are necessary to obtain a range 

of solutions with different characteristics. In [27] Lawson designs PCAS filters with 

approximately linear phase directly, by solving a set of linear equations. 

Natural Algorithms have been applied to a variety of MCO filter optimisation prob

lems. Roberts et al [40] and Tang et al [90] use a GA to design FIR and IIR filters 

respectively, by using a structured chromosome to represent both the filter structure 

and coefficients. This allows both the frequency response performance and the fil-
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ter complexity to be optimised simultaneously. Franzen et al [67] use Evolutionary 

Strategies and Simulated Annealing, with a weighted sum of performance measures, 

although this has the disadvantage mentioned above, that manual intervention and 

repeated runs will be required to obtain a solution with the desired trade-off. 

Storn [66] performed a basic form of MCO on IIR filters using Differential Evolution, 

by giving each solution the poorer of two fitness measures, namely the degree by 

which the solution violated templates for the frequency response and group delay. This 

ensured that a filter had to fulfil both criteria to get an optimum fitness. Redmill and 

Bull [45] have used an MCO GA to produce the pareto-optimal set for low-complexity 

integer-coefficient FIR filters, thereby optimising both the filter performance and its 

implementation complexity simultaneously. 

6.4 GA difficulty measures and deception 

It is often hard to predict whether or not the GA will be a suitable technique to use 

without trying it in practice [91]. Horn and Goldberg's investigation [92] shows that 

the number of suboptimal peaks alone does not give an indication of the difficulty of the 

problem. To combat this, a number of measures have been developed which attempt 

to give a qualitative, if not quantitative measure of the difficulty of the problem from 

the perspective of the GA. 

6.4.1 Epistasis 

In Chapter 3 the schema theory was described, which attempts to explain the underly

ing mechanism which drives the GA. One of its main assumptions is that it is possible 

to predict the fitness of a chromosome from just a short section of it. For many prob

lems this is not the case, and the GA is not able to perform well. The degree to which 

the fitness of a schema is dependent on the values of the other undefined bits (shown 

by a # in the schemata) is called the epistasis. The effect of epistasis is to remove the 

linear relationship between the gene values and the overall string's fitness. The degree 
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of epistasis within a string can vary from 0 to 100%. 

Davidor [93] has developed a qualitative measure of the epistasis, which is based 

on the degree to which the actual fitness of strings vary from the fitnesses predicted 

by their genes. A set of random chromosomes, as large as is possible within storage 

and/or time constraints, is selected, and their fitnesses found. Each chromosome is 

then examined, and the average fitness of the strings with bit zero set is found, then 

the average fitness of those with bit zero clear. The corresponding values for each bit 

position are also found. 

The first of the chromosomes in the set is then examined, and the average fitnesses 

are summed which correspond to the bit settings at each position. This value is then 

divided by the string length to give a predicted fitness for the string. The other 

random strings are also examined in this way, and their predicted fitnesses found. A 

comparison is then made between the actual and predicted fitnesses, from which a 

measure of epistasis can be made. 

This method has a number of drawbacks, in that the measure of epistasis is quali

tative and problem-dependent. It also suffers from a substantial sampling error which 

becomes increasingly large for small sample sizes. The latter is particularly true for 

those problems which have a long chromosome, making it impossible to store all the 

possibilities or to calculate their fitnesses in a reasonable time. However, it does allow 

a qualitative comparison to be made between the epistasis of different representations 

of the same problem. 

An example of a zero-epistasis problem is that of maximising the numeric value of 

the binary string. This problem has no gene interaction, because it is possible to say 

that regardless of the setting of any other bit, if a bit is set then the fitness will always 

be higher than if it is not. This means that a simple bitwise optimisation can be used to 

find the optimum. A fully-epistatic problem, in which there is a 100% interdependence 

of gene values, is a delta function where the fitness is 7.ero unless all the bits are set, 

when the fitness is one. In this scenario, how a bit setting affects the fitness is totally 

dependent on the setting of the other bits-if they are all one, then the setting of the 
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bit will determine the fitness; if they are not, then the setting has no effect at all. 

For this type of problem, it is generally impossible to predict the chromosome's fitness 

from a small portion of it, so the GA, and a bitwise optimisation will fail. 

The GA is best suited to problems with a reasonable amount of epistasis-too low a 

value, and the added complexity of the GA is unnecessary, and a simpler optimisation 

technique is adequate; too high, and the schema theory breaks down and the problem 

is unsuitable. 

6.4.2 Fitness-distance correlation 

There are some problems which have a low epistasis, but which the GA still finds 

hard. Davidor's method above would predict these problems to be suitable for the 

GA, implying that a better method of calculating the GA-difficulty of a problem is 

needed. 

Jones and Forrest (94] have proposed a different measure, the Fitness-distance cor

relation (FDC), which analyses the deceptiveness of the problem. A search space is 

deceptive in GA terminology if the search space tends to lead the GA away from the 

optimum, which can happen if the optimum is small and lies within an otherwise 

low-fitness region. 

The FDC is calculated by finding the degree of correlation between a string's fit

ness and the distance to a global optimum. For a simple unimodal space, there will 

be a monotonic decrease in fitness with Hamming distance from the optimum, so the 

correlation will be high. As the search space becomes more complex and hilly, there 

is less useful information to tell the GA which direction the optimum lies in, so the 

correlation will be lower, and the problem will be harder for the GA. For a deceptive 

problem, where the fitness increases as the Hamming distance from the optimum in

creases, the FDC will indicate a correlation of opposite sign to the unimodal function, 

meaning that the G A will be led away from the global optimum. 

The signs of the FDC values are dependent on whether the GA is being used as a 
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maximisation or minimisation tool. When minimising a problem, the sign of the FDC 

should be positive for a suitable problem, since the fitness should increase with distance, 

and negative for a deceptive problem. When analysing a maximisation problem the 

signs will be reversed. 

The FDC is more reliable than the epistasis measure given above, but it does rely on 

the user knowing the location of the global optima in the search space. In the absence 

of this knowledge, the space around local optima can be analysed, but it cannot be 

assumed that the results can be extrapolated to the global situation. 

6.5 Alterations to the GA 

In order to extend the GA as planned, to encompass the optimisation of more than 

one design criterion simultaneously, the GA was extended to include MCO, in the 

form proposed by Goldberg (Section 6.2.4). The interface was extended to allow the 

display of non-dominated sets, with the the filters described within it. The limit of 

640K of memory imposed by the DOS operating system meant that the number of 

non-dominated individuals which could be stored within the NDS was restricted. This 

reduced the effectiveness of the search considerably. To combat this, in the final phase 

of the work described in Chapter 8, the Borland C++ 3.1 compiler was dropped in 

favour of the GNU freeware DJGPP compiler for DOS. This compiler has Oat 32-bit 

memory addressing, allowing the full memory of the computer to be used. This meant 

that the maximum size of the NDS could be greatly increased, and increase the GA's 

potential. 
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Chapter 7 

An Analysis of the Suitability of 

GA-based Optimisation for 

Non-linear Phase FIR Filter Design 

7.1 Introduction 

In Chapter 4 the design of linear-phase FIR filters by GA was discussed. These filters' 

linear phase makes them particularly useful in areas such as biomedicine and audio 

where low phase distortion is of paramount importance. They do however suffer from 

having a long delay of half the filter length, making them unsuitable for high-speed, 

real-time applications. If the restriction on linear phase is relaxed outside the passband, 

then a shorter filter could be designed with the same magnitude response but a lower 

delay, as shown by Selesnick and Burrus [89], who used standard methods to produce a 

reduced delay, but with the restriction of having a maximally-Hat magnitude response. 

Some techniques requiring or generating minimum-phase filters exist, approximating 

an FIR filter with a much shorter IIR filter [95), but this gives no control over the 

linearity of the phase response. 

It was now planned to investigate another area in the design of FIR filters by 

extending the GA into a true MCO tool, and designing the filters under two criteria 
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simultaneously. This would not only simplify the design process by combining a number 

of design steps, but also reduces the degree of user intervention by reducing the number 

of iterations needed to produce a desired filter. A further analysis step, that of the effect 

of coefficient roundoff on the filter's response was catered for by using a binary rather 

than a real-coded chromosome. This approach meant that the coefficients always have 

quantised values when they are decoded by the fitness function, so the filter's responses 

intrinsically include the effects of their being represented with finite precision. The use 

of an MCO GA meant that the designer could be presented with a range of non

dominated solutions from which the most suitable can be selected, rather than having 

to undertake an iterative adjustment of weightings (Chapter 6) to obtain a suitable 

solution. 

7.2 Non-linear phase FIR filters 

It is a necessary and sufficient condition for a filter to have a linear phase response 

for its impulse response to be symmetric or antisymmetric, although this requirement 

ties up a large number of degrees of freedom by constraining the coefficients. In order 

for the filter to achieve a high stopband attenuation or a sharp cut-off, the filter must 

have a large number of coefficients. Since the FIR filter's group delay is given by half 

of the filter length, it means that the delay of high-attenuation or sharp cut-off filters 

is also high. This makes them unsuitable for high-speed, real-time applications where 

high-speed devices are unavailable, and also means that a filter must be very long in 

order to achieve that same magnitude response as a filter with complete freedom in the 

phase domain. Linear phase filters have the advantages that their symmetry means 

that they only require half the coefficient storage of a non-linear filter, and they can 

therefore be implemented more efficiently. Their constant group delay means that the 

signal's components are delayed by an amount proportional to their frequencies, so it 

is not distorted. This property is particularly important in audio, data transmission 

and biomedicine, which are especially sensitive to distortion. 
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In order to reduce the length of the filter, and so also reduce the delay, the restriction 

on linear phase can be removed. This can allow the design of a filter with the same 

magnitude response, with as few as half the original number of coefficients for wide 

pass band filters [11]. The class of filter, known as the minimum-phase, has the shortest 

possible delay for a given magnitude response. Although these filters are suitable for 

phase-insensitive applications, they cannot be used in other situations, so a compromise 

must be reached between phase-linearity and filter length. One way to do this is to 

force the phase response of a non-linear filter to be as close to linearity as possible in 

the passband, where it is important that the signal should not be distorted. In the 

stopband, the phase response can be left unrestricted, because the signal is attenuated, 

so any distortions caused by nonlinearities are unimportant and can be discounted 

provided the attenuation is high enough. As the linear-phase restriction has been 

removed, the constraint on the coefficients being symmetric no longer applies and 

they can describe a wider range of filters, and the filter length can be reduced while 

maintaining the magnitude response. 

In order to design such a filter, the simple optimisation approach used in Chapter 4 

is no longer suitable, as there are two performance measures which need to be exam

ined: the performance of the magnitude response with respect to the desired response 

template, and the phase response with respect to linearity over a chosen region of the 

response. Since these have different ranges of unknown magnitudes, several iterations 

would be required to find the correct weights to use in a weighted-sum fitness function 

in a standard GA. A better approach is to use one of the multi-criterion optimisation 

(MCO) approaches detailed in the previous chapter. These allow the GA to perform 

the trade-off automatically without user intervention, producing a range of solutions 

from which the most applicable may be selected. 

A major objective of this work is the simplification of the filter design process, so 

to this end a multi-objective Genetic Algorithm was developed to optimise the filter 

coefficients with respect to both the filter's magnitude response and its phase response 

in a region of the passband. To increase the number of filter design steps being under-
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taken simultaneously, the Genetic Algorithm used a binary chromosome, containing a 

concatenated list of the coefficient values, which therefore intrinsically accounted for 

coefficient quantisation effects. Since the impulse response has the same values as the 

filter coefficients, the quantised coefficient values decoded from the chromosome can 

be used to find the responses by zero-padding them to a length of 1024, and taking the 

FFT. 

The fitness function with respect to the magnitude response was the maximum 

error from a desired response template (such as that shown in Figure 7.1), while that 

for the phase response was the sum of the squared differences between the response and 

an LMS straight line fitted through the response, in a selected region covering most of 

the passband, thereby giving a measure of its linearity. 

7.2.1 Effects of coefficient quantisation 

A further important factor which should be taken into consideration is that of coefficient 

quantisation. In a practical application, the coefficients will be stored in a quantised 

form, which means that they will only be able to take a certain number of values, 

and that consequently there are only a finite number of possible filters for any given 

order. Standard methods of FIR filter design rely on full-precision maths, e.g. the 

hill-climber which requires a continuous surface to perform effectively with small-scale 

movements, such as those that occur when the search has converged on a peak. When 

the coefficients are stored in a quantised form, small ranges of their continuous values 

are stored with the same quantised value. This results in small areas of the search 

space, with dimensions of the quantisation interval, having the same parameter values, 

and so the same fitnesses. This is illustrated simply in Figure 7.2. 

When a hill-climbing search such as the Simplex method (described in Section 4.4) 

is initialised, it looks and moves around the search space in large steps. Since it 

only takes point samples, the stepped nature of the search space is masked and the 

optimisation can proceed effectively to the higher-fitness regions of the space. When 
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Figure 7.2: Illustration of the effect of coefficient quantisation on the search space. 
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the Simplex begins to converge, however, it shrinks, and takes smaller and smaller 

steps. This means that it only looks at the immediate vicinity of its current position, 

and the fiat regions are increasingly apparent. The final optimisation by the Simplex 

method relies on being able to take ever-smaller steps, which is not possible with a 

quantised space, and the search also fails if two of the points in the Simplex occupy 

the same position in space. This is very unlikely to happen in a full-precision system, 

but is bound to eventually in a quantised system when the step size drops to the order 

of the quantisation interval. 

To overcome these difficulties, a bitwise form of hill-climbing must be used. The 

method chosen was to flip each bit in the string in a random order, calculating the new 

fitness each time. If flipping the bit improved the fitness with respect to at least one 

criterion, then the change was kept, otherwise the original bit was restored. This was 

applied to the members of the NDS in the current population only, once every 50 or 

100 generations. 

7.3 Use of the GA 

An MCO GA was set up to optimise the quantised coefficients of non-linear FIR filters. 

A binary approach was used so that the effects of coefficient quantisation on the filter 

performance were accounted for intrinsically. The fitness function calculated two per

formance measures, firstly how much the magnitude response deviated from a desired 

template, and secondly the mean-squared error from linearity of the phase response 

over a specified region covering most of the passband. This approach was intended to 

allow the GA to trade-off the performance of the quantised coefficient filters, and to 

return a number of solutions to the designer, thereby performing the two optimisations 

simultaneously while intrinsically taking account of coefficient quantisation. This com

bines a number of the traditional design steps into a single operation, while retaining 

the freedom of the designer to select the most applicable design for their application. 
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7.3.1 Design performance 

Initial runs were performed with randomly-initialised chromosomes, but proved unable 

to find solutions which fitted the design templates satisfactorily, or even to within a 

magnitude response error of 1Q-20dB, although the optimisation of the phase-linearity 

was generally more successful. The magnitude response fitness function minimised the 

maximum deviation from the supplied template; all solutions which fell fully within 

the template boundaries were given the same fitness as all were taken to be equally 

suitable. 

Since reducing the minimax error is a hard problem, the fitness function was 

changed to optimise the RMS error in the deviation of the magnitude response from the 

template. Using the RMS error is more forgiving of outliers and 'rogue' points, and so 

should result in an easier optimisation for the GA. This proved more successful in that 

the GA was able to reduce the RMS error more than when using the minimax error, 

although as it then resulted in a greater minimax error in the magnitude response, the 

technique was still not satisfactory. 

To determine if the problem is simply too difficult for the GA to solve from 

randomly-initialised positions, solutions close to a known good solution were used to 

'seed' the population. If the GA is able to perform the optimisation, it should then 

be able to improve on those solutions. The first population was therefore filled with 

perturbed copies of a Remez exchange solution, where a chosen percentage of the bits 

in the good chromosome were flipped. The first trials added a single unperturbed copy 

of the good solution to the population, but this caused premature convergence as the 

seed was a much better solution than the randomly-chosen ones and therefore quickly 

overran and dominated the population. 

To combat this problem, the population was seeded entirely with perturbed copies 

of the Remez exchange solution. This allowed the GA to perform more effectively, but it 

was never able to find a solution even as good as the original quantised Remez exchange 

design. It had been expected to improve on this design as the linear phase constraint 
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Figure 7.3: Loose-tolerance template used to test the non-linear FIR design technique. 

had been relaxed without reducing the order, and by quantising the coefficients, they 

are moved from their original positions and are no longer optimal. 

Since the Genetic Algorithm had not performed well, a loose tolerance filter tem

plate as shown in Figure 7.3 was used as a test problem. The order (as determined 

by Matlab) was set to 25, and the wordlength to eight. As the order was determined 

for a linear phase filter, and the filter being designed was not linear phase over the 

whole response, it was anticipated that the Genetic Algorithm should be able to find 

an acceptable solution to this problem, as there were fewer constraints on the coeffi

cient values. However, even for this simple problem, the Genetic Algorithm was only 

able to improve a little on the initial best fitnesses. 

A typical best magnitude-response solution found by the GA is given in Figure 7.4 

for a lowpass, N = 40, Type I filter with band edges at 0.1 and 0.175. The filter is 

shown with the nearest equivalent Frequency Sampling FIR filter found by hybrid GA. 

The non-linear phase GA was run with a population of 100, crossover and mutation 

probabilities of 0.6 and 0.005 respectively, for 8,000 generations. The FS filter was 

found in under 30 seconds, while the non-linear phase GA ran for almost two hours. 
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Figure 7.4: A typical non-linear phase FIR filter compared to the nearest equivalent 
Frequency Sampling linear phase filter, both found by GA. 

The filter shown had the best magnitude response, with a maximull! error from the 

template of 32.569dB, and a sum-of-squares error from phase linearity between Q-0.09 

of 0.0082. The filter with the worst magnitude response error (59.908dB) had a phase 

response with a sum-of-squares error from linearity equal to zero to six decimal places. 

The template was ±0.25dB over the passband, +0.25-200dB over the transition band, 

and -60-200dB in the stopband. The filters' characteristics are compared in Table 7.1. 

At this point, investigations were undertaken to determine why the Genetic Al

gorithm was not performing well, and to analyse the difficulty of the problem. The 

analyses, which were performed for the filter design template in Figure 7.3, will now 

be detailed. 
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Value I Linear phase FIR I Non-linear phase FIR I 
Word length full-precision 16 

Generations 1,000 8,000 

Time <30 secs -2 hours 

Best attenuation 66.567dB 27.431dB 

~error in linearity 0 0.0082 

Table 7.1: Comparison between a linear-phase FIR filter found by the technique de
scribed in Chapter 4 and the best magnitude response filter found by MCO GA. 

7.4 Analysis of non-linear FIR filter design 

7 .4.1 The parameter space 

The parameter space and the search space are related but different ways of looking at 

the problem space. The search space is the space as seen by the GA, which in this case 

will be examined by altering chromosome bits and finding the fitness of each solution. 

Although this gives the truest picture of what the GA 'sees', it is hard to visualise 

or display. The parameter space, on the other hand, changes the viewpoint on the 

problem by altering the model parameters directly, so they can take any values. This 

makes it easier to plot slices through the space by fixing all but two parameters and 

altering the others to give a 3-D search surface of the fitnesses. This surface is clearly 

different to the search space, but can be made most similar to it by plotting it with 

a number of divisions equal to the number of divisions in the binary-representation in 

the chromosome. 

It is possible to build up a picture of the nature of the parameter space by taking 

a number of slices through the space by fixing all but selected pairs of parameters, 

and varying those over their allowed range in a finite number of steps. By selecting 

pairs which are held at different locations in the chromosome, the effects of short- and 

long-range interactions can be discovered. The fitness function used was the magnitude 

response error, as this was the fitness measure that the GA had had the most problem 

with. A lower fitness value therefore means a better filter. A good solution was 
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required, so in the absence of one found by the GA, coefficients calculated by the 

Remez exchange method were used to seed a bit-flipping local search algorithm, and 

the solution this found was assumed to be a near-global optimum. 

To draw each slice, all but two of the filter coefficients were fixed, and a surface 

plotted from the fitnesses found by varying the others. For the 25th order filter, the 

slices were produced by varying the following pairs of coefficients: 1 and 2; 1 and 13; 1 

and 24; 12 and 13. The rest of the coefficients were fixed, firstly at the values found by 

the local search optimisation; secondly at the local search values perturbed by 5% of 

their value, and finally at random values. For simplicity these data sets will be referred 

to as LS (local search), P (perturbed local search) and R (random), for example 1,24,P 

and 12,13,R. It should be noted that the changes in the appearance of the parameter 

space described below were similar for all the data sets. It should be noted that these 

surfaces represent the maximum error in decibels between the filter and the design 

template, so a smaller error means a better solution. 

