University of Plymouth

PEARL https://pearl.plymouth.ac.uk
04 University of Plymouth Research Theses 01 Research Theses Main Collection
2001

NATURAL ALGORITHMS IN DIGITAL
FILTER DESIGN

PENBERTHY HARRIS, STEPHEN
http://hdl.handle.net/10026.1/2752

http://dx.doi.org/10.24382/4387
University of Plymouth

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with
publisher policies. Please cite only the published version using the details provided on the item record or
document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.

NATURAL ALGORITHMS IN
DIGITAL FILTER DESIGN

by

STEPHEN PENBERTHY HARRIS, MA (Oxon)

A thesis submitted to the University of Plymouth
in partial fulfilment for the degree of

DOCTOR OF PHILOSOPHY

Department of Communication and Electronic Engineering

May 2001

90 0499701 X

|

T

UNIVERSTT v'o =t VAOUTH]
Item No. qool.‘.quolx

Date

(Clss
Luit,

-9 JAN 20027
Muss)S

|

Nol _ 621.3%) BT

No.| ¥ 0%5555&2._‘

PLYMOL" ARY

N

RERRRPACE MY

LIBRARY STORE

NATURAL ALGORITHMS IN DIGITAL FILTER DESIGN
Stephen Penberthy Harris

Digital filters are an important part of Digital Signal Processing (DSP), which plays
vital rdles within the modern world, but their design is a complex task requiring a great
deal of specialised knowledge. An analysis of this design process is presented, which
identifies opportunities for the application of optimisation.

The Genetic Algorithm (GA) and Simulated Annealing are problem-independent
and increasingly popular optimisation techniques. They do not require detailed prior
knowledge of the nature of a problem, and are unaffected by a discontinuous search
space, unlike traditional methods such as calculus and hill-climbing.

Potential applications of these techniques to the filter design process are discussed,
and presented with practical results. Investigations into the design of Frequency Sam-
pling (FS) Finite Impulse Response (FIR) filters using a hybrid GA/hill-climber proved
especially successful, improving on published results. An analysis of the search space
for FS filters provided useful information on the performance of the optimisation tech-
nique.

The ability of the GA to trade off a filter’s performance with respect to several de-
sign criteria simultaneously, without intervention by the designer, is also investigated.
Methods of simplifying the design process by using this technique are presented, to-
gether with an analysis of the difficulty of the non-linear FIR filter design problem from
a GA perspective. This gave an insight into the fundamental nature of the optimisation
problem, and also suggested future improvements.

The results gained from these investigations allowed the framework for a potential
‘intelligent’ filter design system to be proposed, in which embedded expert knowledge,
Artificial Intelligence techniques and traditional design methods work together. This
could deliver a single tool capable of designing a wide range of filters with minimal
human intervention, and of proposing solutions to incomplete problems. It could also

provide the basis for the development of tools for other areas of DSP system design.

Contents

Abstract

Table of Contents

List of Figures

List of Tables

Acknowledgements

Author’s declaration

Introduction

1.1 Digitalfilters
1.2 Natural Algorithms
1.3 Publications
1.4 Aims and objectives Lo

Basic Filter Design Theory

2.1 Stages in Filter Design,
2.2 Finite Impulse Response Filters

2.3

24

2.2.1
2.2.2
2.2.3
224

Frequency Sampling FIR filters
Linear phase FIR filters
Recursive Frequency Sampling FIR Filters
Other FIR Design Techniques
2.24.1 Optimal Method
2242 Window Method,

Infinite Impulse Response Filters

23.1 IIRFilter Theory

2.3.1.1 Alternative structures
232 Designmethods
233 Quantisationeffects oL,
2.3.4 Error Spectral Shaping
2.3.5 Coefficient pairing and ordering
The Réle of Optimisation in Filter Design
24,1 Specification o oL L,
2.4.2 Coefficient Calculation
2.4.3 Structure Realisation
2.4.4 Analysis of Finite Wordlength Effects

iii

ii
iii
vi

viii

245 Implementation, 24

3 An Introduction to Genetic Algorithms and Other Natural Algo-

rithms 26
31 Backgroundtothe GA 26
3.2 Outline of a Standard Binary-Coded Algorithm 27
3.2.1 Encoding theproblem 28

3.3 Imitialisation e 29
34 Selection 30
35 Reproduction 31
36 Crossover e e e e 31
3.7 Mutation. e 33
3.7.1 Mutation and parameter encoding 34
3.7.2 Other forms of mutation 35

3.8 The Fitness Function, 36
3.8.1 FitnessScaling, 36

3.9 Advantages and Disadvantagesof the GA. 37
3.10 Convergence Theory 38
3.11 Floating-point Chromosome GA 39
3.11.1 Floating-point Crossover 40
3.11.2 Floating-point Mutation 43

3.12 Other GA techniques 44
3.13 Hybridisation 45
314 TheSearchSpace 46
3.15 Simulated Annealing, 47
3.15.1 Applications to Filter Design 48

3.16 Differential Evolution 48
3.17 Evolutionary Strategy, 49
3.18 Genetic Programming 49
319 TabuSearch e 50
4 Optimising Frequency Sampling Filter Coefficients by Hybrid GA 52
4.1 Introduction 52
4.1.1 Selection of FS filters for GA optimisation 52

4.2 Use of the GA for FS filter Design 53
421 TheFitness Function 54

4.3 Extensions to the Floating-Point GA 85
44 Simplex method hybrid hill-climber 85
4.5 Extensions to the crossover selection scheme a7
4.6 Results for FSfilters 60
4.6.1 The FIR Filter searchspace 66
4.6.2 Concurrent Optimisation of the Wordlength 69

4.7 Conclusions L e 73
5 IIR Coefficient Optimisation by GA and SA 75
5.1 Introduction 75
52 Useofthe GA. 76
53 Results. 78

iv

9.3.1 The IIR Filter Parameter Space 80

5.4 Discussion and Conclusions 81
Multi-criterion Optimisation 84
6.1 Introduction 84
6.2 Techmiques. 84
6.2.1 Weighted sum of fitnesses 85
6.2.2 The Pareto-optimalset 86
6.2.3 Vector-Evaluated GA 88
6.2.4 Goldberg’s fitness allocation method 89
6.3 Applications of MCO optimisation to filter design 92
6.4 GA difficulty measures and deception 93
641 Epistasis 93
6.4.2 Fitness-distance correlation,.... 95
6.5 Alterationstothe GA 96
An Analysis of the Suitability of GA-based Optimisation for Non-
linear Phase FIR Filter Design 97
7.1 Introduction 97
7.2 Non-linear phase FIRfilters 98
7.2.1 Effects of coefficient quantisation, 100
73 Useofthe GA 102
73.1 Designperformance 103
7.4 Analysis of non-linear FIR filter design 106
74.1 The parameterspace vuu.... 106
7.5 Measures of GA-difficulty 108
750.1 Epistasis 110
7.5.2 Fitness-distance correlation 112
76 Results. 114
An Extended Multi-objective GA for IIR Filter Design 118
8.1 Introduction 118
82 Chromosomedesign. 119
83 Thefitnessfunction 121
8.4 Effects of quantisation 123
8.4.1 Coeflicient quantisation. 124
842 Noise. e 125
85 Filterstructure 125
86 Useofthe GA. 127
87 Results. 127
88 Discussion 140
Conclusion and Future Work 142
91 Review. 143
9.1.1 Digital Filter Design 143
9.1.2 Finite Impulse Response Filters 143
9.1.3 Infinite Impulse Response Filters 145
9.1.4 Optimisation techniques 148

9.2 Future Work o e e e e e e e e e 148

921 Newareasin FIRFilters 148

922 NewareasinIIR Filters 150

9.2.3 Further Natural Algorithm Techniques 151

9.23.1 Genetic Algorithms 151

9.2.3.2 Simulated Annealing 152

9233 TabuSearch. 152

9.2.3.4 Genetic Programming 153

9.3 Intelligent Filter Design Tool 153
94 Conclusion. e 156

A Techniques 165
A.1 Increased calculation efficiency for recursive FIR filters 166
A.2 Simplex method hill-climber 166
A.3 Matlab initialisation script for MCO IIR design 168
A.4 Single-criterion Genetic Algorithm 171
A.5 Multi-criterion Genetic Algorithm 176

B Publications 178

vi

List of Figures

2.1 Stages in the design of a digital filter. 5
2.2 Samples of the frequency response of a lowpass filter. 7
2.3 Samples of the frequency response with transition samples. 8
2.4 Frequency sample positions for FS filters. 9
2.5 Second-order direct form 1 IIR filter section. 13
2.6 Second-order canonic (or ‘direct form 2') IIR filter section. 13
2.7 Cascaded second-order canonic filter sections with signal scaling. 15
2.8 Example of a lattice-structure IIR filter. 15
2.9 Canonic filter section with signal scaling and error spectral shaping. . . 20
3.1 Ilustration of constant binary encoding. 29
3.2 Example Arithmetic crossover for a two-gene chromosome. 42
3.3 Example Whole Arithmetic crossover for a two-gene chromosome. . . . 43
4.1 The allowed region of the search space. 54
4.2 Dynamic crossover selection method. 58
4.3 Type I, Highpass FIR filter with four transition samples. 62
4.4 Type II, Lowpass FIR filter with four transition samples. 62
4.5 Type I, Bandpass FIR filter with three transition samples. 63
4.6 Type 1, Bandstop FIR filter with four transition samples. 63
4.7 Improvements in fitness with generation. 65
4.8 Search space for a one transition sample FIR filter. 67
4.9 Search space for a two transition sample FIR filter. 67
4.10 Search space with additional constraints. 68
4.11 Improvements in constrained fitness with generation. 69
4.12 Quantised-coefficient F'S filter response., ..., 72
5.1 Response comparison for SA, GAand BZT. 79
5.2 Search space slice for perturbed IIR filter. 82
5.3 Search space slice for random coefficient filter. 82
6.1 Example illustrating pareto-optimal and non-dominated sets. 87
6.2 Exampleof VEGANDS. 89
6.3 Example of NDS ranking calculations. 90
6.4 Example population distribution between niches. 91
7.1 A desired response template. 101
7.2 Tlustration of the effect of coefficient quantisation on the search space. 101
7.3 Loose-tolerance test template. 104
7.4 Comparison of linear and non-linear phase filters found by GA. ., 105

vii

7.5
7.6
7.7
7.8
7.9
7.10
711

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14

9.1
9.2

Al

Slice through the 1,13,LS data set, with a best fitness of 11.3dB. 109
Slice through the 1,13,P data set, which has has a best fitness of 40.5dB. 109

Slice through the 1,13,R data set, with a best fitness of 32.2dB. 109
Ilustration of deception., 110
Random filter fitness plot. 115
5% perturbed fitness plot. 115
1% perturbed fitness plot., 115
Coeflicient stability triangle. 120
Quantised Cartesian pole-zero positions. 122
Quantised polar pole-zero positions. 122
Chromosome structures. v v v u oo 126
Example of an early non-dominatedset. 128
Best result for dp=0.5dB, ds=40dB target at 16 bits. 129
Best result for dp=0.75dB, ds=40dB target at 16 bits. 130
Best result for dp=1.0dB, ds=40dB target at 16 bits. 131
Best result for dp=1.0dB, ds=50dB target at 16 bits. 132
Best result for dp=1.0dB, ds=60dB target at 16 bits. 133
Best result for dp=1.0dB, ds=70dB target at 16 bits. 134
Best result for dp=1.0dB, ds=80dB target at 16 bits. 135
Best result for dp=1.0dB, ds=90dB target at 16 bits. 136
Best result for dp=1.0dB, ds=80dB target at 24 bits. 137
The potential structure of an intelligent filter design tool. 154
FIRdesignexample, 155
Steps taken by a Simplex hill-climber.. 167

List of Tables

2.1
3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

7.1
7.2
7.3

8.1
8.2

Designable FIR filters. 9
A comparison between binary and Gray coding formats. 35
Results for recursive-form FS FIR filters designed by GA. 60
Comparison of results for Type-I, N=16filter. 61
Comparison of results for Type-I, N=33filter. 61
Comparison of results for Type-I, N=65filter. 61
Comparison of results for Type-I, N =125 filter. 61
Comparison of results for Type-I, N=128 filter. 61
Specifications for quantised and unquantised filters. 72

Transition samples for the filters described in the text and Table 4.7. . 72

Comparison of linear and non-linear phase FIR filters. 106
The Epistasis variance (0?), calculated for regions of the search space. . 111
FDC calculations for various regions of the search space. 113
Comparison of results for MCO optimisation of IIR filters. 129
Comparison of resuits for GA and BZT-designed IIR filters. 140

ix

Acknowledgements

I would like to thank my Director of Studies, Professor Emmanuel Ifeachor for his
support and encouragement during this project. Thanks are also due especially to
Nick Qutram and Rob Clark for providing invaluable suggestions and insights into the

intricacies of DSP.

A degree...is a first step down a ruinous highway. You don’t want to waste it so you
go on to graduate work and doctoral research. You end up a thoroughgoing ignoramus

on everything in the world except for one subdivisional sliver of nothing.

Ralph Nimmo in ‘The Dead Past’ by Isaac Asimov

Ow geryow aga honan yw gasadow ha kemmysk a furneth ha gokkineth.

Taliesin

Author’s Declaration

At no time during the registration for the degree of Doctor of Philosophy has the author
been registered for any other University award.

A programme of advanced study was undertaken, including an analysis of the role
of optimisation in digital filter design, and the application of Genetic Algorithms (GA)
and Simulated Annealing to a range of filter design problems. The difficulty of the
problem was analysed from a GA perspective, and a framework proposed for an ‘intel-
ligent’ filter design tool.

Two relevant conferences were attended, papers being presented at both. A paper
of results and investigations was published in a relevant IEEE journal.

Publications:

e E.C. Ifeachor and S.P. Harris, ‘A New Approach to Frequency Sampling Fil-
ter Design’, Proceedings IEE/IEEE Workshop on Natural Algorithms in Signal
Processing, 1993

¢ S.P. Harris and E.C. Ifeachor, ‘Automating IIR Filter Design by Genetic Algo-
rithm’, Proceedings GALESIA International Conference, 1995

o S.P. Harris and E.C. Ifeachor, ‘Automatic Design of Frequency Sampling Filters
by Hybrid Genetic Algorithm Techniques’, IEEE Transactions on Signal Pro-
cessing, volume 46(12), pp3304-3314, 1998

Conferences attended:
¢ 1993 IEE/IEEE Workshop on Natural Algorithms in Signal Processing
e 1995 GALESIA Internation Conference

Chapter 1

Introduction

Digital Signal Processing (DSP) plays a crucial part in the modern world. Its use
in devices ranging from mobile phones and home entertainment systems to medical
equipment means that we are increasingly reliant on it in all walks of life. Digital
filters are an important part of DSP, but they have a major drawback in that it
requires a great deal of specialised knowledge to design them successfully, and this
is not always easily available. This investigation will examine potential applications of
so-called ‘Natural’ Algorithms, such as Genetic Algorithms and Simulated Annealing,

to optimisations within the digital filter design process.

1.1 Digital filters

Within DSP, digital filters have an important réle as frequency selectors, with many
applications in the fields of audio, communications and biomedicine. Their ability to
boost, remove, or otherwise adjust information within a signal makes them a powerful
tool for system designers. Their flexibility allows a wide range of potential uses, from
removing mains frequency noise from sensitive biomedical data to controlling the signal
levels in audio mixing desks.

Although digital filters are extremely useful, they are generally not easy to design

and require a great deal of optimisation to produce a high-quality system. Their design

is traditionally broken down into a number of steps (see Chapter 2), each of which is
regarded as an independent optimisation task. The steps are repeated until a design
is found which performs satisfactorily. These steps are usually performed by different
methods, each of which requires a lot of specialised knowledge on behalf of the designer.
This iterative approach also means that it is difficult to control the trade-off between
the different performance measures, thereby making it harder to produce a filter with
the desired characteristics.

An attractive aim within DSP is the development of a single, wide-ranging tool,
which can be applied to a number of design problems. By encapsulating expert knowl-

edge into a single tool, it would simplify the development of new digital systems.

1.2 Natural Algorithms

In recent years, ‘Natural Algorithms’ such as the Genetic Algorithm (GA) and Simu-
lated Annealing (SA) have become increasingly popular teckniques due to their applica-
bility to a wide range of numeric and non-numeric optimisation problems [1]. The GA
is based on the principles of natural selection and survival of the fittest, and works on a
‘population’ of possible solutions to the problem. SA was inspired by metal annealing,
in which hot metal is cooled very slowly in order to allow it to find the lowest-energy
crystal structure, and generally works on few or only one possible solution.

The wide-ranging applicability of GA and SA to optimisation problems suggested
that they could be good techniques to use for the various aspects of digital filter design.
This investigation examines the potential which the two may have in the design of

digital filters, concentrating on the GA.

1.3 Publications

This work has resulted in the publication of three papers. The first, in the 1993
Proceedings of the IEE/IEEE Workshop on Natural Algorithms in Signal Processing,

introduced the design of Finite Impulse Response (FIR) filters by GA [2]. A second
paper, on the application of GAs and SA to Infinite Impulse Response (IIR) filters
was presented at the 1995 GALESIA conference [3]. The third paper, an extension
to the work presented in the first, was published in the IEEE Transactions on Signal
Processing in 1998 [4].

1.4 Aims and objectives

The aim of this work is to examine the rdle of optimisation within the filter design
process and to identify areas where the inherent search and optimisation capabilities
of Natural Algorithms could be used to advantage.

The specific objectives are to:
e undertake an analysis of the key optimisation tasks within the filter design process
e investigate the application of GA and SA techniques to these optimisation tasks

¢ undertake an analysis of the suitability of the chosen algorithms for their selected

design tasks
e specify a framework for an automated filter design tool

Following a brief introduction to filter design, and a more in-depth description of
the GA, its application to filter design will be discussed, together with the techniques
and analysis used to determine the suitability of the natural algorithms to digital filter

design.

Chapter 2

Basic Filter Design Theory

Digital filters are found in a wide variety of situations within digital systems, where
they can be used to alter the signal in specific ways, for example to reduce low or high
frequency noise, or to extract data in a specific frequency range. Their diverse uses
make them especially useful within the field of DSP.

There are two basic types of digital filter, Finite Impulse Response (FIR) and
Infinite Impulse Response (IIR). FIR filters have an impulse response of finite duration,
while IIR filters, which have a recursive structure, have one of infinite length. IIR
filters are more computationally efficient than FIR, requiring less storage space and
fewer calculations, but are also harder to design and are more susceptible to finite
wordlength effects. FIR filters have the added advantage that they can be made with

exactly linear phase, which reduces distortion in sensitive systems.

2.1 Stages in Filter Design

It has already been mentioned that the filter design process is generally broken down
into several steps, which are shown in Figure 2.1. These steps are usually performed
repeatedly until an acceptable solution has been found. This approach is limited in
that the performance of a good filter found during one step may be compromised during

another, so that a filter may be found which has a good magnitude response but poor

C Start)
i

Desired filter specification

;

Calculate filter cosefficients

!

Structure realisation

}

Finite wordlength aralysis

—
(3

Respecify

Recalculate

Reastructure

Implementation in software or hardware

T
C End D)

Figure 2.1: Stages in the design of a digital filter.

phase response, or vice versa. Part of the investigation into the use of GAs for filter
design will cover the ability of the GA to perform multi-criterion optimisation, as this
could potentially be used to perform several design steps simultaneously and trade off

the performance measures automatically.

2.2 Finite Impulse Response Filters

Finite Impulse Response (FIR) filters are characterised by having a finite set of co-
efficients, and an impulse response of finite duration. FIR filters can exist in either
recursive or non-recursive forms, the recursive form having the advantage that it can
be much more efficient in storage and calculation, particularly for narrow band filters.
FIR filters have the added advantage that they can be designed with exactly linear
phase. This causes the different frequency components of the signal to be delayed by

an amount proportional to their frequency, which reduces signal distortion. This is

particularly important in audio and biomedicine, where vital data may otherwise be
lost. If the linear phase constraint can be relaxed, then the order for some filters can
be reduced to as few as half of the coefficients needed for a fully linear-phase system.
This reduction is examined in more detail in Chapter 7.

The output of an FIR filter is given by:

N-1
y(n) = 3 h(k)z(n - k)
k=0

where N is the filter length, h(k) is the kth impulse response coefficient, z is a vector
of inputs, and y(n) is the nth output. This filter’s transfer function, H(2) is given by:

N-1

H(z)= Y hk)z~*

k=0
FIR filters are simple to design and implement, but need a large number of coeffi-
cients to achieve sharp cutoffs or high attenuations, so can be too slow to be used in
high-speed or real-time situations. They also require more storage for coefficients and
intermediate results than IIR, which means that their hardware implementations can

be more costly.

2.2.1 Frequency Sampling FIR filters

Frequency Sampling (FS) filters are among the simplest to design, requiring the opti-
misation of just a few values, although this simplicity means that there is little control
over the resulting coefficients.

An FIR filter can be characterised uniquely by a set of samples of the frequency
response, generally taken at regular intervals, as in Figure 2.2. This set of samples
gives the filter coefficients themselves by taking its inverse Discrete Fourier Transform
(DFT). For nonrecursive FIR filters, the coefficient values are the same as the impulse
response samples, while for the recursive F'S filter, the coefficients are the frequency
response samples. While taking a forward DFT of the coefficients will return the
original sample values, it does not indicate the response of the filter in the intervening

spaces.

1.0

0.57

Normalised magnitude response

.Y
o~

0.0 O—0—

&
0.0 0.5 10
Normalised frequency

Figure 2.2: Samples of the frequency response of a lowpass filter.

To discover the filter's performance in the intervening space between the known,
fixed samples, the impulse response can be zero-padded to a reasonably high number of
points (512 or 1024 is generally sufficient), and a forward DFT taken, which produces
an interpolated response. This high-resolution response can then be examined to de-
termine the filter performance. The number of points is generally chosen to be a power
of two so that a Fast Fourier Transform (FFT) can be used for increased calculation
speed.

For a ‘brick wall’ type of desired response, the interpolated response is very poor.
Since the sharp transition between bands does not allow any control over the degree
of ripple cancellation, it should be possible to improve the filter response by including
additional, variable samples to smooth off the transition between pass- and stopbands.
This is illustrated in Figure 2.3.

In order to produce a filter with the best possible performance in terms of passband
ripple and stopband attenuation, these transition samples must be optimised. Rabiner,
Gold and McGonegal’s seminal work in this area [5] resulted in the publication of
tables of transition sample values for a range of filter types, with varying orders and
bandwidths, which are still widely used today. This approach is limited by the need

to interpolate transition sample values to obtain unpublished filter coeflicients, which

7

1.0 €

0.5

Normalised magnitude response

0.0 O—g—6 T
0.0 0.5 1.0

Normalised frequency

Figure 2.3: Samples of the frequency response with transition samples.

results in sub-optimal filters. The range of published filters is also limited to those

with a maximum of four transition samples, for which only a few were included.

2.2.2 Linear phase FIR filters

It is often desirable for a digital filter to have linear phase, whereby the different
frequency components of the signal are delayed by an amount proportional to their
frequency. This reduces the level of distortion, which is especially important in audio [6,
7] and biomedical applications [8, 9], where the value of information may otherwise be
reduced.

Linear phase can be imposed on an FIR filter by constraining the impulse response
to be either symmetric or anti-symmetric, although this in turn restricts the types of
filter which can be designed.

There are four ‘Types’ of FIR filter, which are related through having slightly
different arrangements of sampling points, as shown in Figure 2.4. The first distinction
between them is that the filter order, N, can be either odd or even. The second
distinction is whether the first sample is taken at w = 0 or w = 7/N. Rabiner, Gold

and McGonegal [5] refer to filters similar to the former as Type I, and the latter as

Imz Im:z

4AhWahY
AN,

Typel, N even Type I, N odd

Imz Im 2z
e R BN
/ \ Rez / \ Re z

KKJ \\\// /

Type Il, N even Type 11, N odd

Figure 2.4: Illustrations of the z-plane positions of the frequency samples for the four
types of Frequency Sampling filter.

Filter Type Possible filters

Type-I, N odd All filters

Type-I, N even | Lowpass and bandpass

Type-11I, N odd All filters

Type-II, N even | Lowpass and bandpass

Table 2.1: Designable FIR filters.

Type I filters.
Mathematical limitations [10] mean that different Types can only be used to design

certain frequency selective sorts of filters, as shown in Table 2.1.

2.2.3 Recursive Frequency Sampling FIR Filters

It is possible to express the transfer function of any Frequency Sampling filters with
either a recursive or non-recursive expression (11, 12]. The non-recursive form, which
has already been described above, is less efficient relative to the recursive form for

narrow-band filters where most of the frequency samples are zero (i.e. in the stopband).

Since the recursive form’s coefficients are the samples themselves, if a sample is zero its
effect need not be included and it therefore requires fewer calculations. It also allows
a greater degree of pre-calculation to take place, and unlike the interpolation of the
whole response with a DFT, just a portion of the response needs to be calculated each
time, thereby increasing the computational efficiency. The pre-calculation is presented
in Appendix A.1. The recursive form allows the radius of the poles and zeros to be
reduced to prevent pole instability in a fixed-precision environment.

In the implementation of the recursive FS filter optimised by GA, the GA could be
used to either optimise the radius simultaneously with the transition samples, or the
radius could be fixed, and the corresponding optimum transition samples found.

The speed increases afforded by the use of recursive form FIR filters in the GA
were significant enough for it to be adopted as the standard type of filter used in these

studies.

2.2.4 Other FIR Design Techniques

A wide variety of alternative FIR design techniques exists, such as Least Squares [13,

14], but the most popular are the Optimal and Window methods:

2.2.4.1 Optimal Method

The Optimal method seeks to find a filter with the minimum maximum ripple across
all pass- and stopbands. This filter will have an equiripple response, where all the mag-
nitude response extrema have the same magnitude. As it is relatively straightforward
to produce the filter response from the frequencies of these extrema, the problem lies in
finding the location of the extrema in the frequency domain. This is generally achieved
by using a computer program implementing the Parks-McClellan algorithm [15], which
uses the Remez exchange method to search for the extremal frequencies within the
equiripple response. Filters containing stopbands with different ripples can be designed

by altering their weightings. The technique is widely used, but can have problems when

10

designing multi-band filters with varying transition widths, as convergence to a suit-
able solution is not guaranteed, and there may be local ripples within the transition
bandé. Xu and Daley {16, 17] have shown their GA to be superior to linear program-
ming and Optimal Method coefficient roundoff techniques when designing an Optimal
filter with quantised coefficients. Ciloglu and Unver [18] designed optimal filters with

finite-wordlength coefficients using Simulated Annealing.

2.2.4.2 Window Method

The Window method makes use of the fact that it is easy to define an ideal impulse
response for a desired brick-wall style filter response [11]. However, if this infinite-
precision, infinite-length response is truncated and sampled using a finite number of
samples to produce FIR filter coefficients, the corresponding filter’s frequency response
will have an excessive amount of ripple. The Window method seeks to overcome this
by multiplying the ideal response by a Window function, which seeks to reduce the
effects of the truncation by gradually reducing the impulse response to zero within
the selected number of samples. A variety of functions have been proposed, such as
the Hamming and Kaiser, with different characteristics, but none give the designer
precise control over the band-edges and ripples of the filters they produce, which can
make them unsuitable for critical applications. Keane et al [19] have used Genetic
Programming (GP), a variation on the GA able to optimise expressions, to find an
impulse response function for a control system. Applying this method to filter design
could improve the quality of Window method filters by allowing the window function
itself to be optimised, rather than being constrained to the limited range of standard

functions.

2.3 Infinite Impulse Response Filters

IIR filters are distinguished from FIR by having an infinite duration impulse response.

They exist only in recursive forms, where the filter output is dependent not only on the

11

previous and current, inputs, but also the previous outputs. They are generally designed
using second- and first-order sections, which are less susceptible to finite wordlength
effects than large single structures. These low-order sections can be joined in a number
of ways with different noise and finite wordlength characteristics.

Due to their recursive nature, IIR filters are able to have a much sharper cut-off
and a higher attenuation than FIR filters, for significantly fewer coefficients. They do
however have a major disad vantage in that they cannot be forced to have exactly linear
phase. With the correct design constraints, however, it may be possible to design filters
with a near-linear response over a limited region.