Figure 7.5 shows the 1,13,LS data slice. It shows that the parameter space consists 

of smooth intermediate-error regions separated by narrow high-error ridges. The low

error region around the optimum (which lies in the depression at the front of the figure) 

is clearly small compared to the total area of the slice. When this is extrapolated to 

the full 26-dimensional volume, the proportion of the total volume with a similarly 

high fitness will be extremely small. The other unperturbed local search slices have 

a similar appearance but with different numbers and orientations of the ridges, which 

are mostly straight like the 1,13,LS slice, while for the 1,24,LS slice, some of them were 

curved. The optimum region in all the slices is very small, suggesting that perturbing 

any coefficient will quickly lead to a large drop in fitness and therefore performance. 

In Figure 7.6, the same slice is shown, but with the fixed coefficients perturbed 

by 5% from their original, near-optimal values (the 1,13,P slice). The surface has 

become more multi-modal, with a greater number of low-error regions than before. 

The characteristic appearance of the slice is, however, the same. The small low-error 

region around the local search solution has disappeared, leaving a comparatively poor 
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best solution. The position of this best remaining solution moves in all the slices 

examined, sometimes considerably, so seeding the Genetic Algorithm with a perturbed 

solution will not generally start it off in the region of the true optimum. 

The same slice was also obtained for a filter with the fixed coefficients selected at 

random. As can be seen in Figure 7.7, the space is very flat, with very poor filter 

performances, and no indication as to the location of the original optimum solution. 

This has the implication that a GA seeded at random will contain no useful information 

as to the best regions to search in, so will be unable to proceed effectively. 

7.5 Measures of GA-difficulty 

As with all design techniques, the GA has its advantages and disadvantages which 

make some problems easier and some harder for the technique to solve. For the GA, 

although it has several advantages over 'standard' optimisation methods, its success is 

highly dependent on the structure of the chromosome, the search space, and how they 

interact, which in turn depends on both the problem itself and the way it is stated. 

The deceptiveness of a problem in a GA-sense can have a number of causes, but 

its effect is to tend to lead the GA away from the global optimum. This can occur if 

highly fit, short building-blocks combine to give longer blocks with a lower fitness. If 

this occurs, it means that although selection may pick those strings containing high

fitness building blocks, when crossover combines them they produce poorer offspring, 

and one of the basic premises behind the GA breaks down. Other types of deception can 

occur when the structure of the search space 'misdirects' the search. For example, ifthe 

global optimum is small in area and is surrounded by the worst points in the space, then 

in almost all areas of the space the direction towards the local optima will be different 

to the direction of the global optimum. This is illustrated in Figure 7.8, where it can 

be seen that apart from in the narrow shaded region, the direction towards the nearest 

optimum leads away from the global one, and the problem is deceptive. If the deception 

occurs in the search space, as in this example, then the search will be difficult for any 
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Figure 7.5: Slice through the 1,13,LS data set, with a best fitness of 11.3dB. 
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Figure 7.6: Slice through the 1,13,P data set, which has has a best fitness of 40.5dB. 
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Figure 7.7: Slice through the 1,13,R data set, with a best fitness of 32.2dB. 
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Parameter value 

Figure 7.8: Illustration of deception, where only points in the shaded area indicate the 
location of the optimum. 

technique which uses hill-climbing or gradient information or which performs a random 

search, while the deception in the chromosome is clearly a GA-specific problem. The 

level of chromosome-based deception can be reduced by changing to a higher-cardinality 

alphabet, but this is not always possible or desirable, for example if the problem fits 

naturally into a binary representation. 

7.5.1 Epistasis 

One of the causes of chromosome-based deception is a breakdown of the linear rela-

tionship between gene values and the fitness of the solution they represent. It should 

be possible to predict the fitness of a chromosome from a short portion of it, but 

this breaks down if solutions containing good genes combine to give a poorer solution. 

When this occurs, it implies that there is a great degree of interaction between different 

genes' values and the fitness of the chromosome as a whole. The degree to which the 

fitness contributed by a particular gene is dependent on the values of the other genes 

in the chromosome is called epistasis. 

It was now proposed to investigate the epistasis of the non-linear FIR problem, using 
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Random 10% perturbed LS 

a2 
< 116.75 363.19 

a2 
V 132.25 112.26 

a~ 17.73 631.57 

a~ -a~ 114.52 -519.31 

Table 7.2: The Epistasis variance (a~), calculated for regions of the search space. 

the qualitative epistasis variance measure of Davidor [93]. These epistasis measure

ments were performed on two 5,000-point data sets, one of randomly-selected points, 

and the other for the local search solution perturbed by a random amount of up to 

10%. The results are tabulated in Table 7.2. 

The fitness variance a~ is a measure of the spread of the sample fitnesses around 

the average sample fitness, while the genic variance a~ is a measure of the spread of 

the predicted fitnesses around the true fitness sample average. It can be seen that the 

genic variance is very low for the random data, which can be explained by the relative 

flatness of the parameter space as shown above in Figure 7.5. This flatness means that 

regardless of the gene values, the fitness will not change greatly, so it can be predicted 

with reasonable accuracy. 

On the other hand, the genic variance of the predicted fitnesses is comparatively 

high for the perturbed local search samples. As can be seen from the example parameter 

space surface in Figure 7.6, the space is highly variable, and there is a far greater 

correlation between both genes' values and the overall fitness of the solution. This 

need for both genes to have the correct values to produce a high-fitness solution means 

that there is a high degree of epistasis in the problem. Another important result 

from these calculations is that the problem becomes more epistatic as the optimum is 

approached, which implies that it also becomes harder for the Genetic Algorithm, due 

to the effects described above. 

In the context of the non-linear FIR filter design problem, this implies that to 
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obtain a good solution it is necessary for the coefficients to all have the correct values, 

and that 'partial' good solutions do not exist in that it is impossible to say if half a 

chromosome gives a good or bad solution, since the quality of solution is also dependent 

on the values of the genes in the rest of the chromosome. 

The impulse response of an FIR filter (which has the same values as the coefficients) 

has to have a specific shape to make the filter operate in the desired way, and although 

this has different characteristics in different types of filter, e.g. symmetry for a linear 

phase, or with its peak amplitude early on for a minimum-phase filter, the underlying 

appearance is similar, with well-defined ripples, whose amplitude rises and falls within 

a smooth envelope. It is clear therefore that although there may be a large number of 

sets of coefficients which give the same magnitude response, within each solution, the 

value of each coefficient is highly dependent on the value of the others to produce the 

desired response. Should mutation or crossover alter the value of a single coefficient in 

a good solution, then all of the other coefficients need to change to preserve the quality 

of the filter. This means that crossover of two good but dissimilar chromosomes will 

lead to poor offspring. It is also clearly impossible to predict the response of a filter 

from just a few coefficients, so there is a large non-linearity between gene values and 

the corresponding fitnesses, and the problem is not suited to solution by the GA. 

7.5.2 Fitness-distance correlation 

A better measure of GA-difficulty is claimed to be the fitness-distance correlation (94]. 

The FDC examines the difficulty of the solution in terms of the variability of the 

search space, and its degree of deceptiveness. The calculations were performed for 

three data sets of 4,000 points, and averaged over ten runs. Two of the sets were made 

by perturbing 1% and 5% of the bits in the assumed optimum solution used in the 

epistasis calculations above, and one set contained randomly-generated points. The 

results are shown in Table 7.3. 

One random data set is shown in Figure 7.9, which plots the magnitude response 
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FDC 

Random 0.0032 

5% perturbed LS 0.3199 

1% perturbed LS 0.6466 

Table 7.3: FDC calculations for various regions of the search space. 

error against the Hamming distance between each random solution and the optimum 

one. The Hamming distances have been perturbed slightly to show the distribution 

of points more clearly. The FDC for the random data set was almost exactly zero, 

bearing out the distribution of points in the figure, which contains no clear correlation 

between fitness and distance, and therefore usually no indication of the direction of the 

optimum from a randomly-selected point. 

When the same calculations were repeated for data sets taken around the assumed 

optimum, obtained by perturbing an average of 5% and then just 1% of the bits in the 

assumed optimum solution. In these regions, the FDC was calculated to be 0.32 and 

0.65 respectively. A typical set with 5% perturbation is shown in Figure 7.10, which 

clearly has more structure, in that the points are constrained in a narrower band. 

This means that the search space closer to the optimum behaves in a more predictable 

manner, so it should be easier for the GA to optimise the solution. However, the spread 

of fitnesses is still large and the optimisation is unlikely to succeed. 

For the 1% set, as shown in Figure 7.11, there is still more structure, and the 

fitnesses are constrained to an even narrower region than before. For the solutions 

with a Hamming distance of just one bit, there are clear bands indicating that only a 

few different fitnesses can be generated. When the number of bits difference rises, more 

values can be obtained, affecting more genes, so the number of possible fitnesses rises 

and the bands overlap and can no longer be resolved. The range of possible fitnesses 

still rises very quickly, showing that changing even a few bits can have a profound effect 

on the quality of the solution. The poorer solutions will be caused by a perturbation 
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of the bits in the chromosome which represent the most significant bits of coefficient 

values as these will cause the greatest perturbation in the solution. When changing one 

of the least significant bits the change will be much smaller, and possibly insignificant. 

This implies that changing even a few bits can (but is not certain to) lead to a dramatic 

decrease in performance. The most dramatic example of this is the point indicated in 

the figure, which has only two bits difference in its chromosome, but a magnitude 

response error of over 130dB. 

7.6 Results 

The slices taken through the parameter space show that it is multi-modal and therefore 

also unsuitable for hill-climbing methods, while the small size of the region around the 

optimum means that a random search will take an excessive amount of time to find a 

good filter. The GA, although appearing to be a suitable optimisation technique for 

this type of space, was not found to be a suitable technique for directly optimising the 

coefficients of non-linear FIR filters. 

GA theory suggests that, for success, there should not be an excessive interdepen

dence between the gene values to disrupt the linear relationship between gene value 

and fitness. The FDC calculations suggest that not only does the search space become 

more suited to the GA as the optimum is approached, but it is only suitable around 

these regions. This means that at the start of a run when the population contains 

widely spaced points, it is unlikely to contain information about the location of the 

optimum. As the optimum is approached, the FDC suggests that the space becomes 

more ideal, although the epistasis increases as the fitness becomes ever more sensitive 

to changes in coefficient values and the non-linearity of the gene-fitness correspondence 

rises. 

One cause of failure is the initialisation of the population, since it has been shown 

that the space far from the optimum contains no useful information. Since non-linear 

filters have non-symmetric impulse responses and hence coefficients, initialising them 
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Figure 7.9: Scatter plot of fitness against Hamming distance for a random set of non
linear FIR filter chromosomes. 

120 

20 

. . . 
:;i~;~;~-;~~ . 

. ;;~id>~\i;; ':. 

~ : ! I I I I ! I ' I I I I I i I ' : : ' 
~ ":. . 

. ' 
OL_--~----~----~----~--~ 
0 10 15 20 25 

HIJI1UJfln&Jiswnu 

Figure 7.10: Scatter plot of fitness against Hamming distance for a 5% perturbation, 
non-linear FIR filter data set. 
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Figure 7.11: Scatter plot of fitness against Hamming distance for a 1% perturbation, 
non-linear FIR filter data set. 
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with linear-phase solutions, even perturbed solutions, may be far from ideal. Minimum

phase filters have the peak amplitude of their impulse responses early on, so initialising 

the population with perturbed linear phase solutions which have been shifted or 'ro

tated' might be a better technique. The success of the GA with this problem is still not 

guaranteed however, due to the high epistasis of the search space and its unsuitable 

structure away from the optima. 

The optimisation of the phase was more successful as the GA was able to move 

from its initial perturbed linear-phase solutions back towards fully-linear phase filters 

as the optimisation required is far simpler. The requirements for linear phase are that 

the filters are symmetric or antisymmetric, but otherwise places no restrictions on the 

coefficients' values. This means that there are many solutions with linear or near

linear phase, which are therefore easier to find, but to produce a filter with a desired 

magnitude response requires that all of the coefficients have good values collectively, 

so there are comparatively few good solutions in the phase domain. 

It might be possible to reduce the degree of epistasis by re-stating the problem 

so that the chromosome stores information about the filter coefficients in a different 

way, or stores entirely different information which is can be used to adjust the filter's 

responses. Methods for reducing epistasis such as the 'Expansive Coding' at ofBeasley 

et a[ [96) will not work in this case because it is not possible to break down the problem 

into suitable sub-problems-all of the coefficients must be used at once to determine 

the filter's fitness. 

Since the completion of these investigations, Lu and Tzeng [97, 98) have successfully 

used a GA to produce non-linear optimal filters. Their approach is to use a guided 

crossover technique which biases poorer solutions towards better ones, and a fitness 

function which uses a least-squared error measure, which is an easier problem than 

the minimax one attempted here. They achieve an Optimal (equiripple) response in 

both phase and magnitude responses, by using a dynamic weighting function, which 

is updated to give a stronger weighting to those areas of the space which have the 

greatest error. This allows the GA to concentrate its search on those areas which most 
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Chapter 8 

An Extended Multi-objective GA 

for IIR Filter Design 

8.1 Introduction 

In Chapter 5, a GA was used to design an IIR filter using a chromosome which op

timised the filter coefficients directly. This was found to have a limited success, due 

to strong coefficient interdependence making the problem less suitable for a GA-based 

optimisation. In the light of the analysis presented in the previous chapter, it was 

decided to repeat the investigation using a true MCO GA. This would optimise the 

pole-zero positions instead of the a and b coefficients, as perturbing a pole or zero 

slightly has a more predictable effect on the overall response than altering a coefficient. 

A suitable GA could search for an NDS containing a range of solutions with different 

performance tradeoffs, from which the most appropriate can be selected. 

To enable the GA to cover more filter design steps, the fitness function can be 

extended to examine how close the phase response is to linearity over a region of 

interest within the pass band. The noise performance of the filter can also be calculated, 

which will allow the GA to look for the best pole-zero pairing and ordering, while a 

binary-coded chromosome can allow the effects of coefficient quantisation to be included 

implicitly in these calculations. Lastly, additional bits could be included to specify the 
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type of filter section to use for each stage, which would give the GA more freedom to 

pick lower-noise structures, or even to allow it to pick between a parallel or cascade 

structure. 

The intention is that it should ultimately be possible, under such a scheme, to design 

filters with quantised coefficients, with the GA returning a range of non-dominated 

solutions which trade-off the performance between magnitude and phase responses 

and roundoff noise gain, while using the filter structure giving the best performance, 

and with the best pole-zero pairing and ordering. It was planned to extend the fitness 

function in stages to incorporate these optimisations. 

8.2 Chromosome design 

In the light of the inability of the GA to optimise the non-linear FIR filter coefficients, it 

was clear that to successfully perform this multi-criterion optimisation, the chromosome 

would have to be designed to have a lower epistasis. This in turn implies that the 

problem would have to stated in such a way that a suitable chromosome would be 

used. 

The original IIR optimisations were performed on the coefficients of canonic sec

tions, cascaded to give an overall filter response. This approach suffers because the 

coefficients are used in a polynomial expression, and these are very sensitive to changes 

in coefficient values. It is also hard to predict changes in the response of each section 

as each polynomial coefficient is changed, since small changes in the coefficients can 

move a filter from being stable to unstable, or from having real to complex poles, as is 

shown in the stability triangle in Figure 8.1. This clearly shows that if b2 is zero, then 

a change in b1 from 0.99 to 1.01 would result in an unstable filter. 

The GA used to optimise IIR filters in Chapter 5 was constructed in such a way that 

the value of~ was constrained to lie in its valid range of -2-2, and that of~ to within 

the range -1-1. Since it was still possible for the solution to lie outside the stability 

triangle when both values were taken together, every solution had to be checked for 
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Figure 8.1: Triangle bounding the stable values of b1 and ~ for a second-order IIR 
section. The shaded area contains complex-valued poles. 

stability and moved back into the stable region if it lay outside it. 

This approach is not ideal as it changes the information contained within the chro

mosome, and so will affect the data which the GA is accumulating within the popula

tion. Although the information is being moved to a valid solution, it also means that the 

stability of every second-order section must be examined at every fitness calculation, 

because of the damaging effects of crossover and mutation. A better approach would 

be to use a representation which only returns valid solutions, and so never requires 

checking as crossover and mutation cannot result in an unstable solution. 

A suitable representation with these characteristics is to use the radius and angle 

of each pole and zero. Assuming that the poles and zeros exist as complex conjugate 

pairs, four values are required to describe each second-order section, namely the radius 

and angle of the positive-angled pole and zero of each pair, although this was simplified 

to three in this work by fixing the zero radius at unity. This representation contains 

intuitively short building-blocks, describing the position of a single pole or zero. It is 

also clear that since each pole and zero has a known effect on the response as a whole, 

changing the values of a pole or zero's radius or angle changes the response in a more 

predictable way, never producing an invalid solution. 

While the GA still needs to find a complete good chromosome to produce a good 

filter, as the response depends on all of the coefficients, moving a pole or zero slightly 
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has a more controlled effect on at least some aspects of the filter performance, such 

as the magnitude response, than moving an a or b coefficient, so this representation 

should be more suitable for the GA to optimise. 

To specify the pole and zero, their positions could be specified by either Cartesian 

(real and imaginary) or polar (radius and angle) coordinates. If the chromosome used 

to store the values uses a binary alphabet to intrinsically account for coefficient quan

tisation effects, then not only will changing gene values affect the response in different 

ways, but a different set of possible positions can be represented. This is illustrated in 

Figures 8.2 and 8.3, for the two representations at the same resolution. It can be seen 

that although the points specified by using the Cartesian coordinate system are spread 

more evenly over the unit circle, there will be some points which lie outside the unit cir

cle and which therefore specify illegal positions for poles and must be checked for. The 

Cartesian approach also has the disadvantage that there are relatively few available 

positions close to or on the unit circle. This means that the zeros, which are generally 

found on the unit circle, can only lie close to their optimum positions, while for the ra

dius/angle representation, the fuH radius is available, albeit at fixed angular positions. 

Other representations and topologies will of course have other distributions (99, 39]. 

The proportion of the Cartesian positions which lie outside the unit circle is of the 

order of 1-71" /4 = 0.215, the exact value being dependent on the quantisation interval. 

This means that around one-fifth of the positions the chromosome can represent are 

ilJegal and cannot be used, so the full range of solutions described by the chromosome 

cannot be exploited, unlike the polar chromosome, where every position it can describe 

is valid. Since this also means that no checking on the validity of the solution needs to 

be performed at all, the polar description chromosome was adopted. 

8.3 The fitness function 

As has been discussed before, the fitness function is the only view the GA has on 

the search space it is investigating. The fitness function was initially constructed to 
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Figure 8.2: The possible pole-zero positions for a second-order section with quantised 
real and imaginary positions. 

" - ~ 

Figure 8.3: The possible pole-zero positions for a second-order section with quantised 
radii and angles. 
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return two performance measures, namely the error between the filter's magnitude 

response and a desired response template, and also the error from linearity of a region 

of the phase response. The latter was determined by fitting a straight line through 

the phase response in the specified region (covering most of the passband), and finding 

the mean-squared error between this line and the actual response. For simplicity, the 

chromosome described a filter of cascaded second-order sections, and was initialised, 

not with a perturbed BZT solution, but with randomly-selected poles in the passband 

region and zeroes in the stopband. Directing the initialisation in this way meant that 

the solutions in the first population contained a wide range of pole positions which 

were in the appropriate regions of the search space, ensuring that the population is 

diverse enough to ensure efficient searching. 

A Matlab script (Appendix A.3) was developed to generate the initialisation files for 

the GA from a desired filter specification, and to display the response for a traditionally

designed filter of the same specifications, with full-precision coefficients. The response 

of the filter was determined in the fitness function by passing an impulse through the 

filter, followed by 1023 zeros, to produce the impulse response. An FFT was then taken 

of this to give the complex frequency response, from which the magnitude and phase 

responses were then extracted. The script generated a 512-point template file from the 

requested pass- and stopband widths, ripple and attenuation, which the GA read in 

and used to determine the filter's fitness with respect to the frequency response. 

8.4 Effects of quantisation 

When designing digital filters with standard methods, full-precision maths is used to 

produce filters with full-precision coefficients, internal calculations and storage. In 

practice, however, all digital systems employ a finite wordlength for both data storage 

and calculations. This has the effect of limiting the maximum attenuation of the 

filter, and also introduces noise into the filtered signal. The effects of both of these 

factors need to be considered when designing a practical system, but in 'traditional' 
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design methods they are investigated one at a time, after a full-precision filter has been 

designed. 

While these quantisation effects may not matter for loose tolerance filters, when the 

constraints become tighter, they become significant, and may make it impossible for a 

solution to be optimal with respect to both criteria simultaneously. This would lead to 

a system which is sub-optimal with respect to at least one design criterion-the final 

filter can either have a good magnitude response, or a good noise response, but not 

both. A major aim of this section was to integrate finite wordlength effects analysis 

into the design process so that all of the criteria can be traded against each other by 

the GA, allowing it to produce a selection of quantised coefficient filters, with a range 

of tradeoffs, in a single design step. 

8.4.1 Coefficient quantisation 

The effect of quantising the coefficients is generally to alter them from their optimum 

full-precision values to sub-optimal values. There exists an optimum set of coefficients 

for each wordlength with respect to each design criterion, but this will usually not be 

the same as the full-precision set, so quantising the full-precision results will not give 

as good a filter as the optimum for that wordlength. Since shorter wordlengths can 

only represent a smaller number of values, they will cause a greater perturbation of 

the full-precision values, while for longer wordlengths of 16 bits or more the quantised 

filter might still be of sufficiently high performance to be used directly. Generally, 

however, since the optimum finite-precision filter is different to the quantised optimum 

full-precision filter, some additional form of optimisation will be necessary to raise the 

performance of the quantised full-precision solution. For some filters, the two sets 

of values will be very similar, so little further optimisation is required, while others, 

particularly IIR filters, are more sensitive to changes in wordlength, and may have very 

different coefficients. 
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8.4.2 Noise 

A further complication is introduced when using a finite wordlength system in that 

the results of calculations are also quantised (see Section 2.3.3). This has the effect 

of introducing noise into the system as the values returned from calculations are not 

their true values, which can in turn affect further calculations. FIR filters are relatively 

unaffected by this, having a noise factor which is purely dependent on the wordlength 

of the system, while IIR filters' recursive nature means that the effects of quantisation 

noise are much greater and can lead to lower stability, or even instability. 

Many modern DSP chips have long wordlength accumulators, so calculations only 

have to be quantised down to the system wordlength when intermediate results need 

to be saved back to memory, which reduces quantisation's deleterious effects on the 

filter response. This model was used in the fitness function to approximate the effects 

of having a finite wordlength system, by quantising the results of calculations when 

they were being stored. 

8.5 Filter structure 

A further aspect of IIR filter design, and the final one which was examined, is that of 

finding the best filter structure for the desired filter characteristics. IIR filters can be 

designed with a structure other than the cascade used in the previous optimisations 

(Chapter 5). Since the different structures and second-order sections have different 

noise characteristics, there will be a different optimum structure depending on the 

pairing and ordering of the coefficients, and a different optimum pairing and ordering 

depending on the filter structure. Under the standard design methodology, determin

ing which of these structures is the best is another separate optimisation step, whose 

results may indicate the need to iterate back one or more stages and repeat previous 

optimisations or even completely re-design the filter to improve on its performance 

with respect to one or more of the design criteria. This approach makes the design 

process complex and requires the repeated sequential examination of the filter's per-
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Figure 8.4: The structure of the chromosomes used to optimise (a) the coefficients and 
(b) the coefficients and structure of IIR filters. 

formance with respect to different design criteria. It should be possible, by extending 

the chromosome to include bits which determine the structure of the filter, to allow the 

GA to search for those structures which give the best filter performances with respect 

to each of the design criteria. The inclusion of this ability will permit the GA to use 

whichever structure gives the best performance, and to search for this best structure 

simultaneously with the coefficients. Although the structure is not examined explicitly 

within the fitness function, its inclusion in the calculations means that the GA will 

also automatically search for the structure which gives the best performance for each 

set of coefficients. 

The binary chromosome, which initially contained a simple list of the radii and 

angles of the poles and zeros of each second-order section as shown in Figure 8.4a, was 

extended to include bits to control if each section had a canonic or direct form, and 

also one bit to determine the structure of the whole filter, specifying whether it had 

a parallel or cascade structure, as shown in Figure 8.4b. This was later simplified by 

removing the zero radius and setting it to unity within the fitness function. 

This type of structured chromosome allows the same chromosome to describe a 

number of different filters, all of which are valid. The control bits simply tell the 
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fitness function how to decode the information in the chromosome. Storing the data in 

the chromosome this way means that all of the filters described by the chromosome are 

valid. Tang et al [90] have shown structured chromosomes to be suitable for optimising 

IIR filter structures and coefficients simultaneously by GA. If the chromosome shown 

in Figure 8.4b was used to optimise a filter of S second-order sections, there would be 

a total of 2.S! + 1 possible filter structures, comprising 2.S! cascaded structures and 

one parallel one. When the cascade/parallel bit is set, telling the fitness function to 

use a parallel structure, then the bits which determine whether each section has the 

canonic or direct form are ignored, and the pole and zero positional information would 

be used to calculate the equivalent parallel filter coefficients. 

8.6 Use of the GA 

The GA used for this optimisation was the same as was used for the non-linear FIR op

timisations, using an MCO approach to search for the POS of non-dominated solutions. 

The binary chromosome used initially contained a list of the positions of the poles and 

zeros of second-order sections, which were taken to exist as complex conjugate pairs. 

The fitness functions used were simply the maximum error between the magnitude 

response of the filter and a given desired response template, and the mean squared 

error between the phase response and a best-fit straight line over a specified region of 

the passband. 

8.7 Results 

The GA was initially run with fitness functions designed to optimise and trade off 

the magnitude response performance against the linearity of the phase response over a 

given region of the passband. Initial results showed that the solutions within the GA's 

NDS were strongly biased towards solutions with near-linear phase in the passband, 

rather than with a good magnitude response. The range of fitnesses returned by the 
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Figure 8.5: Example of an early non-dominated set. 

two functions differed by an order of magnitude, so an attempt was made to equalise 

the two by scaling them to an approximately equal range. This had the effect of 

slowing, but not halting, the discovery of individuals with good phase response, but 

did not force the search to find solutions with good magnitude responses. It was found 

that giving the GA the ability to change the type of each second-order section made 

little or no difference to the quality of the solutions found. 

Mter many unsuccessful trials, the investigation was moved to the optimisation of 

a filter's noise and magnitude response together, and to exclude the phase response. To 

simplify the noise calculations, the structure was fixed to use only the canonic second 

order section. At this stage error spectral shaping (Section 2.3.4) was also added, but 

had no noticeable effect on the solutions found. 

A selection of results from these optimisations are shown in Figures 8.6- 8.14, and 

summarised in Table 8.1. In the captions for these figures dp refers to the passband 

ripple and ds to the stopband attenuation, both in decibels (dB). Figure 8.5 is a 

typical example of the first three non-dominated sets in a population early in a run . 

The 'wavefront' can clearly be seen, along which performance trade-off is occurring. 

All of the results are shown after a run of 1,000 generations for a lowpass filter 

with band edges at 0.1 and 0.2, and all but the last are for a 16-bit wordlength It was 

found that if a suitable solution with low magnitude response error has not been found 
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Figure 8.6: Best result for a fourth-order filter with target dp= 0.5dB, ds=40dB, 16 bit 
wordlength. 

Target Target Actual Round off 

Wordlength Order passband ripple attenuation max. error noise gain 

16 4 0.5 40 1.227 4.629 

16 4 0.75 40 0 6.052 

16 4 1 40 0 5.795 

16 4 1 50 1.456 3.963 

16 6 1 60 0 8.753 

16 6 1 70 0 10.598 

16 6 1 80 4.560 11.703 

16 6 1 90 4.182 35.755 

24 6 1 80 0.678 16.476 

Table 8.1: Comparison of a variety of best-magnitude response results found by the 
multi-criterion GA. The last two columns show the actual error from t he target tem
plate and the roundoff noise gain . 
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after 1,000 generations, then one was not usually found even after 5,000 generations. 

The solution with the best magnitude response is shown in the upper left box, with 

the ~DS over all points examined so far in the lower left. The GAs were run with a 

population size of 100, a crossover probability of 0.6, and a mutation probability of 

0.01. Different mutation probabilities were tried from 0.001 to 0.05 with little variation 

in performance. 

The first results, in Figure 8.6, are for a filter with a desired dp of 0.5d.B and a ds 

of 40dB. These show that the GA was able to find a solution close to the template, 

but with a magnitude response error 1.227dB outside the template. The shape of the 

~DS shows that the GA was able to find many solutions, but none of them came close 

to the template. There is also a sharp rise in the magnitude response error when the 

noise starts to fall. In this case, the GA has not been able to find a range of suitable 

solutions, as was hoped. 

The results in Figure 8.7 are for a similar filter, but with a desired dp of 0.75dB. 

In this case the GA was able to find one solution which fit the magnitude response 

template, and one other close to it, with a slightly lower noise, but the response error 

then rose sharply as the noise decreased. The 'stepped' nature of the NDS in this case 

indicates that the search space has different characteristics to the previous search. 

In Figure 8.8, the passband tolerance has been widened again to a dp of 1dB. 

Again, a suitable solution was found , but with a slightly lower noise than for a dp of 

0. 75. This was to be expected, as the looser frequency response tolerance releases more 

degrees of freedom for noise reduction. In this case, only one good solution was found, 

the second-best with respect to the magnitude response being noticeably outside the 

template. 

As the passband tolerance has been widened there have been progressively fewer 

solutions in the NDS. This is due to the changing nature of the search space, but the 

exact reasons are unclear. 

The next set of results illustrate the change in performance as the stopband toler

ance is tightened. Figure 8.9 shows the best result for a desired template with a dp of 
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1dB and a ds of 50dB. It is clear that in this case the best solution is unacceptable, 

lying almost 1.5dB outside the template, although the noise figure is low. It is unclear 

if this poor result is because the magnitude response template is unattainable at this 

wordlength, or whether low-noise solutions are easier to find, which drove the GA away 

from good magnitude response solutions. 

\Vhen the desired attenuation was increased to 60dB for the next run, the Matlab 

initialisation script predicted that a sixth-order filter was necessary, so the order was 

increased for the remaining runs. This longer filter could achieve higher-attenuation 

filters than 60dB, so the search space contains a variety of solutions at 60dB. This 

more favourable situation meant that the GA was able to find an acceptable solu tion 

here, and also in the next run at ads of 70dB, shown in Figure 8.11. 

In Figure 8.12 however, with a desired attenuation ds of 80dB, the best solution 

was 4.5dB outside the desired template, either because the search space was too hard 

for the GA as the optimum region was too small, or because the filter specification was 

unattainable. When the attenuation was increased further to 90dB, as in Figure 8.13, 

the best fi lter is actually slightly closer to the desired template than in the 80dB case. 

However, this has been achieved at the expense of a much higher roundoff noise gain. 

The fact that the GA was able to equal the accuracy of the 80dB search with a 90dB 

template implies that a much better solution is possible with an 80dB template, and 

that there may actually be an exact one with respect to the magnitude response. 

The 80dB template optimisation was repeated with a wordlength of 24 bits, as 

shown in Figure 8.14. As can be seen, the best solution was only 0.678dB outside 

the template, as compared with 4.56dB for the 16-bit solution. This improvement is 

probably due in part to to the existence of more solutions with at least 80dB attenuation 

in this search space, but the very different spacing of the zeros shows that the solutions 

come from widely separated regions of the parameter space. It seems probable that 

there is a 16-bit solution similar to the 24-bit one, but the GA had simply not found 

it. 

A comparison of a selection of the filters in Table 8.1 with those obtained by quan-
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Order Word length Desired GA error Quantised 

attenuation (dB) (dB) BZT error (dB) 

16 50 1.456 1.07238 

16 80 4.560 1.2439 

Table 8.2: Comparison of magnitude domain results found by GA and by quantising 
the BZT coefficients for an elliptic filter designed in Matlab. 

tising the coefficients of elliptic filters found through standard techniques using Matlab, 

is given in Table 8.2, where it can be seen that the GA solutions are only a couple 

of dB worse than the quantised-coefficient BZT filters. However, using such a BZT 

solution has the disadvantage that the phase response is uncontrolled and non-linear, 

and the degradation of the noise performance caused by quantising its coefficients is 

also uncontrolled. 

Due to the limited success of t he GA with this cascade filter design, it was decided 

not to attempt the design of a parallel-structured filter, as the indirect relationship 

between the pole-zero positions and the parallel filter coefficients implied that it would 

be a much harder problem for the GA to optimise. 

8. 8 Discussion 

The results have shown that the GA is only able to find a good solution with respect 

to the magnitude response when the desired template has loose tolerances. When the 

passband ripple is reduced, or the stopband attenuation increased, the performance 

drops dramatically, and often the GA does not find an acceptable solutions, at least 

for the magnitude response. 

The performance of the GA with respect to the magnitude response suggests that 

it is a harder problem to solve than reducing the noise or finding a partially near-linear 

phase response, at least from a GA perspective. Despite the fact that the filter is made 

up of short second-order sections, each of which is a distinct unit, the filter as a whole 

still needs to have the right characteristics for it to have a good response. This means 
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that the GA has to find entire good solutions in one go, rather than optimising a part at 

a time. The fact that all the coefficients work together means that altering one moves 

the optimum for all the others, so it is not possible to predkt the fitness from just one 

coefficient, or even one second-order section. This makes it very hard for the GA to 

build up good genes. However, the fact that seeding the GA with a perturbed BZT 

solution allows the GA to come close to the performance of the quantised-coefficient 

BZT filter, while also providing some control over the noise or phase characteristics, 

means that the technique shows some promise. It is probable that future improvements 

to the GA technique could allow it to equal or exceed the quality of the quantised BZT 

performance in the frequency domain. 

The better performance with respect to the phase and noise characteristics suggests 

that there is a more straightforward relationship between them and the filter coeffi

cients. It also therefore appears that it is ea.sier to predict the overall phase or noise 

performance from a single second-order section, than to predict the overall frequency 

response. A future analysis of how changes in chromosomes and pole-zero positions 

affect the noise, phase and magnitude responses could be used to guide future devel

opment of a GA-based optimisation, in order to increase the performance with respect 

to the magnitude response, which is perhaps the most important aspect of the filter 

design. It also seems likely that an alternative, more efficient method of allowing the 

poles and zeros to be reordered and paired would increase the ability of the GA to find 

more efficient structures. 

The successful optimisation of a parallel structure filter would also require addi

tional analysis, and perhaps a different approach to that for a cascade filter, because 

of the different relationship between the pole-zero positions, the parallel section coef

ficients, and the filter response. 
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Chapter 9 

Conclusion and FUture Work 

This project has set out to investigate aspects of the use of optimisation within the 

digital filter design process. The design process has been analysed, and opportunities 

identified within it where the current methods could be improved by the application 

of alternative techniques. A number of these situations were selected, and coded in a 

method suitable for optimisation by Genetic Algorithms and Simulated Annealing. A 

variety of GA techniques were involved, culminating in the implementation of a multi

objective GA, capable of investigating the performance of digital filters with respect 

to a number of different measures simultaneously, and of trading off these against 

each other to produce a range of solutions which are potentially useful in a variety of 

situations. 

The GA was found to have varying levels of success in optimising a range of filter 

types, from some where it did not work well, to others such as the hybrid Frequency 

Sampling designer, which produced excellent results. Its varying performance gave 

insights into the applicability of GA-based optimisations in the digital filter design 

process, and into how these could be altered in future to improve their performance. 
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9.1 Review 

9.1.1 Digital Filter Design 

The digital fi lter design process is an iterative, multi-step process in which the per

formances of different aspects of the design are examined, and the filter altered to 

improve them. This process can require many iterations to obtain a suitable system, 

and the way the process is divided into stages means that it is very difficult to trade off 

the performance of, say, the frequency response against the roundoff noise gain. The 

whole process was analysed, and stages identified which could potentially benefit from 

GA-based optimisations. These results were used to select filter design tasks to use to 

further the investigation. 

9.1.2 Finite Impulse Response Filters 

Initial investigations into the design of Fffi filters involved the optimisation of Fre

quency Sampling fil ters by adjusting their transition sample values. A floating-point 

GA proved able to find good solutions for filters with up to around four t ransition sam

ples. When filters with a wider transition band were used, the performance dropped 

noticeably, and a hybrid Simplex-method hill-climber was added to the GA to com

plete the optimisation. This technique proved able to produce solu tions which equal 

or better those in the published tables of Rabiner et al [5]. The tables are limited in 

their scope, requiring the transition sample values to be interpolated for untabulated 

filters, whereas the hybrid GA technique can be also be applied to any such unlisted 

filter, producing a more accurate result. 

The fitness function was extended to optimise the transition sample values of finite 

wordlength fi lters, and to simultaneously search for the minimum wordlength necessary 

to achieve a desired attenuation. Using ' t raditional' methods of filter design, such an 

optimisation would require a great deal of additional mathematical analysis [76, 77], 

but the non-problem specific nature of the GA meant that it was possible to perform 
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this optimisation using the same GA as before, with just a small change to the fitness 

function. This was altered so that the floating-point coefficients were quantised to a 

specified wordlength before use, and the GA was then found to be able to produce 

high-quality solutions without the hybrid hill-climbing algorithm. 

The search space for a quantised-coefficient filter contains many fewer points than a 

32- or 64-bit floating point implementation, but will be discontinuous because changing 

the wordlength will perturb the coefficient values and cause a step change in the filter 

performance. The means that a hill-climber cannot optimise the word length simultane

ously with the coefficient values, but the GA is generally unaffected by discontinuities 

in the search space, and is able to operate effectively on this problem. 

This work resulted in two papers, the first of which was published in the Proceed

ings of the 1993 IEE/IEEE Workshop on Natural Algorithms in Signal Processing, and 

introduced the design of Finite Impulse Response (FIR) filters by GA [2). A second pa

per, extending the work presented in the first, was published in the IEEE Transactions 

on Signal Processing in 1998 [4). 

A subsequent investigation into the potential use of a Multi-criterion GA for op

timising quantised-coefficient non-linear phase FIR filters proved unsuccessful. Re

moving the linearity constraint allows a filter to have the same magnitude response 

with fewer coefficients, and the GA attempted to find such a solution, with as linear 

a phase as possible over a specific region of the passband. An investigation into the 

GA-difficulty of the problem revealed that the selected representation was not suitable 

for the GA. This was because it was not possible to predict the filter performance 

from a subset of the chromosome, and the only good solution was a complete solution. 

Genetic Algorithms only examine point samples of the search space, so the analysis of 

the difficulty of the problem also only required point data to be collected, by storing a 

large set of random chromosomes and their corresponding fitnesses. This charaderistic 

of the GA means that a single implementation of the difficulty calculations can be used 

for a wide range of problems, simply by swapping the fitness function which is used to 

calculate the performance of each chromosome. 
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Although the use of a binary, finite-precision chromosome meant that each coeffi

cient could have fewer values, there were many more coefficients and each coefficient's 

effect on the fitness was harder to predict. These characteristics make the problem 

difficult for a standard GA to optimise. Recent work by Lu and Tzeng (97, 98] has 

successfully used a GA to produce non-linear FIR filters, by utilising a guided crossover 

technique which allows their GA to perform more effectively in this unfavourable search 

space. 

9.1.3 Infinite Impulse Response Filters 

The initial attempt to optimise the pole and zero locations of an IIR filter using the 

same floating-point GA as for the Frequency Sampling filter investigations was unsuc

cessful because random coefficient initialisation was used and there is a lack of useful 

structure in the search space far from the optimum. However, this illustrates an ad

vantage of the GA, in that the same implementation can be used for a wide variety of 

problems by simply changing the fitness function. As it was desired to optimise the a 

and b coefficients directly in a quantised form, a binary GA was implemented which 

included a weighted-sum fitness function, intended to reduce the noise once a solution 

had been found which fitted the desired magnitude response. The results from initial 

experiments using random chromosome initialisation were not encouraging, so the GA 

was seeded with a known good solution found using the BZT method. This produced 

better results, although the unperturbed quantised BZT solution itself was of compa

rable performance to the best GA solution. Another technique, Simulated Annealing, 

was also applied to the same problem, and was found to perform a better trade-off 

between the two performance measures, as detailed on page 79, where it was able to 

find a solution which was only just within the desired magnitude response template, 

giving it more freedom to improve the noise response. 

An analysis of the search space for this problem revealed that it only had a structure 

suitable for the GA close to a good solution, so it could not be expected to find the 
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optimum solution from a random chromosome initialisation. The SA was less affected 

by the nature of the space, and was able to perform better, but still required seeding 

with a BZT solution. It was, however, able to find a solution which traded off the 

performances with respect to noise and frequency response more effectively than the 

GA. 