When used in a fixed precision environment, ITR filters are more susceptible to finite
wordlength effects, such as noise and instability, than FIR, although by varying the
structure these effects can be reduced. Their recursive nature and finite wordlength

sensitivity also means that IIR filters are less straightforward to design.

2.3.1 IIR Filter Theory

IIR filters, like FIR filters, have a finite set of coefficients, but they are no longer the
same as the impulse response, and are used in a different way to determine the filter’s
performance.

The output of an IR filter can be described by:

N M
y(n) = kZ axz(n — k) ~ 3 buy(n — k) (2.1)
=0 k=1

where a, and b are the coefficients of the filter, z(r) and y(n) are its input and output
streams respectively, and N and M are the number of a; and b, filter coefficients, with
M > N. It can be seen from this that the current output, y(n), is a function not only
of the current and previous inputs, z(n — k), but also the past outputs, which gives
the filters their recursive character.

The equivalent direct transfer function, H(z), is given by:
N

_agtaz 4. tayzT
14 bzl by M

H(z) (2.2)

12

x(n) y(n)

LE ’
z! z!

8, -b,
z! zt

8 b,

Figure 2.5: Second-order direct form 1 IIR filter section.

x(n) /’\ wy(n) y(n)
> z hM

3,

Z—l

Figure 2.6: Second-order canonic (or ‘direct form 2’) IIR filter section.

This form of the IIR filter could be designed and implemented directly, but it is ex-
tremely sensitive to finite wordlength effects, even at filter orders as low as M = 4, so
it is not commonly used. In order to produce a more stable system, the filter is usually
broken down into first- and second-order sections, which are optimised simultaneously
in one of a variety of series and parallel topologies to produce the final filter. The two
main types of second-order sections are shown in Figures 2.5 and 2.6

The canonic {or direct form 2) section requires less storage than the direct form 1
section, but due to the existence of two adders, requires input scaling to prevent over-
flows on the output. This can require considerable additional calculations when deter-
mining the noise performance of the filter so can be less attractive at the design stage.
The direct form requires no such scaling, due to the cyclic overflow nature of two’s
complement arithmetic, which can allow an intermediate overflow and still return the

correct output provided the overflow is reversed by a later calculation.

13

When factored into second-order sections, H(2) is given by:

N/2

agr + 012" + a2’
= 2.3
H(z) ,cl;Il 1+ b1pz71 + bogz2 (2:3)

The positions of the roots of the numerators and denominators give the positions of
the zeros and poles respectively. When the value of z approaches that of a zero,
the numerator approaches zero, and therefore so does the output. Zeros therefore
generally define the location of the stopband. When z is close in value to a root of
the denominator, i.e. a pole, the denominator evaluates to a very small number, so the
division results in a large output. Poles therefore generally occur in the passband. In
pole-zero form, with complex conjugate pole-zero pairs, H(z) is given by:
1 (2 —rgei) (= - rge7ive)

H(z)=]] (z — rleiwn)(z — rhe—dur)

k=1

(2.4)

where r) and r} are the radii of the kth zero and pole respectively, and w, and w,
are their angles. If the radius of a pole is too large this can result in an overflow,
so the pole radius has to be carefully controlled to be no greater than unity. In a
finite wordlength system, the radius has to be reduced further in order to prevent
perturbations caused by quantisation pushing poles close to or outside the unit circle,
with a shorter bit-length requiring a smaller radius. It is safe for zeros to occur at any
radius.

Within the canonic (or direct form 2) section shown in Figure 2.6, there are two
adders, one in a feedback path. Unlike the direct form 1 section, intermediate overflows
in the output of the first adder (shown as w(n)) can be passed on to the second, and
from there to the output, giving an overall incorrect result. To counter this, the input
signal must be scaled down to prevent overflows in w(n), and the signal entering the
second adder must be scaled up again to restore the output level to its correct value.

A filter made up of cascaded canonic sections is shown in Figure 2.7.

2.3.1.1 Alternative structures

Many other possible structures exist, a popular one being the lattice structure, which

has been used in speech processing [20]. An example two pole lattice structure is given

14

Figure 2.7: Cascaded second-order canonic filter sections with signal scaling.

x(n) - @ y(n) N

Kl

2 "@‘ zblﬂ'_

§

Figure 2.8: Example of a lattice-structure IIR filter.

in Figure 2.8.

The lattice structure has the attractive properties that the filter is guaranteed to
be stable if the magnitude of the K coefficients are all less than unity, and that it is
less affected by coefficient roundoff than the direct or cascade structures. Flockton
and White [21, 22] have successfully applied the GA to the problem of adaptive system
identification. This involves using the GA to optimise the quantised coefficients of a
lattice filter based on a continuous input, so that its output approaches the output of
an unknown system, in order to identify and model it. Sriranganathan et al [23] have
applied GAs to the optimisation of lattice filter coefficlents limited to simple sums of
powers-of-two values for simpler implementation. Both of these approaches intrinsically
take account of coefficient quantisation, which is difficult to do using standard methods.
Chellapilla et al [24] have shown that the lattice structure has a much simpler search

space than the direct or cascaded structures, and is suitable for a gradient-descent

15

algorithm when using full-precision coefficients as it is unimodal. Etter et, al [25] have,
however, applied the GA to a cascade-structured adaptive IIR filter with a multi-modal
search space, with promising results.

A special type of filter known as an all-pass filter [10] can be made from standard
second-order sections if the zero angle is the same angle as the pole angle, but the zero
radius is the pole radius reflected in the unit circle, i.e. for every pole at 2 = re’ there
is a zero at z = (1/r)e. In this configuration, the magnitude response is constant,
but the phase response is not. Parallel connections of all-pass sub-filters (PCAS) with
other structures such as delays can produce frequency-specific filters, because the non-
linear phase causes destructive interference for particular frequencies, giving the overall
effect of a frequency-selective filter. All-pass filters have the advantage that they are
less susceptible to finite wordlength effects than standard structures. Krukowski et
al [26] present a standard method for converting any IIR flter transfer function into
a sum of all-pass sections, which can be implemented efficiently in parallel for faster
processing. Lawson [27], and Krukowski and Kale [28] present different standard ap-
proaches to producing frequency-specific PCAS-based filters with approximately linear
phase, thereby approximating the output of a linear-phase FIR filters with many fewer
coefficients, while Lu et al [30] have used Simulated Annealing (SA) to design PCAS
filters with approximately linear phase. Lawson and Wicks [29] have used Simulated
Annealing (SA) to design (PCAS) filters with finite wordlengths, showing that, like
the GA, SA can intrinsically account for coefficient quantisation without having to

optimise it in a subsequent step.

2.3.2 Design methods

A number of design methods exist for the optimisation of IIR filter coefficients. For very
simple filters, experienced designers can place poles and zeros directly by inspection.
This approach is fast and simple, but does require a deal of familiarity with this type

of digital filter.

16

For more complex filters or for novice users, other techniques such as the impulse
invariant method and bilinear 2-transform (BZT) work by converting analogue filters
into their digital equivalents.

Another design method, which does not involve the analogue domain at all, is the
Least Squares method [20], which can be used when a filter is needed which most
closely approximates a known impuise response. The output obtained by passing an
impulse through a desired filter cascaded with its inverse is used to generate a set of
linear equations which can be solved to give the set of coefficients which best match
the desired filter. Kobayashi and Imai [31] propose an alternative weighted LS method
for optimisation in the frequency domain, but the method is complex and is slow to
converge for equiripple filters.

The Least Squares approach has similarities with adeptive filtering, where filter
adapts its characteristics dynamically according to changes in the input signal. This
allows it to, for example, give better noise reduction [11] or for system identification.
Genetic Algorithms have beer used for the latter by Flockton and White [21] and Etter
et al [25], while Chen et al [32] have used Simulated Annealing.

Linear Programming [10, 33] involves maximising a linear function subject to a
number of linear constraints. Its use in filter design requires the optimisation problem
to be reworked in such a way that the problem becomes linear, and may require sub-
sequent adjustments to the desired response to make the problem solvable. Rabiner
et al [34] used the technique to optimise a range of direct-form IIR filters with respect
to their magnitude-squared response, although the use of the direct form means the
filters are highly susceptible to coefficient changes, and makes sharp-cutoff and high

order filters difficult to design.

2.3.3 Quantisation effects

It has been seen that, due to their recursive nature, IIR filters are more sensitive to the

effects of quantisation. This can affect both the coefficient values, and the results of

17

arithmetic operations [35]. Standard methods of design do not take these into account,
and so when coefficients are quantised to the wordlength of the system, they perturb
the filter characteristics. The smaller the number of bits used to represent a coeflicient,
the larger the perturbations will be on average, and so the more the filter response will
differ from the full-precision response. It is possible to optimise the coefficients after
quantising their full-precision values, but as the optimum set of quantised coefficients
can be very different to the set of quantised real-valued coefficients, a technique which
optimises the coefficients directly in a quantised form would be preferable.

While having quantised coefficients alters the filter response, if the system uses
quantised or fixed-precision arithmetic operations, then further distortions and noise
can be introduced into the signal as it passes through the filter, as the reduced precision
of the calculations moves the results away from their true values. The analysis of this
noise is also important in DSP as it can affect the suitability of a filter for a particular
application [36]. .

It is common practice to scale the filter coefficients to help minimise or prevent
overflow. For example, in ‘L2 norm’ scaling, which seeks to limit the power of the

signal [11], the scaling factor s for second-order section i is given by:

© 7
G
=0
where f(k) is the impulse response from the input to the internal node w; for section
i as shown in Figure 2.7.
For this quantised, scaled, sixth-order filter, the roundoff noise gain is given by:
q2 o0 00 00
Oor = 35|32 Fi(k) +53° f3(k) + 5 f3(k) +3
12 k=0 =0 k=0
where f;(k) is the impulse response between the first adder in section ¢ and the
output [11]. The ¢* factor (the square of the quantisation step size) was ignored in this

work as only filters with the same quantisation step size were compared together.

18

2.3.4 Error Spectral Shaping

The noise which occurs in a second order section can be reduced by Error Spectral
Shaping (ESS). This is a technique in which the quantisation error is fed back into the
filter in such a way that it reduces or even eliminates roundoff errors over regions of
the response.

There are many filter structures which can be used, one suitable canonic section
is given in Figure 2.9 (after [11]). In this structure, e;(n), the difference between the
pre- and post-quantisation value of y'(n), is passed through another set of coefficients
into the adders. It is possible to reduce the effects of the noise by careful selection of
these additional coefficients. In the figure, ea(n) is the error caused by requantising
the ESS inputs into the left-hand adder, e3(n) is the equivalent quantisation error for
the ESS inputs into the right-hand adder, and e4(n) is the quantisation error on the
output from the right-hand adder. ESS coefficients are usually chosen to be powers of
two or integers to minimise the noise contribution of the ESS filter itself.

Many modern DSP chips contain a double-precision accumulator, which can hold
high-accuracy numbers. This allows calculations to be performed within a second-order
section without adding roundoff noise at each multiplication, because the solution only
needs to be truncated to a lower accuracy when it is being written to memory. This
means that the filter implementation is inherently less noisy and more accurate. The
increasing wordlength of DSP chips means that some aspects of quantisation effects

are having less impact on filter performance.

2.3.5 Coeflicient pairing and ordering

For full precision arithmetic, it does not matter which order the second-order sections
appear in, nor which of the numerators is paired with which denominator. Once
the system uses fixed precision, this is no longer the case, since each section affects
the signal in a different way and the noise from each section is passed through all

subsequent ones. This means that the order in which the signal passes through the

19

e (n-2)

0 | 8,
Zl
e (n-1)
b} e %2
e(n) em en)
soa
-1 +1 ’ | em)
x(n) y(n)
1 9 @1 Q 'q)ao 2
% 1
_b‘ %al
z-l
-b; 'soaz

Figure 2.9: Canonic filter section with signal scaling and error spectral shaping.

20

sections will affect the overall noise on the output. It also implies that since the noise
of a section depends on the coefficients within it, the pairing of the numerators and
denominators also affects the overall noise of a system. The pairing and ordering is

not a trivial problem, the total number of paossible pole-zero pairs being given by:

e

which for N = 10 gives 14,400 possible filters. While this number of filters is easily
searched exhaustively by modern computers, changing the ordering and pairing of the
poles and zeros changes both the necessary scaling, and the noise characteristics of
the filter. Standard design techniques [37] perform the optimisation of the coefficients,
and pole-zero pairing and ordering in two independent steps, so any filters produced
can only be optimal in either sense. What is required is a multi-criterion optimisation
method, which allows the designer to specify the desired weightings of the importance
of the different design criteria such as frequency and phase response and roundoff noise

gain, and which then optimises the filter with respect to these combined criteria.

2.4 The Réle of Optimisation in Filter Design

Within each filter design step, optimisation can be used to improve the final design.
These steps will now be examined for IIR filters made of cascaded second-order sections,
to determine the potential uses of optimisation and how natural algorithms could be

used to advantage.

2.4.1 Specification

The specification covers the desired characteristics of the filter, namely the phase and
magnitude responses, together with other behaviours which may be limited by the
desired implementation. For example, the DSP chip to be used may have limits on the
I/O data rate, wordlength or highest available operating frequency.

There are several opportunities for optimisation here, covering the desired frequency

21

response, phase response, wordlength, delay etc., all of which will have a bearing on
the best way to implement the filter. Due to constraints which may be forced by the
chosen implementation, such as a fixed wordlength or sampling frequency, it may not
be possible to optimise the specification independently of the implementation, and the
two may need to be optimised together to find the best compromise.

The best means of optimisation here is probably fuzzy logic or an expert system,
which could use a database of available DSP processors to determine the best one to use
for a given specification, or, in reverse, could return the nearest possible specification
for a given DSP chip. This step is not especially suited for optimisation by the GA

and SA methods under investigation.

2.4.2 Coefficient Calculation

The calculation of the filter coefficients is perhaps the most important step in designing
digital filters, as the coefficients play the greatest part in determining the characteristics
of the filter. There are several methods of designing IIR filters (Section 2.3.2), which
often involve the complication of converting an analogue filter to its digital equivalent.

The GA could be used to by-pass this step, by working directly on the coefficients
or the pole-zero positions, in order to find the coefficients which best fit the desired
magnitude and frequency responses. A fitness function could be constructed which
drove the GA towards these responses, so that the designer need not know anything of
the actual operations involved.

Ways in which this can be accomplished will be covered in later chapters.

2.4.3 Structure Realisation

There is a great deal of potential for structural optimisation with IIR filters [38, 39].
Not only is there a choice between the topology of second-order sections to use in the
filter, there could even be a mixture of topologies. It is also possible for the sections to

be positioned in a cascade or parallel structure, each with its own noise characteristics

22

and storage requirements.

The actual optimisations which could be performed here are dependent on which
parts of the design cannot be changed. If there is a fixed wordlength, for example, or
8 limit on the amount of intermediate storage, then structural optimisation cannot be
performed independently of other optimisations, such as noise, as the structure and
wordlength affect the noise characteristics of the filter. However if some of these re-
strictions can be lifted then the realisation structure could be included in the GA’s
chromosome, and the various performance measures affected by the structure incorpo-
rated into the fitness function, so that the GA can include their effects while optimising
the coefficients and structure. Some GA-based filter optimisations explicitly include
the structure of each filter section, such as the approach of Roberts and Wade [40],
which builds up a filter from a library of simple standard filter sections. Suckley [41]
has shown a similar GA-based approach to perform better than other, standard tech-
niques. Uesaka and Kawamata [42] have used a Genetic Programming method to

design second-order filter structures with low coefficient sensitivity.

2.4.4 Analysis of Finite Wordlength Effects

As has been mentioned above, the effect of using a finite-precision implementation can
have a deleterious effect upon the signal passing through it. The level of optimisation
to be applied to the finite wordlength analysis is best determined on a per-problem
basis.

The simplest way to include some form of analysis is simply to optimise the co-
efficients directly in a quantised form. This will result in a filter with a lower op-
timum performance than the one with full-precision coefficients, but the coefficients
will automatically take into account the finite precision of the implementation. These
coefficients will, in general, perform better than quantised full-precision coefficients.
Schaffer and Eshelman [43] have shown the GA to be able to successfully optimise FIR

filters with coeflicients limited to powers-of-two integers, which allow multiplies to be

23

replaced with quicker and more efficient shifts.

This level of optimisation does not take into account the finite wordlength effects
of the calculations within the system, which also affect the filter performance. To
add this analysis to the optimisation requires a much more detailed model of the
system, in which the truncated results of calculations are also included. The filter
which would be found by such an optimisation would have the best performance of
these filters as it would have taken into account the effects of using a fixed-precision
system intrinsically, during the optimisation process, and no additional subsequent
analysis would be necessary.

Since both the structure of each second-order section and its coefficients will affect
the overall noise of an IIR filter, noise optimisation cannot be carried out alone: there
must be some feedback so that the structure and coefficients can be altered in a way
which helps to reduce the noise. However, unlike the other finite wordlength analyses
above, reducing the noise will result in a worse magnitude response performance, and
vice versa, because there are only so many degrees of freedom which can be exploited
to improve the filter performance. This means that a multi-criterion optimisation
technique, such as those described in Chapter 6 would have to be used. A filter
designed in this way would be a compromise between good performance in each aspect
of the design, but the ability to produce such a filter without resorting to a number of

individual analytical steps would be to advantage.

2.4.5 Implementation

The best method of implementing the system, in either software or hardware, will
be determined by the specification of the system. Different DSP systems use different
wordlengths, data rates etc., so are suitable for use in different situations. Even software
implementations will have restrictions according to the system they are written for,
which could have limited memory, speed or bit-lengths.

Dempster and Mcleod have proposed an analytical method for exploiting calculation

24

redundancies to implement previously-designed finite-wordlength FIR filters using the
minimum number of adders instead of full multiplications, thereby increasing speed
and simplifying the implementation [44]. Redmill et al [45, 46] have used GAs to
optimise filter coefficients with respect to both filter performance and number of adders
simultaneously.

As suggested above, a search for the best implementation for a given system could
be performed by an expert system or fuzzy logic, which would return a suitable imple-
mentation method after examining a database for those which match the specifications
most closely.

It should be clear from the above analysis that there is a large amount of interde-
pendence between all of the steps in designing a filter. This means that it impossible
to perform an optimisation with respect to the aspects covered by one section without
altering, and perhaps reducing, the performance in another aspect. To overcome this,
the only way to produce an overall ‘optimum’ filter is to perform the optimisation with
respect to all the possible design criteria simultaneously so that they can all be traded
off against each other at the same time.

The application of the Genetic Algorithm to a range of these optimisation tasks

will be covered in later chapters.

25

Chapter 3

An Introduction to Genetic
Algorithms and Other Natural

Algorithms

3.1 Background to the GA

The Genetic Algorithm (GA) is a search and optimisation technique [47, 48], which
was inspired by theories of natural selection and evolution by the survival of the fittest.
In nature, the survival of a species can be viewed as an optimisation task, where the
problem is one of adapting to the surrounding environment. Those species which are
well-adapted will survive to adulthood, and will then be able to pass their good genes
on to their own offspring. These offspring will contain various combinations of genes
from two successful parents, and should therefore describe some successful individuals
in turn. At each generation, the survival of the successful offspring will concentrate
‘good’ genes in the population, while offspring which are sickly or poorly-adapted to
the environment will either die before breeding or be unable to compete successfully
for a mate, so will not pass their genes on.

A process of millions of gene crossovers and a very small number of mutations,

combined with the elimination of poor individuals, causes a gradual evolution of the

26

population until it contains only individuals which are well-adapted to the environment
and have the best chances of survival. The success of this process in nature is obvious,
but it is perhaps less clear as to how this relates to a computer algorithm for engineering
design. This chapter will describe the operation and use of a Genetic Algorithm, and

discuss its advantages and disadvantages over conventional techniques.

3.2 Outline of a Standard Binary-Coded Algorithm

In nature, the population of seals, for example, consists of a number of individuals,
each of whose cells contains DNA (deoxyribonucleic acid). This DNA makes up the
genes that fully describe the seal. Each member of the population contains DNA
which differs slightly, resulting in differing sizes, colourings, strengths, acuity of sight
and smell etc. Elements of DNA from both parents are combined randomly in the
offspring, resulting in them having attributes of both. Those offspring with good,
new combinations of genes will be more likely to survive in turn and pass them on to
subsequent generations, while the poorer ones die out and are lost. This is in effect a
concentration of the information, contained in the DNA, about what makes a ‘good’
seal.

The engineering design process contain many similarities to that of the problem of
evolution: there is the goal of a suitable solution or solutions; the characteristics of a
solution can be tuned by altering parameters; and there is a means of determining the
quality of the solution. In nature, good solutions are marked by an ability to survive
and reproduce, ensuring the continuation of the species, while a good engineering
solution fulfils the design specifications to within acceptable tolerances. The tunable
parameters in the natural systems are the genes in each individual's DNA, while in an
engineering context they are the parameters to the model which allowed the quality of
the system to be determined. This suggests that by encoding the design parameters of
an engineering problem in computer-storable simulated chromosomes and simulating

the natural selection and reproduction processes, the solutions they contain could be

27

evolved into good or optimal solutions.

The basic operation of a standard GA can be summarised as follows:

1. Produce an initial population of individuals, each containing a random solution

to the problem under investigation.
2. Determine the quality of each solution, known as their fitness.
3. Select members of the population according to their fitness.

4. Copy or reproduce the selected members of this perent population, with different

frequencies, to form the next child population.
5. Perform crossover and mutation on the members of this child population.

6. Return to 2 until the maximum number of generations has been reached, or the

best, solution found so far is within acceptable tolerances.

These steps will now be examined in detail.

3.2.1 Encoding the problem

In order for the GA to perform successfully for a given design problem, the problem
must be encoded correctly. The GA does not, in general, optimise a problem model
directly, but rather by optimising parameters to it, which alter its performance. These
parameters must be stored in a suitable form according to their use and range, as either
binary, integer or floating point values. The use of a floating-point representation is
discussed in Section 3.11, but in a standard GA, the parameters are encoded into a
binary bit-string with a fixed format, i.e. the parameters always appear in the same
order, and each bit always has the same meaning, as illustrated in Figure 3.1. This
string, or chromosome, is decoded later on by the fitness function, which determines
how goad a solution the chromosome represents, a measurement called its fitness. The

calculation and importance of the fitness is discussed more fully in Section 3.8.

28

SN S SN

parameter 1 parameter 2 parameter 3 parameter 4

Figure 3.1: Illustration of the constant encoding of the binary chromosome of a stan-
dard GA.

3.3 Initialisation

The initialisation of the population determines which areas of the solution space the
GA samples at the start of a run. If nothing is known about the locations of the good
regions of the space, then it is important to initialise the population to cover as much of
the space as possible, as evenly as possible, so the chromosomes are filled with random
bits. While it may be possible to initialise the population by spacing it evenly within
the space, this could mean that each model parameter would only have a few values
and bit patterns, and it would then take the GA some time to generate intermediate
values. Other methods, such as the Sobol sequence [33] could be used to initialise the
population using a quasi-random sequence. This would guarantee a maximally even
spread of points, regardless of the number generated, but in some applications may
only cover a limited number of values for each parameter. Initialising the population
at random helps to ensure that a wide range of parameter values are sampled, which
in turn subsequently helps the GA to search the space effectively.

If the problem has known constraints on parameter values, or the location of good
areas is known, then this information can be used to good effect during the initialisation
procedure by either biasing or limiting the values to their known good regions or allowed
ranges [49, 50]. This clearly speeds up the convergence of the GA to the good areas,
but is only of use if the problem is known or can be analysed.

The number of members stored in the population must be enough to maintain
diversity in the gene pool, while being small encugh to ensure that storage and CPU
time limits are not exceeded. Values of 30-100 are most common for standard Genetic

Algorithms.

29

3.4 Selection

It is important that the selection method should keep the best solutions from each
generation, but it is perhaps less obvious that it should also retain a selection of the
poorer members in order to maintain gene diversity in the population. Without this,
the population will rapidly converge on whichever members of the initial populations
have the highest fitnesses, resulting in a poor final solution or very slow optimisation,
unless the initialisation has been fortunate enough to pick a point close to the optimum.
This is known as premature convergence, and the GA designer much take precautions
to prevent it while still allowing the GA to converge on the optimum solutions.

There are a variety of selection methods which can be used, the simplest being
weighted roulette wheel selection [48], which gives each member of the population a
probability of being selected which is proportional to its fitness. The roulette wheel
selection method has the problem that it is quite possible for good solutions within
the population to be missed during the selection process and lost while the poorest
solutions are retained.

While roulette wheel selection is very quick and simple to implement, a more use-
ful method, and one which is widely used, is Stochastic Remainder Selection without
replacement (SRS), which has been shown [48] to be one of the best general selection
techniques. SRS ensures that the members with above-average fitness are always re-
produced, with a number of copies proportional to the degree of excess fitness above
the average, while all the other members of the population also have a chance of being
selected to fill the remaining gaps in the population, which helps to maintain diversity.

SRS involves selecting the individuals to be reproduced in the following way:

1. Linearly scale all fitnesses to an average of one.

2. For each member whose scaled fitness is > 1, allocate a number of copies equal to
the integer part of the scaled fitness, and subtract that number from the scaled

fitness, leaving all the scaled fitnesses fractional.

30

If the new population now contains fewer members than the old, further selections

must be made to fill the remainder of the population:

3. Pick a random member and a random number in the range 0-1. If this number
is less than the remaining fractional scaled fitness of that member, then allocate
one copy to the new population, and set the scaled fitness to zero to prevent that

member being selected again.

4. Repeat 3 until the new population is the same size as the old.

Other selection strategies have been successful in other applications, but SRS was

selected for use in the single criterion GAs used in this work.

3.5 Reproduction

The selected members of the population are now copied or reproduced, to form a new
population. The selection method, as described above, will determine the number of
copies to make of each member of the population. The next population will usually

have the same number of members as the previous one.

3.6 Crossover

The result of selection is a group of individuals who have been selected either for
having a high fitness, or to fill any remaining spaces in the population and maintain
diversity. Selection means the average fitness of the new population is higher than the
old, but the maximum is unchanged as no new members have been created. Repeated
selections alone would therefore result in a population just containing copies of the
best chromosome from the initial population. In nature, new chromosomes are created
by sexual reproduction in which two parent chromosomes combine to give offspring

containing a mixture of characteristics from both.

31

In the binary GA, this is simulated most simply by randomly pickirg a pair of
‘parents’ and a crossing point along the chromosome, and swapping the bits after that
point between the two chromosomes, giving two offspring strings with some genes from
each parent. This has the result of combining the genes from two solutions which have
survived long enough to reproduce, to form two new, potentially even better solutions.
The next round of selections will determine which of these offspring are fit enough to
survive and pass their genes on in turn. The repeated action of crossover and selection
is the main driving force in the Genetic Algorithm, and results in the proliferation of
those genes which cause the chromosomes containing them to have a high fitness. By
repeatedly selecting and crossing high-fitness strings, the genes are gradually brought
together to form even better solutions. This is discussed more fully in Section 3.10.

Crossover is implemented by picking random pairs of (preferably different) individ-
uals, and, with a fairly large probability (typically 0.6), choosing to swap a selection

of bits between the pairs. There are several standard schemes for swapping the bits:

1-point crossover: A random point is chosen along the chromosome, and all the bits
after that point are swapped between the two parents to form two offspring. For

example:

{00000 | 000} {00000111}
— (3.1)

{11111 | 111} {11111000}
This method has the disadvantage that points towards the ends of the strings are

crossed less frequently than those in the middle.

2-point crossover: Two random points are selected and the bits between them are
swapped. This is essentially the same as mapping the chromosome to a ring and
swapping the bits between two randomly-selected points, which helps to remove
the end effects and so causes the string to be optimised more evenly along its

length:

{00 | 000 | 000} . {oo111000} (3.2)

{11] 111 | 111} {11000111}

32

Multi-point crossover: Many crossing points are picked and the bits between them
alternately swapped and kept. This is still more even than 2-point, but it is
arguable if the gains are worth the extra computational time, and the disruption

to good chromosomes which have been built up is higher:

{oo | 000 | 00 | 0} {00111001}
— (3.3)
{11111 |11 1} {11000110}

Uniform crossover: For maximum evenness, this technique chooses randomly whe-
ther or not to swap each bit along the length of the string. This is very disruptive,
so compensation, possibly in the form of elitism (see Section 3.12) can be used

to prevent good solutions from being lost:

{ojoloojo|olo]o} {01001010}
._).
{1]1]11]1]1|1]1} {10110101}

3.7 Mutation

The crossover/selection mechanism tends to concentrate the population in the high
fitness regions of the search space, which is the desired search action. However, it is
quite possible, especially with highly multi-modal surfaces or those with similar height
peaks, for the GA to converge to a sub-optimal peak. To help it to escape and continue
searching, mutation is used. Mutation causes a very small number of bits, typically
0.01-1% of the total number of bits in the population to be flipped at random. For
example:

{11111111} — {11011111} (3.5)

This changes the values of genes within the chromosome, and thereby pushes a few
members of the population into new, possibly remote areas of the parameter space,
allowing the GA to continue its search for higher fitness regions. While this occasionally
finds a better solution and so helps the GA, it is disruptive and is as, if not more likely
to move the chromosome to a poorer solution, so is only applied with a very low

probability.

33

3.7.1 Mutation and parameter encoding

While the standard binary encoding is simple to understand and decode, it has unde-
sirable characteristics from the viewpoint of the GA which can make it unsuitable for
some applications such as numerical optimisation.

When a decimal number is represented using a binary encoding, the number of
bits which change between consecutive numbers is known as the Hamming distance,
and can vary widely from one bit to the full bit length of the number. For example,
to change from 0 to 1 only requires one bit to change, but 127 to 128 changes eight
different bits (01111111 to 10000000 for an eight-bit representation). This situation,
where adjacent gene values have a large Hamming distance between them, is known
as a Hamming cliff. If such a Hamming cliff lies between the current and optimum
values, then mutation will be unlikely to overcome it as it only changes a few bits per
generation.

There is an alternative binary encoding called Gray coding which overcomes this
difficulty by ensuring that consecutive numbers only differ by one bit. The difference
between the two encodings for the first 16 numbers is shown in Table 3.1. A binary
number can be easily converted to Gray coding by Exclusive-ORing it with itself shifted
right one bit:

gray = bin A (bin > 1)

To convert it back from Gray coding to binary, each bit is added to the one before it,
ignoring the carry:

(bing, biny, bing,...) = (graye, graye + gray, graye + grayp + grays, . . .)

The major advantage of using Gray coding is that it is possible to move between
adjacent decimal values by flipping a single bit. This means mutation is always able to
‘creep’ from one value to the next by flipping a specific bit, although it is still possible

to move larger distances by flipping other bits.

34

Decimal | Binary | Gray code |
0 0000 0000
1 0001 0001
2 0010 0011
3 0011 0010
4 0100 0110
5 0101 0111
6 0110 0101
T 0111 0100
8 1000 1100
9 1001 1101
10 1010 1111
11 1011 1110
12 1100 1010
13 1101 1011
14 1110 1001
15 1111 1000

Table 3.1: A comparison between the binary and Gray-coded forms of the first 16
numbers.

3.7.2 Other forms of mutation

It can be helpful for some applications to weight the probability of mutation along the
length of the string, perhaps to reduce the disruptiveness of sensitive regions of the
chromosome, or where the chromosome requires different forms of mutation at different
locations to maintain the validity of solutions. Altering the degree of disruptiveness
(Section 3.11.2), or dynamically changing the mutation probability as the run pro-
gresses can also be beneficial. This could either be a simple reduction with time, or
more complex, such an increase if the GA fails to improve for a number of generations,
then a decrease once it begins to improve.

While it is difficult to predict what crossover and mutation rates are best for a given
problem, and indeed most optimum rates are determined through trial and error, if the
search space has relatively few peaks, then the weighting should generally be on the
crossover to ensure convergence, while for a hilly space, a higher mutation rate can be
useful to make the GA sample the space more widely and to allow it to escape from

local suboptimal peaks.

35

3.8 The Fitness Function

The fitness function takes the chromosome, extracts model parameters from it, passes
them to the model, and returns a value which is a performance or suitability measure
of that chromosome. The importance of choosing the correct fitness function cannot be
overstated. It is the only viewpoint the GA has of the space it is searching, and the only
performance measure of the solutions it has found. Not only does it therefore determine
what the GA is actually looking for, it also influences the speed of convergence and
how the selection mechanism performs. If the chosen fitness function makes the search
space appear very hilly, the GA is more likely to suffer from premature convergence,
whereas if it appears too flat, then the GA will not be driven towards the optimum

strongly enough, and will take a long time to converge.

3.8.1 Fitness Scaling

The values returned by the fitness function are usually a simple measure of the model’s
performance, but may not be particularly suitable for direct use in the selection process.
For example, if fitnesses have a small range or a large offset, it reduces the relative
difference between individuals in the SRS algorithm and therefore also reduces selection
pressure. Alternatively, having too great a range can cause premature convergence
around any good members in the initial populations, so artificially scaling the fitnesses
to a suitable range can help the GA. The offset can be removed by translating the
fitnesses to a fixed lower bound, while the range can be adjusted by a power scaling to
increase or reduce it. If a ranking selection mechanism (e.g. tournament selection [51,
52]) is used, then the fitnesses’ absolute values are irrelevant since only their relative

values are used to determine the fittest, so scaling is unnecessary.

36

3.9 Advantages and Disadvantages of the GA

A major disadvantage of conventional hill-climbing strategies is that they can become
trapped on sub-optimal peaks. Unless the search is started in the immediate neigh-
bourhood of the optimum peak, it will not be able to find it. The GA is able to escape
from these sub-optimal peaks by the process of mutation, and by crossover between
dissimilar chromosomes.

Since the GA only uses point samples of the search space, it does not require any
gradient information. This means that it is possible to optimise complex models for
which analytical solutions are extremely difficult to obtain. The GA has a particular
strength in that it can be used for multi-criterion optimisation, automatically trading
off performances with respect to different criteria, a process which is described further
in Chapter 6.

Although the GA takes many fewer samples than a random or exhaustive search,
the fact that it still requires a great many function evaluations means that it will often
be much slower than standard analytical techniques where these exist.

The other main problem with the GA is that while it is statistically guaranteed
to find the optimum, in practice for more complex problems it will generally only
return a solution which approaches the optimum, except for simpler problems. If a
near-optimum solution is not good enough, then once the GA has converged, a hybrid
technique (such as a hill-climber) can be used to perform the final optimisation and
find the true optimum. This is discussed in Section 3.13. Alternatively, the GA could
be restarted using the previous best solution as a population seed. Ishibuchi and

Murata [53] went to the extreme of using a local search on every solution found by

GA.

37

3.10 Convergence Theory

While it should now be clear how the GA works, it is perhaps not so obvious as to why
it works. There have been a number of attempts to describe and predict its behaviour,
the original being that of Holland’s Building Block Hypothesis [47], although more
recent analyses [54, 55] suggest other mechanism can give more accurate predictions
of the GA’s performance under some circumstances. His ‘Schema Theory’ predicted a
string's fitness by the bit templates or schemata (singular schema) it contains. The
templates are described by the ternary alphabet of {1,0,#}, where the ‘4’ is a ‘don't
care’ symbol. For example, the schema {1##} would match any three-bit string with
the first bit set. A schema therefore describes a set of chromosomes with similarities
at a subset of the total number of bit positions.

Schema theory predicts that if a chromosome contains certain schemata it will have
a higher than average fitness, and a lower one if it contains others. During selection,
therefore, the higher-fitness schemata will tend to be propagated, while the poorer ones
will be lost, and by performing crossover these higher-fitness schemata can be brought
together to form even fitter individuals. Since crossover is very disruptive, it is found
that schemata whose fixed bits have a wide span are not propagated as well as shorter
ones. Under this scheme there are therefore some restrictions: the high-fitness schemata
should be short in order to reduce the risk of them being damaged during crossover,
and it must also be possible to predict to some degree the fitness of a chromosome
from just a small section of it. If this is not possible, then no short templates can exist
and the only good solutions will be either complete or nearly complete ones. Under
these conditions the GA does not perform well, so it is good practice to design a GA
around a chromosome in which related genes are adjacent, and there is no relationship
or interdependence between widely-separated genes.

Under schema theory, the GA implicitly processes many schemata in parallel as
each member of the population contains a large number of them. Since the GA is

trying to bring the high-fitness schemata together to form an optimum chromosome,

38

the population size should ideally be chosen so that after the random initialisation
it contains, on average, one copy of each schema, of which there exist a total of 3%
for a chromosome of length B. Although there are more useful schemata in a larger
population, the minimum size increases slower than the chromosome length so a large
number of bits does not necessarily mean a punitive amount of storage or speed decrease
due to a huge population size. In general, the population size used is smaller than this
minimum size, but the GA is still able to perform satisfactorily.

As the cardinality of the alphabet used rises, so does the minimum population size
that is needed to contain, on average, at least one of each schema. For a floating point
GA, there are essentially an infinite number of possible schemata, so the GA should
require a vast population to even begin to work properly, as a normal population with a
binary gene will only contain a few of the possible schemata. Goldberg [56] speculates
that the GA builds up its own lower-cardinality ‘virtual alphabet’ from the features in
the search space, but the reality of this scheme is unproven.

Recently, doubt has been cast on the validity of the Building Block Hypothesis,
and a number of alternative approaches, e.g. using Markov chains [54, 55| , have been
proposed, although all have their faults, and the true nature of the GA’s optimisation

processes remains unresolved.

3.11 Floating-point Chromosome GA

The emphasis so far has been on the original, and still most common, binary form of
the GA, but it is by no means the only chromosome encoding which has been used.
Other encodings, using integers [40] or real numbers [57, 58], have also proved suitable
for different applications. Some problems, such as numerical function optimisations
or scheduling are less suited to a binary representation, and can be more conveniently
encoded in higher-cardinality alphabets. This can allow each gene to represent a single
optimisation parameter directly, making it easier to write the fitness function, and

removing the need for decoding routines which add complexity and time to the fitness

39

calculations. Although Holland’s schema theory predicts that a binary alphabet is the
best encoding for the GA, the successful use of other encodings has shown that this
prediction is uncertain and other processes may be occurring which allow the GA to
work successfully. The optimal encoding is therefore problem-specific.

In the optimisation of many real-world scientific and engineering problems, a real-
coded chromosome is attractive due to the high accuracy of measurement which is
generally necessary, since it requires a very long binary string to obtain a high numerical
accuracy. By encoding such problems with floating-point numbers, they can be used
directly in the problem model which for complex problems requiring many function
evaluations can be a substantial time saving as no decoding is required.

Real-coded genes have further advantages in that they also avoid some binary-
coding specific problems such as Hamming cliffs. Although Gray coding overcomes
this problem, it still requires many bits to achieve a high accuracy. For a floating-point
GA, mutation can perturb the gene about its existing value to different degrees and so
hill-climb towards the optimum. Another advantage is that the GA will converge faster
with a high-cardinality alphabet, which is helpful if the optimum is easily found, either
by the GA or an add-on hill-climber. It is still possible for the GA to be blocked (see
also deception in Section 6.4), which happens when the initial sampling of the search
space causes the GA to move towards regions which are blocked from hill-climbing
towards the optimum peak by either valleys or other, suboptimal peaks.

In order to use a real-coded chromosome it is necessary to adapt the GA to some
degree, as the binary crossover and mutation techniques mentioned above are not

suitable in their current form. The changes will now be examined in detail.

3.11.1 Floating-point Crossover

The floating-point GA adopted for this work was derived from that of Janikow and
Michalewicz {59], where the chromosome is regarded as a vector. This GA was specially

designed for numerical optimisation, and uses a vector-like chromosome of a string

40

of real numbers with a number of crossover methods. These utilise convezr vector
combination of the chromosomes to generate new gene values and chromosomes. A
dynamic form of mutation is also used, which reduces the degree of disruption as the
run progresses to reduce the loss of good solutions once the population has converged.

Convex combination works as follows. First two parent chromosomes (vectors) are

selected, for example, a and b, where

a = {a11a2ra3|"'1a’n} (36)

b ES {b17b23b3:---3bﬂ}

If a crossover point is selected at the third gene position, the offspring are given by:

¢ = {a,a,p03+ (1 p)bs, ... a0} (3.7)

d = {b],bz, (1 - p).aa + p.bs, .. .,b,,}

where p is a uniform random number in the range 0-1. This results in two offspring,
mostly containing the characteristics of one parent, but with a degree of the other at
one gene position. This can be extended to cover more than one gene position to give
offspring with a greater mix of the properties of both parents. In all, five types of
crossover are used within the GA, and one picked at random for each crossover to be

performed:

Normal crossover: Strings are crossed the same way as in single-point binary, with

crossing points between genes, i.e. between a; and a;;.

Multiple crossover: This is similar to multi-point binary crossover, with crossing

points selected as in the Normal crossover above.

Arithmetic crossover: This is the simple one-gene form of convex combination

shown in Equations 3.6 and 3.7.

Multiple Arithmetic crossover: Here several genes, selected at random, are crossed

as in Arithmetic crossover.

41

1.0

0.5

Gene two

T
0.0 0.5 1.0
Gene one

Figure 3.2: Example Arithmetic crossover for a two-gene chromosome.

Whole Arithmetic crossover: This is a special case of Multiple Arithmetic cross-

over, where the entire string undergoes Arithmetic crossover.

[t should be noted that neither Normal nor Multiple crossovers actually change gene
values, as they simply swap them unchanged between individuals. The three types of
Arithmetic crossover do introduce new gene values into the population.

An example of the effect of Arithmetic crossover for a two-gene string is given in
Figure 3.2, where gene two has been crossed. Figure 3.3 illustrates Whole Arithmetic
crossover for the same type of chromosome. It is clear from the positions of the child
chromosomes created in these figures (labelled ¢ and d), that the action of both types
of crossover is to rotate the vectors around their average point, followed by a scaling
centred on this point. This closely mimics the effect that normal crossover has on
binary strings [60]. For three dimensional chromosomes (i.e. with three genes), the

effect is of a rotation and scaling around the central point of a cuboid.

42

1.0

b

0.0 1 T
0.0 0.5 1.0

Gene one

Figure 3.3: Example Whole Arithmetic crossover for a two-gene chromosome.

3.11.2 Floating-point Mutation

The type of bit-flipping mutation used in the binary GA clearly has no analogous
equivalent for real genes. While it would be a simple matter to replace each gene with
a random number, this is very disruptive, and could easily destroy any good solutions
which have been found. A better alternative is to simply move the gene around its
current value, within any bounds which have been imposed, but this again has its
problems. The size of the movement must be big enough to allow the GA to search the
space effectively at the start of the run, without being so large that solutions are lost
after convergence. One solution to this, which was used here, is to start the run with
a reasonable size of perturbation so that the space is covered well, and then reduce
it progressively throughout the run so that solutions are not lost as the population
converges on the better regions of the space. It is possible to tune the rate of decrease
of the perturbation according to the problem in hand.

The method used here was to first produce a value dmpow which reduced exponen-

43

tially from 1 to 0 as the run progressed:

(generation)5

dmpow = (1 — -
mezGenerations

It is possible to alter the rate at which the perturbation decreases by increasing or

decreasing the power term in this expression. This value was then used to generate a

randomly-distributed perturbation amount:

_ 1—(random(0, 1))*™r*"
B 2

dmu

and this in turn was used to either increase or decrease the gene value within its limits

of 0-1:

oldValue + (1 — oldValue) *xdmv random(0, 1) < 0.5
newValue = (3-8)

oldValue — oldV alue » dmv otherwise

This had the effect of moving a gene's value a larger amount at the start of a run, but

rapidly reducing the range of the perturbation as the run progressed.

3.12 Other GA techniques

For some problems, such as flowshop scheduling and routing which used list-based
chromosomes, the GA's performance can be improved by including another form of
gene manipulation known as inversion. Inversion takes a section of the chromosome
and reverses it, replacing it at the same position in the string. This can be very
disruptive to the building blocks in the chromosome, so is only applied with a low
probability, but can be instrumental in finding optimal solutions. It is however of little
use in numerical optimisation problems, where the meaning of a particular bit in the
chromosome is fixed.

The random nature of the GA has the disadvantage that it is possible for a good
solution to be lost if all copies of it are picked for crossover with inferior solutions. This
is especially true for new solutions whose fitness only improves slightly on the previous

best, where there may only be one or two copies in the population. In order to prevent

44

these solutions from being lost, a technique known as elitism can be used. Instead of
simply copying the newly-created population over the old one, they are both examined,
and one or more of the best solutions from the old population are copied over the worst
in the newly generated one, ensuring that the population always contains at least one
unaltered copy of the best solution found.

It has been shown that the GA implicitly processes many schemata in parallel, and
this can be extended by having several GAs running in parallel on the same problem,
either simulated on a single computer, or distributed over a network. At intervals,
copies of good solutions found by each GA are sent to the other GAs, which add them
to their own populations and continue processing. This has many advantages, more
solutions can be tried, a greater gene diversity can be maintained, each population
can converge to a different solution and still be aware of others by the input of new
solutions, and the effective population size can be much larger than is feasible for a

single GA.

3.13 Hybridisation

Although the GA is able to search large spaces very efficiently and escape from local
sub-optimal regions, its random nature means that it is not guaranteed to find an
optimum solution, even if it has converged to the high-fitness region containing it.
The GA can be helped to complete the optimisation process by the addition of a
hybrid search technique, such as a hill-climber. This can be used in a number of ways,
for example as a final process to be called on once the GA has completed its run. This
approach assumes that the GA has converged on the locality of the optimum during
the run. Another approach, which was adopted for part of this work, is to call on the
local search if the GA has not made an improvement on the best fitness it has found
for a number of generations in succession. This method is not reliant on the GA having
found the region of the optimum, and should merely provide a ‘kick-start’ to get the

GA working again by injecting a selection of good new genes into the population.

45

This hybrid approach to the GA has been successfully applied to many problems,
from optimising layouts to modelling metabolic systems [61, 62]. Hill-climbers that, can
be used include the Simplex method for floating point genes, and bit-flipping for binary.
Krukowski and Kale [63] have shown bit-flipping optimisations to work successfully for
IIR filters.

The first bit-fipping hill-climber developed for use in the binary GA simply scanned
across the string, flipping each bit, and retaining a change if it increased the fitness.
This was repeated until no bit-flip caused an increase in fitness. It was realised that this
method always looked at each coefficient in turn, but as will be shown later, changing
one coeflicient moves the position of the optimum for the others. This means that
the hill-climber finds the optimum value of the first gene with relation to the current
values of the other genes, and not the true optimum, and so on down the whole length
of the chromosome. Although applying the algorithm repeatedly might help, there is

no guarantee of finding any truly good solutions.

3.14 The Search Space

The search space is an important concept in GA theory. It relates the problem param-
eters encoded in the chromosome with the complexity of the fitness function. By using
the fitness of a chromosome as a height, a contour map of the fitness function’s output
can be drawn against the values of the genes within the corresponding chromosome.
The hilliness of this map, together with other analyses, such as whether it contains
discontinuities or other features, can be used to estimate the difficulty different tech-
niques will have in solving the problem. Discontinuities and multiple peaks can cause
problems for hill-climbers and calculus methods, for example, while hill-climbers which
only optimise one parameter at a time will find it hard to move along angled features
in the fitness landscape.

The GA is generally able to work in hilly, discontinuous landscapes, but there are

other more subtle features which can cause it problems, such as a landscape where

46

it is only led towards the optimum by very small-scale structures, while the larger-
scale features tend to lead away from the optimum. This particular effect is known as

deceptiveness, and is covered in more detail in Chapter 7.

3.15 Simulated Annealing

Hill-climbing is a well-known technique for finding optima in a search space, but which
solution it finds in a multi-modal space depends on where it is initialised. If its initial
point is not close to the optimum, depending on the nature of the space, it may never
find it at all. Using an analogy from thermodynamics, it is similar to quenching a
hot metal—the crystal structure formed under these conditions is the first low-energy
state that was found. Other, potentially lower-energy structures may exist, but it is
necessary to cool the metal slowly (or anneal it) to allow it time to search for the
lowest-energy state. There may even be substantial changes in structure as it cools,
reflecting a wide-ranging search for a stable, low-energy structure.

The technique of Simulated Annealing (SA) optimisation [33] attempts to model
this slowly-cooling approach instead of the rapidly-quenched style of the hill-climber.
SA usually works in a similar fashion to a hill-climber by looking around its current
position and always accepting moves to a better position. However, it differs in that
it also allows a proportion of moves to a worse position, which will allow it to escape
from its current optimum and search within another one. When metals are cooled, the
reduction in heat energy lowers its ability to make large structure changes, so it becomes
increasingly confined to its current position. This is reflected in the SA technique
by initially allowing many moves to worse positions, but progressively reducing this
probability as the number of iterations increases. This allows the SA to perform a
wide-ranging examination of the search space at first, but to increasingly concentrate
the search on any good areas it finds. The speed with which the range of the search
contracts is highly problem-dependent, and trial-and-error must be used to find a

sufficiently slow rate to allow an efficient search, while being fast enough for the result

47

to be generated within a useful time.

Depending on the implementation, SA may be statistically guaranteed to find the
optimum, but as this may not be probable within a suitable timescale, multiple runs
may be necessary. The SA could be restarted with the best point of the previous run,
or this point could perhaps be used to discourage the search from revisiting the same
optimum, thereby increasing the efficiency of the search.

The implementation of SA optimisation used in this work [33] was based on the
Simplex Method described in Sections 4.4 and A.2, and utilises a Simplex Method

hill-climber which has been modified to allow occasional moves to poorer solutions.

3.15.1 Applications to Filter Design

Simulated Annealing has been successfully applied to several aspects of filter design.
Pitas [64] presented a SA-based optimisation for the length of a median filter, which,
although it only had a small search space, indicates that SA is suitable for some filter
design tasks. Smith and Henderson [65] have applied SA to ordering the sections of
a cascade-realisation FIR filter, to optimise the roundoff noise. SA was found to be
able to find orderings close to the minimum possible, and to be usable in environments
where the search space was too large for an exhaustive search to be feasible. Chen
et al [32] have used an SA-based technique to optimise adaptive ITR filters for system
identification, where hill-climbing techniques can fail due to the occurrence of local
maxima in the search space. PCAS filters with finite wordlengths have been designed
by Lawson and Wicks [29] using a binary SA.

3.16 Differential Evolution

Storn [66] made use of a crossover method similar to the Arithmetic Crossover above,
in his optimisation of IIR filters by Differential Evolution. This is a similar technique
to the GA, in which instead of selecting two members of the population to cross, the

coefficients of each member in turn are mixed with fixed proportions of those of the

48

best member and two other members of the population selected at random, to produce
a single offspring. The offspring is kept if it is a better solution than its parent.

The technique was successfully applied to the optimisation of a tenth-order IIR
filter cascaded with a fixed-coefficient FIR filter, where both the magnitude and group
delay responses were optimised by penalising the fitness function if a solution went

outside desired response templates.

3.17 Evolutionary Strategy

Evolutionary Strategy (ES) (1, 48] is very similar to a floating point GA, but gener-
ally has no crossover, relying instead on just mutation and selection to perform the
optimisation. Franzen et al [67] compared the results of ES with Simulated Annealing
for designing FIR filters with quantised coefficients, and found both to have similar
performance, but neither performed much better than quantising the coefficients found

by standard techniques.

3.18 Genetic Programming

Genetic Programming (GP), made popular by Koza [68], is a means of optimising
mathematical functions to perform a particular task. Utilising tree representations of
the available operations (such as simple mathematical operators like %, /, + and — or
boolean operations like AND, NOT, OR) and the input parameters, crossover can be
represented by swapping ‘branches’ of the tree, and mutation by replacing an existing
operator with a different one. Computer programming languages such as LISP are
often used as their syntax is already in a suitable tree-like form.

Applications of GP to filter design have a rather different approach to those for GA
and SA in that it is not simply used for coefficient optimisation, but for functional and
structural optimisation. Keane et al [19] have used GP to optimise an impulse response

function which models an unknown system, and Rodriguez-Vizquez et al [69] have

49

performed multi-objective system identification. while Uesaka and Kawamata [42] have
designed second-order filter structures with low coefficient sensitivity using automatic

GP techniques.

3.19 Tabu Search

Tabu Search is a sequential search technique introduced by Glover [70] in which
recently-visited solutions are made ‘taboo’ and cannot be revisited, thereby forcing
the search into new areas. Current solutions are transformed into a range of poten-
tial new solutions, known as the neighbourhood. The transformation method must be
chosen so that the path between any two solutions can be followed by repeatedly ap-
plying the transformation. The set of solutions within the neighbourhood is compared
with the tabu list of previously visited points, and forbidden solutions removed. The
next starting location is then picked from the remaining solutions, and its own neigh-
bourhood examined. A variety of techniques have been proposed for picking the next
solution from the neighbourhood: an unvisited solution is always preferable, or if none
is available, a previously-visited solution can be selected according to how recently or
how often it has been visited [71].

Tabu Search has been used successfully by Traferro and Uncini for designing adap-
tive filters with powers-of-two coefficients, which has a restricted search space [72]. For
filters with integer coefficients, and especially with full-precision coefficients, the num-
ber of points in the tabu list will be extremely large as the number of solutions within
the search space is much higher—an N-bit integer can represent 2V values compared
to the NV values of a powers-of-two representation of the same range. For a single 16-bit
integer range this gives a search space 2!9/16 = 4096 times larger. A 32-bit floating-
point representation of a single number contains around 10® more points than the
powers-of-two representation, so the tabu list will also need to be orders of magnitude
larger. This may make the technique unsuitable for high-precision or high-order filter

optimisations due to storage and /or time constraints, as the time taken to compare the

50

solutions in the neighbourhood with those in the tabu list will rise linearly with the size
of the tabu list. Battiti and Tecchiolli [73] have proposed a potential solution to this
problem, by just using TS on a combinatorial representation to find promising regions,
with a local search performing final optimisation. The TS parameters are adjusted
dynamically in order for the search to be effective on a variety of problems.

Tabu search can also be used for multi-criterion optimisation, using an adaptation
proposed by Hansen [74], which enables it to return a range of solutions with different
performance tradeoffs, by weighting each Tabu Search within a population of solu-
tions so that it tends to keep away from its neighbours, while moving towards better

solutions.

ol

Chapter 4

Optimising Frequency Sampling
Filter Coefficients by Hybrid GA

4.1 Introduction

In this chapter, the first application of GAs to a filter design problem will be described.
A suitable optimisation problem will be selected, and the method of applying the GA
presented. Results are presented which lead to the publication of a paper covering this

work in the IEEE Transactions on Signal Processing [4].

4.1.1 Selection of FS filters for GA optimisation

In order to begin the investigations into the use of the GA, it was necessary to select
a filter type and optimisation problem to use as an initial vehicle. FIR filters were
chosen for their simplicity, using the Frequency Sampling design as a first step since
they only require the optimisation of a few numbers (the transition samples) to produce
a solution. It would also be possible to write a suitable fitness function to search for
optimal filters by optimising the extremal frequencies. Window method filters are less
suitable as they require the optimisation of mathematical functions, which is not easily
achieved by the methods under investigation. As floating-point GAs have been proved

successful in other areas, it appears to be a simple matter to list the transition samples

o2

in a chromosome for the GA to optimise, and to produce a fitness function which

returns how close the frequency response is to a given desired response.

4.2 Use of the GA for FS filter Design

At this stage, both the problem, namely the optimisation of FS FIR filters, and a
solution, the GA, have been proposed. The combination of the two to form a useful
optimisation technique will now be examined. The following discussion covers the
optimisation of lowpass filters, but is applicable to all the standard frequency-selective
filter types.

When designing FS method filters, the values which need to be optimised are the
magnitudes of the transition samples. For a magnitude response with normalised units
rather than decibels, these samples have a range of 0-1 inclusive. These therefore need
to be encoded into a suitable chromosome for the GA to work with.

The first filter type selected was non-recursive filters using the DFT interpolation
method, and since the values to be optimised were floating-point and were used in a
full-precision calculation, a real-valued chromosome and GA were chosen. The chromo-
some consisted simply of the transition sample values in order from pass- to stopband.
The GA used was derived from that of Janikow and Michalewicz {59] as described in
Chapter 3, but with some alterations and improvements which will be described later.