Like GAs, the SA technique is able to operate effectively in a discontinuous, con

strained search space, and does not require a mathematical analysis of the problem, 

just a suitable implementation of it. SA does not work by building up a good solution 

from building blocks, so is able to work successfully with some problems which are 

GA-hard; conversely, there are problems where the GA can make use of high-fitness 

building blocks to outperform the more random search of SA. However, due to the 

non-problem specific nature of both techniques, the same fitness function can be used, 

as they both only take the same point samples of the search space. 

The second approach was to use a true multi-criterion optimisation (MCO) GA to 

optimise the filter with respect to the magnitude response plus either phase response 

or roundoff noise gain, with the aim of providing a range of solutions with different 

tradeoffs, from which the most applicable could be selected by the designer. This GA 

was also unable to find a solution from a totally random initialisation, so it was seeded 

with poles and zeros, randomly positioned within the pass- and stopbands respectively. 

The fitness functions adopted differed from those used previously for IIR filters, in that 

the performances were measured separately, instead of being combined in a weighted 

sum. The GA proved able to find solutions with a near-linear phase in the passband, 

but the set of solutions did not produce a wide range with acceptable magnitude 

responses, and, although it regularly failed to find even a single solution which exactly 

fit the desired response template, the maximum deviation from this template was often 

just a few dB, whih may be acceptable if it occurs in the stopband. 

The same GA was used with a different fitness function, with the aim of trading

off the magnitude response with the noise gain, but although solutions were found 

with acceptable magnitude responses, it was again discovered that the GA did not 
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find a range of acceptable filters, and that as the tolerances (passband ripple and/or 

stopband attenuation) became stricter, fewer and sometimes no filters were found with 

acceptable frequency responses. This appears to be because it is possible to break 

down the noise problem into simpler parts, and if one section has a low noise, then the 

whole filter will generally have a lower noise. However, all but one section could have 

an optimal frequency response, but if the last does not, the performance of the filter as 

a whole will be poor. This means that only a filter with a suitable magnitude response 

in every stage will have a good performance. This inability to break down the problem 

with respect to the magnitude response makes the problem hard for the GA. 

The ease with which the GA could be changed from optimising the frequency re

sponse to optimising the noise illustrates a major advantage of the technique. As the 

GA is problem-independent and only takes point samples of the search space, no math

ematical analysis or manipulation of the problem need be undertaken, which can be 

complex, especially in fixed-precision environments. This means that the same MCO 

technique and implementation can be used to perform several trade-off optimisations, 

simply by changing the fitness functions used, which in turn are based on the same 

implementation of the filter. In other words, once the problem has been implemented, 

the same GA can be used to optimise its performance with respect to a range of dif

ferent criteria by selecting which measures are returned by the fitness functions. This 

feature of the GA makes it a suitable technique for optimisations in the domain of filter 

design where a wide range of disparate performance measures can be used, including 

magnitude and phase responses, noise performance, wordlength, filter order, and even 

implementation costs such as chip area and complexity. It would be extremely com

plicated to design a technique to trade off magnitude response and implementation 

complexity using 'traditional' methods, but this can be performed with an MCO GA 

by encoding the problem in a suitable chromosome and implementing the necessary 

fitness functions [45]. 
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9.1.4 Optimisation techniques 

A variety of optimisation techniques were employed in this project, but centred mainly 

on the GA. Two types of GA were used at different times, the first using a floating-point 

chromosome, which was coupled with a hybrid Simplex-method hill-climber. This was 

successful at optimising Frequency Sampling filters. The second type was an MCO 

binary-chromosome GA, which was used on a wider range of problems but proved not 

to be universally successful. While it could often find solutions with good noise or phase 

performances, it was generally less successful in optimising the magnitude response. 

The GA has shown itself to be a widely-applicable technique which can be easily 

adapted to a range of problems, ranging from magnitude and phase optimisations 

to noise analyses and implementation cost reductions. It has the great advantage 

over traditional techniques that it can be used where direct mathematical techniques 

are very difficult to perform, such as the direct optimisation of quantised IIR filter 

coefficients with their pairing and ordering, and phase or noise responses, in a single 

step, as in Chapter 8. Once a filter has been implemented it is possible to perform 

a range of optimisations from the same code, simply by changing the performance 

measures returned by the fitness function. 

A Simulated Annealing method based on the Simplex hill-climber was also used for 

one IIR-based optimisation, and was found to perform better than the GA, probably 

because it was less affected by the structure of the search space, as it does not rely on 

the same short, high fitness building blocks. 

9.2 Future Work 

9.2.1 New areas in FIR Filters 

The existing work has covered a relatively small range of filter types, and many remain 

unexplored, some of which could prove to be better suited to a GA-based optimisation. 

The results of the analyses which have been undertaken here can offer guidance to the 
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selection of areas of future investigation, and show that a careful initial examination of 

the design problem and the nature of the search space will prove advantageous when 

deciding on how best to describe and code the problem in order to make it suitable for 

optimisation by GA. In particular, it should be possible to make a prediction as to the 

performance of a filter from just a portion of the chromosome, as the GA 's performance 

is especially poor when there is no structure in the search space to guide it towards 

optimum solutions. 

The successful finite wordlength, linear-phase Frequency Sampling (FS) FIR opti

misations could be extended to include a full implementation of a finite wordlength 

filter. This would allow the coefficient optimisation to take product roundoff into effect, 

without requiring any changes to the GA. 

One area of FIR filter design which appears promising is that of optimal filters, in 

which the optimisation task consists of searching for the extremal frequencies. Since the 

performance of an optimal filter only degrades slowly as extrema are moved from their 

optimal positions, it ought to prove a suitable subject for a future GA investigation, 

using a chromosome containing a list of the extremal frequencies. Optimal filters have 

the advantage that the extremal frequencies can be estimated very quickly to give an 

approximate solution which could be used to seed the GA and allow it to start in 

the general location of the optimum. The fast speed of the optimal design process 

(McClellan et al (15] reported that, even in 1973, their Remez exchange-based method 

only took a few seconds) makes a GA approach unlikely to be worthwhile for standard 

designs. However, it may be useful in situations where the standard technique is 

not guaranteed to converge, such as with designing multi-band filters with varying 

transition widths, when there may be local ripples within the transition bands. 

The lack of success with the non-linear FIR filter design showed that the method 

of implementing the search was not ideal. While the current system was run for 8,000 

generations, and improvements stopped well before the end of the run, further in

vestigations into the existing technique with extended run lengths could improve its 

performance. A different approach to crossover may prove beneficial, such as that 
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of Cotta and Troya [100), which picks the best of all the potential offspring, or Lu 

and Tzeng [97), which guides poorer solutions towards better ones. A fuller analysis of 

the relationship between coefficients and the magnitude and phase responses could also 

give a better indication of how to structure the chromosome to reduce the long-distance 

effects which are currently observed and which limit the effectiveness of the search. 

An alternative approach could make use of the fact that, unlike linear phase 

FIR filters, where the maximum magnitude in the impulse response is in the mid

dle, minimum-phase filters have the maximum magnitude earlier on. A Genetic 

Programming-based approach could search for a function which generates not only 

the shape of an impulse response, but also where its peak occurs. This would allow the 

system to automatically generate asymmetric impulse responses, which is difficult with 

the GA approach used in this project, as it is unlikely that crossover between two sets 

of coefficients with different peak amplitude locations will produce a correctly-formed, 

suitable impulse response. 

9.2.2 New areas in IIR Filters 

It has been found that the GA finds optimising the magnitude response of an IIR filter 

especially difficult, because it has to find whole good solutions, and cannot break the 

problem down. A method of simplifying the search space could be to use only integer or 

powers-of-two coefficients. This should improve the performance by vastly decreasing 

the size of the search space. As with the FIR, although fitness improvements stopped 

well before the end of each run, further analyses of the current system's performance 

may show even longer runs to be advantageous in some cases. 

A second aspect of the IIR optimisation which could be made more efficient is that 

of the pairing and ordering of the coefficients. Although the second GA used here 

could theoretically have improved the filter's noise performance, in practise its ability 

to do so was limited because changing the order of any of the coefficients without 

changing their values was exceedingly unlikely. A better approach would be to have a 
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chromosome which kept the coefficients in a fixed location, but which also contained 

information on the order in which they should be used. In this way, simply by changing 

the fitness function, the same GA would be able to optimise both the coefficients and 

the order in which they are used, in one operation. A consequence of this approach 

should be the increased effectiveness of structural optimisation, which could allow the 

selection of the structure of the filter (parallel or cascade) and also the topology of 

each second-order section in a cascade structure. This should allow the GA to find the 

best structure, the best coefficients, and the best order to use them in, to give the best 

performance. 

9.2.3 Further Natural Algorithm Techniques 

While this project has concentrated on the application of GA and SA methods to 

filter design, it has become clear that they are not necessarily ideal techniques for 

all situations. Further investigations could improve the efficiency of the existing GA 

and SA applications and widen the applicability of Natural techniques by including 

additional methods. Ways in which this could be approached are given below. 

9.2.3.1 Genetic Algorithms 

It was found that chromosome initialisation was very important for most of the GA 

applications in this project, due to the lack of structure in the search space far from 

the optimum. Further investigations into the best initialisation method to use for each 

problem could improve the GA performance by giving it a wider set of high-fitness 

chromosomes to work with, as the method used here of seeding the population with 

perturbed copies of a single good solution will direct the initial search towards a single 

good area instead of allowing it to pick good areas from all of the search space. 

While the GA is a widely-applicable technique, its best performance is often ob

tained by tuning the operators to each specific problem. For example, as discussed 

above, the pairing and ordering optimisation for IIR filters is inefficient with the gen-
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eral methods used. A better performance would be obtained by either changing the 

chromosome to include coefficient ordering information, or by adding an additional op

erator to run alongside the existing crossover and mutation. This operator would move 

whole poles and zeros at random within the chromosome, thereby allowing the GA 

to sample a wide range of pairings and orderings, and making the noise optimisations 

far more effective. Other improvements could be made by tuning the crossover and 

mutation operators to specific problems, either manually, by including problem-specific 

knowledge, or automatically, as in the Frequency Sampling optimisations described in 

Chapter 4. 

9.2.3.2 Simulated Annealing 

Although the changes proposed above to the GA-based optimisation should improve 

its performance, the existing results for the SA showed that it could outperform the 

GA under some situations. If the problem under investigation is not especially suited 

to the GA then it might be advantageous to adopt an SA optimisation instead. Future 

investigations would have to determine this on a per-investigation basis, as it will not 

always be possible to determine beforehand which will perform better. 

SA does have the disadvantage that it is a single-criterion optimisation method, so 

it is not so suitable for producing a range of solutions to an MCO problem as the GA. 

In some circumstances, however, it might be possible to design a suitable weighted 

sum fitness function to produce a single filter with a desired trade-off between two 

performance measures. 

9.2.3.3 Tabu Search 

Tabu search is an efficient optimisation method for combinatorial problems, but is less 

suitable for precision coefficient optimisation. It may however be possible to combine 

the Tabu search with a GA or SA to produce a hybrid technique which can perform 

both effectively. For example, within the fitness function of a GA or SA being used 

to optimise filter coefficients, a Tabu search could look for the best filter structure to 
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use with each set of coefficients, thereby producing a more wide-ranging and flexible 

technique, which requires less user intervention than traditional design methods. 

Alternatively, a Tabu search could use a low-precision version of the fitness function 

to look for high-fitness regions of the search space. This information could then be used 

to seed a higher-precision search using GA, SA or even a hill-climber. 

9.2.3.4 Genetic Programming 

Genetic Programming (GP) is used for different optimisation problems than those in

vestigated in this project, in that it searches for expressions which perform particular 

functions, rather than for numeric values which fit into fixed models. A filter design 

method which seems ideal for a GP approach is the Window method. Standard tech

niques use a limited range of functions, each of which have different characteristics and 

different limitations. A GP-based optimisation could produce whole new families of 

window functions, each tailored to specific problems, or even a different function for 

every problem. An advantage of the GP approach is that it would not have a human 

designer's preconceptions about what a window function should be, and would simply 

look for the function with the best performance. This makes it theoretically possible 

that a GP optimisation of any filter could find a solution whose performance equals or 

betters that of any standard, general-purpose window function. 

9.3 Intelligent Filter Design Tool 

In the light of the results found so far, and the analysis of the filter design process, 

it is now possible to outline a potential intelligent automatic filter design tool. It is 

clear that no single optimisation technique is suitable for all aspects of digital filter 

design, and that to fully automate the process will require a range of methods, working 

together, and complementing each other's capabilities. 

A possible structure for such a tool is illustrated in Figure 9.1. The system is 

controlled by an Expert System (ES), and would contain an extensive library of tech-

153 



Intelligent filter design tool 

Analysis Library 
Mathematical analysis 

AI analysis 

Design methods 

GA 
SA 

BZT 
Hill-climber 

Optimal 

AI and related 
techniques 

Fuzzy Logic 
Expert System 

Data store 

DSP chips 
Previous designs 

Previous performance 

Figure 9.1: illustration of the potential structure of an intelligent filter design tool. 

niques, plus a database of its previous decisions and their associated performances. It 

examines the available data, and runs analyses to determine which filter structures and 

design methods are appropriate for that problem. The selected optimisations are then 

performed, and the results examined to determine if they are acceptable. If they are, 

it presents them to the user, but if they are not, it retraces its steps and uses another 

method or alters variable parameters and tries again. In this way, it will be able to 

rapidly try a variety of ways of achieving the desired specifications, or if these are not 

attainable with the given constraints, it will produce the nearest filter and possibly 

suggest changes to the design to improve its performance. The results found for each 

technique can be stored to give additional guidance to the system when it is deciding 

the best technique to use in future. 

As an example, suppose a designer wants a linear-phase, lowpass FIR filter, with a 

Nyquist frequency of 10kHz, O.ldB passband ripple, and 80dB stopband attenuation, 

and band edges at 3kHz and 6kHz. The system might work as in Figure 9.2. Having 

entered the known information, the tool determines that the wordlength, target system, 
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Figure 9_2: Illustration of the potential use of the intelligent design tool, to design an 
FIR filter as described in the text 
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and design method are variables, and therefore uses an expert system to search its 

database to determine which methods are suitable for the problem, and grades them 

by their predicted usefulness, perhaps using a fuzzy logic analysis. In this case, it 

might perhaps select to t ry an Optimal method, FS hill-climber, a binary GA, SA, and 

as a last resort, try a non-linear FIR which may be acceptable if the response in the 

passband is close enough to linearity. As the wordlength is unspecified, the shortest 

possible wordlength is predicted and used for initial tests. This will be increased if no 

solution can be found . 

The system tries the methods in turn, then analyses the results to determine which 

is the best result and if it is acceptable. If it is not, the wordlength is increased, and 

the methods run again. If, however, the maximum wordlength for the selected system 

has been reached, then the investigation into the best system to use has to be run again 

at the new, longer wordlength. Eventually, the system will produce the best possible 

solution, either within the design constraints or closest to them. 

Future investigations into an intelligent design system of this sort cou ld result in 

an extremely useful tool for digital filter designers, which is able to make use of a wide 

range of techniques, and to gain experience as it performs designs in order to increase 

its effectiveness in future. The concepts could also be expanded to produce tools for 

other areas of DSP design. 

9.4 Conclusion 

This project has investigated the digital filter design process, and has undertaken a 

range of optimisations using Genetic Algorithm and Simulated Annealing techniques. 

It has resulted in a number of GA-based optimisation tools, which have also provided 

insights into the nature of the search space, and therefore which filter optimisations will 

be suitable for the GA. An analysis of the filter design process has produced a frame

work for a wide-ranging, intelligent, adaptive design tool, which could automatically 

perform a range of optimisations in order to produce the best possible results. 
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Appendix A 

Techniques 

A.l Increased calculation efficiency for recursive 

FIR filters 

When generating the response of a recursive Frequency Sampling (FS) filter, it is 

possible to increase the computational efficiency by pre-calculating the fixed part of 

the response, namely the passband, as only the effects of the transition samples will vary 

from filter to filter, depending on the values contained within the GA's chromosome. 

The transfer function for a recursive filter can be given by [11] 

1 - z-N N-1 H(k) 
H ( z) = N L -l---e--:-:i2:-'-1fk:-':JN=z-_-:-1 

k=O 

This can be split into a comb filter which has N zeros spaced equally around the unit 

circle: 

H ( ) 1- z-N 
cZ N (A.1) 

and a sum of single all-pole filters, whose poles are coincident with the zeros of the 

comb filter: 
N-1 H(k) 

H ( z) = "" _--,-,--'-,..:--__,.. 
P ~ 1 _ ei21fk/N z-1 

k=O 
(A.2) 

The effects of the comb filter Hc(z) are clearly constant for a given z, so can be pre

calculated. Similarly, the coefficients in H(k) have no effect on Hp(z) in the stopband, 

where they are always zero, so these samples need not be included. H(k) is also 
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constant in the passband where the samples are always unity, so the effects of these 

coefficients on H,(z) can be precalculated and stored. This leaves only the effects of 

the few, variable transition samples to be calculated each time, and this can be made 

more efficient by precalculating the denominator 1 - e:i21rk/N z- 1 as this is constant for 

each k. Finally, only the response in the stopband needs to be determined as the fitness 

only depends on the stopband attenuation. These precalculations and optimisations 

produced a noticeable reduction in the GA run times. 

A.2 Simplex method hill-climber 

The Simplex Method of hill-climbing involves manipulating an N + !-vertex solid in 

N-dimensional space in order to search for improved solutions [33]. The simplest 

method of hill-climbing is to optimise each coefficient in turn, but this is inefficient 

when negotiating narrow valleys in the search space, as the search is required to zig

zag as it can only make a small step at a time along each axis. Although it is possible 

to use gradient information to rotate the axis so that they lie along the valley, and 

the search can be more efficient, this requires additional calculations and a regular 

realignment of the axes. 

The Simplex method does not require any such analyses, and only takes point 

samples of the space, but has the usual hill-climber's limitation of only finding the 

optimum it is started nearest to. An initial set of N + 1 vertices is selected at random, 

and their fitnesses determined. The worst point in the shape is now moved relative 

to the best face in the shape in order to search for a better solution, as shown in 

Figure A.l. 

The different moves listed in Figure A.l are tried in turn: first a reflection, and if 

this produces an improvement, the reflection is extended in the same direction to see if 

there is any further benefit. If the first reflection did not improve the worst point, then 

a contraction of this point towards the best face is tried. If all of these fail, then all of 

the worst points contract towards the best one. The termination criterion is that the 

relative fitnesses of all points within the Simplex lie within a selected tolerance band, 
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(a) 

(b) (c) 

~ 
,, I 

, 

Figure A.l: Steps taken by a Simplex method hill-climber while looking for a better 
solution, after Numerical Recipes in C (33]. (a) is the Simplex at the start; the best 
face and worst vertex are marked. Possible outcomes are (b) a reflection through the 
best face, (c) a reflection and extension, {d) a contraction towards the best face, or 
(e) a contraction towards the best point. 
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which must be determined by experiment. In this work, a relative range of 0.001 was 

used. 

A.3 Matlab initialisation script for MCO IIR de-

• sign 

This is the initialisation script used within Matlab to predict the necessary filter order 

to achieve a given target response. It was used to generate pole-zero positions to 

initialise the multi-criterion GA used to optimise IIR filters in Chapter 8. 

The parameter N was either set to the desired order, or to zero to use the order pre

dicted by Matlab. Wp and Ws are the normalised pass- and stopband edge frequencies, 

and Rp and Rs are the desired maximum passband ripple and minimum stopband atten

uation, both in dB. name is the basename for the datafiles. wl is the desired wordlength. 