For a filter response to be acceptable, its magnitude response in the transition band
should decrease monotonically from pass- to stopband. To help the GA maintain this,
before each fitness calculation the transition samples are ordered so that they decrease
mongotonically. This is necessary at each fitness calculation because of the disruptive
action of crossover and mutation, which can easily alter gene values and hence alter
the ordering of the transition sample values. The fitness function passes the re-ordered
chromosome back to the GA so that all of the chromosomes have the same transition
sample at the same gene position. This also means that the total number of solutions

which the GA has to search is reduced. For a filter with two transition samples, the

53

Figure 4.1: The shaded area is the disallowed region of the search space for a two
transition sample filter.

limitation that the second sample must be less than the first means that only half the
space is valid, as shown in Figure 4.1. In general, the proportion of the total space

which gives allowable filters is given by:

1

P=m (4.1)

where N, is the number of transition samples. For Ny = 4, p = 1/24 or only 4.2% of
the total space, dropping to just 0.83% when N; = 5. Ordering the samples therefore
has the advantage of constraining the search to the region of the optimum, which is
increasingly attractive as the number of transition samples rises, although the corre-
sponding increase in difficulty in finding the optimum means that the problem still gets

harder averall.

4.2.1 The Fitness Function

The performance measure adopted initially was that used by Rabiner, Gold and Mc-
Gonegal [5] when producing their tables of transition sample values, namely the max-

imisation of the minimum stopband attenuation. The fitness was simply defined as:

fitness = —20log,,(ds) (4.2)

54

where ds is the stopband ripple and fitness is the magnitude of the attenuation in

dBs.

4.3 Extensions to the Floating-Point GA

The specialised floating-point crossovers mentioned in Section 3.11 are not able to
produce offspring whose genes have values outside those of their parents. This means
that genes will always tend to move towards the centre of the search space after repeated
crossovers. This effect will be particularly damaging for those genes whose optimum
values lie towards the edges of the allowable range, namely 0-1. To counter this, the
crossover action was altered slightly to allow the genes to move apart on crossover as
well as together. If the chromosome in Equation 3.6 is crossed, instead of the results

shown in Equation 3.7, the new crossover produced:

¢ = {a1,09,p0a3+ (1.1 —p)bs,...,as} (4.3)

& = {bi,by,pby+ (L1 - p)ag,..., b}

where p is a uniform random number in the range 0-1. This extension made it easier
for the GA to find solutions which contained at least one transition sample with a very
high or low value. This becomes more of a problem as the number of transition samples

increases and the samples have to form a smooth transition from pass- to stopband.

4.4 Simplex method hybrid hill-climber

Early runs showed that the GA was only able to approach the optimum filter specifi-
cation for filters with a few transition samples, and that for filters with four transition
samples or more, the best solution found by the GA became progressively poorer. To
help combat this, a hybrid hill-climbing search was added to the GA to perform the
final optimisation.

The local search technique which was adopted for the FS filter design GA was the
Simplex method hill-climber [33], described in Appendix A.2. This method was chosen

59

because it does not require gradient information, but, like the GA, it simply takes point
samples of the space. This means that it can be used to perform numerical optimi-
sations of complex problems which are hard to analyse mathematically. Unlike many
other methods of hill-climbing it does not make use of any form of curve-fitting, such
as parabolic interpolation. To make use of parabolic interpolation, it must be known
beforehand that the space is at least a reasonable approximation to a parabola, which
implies some prior knowledge of the structure of the space, which is not necessarily
available. The Simplex method does not require any pre-knowledge of the structure of
the space, and can therefore be used on any problem without having to perform any
analysis of it to determine its suitability.

The Simplex method of hill-climbing uses a number of point samples equal to one
greater than the dimensionality of the space being searched (i.e. three points in 2-
D space etc.) These are initially set up at random around the best point found so
far by the GA, which is itself included in the set. These points now bound a solid
shape, which is analysed to determine the worst point and best face. A number of
attempts are then made to find an improved point in the space by performing a series
of geometric transformations on the worst point in the shape until it is improved or
cannot be improved. This process is repeated until either a fixed number of function
evaluations have taken place, or the relative difference in performance between the best
and worst, points drops below a predefined level.

In practice it was found that once the Simplex local search had been used once,
it made such an improvement that the best solution then lay in a very small, highly-
fit region, and crossover and mutation almost always moved the offspring to poorer
solutions. This often resulted in the GA being unable to perform satisfactorily once
the local search had been called on once, and the local search was then generally relied

on to perform the final optimisation.

56

4.5 Extensions to the crossover selection scheme

The five floating-point crossover types described in Chapter 3 fall into two categories:
those that simply exchange or swap genes between parents to produce the offspring,
and the three forms of Arithmetic crossover, which actually combine the parent chro-
mosome’s gene values in some way to produce offspring. The latter forms introduce
new gene values, while the former ones do not. In order to allow the GA to determine
which of the various types of crossover were of most use at each stage of the run, a
scheme was devised to dynamically adjust their selection probability according to their
performance as the run progressed. This replaced the original selection mechanism,
where the crossover type used was chosen using a uniform random scheme.

Under the new scheme, the initial selection probability of each type was set equal.
The total number of times each type of crossover was performed was then stored, along
with the number of times each produced at least one offspring with a higher fitness
than its parents’. The probability of each crossover type being selected was then given

by:
dz
E|5=1 dl

where p, is the probability of choosing crossover type z, d, is the proportion of calls to

Pz = (4'4)

crossover method z that produced a fitness improvement over the parent chromosomes,
and the summation is over the five types of crossover. The sum of all five p, probabilities
equals one, and this allows the best crossover method to be selected dynamically during
the run by a roulette wheel selection. A scale is drawn up between zero and one, where
the gap between the divisions is proportional to each p,, as illustrated in Figure 4.2. A
random number is selected between zero and one, and depending on which division it
lands in, that crossover method is used. Here a random number of 0.4 selects crossover
method three. This method is similar to that of Davis [75], but does not include the
explicit hierarchical probability allocation for the crossover methods which produced
the parent chromosomes, and to those which produced their parents, and so on. The

approach used here was much simpler to implement but was found to react satisfactorily

Figure 4.2: Method used to dynamically select the crossover method to use.

to the changing crossover performances in this application.

When the number of transition samples (N,) is small (< ~ 5), the Arithmetic
crossover types, which actually alter gene values, perform best early in the run. Later
in the run the other types (which simply exchange genes unchanged) and pure dynamic
mutation became dominant. This occurred because the GA is initialised with just a
subset of the total number of possible gene values. In order for the GA to perform
useful optimisations, it must use these relatively few values to generate a wide range
of others in between to allow it to search the space effectively, so the crossovers which
perform best initially will be those which introduce new genes into the population.
Once the population has converged to the region of the optimum, it mainly contains
genes which lie in the region of the optimum, so the crossover methods which only seek
to combine the existing gene values will increase in usefulness. After the population
has converged, crossovers which alter gene values, particularly those between dissimilar
parents, will often move the resulting chromosomes away from the region of the opti-
mum, so their offspring will have a poorer performance than their parents, and their

selection probability will decrease.

58

Since mutation occurs at a much lower rate than crossover, if crossover and muta-
tion both occurred on a single chromosome and the offspring improved on their parents’
fitnesses, then the credit for the improvement was given to the crossover. The muta-
tion selection probability increased once the population had converged because of the
disruptive nature of the Arithmetic crossovers. Once the selection probability favoured
the non-Arithmetic forms of crossover, mutation became the main gene-altering action,
which was then able to apply small changes to the genes and so gradually improve their
fitnesses. The dynamic form of mutation, which reduced its disruptiveness as the run
progresses was used here, as it enabled very small changes to be applied after the
population had converged, which were then not very disruptive.

When N, is larger (> ~5), the GA found that all of the crossover types initially
have a similar performance, but the same crossovers and mutation take over later on as
became dominant for lower N;. The gene values in the initial population are available
to more than one gene position due to the gene reordering which can occur. This
effect increases as N, rises and the transition sample values get closer together. Since
the population therefore effectively contains more gene values than for smaller Vy, the
simple action of swapping them will be more productive than before, and allows the
better initial performance of the non-Arithmetic gene-swapping forms of crossover.

These results have a parallel with the predicted action of the GA, where at the
initial stages of a run, the search should cover a wide range of gene values, while at the
end, once the search has converged to a good region of the search space, the emphasis
shifts to trying to bring good building blocks together to form a near-optimum solution.

The inclusion of this selection process allowed the Genetic Algorithm to make more
regular improvements in fitness, although it was still unable to find very good solutions
for filters with more than three or four transition samples as the optimum region was
so small that it was hard to hit it when performing crossover and mutation. As the
optimum was already being found, the best solution found overall did not improve

under this scheme, but more work was done by the GA for some filters.

59

Band edge | Transition | Attenuation | Passband

Filter type N | sample no. | samples (dB) ripple (dB)
Type-1, highpass | 49 18 4 128.026 0.175
Type-II, lowpass | 48 8 4 124.041 0.099
Type-1, bandpass | 128 20,15 3 85.526 0.105
Type-1I, bandstep | 65 10,8 4 109.568 0.051

Table 4.1: Results for recursive-form FS FIR filters designed by GA. N is the number
of filter coeflicients.

4.6 Results for FS filters

Some example filters designed by the hybrid GA-Simplex method are given below, in
Figures 4.3-4.6. Information about these filters is summarised in Table 4.1. The GA
was able to find filters with a performance which at least equalled those tabulated by
Rabiner et al [5]. The crossover probability was 0.7 and the mutation probability was
0.01, the population size was 30, and the GA was run for 1,000 generations. This
relatively high mutation rate did not cause excessive damage to the solutions found
as the effects of the dynamic mutation method decreased rapidly as the number of
generations increases.

Further results are given in Tables 4.2-4.6, comparing results from the hybrid GA
with those of Rabiner et al [5] for a range of lowpass filters. As before, all runs
were for 1,000 generations, with mutation and crossover probabilities of 0.01 and 0.7
respectively, and a population size of 50.

The improvement of the maximum and average fitnesses with generation can be seen
in Figure 4.7 for a typical run to design a Type-II highpass filter with N = 89, a narrow
stopband of three samples, and five transition samples. The run of 1000 generations
was completed in around four minutes, although a near-optimal solution was found
after about generation 400. The regularly-spaced peaks in the latter three-quarters of
the graph appear when the local search routine was called after the Genetic Algorithm

had failed to improve the best fitness for 20 generations. The Genetic Algorithm is

60

Source | Attenuation TS 1 TS 2 TS 3 TS 4
Rabiner 127.367 0.718831686 | 0.25469056 | 0.03717696 | 0.00131836
GA 146.099 0.703932 0.233668 0.030297 0.000877

Source | Attenuation TS 1 TS 2
Rabiner 67.131 0.59911696 | 0.0937500
GA 67.204 0.599416 0.109632

Table 4.2: Comparison of results for a Type-I, N = 16 filter, with a passband width of
1 sample and 4 transition samples.

Table 4.3: Comparison of results for a Type-I, N = 33 filter, with a passband width of
3 samples and 2 transition samples.

Source | Attenuation TS 1 TS 2 T8 3
Rabiner 88.256 0.72436684 | 0.25203440 | 0.02576904
GA 89.591 0.723101 0.249866 0.025017

Table 4.4: Comparison of results for a Type-I, N = 65 filter, with a passband width of
8 samples and 3 transition samples.

Source | Attenuation TS 1 TS 2 TS 3
Rabiner 94.764 0.67475127 | 0.19093541 | 0.01556396
GA 94.904 0.664858 0.177726 0.012207

Table 4.5: Comparison of results for a Type-I, N = 125 filter, with a passband width
of 1 sample and 3 transition samples.

Source | Attenuation TS 1 TS 2 TS 3 TS 4
Rabiner 108.297 0.82096794 | 0.40820066 | .09324160 | 0.0606079
GA 111.829 0.81153 0.392362 0.085818 | 0.005236

61

Table 4.6: Comparison of results for a Type-I, N = 128 filter, with a passband width
of 16 samples and 4 transition samples.

able to find the area of the optimum fairly quickly, but has difficulty finding very high
fitness solutions within the very small area of the peak, as crossover is likely to throw
the offspring into comparatively very poor regions. The Genetic Algorithm is therefore
used alone for the first quarter of the run, after which the hill-climber is able to make
substantial improvements.

It has been found that this technique is generally very robust for filters with up
to six transition samples, taking an increasing length of time as the number of transi-
tion samples rises. For filters with up to around four transition samples, the Genetic
Algorithm is able to find good solutions very quickly, without the intervention of the
local search. For five or six transition samples, the Genetic Algorithm performed a
useful amount of improvement, although not to a good performance, while the local
search was able to complete the optimisation. For more transition samples (up to ten
were used), the hybrid Genetic Algorithm was only able to perform a small amount of
optimisation, from which the local search was also unable to find the optimum within
a reasonable time. Improvements in the speed of personal computers may, however,
make the technique more viable.

The hybrid Genetic Algorithm has been able to produce results which range from
equalling the performance of those in the literature, to improving on them by up to
around 20dB minimum stopband attenuation, as tabulated on page 61. However, its
main strength lies in the fact that it can quickly produce untabulated filter coefficients,
which are much more useful and will have a better performance than those found
by interpolation of the published results. It is also able to design filters with more
transition samples, showing that the hybrid Genetic Algorithm is a suitable technique
to use for designing this type of Finite Impulse Response filter, although the GA alone
is of little value, and a straightforward hill-climber could be used alone with equally

good results.

4.6.1 The FIR Filter search space

In order to understand the problem more fully, and to enable a better understanding
of the GA’s performance, data was collected from the search space that the GA was
searching. Since we are using a real-coded chromosome, the search space and parameter
space are actually the same for this problem. As has been shown, the actual proportion
of the total space that the GA is restricted to shrinks quickly as the number of transition
samples riges, although it was discovered that the search space becomes more difficuli,
as the high-fitness region becomes proportionally smaller.

For a single transition sample, it can be seen (Figure 4.8) that the general shape
of the search space with the chosen fitness function is a concave peak, a characteristic
shape which was to recur in the structure of the higher-dimensional surfaces. In the
case of a two transition sample filter, the surface is given in Figure 4.9. The peak can
be seen to lie on a straight concave ridge, whose cross-section is also concave. The true
optimum point on the ridge can be seen to lie close to the edge of the search space, a
property which initially caused the floating-point GA some problems, as the original
crossover techniques tended to move offspring towards the centre of the space, and not
towards the edges, as shown previously in Figure 3.2.

When the three-dimensional case is examined, it can be seen that there is a high-
fitness plane running through the permissible area, with a concave cross-section; within
this 2-D high fitness plane is a high fitness line, along which lies the optimum solution;
again, both have the same shape cross-section. The unimodal nature of this space
indicates that a pure hill-climber should be able to find the optimum. The hill-climber
used by Rabiner, Gold and McGonagal optimised each parameter in turn, holding the
others fixed, but the angle between the high-fitness ridge and the axes means that
many small steps parallel to each axis in turn will be required to reach the optimum.
Other similar techniques which rotate the axes to align them with the best direction to
climb in require the calculation of gradients which may be difficult or time consuming

for complex models. Curve fitting methods such as parabolic interpolation fail for this

66

45’-

Asttenuation (dB)

Transition sample value

Figure 4.8: Search space for a one transition sample FIR filter.

a8 -

0.6 =
T,
*“

02 ~

Figure 4.9: Search space for a two transition sample FIR filter.

67

0.6~1

T2

04-

0.2+

N T
[0.2 0.4 0.6 08

T,

Figure 4.10: Search space for a two transition sample FIR filter with additional con-
straints.

problem since the space becomes an increasingly poor approximation to a parabola as
the optimum is approached. The Simplex Method makes no such assumptions and can
move in any direction, so was able to work successfully in this type of space.

In order to constrain the GA still further, filters in which the interpolated response
did not change monotonically between the pass- and stopbands were also rejected. This
reduced the allowable region still further (Figure 4.10), but this did not help the GA at
all, as the optimum is now on the very edge of the allowable region. The action of the
standard form of floating-point crossover was to move points together, which makes
it difficult to find such points. The extended form of crossover used here was able to
move the offspring to regions outside those bounded by the parents, so it should have
been more able to find points on the edge of the allowable region. This is however
still not able to perform well, as the optimum lies so close to the edge of the allowable
region that it is hard for crossover to hit it and not go too far and into the disallowed
region. Figure 4.11 compares the increase in fitness with generation for typical runs of
constrained and unconstrained optimisations of an 68-coefficient, six transition sample

lowpass filter, showing that the constrained optimisation has a lower performance.

68

~—— Unconstrained

1 11 2 81 Ll 6t 61 T 81 1]
QGeneration number

Figure 4.11: Improvement of the maximum constrained and unconstrained attenuations
with generation, for a non-recursive Type-I lowpass filter.

4.6.2 Concurrent Optimisation of the Wordlength

In order to integrate a further filter design step, the fitness function for optimising
recursive filters was extended to incorporate the finite wordlength effects of coeffi-
cient quantisation by including an extra gene in the chromosome which determines the
wordlength at which the genes will be decoded. This allows the Genetic Algorithm
to search for the minimum wordlength necessary to achieve a given filter specification
simultaneously with its coefficients. Mixed-integer programming has proved successful
at optimising quantised coefficients [76], although separate runs are required for each
wordlength under investigation. Stubberud and Leondes [77] have devised a Lagrange
multiplier-based method for designing Frequency Sampling filters which also accounts
for finite wordlength effects, but only appraximates linear phase. Our approach allows
the Genetic Algorithm to search for the minimum wordlength and optimum coefficients
for linear-phase filters simultaneously, with no user intervention.

Since we are using a real-coded chromosome with genes in the range 0-1, the
wordlength gene must be decoded to give an integer wordlength, which is performed

by scaling it up to 0-24 and taking the nearest integer. The real-coded genes are then

69

quantised to this wordlength before being used to calculate the filter response and
then fitness. This simplifies the search by limiting the number of points the Genetic
Algorithm has to examine. It has the disadvantage that the Simplex hill-climber is less
effective, because the search space is now made up of a large number of flat regions.
This is due to the quantisation of the coefficients causing finite ranges of the floating-
point gene values to be interpreted by the fitness function as having the same value,
so all coefficient values in this range will have the same effect on the filter response.
At the beginning of a search, the hill-climber is able to perform well because from a
large scale perspective the surface is smooth, however once the search contracts around
a good region, the small plateaux become increasingly apparent, and eventually the
search cannot gain any information about the direction of the optimum and so is un-
able to reach it. The Genetic Algorithm is still able to perform successfully in such
a space (which resembles the de Jong Genetic Algorithm test function f3 [48]), as it
only relies on point fitness samples and is unaffected by discontinuities or perfectly
flat areas. This implies that more reliance will be placed on the Genetic Algorithm to
perform a good optimisation since the Simplex will be less effective here.

When calculating the filter response, in order to maintain filter stability, the radius

was reduced to one less the quantisation interval:

where B is the wordlength. The fitness now has to take account of both the magnitude
response and the wordlength, with the emphasis on the former since this constraint
should be satisfied regardless of the wordlength. To this end, the following scheme was
devised.

Firstly, the normalised magnitude response is examined in both pass- and stopbands
to see if it fits within the desired limits. If it does to within 1075, which corresponds
to a deviation of only around 0.3dB from a desired attenuation of 70dB, then the basic
fitness is set to 105, otherwise it is set to the reciprocal of the normalised deviation.

This gives a main fitness range of 0-10°, for the magnitude response, and is flat (at

70

10°) for all filters fitting within the desired specification. By having all satisfactory
solutions return the same fitness it means that the Genetic Algorithm is free to return
a solution which only just fits the design specification, leaving it more freedom to
reduce the wordlength. To account for the wordlength, a further term is added to
this, consisting of 25 minus the wordlength. This overall fitness function therefore has
extra structure, especially within the optimum peak region, which allows the Genetic
Algorithm to search for the minimum wordlength. The overall fitness function can be

written:
(25— B)+ 1/emaz €maz > 1078

flz) = (4.6)
(26 — B) +1/107° epqp < 1070
where B is the wordlength, and e,,, is the maximum absolute error between the
normalised filter response and the desired response in the pass- and stopbands.

This approach places the major emphasis on the optimisation of the magnitude
response, and once this has been achieved, the effect of the wordlength dominates
(within the optimum fitness ‘plateau’). Other weightings have been tried but these were
found to allow the Genetic Algorithm to perform efficiently, without the intervention
of the Simplex local search.

Results for a typical test run are given below in Table 4.7, for a 49-th order, four
transition sample lowpass filter, with a bandwidth of 0.25. The Genetic Algorithm was
able to fit to the desired specifications with coefficients quantised to a wordlength of
only six bits. The full-precision fitress function (in which the Genetic Algorithm only
seeks to minimise the stopband ripple) was able to find a solution with much greater
stopband attenuation as the last transition sample was able to have a much smaller
non-zero value, as shown in Table 4.8. The full-precision fitness function used the same
radius as the 6-bit solution, and the frequency responses of the quantised filter is shown
in Figure 4.12. Advances in the speed of personal computers means that an exhaustive
search is now feasible even for a 4-transition sample, 16-bit filter, with a total search

space size of 4 - 2'6 = 262, 144 filters.

71

Desired | Quantised | Full-precision
Passband ripple (dB) 0.1 0.058 0.129
Stopband attenuation (dB) 77 82.96 117.26
Wordlength - 6 -
Radius - 0.984375 0.984375

Table 4.7: Desired and optimised specification for a quantised-coefficient and full-
precision filter. The full-precision design uses a maximum-attenuation fitness function.

Quantised | Full-precision
0.875 0.785269
0.515625 0.348808
0.15625 0.065764
0.015625 0.003069

Table 4.8: Transition samples for the filters described in the text and Table 4.7.

—

Attenuation (dB)
(S
1 T i

T

-100+1—

|

-150 '

Figure 4.12: Frequency response of a quantised coefficient FS filter designed by GA.

02

04

Normalised frequency

72

4.7 Conclusions

It has been shown that the GA was able to discover reasonable solutions on its own for
filters with a low number of full-precision transition samples, but that for filters outside
this limited specification its performance was poor. The underlying problem is that the
GA requires a chromosome from which you can take a portion and use that to make
a prediction about the fitness of the whole chromosome. In this case, when there are
only a few transition samples, it easier to do this as the whole chromosome is small, but
when the number of transition samples rises, it becomes increasingly difficult, because
the filter response depends on the whaole set of transition samples together, and it is not
possible to predict the filter response from just one or two adjacent transition sample
values.

The addition of a hybrid hill-climber produces excellent results because it is highly
suited to this kind of optimisation problem. Since there is only a single peak, the search
space is unimodal and running a hill-climber from any point in the search space will
always find the optimum. This finding, together with the massive speed increases in
personal computers means that it is no longer necessary to rely on the published tables
of Rabiner, Gold and McGonagall [5] to find F'S filter coefficients, as the coefficients
of any Frequency Sampling filter with up to perhaps seven or eight coefficients can be
found in a few minutes. However, for the vast majority of applications, four or five
transition samples is adequate, so this restriction is not a problem, and the GA /Simplex
method is an ideal technique.

The results found by the GA alone for quantised-coefficient recursive filters were
reasonable due to the smaller search space, while the Simplex search was less efficient
due to the quantised nature of the search space. However, as the calculations used
to find the filter responses were full-precision, the coeflicients cannot be assumed to
be optimal for a system where the calculations are quantised throughout, and a fuller
analysis would have to be added to the fitness function before the results were fully

representative of the optimisation of a fixed-precision filter. They do however show

73

that-the GA appearsito be suitable for optimising the coefficients of this kind :of filter.

74

Chapter 5

IIR Coefficient Optimisation by GA
and SA

5.1 Introduction

Having shown that the GA is able to optimise a limited range of quantised-coefficient
FIR filters, the next step taken was to select a further optimisation task, in order to
extend and expand the investigation into the capabilities of the GA with respect to
the design of digital filters.

It was decided to examine an IIR filter, as these have a more complex search space
and would provide a harder test of the GA’s abilities to perform suitable optimisations.
The IIR not only provides the opportunity to optimise the coeflicients of a different
type of filter, but also the finite wordlength effects, which have a far greater effect on
IIR filters than FIR.

The filter structure first selected for optimisation was cascaded second-order canonic
(or ‘direct form 2') sections, as in Figure 2.6. First-order sections could be obtained by
setting a; = 0 and by = 0, but these were not included explicitly as a separate section

type for simplicity.

75

5.2 Use of the GA

The original floating-point GA, that had been used to optimise the coefficients of the
FS FIR filters, was used to optimise the coefficients of IIR filters made up of cascaded
second-order canonic sections as shown in Figure 2.6. By choosing this IIR filter
structure, with complex pole-zero pairs, the original floating point GA only needed to
optimise four numbers per section, namely the radius and positive angle of one pole
and one zero, as the complex conjugate pole and zero could be easily obtained from
these. The chromosome used genes in the range 0-1, which were scaled to the required
ranges, namely 0.5-1 for the radii, and 0—= for the angles.

The results from this approach were unsuccessful, due to the nature of the search
space. This only contains useful information which can guide the GA around the
optimum regions themselves, so a random initialisation and initial selection would
produce a population with no coherent good genes. It was also found that the high
fitness region around the optima only covers a small proportion of the total space, as the
fitness of a solution drops rapidly as a good solution is perturbed. This proportion also
decreases as the number of sections increases. This means that the initial population
of random points contains little coherent information about the good regions that the
GA should be exploring, so it cannot perform adequate optimisation. The inclusion of
the Simplex method hill-climber was successful in improving the best solution found if
the GA was very close to the optimum, but cannot be used on its own as the search
space has multiple peaks. The inclusion of on-the-fly quantisation of the coefficients
was unsuccessful in improving the GAs performance, and reduced the quality of the
best solution found as the Simplex search cannot be used with quantised values.

Since the GA was either very slow or unable to reach the region of the optimum, and
very fast methods of designing ITR filters, such as the BZT, are readily available [11], it
was decided to use a BZT design as a seed for the GA. Initially a single quantised BZT
design was used, but it was found that this solution immediately overran the population

as its fitness was far higher than any of the random solutions in the first population,

76

and the GA did not progress. The initialisation was therefore changed to seed the GA
with BZT solutions which had been perturbed by a random amount of up to 5%. This
led to a much better performance by the GA, even though the final coefficients were
often quite different to those it was seeded with. Arslan and Horrocks' [78] similar
approach to IIR optimisation also found that it was necessary to initialise the GA
with perturbed copies of quantised, full-precision coefficients. A GA-based method for
finding the best way of quantising full-precision lattice and direct form coefficients has
been developed by Aketa et al [79]. Although this does not extend the search to the
total coefficient optimisation investigated here, it does have the advantage of being
able to weight the performance deterioration to minimise its effects across a specified
region.

It was decided that a better approach might be the direct optimisation of quantised
coefficients, as the GA theory Chapter 3 predicted that a binary-coded GA should be
most efficient. To this end, a binary-coded GA was written with the same aims as the
first, real-coded one. The program was written to explicity accept even-order filters
only, although first order sections could be generated by setting a; ard b, to zero.

This binary GA was used to optimise the four variable coefficients (two a and two
b, as ag is always one when complex conjugate pole and zero pairs are assumed) of each
section by using a chromosome of length 4BN/2 where B is the wordlength (number of
bits) of each coefficient, and N is the order of the filter. The fitness function extracts
them from this chromosome in order to calculate the filter’s response and so the fitness.
In order to add flexibility to the design process while retaining the ease-of-use approach
we are aiming for, the order of the filter could be specified in two ways: either the user
can specify the number of second-order sections to use, or the GA can use the order
suggested by the BZT, rounded up to an even number as we currently only use second-
order sections. Using the order suggested by the BZT will in general enable the GA to
find a solution fitting the design specification, although if the tolerance is very tight,
the coefficient quantisation may push the filter into instability. This means that the

GA will be unable to find a suitable solution, so the user will have to increase either

7w

the order or wordlength until a solution can be found.

The chosen fitness function was:

1
Fitness = — + -A%I (5-1)
fmna; aar

where ¢,,,,. is the maximum error in the frequency response across the stop- and pass-
bands, M is a scaling factor, and o2, is the roundoff noise gain of the filter. Both the
error and noise terms are limited to a value of 1076, although the noise is never this
low in practice. The limiting of the frequency response error means that once a filter
has been found with a suitable response, the fitness function is simply dependent on
the noise factor. It was hoped that this would make it easier for the GA to find a
low-noise filter, but this was not found to be the case, as described below. Filters with

any section whose b coefficients lay outside the stability triangle of:

0 < | <l

] < 145y

were immediately discarded with low fitness.