Wlinphlo and Wlinphhi are the normalised edges of a desired linear phase region. lohi 

is a text string, set to either low or high to specify low- or highpass. fwl specifies how 

many of the wl bits are used to specify fractional numbers. 

function lhpiir(N,Wp,Ws,Rp,Rs,name,wl,Wlinphlo,Wlinphhi,lohi,fwl) 

sprintf('function lhpiir(N,Wp,Ws,Rp,Rs,''name'' ,wl, 
Wlinphlo,Wlinphhi,''type'',fwl)\n'); 

sprintf('This uses Nyquist frequency=0.5!\n'); 
sprintf('Set N=O to use the predicted order.\n'); 

if strcmp(lohi,'high') 
high=!; 
Wslow=O; 
Wshigh=Wp; 
Wplow=Ws; 
Wphigh=0.5; 

elseif strcmp(lohi,'low') 
high=O; 
Wplow=O; 
Wphigh=Wp; 
Wslow=Ws; 
Wshigh=0.5; 

else 

Setup variables according to low- or highpass 
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['Incorrect parameter: ' lohi] 
return; 

end 

Wp=Wp•2; 
Ws=Ws•2; 

Convert bandedges to F8 = 1 for Matlab 

[n,Wn]=ellipord(Wp,Ws,Rp,Rs) 

if N>O 
n=N; 

end 

if n-floor(n/2)•2 -= 0 
n=n+1; 
sprintf('n odd- increased to %i\n',n) 

end 

Predict the order needed 

Use a specified order if given 

Make order even if necessary 

if high==! Get filter pole-zero positions 
Wn = Ws; 
[z p k] = ellip(n,Rp,Rs,Wn,'high'); 

else 
Wn = Wp; 
[z p k] = ellip(n,Rp,Rs,Wn); 

end 

figure(!); 
zplane(z,p); Display pole-zero locations in polar plot 

fop=fopen([name '.pz'],'w'); Save pole-zero locations to initialise GA 

for s=1 :2 :n 
absz((s+1)/2)=abs(z(s)); 
argz((s+1)/2)=angle(z(s)); 
absp((s+1)/2)=abs(p(s)); 
argp((s+1)/2)=angle(p(s)); 
fprintf(fop,'absz= Y.g\n',absz((s+l)/2)); 
fprintf(fop,'argz= Y.g\n',argz((s+l)/2)); 
fprintf(fop,'absp= Y.g\n',absp((s+l)/2)); 
fprintf(fop,'argp= Y.g\n',argp((s+l)/2)); 

end 
fclose(fop); 

absz 
argz 
absp 
argp 
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if high==! 
[b a]= ellip(n,Rp,Rs,Wn,'high'); 

else 
[b a]= ellip(n,Rp,Rs,Wn); 

end 

[h w] = freqz(b,a,128); 

figure(2); 
subplot(2,1,1); 
plot(w/(2*pi), 20•log(abs(h)) ); 
subplot(2,1,2); 
plot(w/(2•pi), angle(h) ); 

Y. save the target .tgt file 

fop=fopen([name '.tgt'], 'w'); 

if high==! 
temp = Ws; Ws = Wp; Wp = temp; 

Get filter a and b coefficients 

Get frequency response 

Display magnitude response 

Display phase response 

If highpass . .. 

for s=O:Ws•512 
fprintf(fop,'-200 

end 

Save the response template for the stopband . .. 
Y.g\n' ,-Rs); 

for s=Ws•512+1:Wp•512 
fprintf(fop,'-200 0\n'); 

end 

for s=Wp•512+1:512 
fprintf(fop,'%g 0\n',-Rp); 

end 

temp = Ws; Ws = Wp; Wp = temp; 
else 

... tmnsition band . .. 

... and passband 

... else if lowpass . . . 
for s=O:Wp•512 

fprintf(fop,'%g 0\n',-Rp); 
end 

Save the response template for the passband . . . 

for s=Wp•512+1:Ws•512 
fprintf(fop,'-200 0\n'); 

end 

for s=Ws•612+1:512 
fprintf(fop,'-200 %g\n',-Rs); 

end 
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end 

fclose(fop); 

Y. now save the . ini file Save the GA initialisation file 
fop=fopen([name '.ini'],'w'); 
fprintf(fop,'# Ini file created automatically by Matlab\n'); 

fprintf(fop,['# lhpiir(Y,i,Y.g,Y.g,Y.g,Y.g,''' name ''',Y.i,Y.g,Y,g, 
''' lohi ''',%g)\n\n'],N,Wp/2,Ws/2,Rp,Rs,wl,Wlinphlo,Wlinphhi,fwl); 

fprintf(fop,'nstages:\t\tY.i\n',n/2); 
fprintf(fop,['templatefile:\t\t' name '.tgt\n']); 
fprintf(fop,['datafileroot:\t\t' name '\n']); 
fprintf(fop,'wordlength:\t\tY.i\n',wl); 
fprintf(fop,'fractional_bits:\t\tY.i\n',fwl); 
fprintf(fop,'perturbpc:\t\t5\n'); 
fprintf(fop,'passband:\t\tY.g Y.g Y.g Y.g\n',Wplow,Wphigh,-1,-1); 
fprintf(fop,'stopband:\t\tY.g Y.g Y.g Y.g\n',Wslow,Wshigh,-1,-1); 
fprintf(fop,'linearphaseregion:\tY.g Y.g Y.g Y.g\n',Wlinphlo,Wlinphhi, 

fprintf(fop,'maxmagerror:\t40\n'); 
fclose(fop); 

-1,-1); 

Y. now save the 'last.m' file 
fop=fopen('last.m','w'); 

Save a Matlab script to recreate this data 

fprintf(fop,['lhpiir(Y,i,Y,g,Y.g,%g,Y.g, 111 name 11 ',%i,Y.g,Y.g, 
111 lohi 111 ,%g)\n\n 1 ],N,Wp/2,Ws/2,Rp,Rs,wl,Wlinphlo,Wlinphhi,fwl); 

fclose(fop); 

return; 

This function was used to create datafiles containing pole-zero positions of full

precision filters. These were then used to initialise the GA, by mutating each bit by 

an amount proportional to perturbpc. 

A.4 Single-criterion Genetic Algorithm 

This C++-style pseudocode shows the important parts of the GA used to design Fre

quency Sampling (FS) FIR filters. 
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void GA::Generate() The main loop 
{ 

} 

HandleKeyPresses(); Pause, Save data, Quit 

generation++; Increment generation counter 

MakeNewPopulation(); Generate a child population . .. 

GetFitnesses(); ... and get their fitnesses 

SelectNextPopulation(); Select the next population 

After a quarter of the run, if no improvement for 20 generations . .. 
if (( generation > maxGenerations I 4 ) && 

( noimprovementCount >= 20 )) 
{ 

LocalSearch 0 ; ... call the Simplex local search 

If it found a better fitness, reset the "no improvement" counter 
if ( bestFitnessimproved ) 

noimprovementCount = 0; 
} 

if ( bestFitnessimproved ) 
noimprovementCount = 0; 

else 
noimprovementCount++; 

CopyNewPopulationToOld(); 

if ( TerminationConditionsMet() 11 generation== maxGenerations) 
{ 

} 

SaveDataO; 
Quit(); 

void GA::MakeNewPopulation() 
{ 

count=O; 

Use stochastic remainder selection to pick individuals to 
reproduce, the selected ones are listed in chosenfi 

Selection according to integer part of scaled fitness 
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for ( int m=O; m<popsize; m++ ) 
{ 

} 

while ( scaledFi tness [m] >= 1 . 0 ) 
{ 

} 

chosen[++count] = m; 
scaledFitness[m] -= 1.0; 

Selection according to fractional part of scaled fitness 

while ( count < popsize-1 ) 
{ 

} 

do 
{ 

m= randomlnt(O,popsize-1); 
if (scaledFitness [m] > 0.0) 
{ 

if ( randomFloat(0,1) < scaledFitness[m] ) 
{ 

} 
} 

chosen[++count] = m; 
fitscaled[m] = 0.0; 

Reproduce pairs of strings selected at random from those held in chosenO 

use = randomint(O,numleft-1); 
old1 = chosen[use]; 
chosen[use] = chosen[numleft--]; 
use = rndi(numleft); 
old2 = chosen[use]; 
chosen[use] = chosen[numleft--]; 

crosstype = SelectCrossoverType(); 

switch ( crosstype ) 
{ 

Pick two strin,qs at random 

Select crossover type by efficiency 

case 0: 
case 1: 

NoXover 0 ; break; Simply copy the old strings without crossover 
xover () ; break; 

case 2: multixover(); break; 
case 3: arithxover(); break; 
case 4: multiarithxover(); break; 
case 5: wholearithxover(); break; 

} 
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} 

Mutate(); 

GetNewFitnesses(); 
UpdataCrossoverEfficiency(); 

Mutate the genes in the two new chromosomes 

Get the fitnesses of the two new chromosomes 
Update the crossover efficiency information 

} while ( newPopulationincomplete() ); 

Now the five types of crossover 

void GA: :xover() Single-point crossover 
{ 

} 

crossAt = randomint(O,genes-1); 

CopyOldToNew(O,CrossAt); 
CrossOldToNew(CrossAt+1,genes-1); 

void GA::multixover() 
{ 

} 

direction = 1; 

for ( g=O; g<genes; g++ ) 
{ 

} 

if ( direction == 1) 
CopyOldToNew(g); 

else 
CrossOldToNew(g); 

if ( randomint(O,genes-1) < genes I 2. ) 
direction = 1 - direction; 

void GA::arithxover() 
{ 

crossAt = randomint( 0, genes-1 ); 

CopyOldToNew(O,genes-1); 

ArithmeticCrossover(crossAt); 
} 
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void GA::multiarithxover() Multiple Arithmetic crossover 
{ 

} 

for ( g=O; g<genes; g++ ) 
{ 

} 

if ( randomFloat(0,1) < 0.5 ) 
ArithmeticCrossover( g); 

else 
CopyOldToNev( g); 

void GA::wholearithxover() Whole Arithmetic crossover 
{ 

ArithmeticCrossover( 0, genes-1 ); 
} 

Jilunction used to return a fitness 
double GA::LovpassFitness( double •genes) 
{ 

} 

BubbleSort( genes); Sort transition samples so they decrease monotonically 

Scaling factor to convert sample numbers to interpolated sample numbers 
interpolatedSamples = 512; 
scale = samples I interpolatedSamples; 

Scan over the interpolated stopband samples 
for ( v = stopbandEdgeSample * scale; v<interpolatedSamples; v++) 
{ 

} 

The effects of the passband samples are precalculated as in Appendix A.l 
H = precalculatedH[w]; 

Add the effects of the transition band samples - the factors are also precalculated 
for ( k=O; k<NTransitionBandSamples; k++ ) 

H += genes[k] * precalculatedMultipliers[w][k]; 

output[v] myabs(H); 

deltas= GetMaximum( output[w] ); Find the maximum ripple 

deltas= -20.0 * log10(deltas); Convert the ripple to decibels 

return temp; 
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A.5 Multi-criterion Genetic Algorithm 

This C++-style pseudo code shows the important parts of the MCO GA used to design 

IIR filters. 

void GA::Generate() The main loop 
{ 

while ( generation++ < maxGeneration ) 
{ 

} 

GAProcessKey( ); 

GAMakeNewPopulation(); 

GAGetFitnesses(); 

if ( (generation t 127) c= 127 ) 
BitFlipLocalSearch(); 

Handle keyboard input 

Generate a new population 

Calculate their fitnesses 

Occasionally call a local search 

Select those in the old and new non-dominated sets, plus other poorer solutions 
GASelectNextPop(); 

GANewToOld () ; Copy the new population over the old 

} 

void GA::GAMakeNewPopulation() Generate the next population 
{ 

} 

Pick individuals by tournament selection on their shared jitnesses 
SelectForReproduction(); 

while ( PopulationNotFilled() ) 
{ 

} 

if ( randomFloat(0,1) < crossoverProbability ) 
CrossOldToNew(); 

else 
CopyOldToNew(); 

MutateNewPopulation( mutationProbability ); 
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void GA::GAGetFitnesses() Calculate the fitnesses 
{ 

} 

for ( m=O; m<popsize; m++ ) 
{ 

OneFitness( m); Get the fitness of member m 
} 

DetermineDomination(); Find the NDS of the new members 

Allocate fitness by NDS level and share by crowding to disperse search 
AllocateSharedFitness(); 

void Fitness::OneFitness() Determine the fitness of one chromosome 
{ 

} 

DecodeChromosome(); 

SetupFilterO; 
GetFrequencyResponse(); 

GetMagnitudeFitness(); 

Extract radius, angle and topology information 

Set up the filter with the extracted coefficients . .. 
... and get its response 

How well does the frequency response fit the target? 

How close to linearity is the phase response in the specified region? 
GetPhaseFitness(); 
GetNoiseFitnessO; What level is the roundoff noise gain? 

These fitnesses can then be used in any combination to determine the non

dominated sets, from which the fitnesses are allocated and the next population selected. 
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A NEW APPROACH TO-FREQUENCY SAMPLING FILTER 
DESIGN USING GENETIC ALGORITHMS 

E C lfeachor and S P Harris 
Department of Electronic, Communication and Electrical Engineering, 

University of Plymouth, 
Drake Circus, PLYMOUTH, PIA SAA, England. 

Abstract 
The JlUIPOSC of this paper is to present a novel approach to designing frequency 
sampling filters using Genetic Algorithms (GAs). In this method, an approximation to 
the desired continuous frequency response is obtained by optimising a small number of 
frequency samples. Existing methods employing linear programming techniques have 
computation times that increase exponentially wilb lbe number of samples to be 
optimised, and the published design tables do not adequately cover many filter designs. 
Our melbod overcomes these disadvantages, offers considerable flexibility, and yields 
results that are as good as or in some cases superior to published ones. Optimisation of 
lbe transition samples was achieved using a GA designed specifically for numerical 
problems requiring a high precisio!J. A local search method was used in conjunction 
wilb lbe GA for fine tuning. Many aspects of filter design involve optimisation, and 
could easily be incorporated into lbe GA, lbereby allowing it to provide a simple yet 
powetful 'universal' method for digital filter design, removing lbe difficulty of 
understanding the myriads of numerical optimisation techniques that are used in digital 
filter design. 

Introduction 

Central to digital filter design is the problem of finding a practical response that approximates a desired 
or ideal frequency response as closely as possible. The desired response may be magnitude, phase or both 
magnitude and phase. The frequency sampling method is an efficient way of finding the response of FIR 
(finite impulse response) filters to approximate an arbilraly frequency response. An attraction of lbe 
frequency sampling approach is that it allows a recursive implementation of FIR filters (1,2] which are 
computationally efficient, especially for filters wilb narrow passband Furlber, lbe melbod is 
particularly weU suited to lbe design of non standard filters where analytical expressions are not 
available. 

In the frequency sampling method, samples of the desired frequency response arc normally taken at 
equally spaced frequencies and from these an approximation to lbe desired continuous frequency 
response is obtained. To minimize lbe error between lbe desired and the computed responses a small 
number of the frequency samples are adjusted by an optimiution procedure. Rabiner et al (3] describe 
an optimization technique, based on linear programming, for finding optimum frequency samples for 
standard frequency selective filters (e.g. lowpass and bandpass filters). Unfortunately, the computation 
time increases exponentially as lbe number of frequency samples to be optimized increases. 

Tables of optimum values of lbe transition band frequency samples are available in lbe literature [3) and 
are widely used. If designer wants a filter not tabulated approximate values of the transition band 
frequency samples may be obtained by linear interpolation, but this is not always possible especially if 
lbe design involves a large number of transition band samples. Furlber, the information in lbe tables is 
not in a form filter designers are familiar wilb - e.g. bandedge frequencies and passband ripples are not 
given. The lack of a general purpose computer program for finding optimum frequency samples has 
restricted lbc use and eroded the value of lbe frequency sampling method. 
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The purpose of this paper, is la present a novel approach ID designing frequency sampling fillers using 
Genetic Algorilhms (GAs). GAs arc basically search and optimization techniques based on lhe 
principles of natural selection and genetics [4,5) requiring liule knowledge of lhe problem area. This 
makes lhem weU suited ID many engineering problems such as digilal filler design, where optimization 
is required. Our melhod overcomes lhe disadvanlages referred la above, offers considerable llexibilily, 
and yields resuliS lhal are as good as and in some cases superior la published ones. 

Optimum values of lhe lrnnsition band frequency samples arc normally of high precision, aboul 7 la 8 
decimal places. In this work we used a specialized GA (6) which has been shown to be beller suited la 
numerical optimization problems requiring high precision lhao standard GAs. The parameters arc 
represented as floating numbers. To ensure lhal optimum values of the lrnnsition band frequency 
samples are obtained, the specialised GA is first used to find a good solution close to the optimum. A 
local search method is then used for fine lUlling. For most filter design tasks, the solution found by the 
GA will be good enough, being close to the optimum solution. 

Our algorithm runs on a 486 mM PC (or compatible) and shows dynamically, via a graphics display, 
how the frequency response is changing as lhe GA searches the solution space. The software wiU be 
dernonsttaled al the workshop. 

2. Frequency sampling metbod 

In the basic frequency sampling method, samples of the desired frequency response are taken al regular 
intervals as illustrated in figure lb for a Iowpass filler. In this case, N samples of the ideal frequency 
response arc taken al intervals of 

k9l, 1, 2, ... , N-1 (I) 

where F, is the sampling frequency for the filter. Given the values of the N frequency samples, H(k), of 
the ideal frequency response, the FIR filler coefficients, h(n), arc then obtained using the inverse discrete 
Fourier transform (IDFI'): 

N-1 
h(n) = ~ :E H(k)ef{2n1Nlnk, n=O,l, ... ,N-1 

boO 
(2) 

For linear phase fillers with positive symmetrical impulse response, equation 2 can be wrillen in a 
simpler form [2). 

., 
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Figure 1: Concepts of frequency sampling. (a) The ideal response; 
(b) the sampled response; (c) the inlei]IO!aled (actual) frequency response. 

After computing the impulse response, b(n), the corresponding continuous frequency response may be 
obtained by fim zero-padding b(n) and then laking its OFf. The continuous frequency response will be 
exactly tbe same as tbe desired response at tbe sampling instants, but between the sampling instants it 
may differ quite significantly, see figure le for example. 

The frequency response of fillers designed by the basic frequency sampling melbod will in general be 
poor, caused by the abrupt change in the values of the frequency samples from I (in the passband) to 0 
in tbe stopband. To minimize the deviation of the response from tbe ideal response in the pass and 
stopbaod, we introduce frequency samples in tbe transition band as illustrated in Figure 2 for a simple 
lowpass filter with three transition band samples. The improvement in tbe pass and stopbamls is 
achieved at the expense of increased transition width. 
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Figure 2: Frequency sampling with transition band frequency samples. 
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The values of the transition band frequency samples are not known in advance and must be found by 
optimization. A useful optimization criterion is to fmd the set of frequency samples, T,, T,, ... , T 11 , 

!hat minimises the maximum ripple in the stopband. 

where 

min[max IHo(/) -H(f)l J 
{fin the stopband} 

Ho(/) 
H(f) 

J 
idearfrequency response 

actual frequency response 

(3) 

We discuss in the next section how the GA is used to optimize the transition band samples. In the GA 
approach, the number of transition band samples does not have a major impact on the computational 
lime, since in GA the search for a solution ocaus in parallel. At the present we limit the number of 
transition band samples to 10. 

3. Genetic AJgorithm for optimizing transition band frequency samples 

Optimization of the transition band samples was achieved using a specialized GA, which is weU suited 
to numerical optimization problems which require high precision. As in standard GAs, we start with an 
initial population of possible solutions (i.e sets of frequency samples) generated at random. By applying 
the GA operators of reproduction, crossover and mutation at each generation of the algorithm. The 
initial population evolves towards the optimum set of frequency samples. 

In our GA, a floating point representation is used to represent the frequency samples. For a filter with M 
transition band samples, each possible solution is represented as: 

(4) 

where the transition band samples, T "' T ~···· T .,,, are each represented as a double precision floating 
point number in the range 0 to 1. 

The performance or fitness of each individual (i.e. each possible solution) is based on the maximum 
difference, Bi, between the desired and actual frequency response: 

Bi = max IHo(f) -H,(f)l 
{fin the stopband} 

The fitness value for the ith individual is the inverse of the maximum difference. 

(5) 

As in most GA applications a substantial pan of the optimization time is spent on computing the fitness 
values for the individuals. In our application, we estimate that about 80% is spent in evaluating the 
fitness function, mostly in computing the IDFTs and DFTs computations. Thus there is an incentive to 
seek ways to improve computational efficiency. Since for each generation only M frequency samples (in 
the transition band) will change, a large part of the IDFT can be precomputed and saved. Additional 
savings are made by using an algorithm which packs N real poiniS into N12 complex poiniS, so halving 
the length of the FFT. 

We have used forms of the GA operators designed specifically for floating-point optimisation problems. 
A dynamic mutation operator is used which moves the point under study by a random amount The 
average distance that each point is moved is decreased as the number of generations increases, to prevent 
the GA from being thrown away from a fitness maximum once it has converged. The crossover operator 
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used was chosen randomly for each crossover from the following five crossover methods, with each 
being selected with equal probability. Ordinruy crossover consists of a !-point crossover, simply 
swapping blocks of numbers between chromosomes, and multiple crossover is similar but with a random 
number of crossing points. Arithmetic crossover consists of replacing the genes at the same location 
within two chromosomes by linear sums of the two original gene values. E.g. for vectors x and y, to 
arithmetically cross over the ~/gene: 

x' = r.x,. + (1-r).y, 
y' = (1-r).X,. + r.y, 

where r is a random number between zero and one; if r-0.5, the resulting values are the average of the 
parent genes. Multiple arithmetic crossover is similar, but with a random number of genes being 
crossed, and whole arithmetic crossover affects the entire two chromosomes. It should be noted that the 
fillil two types of crossover do not actually create any new values, but simply move them between strings, 
whereas the lasl three variations actually alter the values of the genes, and so are closer to the actions of 
standan:l binary crossover. Inversion is not used because the genes are ordered before use, so it would 
not have any effect. 

Stocbastic remainder selection without replacement [5) is used to select members for reproduction, a 
technique that ensures that the best individuals are always chosen, while some poorer members are also 
picked to help maintain diversity and prevent premature convergence. Since there is only one maximum 
in the search space [3), there is no danger of the GA being trapped at a sulH!plimal fitness peak, so 
elitism can safely be used to retain the best ·so.lntions found. 

The genetic algorithm for optimizing the transition band samples are summarised below: 

(I) From the user specifications determine the number of frequency samples in the pass 
and stop bands, and the number of transition bands samples. 

(2) initialize the GA. 

(3) compute the fitness value for each individual in the population and note the best 
individuals found so far. 

(4) if the best individual is better than the best so far update the display of the response 

(5) obtain the next generntion: reproduction, crossover and mutation 

(6) repeal steps 3 to 5 until the stopping condition is satisfied. 

(7) save values of impulse response coefficients, frequency response, and values of the 
trnnsition band samples for the best solution. 

4 Results 

We will illustrate the use of the algorithm by the following two design problems: 

Problem 1: 
Find the optimum transition band frequency samples and the corresponding filter coefficients for a 
lowpass filter meeting the following specifications: 

passband edge frequency, f, 
stopband edge frequency, f, 
number of filler coefficients, N 

0.143 (normalized) 
0.245 (normalized) 
49 
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From the specifications, tlle number of frequency samples, N = 49. The sample numbers corresponding 
to the pass band and stop band edge frequencies are 6 and 12 respectively. The number of transition 
band samples, M= 5. Thus tlle frequency samples for the ideal frequency response arc given by: 

IH(k)l I , k=O, 1, ... 6 
Tl 
T, 
T, 
T, 
T, 
0 

k=7 
k=8 
k=9 
k=IO 
k=ll 
k=12, ,13 • ... 24 

" The values of T 1 to T, are unspecified. The results of the optimization by GA are summarized in figure 
3. The impulse response coefficients are put in the familiar form by circular rotation. 
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Figure 3: (a) The interpolated frequency response; (b) the filter coefficients. 
passband ripple: 0.046dB; stopband attenuation: l39.64dB; 
passband width: 0 .15; 5 transition samples; 49 filter coefficients. 
Transition sample values: 0.855456, 0.485507, 0.148961, 0.019693, 0 .000644. 
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Problem 2: 
Find the optimum transition band frequency samples and tlte corresponding filler coefficients for a 
bandpass filter meeting t11e following specifications: 

stopband edge frequency, f, 
passband widtl1 

0.183 (nomtalized) 
0.061 (normalized) 
49 number of filter coefficients, N 

From the specifications, ilie number of frequency samples, N = 49. The sample number corresponding 
to tlte stop band edge frequency is 9, and the pass band is 3 samples wide. The number of transition 
band samples, M= 5. The results of the optimization by GA are summarized in figure 4. 
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Figure 4: (a) Tite interpolated frequency response; (b) t11e fi.ller coefficients. 
passband ripple: 0.097dB; stopband attenuation: 89.08dB; 
stopband width: 0.183; passband width: 0.061; 3 transition samples; 
49 filter coefficients. 
Transition sample values: 0.708873, 0.230358,0.021169. 
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5 Discussions and conclusions 

At the present, our algorithm can be used to design all four types of type-I Fffi filters. Subsequently it 
will be developed to cope with non standard filters. We believe UUtt this is relatively easy and should be 
completed well before the workshop. 

We find the new technique described in this paper to be flexible and efficienL WiU1 the wide availabili ty 
of PCs, we feel it should be possible to make U1e software, when it is fully developed, widely available to 
designers. 

Many aspects of filter design, such as coefficient calculation and finite wordlength analysis, involve 
optimization. This makes digital filter design ameMble to genetic algorithm solution. An attraction of 
GAs is that they require very little knowledge of the problem area. This may remove the difficulty of 
understanding the myriads of numerical optimization techniques UUlt are used in filter design. 

In the last four years, we have investigated the use of GA in filter design as part of our research in 
intelligent signal processing. Our work and that of others [7,8] indicates that GA could provide a simple, 
and yet powerful'universal' method for digital filter design. 
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Abstract 

T he design of d igital I IR filters is a multi
s tage process, involving the optimisation of 
coeffic ient values , coefficient wordlengths, 
s tructure and section ordering. T hese are 
t raditionally regarded as separate opera
lions, and , as s uch, can in general only pro
duce filters which are op timal in certain as
pects, bu l not optimal overall. By exploi t
ing the mul tiple criterion optimisation abil i
ties of the Genetic Algorithm, we s how that 
it IS possible to perform several of th ese 
steps s imultaneously. This a llows the de
s igner to specify the relative impor tance of 
each area of the design, fo r example, the 
fr equency response or roundoff no ise effects, 
thereby permitting the design of fillers from 
a few initial specifications withou t requiring 
detailed knowledge of the individual design 
5teps 

1 Introduction 

The Genetic Algorithm {G A) (I , 2] i~ a rel
atively new search and optimisation tech
tllque, which takes its inspiration from evo
lu tion a nd natural selection . The GA 
is not onl y capa ble of searchi ng multi
dime nsional a nd m ulti-modal s paces, unlike 
hi ll-climbing, but is also able to optimise 
complex, d iscontinuous funct.ions which are 
difficult to analyse mathematica lly. This 
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makes it particularly s u1 table for opllllll~lng 
romplex multi objective functions. 

To design a useful , practical !illPr tl IS 

necessary to perform f'l've ra l design ~tl'p~ 
in order to e nsure that the fille r has tht> 
desired pe rfo rmance in te rms of freque nc~ 
and/or phase response, a nd has acceptabl t> 
noise characteristics due to quanlisation ef
fects . This mu lti-crite rion problem is pa rtic
ula rly s uita ble fo r optimisation by the GA 
[3, 4] . Wt> havt> develo ped a <>A-based Fi ll 
Frequency Sampling fi lt er design package [5 , 
6}, which was shown to be capable of opll
mising full -precision coeffi c ient filte rs . Thts 
work is now being extended to cover t he de
sign a ffi xed-point IIR filte rs with qua ntised 
coefficients. 

An !Ill filter can be d escribed by the fol
lowing recursive expressi on : 

N M 

y(n) = I: Ok:t(n - k) - I: bky(n - k) 
k:O k : l 

where Dk and b~: are the coefficients of 
the filter , :r:(n) a nd y(n) a re its input a nd 
output, and Nand M are the number of o~: 
and bk fi lte r coefficients, with M > N . This 
has a n equivalent transfer fun ction of: 

'\'N -k 

H( ) 
_ L-k-O DkZ 

z - M k 
I + Lk= l b~:z-

An importa nt task fo r the designer is 
to find values of ak and bk which produce 
the desired response . T he re are many ap
proaches to this [7], producing filters wi th 
di fferent characteristics. 

A common way of realis ing IIR fi lters is 
to cascade severa l second-order sections to
gether (Figure 1), l he output. from the first. 
feeding the input of the next. This type of 
filte r has a transfer func tion of: 

N/2 - 1 -2 
H(z) =IT (lok + a,k z + « 2kZ. 

k = l I + b,kz - 1 + b2kz- 2 

or , in pole-zero fo rm , assuming complex 
conjugate pole-zero pairs: 

N/2 · · 

IT 
(z - r·0 e1w•)(z- r 0 e-Jw•) 

H(z) = . . ) 
k =l (z- r·peJw•)(z- r·rr- J"'• 

where r·0 and r·p are the radii of the pok 
a nd zero respec tively, and w 0 and wP are 
th eir angles. Thi s can be represented in the 
shorter form . 

GeneiiC Algorithms in Engineering Systems: Innovations and Applications 
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l"igure 1: Cascaded second-order section l!R filter. The s, scal ing factors a re to he lp minlllliSt' 

or prevent overnows. 

Nf2 

H(z) = IT Nk(z) 
Dk(z) 

k=i 

Once suitable f. Ite r coefficients have been 
obta ined , finite word length (FWL) analysis 
must be performed in order to determine 
how the filter will cha nge when it is imple
mented in a real-world FWL system. When 
the filter coeffi cients ak a nd h a re qua n
tised , this can have undesirable effects on 
the filter 's behaviour, for example a cha nge 
in the frequency response and alte rations 
111 the pole-zero positions which in the ex
treme case can lead to ins tability. R.oundoff 
noise is a lso introduced by multiplications 
performed during the actual filtering. 

Noise analysis shows that t he o rdering 
and pairing of the Nks a nd Dks also become 
a factor in the overall fil ter performance 
when the coefficients are qua ntised . De
termining the best pairing and ordering of 
the Nk and Dk polynomia ls rapid ly becomes 
non-trivial as the filter order increases, as 
the number of possible filters tPN is given 
by: 

which for a tenth-order filte r g ives 14400 
possibili ties. 

It is common pract ice to scale the filter 
coefficients to help minimise o r prevent over
now. !"or example, in L2 norm scaling, the 
scaling factor for second-o rder section i is 
given by 

where h;(k) is t he impulse response fro111 
th e input to the internal node w; for secti on 
i as shown in Figure I . 

For the quantised, scaled filter, 1 he 
roundoff noise gai n is given by: 

where /;(k) is the i111puhw re;;ponse bc!
tween the first adder in ser t10 11 i and the 
output (7] . 

The ordering and pairing of the Nk 'sand 
Dk 's affect th e ovPrall roundoff no ise for thr 
fi lter, so t hey must a lso be optimisrd . In 
standard design meth l•cls, thr optimisatio n 
of the fi ltPr coeffi c ients a nd the minimising 
of t hP rou ndoff noise are two indepPndent 
steps, so a ny filter so designed will be op
timal in either On(' o r o th er sense. What 
is needed is a design tech nique which al
lows several steps of filt r r design requiring 
optimisation to be performed in parallel , 
whereby we s ho uld ht> able to opti 111i~r holh 
the filter coefficien ts a nd the roundoff no i!'r 
s imultaneously, trad 111 g on<' n iT agai usl I hr 
other as nec!'ssary . 



2 Th GAs 

As a firsl step, we d rvelop<'d a hy
brid fl oattng- point GA after J an ikow a nd 
M ichalewtcz [8], whtch opttmtsed thr pole
zero posittous for IIR fil ters mad(' up from 
second-order sections The G A o pera ted 
with genes in the range 0- 1, transla ted lo 
a range of 0.5- 1.0 for th e radi i, and 0 1r fo r 
the a ngles. By using second-order sections 
which are made up from conjugate poles a nd 
zeros, the G A needed only to op timise th e 
positive a ngle one of th e pair, so a total of 
four numbers were need ed to full y d escribe 
each stage. 

The stopping criterion was the discovery 
of a filter within a given maximum passband 
ripple and minimum stopband attenu a tion. 
lt has been found that the high-fitness a rea 
of the search s pace around the optimum so
lution for m any filters of this type is ex
tremely small , and becomes smaller as th e 
number of sections rises. While the G A can 
find the general region of the best solution , 
it is usually unable to reach the actual opti
mum, so we have used a hybrid optimiser in 
the form of a Simplex method hill-climber. 
This has been found to be effective when 
used in conjunction with the GA when an 
optimal solution is required . The Simplex 
search on its own , however , is not s uitable, 
as there are a number of peaks in the search 
space, so un less it is started adjacent to the 
o ptimum peak, it will never find it. 
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It was found that the G A was slow to 
reach the optimum solution, so si nce very 
fast methods of filter design such as the BZT 
a nd impulse- invariant method are avai lable, 
it was decided to use a BZT d esign to ini
tialise the GA . One m ember of the popu
la tion was initialised direct ly with t he BZT 
solution , while the remainder of the popu
lation were filled with randomly p erturbed 
values of the pole and zero positions, chosen 
at random . This allows the GA to search 
for better solutions with differently o rdered 
second-order sections, initially in the region 
of the solution found by the BZT. The GA 
also uses the filter o rder recommended by 
the BZT to ensure that a viable solution can 
be found. 

The GA was then extended to optimise 
the coefficients in their quantised form. The 
fitness function was adapted to convert the 
chromosomes to their quantised values be
fo re calculating the filter's response and fit
ness . In this form , the GA was able to move 
closer to t he optimum solution , as the search 
space now on ly co nta ins a limited number 

of pomts . Ho"<''<'r . thr !-,t tnpl.-\ ,,.M.-h l"· r 
formed more p0Ni) a~ the ~eilr < h :;l'·•r• '" 
no longn a SlllOOt h surfan', hut 1 ~ uwdP 
up from small rrgtoll ~ wt th 11111fc>nn fiLII•'":; 
Oncr thr sunpkx ltrs fully wtlhllt a Utllfortll 
regio 11 it can not prorred wtth ll~ ::-ea rch so 
its convergence propertirs a rr tnuch P•'Orl'r 
whr n designing a <]Uit lltt:wd fill l'r V\-'tth lo\\ 
precis ion fil ters this is not ' ' problr m , a~ ti n· 
G A is able to perform the o ptimi~ation , but 
a t higher a precision of, for exa m ple, 16 hits. 
the solution is poorer , as the C A reli es 011 
the hybrid simplex for th<' final opt inusa
tion . 

This G A was found to perfo rm poor I) 
and to be ex tremely s low to reach 1.he op 
timum so lution , so a binar~ -roclrd (;.-\ wa;: 
also d eveloped in o rder to compa rr lh<' p<'r
forrnance of the two approaches [!J] . 

The binary G A uses geMs cont aunng 
Gray-coded versions of two's com pleme11L 
fixed precision numbers, wh ich are t.he Ok 

and h coeffi cients. The overall word iPng th 
and the number of fractional bits are speci
fied by the user .This approach fon.:rs the C: i\ 
to work with quantised numbers, thereby r<'
moving one set of calculations from the fit
ness function. The seeding of the first r<lll 

dom population was cha nged to remc>\'t~ the 
unperturbed BZT solution , as it was found 
that fo r tight tolerance filter:. the C: A rarely 
looked anywhere else as the high fitnes~ re
gions are rela ti vely small. 

To prevent un stable filters from being 
designed , any filtN whosr b, a nd b~ coef
ficients fell oulsid r the stabi lity tri <111gl" of: 

lb2l < 
lbtl < I + b2 

are immediately reLurnrd with a low fi t 
ness. 

The operatio 11 of th r ( ;;\ was ext t'ndrd 
lo include the roundo!T no tsr in thr fitness 
fun ction . By doing so. thr (;A also includ<'s 
the ordering of the second ord er sect ions as 
an intrinsic pa rt of the opti 111isation. in or
der to produrr a filt er with as low a roundoff 
noise as possible 

A multi-objecti vr fit ne."" fun ction wa.~ 
chosen to allow th <' ust'r to spc•·ify thr rela
tive importa nce of th E' frequr ncy respons1• 
and roundoff noise of t.h<' filler to be de
signed . This a llows the (;A to search fo r 
fi lters ranging from thosr w1th optima l rr
ponses to those having optin1al noisr cha r
acteristics. The phasP r<'sponsr was 110t in
cluded , a lth ough it will h(' exan1ined at a 
future datr . 
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Figu re 2 : Lowpass filter designed by CA 

T he chosen fitness func t ion was : 

F
. I I 
z!ness = -- + --?

fmo.r W.uor 

where fm 0 ., is the maximum deviation 
from t he required frequency responce in the 
pass- and s topbands in dB, and W is a 
weighting value. The weighting value was 
varied to a lter the trade-off be tween fo rc ing 
the CA to a good frequency response a nd 
trying lo find a filler with a low roundoff 
noise ga in . 

3 R esults a nd discussion 

To lest the CA, we compared its results t o 
those fou nd by the BZT a nd quantised to 
the sam e word length When asked lo fiud an 
eighth -orde r lowpass filter with no rmalised 
bandedge frequencit-s of 0 35 a nd 0.4 , a 
\\'Ord lcngth of 16 11ith 1:1 fra.r. tio nal bits, 
maximum pass banJ rip pl t> o f 0 25d8 and 
minimum s topba nd attenu ation o f 45dU, a 
CA w1th a weighting value o f W = 100 
found thr filter s ho\\'n 111 F'1g nre '1.. . Th <' 
•;ha raclNI$1 ICS of I he (; ,\ fil l N II I'E' l'O IIl pMed 
,,.1th t hus<' for llu· quant is<'d ll ZT sol ut ion in 
l ltr · filhl!• l>!· ln\1' 

A t eut h-onler bandpass filter with band 
edges of 0 .13, 0. 17, 0 .25 , 0 .29, with a 
wordlell~th of 2·1 including 20 fractional 
bits, a;1d ripple to le rances o f 0 .2d8 and 
50dB in the pass- and s topbands was found, 
with the fo llowing resul ts, by a GA with 
w = 1000: 

The solutions found by directly quantis
rug the BZT solutiou st-em to fall 111to two 
categon es: those with a good frequeucy re
sponse and high ro undo ff no ise gain, and 
those \\'ith a low roundoff noise gain but 
poor frequency rt-sponse. This s uggests that 
the sol utions fo und by the BZT lie in a small 
high-fitu ess regio n \\'ithin all othe rwise poor 
a ren of th t- search space, wh er<' s im ply quan
t.isi ng thr filtt- r coeOi c ir ut s is enough to turn 
t.hc fi lt r r int o a n uns uitahl t-, low-fitnrss so
lutro n 

T hl",l' resul t» show th a t t he In bnd (;A 1.< 

a \lahl t• >- tra tt-gy fo r quantrsed rfR filt rr ciC'
sign .1 lt houg h for vt> ry low t.o lc rann• filtl' l ~ 
(" ~ 11'11 h n ;<rro ,,· t.ra nsitio n hand 111dt h,;) 



thr BZT solu t io n is so good tha~ 11 :-hou ld 
bP Inc luded in the seC'di ng of the (;As Ini
tial population It also d e m onstral.rs t ha l 
the CA is able to 1mprove l11f' ro undo!T noise 
gain or a BZT fi lte r from that obtained whPn 
the coeffi cients are si mply quantiserL 

The advan tage o f the com bi ned 
BZT/GA approach is that. the GA can be 
take n rapid ly to good possibiP regions o f 
Lhe search space, and exp lo re these arPas 
fo r the best q ua nt ised solutions more suc
cessfully than either ca n a lo ne. It has also 
reduced t he num ber of stages o f d esign by 
integra ting coefficient ca lculation , sect ion 
orde ring , a nd no ise analysis into a si ngle 
para llel operatio n , t he re by allowing design
ers to prod uce a complete 11 R filLe r from a 
fe w in itial specifi cations, wi LilC'ut needing to 
understand the m any differe n t mtermediatr 
stages. T he addi tion of extra genes to con
t rol t he structure used by eac h second ord er 
section could a lso a llow an improvement. in 
t he roundoff noise gain . 

Wordlength o ptim isatio n is currently 
o n ly p ossible by p erforming several G A runs 
wi t h diffe rent wordlengtbs and co mparing 
res ults. However, the fu ture inclusion of 
genes in the chro m osome to control the 
word lengt h s hould a llow the production of 
the fi lter wi th mi ni mu m wordlength t ha t 
gives the desired response. Put ure work 
wi ll examine d ifferent approaches to m ulti
objective fitness fu nctio ns as t he number of 
target fi lter specificati ons inc reases. 
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Automatic Design of Frequency Sampling Filters 
by Hybrid Genetic Algorithm Techniques 

S tephen P. Harris and Emmanuel C. Ifeacbor 

Abstract- A new method or designing recursive and nonrecur
sive frequency sampling filters is presented. We investigate the 
use or a hybrid real-i:oded genetic algorithm (GA) for opt:imising 
transition sample values to give the maximum stopband atten· 
uation. A modification allows the coefficient wordJengtb to be 
optimized concurrently, thereby reducing the overall number or 
design steps and simplil)ing the design process. The technique 
is able to consistently optimize filters with up to sill transition 
samples. Designing digital filters is a complu process involving 
optimization at several discrete design steps. The techniques 
presented here could form the basis for integrating several of the 
optimizations. Investigations Into increasing this integration by 
using a binary-coded GA to optimize nonlinear phase, quantized 
coefficient FIR filters are introduced, with an analysis of the 
difficulty of the problem from a GA perspective. 