5.3 Results

It was found that the GA only performs well and finds filters within a given specification
for very loose tolerance filters, i.e. filiers with wide transition widths or low desired
attenuation. This poor performance is discussed further in Section 5.3.1, which looks
at the nature of the space that the GA is searching. The connection between the a and
b coefficients and the filter response is not straightforward, and there is a high degree
of nonlinearity. As the specification becomes tighter, the performance drops off as the
search space gets harder.

A second approach to the optimisation problem was used to test that the filters
were achievable, namely Simulated Annealing (SA) [64]. SA is a hill-climbing technique

which also allows occasional moves to a poorer solution, thereby permitting the search

78

Genetic Algorithm ——
Simulated Annealing — —
Unperturbed BZT =~ -------

Attenuation (dB)

-100 |

-120

Normalised frequency

Figure 5.1: Comparison between the frequency response for fixed wordlength filters
designed by SA, GA, and BZT.
to escape from local minima. The degree by which the fitness can worsen decreases
over time, which allows SA to look widely over the space initially, but confines it more
closely to the peak or peaks it finds as time progresses. The implementation of SA that
was used is derived from the Simplex Method [33], and used quantised coefficients.
Figure 5.1 shows the filter responses for a fixed wordlength filter designed by SA,
GA, and the filter obtained by quantising the coefficients as found by the BZT. The
GA was run with a population size of 40, mutation and crossover probabilities of 0.005
and 0.6 respectively, for 3,000 generations. It can be seen that the BZT solution had
the highest attenuation, followed by the GA and then the SA, while the GA’s passband
ripple of 0.27dB was larger than the BZT solution of 0.103dB. In fact, the SA solution
was only just within the requested tolerances of 50dB attenuation and 0.1dB passband
ripple, which gave it more freedom to reduce the roundoff noise gain, which was an
order of magnitude lower than for the other two methods.

Although the results are all similar, the better performance of the SA suggests that

79

there might be some problems with this GA approach: firstly, the fitness function may
not be suitable, or secondly, the GA may not be as suitable for this problem as SA.
In order to determine which is the case, a future investigation could alter the fitness
function to penalise filters whose responses lie far from the desired frequency response
in either direction, as this can reduce the performance of the filter in other respects.
To remove the dependency on the combined magnitude response/roundoff noise gain
fitness function, the use of an extended GA to produce a range of solutions with varying
tradeoffs between the two criteria will also be investigated (see Chapter 6).

The poorer performance of the GA is also influenced by the hard search space used
by the fitness function, which is derived from the minimax error from the desired filter
response. It has been found that the mean square error between the filter response and
the desired response is generally used as a measure of performance [21, 80], which is
an easier problem as there are more possible filters which give the same mean square

error, so finding one with the optimum value is more straightforward.

5.3.1 The IIR Filter Parameter Space

In order to determine why the GA performed pooily far from the optimum, the param-
eter space was examined to determine its characteristics away from the optimum. The
search space for a cascade structure IIR filter is known to be generally multi-modal (32],
and Chellapilla et al’s investigation [24] showed that higher-order cascaded filters have
more local minima, which will hamper the search.

The search space was examined at two points: the BZT solution with parameters
moved at random by up to 5%, and purely random genes. Since the IIR chromosomes
have many more genes than the Frequency Sampling FIR, it was decided to examine
only slices through the search space, by fixing all but two genes and producing a fitness
surface by varying the other two.

For the filter with 5% perturbed BZT coefficients (Figure 5.2), the surface has two

clear peaks, one narrow, the other wide and flat. The best, narrow peak has a much

80

lower fitness than for the quantised BZT solution.

When the gene values are completely random (Figure 5.3), the peak fitness drops
dramatically, and the surface becomes highly multi-modal, but with little variation in
peak size. This means that far from the optimum, the GA has no useful information
to go on, so it will be unable to function properly. A more serious problem is that
the highest peak for one pair of genes moves as other gene values are altered, e.g. by
crossover, so as the GA moves one gene towards its own optimum, the optimum value
for others can move. This makes it harder for the GA to operate, as its targets are
continuously changing as it runs, and it cannot build up a good set of genes as what
defines a ‘good’ gene is also continuously changing.

For the pole position genes the effects are less severe, although the peak fitness
reduces and extra peaks appear as the coefficients move away from their BZT-calculated
values.

It is clear from these surface plots why the GA needs seeding with a good solution,
such as that from the BZT, in order to reach a region of the search space with enough
large-scale structure to allow it to search effectively. In future work it might be more
effective to use the GA to optimise the filter structure, and use the BZT to generate the
corresponding filter coefficients, from which the frequency, phase, and noise responses

can be determined and used to calculate the fitness.

5.4 Discussion and Conclusions

As mentioned above, the randomly-initialised GA was not able to find suitable solutions
due to the nature of the search space. In a similar fashion to the FS FIR filters, for the
GA to be successful the chromosome representing the filter coefficients must be able
to be broken down into smaller parts which can be used individually to predict the
filter response. The chromosome used here, although it uses the pole-zero radii and
angles, which have a more direct correspondence to the response of their second-order

section than its a and b coeflicients, still does not fulfil that criterion. This is due to

81

the nature of the digital filter itself, which is dependent on its entire set of coeflicients,
taken together; it is not possible to predict a filter’s overall response from a small subset
of its coefficients or pole-zero positions, so neither can its fitness be so predicted. This
leads to the GA being unable to determine if any part of a particular chromosome is
better than the corresponding section of any other chromosome, so it cannot determine
which of the randomly-selected initial population has suitable genes to carry on to the
next generation, and the results are poor.

When the initial population is seeded with a BZT solution, the GA has a few good
chromosomes, and hence genes, to work with, and it is able to make some progress,
but again, as it relies on being able to predict a filter’s fitness from a section of its
chromosome, it is not able to work very efficiently. Although the GA was run until
no improvements had been found for several hundred generations, time limitations on
the maximum number of generations could have limited the GA's effectiveness, which
future increases in computing power could overcome.

SA does not need to be able to perform the same performance prediction and simply
looks at the performance of the chromosome as a whole. It is therefore able to perform
more effectively in this situation than the GA, and, as was shown in Figure 5.1, is able
to find a suitable solution which trades off the frequency and noise responses in the
best way—the frequency response only just fits within the desired response, leaving
more freedom for the noise to be reduced. As the performance with respect to each
criterion has to be traded off against the others, this is the best possible result.

The GA- and SA-based approaches have the advantage of flexibility over a BZT
approach, which requires that an analogue filter be found with the desired response,
which may not be possible. Using the GA or SA, only a near approximation needs to
be found by BZT, which can then be further optimised towards any desired response.

The initial results presented here suggest that, although the GA produced encour-
aging results, SA is probably the better technique. Further investigations into the use
of SA techniques would be useful in determining its suitability over a wider range of

IIR filter designs.

83

Chapter 6

Multi-criterion Optimisation

6.1 Introduction

The GA and SA techniques which have been used up to now have been strictly single-
criterion optimisers. Although both the magnitude and noise responses were optimised
by a GA in the previous chapter, this was achieved by simply adding the two measures
together. The GA is, however, able to be extended in a way which could make it
especially useful for filter design, by allowing it to optimise a solution with respect to
several criteria simultaneously. As was seen previously, the filter design process involves
several interacting steps, each of which can affect the filter’s performance with respect
to any of the others. It is possible to write the GA in such a way that it examines
more than one performance measure at once, and attempts to generate either one
compromise solution or a set of solutions with varying trade-offs, from which the user

can select one.

6.2 Techniques

A variety of methods of performing multi-criterion optimisation (MCO) will now be

examined, and their applicability to filier design analysed.

84

6.2.1 Weighted sum of fitnesses

This is the simplest form of MCO, and does not require any changes to be made to
the standard single-criterion form of the GA, as it takes place wholly within the fitness
function. Instead of the usual single performance measure, a number of them are taken
in order to determine the chromosome’s performance with respect to each criterion. In
order to use these values in a single-criterion GA, they are then combined into a single
weighted sum:

Fitness =w1.fi + wa.fa+ ... + wny.fn

where w; is the weighting and f; is the fitness with respect to criterion i. This sin-
gle value is then passed back to the GA, and used in the normal way to decide the
individual’s fate.

This method has the great advantage of simplicity, but it is not guaranteed to
produce the desired solution without a great deal of user intervention. It is necessary
to perform an iterative optimisation of the weightings, by running the GA, examining
the solutions found, and then adjusting the weightings repeatedly until a suitable set
of weightings is found.

This method is feasible for a single-purpose GA, which is only optimising two cri-
teria, but for more complex applications the rapidly increasing difficulty of finding the
correct weightings makes it increasingly unsuitable. This is especially true for a prob-
lem where the range of fitness measures is not known or is unbounded. While it may
be possible to apply some additional meta-optimisation technique to the weightings
to find the best set, this would add a large amount of complexity to the optimisa-
tion. It also has the disadvantage of only returning a single ‘best’ solution, with a
single performance trade-off, when a variety of solutions with differing trade-offs exist.
The following techniques are designed to search for this set of solutions, known as the

Pareto-optimal or Non-dominated sets (POS, NDS).

85

6.2.2 The Pareto-optimal set

The weighted-sum approach described above finds a desired solution by the repeated
adjustment of the weights applied to each criterion, and so only returns a single solu-
tion. Since, however, there are a range of solutions with different trade-offs, a better
approach might be to find the best set of solutions, and allow the user to pick the
most appropriate for their application. This not only removes the need for most of the
user intervention, but also automates the trade-off process, turning a complex iterative
process into a simple single-step one.

When using a model in which several performance measures are being optimised,
it will often be the case that these will not be independent, so a change to the chro-
mosome which alters the performance with respect to one measure will also alter the
performance with respect to another. An example of this might be a filter in which
the order and stopband ripple are both being minimised. A low order filter is not able
to achieve such a low ripple as a longer one, so there is a conflict and it is not possible
to satisfy both conditions simultaneously. Within the search space, for many, if not
most of the solutions, both performance measures can be improved simultaneously, but
there is a subset for which improving one always worsens the other. This set of ‘best’
solutions is known as the Pareto-optimal set (POS) [81].

The definition of the Pareto-optimal set is based on that of domination. A solution
is said to dominate another if it has a better fitness in at least one measure, and at
least the same fitness with respect to all the other measures. All solutions outside the
POS are dominated by at least one solution within it, while no member of the POS is
dominated by any other solution at all.

The concept of domination allows the mathematical specification of the POS, where
a vector of fitnesses is dominated by another if the second is partially less than the

first. A vector x of 7 fitnesses is partially less than vector y if:

(x <p y) & (Vil{z: < w) A (i) (z:i < w) (6.1)
i.e. for all ¢, z; < y;, and for at least one 4, z; < y;. While the POS is the optimum

86

Second fitness

First fitness

Figure 6.1: Example illustrating pareto-optimal and non-dominated sets.

set of solutions, the GA, by its random nature, is not guaranteed to find it. Within
the GA's population, the undominated solutions form the non-dominated set for that
generation.

An illustrative example is shown in Figure 6.1, for a two-criterion fitness function.
The continuous line shows the position of the POS, and limits how far down and left
the positions of the solutions found by the GA can go. The line is shown concave, but
could be any shape, e.g. linear, convex, or stepped. The crosses on the diagram show
the positions of solutions within the NDS found by the GA. Fitness functions for the
various criteria must return smaller values for better solutions, and selection techniques
developed which favour those solutions which lie closer to zero for each criterion.

Nicolson and Cheetham [82] have proposed a way of finding the POS by using
known, good solutions as a seed for a conventional optimisation technique, ‘inching’
along the POS by changing the weighting of the different performance measures. This
approach is very limited and suffers because adjacent solutions on the POS can have
very different parameter values, making it very difficult for conventional searches to

move between them. GA-based approaches are much more flexible, and can optimise

87

such ‘niches’ of dissimilar solutions on the POS.

6.2.3 Vector-Evaluated GA

The Vector-Evaluated GA (VEGA) developed by Shaffer [83], is a simple technique for
searching for the POS. It is perhaps not a true multi-dimensional technique as only
one criterion is examined at once, but the resulting solutions can be combined to give
multi-dimensional results.

In VEGA, the population is split into as many sub-populations as there are fitness
measures, and each sub-population’s fitness is calculated with respect to a single fitness
measure. The population is then recombined before selection and reproduction occur,
causing those members of the population which have a high fitness with respect to their
single fitness measure to be favoured. Under crossover, members which are highly-fit
are combined, potentially producing solutions which have an intermediate performance
with respect to a number of criteria, i.e. a trade-off has been performed. Throughout
the run, the population is examined and the non-dominated solutions are stored, but
these are not used to drive the search.

Although VEGA is simple to implement, it is limited in the range of solutions it
produces, and the fitness functions have to be designed to return similar performance
measures for what might be disparate aspects of the design. Because the solutions are
selected by only a single fitness measure, it tends to find solutions which are clustered
near to the axes. These therefore perform well with respect to one criterion, but have
little trade-off of performance, unlike those solutions that lie between, which perform
reasonably under all measures. This is illustrated in Figure 6.2, where the members of
the NDS found by the VEGA GA can be seen to lie mainly close to the edges where

they can have a good performance with respect to one criterion.

88

Second fitness

First fitness

Figure 6.2: Example of a non-dominated set found by VEGA, illustrating the bunching
of solutions near the axes.

6.2.4 Goldberg’s fitness allocation method

In order to find solutions with a wide range of trade-offs it is necessary to make use of
the all of the fitness measures simultaneously. A method described by Goldberg [48]
combines this information with the degree of dominance of each member to facilitate
a more wide-ranging search.

All of the members of the population have their fitnesses determined under each
performance measure, giving a ‘fitness vector’ which specifies a position in multi-
dimensional space. These positions are then examined to determine the NDS within the
current population. The members of this set are given a ranking of one, and are then
excluded from consideration for the next step, where the NDS of the remaining mem-
bers of the population is found. These are ranked two, and then excluded themselves.
This repeats until all of the population has been ranked. Fitnesses are now allotted by
rank, the higher ranks receiving a higher fitness, as illustrated in Figure 6.3. Fonseca
and Fleming’s analysis of multi-objective natural algorithms [84] has suggested that

Pareto-based fitness allocation strategies such as this were the most promising.

89

SJCLAMLEE [HUCHE>
/
X
Second fitness

Firs! fitness First fitness

(a) First NDS - highest allocated fitness (b) Second NDS - lower allcated fitness
i g
| g
= =
| B
3 g
] [77]

First fitess First fitness
(c) Third NDS (d) Last NDS - lowest allocated fitness

Figure 6.3: Example ranking calculation applied to non-dominated sets in the popula-
tion.

90

N

Second fitness
N

First fitness

Figure 6.4: Example population distribution between niches.

The fitnesses that the members of the population now have can be used directly in a
selection process, but if the first few highly-fit solutions cause premature convergence,
by being the only members of the best NDS, then the efficiency of the search process
can be compromised. To help combat this, fitness sharing is used, whereby the fitness
of every member of the population is reduced by a crowding factor. This means that
the more members of the population are bunched together, the more their fitnesses will
be reduced. This has the effect of encouraging the GA to search in the less-densely
populated areas, and so the members of the NDS should be spread out more evenly
along the ‘wavefront’ of best solutions and so contain a wider range of solutions. If
the POS is ‘stepped’, as in Figure 6.4, then by encouraging the GA to cover a wider
area it becomes easier for the population to find each of the highly-fit regions, which
it might not otherwise do due to premature convergence to the first regions it finds.
Mahfoud [85] has found that Goldberg’s fitness sharing method works well for a wide
variety of problems, but may have weaknesses when the search space has many local
optima with similar performances to the pareto optima.

The existence of such ‘niches’ can make a further adaptation of the GA useful. The

91

chromosomes which exist within each niche will generally be similar to each other, but
different to the chromosomes in the other niches. This implies that when crossover
occurs between chromosomes from different niches, the offspring will tend to be less
useful than the offspring of parents from the same niche. When the POS is smooth,
this technique is still useful since a chromosome which has a good performance with
respect to one criterion will probably be quite different to a chromosome with a good
performance with respect to another. These effects can be reduced by encouraging
crossover between similar pairs of chromosomes. This can be achieved by selecting the
first string for crossover, then altering the selection probability of the second according
to its relative Hamming distance to the first. This allows the GA to search the niches
more effectively for high-fitness solutions.

The benefits of including fitness sharing and crossover restrictions are extremely
problem-dependent, and are determined by the shape of the POS, and the variation of
the fitness with a change in chromosome with respect to each of the criteria. Similar

strategies have been proposed by Horn et al [87] and Srivinas and Deb [88].

6.3 Applications of MCO optimisation to filter de-
sign

Standard approaches to MCO filter design generally involve a large amount of
constraint-based mathematical analysis. Selesnick’s approach [89] requires the solv-
ing of a set of non-linear equations, and multiple runs are necessary to obtain a range
of solutions with different characteristics. In [27] Lawson designs PCAS filters with
approximately linear phase directly, by solving a set of linear equations.

Natural Algorithms have been applied to a variety of MCO filter optimisation prob-
lems. Roberts et al [40] and Tang et al [90] use a GA to design FIR and IIR filters
respectively, by using a structured chromosome to represent both the filter structure

and coefficients. This allows both the frequency response performance and the fil-

92

ter complexity to be optimised simultaneously. Franzen et al [67] use Evolutionary
Strategies and Simulated Annealing, with a weighted sum of performance measures,
although this has the disadvantage mentioned above, that manual intervention and
repeated runs will be required to obtain a solution with the desired trade-off.

Storn [66] performed a basic form of MCO on IIR filters using Differential Evolution,
by giving each solution the poorer of two fitness measures, namely the degree by
which the solution violated templates for the frequency response and group delay. This
ensured that a filter had to fulfil both criteria to get an optimum fitness. Redmill and
Bull [45] have used an MCO GA to produce the pareto-optimal set for low-complexity
integer-coefficient FIR filters, thereby optimising both the filter performance and its

implementation complexity simultaneously.

6.4 GA difficulty measures and deception

It is often hard to predict whether or not the GA will be a suitable techrique to use
without trying it in practice [91]. Horn and Goldberg’s investigation [92] shows that
the number of suboptimal peaks alone does not give an indication of the difficulty of the
problem. To combat this, a number of measures have been developed which attempt
to give a qualitative, if not quantitative measure of the difficulty of the problem from

the perspective of the GA.

6.4.1 Epistasis

In Chapter 3 the schema theory was described, which attempts to explain the underly-
ing mechanism which drives the GA. One of its main assumptions is that it is possible
to predict the fitness of a chromosome from just a short section of it. For many prob-
lems this is not the case, and the GA is not able to perform well. The degree to which
the fitness of a schema is dependent on the values of the other undefined bits (shown
by a # in the schemata) is called the epistasis. The effect of epistasis is to remove the

linear relationship between the gene values and the overall string's fitness. The degree

93

of epistasis within a string can vary from 0 to 100%.

Davidor [93] has developed a qualitative measure of the epistasis, which is based
on the degree to which the actual fitness of strings vary from the fitnesses predicted
by their genes. A set of random chromosomes, as large as is possible within storage
and/or time constraints, is selected, and their fitnesses found. Each chromosome is
then examined, and the average fitness of the strings with bit zero set is found, then
the average fitness of those with bit zero clear. The corresponding values for each bit
position are also found.

The first of the chromosomes in the set is then examined, and the average fitnesses
are summed which correspond to the bit settings at each position. This value is then
divided by the string length to give a predicted fitness for the string. The other
random strings are also examined in this way, and their predicted fitnesses found. A
comparison is then made between the actual and predicted fitnesses, from which a
measure of epistasis can be made.

This method has a number of drawbacks, in that the measure of epistasis is quali-
tative and problem-dependent. It also suffers from a substantial sampling error which
becomes increasingly large for small sample sizes. The latter is particularly true for
those problems which have a long chromosome, making it impossible to store all the
possibilities or to calculate their fitnesses in a reasonable time. However, it does allow
a qualitative comparison to be made between the epistasis of different representations
of the same problem,

An example of a zero-epistasis problem is that of maximising the numeric value of
the binary string. This problem has no gene interaction, because it is possible to say
that regardless of the setting of any other bit, if a bit is set then the fitness will always
be higher than if it is not. This means that a simple bitwise optimisation can be used to
find the optimum. A fully-epistatic problem, in which there is a 100% interdependence
of gene values, is a delta function where the fitness is zero unless all the bits are set,
when the fitness is one. In this scenario, how a bit setting affects the fitness is totally

dependent on the setting of the other bits—if they are all one, then the setting of the

94

bit will determine the fitness; if they are not, then the setting has no effect at all.
For this type of problem, it is generally impossible to predict the chromosome’s fitness
from a small portion of it, so the GA, and a bitwise optimisation will fail.

The GA is best suited to problems with a reasonable amount of epistasis—too low a
value, and the added complexity of the GA is unnecessary, and a simpler optimisation
technique is adequate; too high, and the schema theory breaks down and the problem

is unsuitable.

6.4.2 Fitness-distance correlation

There are some problems which have a low epistasis, but which the GA still finds
hard. Davidor’s method above would predict these problems to be suitable for the
GA, implying that a better method of calculating the GA-difficulty of a problem is
needed.

Jones and Forrest [94] have proposed a different measure, the Fitness-distance cor-
relation (FDC), which analyses the deceptiveness of the problem. A search space is
deceptive in GA terminology if the search space tends to lead the GA away from the
optimum, which can happen if the optimum is small and lies within an otherwise
low-fitness region.

The FDC is calculated by finding the degree of correlation between a string’s fit-
ness and the distance to a global optimum. For a simple unimodal space, there will
be a monotonic decrease in fitness with Hamming distance from the optimum, so the
correlation will be high. As the search space becomes more complex and hilly, there
is less useful information to tell the GA which direction the optimum lies in, so the
correlation will be lower, and the problem will be harder for the GA. For a deceptive
problem, where the fitness increases as the Hamming distance from the optimum in-
creases, the FDC will indicate a correlation of opposite sign to the unimodal function,
meaning that the GA will be led away from the global optimum.

The signs of the FDC values are dependent on whether the GA is being used as a

95

maximisation or minimisation tool. When minimising a problem, the sign of the FDC
should be positive for a suitable problem, since the fitness should increase with distance,
and negative for a deceptive problem. When analysing a maximisation problem the
signs will be reversed.

The FDC is more reliable than the epistasis measure given above, but it does rely on
the user knowing the location of the global optima in the search space. In the absence
of this knowledge, the space around local optima can be analysed, but it cannot be

assumed that the results can be extrapolated to the global situation.

6.5 Alterations to the GA

In order to extend the GA as planned, to encompass the optimisation of more than
one design criterion simultaneously, the GA was extended to include MCQ, in the
form proposed by Goldberg (Section 6.2.4). The interface was extended to allow the
display of non-dominated sets, with the the filters described within it. The limit of
640K of memory imposed by the DOS operating system meant that the number of
non-dominated individuals which could be stored within the NDS was restricted. This
reduced the effectiveness of the search considerably. To combat this, in the final phase
of the work described in Chapter 8, the Borland C++ 3.1 compiler was dropped in
favour of the GNU freeware DJGPP compiler for DOS. This compiler has flat 32-bit
memory addressing, allowing the full memory of the computer to be used. This meant
that the maximum size of the NDS could be greatly increased, and increase the GA's

potential.

96

Chapter 7

An Analysis of the Suitability of
GA-based Optimisation for
Non-linear Phase FIR Filter Design

7.1 Introduction

In Chapter 4 the design of linear-phase FIR filters by GA was discussed. These filters’
linear phase makes them particularly useful in areas such as biomedicine and audio
where low phase distortion is of paramount importance. They do however suffer from
having a long delay of half the filter length, making them unsuitable for high-speed,
real-time applications. If the restriction on linear phase is relaxed outside the passband,
then a shorter filter could be designed with the same magnitude response but a lower
delay, as shown by Selesnick and Burrus [89], who used standard methods to produce a
reduced delay, but with the restriction of having a maximally-flat magnitude response.
Some techniques requiring or generating minimum-phase filters exist, approximating
an FIR filter with a much shorter IIR filter [95], but this gives no control over the
linearity of the phase response.

It was now planned to investigate another area in the design of FIR filters by

extending the GA into a true MCO tool, and designing the filters under two criteria

97

simultaneously. This would not only simplify the design process by combining a number
of design steps, but also reduces the degree of user intervention by reducing the number
of iterations needed to produce a desired filter. A further analysis step, that of the effect
of coeflicient roundoff on the filter’s response was catered for by using a binary rather
than a real-coded chromosome. This approach meant that the coefficients always have
quantised values when they are decoded by the fitness function, so the filter’s responses
intrinsically include the effects of their being represented with finite precision. The use
of an MCO GA meant that the designer could be presented with a range of non-
dominated solutions from which the most suitable can be selected, rather than having
to undertake an iterative adjustment of weightings (Chapter 6) to obtain a suitable

solution.

7.2 Non-linear phase FIR filters

It is a necessary and sufficient condition for a filter to have a linear phase response
for its impulse response to be symmetric or antisymmetric, although this requirement
ties up a large number of degrees of freedom by constraining the coefficients. In order
for the filter to achieve a high stopband attenuation or a sharp cut-off, the filter must
have a large number of coefficients. Since the FIR filter's group delay is given by half
of the filter length, it means that the delay of high-attenuation or sharp cut-off filters
is also high. This makes them unsuitable for high-speed, real-time applications where
high-speed devices are unavailable, and also means that a filter must be very long in
order to achieve that same magnitude response as a filter with complete freedom in the
phase domain. Linear phase filters have the advantages that their symmetry means
that they only require half the coefficient storage of a non-linear filter, and they can
therefore be implemented more efficiently. Their constant group delay means that the
signal’s components are delayed by an amount proportional to their frequencies, so it
is not distorted. This property is particularly important in audio, data transmission

and biomedicine, which are especially sensitive to distortion.

98

In order to reduce the length of the filter, and so also reduce the delay, the restriction
on linear phase can be removed. This can allow the design of a filter with the same
magnitude response, with as few as half the original number of coefficients for wide
passband filters [11]. The class of filter, known as the minimum-phase, has the shortest
possible delay for a given magnitude response. Although these filters are suitable for
phase-insensitive applications, they cannot be used in other situations, so a compromise
must be reached between phase-linearity and filter length. One way to do this is to
force the phase response of a non-linear filter to be as close to linearity as possible in
the passband, where it is important that the signal should not be distorted. In the
stopband, the phase response can be left unrestricted, because the signal is attenuated,
so any distortions caused by nonlinearities are unimportant and can be discounted
provided the attenuation is high enough. As the linear-phase restriction has been
removed, the constraint on the coefficients being symmetric no longer applies and
they can describe a wider range of filters, and the filter length can be reduced while
maintaining the magnitude response.

In order to design such a filter, the simple optimisation approach used in Chapter 4
is no longer suitable, as there are two performance measures which need to be exam-
ined: the performance of the magnitude response with respect to the desired response
template, and the phase response with respect to linearity over a chosen region of the
response. Since these have different ranges of unknown magnitudes, several iterations
would be required to find the correct weights to use in a weighted-sum fitness function
in a standard GA. A better approach is to use one of the multi-criterion optimisation
(MCO) approaches detailed in the previous chapter. These allow the GA to perform
the trade-off automatically without user intervention, producing a range of solutions
from which the most applicable may be selected.

A major objective of this work is the simplification of the filter design process, so
to this end a multi-objective Genetic Algorithm was developed to optimise the filter
coefficients with respect to both the filter’s magnitude response and its phase response

in a region of the passband. To increase the number of filter design steps being under-

99

taken simultaneously, the Genetic Algorithm used a binary chromosome, containing a
concatenated list of the coefficient values, which therefore intrinsically accounted for
coefficient quantisation effects. Since the impulse response has the same values as the
filter coeflicients, the quantised coefficient values decoded from the chromosome can
be used to find the responses by zero-padding them to a length of 1024, and taking the
FFT.

The fitness function with respect to the magnitude response was the maximum
error from a desired response template (such as that shown in Figure 7.1), while that
for the phase response was the sum of the squared differences between the response and
an LMS straight line fitted through the response, in a selected region covering most of

the passband, thereby giving a measure of its linearity.