I. iNTRODUCTION 

THE DESIGN of digital filters, as with most engineering 
tasks, is a multistage, iterativ,.. process. The key stages are 

filter specification, coefficient calculation, structure realization, 
finite wordlength analysis, and implementation. Each stage 
involves optimization, but current practice is to perform this 
separately for each stage in an iterative fashion until an 
acceptable solution is found. However, since the effects of 
each stage are interrelated, optimization at only one stage leads 
to a design that, although optimal for that design stage, will 
generally be suboptimal for others. An attractive goal is to 
perform the optimization for several stages simultaneously in 
order to seek out the filter design with the best overall tradeoff 
across the design criteria. 

The frequency sampling (FS) method has attracted a consid· 
erable amount of attention as a fil ter design method [l]- [14). 
When used to design standard frequency-selective fi lters, a low 
number of regularly spaced samples are chosen, with fixed val
ues in the passband and stopband and a few variable samples 
in the transition band, which are optimized to maximize the 
filter performance according to its desired use. 

The FS method has the advantages that more efficient recur
sive versions of standard narrowband nonrecursive filters can 
easily be found and that fil ters with an arbitrary response can 
also be designed. The key task in the FS method is to find the 
values of the transition band frequency samples that produce 
a filter with the desired continuous response, for example, one 
with the maximum possible stopband attenuation. While tables 
of transition sample values for a limited selection of filters 
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have been published, the interpolation required to produce 
an untabulated filter will result in a suboptimal solution. 
Designing fi lters with quantized coeffic ients adds a (urther 
level of complexity as the coefficients are often quite different 
to those found by simply truncating or rounding the full 
precision coefficients found by standard techniques. 

In many real-time applications where a linear-phase re
sponse is required, such as audio and biomedicine, FIR fi lters 
may be unsuitable, due to their unacceptably long delay 
of half the filter length. However, if the phase response is 
unconstrained, then a reduction in order of up to 50% can 
be made for some filters, with no loss of quality in the fi lter 
response. A compromise solution is to only optimize the phase 
with respect to its linearity in the pass band, where the signal is 
most important. This releases degrees of freedom to improve 
the performance in the magnitude response and should allow 
a fi lter to be produced with the same magnitude response and 
near-linear phase in the passband but with a lower order and, 
therefore, a shorter delay. 

In recent years, natural algorithms such as the genetic 
algorithm (GA) [5]. [6] and simulated anneal ing (SA) have 
become popular optimization tools for performing searches 
of hilly, multidimensional surfaces where traditional methods 
such as hill c limbing cannot perfom1 well. TI1ese features can 
be utilized in digital filter design to perform various opti· 
rniz.ations [7]-[10], whereas Darwinian optimization, which 
includes elements of both GA and SA methodology, has also 
proved successful [ 11]. The GA is capable of performing 
multicriterion optimization (MCO) in ways that automatically 
perform perfom1ance tradeoffs between design specifications. 

In this paper. we introduce a fundamental investigation into 
the feasibil ity of using GA's to simplify the digital fi lter design 
process. Investigations into the use of the GA for optimizing 
frequency-sampling FIR filter coefficients for both recursive 
and nonrecursive representations are detailed, a long with the 
floating-point hybrid GA that was developed to tackle the 
problem. This GA uses a family of related crossovers, and 
a new technique is described that dynamically biases their 
selection according to their success in improving the fitness. 
A modification allows the GA to optimize the wordlength of 
recursive fi lters simultaneously with their coefficients with no 
user intervention. An analysis of the nature of the search space 
was undertaken in order to explain and improve the GA's 
performance. 

In order to increase the number of design steps being 
undertaken simultaneously. a binary GA was developed that 
optimized quantized coefficients directly while trading-off 
magnitude and phase response performances against each 

1053-587XI98SIO.OO @ 1998 rEEE 
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Fig. I. Stages in the design of a frequency sampling filter. 

other. This was undenaken with the aim of presenting the de
signer with a range of fi llers with different characteristics from 
which the most appropriate may be chosen. This approach 
proved to have a very poor performance, and our subsequent 
investigations into the search space and GA difficulty of the 
problem are introduced briefly. 

ll. B ASIC THEORY OF lliE FREQUENCY SAMPLING FrLTER 

An FIR filler can be uniquely represented by a set of 
frequency samples taken at regular intervals, as shown in 
Fig. l (a), where they have been set to unity in the desired 
passband and to zero in the stopband. From this, the filler 
coefficients (and impulse response) can be found by taldng 
an inverse OFf. The continuous frequency response can be 
approximated by zero padding the impulse response to a length 
of 1024 or more to obtain reasonable accuracy and taking a 
forward OFf (usually an FFf). This interpolated response can 
then be analyzed to detennine its performance with respect to 
the problem under investigation. For a "brick-wall" filter such 
as this, the interpolated response has a large degree of ripple, 
resulting in a filter with poor attenuation, as shown in Fig. l(c). 
It is possible to improve the performance of a "brick-wall" 
fi lter obtained in this way by including some variable samples 
to smooth the transition between passband and stopband, as 
in Fig. l(b). The value of these transition samples can be 
optim.ized in order to give the minimum ripple in the passband ' 
and/or stopband; see Fig. l (d). Once the transition samples 
have been optirnized, an inverse OFf of all the samples can 
be used to give the filter coefficients. 

lt is possible to express the transfer function of any FS 
filter in either a recursive or nonrecursive form. The sel 
of stopband attenuations over all possible transition sample 
values has a unique maximum for both nonrecursive and 
recursive filters [I], which means that a gradient descent 
algorithm will always be able to find the optimum solution, 
although this might not occur within a useful timescale for 
highly dimensional problems. A certain amount of off-line 
precalculation can be employed to improve the computational 
efficiency for nonrecursive filters, but this design method is 
inefficient for narrow-stopband filters, where only a small 
portion of the interpolated frequency response is needed to 
discover the attenuation. A recursive representation of the FIR 
filters allows a greater degree of precalculation and a more 
efficient implementation in most cases, although increases 
in computing power reduce the absolute speed differences 
between the two methods. 

For variable-wordlength recursive filters, where both the 
transition samples and wordlength are being optim.ized, the 
search also has to cover a range of possible wordlengths. ln 
this case, there is no longer a simple, smooth surface; therefore, 
pure hill-climbing methods can no longer be reli~ on to find 
the optimum. However, due to the coefficient quantization, the 
number of points in the search space is vastly reduced, and the 
search becomes more straightforward for the GA. 

A. Recursive FS Filter Design 

lt is possible to calculate the interpolated frequency response 
of a recursive form FS filler directly by use of the z transform, .. 
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which permits much of the calculation to be performed oftline. 
It is also possible to calculate the response for just a limited 
region of interest, such as the stopband. For an FIR filter with 
radius r, the recursive f01m transfer function can be wri tten as 

I - .,.N z - N N- 1 H (k) 
H(z)- """' 0 < r:::; I (I) - N ~ 1 _ eJhk/ N.,.z-1 

k=O 

where the factor outside the summation is a comb filter with N 
zeros spaced uniformly around a circle of radius ,. , cascaded 
with N single pole filters, represented by the summation 
term. These poles are all coincident with U1e comb filter's 
zeros at the points where Zk = r ei21fk/N with fully accurate 
arithmetic. In practice, when limited precision arithmetic is 
used, it is necessary for the radius to be less ilian one to prevent 
possible instability, with systems implemented with fewer bits 
requiring a smaller radius due to the larger perturbation caused 
by quantization. For a Linear-phase FIR filter, H(z) may be 
expressed by (2) [12], shown at the bottom of the page, where 
a = (N - 1)/2, and M = (N/2) - 1 for N odd and 
M = (N - l )/2 for N even. In our implementation, UJe 
radius r was eiUJer fixed by the designer or by the wordlength 
of the fi lter under investigation. 

If r is exactly one, (3) can be used to avoid numerical 
overflow problems and allow a greater degree of precalculation 
as 

·w -Jw(N-1) [IH(O)I sin("'f) ~1 
IH(k)l 

H ( e1 ) = e , ---y;;-- --:----(!!!) + ~ ---y;;--
sm 2 k=1 

x [ sin(N(I- }})) sin(N(I +?f)) ]] · (3) 
. ("' trk) + . ("' "k) sm 2 - N s1n 2 + N 

The GA uses the expression between the outermost set of 
brackets to calculate the magnitude response for full-precision 
filters. 

Depending on whether the first sample is taken at w = 0 
or w = 1rjN, ilie filter is described as Type I or Type Il. 
Since N can be odd or even, we therefore have four possible 
sample arrangements for a frequency sampling filter. With 
linear-phase constraints, FS filters are resuicted to certain 
frequency-selective filters, depending on wheUJer N is odd or 
even, which can be illustrated by UJe Case 2 type of impulse 
response, where we can express the magnitude response for 
N odd by [13) 

H' (,;")" (~·I·>=(+-D)) (4) 

where a(O) = h((N- 1)/2), a (n) = 2h((N- 1)/2- n). 
This equation is always zero valued at w = 11', regardless of 
the actual filter coefficients since cos( 11'( n - 1/ 2}) is always 

Filter TYJle 

Type·!, N odd 

T}'Jle-1, N even 
Type-If. N odd 

Type-11, N even 

TABLE I 
DESIGNABL£ FIR FILTUS 

lR Case Possible Filters 

Case I All filters 

Case 2 Only lowpass and bandpass 

Case I All fi lters 

Case 2 Only lowpass and bandpass 

zero for integer n. This means lhal it is impossible to use 
a symmetric, N -even impulse response for any type of filter 
that is nonzero at w = 1r, such as highpass and bandstop. The 
available filter types are shown in Table I. 

Ill. THE GENETIC ALGORITHM 

The GA, as developed by Holland [5], [6], has in recent 
years become a popular and powerful search technique. It 
is based on ideas borrowed from the theories of natural 
selection-the "survival of the fi ttest." In nature, evolution can 
be viewed as a search process where the optimum DNA must 
be found in order to maximize a species' chances of surviving 
long enough to reproduce, U1ereby propagating the species. 
This occurs through a process of DNA crossover during sexual 
reproduction and the loss of unfit offspring due to predation 
or poor adaptation to the surroundings. 

The GA uses a similar process to perform the search for 
the optimum solution of a problem represented by an artificial 
computer model. The paranJeters that tune UJe performance 
of this model are represented within the GA as a number 
of chromosomes, most commonly in a binary representation, 
although a real-coded chromosome may be more appropriate 
for some problems. These chromosomes make up the GA's 
population , which contains all the information that the GA 
has found about the good regions of the search space. They 
are generally initialized at random in order to ensure that the 
search space is sampled widely and evenly. 

In order to determine which of the members of the pop
ulation contain solutions iliat are good enough to continue 
to the next generation, the "fitness" of each must be found. 
This is performed by UJe fitness function, which decodes 
UJe binary chromosomes into their model parameters and 
calculates the corresponding performance. The better solutions 
are selected according to fitness to undergo reproduction into 
UJe next generation, whereas the poorer solutions are lost. This 
selection increases the average fitness of the population but 
does not introduce any new solutions. In order to disuibute 
information about the good solutions that have been selected, 
the new population undergoes crossover, which, in a similar 
way to the natural process, involves the sw~pping of sections 
of the chromosome between randomly selected pairs. If there 
are just a few good solutions within a population, it is possible 
for them to overrun UJe population and cause premature 

H z = 1 -rNz-N[[~IH(k)l(2cos(27rka/N)-2rcos(211'k(1+a)/N)z- 1 ) ] + ~~~;;_ 1 ] ( ) N ~ 1 - 2rcos(211'k/N)z-1 + r2z-2 
k=J 

(2) 
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convergence, thereby allowing the GA to become "stuck" in 
a suboptimal solution. To combat this, mutation is used to 
allow the GA to escape to new regions of the space. Mutation 
s imply involves the flipping of a few bits within the population 
at random with a low probability, as it can obviously be very 
disruptive. 

The GA has the advantages that it can escape from subop
timal peaks even after it has converged, through the action 
of mutation, so that it can be used in highly multimodal 
situatiorts, unlike traditional hill-climbing techniques. It can 
also be written in a way that makes it suitable for multicriterion 
optimization: a feature that is planned to be utilized in future 
design areas. Unlike many other design techniques, it does 
not require any mathematical analysis; therefore, it can be 
used for complex problems where such an analysis would be 
extremely difficult and time consuming. The GA is also able 
to work successfully with discontinuous search spaces, such 
as those produced when using quantized model parameters, 
since only point samples are taken. This feature is utilized 
in the optimization of finite wordlength filters described in 
Section VI-A. It has the disadvantage that it is not guaranteed 
to find the optimum solution for any given problem; therefore, 
a secondary, hybrid optimization method is often used in 
~njunction with the GA in order to improve the final solution. 

While a binary-coded model is most common, it may 
be advantageous to use real coding instead if the problem 
naturally involves the optimization of real numbers or if there 
is a large time overhead in converting the binary values to their 
corresponding real numbers. The GA used in the optimization 
of FS filters utilized a real coding, with floating-point crossover 
and mutation techniques based on those of a GA designed for 
numerical optimization [14). 

IV. THE SHAPE OF THE SEARCH SPACE 

In order to obtain a better understanding of the function that 
the GA is optimizing, contour maps of the search space for 
a two-transition sample lowpass filter were drawn by varying 
the transition samples at eight-bit resolution (i.e., 256 by 256 
points) and finding the fitness of each solution. A typical 
surface for a lowpass filter is shown in Fig. 2. The restriction 
that the second transition sample (T2 ) must be smaller than the 
first (T1) means that half of the possible area is forbidden-the 
thick line marks the edge of this region, which lies in the upper 
left half of the figure . The jagged appearance is due to the 
limited resolution-in reality, all edges are smooth, and there 
is a unique peak. For fixed radius filters, the surface always 
has a unique maximum regardless of the number of transition 
samples. When N or the width of the passband is changed, 
both the maximum artenuation and optimum transition sample 
values change, along with the position of the peak and the 
orientation of the ridge it lies on; however, the similarity 
between all of the spaces means that the same optimization 
technique can be used for designing any type of filter, reducing 
the learning time. 

Fig. 2 does not, however, give a full picture of the nature 
of the search space. If a lowpass respons e is to be con
sidered valid, it must decrease monotonically between the 

... u .. 
Fig. 2. Search space for a Type-llowpass filter with N = 48 and a passband 
width = 0.166. T1 and T2 are the first and second lnlnsition samples. 
respectively. 

last passband sample of unity and the first stopband sample 
of zero, which means that the derivative of the magni tude 
response in the transition band must always be negative. If the 
response decreases monotonically, so must the samples it is 
fitted through; therefore, each transition sample must be greater 
than the next. In general, from all possible sets of transition 
samples, the proportion in which each transition sample is 
greater than the next PN, is given by 

1 
PN, = -Nl 

t · 
(5) 

where N1 is the number of trartsition samples. This shows that 
the valid proportion rapidly becomes very small-by Nt = 5, 
PN, is below 0.01. The fitness function automatically orders 
the coefficients so that the GA is constrained to solutions 
that are always valid with respect to the transition samples. 
Unfortunately, this does not ensure that the interpolated re
sponse also decreases monotonically: a further constraint that 
is often broken in filters with similar adjacent trartsition sample 
values. To ensure that this additional, stricter condition is also 
met, a hard boundary can be added to the fitness function 
by making it return a very low fitness for any filters that 
do not meet it. This will ensure that any such solutions 
being examined by the GA will be lost during selection and, 
therefore, should help to restrict the search to tl1e region of 
the search space containing truly valid solutions. This region 
is shown in Fig. 3. This region is clearly smal ler than before; 
therefore, the valid proportion will shri nk even more rapidly 
as the number of transition samples dimensionality rises. To 
obtain a large attenuation, the transition sample closest to 
the stopband T2 must be small so that the peak lies close 
to the lower edge of the contour map, but if it drops too 
far, the continuous response rises again before reaching the 
stopband, giving an unacceptable filter. These two competing 
factors force the optimum solution to lie close to or on the 
edge of the constraint boundary so that when the GA is close 
to th<:. optimutl! solution, it will also be in a region where 
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Fig. 3. Boundary of the constrained search space giving allowable solutions 
for the same lowpass filter; T, and T2 an: the fi rst and second uansition 
samples. respectively. 
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Fig. 4. Increase of fi tness with generation for constrained and unconstrained 
optimization of an FIR filter. 

crossover and mutation will often give a disallowed result. 
Fitness functions that constrained the search to this smaller 
region were tried, but for low numbers of transition samples, 
they did not noticeably alter the efficiency of the search. 
For filters with around five or more transition samples, this 
constrained search produced a poorer result, as illustrated in 
Fig. 4 for an Nt = 6, N = 68, Type-1 lowpass filter, which 
compares the improvement of fitness with generation averaged 
over five runs. The poorer performance is due to an increasing 
proportion of the high-fitness region around the peak being 
outside the constraint boundary, which means that a small 
change in position can change a solution from being very 
good to being invalid. This in turn implies that crossover 
and mutation become increasingly ineffective, and the GA 
becomes less able to improve the fil ter as the optimum is 
approached. Since the use of the hard constraint boundary did 
not improve the performance, it was not used in the final GA. 

11 has been found that the search space for a recursive filter 
is very similar to that of a nonrecursive one, particularly when 

the fi lter has a radius close to one. If the radius is reduced, then 
the narrow ridge widens, and the maximum attenuation fall s. 
Since the radius used is dependent on the wordlength, a shoner 
word length means that a smaller radius must be used to prevent 
instabili ty, although this reduces the maximum attenuation that 
can be attained. When the GA is being used to optimize both 
the coefficients and the wordlength, this means that there are 
conflicting facrors that need to be traded against each other; 
the coefficients need to give a high enough attenuation for the 
filter to be acceptable, whereas the wordlength needs to be as 
low as possible in order to make the filter implementation as 
efficient as possible. The fitness function used to attain this is 
discussed in Section VI-A. 

V . USING TifE GA FOR FS FILTER D ESIGN 

11 should now be clear that to perform FS filter design, the 
GA is used to optimize the values of the transi tion samples 
between the pass band and stopband. The chromosome used by 
the GA is a string of N1 real-valued genes, where N1 is the 
number of samples in the transition band. For recursive filters, 
the wordlength can also be included in the chromosome. All 
gene values are constrained to lie in the range 0-1 so that 
they can be used directly as normalized transition frequency 
samples to calculate the fitness. 
· The floating-point GA used to optimize the filter coefficients 
and radii was based on that of Janikow and Michalewicz 
[14], where a number of vector convex combinations were 
used to perform floating-point crossover, although with a 
number of adaptations. The first two types of crossover simply 
exchange transition sample values without changing them, 
swapping either one or severa] of the them between the 
parent chromosomes. These do not, however, generate any 
new gene values, which is catered for by the remaining 
three types. These produce offspring by taking pairs of parent 
chromosomes, copying them, and replacing one, several, or all 
of the transition samples within them as 

c = R · a + ( 1 - R) · b 

d = {1 - R) · a+ R · b 

(6) 

(7} 

where a and b are the parent gene values, c and d are the 
child gene values, and R is a random number between 0-1. 
It should be noted that the offspring's genes can never lie 
outside the region bounded by the values of the parent genes; 
therefore, by applying crossover, the transition sample values 
are always moved closer by some degree. 11 has already been 
shown that tl1e optimum solution lies close to the lower bound 
of values for the later transition samples so that the crossover 
was changed to 

c = R · a + {1.1 - R) · b 

d = (1.1 - R) · a+ R · b 

(8) 

(9) 

in order to enable crossover to move chromosomes apart 
sometimes and help it find solutions at the edges of the 
parameter space. 

The fitness function used is simply the stopband attenuation, 
in decibels, which gave a better performance that the normal
ized stopband ripple. Since the latter is general ly small, there 
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is little to drive tl1e GA toward the better solutions; therefore, 
by converting to a logarithmic scale, we increase the emphasis 
on high attenuation. After performing trial runs. the mutation 
probability was set to 0.005 and the crossover probability to 
0.7, with a population size of 30. 

A simplex method [ 15] local hill-climbing routine is then 
used to complete the optimization begun by the GA. The 
simplex method was chosen because it does not require 
gradient infomJation and does not involve any form of curve 
fitting such as parabolic intef1X>lation, as this implies some 
knowledge of the structure of the parameter space, which is 
not necessarily available. Like the GA, it only takes point 
samples and does not require a detailed mathematical analysis 
of the problem. This extra optimization routine was only called 
after one quarter of the total number of generations had passed 
and if the GA had been unable to improve the best fitness for 
20 consecutive generations. 

A. Adaptive Selection of Crossover Method 

In an attempt to improve the effectiveness of crossover, 
rather than selecting the crossover method purely at random, a 
novel dynamic selection method was implemented, where the 
probability of selecting a particular method is dependent on its 
current performance. The probability of selection is given by 

d,., 
Pz = - 5--

L I=Odt 
( 10) 

where d" is the proportion of calls to crossover method x that 
caused an fitness improvement over the parent chromosomes, 
Pz is the probability of choosing crossover type x , and the 
summation is over the five types of crossover plus I = 0 for 
just mutation. TI1is metllod allows lhe best crossover metl1od 
to be selected dynamically during lhe run by its perfom1ance. 

When lhe number of transition samples is small ( <~5}. 
lhe crossover types tllat actually alter gene values perform 
best early in the run, whereas later on, those tllat simply 
exchange genes and pure mutation become dominant. This 
is because once the population has converged to the region of 
the optimum, changing gene values by crossover is likely to 
move the solutions to a much poorer solution so just swapping 
existing values will be more useful. 

For larger Nt (>-5), all types initially have a similar 
performance, but the same crossovers and mutation take over 
later on. Their initial performance is better than tllat for the 
shon chromosomes since tllere are more gene values in tile 
population, which are available to several gene positions due 
to the reordering t11at occurs in the fitness function. Exchanging 
tllem will therefore be more productive than before. The 
inclusion of tllis selection process allowed tile GA to make 
more regular improvements in fitness so tllat it needed to rely 
less on the simplex local search, altllough as tile optimum was 
already being found, tile best solution found overall did not 
improve. 

B. improving the Computational Efficiency 

AJtllougb lhe GA itself is very efficient and fast, it requires 
many fitness calculations so tllat t11e efficiency of tile imple-

mentation of the problem model is of paran10unt importance. 
For all but the simplest of problems, t11e GA will spend most 
of its time calculating fitnesses so that some effort was put 
into optimizing tile fitness calculations. 

The nonrecursive metllod consists of an inverse OFf fol
lowed by an FFf to produce the interpolated response. This 
has a total operation count of 

2 N; 
Acrn = N + 2 log2 (N, ) (11) 

Aca = N (N - I)+ N,log2 (N; ) (12) 

where 

Acm number of complex multiplies; 
Aca number of complex additions; 
N filter order; 
N; number of points in tile interpolated spectrum. 

Since the coefficients in tile passband and stopband will have 
the same effect on the inverse OFf part of tile calculation, their 
effect can be precalculated. ln addition, utilizing tile symmetry 
of tile impulse response reduces the contribution of tile OFf 
to the sum to NtN in botll cases. The FFT' is read-only and 
can be packed into a shoner FFf of lengtll N;/2. resulting in 
new operation counts of 

( 13) 

( 14) 

Assuming tl1at witll a OSP or matlls eo-processor botll oper
ations take tile same time, tile total operation count can be 
given by: 

The recursive filter response was calculated by using (3) 
to produce a frequency response containing 512 points over 
t11e interval w = 0- 1r, which was then examined to determine 
tile stopband attenuation. This meant that only a fixed set of 
w values are used, and tlle sine terms could be precalculated. 
TI1e contribution of tile passband samples to tile final response 
can also be precalculated, leaving just tile effect of the N1 

transition sample values to be determined at each fitness 
calculation. Further savings can be made by simply calculating 
tile response in tile stopband as tllis is tile only region of the 
response used to determine tile fitness. Taking all of these 
factors into account, we get the expression for tile recursive 
total operation· count Ar of 

( 16) 

where N. is the number of stopband samples in tlie range Q..-r. . 

Altllough tllese optimizations have improved tile absolute 
computational efficiency of both calculations, tlleir operation 
counts show that the recursive implementation is still much 
more efficient than the nonrecursive one for low numbers of 
transition samples. Since there are usually fewer than ten such 
samples in practice, tile recursive filter GA will be faster tllan 
the nonrecursi ve. 
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Fig. 5. Improvement of the maximum and average fimesses with generation 

11 should be noted that these results are somewhat conjec
tural as compiler optimizations and different memory access 
counts will resull in the relative speeds diverging from these 
predictions. The operations counts are, however, sufficiently 
divergent that the recursive implementation is certain to be 
faster on average for up to ten transition samples; therefore, it 
was adopted as the standard method. 

VI. REsULTS FOR FS FILTERS 

The improvement of maximum and average fitness with 
generation can be seen in Fig. 5 for a typical run to design 
a Type-II highpass filter with N = 89, a narrow stopband of 
three samples, and five transition samples. The run of 1000 
generations was completed in around 4 min on a 486 DX2-66 
PC, although a near-optimal solution was found after about 
generation 400. The regularly spaced vertical peaks in the 
latter pan of the graph show where the local search routine 
was called after the GA failed to improve the best fitness for 
20 generations. The GA is able to find the general area of 
the peak fairly quickly, but finds it difficull to find very high 
fitness solutions within the very small area of the peak, as 
crossover is likely to throw the offspring into comparatively 
very poor regions. The GA is therefore used alone for the first 
quarter of the run, after which the hill climber is able to make 
substantial improvements. 

The technique was tested against tabulated resulls from (IJ 
and was found to equal or improve on them in every case, 
whereas in [3], resulls for untabulated filters are given. Fig. 6 
shows a Type-1 filler with N = 128, NP = 20, N 1 = 3, and 
N, = 15, which was designed by our hybrid GA simplex 
method. The attenuation is 85.5 dB, and the passband ripple 
was 0 . to dB. The impulse response for this filler is shown 
in Fig. 7. A Type-II bandstop filler is shown in Fig. 8, which 
has N = 99, and passband and stopband widths of 13 and 11 
samples, respectively. This filler has an attenuation of 111 .4 
dB and a passband ripple of 0.075 dB. 

I! has been found that this technique is generally very robust 
for filters with up to six transition samples, taking an increasing 
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Fig. 6. Frequency response for a bandpass filter designed with GA-Simplex 
(see text for details). 
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Fig. 7. Impulse response for the filler in Fig. 6. 
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Fig . 8. Frequency response of a bandstop filter designed using GA simplex. 

length of time as the number of transition samples rises. For 
filters with up to around four transition samples, the GA is 
able to find near-<Jptimal solutions very quickly before the 
intervention of the local search. For five or six transition 
samples, the GA performed a useful amount of improvement 
although not to near-<Jptimal performance, whereas the local 
search was able to complete the optimization. For more 
transition samples (up to ten were used), the hybrid GA was 
only able to perform a small amount of optimization, from 
which the local search was also unable to find the optimum 
within a reasonable time (e.g., I hr on a 486 PC). 

Although the hybrid GA has been able to produce results 
that improve slightly on those in tl1e literature [I], its main 
strength lies in the fact that it can quickly produce untabulated 
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filter coefficients, which are much more useful than those 
found by interpolation. It is also able to design filters with 
more transition samples, showing that the hybrid GA is a 
suitable technique to use for designing this type of FIR 
filter. The successful application of the GA to this problem 
leads us to consider how its use could be extended to more 
complex design tasks in order to perform severa l design steps 
simultaneously and thereby simplify the design process. 

A. Concurrent Optimization of tile Wordlength 

In order to integrate a further fil ter design step, the fitness 
function for opt:irnizing recursive filters was extended to incor
porate the finite wordlength effects of coefficient quantization 
by including an extra gene in the chromosome that determines 
the wordlength at which the genes will be decoded. This allows 
the GA to search for the minimum wordlength necessary to 
achieve a given filter specification simultaneously with its co
efficients. Mixed-integer programming has proved successful 
at optimizing quantised coefficients [ 16}, although separate 
runs are required for each wordlength under investigation. 
Our approach allows the GA to search for the minimum 
wordlength and optimum coefficients simultaneously, with no 
user intervention. 

Since we are using a real-coded chromosome with genes in 
the range 0-1 . the wordlength gene must be decoded to give 
an integer wordlength, which is performed by scaling it up 
to 0-24 and taking the nearest integer. The real-coded genes 
are then quantized to this wordlength before being used to 
calculate the filter response and then fitness . This simplifies 
the search by limiting the number of points the GA has to 
examine. It has the disadvantage that the simplex hill cl imber 
is less effective because the search space is now made up 
of a large number of flat regions, such as those shown at 
8-bit resolution in Fig. 2. This is due to the quantization of 
the coefficients causing finite ranges of the floating-point gene 
values to be interpreted aJ! having the same value by the fitness 
function; therefore, they wi11 have the same effect on the filter 
response. At the beginning of a search, the hill climber is able 
to perform well because from a large-scale perspective, the 
surface is smooth; however, once the search contracts around 
a good region, the small plateau become increasingly apparent, 
and eventually, the search cannot gain any information about 
the direction of the optimum and is unable to reach it. The 
GA is still able to pe.rform successfully in such a space (which 
resembles the de Jong GA test function f3 [6)) as it only relies 
on point fitness samples and is unaffected by discontinuities 
or perfectly flat areas. This implies that more reliance will be 
placed on the GA to perform a good optimization since the 
simplex wi ll be less effective here. 
· When calculating the filter response, in order to maintain fil

ter stability, the radius was reduced to one less the quantization 
interval 

(17) 

where B is the wordlength. The fitness now has to take 
account of both the magnitude response and the wordlength 
with emphasis on the former since this constraint should 

TABLED 
DESIRED AND OProazm SPECiflCAJ10N FOR A QuA1mSID-CO£fFtOEIIT 

AND Fuu.-I'REasiON Flun. THE Fuu.·PRBas!ON 
DESIGN UsES A MAXlMUM-Ane<umON FmiESS FUHcnON 

Desired Quantiud Full-Precision 

Passband ripple (dB) 0.1 0.058 O. t29 

Stopband Altenualion (dB) 77 82.96 117.26 

Wordtenglh 6 

Radius 0.984375 0.9843745 

be satisfied regardless of the wordlength. To this end, the 
following scheme was devised. 

First, the normalized magnitude response is examined in 
both the passband and stopband to see if it fits within the 
desired limits. If it does to within HP, which corresponds to a 
deviation of only around 0.3 dB from a desired attenuation of 
70 dB, then the basic fitness is set to lOS ; otherwise, it is set to 
the reciprocal of the normalized deviation. Th!§ gives a main 
fitness range of 0-1 as for the magnitude response and is flat 
(at IIP) for all filters fitting within the desired specification. 
By having all satisfactory solutions return the same fitness, 
it means that the GA is free to return a solution that onl y 
just fits the design specification, leaving it more freedom 
to reduce the wordlength. To account for the wordlength, 
a further term is added to this, consisting of 25 minus the 
wordlength. This overall fitness function therefore has extra 
structure, especially within the optimum peak region, which 
allows the GA to search for the minimum wordlength. The 
overall fitness function can be written as 

J( ) _ { (25- B)+ 1/emax emax > 10-s ( J8) 
X - (25 - B) + 1/10-S emax ~ 10- 5 

where B is the wordlength, and emox is the maximum absolute 
error between the normalized filter response and the desired 
response in the passband and stopband. 

This approach places the major emphasis on the opti
mization of the magnitude response, and once this has been 
achieved, the effect of the wordlength dominates (within the 
optimum fitness "plateau"). Other weightings have been tried, 
but these were found to allow the GA to perform efficiently 
without the intervention of the simplex local search. 

Results for a typical test run are given below in Table ll 
for a 49th order, four transition sample lowpass filter with 
a bandwidth of 0.25. The GA was able to fit to the desired 
specifications with coefficients quantized to a wordlength of 
only six bits. The full-precision fitness function (in wh.ich the 
GA only seeks to minimize tl1e stopband ripple) was able to 
find a solution with much greater stopband attenuation as the 
last transition sample was able to have a much smaller nonzero 
value, as shown in Table ill. The full-precision fitness function 
used the same radius as the 6-bit solution, and the fTequency 
responses of both of these filters are shown overlaid in Fig. 9. 

Vll . QUANTIZED-COEFFICIENT, 

NONUNEAR-PHASE FIR FILTERS 

A major objective of this work has been the simplification of 
the filter design process; therefore, our next goal was to extend .. 
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TABLE Ul 
TRANSffiON SAM~L£5 FOR THE fiLTERS D ESCRJBEO IN TilE TExT AND TABLE fi 

Quamized Full-Precision 

0.875 0.785269 

0.5 15625 0.348808 

0. 15625 0.065764 

0.015625 0.003069 
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Fig. 9. Optimized 6-bit quantiz.ed-coetlicienl snd fuU-precision coefficient 
recursive fillers found by GA. 

the GA to include a further simultaneous optimization. Since 
the linear-phase FS FIR filter had been optimized satisfactorily 
by the GA, a more difficult FIR fi.her design area was selected: 
that of nonJinear filters with quantized coefficients. This al
lowed both the phase and magnitude responses and the effect 
of coefficient quantization to be optimized at the same time. 

Although FS filters are simple to design and can be forced 
to have exactly linear phase, they are not suitable for all 
applications, as they require a high order to produce a sharp 
cutoff in the frequency response and, therefore, a lot of storage 
for the coefficients. They also have a delay of N / 2, which 
for high-speed real-time applications may be unacceptable . 
However, if there are no res trictions at all on the phase, 
then the filter length can be reduced by as much as half. 
For many systems, however, such as those found in audio 
and biomedicine, there may be strict requirements for linear 
phase to avoid signal distortion. A compromise solution can 
be reached by designing a nonlinear filter but, in addition, 
optimizing the deviation from linearity in the passband to be as 
small as possible. This means that tl1e filter can be shorter than 
the linear-phase system but will be longer than the absolute 
minimum of the completely nonlinear one. Optimizing the 
phase adds another objective, which means that the simple 
GA used before is no longer suitable. 

The standard GA only uses a single fitness measure, which 
is satisfactory for simple problems whe re on ly one or two 
criteria need to be optimized, but to do this requires some 
degree of trial-and-error to get satisfactory weightings for the 
various criteria. Although we have been able to optimize both 
wordlength ~d magnitude response this way, Ihis approach 

is not a generally applicable technique and requires too much 
user intervention. To this end, a new GA is required that has 
been adapted to perform multicriterion optimization (MCO). 
In MCO [6), [ I 7), an improvement in one criterion will often 
lead to a loss of performance with respect to another. This 
means that it will generally be impossible to produce a solution 
that performs perfectly in all respects. There is, however, 
a "wavefront" of best possible solutions, with a range of 
possible tradeoffs. This set, which contains those solutions 
for which it is not possible to improve the performance of 
all criteria simultaneously, is known as the pareto-optimd/ or 
nondominated set (NDS). None of the members of this set can 
be said to be "belter" than any o ther because although one 
might outperform another with respect to one criterion, it will 
always have a poorer performance in at least one other. All 
other solutions are dominated by at least one member of this 
set, where x is said to dominate y if x is partially less than 
y , which is defined as 

(x < py) ~ (V;)(!~:; :::; y;) 1\ (3;)(x; < y;) (19) 

i.e .. for all i, x; :::; y;, and for at least one i, x , < y;. None of 
the members of the NOS dominates another. 

To perform MCO, a multiobjective GA was developed to 
perform the much harder optimization of a nonlinear filter' s 
coefficients wiU1 respect to both the filter's magnitude response 
and its phase response in a region of the pass band and to return 
the NOS of solutions found. To increase the number of fil ter 
design steps being undertaken simultaneously, the GA used 
a binary chromosome containing a concatenated list of the 
coefficient values, which therefore intrinsically accounted for 
coefficient quantization effects by searching directly for the 
optimum quantized coefficients. The aim of searching for the 
NOS is to offer designers a range of solutions with different 
tradeoffs between the various design criteria, enabling them to 
select the best filter for their specific problem. 

The fitness function for the magnitude response was the 
maximum error from a desired response template and, for the 
phase response, was the x2 error between the response and 
a least mean squared (LMS) straight line fitted through the 
response in a selected region covering most of the pass band. 

A. Performance of the Nonlinear-Piwse FIR GA 

Initial runs were performed with randomly initialized chro
mosomes and proved unable to find solutions that fitted the 
magnitude response design templates even to within 10-20 
dB, although the optimization of the phase linearity was 
generally more successful. It was also found that seeding the 
GA witl1 perturbed copies of a known good Remez exchange 
solution [12) either caused premature convergence for a low 
perturbation, or the search failed for a higher one. 

Since the GA was not perfomling well, an analysis of the 
difficulty of tl1e search from a GA perspective was under
taken. The preliminary analysis of the problem was to take 
"slices" through the parameter space with a fitness function 
of just the magnitude response error; therefore, in this case, 
a lower fitness value means a better filter. To find a local 
near-optimum solution, coefficients calculated by the Remez 
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exchange method were used to seed a bit-flipping local search 
algorithm. Examination of these slices indicated that the 
parameter space becomes increasingly smooth away from the 
optimum and that the position of the optimum moves, even
tually bearing no relation to its "best" position. This implies 
that far from the optimum, the GA has no useful information 
about where that optimum lies; therefore, the optimum cannot 
move toward it. It also means that as crossover and mutation 
alter coefficient values, the position of the optimum values of 
the other coefficients also move so that the information the 
GA contains about where the good regions are is useless as 
their position changes with each operation. 

The GA is also hindered by the high epistasis of this 
problem, which is the degree to which the genes are dependent 
on each other's values to produce a high fitness solution. For 
a filter, the coefficients must provide an impulse response that 
has a well-formed shape. This, in turn, means that the only 
high-fitness chromosomes are complete, optimal solutions. 
Even if the GA can find two highly fit solutions, crossover 
between them will general ly generate very poor solutions as 
the partial solutions will not produce a good impulse response 
when taken together. This means that the GA is unable to 
proceed effectively unless the entire population is very similar 
and has already converged around a good solution. Other 
difficulty measures also show th'lt the problem becomes easier 
for the GA to solve as an optimum is approa·ched, but the 
epistasis is the dominant fac tor and prevents the GA from 
even finding an optimum. 

The pha~e optimization is more successful as there are a 
number 0 1 fixed, high-fitness solutions where the coefficients 
are near-symmetric, which gives a response close to linear. 
These solutions exist regardless of quantization or the coeffi· 
cient values so that the GA is able to find them more easily. 

VIU. DISCUSSION AND CONCLUSION 

In this paper, a number of approaches to the optimization 
of FIR filters with both quantized and unquantized coefficients 
has been presented, with the aim of simplifying the filter design 
process by integrating a number of design optimizations into 
a single parallel one. This approach should make it easier to 
tradeoff the performance measures of the filter with respect to 
its various design criteria against each other in a controlled 
way. 

The hybrid GA has been found to be a suitable technique for 
optirnizing the unquantized coefficients of FS method fi lters 
with up to six transition samples. The simplex local search 
algorithm is generally required for more tJ1an four samples 
to perform the final optimization, due to the small area of the 
optimum peak and the disruptive nature of crossover and muta
tion. A GA has been developed with the capability of choosing 
the best crossover method to use dynamically during a run. 

For recursive FIR filters, the GA has been extended to 
perform the minimization of the wordlengtJ1 concurrently 
by optimizing the coefficients, thereby combining two fi l!er 
design steps into a single process. The fitness function places 
most emphasis on the magnitude response to help ensure that 
the desired performance is reached, whereas the word.length is 

most important within the set of suitable filten;. This design 
problem has a search space that is unsuitable for standard hill
climbing optimization methods, and the GA is able to perform 
the optimization unaided by the hybrid simplex search. 

To increase the number of design steps that were being 
undertaken simultaneously by the GA, a binary multiobjective 
GA was also developed to search for pareto-optimal sets, con
taining a number of solutions with varying tradeoffs between 
design criteria. This GA was tested on the design of nonlinear 
FIR filters, with a specified region of the passband where near 
linearity was desired, with the aim of giving a useful reduction 
in the filter 's delay. This approach proved unsuccessful, and a 
detailed analysis of the problem was undertaken. The difficulty 
of the problem was analyzed from a GA perspective and 
showed that this design problem is not suitable for the GA 
in its current representation. This work ·will be detailed fully 
in a future paper. 

Future work to examine the representation of the problem 
in the chromosome and the initialization may prove fruitful in 
enabling the GA to perform successfully, as may alternative 
hybrid techniques such as SA. 
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