7.2.1 Effects of coefficient quantisation

A further important factor which should be taken into consideration is that of coefficient
quantisation. In a practical application, the coefficients will be stored in a quantised
form, which means that they will only be able to take a certain number of values,
and that consequently there are only a finite number of possible filters for any given
order. Standard methods of FIR filter design rely on full-precision maths, e.g. the
hill-climber which requires a continuous surface to perform effectively with small-scale
movements, such as those that occur when the search has converged on a peak. When
the coeflicients are stored in a quantised form, small ranges of their continuous values
are stored with the same quantised value. This results in small areas of the search
space, with dimensions of the quantisation interval, having the same parameter values,
and so the same fitnesses. This is illustrated simply in Figure 7.2.

When a hill-climbing search such as the Simplex method (described in Section 4.4)
is initialised, it looks and moves around the search space in large steps. Since it
only takes point samples, the stepped nature of the search space is masked and the

optimisation can proceed effectively to the higher-fitness regions of the space. When

100

Auenvution (dB)

¥ T I 1
00 01 02 [1X] 04 [

Normalised frequency

Figure 7.1: Desired response template used to calculate the fitness with respect to the
magnitude response.

-

Quantisation interval

Figure 7.2: Illustration of the effect of coefficient quantisation on the search space.

101

the Simplex begins to converge, however, it shrinks, and takes smaller and smaller
steps. This means that it only looks at the immediate vicinity of its current position,
and the flat regions are increasingly apparent. The final optimisation by the Simplex
method relies on being able to take ever-smaller steps, which is not possible with a
quantised space, and the search also fails if two of the points in the Simplex occupy
the same position in space. This is very unlikely to happen in a full-precision system,
but is bound to eventually in a quantised system when the step size drops to the order
of the quantisation interval.

To overcome these difficulties, a bitwise form of hill-climbing must be used. The
method chosen was to flip each bit in the string in a random order, calculating the new
fitness each time. If flipping the bit improved the fitness with respect to at least one
criterion, then the change was kept, otherwise the original bit was restored. This was
applied to the members of the NDS in the current population only, once every 50 or

100 generations.

7.3 Use of the GA

An MCO GA was set up to optimise the quantised coefficients of non-linear FIR filters.
A binary approach was used so that the effects of coefficient quantisation on the filter
performance were accounted for intrinsically. The fitness function calculated two per-
formance measures, firstly how much the magnitude response deviated from a desired
template, and secondly the mean-squared error from linearity of the phase response
over a specified region covering most of the passband. This approach was intended to
allow the GA to trade-off the performance of the quantised coefficient filters, and to
return a number of solutions to the designer, thereby performing the two optimisations
simultaneously while intrinsically taking account of coefficient quantisation. This com-
bines a number of the traditional design steps into a single operation, while retaining

the freedom of the designer to select the most applicable design for their application.

102

7.3.1 Design performance

Initial runs were performed with randomly-initialised chromosomes, but proved unable
to find solutions which fitted the design templates satisfactorily, or even to within a
magnitude response error of 10-20dB, although the optimisation of the phase-linearity
was generally more successful. The magnitude response fitness function minimised the
maximum deviation from the supplied template; all solutions which fell fully within
the template boundaries were given the same fitness as all were taken to be equally
suitable.

Since reducing the minimax error is a hard problem, the fitness function was
changed to optimise the RMS error in the deviation of the magnitude response from the
template. Using the RMS error is more forgiving of outliers and ‘rogue’ points, and so
should result in an easier optimisation for the GA. This proved more successful in that
the GA was able to reduce the RMS error more than when using the minimax error,
although as it then resulted in a greater minimax error in the magnitude response, the
technique was still not satisfactory.

To determine if the problem is simply too difficult for the GA to solve from
randomly-initialised positions, solutions close to a known good solution were used to
‘seed’ the population. If the GA is able to perform the optimisation, it should then
be able to improve on those solutions. The first population was therefore filled with
perturbed copies of a Remez exchange solution, where a chosen percentage of the bits
in the good chromosome were flipped. The first trials added a single unperturbed copy
of the good solution to the population, but this caused premature convergence as the
seed was a much better solution than the randomly-chosen ones and therefore quickly
overran and dominated the population.

To combat this problem, the population was seeded entirely with perturbed copies
of the Remez exchange solution. This allowed the GA to perform more effectively, but it
was never able to find a solution even as good as the original quantised Remez exchange

design. It had been expected to improve on this design as the linear phase constraint

103

+2

-2

S

—Z-

Antenuation (dB)

200f-------

] T | I
00 0.1 0.2 03 0.4 0.5

Normalised frequency

Figure 7.3: Loose-tolerance template used to test the non-linear FIR design technique.

had been relaxed without reducing the order, and by quantising the coefficients, they
are moved from their original positions and are no longer optimal.

Since the Genetic Algorithm had not performed well, a loose tolerance filter tem-
plate as shown in Figure 7.3 was used as a test problem. The order (as determined
by Matlab) was set to 25, and the wordlength to eight. As the order was determined
for a linear phase filter, and the filter being designed was not linear phase over the
whole response, it was anticipated that the Genetic Algorithm should be able to find
an acceptable solution to this problem, as there were fewer constraints on the coeffi-
cient values. However, even for this simple problem, the Genetic Algorithm was only
able to improve a little on the initial best fitnesses.

A typical best magnitude-response solution found by the GA is given in Figure 7.4
for a lowpass, N = 40, Type I filter with band edges at 0.1 and 0.175. The filter is
shown with the nearest equivalent Frequency Sampling FIR filter found by hybrid GA.
The non-linear phase GA was run with a population of 100, crossover and mutation
probabilities of 0.6 and 0.005 respectively, for 8,000 generations. The FS filter was

found in under 30 seconds, while the non-linear phase GA ran for almost two hours.

104

Linear FSFIR —
Non-linear phase FIR ~——

o
S

Gain (dB)

-100 [

-150 |

L Il

0 0.1 0.175 0.5
Normalised frequency

-200

Figure 7.4: A typical non-linear phase FIR filter compared to the nearest equivalent
Frequency Sampling linear phase filter, both found by GA.
The filter shown had the best magnitude response, with a maximum error from the
template of 32.569dB, and a sum-of-squares error from phase linearity between 0-0.09
of 0.0082. The filter with the worst magnitude response error (59.908dB) had a phase
response with a sum-of-squares error from linearity equal to zero to six decimal places.
The template was £0.25dB over the passband, +0.25—~200dB over the transition band,
and -60—-200dB in the stopband. The filters’ characteristics are compared in Table 7.1.
At this point, investigations were undertaken to determine why the Genetic Al-
gorithm was not performing well, and to analyse the difficulty of the problem. The

analyses, which were performed for the filter design template in Figure 7.3, will now

be detailed.

Value Linear phase FIR | Non-linear phase FIR
Wordlength full-precision 16
Generations 1,000 8,000

Time <30 secs ~2 hours

Best attenuation 66.567dB 27.431dB
x? error in linearity 0 0.0082

Table 7.1: Comparison between a linear-phase FIR filter found by the technique de-
scribed in Chapter 4 and the best magnitude response filter found by MCO GA.

7.4 Analysis of non-linear FIR filter design

7.4.1 The parameter space

The parameter space and the search space are related but different ways of looking at
the problem space. The search space is the space as seen by the GA, which in this case
will be examined by altering chromosome bits and finding the fitness of each solution.
Although this gives the truest picture of what the GA ‘sees’, it is hard to visualise
or display. The parameter space, on the other hand, changes the viewpoint on the
problem by altering the model parameters directly, so they can take any values. This
makes it easier to plot slices through the space by fixing all but two parameters and
altering the others to give a 3-D search surface of the fitnesses. This surface is clearly
different to the search space, but can be made most similar to it by plotting it with
a number of divisions equal to the number of divisions in the binary-representation in
the chromosome.

It is possible to build up a picture of the nature of the parameter space by taking
a number of slices through the space by fixing all but selected pairs of parameters,
and varying those over their allowed range in a finite number of steps. By selecting
pairs which are held at different locations in the chromosome, the effects of short- and
long-range interactions can be discovered. The fitness function used was the magnitude
response error, as this was the fitness measure that the GA had had the most problem

with. A lower fitness value therefore means a better filter. A good solution was

106

required, so in the absence of one found by the GA, coefficients calculated by the
Remez exchange method were used to seed a bit-flipping local search algorithm, and
the solution this found was assumed to be a near-global optimum.

To draw each slice, all but two of the filter coefficients were fixed, and a surface
plotted from the fitnesses found by varying the others. For the 25%* order filter, the
slices were produced by varying the following pairs of coefficients: 1 and 2; 1 and 13; 1
and 24; 12 and 13. The rest of the coefficients were fixed, firstly at the values found by
the local search optimisation; secondly at the local search values perturbed by 5% of
their value, and finally at random values. For simplicity these data sets will be referred
to as LS (local search), P (perturbed local search) and R (random), for example 1,24,P
and 12,13,R. It should be noted that the changes in the appearance of the parameter
space described below were similar for all the data sets. It should be noted that these
surfaces represent the maximum error in decibels between the filter and the design
template, so a smaller error means a better solution.

Figure 7.5 shows the 1,13,L.S data slice. It shows that the parameter space consists
of smooth intermediate-error regions separated by narrow high-error ridges. The low-
error region around the optimum (which lies in the depression at the front of the figure)
is clearly small compared to the total area of the slice. When this is extrapolated to
the full 26-dimensional volume, the proportion of the total volume with a similarly
high fitness will be extremely small. The other unperturbed local search slices have
a similar appearance but with different numbers and orientations of the ridges, which
are mostly straight like the 1,13,LS slice, while for the 1,24,LS slice, some of them were
curved. The optimum region in all the slices is very small, suggesting that perturbing
any coeflicient will quickly lead to a large drop in fitness and therefore performance.

In Figure 7.6, the same slice is shown, but with the fixed coefficients perturbed
by 5% from their original, near-optimal values (the 1,13,P slice). The surface has
become more multi-modal, with a greater number of low-error regions than before.
The characteristic appearance of the slice is, however, the same. The small low-error

region around the local search solution has disappeared, leaving a comparatively poor

107

best solution. The position of this best remaining solution moves in all the slices
examined, sometimes considerably, so seeding the Genetic Algorithm with a perturbed
solution will not generally start it off in the region of the true optimum.

The same slice was also obtained for a filter with the fixed coefficients selected at
random. As can be seen in Figure 7.7, the space is very flat, with very poor filter
performances, and no indication as to the location of the original optimum solution.
This has the implication that a GA seeded at random will contain no useful information

as to the best regions to search in, so will be unable to proceed effectively.

7.5 Measures of GA-difficulty

As with all design techniques, the GA has its advantages and disadvantages which
make some problems easier and some harder for the technique to solve. For the GA,
although it has several advantages over ‘standard’ optimisation methods, its success is
highly dependent on the structure of the chromosome, the search space, and how they
interact, which in turn depends on both the problem itself and the way it is stated.
The deceptiveness of a problem in a GA-sense can have a number of causes, but
its effect is to tend to lead the GA away from the global optimum. This can occur if
highly fit, short building-blocks combine to give longer blocks with a lower fitness. If
this occurs, it means that although selection may pick those strings containing high-
fitness building blocks, when crossover combines them they produce poorer offspring,
and one of the basic premises behind the GA breaks down. Other types of deception can
occur when the structure of the search space ‘misdirects’ the search. For example, if the
global optimum is small in area and is surrounded by the worst points in the space, then
in almost all areas of the space the direction towards the local optima will be different
to the direction of the global optimum. This is illustrated in Figure 7.8, where it can
be seen that apart from in the narrow shaded region, the direction towards the nearest
optimum leads away from the global one, and the problem is deceptive. If the deception

occurs in the search space, as in this example, then the search will be difficult for any

108

Direction to nearest optimum

»
4

Fitness

Parameter value

Figure 7.8: Illustration of deception, where only points in the shaded area indicate the
location of the optimum.

technique which uses hill-climbing or gradient information or which performs a random
search, while the deception in the chromosome is clearly a GA-specific problem. The
level of chromosome-based deception can be reduced by changing to a higher-cardinality
alphabet, but this is not always possible or desirable, for example if the problem fits

naturally into a binary representation.

7.5.1 Epistasis

One of the causes of chromosome-based deception is a breakdown of the linear rela-
tionship between gene values and the fitness of the solution they represent. It should
be possible to predict the fitness of a chromosome from a short portion of it, but
this breaks down if solutions containing good genes combine to give a poorer solution.
When this occurs, it implies that there is a great degree of interaction between different
genes' values and the fitness of the chromosome as a whole. The degree to which the
fitness contributed by a particular gene is dependent on the values of the other genes
in the chromosome is called epistasis.

It was now proposed to investigate the epistasis of the non-linear FIR problem, using

110

Random | 10% perturbed LS
o? 116.75 363.19
o2 | 13225 112.26
% 17.73 631.57
o2 —o? | 11452 -519.31

Table 7.2: The Epistasis variance (o2), calculated for regions of the search space.

the qualitative epistasis veriance measure of Davidor [93]. These epistasis measure-
ments were performed on two 5,000-point data sets, one of randomly-selected points,
and the other for the local search solution perturbed by a random amount of up to
10%. The results are tabulated in Table 7.2.

The fitness variance o2 is a measure of the spread of the sample fitnesses around

the average sample fitness, while the genic variance 0% is a measure of the spread of
the predicted fitnesses around the true fitness sample average. It can be seen that the
genic variance is very low for the random data, which can be explained by the relative
flatness of the parameter space as shown above in Figure 7.5. This flatness means that
regardless of the gene values, the fitness will not change greatly, so it can be predicted
with reasonable accuracy.

On the other hand, the genic variance of the predicted fitnesses is comparatively
high for the perturbed local search samples. Ascan be seen from the example parameter
space surface in Figure 7.6, the space is highly variable, and there is a far greater
correlation between both genes’ values and the overall fitness of the solution. This
need for both genes to have the correct values to produce a high-fitness solution means
that there is a high degree of epistasis in the problem. Another important result
from these calculations is that the problem becomes more epistatic as the optimum is
approached, which implies that it also becomes harder for the Genetic Algorithm, due

to the effects described above.

In the context of the non-linear FIR filter design problem, this implies that to

111

obtain a good solution it is necessary for the coefficients to all have the correct values,
and that ‘partial’ good solutions do not exist in that it is impossible to say if half a
chromosome gives a good or bad solution, since the quality of solution is also dependent
on the values of the genes in the rest of the chromosome.

The impulse response of an FIR filter (which has the same values as the coefficients)
has to have a specific shape to make the filter operate in the desired way, and although
this has different characteristics in different types of filter, e.g. symmetry for a linear
phase, or with its peak amplitude early on for a minimum-phase filter, the underlying
appearance is similar, with well-defined ripples, whose amplitude rises and falls within
a smooth envelope. It is clear therefore that although there may be a large number of
sets of coefficients which give the same magnitude response, within each solution, the
value of each coefficient is highly dependent on the value of the others to produce the
desired response. Should mutation or crossover alter the value of a single coefficient in
a good solution, then all of the other coefficients need to change to preserve the quality
of the filter. This means that crossover of two good but dissimilar chromosomes will
lead to poor offspring. 1t is also clearly impossible to predict the response of a filter
from just a few coefficients, so there is a large non-linearity between gene values and

the corresponding fitnesses, and the problem is not suited to solution by the GA.

7.5.2 Fitness-distance correlation

A better measure of GA-difficulty is claimed to be the fitness-distance correlation [94].
The FDC examines the difficulty of the solution in terms of the variability of the
search space, and its degree of deceptiveness. The calculations were performed for
three data sets of 4,000 points, and averaged over ten runs. Two of the sets were made
by perturbing 1% and 5% of the bits in the assumed optimum solution used in the
epistasis calculations above, and one set contained randomly-generated points. The
results are shown in Table 7.3.

One random data set is shown in Figure 7.9, which plots the magnitude response

112

FDC

Random 0.0032

5% perturbed LS | 0.3199

1% perturbed LS | 0.6466

Table 7.3: FDC calculations for various regions of the search space.

error against the Hamming distance between each random solution and the optimum
one. The Hamming distances have been perturbed slightly to show the distribution
of points more clearly. The FDC for the random data set was almost exactly zero,
bearing out the distribution of points in the figure, which contains no clear correlation
between fitness and distance, and therefore usually no indication of the direction of the
optimum from a randomly-selected point.

When the same calculations were repeated for data sets taken around the assumed
optimum, obtained by perturbing an average of 5% and then just 1% of the bits in the
assumed optimum solution. In these regions, the FDC was calculated to be (.32 and
0.65 respectively. A typical set with 5% perturbation is shown in Figure 7.10, which
clearly has more structure, in that the points are constrained in a narrower band.
This means that the search space closer to the optimum behaves in a more predictable
manner, so it should be easier for the GA to optimise the solution. However, the spread
of fitnesses is still large and the optimisation is unlikely to succeed.

For the 1% set, as shown in Figure 7.11, there is still more structure, and the
fitnesses are constrained to an even narrower region than before. For the solutions
with a Hamming distance of just one bit, there are clear bands indicating that only a
few different fitnesses can be generated. When the number of bits difference rises, more
values can be obtained, affecting more genes, so the number of possible fitnesses rises
and the bands overlap and can no longer be resolved. The range of possible fitnesses
still rises very quickly, showing that changing even a few bits can have a profound effect

on the quality of the solution. The poorer solutions will be caused by a perturbation

113

of the bits in the chromosome which represent the most significant bits of coefficient
values as these will cause the greatest perturbation in the solution. When changing one
of the least significant bits the change will be much smailler, and possibly insignificant.
This implies that changing even a few bits can (but is not certain to) lead to a dramatic
decrease in performance. The most dramatic example of this is the point indicated in
the figure, which has only two bits difference in its chromosome, but a magnitude

response error of over 130dB.

7.6 Results

The slices taken through the parameter space show that it is multi-modal and therefore
also unsuitable for hill-climbing methods, while the small size of the region around the
optimum means that a random search will take an excessive amount of time to find a
good filter. The GA, although appearing to be a suitable optimisation technique for
this type of space, was not found to be a suitable technique for directly optimising the
coefficients of non-linear FIR filters.

GA theory suggests that, for success, there should not be an excessive interdepen-
dence between the gene values to disrupt the linear relationship between gene value
and fitness. The FDC calculations suggest that not only does the search space become
more suited to the GA as the optimum is approached, but it is only suitable around
these regions. This means that at the start of a run when the population contains
widely spaced points, it is unlikely to contain information about the location of the
optimum. As the optimum is approached, the FDC suggests that the space becomes
more ideal, although the epistasis increases as the fitness becomes ever more sensitive
to changes in coefficient values and the non-linearity of the gene-fitness correspondence
rises,

One cause of failure is the initialisation of the population, since it has been shown
that the space far from the optimum contains no useful information. Since non-linear

filters have non-symmetric impulse responses and hence coefficients, initialising them

114

Fitness (Magninude response grror (dB))

Figure 7.9: Scatter plot of fithess against Hamming distance for a random set of non-
linear FIR filter chromosomes.

1200

s
g o
¥ eor ' Lo
3 EEETEE MY
N -lisflfzi

F : t
i@ RERER N RR RN
5 il \.{
= §
i“ '5 Il($

l‘ 1] Ly o
20k I
: .
. .
[}] 5 10 16 2 =

Figure 7.10: Scatter plot of fitness against Hamming distance for a 5% perturbation,
non-linear FIR filter data set.

Fitness (Magniuwde respanse error (dB))

-] -]
Y™
e . .

[amoming distance

Figure 7.11: Scatter plot of fitness against Hamming distance for a 1% perturbation,
non-linear FIR filter data set.

115

with linear-phase solutions, even perturbed solutions, may be far from ideal. Minimum-
phase filters have the peak amplitude of their impulse responses early on, so initialising
the population with perturbed linear phase solutions which have been shifted or ‘ro-
tated’ might be a better technique. The success of the GA with this problem is still not
guaranteed however, due to the high epistasis of the search space and its unsuitable
structure away from the optima.

The optimisation of the phase was more successful as the GA was able to move
from its initial perturbed linear-phase solutions back towards fully-linear phase filters
as the optimisation required is far simpler. The requirements for linear phase are that
the filters are symmetric or antisymmetric, but otherwise places no restrictions on the
coeflicients’ values. This means that there are many solutions with linear or near-
linear phase, which are therefore easier to find, but to produce a filter with a desired
magnitude response requires that all of the coeflicients have good values collectively,
so there are comparatively few good solutions in the phase domain.

It might be possible to reduce the degree of epistasis by re-stating the problem
so that the chromosome stores information about the filter coefficients in a different
way, or stores entirely different information which is can be used to adjust the filter’s
responses. Methods for reducing epistasis such as the ‘Expansive Coding’ at of Beasley
et al [96] will not work in this case because it is not possible to break down the problem
into suitable sub-problems—all of the coefficients must be used at once to determine
the filter’s fitness.

Since the completion of these investigations, Lu and Tzeng [97, 98] have successfully
used a GA to produce non-linear optimal filters. Their approach is to use a guided
crossover technique which biases poorer solutions towards better ones, and a fitness
function which uses a least-squared error measure, which is an easier problem than
the minimax one attempted here. They achieve an Optimal (equiripple) response in
both phase and magnitude responses, by using a dynamic weighting function, which
is updated to give a stronger weighting to those areas of the space which have the

greatest error. This allows the GA to concentrate its search on those areas which most

116

need improvement. No attempt was made to reproduce linear-phase filters with. fewer

coefficients, but'it .is likely ithat a modified versiom of this technique, which ignored

the phase response in the stopband, would be'successfiil at producing lower-delay,

near-linear optimal FIR filters:

7

Chapter 8

An Extended Multi-objective GA
for IIR Filter Design

8.1 Introduction

In Chapter 5, a GA was used to design an IIR filter using a chromosome which op-
timised the filter coefficients directly. This was found to have a limited success, due
to strong coeflicient interdependence making the problem less suitable for a GA-based
optimisation. In the light of the analysis presented in the previous chapter, it was
decided to repeat the investigation using a true MCO GA. This would optimise the
pole-zero positions instead of the o and b coeflicients, as perturbing a pole or zero
slightly has a more predictable effect on the overall response than altering a coefficient.
A suitable GA could search for an NDS containing a range of solutions with different
performance tradeoffs, from which the most appropriate can be selected.

To enable the GA to cover more filter design steps, the fitness function can be
extended to examine how close the phase response is to linearity over a region of
interest within the passband. The noise performance of the filter can also be calculated,
which will allow the GA to look for the best pole-zero pairing and ordering, while a
binary-coded chromosome can allow the effects of coefficient quantisation to be included

implicitly in these calculations. Lastly, additional bits could be included to specify the

118

type of filter section to use for each stage, which would give the GA more freedom to
pick lower-noise structures, or even to allow it to pick between a parallel or cascade
structure.

The intention is that it should ultimately be possible, under such a scheme, to design
filters with quantised coefficients, with the GA returning a range of non-dominated
solutions which trade-off the performance between magnitude and phase responses
and roundoff noise gain, while using the filter structure giving the best performance,
and with the best pole-zero pairing and ordering. It was planned to extend the fitness

function in stages to incorporate these optimisations.

8.2 Chromosome design

In the light of the inability of the GA to optimise the non-linear FIR filter coefficients, it
was clear that to successfully perform this multi-criterion optimisation, the chromosome
would have to be designed to have a lower epistasis. This in turn implies that the
problem would have to stated in such a way that a suitable chromosome would be
used.

The original IIR optimisations were performed on the coefficients of canonic sec-
tions, cascaded to give an overall filter response. This approach suffers because the
coefficients are used in a polynomial expression, and these are very sensitive to changes
in coefficient values. It is also hard to predict changes in the response of each section
as each polynomial coefficient is changed, since small changes in the coefficients can
move a filter from being stable to unstable, or from having real to complex poles, as is
shown in the stability triangle in Figure 8.1. This clearly shows that if b, is zero, then
a change in b, from 0.99 to 1.01 would result in an unstable filter.

The GA used to optimise IR filters in Chapter 5 was constructed in such a way that
the value of b, was constrained to lie in its valid range of -2-2, and that of b, to within
the range -1-1. Since it was still possible for the solution to lie outside the stability

triangle when both values were taken together, every solution had to be checked for

119

Figure 8.1: Triangle bounding the stable values of b, and by for a second-order IIR
section. The shaded area contains complex-valued poles.
stability and moved back into the stable region if it lay outside it.

This approach is not ideal as it changes the information contained within the chro-
mosome, and so will affect the data which the GA is accumulating within the popula-
tion. Although the information is being moved to a valid solution, it also means that the
stability of every second-order section must be examined at every fitness calculation,
because of the damaging effects of crossover and mutation. A better approach would
be to use a representation which only returns valid solutions, and so never requires
checking as crossover and mutation cannot result in an unstable solution.

A suitable representation with these characteristics is to use the radius and angle
of each pole and zero. Assuming that the poles and zeros exist as complex conjugate
pairs, four values are required to describe each second-order section, namely the radius
and angle of the positive-angled pole and zero of each pair, although this was simplified
to three in this work by fixing the zero radius at unity. This representation contains
intuitively short building-blocks, describing the position of a single pole or zero. It is
also clear that since each pole and zero has a known effect on the response as a whole,
changing the values of a pole or zero’s radius or angle changes the response in a more
predictable way, never producing an invalid solution.

While the GA still needs to find a complete good chromosome to produce a good

filter, as the response depends on all of the coefficients, moving a pole or zero slightly

120

has a more controlled effect on at least some aspects of the filter performance, such
as the magnitude response, than moving an a or b coefficient, so this representation
should be more suitable for the GA to optimise.

To specify the pole and zero, their positions could be specified by either Cartesian
(real and imaginary) or polar (radius and angle) coordinates. If the chromosome used
to store the values uses a binary alphabet to intrinsically account for coeflicient quan-
tisation effects, then not only will changing gene values affect the response in different
ways, but a different set of possible positions can be represented. This is illustrated in
Figures 8.2 and 8.3, for the two representations at the same resolution. It can be seen
that although the points specified by using the Cartesian coordinate system are spread
more evenly over the unit circle, there will be some points which lie outside the unit cir-
cle and which therefore specify illegal positions for poles and must be checked for. The
Cartesian approach also has the disadvantage that there are relatively few available
positions close to or on the unit circle. This means that the zeros, which are generally
found on the unit circle, can only lie close to their optimum positions, while for the ra-
dius/angle representation, the full radius is available, albeit at fixed angular positions.
Other representations and topologies will of course have other distributions [99, 39).

The proportion of the Cartesian positions which lie outside the unit circle is of the
order of 1 — /4 = 0.215, the exact value being dependent on the quantisation interval.
This means that around one-fifth of the positions the chromosome can represent. are
illegal and cannot be used, so the full range of solutions described by the chromosome
cannot be exploited, unlike the polar chromosome, where every position it can describe
is valid. Since this also means that no checking on the validity of the solution needs to

be performed at all, the polar description chromosome was adopted.

8.3 The fitness function

As has been discussed before, the fitness function is the only view the GA has on

the search space it is investigating. The fitness function was initially constructed to

121

return two performance measures, namely the error between the filter’s magnitude
response and a desired response template, and also the error from linearity of a region
of the phase response. The latter was determined by fitting a straight line through
the phase response in the specified region (covering most of the passband), and finding
the mean-squared error between this line and the actual response. For simplicity, the
chromosome described a filter of cascaded second-order sections, and was initialised,
not with a perturbed BZT solution, but with randomly-selected poles in the passband
region and zeroes in the stopband. Directing the initialisation in this way meant that
the solutions in the first population contained a wide range of pole positions which
were in the appropriate regions of the search space, ensuring that the population is
diverse enough to ensure efficient searching.

A Matlab script (Appendix A.3) was developed to generate the initialisation files for
the GA from a desired filter specification, and to display the response for a traditionally-
designed filter of the same specifications, with full-precision coefficients. The response
of the filter was determined in the fitness function by passing an impulse through the
filter, followed by 1023 zeros, to produce the impulse response. An FFT was then taken
of this to give the complex frequency response, from which the magnitude and phase
responses were then extracted. The script generated a 512-point template file from the
requested pass- and stopband widths, ripple and attenuation, which the GA read in

and used to determine the filter's fitness with respect to the frequency response.

8.4 Effects of quantisation

When designing digital filters with standard methods, full-precision maths is used to
produce filters with full-precision coeflicients, internal calculations and storage. In
practice, however, all digital systems employ a finite wordlength for both data storage
and calculations. This has the effect of limiting the maximum attenuation of the
filter, and also introduces noise into the filtered signal. The effects of both of these

factors need to be considered when designing a practical system, but in ‘traditional’

123

design methods they are investigated one at a time, after a full-precision filter has been
designed.

While these quantisation effects may not matter for loose tolerance filters, when the
constraints become tighter, they become significant, and may make it impossible for a
solution to be optimal with respect to both criteria simultaneously. This would lead to
a system which is sub-optimal with respect to at least one design criterion—the final
filter can either have a good magnitude response, or a good noise response, but not
both. A major aim of this section was to integrate finite wordlength effects analysis
into the design process so that all of the criteria can be traded against each other by
the GA, allowing it to produce a selection of quantised coefficient filters, with a range

of tradeoffs, in a single design step.

8.4.1 Coeflicient quantisation

The effect of quantising the coeflicients is generally to alter them from their optimum
full-precision values to sub-optimal values. There exists an optimum set of coefficients
for each wordlength with respect to each design criterion, but this will usually not be
the same as the full-precision set, so quantising the full-precision results will not give
as good a filter as the optimum for that wordlength. Since shorter wordlengths can
only represent a smaller number of values, they will cause a greater perturbation of
the full-precision values, while for longer wordlengths of 16 bits or more the quantised
filter might still be of sufficiently high performance to be used directly. Generally,
however, since the optimum finite-precision filter is different to the quantised optimum
full-precision filter, some additional form of optimisation will be necessary to raise the
performance of the quantised full-precision solution. For some filters, the two sets
of values will be very similar, so little further optimisation is required, while others,
particularly IR filters, are more sensitive to changes in wordlength, and may have very

different coeflicients.

124

8.4.2 Noise

A further complication is introduced when using a finite wordlength system in that
the results of calculations are also quantised (see Section 2.3.3). This has the effect
of introducing noise into the system as the values returned from calculations are not
their true values, which can in turn affect further calculations. FIR filters are relatively
unaffected by this, having a noise factor which is purely dependent on the wordlength
of the system, while IIR filters’ recursive nature means that the effects of quantisation
noise are much greater and can lead to lower stability, or even instability.

Many modern DSP chips have long wordlength accumulators, so calculations only
have to be quantised down to the system wordlength when intermediate results need
to be saved back to memory, which reduces quantisation’s deleterious effects on the
filter response. This model was used in the fitness function to approximate the effects
of having a finite wordlength system, by quantising the results of calculations when

they were being stored.

8.5 Filter structure

A further aspect of IIR filter design, and the final one which was examined, is that of
finding the best filter structure for the desired filter characteristics. IIR filters can be
designed with a structure other than the cascade used in the previous optimisations
(Chapter 5). Since the different structures and second-order sections have different
noise characteristics, there will be a different optimum structure depending on the
pairing and ordering of the coefficients, and a different optimum pairing and ordering
depending on the filter structure. Under the standard design methodology, determin-
ing which of these structures is the best is another separate optimisation step, whose
results may indicate the need to iterate back one or more stages and repeat previous
optimisations or even completely re-design the filter to improve on its performance
with respect to one or more of the design criteria. This approach makes the design

process complex and requires the repeated sequential examination of the filter’s per-

125

— Section 1 I Section 2 | - -

AN NN NN NN

zeroradius poleradius zeroradius poleradius zero radius
zero angle pole angle zero angle pole angle

(a)
F——— Section 1 | Section 2 f -
NN NN 77NN\ 2%
zeroradius pole radius zero radius pole radius zero radius
zero angle pole angle zero angle pole angle .
canonic/direct form canonic/direct form
cascade/parallel
(b)

Figure 8.4: The structure of the chromosomes used to optimise {a) the coeflicients and
(b) the coefficients and structure of IIR filters.

formance with respect to different design criteria. It should be possible, by extending
the chromosome to include bits which determine the structure of the filter, to allow the
GA to search for those structures which give the best filter performances with respect
to each of the design criteria. The inclusion of this ability will permit the GA to use
whichever structure gives the best performance, and to search for this best structure
simultaneously with the coefficients. Although the structure is not examined explicitly
within the fitness function, its inclusion in the calculations means that the GA will
also automatically search for the structure which gives the best performance for each
set of coefficients.

The binary chromosome, which initially contained a simple list of the radii and
angles of the poles and zeros of each second-order section as shown in Figure 8.4a, was
extended to include bits to control if each section had a canonmic or direct form, and
also one bit to determine the structure of the whole filter, specifying whether it had
a parallel or cascade structure, as shown in Figure 8.4b. This was later simplified by
removing the zero radius and setting it to unity within the fitness function.

This type of structured chromosome allows the same chromosome to describe a

number of different filters, all of which are valid. The control bits simply tell the

126

fitness function how to decode the information in the chromosome. Storing the data in
the chromosome this way means that all of the filters described by the chromosome are
valid. Tang et al [90] have shown structured chromosomes to be suitable for optimising
IIR filter structures and coefficients simultaneously by GA. If the chromosome shown
in Figure 8.4b was used to optimise a filter of S second-order sections, there would be
a total of 2.S! 41 possible filter structures, comprising 2.5! cascaded structures and
one parallel one. When the cascade/parallel bit is set, telling the fitness function to
use a parallel structure, then the bits which determine whether each section has the
canonic or direct form are ignored, and the pole and zero positional information would

be used to calculate the equivalent parallel filter coefficients.

8.6 Use of the GA

The GA used for this optimisation was the same as was used for the non-linear FIR op-
timisations, using an MCO approach to search for the POS of non-dominated solutions.
The binary chromosome used initially contained a list of the positions of the poles and
zeros of second-order sections, which were taken to exist as complex conjugate pairs.
The fitness functions used were simply the maximum error between the magnitude
response of the filter and a given desired response template, and the mean squared
error between the phase response and a best-fit straight line over a specified region of

the passband.

8.7 Results

The GA was initially run with fitness functions designed to optimise and trade off
the magnitude response performance against the linearity of the phase response over a
given region of the passband. Initial results showed that the solutions within the GA’s
NDS were strongly biased towards solutions with near-linear phase in the passband,

rather than with a good magnitude response. The range of fitnesses returned by the

127

Although the use of a binary, finite-precision chromosome meant that each coeffi-
cient could have fewer values, there were many more coefficients and each coefficient’s
effect on the fitness was harder to predict. These characteristics make the problem
difficult for a standard GA to optimise. Recent work by Lu and Tzeng [97, 98] has
successfully used a GA to produce non-linear FIR filters, by utilising a guided crossover
technique which allows their GA to perform more effectively in this unfavourable search

space.

9.1.3 Infinite Impulse Response Filters

The initial attempt to optimise the pole and zero locations of an IIR filter using the
same floating-point GA as for the Frequency Sampling filter investigations was unsuc-
cessful because random coefficient initialisation was used and there is a lack of useful
structure in the search space far from the optimum. However, this illustrates an ad-
vantage of the GA, in that the same implementation can be used for a wide variety of
problems by simply changing the fitness function. As it was desired to optimise the a
and b coeflicients directly in a quantised form, a binary GA was implemented which
included a weighted-sum fitness function, intended to reduce the noise once a solution
had been found which fitted the desired magnitude response. The results from initial
experiments using random chromosome initialisation were not encouraging, so the GA
was seeded with a known good solution found using the BZT method. This produced
better results, although the unperturbed quantised BZT solution itself was of compa-
rable performance to the best GA solution. Another technique, Simulated Annealing,
was also applied to the same problem, and was found to perform a better trade-off
between the two performance measures, as detailed on page 79, where it was able to
find a solution which was only just within the desired magnitude response template,
giving it more freedom to improve the noise response.

An analysis of the search space for this problem revealed that it only had a structure

suitable for the GA close to a good solution, so it could not be expected to find the

145

optimum solution from a random chromosome initialisation. The SA was less affected
by the nature of the space, and was able to perform better, but still required seeding
with a BZT solution. It was, however, able to find a solution which traded off the
performances with respect to noise and frequency response more effectively than the
GA.

Like GAs, the SA technique is able to operate effectively in a discontinuous, con-
strained search space, and does not require a mathematical analysis of the problem,
just a suitable implementation of it. SA does not work by building up a good solution
from building blocks, so is able to work successfully with some problems which are
GA-hard; conversely, there are problems where the GA can make use of high-fitness
building blocks to outperform the more random search of SA. However, due to the
non-problem specific nature of both techniques, the same fitness function can be used,
as they both only take the same point samples of the search space.

The second approach was to use a true multi-criterion optimisation (MCO) GA to
optimise the filter with respect to the magnitude response plus either phase response
or roundoff noise gain, with the aim of providing a range of solutions with different
tradeoffs, from which the most applicable could be selected by the designer. This GA
was also unable to find a solution from a totally random initialisation, so it was seeded
with poles and zeros, randomly positioned within the pass- and stopbands respectively.
The fitness functions adopted differed from those used previously for IIR filters, in that
the performances were measured separately, instead of being combined in a weighted
sum. The GA proved able to find solutions with a near-linear phase in the passband,
but the set of solutions did not produce a wide range with acceptable magnitude
responses, and, although it regularly failed to find even a single solution which exactly
fit the desired response template, the maximum deviation from this template was often
just a few dB, whih may be acceptable if it occurs in the stopband.

The same GA was used with a different fitness function, with the aim of trading-
off the magnitude response with the noise gain, but although solutions were found

with acceptable magnitude responses, it was again discovered that the GA did not

146

find a range of acceptable filters, and that as the tolerances (passband ripple and/or
stopband attenuation) became stricter, fewer and sometimes no filters were found with
acceptable frequency responses. This appears to be because it is possible to break
down the noise problem into simpler parts, and if one section has a low noise, then the
whole filter will generally have a lower noise. However, all but one section could have
an optimal frequency response, but if the last does not, the performance of the filter as
a whole will be poor. This means that only a filter with a suitable magnitude response
in every stage will have a good performance. This inability to break down the problem
with respect to the magnitude response makes the problem hard for the GA.

The ease with which the GA could be changed from optimising the frequency re-
sponse to optimising the noise illustrates a major advantage of the technique. As the
GA is problem-independent and only takes point samples of the search space, no math-
ematical analysis or manipulation of the problem need be undertaken, which can be
complex, especially in fixed-precision environments. This means that the same MCO
technique and implementation can be used to perform several trade-off optimisations,
simply by changing the fitness functions used, which in turn are based on the same
implementation of the filter. In other words, once the problem has been implemented,
the same GA can be used to optimise its performance with respect to a range of dif-
ferent criteria by selecting which measures are returned by the fitness functions. This
feature of the GA makes it a suitable technique for optimisations in the domain of filter
design where a wide range of disparate performance measures can be used, including
magnitude and phase responses, noise performance, wordlength, filter order, and even
implementation costs such as chip area and complexity. It would be extremely com-
plicated to design a technique to trade off magnitude response and implementation
complexity using ‘traditional’ methods, but this can be performed with an MCO GA
by encoding the problem in a suitable chromosome and implementing the necessary

fitness functions [45].

147

9.1.4 Optimisation techniques

A variety of optimisation techniques were employed in this project, but centred mainly
on the GA. Two types of GA were used at different times, the first using a floating-point
chromosome, which was coupled with a hybrid Simplex-method hill-climber. This was
successful at optimising Frequency Sampling filters. The second type was an MCO
binary-chromosome GA, which was used on a wider range of problems but proved not
to be universally successful. While it could often find solutions with good noise or phase
performances, it was generally less successful in optimising the magnitude response.

The GA has shown itself to be a widely-applicable technique which can be easily
adapted to a range of problems, ranging from magnitude and phase optimisations
to noise analyses and implementation cost reductions. It has the great advantage
over traditional techniques that it can be used where direct mathematical techniques
are very difficult to perform, such as the direct optimisation of quantised IIR filter
coefficients with their pairing and ordering, and phase or noise responses, in a single
step, as in Chapter 8. Once a filter has been implemented it is possible to perform
a range of optimisations from the same code, simply by changing the performance
measures returned by the fitness function.

A Simulated Annealing method based on the Simplex hill-climber was also used for
one [IR-based optimisation, and was found to perform better than the GA, probably
because it was less affected by the structure of the search space, as it does not rely on

the same short, high fitness building blocks.

0.2 Future Work

9.2.1 New areas in FIR Filters

The existing work has covered a relatively small range of filter types, and many remain
unexplored, some of which could prove to be better suited to a GA-based optimisation.

The results of the analyses which have been undertaken here can offer guidance to the

148

selection of areas of future investigation, and show that a careful initial examination of
the design problem and the nature of the search space will prove advantageous when
deciding on how best to describe and code the problem in order to make it suitable for
optimisation by GA. In particular, it should be possible to make a prediction as to the
performance of a filter from just a portion of the chromosome, as the GA’s performance
is especially poor when there is no structure in the search space to guide it towards
optimum solutions.

The successful finite wordlength, linear-phase Frequency Sampling (FS) FIR opti-
misations could be extended to include a full implementation of a finite wordlength
filter. This would allow the coefficient optimisation to take product roundoff into effect,
without requiring any changes to the GA.

One area of FIR filter design which appears promising is that of optimal filters, in
which the optimisation task consists of searching for the extremal frequencies. Since the
performance of an optimal filter only degrades slowly as extrema are moved from their
optimal positions, it ought to prove a suitable subject for a future GA investigation,
using a chromosome containing a list of the extremal frequencies. Optimal filters have
the advantage that the extremal frequencies can be estimated very quickly to give an
approximate solution which could be used to seed the GA and allow it to start in
the general location of the optimum. The fast speed of the optimal design process
(McClellan et al [15] reported that, even in 1973, their Remez exchange-based method
only took a few seconds) makes a GA approach unlikely to be worthwhile for standard
designs. However, it may be useful in situations where the standard technique is
not guaranteed to converge, such as with designing multi-band filters with varying
transition widths, when there may be local ripples within the transition bands.

The lack of success with the non-linear FIR filter design showed that the method
of implementing the search was not ideal. While the current system was run for 8,000
generations, and improvements stopped well before the end of the run, further in-
vestigations into the existing technique with extended run lengths could improve its

performance. A different approach to crossover may prove beneficial, such as that

149

of Cotta and Troya [100], which picks the best of all the potential offspring, or Lu
and Tzeng [97], which guides poorer solutions towards better ones. A fuller analysis of
the relationship between coefficients and the magnitude and phase responses could also
give a better indication of how to structure the chromosome to reduce the long-distance
effects which are currently observed and which limit the effectiveness of the search.
An alternative approach could make use of the fact that, unlike linear phase
FIR filters, where the maximum magnitude in the impulse response is in the mid-
dle, minimum-phase filters have the maximum magnitude earlier on. A Genetic
Programming-based approach could search for a function which generates not only
the shape of an impulse response, but also where its peak occurs. This would allow the
system to automatically generate asymmetric impulse responses, which is difficult with
the GA approach used in this project, as it is unlikely that crossover between two sets
of coefficients with different peak amplitude locations will produce a correctly-formed,

suitable impulse response.

9.2.2 New areas in IIR Filters

It has been found that the GA finds optimising the magnitude response of an IIR filter
especially difficult, because it has to find whole good solutions, and cannot break the
problem down. A method of simplifying the search space could be to use only integer or
powers-of-two coefficients. This should improve the performance by vastly decreasing
the size of the search space. As with the FIR, although fitness improvements stopped
well before the end of each run, further analyses of the current system’s performance
may show even longer runs to be advantageous in some cases.

A second aspect of the IIR optimisation which could be made more efficient is that
of the pairing and ordering of the coefficients. Although the second GA used here
counld theoretically have improved the filter’s noise performance, in practise its ability
to do so was limited because changing the order of any of the coefficients without

changing their values was exceedingly unlikely. A better approach would be to have a

150

chromosome which kept the coefficients in a fixed location, but which also contained
information on the order in which they should be used. In this way, simply by changing
the fitness function, the same GA would be able to optimise both the coefficients and
the order in which they are used, in one operation. A consequence of this approach
should be the increased effectiveness of structural optimisation, which could allow the
selection of the structure of the filter (parallel or cascade) and also the topology of
each second-order section in a cascade structure. This should allow the GA to find the
best structure, the best coefficients, and the best order to use them in, to give the best

performance.

9.2.3 Further Natural Algorithm Techniques

While this project has concentrated on the application of GA and SA methods to
filter design, it has become clear that they are not necessarily ideal techniques for
all situations. Further investigations could improve the efficiency of the existing GA
and SA applications and widen the applicability of Natural techniques by including

additional methods. Ways in which this could be approached are given below.

9.2.3.1 Genetic Algorithms

It was found that chromosome initialisation was very important for most of the GA
applications in this project, due to the lack of structure in the search space far from
the optimum. Further investigations into the best initialisation method to use for each
problem could improve the GA performance by giving it a wider set of high-fitness
chromosomes to work with, as the method used here of seeding the population with
perturbed copies of a single good solution will direct the initial search towards a single
good area instead of allowing it to pick good areas from all of the search space.
While the GA is a widely-applicable technique, its best performance is often ob-
tained by tuning the operators to each specific problem. For example, as discussed

above, the pairing and ordering optimisation for IIR filters is inefficient with the gen-

151

eral methods used. A better performance would be obtained by either changing the
chromosome to include coefficient ordering information, or by adding an additional op-
erator to run alongside the existing crossover and mutation. This operator would move
whole poles and zeros at random within the chromosome, thereby allowing the GA
to sample a wide range of pairings and orderings, and making the noise optimisations
far more effective. Other improvements could be made by tuning the crossover and
mutation operators to specific problems, either manually, by including problem-specific
knowledge, or automatically, as in the Frequency Sampling optimisations described in

Chapter 4.

9.2.3.2 Simulated Annealing

Although the changes proposed above to the GA-based optimisation should improve
its performance, the existing results for the SA showed that it could outperform the
GA under some situations. If the problem under investigation is not especially suited
to the GA then it might be advantageous to adopt an SA optimisation instead. Future
investigations would have to determine this on a per-investigation basis, as it will not
always be possible to determine beforehand which will perform better.

SA does have the disadvantage that it is a single-criterion optimisation method, so
it is not so suitable for producing a range of solutions to an MCO problem as the GA.
In some circumstances, however, it might be possible to design a suitable weighted
sum fitness function to produce a single filter with a desired trade-off between two

performance measures.

9.2.3.3 Tabu Search

Tabu search is an efficient optimisation method for combinatorial problems, but is less
snitable for precision coefficient optimisation. It may however be possible to combine
the Tabu search with a GA or SA to produce a hybrid technique which can perform
both effectively. For example, within the fitness function of a GA or SA being used

to optimise filter coefficients, a Tabu search could look for the best filter structure to

152

use with each set of coefficients, thereby producing a more wide-ranging and flexible

technique, which requires less user intervention than traditional design methods.
Alternatively, a Tabu search could use a low-precision version of the fitness function

to look for high-fitness regions of the search space. This information could then be used

to seed a higher-precision search using GA, SA or even a hill-climber.

9.2.3.4 Genetic Programming

Genetic Programming (GP) is used for different optimisation problems than those in-
vestigated in this project, in that it searches for expressions which perform particular
functions, rather than for numeric values which fit into fixed models. A filter design
method which seems ideal for & GP approach is the Window method. Standard tech-
niques use a limited range of functions, each of which have different characteristics and
different limitations. A GP-based optimisation could produce whole new families of
window functions, each tailored to specific problems, or even a different function for
every problem. An advantage of the GP approach is that it would not have a human
designer’s preconceptions about what a window function should be, and would simply
look for the function with the best performance. This makes it theoretically possible
that a GP optimisation of any filter could find a solution whose performance equals or

betters that of any standard, general-purpose window function.

9.3 Intelligent Filter Design Tool

In the light of the results found so far, and the analysis of the filter design process,
it is now possible to outline a potential intelligent automatic filter design tool. It is
clear that no single optimisation technique is suitable for all aspects of digital filter
design, and that to fully automate the process will require a range of methods, working
together, and complementing each other’s capabilities.

A possible structure for such a tool is illustrated in Figure 9.1. The system is

controlled by an Expert System (ES), and would contain an extensive library of tech-

153

[40] A. Roberts and G. Wade. ‘A Structured GA for FIR Filter Design’. IEE and
IEEE Workshop on Natural Algorithms in Signal Processing, November 1993.

[41] D. Suckley. ‘Genetic Algorithm in the Design of FIR Filters’. IEEE Proceedings-
G, 138:234-238, April 1991.

[42] K. Uesaka and M. Kawamata. ‘Synthesis of Low-Sensitivity Second-Order Dig-
ital Filters Using Genetic Programming with Automatically Defined Functions’.
Procs. IEEE ISCAS 2000 Vol 1: Emerging Technologies for the 21st Century,
1:359-362, 2000.

[43] J.D. Schaffer and L.J. Eshelman. ‘Designing Multiplierless Digital Filters using
Genetic Algorithms’. Procs. Fifth International Conference on Genetic Algo-
rithms, pages 439-444, July 1993.

(44] A.G. Dempster and M.D. Macleod. ‘Use of Minimum-Adder Multiplier Blocks
in FIR Digital Filters’. IEEE Trans. on Circuits and Systems II: Analog and
Digital Signal Processing, 42(9):569=-577, September 1995.

[45] D.W. Redmill and D.R. Bull. ‘Automated Design of Low Complexity FIR filters’.
Procs. 1998 Int. Symp. on Circuits and Systems, pages D429-D432, 1998.

[46] D.W. Redmill, D.R. Bull, and E. Dagless. ‘Genetic Synthesis of Reduced Com-
plexity Filters and Filter Banks Using Primitive Operator Directed Graphs’. [EFE
Procs.: Circuits, Devices and Systems, 147(5):303-310, October 2000.

[47] J.H. Holland. Adaptation in Natural and Artificial Systems. Ann Arbor, Univer-
sity of Michigan Press, 1975.

[48] D.E. Goldberg. Genetic Algorithms in Search, Optimisation and Machine Learn-
ing. Addison Wesley, 1989.

[49] Z. Michalewicz and C.Z. Janikow. ‘Handling Constraints in Genetic Algorithms’.
Procs. Fourth Int. Conf. on Genetic Algorithms, pages 151-157, 1991.

[60] P. Clitherow and G. Fisher. ‘Knowledge Based Assistance of Genetic Search
in Large Design Spaces’. Procs. 2nd Int. Conf. on Indusirial and Engineering
Applications of Artificial Intelligence and Ezpert Systems, pages 729-734, 1989,

[61] D. Goldberg and K. Deb. ‘A Comparative Analysis of Selection Schemes used in
Genetic Algorithms’. Foundations of Genetic Algorithms, pages 69-93, 1991.

[52] R. Roy and 1.C. Parmee. ‘Adaptive Restricted Tournament Selection for the
Identification of Multiple Sub-Optima in a Multi-Modal Function’. Procs. AISB
Workshop on Evolutionary Computation, April 1996.

[63] H. Ishibuchi and T. Murata. ‘Multi-Objective Genetic Local Search Algorithm’.
Procs. 1996 IEEE Int. Conf. on Evolutionary Computation, pages 119-124, 1996.

[54] J. Suzuki. ‘A Markov Chain Analysis on Simple Genetic Algorithms’. IEEE
Transactions on Systems, Man and Cybernetics, 25(4):655-659, 1995.

160

[65] J. Horn. ‘Finite Markov Chain Analysis of Genetic Algorithms with Niching’.
Proceedings of the Fifth International Conference on Genetic Algorithms, pages
110-117, 1993.

[56] D.E. Goldberg. ‘Real Coded Genetic Algorithms, Virtual Alphabets and Block-
ing'. Complex Systems, 5:139-167, 1991.

(67] H.M. Cartwright and S.P. Harris. ‘Analysis of the Distribution of Airborne Pollu-
tion Using Genetic Algorithms’. Atmospheric Environment, 27A (12):1783-1791,
1993.

[68] P. Cong and T. Li. ‘Numerical Genetic Algorithm Part 1: Theory, Algorithm
and Simulated Experiments’. Analytica Chimsca Acta, 293:191-203, 1994,

[69] C.Z. Janikow and Z. Michalewicz. ‘A Specialised Genetic Algorithm for Numer-
ical Optimisation Problems’. Second Int. IEEE Conf. on Tools for A.1. Proc.,
pages 798-804, 1990.

[60] R. Harris. ‘An Alternative Description of the Action of Crossover’. Adaptive
Control in Engineering Design and Control ’94, Proc., 1994.

[61] T. Dexter, E.D. Goodman, and W.F. Punch. ‘The Genetic Algorithm and Lo-
cal Optimizer Hybrid Approach for the Advanced Layout Problem’. GARAGe
Technical Report, Michigan State University, Feb 97.

[62] J. Yen, J.C. Liao, D. Randolph, and B. Lee. ‘A Hybrid Approach to Modeling
Metabolic Systems Using Genetic Algorithms and the Simplex Method’. Pro-
ceedings of the 11th IEEE Conference on Artificial Intelligence for Applications
(CAIA95), pages 277-285, 1995.

[63] A. Krukowski and I. Kale. “Two Approaches for Fixed-Point Filter Design, Bit-
Flipping Algorithm and Constrained Downhill Simplex Method’. Procs. 5th In-
ternational Symposium on Signal Processing and its Applications (ISSPA99),
1999.

[64] 1. Pitas. ‘Optimisation and Adaptation of Discrete-Valued Digital Filter Param-
eters by Simulated Annealing'. IEEE Trans. on Signal Processing, 42:860-866,
April 1994.

[65] L.M. Smith and M.E. Henderson. ‘Roundoff Noise Reduction in Cascade Re-
alizations of FIR Digital Filters’. IEEE Transactions on Signal Processing,
48(4):1196-1200, 2000.

[66] R. Storn. ‘Differential Evolution Design of an IIR Filter’. Procs. of the 1996
IEEE Int. Conf. on Fvolutionary Computation, pages 268-273, 1996.

[67] O. Franzen, H. Blume, and H. Schroder. ‘FIR-Filter Design with Spatial and
Frequency Design Constraints using Evolution Strategies’. Elsevier Signal Pro-
cessing, 68(3):295-306, August 1998.

[68] J.R. Koza. ‘Genetic Programming as a Means For Programming Computers by
Natural Selection’. Statistics and Computing, 4:87-112, 1994,

161

[69] K. Rodriguez-Vizquez, C.M. Fonseca, and P.J. Fleming. ‘Multiobjective Genetic
Programming : A Nonlinear System Identification Application’. Late Breaking
Papers at the Genetic Programming 1997 Conference, pages 207-212, July 1997.

[70] F. Glover. ‘“Tabu Search - Part I'. ORSA Journal on Computing, 1(3):190-206,
1989.

[71] F. Glover. ‘Tabu Search and Finite Convergence’. Accepted for publication in:
Discrete Applied Mathematics: Special Edition on Foundations of Heuristics in
Combinatorial Optimisation.

[72] S. Traferro and A. Uncini. ‘Power-of-two Adaptive Filters Using Tabu Search’.
IEEFE Ivans. on Circuits and Systems II: Analogue and Digital Signal Processing,
47(6):566-569, June 2000.

[73] R. Battiti and G. Tecchiolli. ‘The Continuous Reactive Tabu Search: Blend-
ing Combinatorial Optimization and Stochastic Search for Global Optimization'.
Annals of Operations Research — Metaheuristics in Combinatorial Optimization,
63:153-188, 1996.

[74] M.P. Hansen. ‘Tabu Search for Multiobjective Optimization: MOTS’. Procs.
MCDM 1997, January 1997.

[75] L. Davis. ‘Adapting Operator Probabilities in Genetic Algorithms’. Proceedings
of the Third International Conference on Genetic Algorithms, pages 61-69, 1989.

[76] V.B. Lawrence and A.C. Salazar. ‘Finite Precision Design of Linear-Phase FIR
Filters’. The Bell System Technical Journal, 59(9):1575-1598, 1980.

[77] P.A. Stubberud and C.T. Leondes. ‘A Frequency Sampling Filter Design Method
which Accounts for Finite Wordlength Effects’. IEEE Trans. on Signal Process-
ing, 42:189-193, January 1994.

(78] T. Arslan and D.H. Horrocks. ‘A Genetic Algorithm for the Design of Finite Word
Length Arbitrary REsponse Cascaded IIR Digital Filters’. Procs. GALESIA
International Conference, pages 276-281, 1995.

[79] Y. Aketa, M. Haseyama, H. Kitajima, and N. Nagai. ‘A Method for Quantising
Coeflicients of a Filter with Genetic Algorithm’. Elecironics and Communications
in Japan Pt III—Fundamental Electronic Science, 79(4):1-10, 1996.

[80] T. Gérne and M. Schreider. ‘Design of Digital Filters with Evolutionary Algo-
rithms’. Artificial Neural Nets and Genetic Algorithms, Albrecht, Reeves and
Steele Eds.:368-374, November 1993.

[81] C.M. Fonseca and P.J. Fleming. ‘Genetic Algorithms for Multiobjective Opti-
misation: Formulation, Discussion and Generalisation’. Procs. 5th Int. Conf. on
Genetic Algorithms, pages 416-423, 1993.

[82] L.J. Nicolson and B.M.G. Cheetham. ‘An Investigation into the Multiple Crite-
rion Optimisation Approach to ITR Digital Filter Design’. Colloguium on Digital
and Analogue Filters and Filtering Systems, pages 4/1-4/6, 1992.

162

[83] J.D. Schaffer. ‘Multiple Objective Optimisation with Vector Evaluated Genetic
Algorithms’. International Conference on Genetic Algorithms 1985, Proc., pages
93-100, 1985.

[84] C. Fonseca and P. Fleming. ‘A Review of Current Multi-objective Optimisation
Methods'. Evolutionary Computation, 3(1):1-16, 1995.

[85] S.W. Mahfoud. ‘A Comparison of Parallel and Sequential Niching Methods’.
Procs. Sixth Int. Conf. on Genetic Algorithms, pages 136-143, 1995.

(86] D. Beasley, D.R. Bull, and R.R. Martin. ‘A Sequential Niche Technique for
Multimodal Function Optimisation’. Ewvolutionary Computation, 1{2):101-125,
1993.

[87] J. Horn, N. Nafpliotis, and D.E. Goldberg. ‘A Niched Pareto Genetic Algorithm
for Multiobjective Optimisation’. Procs. First IEEE Conf. on Evolutionary Com-
pulation, 1:82-87, 1994.

[88] N. Srinivas and K. Deb. Multiobjective optimization using nondominated sorting
in genetic algorithms. Evolutionery Computation, 2(3):221-248, 1995.

[89] I Selesnick and C. Burrus. ‘Maximally Flat Low-pass FIR Filters with Reduced
Delay’. IEEE Trans. on Circuits and Systems II, 45(1):53-68, 1998.

[90] K.S. Tang, K.F. Man, S. Kwong, and Z.F. Liu. ‘Design and Optimisation of
IIR Filter Structure Using Hierarchical Genetic Algorithms’. IEEE Trans. on
Industrial Electronics, 45(3):481-487, June 1998.

[91] K. Deb. Multi-objective genetic algorithms: Problem difficulties and construction
of test problems. Evolutionary Computation, 7(3):205-230, 1999.

[92] J. Horn and D.E. Goldberg. ‘Genetic Algorithm Difficulty and the Modality of
Fitness Landscapes’. Foundations of Genetic Algorithms 3, pages 243269, 1995.

[93] Y. Davidor. ‘Epistasis Variance: A Viewpoint on GA-Hardness’. Foundations of
Genetic Algorithms, pages 23-35, 1990.

[94] T. Jones and S. Forrest. ‘Fitness Distance Correlation as a Measure of Problem
Difficulty for Genetic Algorithms’. ICGA 6, 1995.

{95] I. Kale, G.D. Cain, and R.C.S. Morling. ‘Minimum-Phase Fiiter Design from
Linear-Phase Startpoint via Balanced Model Truncation’. Electronics Letters,
31(20):1728-1729, September 1995,

[96] D. Beasley, D.R. Bull, and R.R. Martin. ‘Reducing Epistasis in Combinatorial
Problems by Expansive Coding’. Procs. Fifth Int. Conf. on Genetic Algorithms,
pages 400-407, 1993.

[97] H-C. Lu and S-T. Tzeng. ‘Complex Genetic Algorithm Approach for Design-
ing Equiripple Complex FIR. Digital Filters with Weighting Functions'. Signal
Processing, 80:197-204, 2000.

163

[98] S-T. Tzeng and H-C. Lu. ‘Design of Arbitrary FIR Log Filters by Genetic Algo-
rithm Approach’. Signal Processing, 80:497-505, 2000.

[99] U. Zélzer. ‘Roundoff Error Analysis of Digital Filters’. Journal of the Audio
Engineering Society, 42(4):232-244, 1994.

[100] C. Cotta and J.M. Troya. ‘Tackling Epistatic Problems Using Dynastically Op-
timal Recombination’. Computational Intelligence: Theory and Applications,
International Conference, pages 197-205, 1999.

164

Appendix A

Techniques

A.1 Increased calculation efficiency for recursive

FIR filters

When generating the response of a recursive Frequency Sampling (FS) filter, it is
possible to increase the computational efficiency by pre-calculating the fixed part of
the response, namely the passband, as only the effects of the trausition samples will vary
from filter to filter, depending on the values contained within the GA’s chromosome.

The transfer function for a recursive filter can be given by [11]

1 -2~ H(k)
N kz:% 1 edonk/N 51

H(z) =

This can be split into a comb filter which has N zeros spaced equally around the unit

circle:
1—-2z7N

H,.(2) N

(A1)

and a sum of single all-pole filters, whose poles are coincident with the zeros of the

comb filter:
S0
Hy(2) = kzz% Ty - (A.2)

The effects of the comb filter H,(z) are clearly constant for a given z, so can be pre-
calculated. Similarly, the coefficients in H (k) have no effect on Hp(z) in the stopband,

where they are always zero, so these samples need not be included. H(k) is also

165

constant in the passband where the samples are always unity, so the effects of these
coefficients on Hy(z) can be precalculated and stored. This leaves only the effects of
the few, variable transition samples to be calculated each time, and this can be made
more efficient by precalculating the denominator 1 — e/2™/N >~1 ag this is constant for
each £. Finally, only the response in the stopband needs to be determined as the fitness
only depends on the stopband attenuation. These precalculations and optimisations

produced a noticeable reduction in the GA run times.

A.2 Simplex method hill-climber

The Simplex Method of hill-climbing involves manipulating an N + 1-vertex solid in
N-dimensional space in order to search for improved solutions [33]. The simplest
method of hill-climbing is to optimise each coefficient in turn, but this is inefficient
when negotiating narrow valleys in the search space, as the search is required to zig-
zag as it can only make a small step at a time along each axis. Although it is possible
to use gradient information to rotate the axis so that they lie along the valley, and
the search can be more efficient, this requires additional calculations and a regular
realignment of the axes.

The Simplex method does not require any such analyses, and only takes point
samples of the space, but has the usual hill-climber’s limitation of only finding the
optimum it is started nearest to. An initial set of N -+ 1 vertices is selected at random,
and their fitnesses determined. The worst point in the shape is now moved relative
to the best face in the shape in order to search for a better solution, as shown in
Figure A.1.

The different moves listed in Figure A.1 are tried in turn: first a reflection, and if
this produces an improvement, the reflection is extended in the same direction to see if
there is any further benefit. If the first reflection did not improve the worst point, then
a contraction of this point towards the best face is tried. If all of these fail, then all of
the worst points contract towards the best one. The termination criterion is that the

relative fitnesses of all points within the Simplex lie within a selected tolerance band,

166

[*Incorrect parameter: ’ lohi]
return;
end

Wp=Wp*2;
Wa=Wa=*2;

[n,Wn]l=ellipord(Wp,Ws,Rp,Rs)
if N>0
n=N;

end

if n-floor(n/2)*2 ~= 0
n=n+i;

Convert bandedges to F, = 1 for Matlad

Predict the order needed

Use a specified order if given

Make order even if necessary

gprintf(’n odd - increased to %i\n’,n)

end

if high==
Wn = Ws;
[z pk] =
else
Wn = Wp;
[z pk] =
end

ellip(n,Rp,R8,Wn);

figure(1);
zplane(z,p) ;

fop=fopen([name ’.pz’],’w’);

for s=1:2:n
absz((s+1)/2)=aba(z(s));
argz((s+1)/2)=angle(z(s));
absp((s+1)/2)=abs(p(s));
argp((s+1)/2)=angle(p(s));
fprintf(fop,’absz=
fprintf(fop,’argz=
fprintf(fop, ’abap=
fprintf(fop, ’argp=

end

fclose(fop);

absz
argz
absp
argp

ellip(n,Rp,Rs,Wn, ’high’);

169

Get filter pole-zero positions

Display pole-zero locations in polar plot

Save pole-zero locations to initialise GA

“g\n’ ,absz((s+1)/2));
%g\n’,argz((s+1)/2));
“g\n’,absp((s+1)/2));
%g\n’ ,argp((s+1)/2));

Print pole-zero radii and angles

if high==1
[b a]
else
[b a] = ellip(n,Rp,Rs,Wn);
end

ellip(n,Rp,Rs,Wn, high’);

[h w] = freqz(b,a,128);

figure(2);

subplot(2,1,1);

plot(w/(2+pi), 20%log(abs(h)));
subplot(2,1,2);

plot(w/(2+pi), angle(h));

% save the target .tgt file

fop=fopen([name ’.tgt’]l,’w’);

Get filter a and b coefficients

Get frequency response

Display magnitude response

Display phase response

if high==1 If highpass. ..
temp = Ws; Ws = Wp;, Wp = temp;
for s=0:Ws+512 Save the response template for the stopband. . .

fprintf (fop,’-200 Yg\n’,-Rs);
end

for s=Ws*b12+1:Wp*b12
fprintf (fop,’-200 O\n’);
end

for s=Wpxb12+1:512
fprintf(fop,’%g O\n’,-Rp);
end

temp = Ws; Ws = Wp; Wp = temp;
else

... transition band. . .

... and passband

... else if lowpass. ..

for 8=0:Wp*512 Save the response template for the passband. . .

fprintf(fop,’%g O\n’,-Rp);
end

for s=Wp*b12+1:Ws*512
fprintf (fop,’-200 0\n’);
end

for s=Ws*b612+1:512
fprintf(fop,’-200 Yg\n’,-Rs);
end

170

... lransition band. . .

... and stopband

end
fclose(fop);

% now save the .ini file Save the GA initialisation file
fop=fopen([name ’.ini’],’w’);
fprintf(fop,’# Ini file created automatically by Matlab\n’);

fprintf(fop, [*# lhpiir(%i,%g.%g.%g.%g,’’’ name ’’’,%i,%g, %8,
115 1ohi ??7,%g)\n\n’1,N,Wp/2,Ws/2,Rp,Rs,wl,Wlinphlo,Wlinphhi,fwl);

fprintf (fop, nstages: \t\t%i\n’,n/2);

fprintf(fop, [’templatefile:\t\t’ name ’.tgt\n’]);

fprintf (fop, [’datafileroot:\t\t’ name ’\n’]);

fprintf (fop, 'wordlength:\t\t%i\n’,wl);

fprintf (fop,’fractional_bits:\t\tli\n’,fwl);

fprintf (fop, ’perturbpc:\t\t5\n’);

fprintf (fop, ’passband:\t\t%g %g %g %g\n’,Wplow,Wphigh,-1,-1);
fprintf(fop, ’'stopband:\t\t%g %g %g %g\n’,Wslow,Wshigh,-1,-1);
fprintf(fop,’linearphaseregion:\tig %g %g %g\n’.Wlinphlo,Wlinphhi,

_1 3 —1) 3
fprintf(fop, 'mazmagerror:\t40\n’);
fclose(fop);
% now save the ’last.m’ file Save a Matlab script to recreate this data

fop=fopen(’last.m’,’w’);
fprintf(fop, [’1hpiir(}i,lg,%g.hg,%g,’’’ name ’’’,%i,%g,%g,

'3 1ohi ’?’,%g)\n\n’],N,Wp/2,Ws/2,Rp,Rs,wl,Wlinphlo,Wlinphhi,fwl);
fclose(fop);

return;

This function was used to create datafiles containing pole-zero positions of full-
precision filters. These were then used to initialise the GA, by mutating each bit by

an amount proportional to perturbpc.

A.4 Single-criterion Genetic Algorithm

This C++-style pseudocode shows the important parts of the GA used to design Fre-
quency Sampling (FS) FIR filters.

171

void GA::Generate() The main loop

{

HandleKeyPresses() ; Pause, Save data, Quit
generation+t+; Increment generation counter
MakeNewPopulation(); Generate a child population. ..
GetFitnesses(); ...and get their filnesses
SelectNextPopulation(); Select the next population

After a quarter of the run, if no improvement for 20 generations. . .
if ((generation > maxGenerations / 4) &%
(noImprovementCount >= 20))
{

LocalSearch(); ... call the Simplex local search

If it found o better fitness, reset the ‘“‘no improvement” counter
if (bestFitnessImproved)
nolmprovementCount = 0;
}

if (bestFitnessImproved)
nolmprovementCount = 0;
else
nolmprovementCount++;

CopyNewPopulationTo01ld() ;

if (TerminationConditionsMet() || generation == maxGenerations)

{

SaveData();
QuitQ);
}
}

void GA::MakeNewPopulation()

{

Use stochastic remainder selection to pick individuals to
reproduce, the selected ones are listed in chosen/]

Selection according to integer part of scaled fitness

count=0;

172

for (int m=0; m<popsize; m++)

{

}

while (scaledFitness[m] >= 1.0)

{

chosen[++count] = m;
scaledFitness[m] -= 1.0;

}

Selection according to fractional part of scaled fitness

while (count < popsize-1)

{

}

do

{

m = randomInt(0,popsize-1);
if {scaledFitness[m] > 0.0)

{

if (randomFloat(0,1) < scaledFitness[m])

{

chosen[++count] = m;
fitscaled[m] = 0.0;

}
}

Reproduce pairs of strings selected at random from those held in chosen/]

use = randomInt(C,numleft-1); Pick two strings at random
oldl = chosen[use];

chosen[use] = chosen[numleft--];

use = rndi(numleft);

01d2 = chosen[use];

chosen[use] = chosen[numleft--];
crosstype = SelectCrossoverType(); Select crossover type by efficiency

switch (crosstype)

{

cage 0: NoXover(); break; Simply copy the old strings without crossover
case 1: xover(); break;

cagse 2: multixover(); break;

case 3: arithxover(); break;

case 4: multiarithxzover(); break;

case 5: wholearithxover(); break;

173

Mutate(); Mutate the genes in the two new chromosomes

GetNewFitnesses(); Get the fitnesses of the two new chromosomes
UpdataCrossoverEfficiency(); Update the crossover efficiency information

} while (newPopulationIncomplete());

}

Now the five types of crossover
void GA::xover() Single-point crossover
{

crossAt = randomInt(0,genes-1);

CopyOldToNew(0,CrossAt) ;
Cross0ldToNew(CrossAt+1,genes-1);

}

void GA::multixover() Multi-point crossover

{

direction = 1;
for (g=0; g<genes; g++)
if (direction == 1)
CopyOldToNew(g) ;
else

Cross01dToNew(g) ;

if (randomInt(0,genes-1) < gemes / 2.) Give an average of 2-pt Tover
direction = 1 - direction;

void GA::arithxover() Single Arithmetic crossover
{
crossAt = randomInt(0, genes-1);

CopyDldToNew (0,genes-1) ;

ArithmeticCrossover (crossit);

}

174

void GA::multiarithxover() Multiple Arithmetic crossover

{

for (g=0; g<genes; g++)

if (randomFloat(0,1) < 0.5)
ArithmeticCrossover(g);
else
CopyOldToNew(g);

void GA::wholearithxover() Whole Arithmetic crossover
{

ArithmeticCrossover(0, genes-1);
}

Function used to return a fitness

double GA::LowpassFitness(double *genes)
{

BubbleSort(genes); Sort transition samples so they decrease monotonically

Scaling factor to convert sample numbers to interpolated sample numbers
interpolatedSamples = 512;
scale = samples / interpolatedSamples;

Scan over the interpolated stopband samples
for (w = stopbandEdgeSample * scale; w<interpolatedSamples; w++)

{
The effects of the passband samples are precalculated as in Appendiz A.1
H = precalculatedH[w];

Add the effects of the transition band samples - the factors are also precalculated
for (k=0; k<NTransitionBandSamples; k++)
H += genes[k] * precalculatedMultipliers[w] [k];

output [w] myabs (H);

}
deltas = GetMaximum(output([w]); Find the mazimum ripple
deltas = -20.0 * loglO(deltas); Convert the ripple to decibels

return temp;

175

A.5 Multi-criterion Genetic Algorithm

This C++-style pseudocode shows the important parts of the MCO GA used to design
IIR filters.

void GA::Generate() The main loop

{

vhile (genmeration++ < maxGeneration)

{

GAProcessKey(); Handle keyboard input

GAMakeNewPopulation() ; Generate a new population

GAGetFitnesses() ; Calculate thesir fitnesses

if ((gemeration & 127) == 127) Occasionally call a local search
BitFlipLocalSearch();

Select those in the old and new non-dominated sets, plus other poorer solutions
GASelectNextPop();

GANewToD1d () ; Copy the new population over the old
}
}
void GA::GAMakeNewPopulation() Generate the nezt population
{

Pick individuals by tournament selection on their shared fitnesses
SelectForReproduction();

while (PopulationNotFilled())

{
if (randomFleat(0,1) < crossoverProbability)
Cross0ldToNew() ; Perform crossover
else
CopyOldToNew() ; No crossover

MutateNewPopulation(mutationProbability);

}

176

void GA::GAGetFitnesses() Calculate the fitnesses

{

for (m=0; m<popsize; m++)

{

OneFitness(m); Get the fitness of member m

}

DetermineDomination() ; Find the NDS of the new members

Allocate fitness by NDS level and share by crowding to disperse search
AllocateSharedFitness();

}

void Fitness::0OneFitness() Determine the fitness of one chromosome
{ -
DacodeChromosome() ; Eztract redius, angle and topology information
SetupFilter(); Set up the filter with the extracted coefficients. . .
GetFrequencyResponse() ; ... and get ils response

How well does the frequency response fit the target?
GetMagnitudeFitness() ;
How close to linearity is the phase response in the specified region?
GetPhaseFitness();
GetNoiseFitness(); What level is the roundoff noise gain¥

}

These fitnesses can then be used in any combination to determine the non-

dominated sets, from which the fitnesses are allocated and the next population selected.

177

Appendix B

Publications

178

A NEW APPROACH TO FREQUENCY SAMPLING FILTER
DESIGN USING GENETIC ALGORITHMS

E C Ifeachor and S P Harris
Department of Electronic, Communication and Electrical Engineering,
University of Plymouth, '
Drake Circus, PLYMOUTH, PL4 8AA, England.

Abstract

The purpose of this paper is to presemt a novel approach to designing frequency
sampling filters using Genetic Algorithms (GAs). In this method, an approximation to
the desired continuous frequency response is cblained by optimising a small number of
frequency samples. Existing methods employing linear programming techniques have
computation times that increase exponentially with the number of samples to be
optimised, and the published design tables do not adequately cover many filter designs.
Our method overcomes these disadvantapes, offers considerable flexibility, and yields
results that are as good as or in some cases superior {0 published ones. Optimisation of
the transition samples was achieved using a GA designed specifically for numerical
problems requiring & high precision. A local search method was used in conjunction
with the GA for fine tuning. Many aspects of filter design involve optimisation, and
could easily be incorporated into the GA, thereby allowing it 1o provide a simple yet
powerful ‘universal' method for digital filter design, removing the difficulty of
understanding the myriads of numerical optimisation techniques that are used in digital
filter design.

] Introduction

Central to digital filter design is the problem of finding a practical response that approximates a desired
or ideal frequency response as closely as possible. The desired response may be magnitude, phase or both
magnitude and phase. The frequency sampling method is an efficient way of finding the response of FIR
(finite impulse response) filters lo approximate an arbitrary frequency response. An altraction of the
frequency sampling approach is that it allows a recursive implementation of FIR filters [1,2] which are
computationally efficient, especially for filters with namow passband. Further, the method is
particularly well suited to the design of non standard filters where analytical expressions are not
available,

In the frequency sampling method, samples of the desired frequency responsc are normally taken al
equally spaced frequencies and from these an approximation to the desired continuous frequency
response is obtained. To minimize the error between the desired and the computed responses a small
number of the frequency samples are adjusted by an optimization procedure. Rabiner et al [3) describe
an optimization technique, based on linear programming, for finding oplimum frequency samples for
standard frequency selective filters {c.g. lowpass and bandpass filters). Unfortunately, the computation
time increases exponentially as the number of frequency samples to be optimized increases.

Tables of optisrum values of the transition band frequency samples are available in the literature [3] ang'

are widely used. If designer wants a filter not tabulated approximate values of the transition band
frequency samples may be obtained by lincar interpolation, but this is not always possible especially if
the design involves a large number of transition band samples. Fusther, the information in the tables is
not in a form filler designers are familiar with - e.g. bandedge frequencies and passband ripples are not
given. The lack of a general purpose computer program for finding optimum frequency samples has
restricted the use and eroded the valuc of the frequency sampling method.

5/1

Institulion ol Elecincal Engineers.
pubiished by the IEE. Savoy Place, London WC2R 0BL. UK

Pap—

The purpose of this paper, is to present a novel approach to designing frequency sampling filters using
Genetic Algotithms (GAs). GAs arc basically search and optimization techniques based on the
principles of natural selection and genetics {4,5] requiring little knowledge of the problem area. This
makes them well suited to many engineering problems such as digital filter design, where optimization
is required. Our method overcomes the disadvantages referred to above, offers considerable flexibility,
and yields results that are as good as and in some cases superior to published ones.

Optimum values of the transition band frequency samples are normally of high precision, about 7 to 8
decimal places. In this work we used a specialized GA [6] which has been shown to be better suited to
numerical optimization problems requiring high precision than standard GAs. The parameters are
represented as floating oumbers. To ensure that optimum values of the transition band frequency
samples are obtained, the specialised GA is first used to find a good solution close 1o the optimum. A
local search method is then used for fine tuning. For most filter design tasks, the solution found by the
GA will be good enough, being close fo the optimum solution.

Our algorithm runs on a 486 IBM PC (or compatible) and shows dynamically, via a graphics display,
how the frequency response is changing as the GA scarches the solution space. The software will be
demonstrated at the workshop.

2. Frequency sampling method

In the basic frequency sampling method, samples of the desired frequency response are taken at regular
intervals as illustrated in figure 1b for a lowpass filter. In this case, N samples of the ideal frequency
response are taken at intervals of

£, k=0, 1,2, ..., N-1)

where F, is the sampling frequency for the filter. Given the values of the N frequency samples, H(k), of
the ideal frequency response, the FIR filter coefficients, k(n), are then obtained using the inverse discrete
Fourier transform (IDFT):

N-1
h(n) = %, Y H(k)e/@mt p=0,1,..,N-1 @
=0

For linear phase filters with positive symmetrical impulse response, equation 2 can be writlen in a
simpler form [2).

5/2

g
y

0 (@ - Fs
&
-

c P& () N
- i P
e
E /\/\/\/\/

P
0] (©) Fs

Figure I: Concepts of frequency sampling. (a) The ideal response;
(b) the sampled response; (c) the interpolated (actual) frequency response.

After computing the impulse response, h(n), the corresponding continuous frequency response may be
obtained by first zero-padding h(n) and then taking its DFT. The continuous frequency response will be
exaclly the same as the desired response at the sampling insiants, but between the sampling instants it
may differ quile significantly, see figure Ic for example.

The frequency respense of filters designed by the basic frequency sampling method will in general be
poor, caused by the abrupt change in the values of the frequency samples from 1 (in the passband) to 0
in the stopband. To minimize the deviation of the response from the ideal response in the pass and
stopband, we introduce frequency samples in the transition band as illustrated in Figure 2 for a simple
lowpass fiiter with three transition band samples. The improvement in the pass and siopbands is
achieved at the expense of increased transition width.

P

l2345678910”|213I415k

Fipure 2: Frequency sampling with transition band frequency samples.

5/3

Ao

The values of the transition bard frequency samples are not known in advance and must be found by
optimization. A useful optimization crilerion is to find the set of frequency samples, T, T, ..., Ty,
that minimises the maximum ripple in the stopband.

min[max |Hp(h -HN] 3

{fin the stopband}
where /
Hp(f) = ideal frequency response
HpH = actual frequency response

We discuss in the next section how the GA is used to optimize the transition band samples. In the GA
approach, the number of transition band samples does not have a major impact on the computational
time, since in GA the search for a solution occurs in parallel. At the present we limit the number of
transition band samples to 10.

3. Genetic Algorithm for optimizing transition band frequency samplés

Optimization of the transition band samples was achieved using a specialized GA, which is well suited
to numerical optimization problems which require high precision. As in standard GAs, we start with an
initial population of possible solutions (i.e sets of frequency samples) generated at random. By applying
the GA operators of reproduction, crossover and mutation at each generation of the algorithm. The
initial population evolves towards the optimum set of frequency samples.

In our GA, a floating point representation is used to represent the frequency samples. For a filter with M
transition band samples, each possible solution is represented as:

H = (T,, Ty, .. Ty} (4)

where the transition band samples, T, Ty...,T,; are each represented as a double precision floating
point sumber in the range 0 (o 1.

The performance or fitness of each individual (i.e. each possible solution) is based on the maximum
difference, O;, between the desired and actual frequency response:

8; = max |Hp() —H ()| (5)
{f in the stopband}

The fitness vaiue for the ith individual is the inverse of the maximum difference.

As in most GA applications a substamtial pan of the optimization time is spent on computing the fitness
values for the individuals. [n ocur application, we estimate that about 80% is spent in evaluating the
fitness function, mostly in computing the [DFTs and DFTs computations. Thus there is an incentive to
seek ways to improve computational efficiency. Since for each generation only M frequency samples (in
the transition band) will change, a large pant of the IDFT can be precomputed and saved. Additional
savings are mad¢ by using an algorithm which packs N real points into N2 complex points, so halving
the length of the FFT.

We have used forms of the GA operators designed specifically for floating-point optimisation problems.
A dynamic mutation operator is used which moves the point under study by a random amount. The
average distance that each point is moved is decreased as the number of generations increases, to prevent
the GA from being thrown away from a fitness maximum once it has converged. The crossover operalor

5/4

)

RS
it

APCTTRITTEN

used was chosen randomiy for each crossover from the following five crossover methods, with each
being selected with equal probability. Ordinary crossover consists of a 1-point crossover, simply
swapping blocks of numbers between chromosomes, and multiple crossover is similar but with a random
number of crossing points. Arithmelic crossover consists of replacing the genes at the same location
within two chromosomes by linear sums of the two original gene values. E.g. for vectors 1 and y, to
arithmetically cross over the kth/gene: '

. r'=rx +{l-rhy,

y=(-r.x+ry,

where r is a random number between zero and one; if r=0.5, the resulting values are the average of the
parent genes. Multiple arithmetic crossover is similar, but with a random number of genes being
crossed, and whole arithmetic crossover affects the entire two chromosomes. It should be noted that the
first two types of crossover do not actually create any new values, but simply move them between strings,
whereas the last three variations actually alter the values of the genes, and so are closer to the actions of
standard binary crossover. lnversion is not used because the genes are ordered before use, so it would
not have any effect.

Stochastic remainder selection without replacement [5] is used to select members for reproduction, a
technique that ensures that the best individuals are always chosen, while some poorer members are also
picked to help maintain diversity and prevent premature convergence. Since there is only one maximum
in the search space (3], there is no danger of the GA being trapped at a sub-optimal fitness peak, so
elitism can safely be used to retain the best solutions found.

The genetic algorithm for optimizing the transition band samples are summarised below:

4] From the user specifications determine the mumber of frequency samples in the pass
and stop bands, and the number of transition bands samples.

) initialize the GA.

3) compute the fitness value for each individual in the population and note the best
individuals found so far.

4 if the best individual is better than the best so far update the display of the response
(5) obtain the next generation: reproduction, crossover and mutation
(6) repeat steps 3 to 5 until the stopping condition is satisfied.

(@) save values of impulse response cocfficients, frequency response, and values of the
transition band samples for the best solution.

4 Results
We will illustrate the use of the algoritkm by the following two design problems:
Problem 1:

Find the optimum transition band frequency samples and the comresponding filter coefficients for a
lowpass filter meeting the following specifications:

passband edge frequency, f, 0.143 (normalized)
stopband edge frequency, T, 0.245 (normalized)
number of filter coefficients, N 49

5/5

